CORRECTIONS TO EXPONENTIAL SUMS AND
DIFFERENTIAL EQUATIONS MANUSCRIPT

NICHOLAS M. KATZ

CORRECTIONS TO CHAPTER 7, LOCAL PAGE NUMBERING

page 40, line 9: “7.40.4” should be 7.10.4
page 56, lines 5-8: They are false. They should be replaced by the
following discussion:

If the sign, call it €, is +1, or if N is odd and the sign is —1, then
we can directly apply Deligne’s general theorem to the slightly
twisted sheaf (€)% ®G(1/2) with Gyeom = SO(N). If, however,
N is even and € = —1, then the situation is more complicated.
The Frobenii attached to points of even degree will still be ap-
proximately equidistributed in the space of conjugacy classes
of a compact form of SO(N). However, the Frobenii attached
to points of odd degree will be approximately equidistributed
according to a different law. For O(NN,R) a compact form of
the full orthogonal group O(N), and

O(N,R) = SO(N,R) Il O_(N, R)

its usual expression as a union of two SO(N,R)-cosets, the
Frobenii attached to points of odd degree will be approximately
equidistributed in the space of O(N,R)-conjugacy classes of
the “other” coset O_(N,R). See [Ka-Sar-RMFEM, 7.9.10] for
the general form of Deligne’s result that we need here, and see
[Ka-TLFM, 7.4.14] for a concrete discussion of its application
in the sort of situation we have here.

CORRECTIONS TO CHAPTER 8, LOCAL PAGE NUMBERING

page 2, line 10 of (8.1.4) is false. The functor ji, is not exact, it is
only “end-exact”, i.e., it carries injections to injections, and surjections
to surjections, cf. [Ka-RLS, 2.17.1].

CORRECTIONS TO CHAPTER 9, LOCAL PAGE NUMBERING

page 1, line 6 of proof of 9.1.1 should read

p > 2rank(G) +1 = 15.
1
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CORRECTIONS TO CHAPTER 10, LOCAL PAGE NUMBERING

page 1, penultimate line of 10.0: replace “rather that giving” by
“rather than giving”.

page 2, line 3: replace “casess” by “cases”.

page 19, lines 4,5: Assertion (3) of 10.8.1 should read

(3) There exists an isomorphism of lisse sheaves

H® C*lH ® éH = [3]*7—{#('7 wv P1s -5 P8; A1/47 A3/4)-
CORRECTIONS TO CHAPTER 14, LOCAL PAGE NUMBERING

page 17, line 5 of 14.13.3: should read “a monic polynomial g(z) €
R[z]...” and not “a monic polynomial f(z) € R[x]”. This error is
confusing, since f : X — A}, is our function on X.

page 17, statement of 14.13.3: This is contaminated by this same
error. Its first paragraph should read

Proposition. 14.13.3 (Gabber) Let R Let R be a subring of C which
is a finitely generated Z[1/¢-algebra. Let X/R be an affine R-scheme
which is smooth over R, everywhere of relative dimension d > 0. Let

f:X —Ag

be a function on X, viewed as a morphism to AL. Suppose given a
stratification (AL, — D, D) of AL, where D C Ak is a divisor which is
finite etale over R of some degree 6 > 1, defined by a monic polynomial
g(x) € R[x] of degree 6 whose discriminant A is a unit in R, such that
for any lisse Qg-sheaf G on X, the objects RfiG and Rf.G of D*(AL, Q)
are both adapted to (AL, — D, D), and their formation commutes with
arbitrary change of base on Spec(R) to a good scheme.

REFERENCES

[Ka-RLS] Katz, Nicholas M., Rigid local systems. Annals of Mathematics Studies,
139. Princeton University Press, Princeton, NJ, 1996. viii+223 pp.

[Ka-TLFM] Katz, Nicholas M., Twisted L-functions and monodromy. Annals of
Mathematics Studies, 150. Princeton University Press, Princeton, NJ, 2002.
viii4+-249 pp.

[Ka-Sar-RMFEM] Katz, Nicholas M., Sarnak, Peter, Random matrices, Frobe-
nius eigenvalues, and monodromy. American Mathematical Society Collo-
quium Publications, 45. American Mathematical Society, Providence, RI, 1999.
xii+419 pp.

PRINCETON UNIVERSITY, MATHEMATICS, FINE HALL, NJ 08544-1000, USA
E-mail address: nmk@math.princeton.edu



Exponential Sums and
Differential Equations

Nicholas M. Katz



table of contents-1

Chapter 1- Results from Representation Theory
1.0-1.6 Statements of the main results
1.7 The proofs
1.8 Appendix: direct sums and tensor products

Chapter2- D.E.'s and D-modules
2.1The basic set-up
2.2 Torsors and lifting problems
2.3 Relation to transcendence
2.4 Behavior of Ggal under specialization

2.5 Specialization of morphisms

2.6 Direct sums and tensor products

2.7 A basic trichotomy

2.8 The main D.E. theorem

2.9 Generalities on D-modules on curves

2.10 Some equations on Ai, with a transition to Gy,

2.10.16 Location of the singularities of a Fourier Transform
2.11 Systematic study of equations on G,

Chapter 3- The generalized hypergeometric equation

3.1 Basic definitions

3.2-3.3 Basic results about irreducibility and contiguity

3.4 Duality

3.5 The case n=m; Lie irreducibility, rigidity, Belyi and Kummer
induction

3.6 The casen = m

3.7 Intrinsic characterization; rigidity for n = m

3.8 Direct sums, tensor products, and Kummer inductions

Chapter 4 Detailed analysis of the exceptional cases
4.0 Eliminating a few cases
4.1 The Gy case

4.2 The Spin(7), PSL(3) and SL(2)xSL(2)xSL(2) cases
4.3 The PSL(3) case: detailed analysis

4.4 The Spin(7) case: detailed analysis

45 The SL(2)xSL(2)xSL(2) case

4.6 The SL(3)xSL(3) case



table of contents-2

Chapter 5- Convolution of D-modules
5.1 Generalities

5.2 Convolution on (Eum and Fourier Transform on Al
5.3 Convolution of hypergeometrics on G,

5.4 Motivic interpretation of hypergeometrics of type (n, n)
5.5 Application to Grothendieck’'s p-curvature conjecture

Chapter 6- Fourier transforms of Kummer pullbacks of
hypergeometrics

6.1 Some D.E.'s on Al as Kummer pullbacks of hypergeometrics

6.2 Fourler transforms of Kummer pullbacks of hypergeometrics:
a remarkable stability

6.3 convolution of hypergeometrics with nondisjoint exponents,
via a modified sort of hypergeometric

6.4 Applications to Fourier transforms of Kummer pullbacks of
hypergeometrics

Chapter 7- The ¢-adic theory
7.1 Exceptional sets of primes
7.2 ¢-adic analogue of the main D.E. theorem 2.8.1
7.3 Construction of irreducible sheaves via Fourier transform
7.4 Local monodromy of Fourier transforms d'apres Laumon
7.5 "Numerical” explicitation of Laumon's results
7.6 Pseudoreflection examples and applications
7.7 A highest slope application
7.8 Fourler transform-stable classes of sheaves
7.9 Fourier transforms of tame pseudoreflection sheaves
7.10 Examples
7.11 Sato-Tate laws for one-variable exponential sums
7.12 Special linear examples
7.13 Symplectic examples
7.14 Orthogonal examples

Chapter 8- ¢-adic hypergeometrics

8.1 Rapid review of perversity, Fourier transform, and
convolution

8.2 Definition of hypergeometric complexes and hypergeometric
sums over finite fields

8.3 Variant: hypergeometric complexes over algebraically closed
fields.



table of contents-3

8.4 Basic properties of hypergeometric complexes; definition and
basic properties of hypergeometric sheaves

8.5 Intrinsic characterization of hypergeometrics

8.6 Local rigidity

8.7 Multiplicative translation and change of

8.8 Global and local duality recognition

8.9 Kummer induction formulas and recognition criteria

8.10 Bely1l induction formulas and recognition criteria

8.11 Calculation of Ggeom for irreducible hypergeometrics

8.11.7 Direct sums and tensor products
8.12 Arithmetic determinant formula

8.13 Sato-Tate law for hypergeometric sums; nonexceptional cases

8.14 Criteria for finite monodromy

8.15 Irreducible hypergeomtrics with finite Ggeom

8.16 Explicitation via Stickelberger

8.17 Finite monodromy for type (n, n), intertwining, and
specialization

8.18 Appendix: semicontinuity and specialization for G

d'apres R. Pink

geom:

Chapter 9 Gy examples, Fourier transforms and hypergeometrics
9.1 Another Gy example

9.2 Relation of simple Fourier transforms to hypergeometrics
9.3 Fourler transforms of Kummer pullbacks of hypergeometrics
9.4 Reduction to the tame case

Chapter 10- ¢-adic exceptional cases
10.0 Introduction
10.1 The Gy and Spin(7) cases

10.2 The PSL(3), SL(2)xSL(2)xSL(2) and SL(3)xSL(3) cases, via
tensor induction

10.3 Short review of tensor induction

10.4 A basic example; tensor induction of polynomials

10.5 The geometric incarnation

10.6 Tensor induction on G,

10.7 Return to the PSL(3), SL(2)xSL(2)xSL(2) and SL(3)xSL(3)
cases

10.8 The SL(2)xSL(2)xSL(2) case

10.9 The SL(3)xSL(3) case



table of contents-4

Chapter 11- Reductive tannakian categories

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Homogeneous space recovery of a reductive group

First analysis of finiteness properties

Transition away from tannakian categories

Mock tannakian categories

Statement of the reductive specialization theorem

Proof of the reductive specialization theorem

A minor variant on the the reductive specialization theorem

Chapter 12- Fourier universality

12.1
12.2

The situation over C
Additive convolution, exotic tensor product, and Fourier

transform on Al over C

to Db

12.3
12.4
12.5
12.6
-

12.7

12.8
12.9

The tannaklian category DA,B
The tannakian category Da Rg

A minor variant: ! convolution of D-modules
Brief review of Riemann-Hilbert; transition from D-modules

Transition to @e coefficients

Recapitulation of the situation over C
The situation in characteristic p

12.10 The tannakian category PervA! B(Al, @g)

12.11 The tannakian category Perv i tame(Al’ @g)

Chapter 13- Stratifications and convolution

135.1
13.2

Generalities on stratifications and convolution
Interlude: review of elementary stratification facts about

normal crossings

13.3
135.4
13.5

The special case of Al
Location of the singularities of a convolution
The bookkeeping of iterated convolution

13.6 Various fibre-wise categories

Chapter 14- The fundamental comparison theorems

14.1

14.2-

The basic setting
14.10 Reductive comparison theorem, semisimple comparison

theorem,and sharpened reductive comparison theorem
14.11 interlude: a sufficient condition for the reductivity of Ggal



table of contents-5

14.12 Application to hypergeometric sheaves

14.13 Application to Fourier transform of cohomology along the
fibres

14.14 Examples



Introduction-1

This book is concerned with two areas of mathematics, at first
sight disjoint, and with some of the analogies and interactions between
them. These areas are the theory of linear differential equations in one
complex variable with polynomial coefficients and the theory of one-
parameter families of exponential sums over finite fields.

The simplest example of an exponential sum over a finite field is
this: take a prime number p, a polynomial f(X) in Z[X], and form the
sum

Z . exp(2mif(x)/p).
X 1n [Flo
By letting the polynomial f(X) vary in a one-parameter family

f+(X) € Z[t, X1, e.g., the family f{(X) := tf(X), one is led to one-parameter

families of exponential sums.
The above exponential sum is formally analogous to a complex

path integral
Jef(X)dX.

And if we let the polynomial f(X) vary in a one parameter family
f+(X) € Z[t, X1, eg., the family f{(X) := tf(X), the resulting integral, e.g,,

Jetf(X)dx,

formally satisfies a differential equation with respect to the variable t.

There are four basic questions about this concrete situation with
which the book is concerned:

(1) For given p, how do the above exponential sums vary as t varies? Is
there a "Sato-Tate law"” which governs their distribution, and if so what
is it? Thanks to Deligne, we know that under mild hypotheses there is
such a Sato-Tate law, and that it is in turn governed by a certain

complex semisimple algebraic group G the "geometric

geom,p’
monodromy group” attached to our situation in characteristic p. So this
question 1is essentially "What is Ggeom,p?"'

(2) How does the answer to (1) depend upon p? How does Ggeom,p

depend upon p? In practice, one finds that whenever one can compute

Goeom,p» 1ts 1dentity component, and often Gyoqm p itself, is

independent of p > 0. Can one prove this in general?
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(3) What is the differential galois group Ggal of the the differential
equation satisfied by the integral?

(4) What is the relation of Ggal to the common value of the groups
Ggeom,p (or of their identity components) for p »> 07 It turns out in

practice that when one can compute G and when Ggal turns out to

gal

be semisimple, then for p >> 0 the groups G are all equal to Ggal'

geom,p
Can one prove this in general?

There are of course more general sorts of exponential sums, and
we will deal with them systematically in the course of the book. The
reader should keep in mind that already the simple ones above
illustrate the essential phenomena and contain the essential difficulties.

The book is arranged in four parts, in a diamond pattern of logical
dependence

Part I
v N

Part 11 Part 111
N vd

Part IV.
Part I (Chapter 1): results from representation theory

Part II (Chapters 2,3,4,5,6): results about differential equations and
their differential galois groups Ggal'

Part III (Chapters 7,8,9,10) : results about one-parameter families of
exponential sums and their geometric monodromy groups Ggeom-

Part IV (Chapters 11,12,13,14): comparison theorems relating Ggal and

Ggeom of suitably "corresponding” situations.

We have tried to strike a balance of emphasis between the
underlying general theory and its application to concrete problems, in
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such a way that the two complement each other, with the applications
serving both to illustrate and to motivate the general theory. The
reader will judge how well we have succeeded.

Parts Il and III especially are written in this spirit of "applied
mathematics”; there is a strong emphasis on the effective

calculation of the groups Ggal and Ggeom respectively, when one is

given a concrete differential equation, or a concrete one-parameter
family of exponential sums.

The effective calculations in Parts Il and IIl ultimately rely on the
general representation-theoretic results of Part [. However, in order to
be able to bring these results to bear, we make essential use of some
recent developments in the theory of differential equations and in the
theory of one-parameter families of exponential sums.

In the case of differential equations, there are four essential
ingredients. The first 1s the theory of the "slopes”, or "breaks”, of a
differential equation on an open curve at one of the points at infinity.
The second is the general theory of holonomic D-modules on curves,
especlally the theory of the "middle extension” and the structure
theory of irreducible D-modules. The third is the theory of the Fourier

Transform of D-modules on Al. The fourth is the idea of the (derived
category) convolution of holonomic D-modules on both the additive

group Al and on the multiplicative group Gyy,. [There is also a natural

notion of convolution of holonomic D-modules on elliptic curves, which
seems well worth exploring.]

What happens in the case of one-parameter families of
exponential sums? Roughly speaking, studying a "one parameter
family” means studying a lisse ¢-adic sheaf on an open curve over a
field of postitve characteristc p # £. In this case as well there are four
essential ingredients, which are closely analogous to the D-module
ingredients discussed above. The first is the the theory of "breaks"” (in
the sense of the upper-numbering filtration) of ¢4-adic representations
of inertia groups at the points at infinity. This theory was in fact the
inspiration for its D.E. namesake. The second 1s the theory of perverse
¢-adic sheaves on curves, especlally the structure theory of
irreducibles. This theory is analogous to the theory of holonomic D-
modules on curves over €. The third is the theory of the ¢-adic Fourier

Transform for perverse sheaves on AL over a field of positive
characteristic p # 4. In the ¢-adic case, we have much more precise
information about Fourier Transform than we do in the D-module
case, thanks to Laumon's "principle of stationary phase”, which
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effectively determines the local monodromy of a Fourier Transform.
[On the other hand, in the D-module case we can "write down" the
Fourier Transform of a d-module (just interchange x and d/dx and
change a sign) and then stare at it.] The fourth is the idea of
convolution, entirely analogous to what is done in the D-module
context (and the inspiration for it).

Thus it is not surprising that there are remarkable similarities
between the results obtained in Part Il and those obtained in Part III.
One of our guiding principles was to illustrate systematically these
similarities by working out as completely as possible the theory of the
generalized hypergeometric differential equation in Part II, and
developing in Part IIl the analogous theory of ¢-adic hypergeometric
sheaves in characteristic p. Roughly speaking, we show that the
differential galois group Ggal for a hypergeometric differential equation

1s essentlally "the same” as the geometric monodromy group Ggeom for

a ‘corresponding” ¢-adic hypergeometric sheaf in sufficiently large
characteristic p. We also give, in both the D-module and ¢-adic
contexts, Intrinsic characterizations of irreducible hypergeometrics
among all holonomic D-modules (resp. perverse sheaves) on G,. [We

also note that the "hypergeometric sums” which are the traces of
Frobenius at closed points of our ¢-adic hypergeometric sheaves are
already known in combinatorics (cf. [Gre]) as "hypergeometric functions
over finite fields".]

What is the "explanation” for these remarkable similarities? Is
there some general theory of "exponential sums over Z" which explains
them? To the extent that most of the concrete calculations of both Ggal

and of Ggeom depend in analogous ways upon the same representation-

theoretic results of Part I, one might think that these similarities are
simply an instance of the anthropic fallacy, and that the true
similarity between the D-module and ¢-adic cases we consider is that
they are the only ones where we can compute what is going on.
However, the results of Part IV show that this is not the case; they give
an intrinsic conceptual explanation for at least some of these
similarities.

The main result of Part IV is a comparison theorem which
compares, for an object which lives on Al over Z in a suitably strong
sense, the differential galois group Ggal of the D-module Fourier

Transform of its C-fibre to the geometric monodromy group Ggeom of

the ¢-adic Fourier Transforms of its [Fp—fibres, as p runs over the



Introduction-5b

primes. In contrast to Parts Il and III, where we prove statements of
the form "X = Y" by explicitly computing both X and Y and noting that
they are equal, the main result of Part IV is of the form "X = Y", but it
is proven by proving, as it were, that "X - Y = 0", without evaluating
either X or Y.

In their most concrete instance, the results of Part IV provide
affirmative answers to the questions (2) and (4) raised at the beginning
of the introduction in the special case of the family f{(X) := tf(X). But

already the same questions (2) and (4) for the case of a general one-

parameter family of polynomial functions on Al remain beyond the
scope of our present knowledge.

We believe that the results of Part IV are in fact just the "tip of
the iceberg” of a general theory, as yet inexistant, of "exponential sums
over Z". We refer the interested reader to [Ka-ES, last few pages] for
some entirely speculative discussion of the possible categorical setting
for such a theory, and for a conjectural statement of a general
comparison theorem which would provide affirmative answers to the
questions (2) and (4) for the case of a general one-parameter family.

We now turn to a brief discussion of some of the other open
problems suggested by the results in this book.

That one obtains the classical groups in their standard
representations both as Ggalls of simple-to-write-down differential

equations, and as G 's for easy-to-write-down corresponding

geom
families of exponential sums in all characteristics p >> 0 is perhaps not
surprising. That one obtains Gy in its seven dimensional irreducible

representation in similarly concrete fashion is perhaps less expected.
Can one obtain all the exceptional groups so concretely? Can one obtain
interesting finite simple groups this way?

The results of Chapter 6 show that a number of explicit
differential equations on Al have "diophantine meaning”, including
those of the form

() - xM 9 := d/dx.
But what if any i1s the diophantine meaning of equations of the general
form

P, (3) - Qu, (%),
where P, and Q,, are constant coefficient polynomials in one variable?

osimilary, what if any i1s the the diophantine meaning of
differential equations on an elliptic curve C/L of the form
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(d/dz)n - p(m)(z: 1),

where d/dz is the invariant derivation, and where }Q(m)(z; L) is the
m'th derivative of the Weierstrass ®-function ®(z; L)? And what is the
differential galois group of such an equation? Same questions for
equations of the more general form

P, (d/dz) - (an elliptic function with poles only in L),

where P, is a constant coefficient polynomial in one variable.
Our results on Ggeom for ¢-adic hypergeometric sheaves in

characteristic p were only valid for large p. For small p, can Ggeom be

an "interesting” group? In any case, what is 1t?
The ¢-adic hypergeometrics we construct in characteristic p live
naturally on G,,. Up to a multiplicative translation and a shift, they

are precisely those of the form R@ %, for some integer n > 0, some
homomorphism of tori
¢ (G = Gy,
and some lisse rank one sheaf ¥ on the source (G,4)" of the form
T = f’w(zanj)@(@if’Xj(Xi))‘
There is an obvious generalization of this sort of object on G, to a class

of "hypergeometric objects” on tori T of arbitrary dimension. One
considers R %, for some integer n > 0, some homomorphism of torl

¢ (G — T,
and ¥ on the source as above. This class of "hypergeometrics” on tori is

stable by ! convolution, by external product, and by ! direct image by
homomorphisms of tori, and for G,, gives back the original notion. One

can also pursue the obvious holonomic D-module analogue of this
generalization, obtaining hypergeometric holonomic D-modules on tori
of arbitrary dimension over C. This notion of hypergeometric in several
variables can be viewed as an algebraic incarnation of the classical
definitions [Er, 5.8] of hypergeometric functions of several variables as
inverse Mellin Transforms of monomials in ['-functions. What is the
relation between this point of view and the current work of the Gelfand
school [Gel] on the general theory of hypergeometric functions?

My interest in the generalized hypergeometric differential
equation as a beautiful "test case” for the study and calculation of
differential galois groups was aroused by the paper [B-B-H] of Beukers,
Brownawell, and Heckman. Many of the results of the book were
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worked out with the collaboration of Ofer Gabber, whose contribution
cannot be overestimated. It was Bill Messing who first posed the crucial

question "If the groups Ggeom,p are independent of p >»> 0, what is an a

priori description of the group to which they are all equal?”.

[t 1s a pleasure to acknowledge the support of the John Simon
Guggenheim Memorial Foundation, the I.LHE.S., the University of Paris
at Orsay, the National Science Foundation, and Princeton University
during the writing of this book. It is also a pleasure to thank Benji
Fisher for his meticulous proofreading of the entire manuscript, and his
many helpful comments, corrections, and suggestions.

[ respectfully dedicate this book to my teacher Bernard Dwork,
who discovered the intimate relations between the p-adic theory of
classical differential equations and the p-adic variation with
parameters of zeta and L-functions. In particular, he was the first
person to understand (cf [Dw]) that classical differential equations with
irregular singularities had deep meaning in arithmetic algebraic
geometry. (The prevailing dogma held that only equations with regular
singular points should have meaning.) Indeed, he showed that in many
cases the p-adic variation with parameters of exponential sums was
controlled by the p-adic theory of precisely the differential equations
with irregular singularities whose Ggalls play such a crucial role in this

book.
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Throughout this chapter, we work over an algebraically closed
field €C of characteristic zero. We fix an integer n>2, and denote by V an
n-dimensional C-vector space. We suppose given a Lie-subalgebra § of
End(V) which is semisimple and which acts irreducibly on V. We first
give a fundamental "torus trick” (Theorem 1.0) of Ofer Gabber which is
extremely useful in diverse contexts. We then give a sequence of
criteria (Theorems 1.1-1.6), some classical and some new, which insure
that § is either AL(V) or 30(V) or (for dimV even) 3P (V) or that dimV
is 7,8, or 9 (and we give the list of possible §'s for these). The basic tool
in most of these proofs is that of "chains” of weights in representations;
[ am indebted to Ofer Gabber for having explained to me both this
method and most of the criteria discussed below.

Theorem 1.0 (Gabber). Let G be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that a diagonal subgroup K of
GL(V) normalizes §. Let X1, ..., Xpn be the n characters of K defined by

the diagonal matrix coefficients; i.e., k = Diag(x1(k), ... ,X1(k)) for k in K.

Consider the "torus"” T in End(V) consisting of those diagonal matrices
Diag(X1,..,Xp) whose entries satisfy the conditions

2Xi =0
Xi-Xj= Xk - Xm whenever Xi/Xj = Xk/Xm on K.
Then 7 lies in 9.

proof Consider the action of K on End(V) by conjugation. By
assumption ¢ is stable under this action. For any character p of K, the
p-eigenspaces of § and of End(V) are related by 4(p) = § N End(V)(p).
Because K is diagonal, we have
g = @P 3(p), End(V) = EBP End(V)(p).
Now in End(V), the line Eij of matrices whose only possibly nonzero
entry is in the (i,j) place transforms under K by Xi/xj- Therefore
End(V)(p) = 0 unless p = Xi/xj for some (i,j), and for such p we have
El’ld(V)(p) = D Ei,j‘
Now consider a diagonal matrix X = Diag(X4, .., X). Acting on End(V),
ad(X) stabilizes each line E; :, and multiplies it by X; - Xj. Soif X

1,j such that p = Xi/xj

J’

satisfies the condition
Xi-Xj= Xk - Xm whenever Xi/Xj= Xk/Xm on K

then for any p with End(V)(p) = 0, ad(X) acts on End(V)(p) by a scalar
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Xp (namely Xp = Xj - Xjfor any (i,j) with p = Xi/xj)- Therefore ad(X)

maps $(p) to itself (since ad(X) maps every subspace of End(V)(p) to
itself), and hence ad(X) maps § to itself. Because ad(X) is a derivation of
End(V), it must be a derivation of the subalgebra 4. Because § is
semisimple, every derivation of ¢ is inner, so there exists an element Y
in 9 such that, on §, ad(X) = ad(Y); this means precisely that X-Y in
End(V) is an element which commutes with §. Since 94 acts irreducibly
on V, X - Y is necessarily a scalar. This scalar is necessarily
(1/n)trace(X-Y). Because Y is in the semisimple 9, trace(Y) = 0. So if
trace(X) = 0 in addition, then X - Y = 0, whence X lies in §. QED

In the following discussion of "recognition criteria” for the
standard representations of the classical groups, we will sometimes
abbreviate as "std" the standard representation of 3L(V), 3P(V), 3O0(V)
on V.

Theorem 1.1 (Kostant [Kos]) Let § be a semisimple Lie-subalgebra of
End(V) which acts irreducibly on V. Suppose that with respect to some

basis of V, § contains the diagonal matrix h :=Diag(n-1, -1,..., -1). Then
g is 3L(V).

Theorem 1.2 (Kostant [Kos], Zarhin [Za-WS, A.2.1]) Let § be a
semisimple Lie-subalgebra of End(V) which acts irreducibly on V.
Suppose that with respect to some basis of V, § contains the diagonal
matrix h := Diag(1, 0, ..., 0, -1). Then © is either AL(V) or 30(V) or (for
dimV even) 3P (V).

Theorem 1.3 (Gabber) Let 9 be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that with respect to some basis of
V, § contains the "Gy torus” consisting of all diagonal matrices of the

form

h(x,y) := Diag(x+y, %, vy, 0,..,0, -y, =%, -x-y).
Then G is either 3L(V) or 30(V) or (for dimV even) 3P (V) or we have
one of the following exceptional cases:

n=7:G = Lie(Gp) in the 7-dim'l representation of Gy

n=8: 9 = Lie(SO(7)) in the 8-dim’'l spin representation

9 = Lie(SL(3)) in the adjoint representation
g = Lie(SL(2)xSL(2)xSL(2)) in std®std®std
9 = Lie(SL(2)xSp(4)) in std®std
g = Lie(SL(2)xSL(4)) in std®std

n=9: 9 = Lie(SL(3)xSL(3)) in std®std.
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In fact, one uses the full strength of having a Gy torus only to take care

of the non-simple cases; the simple case i1s handled by

Theorem 1.4 (Gabber) Let G be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that § is simple and that with
respect to some basis of V, § contains the diagonal matrix
h:=Diag(1,1,0,..,0,-1,-1). Then 9 is either 3L(V) or 3G(V) or (for dimV
even) AP (V), or we have one of the following exceptional cases :

n=7:G = Lie(Gp) in the 7-dim'l representation of Go

n=8: 9 = Lie(SO(7)) in the 8-dim’'l spin representation

9 = Lie(SL(3)) in the adjoint representation.

Remark 1.4.1 If in Theorem 1.4 we no longer assume that § is simple,
the non-simple possibilities are the image of A3L(3)xA3L(3) in stdz®stdz,

and, for every k22, the image of
BL(2)x (8L (k) or 89(k) or (for k even)d®(k)) in stdo®stdy.

Remark 1.4.2 In the simple case, there is an asymptotic result [Za-
LS,Thm. 6] of Zarhin which gives Theorem 1.4 as soon as the dimension
of the representation is sufficiently large. Zarhin proves that if § is a

simple irreducible subalgebra of End(V) and if there exists a semisimple
element h in § which has dim(h(V)) = d, then § is 3L, 3P or A0

provided that dimV > 72d2. This given Theorem 1.4 (whose h has d= 4)
as soon as dimV > 72x16.

Theorem 1.5 (Kazhdan-Margulis, Gabber, Beukers-Heckman [B-H]) Let
9 be a semisimple Lie-subalgebra of End(V) which acts irreducibly on V.
Suppose that G is normalized by a pseudo-reflection Y in GL(V). Then §
is either AL (V) or 3G(V) or (for dimV even) 3TP(V). Moreover,

if dety = +1, then § = 3L(V);

if dety +1, then @ = 3L(V) or (for dimV even) AP (V);

if dety -1, then § = 3L(V) or AG(V).

Theorem 1.6 (Gabber) Let G be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that dimV is a prime p. Then ¢ is

either AL(2) in Symp‘l(std), or AL(V) or 3G(V) or, if n=7, possibly
Lie(Go) in the seven-dimensional irreducible representation of Go.
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1.7 The proofs

Notice that in Theorems 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 the cases listed
can be easily checked to have the property in question; the problem is
to show that these are the only cases. In doing this we will make
explicit use of classification, via the Bourbaki tables. Notice also that the
" § simple” case of Theorem 1.3 is a trivial consequence of Theorem 1.4.

Before beginning the proofs of Theorems 1.1 to 1.6, we need to
review some basic facts, which are certainly well-known to the experts
but for which we do not know a convenient explicit reference.

Lemma 1.7.1 Let § be a semisimple Lie subalgebra of End(V), ¥ a
Cartan subalgebra of 4, and h in ¥ an element with rational
eigenvalues. Then there exists a Weyl chamber such that for the
corresponding notion of positive root, we have «(h) > 0 for any positive
root «.

proof The Q-dual of the Q-span of the roots is a Q-form Hp of ¥, and h
lies in M’,@. Picking a vector-space basis of }E@ which starts with h, we

get a lexicographic order on the Q-span of the roots, so a notion of
positive root, such that if &« is a positive root, then «(h) > 0. One knows
that this notion of positive root is the one associated to some Weyl
chamber ([Bour Lé6], 1, 7, Cor 2 of Prop 20). QED

Suppose that (9, ¥#) is a split semisimple Lie algebra over C, and
that we have chosen a Weyl chamber. Thus we may speak of positive
roots, simple roots, et cetera. We denote by wq the unique element of

the Weyl group which interchanges positive and negative roots. Recall
the notion of a "chain” between two weights L and A of a finite-
dimensional representation M of §; this is a sequence of weights of M
starting with |, ending at A, such that each successive weight in the
sequence after the first is obtained from the previous one by
subtracting a simple root. We will make essential use of the fact that

Lemma 1.7.2 Any two weights i and A of M such that p - A is a
nontrivial sum 2Zny« of simple roots with integral coefficients ny > 0

can be joined by a chain.

proof The proof is by induction on 2ng, the case >2ny = 1 being trivial.

In terms of a W-invariant inner product on the Q-span of the roots, we
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write

0 < (L=, L=A) = (L=-A, Zng o) = 2ng (=N, o).
oSince all the ny 2 0 and at least one 1s >0, we see that for some simple
o we must have (U-A,x)>0, i.e., (L, x) > (A\,x). Therefore either (ju,x) > 0
or 0 > (\,). Now for any W-invariant inner product, we have, for any
root o and any o in the Q-span of the roots

2(0,a)/(o¢,x) = o(Hg).

Thus we have that either W(Hy)>0 or AN(Hg)<0. In the first case pu-o is

also a weight, and in the second case A + « is also a weight ([Bour L8],
7, 2, Prop 3(i), page 124 ). Now by induction on 2>n, we can pass from

- to A, or from L to A+o. QED

Corollary 1.7.2.1 Let M be an irreducible representation of §. There
exists a chain going from the highest weight to any given weight of M,
and there exists a chain from any given weight to the lowest weight.

Given an irreducible representation M of §, denote by N and v its
highest and lowest weights respectively. For any chain A=Xq, Ao,.., A=V

from A to v, with successive drops the simple roots o := A{ - Aj4q for i

= 1,.n-1, we have
AN- Vo= 2 g & = Zng o

This shows that the multiplicity n with which a given simple root «

occurs as drops in such a chain is independent of the chain. Moreover,
the length of any such chain is 1 + 2Zn,.

Lemma 1.7.3 For a faithful irreducible representation M of §, every
simple root occurs as a drop In every chain from highest weight to
lowest.

proof If M is faithful, then every root, and in particular every simple
root B, is a difference of two weights of M , say o and 1: o = T - B. So
if we take a chain from A to T and concatenate to it a chain from o to
1 we get a chain from A to v in which p occurs as a drop; therefore

ng > 0 and hence B occurs as a drop in every chain from A to v. QED

Using ([Bour L8], 7, 2, Prop 3(i), page 124 ), one sees

Lemma 1.7.4 For a fundamental representation M of ¢, with highest
weight w, either

(1) o is an isolated point of the Dynkin diagram, the representation is
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the standard representation of the corresponding 3L(2) factor, and the
only chain from highest weight to lowest Is Wy, Wy -ox.

or
(2) o is not isolated, every chain from highest weight to lowest begins
W, W=, W= xXP,
where p 1s any simple root adjacent to o« in the Dynkin diagram, and
every chain ends
Y —wola) + wolwe), —wolo) + wolw ), wolwy),

where Y is any simple root adjacent to -~wg(a) in the Dynkin diagram.

(1.7.5) We now take up the proofs of Theorems 1.1, 1.2, 1.3, 1.4. We will
consider successively the three cases

9 non-simple

9 simple but V not fundamental

9 simple and V fundamental.

We begin by considering the non-simple case. In Theorems 1.1, 1.2,
we are given a nonzero diagonal element h which has an eigenvalue of
multiplicity one on V. Therefore if V = V1®V9 with each factor of

dimension at least two, then V41 cannot be the trivial representation of

h (otherwise all its weights in V would occur with multiplicity divisible
by dimV1). By symmetry, h is also non-trivial on Vo .

In Theorem 1.3, we are given commuting diagonal elements h(1,0)
and h(0,1), each of which has an eigenvalue of multiplicity two.
Therefore if V. = V1, ®Vy and dimV 4 2 3, then each of these h's is

nontrivial on V4 (for otherwise all its weights in V would occur with
multiplicity divisible by dimV ). If dimV4 = 2, then the sum h(1,0) +
h(0,1) is nontrivial on V4 (since it has an eigenvalue with multiplicity
one) and hence at least one of the h's is nontrivial on V4. Since dimVy
= dimV/2 23, both h's are nontrivial on V9. Therefore at least one of
the two elements h(1,0) or h(0,1) must be nontrivial on both V4 and on
Vo.

Thus if V = V4 ®Vy In Theorems 1.1, 1.2, or 1.3, we have a
diagonal element h of § which acts nontrivially on both V4 and on V.

This his X®1 + 1®Y with both X and Y non-trivial; both X and Y have
at least two distinct eigenvalues (because they are semisimple and
their traces are zero). Let X resp. Y denote the finite subset of Q
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consisting of the distinct eigenvalues of X resp. Y. Then the set of
distinct eigenvalues of h = X®@1 + 1®Y is the set X + Y := { x+y| x in X,
y in Y}. Then by the Card(X + Y) > CardX + CardVy - 1 inequality (valid
in any Q-vector space), and the fact that CardX and CardVy are both
>2, we arrive at a contradiction in Theorem 1.1 (where h has only two
distinct eigenvalues) and in the other cases we see that X and Y each
have exactly two distinct eigenvalues. Thus we have X=Diag(a,...,a,b,...,b)
and Y = Diag(c,...,c,d,...,d); with a>b, a with multiplicity A, b with
multiplicity B and c>d, ¢ with multiplicity C, d with multiplicity D.

To discuss Theorems 1.2 and 1.3 simultaneously, we introduce the
parameter k such that the nonzero eigenvalues of h :=X®1 + 1Y are 1
and -1, each with multiplicity k. Thus k=1 1s Theorem 1.2, and k=2 is
Theorem 1.3. The highest weight in X®1 + 1®Y is atc, hence AC=k.
Similarly we have BD=k. Thus A<k with equality iff C=1, and B<k with
equality iff D=1. Thus dimV4 = A + B < 2k, with equality iff dimVy =

C+D = 2. So either we have (2 dim'l)®(2k dim'l) or both Vi have

dimension in [3, 2k-1]. For k=1 this means (2dim)®(2dim), so the
standard representation of 20(4) = dL(2)x3L(2). For k=2, this means
that either we have (2 dim, Diag(1/2,-1/2))®(4 dim, Diag(1/2,1/2,-
1/2,-1/2)) or (3dim)®(3dim). This last case can only be 3L(3)x.8L(3) in
(std or its dual )®(std. or its dual). In the penultimate case, the only
possibility for the four dimensional faithful representation is one of the
three classical groups 3L£(4), 3P(4), or A0(4) in std. or its dual (in the

representation SymmS(std2) of AL(2), the element Diag(1,1,-1,-1) is not

in the image of 3L(2)).

We now turn to Theorems 1.1, 1.2, 1.4 in the case when § is
simple, but where V is not fundamental. We pick a maximal torus
containing the given element h and a Weyl chamber such that «(h) >
O for all positive roots «.

In Theorem 1.1 this case does not arise (V is automatically
fundamental if h has only two distinct eigenvalues). In Theorems 1.2,
1.4, where the element h has exactly three eigenvalues, if V is not
fundamental then its highest weight is a sum of two fundamental
weights, in both of whose representations h has exactly two
eigenvalues. [For suppose that the highest weight of V is the sum of two
dominant weights A and A\'. If ¥ and H' are the weights occurring in Vo

and in Vo' respectively, then the set of weights of Vo4 is ¥ + H' ([Bour

L8], 7, 4, Prop. 10), hence the same is true of the sets of h-weights.
Denote by X = AMH), Y := N'(H') these sets of h-weights, and apply the
inequality
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Card (X + Y) + 1 > Card(X) + Card(y).
Because h is diagonal =0 and the representations are faithful (3 being
simple), we have Card(X), Card(Y) both =>2.If h has only two distinct
eigenvalues on V, then Card (X + Y) = 2, and we have a contradiction,
whence V was fundamental. If h has three distinct eigenvalues on V,
then Card (X + Y) = 3, and hence Card(X) = Card(Y) = 2, whence by
the preceding argument both A and A\’ must be fundamental weights.]

We now use the additional fact that if if W, denotes the set of
weights with multiplicity of V, then N\ + W, occurs in Wy4+y' ([Bour
L8], 7, exc. 21). Passing to the opposite (wg) Weyl chamber, if we denote
by N'the lowest weight in V', it follows that A" + W, occurs in Wy 4y
(In fact, the argument suggested in the Bourbaki exercise shows that if
E is any weight of V4, then £ + W, occurs in Wy 4,'.) Using this, we can
bound the pairs of fundamentals A and A" for which an h in 4 acts on
V>\+>\' as

Diag(1,...,1 repeated k times,..some 0's.., -1,..,-1 repeated k times).
Let X and Y be the diagonal matrices of trace zero with exactly two
eigenvalues (necessarily rational) by which h acts on Vy and on Vy:

respectively; say X = (a rep A times, b rep B times) with a>0>b, and
Y = (c rep C times, d rep D times) with ¢>0>d . The highest weight space
of Vo' must have h-weight c (rather than d). Because

(h-weight a on V5)®(highest wt \')
appears weightwise with multiplicity in Vy4y' , we conclude that the
h-weight a+c occurs with multiplicity > A in Vo419, whence A<k. We

claim that in fact A<k-1 if Cz2. For if C22, there is a second h-positive
weight in V4, and taking a chain from A" to it we find an h-positive

weight of Vo' of the form N\ - i for u a simple root. Now use the fact

that
(any wt of Vo) + (any wt of Vy')

occurs as a weight in Vy4y'. We claim that among the weights
(a wt where h=a on Vy) + (A" -p),

there is at least one which is not of the form
(a wt where h=a on Vy) +)\',

for if this were not the case then the set of weights occuring in (h=a on
V) would be closed under subtracting W, which is absurd. Thus we

have
A < k,and A < k-1 1f C > 1.
Similarly arguing with the lowest weight, we obtain
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B <k,and B < k-11f D >1.

Putting this together, we see that A+B < 2k, with equality if and only if
C=D=1. Thus either (i) one of our fundamentals is two-dimensional and
the other has dimension 2k, or (ii)both have dimension 3< dim < 2k-1.

For k=1, only the first case is possible, and it is the case of 30(3)
in its standard representation.

For k=2, neither of the fundamentals has dimension 2 (§ would be
AL(2), which doesn't have a fundamental of dimension 2k for k>2) so
each of the two fundamentals is three-dimensional, each with a
Diag(x,x,y) element, so by a trivial case of Kostant's theorem each is a
fundamental representation of 3L(3). So the two possibilities are

SymmZ2(std. rep. or its dual of 3L(3)), which by inspection does not
contain a Gy torus, or even a Diag(1,1,0,0,-1,-1), and the adjoint

representation of 3L(3), which does by inspection contain a Go torus.

We now turn to the case when ¢ is simple and V is fundamental.
Again we pick a Cartan subalgebra containing h and a Weyl chamber
such that if p is a positive root, then p(h) > 0. We denote by wq the

unique element of the Weyl group which interchanges positive and
negative roots. Because V is fundamental, its highest weight A 1s w for

some simple root o, and its lowest weight v is wglw) = "W () By

our choice of Weyl chamber we have
A(h) 2 any h-eigenvalue on V > w(h),

SO
A(h) = the highest h-weight = n-1 in Thm 1, =1 in Thm's 2,4,
v(h) = the lowest h-weight -1.

Pick a chain of weights A= A1, A9, .., Ag = v from the highest to the

lowest, and consider the sequence Aj(h) of h-weights. This is a non-

increasing sequence of integers, whose successive drops are the integers
oi(h), where o 1= A = Ajy1q.

In Theorem 1.1, this sequence is n-1,-1,..,-1, and hence «(h)=n
(from the first step w, to wy-o); after this first drop the h-weight

stays -1, so p(h) = 0 for p simple, p=«. So in Theorem 1 the situation is
Wy -~ WOQWy = o + a sum of the other basic roots;

the only case is (Ap, std or its dual) as may be checked from the

Planches in [Bour L6]. This concludes the proof of Theorem 1.1.

In Theorem 1.2, either § is AL(2) or every chain from top to
bottom has at least three terms ( > 1 + rank, since every simple root
occurs) so has h-weights 1,0,...,0,-1. Looking at the beginning and ending
steps we see
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Wy -~ WoWy = o + (- wo)a + other basic roots.
If « = (- wg)o, then this is the Theorem 1.1 situation above, while if
o = (- wplo then

Wy = o + others, o« = (- wp)ot.
This occurs only for B>3, Cs9, Ds4, std., again by checking the Planches

in [Bour L6]. This concludes the proof of Theorem 1.2.

We now consider the situation of Theorem 1.4, where the element
h is Diag(1,1,0,..,0,-1,-1). Since the highest weight A and the lowest
welght v each occur with multiplicity one, we see that there is a
unique weight (say A9) other than the highest weight for which

Ao(h) = 1, and this weight occurs with multiplicity one. Similarly there
is a unique weight Ag-1 other than the lowest one with Ag-1(h) = -1.
Taking a chain passing through A9, we see by looking at the h-weights
that A9 must be the immediate successor of A; similarly, looking at the
h-weights in a chain passing through Ad-1 shows that its immediate

successor must be v. Therefore ( by Lemma 4) every chain has the
form N, Ao, 777, Ng-1, V.

If N\, A9, A\d-1, V Is a chain, then there are no other weights in V

(otherwise some chain would exhibit it, and such a chain would have
intermediate terms; therefore Ao - Ag-1 would be the sum of two or

more simple roots, and hence could not be a simple root itself). As these
weights occur with multiplicity one we see that dimV = 4; among
fundamental representations of simple §'s, the only

possibilities are 3L(V) and 3P(V) (this last is spin for 30(5)).
In case A, A2, Ad-1, v 1s not a chain, then every chain has the

form A, Ao, P77, Ng-1, ¥ with at least one 7 term. In this chain, the

sequence of h-weights is 1,1,0,...,0,-1,-1 with at least one intermediate
zero. Therefore the simple roots p have p(h) = 0 or 1, and in writing A-
1 as ZnE)E;, either there are exactly two simple roots p with p(h)=1,

each with coefficient nE)=1, or there is a unique one, with coefficient
nE)=2. But we have seen (Lemma 1.7.4) that any simple root adjacent

to o passes from second to third place in some chain, and similarly any
neighbor of ~wqp(a) passes from third last to second last in some chain.

So any neighbor p of o occurs in A-v, as does any neighbor of ~wqg(o).

This means there are at most two distinct simple roots p,Y with
p(h) =1 =y(h). If there are precisely two, then
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Wy ~ WOWe = P + Y + others,
p adajcent to «,
Y adjacent to -wg(a), and
{simple roots adj to o} v {simple roots adj to ~wg(x)} = {p, ¥}.

If there is only one such, then it is the unique neighbor of o« and the
unique neighbor of ~wg(a), and we have

Wy - WOW = 2p + others,
p the unique neighbor of «,
p the unique neighbor of -wg(o).

At this point one must patiently check the Bourbaki tables! To do
this easily, we break up into four cases, depending on whether p=Y or
not, and on whether or not « is self dual.

If p=Y, then both o and -wqg(a) have unique neighbors, so both

are extreme points of the Dynkin diagram. If « and -w(«) coincide,

then o is a self-dual extreme point and we have
W = B + others, o a self-dual extreme pt, p its unique

nbr.
Among the exceptional groups, inspection shows that only G9, w1

qualifies. The classical self-dual extreme points are none for Aps9o, w1
and wy for By and C)p, w1 for Dgqd, w1 and the two spins for Deyen.
For w14 in B,C,D the coef of a9 is 1, so these occur. For wy in B, the
coef of avp_1 is (¢-1)/2, which is 1 only for ¢=3, corresponding to the 8-
dim spin rep of 30(7). For wy in Cy, the coef of oxy-1 is ¢-1, only 1
for ¢=2, corresponding to the standard rep of 30(5). For either spin
in Deyvens the coef of ap_9 is (¢-2)/2, which is 1 only for ¢=4, in which

case by triality the image of the rep. is 30(8) in its standard
representation.
If « and ~wqg(o) are distinct in the case (p=Y), then p has two

extreme point neighbors, so one end of the diagram looks like the end of
the Dy>3 series, and ¢ is odd because the two ends o and -wqgl(x) are

distinct. This means we can only have one of the spin representations,
but for these the sum wy-1 + Wy contains «p-9 with coefficient ¢-2,

which is never 2 since ¢ is odd. So this case does not exist.
If we are in the case p=Y, and if p is the unique neighbor of «,
then o is extreme and hence so is ~wq(a) ; similarly if ¥ is the unique

neighbor of ~wg(a) then -wp(a) is extreme and hence so is «. This then

means that both o« and -wp(x) are extreme, and have different
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neighbors, so o« cannot be selfdual and
Wy -~ WOQWy = P + ¥ + others, o nonselfdual extreme.

The possibilities here for nonselfdual extremes are only Ay, w4 and wy;
Dodd, spin; Eg, w1 and wg. The D case is ruled out by the requirement
that the unique neighbors of the duals be distinct. The Eg case is ruled
out because wq + wg has all coef's 22. The case of the standard
representation wq of Ay and its dual wy is fine for {24 ( since
W1twWyp = ] + a9 + ..+ ).

If p=Y,we see as above that if o (and hence -wqg(a)) is not
extreme, each of @ and -wg(x) has both p and ¥ as neighbors. As there
are no closed diamonds in the diagram, it must be that o = -wg(o);

then o has exactly two neighbors p and Y and
Wy = 1/2( p + ¥) + others, o selfdual with nbrs g,Y

Again by inspection the exceptional groups are ruled out (no w, has
1/2 as any coef.). In the A series, the only selfdual is wy for Agyr-1, and

this only works if k=3, corresponding to the standard representation
of 30(6). In the B and C series, no w, has two coef.'s 1/2. In the D

serles, those with exactly two neighbors are w9 through wy-3, and

none of these has any coef. 1/2. This concludes the proof of Theorem
1.4, and with it, Theorem 1.3. QED

(1.7.6) We now turn to the proof of Theorem 1.5. We begin with the
case when § is normalized by a reflection Y. If the automorphism Ad(Y)
of the corresponding connected semisimple group G in GL(V) is inner,
then G contains the diagonal (in a suitable basis of V) matrix

A := Diag(-a,a,a,...,a)
for some nonzero a. (Therefore ¢ = 3P (V) if dimV > 4, because the
group Sp(V) does not contain Diag(-a, a,...,a); in Sp(2d), the 2d
eigenvalues of any element can be grouped into d pairs of inverses.)
Taking a maximal torus T of G which contains A, and fixing some Weyl
chamber, we see that the (-a) eigenspace of A is a multiplicity one
weight space for T, say with weight 1. Therefore there exists a simple
root o with «(A)=-1 (any simple root o that takes us to or from T in a
chain of weights which passes through T). Now consider the

corresponding 3L(2) for this simple root. For any weight space V},
X VN is in VA and X_, VA is in VA% So if we write V = V, & V_4

as the sum of the n-1 dimensional a-eigenspace for A and of the one
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dimensional (-a)-eigenspace for A, then X, maps V5 to V_4, and it
maps V_g to V4. Therefore

Image(Xy) = XyVa ® XyV-g C V_g & X,4V-5
has dimension at most two.

If dim Image(Xy) < 1, then dim Image(X4) = 1 since the
representation is faithful. So the 3L(2)-representation we have is the
direct sum of the standard one and a trivial one, and so the element
Hy is Diag(1,-1,0,..,0). Now apply Theorem 1.2.

