
EXERCISES FOR MINI-COURSE ON THE FUKAYA CATEGORY

MAKSIM MAYDANSKIY AND NICK SHERIDAN

1. Combinatorial Floer homology

Let L0, L1 ⊂ Σ be transversely intersecting, simple, closed, homotopically non-trivial curves
in a symplectic 2-manifold (Σ, ω).

(1) Give a purely combinatorial definition of the Floer cochain complex (CF •(L0, L1), ∂)
over ΛZ2 . In particular, prove that ∂2 = 0.

(2) Now do the same, but over ΛK where K is an arbitrary field (not necessarily of
characteristic 2).

(3) How far can the conditions on the Li be relaxed? Can they be immersed curves, or
nullhomotopic curves?

(4) More generally, let L0, . . . , Lk be transversely-intersecting curves as above. Give a
purely combinatorial definition of the A∞ structure map

mk : CF (Lk−1, Lk)⊗ . . .⊗ CF (L0, L1)→ CF (L0, Lk),

and prove that the maps defined in this way satisfy the A∞ relations (start by work-
ing over a Novikov field of characteristic 2 as before, then generalize to arbitrary
characteristic).

References for this section include [Che02], [dSRS14], [Sei08, §13b].

We will consider gradings in this case in §4.

2. The action functional (see [Auroux, §1.1])

Let L0, L1 be Lagrangian submanifolds of (M,ω). Define the path space

P := {γ ∈ C∞([0, 1],M) : γ(0) ∈ L0, γ(1) ∈ L1}.

We can think of this as an infinite-dimensional manifold with tangent space

TγP = {η ∈ Γ(γ∗TM) : η(0) ∈ Tγ(0)L0, η(1) ∈ Tγ(1)L1}.
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If J is an almost-complex structure on M compatible with ω, i.e., such that g(·, ·) := ω(·, J ·)
is a Riemannian metric, then we can define a Riemannian metric gP on P by setting

gP(η, ξ) :=

∫ 1

0

g(ηt, ξt)dt.

Now, we define a function A on P̃, the universal cover of P, by

A(γ,Γ) := −
∫

Γ

ω.

Here γ ∈ P and Γ : [0, 1] × [0, 1] is a homotopy between γ and a fixed base point in the
connected component of P. This is called the action functional.

Remark: To make this sort of thing more than formal one would need to pick some regularity
class of paths to set up relevant Banach manifolds etc. However, attempts to make rigorous
parts of this exercise about gradient flowlines would still run into severe analytical difficulties;
in fact, existence of bubbling shows that such difficulties are not accidental. Reformulating
the gradient flow equation as a Cauchy-Riemann PDE allows one to analyze the bubbles and
is one of the insights underlying Floer theory.

(1) Prove that the critical points of the action functional are (lifts of) constant paths,
i.e., intersection points between L0 and L1.

(2) Let u : R → P̃ be a Morse flowline of the action functional with respect to the Rie-
mannian metric gP. I.e., u′(s) = ∇A where gP(∇A, ·) = dA, and lims→∞ u(s) = p,
lims→−∞ u(s) = q. Prove that such Morse flowlines u are in one-to-one correspon-
dence with (lifts of) J-holomorphic strips connecting p and q. Thus, Lagrangian
Floer cohomology can be thought of as a version of Morse cohomology for the action
functional.

(3) Suppose that (M,ω) is exact (i.e., ω = dα), and L0 and L1 are exact Lagrangians
(i.e., α|Li

= dhi for i = 0, 1).
(a) Show that A(p̃) = A(p) does not depend on the lift p̃ of p.
(b) Show that for any holomorphic strip u from p to q, we have

ω(u) = A(q)−A(p).

(c) Show that in this case, one can define CF (L0, L1;Z2) by counting holomorphic
strips with coefficients in Z2 rather than Λ (i.e., show that one doesn’t get any
infinite sums); and that the map

(CF (L0, L1;Z2), ∂)⊗Z2 Λ→ (CF (L0, L1; Λ), ∂)

p 7→ TA(p) · p

is an isomorphism of cochain complexes.
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Remark: The last exercise shows that in the exact case, the use of the Novikov field is
unnecessary. For that reason one often simply defines CF (L0, L1) with Z2 coefficients.

