
ON A QUESTION OF ZANNIER

NICHOLAS M. KATZ

1. Zannier’s questions

We fix an integer N ≥ 1 and an elliptic curve E over Z[1/6N ], given
by an equation

y2 = f(x)

with f(x) a cubic in Z[1/6N ] whose discriminant is invertible in Z[1/6N ].
On E we have the differential of the first kind ω = dx/y and the dif-
ferential of the second kind η = xdx/y. For each prime p not dividing
6N , we look at this data mod p, and apply the Cartier operator Cp.
We get quantities αp, βp ∈ Fp defined by

Cp(ω) = αpω, Cp(η) = βpω.

What can one say about (αp, βp) as p varies? One knows that αp is the
reduction mod p of the trace of Frobenius, or equivalently that αp is
the Hasse invariant of E mod p. Is there an interpretation of βp?

It is straightforward that one has the following “formulas” for αp and
βp.

αp ≡ the coef. of xp−1 in f(x)(p−1)/2 mod p,

βp ≡ the coef. of xp−2 in f(x)(p−1)/2 mod p.

To draw information from these formulas, we will assume our curve
is given in Weierstrass form

y2 = 4x3 − g2x− g3,
coefficients g2, g3 ∈ Z[1/6N ] with g32 − 27g23 invertible in Z[1/6N ].

Recall that over an Z[1/6]-algebra R, a pair (E,ω) consisting of an
elliptic curve over R together with a basis ω of H0(E,Ω1

E/R can be
written uniquely as a Weierstrass equation

y2 = 4x3 − g2x− g3,
now with g2, g3 ∈ R and with g32 − 27g23 invertible in R. Conversely,
given g2, g3 ∈ R with g32−27g23 invertible in R, the Weierstrass equation
together with ω := dx/y is such an (E,ω). Viewed as functions of the
input data (E,ω), g2 = g2(E,ω) is a modular form over Z[1/6] of
weight 4, and g3 = g3(E,ω) is a modular form over Z[1/6] of weight 6.
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One knows that for any Z[1/6]-algebra R, the graded ring of modular
forms over R is the ring R[g2, g3][1/(g

3
2 − 27g23)]. The subring R[g2, g3]

is the graded ring of those modular forms over R whose q-expansion
(value on the Tate curve with its canonical differential) is holomorphic,
cf. the next section for a “baby” proof of this last fact.

If we attribute weight 2 to x, then f(x) = 4x3 − g2x− g3 is isobaric
of weight 6. Thus f(x)(p−1)/2 is isobaric of weight 3(p − 1). Thus αp
(respectively βp) is an Fp polynomial in g2, g3 which is isobaric of weight
p − 1 (respectively isobaric of weight p + 1). In other words, αp is a
mod p modular form of weight p− 1, and βp is a mod p modular form
of weight p + 1. There is an obvious guess, perhaps naive, as to what
these forms must be, which turns out to be correct. In order to state
it unambiguously, we must fix some notation, which we do in the next
section.

2. Review of Eisenstein series

Over any Q-algebra R, given an (E,ω) = (y2 = 4x3−g2x−g3, dx/y),
there is a unique formal parameter z along the zero section in terms of
which ω = dz. The Weierstrass ℘-function is the formal expansion of
x in the parameter z, which we write as

x = ℘(E,ω) = 1/z2 + 2
∑
k≥2

G2kz
2k−2/(2k − 2)!.

For each k, the coefficient G2k is a modular form over Q of weigh 2k,
whose q-expansion is

G2k = −b2k/4k +
∑
n≥1

qn
∑
d|n

d2k−1,

with b2k the Bernoulli number. One knows (Kummer congruences) that
b2k is p-integral except for those p such that p−1 divides 2k. If p−1|2k,
then pb2k is p-integral and is 1 mod p; in particular, ordp(1/b2k) = 1.
One also knows that if if p− 1 does not divide 2k, then b2k/2k mod p
depends only on the congruence class of 2k mod p− 1.

From the differential equation

(d℘/dz)2 = 4℘3 − g2℘− g3

for

℘ = 1/z2 + 2
∑
k≥2

G2kz
2k−2/(2k − 2)!,
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one sees that G2k is an isobaric Q-polynomial in g2 and g3 of weight
2k. For example, one has

G4 =
g2
20
, , G6 =

3g3
7
, G8 =

3g22
10

, G10 =
108g2g3

11
,

G12 =
756g32

65
+

16200g23
91

, G14 = 1296g22g3, G16 =
174636g42

85
+

1166400g2g
2
3

17
,

G18 =
9471168g32g3

19
+

256608000g33
133

, G20 =
25147584g52

25
+

678844800g22g
2
3

11
,

G22 =
10671720192g42g3

23
+

103296384000g2g
3
3

23
,

G24 =
73581830784g62

65
+

1410877440000g32g
2
3

13
+

15547365504000g43
91

.