If dim Image(Xy) = 2, then X, V4=V_45 and X, V_5 = 0, so

(X )% = 0. Since dim Image(Xy) = 2, when we write our 3L(2)
representation as a direct sum of SymmMi(std)'s, we have Zn; = 2.
Since (Xoc)2 = 0, we cannot have std®std®triv, so we must have

SymmZ2(std)®triv, and Hy, is Diag(2,-2,0,...,0). Now apply Theorem 1.2.
Next we consider the case when ¢ is normalized by a reflection Y,
but the automorphism o = Ad(Y) is not inner. (Here 3T is also ruled
out, because every automorphism of it is inner.) Any automorphism o
of the corresponding connected semisimple group G stabilizes some Borel

subgroup B (look at the coherent cohomology Hi(G/B, O) of G/B, which

vanishes except for HO = C, and use the Lefschetz fixed point formula).
[f o is an involution we claim it stabilizes some maximal torus T in B.
For if we pick one maximal torus T in B, then o(T) is another maximal
torus in the same Borel, so it is conjugate to T by an element u of the

unipotent radical U of B: oT = uTu~l. Moreover, the element u in U is
uniquely determined, since inside B, T is its own normalizer. We need to

find an element v in U such that o(vTv™1) = vTv~1 ,l.e., an element v
in U that satisfies o(v)u = v. Since 02 =1, we know o2(T) = T and
hence o(u)u =1, or ul = ou. So if we write u = u2 with g in U, then

u=l = ou gives LL_2 = (OLL)2, so both u‘l and ol are square roots in U
of the same element. By the uniqueness of square roots in U we have
L=l = ou. Then (op)u = p~1u =y, so uTp~1 is the desired o-stable
maximal torus.

Once o stabilizes a pair (B, T), it induces an automorphism of the
Dynkin diagram. This automorphism is necessarily nontrivial (lest o be
inner) and of order two, so a nontrivial involution of the Dynkin
diagram. Consider the action of o on the weight spaces of our
representation; it must permute them nontrivially (otherwise it fixes
the weights, so fixes pointwise the Q-span of the weights, so fixes all
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roots, so would be inner). This means that the matrix of the reflection Y
1s a permutation-block shaped matrix. But the eigenvalues of a
permutation-block shaped matrix with cycles of length d;j are the

various dj'th roots of the eigenvalues of the what the dj'th power

induces on any block in the orbit.
Since Y has eigenvalues {-1,1,1,...,1}, a set which contain no
clumps of size d; which are principal homogenous under multiplication

by the d;'th roots of unity with d; > 1 except possibly for a single one of
size d; = 2, we conclude that o permutes precisely two weight spaces,

each of which is of multiplicity one, and stabilizes all the others.
Consider the Q-span S of those weights fixed by o; S must be a proper
subspace of the Q-span of the roots (because o does not fix all the roots,
not being inner), and hence we can find a 1-parameter torus in T
whose h kills 5. This h, acting on V, acts as zero on the sum of all the
non-permuted weight spaces, which is of codimension 2 in V. By
faithfulness of V, h must act on V as Diag(x,-x,0,..,0) with x=0. Now
apply Theorem 1.2.

If § is normalized by a unipotent pseudoreflection u, then its
logarithm N:= log(u) lies in § (because every derivation of § is inner,
compare the proof of Theorem 0). As endomorphism of V, N has rank
one. Using Jacobson-Morosov to complete N to an dL£(2)-triple (N, h, ?7)
in §, we get a semisimple element h in § which in a suitable basis of V
is Diag(1,0,..,0,-1). Again apply Theorem 2.We have § = Z0(V) simply
because 30(V) doesn't contain any nilpotent N of rank one.

If § is normalized by a pseudoreflection ¥ whose determinant £ is

not +1, then in a suitable basis of V, ¥ is Diag(g,1,...,1). Because & = 1

Gabber's Theorem 0 shows that § contains Diag(n-1, -1, ..,-1), whence §
is AL(V) by Theorem 1.1. This concludes the proof of Theorem 1.5. QED

(1.7.7) We now turn to the proof of Theorem 1.6 on prime-dimensional
representations. First of all, 4 must be simple since dimV is prime. If §
has rank one, we have the 3L(2) possibility. Assume now that § has
rank at least two. Pick a Cartan subalgebra ¥, a Weyl chamber, et
cetera. The Weyl dimension formula for dimV in terms of the highest
weight N of V and p := 2fd wts = (1/2)2 pos rts is

dimV = Wpos roots o [(>\ + p’ HO()/ (p’ HO()]

The two key observations are that for § simple, and V irreduible with
highest weight A,

(1) the largest single term in the formula is the term (A+p, Hyjgpest),
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where Hyjghest is the highest root of (ie., highest weight of the adjoint

representation of the algebra corrsponding to) the dual root system,
and this term is strictly larger than any of the other terms.

(2) We have the inequality
(A+p, Hpighest) =< dimV.
If we grant both of these points, the first of which is obvious, and
the second of which will be proven below, then for dimV = p, we find
that (A+p, Hyjghest) =dimV (otherwise every single term in the formula

is < p and hence prime to p). We will then examine those irreducible
representations V of simple $'s for which
(>\+p, Hhighest) = dimV.

To prove (2), consider the highest weight of the restriction of V to
the principal A£(2) in §; this is one less than the dimension of its
biggest irreducible, so we have

dimV > 1 + highest weight of the principal 3L(2).

In virtue of ([Bour L8], 11, 4,Prop. 8 (i) and 7, 5, Lemma 2), the highest
weight under the principal 3L£(2) is

(A, the element hO in ¥ such that E)(ho)=2 for all simple p),
and h0 - > pos o« He ("the sum of the positive roots is twice the sum of

the fundamental weights" for the dual root system). Thus

\

dimV > 1 + highest weight of the principal 3L£(2)
T+ N 2p0s o Hood

Now pick some simple o such that A(Hg) > 0, and pick a chain which

runs from Hg up to the highest dual root Hyj,peq; we get

1+ (>\’ Zpos X HO()
=1 + (7\; Hhighest) + Zoc pos, Hy not highest (>\; HO()
> 1 + (>\; Hhighest) + Zchain omitting Hhighest (>\’ Hin chain)

>1 + ()\+P’ Hhighest) B (p’ Hhighest)+ zchain omitting Hhighest (7\’ Hin chain)'

Now we will establish that in fact

1 + 2

chain omitting Hhighest (7\’ Hin chain) 2 (p’ Hhighest)'
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Writing Hhighest = Zsimple 5 nl3HE> as a sum of simple dual roots, and

recalling that p is the sum of the fundamental weights, we see that

(p, Hpighest) = Znﬁ) = the "length” of Hyjzphest

so what is to be proved is

1+ Zchain omitting Hhighest (>\’ Hin chain) Z length of Hhighest'

This inequality is obvious, because the length of any chain from the
simple root Hy to Hyjghest = 2 ngHg is obviously the length an

simple B

of Hpjghest, and o is chosen so that every term (A, H ) is at least

in chain

one. Thus we have established the inequalities

dimV 2 1 + highest weight of the principal 3L(2)
= 1+ (7\) Zpos %4 HO() =1+ (>\’ Hhighest) + 2 o pos,not highest (>\’ HO()
1+ (>\’ Hhighest)+ 2. H

\%

chain omitting Hhighest (>\; in chain)
2 (>\’ Hhighest) + length of Hhighest

(>\+p7 Hhighest)'

Now suppose we have the equality
dimV = (v+p, Hyighest)

Then we see, from the top end of the inequality, that V is irreducible
when restricted to the principal 3L£(2). By [Ka-GKM, 11.6], the only
possibilities outside 3L(2) are 3L, 3P, and 30(odd) in their standard
representations and Lie(Gy) in its seven-dimensional representation.

QED

1.8 Appendix: Direct sums and tensor products
Let Gj, 1=1,2, be connected semisimple groups over € whose Lie

algebras are simple, and let p;: G = GL(V;), i=1,2, be faithful irreducible
representations of the G; on finite-dimensional C-spaces V;. We say that
(G1, V1) and (Go, Vo) are Goursat-adapted if either

(a) the Lie algebras of Gy and Gy are not isomorphic, or

(b) for any isomorphism ¥ : Lie(Gy) — Lie(Gyp), at least one of the

following two conditions holds:
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(b1) there exists an isomorphism A: V4 = Vo such that, viewing
Lie(G;j)CEnd(V;), we have Y(X) = AXA™T for every Xe€Lie(Gq). [If this A
exists, then g— AgA“1 defines an isomorphism from G4 to Go.]

(b2) there exists an isomorphism A:(V1)* = Vo from the dual of V4 to

Vo such that, viewing Lie(G;) € End(V;), we have ¥(X) = A(—Xt)A_1 for
every X¢€Lie(Gq), where Xt e End((V41)™) denotes the intrinsic transpose

of X [If this A exists, then g— Ag_JEA_1 defines an isomorphism from Gq
to G2.]

Examples 1.8.1 If both (Gj, V;) are isomorphic to (G, std,) where G is

one of the classical simple groups SL(n > 3), SO(odd n > 3), Sp(even n 2
2), SO(even n = 6) and stdy, is its standard n-dimensional

representation w1, then only for (S0(8), stdg) does Goursat-adapted fail.

Indeed, every automorphism of SO(odd n > 3) or of Spleven n > 2) is
inner, the only nontrivial outer automorphism of SL(n > 3) is the

Cartan involution X = X_t, and every automorphism of SO(even n > 6,
n # 8) is induced by conjugation by an element of O(n).
If both (Gj, V;) are isomorphic to (G, V), where G is a connected

semisimple irreducible subgroup of GL(V) such that Lie(G) is simple and
such that every automorphism of Lie(G) is inner (types B, C, Fy4, E7, Eg,

Gop) then they are automatically Goursat-adapted, whatever the

particular irreducible representation V.

Proposition 1.8.2 (Goursat-Kolchin-Ribet, [Koll, [Ri]) Let G be an
algebraic group over €, n > 2 an integer, and p;: G = GL(Vi), i=1, .., n, a

set of n finite-dimensional irreducible representations of G whose direct
sum @,V; is faithful. For each i, let G; := p;(G) be the image of G in

GL(V;). Suppose that

(1) for each i, GiO,der operates irreducibly on V;, and Lie(GiO’der) is
simple.

(2) for i=j, (GiO,der’ Vi) and (GJ.O,der, VJ) are Goursat-adapted.

(3) for i=j, and for any character X of G, the representations p; and

X®pJ~ of G are not Isomorphic.
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(4) for i=j, and for any character X of G, the representations (p;)™ and

X®pJ~ of G are not i1somorphic.
Then G%,deT is the subgroup WGiO’der of TTGL(V;).

proof By definition, G maps onto each Gj:=p;(G). Therefore GO maps onto

each GiO, and G%der maps onto each GiO,der‘ By faithfulness we have

an a priori inclusion G C TI;G;j, so gO.der ¢ WGiO’der. Notice that G is
reductive (it has a faithful completely reducible representation) and
hence GU.der

We first reduce to the case where G=G0.der 5nd Gy = GiO,der for

Is semisimple.

each i. Replacing G by GO.der does not change GiO,der = pi(G)O’der=
pi(GY-der) Each Vv, is GO -deT-irreducible, since it is G;®>der-irreducible. If

hypotheses (3) and (4) hold for G then they hold for GOder [Indeed if H
1s any normal subgroup of G, and if two H-irreducible representations
V and W of G become isomorphic on H, then HomH(V, W) is a one-

dimensional representation of G/H, and Homyg(V, W)®V = W as G-
representations.]

So we may assume that G=GY.der and Gy = GiO,der for each i. By
Lie theory, it suffices to prove that Lie(G) = TTLie(G;) inside TTEnd(V;).
Each Lie(G;) being simple, it suffices by [Ri, pp. 790-791] to show that
for any two indices i=j, Lie(G) maps onto Lie(Gi)XLie(GJ). So (replacing G
by (pixpj)(G) Jwe are reduced to the case n=2.

When n=2, Lie(G) is a Lie-subalgebra of the product
Lie(Gq)xLie(Gp) which maps onto each factor, so by Goursat's Lemma,

either Lie(G) is the product Lie(Gq)xLie(Gp), or it is the graph of an
isomorphism Y¥: Lie(Gq) > Lie(Go). In this second case, we will derive a

contradiction, by using the Goursat-adaptedness, which tells us that
either

(b1) there exists an isomorphism A: V¢ = Vo such that y(X) = AxA~1
for every Xe€Lie(Gq), or

(b2) there exists an isomorphism A: (V{)* = V5 such that for every

XeLie(Gy), v(X) = AC-XDA™.
Since Lie(G) is the graph of Y, we conclude that G is the graph of
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an isomorphism from Gq to Gy either of the form gl—)AgA“l, which

contradicts (3), or of the form g— Ag_tA_l, which contradicts (4). QED

The following standard lemma is stated for ease of reference.
Lemma 1.8.3 Let Gq, ... ,G, be connected semisimple linear algebraic

groups over € whose Lie algebras g are simple. Then

(1) if o is any automorphism of TTg;, there exists a permutation

1 = s(i) of the index set {1, ..., r} and isomorphisms 9s(i)i: Fsi) = S
such that

olg1, 82, - 8r) = (05(1),1(85(1))s 95(2),2(85(2))s ~» Ts(r),r(8s(r))):
(2) if o is any automorphism of TIG;, there exists a permutation i = s(i)

of the index set {1, ..., r} and isomorphisms 95(i)i © Gs(i) = Gj such that

o(g1, 82, 8r) = (0g(1) 1(85(1))s T5(2) 2(85(2)), -+ Ts(r) r(8s(r)))-

proof To prove (1), it suffices to note that the individual factors @ of
the product § := T13; are intrinsically the minimal nonzero ideals of ¢,

hence are necessarily permuted by any automorphism of 4. To prove
(2), denote by o the automorphism induced by o on the universal
covering TTG;, and by Lie(o) the automorphism induced by o on

Lie(TTG;) = TTLie(G;). By (1) applied to Lie(o), and the equivalence of

categories between connected simply connected complex Lie groups and
finite dimensional Lie algebras over C, we infer that there exists a

permutation 1 = s(i) of the index set {1, ..., r} and isomorphisms
cNfS(i)’i X Gs(i) - Gi such that
o(g1, 82, ~» &) = (T5(1),1(es(1))s Ts(2),2(85(2)) -~ » Ts(r),r(Bs(r))):

But as o is induced by the automorphism o of TIG;, o maps the finite
covering group Ker( WGi - TIG;) = W(Ker(@i — Gj))to itself. Therefore

each cNfS(i) P Gs(i) _)Gi maps Ker(G ) = Gg(j)) isomorphically to

s(i
Ker(Gi — Gj), whence each CNIS(i) P Gs(i) _)Gi descends to an
Isomorphism 9s(i),i Gg(j) = Gj. That o is

(g1, 82, - » gr)=(05(1),1(85(1)) T5(2),2(85(2))s ~ » Ts(r),r(8s(r)))
follows from the fact that this automorphism of the connected group
TTG; induces Lie(o) on the Lie algebra. QED
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Lemma 1.8.4 Let V be a C-vector space of dimension n = 2, and let
G C GL(V) be one of the following groups:
SL(n),
Sp(n) if n is even,
SO(n) if n is odd.
Let I' denote the image of GxGx..xG in GL(V®N). Then the normalizer of

' in GL(V®N) is the semidirect product Gy I'XSy,, where S, acts on Vv en

no
by permuting the factors.

proof Suppose A in GL(V®N) normalizes I'. The automorphism

o :=Ad(A) of I lifts to an automorphism o of GxGx..xG in each of the
cases envisioned (for SL or Sp, GxGx...xG is the universal covering of T,
and for SO(odd), GxGx..xG = I'). Any automorphism of GxGx..xG is the
composition of a permutation of the factors with an automorphism of
the form Tlo; : (g;); — (oi(g;));, where for each i, o; is an automorphism

i
of G.
If Gis Sp or SO(odd), each oj is inner, say oj = Int(g;). Then

successively correcting Ad(A) by the permutation it induces of the
factors and by Int(gl, e gn), we obtain an element of the centralizer
of I' in GL(V®N), But I' acts irreducibly on V®1 (since G acts irreducibly
on V), so this centralizer consists of the scalars G-

If Gis SL(V) with n = dimV = 3, then an automorphism o of G is
inner 1f and only 1f the given representation p of G on V iIs equivalent to

(i.e., has the same trace function as) p© := peo . Similarly, an
automorphism TlTo; : (g;); = (o;(g;)); of GxGx..xG is inner if and only if

PRPR..®p has the same trace function on GxGx..xG as
(pe01)®..®(pec,). The given representation p®™ of I' on V&1 is the
restriction to I' of the standard representaion of GL(V®N), which is
tautologically equivalent to its transform by Ad(A) for any A in

GL(V®N) Applying this both to our A which normalizes I' and to the
permutation it induces, we see that Ad(A) is the composite of a
permutation and of an inner automorphism of GxGx..xG, as above. QED

Lemma 1.8.5 Let r > 2, and pick r distinct integers nj,
2 21nq <no<..<ng.
For each 1, let G be one of the groups
SL(ni )

Sp(nj) if ny is even,
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SO(n;) if nj is odd = 7,
SO(3) if nj = 3 and no n; is 2,

S0(5) if n; = 5 and no nj is 4.

and denote by G the image of TIG; in ®Stdni. Then the normalizer of G
in GL(®stdni) is G, G.

proof For each i, let p; denote the standard representation Stdni of Gy. If

Gj is SL(nj ), an automorphism o; of G is inner if and only if (p;)°i is
equivalent to p;. For the other possibilities, every automorphism o of G;j
is inner. So in all cases an automorphism o; of G is inner if and only if
(p;)91i is equivalent to pj.

Suppose A in GL(®stdni) normalizes G. Denote by o the

automorphism Ad(A) : g— AgA_1 of G it induces, and by Lie(o) the
automorphism o induces of Lie(G) = TTLie(G;). Since the Lie(G;) are

pairwise nonisomorphic, Lie(o) = TTLie(o); where Lie(o); is an
automorphism of Lie(G;). Because Gj is either simply connected or
adjoint, any automorphism Lie(o); of its Lie algebra is of the form
Lie(o;) for some automorphism oj of G;. Therefore o is induced by the

automorphism o := TTo; of TTG;. The representation p := ®p; of TIG; Is

tautologically equivalent to p© (by the intertwining operator A), and

p 9 is equivalent to ®(p;)?i. Therefore ®p; is equivalent to ®(p;)°i.
Restricting both sides to the subgroup Gj of TTG; and comparing

characters, we see that p; is equivalent to (p;)?i. Therefore each chi is
inner, o = TToj is inner, and hence o = Ad(A) is inner. Since G acts

irreducibly on (®stdni), we find A € GG, as required. QED

Lemma 1.8.6 Let r > 2, and pick r distinct integers nj,
2 <nq<nop <. <Ny
For each 1, let G; be one of the groups
SL(ni )
Sp(nj) if ny is even,
SO(n;j) if nyis odd 2 7,
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S0(3) if n; = 3 and no nj is 2,
SO(5) if n;j

H and no nj is 4.

For each i=1, .. ,r, pick an integer mj > 1, denote by (G;)™i the m;j fold
product G;x..xG;, and denote by G the image of TT(G;)™i in

GL(®1(Stdni)®mi). Then the normalizer of G in GL(®1(Stdni)®mi) is the

semidirect product ((EmG)IXWiSmi,

where ﬁismi acts on ®i(stdni)®mi by

permuting the factors.

broof Since the Lie(G;) are pairwise nonisomorphic, any automorphism
of Lie(G) is of the form TTj(an auto. of Lie((G;)™i)). Now Gj being either
simply connected or adjoint, any automorphism of Lie((G;)™i) is
induced by an automorphism of (G;)™i. Exactly as above, any

automorphism of (G;)™i is the composition of a permutation of the

where o;

factors and of an automorphism of the form szl ..... m; 91, ij

i1s an automorphism of G;.

Suppose now that A in GL(®i(stdni)®mi) normalizes G. Modifying A

by the element of ﬁismi that Ad(A) induces on the factors of each

Lie((Gj)™i), we may suppose that there exist automorphisms T ] of Gj
such that the product automorphism Wi,J Oi, ] of Wi“j G; induces Ad(A)
on the Lie algebra. Denote by G; the universal covering of Gj, and by

gi’J the automorphism of Gi induced by o, j- Slnce ﬁi,JGi 1s connected,

TT

its Lie algebra. But Wij Gi 1s also the universal covering of G, so by

i ] 8i,j is the unique automorphism of TT Gi which induces Ad(A) on

uniqueness we conclude that Ad(A) acting on G induces Wij o: ; on its

1,J
universal covering. Therefore WiJ CNriJ stabilizes the two finite central

subgroups of Wij Gi corresponding to the two quotients Wij G; and G of

WiJ- Gi- Therefore the action of Tfjj gj,j on Wij G; is stable on the kernel
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of the canonical projection -|_|-in G; = G, and induces Ad(A) on G.

So 1f we denote by Pi,j the standard representation of Gj, then the

tensor product representation ®1J Pi, of Wij Gj 1s equivalent to

®i,j (pi’JOOi’J). Just as above, we infer that each S is inner. QED
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The basic set-up and the Main D.E. Theorem

We will apply the representation-theoretic results of the last
chapter to the calculation of some differential galois groups. Let us first
recall the basic setup (cf [Ka-DGG, 1.1]).
(2.1) Let K be a field of characteristic zero, and X be a smooth
geometrically connected separated K-scheme of finite type with X(K)
nonempty, and w a K-valued fibre functor on the category D.E.(X/K)
(for instance w="fibre at x" for any K-valued point x of X). We denote

by ﬂldiff(X/K,oo) the affine pro-algebraic K-group-scheme Aut®(w).
The fibre functor w defines an equivalence of ®-categories
D.E.(X/K) =  (fin-dim'l K-reps of 1{9f{(X/K,w)).
Given an object V in D.E(X/K), denote by <V> the full subcategory
of D.E.(X/K) whose objects are all subquotients of all finite direct sums
of the objects VENR(VY)®M all n,m > 0. The restriction to <V> of w is a

fibre functor on <V>. The K-group-scheme Aut®(w | <V>), denoted
Ggal(v’ w), is by definition the differential galois group of V; it is a

Zariski-closed subgroup of GL(w(V)). The restriction to <V> of the
functor w defines an equivalence of ®-categories
V> o= (fin-dim K-reps of Ggy41(V, w)).

If we view V as a representation py of nldiff(X/K,oo) on w(V), then

Ggal(\/, w) is none other than the image under py, of ﬁldiff(X/K,oo) in
GL(w(V)).

2.2 Torsors and Lifting Problems
(2.2.0) What about the interpretation of homomorphisms of

ﬂldiff(X/K,oo) to a linear algebraic group H over K other that GL(n)?
There is a "general nonsense” interpretation of homomorphisms

@ ﬁldiff(X, x) = H as (isomorphism classes of) triples (P, O, P, = H)
consisting of a right (etale) H-torsor P on X, an H-equivariant
integrable connection O on P as X-scheme, and a trivialization of P, as
right H-torsor. Let us briefly sketch this interpretation. Suppose we
begin with the homomorphism ¢ : ﬁldiff(X, x) = H. View H as a closed

subgroupscheme of some SL(N). Denote by A the coordinate ring of H,
and filter it as K-vector space by the finite dimensional subspaces

Ap = the functions on H which are the restrictions of polynomials of
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degree < n in the functions Xij (:= (i,j)'th matrix coefficient) on the
ambient SL(N). Then A, is stable by both the right and left translation
actions of H on its coordinate ring. Via the left action, and the given

homomorphism f : ﬁldiff(X, x) = H, we may view A, as a finite-

dimensional representation of ﬁldiff(X, x). By the main theorem of
Tannakien categories, this representation corresponds to a D.E. (A,,0)
on X together with an isomorphism wy(A,) = Ap,. The right action of H

on A, commutes with its left action, so it commutes with the left

action of ﬁldiff(X, x), and thus gives a horizontal right action of H on
Ay,. The multiplication maps A, ® A = Ap+m are both right and left

H-equivariant, so we get horizontal multiplication maps
An®uAy = Apryy Which are right H-equivariant. Thus if we define A

to be the direct limit of the A, (via the inclusions A, — A,
corresponding to Ay, = Ay, ), then P := Spec(A) is an affine X-scheme

endowed with a right action of H, an integrable connection O for which
this H-action is horizontal, and whose fibre over x is given as
Py := Spec(A) := H. [t remains to verify that P is in fact a right H-torsor

on Xg¢. Indeed, P is faithfully flat over X [each A} is a locally free Q-
module of finite rank, and the inclusions A, — A, being horizontal,
have cokernels which are Oy-locally free as well; taking n=0 and

passing to the limit over m, we see that Oy — A has Oy-flat cokernel,

so for any Oy-module T, the map T — ‘m®@X/A is injectivel. To show

that the map HxgP — PxyP , (h,p) = (p, ph) is an isomorphism of X-
schemes, it suffices that the corresponding map A@@XA - AQyA be

an isomorphism of Oy-modules. But this is a horizontal map of ind-

objects of the category D.E.(X/K), whose fibre over x is an isomorphism,
so 1t 1s an isomorphism. Thus P is a right H-torsor on Xquc , and as H is

smooth over K, P is consequently a right H-torsor on X 4 as well.

In the opposite direction, suppose we start with data
(P, O, Py = H). Let A denote the sheaf of Oy-algebras whose Spec is P.

Because P as right H-torsor is etale locally trivial, we see by descent
that there exists a unique filtration of A by locally free Oy-modules A,

of finite rank, which, after any etale E—= X such that Pp=HxiE,
corresponds to the filtration of AQrUfr by the A;®Of. The connection
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O on P is an integrable connection on A for which the multiplication
map and the right action of H are both horizontal. Looking at O after
etale localization, we see that the A, are horizontal. We are given an

isomorphism A(x) = A compatible with the right H-actions on both A
and A, so the tautological action of T[ldiff(X, x) on A respects both its
ring structure and the right H-torsor structure of Spec(A):=H. Therefore

the action of ﬁldiff(X, x) on A must be through left translations by

elements of H; this 1s the required homomorphism ¢ of ﬂldiff(X, x) to H.

[t is clear that these two constructions are mutually inverse.

(2.2.1) Let p : G = H be a finite etale homomorphism of linear
algebraic groups over K, whose kernel [' is a finite etale central
subgroup of G (e.g., SL(n) — PGL(n)). Suppose we are given a
homomorphism

@: mq (X, %) > H
of algebraic groups over K. We look for homomorphisms
¢ : (X, x) - G
with ¢ = chp, and we call such a ¢ a lift of ¢.

Proposition 2.2.2 The obstruction to the existence of a lifting of ¢ lies

in H2(Xet, ['), and (if a lifting exists) the indeterminacy in a lifting is

the group Hi(Xet, I).

proof This is best seen in terms of the associated torsors with
connection.

Using this interpretation, we argue as follows. Suppose we are
given a right G-torsor P on X. Denote by pP the right H-torsor on X
gotten from P by the change of structural group p:G—H. Given a right
G-equivariant ( resp. integrable) connection O on P, there is a natural
right H-equivariant ( resp. integrable) connection pO on pP. We claim
that the construction O = p0O is a bijection; in other words, right H-
equivariant ( resp. integrable) connections pP lift uniquely to P. [To see
this unicity of lifting, 1t suffices by etale descent to treat the case when
P is the trivial torsor GxgX on an affine X. Denote by A the coordinate

ring of G. Then a right G-equivariant connection on GxgX, i.e., on
A®rUOx, 1s a rule which to every K-linear derivation 9 of Oy to itself
assigns a K-linear derivation 0(9) of AQOx to itself which prolongs o
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and which is right G-equivariant; to give such 0O(9) it suffices to specify
the right G-equivariant derivation of A to the A-module AQy Uy given

by a = 0(9)(a®1), and this is none other than an element Dg(g) of
Lie(G)® Oy (where Lie(G) is viewed as the right G-equivariant K-linear
derivations of A to A). The mapping d — Doo) 1s Oy -linear, so all in all

our connection on P is an element w of Lie(G)®KQ1X/K. The induced
connection on pP = HxpX = Spec(BR®UOy) is 0 — O(9) restricted to the
subalgebra By Uy of AQUOy. Since A is finite etale over B, this

restriction is the same element w viewed In Lie(H)®KQ1X/K, when we

identify Lie(G)=Lie(H) by p. The connection is integrable if and only if
for any pair of commuting derivations 95, i1=1,2, of Oy the derivations

0(9;) of AQKUOy commute, or equivalently if their restrictions to
B®y Oy commute. ]

S0 the problem of lifting ¢ to a ch is that of lifting a given H-torsor
P (which happens to have an integrable connection) to a G-torsor P
(which will then have a unique connection which lifts the given one).
In terms of the short exact sequence on X, of algebraic groups/X

1 ->I'>G—=H-—>1,
the cohomology sequence

H1(X o, T) = HL(Xoy, G) = HL(X oy, H) = H2(X gy, T)
shows that the obstruction to lifting (the isomorphism class of) a given

H-torsor P is in H2(Xet, ['), and the indeterminacy in lifting it is in

H1(Xt, ). QED

Corollary 2.2.2.1 If K is algebraically closed and if X/K is an open
curve, then liftings exist.

(2.2.3) Suppose now that K is C. The exact tensor functor V — Vvan
from D.E.(X/C) to D.E(X2) = Rep( Wltop(xan’ x)) defines a

homomorphism t : ﬁltop - ﬁldiff from the topological 14 of the
complex manifold X2 to ﬁldiff(X, x). With respect to this

homomorphism v : ﬁltop - ﬂldiff, we have the following variant of

the lifting problem:
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Let ¢top 1= @1 be the restriction of ¢ to w4 1°P . We look for liftings
LNptOp of ¢top, i-e., for homomorphisms cNPtOp : mq tOP(XAN | ) - G with
Ptop = P(NPtop-N ~ ~

Of course, if ¢ is a lift of ¢, then (‘P)top = Qo is aNlift ofNLptOp. )
Proposition 2.2.4 When K = C, the construction ¢ + (‘P)top = (ol
defines a bijection {lifts of ¢} = {lifts of @tqp).

proof The analogous short exact sequence on X, of algebraic groups
1 ->I'>G—=H-—>1,
and 1ts cohomology sequence
Hl(xan’ 1") N Hl(xal’l’ G) N Hl(xal’l’ H) N H2(Xan, 1")
analyses the problem of lifting P2!; here the obstruction is in
H2(XaN T) and the indeterminacy in Hl(xan . By the comparison of
etale and classical cohomology with finite coefficients, we have
Hi(Xoq, ) = HI(X3N, T) for all i.
Therefore the liftings of the H-torsor P to a G-torsor P are equivalent
(by the functor P = (P)an) to the liftings of P21 to a G-torsor on Xamn,
When P2 has an integrable connection, its sheaf of germs of

horizontal sections (in its coordinate ring) is a principal H(C)-bundle on

XanN and this construction is an equivalence of categories

Xan with H-equivariant integrable connection} =

{right H-torsors on
=~ {principal right H(C)-bundles on X2aI}

Now look at the exact sequence on X2 of constant groups

1 - - G(C) - H(C) — 1.
The cohomology sequence here gives the obstruction and indeterminacy
for lifting corresponding principal H(C)-bundle to a principal G(C)-

bundle as again being the same elements in H2(xan T), and Hl(xan,
['). But this lifting problem is that of lifting the map Ptop- Thus we find

the asserted equivalences. QED

Corollary 2.2.4.1 Suppose that the topological fundamental group
ﬁltop(xan’ x) of X8 is a free group (e.g., X an open curve or an Artin

good neighborhood). Let p : G = H be a surjective homomorphism of
linear algebraic groups over €, whose kernel [ is a finite central

subgroup of G. Then any homomorphism @: ﬁldiff(X, x) = H of
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algebraic groups over C lifts to a homomorphism Zﬁ : ﬂldiff(X, x) = G
with ¢ = pq).

Remark 2.2.4.2 Here is a slightly more cohomological formulation.
Given a field K of characteristic zero, and a smooth X/K, we have the
"crystalline-etale site” of X/K, noted (X/K)crys—et- [ts objects are the

pairs (U/X, v: U=T) consisting of an etale X-scheme U/X and a closed
K-immersion v of U into a K-scheme T such that U is defined in T by a
nilpotent ideal of O7. The morphisms are the obvious commutative

diagrams, and a family of objects (U;/X, 1: U;—=T;) over (U/X, 1: U—>T)
i1s a covering if and only if the T; = T are an etale covering of T.

Given any smooth K-groupscheme G, we get a sheaf, still noted G,
on (X/K)crys—et by the rule (U/X, 1: U—>T) = G(T). It is essentially

tautological that a right G-torsor on (X/K)crys—et is the same as a right
G-torsor on X, ¢ endowed with a right G-equivariant integrable
connection. Now suppose that X(K) is nonempty. In view of the above

discussion, we see that the set H1((X/K) G) of isomorphism

crys-et:
classes of right G-torsors on (X/K)crys—et’ 1s none other than the

quotient set HomK_gpSCh(ﬁldiff(X, x), G) modulo the conjugation action

of G (this action because we have not specified the trivialization over x).
In other words, we have

HI((x/K) G) = Homy _gpsch(m19iH(X, ), G)/G,

crys-et:

so that ﬁldiff(X, x) is a kind of "fundamental group” of (X/K)crys—et'
The point 1s that if we have p: G = H as above with finite etale

central kernel I', then we can use the standard cohomological setup on

(X/K)crys—et to investigate our lifting problem. Consider the exact
sequence of sheaves on (X/K)crys—et
1—->1—->G—-H->1,

which gives rise to an exact sequence of cohomology
HL((X/K) ) = HLUX/K)epys-ot, G =

= HU(X/K)pys-ets H) = HA((X/K)pys o, T).
By its very construction the site (X/K)crys—et maps to (both the
crys: and to) the etale site X,;. The Cech-

Alexander calculation (cf. [Gro-CDR, 5.5], [Bert, V, 1.2]) of the
cohomology shows that for any etale (resp. and commutative) K-
groupscheme [' , the canonical maps

crys-et:

usual crystalline site (X/K)
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H{((X/K) cpys-ets T) = HI(Xgy, T)

are isomorphisms for i=0,1 (resp. for all i). On the other hand for the
smooth groups G and H, the canonical maps

HL(X/K)crys-et, G (resp. H)) = HL(Xqy, G (resp. H))

correspond to the map "forget the connection”. Thus we find once again
that the obstruction and indeterminacy in our lifting problem lie in

H2(Xot, I') and H1(X 44,

obstruction and the indeterminacy in the lifting problem for the
underlying "naked” torsors without connection.

[') respectively, and are the same as the

2.3 Relation to Transcendence

We now turn to a brief discussion of the relation between the
differential galois group of a D.E. and the transcendence properties of its
power series solutions. This material is "well-known", indeed it was a
large part of the basic motivation for the classical differential galois
theory, but it does not seem to be written down anywhere in the
Tannakian context (however cf. [De-CT, 9] for a Tannakian proof of the
general existence of Picard-Vessiot extensions).

Proposition 2.3.1 Let V be a D.E. on X/K, G := Ggal(\/, x) its differential

galois group, v € V,,, and v o€ V& (Oy )" be the corresponding

X’
horizontal section. Suppose that K i1s algebraically closed. The the
transcendence degree over K(X) of the coefficients (with repect to any
K(X)-basis of V®@XK(X)) of v is the K-dimension of (the closure in Vi
of) the G-orbit Gv.

proof Inside VY, the annihilator of v is a horizontal submodule W, so it
corresponds to a G-stable subspace Wy, of (V)Y which lies in the
annihilator of v. Being G-stable, W, must annihilate the entire G-orbit

of v, so Wy is contained in the annihilator 5, of Gv; this 5, is a G-stable

subspace of (V)Y so it corresponds to a sub-D.E. S of VY. Since S is
horizontal, and 5y annihilates v, 5 annihilates v.Thus S C W, and as
W, C 54 we have 5 = W. Therefore the K-dimension of the space 5, of
K-linear forms on V, which annihilate Gv is the same as the Oy-rank

of W, i.e., the same as the K(X)-dimension of the space W®@XK(X) of
K(X)-linear forms on V®@XK(X) which annihilate v.

Applying this equality of dimensions to the situation
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GBJShSymmJ(V) € @anSymmJ(V)X, for all n, we obtain equality of the

corresponding Hilbert polynomials, whence the asserted equality of
dimensions. QED

Corollary 2.3.1.1 Suppose K algebraically closed. The transcendence

degree over K(X) of the (rank(V))2 matrix coefficients of any
fundamental solution matrix at x is the dimension of Ggal'

proof Simply apply the above result to the internal hom D.E.

W = Hom(V,QrOyx, V), whose fibre W, is End(V,) with G acting by
right translation. Fundamental solution matrices at x are precisely
those horizontal w's in WR(Oy )" whose value w at x lies in GL(V).

Since G acts freely on GL(V), the orbit dimension is dimG. QED

Remark 2.3.2 Here is a slightly more precise version of the above
numerical result. Consider the right G-torsor P on X corresponding to

the homomorphism ﬁidiff(X, x) = G which "classifies” the D.E. V. An a

priori description of it is this. Consider the subcategory <V> of D.E.(X/K).
On it we have two obvious Oy-valued fiber functors, namely

Wy : W P W, Qr0y,

wiq : W = W as Oy-module.
[t is essentially tautological that P is the right G-torsor
[som®’<V>(ooX, w;iq). The horizontal sections of P over (GX,X)A are

precisely the set (actually a right G(K) torsor) S of those fundamental
solution matrices w which have the following property: for every
"construction of linear algebra” Constr(V), and every sub-D.E. W of
Constr(V), the induced horizontal section Constr(w) of
Isom(Constr(V),®r 0y, Constr(V)) maps W, ®r U0y to W. We claim that

if G(K) is Zariski dense in G (e.g., if K is algebraically closed), then this
set S Is Zariski dense in P. Indeed, this is more general nonsense:
Suppose that G(K) is Zariski dense in G. Then for any right G-torsor
P on X with right G-equivariant integrable connection, the set (actually
a right G(K) torsor) S of its horizontal sections over (Oy )" is Zariski
dense in P. [proof: the annihilator ideal I of S in A is horizontal, the
union of the D.E's INA,, so determined by its fibre at x. But at x it
annihilates all the K-rational points G(K) of G = Py, and as these are

Zariski dense I = 0.]
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Corollary 2.3.2.1 Suppose K is algebraically closed. The algebraic group
G acts transitively on Vy - {0} if and only if for every nonzero v € Vg,

the corresponding horizontal section v has its n=rank(V) coefficients
algebraically independent over K(X).

proof If G acts transitively, then for each nonzero v, the orbit Gv is n-
dimensional. Conversely, let v=0. If Gv 1s n-dimensional, then Gv must
be all of V,, - {0}, simply because Gv is constructible. QED

2.4 Behavior of Ggal under Specialization

Let K be a field of characteristic zero, t an indeterminate, R the
ring K[[t]], X/R a smooth separated R-scheme of finite type with
geometrically connected fibres, and x€ X(R). Suppose we are given a
locally free Oy-module V of finite rank n together with an integrable

connection 0 :V — V®@XQ1X/R relative to the base R. Let us denote

by n: R = K((t)) the inclusion (generic point of Spec(R)), and by
s: R = K the specialization map t— 0 (special point of Spec(R)). Via these
extensions of scalars, we obtain D.E.'s V(n) on Xn/K((t)) and V(s) on

Xs/K, and rational points xy, € Xn(K((t))) and x¢ € X (K). Thus we can
speak of the differential galois groups Ggal(\/(n), Xn) C GL(V(n)Xn) and
Ggal(\/(s), xg) C GL(V(S)XS)

Specialization Theorem 2.4.1 (Ofer Gabber) Let G/R be the closed R-
flat subgroupscheme of GL(V) = GL(n)/R obtained as the schematic

closure of Ggal(\/(n), Xn), and let Gg denote its special fibre. Then there is
natural inclusion Ggal(\/(s), xg) C Gg (inside GL(V(s)y ) = GL(n)/K).
s

proof Denote by A the coordinate ring of GL(V), by Ay C A the R-
submodule of those functions which are the restrictions of polynomials

of degree < d in the n? matrix coefficients Xij and the function

1/det(¥X; J)’ and by I;; C Ay the ideal defining Ggal(V(ﬂ), Xﬂ) in GL(V(n)).
Then the schematic closure G of Ggal(\/(n), Xn) in GL(VX) is defined by
the ideal InﬂA. Since A 1s noetherian, this ideal is generated by InﬂAd

for sufficiently large d.
For each d, there is a natural "construction of linear algebra”
Ag = Constry(V) whose pullback (Ag )y, by the section x is Ag. Since the

intersection Inm(Ad)n is tautologically G, .1(V(n), Xn)—stable, it makes

gal
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sense to speak of the horizontal submodule Mg of A4(n) whose Xn—fibre
is Inm(Ad)n' Let T4 denote the intersection MyNA4 inside Ag(n). Then
Mg 1s visibly horizontal, R-flat, and Oy-coherent. Hence it is Oy-locally
free, as results from

Lemma 2.4.2 Let X/R as above. Let (Jll, O) be an Uy-coherent module
I together with an integrable connection O: N — m@QXle/R
relative to the base R. Then

(1) M is Gx-locally free if (and only if) it is R-flat.

(2) If there exists a section x€X(R), then I is Oy-locally free if (and
only if) it M, := x*IN is R-flat.

proof of Lemma The "only if" is trivial, since X/R is flat. Because Il is
Oy-coherent and is endowed with an integrable connection, it is

automatically locally free on Xﬂ' Suppose that T is R-flat. To prove (1),
it suffices to show that Il is locally free over the local ring Oy D of X at

every closed point p of the special fibre. Since finite extensions of K are
harmless, we may assume that p is K-rational. By faithful flatness of
the completion, it suffices to treat the formal case, where X is the spec
of Rllx4, ..., xull. But for any noetherian Q-algebra R, the functor

"horizontal sections”, N +— IMH defines an equivalence of categories
{coherent Rl[xq, .., xll-modules with integrable connection over R} =

= {coherent R-modules},
whose inverse functor is
M = Mllxq, .., xqll with the trivial connection 1®d.

From this explicit description of the inverse, it is obvious that for R
local we have

M is R-flat & MU is R-flat & MU is R-free &N is Rllxq, .., xpll-free.

Supose that there exists a section x€X(R), and denote by p the
point xs. Working at p as above, we see from the explicit description

that MU is R-isomorphic to x*I. So if x*I is R-flat, then T is R-flat
in a neighborhood of p in X. But the locus of non R-flatness of I is the
support of Ker( Left(t): N — T); but this is a coherent st—module

with integrable connection, i.e., a D.E. on X /K, so it is @XS—locally free;

as it vanishes near p, it must be zero. QED
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By the definition of Jlq C Ay, the quotient A4/ 4 is R-flat.
Therefore it too is Oy-locally free; in other words, Jll4 is locally a
direct factor of A4. Pulling back by the section x, we find that (T 4)
is a direct factor of (Aq)y. = Ag. As the generic fibre of (T 4)y is
Inﬂ(Ad)n, we conclude that (T g), is InmAd

Now consider the special fibre G4 of G. It is defined by the ideal
(InmA)s of Ag. Since [ NA Is the union of the [yNAg, and each [[NAy Is
a direct factor of Ay, we see that (InmA)s is the union of the (InmAd)s-
But (IyNAg)g is the xg-fibre of (TMy4)(s). Since Ty is a locally direct
factor of Agq, (M 4)(s) is a sub-D.E. of (A4)(s), and therefore its x -fibre
(InmAd)s is a Ggal(\/(s), xg)-stable subspace of (Ad)XS = (Ag)s. Therefore

the entire ideal (InmA)s of Ag is Ggal(\/(s), xg)-stable. As this ideal kills
the identity element in GL(n), it kills all of Ggal(\/(s), %s). This means
precisely that Ggal(\/(s), xs) C Gg. QED

Corollary 2.4.3.1 Hypotheses and notations as in the specialization
theorem 2.4.1 above, we have the inequality of dimensions
dimK(Ggal(V(S), Xg)) < dimK((t))(Ggal(V(ﬂ), Xﬂ))‘

By successive specialization, we find
Corollary 2.4.3.2 Let K be a field of characteristic zero, R a smooth
geometrically connected affine K-algebra or a power series ring in
finitely many variables over K, X/R a smooth separated R-scheme of
finite type with geometrically connected fibres, and x<X(R). Suppose
given a locally free Oy-module V of finite rank n with an integrable

connection 0 :V — V®@XQ1X/R relative to R. Let n be the generic

point of Spec(R), and s any closed point of Spec(R). Then we have the
inequality of dimensions
dimK(S)(Ggal(V(S), Xg)) < dimK(n)(Ggal(V(n), Xn)).

Remark 2.4.4 Although the differential galois group Ggal "decreases
under specialization”, it is not true that Ggal i1s algebraically
constructible in a family. Consider for example over the ground ring
R:=C[t] the scheme X:=(Gy,)p = Spec(RIx, X_j‘]), on X the rank one Uy-
module Oy with the connection (relative to R) given by oO(D)(f) = D(f) +
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tf, where D is xd/dx. For any irrational value of t, Ggal 1s Gy, while if t

1s a rational number in lowest terms a/b, then Ggal s Hp.

2.5 Specialization of Morphisms

Let K be a field of characteristic zero, R a discrete valuation ring
with residue field K, uniformizing parameter 1, and fraction field L.
Denote by n: R = L the inclusion (generic point of Spec(R)), and by
s: R = R/mR = K the specialization map (special point of Spec(R)).Let
X/R be a smooth separated R-scheme of finite type with geometrically
connected fibres. Given a locally free Oy-module V of finite rank n

together with an integrable connection O :V — V®@XQ1X/R relative
to the base R, we obtain D.E.'s V(1) on Xﬂ/L and V(s) on X/K by

restriction to the two fibres of X/R.

Proposition 2.5.1 On X/R as above, let V and W be two locally free
Oyw-modules of finite rank together with integrable connections relative

to the base R. If HomD_E_(Xn/L)(V(n), W(n)) is nonzero, then
HomD_E_(XS/K)(V(S), W(s)) is nonzero.

proof Suppose that ¢: V(n) — W(n) is a nonzero horizontal morphism.
Since V and W are locally free of finite rank, Horn6 (V, W) is a torsion
X

(V(n), W(n)). So
n
multiplying ¢ by a suitable power of 1, we may suppose that (V) ¢ W
and @(V) ¢ mW. This "new" ¢ is still nonzero and horizontal (1 is a
"constant”) on Xﬂ/L‘ Therefore ¢ is horizontal as a map V - W on X/R

free R-module and Hom . (V, W)[1/1t] = Hom
X

§ Oy

(because the obstruction to its horizontality lies in the torsion free R-

module Hom@X(V, W®®XQ1X/R)) . Its special fibre ¢4 is therefore a

horizontal map V(s) = W(s) on X /K, which by construction is nonzero.

QED

One variant of this gives a sort of "Brauer theory™:
Variant 2.5.2 (0. Gabber) On X/R as above, let V and W be two locally
free Oy-modules of finite rank together with integrable connections

relative to the base R. Denote by V(s)®% and by W(s)®® the
semisimplifications of V(s) and of W(s) respectively in the category
D.E.(X /K). If there exists an isomorphism V(n) = W(n) as D.E.'s on Xﬂ/L’

then there exists an isomorphism V(s)3° = W(s)%% as D.E's on X /K.
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proof Let ¢: V(n) = W(n) and ¢: W(n) = V(n) be inverse isomorphisms.
View V (resp. W) as an Uy-submodule of V(n) (resp. W(n)). Then for n >

0, tle(V) ¢ W, and t'¢(W) Cc V. Now identify V(n) to W(n) by means
of ¢ and §; V and W then appear as horizontal Oy-submodules of their

common generic fibre V(n) = W(n) with

(mMV ¢ W, (t)W ¢ V.
For each pair of integers (a,b), let us denote

M(a,b) := @V + TPW, an Oy -submodule of V(n) = W(n).
This M(a,b) is Oy -coherent (a quotient of VW), horizontal, and R-flat
(being a submodule of V(n) = W(n)), so by 2.4.2 M(a,b) is Ox-locally free.

Its generic fibre M(a,b)(n) is V(n) = W(n). Clearly we have
V = M(0,n), W = M(n,0).

So it suffices to show that the isomorphism class of M(a,b)(s)%% is
independent of (a,b). For this it suffices to compare (a,b) to both (a+1,b)
and to (a,b+1). By symmetry, it suffices to compare (a,b) to, say,
(a+1,b). We have

nmM(a+1, b) € tM(a,b) = M(a+1, b+1) € M(a+1,b) C M(a,b) .
Thus we are reduced to treating universally the case in which

mW Cc tV C W C V.

In this case we have short exact sequences of DE.'s on X /K

0 - W/ntV = V/nV - V/W -0,
0 »nV/TW - W/TtTW - W/tV — 0,
Pn
V/W
which show that V(s) := V/mV has the same semisimplification as

W(s) := W/ntW, namely (W/mtV)sS & (V/W)3S. QED

In the case of several parameters, we have only the weaker
Theorem 2.5.3 (Specialization of (Iso)morphisms) Let K be a field
of characteristic zero, R a smooth geometrically connected affine K-
algebra or a power series ring in finitely many variables over K, X/R a
smooth separated R-scheme of finite type with geometrically connected
fibres. Suppose given locally free Oy-modules V and W of finite rank

with integrable connections relative to R. Let n be the generic point of
Spec(R), and s any closed point of Spec(R). Then
(1) If HomD_E_(Xn/K(n))(V(n), W(n)) is nonzero, then

HomD.E.(XS/K(s))(V(S), W(s)) is nonzero.
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(2)If there exists an isomorphism V(n) = W(n) as D.E.'s on Xn/K(n), and
if at least one of V(s) or W(s) is irreducible as D.E. on X /K, then there

exists an isomorphism V(s) = W(s) as D.E.'s on X /K(s).

proof Assertion (1) is immediate from the Proposition above by
successive specialization. For (2), notice that if V(n) = W(n) then V and
W have the same rank, and hence V(s) and W(s) have the same rank.
So if either V(s) or W(s) is irreducible as D.E., any nonzero map between
them as D.E.'s is an isomorphism. QED

For the rest of this chapter we will take K = € unless there is
explicit mention to the contrary.

