WITT VECTORS AND A QUESTION OF ENTIN,
KEATING, AND RUDNICK

NICHOLAS M. KATZ

ABSTRACT. This is Part II of the paper “Witt vectors and a ques-
tion of Keating and Rudnick” [Ka-WVQKR]. Here we prove an
independence result for tuples of character sums, formed with a
variable character and its powers. In the Appendix, we prove an
independence result for tuples of character sums formed with vari-
able pairs of characters and products of the two.

1. INTRODUCTION

We work over a finite field k = I, inside a fixed algebraic closure k,
and fix an integer n > 2. We form the k-algebra

B = k[X]/(X™).
Following Keating and Rudnick [K-R|, we say that a character
A:B*—C*

is “even” if it is trivial on the subgroup k*. The quotient B*/k*
is the group (1 + Xk[[X]])/(1 + X" k[[X]]) of truncated “big” Witt
vectors, cf. [Ka-WVQKR]. We systematically view even characters as
characters of this quotient group.

We say that a character A is “primitive” if it is nontrivial on the
subgroup 1 + kX" of B*. The Swan conductor of a character A of
B* is the largest integer r such that A is nontrivial on the subgroup
1+(X"). Thus a character is primitive if and only if its Swan conductor
is n.

Given an even character A of B*, i.e. a character of (1+Xk[[X]])/(1+
X"E[[X]]), we can form an L-function on G,,/k as follows. Given an
irreducible monic polynomial P(t) € k[t] with P(0) # 0, the irreducible
polynomial P(t)/P(0) has constant term 1, so P(X)/P(0) mod X"+
lies in (1 4+ XK[[X]])/(1 + X" E[[X]]). We define

A(P) := A(P(X)/P(0) mod X").
1
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We then define
L(G,, /k, A)(T) := 1T (1 — A(P)T9(P))=1,

irred. monic P, P(0)#£0

This L-function has a cohomological interpretation:

L(Gon /b, A)(T) = LG/, Lagosx))(D).

cf. [Ka-WVQKR]. This second expression, with coefficient sheaf which
is lisse at 0, leads us to consider the “completed” L-function
LAk, Lag-ex))(T) = L(Gu /K, Laa—))(T)/(1 = T) =
= L(Gm/k, A)(T)/(1 = T).

One knows by Weil [Weil] that so long as A is nontrivial, this com-
pleted L-function is a polynomial in T of degree Swan(A) —1, which is
“pure of weight one”. In other words, it is of the form Hf:la"(A)_l(l —
B;T) with each f3; an algebraic integer all of whose complex absolute
values are /q.

For A primitive, we define a conjugacy class 0y 5 in the unitary group
U(n — 1) in terms of its reversed characteristic polynomial by the for-
mula

det(1 — T ) = LAYk, Lag—x))(T//9)-
In the earlier paper [Ka-WVQKR], we proved the following result.

Theorem 1.1. Fixz an integer n > 4. In any sequence of finite fields k;
(of possibly varying characteristics) whose cardinalities q; are archimedeanly
increasing to oo, the collections of conjugacy classes

{Hkl A }A primitive even

become equidistributed in the space PU(n—1)# of conjugacy classes in
the projective unitary group PU(n — 1) for its “Haar measure” of total
mass one. We have the same result for n = 3 if we require that no k;
have characteristic 2 or 5.

In this paper, we will prove the following independence result.

Theorem 1.2. Fiz an integer n > 5. In any sequence of finite fields
k; (of possibly varying characteristics p, none of which is 2 or 3) whose
cardinalities q; tend archimedeanly to oo, the collections of pairs of
conjugacy classes

{(0/{,‘1',./\7 gki,Az)}A primitive even
become equidistributed in the space PU(n — 1)#* x PU(n — 1)# of con-
Jugacy classes in PU(n — 1) x PU(n —1).

We will also prove the following more general version.
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Theorem 1.3. Let d > 2 be an integer. Fix an integer n > 5. In any
sequence of finite fields k; (of possibly varying characteristics p, subject
only to p > 2d+1) whose cardinalities q; tend archimedeanly to oo, the
collections of d-tuples of conjugacy classes

{(gki,Aa eki,A% ceey eki,Ad)}A primitive even

become equidistributed in the space (PU(n —1)#)4 of conjugacy classes
in (PU(n —1))<.

