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Abstract. This is Part II of the paper “Witt vectors and a ques-
tion of Keating and Rudnick” [Ka-WVQKR]. Here we prove an
independence result for tuples of character sums, formed with a
variable character and its powers. In the Appendix, we prove an
independence result for tuples of character sums formed with vari-
able pairs of characters and products of the two.

1. Introduction

We work over a finite field k = Fq inside a fixed algebraic closure k,
and fix an integer n ≥ 2. We form the k-algebra

B := k[X]/(Xn+1).

Following Keating and Rudnick [K-R], we say that a character

Λ : B× → C×

is “even” if it is trivial on the subgroup k×. The quotient B×/k×

is the group (1 + Xk[[X]])/(1 + Xn+1k[[X]]) of truncated “big” Witt
vectors, cf. [Ka-WVQKR]. We systematically view even characters as
characters of this quotient group.

We say that a character Λ is “primitive” if it is nontrivial on the
subgroup 1 + kXn of B×. The Swan conductor of a character Λ of
B× is the largest integer r such that Λ is nontrivial on the subgroup
1+(Xr). Thus a character is primitive if and only if its Swan conductor
is n.

Given an even character Λ ofB×, i.e. a character of (1+Xk[[X]])/(1+
Xn+1k[[X]]), we can form an L-function on Gm/k as follows. Given an
irreducible monic polynomial P (t) ∈ k[t] with P (0) 6= 0, the irreducible
polynomial P (t)/P (0) has constant term 1, so P (X)/P (0) mod Xn+1

lies in (1 +Xk[[X]])/(1 +Xn+1k[[X]]). We define

Λ(P ) := Λ(P (X)/P (0) mod Xn+1).
1
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We then define

L(Gm/k,Λ)(T ) :=
∏

irred. monic P, P (0)6=0

(1− Λ(P )T deg(P ))−1.

This L-function has a cohomological interpretation:

L(Gm/k,Λ)(T ) = L(Gm/k,LΛ(1−tX))(T ),

cf. [Ka-WVQKR]. This second expression, with coefficient sheaf which
is lisse at 0, leads us to consider the “completed” L-function

L(A1/k,LΛ(1−tX))(T ) = L(Gm/k,LΛ(1−tX))(T )/(1− T ) =

= L(Gm/k,Λ)(T )/(1− T ).

One knows by Weil [Weil] that so long as Λ is nontrivial, this com-
pleted L-function is a polynomial in T of degree Swan(Λ)−1, which is

“pure of weight one”. In other words, it is of the form
∏Swan(Λ)−1

i=1 (1−
βiT ) with each βi an algebraic integer all of whose complex absolute
values are

√
q.

For Λ primitive, we define a conjugacy class θk,Λ in the unitary group
U(n− 1) in terms of its reversed characteristic polynomial by the for-
mula

det(1− Tθk,Λ) = L(A1/k,LΛ(1−tX))(T/
√
q).

In the earlier paper [Ka-WVQKR], we proved the following result.

Theorem 1.1. Fix an integer n ≥ 4. In any sequence of finite fields ki
(of possibly varying characteristics) whose cardinalities qi are archimedeanly
increasing to ∞, the collections of conjugacy classes

{θki,Λ}Λ primitive even

become equidistributed in the space PU(n− 1)# of conjugacy classes in
the projective unitary group PU(n− 1) for its “Haar measure” of total
mass one. We have the same result for n = 3 if we require that no ki
have characteristic 2 or 5.

In this paper, we will prove the following independence result.

Theorem 1.2. Fix an integer n ≥ 5. In any sequence of finite fields
ki (of possibly varying characteristics p, none of which is 2 or 3) whose
cardinalities qi tend archimedeanly to ∞, the collections of pairs of
conjugacy classes

{(θki,Λ, θki,Λ2)}Λ primitive even

become equidistributed in the space PU(n− 1)# × PU(n− 1)# of con-
jugacy classes in PU(n− 1)× PU(n− 1).

We will also prove the following more general version.
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Theorem 1.3. Let d ≥ 2 be an integer. Fix an integer n ≥ 5. In any
sequence of finite fields ki (of possibly varying characteristics p, subject
only to p ≥ 2d+1) whose cardinalities qi tend archimedeanly to ∞, the
collections of d-tuples of conjugacy classes

{(θki,Λ, θki,Λ2 , ..., θki,Λd)}Λ primitive even

become equidistributed in the space (PU(n− 1)#)d of conjugacy classes
in (PU(n− 1))d.