2.6 Direct Sums and Tensor Products

Proposition 2.6.1 (Goursat-Kolchin-Ribet, [Koll, [Ri]) Suppose that Vq,
.. Vparen 2 2 DE's on X/C, w a C-valued fibre functor on D.E.(X/C).
Suppose that for each 1, V; has rank n; > 2, and that its differential

galois group Gj := (Vi, w) € GL(n;) has GiO,der one of the groups

Ggal
SL(n;j), any n; = 2,
Sp(n;), any even n; = 4,
SO(nj), nj = 7 or any n; = 9,
S0(3), if n;
SO(5), if nj = 5 and no nj 4,
S0(6), if nj = 6 and no nj 4,
Go C SO(7), if n; = 7,
Spin(7) C S0O(8) if n; = 8, and no nj= 7.
Suppose that for all i#j, and all rank one D.E.'s L. on X, there exist no

isomorphism from V; to either L®VJ or to L®(VJ'V). Then the

3 and no n; 2,

differential galois group G of ®V; has gO.der - WGiO’der, and

(consequently) that of ®V; has GO.der = the image of WGiO’der in
®Stdni.

proof This is an immediate application of 1.8.2, taking G := Ggal(@\/i, w)

and p; := the action of G on w(Vj), since we have eliminated S0(8), the
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nonsimple SO(4), the nonsemisimple SO(2), and the repetitions of
iIsomorphism classes of simple Lie algebras A1=B4, Bo=Cy, Az=Dz. QED

2.7 A Basic Trichotomy

We say that V is irreducible on X if it is irreducible as an object
of D.E(X/C). This is equivalent to saying that w(V) is an irreducible
representation of Ggal(v’ w), or equivalently that it is an irreducible

representation of Ttldiff(X/(]Z,w).

In analogy with the case of ¢-adic sheaves (cf [Ka-MG, Part I]), we
say that V is Lie-irreducible if w(V) is an irreducible representation
of the identity component (Ggal(\/, w))O of Ggal(\/, w). In view of [Ka-
DGG,1.2.5.4 and 1.4.4], V is Lie-irreducible if and only if for every
connected finite etale covering m:Y —= X, the inverse image n>*(V) on Y is

irreducible on Y. Clearly V 1is Lie-irreducible if and only if its restriction
to some, or to every, finite etale connected covering is Lie-irreducible.

Rigidity Lemma 2.7.1 Suppose that V and W are Lie-irreducible D.E.'s
on X/C, and that m: Y — X is a finite etale connected galois covering on

which m*V = t*W. Then there exists a rank one D.E. L. on X with w*L

trivial and an isomorphism W = VL on X.
proof Denote by G the ﬁldiff of X, and by H that of Y. Then H is a

normal subgroup of G, and V and W are two representations of G whose
restrictions to H are both irreducible and isomorphic to each other. But
whenever H is a normal subgroup of G, two representations V and W of
G whose restrictions to H are both isomorphic and irreducible differ by

the character Hompy(V, W) of G/H, i.e.,, V®Homy(V, W) = W.  qgp

We say that V is induced if there exists a connected finite etale
covering m:Y = X of degree d>2 and an object W in D.E(Y/C) such that V
=~ 1, (W); equivalently(cf [Ka-DGG, 1.4.6, 1.4.7], V is induced if and only

if the representation w(V) of Ggal(\/, w) is induced from a
representation of an open subgroup H of Ggal(\/, w) of finite index dx2.
Proposition 2.7.2 (compare Prop. 1 of [Ka-MG]) Suppose that the

topological fundamental group of the complex manifold X@ is a free
group (e.g.,X an open curve). Then for any irreducible object V in
D.E.(X/C), either V is induced, or V is Lie-irreducible, or there exists a
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divisor d>2 of the rank n of V,and a factorization of V as a tensor
product V = WQ®K where W is Lie-irreducible of rank n/d, and where K
1s an irreducible of rank d which becomes trivial on a finite etale
covering of X. In this last case, the pair (W, K) is unique up to replacing

it by ( WL, KL ) with £ of rank-one and of finite order (il.e., £
corresponds to a character of finite order of ﬁldiff(X/(E,oo)).

proof Let us denote by G the differential galois group G, ~1(V, w), and

gal

by GO its identity component. Because GO is a normal subgroup of G, we
have the customary dichotomy: an irreducible representation M of G is

either isotypical when restricted to Go, or M is induced from a
representation of a proper subgroup H of G which contains GO, Apply

this to M=w(V): if either M is irreducible on GO, or if M is induced,
there is nothing further to prove.

The troublesome case is that in which the restriction of M to G is
isotypical but not irreducible, say M = d copies of an irreducible

representation M of GO with d > 2. In terms of differential equations,

this means there exists a connected finite etale galois covering of X, say
m:Y = X with galois group H,such that on Y

m>*(V) = d>2 copies of a Lie-irreducible W on Y.
By Jordan-Holder theory, the isomorphism class of W must be H-
invariant (in the sense that for every h in H, there exists an

isomorphism of h*W with W). We now apply the following
Lemma 2.7.3 Suppose that the topological fundamental group of the

complex manifold X8 is a free group (e.g.,X an open curve). Let m:Y =X

be a connected finite etale galois covering of X with galois group H, and
W an irreducible object of D.E.(Y/C) whose isomorphism class is H-
invariant. Then there exists a connected finite etale covering p:Z—>Y
P T

Z =Y - X
such that Z is finite etale galois over X and such that p*(W) on Z
descends to an object W on X. Moreover, W is Lie irreducible on X if W
i1s Lie-irreducible on Y.
proof of Lemma For each h in H, choose an isomorphism

A(h):W = h*W. For each g in H, the pullback g*(A(h)) is an
isomorphism from g*W to g*h*W. If A(hg) were equal to g*(A(h))-A(g)

for all pairs (g,h) of elements of H, we could interpret our choice of
A(h)'s as descent data for W relative to the covering m, and our W
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would descend to X. At worst there exists a C* factor a(h,g) with

a(h,g) =(A(hg))™1 g*(A(h))eAlg),
simply because the right hand side is an automorphism of the

irreducible object W. This a(h,g) is a two-cocycle on H with values in C*
(with trivial H-action). If its cohomology class were trivial, say a(h,g) =

b(hg)/b(h)b(g) for some C*-valued function b on H, then h = b(h)A(h)
1s descent data, and W descends to X.

Because H2(H, C*) is killed by N :=Card(H), the Kummer sequence
shows that every element of H2(H, C*) is in the image of H2(H, K (C)).

So we may correct the choice of the A(h)'s by scalar factors so that
a(h,g) lies in P (C).

Because the topological fundamental group mq of Xaml

1s free, any
subgroup F of 1 is also free. So for any finite abelian coefficient group
A (e.g., uN(C)) with trivial action of mq, and any normal subgroup F of

finite index in 14, the Hochschild-Serre spectral sequence
E,ab = Ha(my/F, H2(F, A)) = Ha2*P(1rq, A)

has E,aP = 0 for b=0,1. Any element of HL(F, A) dies when restricted to

a smaller normal F of finite index, so the direct limit over all nhormal
F's of finite index of these spectral sequences has Eza,b=0 for b=0. Thus

H*(mq, A) = lim H*(H, A).

finite quotients H of us
For any 122, we have Hi(’l'[j_, A) = 0, so in particular the direct limit

lim HZ2(H, A) must vanish.

finite quotients H of Ty

Therefore any given element in H2(H, M (C)) dies in H2(H, i (C))
for some larger finite quotient H of 1. The covering Z of X defined by

such an H sits in a diagram
P T
Z = Y - X
When we pull back W from Y to Z , and denote by h—h the canonical
projection of H onto H,the dying means precisely that the choice of
isomorphisms on Z
A(h) 1= p*(A(h)) : p*W = h*p*W = p*h*W

can be corrected by invertible scalars to give descent data on p*W for



Chapter2-D.E.'s and D-Modules-18

the covering Z — X. Finally, if W is Lie-irreducible on Y, then p*W is

Lie-irreducible on Z, so any descent W of p*W to X is itself Lie-
irreducible. QED

We now return to the proof of 2.7.2. Applying the lemma to W on
Y,we see that at the expense of enlarging the covering group H, there
exists a Lie-irreducible W on X and a connected finite etale galois
covering 1m:Y = X with galois group H such that on Y

m*V= d copies of m*W.
Denote by Hom(W, V) the subobject of the internal hom object

Hom(W, V) on X obtained by descending through m the Oy-span of the

global horizontal sections of the internal hom Hom(m>*W, nm*V)

( = m*Hom(W, V)) on Y. [Because W and V are each irreducible on X,
their internal hom Hom(W, V) is completely reducible on X (being a
representation of the reductive group Ggal(WEBV, w)), and so

m*Hom(W, V) is completely reducible on Y. We are descending its
trivial isotypical component.] We have a canonical morphism of D.E.'s
on X

WQ®Hom(W, V) =V, (w, @)= ¢(w)

which becomes an isomorphism on Y, so must already be an
isomorphism on X.

This is the desired factorization of V as WQ®K, with W Lie-
irreducible of rank n/d and K of rank d becoming trivial on a finite
etale covering of X (K must be irreducible because W®K is). To see its
essential uniqueness, suppose that W, ®K 1 were another. Pulling back

to a sufficiently small connected finite etale galois covering Z of X, V
becomes isomorphic to d copies of the Lie-irreducible W, and to dq

copies of the Lie-irreducible W4. By Jordan-Holder theory, we must
have d = dq, and the two Lie-irreducible representations W and W4 of
ﬂldiff(X/(E,oo) become isomorphic irreducibles on the open normal
subgroup ﬂldiff(Z/(E,oo). Therefore W and W4 are projectively
equivalent as representations of ﬂldiff(X/(E,oo), and hence Wq = WQUL

for some character of T[ldiff(X/(E,oo)) which is trivial on ﬂldiff(Z/(E,oo).

QED
Remarks 2.7.3 (1) The two non-Lie-irreducible cases of the Proposition
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are not mutually exclusive. Indeed, if W is Lie-irreducible, and if K 1s
an irreducible which is induced from a KO on a connected finite etale

m:¥Y = X such that Kq itself becomes trivial on a finite etale covering of

Y, then W®K is also the induction m (n*(W)®Kgq). Of course this is a

reflection of the fact that already for a finite group G with a normal
subgroup H, the "dichotomy" for irreducibles of G to be either induced or
H-isotypical is not a true dichotomy; for H = {e}, every representation is
H-1sotypical.

(2) One could also give a proof of this proposition which is analogous to
the proof of Prop. 1 of [Ka-MG], by using the fact (2.2.4.1) that when the

topological 14 is a free group, any projective representation of ﬁldiff

can be linearized.

Corollary 2.7.4 (compare [Ka-MG], Cor.3) Suppose that X is an open
curve, and that V is an irreducible object of D.E.(X/C). Suppose that the
rank of V is a prime p. If det(V) is of finite order, then V is either Lie-
irreducible or induced or it becomes trivial on a finite etale covering.
proof Indeed if V is neither induced nor Lie-irreducible, it is a tensor
product WQ®K of a Lie-irreducible W of rank one and of an irreducible K
of rank p which becomes trivial on a finite etale covering. So

det(V)=WO®P®det(K), with det(K) of finite order. So if det(V) is of finite
order, W is of finite order, whence V = WK is trivial on a finite etale
covering. QED

Corollary 2.7.5 Suppose that X is an open curve, with complete
nonsingular model X, and that V is an irreducible object of D.E(X/C). At

each point at infinity eo; € X - X, let the slopes of V, written in lowest

terms, be the rational numbers ai,j/bi,j , with multiplicities ni,jbi,j-
Suppose that gcd; J(all n; J) = 1. Then V is either induced or V is Lie-
irreducible.

proof If V is neither induced nor Lie-irreducible, then for some integer
d>2 we have a factorization of V as WK, where K is a rank d object
which becomes trivial on a finite etale covering of X. Such a K is
entirely of slope zero at any e; ( cf [Ka-DGG, 2.6.2]). Therefore the slopes

with multiplicity of V at eo; are the slopes with multiplicity of W at eoj,

repeated d times. In particular, d divides every nj i QED

Remark 2.7.6 This slope criterion for "induced or Lie-irreducible” is
very easy to verify when it applies. The problem comes after, in
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deciding which of the two cases one is in. Only on G where "induced”

m:
1s necessarily "Kummer induced”, does one know a manageable
sufficient conditions that a D.E. V not be induced (namely that there
exist no integer dz2 such that both V | I and V | I, are induced from

the unique subgroups of index d in Iy and I, respectively). Ignoring

this problem for a moment, we state a quite general result.
2.8 The Main D.E. Theorem

Main D.E. Theorem 2.8.1 Suppose that X is an open curve, with
complete nonsingular model X, and that V is a Lie-irreducible object of
D.E.(X/C) of rank n. Suppose that at some point at infinity e ¢ X - X,
the highest slope of V, written a/b in lowest terms, is > 0 and occurs
with multiplicity b. Let G € GL(w(V)) denote the differential galois

group of V, GO its identity component, and GO.der the commutator

subgroup of GO. Then GO is equal either to GO.der or to (EmGO’der, and

the list of possible GO-der is given by:
(1) If b is odd, G9:der is SL(w(V)); if b=1, then G is GL(w(V)).
(2) If b is even, then either G%:der is SL(w(v)) or SO(w(v)) or (if n is
even) SP(w(v)), or b=6, n=7,8 or 9, and G9:der is one of
n=7/: the image of Go in 1ts 7-dim'l irreducible representation
n=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

n=9: the image of SL(3)xSL(3) in std®std.

proof Since V is irreducible, GO is reductive; its connhected center

70 = (2(G9))0 is a torus, its derived group GO0.deT is semisimple, and

GO = 70g0.der pecause V is Lie-irreducible, GO acts irreducibly on w(V),
and therefore its center Z := Z(GO) acts as scalars. Since w(V) is a
faithful representation of GO, it follows that Z and a fortiori Z0 are
contained in the scalars. Since 20 is a torus, either 70 is trivial or it is

GO — ZOGO,del’ GO,del"

Gy - Because acts irreducibly on w(V), already

acts irreducibly on it. Therefore 9:=Lie(Go’der) 1s a semisimple Lie-
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subalgebra of End(w(V)) which acts irreducibly on w(V). By its very
construction, ¢ is normalized by any subgroup K of G.

We now use the slope hypothesis that at some point at infinity oo
the highest slope is a/b in lowest terms and its multiplicity is b to
construct a diagonal subgroup K of G, to which we will then apply
Gabber's "torus trick” Theorem O.

As a representation of I, V is the direct sum

V. = Va/p ® V¢ 4/p = (slope a/b, rank b) @ (all slopes < a/b).
In order to describe the representation V, /, of I, explicitly, fix a

uniformizing parameter 1/x at oo. This identifies the eo-adic completion
of the function field of X with the Laurent series field K:=C((1/x)). Fix a
b'th root t of x, and denote by Ky, the Laurent series field C((1/t)). In

this setting, 1., is the local differential galois group I(K/C), and I(K}/C)

is its unique closed subgroup of index b (cf [Ka-DGG, 2.6.3]). The
representation Vg, of I(K/C) is irreducible [Ka-DGG, 2.5.9.2], so it is the

direct image from Ky of a rank-one D.E. of the form (K, td/dt + P,(1)),
where P(t) is a polynomial in t of degree a (cf [Ka-DGG, proof of 2.6.6]).
Therefore after pullback to Ky we have
Va/b®Kp = Srepy (Ky, td/dt + P (¢ct))
V. p®Ky = all slopes < a.

At the expense of scaling the parameter 1/x, we may assume that
P,(t) is monic, say t@ + f (1), with f, (1) a polynomial of degree strictly
less than a. As D.E. on Ky, we have

(Ky, td/dt + P (¢t)) = (Kp, td/dt + (¢1)2) (K, td/dt + f (ct)).
We will now analyse V as representation of the upper numbering
subgroup (I(Kb/(ﬁ))(a) of I(Kp/C). Because (K}, td/dt + f, (¢t)) has slope
< a, it is trivial as a character of (I(Kb/(ﬁ))(a). Therefore V as
representation of the upper numbering subgroup (I(Kb/(ﬁ))(a) of I(Ky/C)
1s given by

VI UK /O) @) =@y (Kp, td/dt + £3t2)@(trivial of rank n-b).

Because gcd(a, b) = 1, as ¢ runs over Up(C) the ¢@'s are just a
permutalon of the ¢'s, so we may rewrite this as

VI UKp/O) @) =@y, (Kp, td/dt + £13) @ (trivial of rank n-b).

For each € in € we denote by
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X g := the character of (I(Kb/(ﬁ))(a) given by (Ky,td/dt + £t9).
The key observation is that for £, v in C we have
XeXy = Xe+w
X is trivial on (I(K},/€)(@) iff £=0.
Let
K := the image of (I(Ky,/€))(@) in G.

Then K is a diagonal subgroup of G, and the diagonal entries of K are the
n characters
the b characters X as ¢ runs over le((E),

n-b repetitions of the trivial character X .

We now apply the "torus trick” 1.0 to K. If b=n, we must find all
relations of the form

Xoc/XE; = X){/XS on K, where «, p, ¥, 8 lie in le((E),

or equlivalently all relations of the form

Rel(b = n)(C) o -p=Y-38, where o, B, v, 8§ lie in }.Lb((E).

If b < n, then we must find all relations of the form

Rel(b < n)(C) o« -p=Y-38 where o, p, ¥, 8§ lie in ub((li) U{0}.

Lemma 2.8.2 If «, B, ¥, 6 are complex numbers of absolute value one
which satisfy o« - p = ¥ - §, then we are in one of the following three
cases:
(1) x= p and Y=
(2) = Y and p=
(3) x=-8 and p=-Y.
proof Here is a geometric argument. Suppose that we are not in case
(1). Then the line segment ox—p is an oriented chord of the unit circle,
and Y— 0 is a parallel oriented chord of the same circle having the same
length. So either the two chords coincide (this is case (2)) or they are
symmetric with respect to the unique diameter to which they are both
parallel (this is case (3)).QED
Corollary 2.8.2.1 If «, B, ¥, & in Wp(C) satisfy o« - p = ¥ - §, then

o
o

either

(1) = p and Y= 6
or (2) x= Y and p= 8
or b is even and (3) x=-8 and p=-Y.

Lemma 2.8.3 If «, p, ¥ are complex numbers of absolute value one
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which satisfy a-p=Y, then o«/p is a primitive sixth root of unity, and

Y/ is (o/p)2. -
proof Applying complex conjugation, o«-p=Y. Since «, B, Y are on the
unit circle, we can rewrite this as o1 - E;“i = y‘l. Then

(o-p)od - p71)=yy=1=1,
which simplifies to (a/p) + (ac/p)™1 = 1, ie. to (a/p)? - (/) + 1 = O,
Therefore o/p is a primitive sixth root of unity, and y/p = («/p) -1 is
equal to (ot/p)2. QED
Corollary 2.8.3.1 If o, p, ¥ in HL(C) satisfy o-p==2Yy, then 6 divides b,

o/p is a primitive sixth root of unity, and £Y/p is (oc/B)2.

Using these two corollaries, we can compute explicitly the torus
T which Theorem 1.0 assures us lies in 9.

If b=n, then the torus T is obviously contained in the set 3y, of all

diagonal matrices (Xg) of trace zero whose entries are indexed by the
b'th roots of unity in C. The relations defining T in 3} are
X = XB = Xy - Xg whenever o, B, ¥, § ¢ ML(C) and o« - p = ¥ - 6.

By 2.8.2.1, these relations are of three types:
(1) X = X = Xy - Xy for all oy

or (2) Xoc_XE; = X
or if b is even (3) Xoc_XE; = X‘ﬁ - X _y for all o,p.

Of these, only type (3) relations impose any conditions, and these are
if biseven, Xy +X _y = Xﬁ + X B for all «,p.

- XB for all a,p

Since the trace is zero on Ay, the common value of X, + X _, can only

be zero, and so type (3) relations are equivlent to
if bis even, X, + X _4 = 0 for all «.

Case(b=n, b odd) T is all of 3}; thus T contains Diag(n-1, -1,..,-1),
whence § is AL(w(V)) by Theorem 1.1.

Case (b=n, b even) 7 consists of those elements of Ay, whose entries
satisfy X + X _¢ = 0 for every ¢ in M, (C). In particular, T contains

Diag(1,-1,0,..,0), and so § is BL(w(V)) or 3G(w(V)) or 3P(w(V)) by
Theorem 1.2.
If b <n, T is obviously contained in the set 3} , of all diagonal
matrices of trace zero of the form
(XC'S indexed by ¢ in ub((E),XO repeated n-b times).

[Use the observation that in applying the torus trick, whenever two of
the characters X; and Xj of K are equal, then the corresponding entries
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X; and Xj are equal, simply because Xi/xj = X;/%ion K; apply this to
the n-b trivial characters of K to see that "their” entry X is repeated

n-b times.]
The relations defining 7 in Z’b,n are

Xy ~ XB = XY - Xg

whenever o, B, ¥, & in Wp(C)U{0} and o« - B = ¥ -8.
To analyse these relations, it is best to distinguish cases according to
how many of «, B, ¥, 6 are nonzero. When all four are nonzero, we are
in the (b=n) case above; we get conditions on T only for b even, in

which case the relations imposed are
(if b even) X * Xy = XB + X B for all o,p in Wy, (C).

If exactly one of o, p, ¥, & is zero, say Y or 8§, we get relations
Koo ™ Xﬁ - XY - Xg if o,B,¥ in H(C) have x-p=Y,
X

By 2.8.3.1, such relations exist only if 6|b, in which case «/p is a

&
- Xﬁ = Xg - Xg if o,p,8 in pp(C) have o-p=-8.

primitive sixth root of unity and y/p (resp. -8/p) is (oe/p)2.
If exactly two of &, B, ¥, § vanish, we get either a trivial relation

XO( - XO( = XO - XO if o in le((]:)
or, for b even, the nontrivial relation
(if b even) Xog = Xg = Xg - X _y if o in pp(C)
which we rewrite as
(if b even) Xo T X g = 2Xg if o in pp(C).
Since the trace vanishes on Z’n,b’ we see that in fact
(if b even) Xog * X g = 0= Xg if o in gp(C).

[f exactly three of «, B, ¥, 8 vanish, there are no relations, and if all
four vanish there is only the trivial relation Xg - Xg= X - Xj.

Case (b < n, b odd) T is all of 3}, ,;; T contains Diag(n-1,-1,..,-1), and

so @ is AL(w(V)) by Theorem 1.1.

Case (b < n, b even not divisible by 6) T consists of those elements
of 3 , whose entries satisfy Xg = 0, and XKe+ X _pg =0 forevery ¢in
M, (C). In particular, T contains Diag(1,-1,0,..,0), and so 4 is 3L(w(V))
or 30(w(V)) or (if n is even) 3P(w(V)) by Theorem 1.2.

Case(b < n, 6 divides b) In this case, it is most convenient to choose
coset representatives «'s for W, (C) modulo pg(C), and a primitive sixth

root of unity ¢. Then T consists of those elements of 3} ;, which satisfy

Xp=0, and, for each coset representative «, the relations
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Xeo = Xop + Xegp2 = 0,
Xo + X =0,

Xee + Xoge = 0,

X o £2+X_ o £2=0.

In this case, the set of elements of T with Xa=0 whenever &6;&1 s a Gy

torus. So by Theorem 1.3, either G is 3L (w(V)) or 30(w(V)) or (if n is
even) AP (w(V)), or nis 7,8,or 9 (and so b =6, since 6|b and b < n) and §
is one of the exceptional cases of Theorem 1.3. This concludes the proof
of the Main D.E. Theorem 2.8.1, except for the fact that if b=1, then G is
GL(w(V)). But in this case, the highest slope a/b > 0, which occurs with
multiplicity b=1, is the slope of det(V), so det(V) is necessarily of infinite
order. QED

2.9 Generalities on D-modules on curves

We now turn to the explicit examination of some D.E.'s on Al and
on open sets of Al. Recall (cf. [Ka-DGG, 1.2.5]) that the differential galois
group of a D.E. on Al is always connected, so any irreducible V in

DE.(A1/C) is automatically Lie-irreducible. In general, the theory of D-
modules provides us with reasonable sufficient conditions for the

irreducibility of D.E.'s on open sets of Al (though not for their Lie-
irreducibility; this seems a much more difficult problem).

[t will be convenient first to recall some of the basic facts about
D-modules on open curves. Thus let X/C be a nonempty smooth
connected affine curve with coordinate ring O = Oy. For simplicity of

exposition we assume that the invertible O-module Derg(0, O) is O-
free, and we pick an O-basis 9 of it . [For example, if X is an open set of
Al = Spec(C[x]), then d/dx is such a basis; if X is an open set of Gy,
then xd/dx is such a basis; if X is an open set of an elliptic curve E :
y2=f3(x), then yd/dx is such a basis.]

We denote by D = Dy the ring G[d] of all differential operators on

X. The adjoint L™ of an element L = Zfiai of D is defined by
L* =2 (—é)ifi. The map L—L* is a ring isomorphism of D to the opposite

ring DOPP whose "square” is the identity.
Attached to an operator L in D is the left D-module D/DL; it is
holonomic so long as L=0. Attached to any point o in X(C) is the "delta-
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module supported at o, the holonomic left D-module 8, :=D/DI,,
where [, CO is the ideal of functions which vanish at o.

Recall that if M is any holonomic left D-module, then its intrinsic
dual MY is the right D-module EthleftD—mod(m"D)’ where the right

D-module structure is via the right structure of the second argument.
If M is D/DL, its intrinsic dual is D/LD (calculate the ext using the
resolution Right(L):D— D of J). Formation of this intrinsic dual is an
exact equivalence of categories from the category of holonomic left D-
modules to that of holonomic right D-modules; it is involutive in the

sense that its inverse is ‘ﬂl—)ExtlrightD_mod(‘ﬂ,D).

Recall how one passes from right D-modules back to left ones, by
using the O-invertible right D-module oo:=Q1X/(E. In terms of the
chosen 9, w is H/ID. For any two right H-modules Ry and Ry, the O-
module Hom@g(Rq, R9y) carries a canonical structure of left D-module
for which (9¢)(rq) = @(rq9) - (9(rq))9; applying this with Ry = w and a
variable R=Ry, we obtain a left D-module Rjgft:=Hom@g(w,R). If R is

D/LD, then Rygsy is H/DL™. Another way of describing the functor
R Rjoft Is to view right D-modules R as left D°PP-modules, and then

to use the adjoint isomorphism L—L* to identify D to DOPP,
If we apply the construction R—Rjgt to TY we obtain a left D-

module TN*:= (Y )]o¢, called the adjoint of JN. Formation of this

adjoint is a contravariant involution of the category of holonomic left
D-modules, which commutes with Zariski (indeed, with etale)

localization on X. If M is D/DL, its adjoint N> is D/DL*. The delta
module 6, is its own adjoint.

For purposes of later globalization, it is important to keep in mind

that the notion of the adjoint N *of a holonomic left HD-module T is an
intrinsic one which does not depend on the auxiliary choice of 0,

namely it is Il—Homg(w, Extlb(m,D)). On the other hand, the notion

of the adjoint L™ of an operator L in O does depend on the choice of 9;

only the associated D-module D/DL* = (D/DL)* is intrinsic.
Suppose that U 1s a nonempty open set of X, j;U—X the inclusion.

There is a natural inverse image functor j* from JD-modules on X to

those on U, namely M—>Dy® pIl := j*IN, via the canonical inclusion of
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rings D— Dyj.There is a natural direct image functor j, from left D-
modules on U to those on X, which is right adjoint to j*: given V on U,
JxV is the D-module on X obtained by using the canonical inclusion of
rings D— Dy to view the Dyy-module V as a H-module. By Bernstein's
theorem ([Berl], [Bor]), if V is holonomic on U then j.V is holonomic on
X. The restriction of j,V to U is just V again. However, there is a

"better” prolongation of a holonomic V on U to a holonomic on X, the
"middle extension” jl*(V). [t is defined as follows. On U, form the adjoint

V* of V and take its direct image j.(V™); its adjoint (j.(V*))* is called
JitV). This ji(V) is also a prolongation of V (because formation of the
adjoint commutes with Zariski localization), so adjunction applied to
the resulting isomorphism j*j!(V) = V gives a canonical map

JiIV)=j«V, whose image is defined to be j, (V).

More generally, for any holonomic J1 on X whose restriction to U
is V, from j*Tl=V,we get by adjunction 1= j, V. If 11 =Ty is any map

of such prolongations of V which is the identity over U, then by
functoriality of the adjunction map the commutative diagram

J*¥Nq1—= %Ny gives the commutative diagram  Jl1—=Tlo.
NS N
\Y% Jx V.
For example, if we take for Jl the module j,V, the adjunction map is
the identity. For the prolongation jiV of V, the adjunction map is the
canonical map ji(V)—j.V above. Therefore if we have any prolongation
Nl of V which sits in jjV—=Tl—j,V then the adjunction maps sit in
JIVoIl- .V
can ™ l v =
JxV,
and the rightmost arrow down is the identity, while the first one is the
canonical map ji(V)— j, V. In other words, to identify the middle
extension ,i.e.,the image of ji(V)—j,V, we have only to find an Jl which
extends V and which is simultaneously a quotient of ji(V) and a
subobject of j, V. Using this, we can easily prove

Lemma 2.9.1 (characterization of middle extensions) Given a
holonomic left D-module Il on X, a nonempty open set U of X and
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j;U—=X the inclusion, then T = jl*(j*m) by an isomorphism which is
the identity on U if and only if Il satisfies
Hom p(T, 6,) =0 = Hom (84, M) for every o in X-U,
or equivalently (by duality), if and only if I satisfies
Hom (T, 6,) =0 = Hom (>, §,) for every o in X-U.
or equivalently (by duality), if and only if I satisfies

Hom p(6,, M) =0 = Hom (8, ‘JTL*) for every o in X-U.

proof.We denote j*Il by V. Notice that j,V has no nonzero O-torsion

outside of U, while any §-module consists entirely of O-torsion. Thus we
obviously have HomD(Sa,j*(V))=O for any o in X-U. Applying this to

V>, we see that Hom (8, j*(V*))=O for any o in X-U, so by duality
Hom 1(j,(V),8,)=0 for any o in X-U. Since jl*(V) is both a subobject of
j*(V) and a quotient of j (V), we have

Hom (8 (V)) =0 = HomD(jl*(V), 6) for any o inX-U.

o iy

Now suppose we are given any holonomic J1 on X whose
restriction to U is V, and which satisfies the two conditions

Hom (85, N1) =0 = Hom (6, TL*) for every o in X-U.

We claim that Tl is necessarilyjl*(\/). From the given isomorphism

J¥*N—=V we get by adjunction a map 1= j,.V. This map is injective
(because being an isomorphism on U its kernel can only be a successive
extension of 6-modules supported in X-U, but in view of 0 =
Hom (8 ,,71) for o« in X-U, Jl contains no 8-modules supported in X-U).
Similarly, the adjoint 71* restricts to V*, and the natural map of

adjunction N*— j, (V>) is injective (its kernel is punctual; now use the

vanishing of Hom p(8,,717) for « in X-U). So by duality Jl is a quotient
of ji(V), as well as a subobject of j4 V. As explained above, this

completes the proof.QED

Corollary 2.9.1.1 If the holonomic left D-module T on X lies in
D.E(X/C), then for any nonempty open set jU—=X, Tl = jl*(j*m).

proof For Il in D.E.(X/C), viewed as coherent locally free O-module
with integrable connection, the adjoint M > is also in D.E.(X/C), being
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the dual U-module with the dual connection. [To see this, we may
Zariski localize and suppose Il is O-free of rank n, with connection

matrix A € Mu(0), so M = DN/DN(o - A), whence EthleftD—mod(m’D)
is DN/(d - A)DN, and so M* is DN/DN(-9 - Al)] Therefore both M and

MM are torsion-free O-modules, so Hom p(8,, M) =0 = Hom (8, ‘.m*)
for every o in X-U. QED

Corollary 2.9.1.2 Given a nonempty open set j;U—X, formation of the
middle extension jl* commutes with formation of the adjoint.

proof Indeed, given a holonomic left D-module V on U, its middle
extension I satisfies Hom pn(8,, ) =0 = Hom (8, ‘.m*) for every « in

X-U; as this condition is symmetric in M and N>, we see from the

characterization of middle extensions that M* = JI*(j*(m*)). But

J¥(M>) is canonically (j*(M))* = V>, whence M* = jl*(V*). QED

Corollary 2.9.1.3 Given a nonempty open set j;U—>X, and 1,71
holonomic on U, the restriction map defines an isomorphism of Hom
groups

Hom 5 10q on x(dix I, i) = Homyp_ g on o(TN, TU).
proof The quotient j,J1/ji4Tl is punctual with support in X - U, so we

have Homy_ g on xCils I, JixTV) = Homyp_ g o0 (01T, jT) = (by

adjunction) = Homy_ 4 on 007 Jix TN, V) = Homy_ 4 o o(TN, T1). QED

Lemma 2.9.2 Let o in X(C), and j : X-{x} — X the inclusion. Suppose
that L is a nonzero element of D. The following conditions are
equivalent:

(1) the natural map

D/DL = j,(j*(D/DL))
1s an isomorphism.
(2) L™ operates bijectively on the delta-module & .

proof The question is Zariski local around o« in X, so by shrinking down
we may assume that the ideal defining o« in X is principal, with

generator denoted x. By definition we have j,(j*(D/DL)) = (D/DLI1/x],

so (1) is equivalent to the statement that the operator Left(x): A xA is
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bijective on D/DL.

To say that Left(x) is injective on D/DL is to say that if a,b in D
satisfy xa=bL in D, then there exists ¢ in D such that a=cL; if this c
exists, then xcL=bL in D, so b=xc. Read backwards, this is precisely the
condition that Right(L):A—= AL is injective on D/xD.

To say that Left(x) is surjective on D/DL is to say that for any a
in D there exist b and c in D such that a=xb+cL in D. This is precisely
the condition that Right(L) is surjective on D/xdD.

Therefore Left(x) is bijective on D/DL if and only if Right(L) is

bijective on O/xD. Passing from right modules to left, this is in turn
the same as saying that Left(L™) is bijective on D/Dx := &,. Thus (1)
and (2) are equivalent.QED

Lemma 2.9.3 Let o in X(C), and j : X-{x} = X the inclusion. Suppose
that L is a nonzero element of D. The following conditions are
equivalent:

(1) the natural map

§i(j*(D/DL) - D/DL

Is an isomorphism.
(2) L operates bijectively on the delta-module & .

proof The map (1) is the dual of the map (1) of the preceding Lemma
with L replaced by L*.QED

Lemma 2.9.4 Let o in X(C),and j : X-{a} = X the inclusion. Choose a
formal uniformizing parameter x at «, i.e., an isomorphism Cl[x]] =
(O O()A. Let L be a nonzero element of D of degree n > 0 in 9, which

satisfies the following condition (x):
(%) viewed in Cl[x]]®gd = Cllx]lld/dx], L lies in the subring Cl[x]llxd/dx],

say

L = 2, xIP(xd/dx),
where the {P;(t)};sg are a sequence of polynomials in C[t] of degree < n.
Then the following conditions are equivalent:

(1) L and L™ both operate injectively on &.

(2) L and L™ both operate bijectively on &.

(3) The "indicial polynomial” Pg(t) has no zeroes in Z.

(4) D/DL = j4j*(D/DL).
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(5) ji(j*(D/DL)) = D/DL = j.(j*(D/DL)).

proof We have already seen that (1)&(4) and that (2)<(5), and
(2)=(1) is trivial. So it remains to show, under the hypothesis (%) made
on L, that (1)=(2)e(3). Let us denote by I the ideal which defines « in

X. L acts on Oyx_{}) = U, I"™ Intrinsically, the hypothesis (%) is that L,

acting on 6X—{o¢}’ maps every power I of I to itself. Thus for every

neZ, L induces a C-linear endomorphism gr,, (L) of the one-dimensional

C-space IN/10*1 This endomorphism gr,(L) is none other than
multiplication by Pg(n).

This shows both that (%) is independent of the choice of formal
parameter x, and that, when it holds, the condition (3) is also
independent of this choice. This allows us to choose the formal
parameter x in a convenient way. We will adopt its choice to the
derivation 0 used in the explicit definition of the adjoint,by requiring
that d(x)=1. [This is clearly possible, since for any initial choice of
formal parameter x, d is f(x)d/dx for some unit f(x) in C[[x]]. The

required parameter is then foxdt/f(t).] With this choice of x, the
adjoint of xd/dx =xd is -dx=-1-xd = -1-xd/dx, and so the formal
expansion of the adjoint L™ is

L* = 3., Pi(-1-xd/dx)x! = 2., x1Pj(-1-i-xd/dx).
Thus L™ also satisfies (%), and its indicial polynomial is Pp(-1-1).

Now consider the delta-module &, :=D/DI; it is isomorphic to
C((x))/Cl[x]], by the D-linear map 1~ 1/x. By the hypothesis (%), each

of the finite-dimensional subspaces F_,, 1= x "'Cl[x]l/Cllx]], n>1, is stable

by L (resp. L™); as & is their union, we see that L (resp. L™) is injective

on 64 if and only if it is injective on each F_, . Since F_,, is finite-
dimensional, L (resp. L™) is injective on F_,, if and only if it bijective on

F_,. Thus if L (resp. L™) is injective on &, it is bijective on each F SO

o -n-

sur jective on 6, and hence bijective on 6,. Thus (1)=(2).

[t remains to see that (2)e(3). Since L (resp. L™) is stable on each

F and induces multiplication by Pg(-n) (resp. Pg(-1+4n)) on F_,,/F1_4,

-n:

we see that L (resp. L*) is bijective on F_, if and only if Pg(-t) (resp.
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Po(-1+t)) has no zeroes in {1,2,..,n}. Thus L and L™ are both bijective on
6 if and only if Pg(t) has no zeroes in Z. QED

Remark 2.9.4.1 The proof as given shows that one has the slightly
more precise

Lemma 2.9.5 Hypotheses and notations as above, the following four
conditions are equivalent:

(1) L™ (resp. L) operates injectively on 8.

(2) L™ (resp. L) operates bijectively on 8.
(3) The "indicial polynomial” Pg(t) has no zeroes in Z.g (resp. in Z, ).

(4) ji(j*(D/DL)) = D/DL (resp. D/DL = j(j*(D/DL)).

Corollary 2.9.5.1 Let j: G, — Al the inclusion, @ := d/dx, D := xo.
Then
(a) j1j%0 = D/Dxd = D/DD.

(b) jxJ*0 = D/Dox = H/D(D + 1).
proof On G,,, both D/DD and H/DH(D + 1) are isomorphic to j*0 =

Clx, x~11, by the D-linear maps 1 = 1 and 1 — 1/x respectively. So (a)
and (b) result from the above lemma's (3) & (4), applied to the
operators D and D + 1 respectively. QED

(2.9.6) One knows that in the category of holonomic left D-modules,
every object is of finite length, and that the irreducibles are of two
kinds:

(1)for each o in X(C), the delta-module & is irreducible.

(2)for each nonempty open U in X, with j;U—=X the inclusion, and each
irreducible object V in D.E(U/C), jix(V) is irreducible.

Recall that for an object V of D.E.(U/C), any subobject N of V as
holonomic (or even as O-quasicoherent) JD-module is itself an object of
D.E.(U/C), simply because D.E.(U/C) is precisely the category of O-
coherent D-modules. This means that for an object V of D.E(U/C), the
notions of "irreducible as D.E." and of "irreducible as holonomic D-
module” coincide. Recall also that if an object V in D.E.(U/C) is
irreducible, then its restriction to any nonempty open set U' of U
remains irreducible in D.E.(U'/C) ("birational invariance of the
differential galois group, cf [Ka-CAT, 4.2]).
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Therefore, given an irreducible Jll on X which is not a delta-
module, then for any nonempty open j:U—=X such that j*7 lies in
D.E.(U/C), j*M is irreducible in D.E(U/C) and T is ji(j* M),

Thus we find
Corollary 2.9.6.1 Let Tl be holonomic left D-module on X whose
support is not punctual. Then Il is irreducible if and only if there exists
a nonempty open j:U—X such that

J*M is an irreducible object in D.E(U/C) and Tl= ji,j* 7.

Moreover, if this condition holds for some U, then it holds for any U
such that M|U is in D.E.(U/C).

Corollary 2.9.6.2 Let f, g € O, with f=0. The first order operator L :=
fo + g has D/DL an irreducible D-module on X if and only if the
following conditions hold:

(1) at every simple zero « of f, the ratio g(«)/(9f)(a) is not in Z.

(2) at every multiple zero o of f, g(o)=0.

proof On the open set U where f is invertible, we have a rank one D.E,,
which is automatically irreducible. We must show that D/DL is a
middle extension from U. At a zero o« of f, choose a formal parameter x
with dx=1. Formally at o, d is d/dx and so the operator L is f(x)d/dx +
g(x) = ((0f)(x) + higher terms)xd/dx + g(x). Therefore 2.9.4 applies. The
indicial polynomial at « is Pg(t) = (9f)(c)t + g(ax), so the conditions (1)

and (2) just amount to requiring Pg(t) to have no roots in Z. QED

Lemma 2.9.7 (Pochammer) Let o« € X(C), U:= X-{x} jJU — X the
inclusion. Choose a formal parameter x at «, l.e., an isomorphism

Cllx]l = (O O()A. Let L:=Zl‘iai be a nonzero element of O of degree n > 1
in 9, whose leading coefficient f,; has a simple zero at «, and is
invertible on U:= X-{«}. Let M:=D/DL. Then

(1) j*M and j*IM™* each lie in D.E(U/C), and as D.E. on U each has a
regular singular point at .
(2) if the formal parameter x is convergent, i.e., if x € @Xan,o(, every

solution of Lg=0 ( resp. of L*9=0) in C((x)) is convergent in a punctured
(classical) neighborhood of 0 in C.

(3) the equations Le=0 and L*¢=0 have the same number > n-1 of C-
linearly independent solutions in C((x)), i.e.,

dimgHom p(T, €C((x))) = dimgHom p(M™, C((x))) = n-1.
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Moreover, at least one of Jl or MN™ has dimgHom (M, Cl[x]]) = n-1.
(4) If M = ji(j*TM), eg., if M is irreducible, then every solution of Lg=0

(resp. of L¥*¢=0) in C((x)) lies in C[[x]], and
dimgHom (T, C((x))) = dimgHom p(I*, C((x))) = n-1,

l.e., local monodromy around o« 1s a pseudoreflection.

proof Notice first that the hypothesis on L is also satisfied by L*; its

leading coefficient is (-1)! f,|. Because f,, is invertible on U:=X - {a},

both j*I and j*M™ lie in D.E.(U/C), and as D.E.'s on U both visibly
(Fuch's criterion) have a regular singular point at «. This proves (1),

and (1)=1(2). Let us denote X3 - {«} by U, and denote by £ and £*
the dual local systems on U of germs of holomorphic solutions of L. and

L* respectively. Because j*I and j*IM ™ both have a regular
singularity at o, their spaces of C((x))-valued solutions are the
invariants of "local monodromy around «" in these dual local systems.
Looking at the Jordan normal form of local monodromy around « on
L, we see that it and its contragredient have equal-dimensional spaces
of invariants. This proves the "equal dimension" part of (3).

To prove the rest of (3), we argue as follows. The dimensions in

question depend on what happens over (GX’O()A = Cl[x]] and over Oy _

{O(}®(®X’O()Az C((x)). Therefore we may and will choose the formal

parameter x so that d is d/dx. Then in C[[x]l[9], we can multiply L by a
unit u(x) in C[[x]] so that it is of the form

u(x)L = xo' + lower terms in 9, coef's in C[[x]],

= %3N + (g+ higher terms in x )an~1 + 3 aJ, fJ-E(E[[X]].

J<n-1 fj
One readily computes that (-1 u(x)L* is of the form

AN + (n-p + higher terms in x)oN~1 + 2 aJ, gJE(E[[x]].

<n-1 gj
Let us admit for a moment
(x) if p is not in Z_g, then dimgHom (T, Cllx]l) = n-1.

Then we may complete the proof as follows. At the expense of
interchanging L and L™ we may suppose that p is not in Z.g. Then by
(%) we trivially have dimgHom p(7ll, C((x))) = n-1. This proves (3).

Finally, if N = ji(M), then Hom p(TM, 8,)=Hom p(M™, &§,)=0, so (4)
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follows from (%) and (3) by applying the functors Hom (I, ?) and

Hom (™, ?) to the short exact sequence of D-modules
0 — Cllx]] » Cl(x)) » &, — O.
[t remains to prove (x). Now Hom (T, Cllx]]) is precisely the
kernel of L on C[[x]]. Because Cl[x]] is an integral domain, this kernel is

the same for L and for (x"1u(x))L. This operator is readily seen to lie
in the subring Cl[x]l[xd/dx] of Cl[x]l[d/dx], and its expansion (cf 2.9.4)

(x"Iu())L = 3, x1Pi(xd/dx)
has Pg(T) = T(T - 1)(T - 2)...(T - (n-2))(T - (n-1-p)), as one sees using
the identity

xK(d/dx)K =(xd/dx)(xd/dx - 1)(xd/dx - 2)....(xd/dx -(k-1)).
Therefore

(xn~1u(x)L acts stably on each ideal of C[[x]l, and, because (n-1-p) is
not in Z, -1, it acts bijectively on (x~1)C[[x]]. The snake lemma for
the short exact sequence
0 = (x""Dellxll - clix)] - clxll/(x""Delx]] - 0

then shows that (x"~1u(x))L has isomorphic kernels on C[[x]] and on
Clix]l/(x"~ellx]l. But

(xn=1u(x))L = (x""1)( an endomorphism of C[[x]])
so it kills Cl[x]1/(x"~1)Cl[x]]. This concludes the proof of (x). QED
Remark 2.9.7.1 The indicial polynomial of x""1u(x)L at o has roots

0,1,2,..,n-2, and n-1-p, while that of xN~14u(x)L* has roots 0,1,2,..n-2,
and p-1. So if either p is a noninteger or if g lies in {1,2,..,n-1}, then M

= Jix(M). [For then both xN~1u(x)L and x"1u(x)L* act bijectively on
)

j!*(m), then the determinant of the pseudoreflection which is its local

o> and hence L and L* are injective on 80(.] In any case, if Il =

monodromy at o is exp(2mip).

Proposition 2.9.8 Let o« € X(C), U:= X-{x} j;U — X the inclusion.
Choose a formal parameter x at «, l.e., an isomorphism

Cllx]l = (Oy O()A. Given a holonomic Tl on U, denote by Soln, the
finite-dimensional C-vector space Soln, := Hom (71, (@X’O()A[l/x]) =

Hom (T, €C((x))) = Hom p(TM & gC((x)), C((x))) of its formal meromorphic

solutions at «. Consider the tautological short exact sequence on X
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The quotient j, T /jix N is the punctual D-module

Jx T /jieM = &, ® cHom(Soln C).

[0 4]

proof The question is Zariski local on X around «, and independent of
the choice of the uniformizing parameter x. 5o we may and will
assume that x is a function on X with a simple zero at « and no other
zeroes. Admit for a moment the following assertion (x):

(%) Hom p(jx N, (Oy o) ) = 0 = Extlp(§, M, (Oyx o) 7).
In the short exact sequence

the quotient jy T /jix TN is holonomic and supported in «, so

necessarily of the form 6, & ¢V for some finite-dimensional C-space V.

Apply the functor Hom p( 7, (@X’O()A) and look at the long exact

cohomology sequence for this exact sequence. In virue of (%), the
coboundary induces an isomorphism

Hom p(ix M, (Oyx o)) = Exttp(je M/je M, (Oyx ;)7)

Q

Extlpn(8,®¢V, (Oy o))
~ Homg(V, O®¢Ext! p(8,, (Oy o))

The same consideration with I replaced by the trivial D-module O
shows that EthD(Sa’ (O O()A) is canonically C. Therefore

Hom p(jix M, (Ox o)) = Homg(V, ©).
From the short exact sequence

0 = (Oy o) = (Oy o) [1/x] > 65 = 0
and the vanishing of Hom p(ji«I,8,) we obtain

Hom p(jix M, (Ox o)) = Homp(inM, (Oyx o) [1/x),

(by adjunction) ~Hom (T, (Oy O()A[l/x]) = Soln.
Thus we find Soln, = Homg(V, C), as required.
[t remains to prove the assertion (%). The vanishing of
Hom p(j, N, (GX,OC)A) is obvious, for already Hom@g(ju N, (@X’O()A)=O,

simply because every element of the source j, Tl is infintely x-divisible,
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while no nonzero element of (Oy O()A =~ C[[x]] is infinitely x-divisible.

To prove the vanishing of Extlb(j*ﬁm, (GX’O()A), we will use the

unique x-divisibility of j, Il to show that any such extension splits (the
splitting is unique if it exists, because Hom p(j, N, (GX’O()A) = 0). Thus
suppose we have any short exact sequence of D-modules
0- Oy o) = ATL5B -0

in which B is a D[1/x]-module. Denote by C C A the intersection
c.= M n > 0 XA Clearly Cis a D-submodule of A (as a(x"™A) C xn~1p
for n = 1), and C N (Ox o) = 0 (for if fe(Oy o) lies in x"A, say
f=x"a, then O=m(f) =x"mn(a) in B, so m(a)=0, so ac(Oy O()A, and so we
find fex™(Oy O()A). To split 1, it suffices to show that m maps C onto B.
(For t|C : C = B is automatically injective, as C N (CJ”X,O()A =0.)

Given an element p of B, choose for each n > 0 an element o,€A

which lifts x™'p. For each n > 0, let f,| 1= o - xxp41. Then n(f,)=0,s0

n
an(GX,oc)A- The series 2,5 x!'f,, converges in (@X’O()A, say to F. Now
define new liftings y,,€A of the x™"p by V¥, 1= oy, - F. With this choice,

the differences cyy := ¥, - x¥p4q1 are ¢y = fi, - (1-x)F, so 259 xMcy = 0.

For each nx0, define C€(0y O()A to be Cpy := 2i50 XiCi+n. Then

vo- ¥y = Tiion ¥l = Ziaper ¥lg = xMleg,,

and so Yg = Xn+1(}fn+1 -Cp+1) lies in x0*1A for every n = 0, and hence

Yo € Cis a lifting of p to C. QED

This Proposition leads immediately to the following D-module
complement to Deligne's Euler-Poincare formula [De-ED,II, 6.21], which
was suggested to me by Ofer Gabber. Recall that for a holonomic D-
module Jl on X, we define

X(X, M) = X(H*pR(X, M) = Z(-DldimgHpR(X, M).