2. THE PROOF

For each integer > 1, we have the scheme W, /F, of p-Witt vectors
of length . We fix a a faithful character ¢, : W,.(F,) = Z/p"Z =
t1or(Qp). For example, we might take z — exp(2miz/p"), so that 97, | =
Y. Every character of W, (k) is of the form

w = Y (Tracew, i) w, v, (aw))

for a unique element a € W,.(k). Let us denote this character i, 4:

wr,a(w) = Q/JT(TraceWT(k)/Wr(Fp) (a’w)) -

We choose a prime ¢ different from the characteristic p of k, and
work with ¢-adic cohomology. We fix an embedding of Q, into C.

Attached to the character v, of W,.(k) we have the Artin-Schreier-
Witt sheaf Ly, , = Ly, (aw) on W, Given an integer m > 1 prime to p,
we have the morphism of k-schemes A' — W, given by ¢ — (t™,0's).
The pullback of £y, , by this morphism is denoted Ly, ,m.0rs) = Lo, (a(em,0s))-
It is a lisse rank one sheaf on Al

For each prime to p integer m in the range 1 < m < n, we define

¢(m,n) = 1+ the largest integer k such that mp* < n.

We work on the product space
Sn = H Wﬁ(m,n)'
m>1 prime to p, m<n

As an Fp-scheme, S, is simply a huge affine space, with coordinates
the components of all the Witt vector factors. On Al x S,, we have
the lisse rank one sheaf

Euniv,n = ®m£we(m,n)(a(m)(tm,0’s))'
On S,,, we have the sheaf

Lum'v,n = Rl (pTQ)'<£umU,n)(1/2)
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This is a “sheaf of perverse origin” on \S,,, in the terminology of [Ka-Semi],
and its restriction to every lisse subscheme T' of S, is a sheaf of perverse
origin on 7', cf. [Ka-Semi, Cor. 6].

In the product defining .S,,, there is a distinguished factor we need to
single out. Write n as nop"~! with ng prime to p and r > 1. Then we
have a factor W,, carrying Ly, (a,(t0,0s))- Inside W, we have the open
set W.* where the first component is invertible. [It is also the group of
invertible elements for the ring structure on W,.] Inside S,, we have
the open set Prim,, C S, where the W, component lies in W,*.

The sheaf Lypiyn|Prim, is lisse of rank n — 1, pure of weight zero.
The main theorem of [Ka-WVQKR, Thm. 5.1] is that Ggeom for
Lynivn|Prim, contains SL(n — 1), if either n > 4 or if n = 3 and
pis not 2 or 5. Its (already unitarized, thanks to the (1/2) Tate twist)
Frobenius conjugacy classes at k-valued points of Prim,, are precisely
the classes

{ek,A}A primitive even;

cf. [Ka-WVQKR, Lemma 4.1]. [These Frobenius conjugacy classes are
automatically semisimple, as they “come from curves”.]

Lemma 2.1. The complement S,, \ Prim,, is naturally the space S,_1,
and under this identification the restriction of Lyniyn to Sn—1 is the
Sh@(ﬁbf Luniv,n—l'

Proof. To see the complement S,,\ Prim,, as the space S,,_1, we argue as
follows. In this complement, all factors except the distinguished one are
unchanged. In the distinguished W, factor, the entry is required to have
first component zero; that factor becomes a W,_1 = Wiy n—1) (and is
omitted entirely if ng = n). In the product with A!, the restriction of
Loynivn to this S,_; is the sheaf L,y ,—1. The claim then results from
base change for R*(pry);. O

Given two distinct integers a,b > 1, both prime to the characteristic
p we next consider pairs of conjugacy classes

{<0k,Aaa Hk,A”)}A primitive even-

For any integer a prime to p, the classes 0y r« are obtained as follows.
On A! x S,, we have the lisse rank one sheaf £ defined by the

univ,n’

same recipe as for Ln,n, but replacing each chosen character 1, of
W.,.(F,) by its a’th power. Then
Liion = R(pra) (L£35),0)(1/2)

gives rise to the classes 0 pa.
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Theorem 2.2. Fixn > 5. Fix distinct integer a,b > 1 and a charac-
teristic p not dividing ab(a* — b*). Then the group G eom for the direct
sum

® LY

univ,n

L(a)

univ,m

contains the product SL(n — 1) x SL(n —1).