Remark: A compact symplectic manifold can never be exact (because ω∧top must represent
a non-zero class in the top degree of cohomology). All steps in the construction of Floer
cohomology of closed Lagrangian submanifolds of a non-compact symplectic manifold work
as in the compact case, except for compactness: one needs to impose some extra conditions
on the manifold to ensure that the holomorphic curves remain confined inside a compact
region, typically by some version of the maximum principle.

3. Gromov Compactness

(1) Let J be the standard complex structure on CP1.
(a) Find a sequence of J-holomorphic maps un : CP1 → CP1 which converge to a

nodal sphere.
(b) Now let L0, L1 ⊂ CP1 be simple closed curves (i.e., Lagrangians) which intersect,

transversely. Find a sequence of J-holomorphic strips with boundary on L0 and
L1 which converges to a non-constant J-holomorphic strip with a disc bubble
attached at a boundary point.

(2) Let J be the standard integrable complex structure on CP2.
(a) Consider the J-holomorphic curves (without boundary)

uε : CP1 → CP2

uε([z : w]) = [z2 : εzw : w2].

What is the limit of this sequence of curves as ε→ 0? As ε→∞?
(b) Use the above example to construct a sequence of J-holomorphic discs u :

(D, ∂D)→ (CP2,RP2) whose limit is two discs joined at a boundary node.

4. Grading

(1) Prove that the Maslov index for paths is uniquely characterized by the properties
stated in lecture.

(2) Prove the claim made in the lecture: the Floer differential has degree +1.
(3) Work out the graded Floer complex CF •(L0, L1) for the following two Lagrangians

in the plane:
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L

L1

0

(4) Let L ⊂ M be a Lagrangian such that the image of π1(L, ∗L) in π1(M, ∗) is trivial.
An anchoring for L is a homotopy class of paths γ in M from ∗ to ∗L (see [FOOO]).
Now suppose that L0 and L1 are anchored; for each p ∈ L0 ∩ L1, assign a grading
deg(p) ∈ π1(M, ∗) by following the chosen paths from ∗ to ∗L0 , to p (inside L0), to
∗L1 (inside L1), to ∗. Prove that the A∞ products mk respect this grading, in the
sense that

deg(mk(p1, . . . , pk)) =
k∑
i=1

deg(pi).

(5) Show that there is a natural isomorphism of cochain complexes

(CF •(L0, L1), ∂) ∼= (CF n−•(L1, L0)∨, ∂∨).

This isomorphism (or more precisely, the induced isomorphism on the cohomology
level) is called Poincaré duality.

5. Holomorphic discs and displacement energy.

Let φ be a compactly supported Hamiltonian symplectomorphism of (M,ω). Define the
Hofer norm of φ to be the infimum, over all Hamiltonians generating φ, of their time-averaged
variations; that is define

ρ(φ) = inf
Ht

∫ 1

0

(maxHt −minHt) dt.



EXERCISES FOR MINI-COURSE ON THE FUKAYA CATEGORY 5

where the infimum is taken over all compactly supported Ht : [0, 1] ×M → R with φ1 = φ
(this was proved to be a metric on Hamc(M,ω) by Lalonde and McDuff [McDuff-Lalonde]).

We also define the displacement energy of K,L ⊂ M to be the infimum of Hofer norms of
all Hamiltonian symplectomorphisms disjoining K and L from each other:

e(K,L) = inf
{φ|φ(K)∩L=∅}

ρ(φ).

When K = L then e(K) := e(K,K) is known as the displacement energy of K.

(1) Prove e(K,L) = e(L,K).
(2) Consider K and L two (Lagrangian) curves in the cylinder:

Suppose the areas of discs between K and L are a1 and a2 (with a1 < a2). Compute
e(K,L).