Corollary 2.9.8.1 Let j: U — X be the inclusion of a nonempty open
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set. Let JIl be a holonomic D-module on U. For each a€X-U, denote by
Soln, the finite-dimensional C-vector space of formal meromorphic

solutions of Tl at «. Then

XX, JixT) = x(U, M) + 2, .y dimgSolng,.
proof Because Tl is O-quasicoherent, Hpr(U, M) = Hprp(X, j4T), and so
X (U, M) = X(X, j«IN). The short exact sequence on X

0 = JixIl =M = G, 751, — 0

has

Jx I Zjix M = & vy 654®cHom(Soln, , C),
SO

X (X, Jike ) X (X, JuT) = 2y dimg(Soln )X (X, 84).
But %X (X, 84) = -1 (the map d/dx : C((x))/Cllx]] = C((x))/Cllx]] is visibly

injective with one-dimensional cokernel). QED

(2.9_.8.2) Denote by X the complete nonsingulat model of X. For each x
in X, denote by Irr (M) the irregularity (sum of the slopes with

multiplicity) of Tl at x. Deligne's formula asserts that if I is a D.E. on
X, i.e., if MM is O-locally free of finite rank, then
X (X, M) = rankg(M)X(X) - 2 5 y [rr(TN),

where Y (X) := 2-2g(X) - Card(X - X) is the topological Euler
characteristic of X. Combining this with the above corollary, we obtain

Theorem 2.9.9 (Deligne, Gabber) Let j: U — X be the inclusion of a
nonempty open set, X the complete nonsingular model of X. Suppose T
is a D.E. on U. For each o€ X-U define integers

dropy = rank(Jl) - dimgSolng,

totdropy := Irr o (7) + drop,.
These integers are nonnegative, and
X (X, jixTM) = rankg(M)x(X) - 2 g Irr (M) - > _ . totdropg,.

proof That drop, 2 0 is the fact that a rank n D.E. on C((x)) has a

solution space of dimension at most n. The irregularity is by definition
nonnegative. The X -formula is a trivial concatenation of the previous
corollary with Deligne's formula for X (U, J). QED

Lemma 2.9.10 Let « in X(C), U = X - {}, j;U—>X the inclusion, M a
D.E. on U of rank r 2 1. Then the following conditions are equivalent:
(1) jixIN is a D.E. on X.
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(2) totdrop, = 0.
(3) dropy = O.

proof Pick a formal parameter x at «. The quantities totdrop, and
drop, depend only on M®@gC((x)). If Tl := ji T is a D.E. on X, then

N®gCllx]l is spanned by its horizontal sections, so 1 ® gCllxll= (ClUxID'.
As N = j*7, M gC((x)) = (C((x)))', so obviously (1)=(2)=(3).

If dropy = 0, then M®gC((x)) = (C((x))'. It suffices to extend TN
to a D.E. 7l on X, i.e, to a HD-module Tl on X which is a locally free O-
module of rank r (for then ji T = ji.j*Tl = 71 by 2.9.1.1). Now O-

locally free extensions of Jll as O-module to X are in bijective
correspondence with Cl[x]]-lattices in N ® gC((x)), and the corresponding

locally free extension is D-stable (inside j, ) if and only if its C[[x]]-
lattice is D-stable (inside T ®gC((x))). Since M gC((x)) = (CUx)), we

have only to take for Cl[x]l-lattice (Cl[x])! C (C((x)))' to produce the
required Jl. QED

Corollary 2.9.10.1 Let « in X(C), U = X - {«}, ;U= X the inclusion, M

a holonomic D-module on X such that j*M is a D.E. on U of rank r > 1.
Suppose x is a function on X which has a simple zero at « and which 1is
invertible on U. Then Il is a D.E. on X if and only if the following three

conditions hold:

(1) the map Left(x) : N — I is injective, i.e., Hom p(&,, M) =0.

(2) the map Left(x) : > — > is injective, i.e., Hom (8, ‘.m*) =0.
(3) dimg (M /xT) = r, or equivalently
(3 bis) The function on X(C) given by

p = dim(]:(‘.m/IB‘.m), Ig := the ideal sheaf of p,

1s constant.
proof The conditions listed are trivially necessary. To show that they
are sufficient, we argue as follows.

The first two conditions together imply

M=, (j*m),
in virtue of 2.9.1. Using this, 2.9.8 gives a short exact sequence
0= M —jj*M - &§,®cHom¢(Soln, , C) — O.
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Now apply the snake lemma to the endomorphism Left(x) of this short
exact sequence. Since Left(x) is bijective on j.j I, the coboundary

defines an isomorphism
Homg(Soln, , €) = M/xTN.

So by (3), we see that dimgSoln, = r. By 2.9.10,(1) & (3), we conclude

that jl*(j*m) is a D.E. on X, whence Tl = j *(j*m) is a D.E. on X. QED

(2.9.11) We next recall what the general global duality theorem (for
coherent D-modules with respect to projective morphisms) gives in our
situation. Thus suppose Jll is a holonomic left HD-module on the smooth

connected curve X. The de Rham cohomology groups HiDR(X, ) can

also be described as the global Ext groups ExtiD(O, JN). Passage to

adjoints gives ExtiD(G, m) = ExtiD(ﬁm*, J). We have a natural pairing
Extln(9, M*) x Extdp(M*, 0) - Extitip (9, 0),

which via the above isomorphisms becomes a pairing
HpR(X, M*) x HIpR(X, M) = H*FIpp(X, 0) := H1+JD8(X).
The global duality theorem (cf. [Ber], [Bor]) asserts that if X = X is a

(iomplete nonsingular connected curve, then for any holonomic Tl on
X, the pairings

HipRp(X, M*) x H27lpp(X, M) - HZ2pRp(X) = €

are perfect dualities of finite-dimensional C-vector spaces.

To conclude this section, we give elementary Euler characteristic

formulas for the special case of JD-modules of the form JD/DL on Al
and on G,,.

Lemma 2.9.12 On Al with parameter x, write 9 for d/dx, and

consider a nonzero operator L := 2a; JXiGJ. Define the integer d = d(L) by

d := max(i-j | aj j = 0).

Then X(Al, D/DL) = -d.

proof We have
X (AL, D/DL):= % (Ext p(9, D/DL))= X (Ext p(D/DL*, 9)),

= dim(Ker) - dim(Coker) for the map L* : Clx] — C[x].
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Now L* = 2a; J(—a)JXi, and each operator (-3)Jx! is homogeneous of
degree i-j when it acts on the graded ring C[x]. Moreover, the

associated graded map

(-9)Ix! : (degree n) — (degree n+i-j)
is given by a nonzero polynomial P; J(n) in n of degree j, namely

.....

So by definition of the integer d, there exists a honzero polynomial P(t)
(namely P := Zii-d ai,jpi,j) such that L™ acting on C[x] maps

(degree < n) to (degree < n+d), and induces x!' - P(n)x"*d on the
assoclated graded. So if we denote by K, the complex

L*: (degree < n) — (degree < n+d),
then the inclusion of K, into K41 is a quasiisomorphism if P(n+1)=0.
The direct limit K., of the K, is the complex which calculates the Ext
groups, so if n is larger than any integer zero of P we have
H*pr(Al, D/DL) = H*(K,,) = H*(K,).
But for n large enough that ntd > O we have

X (Kp) = XI[L™: (degree < n) — (degree < n+d)] = -d. QED

Lemma 2.9.13 On G,y with parameter x, write D for xd/dx, and

consider a nonzero operator L := ZXiPi(D). Define integers a, b, d by
a:=max(i|P;=0), b:= min(i|P;=0), di=a-b.
Then X (G,,, H/DL) = -d.
proof. The proof is exactly analogous to that given above, taking for K,
the subcomplex
L* :(-n < degree < n) = ( b-n < degree < a+n)
of the complex L™ : Clx, x 11 5> ¢lx, x~ 1. QED

2.10 Some equations on Al, with a transition to G,

(2.10.0) We now turn to the special case where X is Al We will
write 9 for d/dx. Thus O is the polynomial ring C[x] and D is the Weyl
algebra O[9d] = C[x,d].The Fourier Transform FT(L) of an element L =

>fi(x)al of D is defined by
FT(L) = 2 £;(9)(-x)L,
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The map L—=FT(L) is a ring isomorphism of D with itself, whose square
is [-1]%:

for L = 3f;(x)dl, FT(FT(L)) = [-11*L = Sf;(-x)(-3)L
Notice that T and adjoint nearly commute: one has

(FT(L)* = [F11*(FT(L>)) = FT{-11*(L*)).

Given a left (resp. left holonomic) D-module M on AL, its Fourier
Transform FT(J) is the left (resp. left holonomic) D-module D® pI,

where in forming the tensor product the leftmost D is viewed as a
right D-module by the ring isomorphism FT:D— D. If T is H/DL, then
FT(IN) is H/DFT(L).

Example 2.10.1 (1) Let j: G, — AT the inclusion. Then
FT(j1i*0) = j%Ji™0, FT(jxJj™0) = jij~0.

Indeed, by 2.95.1, jij*0 = D/Dx9, and jj 0 = D/DIx. Visibly we
have FT(x9) = -9x, FT(9x) = - x0.

Example 2.10.1 (2) For o« in C, the delta module &, is D/D(x-). Its

FT is D/D(d-), which is isomorphic to the D-module e*XC[x] by

means of the D-linear map 1~ e®X%,

(2.10.2) Thus M—FT(M) is an exact autoequivalence of the category

of left (resp. left holonomic) D-modules. If we iterate FT, we find
FT(FT(M)) = [-11*(M).

A key point for later applications is the apparently trivial consequence

that a holonomic left D-module T is irreducible if and only if FT(IN) is

irreducible. Here is a simple illustration :

Theorem 2.10.3 Let P:=P,(x) = X pixi and Q:=Qp(x) = 2 qixi be
nonzero polynomials in C[x], of degrees n and m respectively, and
suppose that

(1) if o« is a simple root of Q, then P(x)/Q'(x) is not in Z.

(2) if o is a multiple root of Q, then P(«)=0.
Denote by L the operator L := P(9) + xQ(d) , M :=D/DL. Then

(1) M is an irreducible HD-module on Al

(2) If n > m, I is a Lie-irreducible object of D.E.(ALl/C), whose largest
slope at e is (n+1-m)/(n-m), with multiplicity n-m.

(3a) If n < m, then for o = -p,/dpyy, M| Al - {«} is an irreducible
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object of D.E(AL - {}/C). Its local monodromy at o is a
pseudoreflection of determinant exp(-2mip), where p is given by

2
B = (Pm-19m ~ PmIm-1) /lam) -

(3b) If n < m and if either m=2 or exp(2mip)= -1, then M | AL - {«} is
Lie-irreducible.

proof The operator L is the FT of the first order operator -9Q(x) + P(x)
= -Q(x)d + P(x) - Q'(x) to which we apply 2.9.6.2 to get the irreducibility
(1). (2) is obvious from the definition of L, and the fact that Lie-

irreducibility on Al results from irreducibility(1). (3a) is just the
spelling out of 2.9.7 (4) and 2.9.7.1. For (3b), we argue as follows (cf. [Ka-
Pi],Cor.6 and Criterion 7). By additive translation, we may suppose that

x=0, so Al - () is G, But an irreducible D.E. on Gy, is either Lie-

irreducible or it is Kummer induced. If it is Kummer induced and
regular singular at zero, then its exponents at zero in C/Z are Kummer
induced. The exponents mod Z are { 0 repeated m-1 times, -p}, which
are visibly not Kummer induced unless m=2 and p=1/2 mod Z. QED

Remark 2.10.3.1 Another way to state the hypotheses on P and Q is
to say that P and Q are relatively prime and that the partial fraction
expression of P/Q is

P/Q = ZA/(x - op) + g'(x),

where g(x) in C(x) blows up at those o; for which A; is in Z.
Notice that L = P(9) + xQ(9) is the FT of P(x) - 9Q(x), annihilator of

(1/Q(x))exp([(P/Q)(1)dt) = (1/QE))(TT(x - o;)M)ed(X),
and L™ = P(-9) + Q(-9)x is the FT of P(-x) - Q(-x)9, annihilator of
exp([(P/Q)(-1)dt) = (TT(x + o)™ M)e 8(~x),
Conversely, if we begin with a function of the form (TT(x - ai)%i)eg(X)
with g(x) a rational function which blows up at those «; for which 2; is
in Z, we recover P and Q by writing P/Q = 2 7\{/(x - o) + g(x) with
(P,Q)=1.If g=0, then n=m-1; otherwise m-1-n = ord(g). We will see

below that already the sequence of functions X'i/zexp(—xn/n) leads to
some surprises.

Theorem 2.10.4 Let P:=P,(x) = 2 pixi and Q:=Qp(x) = 2 qixi be

nonzero polynomials in C[x], of degrees n and m respectively, and
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suppose that
(1) if o« is a simple root of Q, then P(x)/Q'(x) is not in Z.
(2) if o is a multiple root of Q, then P(x)=0.

Suppose n > m. The differential galois group G of P(d) + xQ(d) on Al is

connected and reductive. If p,,_1 = q,-1 = 0, then G = gO.der: ostherwise
G = (EmGO’der. The possibilities for G0-der are given by:
(1) If n-m is odd, G%9er is SL(n); if n-m=1, then G is GL(n).

(2) If n-m is even, then either GO der is SL(n) or SO(n) or (if n is even)
SP(n), or n-m=6, n=7,8 or 9, and G9:9€r is one of
n=7: the image of Go in 1ts 7-dim'l irreducible representation
n=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std
n=9: the image of SL(3)xSL(3) in std®std.
proof In view of 2.10.3(2) above, this is just the Main D.E. Theorem

281 on ALl with a/b = (n+1-m)/(n-m), together with the remark that
on Al one has detG ={1} or Gy, and detG ={1} if and only if the

coefficient of an~1 vanishes. QED

To give a concrete illustration of this theory, let us compute G for

the operator O - xd - 1/2, whose FT defines x 1/ 2exp(-(-x)*/n).

Theorem 2.10.5The differential galois group G of o' - xd - 1/2 on Al is
GL(2) for n=2,
SL(n) for n even =
SO(n) for n=7 odd
Gy for n=7.

4,
> 3,

proof This is an instance of the above theorem with P(x)= x' - 1/2,
Q(x) = x, m=1. For n even, n-m = n-1 is odd, and so G is SL(n) or GL(n);
looking at the on-1 term, we see that G is inside SL 1ff n > 2. If n is odd,
this operator is self-adjoint (up to a sign), and as n is odd the resulting
autoduality is necessarily symmetric. Therefore G is inside SO(n) for
nx>3 odd; in view of the limited possibilities for G, it must be SO(n)
except for n=7, where the (only) other possibility is Gy. That it is Gy in

this case results from the following
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Gg Theorem 2.10.6 For any polynomial f in Cl[x] of degree k prime to
6, the differential galois group G of 97 - fa - (1/2)f' on Al is Gop.

proof We first prove that the D.E.on Al

I := D/DL, L:= 37 - fa - (1/2)f
is irreducible. Its e -slopes are 1 + (k/6) with multiplicity six and one
slope 0. Since (k, 6)=1 by hypothesis, the I -representation is the direct
sum of an irreducible of dimension 6 and a tame character. So if Il is

reducible on Al, 1ts Jordan-Holder constituents must be an irreducible

D.E. L on Al of rank six and a rank one D.E. & on Al which is regular
singular at o, and therefore isomorphic to the trivial D-module . So
either O is a quotient of Jll, or it is a subobject. Since Tl is self-adjoint,
and Tl and @ are nonisomorphic irreducibles, Il = Jl & O. Therefore G
is a quotient of Jll. This means that the equation Lg=0 has nonzero

solutions in C[x]. But L acts injectively on C[x]; indeed if f = Axk +...,

then L maps xd + lower terms to (-d - (1/2)k)Axd+*K=1 + lower terms,
and as k is odd (being prime to 6), (-d - (1/2)k) is nonzero for all deZ.
Therefore T is irreducible.

Once I is irreducible, it is Lie-irreducible (we are on Al). [ts oco-
slopes qualify it for the Main D.E. Theorem. Because it is self-ad joint,
the only possibilities are Gy or SO(7). It thus suffices to rule out SO(7).

Because /\B(std7) is irreducible for SO(7), it suffices to show that I has
a nonzero horizontal section in ASTM. We can view T as the free G-
module with basis e(),..., eg, where d acts by

dej = ej4q for i=0,1,..,5 deg = (1/2)f'eq + feq.
Then one readily verifies that in A3 the element
eng~eyg~en + epnrezney + 2@1/\92/\@6

- elAegAe5 _ eOAe3A96 - feOAelAe2

is killed by 9. QED

Theorem 2.10.7 Let P:=P,(x) = > pixi and Q:=Qp(x) = 2 qixi be

nonzero polynomials in C[x], of degrees n and m respectively, and
suppose that

(1) if o« is a simple root of Q, then P(x)/Q'(x) is not in Z.

(2) if o is a multiple root of Q, then P(«)=0.
Suppose m = n. Define
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2
&= =Py /dm P = (Pm-19m ~ Pmdm-17/(dm) -

Suppose that either m 2 3 or m=2 and exp(2mip)= -1.Then the
differential galois group G of xQ(d) + P(d) on Al - {«} is reductive. If
dm-1 = 0 and p € Q, then GO = gU.der 4nd detG is the cyclic subgroup

of Gy, generated by exp(2mip); otherwise GO = (EmGO’der. The group

GO.der is either SL(m) or SO(m) or (if m is even) Sp(m). Moreover,

(1) if exp(2mip) = +1, GO.der= sL(m):

(2) if exp(2mip) = +1, G=GO and G%.der = SL.(m) or (for m even) Sp(m):;
(3) if exp(2mip) = -1, GO.der = SL.(m) or SO(m).

proof For any Lie-irreducible D.E., G is reductive, gO.der g semisimple
and irreducible in its given representation, and GO = gO.der o

GmGO’der, depending on whether detG is finite or not. Here detG is the
differential galois group of 9 + (qy-1/dpyy) * B/(x - o) on ALl - (). For

any first order D.E. on any nonempty open set of PLl, the differential
galols group 1s finite if and only if all the singularities are regular and
at each the exponent is rational. So detG is finite if and only if g -1 =

0 (so that oo is regular singular) and p€Q, in which case it is the cyclic
subgroup of Gy, generated by exp(2mip).

The local monodromy around o is a pseudoreflection Y of
determinant exp(-2mip). As G contains the monodromy group (cf. [Ka-

DGG], 1.2.2.1), G and hence G%:9er are normalized by Y. The result
follows from the Pseudoreflection Theorem 1.5, except for the
connectedness of G when exp(2mip) = +1. If exp(2mip) = +1, then Y is

unipotent, and, as as we are on Al - {x}, whose 1 1s generated by

local monodromy around o, G 1s connected, whence G is connected

(cf. [Ka-DGGI1.2.5). QED

rmono

(2.10.8) We now return to the general properties of Fourier
Transform. We recall for later use the "Fourier integral” interpretation

(cf. [Ka-Lau, 7.1.4, 7.5]) of FT(TM) as [ M(x)eX¥Ydx; one takes on
A2:=Spec((13[x,y]) the D-module prq*(M) (this is the term J(x) in the
integral), one tensors it over O with the D-module D/D(9, - v, ay— X)

[which is the D-module eXYC[x,y] by means of the D-linear map
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1—eX¥Y] (this is the term e*Y in the integral) and one takes the relative

HlDR for the map pro : A2 — Al (this is the meaning of [dy; the other
HiDR vanish).

(2.10.9) Given a D-module M on AL, and «eC, we denote by M®e*x
the D-module M g(DH/D(Id-x)). An alternate description is this. For

each «€C, there is a C-linear ring automorphism A, of O which sends

x—x and which sends d— d-«. (This automorphism is the Fourier
Transform of the automorphism of O induced by the automorphism

x> x-o of ALl) One could also describe M®e*X as the D-module
D® Il obtained from Tl by the extension of scalars A :D—D.

Lemma 2.10.10 If Il is a non-punctual holonomic D-module on Al,

all of whose slopes at o« are < 1, there exists an «€C such that M @e*X
has some co-slope < 1

proof If Jll has some slope < 1, there is nothing to prove. If Jll has all
slopes 1, we use the following local

Break Depression Lemma 2.10.11 (compare [Ka-GKM, 8.5.7.1]) Let
n > 1 be an integer, and V a nonzero D.E. on C((1/x)), all of whose

slopes =n. Then there exists an «<€C such that \/(X)eO‘Xn has some oco-
slope < n.

proof This is obvious from Levelt's structure theorem (cf. [Ka-DGG,
2.2.2]). For the assertion is invariant under extension of scalars from

C((1/x)) to C((1/x1/M)) (with n replaced by nm). But after such an
extension, any D.E. becomes a successive extension of rank one D.E.'s. So
we reduce to the case when V iIs rank one and slope n, so isomorphic to

the D.E. for x8eP (%) where P(x) is a polynomial of degree n, and the
assertion is obvious; take for —o the leading coefficient of P(x). QED

Lemma 2.10.12 Let Il be an irreducible holonomic D-module on Al,
all of whose slopes at « are <1.1f I is in D.E(A1/C), then M is the D-

module D/D(d-«) corresponding to e*¥ for some x€C.

AX

proof Twisting by a suitable e®*  we reduce to the case where all co-

slopes of Tl are < 1, and at least one slope is < 1. Therefore its
irregularity Irr(IN) is < rank(IM). By Deligne's Euler-Poincare formula

for a D.E. M on Al/(ﬁ,
dimHOpp(AL/C, M) - dimHlpp(Al/C, M) = rank(M) - Irr (M)
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is strictly positive. Therefore HODR(Al/(E, M) = Hom p(G, M) is nonzero,
and this contradicts the irreducibility of Il unless I is O itself. QED
Corollary 2.10.12.1 Let M be a holonomic D-module on Al all of
whose slopes at o are < 1. If 7l is in D.E.(AL/C), then T is the trivial D-
module HODR(Al/(E, McO.

proof By the previous Lemma, Tl is a successive extension of trivials.
Since Extlb(ﬁ, 9) = HlDR(I-\l/(E, 0) = 0, the extensions are themselves
trivial. QED

Corollary 2.10.12.2 Let T be a holonomic D-module on Al all of
whose slopes at e are < 1. If Il is in D.E.(#\l/(ﬁ), then Tl is the direct
sum @, HOpR(Al/C, M®e™*¥)Q ¢ (D/D(a-x)).

proof Again by the previous Lemma, Jll is a successive extension of the
D/D(d-x)'s, and again the extensions are trivial because

Extl p(D/D(0-a),D/D(d-p)) = HIpr(ALl/C, D/D(8+x-p)) = 0. QED

Proposition 2.10.13 Suppose that L = Zfi(x)ai is a monic polynomial in
0 of degree n = 1 with coefficients f;(x) in Clx]. Suppose that the highest
slope at e of L is a/b in lowest terms, with multiplicity b, and a/b > 1.

Then I := D/DL is irreducible on Al if any of the following conditions
holds:
(1) Every other slope A of L. at o satisfies 0 < A < 1.

(2) Every other slope A of L at o satisfies A < 1, and neither L nor L*
has any nonzero polynomial solutions.

(3) Every other slope A of L at o satisfies A < 1, and neither L nor L™

has any nonzero solutions in e**C[x] for any « in C.
(4) Every other slope A of L at o satisfies A < 1, and FT(L) is a middle

extension, i.e., for j:U—)Al the inclusion of any nonempty open set on
which FT(M)=D/DFT(L) is a D.E., FT(M)=j,(J*FT(M)).

proof The slope hypotheses assure in the break decomposition of Il as
[ -representation, M =M, /@I 4, the term T, s, is [ -irreducible.

Therefore if Tl is reducible, it has either a nonzero subobject or a
nonzero quotient Jl all of whose e -slopes are < 1. At the expense of

switching T and M*, we may assume the existence of such a quotient
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N. In view of 2.10.12, N itself has a quotient e**C[x] for some «. The
sufficiency of (1), (2), (3) is now obvious, and (3)<(4) by Fourier
Transform. QED

Examples 2.10.14 In the examples below, P,, and Q,, denote
polynomials in C[x] of degrees n and m respectively.
example of (1): L = P(9) + xd™ with 2 < m < n and P(0)=0; its slopes

are 1 + 1/(n-m) with mult. n-m, and 1 - (1/m) with mult. m.

example of (2) : L = P(9) + Qpy(x9) with m < n, (n,m)=1, P,,(0) = 0, Qp
has no zeroes in Z; its slopes are 1 + m/(n-m) with mult. n-m, 0 with

mult. m. Because P(0)=0, L(xd + lower terms) = Qm(d)xd + lower terms,

so L is injective on Clx] if Q,(x) has no zeroes in Z, . The adjoint L™ is
P(=9) + Qp,(-1-%9), which will be injective on C[x] if Q,,(-1-x) has no

zeroes Is Z.

example of (3) via (4): L =P, (9) + xQ,(9d), n > m, (n,m) =1, where at
simple roots of Q, P/Q" has non-Z values, and P is nonzero at multiple
roots of Q. Let x4 be the highest power of x which divides Q,,. The

slopes are 1 + 1/(n-m) with mult. n-m, 1 with multiplicity m-d, and, if
d=0, 1 - 1/d with multiplicity d. This is the case we have already
discussed at some length, without the extra hypotheses on n and m.

Notice that taking Q to be o' gives back our example of (1).

So only example (2) is really new. An alternate and more fruitful
approach to it comes by noticing that L:= Pn(a) + Qm(xa) is the Fourier

transform of K:= Qm(—l—xd/dx) + Pn(X)’ a "Kloosterman operator of

bidegree (m,n)" in the terminolgy of [Ka-DGG, 4.4]. The o -slopes of K are
all n/m, so H/DK is irreducible on G, (because (n,m)=1), and on Al it

is the middle extension of (D/DK) | G,y (because Q has no zeroes in 7).
So in fact L= Pn(a) + Qm(xa) defines an irreducible D-module on Al

whether or not n > m.
[f m>n, L gives a D.E. on G, which Is regular singular at e and

whose 0-slopes are n/(m-n) with multiplicity m-n, and 0 with
multiplicity n. It is Lie-irreducible as well. Indeed, if (D/DL) | G,y were
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Kummer induced of degree d, then d would divide the multiplicity of
each O-slope, and these multiplicities (m-n and n) are relatively prime.
Applying the Main D.E. Theorem 2.8.1, we find

Theorem 2.10.15 Let P:=P,(x) = 2 pixi and Q:=Qpp(x) = 2 qixi be

nonzero polynomials in C[x], of degrees n and m = n respectively, and
suppose that
(1) Quy (%) has no roots in Z, and Pg(0)=0.

(2) (n,m)=1.
Denote by G the differential galois group G of P(d) + Q(x9d) on AL (if
n > m) or on Gy (if m > n) and define N:= max(n,m). Then
(case n > m) G is connected. If py,-1 = q-1 = 0, then G = gO.der.

otherwise G = (EmGO’der.

(case m > n) If m-n=1, then G is GL(m). If m-n > 2 and q,,-1/dm € Q,
then GO =G0.der and detG is <exp(2miquy,-1/dm)>; otherwise
GszGO,del"

In both cases,the possibilities for G0:der are given by:
(1) If n-m is odd, G%9er is SL(N); if In-ml=1, then G is GL(N).
(2) If n-m is even, then GY der js SL(N) or SO(N) or (if N is even) SP(N),
or ln-ml| = 6, N=7.,8 or 9, and G%:der is one of
N=7: the image of G in its 7-dim’l irreducible representation
N=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

N=9: the image of SL(3)xSL(3) in std®std.

Location of the singularities of a Fourier Transform

We conclude this section with a general result on the location of
the singularities of a Fourier Transform. Recall that any holonomic D-

module M on Al is a D.E. on some dense open set of AL Therefore it
makes sense to speak of the e -slopes of Jl.

Theorem 2.10.16 (compare [Ka-GKM, 8.5.8]) Let Tl be a holonomic D-
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module on Al. Then
(1) FTI is a D.E. on G, if and only if Jl has no e -slope =1.

(2) FTI is a D.E. near « if and only if M ®e*X has all e-slopes > 1.
(3) FTIM is a D.E. near « if and only if the function € = Z

B Irr (M®ePX)

1s constant in a neighborhood of «.

proof We first show that (2) implies (1). Indeed, if Jl has no e -slope

=1, then for any o = 0, Me*X has all eo-slopes > 1 (cf. [Ka-DGG,
2.2.11.4]). Conversely, if Tl has some o -slope =1, apply the "slope
decomposition” [Ka-DGG, 2.3.4] to M®gC((1/x)) and then apply the

Break Depression Lemma 2.10.11 to its "slope =1" part to produce an «

such that M®e*%X has some e -slopes < 1.

To prove (2) and (3), we may, by additive translation, reduce to
the case o = 0. Thus we must show that FTI is a D.E. near zero if and
only if I has all eo-slopes > 1. By Levelt's structure theorem [Le-JD], M
has all eo-slopes > 1 if and only if the function

C - 17

o = Irr oo (M ®e™*X)
is constant in a neighborhood of « = 0. [Indeed, if TN has e -slopes Ay, ..

, Ay, then Irr (M) := X; X, while for all but finitely many o = 0,

Irr oo (M®e*%) = 3 max(x;, 1).] So (2) and (3) are equivalent.

We may further reduce to the case in which Tl is irreducible. For
in any case Jll is a successive extension of finitely many irreducibles
M;, and FTIN is a successive extension of the finitely many irreducibles

FTM;. Now FTTl is a D.E. near zero (i.e.,, is O-coherent near zero) if and
only if each of its Jordan Holder constituents FTTll; is a D.E. near zero

(i.e., is O-coherent near zero). Clearly the condition (2), that M have all
o -slopes > 1, holds for Il if and only if it holds for each T;. Thus it

suffices to treat the case when Il is irreducible.
We first check by hand a few special cases.
If M 1s a delta module &, then it has no e -slopes, and

FTM = D/D(0-«) is a D.E. on all of A1l.
If MM is the constant D-module = D/DJ, whose unique eo-slope
is 0, then FTT is 8p, which is not a D.E. near zero.

If M is the D-module D/D(O+x) = e~ XX(C[x] with o = 0, whose
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uhique eo-slope is 1, then FTIN is &, which is a D.E. near zero.

(o &
Suppose now that Il is irreducible, not punctual, and not of the
form D/D(d+o) for any o in C. For every o in € we have

HOpR(AL, M®e™*X) = Hom p(D/D(d+x), M) = 0.

The adjoint IM* of N is of the same type, as is its pullback by x = -x,
[-11*IM >, so we also have

HOpR(AL, [-1]*M*®e%X) = Hom p(D/D(d+a), [-11¥IN*) = 0.
[f we denote by U = Al - sa nonempty open set of Al on which M is a
DE., then M = j,j*M (since M is irreducible nonpunctual). The Euler-

Poincare formula for M = j.j*I on nl gives

¥ (AL M@exX) =
= rank@U(j*‘m@eo‘X) - Irr o (M®e™X) - 3, g totdropﬁ)(‘ﬂl@eo‘x).

Because e*¥ is a rank one D.E. on all of Al, 1t 1s formally trivial at each

point B € S, so we can rewrite the above formula as
¥ (AL, M@ex) = rank@U(j*‘m) - Irr o (M®e™X) - 2, o totdropg ()

= (function of M alone) - Irr (M ®e*X),
We now express this information in terms of the De Rham

complexes of M®e*%X and of [-1]*MN*Qe™*X which we view as the two-
term complexes (in degrees 0 and 1)
J+ o Jd+ o
m m, [-1]1*In> [-11* TN,
We are told that both of these arrows are injective for all o« in €, and
that

dimg(M/(0+x)M) = Irr oo (M ®e*%) - (function of Il alone).

In terms of the Fourier Transforms FTIN and FT([-1]1*M>*) = (FTIN)>*,
this says precisely that the two arrows
-X + o -X +

FTIN ——— FT, (FTIN)* (FTIN)*.
are both injective for all o« in C, and that

dimg(FTM/(x-)FTM) = Irr (M ®e*X) - (function of Tl alone).

According to 2.9.10.1, FTIN is a D.E. near zero if and only if the
following three conditions hold:
(1) the map Left(x) : FTI — FTI is injective.

(2) the map Left(x) : (FTIN)>* — (FTI)* is injective.
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(3bis) the function o« — dim@(FT‘m/(x - «)FTIN) is constant near o = 0.

Thus for Tl is irreducible, not punctual, and not of the form
D/D(0+x) for any o in €, FTI is a D.E. near zero if and only if the

function o« = Irr (M ®e*X) is constant for o« near zero. QED

2.11 Systematic study of equations on Gy,

(2.11.0) We now turn to the systematic study of equations on
Gy 1= Spec(ﬂi[x,x_l]). We write

0 := d/dx, D := xd/dx.
The ring DGm on Gy, is Clxx 1D =cCixx1a]-= D p1[1/x]. The

1

multiplicative inversion “inv" on Gy, interchanges x and x™ +, and sends

D to -D. Because we will sometimes want to think of G,, as sitting in

Al, we will use the induced notion of adjoint 9~ -9 , which sends D to
-1-D. Every element of DGm is the (right or left) product of a power of

%, which is a unit in DGm, and of an element of the subring C[x,D]. We

will generally write elements of DGm in the form 2 XiPi(D), where the
P;(t) are polynomials in C[t].

Given a D-module M on Gy, and an «€C, we denote by M @®x*
the D-module M® g(D/D(D-o)). Notice that DH/D(D-o)= x%Clx,x" 11 by

the D-linear map 1= x%. For each «€C, there is a C-linear ring
automorphism B, of D which sends x—x and which sends D—D-o. One

could also describe M®x* as the D-module obtained from I by this
extension of scalars B :D—D.

Lemma 2.11.1 Let Tl be a holonomic D-module on G,,. Then for any

o € C, X(Gpy, MOxX) = X (G, M).
proof This is immediate from the Euler-Poincare formula, because

x*C[x,x 1] is a rank one D.E. on Gyp, of slope zero at 0 and <. QED

Lemma 2.11.2 Let V be a nonzero object of D.E.(G,,/C) all of whose
slopes at both 0 and o are zero. Then V is a successive extension of

objects x*C[x,x~11.
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proof Since V is regular singular at both 0 and oo, it is uniquely
determined by the monodromy representation it gives of the topological
ﬁl(Gm) = /. As 7 is abelian, V is a successive extension of rank one

D.E.'s on Gy, which are regular singular at 0 and <. S0 we are reduced

to the case when V is U-invertible. As G = (]Z[x,x_l] 1s a principal ideal

domain, V is free of rank one over 0, say V = (]:[X,X_j‘]eo with Dep=feq,

so V= D/D(D-f) for some f¢ (]:[X,X_j‘]. In terms of f, the slopes of V at 0
and e are max(0, -ordg(f)) and max(0, -ord,(f)) respectively. As V has

slope zero at both 0 and <o, f is constant. QED

Here is a formal version of this, in a form which inductively
isolates the entire slope zero part from the rest.
Factorization Lemma 2.11.3(cf. [Mal]) Consider an element L of
C[[x]I[D] of the form

L =3, xiAD)
where the A;(t) are polynomials in C[t] of uniformly bounded degree.
Put N :=supj(degA;). Suppose that A is nonzero and that we are given
a factorization of Aq,
Ag(t)=P(1)Q(t), such that for alln = 1, gcd(P(t+n), Q(t)) =1.

Denote by M the degree of P. Then in C[[x]][D] there exists a unique
factorization of L

L = (2., x'P;{(D) )-( 2., x1Q;(D) )

such that

Pg = P, deg(P;) < M fori> 0

Qp = Q, deg(Q;) < N - M for i> 0, with equality if deg(A;)=N.
proof If such a factorization exists, then equating like powers of x and
using the commutation relation Pi(D)xJ = XJPi(D+J), we find
Ap(t) = 2., Pilt+1)Q;t) =

= P(t+n)Qu(t) + Pp)Qlt) + =

If we rewrite this as
A L) - 2 Pi(t+))Q;(t) = P(t+n)Qu(t) + PL(D)Q(1),

we see that P, and Qp are obtained inductively by using the relative

Pi(t+))Q;(t).

i+j=n, 1<i,jen-1
i+j=n, 1<i,j<n-1
primality of P(t+n) and Q(t) to write the left hand side as lying in the

ideal (P(t+n), Q(t)) they generate, in such a way that the coefficient P,

of Q is of lowest possible degree. This shows the unicity, and also gives
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an inductive proof of existence. QED

Isomorphism Lemma 2.11.4 (cf. [Mal]) Suppose that P(t) in C[t] is a
polynomial of degree N 2 1 which satisfies
for alln > 1, gcd(P(t+n), P(t)) =1.

Suppose that L = 2, XiPi(D) in Cl[[x]l[D] satisfies
Po = P, and for 121, degP; < N.

Then there is a unique isomorphism of Cl[x]lI[D]-modules
CI=x]IID]/CIIx]IIDIL = Cl[x]ID]/CIx]IID]JP(D) which modulo (x) is the
identity on C[D]/C[D]P(D).

In particular, the two D-modules on C((x)), C((x))[D]/C((x))IDIL and
C((x))[D]/C((x))[D]IP(D) are isomorphic.

This is a special case of
Isomorphism Lemma bis 2.11.5 (cf. [Mal]) Suppose that V is a finite-
dimensional C-vector space, and that V :=V®¢Cllx]] is endowed with a

structure of Cl[x]l[D]-module. Write the action of D on elements of V:
D(v) = 2, xiAi(v), for unique elements A; in Endg(V).
Suppose that the distinct eigenvalues of Ay are incongruent mod Z.
Denote by V4 the Cl[x]l[D]l-module whose underlying Cl[x]]-module is
V& Cllxll but where D(v) = Ag(v) for v in V. Then there exists a unique
isomorphism of C[[x]I[D]-modules from V41 to ¥V which is the identity

modulo (x).

proof We must show that there is a unique sequence of elements
{Bi}iso in End(V) such that Bg=1 and such that in VU, we have

D(ZizOXiBi(V)) =ZizOXiBi(A0(V)).
The desired isomorphism is then the unique Cl[x]]-linear one which
maps VHZizoxiBi(v). Expanding the left side we find
D(Z,, o x!B;(v))=2,, , ix!Bj(v) + Zizoxlzjzo XJAJ'Bi(V).
Comparing coefficients of like powers of x, we find, for each n = 1,
BphAg = nBy + AgBp + 25, Ap-jBj, which we rewrite
—[Ao, Bl’l] - l’an = Zj<n An_J‘BJ'.
But the hypothesis on the eigenvalues of Ag is precisely that the

endomorphism ad(Ag) of End(V) has no nonzero eigenvalue in Z.
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Therefore this last equation allows us to solve uniqgely for B,

inductively. QED

Ext Lemma 2.11.6 (cf. [Mal) Suppose that V and W are finite-
dimensional C-vector spaces, and that V :=V® ¢Cl[x]] and

il I=W®(]:(]:[[X]] are endowed with the structure of C[[x]l[D]-modules.
Write the actions of D on elements of V and W:

D(v) = 2., XiAi(V), for unique elements A; in Endg(V),

D(w) = 2., XiBi(W), for unique elements B; in Endg(W).
(1) If dim(V) > 0, and det(T - AglV) = TI(T - «;), then V is a successive
extension of the objects CI[x]I[DI/CIxIIDI(D - ;).
(2) Suppose that Ag and By have no common eigenvalues mod Z. Then

Homg ((x))[D(VI1/x], WI1/x]) =0= Extg((x)p)(VI1/x], WlL/x]).

proof (1) Intrinsically, V is a C[[x]l[D] module which is C[[x]]-free of
some finite rank r 2 1, V is the r-dimensional C-space V/xV, and A in

Endg(V) is the induced action of D on V/xV. To prove (1), it suffices (by
induction on r) to exhibit an eigenvalue « of Ag and an element v, of

VU such that both of the following conditions hold:
v mod xV 1Is nonzero in V,

Dve = v in V.
For such an element v, defines an injective mapping of Cl[x]I[D]-

modules

Cl[x]IID]/Cl=]IDID - o) = V
whose cokernel is C[[x]]-free of rank r-1. To do this, pick for « any
eigenvalue of Ag whose real part Re(o) is minimal, and any nonzero

eigenvector vgg in V with eigenvalue o Agvgg = avp. Because Re(x)
I1s minimal, for every integer n 2 1, «-n 1s not an eigenvalue of Aq,
and consequently Ag - o + n is bijective on V, for every integer n > 1.
Using this bijectivity, one shows that there exists a unique sequence of
elements v; in V /%171 which satisfy the three conditions

Vo = V00

Vi+1 = Vvj mod x1t1y,

- mod xt19.

Dvi = Vi
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The inverse limit of the v is then the desired element v .

(2) Applying (1) to both T and W, we reduce immediately to the
case where V and W are one-dimensional, and D(v)=av, D(w)=bw with
a-b not in Z. Then the Hom and Ext in question are just the kernel and

cokernel of D+b-a on C((x)); as a-b is not an integer, this map is
bijective. QED

Corollary 2.11.7 Let L = 2., XiAi(D) be an element of C[[x]l[D] of
degree N in D, and suppose that A is nonzero of degree M. Let V be the

D.E. on C((x)) given by L. Then in the the slope decomposition of V as
\Y D Vipero» We have

rank(V

slope=0
slope=0 ) = M.

If M >0, and Ap(t) = (C* factor)TT  (t - o) then Vlope=o 15 @

successive extension of the rank one objects x*C((x)) with multiplicity
ny. Moreover, if the distinct zeros of Ao(t) are incongruent mod Z, then

Vopeso = CGOIDI/E(x)IDIAGD) = @ o C(x))IDI/C((x)DID-o0) .

proof If M = 0, it is clear that all slopes are strictly positive. If M > 0O,
then by the Factorization Lemma, we may reduce to the case N=M
with the same Ag. If Ag has its distinct zeroes incongruent mod Z,

apply the Isomorphism Lemma, and then the Ext Lemmma to separate
the roots. If not, successively apply the Factorization Lemma to the o's

in increasing order of their real part, to express V o @S a successive

slope=
extension of rank one equations of the form D - f, where f=o + higher
terms in x. To each of these apply the Isomorphism Lemma. QED

To put this into perspective, recall that one always has
Formal Jordan Decomposition Lemma 2.11.8 Let V be any D.E. on
C((x)) which is entirely of slope zero. Pick any fundamental domain in
C for C/Z. Then
(1) V is isomorphic to a direct sum of indecomposables of slope zero.
(2) Any indecomposable of slope zero is isomorphic to

Loc(at, ng) := C((x)IDI/C((x)DI(D-0)",

for some unique o« in the chosen fundamental domain, and some
integer ny>1. We call such an indecomposable "of type o« mod Z".

(3) Given two indecomposables Loc(x, n, ) and Loc(p, mB), we have
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Hom p(Loc(at, ng ), Loc(p, mB)) = 0 unless o« = p mod Z, in which case
the Hom has dimension min(n g, mﬁ)).

(4) Given an o«€C, the number of indecomposables in V of type o« mod Z
is the C-dimension of the space

o _ -
HomD(V, xXC((x))) HomD(V®x , C((x)))

of C((x))-valued solutions of VQx~ &,
proof One knows that the restriction functor

Is an equivalence of categories. In view of the topological interpretation
of the source as the category of representations of Z, this lemma
amounts to Jordan normal form. QED

We now return to the global theory on G,,.
Proposition 2.11.9 Let (d,n,m) be a triple of nonnegative integers with
d>1, ntm=0 and gcd(d,n-m)=1. Suppose the operator L. = = XiPi(D)

satisfies the following three conditions:
(a) P;j =0 except for i=0,...,d; Py and P4 are nonzero.

(b) degPg = n, degP4 = m, and min(n,m) > degP; for 0<i<d.
(c) Pg and P4 have no common zeroes mod Z (i.e., if o is a zero of Py

and p is a zero of P4, then o-p is not in 7).

Put M:= D/DL. Then
(1) If n=m, T is an irreducible object of D.E.(G,,/C). If n>m (resp. if

m>n), I is regular singular at 0 (resp. o), and at o« (resp. 0) its slopes
are d/In-ml| with multiplicity |[n-ml| and 0 with multiplicity min(n,m).
It is Lie-irreducible unless there exists a divisor D > 1 of gcd(n,m) such
that both the roots mod Z of Py and the roots mod Z of P4 are

Kummer-induced of degree D.
(2) If n=m,(so d=1) write P;(x) = Xp; J-XJ for 1=0,1 and define
x= -po n/P1pn U= Gy - (o), j: U = Gy the inclusion.

Then j*I is an irreducible object of D.E.(U/C) and szI*J‘*‘m. Local

monodromy around o is a pseudoreflection.

proof The adjoint of an L which satisfies (a), (b), (¢) is another one,

with the same (d,n,m), as is, for any AeC™, its pullback by
multiplicative translation Ty: x—=Ax. And if L is such an operator, then
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dinv*(L) is one of type (d,m,n).

So to prove (1) it suffices (by an inversion) to treat the case n>m.

X

Then L is (up to a €C* factor) monic in D of degree n, so 7l is certainly a
D.E. on G,,. The calculation of the slopes at zero and < is immediate

from (b). Because gcd(d, n-m) = 1 by hypothesis, as [, -representation
Il is the direct sum of an irreducible of rank n-m and of a tame [, -
representation of rank m. So if m=0, I is already [, -irreducible. If

m>0 and Tl is reducible, it has either a nonzero subobject or a nonzero
quotient Tl in D.E.(G,,/C) all of whose slopes at both zero and e are 0.

Replacing Tl by its adjoint if necessary, we may assume that it has
such a quotient. But such an Jl is itself a successive extension of D-

modules of the form x%*C[x,x 1], so M would admit some x%*C[x,x" 1] as
a quotient. Concretely, this means that L kills some nonzero element of

x%C[x,x 1], say x*f(x) where f = o b %ixi is a Laurent polynomial

of bidegree (a,b). Looking at the highest order term in L(x%*f)=0, we see
that P4q(a+b)=0; looking at lowest order terms we see that Pp(a+a)=0,

contradicting (c). Thus T is irreducible.
[f TN is not Lie-irreducible, it is Kummer induced of some degree
D > 1. Looking at the slope decompositions of the Ip- and [ -

representations, we see that every slope=A component of each
decomposition is itself Kummer induced of degree D. Therefore D must
divide the multiplicities with which any of the slopes occurs, whence D
divides gcd(n,m). Looking at the semisimplification of the slope=0 part
at zero (resp. ), we see that the roots mod Z of P (resp. Py) are

Kummer induced of degree D. This concludes the proof of (1).

We now turn to the proof of (2). It is clear that j*I is a D.E. on U,
which is regular singular at 0, o, and o. Let us admit temporarily that

M=jixj*I. Then from Pochammer's Lemma 2.9.7 we see that local

monodromy around « is a pseudoreflection. So if j* I is not irreducible,
it has either a nonzero subobject or a nonzero quotient 7l in D.E.(U/C)
which 1s regular singular at 0,x, and whose local monodromy at o is

trivial. Such an 7l is a successive extension of j*(XO‘(E[X,X_l])'S, and

hence, at the expense of replacing Jll by its adjoint, we may assume
that j*I has a quotient j*(x*C[x,x~11). This means that M=jiei*M
_1]

has a nonzero map to j!*j*(xo‘(ﬁ[x,x_l]) =x*C[x,x~*], which means



Chapter2-D.E.'s and D-Modules-60

precisely that L kills a nonzero element of XO‘(E[X,X_l]. Exactly as above,

this contradicts (c), and so establishes the irreducibility of j*7l. Again
using M= jij M, we find that I itself is an irreducible H-module on

.

Thus it remains only to establish that M= j,j*I in case (2). This
means showing that both L and L™ act injectively on the delta-module
8- As the hypotheses are self-adjoint, it suffices to prove this for L. At

the expense of a multiplicative translation, we may assume that o=1.
We write

L= P(D) - xQ(D) with both P, Q of degree n > 1.

Passing to the formal parameter t at «=1 such that x= e
becomes

t, our operator

L=P(d/dt) - etQ(d/dt),
and we must show that this operates injectively on 8g = C((t))/CI[t]].
This is the Fourier Transform of the equivalent problem of showing
that, denoting by Sub = exp(-d/dt) the endomorphism of C[t] given by
t—=1t-1, the operator P(t) - Sub.Q(t) is injective on C[t]. But if f(t) is a
nonzero polynomial which satisfies

P(f(t) = Qt-1)f(t-1), ie, f(t)/f(t-1) = Q(t-1)/P(1),
then for each k > 2 we have

f(t)/f(t-k) = [Q(t-1)Q(t-2)..Q(t-K)I/[P(t)P(t-1)..P(t-(k-1))I.
By hypothesis (c), the right hand fraction is in lowest terms, which

implies that f(t-k) has at least nk zeroes. Therefore no such nonzero f
exists. QED

Applying the Main D.E. Theorem 2.8.1 in the case n=m, (we will
take up the case n=m further on, in 3.5, 3.5.8) we obtain
Theorem 2.11.10 Let (d,n,m) be a triple of nonnegative integers with

d > 1, n#=m and gcd(d,n-m)=1. Suppose the operator L := ZXiPi(D)

satisfies the following four conditions:
(a) P; =0 except for i=0,..,d; Py and P4 are nonzero.

(b) degP = n, degP4 = m, and min(n,m) > degP; for 0<i<d.
(c) Pg and P4 have no common zeroes mod Z (i.e., if o is a zero of P
and p is a zero of Py, then «-B is not in 7).

(d) There exists no divisor D > 1 of gcd(n,m) such that both the roots
mod Z of Py and of Pq are Kummer induced of degree D.

Let N:=max(n,m) be the order of L. Then the differential galois group G
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of M:=D/DL on Gy, 1s reductive. If detTll is of finite order then

GO=g0.der: gtherwise GO = GmGO’der.The possibilities for G0.der are
given by:
(1) If In-ml is odd, G%9er is SL(N); if In-ml=1, then G is GL(N).
(2) If In-ml is even, then GYd€r is SL(N) or SO(N) or (if N is even) SP(N),
or In-ml|=6, N=7,8 or 9, and G0-der is one of
N=7: the image of G in its 7-dim’l irreducible representation
N=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

N=9: the image of SL(3)xSL(3) in std®std.
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The generalized hypergeometric equation

We now turn to the detailed study of the case d=1, which is the
case of the classical "generalized hypergeometric equation”. My interest
in this case was aroused in 1986 by the paper [B-B-H] of Beukers,
Brownawell, and Heckman, concerned with the case d=1, n=m (cf. also
the recent paper [B-H] of Beukers and Heckman devoted to the case
d=1,n=m).