Proof. Because G geon, for each of the summands contains SL(n—1), the
group G geom for the direct sum has identity component either SL(n—1)

or the product SL(n —1) x SL(n —1). To show that it is the latter, it
(b)

or its dual L;:L%n with any sheaf of the form Lg;)w,n ® L for any lisse,
rank one sheaf £ on Prim,, cf. [Ka-ESDE, 1.8.1 and 1.8.2].

We first treat the case when n is odd, and argue by contradiction.
The assumption that p does not divide ab(a® — b*) insures that p > 5.

Inside Prim, we have an A? with coordinates (A;, A3) over which the
sheaf £ on Al x A2 (coordinates (t, A1, Az)) is the sheaf Lm0 /6)®

univ

suffices to show that there is no geometric isomorphism of either L

Ly, (bA t+b4513), and over which the sheaf ,ng‘jw 1S Lpa((110,005) @ Ly, (aArt+aAst3)-
[For simplicity, suppose that each v, is chosen so that T/)fT_l = ;. Use
the m = 1, m = 3, and m = ng factors. In the m = ngy factor, freeze
the W, = Wi(nyn) component to be (1,0's). In the m =1 and m = 3
factors, take the component to be respectively (0's, A1) and (0's, As).
In all other factors, freeze the component to be 0.]

Let us denote by FP and by F* the restrictions of L. and

L@ to this A2:

univ,m

FO =10 a2 F@ .= A%

univ,n

The sheaves 7" and F\* are geometrically irreducible (because they
are Fourier transforms), pure of weight one, and self dual (because
their trace functions are R-valued (use ¢ — —t). In fact, the duality
is symplectic, compare [Ka-MMP, 3.10.3] where a result of this type
is proved. Therefore Gy, for each of .F,(Lb) and .Fr(ba) is an irreducible
subgroup of Sp(n — 1). Moreover, a moment calculation based on
[Ka-MMP, 3.11.4] shows that for each of FP and F, the fourth
moment is 3. This means precisely that in the decomposition of the
tensor square of each as

Sym?* @ A*/1 @1,

each of the three summands is Gyeon-irreducible.  What is key here
is that the trivial factor 1 is the only one-dimensional component of

(F?)®2 and the only one-dimensional component of (Fi")®2.
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()

unLv s

or its dual Lun“)m with a sheaf of the form LL‘Z)W n ® L for some lisse,
rank one sheaf £ on Prim,, then after restriction to our A? we get a

geometric isomorphism of f,gb) with f,&“) ® L for some lisse, rank one
sheaf £ on A?. From this isomorphism, we see that the tensor square

(f(a ® £)®2 (J;-(a))®2 £®2

has, geometrically, a one dimensional component, which is to say that

Suppose now that there is a geometric isomorphism of either L

(J’-"T(Za))®2 admits £%72 as a quotient. But the only one-dimensional
quotient of (F\)®2 is 1.

Hence the lisse rank one L is geometrically of order dividing 2. But
for an affine space in odd characteristic, there are no nontrivial homo-
morphisms of its geometric m; to £1; ie., H'(A? ® F,, /1,2) vanishes.
[Use the Kummer sequence. In it, H'(A2 ® F,,G,,) is F, , and the
H', which is Pic(W,; ® F,), vanishes.] So we would have a geomet-
ric isomorphism of either FP or F&Y with FY. To fix ideas, sup-
pose it is the former. As both are geometrically irreducible and self
dual, the group H01rngeom(.7-7gb)7 ,(La)) = H(A’®T,, F ®.7-—,Sa)) would
be nonzero, in fact one-dimensional. By Poincaré duality, the group
HYA2 @ F,, 7\ @ FL ) would be one-dimensional. The coefficient
group F¥ @ FL is pure of weight zero, so this H 4'is pure of weight
four, and one-dimensional. The lower cohomology groups are of lower
weight. So for variable finite extensions L/F,, with #L := ¢, we
would have the estimate

| Z Trace(Froby,a,, a4 |.7:T(Lb))Trace(FrobL,(AhA?,) | Fla)y| =
(A1,A3)€A2(L)

=2 +0(g¢)).