(3) In general, for two Lagrangians K and L for which the Floer cohomology is well
defined, give a bound on e(K,L) in terms of this Floer cohomology (over the Novikov
ring), and give an idea of a proof.

6. Morse trajectories and holomorphic strips (see [Auroux, §1.6]).

Consider a Morse function f on smooth manifold N . Given a metric g such that the pair
(f, g) satisfy the Morse-Smale transversality condition, one obtains a Morse-Witten complex
generated by critical points of f and with differential counting gradient trajectories of f .

Let L0 be the zero section in T ?N , and L1 the graph in T ?N of σdf for a fixed small real
number σ.
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(1) Show that the Hamiltonian H = σf · π isotopes L0 to L1.
(2) Show that L0 and L1 intersect transversely at the critical points of f .

This identifies the generators of Morse-Witten and Floer complexes in this setting.
(3) Use g to get a compatible almost complex structure for T ?N , and then identify

T(p,q)(T
?N) = C ⊗ TqN , with vertical subbundle purely imaginary and horizontal

purely real. Show that this gives a trivialization of (Λn
C(T ?T ?N))2 as in the lecture.

(4) Show that L0 is graded (by a constant lift!), and we can use the Hamiltonian isotopy
above to grade L1.

(5) Show that Maslov and cohomological Morse gradings of all p ∈ L0 ∩ L1 = crit(f)
coincide.

This identifies Morse-Witten and Floer complexes as graded vector spaces.
(6) Recall that Floer equation perturbs the Cauchy-Riemann holomorphicity condition

by adding a Hamiltonian term XH :

∂u

∂s
+ J(t, u)

(
∂u

∂t
−XH(t, u)

)
= 0

Show that ũ(s, t) = (φtH)−1(u(s, t)) solves the perturbed Floer equation if and
only if u(s, t) solves the unperturbed version. The two versions (one perturbing the
boundary and one perturbing the equation) are therefore equivalent.

(7) Using the compatible J from above and Hamiltonian perturbation −H, see that
u(s, t) = γ(s) is a solution for perturbed equation whenever γ is a Morse flowline of
f .

(8) Rescale the generators p → T σf(p)p to identify (modulo regularity issues which we
ignore) Morse and Floer complexes over the Novikov ring.

Remark: In the general case of a compact Lagrangian submanifold L in a symplec-
tic manifold (M,ω), under the assumption that [ω] · π2(M,L) = 0 energy estimates
imply that, for a sufficiently small Hamiltonian perturbation, the pseudo-holomorphic
strips that determine the Floer cohomology HF ?(L,L) must all be contained in a
small tubular neighborhood of L, so that the calculation of Floer cohomology reduces
to the above, and we get that HF ?(L,L) = H(L,Λ) (this is originally due to Floer
in the exact case for K = Z2, [Floer]).

7. The Stasheff associahedra and holomorphic discs

The Stasheff associahedron Kk [Stasheff] is a polyhedron whose faces FT are indexed by
planar trees T with k + 1 labeled, cyclically ordered semi-infinite leaves (with no finite
leaves, every vertex of degree at least 3, and up to planar isomorphism, of course); and
FT1 ⊂ FT2 if and only if T2 is obtained from T1 by contracting some edges.
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(1) Draw K3, K4 and K5. Describe the natural action of Z/k + 1 on Kk in these examples
(the natural action arises by rotating the planar trees, aka cyclically shifting the
labels).

(2) Let Rk := {(x1, . . . , xk) ∈ Rk : x1 < . . . < xk}/Stab∞(SL(2,R)), where the sub-
group Stab∞(SL(2,R)) is the stabilizer of infinity inside SL(2,R), viewed as Möbius
transformations, acts by translations and (positive) scalings. Show that there is a
well-defined embedding

i : Rk ↪→ [0,∞](
k
3),

where the coordinate indexed by the subset {` < m < n} ⊂ {1, . . . , k} is given by the
corresponding cross ratio (see [McDuff-Salamon, Appendix D.1]), (xn−xm)/(xm−x`).