(3.1) Let (n,m) = (0,0) be a pair of nonnegative integers. Given nonzero
polynomials P:= Py, Q:i= Qp, in C[t] of degrees n and m respectively, we

define the hypergeometric operator Hyp(P,Q) in D to be

Hyp(P,Q) := P(D) - xQ(D).
We call it a hypergeometric operator of type (n,m). We define the
hypergeometric D-module H(P, Q) on G, by

H(P, Q) := D/DHyp(P,Q).
Of course this D-module does not change if we multiply Hyp(P,Q) by a

C* factor. This permits us when convenient (which it is not always) to
suppose that Q is monic.

[t will sometimes be convenient to have a notation which makes
explicit the factorizations of P and Q. Suppose

P(t) = pTT(t - &), with peC™,
Q(t) = gTT(t - 5J-), with qeC”*,
A = p/q.

In terms of the the n roots (with multiplicity) o of P, the m roots

(with multiplicity) Bj of Q, and the scaling factor A in C*, we define
Hypy(o's; BJ'S) = ATT(D - o) - xTT(D - BJ') = (1/9)Hyp(P,Q),
Hola's; pj's) := D/DHypy(e's; py's) = D/DHyp(P,Q).
The effect of the operation M M®xY is particularly easy to see:
Ho(oy's; E;is)@xx = Hy(v+o's; ¥+pj's),
as 1s the behaviour under multiplicative translation:
[ ux]*Hy (a's; E;is) = H’?\/LL(O(iIS; E;J"s),
[ ux] Mo (a's; E;is) = }EXM(O‘i'SQ ﬁj's).
The behavior of the operators under multiplicative inversion and
passage to adjoint is given by

inv*Hyp(P(t), Q(t)) = inv, Hyp(P(t), Q(t)) = (-1/x)Hyp(Q(-t), P(-t))
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Hyp(P(t), Q(t))* = Hyp(P(-1-t), Q(-2-1)).
In the \,o,p notation this gives

inv*H, (o's; E’J"S) = inv, H, (x's; Bj's) = }E(_l)n+m/>\(—ﬁles; —'s)

Ho (ay's; ﬁj's)* = M, qnrm(-1-o's; —2—E>J~'s).

Proposition 3.2 Suppose that -, («;'s; E)J"S)= H(P,Q) is an irreducible
D-module on Gy,. Then

(1) For fixed A, the isomorphism class of ¥, (oj's; E;is) depends only on
the «; and the B mod Z.

(2) P and Q have no common zeroes mod Z, i.e., for any root o of P

and any root Bj of Q, =P ] is not in Z .

proof (1) We must show that if H, (o's; BJ"S) is irreducible, then for
any choice of &i's; E’;J"s which are congruent mod Z to the «j's; E;J-'s,
%7\(&1'3; gj's) is irreducible and isomorphic to ¥ (aj's; ﬁj's). Using the
fact that multiplicative inversion interchanges the role of «'s and p's,

and proceeding step by step, it suffices to treat the case when all o's
and p's are equal to their respective «'s and p's except for oq and o1,

which differ by 1. Passing to the adjoint if necessary, it suffices to treat
the case where in addition o 1s «q - 1. Writing simply « for «q, the

situation is that

o is a root of P, say P(D) = (D-o)R(D).
The commutation relation

[(D-a)R(D) -xQ(D)I(D+1-o) = (D-c)[(D+1-o)R(D) -xQ(D)]
shows that Right(D+1-o) defines a map of D-modules

Right(D+1-o) : #(P,Q) = H((D+1-)R(D), Q).

This map is nonzero (otherwise D+1-o € D[(D+1-x)R(D) -xQ(D)]; looking
at degrees in D we infer that D+1-o = f(x)[(D+1-x)R(D) -xQ(D)] for some

f(x) in C[x,x"11. Looking at x-degrees now leads to a contradiction.).
Since its source is irreducible, it is injective. If n=m, both source and
target are U-locally free D-modules on Gy, of the same rank

max(n,m), so our map, being injective, is an isomorphism.
If n=m, then our map is an isomorphism on G,, - {7}, and it is

injective on all of G,,. So if it fails to be an isomorphism, its cokernel is

a successive extension of delta-modules &,. In particular, (D+1-«)R(D) -
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xQ(D) operates noninjectively on &,. By a multiplicative translation, we

may assume that A=1. Exactly as in the proof of 2.11.9 above, this
noninjectivity then means that there exists a nonzero f(t) in C[t] such
that

(t+1-c)R(D(t) = Q(t-1)f(t-1).
Multiply both sides by (t-o):

(t-cO)R(Of(t)(t+1-x) = Q(t-1)f(t-1)(t-ox),
which says precisely that F(t):= f(t)(t+1-«) satisfies

P(t)F(t) = Q(t-1)F(t-1),
which in turn says that Hyp(P,Q) acts noninjectively on &4. But this is

not the case, because #(P,Q), being an irreducible HD-module on G, is a

middle extension across 1. This completes the proof of (1).

To prove (2), simply observe that in virtue of (1), any irreducible
Ho (oy's; E>J's) 1s isomorphic to one all of whose «'s and p's lie in any
prechosen set of coset representatives for C/Z (e.g., in 0 < Re(z) < 1). For

one of these, o - Bj € Z implies o = P whence D - «; is a right

divisor of Hyp,(aj's; E)J"S), contradicting irreducibility. QED

Corollary 3.2.1 ® = ¥, (o's; E;Lj's)= H(P,Q) is an irreducible D-module
on G, if and only if P and Q have no common zeroes mod Z.
proof This is immediate from 3.2 and 2.11.9. QED

Corollary 3.2.2 Suppose that ¥ = ¥, (o's; ﬁj's)= H(P,Q) is an
irreducible hypergeometric D-module on G, of type (n,m) (i.e., P=P,
and Q=Q,, have no common zeroes mod Z).

(1) The formal Jordan decomposition of (H® gC((x)))

slope=0 1S

MO Nglope=0 = Boperrs C(ENDI/Tx)IDID-o0)
and n, 1s the number of «; which are congruent mod Z to «.
(2) The formal Jordan decomposition of (H®gC((1/x)))

ope=0 1S

(H®GC((1/3))5l0pe=0 = Doepe(pya C(1/xDI/C((1/x)DID-p)" 8
and Ng 1s the number of P which are congruent mod Z to B.

(3)If n > m (resp. if m > n) the local monodromy at the regular singular
point O (resp. =) has eigenvalues with multiplicity {exp(2mic)}p(y)=0

(resp. {exp(—2ﬁiﬁ>)}Q(E))=0). It has a single Jordan block for each distinct

eigenvalue, of size the multiplicity of that eigenvalue (i.e., the minimal
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polynomial is the characteristic polynomial).

proof To prove (1) and (2), use the irreducibility and the previous

Proposition to reduce to treating the case when all the «; and the P

have real part in [0,1), in which case it follows immediately from
2.11.7.

To prove (3), we may, by inversion, suppose n > m. That the local
monodromy around zero has the asserted eigenvalues is standard from
the classical theory of the indicial polynomial at a regular singularity.
Using the irreducibility, we may as above assume that all the o; have

real part in [0,1). Twisting by x¥, it suffices to show that if 0 is the only
integer root of P(t), then the unipotent part of the local monodromy
consists of a single Jordan block. Because we are at a regular
singularity, the number of unipotent Jordan blocks (which is always
the dimension of the space of single-valued solutions in a punctured
classical neighborhood of the singularity ) is the dimension of the space
of C((x))-solutions. It follows from the shape of the formal

decomposition that this dimension is one; alternately, if Zaixi = xd+

is killed by P(D) - xQ(D), then looking at the lowest degree term we see
that P(d)=0, whence d=0 since 0 is the only integer root of P. The

coefficients a, are subject to the two term recursion
P(n)ay = Qn-1)apy-1.
Since P(0)=0, all Aneg vanish, and the positive coefficients a, ;g may be

determined uniquely by this recurrence, since for n > 0 the factor P(n)
does not vanish. QED

Lemma 3.3 Suppose that H:=H, («;'s; ﬁj's) is a hypergeometric D-
module on G,y of type (n,m). Then its isomorphism class as D-module
on G, determines the type (n,m), the set (with multiplicity) of the «;

mod Z, the set (with multiplicity) of the Bj mod Z, and, if either n=m

or if # is irreducible, the scalar AeC*.

proof Denote by r the generic O-rank of H. At least one of zero or o is
a regular singularity. Performing a multiplicative inversion if
necessary, we may assume that zero is a regular singularity. Then n=r,

and m is the dimension of the slope zero part at e. The «; mod Z and

the B mod Z are determined by the formal Jordan decompositions of

the slope zero parts at 0 and o respectively.
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If n=m, then A\ is the "other” singularity of ¥, i.e,, it is the unique

point o in Gy, such that, denoting by U~ the complete local ring at o,

either ¥ or its adjoint #* has dimgHom p(¥#, ") = n-1 (by

Pochammer's Lemma 2.9.7).
[f n#m, we do not know any a priori description of A, but we can
prove its unicity as follows when H is irreducible. If A is not unique,

then for some p=1 in C* there exists an isomorphism of ¥ with its
pullback by the map x+ ux. Then each piece of the slope decomposition
at oo 1s isomorphic to its pullback by this map. Since
(H’@M(l/x)))slop@o has irregularity one, this contradicts [Ka-DGG,

2.3.8]. QED

Remark 3.3.1 If we knew that the isomorphism class of the
semisimplification of ¥ as D-module on G, depended only on the

data (o mod Z, P mod Z, A), then at the last step we could replace

“lsomorphism” by "lsomorphism of semisimplifications”. This would still
be adequate to show =1, using [Ka-DGG, 2.3.8].

Duality Recognition Theorem 3.4 Suppose that H:=H, (;'s; E)J-'s) is
an irreducible hypergeometric D-module on Gy, of type (n,m). In order

that there exist an isomorphism of ®¥ with its adjoint, it is necessary
and sufficient that the following three conditions hold:
(1) n-m is even.

(2) there exists a permutation i—1i" of [1,..,n] such that o + o € Z.

(3) there exists a permutation j—j of [1,..,m] such that Bj+Bj € L

Moreover, if these conditions are satisfied, then the resulting
autoduality of ¥ (on the dense open set where ¥ is a D.E.) is alternating
if and only if

max(n,m) is even, and Y:= ZBJ -2 €1;

otherwise (i.e., if max(n,m) is odd or if Y € 1/2 + Z) it is symmetric.
proof Indeed, the adjoint is ¥, _ yn+m(-1-o's; —2—E>J~'s), so the first

assertion is obvious from 3.2 and 3.3. Because ¥ is irreducible, it has at

most one autoduality (up to a C* factor) <x,y>, which is either
alternating or symmetric.

If the generic rank max(n,m) of ¥ is odd, the autoduality has no
choice but to be symmetric. The only problem comes when max(n,m) is
even. At the expense of an Inversion, we may assuime n = m.
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[f n=m, then local monodromy at A is a pseudoreflection of
determinant exp(2miy). If Y€Z, this is a unipotent pseudoreflection, and
so <x,y> cannot be symmetric. [For denoting by N the log of this
unipotent pseudoreflection, <Nx, y> + <x, Ny>=0, so if <x,y>=<y x>, we
find <Nx,x>=0. Since N has one-dimensional image, say Ce, we have
<e,x>=0 if Nx=0, and then for all x, whence e=0, contradiction.]
Conversely, if Y € 1/2 + Z, then we have a true reflection, which lies in
no symplectic group (in Sp(2d), the eigenvalues of any element can be
grouped into d pairs of inverses).

I[f n > m, and both n and n-m are even, then det¥# is a rank one
D.E. on Gy, which has slope zero at both 0 and e (because all the o -

slopes of ¥ are 1/(n-m) < 1). So det¥® must be of the form x0C[x,x" 1] for
some &. Looking at the slope decompositions of ¥ at both 0 and <, and
at the formal Jordan decompositions of the slope zero parts, we see
that

det(H®C((x))) = x*C((x)) for o:=Tat;,

det(H®C((1/x))) = det((H®C((1/x))),5p0r0) ®%PC((1/x)) for Bi=2p ;.

ope>

Comparing these local expressions for detd with XS(E[X,X_:L], we see first
that 6= mod Z and then that

det((H®C((1/x)))0pes0) = ¥ VC(1/x)).
So det((%@ﬂi((l/x)))slope>0) is either trivial or of order two, depending

on whether Y€Z or not.

On the other hand, our autoduality of ¥ must induce an
autoduality on ¥QC((1/x)), which in turn induces an autoduality on
each piece of the slope decomposition. As (}f’,(X)(E((l/x)))slope>O is

irreducible (because it has rank n-m and all slopes 1/(n-m)), it has at

most one autoduality (up to a C* factor), say (x,y), and that
autoduality has a sign (i.e., is either symmetric or alternating) which
must be the same sign as that of our global one <x,y> So our sign rule
follows from the following

Lemma 3.4.1 Let d 2 2. Let W be a D.E. on C((1/x)) of rank d all of
whose slopes are 1/d.

(1) The isomorphism class of W is determined up to a multiplicative
translate by the isomorphism class of det(W).

(2)W is self dual if and only if d is even and det(W)®? is trivial, and
the duality is alternating if and only if det(W) is trivial.
proof Any D.E. W on C((1/x)) of rank d all of whose slopes are 1/d is a

multiplicative translate of one of the form ([d],£)®x» where £ is the
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rank one D.E. for eX, and A €C. Notice that the isomorphism class of
([d].£)®x? = [d], (L ®x9)) depends only on dA mod Z. Now

det(([d],£)®@xN) = det([d]*.ﬁ)®xd7‘ visibly determines d\ mod Z.

Because [d], £ has all slopes < 1, its determinant is of the form xMC((x)),
so the isomorphism class of det([d] L) is translation invariant.

Therefore the isomorphism class of det(W) is translation invariant, and
hence det(W) determines dA mod Z. Therefore det(W) determines the
iIsomorphism class of W itself, up to a multiplicative translation. This
proves (1).

We next observe that if d is odd, then W cannot be self dual,
because WQW has all slopes 1/d for odd d. [To see this, use the fact that

[d]*W as representation of the upper-numbering subgroup (Ioo)(0+) is,

for some a€C”,

where Xae 1s the character of (Ioo)(0+) given by the rank one D.E. for
eaCXJ
If W is self dual, so is det(W), whence det(W)®2 is trivial. Suppose

now that det(W)®?2 is trivial. We argue globally as follows. Consider a
Kloosterman equation of even rank d,i.e., a hypergeometric equation of

type (d,0), say Hy(aq,.., ag; &). Since d=2, its determinant is Xa(l:[X,X_j‘]

for a=>aj, so over C((1/x)) we obtain a W as above with det(W) =

x32C((1/x)). As A varies over €*, but the aj remain fixed, we obtain all

translates of this W. 5o it suffices to analyse the sign of the autoduality

for the two particular Kloosterman equations of even rank d
H,(0, 0, 1/(d-1),..., (d-2)/(d-1); &),

H,(1/2, 0, 1/(d-1),..., (d-2)/(d-1); &).

Consider for each the d-1'st power of local monodromy at zero. For the
first, it is a unipotent pseudoreflection (not in any 0(d)), and for the
second it is a true reflection (not in any Sp(d)). QED

Corollary 3.4.1.1 Hypotheses and notations as in the above lemma,
denote by £ the rank one D.E. for e¥. Then
(1) det(ld], &) = x(d-1)/2¢((1/x)).

(2) W = a multiplicative translate of [d], L if and only if we have
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det(W) = x(d=1)/2¢((1/x)).
(3) If d is odd, then the dual of [d] L is [x — -x]*([d] L).
proof To prove (1) and (3), we use a global argument. £ is #4(0; &). As

will be shown later in 3.5.6 (but with no circularity), we have the
formula
[dl¥#4(0; &) = H4(0, 1/d, 2/d, ..., (d-1)/d; &).

Clearly det(¥4(0, 1/d, 2/d, .., (d-1)/d; @)) = x5C[x, x~1], simply

because its slope is O at zero and < 1/d < 1 at o, so also 0 at c. To
evaluate 8, we look at local monodromy at zero; this shows 8 = (d-1)/2.
Now looking over C((1/x)) we get the asserted formula for det([d],L).

That (1) = (2) was proven as part (1) of the previous Lemma. To prove
(3), notice that for d odd, the dual of ¥4(0, 1/d, 2/d, ..., (d-1)/d; &) is

its multiplicative translate by -1. QED

(3.5) We now study the Lie-irreducibility of the hypergeometric
equation in the case n=m. Our analysis is a geometric version of the
more group-theoretic one of [B-H, 5.8].

Given a pair (a,b) of strictly positive integers, and A in C*,
consider the "Belyl polynomial”

Bel, 1, A(%) 1= A, px@(1-x)P, where p = (a+b)@*P/adpb,
We call it the Belyl polynomial because of the brilliant use Belyl makes

of it in [Bel, Part 4]. It is a morphism of degree n:=a+b from P1 to P1,
which induces a finite etale covering

Pl - (0,1, a/(a+b), =} — PL1-{0, 2, =)
whose ramified fibres are
over 0: exactly two points; one with mult. a and one with mult. b,
over o=o: exactly one point,
over A: exactly n-1 points.
We call this covering the Belyi covering of type (a,b). The covering
defined by 1/Be1a’b,)\—1(x) we call the inverse Belyl covering of type

(a,b).

Lemma 3.5.1 Over C, any finite etale connected covering X— pl - {0,
A, o} of degree n such that the induced map of complete nonsingular

models m:X—>P1 has exactly n-1 points in the fibre over A is isomorphic
to either a Belyi covering or an inverse Belyi covering of type (a,b) for
some partition of n =a+b as the sum of two strictly positive integers.
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proof Since X - m~1(0, A, =) is finite etale over P1 - (0, A, o) of degree
n, and we are in characteristic zero, the Euler characteristics multiply:

2 - 2¢(X) - Card(n~1(0)) -Card(rt=1(n)) - Card(n~1(=)) = -n.
By assumption, Card(n~1(n) = n-1, so we find
2 - 2¢(X) - Card(w~1(0)) - Card(n~1(=)) = -1, which we rewrite

2¢(X) + Card(nt~1(0)) + Card(nt~1()) = 3.
Since each of Card(m~1(0)) and Card(n~1()) is = 1, and g(X) = 0, we see

that g(X) = 0, and Card(n~1(0)) + Card(nt=1(=)) = 3. After a
multiplicative inversion on the base, we may assume that

Card(rt~1(0)) = 2, Card(m™1(e)) = 1.

Since X is a noncanonical IPl, we may decree that oo 1s the unique
point over o, and that the two points over 0 are 0 and 1. That c is the
unique point over o means that our covering is given by a polynomial
of degree n, and looking at the fibre over 0 shows that its only zeroes

are 0 and 1. 5o our covering is given by ax@(1-x)P for some o in C*.
The critical point a/(a+b) is mapped to a/“a,b, SO oc/ua’b = A. QED

Proposition 3.5.2 Suppose that H:=H, (x;'s; E’JIS) is a hypergeometric
D-module on Gy, of type (n,n). Suppose that the DE. ¥ | G, - (A} is

induced, i.e., it is the direct image of a D.E. V on a connected finite etale
covering m: X — G, - {\} of degree d > 2. Then either the covering T

is isomorphic to a Kummer covering (i.e., the restriction to G, - {A} of
the d-fold Kummer covering of Gy, by itself) or d=n and the covering is

1somorphic to either a Belyl covering or an inverse Belyl covering of
type (a,b) for some partition of n =a+b as the sum of two strictly
positive integers. Moreover, in the case of a Belyi or inverse Belyi
covering, local monodromy of ¥ around A is a true reflection.

proof Suppose that the fibre of ™ over A consists of points p; with
multiplicities ej. Then H®C((x-2)) is the direct sum of the e;-fold
Kummer inductions of the V®&C((x-p;)):

HAC((x-2)) = @ [ejl«(VC((x-p;j))).

Because H®C((x-2)) is of slope zero, with local monodromy a
pseudoreflection, we see all the terms [ejl((V & C((x-p;))) are of slope

zero, exactly one of them (say i=1) has local monodromy a
pseudoreflection, and all the others have trivial local monodromy.
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Now in order for [eq](V ®C((x-p4))) to have local monodromy a
pseudoreflection, either eq = 1 and V®C((x-pq)) itself has local
monodromy a pseudoreflecton, or eq = 2 and V is of rank one with
trivial local monodromy around pq. In this second case, notice that the

pseudoreflection is a true reflection.
If [e;]« (V®C((x-pj))) with i 2 2 is of slope zero and has trivial local

monodromy, then e; = 1, and V is of slope zero at p; and has trivial

local monodromy around p;j.

If all the e; = 1, then our covering is unramified over A, so it is
the restriction to G, - {A\} of a d-fold connected finite etale covering of
G, necessarily the d-fold Kummer covering of G, by itself.

If eq = 2 and all ej,9 = 1, then V has rank one, whence d=n, and

there are n-1 points in the fibre over A, so our covering is either Belyi
or inverse Belyi. QED

Belyi Recognition Lemma 3.5.3 Suppose that H:=H, (o;'s; BJ"S) is an
irreducible hypergeometric H-module on G, of type (n,n). Then ¥ is

Belyi induced (resp. inverse Belyi induced) of type (a,b), with a > 1, b>
1, n= a+b, if and only if its exponents mod Z at O and < are Belyl
induced (resp. inverse Belyi induced) of type (a,b) in the following sense:
there exist A, B € € such that the sets of «;'s and of E>J's mod Z (with

multiplicity) are given by
{ay's) (resp. {E)J'S}) = {(A+1)/a }_y .4 U {(B+j)/b}J=O b1 mod Z.

mod Z.

..... n-1
proof By multiplicative inversion, it suffices to treat the case of Belyi
induced. If ¥ is Belyi induced, then the inducing equation is a rank one

DE.on P1 - {0, 1, ) which has only regular singularities. Any such
D.E. is of the form (0, d - Adx/x - Bdx/(x-1)) = H1(A; A+B) Looking at

the exponents of its Belyl induction at O and < gives the formulas for

the «; mod Z and the p; mod Z. So far we have not used the

irreducibility of #. This is needed only for the converse.
Conversely, suppose that the exponents of H:=¥ (a's; BJ'S) are

Belyi induced. We claim that ¥ is the Belyi induction, say V', of the
corresponding ¥4 (A; A+B). We know that V is a D.E. on G,y - {7} of

order n with regular singular points at 0, A, oo, whose local monodromy
at A is a true reflection, and whose exponents mod Z at 0 (resp. =) are
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the «; (resp. the _E’j)- Because H is irreducible, no «; is a P mod Z, and

hence (exactly as in the proof of 2.11.9, (2)), we see that V is
irreducible on Gy, - {A}. We must show that V is isomorphic to ¥ on

G,,, - {A}. Because both UV and # have regular singular points, it suffices

m
to show that on (G, - {A})@1 they give rise to isomorphic local systems.

This is given by the following rigidity theorem 3.5.4. QED

The rigidity of the hypergeometric equation in the case n=m is
given by the following theorem. In the case n=2 it goes back to
Riemann (his "P-scheme”; the point is that for n=2, we may always

twist by some (x-A)¥ to make local monodromy around A a
pseudoreflection). Levelt gave a simple group-theoretic proof [Lev-HF] in
the general case (cf [B-H, 3.5]). The proof we give below is due to Ofer
Gabber.

Rigidity Theorem 3.5.4 Let ¥ and § be two irreducible local systems
on (G, - {A)3M of the same rank n > 1, and suppose that

(a) the local monodromies at A of both ¥ and § are pseudoreflections.
(b) ¥ and § have the same characteristic polynomial of local
monodromy at 0.

(c) ¥ and § have the same characteristic polynomial of local
monodromy at oo.

Denote by j: Gy - (A} Pl the inclusion, and by Hom(¥F,3) the
internal hom local system Y &G on G, - {\}.Then
(1) ¥(PL, j.Hom(F,9)) = 2 > 0.

(2) There exists an isomorphism ¥ = §.

proof Let us first prove that (1) = (2). Since X = hO + h?2 - hl the
positivity forces at least one of hO or h? to be nonzero. By duality,
H2(p1, JxHom(%,9)) is dual to HO(P1, JxHom(G,%)), so at the expense

of interchanging ¥ and ¢, HO(P1, j*Hom(?,g))=HO(Gm—{)\},Hom(?,9))

= Hom(7,9) is nonzero. Since ¥ and ¢ are irreducible, any nonzero hom
is an isomorphism. It remains to prove (1). For this it is convenient to
give the following Lemma.

Lemma 3.5.5 Let ¥ be an irreducible local system on (G, - (A})21 of

rank n =2 2, whose local monodromy at A 1s a pseudoreflection. Then
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(1) X Gy, JFl Gppy) = -1

(2) Hic((ﬁm, JxF| Gy,) vanishes for i1, and for i=1 it has dimension 1.

(3) the local monodromy of ¥ at O (resp. =) has a single Jordan block
for each distinct eigenvalue, l.e., its characteristic polynomial is its
minimal polynomial. Moreover, if exp(2mi8) is an eigenvalue of local
monodromy at O (resp. =) then exp(-2mid) is not an eigenvalue of local
monodromy at o (resp. 0).

proof Let us denote by h: G, - {A}= Gy, and by k: G, — Pl the
inclusions (so j=kh). We have an exact sequence on Gy,
0> h% - h,% ->h,%/% - 0, and

h,%/h/7 is the punctual sheaf Flx at .

By hypothesis, FIa has dimension n-1. But
X (G, iF) = X(Gpy -0}, F) = rank(F)IX (G, -{A}) = -n,
so (1) is obvious.
For (2), the irreducibility of ¥ forces the vanishing of the HZC, and

the fact that j,7F| Gy, has no punctual section on the affine curve Gy,

forces the vanishing of the HOC. That ch has dimension 1 now results
from (1).
For (3), consider the short exact sequence

0 - kh,F - kh,F >Flo @ Fle - 0.

The long exact cohomology sequence on Pl has HO(IPl, kyehy,F)=0 by the

irreducibility of ¥, so the coboundary gives us an injection
0 - Flo® Flew > HLPL, kih, F) = HL (G, j5F| Gppy) = 1-dim'L.

Therefore at most one of F!o or Fle is nonzero, and if nonzero is one-
dimensional. This means that if 1 is an eigenvalue of local monodromy
at either 0 or oo, then it occurs at only one of 0 or o, and local
monodromy there has a single Jordan block which is unipotent.

Applying this to all twists F®x¥ of F, we get (3). QED
We now return to the proof of the rigidity theorem. Let us denote
by K the internal hom sheaf Hom(7F,3). The short exact sequence on

pl
0= jiX—= jxX = Klo @ Klee & KIn > 0
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gives

¥ (PL i,.%X) = -n? + dimXlo + dimXle + dimXa.

Now for any of the missing points p = 0, oo, or A, K!lp is the space
Homlp(?,%) of Ip—equivariant maps.

[f pis O or o, then denoting by T the local monodromy, and by
P(T) its characteristic polynomial, we have proven that both ¥ and §
as C[T] modules are isomorphic to CIT]/(P(T)). So Homlp(?,%) is just

Hom ¢1(CIT]/(P(T)), CIT]/(P(T))) = CIT]/(P(T)), which is n-dimensional.

So dimXlp = n for both p=0 and p=ce.

At A, both local monodromies T are pseudoreflections. Their
determinants are equal, because they are determined by the
determinants of the local monodromies at O and <. If their common
determinant is E=1, then both ¥ and @ as C[T]-modules are

D CITI/(T-1) & CIT1/(T-¢),

n-1 copies

whose space of C[T]-endomorphisms has dimension (n-1)2 + 1. If their
common determinant is 1, then both ¥ and § as CI[T]-modules are

P [TI/(T-1) & C[T1/(T-1)2,

n-2 copies C

whose space of C[T]-endomorphisms has dimension (n-2)2 + 2 + 2(n-2).

So in both cases we find miraculously that dimX! = n? -2n + 2. Adding
up the contributions from 0, e, and A we find ¥ (P1, JxX) = 2. QED

Recall that this discussion of rigidity grew out of our desire to
recoghize which hypergeometrics of type (n,n) are induced. For the
sake of completeness, we state the following
Kummer Recognition Lemma 3.5.6 Suppose that H:=H (o;'s; E;J's) is

an irreducible hypergeometric D-module on G, of type (n,m). Let

d = 2 be a divisor of both n and m. Then the D.E. # | G, - {A} is
Kummer induced of degree d if and only if there exist Aq,.., Ay, /q and
Bq,.., By /g in € such that the sets of «'s and of E>J's mod Z (with

multiplicity) are given by
toeg'sh = L (A = 9)/d Yoy g g= o, d-1 mod Z,

proof If # is Kummer induced of degree d, then looking at the effect of
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Kummer induction on the slope zero parts at 0 and e shows that the

and the B mod Z are of the asserted form. Conversely, if the o; and

(0.4 i

1
the B mod Z have the asserted form, then we may, by the
irreducibility of ¥, suppose that the o«; and the pjare given exactly
(not just mod Z) by the above formulas (with the asymmetry in the
sign of +j). Denote by peC” any solution of the equation

(Mdn—m)d - N
We will establish the following Kummer Induction Formula:
(3.5.6.1) }[’,x(oci's; E)J'S) = [d]*}tu(Ai'S; BJ"S).
Notice first that }EM(Ai's; BJ"S) is irreducible, for if A; = BJ + r for some
re¢/Z, then dividing by d we would find that some «; is congruent to
some B mod Z, contradicting the irreducibility of ¥, (x;'s; ﬁj's). Notice
next that by Frobenius reciprocity, [dl ¥ (Aj's; BJ'S) is irreducible (on

Gy, - (N} if n=m, on G, otherwise), because
[d]*[d]*%M(Ai'S; BJ"S) ~ @C’Hld [x— CX]*}EM(Ai's; BJ"S)

= Drepy

H’LL/C(AiIS; BJ"S)
is a direct sum of d pairwise-nonisomorphic irreducibles (on G, —{uud}
if n=m, on Gy, otherwise).

So it suffices to construct a nonzero map of D-modules from
Ho (oy's; BJ"S) to [d]*J{M(Ai's; BJ"S). We will do this explicitly. It will be

easier to see what is going on if we denote by P(t) and Q(t) the
polynomials

P(t) = uTlioq  n/a(T - AD, QW) = TTioq  my/q(T-By.
For each integer k > 1 we denote by P} (t) and Qy(t) the polynomials
(note the asymmetry in the sign of *j)

Pr(t) := WJ’=O,...,k—1P(t - J), Qpt) := ﬂj=0,...,k—1Q(t + ),
and by Hypy (P, Q) the operator

Hypk(P, Q) := P(D) -xKQ (D).
Thus Hypy(P, Q) for k=1 is just the operator Hyp(P,Q) defining
H(Af's; BJ'S) = D/DHyp(P,Q). One verifies easily by induction on k that
when Hypp(P, Q) acts on the left D-module D/DHyp(P,Q), it kills the
image of 1. Now the operator Hypy(P, Q) lies in the subring

Dy = Clxk %k D = kDy ], where Dy := Xkd/dxk,
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and so there is Dy -linear map
Dy /DHypr(P,Q) - D/DHyp(P,Q), 1—1.

This map is obviously nonzero. But for any D-module T, the k-fold
Kummer induction [kl T is precisely Il viewed as a Dy-module. So we

have constructed a nonzero map
D/ DpHypp(P,Q) = [kl (D/DHyp(P,Q)) = [kl H (Aj's; BJ'S).
k and Dy := td/dt,
and view Dy as isomorphic to D by t—x, Dp—D. Then for k=d,
Dy /DRHypr(P,Q) is none other than -, («j's; ﬁj's). QED

Write the operator Hypp(P,Q) in Dy in terms of ti=x

Lemma 3.5.7 Suppose that H:=H, (x;'s; BJ"S) is an irreducible
hypergeometric H-module on Gy, of type (n,n). Then either

(1) ¥ | G, - (A} is Lie-irreducible, or

(2) ¥ | G, - (A} is induced, or

(3) # | Gy, - (A} is the tensor product WK of a D.E. W of rank one with
an irreducible D.E. K of rank n whose Ggal is finite. If in addition det¥ is

of finite order, then ¥ | Gy, - {\} itself has Ggal finite in case (3).

proof By 2.7.2 we know that if ¥ | G,y - {A} is neither Lie-irreducible

nor induced, it is W®K for some Lie-irreducible W of rank d < n with
dln, and K some irreducible D.E. of rank d' := n/d whose Ggal i1s finite.

Therefore local monodromy at A is of the form A®B with A in GL(d)
and B in GL(d'). But if both d and d' are > 2, no pseudoreflection can be

of this form. Therefore d=1, as required. Then detH = WONQdetK, with
detK of finite order, so W is of finite order if and only if det¥ is of finite
order; if it is, then ¥ = WQ®K itself has Ggal finite. QED

Theorem 3.5.8 ([B-HI], 6.5]) Suppose that H:=¥, (;'s; [3J~'s) is an
irreducible hypergeometric D-module on Gy, of type (n,n) which is

neither Kummer induced nor Belyl induced nor inverse Belyl induced.
Denote by G the differential galois group of ¥ | G, - {A}, by X:=ZE>J~—ZO<1.

(1) The group G is reductive. If ¥, 2, and ZBJ' are all in Q (i.e., if det¥
is of finite order), then GO =G0.der Otherwise, GO = (BmGO’der.

(2) The group G9:.der is either {1}, SL(n), SO(n), or (if n is even) Sp(n).
(3) if exp(2miy) = +1, GO-der= (1) or SL(n).
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(4) if exp(2miy) = -1, G0»der = {1} or SL(n) or SO(n).

(5) if exp(2miy) = +1, GP:der = SL(n) or (for n even) Sp(n).

(6) if y is irrational, G=GL(n).

proof The local monodromy around A is a pseudoreflection of
determinant exp(2miy). So if ¥ | G,y - {A} is Lie irreducible, the theorem

1s an immediate consequence of the Pseudoreflection Theorem 1.5. In
view of the preceding Lemma, the only other case is when ¥ | G,y - (A}

i1s the tensor product W®K of a D.E. W of rank one with an irreducible
D.E. K of rank n whose Ggal is finite. In this case GO is either {1} or (EN
depending on whether or not W, or equivalently det¥ | Gy, - {A}, is of

finite order. So (1) through (4) hold (trivially) in this case. If Y is either
in Z or is irrational, then we cannot be in this case, for then local
monodromy around A is a either a unipotent pseudoreflection or is
Diag(exp(2miy), 1, 1,..., 1), no power of which is scalar. QED

We can be more precise about the distinguishing the the various
Lie-irreducible cases. (We will discuss later, in 5.4-5.5 and then again in

8.17, how to detect the case when G9.der is (1})
Corollary 3.5.8.1 Notations and hypotheses as above, suppose further

that GY-der = {1}, Then GU.der is SO(n) (respectively Sp(n)) if and only if
there exists 6¢C such that H®xS =Ho (o + 8's; Bj+ 8's) is self dual and

its autoduality pairing is symmetric (resp. alternating).

proof Notice that G9deTr is the same for any twist H®x® as for H. So if

some twist H®x? is self dual, then GU-der is contained in SO(n) or
Sp(n), depending on the "sign" of the autoduality. In view of the paucity

of choices for G0.der g0,der ymyst be SO(n) or Sp(n).

Conversely, suppose that GO.der 5 50(n) (so n > 3 since SO(2) is
not semisimple) or Sp(n). We must distinguish several cases.

If gO.der g Sp(n), then G must be contained in the normalizer in
GL(n) of Sp(n), which is G,,Sp(n). Since the only scalars in Sp(n) are #1,
we can construct a character X of G by writing an element of G as tA
(t in Gy, A in Sp(n)) and defining X (g)= X (tA) := t2. This character of G
corresponds to a rank one D.E. which is in the tensor subcategory <¥>.

Now H has regular singularities at 0,\, and e, and its local monodromy
around A is a unipotent pseudoreflection (otherwise we can't have
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gO,der - Sp(n)). Therefore every object in <H> is regular singular at O,
A, and e and has unipotent local monodromy at A. Therefore the rank
one D.E. on G, - {\} corresponding to X is regular singular at 0, A, and

e and has trivial local monodromy at A, so it must be the D.E. for x 0

for some 8. Then 'J’E®X_8/2 has its differential galois group inside +Sp(n)
= Sp(n), as required.

1f GO.der is sO(n), n = 3, then G must be contained in the
normalizer in GL(n) of SO(n), which is G,,0(n). As O(n) contains no
scalars except +1, so we get a character X of G,,0(n) by Y (tA):=t2. The

corresponding rank one D.E. is in <H{>. But ¥ has regular singularities at
O,A, and oo, and its local monodromy around A is a true reflection

(otherwise we can't have G9:der = S0(n)), so any object in <H> is
regular singular at 0, A, and . Let us denote by T, the local

monodromy of ¥ around A. If we can show that X (T,) = 1, then just as
above X corresponds to the D.E. for some XS, and R@X_8/2 has its
differential galois group inside *+O(N) = O(N), as required. To show that
X (Ty) = 1, suppose not; then X(Ty) = 52, where &2 = 1. This means that

T>\=§_1A with A in O(n). But in a suitable basis eq,..., e, of the
representation space, the reflection T, is Diag(-1, 1,..., 1). So we find

that the matrix A:=Diag(-g, E,..., £) € O(n) for some nondegenerate
quadratic form < , >. To see that this is impossible for n > 3, we argue as
follows. Denote by V the line Ceq, and by W the C-span of eg,..., en.

Writing vectors in the form v+w, with veV and weW, we have A(v+w)
= -Ev + Ew. As A€O(N), we have

vHw, vHw> = CA(v+w), A(V+w)> = <—EV + EwW, —EV + EWD.
Expanding out, we find

CV, VO + 24V, WO W, Wy = BV, V- 2E2CY, W + EZKw, wo.
Taking v=0 (resp. w=0), we see that &2 = 1 forces <w, w> = 0 =<v, v>.
Therefore V and W are totally isotropic, and so WN (V) = 0. But both

W and L(V) are codimension one subspaces, so WN1(V) = 0 is impossible
if n > 3. QED

In the case n¥m, we have
Theorem 3.6 Suppose that H:=H, (o's; ﬁj's) is an irreducible

hypergeometric D-module on G, of type (n,m), n # m, which is not

Kummer induced. Let N:=max(n,m) be the rank of #, and G its
differential galois group. Then
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(1) G is reductive. If detH is of finite order (i.e., if In-m| > 1 and if

2o €Q when n > m (resp. ZE;J €Q when m > n)) , then GO =g0.der;
otherwise GO = (EmGO’der.

(2) If In-ml is odd, G%der is SL(N). If In-m| = 1 then G is GL(N).
(3) If In-ml is even, then GYder is SL(N) or SO(N) or (if N is even) SP(N),
or In-m|=6, N=7,8 or 9, and G0-der is one of
N=7: the image of Go in 1ts 7-dim'l irreducible representation
N=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

N=9: the image of SL(3)xSL(3) in std®std.

proof This theorem, "mise pour memoire”, is just the special case d=1
of 2.11.10. QED

The discrimination among the various possible cases is aided by

Corollary 3.6.1 Notations and hypotheses as above, g0.der is contained
in SO(N) (resp. in Sp(N)) if and only if there exists 8€C such that

HR®xO = Hylog + 8's; Bj+ 8's) is self dual and its autoduality pairing is

symmetric (resp. alternating). Moreover, if N is odd, then gO.der iq
contained in SO(N) if and only if there exists 8€¢C such that

H®xD := My (o + 8's; pj + 6's) has its Ggg) C SON).

proof The proof is entirely analogous to that of 3.5.8.1. If some twist

HRxO of H is self dual, then gO.der js certainly contained in SO(N) or in
Sp(N), depending on the sign of the autoduality.

if GO-der ¢ O(N) (resp. Sp(N)) , then G C Gy O(N) (resp. G, Sp(N)).

Indeed, if ' is any irreducible subgroup of GL(N) which respects a
nonzero bilinear form < , >, then its normalizer in GL(N) lies in in the
corresponding similitude group. [For if A€GL(N) normalizes I' then the
form (x,y) := <Ax, Ay> is also ['-invariant, so a scalar multiple of <, >]

Now consider the character X of G defined by X (g)=x(tA):= t2. The
corresponding rank one D.E. on G, is in <#>. Now In-m| is nonzero (by
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assumption) and even (otherwise G0:.der is SL(N)), hence |n-m]| > 2.
Therefore all slopes of ¥ at 0 or « are < 1/In-ml| < 1, and hence every
object of <¥> has all its slopes < 1 at O or e. So any rank one object in

<H> has slope zero at 0 and oo, so is the D.E. for %% for some 8. Taking

the 6 corresponding to X, }[’,®X_8/2 has its differential galois group in
+0O(N) = O(N) (resp. in #+Sp(N) = Sp(N)).
If N is odd, then O(N) is the product {#1}xSO(N), so if Ggal CO(N)

but Ggal ¢ SO(N), its projection onto the {+1} factor is a character of

order two corresponding to a rank one object of <H>, necessarily the
DE. for x1/2. QED

Lemma 3.6.2 Let H:=H, (c's; ﬁj's) be a hypergeometric D-module on
Gy, of type (n,m), n > m. Then Ggal € SL(n) if and only if n-m > 2 and

ZO(i € 7.

proof If n-m=1, then det¥ has slope 1 at e, so nontrivial. If n-m > 2,

then det(H) is necessarily the D.E. for x9

that § = Zoci mod Z. QED

3.7 Intrinsic characterization of hypergeometric equations
We now turn to the intrinsic characterization of irreducible
hypergeometric D-modules on G, among all irreducible D-modules on

(ES

m
Theorem 3.7.1 Let Tl be an irreducible, nonpunctual holonomic D-
module on G,,. Then Il is hypergeometric if and only if its Euler

, some §; looking at zero we see

characteristic X (Gp,, M):=X (H*pr(Gy,, M) is -1.

proof It is obvious from the elementary Euler Poincare formula on G,
(2.9.13) that X (Gy,, ¥)= -1 for any hypergeometric # on Gy,

irreducible or not.

Suppose now that Tl is an irreducible, nonpunctual JD-module on
Gy with X(Gy,, M= -1. We will make essential use of
Lemma 3.7.2 (compare 3.5.5) If Tl is an irreducible, nonpunctual D-

module on G, with X(G,,, M)= -1, then for any twist ‘JTL®X8,
dim g Solng(M ®x5) + dimSoln o, (M=) < 1.

proof The twist M®x is also irreducible on G and its X is the same

m:
as that of N (this is obvious from the Euler-Poincare formula), so it
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suffices to prove
dimgSolng(M) + dimgSoln o, (M) < 1.

Let k: Gy —P1 denote the inclusion. Then by 2.9.8 we have a short
exact sequence on pl
0 = kgl — kM - §g®Hom(Solng, €) & 6., ®Hom(Soln,,, €) = 0
Let us admit temporarily that

(%) dimgHlpp(PL, kM) = 1, H2pR(PL, kM) = 0.
Then as HlDR(IPl, 6g) = C = HlDR(IPl, 8o ), the long exact cohomology
sequence gives us a surjection

HIpr(PL, kM) —> Homg(Solng, €) & Homg(Solng,, C),

whence the required inequality on dimensions.
To prove (%), we argue as follows. We have

Hipr(P1, kM) = HipR(Gyy, M),
and only HO and H! are possibly nonzero. But HO = Hom py(G,7M)

vanhishes, because if not then Jll, being irreducible, would be isomorphic
to O, which is nonsense because X((Em, J) = 0. This proves that

dimgHIpR(PL, kM) = 1. To prove the vanishing of HZ2pRr(P1, ki, M), it
is equivalent by duality to prove the vanishing of HODR(IPl, K, (7).
But ki, (N*)C k, (M*), so HOpR(PL, k1, (M*) ¢ HOpR(PL, k (M*)) =

HODR((Em, M*) which vanishes (otherwise > = G by irreducibility,

whence M = O, nonsense). QED

Let jiU— Gy, be the inclusion of a dense open set such that j*7l is

a D.E. on U. Because Il is irreducible, Tl = ji,j* 7. Since X (G,4)=0, the
Euler-Poincare formula gives

-1 = X(Gypy, Jid™ M) = -Irrg(M) -Irr (M) - X U totdrop,,

x €@
l.e.,

Irrg() + Irr (M) + ZocE(Bm—U totdrop, = 1.

As all the lefthand terms are nonnegative integers, there are three
possibilities.
(case 1:reg) Irrg(T) = 0 = Irr (J), totdrop, = O for all x€G,-U save

one, call it A, and totdrop, = 1.
In this case, totdrop, =0 forces dropy=0 (by 2.9.10), whence



Chapter3-The generalized hypergeometric equation-21

dropy=1 and Irr, () = 0. This means exactly that T | G, - {7} is an

irreducible D.E. with regular singularities at 0, A, e, and its local
monodromy around A 1s a pseudoreflection.

(case 2: O-irreg) Irrg(M)=1, Irr (TM)=0, totdrop, = 0 for all a€G,-U.
(case 3: eo-irreg) Irrg(M)=0, Irr,(M)=1, totdrop, = 0 for all xe€G-U.

In cases 2 and 3, which are interchanged by multiplicative

inversion, Jll is an irreducible D.E. on Gy, and the sum of its

irregularities at 0 and o i1s 1.

By multiplicative inversion, we may assume henceforth that we
are ln case 1 or case 3, l.e,, that 0 1s a regular singularity. By the
lemma above, the formal decomposition of M®C((x)) is of the form

MRC((x)) = &, C((x))IDI/C(x))IDI(D-ox) e,
and that of M®C((1/x)) is of the form

MCU(1/x)) = Dy C((1/x)ID1/C(1/x)DID-p) BB (MAC((1/%)))

and no o« with n

slope>0?

%0 1s congruent mod Z to any p with mE);éO.
Let n be the generic rank of Jll, and let m be the dimension of its

slope=0 part at . Let o1, .., @ be the «'s with multiplicities ny > 0
occuring in MC((x)), P(t) := TT(t - o), and let pq, .., pyy be the p's
with multiplicity meg > O occurring in the slope zero part of
MC((1/%)), Qt) := TT(t - E’j)- We choose all the aj's and all the pj's to

lie in some fundamental domain for C/Z, say in 0 < Re(z) < 1; by this
choice of o's and B's we have

gcd(P(t), P(t+k)) = 1 and gcd(Q(t), Q(t+k)) = 1 for any k=0 in Z.
By 2.11.4, we have

MYC((x)) = CU(x))DI/C((x))DIP(D),

MRC((1/x)) = C((1/x)IDI/C((1/x)ID]Q(D) & (MIC((1/x)))

ope>0-
We will show that there exists A€C* such that H:=¥, (o's; BJ"S) = JN.
In case 1, one takes for A the unique point in G, where Jll is not

a D.E. In this case the existence of the isomorphism ¥ = Il is given by
3.5.4.

In case 3, we will give an algebraic version of the proof of 3.5.4 in
the D-module context. We must first explain how to choose A in this
case. We will compare the slope decompositions of MC((1/x)) and of
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Hqlaxy's; E;is)@(ﬁ((l/x)). Let us write
W= (MAC(L/%)))0p0505 Vo= (Hqlag's; py's)®C((1/x)))

W and V both have rank d:=n-m, and all slopes 1/d.
DetJl has slope zero at 0, and slope < 1 (in fact < 1/d) at o, so it

slope>0-

is the D.E. for Xgeyx, for some 6, ¥ €C. Moreover, Y=0 if and only if d=1
(if d > 1, then detIl has slope zero at o, while for d=1 it has slope 1).
Looking at the local expression for Jll near 0, we find 6§ =>«; mod Z.

Looking near oo, we see that det(W)®x>Bj = %0 ¥XC((1/x)) as D.E.'s on
C((1/x)), i.e.,

det(W) = x>~ ZBje¥X(C((1/x)), with y=0 iff d=1.
Repeating this same argument for Hq(o;'s; BJ"S) instead of I, we find

det(V) = xZo; - ZPje®XC((1/x)), with §'=0 iff d=1.
[f d=1, these are expressions for W and V themselves, and they
show that some multiplicative translate of V is isomorphic to W. If
d > 2, the y=8'=0, and det(V) = det(W), so by 3.4.1 some multiplicative
translate of V is isomorphic to W. So in either case, some multiplicative
translate H:=H- (a's; E;J'S) of Hq(oy's; |3J~'S) has HQC((1/x)) =
M®C((1/x)). This determines A. Of course the choice of the o;'s was

made in such a way that HQ®C((x)) = MAC((x)).
So 1t remains only to prove the following

Rigidity Theorem bis 3.7.3 Let Jll and H be irreducible D.E.'s on G,

such that
(1) X (G, M) = X (G, B = -1

(2) There exists an isomorphism H®C((x)) = MIC((x)), and MIC((x))
has all slopes zero.
(3) There exists an isomorphism HQC((1/x)) = M C((1/x)).

Denote by Hom(¥, T) the internal hom D.E. H*®gJll on G and by

m’
k: (Eum —>IP1 the inclusion. Then
(1) x(PL, kiyHom(#, M)) = 2> 0,

(2) There exists an isomorphism # = 7.

proof To prove (1) = (2), we argue exactly as in the proof of 3.5.4. The
positivity of X = hO + h2 - nl implies that at least one of HO or HZ is
nonzero. The HODR(IPl, kigyHom(H, M)) is Hom (O, kixHom(¥, T)) =
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Hom (ki O, kiyHom(¥, M)) = (by 2.9.1.3) Hom p(G, Hom(¥, T)) =

Hom (¥, M), any nonzero element of which is necessarily an
isomorphism by irreducibility. Similarly, H2DR(I]31, ki, Hom(H, M)) is
dual to HODR(IPi, ki, Hom(I, ¥)) = Hom p(TN, ¥).

So it remains to show that X(IPl, kiyHom(H, M)) = 2. By the

Euler-Poicare formula, we have
X(IPl, kiyHom(¥, M)) = -Irrg - Irr, + dimgSolng + dimgSoln .

We will prove that, denoting by n the rank of Jll, by m the rank of its
slope zero part at oo, and by d:=n-m, we have
(1) dimgSolng = n.

(2) 11”1’0 = 0.
(3) dimgSolng, = m + 1.
(4) Irro, = d-1 + 2m.