We will show that this sum is precisely qr, thus arriving at the desired
contradiction.
This sum is

D DU, 09))n (b Asa+bA) Y (5™, 0'8))ehi (—adsy®~aAry) =

Aq,As€eLl z€L y€EL
= (1/qu) D (@™, 0s) (™, 0's)) Y i (As(ba’ —ay®)+ A (br—ay)).
T, yeL A1,As3€L

The 1/q;, factor comes from the (1/2) Tate twists in the definitions of
F and FLU.
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The innermost sum

D i As(ba® — ay®) + Ay(bx — ay))

Ay,As€L

vanishes unless both ba® = ay® and bx = ay, and if both vanish the
sum is ¢2. Now if bz = ay then either x = y = 0 or x and y are both
nonzero and z/y = a/b. If (z,y) is not (0,0), then from bx® = ay® we
get (z/y)® = a/b. Comparing with x/y = a/b, we get (a/b)> = a/b,
so a®> = b?. Our hypothesis that a? — b? # 0 mod p tells us that the
innermost sum vanishes unless z —y = 0. Thus the entire sum has only
the x = y = 0 term, and the sum is ¢z, as asserted.

This contradiction concludes the proof that for n odd, the group
G geom for the direct sum
@ LY

univ,n

®

contains the product SL(n — 1) x SL(n — 1).
Suppose now that n > 5 is even. Then n — 1 is odd, and > 5. So we
know that G o, for the direct sum

®

contains SL(n — 2) x SL(n — 2).

Recall that ng’n@Liﬁmn is a sheaf of perverse origin on 5,,, lisse on
Prim,, and lisse on the dense open set Prim,,_; of S,_1 = S, \ Prim,,.
We now apply [Ka-Semi, Cor. 10, (2)|to this situation. The rank of

G geom for LY ® L9 on Prim,, is at least the rank of Ggeop, for

univ,n univ,m

1 @ L(a)

univ,n—1

ng,n—l@ng,nﬂ on Primy,_;. This last rank is 2(n—3). If GY,,,, for
Lq(f,zmn ® Lfﬁzw’n on Prim, were SL(n—1), we would get the inequality

n—22>2(n-3),
which is false for n > 5. Given the dearth of choice for this G° it

geom>

must be SL(n — 1) x SL(n —1). O

Corollary 2.3. Let d > 2 and n > 5 be integers. In any characteristic
p > 2d + 1, the group Ggeom for the d-fold direct sum

d
e
a=1 7

contains the d-fold product (SL(n —1))%.

Proof. The hypothesis that p > 2d 4 1 insures that for any integer a, b
with 1 < a < b < d, p does not divide ab(a? — b*). The corollary then
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follows from Theorem 2.2 by Goursat-Kolchin-Ribet, cf. [Ribet, pp.
790-791]. O

Theorem 2.4. Let d > 2 be an integer. Fix an integer n > 5. In any
sequence of finite fields k; (of possibly varying characteristics p, subject
only to p > 2d+1) whose cardinalities q; tend archimedeanly to oo, the
collections of d-tuples of conjugacy classes

{(Qki7A7 gki,/\Qa e Hki,Ad)}A primitive even

become equidistributed in the space (PU(n—1)%)? of conjugacy classes
in (PU(n — 1))<.