2. The proof

For each integer r ≥ 1, we have the scheme Wr/Fp of p-Witt vectors
of length r. We fix a a faithful character ψr : Wr(Fp) = Z/prZ ∼=
µpr(Q`). For example, we might take x 7→ exp(2πix/pr), so that ψpr+1 =
ψr. Every character of Wr(k) is of the form

w 7→ ψr(TraceWr(k)/Wr(Fp)(aw))

for a unique element a ∈ Wr(k). Let us denote this character ψr,a:

ψr,a(w) := ψr(TraceWr(k)/Wr(Fp)(aw)).

We choose a prime ` different from the characteristic p of k, and
work with `-adic cohomology. We fix an embedding of Q` into C.

Attached to the character ψr,a of Wr(k) we have the Artin-Schreier-
Witt sheaf Lψr,a = Lψr(aw) on Wr. Given an integer m ≥ 1 prime to p,
we have the morphism of k-schemes A1 → Wr given by t 7→ (tm, 0′s).
The pullback of Lψr,a by this morphism is denoted Lψr,a(tm,0′s) = Lψr(a(tm,0′s)).
It is a lisse rank one sheaf on A1.

For each prime to p integer m in the range 1 ≤ m ≤ n, we define

`(m,n) = 1 + the largest integer k such that mpk ≤ n.

We work on the product space

Sn :=
∏

m≥1 prime to p, m≤n

W`(m,n).

As an Fp-scheme, Sn is simply a huge affine space, with coordinates
the components of all the Witt vector factors. On A1 × Sn, we have
the lisse rank one sheaf

Luniv,n := ⊗mLψ`(m,n)(a(m)(tm,0′s)).

On Sn, we have the sheaf

Luniv,n := R1(pr2)!(Luniv,n)(1/2).
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This is a “sheaf of perverse origin” on Sn, in the terminology of [Ka-Semi],
and its restriction to every lisse subscheme T of Sn is a sheaf of perverse
origin on T , cf. [Ka-Semi, Cor. 6].

In the product defining Sn, there is a distinguished factor we need to
single out. Write n as n0p

r−1 with n0 prime to p and r ≥ 1. Then we
have a factor Wr, carrying Lψr(ar(tn0 ,0′s)). Inside Wr, we have the open
set W×

r where the first component is invertible. [It is also the group of
invertible elements for the ring structure on Wr.] Inside Sn, we have
the open set Primn ⊂ Sn where the Wr component lies in W×

r .
The sheaf Luniv,n|Primn is lisse of rank n − 1, pure of weight zero.

The main theorem of [Ka-WVQKR, Thm. 5.1] is that Ggeom for
Luniv,n|Primn contains SL(n − 1), if either n ≥ 4 or if n = 3 and
p is not 2 or 5. Its (already unitarized, thanks to the (1/2) Tate twist)
Frobenius conjugacy classes at k-valued points of Primn are precisely
the classes

{θk,Λ}Λ primitive even,

cf. [Ka-WVQKR, Lemma 4.1]. [These Frobenius conjugacy classes are
automatically semisimple, as they “come from curves”.]

Lemma 2.1. The complement Sn \Primn is naturally the space Sn−1,
and under this identification the restriction of Luniv,n to Sn−1 is the
sheaf Luniv,n−1.

Proof. To see the complement Sn\Primn as the space Sn−1, we argue as
follows. In this complement, all factors except the distinguished one are
unchanged. In the distinguished Wr factor, the entry is required to have
first component zero; that factor becomes a Wr−1 = W`(n0,n−1) (and is
omitted entirely if n0 = n). In the product with A1, the restriction of
Luniv,n to this Sn−1 is the sheaf Luniv,n−1. The claim then results from
base change for R1(pr2)!. �

Given two distinct integers a, b ≥ 1, both prime to the characteristic
p we next consider pairs of conjugacy classes

{(θk,Λa , θk,Λb)}Λ primitive even.

For any integer a prime to p, the classes θk,Λa are obtained as follows.

On A1 × Sn, we have the lisse rank one sheaf L(a)
univ,n, defined by the

same recipe as for Luniv,n, but replacing each chosen character ψr of
Wr(Fp) by its a’th power. Then

L
(a)
univ,n := R(pr2)!(L(a)

univ,n)(1/2)

gives rise to the classes θk,Λa .
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Theorem 2.2. Fix n ≥ 5. Fix distinct integer a, b ≥ 1 and a charac-
teristic p not dividing ab(a2 − b2). Then the group Ggeom for the direct
sum

L
(a)
univ,n ⊕ L

(b)
univ,n

contains the product SL(n− 1)× SL(n− 1).