(3) Define R̄k to be the closure of the image of i. This is the Deligne–Mumford compact-
ification of Rk. Prove that it is isomorphic to Kk in a way that preserves the natural
stratifications.

(4) Now consider the analogous construction, but where we do not impose an ordering
condition on the xi: call the resulting topological space R̄unord

k . Is the resulting iunord
an embedding? Identify the topological space R̄unord

4 .

The significance of this for Fukaya categories is as follows. We regard R as the boundary
of the upper half-plane H := {z ∈ C : im(z) ≥ 0}. Any complex disc with k + 1 ordered
boundary marked points is biholomorphic to H∪{∞}, with the first boundary marked point
corresponding to∞ and the remaining ones corresponding to points x1 < . . . < xk ∈ R = ∂H.
Thus Rk is isomorphic to the moduli space of complex discs with k + 1 boundary marked
points, which are precisely the domains of the J-holomorphic maps whose count defines an
A∞ structure map mk in the Fukaya category.

The codimension-1 boundary components of the Gromov compactification of a one di-
mensional moduli space of J-holomorphic discs are of two types. Firstly, the complex
structure on the domain may degenerate: i.e., it may approach a point in the boundary
R̄k \ Rk

∼= Kk \ int(Kk). Since we are considering a one-dimensional moduli space, generi-
cally it will avoid the faces of codimension 2 and only run into the faces of codimension 1.
These correspond precisely to the terms in the A∞ relations which do not involve m1 = ∂.
Secondly, we may have concentration of energy at a boundary puncture, as happened in the
proof that ∂2 = 0: these boundary points correspond to the remaining terms in the A∞
relations.

8. Floer theory in toric varieties

(1) Calculate the disc potential function for Lagrangian torus fibres in the following cases:
(a) CP1.
(b) CP1 × CP1.
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(2) Hence work out which torus fibres have non-vanishing Floer cohomology in these
cases.

(3) In the case of CP1, verify your answer to the previous question using the combinatorial
model for HF •(L,L) ∼= HF •(L, ψ(L)) from §1.

(4) Prove that every torus fibre in CP1 with vanishing self Floer cohomology (i.e., such
that HF •(L,L) ∼= 0) can be displaced by a Hamiltonian isotopy.

(5) In fact, prove that every torus fibre in CP1 with vanishing self Floer cohomology can
be displaced by a Hamiltonian isotopy supported in CP1 \ 0 or CP1 \ ∞ (but not
both).

(6) Use the previous exercise to show that every torus fibre in CP1×CP1 with vanishing
self Floer cohomology can be displaced by a Hamiltonian isotopy.

(7) Use the same idea to show that every torus fibre in CP2 with vanishing self Floer
cohomology can be displaced by a Hamiltonian isotopy.

This method of displacing torus fibres is called the method of ‘probes’ [McD11].

9. The elliptic curve

This exercise is about the Fukaya category of an elliptic curve; be warned that it is more
computationally intensive than the other exercises! It is based on [Zas05].

Let (T, ω) = (R2/Z2, τ · dx ∧ dy) be a symplectic torus of area τ . Consider the Lagrangians
Lk = {y = kx} for k ∈ Z. Observe that the isomorphism

T → T

(x, y) 7→ (x, y + x)

takes Lk to Lk+1 for all k. Therefore, we can define a map

HF •(L0, Lj)⊗HF •(L0, Lk)
id⊗T j

−−−→ HF •(L0, Lj)⊗HF •(Lj, Lj+k)
m2

−→ HF •(L0, Lj+k).

(1) Show that this product defines a bigraded algebra A•,•, where

Aj,k := HF j(L0, Lk).

(2) Show that the corresponding graded algebra

Ck := A0,3k

is isomorphic to Λ[X0, X1, X2]/p(X0, X1, X2), where |Xi| = 1 and

pτ (X0, X1, X2) = aτX
3
0 + bτX

3
1 + cτX

3
2 + dτX0X1X2.

Compute aτ , bτ , cτ , dτ .
(3) Calculate the j-invariant of the elliptic curve defined by {pτ = 0}, as a function of τ .
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