Proof. Let us denote by Oy, o the d-tuple

Orid = (Orns Ok n2, s Op; pd)-

By the Weyl criterion, we must show that for each fixed irreducible
nontrivial representation = of (PU(n—1))%, the normalized Weyl sums

(1/#Prim,(k;)) > Trace(Z(O, 1))

A/k; primitive even

tend to 0 as #k; grows. In each characteristic p > 2d + 1, this sum is
bounded in absolute value by

C(p,n,E)/\/#ki, for C(p,n,Z) =2 hi(Prim, @, F,,Z,),

for =4 the lisse sheaf on Prim,, /F, formed by “pushing out” the direct

sum @3:1 ngiv,n along the representation =, now viewed as a repre-
sentation of (GL(n — 1))¢ which factors through the quotient group
(PGL(n —1))%.

As was the case in [Ka-WVQKR, 8.1], we do not know uniform
bounds for these sums of Betti numbers C(p,n,Z) as p varies (n and
= fixed). But we can bypass this problem, if we can, by other means,
show that for fixed n and p > 2n — 1, we have a bound of the form
D(n, Z)/v/#k; with a constant D(n, Z) which is independent of p. Then
we use this constant for p > 2n — 1, and we use the constant C(p, n, Z)
for the finitely many primes p < 2n — 1. We will show that in fact
we can take D(n, =) := 3dim(Z)/(n — 1). This will then prove the
theorem.

Let us recall the argument from [Ka-WVQKR, 8.2]. Fix a nontrivial
additive character ¢ (formerly our ;) of F,. For p > n, the space
Prim,, is the space of polynomials f of degree n with vanishing constant

term, and for each a prime to p, the sheaf £, on A! x Prim,, with

univ,m
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coordinates (t, f) is Lyy). The sheaf Lgﬁiv’n on Prim, has trace

function at k-valued points f € Prim,(k) given by

Trace(Frobk,f|L$2w7n) = (—1/va) Z Yr(af(t)).

tek

The idea is to break up Prim, (k) into equivalence classes, f and g
equivalent if f — g has degree < 1. Thus each equivalence class is a
line {f(t) + At}rex. On each line, ngwm is the Tate-twisted Fourier
Transform FTye(Ly@pr)))(1/2). These are lisse sheaves on A of rank
n — 1, pure of weight zero and with all co-breaks n/(n — 1). Their

direct sum

d
V= @ FTye(Lyparay)(1/2)

a=1
is thus lisse of rank d(n-1), with all all co-breaks n/(n — 1). Let us
denote by Z4(f) the lisse sheaf on A which is the pushout of this direct
sum along Z. [Equivalently, Z4(f) is the restriction of Z; on Prim,,
to the line which is the equivalence class of f.| Its rank is dim(Z),
and all its co-breaks are at most n/(n — 1) (because this pushout is a
direct factor of some tensor power V&€ @ (VV)®/. The sheaf Zy(f) will

be irreducible and nontrivial provided that G yeopn, for the direct sum V
contains the d-fold product (SL(n — 1))%.

Lemma 2.5. Forp > 2n—1 and [ of degree n with f(0) =0, we have
the following results.

(1) If n is even and the coefficient of t* in f is nonzero, then Ggeom
for V contains the d-fold product (SL(n — 1))

(2) We have the same result for n odd if, in addition, no translate
f(t+c)— f(c) of f is an odd polynomial.

Let us temporarily admit the truth of this lemma. We then compute
the “raw” Weyl sum, i.e., #Prim, (k) times the normalized Weyl sum,
for an irreducible nontrivial = as the sum over equivalence classes of
f’s in Prim, (k). Each such sum is

Z Trace(Frobg \|Z4(f)) =
Ak
Trace(Froby|H2(A' @ F,, Z4(f)) — Trace(Froby|H (A' @ F,, Za4(f)),

the equality by the Lefschetz trace formula.
Suppose first that the hypotheses of either part (1) or of part (2) of
the above lemma apply. Then the H? vanishes, and the dimension of
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the H! is minus the Euler characteristic, itself given by
—X(A' @F,,Za(f)) = Swans(Za(f)) — rank(Za(f)) <
< (n/(n—=1))dim(Z) — dim(Z) = dim(=Z)/(n — 1).

So when the above lemma applies, the sum is bounded by

dim(Z)/qr/(n — 1).