Proof. Because Ggeom for each of the summands contains SL(n−1), the
group Ggeom for the direct sum has identity component either SL(n−1)
or the product SL(n− 1)×SL(n− 1). To show that it is the latter, it

suffices to show that there is no geometric isomorphism of either L
(b)
univ,n

or its dual L
(−b)
univ,n with any sheaf of the form L

(a)
univ,n ⊗ L for any lisse,

rank one sheaf L on Primn, cf. [Ka-ESDE, 1.8.1 and 1.8.2].
We first treat the case when n is odd, and argue by contradiction.

The assumption that p does not divide ab(a2 − b2) insures that p ≥ 5.
Inside Primn we have an A2 with coordinates (A1, A3) over which the

sheaf L(b)
univ on A1×A2 (coordinates (t, A1, A3)) is the sheaf Lψb

r((tn0 ,0′s))⊗
Lψ1(bA1t+bA3t3), and over which the sheaf L(a)

univ is Lψa
r ((tn0 ,0′s))⊗Lψ1(aA1t+aA3t3).

[For simplicity, suppose that each ψr is chosen so that ψp
r−1

r = ψ1. Use
the m = 1, m = 3, and m = n0 factors. In the m = n0 factor, freeze
the Wr = W`(n0,n) component to be (1, 0′s). In the m = 1 and m = 3
factors, take the component to be respectively (0′s, A1) and (0′s, A3).
In all other factors, freeze the component to be 0.]

Let us denote by F (b)
n and by F (a)

n the restrictions of L
(b)
univ,n and

L
(a)
univ,n to this A2:

F (b)
n := L

(b)
univ,n|A2, F (a)

n := L
(a)
univ|A2.

The sheaves F (b)
n and F (a)

n are geometrically irreducible (because they
are Fourier transforms), pure of weight one, and self dual (because
their trace functions are R-valued (use t 7→ −t). In fact, the duality
is symplectic, compare [Ka-MMP, 3.10.3] where a result of this type

is proved. Therefore Ggeom for each of F (b)
n and F (a)

n is an irreducible
subgroup of Sp(n − 1). Moreover, a moment calculation based on

[Ka-MMP, 3.11.4] shows that for each of F (b)
n and F (a)

n , the fourth
moment is 3. This means precisely that in the decomposition of the
tensor square of each as

Sym2 ⊕ Λ2/1⊕ 1,

each of the three summands is Ggeom-irreducible. What is key here
is that the trivial factor 1 is the only one-dimensional component of

(F (b)
n )⊗2 and the only one-dimensional component of (F (a)

n )⊗2.
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Suppose now that there is a geometric isomorphism of either L
(b)
univ,n

or its dual L
(−b)
univ,n with a sheaf of the form L

(a)
univ,n ⊗ L for some lisse,

rank one sheaf L on Primn, then after restriction to our A2 we get a

geometric isomorphism of F (b)
n with F (a)

n ⊗ L for some lisse, rank one
sheaf L on A2. From this isomorphism, we see that the tensor square

(F (a)
n ⊗ L)⊗2 = (F (a)

n )⊗2 ⊗ L⊗2

has, geometrically, a one dimensional component, which is to say that

(F (a)
n )⊗2 admits L⊗−2 as a quotient. But the only one-dimensional

quotient of (F (a)
n )⊗2 is 1.

Hence the lisse rank one L is geometrically of order dividing 2. But
for an affine space in odd characteristic, there are no nontrivial homo-
morphisms of its geometric π1 to ±1; i.e., H1(A2 ⊗ Fp, µ2) vanishes.

[Use the Kummer sequence. In it, H0(A2 ⊗ Fp,Gm) is Fp
×

, and the

H1, which is Pic(Wd ⊗ Fp), vanishes.] So we would have a geomet-

ric isomorphism of either F (b)
n or F (−b)

n with F (a)
n . To fix ideas, sup-

pose it is the former. As both are geometrically irreducible and self

dual, the group Homgeom(F (b)
n ,F (a)

n ) = H0(A2⊗Fp,F (−b)
n ⊗F (a)

n ) would
be nonzero, in fact one-dimensional. By Poincaré duality, the group

H4
c (A2 ⊗ Fp,F (b)

n ⊗ F (−a)
n ) would be one-dimensional. The coefficient

group F (b)
n ⊗F (−a)

n is pure of weight zero, so this H4
c is pure of weight

four, and one-dimensional. The lower cohomology groups are of lower
weight. So for variable finite extensions L/Fp, with #L := qL, we
would have the estimate

|
∑

(A1,A3)∈A2(L)

Trace(FrobL,(A1,A3)|F (b)
n )Trace(FrobL,(A1,A3)|F (−a)

n )| =

= q2
L +O(q

3/2
L ).