Since n = d + m, this will give X(IPi, ko Hom(H, M)) = 2.

First notice that solutions of any D.E. are the same as horizontal
sections of its dual, so we have

Solng = Hom p(MC((x)), HRC((x))) = End p(MIC((x))),
Solng, = Hom p(MAC((1/x)), H®C((1/x))) = End p(MRC(1/x))),

the final isomorphisms because by hypothesis we have
MRAC((x)) = HAC((x)) and MRC((1/x)) = HRC((1/x)). Similarly, the
irregularities in question are those of End(MN)®C((x)) and of
End(M)®C((1/x)) respectively.

We have seen that there exist polynomials P = P, and Q = Qp

such that
MC((x)) = C((x))[D]/C((x))DIP(D),
MC((1/x)) = C((1/x))[D]/C((1/x))D]Q(D) & W,
and such that
gcd(P(t), P(t+k)) = 1 and gcd(P(t), P(t+k)) = 1 for any k=0 in Z
End p(M®C((x))) is thus the kernel of P(D) acting on the left D-module
C((x)IDl/C((x))IDIP(D) = C((x))®c(CI[DI/CIDIP(D)), and the relative
primality (gcd(P(t), P(t+k)) = 1 for any k=0 in Z) shows that this kernel
is the subspace C[D]/CIDJP(D) of "constant terms". This proves (1). And
(2) is obvious, because Tl and hence EndIl have all 0-slopes zero.
To prove (3) and (4), notice that because W has all slopes > 0 and

is irreducible, while C((1/x))[D]/C((1/x))[D]IQ(D) has all slopes zero, there
are no nonzero homs between them in either direction, so we have
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End p(M®C((1/%))) = Endp(C((1/x))[DI/C((1/x))DIQ(D)) & Endp(W).
These two terms have dimensions m (proven just as above) and 1 (by
the irreducibility of W) respectively, which proves (3). To prove (4),
which only concerns slopes, it suffices to write M @C((1/x)) as

(rank m, all slopes 0) @ W, W of rank d, all slopes 1/d.
Then EndM@C((1/x%)) is

(rank m?, all slopes 0) ® EndW &

@ (rank m, all slopes 0)@W @& W>*®(rank m, all slopes 0).
The last two terms contribute 2md slopes 1/d, so a total contribution of

2m. So it remains to see that EndW has d slopes 0 and d2 - 4 slopes
1/d. For this it suffices to check that [d]*(EndW) = End([d]*W) has d

slopes O and d2 - d slopes 1. But this is obvious, since for any W of rank
d with all slopes 1/d, by Levelt's structure theorem (cf [Ka-DGG],2.6.6])

there exist §¢C and yeC*such that

[d]*W = & . (the D.E. for x%et¥¥) and hence

Ceu

End([d]*W) = & . (the D.E. for e(t-M¥x) QED

g&n el

Remarks 3.7.4
(1) The irreducible, punctual D-modules on Gy, are precisely the

delta-modules 84:= D/D(A-x), A€C™; they also have X (G, 8,) = -1. The
operators A-x are precisely the hypergeometric operators Hyp, (& ,9) of

the excluded type (0,0).

(2) The proof given of 3.7.3 is just a HD-module translation of the
topological proof of 3.5.4. Of course one can give a similar D-module
proof of the 3.5.4 itself.

As an application of this intrinsic characterization, we can also
partially analyse the semisimplification of non-irreducible
hypergeometrics.

Lemma 3.7.5 For any holonomic D-module Tl on Gy, X(Gpy, M) < O,
and X (Gy,, M) = 0 if and only if Jll is a successive extension of the
objects x*C[x, x~11.

proof Any holonomic D-module, having finite length, is a finite

successive extension of irreducible holonomics. By the additivity of X,
we are reduced to the case where Jll is irreducible. If Tl is punctual,
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then it a delta-module with X = -1.If Jll is nonpunctual, then for any

dense open set j: U — Gy, such that j*Jl is a D.E. on U, T = jij*,
and the Euler-Poincare formula for X (G, M) = X(Gy, jixJ*M) is

X Gy, M) =

=rankg(j* M) X (Gy,) - er[Pi—Gm Irr (M) - X
Since X (Gyq) = 0, we see that X (G, M) < 0. By 2.9.10 we have

o€ Gy, -U totdrop,.

equality if and only if Jll is an irreducible D.E. on G,y which is regular

singular at both 0 and <, in which case I is an x*C[x, %~ 1] by 2.11.2.
QED

Corollary 3.7.5.1 Let Jl be a holonomic D-module on G, with
X (G, M)= -1,

If N is not irreducible, its semisimplification JNSS is the direct sum
N@T where Jl is irreducible with X (Gy,, J1)= -1 and where T is a

direct sum of x*C[x, x~1J's.

Corollary 3.7.5.2 Let ¥ = H, (a's; BJ"S) be a hypergeometric D-
module of type (n,m) which is not irreducible. Let Y1, ¥y be the set

with multiplicity of common exponents mod Z of the o«'s and the p’s,
i.e., the polynomial TT,_, _(t - exp(2miyy)) is the gcd of the two

-----

polynomials TT, _, m(t - exp(2mipy).

..........

Remumber the «'s and the p's so that «;=p;j=Y¥; mod Z for i=1,..., r.

Then for some pneC™, we have

HSS = @xViClx, x 1] ® }Eu(O‘r+1’ s Oy Br+lso Pr)-

Moreover, if n=m then =2A.

proof Apply the above corollary to H. In view of the intrinsic
characterization of irreducible hypergeometrics, the 7l is an irreducible
hypergeometric. The exponents at 0 and o of 1@ T must be those of ¥,
so we get the asserted forms for Jl and 7. If n=m, then =\ because it

is the unique point of G, where ¥ or equivalently X% is not a D.E.QED

Another application is to analyse behavior under the d'th power
map [dl: G, = G- The following lemma gives an intrinsic proof of the

Kummer Induction Formula 3.5.6.1, but without specifying the
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multiplicative translates involved.

Lemma 3.7.6 Suppose Tl is an irreducible holonomic D-module on Gy,
and suppose that X (Gy,, ) is relatively prime to d. Then [d], TN is
and X (G, [dlIT) = X (Gyy, M).

proof Since [d] is finite etale, for any holonomic D-module T on Gy,

irreducible on Gy,

we have

X (G, [d M) = X (G, T,
We also have

X (G, [dI¥IN) = dX(Gpy, M),

say because [d] [d]*TN = &; _ 44 M®Rx/d, and Mx* has the same
as M (2.11.1).

Now [d]*[d] TN = & [x = ¢x]*TN is a sum of d pairwise

ey

nonisomorphic irreducibles. [For if N = [x = tx]*IN for some root of
unity ¢ of exact order r | d, r > 1, then T, being irreducible, descends

through the finite etale map [r]: Gy, = Gy, say TN = [r]*Tl, whence

X (G, M) = rX (G, TV) is divisible by r, contradiction.] Therefore the
only subobjects £ of [d]*[d], I are the partial direct sums of the
objects [x = ¢x]*N, and of these only 0 and [d]*[d], I\ are stable by
L =[x = ¢x]*L for every ¢ € Hq. If [dIxIN has a proper nonzero
subobject K, then [d]*X is a proper nonzero subobject £ of [d]*[d], M

which is stable by £ = [x = ¢x]*L for every ¢ € M4, contradiction.
QED

In the same vein, we have
Lemma 3.7.7 Suppose Jll is an irreducible holonomic D-module on Gy,
with X (Gy,, M) = 0, and that for some peC™ there exists an

isomorphism Il = [x = ux]*I. Then W is a root of unity of order
dividing X (G, ).

proof If | is a root of unity, say of exact order r, then Il descends
through [r] and hence r divides X (Gy,, TN). If W is not a root of unity,

then I has Irrg = 0 = Irr., (cf. [Ka-DGG, 2.3.8]), and consequently Tl
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must fail to be a D.E. at some points of G, if it is to have
X (Gpy, M) = 0. So the set of its singularities is a finite nonempty subset

of G, which is stable by x— |ux, whence i must be a root of unity. QED

3.8 Direct Sums, Tensor Products, and Kummer Inductions

Lemma 3.8.1 Suppose that # and ¥’ are irreducible nonpunctual

hypergeometric D-modules on G, , of types (n,m) and (n',m")

respectively, whose generic ranks max(n,m) and max(n',m') are both

> 2. Suppose that there exists a dense open set j: U = G,,, a rank one

D.E. £ on U, and an isomorphism of j*# = j*H'®L in D.E.(U/C). Then

(1) (n,m) = (n',m").
(2) If n = m, denoting by A (resp. A\') the unique singularity of ¥ (resp.
) in G we have A = A\

(3) If (n,m) is not (2,1),or (1,2) or (2,2), then L is x*Uyy for some «€C,

mp

and ¥ = H'®x* as D-modules on G,,.
proof Both ¥ and ¥#' have all their slopes at e (resp. 0) < 1. Since &£ is

a direct factor of Hom(j*¥', j*H), its slope at o (resp. 0) is < 1, so
either O or 1.

Suppose that £ has its e -slope 1. Either ¥' has all its e -slopes < 1,
or n"-m’' =1 and ¥’ has one e -slope =1 and m" e -slopes =0. In the
first case, ¥ would have all its eo-slopes =1, which is possible only if
(n,m) is (1,0), a case excluded by hypothesis. In the second case, ¥ has
at least m' co-slopes =1. Som’' < 1. But m’ > 1 because ¥’ has generic
rank > 2, so m'=1, ¥ has exactly m' e-slopes =1, and n' (=1+m')= 2. So
¥ has type (2,1), since it has the same generic rank 2 as #' and has a
single oo-slope =1. Thus we conclude that (n,m)=(n",m")=(2,1) if £ has
its co-slope 1.

Similarly, if £ has its O-slope =1, then (n,m)=(n",m")=(1,2).

If £ has slope =0 at both 0 and o, then ¥ and ¥' have the same
slopes at both 0 and <, so they have the same types (n,m)=(n",m"). So
(1) is proven in all cases.

[f n#m, then both ¥ and #' are D.E's on Gy, so jixL is a D.E. on

Gy, being a direct factor of the D.E. jixHom(j*H', j*¥H) = Hom(H', H).

Therefore jix £ = x*Clx, %~ 1] for some «. This proves (3) if n = m.
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If n=m, then ¥ (resp. #¥') has a finite singularity at a unique point
A (resp. A') in Gy, and the local monodromy there is a pseudoreflection.

We first show that A = \'. For if A = ', the isomorphism
JH = FH L
shows that j*¥®'® L has trivial monodromy at A', which implies that

J*H' has scalar monodromy at A'. But as the rank is > 2, no
pseudoreflection is scalar. This proves (2).

If n=m > 3, then £ must have trivial local monodromy at A\’
(since the product tA of a nonzero scalar t with a pseudoreflection A in
GL(n > 3) has = n-1 > 2 eigenvalues t, so cannot be either trivial or a

pseudoreflection unless t=1). So again we find that j,L = x*C[x, x~1]

for some «. Therefore our isomorphism is j*¥# = j*(H' @x*). Applying

Jix yields ¥ = H'®x*, as required. QED

Proposition 3.8.2 Suppose that 4, .., #,, are n > 2 irreducible
nonpunctual hypergeometric D-modules on G, with ¥; of rank N; > 2.

Suppose that
(1) if Ny = 2, #; is of type (2,0) or (0,2).

(2)for each i, the differential galois group G; C GL(N;) of ¥; (restricted to
some dense open U where it is a D.E) has GiO,der one of the groups

SL(N;), any Nj = 2,

Sp(Nj;), any even Nj = 4,

SO(Nj), Ny =7 or any N; = 9,

S0(3), if Nj = 3 and no Nj = 2,

S0(5), if Nj = 5 and no N; =4,

50(6), if N; = 6 and no N; = 4,

Gy C SO(7), if Nj = 7,

Spin(7) C s0(8) if Nj = 8, and no Nj=7.

Suppose that for all i=j, and all « € C*, there exist no isomorphisms

from H;®x* to either }(’,J- or to its adjoint (}(’,J-)*. Then the differential
galois group G of ®H; has g0.der - WGiO’der, and that of ®H; has
GO.der = the image of WGiO’der in ®Stdni.

proof In view of the above Lemma, this is just the spelling out of the
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Goursat-Kolchin-Ribet Proposition 1.8.2. QED

Corollary 3.8.2.1 Let ¥#:= H,(x's; p's) be an irreducible nonpunctual
hypergeometric H-module on G, of rank N > 2. If N = 2, suppose that
H is of type (2,0) or (0,2). Suppose that ¥ is self-dual, and that Ggal

(resp. (Ggal)o) is one of the groups G:

Sp(N), if N even,
SO(N), if N = 4, 8,
Gy C SO(7), if N = 7,

Spin(7) € SO(8) if N = 8.
Let d 2 2, and let 4, ..., g be d distinct elements of C*. Then the
direct sum

D; }F’?\/ui(OCIS; p's) = @;lx —» uxlI*H

has Ggal (resp. (Ggal)o) the d-fold product group gd.

proof Because ¥ is self-dual, each [x = ;x]*¥H is self-dual, it suffices
by 3.8.2 to check that there exist no isomorphisms
[x = ux]*H = HR®xX

for any @ = 1, and any « in C. But # and [x = px]/*¥ have the same
exponents at zero (resp. =), so the map x = x + & must map the

exponents at zero (resp. «) to themselves mod Z. But then HQ®x* = ¥,
and so we obtain an isomorphism

[x » ux]*H = H.
But for i = 1, no such isomorphism exists, thanks to 3.7.7. QED

In the case of Kummer induction, 3.8.2 gives:
Theorem 3.8.3 Let H:= ¥, (x's; p's) be an irreducible nonpunctual

hypergeometric HD-module on Gy, of rank N = 2. If N = 2, suppose that

H is of type (2,0) or (0,2). Suppose that ¥ has (Ggal)O,der one of the

groups G:
SL(N),
Sp(N), if N even,
SO(N), if N = 4, 8,
Go C SO(7),if N = 7,

Spin(7) € SO(8) if N = 8.
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Fix an integer d > 2. Let S C nq(C) be a nonempty subset of ug(C)
which is maximal among all nonempty subsets of ny(C) which satisfy
the following condition:

whenever ¢4 and ¢9 are distinct elements of 5, and § € C, there

exists no isomorphism from }l’,)\tl(oc's; 5'5)®X8 to either Z]’E)\CZ(oc's; B's)
or to its adjoint (}ﬁ)\g2(o<'s; B's))*.

Then [d]x¥H, (a's; p's) has (Ggal)o,der =~ GO,

construction-proof For any D.E., pullback to a finite etale connected
covering does not change (Ggal)o, nor a fortiori (Ggal)O,der_ Now for any

D-module M on G we have

m>

[l = @ ¢y lx = cxd* 0.

Applying this to ¥, we find that the (Ggal)o:der for [d] H is equal to
that for

@C < le }t’}\c(O(IS, ﬁIS).
Since (Ggal)O,der I1s Insensitive to twisting any of the factors by rank

one D.E.'s, the (Ggal)O,der for [d] ¥ is equal to that for
@C < S Rxc(O(IS, BIS).
Now apply 3.8.2. QED
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Detailed Analysis of the Exceptional Cases

(4.0) We now turn to a detailed discussion of the exceptional
possibilities for the differential galois group G of an irreducible
hypergeometric HD-module on Gy, of type (n,m), n # m, which is not

Kummer induced. Let N:=max(n,m). Recall that the exceptional

possibilities for GO0.der can occur only for I[n-ml|=6, N=7,8 or 9:
N=7: the image of Go in 1ts 7-dim'l irreducible representation
N=8: the image of Spin(7) in the 8-dim’'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std
N=9: the image of SL(3)xSL(3) in std®std.

By inversion, we may and will assume n > m.

Proposition 4.0.1 (Ofer Gabber) For N=8, neither of the two groups
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

occurs as GO.der for 5 hypergeometric of type (8,2).

proof Suppose that gO.der for 4 hypergeometric ¥ of type (8,2) is one
of the groups

the image of SL(2)xSp(4) in std®std

the image of SL(2)xSL(4) in std®std.

By 1.8.5, the normalizer in GL(std®std) of this GO-der is G, ,GY.der, so
we have G0.der c g ¢ GmGO,der‘ Therefore the conjugation-induced

action of G on Lie(G0.der) respects each of the two factors , and its
action on Lie(SL(2)) defines a sur jection of G onto SO(3). View this

sur jection as an irreducible three-dimensional representation p of G,
and then view p as an irreducible rank three object V In the
subcategory <H> of D.E(G,/C). Because V is in <H>, all its slopes at both

0 and e are < 1/6. Since V has rank three, both Irrg and Irr., are <

3/6 < 1, and hence V is entirely of slope zero at both 0 and . But on
Gy, the only such irreducible D.E.'s are of rank one, contradiction. QED
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4.1 The G9 case

This case can arise only for hypergeometrics of type (7,1) or (1,7).
By inversion, it suffices to treat the case (7,1). Notice that an
irreducible hypergeometric of type (n,1) cannot be Kummer induced.

Now Go C SO(7), so if GgO.der for ¥ is Go, then by 3.6.1 there exists a
twist H®x% with G ¢ SO(7).

Lemma 4.1.1 Suppose G € SO(7) and GY:der is Gy. Then G is Go.
proof Indeed, Gy is its own normalizer in SO(7) [every automorphism of

Go is inner, and SO(7) contains no nontrivial scalars]. QED

Lemma 4.1.2 H,(otq, ..., ®7; pq) is irreducible with Ggal C SO(7) if and
only if there exist x,y,z € such that after renumbering we have
(g, .., x7) = (0, x, -x, y, -y, 2z, -z) mod Z7, and pq1 = 1/2 mod Z, and

none of x,y,or zis = 1/2 mod Z.
proof First of all, such an equation #,(0, x, -x, y, -y, z, -z; 1/2) is

irreducible, self dual and of determinant one. If }(’,x(ocl, ey 75 E’l) 1s self
dual, then p1 must be 0 or 1/2 mod Z. If Ggal lies in SO(7), then its local
monodromy at zero must lie in SO(7). But the eigenvalues of any
element of SO(7) are of the form (1, a, a_l, b, b_l, c, c™1) for some a,b,c
in C*. As the eigenvalues of local monodromy at zero are the
exp(21Tio<J)'s, we get the existence of x,y,z €C such that after
renumbering we have (a4, .., x7) = (0, %, -x, y, -y, z, -z) mod z7.
Since H is irreducible, pq cannot be 0 mod Z, so pq = 1/2 mod Z.

Irreducibility now insures that none of x,y,z can be = 1/2 mod Z. QED

Lemma 4.1.3 If H,(ocq, ..., ot7; pq) is irreducible with Ggal C Gy C
SO(7), then there exist x,y €C such that after renumbering we have
(g, .., x7) = (0, x, -x, y, -y, xty, -x-y) mod Z7, and pq1 = 1/2 mod Z,

and none of x,y,or x+y is = 1/2 mod Z.

proof The eigenvalues of any element of Gy In its seven-dimensional

representation are of the form (1, a, a1l b, b1l ab, (ab)™1) for some

a,b in C*. Proceed as above. QED

In view of the above lemmas, the problem of recognizing which
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hypergeometrics have gO.der - Go 1s sompletely solved by

Theorem 4.1.4 Let x,y €C such none of x,y,or x+y is = 1/2 mod Z. For
any A € C*, ¥ 1= H,(0, x, -x, y, -y, xty, -x-y; 1/2) has Ggal = Go.

In view of the preceding Lemmas, this implies
Gy Recognition Theorem 4.1.5 Let x,y €C such none of x,y,or x+y is

= 1/2 mod Z. Then for any A € C*, ® = H,(0, x, -%x, y, -y, xty, -X-y;
1/2) has Ggal = Go. These are all the hypergeometric of type (7,1) with
Ggal = Go. The hypergeometrics of type (7,1) with g0.der - Go are

precisely the x® twists of these.

proof of 4.1.4.The only two possibilities for Ggal are SO(7) or its
subgroup Go. These two cases may be distinguished by the fact that for

SO(7), /\S(std7) is irreducible, while Gy has a non-zero (in fact one-
dimensional) space of invariants in /\S(std7). Thus we must show that

for ¥ as above, A2(H) has HODR((Em, A3(H)) nonzero. Here is a proof
suggested by Ofer Gabber, analogous to the proof of 3.7.5.
Denote by j: Gy, — Pl the inclusion. Since A3(H) is self dual

(because H is), its middle extension j!*AS(J{) is also self dual. By global

duality, the two cohomology groups HiDR(IPl, j!*A3(J{)) for i=0 and i=2
are dual to each other. By 2.9.1.3,
HIpR(PL, jixAS(H)) = Hom p(Op1, jixA3(H)) =

= Homp(jix 06, JixAS(H) = Homp(Og , A1) = HOpR(Gpy, AS(H)).

Therefore the nonvanishing of HODR((Em, AS(R)) will result from the
estimate
X (PL, 51, AS(H) = 2> 0.
By the Euler-Poicare formula, we have
X (PL, 1 AS(R)) = ~Irrg - Irro, + dimgSolng + dimgSoln ..

We will show that
(1) dimgSolng 2 5.
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(2) Irrg = 0.
(3) dimgSoln,, = 2.
(4) Irro, = 5.

In order to prove (1), let us denote by T the local monodromy of ¥
around zero, and by P(T) its characteristic polynomial. We know that
as C[T]-module, ¥ is C[T]/(P(T)). In terms of the quantities

a:= exp(2mix), bi=exp(2miy),
the roots of P(T) are (1, a, 1/a, b, 1/b, ab, 1/ab).

Since H is regular singular at zero, we have

dim(ESoan(/\S(}l’,)) = dim Ker(T-1 acting on AS3(C[T]/(P(T))).

We claim that this dimension is > 5. To see this, we will resort to a
specialization argument to reduce to the case in which P has all
distinct roots.

We first treat the case where P has all distinct roots. Then T is

diagonalizable, say T = Diag(aq, .., a7), hence A3(T) is diagonalizable
with eigenvalues exactly all triple products ajajag with 1 < j < k. If we
number the aj so that they are (1, a, 1/a, b, 1/b, ab, 1/ab), then the
five triple products indexed by (1,2,3), (1,4,5), (1,6,7), (2,4,7), (3,5,6) are

all 1, so dimKer(A3(T) - 1) = 5, as required.
In the general case, we argue as follows. Let us define, for

indeterminates A, B , the polynomial
PA,B(T) = (T -1)(T - AT - 1/A)T - BT - 1/B)(T - AB)(T - 1/AB).

Then over the ring R := C[A, Bll1/AB], we can form the R[T]-module
M := RITI/(Pp p(T)), which is free of rank seven over R. The general

case results immediately from the following elementary lemma, applied
to S:=Spec(R), M:= A3(M), T:= AJ(T) - 1.

Specialization Lemma 4.1.6 Let S be a scheme, Tl an Og-module

which is locally free of finite rank n, and T ¢ End@S(‘m). For each point

s in 5, consider the induced endomorphism T4 of the n-dimensional
k(s)-vector space Tllg. For any integer i > 1, the set
{s in S where dimKer(Tg ) = i}

is Zariski closed in S.
proof Since dimKer(Tg ) + dimIm(7T ) = n, this is also the set where

dirnIrn(‘TS ) < n-i. But dirnIrn(‘TS ) < n-i e /\1+n_i(°TS) = 0. Thus our set
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is the locus of vanishing of all minors of T of a given size. QED

This concludes the proof of (1). Since ¥ is regular singular at zero,
(2) is obvious. We now turn to the proofs of (3) and (4), both of which
are tedious but straightforward. Let us denote by W the six-
dimensional wild part of H®C((1/x)). Since pq = 1/2,
HRC((1/x)) = W & X1/2(E((1/X)), whence

AS(H®C((1/x)) = AS(W) & AZ(W)®xl/2
To prove (3) and (4), it then suffices to prove (a) and (b) below:

(a) A3(W) has a 1-dim’l solution space, and irregularity 3.
(b) A2(W)®x1/2 has a 1-dim’l solution space, and irregularity 2.

Since H has trivial determinant, we see that det(W) = x1/2¢C((1/%)).

Denoting by £ the rank one D.E. for e¥, it follows from 3.4.1.1 that W is
a multiplicative translate of [6],L. Since the assertions (a) and (b) are

invariant under multiplicative translation, we may assume that

W = [6]. L.
(4.1.7) We now explain how to analyse the exterior powers of such
a Kummer-induced W. It will be clearer if we consider a slightly more
general situation. Fix a C-valued fibre functor w on D.E. (C((1/x))/C).
For any polynomial f(x) in C[x], define

f’f(x) ‘= ef(x)(E((l/x)) - the rank one D.E. for ef(X) over C((1/x)),

and denote by
Lf(x) := the one-dimensional C-space w(L¢(y)).

Pty = the corresponding character of I.

In order to describe [d],(L¢(y)), it is equivalent via descent theory to

describe [d]*[d],(L¢(y)) with its canonical action of the covering group

Mg. Using the canonical isomorphism of functors

[d]*[d],(?) = & [x = tx]*(?7),

TeEMy
this amounts to making explicit the the natural action of the group Wy

on the d-dimensional representation space

W(d, 1)) 1= @y Lty Of oo

Clearly an element |1 € g maps Lf(@:x) to Lf( and ud induces the

LEx)?
identity. So there exists an eigenbasis {e; € L.,y } of this



Chapter4-Detailed Analysis of the Exceptional Cases-6

representation space W(d, f(x)),

Ylep) = Yyepy(Yep for ¥ € Io,
on which @ € Wg acts by

[ler) = e ¢

Thus W(d, f(x)) with its action of lq corresponds via descent

theory to [d]l.(Lf(x)). For any "construction of linear algebra” Constr,
Constr(W(d, f(x))) carries an induced W4 action, and it corresponds via
descent to Constr([dl,(Lf(y))). In order to avoid confusion, we will denote
by 1,(d) C I the two inertia groups in question, and by P (d) = P,

their (common) wild inertia subgroup.

Lemma 4.1.7.1 In terms of the descent dictionary, for any
construction of linear algebra Constr we have

(1) Constr(ldl,(Lg(x)))Pe = Constr(W(d, f(x)))Pe?
(2) Constr(W(d, f(X)))Poo(d) =Constr(Wi(d, f(X)))Ioo(d),and the action of I,

on Constr([d]*(Lf(X)))Poo factors through its pg quotient.
(3) If ¥ is a character of I., which is trivial on P_, but which does not

factor through the Wgq quotient, then

(Constr([d],(L(x))® X )l = 0.
(4) If X is a character of 1., which factors through the Wy quotient,
then

(Constr([d]y(Li(x)))® %)= = (( Constr(W(d, f))=® )@y )Ha.

proof Assertion (1) is a tautology, since P, = P (d) is a subgroup of

I.(d). For (2), the point is that W(d, f(x)) is the direct sum of the

characters (). For these characters on this form one has
Vi(x)Pg(x) = PH(x)+g(x).

Therefore any Constr(W(d, f(x))) is a direct sum of characters of the
form ng(X) where g(x) is of the form 2f(¢;x). Since characters of the

form Yo (x) satisfy
Pg(x) Is trivial on P,(d) & f’g(x) has slope zero &

& g(x) is constant & ng(X) is trivial on I.,(d),
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we obtain (2). Assertions (3) and (4) then follow immediately. QED

We now turn to the explicit analysis of our [6], L, which
corresponds to W(6, x) with its pg action. Pick a primitive sixth root of
unity ¢, and denote by {ej}; ¢ 7/67 an eigenbasis of W(6, x) with
ej € Lely, and the action of ¢ given by ¢(ej) = ejy1. We will analyse the
exterior powers of W(6, x).

We already know that det(W) = x1/2¢((1/x)), so it must be the
case that det(W(6, x)) is the unique character of order two of Hg. We

can see this directly, since ¢ cyclically permutes the e; so maps
eqQrepgnezregregneg to egregnrnegnregregneq. Since W is self dual,so
are its exterior powers. Therefore if 0 <1 < 6, the wedge product pairing
AW) x ABTI(W) - AB(W)
induces anh isomorphism
A&IW) = (Al(W)®x1/2,
This cuts our work in half. However, for increased reliability we will not

use 1t.
We now systematically list the P _-invariants among the wedge

products of the e;'s in each /\J, and give the action of ¢ on these
iInvariants. A given wedge expression eil/\"'/\eij with
1 <11 <1p . < iJ~ < 6 transforms under P, by the character {4 for a

=(e)1 + ...+ (©)lj, so it is is P ~invariant if and only if (&)1 + ..+ (o)l =

0; otherwise its irregularity is 1. We write [il» ,ij] for eilA.../\eiJ.:

1 basis of (/\i(W(6, %)))P eo action of ¢ here, and its eigenvalues
1 none. none

2 [1,4], [2,5], [3,6], x> p Y -o, eigenvalues -z

3 [1,3,5], [2,4,6], x—p— o, eigenvalues *1

4 [1,2,4,5], [2,3,5,6],[1,3,4,6], aa—>p>-yY—>«, eigenvalues Wuz.

5 none. none

Thus we obtain the following table
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(4.1.7.2)

i Irr(ANW)) dim (AW Ie)  dim((AL(W)®@x1/2)1e)
1 1 0 0

2 2 0 1

3 3 1 1

4 2 1 0

5 1 0 0

In particular, we see that (a) and (b) in the proof of 4.1.4 hold.
This concludes the proof of the Gy theorem 4.1.4. QED

4.2 The Spin(7), PSL(3) and SL(2)xSL(2)xSL(2) Cases

We now turn to the remaining possible exceptional values of

gO.der hypergeometrics of rank eight. These can occur only for type
(6,2) (or (2,6), by inversion). Both Spin(7) and PSL(3) are subgroups of
S0O(8) € 0(8), while (the image of ) SL(2)xSL(2)xSL(2) is a subgroup of

Sp(8), so in virtue of 3.6.1, a x® twist reduces us to computing GO,der
for those H's with G € 0O(8) or G C Sp(8).

Our first observation is that if ¥ has G C 0(8), then the question
of whether or not G € SO(8) (i.e., whether or not det¥ is trivial) is
invariant under twisting # in such a way that it stays self dual. This a
general fact about even orthogonal groups.

Lemma 4.2.1 Suppose V is a symmetrically autodual Lie-irreducible
D.E. (on any X/C) of rank n: Ggal(v) C O(n). Let L. be any rank one D.E.

such that V®L is autodual. Then L®2 is trivial, and Ggal(V®L) C O(n).

In particular, if n is even, det(V) = det(VQL).
proof Since both V and VQ®L are self dual, their determinants have

order 1 or 2, so L i1s of finite order. Denote by X the character of ﬁldiff

given by L, and by p the representation given by V. Since V 1s Lie-
irreducible, so is V®L, and they define the same (once we fix a basis of
the line w(L), so as to be able to identify w(V) with w(v®L))

representation of the open subgroup Ker(X) of ﬁldiff. By Lie-

irreducibility, there is a single (up to a C* factor) nonzero bilinear form
<,>on w(V) = w(v®L) which is invariant by this open subgroup. By
unicity, Ggal(V) C SO(w(V), <, >), and Ggal(v®L) C O(w(v®L), <, »).

So for any Y ¢ ﬂldiff, both p(y) and X (y)p(¥) lie in O(w(v®L), <, »),
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whence X (Y), being a scalar in O(w(v®L), <, >), is 1. Therefore LO2 s
trivial. If n is even, det(V®L)=det(V)QL®N = det(V). QED

The next two lemmas show that if G C 0O(8), then the Spin(7) case
(resp. the PSL(3) case) is possible only for G € SO(8) (resp. G ¢ SO(8)).

Lemma 4.2.2 if G ¢ 0(8) and G%:der = Spin(7), then G = Spin(7) (and
consequently G C SO(8)).

proof Spin(7) is its own normalizer in O(8). Indeed, every
automorphism of Spin(7) is inner, and the only scalars in 0(8), £1, also
lie in the subgroup Spin(7), for instance because Spin(7) has a
nontrivial center. QED

Lemma 4.2.3 If a hypergeometric ¥ has G C S0(8), then GO.der
PSL(3).

proof The normalizer N of PSL(3) in SO(8) is +PSL(3). [Indeed, up to
inner automorphisms, the only nontrivial automorphism of 8L(3)
(viewed as 3x3 matrices of trace zero) is the Cartan involution

C: X -Xt
So if we view 0O(8) as the orthogonal group of the Killing form on 3&(3),
the Cartan involution of 3L(3) (now viewd inside Lie(0(8)) by the
adjoint representation) is Ad(C). But det(C) = -1, so any element of N
inducing an outer automorphism must have det = -1. As N C SO(8) by
its definition, every element of N induces an inner automorphism. And
the only scalars in SO(8) are +1. We remark for later use that this

same argument shows that the normalizer of PSL(3) in O(8) is the
semidirect product PSL(3)X{+1,+C}.]

Therefore if G € S0(8) and GY.der = PSL(3), then G C +PSL(3).
Projection onto the #1 is a character of G, so a rank one object of <>,

so an x9. So after an x©° twist, we find an # with G =PSL(3). In virtue of

the fact that one can lift projective representations of ﬁidiff of an

open, there exists a rank three D.E. V on G,, whose Ggal is SL(3) such

that End9(V) is ®. Now the highest co-slope of ¥ is 1/6. Since the
adjoint representation of SL(3) has a finite kernel, it follows from the
next lemma that the highest e« -slope of V is also 1/6. Since V has rank

three, this is impossible [the multiplicity of a slope is always a multiple
of its exact denominator, (cf. [Ka-DGG],2.2.7.3)]. QED
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Highest Slope Lemma 4.2.4 Let w be a C-valued fibre functor on
D.E(C((1/x))/C), V a D.E. on C((1/x)), p: 1o — GL(w(V)) the

corresponding representation. Suppose that G is a Zariski closed
subgroup of GL(w(V ,)) such that p(I.) C G. Let A: G — GL(d) be any

representation of G with a finite kernel, say I', and denote by VA the
D.E. corresponding to the composite representation Ae¢p of I,. Then V

and V A have the same highest slope.

proof For any x > 0, V has all slopes < x if and only if p((Ioo)(X+)) = {e},
and V A has all slopes < x if and only if p((Ioo)(X+)) c I' ([Ka-DGG],
2.5.3.6). Since p((1.,)(¥*)) is connected ([Ka-DGG], 2.6.4.2), these two

conditions are equivalent. QED

Lemma 4.2.5 If H,(cxq, .., «g; B1, Bp) is irreducible with Ggal C S0(8),
then there exist x,y,z,w €C such that after renumbering we have

(xq, .., xg) = (x, -x,y, -y, 2, -z, w, -w) mod Z8,

(g1, po)= (0, 1/2) mod Z,

and none of x,y,z,w is = 0 or 1/2 mod Z.

proof This is an exercise in the Duality Recognition Theorem 3.4. Since
the autoduality is symmetric, 2o - ZE;J' = 1/2 mod Z. Since detH is
trivial, Xo; € Z, and hence p1+po = 1/2 mod Z. Since H is selfdual,
while p1+p9 1s not in Z, we must have that 2p4 and 2py are in Z.
Therefore after renumbering (gq, pp) = (0, 1/2) mod Z. The eigenvalues

of any element of SO(8) can be grouped into four pairs of inverses;
looking at local monodromy at zero thus gives the existence of the
X,y,z,w as asserted. None can be 0 or 1/2 mod Z because of the
assumed irreducibility of ¥#. QED

Lemma 4.2.6 If #,(xq, ..., xg; B1, po) is irreducible with
Ggal C Spin(7), then there exist x,y,z €C such that after renumbering
we have

(c¢q, .., ag) = (x, -%x,y, -y, 2, -2, xty+z, -x-y-z) mod Z8,

(B1, po)= (0, 1/2) mod Z,
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and none of x,y,z, or x+y+z is = 0 or 1/2 mod Z.

proof In the subroup Spin(7) of SO(8), the eigenvalues of any element
are of the form (a, 1/a, b, 1/b, ¢, 1/c, abc, 1/ abc). Proceed as above.
QED

Lemma 4.2.7 If H,(cxq, .., og; B1, Bp) is irreducible with Ggal C 0(8)

and det¥H nontrivial, then there exist x,y,z,w €C such that after
renumbering we have

(g, .., xg) = (0, 1/2, x, -x, y, -y, 2z, -z) mod Z8,
(B1, po)= (w, -w) mod Z,
and w # 0 or 1/2 mod Z.

proof Since detH is nontrivial, but ¥ is selfdual, det¥ has order two, so
2o; = 1/2 mod Z. Since the autoduality is symmetric, we must have

2.p; In Z. Autoduality forces the «; to break into pairs of additive

inverses mod Z, and possibly a single (0, 1/2) mod Z. But this (0, 1/2)
nod Z must occur, since 2«; = 1/2 mod Z. QED

4.3 The PSL(3) Case: Detailed Analysis
Lemma 4.3.1 If # has G:=Ggg) C 0(8) and GU»der = PSL(3), then the

quotient group G/PSL(3) is cyclic of order two.

proof The normalizer N of PSL(3) in O(8) is the semidirect product
PSL(3)IX{+1,+C} of PSL(3) with the abelian (2,2) group {£1}x{1,C}. We
have PSL(3) € G C N. Because we are on G, whose topological mq is
cyclic, any finite quotient group of G must be cyclic. Therefore G/PSL(3)
is a cyclic subgroup of the (2,2) group N/PSL(3). Since G ¢ SO(8), this

quotient is nontrivial, so it must be of order two. QED

Lemma 4.3.2 If ¥ := H,(xq, ..., xg; B1, Po) has G:=Gga1 C 0(8) and
GgO.der - pPSI(3), there exist x in €, x # +1/3 mod Z, 1 in C*, and an
iIsomorphism

[2]*Ha(otq, oy otgs B1, Bo) = EndO(R (%, -x, 0; 2)).

This x, unique mod Z up to x = -x, 1s characterized by
{2001, 20tp, ..., 2axg} = {0, 0, %, x, -%,-%, 2%, -2x}.

proof Projection of G onto G/PSL(3) is a nontrivial character of order

two of G, corresponding to the two-fold Kummer covering. Therefore
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[2]*¥H has its Ggal = PSL(3). Lifting this projective representation to an
SL(3) representation, we get a rank three D.E. V on Gy, with det(V)
trivial and End%(V) = [2]*H. By the Highest Slope Lemma 4.2.4, V has

all its O-slopes =0, and its highest co-slope is 1/3. Therefore all the co-
slopes of V are 1/3. Consequently, V is [ -irreducible, and hence

irreducible. By the intrinsic characterization of irreducible
hypergeometrics, we see that V is a hypergeometric of type (3,0) with
trivial determinant. Therefore V = %M(X, y, -x-y; &) for some x,y € C,
e C*.
Since EndO(V) = [2]*H, the isomorphism class of EndO(V) is

invariant under multiplicative translation [x— -x]*. Let us define

W = [x— -x]*(V).
Then V and W are two rank three D.E.'s, both with Ggal = SL(3), and
there exists an isomorphism of D.E.'s

EndO(V) = Endo(W).

Therefore there exists a rank one D.E. L. on (Em such that

either VRL = W or VQL = WY.
This results from the (contrapositive of the ) Goursat-Kolchin-Ribet
Proposition 1.8.2, applied to Ggal(V@W, w) and its two representations

w(V) and w(W), since the possibility that Ggal(VGBW, w) =
SL(w(V))xSL(w(W)) is incompatible with the representations
End9%(w(V)) and End%(w(V)) of Ggal(VEBW, w) being isomorphic. Since

both V and W have Gy, in SL(3), L®3 must be trivial. So L is x® for

& =0 or £1/3.
We now analyze the cases. Recall that
V = }KM(X’ vy, -X-y; &), whence

W = [x—= -x]*(V) = }E_M(X, y, -xX-y; &), and hence
WY = R (-x, -y, x+y; &)
If VxO = W, then & # 0 mod Z (if § is in Z, then V = W, whence

W = - by 3.3, and this is impossible since p is in €*). So § is +1/3 mod
Z. Therefore the set {x, y, z} is stable mod Z by o« = «+8&. So mod Z it

contains all the d-translates of say x, and as there are three of these it
must be {x, x+§, x+ 28} = {x, x+ 1/3, x+ 2/3}.mod Z. As these must sum
to 0 mod Z, 3x € Z, whence V = }[’,M(O, 1/3, 2/3; &), which is Kummer-
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induced, so not Lie-irreducible, contradicting Ggal(V) = SL(3). So this
case cannot arise.
What about the case V®x® = WY ? We may rewrite this
VRxO = WY i= ([x = -x]*(V))Y = [x = -x]*(VY),
or, tensoring both sides by the translation-invariant %0 = (X28)V,
VRx20 = [x = —x]I*(V®x25)v).
Replacing V by V®X28, it suffices to find V's such that V = WY [since V
and V®x2% have the same End9l.

The condition V. = WY 1is equivalent to

{x, v, -x-y} = {-%, -y, x+y} mod Z,
or that {x, y, -x-y} is stable mod Z by negation. The set {x, y, -x-y}
mod Z is thus of the form (x, -x, 0) for some x. To insure that this V is
not Kummer induced, we need x # +1/3 mod Z. Because x # +1/3
mod Z, £x mod Z is unigely determined (since the set {2«;'s} is the set

{0,0,£x,+x,+2x} mod Z, as follows from comparing local monodromies at
zero). QED

Lemma 4.3.3 Let ¥ := }EM(X, -x, 0; &), with xin C, x # +1/3 mod Z, u

in C*. ThenEnd%(X) has Ggal = PSL(3), and there exists a
hypergeometric ¥, (otq, ..., xg; p1, Bp) and an isomorphism

[21%Hy (0tq, -y 0tg; B1, Po) = EndO(3).

Moreover, any such Z]’E)\(oci, .y XG5 P1, E>2) has nontrivial determinant

and its Gga) C 0(8), with (Gya))? = PSL(3).
proof Such an ¥ has Ggal = SL(3), being non-Kummer induced of type

(3,0) with trivial determinant, so End9(®) has Ggal = PSL(3). Such an

H has Y = [x > -x]*H, so End(®) = HIHY = HR([x — -x]*H) is

isomorphic to its [x — -x]* transform. Now End(®) = EndO(®)&(triv)
1s a sum of two irreducibles of different ranks, so by Jordan Holder
theory each is isomorphic to its [x = -x]* transform. Therefore
EndO(}) descends through the two-fold Kummer covering, so is of the

form [2]*(W) for some (necessarily irreducible) D.E. W on G, of rank

eight, whose (Ggal)o is PSL(3), and whose O-slopes are all 0.

We now show that this W 1s hypergeometric. For this, it suffices,
by the intrinsic characterization of hypergeometrics, that X (G,,, W) =
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-1, or equivalently that X (G, End9(})) = -2. Since End%(K) has 0-
slopes all 0, we need to see that Endo(}(’,) has Irr_, = 2. To do this, we

will completely analyze the I -representation of End9(R). In virtue of
34.1.1, ¥ as [, -representation is a multiplicative translate of [3], &,

where £ is the rank one D.E. for e¥.

Lemma 4.3.4 Let V := [3],L. Then as [, -representation, we have
FndO(V) = (rank 6, slopes 1/3) @ x1/3C((1/x) @ x2/3¢C((1/x)).
proof This is an easy computation using W(3, x) with its uz action as

in the discussion 4.1.7. In that approach, once we fix a primitive cube
root of unity ¢, W(3,x) has an I, -eigenbasis {e;}; ., .43, (¥(e;) = Pri (Ve

for y € I.,) on which t acts by e; = ej;41. Similarly, the dual W(3, -x)
Cmod 30 V() = i (Y)f] for vel,) on which ¢
acts by f; = fjy1. Now End(W(3, x)) is the tensor product W(3, x)®W(3,
-x), on which ¢ acts by ei®fj = ey ®fj+1. Among the basis vectors

has an I, -eigenbasis {f;}

ei®fJ~, only the {ei®fi}i mod 3 are P, Invariant; the others each have

slope 1 (so slope 1/3 in End9(V)). This gives the (rank 6, slopes 1/3)
factor.
The three tame vectors {e;®f;}, < are cyclically permuted by

¢, so after removing the trivial character to come down from End to

Endo, what remains are the two nontrivial characters of order three.
QED

Thus End? has Irro. = 2, and hence that there exists a
hypergeometric ¥, (o1, ..., xg; p1, Bp) and an isomorphism

[21%Hy(0tq, ., 0tg; By, Po) = EndO(3).
Consider the group G := Ggal(}ﬂ)\(oci, .., ®g; B1, P2)). It contains

PSL(3) with index dividing two. We have already seen that G # PSL(3)
(cf 4.3.1). Therefore the index is two. The normalizer in GL(8) of PSL(3)

is PSL(3)X{ Gy, C}. As C2 = 1 and PSL(3) contains no nontrivial scalars,

G must be +PSL(3) or PSL(3)X{1, AC} with A = £#1. We cannot have G =
+PSL(3) by 4.2.3. Thus G is PSL(3)X{1, AC}, A = £1, and this group lies in
0(8) but not in SO(8). QED

Theorem 4.3.5 Suppose ¥ := H,(xq, ..., xg; B1, po) has G:=Gga1 C 0(8)
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and det¥ nontrivial. Let x in C, x # +*1/3 mod Z, u in C*. There exists
an isomorphism

[21%H(otq, .h otg; B1, Bg) = EndV(M | (x, -x, 0; )

if and only if mod Z either
{ocg, oy gl = {0,172, /2, (1 + x)/2, -x/2, -(1 + x)/2, %, -x} 1= Al

{p1, Bo) = {1/3, 2/3} := B1

or
{oeg, ., agl =10, 1/2, x/2, (1 + x)/2, -x/2, -(L + x)/2, x + 1/2, -x- 1/2)

= A2
{p1, Bo) = {1/6,5/6} := B2.

proof Suppose first that there exists an isomorphism
[21%*H\ (o, ., &g B, Bo) = EndO(M (%, -x, 0; 2)).

We will analyze separately the possibilities for the p's, and then for the
o's. After doing this, we will figure out which pairs of possibilities can
"g0 together”.

Looking at the slope =0 part of Endo(}l’,u(x, -x, 0; &)) at o, we
see that {2pq, 2po} = {1/3, 2/3} mod Z. As g1 + Bp € Z, the only
possibilities for {1, po} are {1/3, 2/3} or {1/6, 5/6}.

We now turn to the «j's. Suppose first that x is neither 0 nor 1/2

mod Z, so that the local monodromy at O of }EM(X, -x%,0; &) is
semisimple. Then that of Endo(}l’,u(x, -x, 0; &)), and hence that of

}Ex(ocl, ey OLg; B1, 52) i1s also semisimple. Therefore there can be no

repeats mod Z among the «;'s. The 2«'s mod Z are the exponents at 0

of Endo(}l’,u(x, -x, 0; &)), namely {0,0, x, x, -x, -x, 2%, -2x}. Since the
a«i's do not repeat mod Z, they must be

{0,1/2, x/2, (1 +x)/2, -x/2, -(1L + x)/2, 7, ??}.
Since 2« = 1/2 mod Z, the last two entries sum to zero, so are either

tx or #(x + 1/2), as asserted.
If x=0, then, writing unip,, for an n-dimensional unipotent Jordan

block, the local monodromy of %M(X’ -x, 0; &) at zero is unipz, so that

of EndO is unipg @ unipz. Since ¥, (o q, .., ag; B1, o) has at most one

Jordan block for each slope =0 character at zero, its local monodromy
at zero 1s either

(unips) ® x1/2®(unipz) or x1/2®(unips) @ (unipz),
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as asserted.
If x = 1/2, then the local monodromy of }EM(X, -x%, 0; &) at zero is

(unipy) @ x1/2&(unipy),

so that of End¥ is

(unipy) ® (unipz) ® x1/2®(unipy) ® x1/2®(unipy).

So the local monodromy of }(’,x(ocl, ey X85 B, 52) at zero, being self
dual of nontrivial determinant, is either

(unipy) @® x1/2®(unipz) ® x1/4®(unipy) ® x3/4®(unipy)
or

x1/2®(unip1) ® (unipz) @ X1/4®(unip2) @ X3/4®(unip2),
as asserted.

The situation now is this. Fix x in €, x # *1/3 mod C, w in C*. We
have proven that Endo(}ﬂu(x, -x, 0; &)) descends through [2], and that
any descent is, for some A in C*, on the following list of four possibilities

", (A1, B1), H, (A1, B2), ¥, (A2, B1), H, (A2, B2).

Now from the definition of the exponent sets Al, A2, B1l, B2, we see
that

K, (A1, BL®x1/2 = ¥, (A2, B2), M, (A1, B2)®x1/2 = ¥, (A2, B1).
On the other hand, the only indeterminacy in descending through [2]
any irreducible D.E. on G, is the possibility of twisting by x1/2 (cf

2.7.1). So the two descents of Endo(}l’,u(x, -x, 0; &)) through [2] are
either #, (A1, B1) and ¥, (A2, B2), which is precisely what we assert to
be the case, or they are ¥, (A1, B2) and ¥, (A2, B1).

If ¥, (A1, B1) is not a descent of Endo(}f',u(x, -x, 0; &)) for any P,

then its G:= Ggal cannot have G0-der - PS1.(3), thanks to Lemma 4.3.2.
Since H, (A1, B1) is irreducible and not Kummer induced, with G C 0(8)
and nontrivial determinant, the only other possibility is that G = 0(8).
Similarly, if #- (A1, B2) is not a descent of Endo(}l’,u(x, -x, 0; @&)) for
any |, then its Ggal is O(8). Thus exactly one of ¥, (A1, B1), H, (A1, B2)

has its Ggal = 0(8), and the others' Ggal has GO = PSL(3). So the two

cases are distinguished by the dimensions of their differential galois
groups (dimO(8) = 28, dimPSL(3) = 8).
We will decide which one i1s which by using the specialization
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theorem. Fix A, and regard x as a varilable. In other words, denote by K
the field Q(A), and by R the polynomial ring K[x] in one variable x over
K. Then on the scheme (G,,)R, both of our candidates

Ho(AL, B1) 1= H(0, 1/2, +x/2, (1 + x)/2, +x; 1/3, 2/3),
Mo (AL, B2) i= H,(0, 1/2, +x/2, +(1 + x)/2, +x; 1/6, 5/6)

make sense as free O-modules of rank eight endowed with integrable
connections relative to the ground ring R.