When the lemma does not apply, we look at the first expression for the
sum to see that we have the trivial bound

dim(Z)qy.

When n is even, of the (g — 1)q}j_2 equivalence classes of f’s, only 1/qy
of them fail to satisfy the hypothesis of part (1) of the lemma. When
n is odd, at most (gx — 1)(]/1(?_1)/2 + (qp — 1)¢" 2 classes fail to satisfy
the hypothesis of part (2) of the lemma (the translates of odd f’s, and
those with no ¢ term).

Thus when n is even, the raw Weyl sum for an irreducible nontrivial

= is bounded in absolute value by
(#Primy (k) /qr) (1=1/qe) dim(2)y/qe/ (n—1)+(# Prima (k) /¢;) g, dim(Z) <
< (#Primy(k))2dim(Z)/((n — 1)v/ax)

as soon as \/qx > n — 1.

When n is odd, the fraction of failures to satisfy the hypotheses
of part (2) is at most 1/qx + 1/q,(€n73)/2, so always at most 2/qx. In
this case, the raw Weyl sum will have the same bound, as soon as

@22(71—1). ]

It remains to prove the lemma. Under the hypothesis that either n
is even or that no translate f(t + ¢) — f(c) of f is an odd polynomial,
it was proven in [Ka-MG, Thm. 19, stated there for p > 2n + 1, but
p > 2n — 1 is enoughl, that Gyeom for each FTya(Lyafr)) contains
SL(n—1). By Goursat-Kolchin-Ribet [Ka-ESDE, 1.8.1 and 1.8.2] and
[Ribet, pp. 790-791], it suffices to treat the case of each pair of factors.

Thus we must show that if, in addition, the coefficient of t? in f
is nonzero, then for p not dividing ab(a® — b?), there is no geometric
isomorphism of either FTyu (L)) or its dual F Ty (Ly—pp(—t))) With
FTya(Lyparey) ® L for any lisse rank one £ on A' ® F,.

Again we argue by contradiction. Both Fourier transforms have all
oo breaks n/(n—1) < 2, so L, whose co-break is an integer (Hasse-Arf),
must have oo-break either 0 or 1. Thus £ is geometrically Ly ) for

some ¢ € E. If we write FTya(Lyarr)) as FTy(Lyas(t/a))), and write
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Fwa (/Cw(bf(t))) as FTw(‘Cw(bf(t/b)))a we find that either FTw(ﬁw(bf(t/b)))
or its dual FTy(Ly—pp(—t/p))) is geometrically isomorphic to

FTya(Lyarwy) @ Lyen) = FTp(Lypasr/ayre))-

By Fourier inversion, we get that either Lywr/p)) OF Ly—pf(—t/p)) 18
geometrically isomorphic to Ly y(t/a)+)). This in turn implies that
either bf(t/b) or —bf(—t/b) is equal to af(t/a). Comparing coefficients
of t2, we see that either 1/b or —1/b is 1/a. This is excluded by the
hypothesis that p does not divide ab(a® —b*). This concludes the proof
of Lemma 2.4, and, with it, the proof of Theorem 2.3.

3. APPENDIX: PAIRS OF CHARACTERS

Let us say that an ordered pair of primitive even characters (x,A)
is a primitive pair if the product character xyA is primitive. We denote
by PrimPair(k) the set of primitive pairs.

Theorem 3.1. Fix an integer n > 5. In any sequence of finite fields
k; (of possibly varying characteristics p, subject only to p > 7) whose
cardinalities q; tend archimedeanly to oo, the collections of triples of
conjugacy classes

{(eki,)@ eki,Av eki,xA)}(X,A)GPrimPair(ki)

become equidistributed in the space (PU(n—1)#)3 of conjugacy classes
in (PU(n —1))3.

More generally, given an integer d > 1, let us say that a pair of
primitive even characters (y,A) is a d-fold primitive pair if the (d +
1)2 — 1 characters x?Ab, with 0 < a,b < d and (a,b) # (0,0), are each
primitive. [Each is necessarily even.] We denote by PrimPair,(k) the
set of d-fold primitive pairs. Fix an ordering on the index set

Iq:=[0,d] x [0,d]\ (0,0),
e.g., order first by the sum a + b, and within pairs of given sum order
by b.