We will show that this sum is precisely qL, thus arriving at the desired
contradiction.

This sum is∑
A1,A3∈L

∑
x∈L

ψbr((x
n0 , 0′s))ψ1(bA3x

3+bA1x)
∑
y∈L

ψ−ar ((yn0 , 0′s))ψ1(−aA3y
3−aA1y) =

= (1/qL)
∑
x,y∈L

ψbr((x
n0 , 0′s))ψ−ar ((yn0 , 0′s))

∑
A1,A3∈L

ψ1(A3(bx3−ay3)+A1(bx−ay)).

The 1/qL factor comes from the (1/2) Tate twists in the definitions of

F (b)
n and F (−a)

n .
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The innermost sum∑
A1,A3∈L

ψ1(A3(bx3 − ay3) + A1(bx− ay))

vanishes unless both bx3 = ay3 and bx = ay, and if both vanish the
sum is q2

L. Now if bx = ay then either x = y = 0 or x and y are both
nonzero and x/y = a/b. If (x, y) is not (0, 0), then from bx3 = ay3 we
get (x/y)3 = a/b. Comparing with x/y = a/b, we get (a/b)3 = a/b,
so a2 = b2. Our hypothesis that a2 − b2 6= 0 mod p tells us that the
innermost sum vanishes unless x−y = 0. Thus the entire sum has only
the x = y = 0 term, and the sum is qL, as asserted.

This contradiction concludes the proof that for n odd, the group
Ggeom for the direct sum

L
(b)
univ,n ⊕ L

(a)
univ,n

contains the product SL(n− 1)× SL(n− 1).
Suppose now that n ≥ 5 is even. Then n− 1 is odd, and ≥ 5. So we

know that Ggeom for the direct sum

L
(b)
univ,n−1 ⊕ L

(a)
univ,n−1

contains SL(n− 2)× SL(n− 2).

Recall that L
(b)
univ,n⊕L

(a)
univ,n is a sheaf of perverse origin on Sn, lisse on

Primn and lisse on the dense open set Primn−1 of Sn−1 = Sn \Primn.
We now apply [Ka-Semi, Cor. 10, (2)]to this situation. The rank of

Ggeom for L
(b)
univ,n ⊕ L

(a)
univ,n on Primn is at least the rank of Ggeom for

L
(b)
univ,n−1⊕L

(a)
univ,n−1 on Primn−1. This last rank is 2(n−3). If G0

geom for

L
(b)
univ,n⊕L

(a)
univ,n on Primn were SL(n−1), we would get the inequality

n− 2 ≥ 2(n− 3),

which is false for n ≥ 5. Given the dearth of choice for this G0
geom, it

must be SL(n− 1)× SL(n− 1). �

Corollary 2.3. Let d ≥ 2 and n ≥ 5 be integers. In any characteristic
p ≥ 2d+ 1, the group Ggeom for the d-fold direct sum

d⊕
a=1

L
(a)
univ,n

contains the d-fold product (SL(n− 1))d.

Proof. The hypothesis that p ≥ 2d+ 1 insures that for any integer a, b
with 1 ≤ a < b ≤ d, p does not divide ab(a2 − b2). The corollary then
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follows from Theorem 2.2 by Goursat-Kolchin-Ribet, cf. [Ribet, pp.
790-791]. �

Theorem 2.4. Let d ≥ 2 be an integer. Fix an integer n ≥ 5. In any
sequence of finite fields ki (of possibly varying characteristics p, subject
only to p ≥ 2d+1) whose cardinalities qi tend archimedeanly to ∞, the
collections of d-tuples of conjugacy classes

{(θki,Λ, θki,Λ2 , ..., θki,Λd)}Λ primitive even

become equidistributed in the space (PU(n− 1)#)d of conjugacy classes
in (PU(n− 1))d.

Proof. Let us denote by Θki,Λ the d-tuple

Θki,Λ := (θki,Λ, θki,Λ2 , ..., θki,Λd).