In order to prove that H,(A1, B1) has GO = PSL(3) for every
x # *1/3 mod Z, it suffices to prove that ¥, (A1, B1) has dimGgal <8

for every x; by the specialization theorem 1t suffices to prove that
H~ (A1, B1) has dimGga] < 8 at the generic point. This Is equivalent to

showing that ¥, (A1, B2) has dimGgal > 8 at the generic point. By the

specialization theorem it suffices for this to find a particular x where
H~ (A1, B2) has dimGgal > 8. For this, we take x= 1/3. Then

HA(AL, B2)|,.,,5 is the reducible hypergeometric
" (0, 1/2, £1/6, £2/3, £1/3; 1/6, 5/6)
whose semisimplification is
x1/6Clx, x™11 @ x2/6Clx, x™11 @& ¥,(0, 1/2, £1/3, £1/3; &).
Therefore the Ggal of H,(0, 1/2, £1/3, x1/3; &) is a quotient of that of
H,(0,1/2, £1/6, £2/3, £1/3; 1/6, 5/6), hence has lower dimension. But
", (0, 1/2, £1/3, £1/3; &) has Ggal = 0(6) [being of type (6,0),not

Kummer induced, and orthonally self dual with nontrivial
determinant] which has dimension 15 > 8. QED

Thus we find
PSL(3) Theorem 4.3.6 A hypergeometric ¥ = H,(oxq, ..., xg; B1, po) of

type (8,2) has GU-der = PSL(3) if and only if there exists §¢C and x€C,
x # *1/3 mod Z,such that, mod Z,we have
{og +8) = {0, 1/2, +x/2, +(1 + x)/2, tx}, {E)i +8) = {+x1/3).

4.4 The Spin(7) Case: Detailed Analysis
We have already seen (4.2.6) that if a hypergeometric of type

(8,2) has GO0»der = Spin(7), then a twist of it is (isomorphic to one) of the
form ¥, (£x, ty, xz, £(x+y+z); 0, 1/2) for some x, y, z €C.
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Spin(7) Theorem 4.4.1 Let Ae¢C™, x, vy, z € C. If
H o= Hy(£x, ty, 2z, £(x+y+2); 0, 1/2)

is irreducible and not Kummer induced of degree 2, then Ggal = Spin(7).

proof This is very similar to the Gy case. Since H is irreducible, not
Kummer induced, and has Ggal C S0(8), the only two possibilities for
Gga] are Spin(7) or SO(8). We may distinguish these by the fact that

/\4(std8) is SO(8)-irreducible, but has a one-dimensional space of
Spin(7) invariants. So it suffices to show that, denoting by j: Gy, — pl
the inclusion, we have X(IPl, j!*A4(J{)) > 2. Since

X (PL, 51 A%(H)) = -Trrg - Irr o, + dimgSolng + dimgSoln ..

it suffices to show that we have
(1) dimgSolng = 8.

(2) Irrg = 0.

(3) dimgSoln,, = 4.

(4) Irr., = 10.

In order to prove (1), let us denote by T the local monodromy of ¥
around zero, and by P(T) its characteristic polynomial. We know that
as C[T]-module, ¥ is C[T]/(P(T)). In terms of the quantities

a:= exp(2mix), bi=exp(2miy), c:=exp(2miz),
the roots of P(T) are (a, 1/a, b, 1/b, ¢, 1/c, abc, 1/abc).

Since ¥ is regular singular at zero, we have

dimq:Soan(A4(%)) = dim Ker(T-1 acting on A%(C[TI/(P(T)))).

To show that this dimension i1s > 8, it suffices by the specialization
lemma 4.1.6 to treat the case in which P has all distinct roots.Then T is

diagonalizable, say T = Diag(aq, ..., ag), hence AT is diagonalizable
with eigenvalues exactly all quadruple products ajajakan with
i < j<k<n.If we number the aj so that they are (a, 1/a, b, 1/b, ¢, 1/c,

abc, 1/abc), then the eight quadruple products indexed by (1,2,3,4),
(1,2,5,6), (1,2,7,8), (3,4,5,6), (3,4,7,8), (5,6,7,8), (1,3,5,8) and (2,4,6,7,)

are all 1, so dimKer(A¥(T) - 1) » 8, as required.

Since # is regular singular at zero, (2) is obvious. We now turn to
the proofs of (3) and (4). Let us denote by W the six-dimensional wild
part of H®C((1/x)). Since (g1, po) is (0, 1/2),
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HRC(1/x) = W @ C((1/x)® x1/2C((1/x)), whence
AHIC(1/x))N=AYW) & ASW) & ASwW)exl/2 & AZ2(w)®xl/2
Since H has trivial determinant, we see that det(W) = <x1/2¢C((1/%)).

Denoting by £ the rank one D.E. for e¥, it follows from 3.4.1.1 that W is
a multiplicative translate of [6],L. Since the assertions (3) and (4) are

invariant under multiplicative translation, we may assume that

W = [6], L.
From the table 4.1.7.2, we read off that A (H®C((1/%))) has Irr., = 10
and dimSoln., = 4, as required. QED

4.5 The SL(2)xSL(2)xSL(2) Case
We have already noted that if a hypergeometric ¥ of type (8,2)

has G0-der = (the image of) SL(2)xSL(2)xSL(2), then a twist H®x® has
its Ggal C Sp(8), so H®x0 is (isomorphic to one) of the form
Hy(xx, 2y, +2, +t; +w)

for some x, y, z, t, w in C.
We will denote by I' the image of SL(2)xSL(2)xSL(2) in Sp(8),
where Sp(8) is the symplectic group for stdo®stdy®stdy with the form

(x®y®z, uRVOw) = <x,u><y,v><z,w> The action of the symmetric
group 53 on stdp®stdyo®stdy visibly respects the symplectic form, so

we may view Sz as a subgroup of Sp(8). This Sz normalizes I'; as every
outer automorphism of [" is induced by the action of this Sz, we see

that the normalizer of I' in Sp(8) is ['IKS3. Therefore if V is any rank

eight D.E. with G:= Gg,) € Sp(8) and with GOder = T, then
[' C G C I'KSxz.
Lemma 4.5.1 If a hypergeometric ¥ of type (8,2) has G := Ggal C Sp(8)

and G%der = ' then G is the subgroup [')XAz of ['IXS3, and there exist

three rank two D.E's V41, Vo, and Vz on G each hypergeometric of

m>
type (2,0) with Ggal = SL(2), and an isomorphism

[3]*H = V1i®Vo&®Vs.
proof The quotient G/I" is cyclic, because we are on Gyy; as G/I" is a

subgroup of 53, this quotient is either Az, or it has order 1 or 2. 5o if it

were not Az, then [2]*H has Ggal = ['. Viewing " as the quotient of
SL(2)xSL(2)xSL(2) by the subgroup of {#1}x{+1}x{+1} of triples with
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product 1, we can (by 2.2.2.1) lift the homomorphism ’I'[j_diff - T

corresponding to [2]*H to a homomorphism ﬁldiff—>SL(2)><SL(2)><SL(2).
Thus there exist three rank two D.E's V41, Vo, and Vz on G,,, all with
Ggal = SL(2), and an isomorphism
[2]"H = V{1 ®VoQV 3.

By the Highest Slope Lemma 4.2.4, the highest «-slope of V{®V,®Vz is
the same as that of V{®Vo®V=z = [2]*H, namely 1/3. But as Vj is of
rank two, it cannot have any eo-slope 1/3. Therefore the quotient G/I
must be Axz.

Once G/I" has order 3, [3]*H has Ggal =

lifting argument to produce three rank two D.E.'s V1, Vo, and Vz on

[', and we repeat the

Gypy, all with Ggal = SL(2), and an isomorphism
[3]*H = V{1 ®VoQV3.
. By the Highest Slope Lemma 4.2.4, each V; has its O-slopes 0, and its
o -slopes < 1/2. So the e -slopes of a given V; are either both 1/2 or
they are both 0. They cannot both be zero, for then V; would be regular

singular at both 0 and ¢, so reducible, contradicting the fact that its
Ggal is SL(2). By the intrinsic characterization of irreducible

hypergeometrics, each V; is hypergeometric of type (2, 0). QED

Lemma 4.5.2 Suppose V4, Vo, and V3 are three hypergeometrics of
type (2,0) on G such that V{®V,®V sz has Ggal = SL(2)xSL(2)xSL(2),

and such that for some D.E. V on G, there exists an isomorphism

m>

[3]*V = V1 ®V,®Vz.
Then
(1) V is hypergeometric of type (8,2), and there exists a twist V®x0 of
V with 6=0 or £1/3 such that after replacing V = V®x® (which
doesn't change [3]*V), Ggal(v) = ['XAz.
(2)Fix a primitive cube root of unity ¢. After possibly renumbering the

V; and replacing certain of them by their x1/2 twists, there exist

isomorphisms [x— ¢x]*V; = Vi, 1, where the index i is read mod 3.
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proof The Ggal of any such V obviously has GO = T, and G/GY is cyclic

of order 1 or 3. In particular, V is irreducible. By 4.2.4, such a V is
entirely of slope 0 at 0, and its highest co-slope is 1/6. Therefore
X (G, V) = -1, and so V is hypergeometric by the intrinsic

characterization; by its slopes, it must be of type (8,2). By the previous
lemmea, some twist of V has its Gga1= [''Az C Sp(8), so G:=Gga1(V)C
Gy, Sp(8). The subgroup GOis I c Sp(8), so G C W3zSp(8). Twisting V by

an x% 8 =0 or +1/3 puts G C Sp(8), whence G is ['iKAz by the previous

lemmea.
Let us denote by T := [x = ¢x], the multiplicative translation by
the chosen primitive cube root of unity ¢. Since V{®V-,®V 3 descends

through [3], its isomorphism class is invariant under T*. Therefore
V1i®Vo®VzQT*(V)RT*(Vo)®T*(Vz)

has Ggal a quotient of I'. Since both V{&V,®Vz and

T*(V)BT*(Vo)®T*(Vz) have Ggal = SL(2)xSL(2)x3L(2), it follows by the

contrapositive of Goursat-Kolchin-Ribet 1.8.2 that for 1 <1 < 3 there

exists a rank one D.E. L. on G,,, an index 1 < j < 3, and an isomorphism

T*(V;) z\/J(X)L.

Since both sides have trivial determinant, we see that L®2 is trivial

(ie., L is x%Clx, x 1] for 6§ = 0 or 1/2). We claim that i = j. For if i=,

then T*(V;) = V;®L, and applying T™ again we find

T*T*(V;) = T*(V;®L) = V;®L®L = V;. But as Vj is irreducible with

X = -1, this i1s impossible by 3.7.7.

Apply this with 1=1, and renumber so the corresponding j =2.
Then replace Vo by Vo, ®L, and we find

T*(Vl) = V2
Now apply this to 1=2. We find
either T*(Vy) = V{®L or T*(Vy) = VzQL.
In the first case, this leads to T*T*(V1) = T*(Vy) = V1 ®L, which is

impossible as above. Therefore T*(Vz) = Vz®L, so replacing Vz by
VzQ®L we now find

T*(Vl) = V2, T*(V2) = Vg.
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From this and the fact that T is of order 3 we see that T*(V3) =
T*T*(Vo) = T*T*T*(Vq) = V¢, as asserted. QED

Theorem 4.5.3 Let V be a hypergeometric of type (2,0) with Ggal =
SL(2), i.e., V is (isomorphic to) H,(x, -x; &) for some x in C, x # *1/4
mod Z. Let ¢ be a primitive cube root of unity, T := [x = ¢x]. Then
(1) V & T*V & T*T*V has Ggal = SL(2)xSL(2)xSL(2).

(2) For some peC™, there exists an isomorphism
VRT*VRT*T*V = [3]*}[’,M(ix/3, +(1 + x)/3, +(2+ x)/3, +x; +1/4),

and this ¥ is the unique descent of V®T*VQT*T*V whose Ggal C Sp(8).

proof To prove (1), by 1.8.2, and the fact that V is self dual, it suffices
that for any rank one D.E. L. on G,, there exist no isomorphism of VQL

with either T*V or T*T*V. Suppose this were not the case. Looking at
determinants, we see that L®2 is trivial. Replacing ¢ by C’2, we may
assume VL = T*V. We must have L nontrivial, by 3.7.7. Thus Vexl/?2

~ T*V. Comparing exponents at zero, we find that they must be +1/4,
contradiction. This proves (1).

To prove (2), notice that VRT*V®T*T*V is irreducible since
Ggal = [', and its isomorphism class is T-invariant, so it descends

through [3], and the descent is unique up to twisting by %9 with

8§ = 0 or +1/3 (cf. 2.7.1). By 4.5.2, the descended D.E. is a hypergeometric
of type (8,2) which may be uniquely ( Sp(8)Nuz = {e}) specified by
requiring Ggal C Sp(8). Let us denote by ¥ this choice of descent.

[t remains to determine the exponents of this #. The exponents of
VRT*VRT*T*V = [3]*H at zero are {£3x, +x, +x, +x}. Suppose first
that x # 0 or 1/2 mod Z, so that V has semisimple local monodromy at
zero. Then also VRT*VT*T*V = [3]*H and consequently ¥ itself have
semisimple local monodromy around zero. Therefore the exponents mod
Z of ¥ must be, mod Z, {xx/3, +(1 + x)/3, +(2+ x)/3, ?, 7?). Because the
local monodromy of ¥ lies is Sp(8) C SL(8), the last two exponents at

zero are =7, with ? either x or x + 1/3 or x + 2/3. If x is O (resp. 1/2),

then the local monodromy of [3]*¥ (resp. of (31*H)®x1/2) at zero is
the tensor product of three unipotent Jordan blocks of size two, so it is
the direct sum of unipotent Jordan blocks of sizes 4, 2, and 2. This
means that the eight exponents at zero of # are all among {0, +1/3}
(resp. among {1/2, £1/6}) and that their multiplicities are, in some
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order, 4,2,2. 5o we see by inspection that our description of the
possbiilities is correct in this case also.
To partially analyse the [ -representation attached to ¥, we will

use the descent method 4.1.7. After a multiplicative translation, V as
I, —representation is ([2]*113,)(8))(1/4 (since det([2], L) is X1/2, while

det(V) is trivial). Therefore [2]*V as I, -representation is W(2,X)®X1/2,
[21%(T*V) is W(2, tx)®x1/2 and [21*(T*T*V) is W(2, t2x)®x1/2.

Therefore as I -representation, we have
[617*H = [2]*[3]*H = [2]*(VRT*VRT*T*V)
=~ W(2,x)Qx1/2@W(2, tx)®x1/2 @ W(2, t2x)®@x1/2
~(W(2,x)@W(2, tx)®W(2, £2x))®x5/2
z(@ ‘ﬁ(il +e iC2)X)®X3/2

indep. £'s
~(rank 6, slope =1) @ (trivial of rank 2)®x3/2,

Because H is hypergeometric of type (8,2) with Ggal C Sp(8), its two oo-

exponents mod Z must be ty for some y. By the above description of

[6]1*H as [, -representation, we must have 6y = 3/2 mod Z. So the oo-

exponents are either +1/4 or +1/12 or +5/12.

Let us summarize the situation so far. We began with

V= Hy(x, -x; &), x # £1/4 mod Z,

and showed that there is a unique symplectic ¥ of type (8,2) for which
[3]1*H =VT*VRT*T*V, and that this ¥ is, for some pneC™, isomorphic
to one of the following nine possibilities:
Poss(i,j):= }l’,u(ix/S, +(1 + x)/3, x(2+ x)/3, +(x +1/3); +(1/4 + j/3)),
or, what 1s the same,
Poss(i,j):= }(’,u(the six roots z of 3z = tx mod Z, +(x +1/3); £(1/4 + j/3))
where i and j run independently over the set {0, +1}.

The correct # has Ggal = ['KAz, dimGgal = 9. Moreover, for any

x # £1/4 or £1/12 or £5/12 mod Z, each of the nine possibilities
Poss(i,j) is irreducible, not Kummer induced, and has Ggal C Sp(8). In

view of the general classification theorem, for x # +1/4 or +1/12 or
+5/12 mod Z, each of the nine possibilities Poss(i,j) has Ggal either

Sp(8) or I''KAz. We claim that the correct ¥ is the only one of the
nine possibilities Poss(i,j) which has Ggal = 'iKAz. Indeed, suppose that

9 were another. By 45.1 and 45.2, [3]*G =UT*UQRT*T*U, for some U
Yy
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of the form ¥ (xw, ). Comparing exponents at zero, we see that

w = *x, whence some multiplicative translate [x = Ex]*G of G is also a
symplectic [3]-descent of [3]*H. By uniqueness, we infer that

[x = Ex]*G = H. Comparing exponents at both 0 and e, we see that
g = ¥.

This being the case, it suffices to show that for any x # £1/4 or
+1/12 or £5/12 mod Z, the first possibility

Poss(0,0) := }(’,M(the six roots of 3z = *x mod Z, +x; +1/4)
has dimGgal < 9. By the specialization theorem 2.4.1, it suffices to show
that Poss(0,0) has dimGgal < 9 for generic x. For this, it suffices to
show that each of the other eight possibilities Poss(i,j) has dimGgal > 10

for generic x. By 2.4.1, it suffices to exhibit, for each of the other eight
possibilities, a single numerical value X of x for which the

corresponding specialized equation has dimGgal > 10.

Consider first what happens when we specialize x to 1/4. If i=j,
write {0, +1} = {i, j, k}. Then Poss(i,]) specializes to
}Ku(il/12, +(1/12 + 1/3), +(1/12 - 1/3), +(1/4 +i/3); +(1/4 + j/3))

= }{’,M(i(l/él +1/3), £(1/4 + j/3), +(1/4 + k/3), +(1/4 +i/3); +(1/4 + j/3))
whose semisimplification is of the form
}KM-(i(l/él +1/3), £(1/4 +1/3), +(1/4 + k/3); ) @
® x5CIx, x 11 & x7%CIx, x~ 1
for & := 1/4 + j/3. Therefore Ggal for this specialization admits as
quotient the Ggg) of }(’,M-(i(l/él +1/3), £(1/4 +1/3), +(1/4 + k/3); ). The

six cases of i=j are (i,k) = (0,1), (0, -1), (1,0), (1, -1), (-1, 1), (-1, 0), and
for these }(’,M-(i(l/él +1/3), £(1/4 +1/3), +(1/4 + k/3); &) is respectively

(2174, £1/4, £5/12; &)
w, (2174, £1/4, £1/12; &)
i, (£5/12, £5/12, £1/4; &)
i, (25712, £5/12, +1/12; &)
(21712, £1/12, £5/12; &)
w(x1/12, £1/12, £1/4; Z).

Each of these is irreducible, not Kummer induced (the exponents are
not stable by o« = o + 1/2 or by o« = o + 1/3), and symplectically
autodaual, so has Ggal = Sp(6), which has dimension dimension 21 > 10.

Thus the correct possibility has i=j. Now let us consider the effect
of putting x;; = 3/4. Then
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Poss(i,i) := }Eu(the six roots z of 3z = *x mod Z, *(x + 1/3); +(1/4 +1/3))

specializes, for i =1, -1, to
?H’,M(the six roots of 3z = +1/4 mod Z, +(3/4 + 1/3); +(1/4 + 1/3))

=, (£1/12, £1/4, £5/12, £1/12; £5/12)

and to
'«]{M(the six roots of 3z = +1/4 mod Z, +(3/4 - 1/3); +(1/4 - 1/3))

=, (£1/12, £1/4, £5/12, £5/12; £1/12)

Their semisimplifications contain
w (21712, £1/12, £1/4; &)

and
}KM-(il/él, +5/12, +5/12; &)

respectively, both of which have Ggal = Sp(6). So these cases are ruled

out. The only remaining possibility Poss(0,0) must be the correct one.
QED

Combining the above theorem with the two lemmas preceding it,
we obtain
SL(2)xSL(2)xSL(2) Theorem 4.5.4 The hypergeometrics of type (8,2)

whose G := Ggg4] has G0.der - ' .= the image of SL(2)xSL(2)xSL(2) are

precisely the x® twists of those with Ggal = ['KAz, and those with Ggal
= [''KAz are precisely those (isomorphic to one ) of the form
}f’,u(ix/S, +(1 + x)/3, +(2+ x)/3, +x; +1/4)

for any win €*, and any x # +1/4 mod Z.

4.6 The SL(3)xSL(3) Case

In this section, we will analyze those irreducible hypergeometrics
# of type (9,3) or (3,9) whose G := Ggg has GO.der - (the image of)

SL(3)xSL(3) in SL(9). By inversion, it suffices to treat the case (9,3).
Throughout this section, we will denote by

[' := the image of SL(3)xSL(3) in SL(9).
By 1.8.4, the normalizer of I in GL(9) is G,['XSy. Therefore its

normalizer in SL(9) is po(I'X{1, -o}), where -o is the involution of
stdz®stdz given by x®y — -y®x [the change of sign achieves
determinant 1].

Lemma 4.6.1 If an ¥ of type (9,3) has GO.der - T some x® twist of ¥
has [ C Ggal c I',k{1, -o}. If ¥ has Ggal C SL(9), we can take 8§ € (1/9)Z.
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proof Given any ¥ of type (9,3), an x® twist of it has Ggal C SL(9) (cf.
3.6.2), and the same G9:der For such an ¥, we have

I' Ggal CHo(I'X{1, -0}). The only scalars in I'iK{1, -0} are uz, so "the
cube of the Wg factor” is a character X: Ggal — M3 which is precisely
the obstruction to having Ggg) C [''x{1, -o}. This character of Ggal

corresponds to the rank one D.E. XS(]:[X, x 1] for 6 = 0 or £1/3 mod Z. So
H®x 8/ 3has T' € Gyq) € TX(1, -0}, QED

Lemma 4.6.2 No hypergeometric # of type (9,3) has I' C Ggal C Gl
proof If such an H exists, a twist of it has Ggal = ['. The universal
covering of I is its triple covering by SL(3)xSL(3). Lifting the sur jective
classifying homomorphism ﬁldiff — [ through this covering, we find
two rank three equations V and W on Gy, such that VO®W has
SL(3)xSL(3) as its Ggal’ and such that VW = H. Now ¥ has highest co-

slope 1/6, and highest O-slope =0, so by the Highest Slope Lemma 4.2.4
V@ W has highest eo-slope 1/6, and highest 0O-slope =0. Therefore at
least one of V or W has highest o -slope 1/6, which is impossible as both
V and W have rank three. QED

Lemma 4.6.3 If a hypergeometric ¥ of type (9,3) has ' C Ggal C I'ix{1,
-0}, then Ggal = I'',K{1, -o}. There exist two rank three D.E's V4 and Vo
m> such that V1 @&V, has SL(3)xSL(3) as its Ggal’
hypergeometric of type (3,0) with Ggal = SL(3), and there exists an

on G each V, is
isomorphism
[2]*K = V{®Vy.

proof By the above lemma we must have G = I'X{1, -0}.The quotient
G/I" is thus cyclic of order two. Therefore [2]*H has Gggl = I'. Lifting its

sur jective classifying homomorphism ﬁldiff — [ through the universal

covering, we obtain two rank three equations V4 and Vo on G each

with Ggal = SL(3), such that V{®V, has SL(3)xSL(3) as its G

m:
gals and
such that V{®Vy = [2]*H. Now [2]*H has highest eo-slope 1/3, and

highest O-slope =0, so by 4.2.4 V1 ®V 9 has highest e« -slope 1/3, and
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highest O-slope =0. Therefore each of V4 and V9 has highest e -slope <
1/3, and highest 0-slope =0. In fact, both of V1 and V5 must have
highest eo-slope =1/3 [for if V1 had highest e -slope < 1/3, it would,

being of rank three, have all eo-slopes =0, so would be regular singular
at both 0 and o, so reducible, so would not have SL(3) for its Ggal]' By

the intrinsic characterization of hypergeometrics, both V; are

hypergeometric of type (3,0). QED

Corollary 4.6.4 If a hypergeometric ¥ of type (9,3) has
Ggal = I'ik{1, -o},

then ¥®x1/2 has Ggal = I'iK{1, o} = T'XSyp, and conversely.

proof ¥ and H®x1/2 both have GO = [', and G/GO of order two,
corresponding to the Kummer covering of degree two. So if we view H

and H®x1/2 as representations pq and po of nldiff, and denote by X

the unique nontrivial character of order two of ﬂldiff, then

po = X®pq, and Ker(X) = (pl)_l(r) = (p2)_1(r) .Let g € ﬁldiff have
p1(g) = —o. Then X (g) = -1, since -o ¢ I', and so py(g) = 0. Since
nldiff = Ker(X) U gKer(X), Image(pp) = I' U oI, as asserted. The

converse Is proven the same way. QED

Corollary 4.6.5 If ¥ of type (9,3) has GY»deT = T'| there exists an x9
twist of ¥ which has Ggal = I'ik{1, -o}, and another which has Ggal =

I'x{1, o}.
proof. This is immediate from the previous four results. QED

Lemma 4.6.6 If a hypergeometric ¥ of type (9,3) has Ggal = I'x{1, o},
such that V{ @&V,
each V; is hypergeometric of type (3,0) with

there exist two rank three D.E.'s Vl and V2 on G
has SL(3)xSL(3) as its Ggal’

Ggal = SL(3), and there exists an isomorphism

(217 = Vl ®V2.

m>

proof Simply apply 4.6.3 to }E®X1/2, which in virtue of 4.6.4 has Ggal =
I''x{1, -o}, but the same [2]* as ®#. QED

Lemma 4.6.7 If ¥ of type (9,3) has Ggal = ['{1, -0} or I'X{1, o}, then
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for § = 0 or +1/3 mod Z, Ggal(}(f@XS) = Ggal(}[’,).

proof For any 8§, Ggal(}l’,@XS)O’der = I', a group which contains W3. So if
36= 0 mod Z, then Gyq)(R®x5) C Goa)(HIu3z = Gyg)(H), and Gyg)(H) C
Ggal(g’f’,@XS)ug = Ggal(}ﬁ@XS). QED

Lemma 4.6.8 Suppose V4 and Vo, are two hypergeometric of type
(3,0) on G such that V{®Vy has Ggal = SL(3)xSL(3), and such that

for some D.E. V on G}, there exists an isomorphism

m>

[2]*V = V1®V2.
Denote by T := [x = -x}, the multiplicative translation by -1.Then

(1) V is Lie-irreducible, and unique up to V — Vexl/2,
(2) V is hypergeometric of type (9,3), and there exists a unique twist

Vx* of V with o«=0 or 1/2 such that after replacing V = V®x%
(which doesn't change [2]*V), det(V) is trivial (resp. nontrivial). This V
has Ggal(v) = I',{1, -o} (resp. has Ggal(v) = I';x{1, o}).

(2)There exists an isomorphism T*V, = \/2®X8 for § = 0 or +1/3 mod

Z.
(3) For this choice of §, we have:

(V1 ®x%) @ T*(V1®x®) has Gyg) = SL(3)xSL(3),
[2]%V = (V1 ®xB)®T*(V®x8)
Ggal(v) = I''ik{1, -o} if det(V) trivial, Ggal(v) = I',k{1, o} if not.

proof The Gggl of such a V obviously has GO = T, and G/GP of order at
most two. In particular, V is Lie-irreducible, and (1) follows from 2.7.1.
By 4.2.4, V has highest co-slope 1/6, and highest O-slope =0. Therefore
X (Gy,, V) = -1, and so V is hypergeometric by the intrinsic
characterization; by its slopes, it must be of type (9,3). Since [2]*V has
trivial determinant, det(V) is either trivial or is x1/2(E[x, 1], Since V
has odd rank 9, exactly one of V or V®x1/2 has G := Ggal C SL(9). Since
GO = " and G/GO has order < 2, while G # I by 4.6.2, we must have G/
of order two. Since G is not contained in G,4,I', G must contain a scalar

times -0, say £(-0), and G = I' U I'E(-0). So if G C SL(9), £ € Wg. Since
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the square of every element of G lies in T, (e(-5))2 =£2 is a scalar in T,
SO &2 € U3. Therefore £ € wz. But uz C I', so from G = ' U I'e(-o) we

see that G =T U I'(-0) = T'X{1, -o} if det(V) is trivial. By the previous
lemmea, it follows that G = ['X{1, o} if det(V) is nontrivial.
Since V41 ®V 5 descends through [2], its isomorphism class is

invariant under T*: V,®Vy = T*(V{)®T*(V5). Now consider the two
DE's V{®Vy and T*(V{)®T*(Vs). Both have Ggal = SL(3)xSL(3). As
representations of Ttldiff their isomorphism classes arise from (possibly

different) liftings of the classifying map for [2]*V. From the exact
sequence for Homalg. gp_(ﬂldiff, ?7) applied to the central extension
0 - ng — SL(3)xSL(3) - I" =0,

we see that any lifting is isomorphic to one of
V1©Vo,

(V)ex/3 @ (Vy)®x1/3,
Vex /3 @ (vy))®xl/3.

Therefore either
T*(V{)BT*(Vy) = V1DV, or
T*(V)BT*(Vy) = (Vx5 @ (Vo) ®x1/3, or
T*(V)®T*(Vy) = (V{)®x 13 & (vy)®xl/3.

By Jordan Holder theory, the isomorphism classes of the irreducible

Q

Q

constituents of T*(V1)®T*(Vy) are well defined, and they occur in any
decomposition of T*(V1)®T*(Vy) into a sum of irreducibles. But
T*(V)= Vq is impossible by 3.7.7, and T*(V4) = (V{)®x*1/3 would

imply that the exponents of V at zero are stable by o« = o + 1/3,
which in turn implies that V41 i1s Kummer induced of degree three,

which is impossible since Ggal(vl) = SL(3). So either
T*(Vq)
T*(V1) = (Vo)®x~1/3 or
T*(V41) = (Vo)®x1/3,

Q

Vo, or

This proves (2): T*V = \/2(X)x8 for 8 = 0 or +1/3 mod Z. Assertion (3) is



Chapter4-Detailed Analysis of the Exceptional Cases-30

immediate from (1) and (2), for by (2) we have
(V1®x5) & T*(V1®x%) = (Vi®xd) & (V,®x20). QED

Corollary 4.6.8.1 Let V be hypergeometric of type (9,3) with Ggal =

I'X{1, o}. Then there exists a hypergeometric ¥ of type (3,0) such that
HBET*H has Ggal = SL(3)xSL(3), and such that [2]*V = HQT*H.

proof Simply combine 4.6.6 and 4.6.8. QED

Lemma 4.6.9 Let ¥ := H,(x, y, z; &) be a hypergeometric of type
(3,0), and T := [x = -x] the multiplicative translation by -1. Then
HET*H has Ggal = SL(3)xSL(3) if and only if %, y, z satisfy the following
conditions mod Z:

(1) x+y+z=0mod Z.

(2) {x, vy, z} #1{0, 1/3, 2/3} mod Z.

(3) none of x, y, zis = 0 or +1/3 mod Z.

proof Condition (1) is that det¥ be trivial. Once detH is trivial, (2) is
the condition that ¥ not be Kummer induced. By 3.6 (2), Ggal = SL(3)

(since In-ml = 3 is odd). So (1) and (2) together are equivalent to

Ggal = SL(3).

By Goursat-Kolchin-Ribet via 3.8.2, H@®T*H will fail to have its

Ggal = SL(3)xSL(3) if and only if for some «€C, either H@x% or its

adjoint ¥*®@x~* is isomorphic to T*H. We now analyze these cases.
Suppose first that H@x* = T*H. Comparing determinants, we see
that o« = 0 or #1/3 mod Z. If « = 0 mod Z, then ¥ = T*H, which is

impossible by 3.7.7. Therefore HRxL/3 = T*H or H®x"1/3 = T*H. In
either case, the O-exponents mod Z of ¥ are stable by x = x + 1/3, in
which case #¥ would be Kummer induced of degree three, contradiction.
So this case cannot arise.

Suppose now that ¥*®@x~* = T*H. Again « = 0 or +1/3 mod Z. So

(H®x20)* = H*®@x 2% = T*H®x™ % = T*HR®x2Y* = T*(H®x2%), and
the O-exponents mod Z of H# are stable by x = -x -o. The only
possibility for ¥ compatible with (1) is ¥, (x, -x -, o; ), and this ¥

has H*@x~* = T*H. It is precisely this sort of ¥ which is ruled out by
condition (3). QED

Theorem 4.6.10 Let ¥ := H,(x, y, z; &) be a hypergeometric of type
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(3,0), and T := [x = -x] the multiplicative translation by -1. Suppose
that x, y, z in C satisfy
x+y+z = 0 mod Z, and none of x, y, zis = 0 or +1/3 mod Z,

i.e., suppose that H®T*H has Ggal = SL(3)xSL(3).

Then
(1) There is a unique hypergeometric V of type (9,3) with det(V)

nontrivial for which there exists an isomorphism [2]*V = HQT*H.

(2) This V has Ggal(\/) = I'ik{1, o}.

(3) For some peC™, V is isomorphic to

}E’,M(x, v, Z, =x/2, ~y/2, -z/2, 1/2 - x/2,1/2 - y/2,1/2 - z/2; 0, +1/3).
(4) Any hypergeometric V of type (9,5) with Ggg] = I'x{1, o} is obtained

in this way.

proof Assertion (4), "mise pour memoire” has already been proven
(4.6.8.1). Since HQ®T*H is irreducible on G, and isomorphic to its T*

pullback, it descends through [2], i.e., it is of the form [2]*V for some
D.E. V on G,,. Therefore assertions (1) and (2) result from 4.6.8. The

only subtle point is to compute the exponents mod Z of the unique [2]-

descent V of HQ@T*H whose determinant is nontrivial. Let us denote by
{OCi}i=1,..,,9 and {E’i}i=1,...,3 the exponents of V at zero and e

respectively. Thus for some W in C*, V is }[’,M(oci's; E;Lj's). Exactly as in the

PSL(3) and SL(2)xSL(2)xSL(2) cases, we will first determine the
exponents up to a few possibilities, and then use the specialization
theorem to eliminate all but one of the possibilities.

Suppose first that %, y, z are all distinct mod Z. Then ¥ and T*¥

has semisimple local monodromy at zero, so also [2]*V = HT*H and
hence V has semisimple local monodromy at zero. Therefore the
{otj}i21 9 are all distinct mod Z, and their doubles are those of

HOQT*H:
{2O(i}i=1 g9 = {2x, 2y, 2z, X+y, X+y, X+27, x+z, y+2z, y+z}_

Since x+y+z = 0 mod Z, we may rewite this
(2ali=q,.,9 = (2%, 2y, 22, -2, -z, -y, -y, =%, ~x}.

- must include both

Because the {;}; :

i}yi=1 9 are all distinct mod Z, the «
the halves of -x, -y, and -z. The remaining three of them are some
choices

x=xo0orl/2+x, y=yoril/2+y, z =zoril/2+z
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of halves of 2x, 2y, and 2z. Therefore the {x;}j_1 9 are
(x,v,2,-x/2,1/2-x/2,-y/2,1/2 - y/2, -2z/2, 1/2 - z2/2).

Since det(V) is to be nontrivial, det(V) is X1/2(E[X, x 1] As x + y +z =0

mod Z, we must have x + y + z = 0. This can happen only if either
fex.y-y.7 -2z

or if precisely one among %, y, z, has t = t, and the other two have

t=1/2+t.

[f we no longer assume that x, y, and z are distinct mod Z, no
more than two of them can coincide mod Z, since their sum i1s O mod Z
and none is 0 or £1/3 mod Z. Permuting x, y, and z, we may assume
that y=x, z = -2x. Then the local monodromy transformation of both ¥

and of T*H around zero has Jordan normal form
e?TiXQ(unipy) @ e 4TMX®(unipy),
where by unip, we mean a unipotent Jordan block of size n. Therefore

the local monodromy transformation of ¥QT*H = [2]*V around zero
has Jordan normal form

e4ﬁix®(unip3) S5, e4“ix®(unip1) @ e_2“ix®(unip2) @
@ e_2“ix®(unip2) @ e_8“ix®(unip1).

Therefore V has five distinct mod Z exponents at zero, occurring with
multiplicities 3,1,2,2,1, say {ocl, X, O], X, A3, XA3F, 04, X4, A5}, and

2001 = 2x mod Z,
200y = 2x mod Z,
200z = -x mod Z,
2004 = -x mod Z,
205 = -4x mod Z.

Since the «; are distinct mod Z, we have equalities mod Z

1

(g, oz, oy, g} = (-x/2, -x/2, 1/2 - x/2, 1/2 - x/2},

{oeg, oo, aq, o} = {x, x, x, 1/2 + x}

or = {1/2 +x,1/2 +x,1/2 + x, xJ,
oy = -2x or = 1/2 - 2x.
All of these possibilities are obtained from the general case's possibilities
by specializing y — x.
Consider now the [ -representation.

Lemma 4.6.11 Notations as in the theorem, HQT*H = [2]*V as [..-

representation is
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(rank 6, slopes 1/3) @& C((1/x)) & x1/3C((1/x) & x2/3¢((1/%)).
proof Denote by W the [ -representation attached to . Since ¥ is of

type (3,0) with trivial determinant, it follows from 3.4.1.1 that W is a

multiplicative translate of [3],L, where £ is the rank one D.E. for e¥*,

and that T*W is the dual of W. Therefore

WRT*W = End(W) = End9(W) & (triv),
and so the result has already been proven in 4.3.4. QED

From this lemma, we see that the eo-exponents p; satisfy
{251}i=1,2,3 = {0, 1/3, 2/3}.

So the unique [2]-descent V of HRT*H whose determinant is
nontrivial (resp. trivial) is }[’,M(oci's; E;is), where
{og's) = (%, v, 2, -%/2, -y/2, -2/2, 1/2 - x/2,1/2 - y/2, 1/2 - z/2),

x=xorl/2+x, y=yoril/2+y, z =zorl/2+z,
x+y+z = 0 mod Z,
x+ y+ z = 0 (resp. = 1/2) mod Z,
none of x, y,zis = 0 or +1/3 mod Z,
{2Bi}i=1,2,3 = {O, 1/3, 2/3},
p1 = 0Oor 1/2, By = 1/6 or 2/3, p3z = 1/3 or 5/6.

In order to decide which choice is correct, we now embark on a
series of lemmas.
Lemma 4.6.12 Suppose x+y+z = 0 mod Z, and none of x, y, zis = 0 or
+1/3 mod Z. The set with multiplicity {x, y, z} mod Z is uniquely
determined by the set with multiplicity S :={2x, 2y, 2z, -x, -x%, -y, -V, -
z, -z} mod Z.
proof Consider subsets with multiplicity T := {a, b, ¢} mod Z of S such
that a+tb+c = 0 mod Z, and such that {a, a, b, b, ¢, ¢} mod Z is a subset
with multiplicity of S. Clearly {-x, -y, -z} is such a T. We will show it is
the only one.

Suppose first that T is drawn entirely from {-x, -y, -z}, but is not
{-x%, -y, -z}. Then T must (up to permutation of %, y, z,) be {-x, -x, -z}
or {-x, -x, -x}. The second case {-x, -x, -x} is impossible, because none of
X,Vy,zis = 0 or +1/3 mod Z, while atb+c = O mod Z if T = {a, b, c}. If T
is {-x, -x, -z}, with x and z distinct mod Z, we claim that y = x mod Z.
For if not, then either y = z mod Z [in which case -x and -y each occur
in S with multiplicity at lease four, so at least two out of {2x, 2y,
27=2y} are -x mod Z. Therefore 2y = -x mod Z, and our original {x, vy,
z} is {(-2y, y, v}. So our T, namely {-x, -x, -z}, is {2y, 2y, -y}; but this T
fails to sum to O mod Z, since none of x, y, zis = 0 or +1/3 mod Z,



Chapter4-Detailed Analysis of the Exceptional Cases-34

contradiction] or x, y, and z are distinct mod Z [in which case at least
two of {2x, 2y, 2z} are -x mod Z. By hypothesis, 2x # -x mod Z, so we
must have 2y = 2z = -x mod Z. Then our original {x, vy, z} is {-2y, vy, z},
and as x+y+z = 0 mod Z we see that y = z mod Z, contradiction].

Suppose now that T is not drawn entirely from {-x, -y, -z}. Then
there is an element of S other than -x, -y, -z which occurs in 5 with
multiplicity > 2, and it occurs in T. So at least two out of {2x, 2y, 2z}
coincide, and their common value is none of -x, -y, -z mod Z.

If 2x = 2y = 2z mod Z, then at least two out of x, y, z coincide
mod Z; as not all of x, y, z coincide mod Z, precisely two of x, vy, z
coincide. Permuting x, y, z, we may assume that y = x, z = x + 1/2
mod Z. Since x+y+z = 0 mod Z, x is 1/2 or +1/6 mod Z, whence z is O
or +1/3 mod Z, contradiction.

Permuting x, y, z if necessary, we may assume that 2x = 2y mod
Z, and 2x # 2z mod Z. Since 2x is present in S exactly twice, T is {2x, ?,
??} where ? and ?? are drawn from {-x, -y, -z}.

If -x, -y, -z are pairwise distinct mod Z, then none of them can
occur in S with multiplicity > 3, so T is either {2x, -x, -y} or {2x, -x, -z}
or {2x, -y, -z}. Since T sums to 0 mod Z, we find either y = x mod Z or
z = x mod Z or y+z = 2x mod Z. The first two contradict the pairwise
distincthess, and the last forces 3x = 0 mod Z, contradicting that none
of x, yv,zis = 0 or £1/3 mod Z.

If two of -x, -y, -z coincide mod Z, then exactly two coincide
(since x+y+z = 0 mod Z but none of x, y, zis = 0 or £+1/3 mod Z), so
either x = ymod Z or x = zmod Zor y = z mod Z. Since 2x = 2y mod
Z, and 2x # 2z mod Z, we must have x = y mod Z and x # z mod Z.
Then z is -2x mod Z, S is { 2x with mult. 4, -x with mult. 4, -4x}, and
the only possible T's are {-x, -x, 2x} or {-x, 2%, 2x}. The second is
impossible since T sums to 0 mod Z, and the first is {-x, -y, -z}. QED

Lemma 4.6.13 Suppose that }Eu(oci's; E;J"s) is any hypergeometric of
type (9,3) such that {2p;}j_1 2 3 = {0, 1/3, 2/3}, and such that 2o =

1/2 (resp. 2oy = 0) mod Z. If G := Ggal has GgO.der - ' then
Ggal = I';{1, o} (resp. Ggal = I'ik{1, -a}).
proof By an x1/2 twist the two cases are interchanged, so it suffices to

treat the case in which Za; = 0 mod Z. Then Ggal C SL(9), so if gO.der

= [', then by 4.6.1 there exists § € (1/9)Z such that }Eu(oci's; E;Lj's)@XS
has Ggg) = I'x{1, -o}. By 4.6.4 and 4.6.8.1, there exists a hypergeometric
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H of type (3,0) such that H@T*H has Ggal = SL(3)xSL(3), and such that
[2]*(}[’,M(oci's; 5J'S)®X8) =~ HRT*H. In view of 4.6.11, the oo-exponents of

HQT*H are {0, 1/3, 2/3}, whence {28 + 2Bi};_1 2 3 = {0, 1/3, 2/3}. By
hypothesis, the {2p;}j_1 2 z are themselves {0, 1/3, 2/3}, whence 28
mod Z is in {0, 1/3, 2/3}. Since & has denominator dividing 9, we infer

that 36 = 0 mod Z. By 4.6.7, }l’,u(oci's; 5J"S) = (}E’,H(oci's; [3J~'s)®x5)®x‘6

has the same Ggal as }l’,u(oci's; [3J~'s)®X8, namely I'X{1, -o}. QED

Lemma 4.6.14 Suppose that x+ty+z = 0 mod Z, and that none of x, y, z
is = 0 or £1/3 mod Z. Suppose that }l’,u(oci's; E;is) 1s a hypergeometric of
type (9,3) whose exponents satisfy
{ag's) = (%, y, z, -x/2, -y/2, -2/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},
x=xorl/2+x, y=yoril/2+y, =z =zorl/2+z,
x+ y+ z = 0 (resp. = 1/2) mod Z,
{2Bi}i=1,2,3 = {0, 1/3, 2/3}.

Suppose that G0-der = ' Then for some A € €%, there exists an
isomorphism

[2]*(}ﬁu(o<i's; BJ'S)) = Ho(x,y, 2 FIQT*H (%, v, z; &).
proof twisting by X1/2, it suffices to treat the case %+ y+ z = 0 mod Z.

By the above Lemma, }l’,u(oci's; E;is) has Ggal = I'x{1, o}. By 4.6.8.1, and

46.9, there exist X, Y, Zin €C and A in C* with X+Y+Z = 0 mod Z, none
of X, Y, Zis = 0 or +1/3 mod Z, and there exists an isomorphism

[2]*(}Ku(oci's; 5J"5)) =~ UL (X, Y, Z, ZIQRT*HL\(X, Y, Z; &).

Comparing exponents at zero, we find
{205} = (2X, 2Y, 2Z, -X, -X, -Y, -Y, -Z, -Z} mod Z.

Now {2c;} is itself {2x, 2y, 2z, -x, -x, -y, -y, -2, -z}, so by 4.6.12 it
follows that {x, y, z} = {X, Y, Z} mod Z. QED

Lemma 4.6.15 Suppose that x+ty+z = 0 mod Z, and that none of x, y, z
1s = 0 or £1/3 mod Z. Suppose that V41 and V9 are two hypergeometrics

of type (9,3), of the form
Vy = #y, (AL B1)

Vg = ¥, (A2; B2)

where {11 and Py are in C*,where A1 and A2 are choices of {oci's}
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satisfying

{ay's) = (%, y, 2z, -x/2, -y/2, -2/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},
x=xorl/2+x, y=yoril/2+y, =z =zorl/2+z,
x+ y+ z = 0 mod Z,

and where B1 and B2 are choices of {p;'s} satisfying

{2pili=1,03 = {0, 1/3, 2/3}.

If both V1 and V9 have g0.der - T then V4 is a multiplicative

translate of V2.

proof By the previous lemma, for i=1,2 there exists A; € C* and an
isomorphism

[2]7(V;) = }EN(X, v, Z; ﬁ)@T*%N(X, v, z, ).
By a multiplicative translation, we may suppose A1 = Ay. Then V1 and

Vo are each [2]-descents of }(’,N(X, v, Z; Q)®T*%7‘1(X’ v, z; &) with

nontrivial determinant, so by the unicity of such a descent V4 and Vo

must be isomorphic. QED

Corollary 4.6.15.1 Suppose that x+y+z = 0 mod Z, and that none of x,

vy, zis = 0 or £+1/3 mod Z. Among all possible (A, B) where A is a choice

of {o;'s} satisfying

log'sy = (%, y, 2, -x/2, =y/2, -2/2,1/2 - /2, 1/2 - y/2, 1/2 - 2/2),
x=xorl/2+x, y=yoril/2+y, =z =zorl/2+z,
x+ y+ z = 0 mod Z,

and where B is a choice of {p;'s} satisfying

{2pili=1,03 = {0, 1/3, 2/3},

there is one and only one (A,B) which satisfies the following equivalent

properties:

(1) There exists some W € C* for which %M(A’ B) has GO.der - 1
(2) For every W € C*, %M(A’ B) has gO.der - T

Lemma 4.6.16 Suppose that x+y+z = 0 mod Z, and that none of x, y, z

is = 0or £1/3 mod Z. Let u € C*, and let
A=1{x,v,z -x/2,-y/2,-2z/2, 1/2 - x/2,1/2 - y/2, 1/2 - z/2},
B {0, 1/3, 2/3},
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Then
(1) %M(A’ B) is irreducible and not Kummer induced.

(2) If G := Ggal(}tu(A’ B)) has dimG < 16, then G = ['{1, o}, and for

some A € C*, there exists an isomorphism
[2]*(Hu(o<i's; E)J-'S)) =~ Hy(x,y, 2 ZIQT*H (%, vy, z; &).

proof Since none of x, y, zis = 0 or £1/3 mod Z, a fortiori none of
their "halves" is either, whence the irreducibility. If %U(A’ B) is

Kummer induced, it must be Kummer induced of degree 3 = gcd(9,3),
in which case the set A is stable mod Z by t = t + 1/3. But then the set
2A of doubles is stable by t = t + 2/3. By the uniqueness 4.6.12, it
follows that the set {x, y, z} is stable by t = t + 1/3, in which case {x,
v, z} would be {x, x + 1/3, x + 2/3}, which is impossible since x+y+z = 0
mod Z, and none of x, y, zis = 0 or +1/3 mod Z. Therefore %M(A’ B) is

irreducible and not Kummer induced. From the general classification
theorem 3.6, it now follows that G2:der is one of ", SO(9), or SL(9). So if

dimG < 16 only the case GU-der = [ is possible. The rest of assertion (2)
now follows from 4.6.13 and 4.6.14. QED

Key Lemma 4.6.17 Suppose that x+y+z = 0 mod Z. Let u € C*. Let
A=1{xv,z -x/2,-y/2,-2/2,1/2 - x/2,1/2 - y/2, 1/2 - z/2},
B = {0, 1/3, 2/3}.

Then dimGgal(}l’,u(A, B)) < 16.

proof Since Ggal is invariant under multiplicative translation, it

suffices to prove this when |u = 1. By the specialization theorem, it
suffices to treat the case when x and y are algebraically independent
over Q, and z := -x -y. More symmetrically, we work over the generic
point of the parameter ring Q[x, y, zl/(x+y+z)Qlx, y, zl.

In this case, none of x, y, zis = 0 or £1/3 mod Z. So by 4.6.15.1,
among all possible (A, B) where A is a choice of {oy's) satisfying
{oy's) = (%, v, 2, -%/2, -y/2, -2/2, 1/2 - x/2,1/2 - y/2, 1/2 - 2/2),

x=xorl/2+x, y=vyoril/2+y, =z =zorl/2+z,
x+ y+ z = 0 mod Z,

and where B is a choice of {p;'s} satisfying
{251}i=1,2,3 = {0, 1/3, 2/3},
there is one and only one (A,B) for which %1(;‘&, B) has gO.der - 1
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Since x and y are independent variables, and z= -x-y, it is clear
that for any of the (A, B) above, #1(A, B) is irreducible (indeed none of

the A exponents lies in Q) and not Kummer induced (same argument
as in 4.6.16 above). In view of the limited possibilities for G :=

Ggal(Mq (A, B)), either GO.d€T = T or dimG > 16.

Therefore among all possible (A, B) as above,there is one and only
one (A,B) for which H4(A, B) has dimGgal <16.

