ERRATUM FOR “SLOWLY CONVERGING YAMABE FLOWS”

The last line of Proposition 13 is only true as stated if dim \(\Lambda_0 = 1 \). If dim \(\Lambda_0 \geq 1 \), then all one can say is that the inequality holds for some \(\theta \in (0, 1/p] \). Note that the result [12, Proposition 2.3(b)] is only stated/applicable in the one dimensional case; in the higher dimensional case one must appeal to the classical Lojasiewicz inequality.

To correct this issue:

1. The last line of Proposition 13 should be replaced by “If \(g_\infty \) is nonintegrable, then this holds for some \(\theta \in (0, 1/p] \), where \(p \) is the order of integrability of \(g_\infty \).”

2. The last sentence in the second to last paragraph of the proof of Proposition 13 should be replaced by “Thus we may conclude by the classical Lojasiewicz inequality (cf. [12, Theorem 1.1]) that \(F \) satisfies the Lojasiewicz–Simon inequality for some \(\theta \in (0, 1/p] \).”

Date: June 2, 2016.