We will use the notation E2k for the modular form

E2k := (−4k/b2k)G2k,

whose q-expansion is

E2k = 1− (4k/b2k)
∑
n≥1

qn
∑
d|n

d2k−1.

By the q-expansion principle, G2k is a modular form over the ring
Z[b2k/4k], and E2k is a modular form over the ring Z[4k/b2k]. In par-
ticular, for any prime p ≥ 5, Ep−1 is a modular form over Zp, as are
both Gp+1 (whose constant term is conguent to −1/24 mod p) and
Ep+1.

In particular, we have

g2 = E4/12, g3 = −E6/216,∆ := g32 − 27g23 = (E3
4 − E2

6)/1728.

So over any Z[1/6]-algebra R, the graded ring of modular forms is
the polynomial ring R[E4, E6][1/(E

3
4 −E2

6)]. To show that the subring
R[E4, E6] consists precisely of those modular forms whose q-expansion
is holomorphic, it suffices to show that an isobaric element of R[E4, E6]
whose q-expansion has vanishing constant term is divisible by E3

4−E2
6 .

Since both E4 and E6 have q-expansions with constant term 1, the
constant term of the q-expansion of an element g =

∑
i,j ai,jE

i
4E

j
6 is∑

i,j ai,j. If this element is isobaric of weight w = 2k, then 2i+ 3j = k

for each monomial which occurs. Thus j has the same parity as k = w/2
for each such monomial. Suppose first k = w/2 is even. Then j

is even, and Ei
4E

j
6 is congruent to E

i+3j/2
4 = E

w/4
4 modulo the ideal

(E3
4 − E2

6). Thus g is congruent to
∑

i,j ai,jE
w/4
4 modulo this ideal. So

if
∑

i,j ai,j = 0, then g is divisible by E3
4 −E2

6 . If k = w/2 is odd, then
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our element g is of the form g0E6, and we apply the previous argument
to g0.

Although not modular forms, it will be convenient to introduce the
q-series

G2 = −b2/4 +
∑
n≥1

qn
∑
d|n

d = −1/24 +
∑
n≥1

qn
∑
d|n

d

and
E2 = 1− 24

∑
n≥1

qn
∑
d|n

d = Ramanujan′s P.

3. Relation of αp and βp to Ep−1 and Ep+1

Fix a prime p ≥ 5. Define αp, βp ∈ Fp[g2, g3] to be

αp ≡ the coef. of xp−1 in (4x3 − g2x− g3)(p−1)/2 mod p,

βp ≡ the coef. of xp−2 in (4x3 − g2x− g3)(p−1)/2 mod p.

Theorem 3.1. For any prime p ≥ 5, αp is the reduction mod p of
Ep−1, and βp is the reduction mod p of Ep+1/12. Moreover, αp and βp
have no common zero.

Proof. The first assertion is a congruence due to Deligne, cf [?, 2.1].
One knows that αp, the Hasse invariant in characteristic p, has q-
expansion identically 1, as does the reduction mod p, for any p ≥ 5, of
Ep−1 (because, by the Kummer congruence, ordp(4(p− 1)/bp−1) = 1).
So the first assertion results from the q-expansion principle.

For the second assertion, we argue as follows. We know that βp −
Ep+1/12 is a modular form over Fp of weight p + 1. To show that it
vanishes identically, it suffices to show that

(βp − Ep+1/12)6

(g32 − 27g23)(p+1)/2
,

which is an Fp polynomial in j = 1728g32/(g
3
2−27g23) of degree (p+1)/2,

vanishes identically. The number of supersingular j values in the alge-
braic closure Fp is (p−1)/12, 1+(p−5)/12, 1+(p−7)/12, 2+(p−11)/12
when p is respectively congruent mod 12 to 1, 5, 7, 11. After checking
low p by hand, one sees that for any p ≥ 5, there are strictly more than
(p+1)/2 ordinary (i.e., not supersingular) j-values in Fp. So it suffices
to show that βp agrees with Ep+1/12 at every pair (E/Fp, ω) with E/Fp
ordinary. Since we already know that αp is Ep−1 mod p, it suffices to
show that βp/αp agrees with the reduction mod p of Ep+1/12Ep−1 at
every pair (E/Fp, ω) with E/Fp ordinary.
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To see this, we must recall some facts about H1
DR(E/Fp) and the ac-

tion of Frobp on it, for anyE/Fp, not necessarily ordinary, cf [Ka-PPMF,
A1.2.3]. First, the inclusion of the complex

OE → Ω1
E/Fp

into the complex

I−1(0)→ Ω1
E/Fp
⊗ I−2(0)

induces isomorphisms

H1
DR(E/Fp) ∼= H1(E, I−1(0)→ Ω1

E/Fp
⊗ I−2(0))

∼= H0(E,Ω1
E/Fp
⊗ I−2(0)) = Fpdx/y ⊕ Fpxdx/y.