By the Weyl criterion, we must show that for each fixed irreducible
nontrivial representation Ξ of (PU(n−1))d, the normalized Weyl sums

(1/#Primn(ki))
∑

Λ/ki primitive even

Trace(Ξ(Θki,Λ))

tend to 0 as #ki grows. In each characteristic p ≥ 2d + 1, this sum is
bounded in absolute value by

C(p, n,Ξ)/
√

#ki, for C(p, n,Ξ) := 2
∑
i

hic(Primn ⊗Fp Fp,Ξd),

for Ξd the lisse sheaf on Primn/Fp formed by “pushing out” the direct

sum
⊕d

a=1 L
(a)
univ,n along the representation Ξ, now viewed as a repre-

sentation of (GL(n − 1))d which factors through the quotient group
(PGL(n− 1))d.

As was the case in [Ka-WVQKR, 8.1], we do not know uniform
bounds for these sums of Betti numbers C(p, n,Ξ) as p varies (n and
Ξ fixed). But we can bypass this problem, if we can, by other means,
show that for fixed n and p > 2n − 1, we have a bound of the form
D(n,Ξ)/

√
#ki with a constantD(n,Ξ) which is independent of p. Then

we use this constant for p > 2n− 1, and we use the constant C(p, n,Ξ)
for the finitely many primes p ≤ 2n − 1. We will show that in fact
we can take D(n,Ξ) := 3 dim(Ξ)/(n − 1). This will then prove the
theorem.

Let us recall the argument from [Ka-WVQKR, 8.2]. Fix a nontrivial
additive character ψ (formerly our ψ1) of Fp. For p > n, the space
Primn is the space of polynomials f of degree n with vanishing constant

term, and for each a prime to p, the sheaf L(a)
univ,n on A1 × Primn with
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coordinates (t, f) is Lψ(af(t)). The sheaf L
(a)
univ,n on Primn has trace

function at k-valued points f ∈ Primn(k) given by

Trace(Frobk,f |L(a)
univ,n) = (−1/

√
qk)

∑
t∈k

ψk(af(t)).

The idea is to break up Primn(k) into equivalence classes, f and g
equivalent if f − g has degree ≤ 1. Thus each equivalence class is a

line {f(t) + λt}λ∈k. On each line, L
(a)
univ,n is the Tate-twisted Fourier

Transform FTψa(Lψ(af(t)))(1/2). These are lisse sheaves on A1 of rank
n − 1, pure of weight zero and with all ∞-breaks n/(n − 1). Their
direct sum

V :=
d⊕
a=1

FTψa(Lψ(af(t)))(1/2)

is thus lisse of rank d(n-1), with all all ∞-breaks n/(n − 1). Let us
denote by Ξd(f) the lisse sheaf on A1 which is the pushout of this direct
sum along Ξ. [Equivalently, Ξd(f) is the restriction of Ξd on Primn

to the line which is the equivalence class of f .] Its rank is dim(Ξ),
and all its ∞-breaks are at most n/(n− 1) (because this pushout is a

direct factor of some tensor power V⊗e⊗ (V∨)⊗f . The sheaf Ξd(f) will
be irreducible and nontrivial provided that Ggeom for the direct sum V
contains the d-fold product (SL(n− 1))d.

Lemma 2.5. For p > 2n− 1 and f of degree n with f(0) = 0, we have
the following results.

(1) If n is even and the coefficient of t2 in f is nonzero, then Ggeom

for V contains the d-fold product (SL(n− 1))d.
(2) We have the same result for n odd if, in addition, no translate

f(t+ c)− f(c) of f is an odd polynomial.

Let us temporarily admit the truth of this lemma. We then compute
the “raw” Weyl sum, i.e., #Primn(k) times the normalized Weyl sum,
for an irreducible nontrivial Ξ as the sum over equivalence classes of
f ’s in Primn(k). Each such sum is∑

λ∈k

Trace(Frobk,λ|Ξd(f)) =

Trace(Frobk|H2
c (A1 ⊗ Fp,Ξd(f))− Trace(Frobk|H1

c (A1 ⊗ Fp,Ξd(f)),

the equality by the Lefschetz trace formula.
Suppose first that the hypotheses of either part (1) or of part (2) of

the above lemma apply. Then the H2
c vanishes, and the dimension of
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the H1
c is minus the Euler characteristic, itself given by

−χ(A1 ⊗ Fp,Ξd(f)) = Swan∞(Ξd(f))− rank(Ξd(f)) ≤

≤ (n/(n− 1)) dim(Ξ)− dim(Ξ) = dim(Ξ)/(n− 1).