Theorem 3.2. Fiz an integer d > 1 and an integer n > 5. In any
sequence of finite fields k; (of possibly varying characteristics p, subject
only to p > 2(d+1)* — 1) whose cardinalities q; tend archimedeanly to
00, the collections of (d + 1)? — 1-tuples of conjugacy classes

{(eki,x”Ab)(a,b)eld}(X,A)ePrimPaird(ki)
become equidistributed in the space (PU(n — 1)#)(‘”1)2*1 of conjugacy
classes in (PU(n —1))@+10*=1,
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Proof. We work first in a given characteristic p. The scheme S,,/F,, a
product of Witt groups, is a commutative group scheme, with compo-
nentwise operations. For k/F, a finite extension, the points of S, (k)
are precisely the even characters of (k[X]/(X™"!))*. The points of
Prim,, (k) are precisely the primitive even characters. For an integer a
prime to p, the a-fold addition map [a] : w +— aw is an automorphism
of each Witt group factor, so an automorphism of S,, which preserves
Prim,, and induces an automorphism of Prim,. The sheaves Lfﬁz)w,n
on Prim,, for a prime to p, are simply the pullbacks of Ly, by the
map |a] : Prim,, — Primy:

L(a)

univ,n

| Prim,, = [a]*(Lunivn| Prim,,).
For each pair of integers (a, b), we have the weighted addition maps
la,b] : S, x Sy, = Sy, (s,t) — as + bt.

Lemma 3.3. Suppose p > 2d. Define Uy := Napyer,a, b)) (Prim,).
Then Uy is a dense open set of Prim,, X Prim,,. For each finite exten-
sion k/F,, the k-valued points Uy(k) are precisely the points PrimPairy(k),
i.e. the d-fold primitive pairs.

Proof. Since Prim,, is open in S, each inverse image [a, b] ™ (Prim,,)
is open in S, x S,. Already intersecting inverse images by the two
projections [1, 0] and [0, 1] shows that Uy lies in Prim,, X Prim,. To see
that Uy is nonempty, observe that it contains the diagonal of Prim,, x
Prim,,; this is merely the statement that if s € Prim,, then (a + b)s
lies in Prim,, for any (a,b) in I4, simply because p > 2d > a +b. That
Ui(k) = PrimPairy(k) is a tautology. O

On the space U, we have for each (a,b) in I, the sheaf
Flab) . — [a, O] (Lunivn| Primy,).

Theorem 3.4. Supposen >5,d > 1, and p > 2(d+ 1)> — 1. Then
the group Ggeom for the direct sum sheaf

@ Flad)

(a,b)e[d
on Uy contains the product (SL(n — 1))@+1)°-1,

Proof. After pullback, Ggeom can only get smaller. So it suffices to
exhibit a pullback on which G yeom contains (SL(n — 1))@D*~1 For
this, we use the morphism

Prim, — Uz, x = (x, x*).
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The pullback of F(@* by this morphism is the sheaf LZZ%iLH”Primn.
So the entire direct sum pulls back to

(d+1)2-1
B 1t
c=1 7
on Prim,,. By Corollary 2.3, its Ggeom contains (SL(n—1))@+0*=1

To conclude the proof of Theorem 3.2, we proceed exactly as the de-
duction of Theorem 2.4 from Corollary 2.3. For (x,A) € PrimPair,(k),
we denote by Oy, a the (d + 1)? — 1-tuple of conjugacy classes

@k,X»A = (eki,x‘lAb)(a,b)Gld-

Fix an irreducible nontrivial representation = of (PU(n — 1))@D*~1,
Denote by

:[d

the lisse sheaf on U, obtained from pushing out lisse sheaf EB(Q ner, - (a,b)

d+1)’~1 which fac-

by =, now viewed as a representation of (GL(n — 1))
tors through (PGL(n — 1))@D*-1,
For p > 2(d+1)> =1 but p < 2n — 1, and k/F, a finite extension

with q := #k, we have the estimate
| > Trace(Z(Okya))l < OO hi(Uar,Fy, Z1,))q*" /.