In general cf. [Ka-NCMT, 7.1.2, 7.2,7.3.6], one has a short exact
sequence

0→ H1(E,H0
DR(E/Fp))→ H1

DR(E/Fp)→ H0(E,H1
DR(E/Fp))→ 0.

The first term isH1(E,OpE), which is precisely the image Frobp(H
1
DR(E/Fp)),

and the sequence can be rewritten, via the Cartier operator, as

0→ Frobp(H
1
DR(E/Fp))→ H1

DR(E/Fp)
Cp→ H0(E,Ω1

E/Fp
)→ 0.

In terms of the basis (dx/y, xdx/y) of H1
DR(E/Fp), and the basis dx/y

of H0(E,Ω1
E/Fp

), the map

Cp : H1
DR(E/Fp) � H0(E,Ω1

E/Fp
)

sends dx/y to αpdx/y and sends xdx/y to βpdx/y. Because this map
is surjective, at least one of αp or βp must be nonzero, and the image
Frobp(H

1
DR(E/Fp)) is the subspace Ker(Cp), spanned by βpdx/y −

αpxdx/y.
When E/Fp is ordinary, the image Frobp(H

1
DR(E/Fp)) is precisely

the “unit root subspace U”, spanned by

xdx/y − (βp/αp)dx/y.

Its“direction”, in the coordinates (dx/y, xdx/y), is βp/αp. It is proven
in [Ka-PPMF, A2.4] that this direction is the reduction mod p of the
p-adic modular form of weight 2 given by P/12. By the Kummer
congruences, P and Ep+1/Ep−1 have q-expansions which are p-integral
and congruent mod p. By the q-expansion principle [Ka-PPMF, 2.7.1],
the reduction mod p of P is the reduction mod p of Ep+1/Ep−1, the
latter viewed as a p-adic modular form. Thus the direction of the unit
root subspace, βp/αp, is the reduction mod p of Ep+1/12Ep−1 at each
ordinary (E/Fp, ω). �
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4. Experimental findings: the CM case

Suppose we start with an elliptic curve E/Z[1/6N ] which has CM by
an order O = Z + fOK in a quadratic imaginary field K, given by an
equation y2 = f(x) with f(x) a cubic in Z[1/6N ] whose discriminant
is invertible in Z[1/6N ]. Then

H := H1
DR(E/Z[1/6N ])

is the free Z[1/6N ] of rank 2 with basis dx/y and xdx/y. For each prime
p not dividing 6N , H/pH ∼= H1

DR(E⊗Fp/Fp). If we extend scalars from
Z[1/6N ] to OK [1/6N ], the CM is defined on E⊗Z[1/6N ]OK [1/6N ], and
so acts on H ⊗Z[1/6N ] OK [1/6N ]. An element u ∈ O maps dx/y to
udx/y; as u has eigenvalues u and u, the matrix of u in the basis
dx/y, xdx/y must be of the form(

u a
0 u

)
for some a ∈ OK [1/6N ].

Lemma 4.1. Suppose the discriminant of the order O is invertible in
Z[1/6N ]. Then there exists a Z[1/6N ]-basis of H of the form dx/y, xdx/y−
Adx/y, A ∈ Z[1/6N ], which diagonalizes the action of O. In other
words, we have a Z[1/6N ]-splitting H = H1,0⊕H0,1 which over OK [1/N ]
diagonalizes the CM, and in which H1,0 is the Z[1/6N ]-span of dx/y.

Proof. Take a Z-basis 1, u of O. It suffices to find an A ∈ Z[1/6N ] such
that the basis dx/y, xdx/y + Adx/y of H diagonalizes the action of u
on H⊗Z[1/6N ] OK [1/6N ]. This amounts to the requirement that

[u]?(xdx/y − Adx/y) = u(xdx/y − Adx/y),

i.e., that

uxdx/y + adx/y − Audx/y = u(xdx/y − Adx/y),

i.e., that

a− Au = −Au.
Thus we get

A =
a

u− u
.

The denominator u − u is purely imaginary. Its norm down to Q is
the discriminant of O, which is invertible in Z[1/6N ]. Hence u − u is
invertible in OK [1/6N ]. Thus A lies in OK [1/6N ]. To show that A
lies in Z[1/6N ], it suffices to show that the quantity a is itself purely
imaginary. For this, we argue as follows.
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The matrix of u is (
u a
0 u

)
.