So when the above lemma applies, the sum is bounded by

dim(Ξ)
√
qk/(n− 1).

When the lemma does not apply, we look at the first expression for the
sum to see that we have the trivial bound

dim(Ξ)qk.

When n is even, of the (qk−1)qn−2
k equivalence classes of f ’s, only 1/qk

of them fail to satisfy the hypothesis of part (1) of the lemma. When

n is odd, at most (qk − 1)q
(n−1)/2
k + (qk − 1)qn−3 classes fail to satisfy

the hypothesis of part (2) of the lemma (the translates of odd f ’s, and
those with no t2 term).

Thus when n is even, the raw Weyl sum for an irreducible nontrivial
Ξ is bounded in absolute value by

(#Primn(k)/qk)(1−1/qk) dim(Ξ)
√
qk/(n−1)+(#Primn(k)/q2

k)qk dim(Ξ) ≤

≤ (#Primn(k))2 dim(Ξ)/((n− 1)
√
qk)

as soon as
√
qk ≥ n− 1.

When n is odd, the fraction of failures to satisfy the hypotheses

of part (2) is at most 1/qk + 1/q
(n−3)/2
k , so always at most 2/qk. In

this case, the raw Weyl sum will have the same bound, as soon as√
qk ≥ 2(n− 1). �

It remains to prove the lemma. Under the hypothesis that either n
is even or that no translate f(t+ c)− f(c) of f is an odd polynomial,
it was proven in [Ka-MG, Thm. 19, stated there for p ≥ 2n + 1, but
p > 2n − 1 is enough], that Ggeom for each FTψa(Lψ(af(t))) contains
SL(n− 1). By Goursat-Kolchin-Ribet [Ka-ESDE, 1.8.1 and 1.8.2] and
[Ribet, pp. 790-791], it suffices to treat the case of each pair of factors.

Thus we must show that if, in addition, the coefficient of t2 in f
is nonzero, then for p not dividing ab(a2 − b2), there is no geometric
isomorphism of either FTψb(Lψ(bf(t))) or its dual FTψb(Lψ(−bf(−t))) with

FTψa(Lψ(af(t)))⊗ L for any lisse rank one L on A1 ⊗ Fp.
Again we argue by contradiction. Both Fourier transforms have all

∞ breaks n/(n−1) < 2, so L, whose∞-break is an integer (Hasse-Arf),
must have ∞-break either 0 or 1. Thus L is geometrically Lψ(cλ) for

some c ∈ Fp. If we write FTψa(Lψ(af(t))) as FTψ(Lψ(af(t/a))), and write
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FTψb(Lψ(bf(t))) as FTψ(Lψ(bf(t/b))), we find that either FTψ(Lψ(bf(t/b)))
or its dual FTψ(Lψ(−bf(−t/b))) is geometrically isomorphic to

FTψa(Lψ(af(t)))⊗ Lψ(cλ)
∼= FTψ(Lψ(af(t/a)+c))).

By Fourier inversion, we get that either Lψ(bf(t/b)) or Lψ(−bf(−t/b)) is
geometrically isomorphic to Lψ(af(t/a)+b)). This in turn implies that
either bf(t/b) or −bf(−t/b) is equal to af(t/a). Comparing coefficients
of t2, we see that either 1/b or −1/b is 1/a. This is excluded by the
hypothesis that p does not divide ab(a2− b2). This concludes the proof
of Lemma 2.4, and, with it, the proof of Theorem 2.3.

3. Appendix: Pairs of characters

Let us say that an ordered pair of primitive even characters (χ,Λ)
is a primitive pair if the product character χΛ is primitive. We denote
by PrimPair(k) the set of primitive pairs.

Theorem 3.1. Fix an integer n ≥ 5. In any sequence of finite fields
ki (of possibly varying characteristics p, subject only to p ≥ 7) whose
cardinalities qi tend archimedeanly to ∞, the collections of triples of
conjugacy classes

{(θki,χ, θki,Λ, θki,χΛ)}(χ,Λ)∈PrimPair(ki)

become equidistributed in the space (PU(n− 1)#)3 of conjugacy classes
in (PU(n− 1))3.

More generally, given an integer d ≥ 1, let us say that a pair of
primitive even characters (χ,Λ) is a d-fold primitive pair if the (d +
1)2 − 1 characters χaΛb, with 0 ≤ a, b ≤ d and (a, b) 6= (0, 0), are each
primitive. [Each is necessarily even.] We denote by PrimPaird(k) the
set of d-fold primitive pairs. Fix an ordering on the index set

Id := [0, d]× [0, d] \ (0, 0),

e.g., order first by the sum a + b, and within pairs of given sum order
by b.