(x,A)€PrimPairy(k)=Ugy(k)

In each of these finitely many characteristics, for ¢ large enough we will
have #Uy(k) > ¢**/2 (simply by Lang-Weil, as U,/F, is smooth and
geometrically connected of dimension 2n), and for such ¢ we then have

U/ #Ta0)) T Trace(E (O] < 22l 05, FrnZa)

(x,A)€PrimPair g (k)=Uqy(k) \/6

It remains to treat the case of characteristic p > 2n — 1 (and p >
2(d +1)* — 1). Here we will need the following lemma.

Lemma 3.5. Suppose that (a,b) and (c,d) are two different elements
of 1. Then for p > 2d + 1, the two linear forms

(aX +bY)/(a+b)* % (cX +dY)/(c+d)?
are both nonzero in Fy[X,Y].

Proof. 1f the two vectors (a, b) and (¢, d) are linearly independent, then
the two linear forms (aX + bY)/(a + b)* and (cX + dY)/(c+ d)? are
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linearly independent, and the assertion is obvious. If they are IF,-
linearly dependent, say (a,b) = t(c,d) for some t € ¥, then

t(aX +bY)/(a+b)* = (cX +dY)/(c+d)*
In this case,
(aX +bY)/(a+b)?*+ (cX +dY)/(c+d)* = (1) (cX +dY)/(c+d)?

which is nonzero so long as t # +1. We cannot have ¢t = —1, for then
a+c =0+ d =0, which is impossible because p > 2d + 1, while both
a+ ¢,b+ d lie in [0,2d] and are not both zero. We cannot have ¢ = 1
by the assumption that (a,b) and (c,d) are two different elements of
1. O

For p > n, the space U;/F, is the space of pairs of polynomials
(f = >, Aix',g = >0, Bix'), such that for all (a,b) in I, the
polynomial af + bg has its leading coefficient aA,, + bB,, invertible.

Suppose now that p > 2(d + 1)> — 1 and p > 2n — 1. For unordered
each pair of distinct points (a,b) and (¢,d) in I;, we have the hyper-
planes Hy (45) (c.d) i Uq consisting of those points (f = > | Az, g =
>or, Bix') for which the vector (As, By) of their 2*-coefficients satisfies

(aAy +b0By)/(a+b)?* = £(cAy + dBy)/(c + d)*.

We denote by H C U, the union of these ((d + 1) — 1)((d + 1)* — 2)
hyperplanes.

The idea is to break up Uy(k) into equivalence classes, with (f(x), g(z))
(f(z) + tz, g(x) + tx). The pullback of

@ Flab)

(a,b)e[d

1%

to this t-line is, geometrically, the direct sum

B FTyere(Loasasoy) =
(a,b)eld

P FTu(Liarizy) baz)-

(avb)eld
Exactly as in Lemma 2.5, we have the following lemma, with essen-
tially the same proof.

Lemma 3.6. Suppose p > 2(d+ 1)> — 1 and p > 2n — 1. Suppose
(f,9) € Ug(k)\ H(k). Then we have the following results.
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(1) If n is even, then Gyeom for

B FTo(Lutarizy) b))

(a,b)e[d

contains (SL(n — 1))(@+)*=1,

(2) We have the same result for n odd if in addition no translate
F(X 4 ¢) — F(c) is odd, for any of the polynomials af(X) +
bg(X), (a,b) € 1.

Exactly as in the deduction of Theorem 2.4 from Lemma 2.5, we
find the following: for n > 5, in any characteristic p > 2n — 1 (and
p > 2(d+1)® — 1), then for ¢ large enough that /g > n(d + 1)*, we
will have the bound

|(1/3#Ua(k)) > Trace(Z(Ok.y.a))| < :
(x.A)EPrimPai _ (n— 1)\/6
X,A)EPrimPair g (k)=U4 (k)

2dim(=)
This concludes the proof of Theorem 3.2.
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