The matrix of u+ u is then(
u+ u a+ a

0 u+ u

)
.

But u + u lies in Z, say u + u = n, and n acts on H by multiplication
by n. Therefore a+ a = 0, i.e., a is purely imaginary. �

For our CM curve E/Z[1/6N ], if we take a good prime p which is
ordinary for E, the unit root subspace in H1

DR(E ⊗ Fp/Fp) ∼= H/pH is
the reduction mod p of H0,1. In other words, for each good ordinary
prime, we have βp/αp ≡ A mod p.

We did computer experiments with convenient Z[1/6N ]-forms of el-
liptic curves over Q with each of the thirteen CM j-values in Q, chosen
using the table in Silverman’s book [Si-ATEC, Appendix A&3]. Ex-
perimentally, the quantity A turned out to lie in Z in each case. Here
is the data, giving the discriminant of OK , the conductor of the order
O, the equation we used, and the A we found empirically (by comput-
ing βp/αp for a few thousand ordinary p). [Of course that A = 0 for
y2 = x3 − 1 and for y2 = x3 − x is obvious.]

Discrim. D Cond. f Equation A
−3 1 y2 = x3 − 1 0
−3 2 y2 = x3 − 15x+ 22 1
−3 3 y2 = x3 − 30x+ 63 + 1/4 2
−4 1 y2 = x3 − x 0
−4 2 y2 = x3 − 11x+ 14 1
−7 1 y2 = x3 − (3/4)x2 − 2x− 1 0
−7 2 y2 = x3 − 595x+ 5586 9
−8 1 y2 = x3 + 4x2 + 2x −1
−11 1 y2 = x3 − x2 − 7x+ 10 + 1/4 1
−19 1 y2 = x3 − 38x+ 90 + 1/4 2
−43 1 y2 = x3 − 860x+ 9707 + 1/4 12
−67 1 y2 = x3 − 7370x+ 243528 + 1/4 38
−163 1 y2 = x3 − 2174420x+ 1234136692 + 1/4 724

Each of these curves has good reduction over Z[1/2D], so the hy-
potheses of Lemma 4.1 are satisfied.

For each of these thirteen curves, we also looked what happened at
supersingular primes p. At such a prime, we have αp = 0. We looked at
the variation with supersingular p of βp/p, viewed as an element of R/Z.
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Empirically, it seemed in each case that the sequence {βp/p}supersingular p
was equidistibuted in R/Z for Haar measure of total mass one.

5. experimental findings: the ordinary case

We took some non-CM curves over Q, and looked at the distribution,
as p varies over good primes of ordinary reduction, at the two sequences
in R/Z given by {βp/p}ordinary p and {(βp/αp)/p}ordinary p. Empirically,
it seemed that both of these sequences were equidistributed in R/Z for
Haar measure of total mass one. [The sequence {αp/p}ordinary p tends
to 0 in R/Z by the Weil bound, so is“not interesting” from this point
of view.]

We also looked at an equicharacteristic version of this question, again
empirically. We fixed a large prime p, and for each λ ∈ Fp \ {0, 1}
computed αp = αp(λ) and βp = βp(λ) for each of the curves y2 =
x(x− 1)(x−λ). It seemed that both the collections {βp(λ)/p}ordinary λ

and {(βp(λ)/αp(λ))/p}ordinary λ were approximately equidistibuted in
R/Z for Haar measure of total mass one.

6. How we computed αp and βp

We take a prime p ≥ 5, and a cubic polynomial f(x) ∈ Fp[x]
with nonzero discriminant. Recall that αp is the coefficient of xp−1

in f(x)(p−1)/2, and βp, the coefficient of xp−2 in f(x)(p−1)/2, is also the
coefficient of xp−1 in xf(x)(p−1)/2 The polynomial f(x)(p−1)/2 has degree
3(p − 1)/2 < 2p − 3. Therefore xp−1 is the only term xn with n ≡ 0
mod p − 1 which can occur in either f(x)(p−1)/2 or in xf(x)(p−1)/2.
For any polynomial g(x) =

∑
i aix

i ∈ Fp[x], the sum
∑

t∈Fp
g(t) is

−
∑

d≥1 ad(p−1). We apply this to the polynomials f(x)(p−1)/2 and xf(x)(p−1)/2.

αp = −
∑
t∈Fp

f(t)(p−1)/2, βp = −
∑
t∈Fp

tf(t)(p−1)/2.

For χ2 the quadratic character of F×p , extended to all of Fp by decreeing

χ2(0) = 0, we have χ2(f(t)) ≡ f(t)(p−1)/2 mod p. So we have

αp = −
∑
t∈Fp

χ2(f(t)), βp = −
∑
t∈Fp

tχ2(f(t)).

It was these formulas we used for computing in Mathematica.
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