Theorem 3.2. Fix an integer d ≥ 1 and an integer n ≥ 5. In any
sequence of finite fields ki (of possibly varying characteristics p, subject
only to p ≥ 2(d+ 1)2 − 1) whose cardinalities qi tend archimedeanly to
∞, the collections of (d+ 1)2 − 1-tuples of conjugacy classes

{(θki,χaΛb)(a,b)∈Id}(χ,Λ)∈PrimPaird(ki)

become equidistributed in the space (PU(n− 1)#)(d+1)2−1 of conjugacy

classes in (PU(n− 1))(d+1)2−1.
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Proof. We work first in a given characteristic p. The scheme Sn/Fp, a
product of Witt groups, is a commutative group scheme, with compo-
nentwise operations. For k/Fp a finite extension, the points of Sn(k)
are precisely the even characters of (k[X]/(Xn+1))×. The points of
Primn(k) are precisely the primitive even characters. For an integer a
prime to p, the a-fold addition map [a] : w 7→ aw is an automorphism
of each Witt group factor, so an automorphism of Sn which preserves

Primn and induces an automorphism of Primn. The sheaves L
(a)
univ,n

on Primn, for a prime to p, are simply the pullbacks of Luniv,n by the
map [a] : Primn → Primn:

L
(a)
univ,n|Primn = [a]?(Luniv,n|Primn).

For each pair of integers (a, b), we have the weighted addition maps

[a, b] : Sn × Sn → Sn, , (s, t) 7→ as+ bt.

Lemma 3.3. Suppose p > 2d. Define Ud := ∩(a,b)∈Id [a, b]−1(Primn).
Then Ud is a dense open set of Primn×Primn. For each finite exten-
sion k/Fp, the k-valued points Ud(k) are precisely the points PrimPaird(k),
i.e. the d-fold primitive pairs.

Proof. Since Primn is open in Sn, each inverse image [a, b]−1(Primn)
is open in Sn × Sn. Already intersecting inverse images by the two
projections [1, 0] and [0, 1] shows that Ud lies in Primn×Primn. To see
that Ud is nonempty, observe that it contains the diagonal of Primn×
Primn; this is merely the statement that if s ∈ Primn, then (a + b)s
lies in Primn for any (a, b) in Id, simply because p > 2d ≥ a+ b. That
Ud(k) = PrimPaird(k) is a tautology. �

On the space Ud, we have for each (a, b) in Id the sheaf

F (a,b) := [a, b]?(Luniv,n|Primn).

Theorem 3.4. Suppose n ≥ 5, d ≥ 1, and p ≥ 2(d + 1)2 − 1. Then
the group Ggeom for the direct sum sheaf⊕

(a,b)∈Id

F (a,b)

on Ud contains the product (SL(n− 1))(d+1)2−1.

Proof. After pullback, Ggeom can only get smaller. So it suffices to

exhibit a pullback on which Ggeom contains (SL(n − 1))(d+1)2−1. For
this, we use the morphism

Primn → Ud, χ 7→ (χ, χd+1).
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The pullback of F (a,b) by this morphism is the sheaf L
a+b(d+1)
univ,n |Primn.

So the entire direct sum pulls back to

(d+1)2−1⊕
c=1

L
(c)
univ,n

on Primn. By Corollary 2.3, its Ggeom contains (SL(n−1))(d+1)2−1. �

To conclude the proof of Theorem 3.2, we proceed exactly as the de-
duction of Theorem 2.4 from Corollary 2.3. For (χ,Λ) ∈ PrimPaird(k),
we denote by Θk,χ,Λ the (d+ 1)2 − 1-tuple of conjugacy classes

Θk,χ,Λ := (θki,χaΛb)(a,b)∈Id .

Fix an irreducible nontrivial representation Ξ of (PU(n − 1))(d+1)2−1.
Denote by

ΞId

the lisse sheaf on Ud obtained from pushing out lisse sheaf
⊕

(a,b)∈Id F
(a,b)

by Ξ, now viewed as a representation of (GL(n− 1))(d+1)2−1 which fac-

tors through (PGL(n− 1))(d+1)2−1.
For p ≥ 2(d + 1)2 − 1 but p ≤ 2n − 1, and k/Fp a finite extension

with q := #k, we have the estimate

|
∑

(χ,Λ)∈PrimPaird(k)=Ud(k)

Trace(Ξ(Θk,χ,Λ))| ≤ (
∑
i

hic(Ud⊗FpFp,ΞId))q2n−1/2.

In each of these finitely many characteristics, for q large enough we will
have #Ud(k) ≥ q2n/2 (simply by Lang-Weil, as Ud/Fp is smooth and
geometrically connected of dimension 2n), and for such q we then have

|(1/#Ud(k))
∑

(χ,Λ)∈PrimPaird(k)=Ud(k)

Trace(Ξ(Θk,χ,Λ))| ≤
2(
∑

i h
i
c(Ud ⊗Fp Fp,ΞId)
√
q

.

It remains to treat the case of characteristic p > 2n − 1 (and p ≥
2(d+ 1)2 − 1). Here we will need the following lemma.

Lemma 3.5. Suppose that (a, b) and (c, d) are two different elements
of Id. Then for p ≥ 2d+ 1, the two linear forms

(aX + bY )/(a+ b)2 ± (cX + dY )/(c+ d)2

are both nonzero in Fp[X, Y ].

Proof. If the two vectors (a, b) and (c, d) are linearly independent, then
the two linear forms (aX + bY )/(a + b)2 and (cX + dY )/(c + d)2 are
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linearly independent, and the assertion is obvious. If they are Fp-
linearly dependent, say (a, b) = t(c, d) for some t ∈ F×p , then

t(aX + bY )/(a+ b)2 = (cX + dY )/(c+ d)2.

In this case,

(aX + bY )/(a+ b)2± (cX + dY )/(c+ d)2 = (1± t)(cX + dY )/(c+ d)2,

which is nonzero so long as t 6= ±1. We cannot have t = −1, for then
a + c = b + d = 0, which is impossible because p ≥ 2d + 1, while both
a + c, b + d lie in [0, 2d] and are not both zero. We cannot have t = 1
by the assumption that (a, b) and (c, d) are two different elements of
Id. �

For p > n, the space Ud/Fp is the space of pairs of polynomials
(f =

∑n
i=1Aix

i, g =
∑n

i=1Bix
i), such that for all (a, b) in Id, the

polynomial af + bg has its leading coefficient aAn + bBn invertible.
Suppose now that p ≥ 2(d+ 1)2 − 1 and p ≥ 2n− 1. For unordered

each pair of distinct points (a, b) and (c, d) in Id, we have the hyper-
planes H±,(a,b),(c,d) in Ud consisting of those points (f =

∑n
i=1 Aix

i, g =∑n
i=1Bix

i) for which the vector (A2, B2) of their x2-coefficients satisfies

(aA2 + bB2)/(a+ b)2 = ±(cA2 + dB2)/(c+ d)2.

We denote by H ⊂ Ud the union of these ((d + 1)2 − 1)((d + 1)2 − 2)
hyperplanes.

The idea is to break up Ud(k) into equivalence classes, with (f(x), g(x)) ∼=
(f(x) + tx, g(x) + tx). The pullback of⊕

(a,b)∈Id

F (a,b)

to this t-line is, geometrically, the direct sum⊕
(a,b)∈Id

FTψa+b(Lψ(af(x)+bg(x))) =

⊕
(a,b)∈Id

FTψ(Lψ(af( x
a+b

)+bg( x
a+b

))).

Exactly as in Lemma 2.5, we have the following lemma, with essen-
tially the same proof.

Lemma 3.6. Suppose p ≥ 2(d + 1)2 − 1 and p ≥ 2n − 1. Suppose
(f, g) ∈ Ud(k) \H(k). Then we have the following results.
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(1) If n is even, then Ggeom for⊕
(a,b)∈Id

FTψ(Lψ(af( x
a+b

)+bg( x
a+b

)))

contains (SL(n− 1))(d+1)2−1.
(2) We have the same result for n odd if in addition no translate

F (X + c) − F (c) is odd, for any of the polynomials af(X) +
bg(X), (a, b) ∈ Id.

Exactly as in the deduction of Theorem 2.4 from Lemma 2.5, we
find the following: for n ≥ 5, in any characteristic p > 2n − 1 (and
p ≥ 2(d + 1)2 − 1), then for q large enough that

√
q > n(d + 1)4, we

will have the bound

|(1/#Ud(k))
∑

(χ,Λ)∈PrimPaird(k)=Ud(k)

Trace(Ξ(Θk,χ,Λ))| ≤ 2 dim(Ξ)

(n− 1)
√
q
.

This concludes the proof of Theorem 3.2.
�
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