We will first show by a symmetry argument that A is the correct
A. Indeed, if o is any permutation of the set {x, y, z}, then o induces
an automorphism, still denoted o, of the parameter ring R :=
Qlx, y, zl/(x+y+z)Qlx, y, z] over whose generic point we are working.
This same permutation induces a permutation, also noted o, of the four
possibles A's, and it is tautological that }l’,l(cy;‘x, B) is deduced from

}El(A, B) by the extension of scalars o: R = R. Since the formation of
Ggal commutes with extensions of the ground field, it follows that for
any o, we have

dimGgal(}ﬁl(OA, B)) = dimGgal(}ﬁl(A, B)).
Since there is a unique (A, B) where this dimension is < 16, its A must
be a fixed under permutation of x, y, z. Among the the four possibles
A's, only A is fixed.

We next show by a symmetry argument that that correct B is
either {0, 1/3, 2/3} or {1/2, 5/6, 1/6}. Indeed, consider the
automorphism T of the parameter ring R := Q[x, vy, zl/(x+y+z)Q[x, vy, z]
given by x » x+ 1/3, y = y +1/3, z = z - 2/3. Let us denote by TA
the image of A under T. Then H{(TA, B) is obtained from #{(A, B) by
the extension of scalars T, so just as above we have

dimGgal(}ﬁl(TA, B)) = dimGgal(}ﬁl(A, B)).
On the other hand, given any B := {pj}, let B + 1/3 := {p; + 1/3}. Then
Hi(A, BY®xL/3 = % (tA, B+ 1/3). So trivially
dimGga)(Hq (A, B)) = dimGgy (M1 (TA, B + 1/3)),

while we have seen above that (replacing B by EN+ 1/3)
dimGg,|(Hq(TA, B +1/3)) = dimGy,)(H4(A, B + 1/3)).
Therefore we have N ~
dimGgal(}ﬁl(A, B)) = dimGgal(}fl(A, B+ 1/3)).

Since there is a unique (A, B) where this dimension is < 16, its B must
be a fixed under B = B + 1/3. Among the possible B's, only {0, 1/3, 2/3}
or {1/2,5/6, 1/6} are so fixed.
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It remains only to show that H¥(A; 1/2,5/6, 1/6 ) has

dimGgal >16; for this is suffices, by the specialization theorem, to
exhibit particular values of x and y where dimGgal >16. For this, take
x =1/6,y =-1/6,z = 0. Then H(A; 1/2,5/6, 1/6 ) becomes
Hq(1/6,-1/6,0,-1/12,5/12,1/12,7/12,0, 1/2; 1/2,5/6, 1/6 )
whose semisimplification contains, for some A in C*,
K, (0, -1/12,5/12, 1/12, 7/12, 0; &).
So it suffices to show that ¥#,(0, -1/12, 5/12, 1/12, 7/12, 0; &) has its
Ggal of dimension > 16. This is a hypergeometric of type (6,0) which is

(automatically) irreducible and which is not Kummer induced (its
exponents are not stable by o« = o + 1/2 or by o« = o + 1/3). It is
symplectic (by the Duality Recognition Theorem 3.4) So its Ggal 1s Sp(6),

which has dimension 21 > 16. QED

Corollary 4.6.17.1 Suppose that x+y+z = 0 mod Z, and that none of x,

y,zis = 0 or x1/3 mod Z. Let u € C*, and let
A=1{xv,z -x/2,-y/2,-2/2,1/2 - x/2,1/2 - y/2, 1/2 - z/2},
B = {0, 1/3, 2/3},

Then Ggal(}tu(A’ B)) = T'X{1, o}, and for some A € C*, there exists an
Isomorphism
[2]*(Hu(o<i's; E)J-'S)) =~ Hy(x,y, 2 ZIQT*H,\(x, y, z; &).

proof This results formally from the preceding two lemmas. QED

This corollary establishes the truth of 4.6.10. Thus we obtain
SL(3)xSL(3) Theorem 4.6.18 Hypergeometrics V of type (9,3) with
G = Ggal = I''{1, o} are precisely those (isomorphic to one) of the form

}E’,M(x, v, z, -X/2, -y/2,-2/2,1/2 - x/2,1/2 - y/2,1/2 - 2z/2; 0, £1/3)
for some peC™, and for some x, y, z in €C which satisfy x+y+z = 0 mod
Z, and none of x, y, zis = 0 or £1/3 mod Z. Hypergeometrics V of type
(9,3) with GU.der = ' are precisely the x® twists of these.
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5.1 Convolution of D-modules; Generalities

(5.1.1) Given a smooth C-scheme X/C, we denote by HMOD(X) the
abelian category of all sheaves of left Dy-modules on X, by D(X; D) its
derived category, and by DP:N0lo(x) the full subcategory of D(X; D)
consisting of those objects K such that H1(K) is holonomic for all i and

such that #(K) vanishes for all but finitely many 1. For morphisms
f: X > Y between smooth separated C-schemes of finite type, one

knows (cf. [Ber], [Bor], [Ka-Laul, [Me-S0]) that these DP,holo support the
full Grothendieck formalism of the "six operations”. Of these, we will

need only f, and f!, both of which have fairly concrete descriptions.

(The operations f; and f* are defined as the duals of these, and are

consequently less amenable to direct inspection.)
(5.1.2) We will need f, primarily when f: X =Y is smooth of

relative dimension d; in this case one has f K = Rf*(K(X)@XQ'X/Y)[d], SO

except for the dimension shift we are "just” talking about relative De
Rham cohomlogy:

}(’,i_d(f*K) = HiDR(X/Y, K), with its Gauss-Manin connection.
The deep fact here is that for K a single holonomic left Dy-module,
each of the relative De Rham cohomology sheaves HiDR(X/Y, K), with
1ts Gauss-Manin connection, is holonomic on Y. The other case of f, we

will need is when f: X =Y is the inclusion of a C-valued point y € Y(C).
Then 4Oy is the delta module 8y.

(5.1.3) For a general f : X = Y, and Il on Y, 190 is defined as

L
f!m = Dx_)y ®f—1°DY f_lm[dimx - dimY],
where Dy _, v is the (Dy, f_lby)—bimodule
DX_)Y .= DiffOpS(f_j‘Gy, Gx) = 6X®f_16Yf_1°DY'

(5.1.4) Here is a more concrete description in some important

special cases. Denote by f*Jll the naive pullback of Ml as module with
integrable connection. If f is a flat morphism (e.g., if f is smooth), or if
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M is a flat Oy-module (eg., if TN is a D.E. on Y), then
£'M = fFMIdimX - dimY].
For f etale, f! = f¥ = % For f smooth of relative dimension d, we have
£ = f'[-2d] = f*[-d].
If f is a closed immersion of codimension one, with X defined in Y

by one equation x=0 in Y, then f'9N is the two term complex
me xm
MnN—— 0
placed in degrees zero and one.
(5.1.5) We will also use the following two elementary facts for an
arbitrary f:
(1) (base change) given a cartesian diagram

X' — X M
G
| F £ et M = F G,

g

Y — Y

(2) (projection formula) for any G-coherent D-module £ on Y, denoting
by f*L its naive pullback as a D.E. on X, we have

(f*K)®@YJZ = f*(K®@Xf+f)).

(5.1.6) Given two smooth C-schemes X/C and Y/C, "external tensor

product over C" defines a bi-exact bilinear pairing,
DMOD(X)x DMOD(Y) — DMOD(Xx*x¢Y)

(M, N) - MxqN,

which passes to DP,holo,
If K and L are objects of HDMOD(X), we define their "exotic" tensor

product, denoted K®!L, in terms of the diagonal map A: X = Xx¢X, by
K®'L := AKxL).
(5.1.7) If G/C is a smooth separated C-groupscheme, we denote by

the group law by
productg : Gx¢G = G

We define the convolution of objects of DP.10lo(G) by
(5.1.7.1) (K, L) » KxL := (productg)(KxL).
The operation of convolution Is associative, and the é-module &,

supported at the identity of G is a two-sided identity object. [For if we
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denote by 1: e = G the inclusion of the identity, then for any K in
pb,holo(g), we have

K= 0,xKonexgG = G,

(vxidg)«(OgxK) = (1 ,0,)xK = §,xK on Gx¢G.
Since the composite map (productg)e(1 xidg) is idg, the result follows.]

If G is commutative, then convolution is commutative as well.
(5.1.8) In general, even if we start with two holonomic D-modules

MM and J1 on G, viewed as objects of pb,holo(G) which are concentrated

in degree zero, their convolution M%7l is "really” an object of pb,holo(g),
and not simply a single holonomic D-module placed in degree zero. It is
this "instability” of D-modules themselves under convolution that

makes DP:10l0 the natural setting.
(5.1.9) The following formal properties of convolution are quite
useful.
(1a) If 9: G=H is a homomorphism of smooth separated C-
groupschemes of finite type, then

@ (KxL) = (9, K)x (@ L).
This results from the fact that (@x@)(KxL) = (@ K)x(9,L) (valid for
any ¢) and the fact that productye(gx¢) = geproductg (¢ being a

homomorphism).
In the special case when H is the trivial group, this becomes:
Denote by m: G = Spec(C) the structural map. Then for any two objects

K, L in DP:holo(g), we have
My (KxL) = (m,K)®c(myL).

(1b) If ¢ : G = G is a homomorphism, then for any two objects K, L in
pb,holo(g) we have
@ (@ K)xL) = Kx(g'L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

GxG — GxG
I idx ¢ | ¢@xid
prodg GxG
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(1c) If ¢ : G = H is a homomorphism, then for K in DP-10lo(G) and L in
pb,holo(y) we have
@' (¢ K)xL) = Kx(¢'L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

GxG — GxH

[ idx @ L gxid
prodg | HxH

l ¢ | prodH

G _— H

(2) For g € G(C) denote by Tg : G =G the map x = gx "translation by g",
and by Sg the delta module supported at g. Then for g € G(C), we have
(Tg)w(KxL) = (Ty)K)xL,
(Tg)w(L) = (85)xL.
The first results from TgoproductG = productg ° (TgXidG). The second is

the special case K = &, of the first, since (Tg)*(?)e) = &4, and &, is the

g)
convolutional identity.

(5.1.10) In discussing convolution, it is sometimes convenient to take
a slightly assymmetric point of view. Denoting points of GxG as (x,y),
we can factor the product map as the composition of pro with the

shearing involution shear: (x,y) (X_j‘, xy) of GxG. So we find, in an
obvious notation,
Kx=L := (productg)«(KxL) = (pr2)*(shear)*(KXL) =

(pr2)*(K(X_1)®L(Xy)) = [K(x™1)®L(xy)dx

(pro)x((prqinv, K)®(productg)™L).

5.2 Convolution on G,, and Fourier transform on Al

We now turn to the case of particular interest to us, when G is
G-
Lemma 5.2.1 For o« in C, and K, L in Db’hOIO((Em), we have

(K®x*)x(L®xX) = (KxL)®x™.
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proof Let T, denote the D-module x*Clx, %x~1]. The D-module version
of " (xy)* = (x)*(y)™* " is
product®™(T,) = Ty xTy,

so the assertion is immediate from the projection formula. QED

(5.2.2) Denote by inv: G, = Gy, the multiplicative inversion, by

J: Gy — Al the inclusion, @ := d/dx on Al, by £ the D-module
Dp1/Dp1(d - 1) on Al which is the D.E. for e¥X, and by j*& its
restriction to Gy,. Thus j*& = DGm/DGm(xa - x) = H4(0; &) = H(t, 1) is

the basic hypergeometric of type (1,0) on Gyy,.

Key Lemma 5.2.3 (Compare [Ka-GKM, 8.6.1]) Convolution with

Jj*& = H1(0; @) = H(t, 1) on G,y and Fourier Transform on Al are

related as follows: for any holonomic D-module N on G,,, we have
J¥FT(jxinvy (M) = Mxj*L = M= 1(0; &) = MxH(t,1).

proof We have

FT(jxinv,(M)) = | (JxIinv (M))(x)eXYdx
Al
= [ (isinv (M=) (xy)dx.
Al
Denote by
prq: G, xG, = Gy the first projection,

pro: G, xG, = G the second projection,
= (jxidg )¢ GGy = AlxGp, the inclusion,
151’2 : A1><(E|m — Gy, the second projection,
151’1 : A1><(E|m — Al the first projection
product : A1><(E|m — Al the multiplication (x, A) = x\.
So with these notations, we can rewite the above FT formula as
J¥FT(jginv, TN) = (6r2)*((j*inv*m)(x)ex§’).
Using smooth base change and the projection formula, we find
(pro)u((juinvy, M) (x)eXY) =
= (ﬁrQ)*(§r1+(j*inv*‘Jﬂ).@(ﬁroductﬁﬁ) =
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(5r2)*j~*((pr1+inv*fm)®(j~ )*product™) =

(pro)x((prqfinv,M)®product®j* L) =
Mo % 5. QED

Corollary 5.2.3.1 For any holonomic D-module M on G we have

NV J¥FT(j. M) = Mx(inv, j*L).
proof The Key Lemma applied to inv Il gives
J¥FT( M) = (inv, M) (j*L).

Because inv: G, = Gy 1s a group homomorphism, we get

m>

INVy J*FT(j M) = (invginvy,M)*(invy, j*L) = M=(invy,j*L). QED

5.3 Convolution of Hypergeometrics on G,

We begin by explaining the heuristic motivation. Let P, Q, R, and
S be four nonzero polynomials in C[t]. Recall the hypergeometric
differential operators
Hyp(P, Q) := P(xd/dx) - xQ(xd/dx),
Hyp(R, S) := R(xd/dx) - xS(xd/dx),
and the associated D-modules on Gy,

H(P, Q) := D/DHyp(P, Q),
H(R, S) := D/DHyp(R, 9).

A formal series f(x) := Zap,x is killed by Hyp(P, Q) if and only if its

coefficients a,, satisfy the two-term recurrence relation

n
P(n)ay = Qn-1)apy-1.

Similarly, a formal series g(x) := Xb,x! is killed by Hyp(R, S) if and

only if its coefficients by, satisfy the two-term recurrence relation

R(n)by, = S(n-1)b,,_1.

Thus if f(x) := Ya,x™ and g(x) 1= Zb,x™ are formal series solutions of

Hyp(P, Q) and of Hyp(R, S) respectively, then their "convolution”
(fxg)(x) 1= Zapbpx?

is visibly a formal solution of Hyp(PR, QS). This suggests that, at least

under reasonable hypotheses, one should have

H(P, Q)=xH(R, S) = H(PR, QS)

as D-modules on Gy
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Convolution Theorem 5.3.1 Suppose that P, Q, R, and S are four
nonzero polynomials in C[t], such that the two polynomials PR and QS
have no common zeroes mod Z, i.e., whenever (PR)(x) = 0 = (QS)(p), «
- B I1s not an integer. Then

H(P, Q)=xH(R, S) = H(PR, QS)

as D-modules on Gy

proof We proceed by induction on deg(RS).
If deg(RS) = 0, then both R and S are nonzero constants, say r
and s. Then Hyp(R, S) = r-sx, so H(R, S) = &, /4 is the delta module

supported at r/s. Similarly, we see that H(PR, QS) = H(rP, sQ) =
(Tr/s)« 8 (P, Q) (cf. 3.1). Since convolution is commutative on Gy, the

assertion to be proven is

(8, /)% H(P, Q) = (T, /o)« H(P, R),

which is the translation formula 5.1.9 (2) (with g =r/s).
Suppose now that R or 5 is nonconstant. By multiplicative
inversion, it suffices to treat the case when R has degree > 1. Twisting

by x*, we reduce by 5.2.1 to the case where the polynomial R(t) is
divisible by t, say R(t) = tRg(t). By induction, we know that

H(P, Q)= H(Ry, S) = H(PR, QS).

Since convolution is commutative,we know by induction that
H(Rg, S)=H(t, 1) = H(t, 1)=xH(Rp, S) = H(R, S).

Therefore by the associativity of convolution we obtain

H(P, Q%H(R, 5) = H(P, Q)xH(Rg, S)xH(t, 1) =
~ H(PRg, QS)=H(t, 1).

So we are reduced to showing universally that
H(P(1), Qlt))=¥(t, 1) = H(tP(1), Q1))

whenever tP(t) and Q(t) have no common zeroes mod Z. By 5.2.3, we
have, denoting by j: G, — Al the inclusion,

HP(t), QUt))=H(t, 1) = J¥FT(jxinv, H(P(t), Q(t)))

= J¥FT(jxs(Q(-1), P(-1))).

Since Q(-t) has no zeroes in Z, it follows from 2.9.4, (3) (5) that

Jx(Q(-1), P(-1)) 1= jj (D p1/Dp1Hyp(Q(-1), P(-1)))

= Dp1/Dp1Hyp(Q(-t), P(-1)),

whence

J¥FT(jx¥(Q(-1), P(-1))) = j*FT(Dp1/D p1Hyp(Q(-1), P(-1)))
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= (D p1/ D FT(Hyp(Q(-t), P(-1))))
= Dg /Dy FT(Hyp(Q(-1), P(-1)).

It is a simple matter to compute FT, since FT(x) = 9 := d/dx, FT(9) = -x,
and FT(-xd/dx) = ox = 1 + x9. We find
FT(Hyp(Q(-t), P(-1))) := FT(Q(-xd/dx) - xP(-xd/dx))
Q(FT(-xd/dx)) - OP(FT(-xd/dx))
Q(1 + xd/dx) -(1/x)(xd/dx)P(1 + xd/dx)
(-1/x)(xd/dx)P(1 + xd/dx) - xQ(1 + xd/dx)]
(-1/x)Hyp(tP(1 + t), Q1 + t)).
Therefore we have
DGm/DGmFT(Hyp(Q(—t), P(-1))) = H({P(1 + 1), Q1 + t)).

By 3.2 and 3.2.1, ¥(tP(1 + t), Q(1 + t)) = H(tP(t), Q(t)). QED
Making this explicit in terms of the exponents, we find

Explicit Variant 5.3.2 We have
Ho(o's; B's)*}(’,u(y's, 8's) = }[’Q\M(oc's, Y's; B's, 8's)
provided that }KXM(oc's, Y's; B's, 8's) is irreducible, i.e., provided that no

element of the set {«'s, ¥'s} is congruent mod Z to any element of the
set {p's, &'s}.

Corollary 5.3.2.1 All irreducible hypergeometrics on G,, can be built
out of 64 and #41(0; &), using only the following operations on
holonomic D-modules on Gyp:

(1) convolution

(2) T (Ty) T

(3) M > MO

(4) M = inv>*IN.

Specializing the Key Lemma 5.2.3 and its Corollary 5.2.3.1 to the
case of hypergeometrics, we find

Proposition 5.3.3 Let ¥ = H,(otq, ... , &y B, -
in Z.
If no B lies in Z, then

), with no «; - Bj

’E’m 1

J¥FT(jxinvy H) = Ho (0, otq, .., Xy B1s s Bypp)-
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If no & lies in Z, then

NV J FT(ju¥) = H_y(axq, .., &xp; O, By oo s Byn)-

Corollary 5.3.3.1 All irreducible hypergeometrics can be built out of
the delta module 64 on G, using only the the following operations on

holonomic D-modules on (Em:
(1) M = J*FT(jxinvy M)

(2) M = inv, j*FT(j, M)
(3) T (To)y T

(4) M —» Mx®
(5) M = inv>*IN.

5.4 Motivic Interpretation of Hypergeometrics of type (n,n)
In our earlier discussion of the determination of (Ggal)O,der for
irreducible hypergeometrics of type (n,n),
Holoeq, oy otpy; B1s - s Pp), NO O = Bj lies in Z,
we put aside the problem of recognizing when Ggal is a finite group. We
now confront this problem. Since Ggal i1s invariant by multiplicative

translation, it suffices to treat the case A=1. By 3.2.2(3), a trivial
necessary condition for the finiteness of Ggal is that the o's and p's all

lie in Q. By the convolution theorem 5.3.1, ¥1(otq, ..., &p; B, -~ , Bp) IS
a multiple convolution:

Hqloq, ooy ot B, s Bp) = Hqlog; )=t (on; Bo)x .o xH (o) Bp)-
As we will now explain, this expression for }(’,1(o<1, wo s Oy Bl e E’n)
leads directly to its motivic interpretation.

(5.4.1) The first step, then, is to understand completely ¥ (, ),

when o, p €Q and o« - p is not an integer. Let N be a common
denominator for o« and p, and define integers A, B, C by

A= Nx, B:=Np,C:=B-A.
Denote by U the open set G,y - {1} of Gy, and by j: U — Gy, the
inclusion. Denote by Z the subvariety of UxGy, (coordinates x,y) of
equation

yN = A1 - x)C.
This Z is a smooth (y is always invertible) affine curve on which Py
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acts (on y). Via prq, Z 1s a finite etale W -torsor over G,y - {1}. We

denote by m the etale map
m:Z > Gy, nlx, y) = x,

which factors through j as

7
prll J'\.Tf
U - Gy

The map m is L —equivariant, for the given action
(x,y) » (x, ¢y) on Z, and the trivial action on G,,. Therefore the group
M acts on the holonomic D-module m,07. This action gives a direct
sum decomposition
TxO7 = @ pars X of Wy (“*@Z)X

into 1sotypical components.
Lemma 5.4.2 For each faithful character X, of Wy,

X () 1= ¢F with ged(r, N) = 1, 1 <r <N,
the X ,-isotypical component of 1,0y is given by
(W*OZ)Xr =~ Hq(ro; rp).
proof Since m = jeprq, we have
07 = juprqx07.
Because prq is My —equivariant, we have a direct sum decomposition
Prix07 = ®inarss v of uy Prix92)y
whose direct image by jis the decomposition
mTyO7 = @ 4.« X of Wy (W*GZ)X-

Thus for any character X of Wy,
(TE*GZ)X = J*((prl*ﬁz)x).
As an Oy -module, 7 is freeon 1, y, ..., yN_l. So for any r we have
(prl*ﬁz)xr = yroy.
But j*¥ (roc, rp) := Dy/DyHypq(ra, rp) = y'Oy by the map 1 = y',
simply because y! = xI*(1 - x)I'P7I% and Hyp4(ro, rp) is the monic
first order operator on U which kills x¥*(1 - x)I'BP"FX S5 we have

(prl*ﬁz)xr = j*H 1 (rog, rp).
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If ged(r, N) = 1, then roc- rp, the exponent at 1 of H (ro, rp), is a
noninteger, so by 2.9.4, ¥ (ro, rp) = jj"H4(ro, rp). Thus
(W*GZ)Xr ~ J*((prl*ﬁz)xr) = Jxd*Hq(ro, rp) = ¥q(ro, rp). QED

The next step is to interpret the convolution of two direct images
as a direct image.
Lemma 5.4.3 Suppose that
f: X = Gy, g Y = Gy,
are two smooth morphisms. Then the "product” morphism
fg : XxcY = Gy, (f2)(x,y) = f(x)g(y),
1s smooth, and there is a canonical isomorphism
(fg)*@XX(EY =~ (4 Oyx)*x(gOvy).

[f in addition we are given a finite group G acting f-linearly on X and a
finite group H acting g-linearly on Y, then for any irreducible
representations p of G and X of H, the corresponding isotypical
components are related by

(1) Ox x c Ypayx = (1x0x)p)x(gOy)y).

proof The map fg is the composite of the smooth map product(ﬁm with

the smooth map
fxg : XxcY = Gpyxclp,
so fg is smooth. Since the trivial J-module GXX(]:Y is the external
tensor product (Ox)x(0y), we have
(fg)*GXX(EY = (product(ﬁm)*(fxg)*((@x)X(@y))

= (product(ﬁm)*((f*ﬁx)X(g*ﬁy))

= (f,Ox)*(g.Oy).
In the presence of finite group actions, we have

whence
(fxOx)x(gxOy) = GBP,X ((f*GX)p)*((g*GY)X)’
and this 1s visibly the GxH -isotypical decomposition of
({4 Ox)x(gxOy) = (fg)*GXX(Ey. QED

Theorem 5.4.4 Let o4, .., oy and pq, .., B, be 2n rational numbers,
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such that for all (i, j), o - P

denominator N for all the ««'s and p's. For each 1 = 1, ... , n, define
integers A(i), B(i), C(i) by
A(i) := Noj,  B(i) := Npj, C(i) := B() - AG).

Denote by U the open set G,y - {1} of G,,. Denote by Z(i) the subvariety

is not an integer. Pick a common

of UxGyy, (coordinates X5, yi) of equation

yiN - XiA(i)(l _ Xi)C(i)‘
This Z(i) is a smooth (y; is always invertible) affine curve on which py
acts (on y;). We denote by m(i) the etale, iy -equivariant map
m(i) : Z(1) = Gy, m(x;, yi) = %
Denote by
Z = Z(1)xg .. xgZ(n),

and by
m : Z = Gy the "product” map m(xq, yq, ., Xp, ¥Yp) = 1T, %

Then m is equivariant for the product action of (up)™ on Z. For every

n-tuple of faithful characters (Xrl, ,Xrn) of M, l.e., ged(r;, N) = 1
for each 1, the (Xrl, ,Xrn)—isotypical component of Uy is given by
(w*@z)(xrl, Ky ) Hilrqoq, o, rpoy; r1BY, o, IpBp)-
Equivalently, for every n-tuple of faithful characters (Xrl, ,Xrn) of

My, the (Xrl, ,Xrn)—isotypical component of the relative De Rham

cohomology sheaf HiDR(Z/(Em) = Riﬁ*Q'Z/Gm with its Gauss-Manin
connection 1s given by

(Hn_iDR(Z/Gm))(Xrl; ’Xrn) = Hq(rpoq, o, ROty TR, s TnPp)

i I _
(H DR(Z/Gm))(Xri; ’Xrn) =0if 1 = n-1.

proof By 5.4.2 this is true for n=1. [t then follows for general n by
induction, thanks to 9.4.3 and the Convolution Theorem 5.3.1. QED

5.5 Application to Grothendieck's p-curvature conjecture

In 1969, Grothendieck pointed out that, for a general D.E. on a
smooth variety Y over C, "p-curvature zero for almost all primes p" of
any arithmetic "thickening” was a necessary condition for the finiteness
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of G and he asked whether it was also a sufficient condition.

gal
It was proven in [Ka-AS, 5.7] that the equivalence
(%) Ggal finite © p-curvature zero for almost all primes p

holds for Picard-Fuchs equations, i.e. for (the restriction to a dense open
set of Y of the) the relative De Rham cohomology sheaves HiDR(X/Y) of

smooth morphisms f: X = Y, endowed with the Gauss-Manin
connection. Moreover, if a finite group G acts f-linearly on X, and if we
pick any irreducible C-representation p of G and denote pq, ..., pq its

distinct conjugates by Aut(C/Q), this equivalence (xx) was proven to
hold for the direct factor @ (HiDR(X/Y))pJ..

Let us apply this result to the smooth morphism mn: Z — G,,, the

finite group G = (Up(C)T, and the one-dimensional representation p of

G defined by p(¢q, ..., ¢) = TT; ¢;. Thus in the notations of 5.4.4 p is
(X1, -, X1), dis ¢(N) := Card((Z/NZ)*), and the various p; are the

characters (Xy, .., XyJ), as r runs over (Z/NZ)*. We find
p-Curvature Theorem 5.5.1 Let o4, ..., xy and Bq, ..., P be 2n
rational numbers, such that for all (i, j), o - B 1s not an integer. Pick

a common denominator N for all the «'s and p's. The equivalence (xx)
holds for the (restriction to G, - {1}, where it is a D.E, of the) direct

Ssurmn
@r mod N, ged(r,N)=1 %1(1’0(1, oy Oy TR, oy rE’l’l)'

The interpretation of "p-curvature zero for almost all primes p”,
due to Beukers-Heckman, is given by

Lemma 5.5.2 ([B-H, 4.9]) Let 1, .. , &y, and pq, .., pp be 2n rational
numbers, such that for all (i, j), o - P is not an integer. Pick a

common denominator N for all the «'s and p’'s. Then

%1(0(1, vy Ay By e Bn)
has p-curvature zero for almost all primes p if and only if the following
two conditions hold:

(1) &g, ., Xp; P15 - » BPp Mod Z are 2n distinct elements of (1/N)Z/Z.
(2) for each integer 1 < r < N with gcd(r, N) = 1, the two subsets
Ay ={rotq, .., roy)} mod Z, By := {rpq, ..., rpp) mod Z

of (1/N)Z/Z are intertwined in (1/N)Z/Z in the sense that if we
display their images under x = exp(2mix) on the unit circle, then as we
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walk counterclockwise around the unit circle we alternately
encounter one from each subset.

proof We may assume that all the o's and p’'s lie in the half open
interval [0, 1). We begin by a direct analysis of the p-curvature. The
operator

Hypq(oa's; B's) := P(xd/dx ) - xQ(xd/dx)

P(t) = TT(t - o), Q1) = TT(t - By),

lies in Z[1/Nl][x, xd/dx], so it makes sense to reduce it mod p for any
prime p > N. Notice for any ¥ and 8 chosen from the set {«'s, p's}, we
have ¥y = 8§ iff Y = 8 mod p (indeed, INY - N8| < N < p, so ¥ = & mod p iff
Ny = N8 mod p iff Ny = N§ iff y = 8).

SubLemma 5.5.2.1 Let x4, .., &y and B4, ... , p, be 2n rational
numbers in [0, 1) such that for all (i, j), o - Bj is not an integer. Pick a

common denominator N for all the o«'s and p's. Then for a fixed prime p
> N,
Hqloeq, ., otp; B1s 5 Pp) mod p

has p-curvature zero if and only if the following two conditions hold:

(1) the «'s and p's have 2n distinct reductions mod p in [Fp.
(2) the reductions mod p of the «'s are intertwined in Fp with those
of the p's in the sense that as we walk through [Flo in the standard

order 0, 1, 2, 3... we alternately encounter o's and p's.

proof To say that the reduced equation has p-curvature zero is
precisely to say that the reduced operator has n solutions in the
rational function field [Fp(x) which are linearly independent over the

subfield [Fp(xp) ([Ka-AS, 6.0.5]). So if we view [Fp(x) as a p-dimensional
vector space V over the field k := [Fp(xp), then Hypq(o's; p's) mod p is a

linear endomorphism L of V, and p-curvature zero means precisely
that this linear endomorphism L has an n-dimensional kernel, or
equlvalently that L. has rank p-n. Fix an integer d such that d+p-1 mod
p is one of the p; mod p. As basis of V over k we may take the elements

xd xd+l — d+p-1

and on this basis, the operator L = P(xd/dx ) - xQ(xd/dx) mod p acts as
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L(x) = P()x! - Q)x!*T for i= d, d+1, ..., d+p-2
= P()x! for i = d+p-1.
Let us denote by aj (resp. b;) € Z the unique lift of o; mod p (resp. of p;

mod p) which lies in the interval [d, d+p-1]. Renumbering the b's, we
may suppose that there are precisely t > 1 distinct elements among
the b;'s, and that these are

d < bq ¢ by <. <by = d+p-1.
Then
Q(bq) = Qlby) = Qlby) = 0,
and these are all the zeroes mod p of Q on [Fp.
The operator L is visibly stable on each of the t subspaces Vg, ..., V4_q
defined by
Vo = the span of those xJ with d < J < by,

Vi
Since V is the direct sum of the V;, we have
dimKer(L | V) = Z; dimKer(L | V;).

Now on each V;, the matrix of L is of the form

IA

:= the span of those xJ with b; < J < bjyq fori> 0.

(?OOO OOOO\
x700 0000
0x70 0000
00%x?7 0000

000x%x 7000
0000 %700
0000 0x%x70
\OOOO OO*?)

where each subdiagonal % entry is nonzero. Now such a matrix, if of
size d, has rank > d-1, since its lower left d-1 x d-1 minor is nonzero.
Being lower triangular, its rank is d & all the diagonal entries are
nonzero. Therefore we find that
dimKer(L | V;) = 1 if P(aj) = 0 for some aj with bj_q « aj < b;,
= 0 if not.
Notice that we cannot have aj = b;, since by hypothesis o = B, and

we chose p > N to avoid any coalescing mod p of o's and p's.
Therefore we have dimKer(L | V) = n if and only if there are precisely
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t = n distinct b;'s, and when we walk from d to d+p-1 we alternately

encounter a's and b's. QED

SubLemma 5.5.2.2 Let &1, ..., Xy, B1, -, By be 2n distinct rational

numbers in [0, 1), with common denominator N. Let p > N be a prime,
and denote by r the unique integer r in 1 < r < N with gcd(r, N) = 1 for
which

rp+1 =0 mod N.
Then the following conditions are equivalent:

(1) the reductions mod p of the «'s are intertwined in [Flo with those
of the p's in the sense that as we walk through [Flo in the standard

order 0, 1, 2, 3... we alternately encounter o's and p's.

(2)the two subsets
Ay ={rxq, .., rapy) mod Z, By := {rpq, ..., rppy) mod Z

of (1/N)Z/Z are intertwined in (1/N)Z/Z in the sense that if we
display their images under x = exp(2mix) on the unit circle, then as we
walk counterclockwise around the unit circle we alternately
encounter one from each subset.

proof For a real number x, we denote by <x> its fractional part; by
definition <x> lies in the half open interval [0, 1) and satisfies

<x> = x mod Z. Denote by aq, .. , ap, b1, .. , b arbitrary integers

n
whose reductions mod p agree with those of &«q, ... , &, B, ..., Bp. Then
condition (1) is that in the interval [0, 1), the fractional parts <aj/p> are
intertwined with the fractional parts <b;/p>. And condition (2) is that in
the interval [0, 1), the fractional parts <raj> are intertwined with the
fractional parts <rp;>.

Notice that each of the <r«;> and each of the <rp;> is one of the

numbers {0, 1/N, 2/N, ..., (N-1)/N}. So the minimal distance between
any two of them is 1/N. So if we add to each of them non-negative real
quantities which are each < 1/N, we will not alter their order in [0,1),
and in particular we will not alter the question of whether or not they
are intertwined. Since p > N, we have 1/p < 1/N. So it remains only to
observe that for each 1 we have the inequalities

1/p > <aj/p> - <royp> =z 0,

1/p > <bj/p> - <rp;> = O.

To see this, recall that by the definition of r we have
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pr +1 = 0 mod N.

Let ¥ := C/N be any fraction with C an integer, O < C < N. Then

¥ = ¥(1 + pr) mod”™ p,
so Y mod p is also the reduction mod p of the integer

c:= Y(1 + pr) = C((1 + pr)/N).
Then

<c/p> = <¥(1 + pr)/p> = <(y/p) + ry> = < (Y/p) + <ry».
Since 0 < Y < 1, we have 0 < (Y/p) < 1/p; since 0 < <ry> < (N-1)/N and
(N-1)/N <1 - 1/p, we have

<c/p> = (Y/p) + <ry>, whence 1/p > (Y/p) = <c/p> - <ry> = 0. QED

These two sublemmas together prove the lemma, since by Dirichlet’s
theorem, any r in 1 < r < N with gcd(r, N) = 1 occurs in 5.5.2.2 for an
infinity of primes p. QED

Combining this lemma 5.5.2 with the p-curvature theorem, we
obtain the complete description of irreducible hypergeometrics of type
(n,n) with Ggal finite. This description was obtained independently by

Beukers-Heckman by a different method.

Theorem 5.5.3 ([B-H], 4.8) Let oq, .., o, and pq, ..., py, be 2n

complex numbers, such that for all (i, j), o - B 1s not an integer. Let

A€ C*. Then
}f’,)\(ocl, ey Ay By oo E)n).
has Ggal finite if and only if the o's and p's are all rational numbers,

say with common denominator N, such that the following two
conditions hold:

(1) otq, .., %y B, -, By Mmod Z are 2n distinct elements of (1/N)Z/Z.
(2) for each integer 1 < r < N with gcd(r, N) = 1, the two subsets
Ay ={roq, .., roy} mod Z, By = {rpq, ..., rppy) mod Z

of (1/N)Z/Z are intertwined in (1/N)Z/Z

We refer the interested reader to their paper [B-H, 7.1, 8.3] for a
detailed discussion of exactly which finite groups occur as Ggal for

irreducible hypergeometrics of type (n,n).
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6.1 Some D.E.'s on Al as Kummer Pullbacks of Hypergeometrics

In 2.10.6, we proved that the rank seven D.E. on Al

o/ - fa - /2,

has differential galois group Ggal the subgroup Gy of SO(7), for any
polynomial f(x) of degree k > 1 prime to six. In this section, we will
show that this same result holds for f(x) = xX for any integer k > 1.

The idea is that equations on AL of the form

N + oxka + pxk71

are Kummer pullbacks of hypergeometrics of type either (n, 1), if

o = 0, or type (n, 0), for « = 0. As a consequence, one can explicitly
determine the group Ggal for all such equations.

More generally, for any non-negative integer m < n, and any
polynomial Py, (t) € C[t] of degree m, equations of the form

on + (xk"Lyp _(D); D := xo,
are Kummer pullbacks of hypergeometrics of type (n, m); just as above

(the case m = 0 or 1), this leads to an explicit determination of their
Ggalls- For example, we will find that for any integer s > 1,

o8 + x2571(D + s)(D -7/2)
has Ggal the subgroup Spin(7) of SO(8).

Key Lemma 6.1.1 Let g > n > m > 0 be integers. Denote by
[q] : Gy = Gy

the g'th power endomorphism, and by j: G, — Al the inclusion. Then

for any B4, .., Py, We have an isomorphism of D-modules on nl

Jis(al*¥®y(-1/q, -2/q, ..., -n/q; B, - , Byy)) = D/DL

for L the operator on Al
L:= o - (qn_m/x)xq_nWJ(D -n - qE;J).

proof Since # := ®,(-1/q, -2/q, ... ,-n/q; B1, -, Pyy) I1s RS at the origin

with local monodromy of finite order q, its pullback by [q]*¥ is RS at
zero with trivial monodromy, so it extends uniquely to a D.E. Tl on all
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of AL, By 2.9.1.1, we have Tl = j,1(j*M), so Tl is the unique DE on Al

with j*M = [gq]*¥H. Therefore it suffices to construct on G, an
Isomorphism
* ~
[q]*H ‘DGm/‘DGmL'

On G we have

m>

[q]*(x) = x4, [q]*(dx/x) = qdx/x, [q]*(D) = D/q,
so direct calculation shows that, as operators, we have

< -l s i - xall | /) -p))

avan T o+ - azamxall 0= qp)

(A/qM)(dNxN) - (1/qm)xq-n(ﬁjzi, D n - qaj))x“

Lo(ax/gM).

So right multiplication by Ax™/q" defines the required isomorphism
— * _

‘D(Em/‘D(EmL [q]*H of D-modules on G,,. QED

Variant 6.1.2 Let g > n > m 2 0 be integers. For any integer o« we
have

e [qP* ¥ ((x =1)/q, (¢ =2)/q, ..., (& -n)/q; BY, - 5 Py)) = D/DL

for L the operator on Al
L:= o - (qn_m/x)xq_nWJ(D + o -n - qﬁj).

proof The operator
Hlx/q) = Hy((x -1)/q, (x -2)/q, ..., (¢ -n)/q; B1, ) Bry))

is the x*/d twist of
Hi= "\ (-1/q, -2/q, ..., —n/q; pq - &/, o, Py — */d),

to which the above lemma applies. But [q]*H = [q]*(H(x/q)). QED

Question 6.1.3 Let g > n > m 2 0 be integers. If oy, ..., &y, are n
elements in (1/q)Z which are all distinct mod Z, then for any pq, ...,
Py LAl Mo (axq, oo, o) s B, o, B)) extends to a D.E. on Al of rank

n. The above variant gives an explicit formula for it when the «; are
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consecutive. Are there similar formulae when the o are not

consecutive?

Corollary 6.1.4 et g > n > m 2 0 be integers. Let o« be an integer. If
W ((x -1)/q, (x =2)/q, .., (& -n)/q; B, s Byry)

I1s irreducible and not Kummer induced, then for L. the operator on Al
L:= o - (qn_m/x)xq_nWJ(D + o -n - qﬁj),
D/DL is an irreducible D-module on Al

proof If ¥ is irreducible and not Kummer induced, it is Lie-irreducible
and hence [q]*H is irreducible on G,,, which implies that its middle
extension D/DL is irreducible on AL, QED

Corollary 6.1.5 Let g 2 n > m > 0 be integers. Let o« be an integer.
Then group Ggal for

"o (e =1)/q, (x =2)/q, ..., (¢ ~n)/q; B, s Prp)
contains that for
L:=o - (qn_m/x)xq_nWJ(D + o0 -n - qE;J')

as a subgroup of finite index d which is a divisor of q.

proof Ggal for D/DL on Al is the same as Ggal for 1ts restriction to G,p,,
i.e.,, the same as for [q]*¥. Now apply [Ka-DGG, 1.4.5]. QED

Examples 6.1.6

We consider first the case of hypergeometrics of type (n, 0). Then
we find
Type (n, 0) Let g 2 n > 0 be integers. For any integer « we have

Jix[ql*Hy ((x -1)/q, (x =2)/q, ..., (x -n)/q; &)) = D/DL

for L the operator of Airy type (cf. [Ka-DGG, 4.2]) on Al
L:= ot - (git/n)x4971,

Type (n, 1) Let g 2 n > 1 be integers. For any integer o« we have

Jix(lal*Hy ((x -1)/q, (x -2)/q, ..., (& -n)/q; p)) = DH/DL

for L the operator on Al
L:= a0 - (qn~1/0%x9™M(D + o - n - gp).
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Special Case (7,1), o« = 4, p = -1/2: For any integer q 2 7,
Jis([al*¥®y(3/q, 2/q, 1/q, 0, -1/q, -2/q, -3/q; -1/2)) = D/DL

for L the operator on Al

L:= a7 - (q®/2)x977(D + (q-6)/2).
We have already proven (4.1.4) that
H\(3/q, 2/q, 1/q, 0, -1/q, -2/q, -3/q; -1/2)

has G Go. So the above corollary shows that

gal =

a7 - (q®/)x977(D + (q-6)/2)
has Ggal = Gy for every integer q 2 7. If we define k : = g-6, this gives

Corollary 6.1.7 For any integer k > 1, and any nonzero constant {,
o7 - uxka - ukxk-1,2
has Ggal = G2.

Type (n, 2) Let g 2 n > 2 be integers. For any integer o« we have
Jis([al* ¥y (e -1)/q, (x =2)/q, ..., (ot -n)/q: pq, Bo)) = D/DL

for L the operator on Al
L:=090 - (q"2/0)xT D+ o - n - qp1)(D + o - n - gpo).

Special Case (8, 2), g = 2r+1, r 2 4, o« = r+b5, pq = 0, py = 1/2
Jise(Lal* ¥y ((r+ 4)/(2r+1), (r+3)/(2r+1), .., (r-3)/(2r+1): 0, 1/2)) = D/DL

for L the operator on al
L= 08 - ((2r+1)®/0)x2r=7(D + r -3)(D -7/2).

This ¥ has Ggal = Spin(7) in SO(8), by 4.4.1. Writing s := r-3, we find

Corollary 6.1.8 For any integer s > 1, and any nonzero constant |,

L:= 08 - ux2s71(D +)(D -7/2)
has Ggal = Spin(7) inside SO(8).

6.2 Fourier Transforms of Kummer Pulllbacks of
Hypergeometrics: A Remarkable Stability

The following result shows that we can obtain (a Kummer
pullback of) any (sufficiently general) hypergeometric of type (n, m)
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with n > m as the Fourier Transform of (a Kummer pullback of) a
hypergeometric of type (n, n). We will see later the importance of this
sort of "reduction to the RS case”.

Theorem 6.2.1 Suppose that n > m > 0 are integers. Put d := n - m.
Suppose we are given a hypergeometric of type (n, m),

H o= }Ex(ocl, vy g E)j_, ey Bm) = }K(P, Q)

which satisfies the following three conditions:
(i) ¥ is is irreducible (i.e, for all i, j, o - Bj is not in Z),

(ii) ¥ is not Kummer induced,
(iii) for all i, dj is not an integer.
Then we have isomorphisms of irreducible D-modules on Al
(1) Jild]* ¥ (oxi's; BJ"S) = Jis[d]*Ho (ai's; BJ"S) = Ju[d]* ¥y (oy's; E)J'S),
(2) FT(js[d]* ¥y (axi's; E)J'S)) =
= Jrseldl*(H_yya,,(1/d, 2/d, ..., d/d, —E;is; -i's)).
(3) Juld]* ¥ (oi's; 5J"5) =
= FT(Jild]* (¥ 4yd(17/d, 2/d, ..., d/d, Bj's; -x;i's)))

proof On G,,, ¥ is Lie-irreducible by (i) and (ii), so [d]*¥ is irreducible.

It is RS at zero, and has all exponents at zero nonintegral, by (iii).
Direct calculation gives

[d]*H = ‘DGm/‘DGmL"
for L the operator
L := [d]*Hyp(P, Q) = P(D/d) - xdQ(D/d).
By 2.9.4, on Al we have
J!(DGm/DGmL) = D/DL = J*(DGm/‘DGmL)’
D/DL = J!*(‘DGm/‘DGmL)-

Therefore D/DL on Al is irreducible, being the middle extension of an
irreducible D-module on Gy,. This proves (1). Moreover, D/DL has some

(n-m, to be precise) of its «-slopes =1, so /DL is not the trivial D-
module G p1.

Therefore FT(D/DL) is irreducible on Al, and it is not 8&p, so it is
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the middle extension of its restriction to (Em:
FT(D/DL) = J!*j*(FT(D/DL)).

Now j*(FT(D/DL)) is easy to calculate explicitly:
JE(FT(D/DL)) = j*(D/DFT(L)) = DGm/DGmFT(L).

Since FT(D) = FT(x9) = -9x = -x9 -1 = -D - 1, we have
FT(L) = FT(P(D/d) - xdQ(D/d))
- P((-1 -D)/d) - adaQ((-1 -D)/d).

d

Since x% is a unit in D(Em, FT(L) and x9FT(L) generate the same left

1deal, so we have
‘D(Em/‘D(EmFT(L) = DGm/DGmK, where K is is the operator
K := xdP((-1 -D)/d) - xdada((-1 -D)/d)
= [d]*M, for M the operator

-M = d4[TT_; (D -j/d)]A(-1/d -D) - xP(-1/d - D).
So all in all we have

J*(FT(D/DL)) = [dI*(Dg_ /Dg. M.
m m
If we twist DGm/DGmM by x1/d e do not change its pullback by

[d]*, so we have
JX(FT(D/DL)) = [d]*(DGm/DGli) for M4 the operator

My = d9[TT,_; (D -j/d)]Q(-D) - xP(-D).

I[f we return to «, p notation:

P(t) = ATT(t - o), Q(t) = TT(t - p ),

.....

then
A"L(-1)MMy = Hyp_yydn(17d, 2/d, .., d/d, -p4, ..
So all in all we have

J¥FT(j o [d]* ¥ (oy's; E;J”S))z

= [dI* (K _qyd,,(1/d, 2/d, .., d/d, =B1, <, By 15 oo s —0tp)).
Now applying Jix, to both sides yields

s B T, e, T

FT(j*[d]*}t)\(O(i'S; E;J's)) =~
=~ JI*[d]*(%(—d)d/x(l/d’ 2/d, e d/d, _E)l, e _E)m, _O(j_, e _O(n)),
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which is (2). By Fourier inversion, (2) gives

[x = =x1*(j[d]*Hy(oty's; py's)) =

= FT(J1[dP* (R _gyd 5 (1/d, 2/d, ..., d/d, -pj's; ~a's))),
which is nearly (3). Because [x = -x]* and j, (trivially) commute, we
have

[x = =x]*(JldI*Hy\(o's; py's)) = julx = -xI*([dI*H, (ay's; py's))

= Julx = AR, (a's; py's) = Juld¥[x = (~1)9x]* M, (0's; BJ's)

= JxldI* ¥ _yanlay's; By's),
so we have

Jse[d]*H 1 ydy(xy's; Bj's) =

= FT(j1[d]* (¥ _g4ya,,(1/d, 2/d, ..., d/d, B j's; —ot's))).

Replacing A by (-1)dx gives (3). QED

6.3 Convolution of hypergeometrics with non-disjoint
exponents, via a modified sort of hypergeometric

In this section, we will explore what happens to the convolution
formula 5.3.2 when the exponents are not disjoint.

(6.3.1) Given a smooth connected C-scheme X, with structural map
1 : X — Spec(C),

we say that an object K in pb.holo(xy is PC (for perverse cohomology) if
4K is a single JD-module, concentrated in degree zero. If X is n-

dimensional, this is the same as requiring that

HipR(X/C, K) = 0 for i = n.
Lemma 6.3.2 Let G be a smooth connected C-groupscheme of finite
type. The convolution KxL of two PC objects K, L in pb,holo(g) is again
PC. Moreover, if we put n := dimg(G), then

HMpRr(G/C, KxL) = HpRr(G/C, K)® cH'pRr(G/C, L)

proof This is immediate from 5.1.9,(1a). QED

Lemma 6.3.3 LLet Il be a holonomic HD-module on G and ¥ a

m:
hypergeometric of type (1, 0) or (0, 1).
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(1) The convolution Tlx¥ is a single (holonomic) D-module on G,.
(2) If M is PC on Gy, then TxH is PC on Gy,.
proof By multiplicative inversion, we reduce to the case when ¥ is of
type (1, 0). Twisting by x%, we reduce to the case when ¥ is H,(0; &).
A multiplicative translation reduces us to the case when ¥ is #1(0; &).
In this case, assertion (1) results from the formula (5.2.3)

FP¥FT(jinvy () = Mx3t,(0; 2).
Assertion (2) follows from the fact that ¥ is PC on Gy, (direct

computation), and the above lemma. QED

Lemma 6.3.4 L.et MN be a holonomic D-module on (Eum which i1s PC.

Then the convolution MO of M with the "constant” D-module G :=
O is the constant D-module V® U, with V the finite-dimensional C-

m
space HlDR(Gm/(E, m) = m, I,

proof This is the base change for the cartesian diagram
(%, y) = (x, xy)

GxG GxG: MxO
lproduct l pro
G = Q. QED

Corollary 6.3.4.1 Let o« € C. Let Tl be a holonomic D-module on G,
such that M®x~* is PC. Then the convolution M*(x*Q9) is the D-
module V®¢x*0, with V := Hlpp(G,,/C, M@®x~ %)= m I

proof Indeed, x*@((MAx"X)xT) = M=(x*T) by 5.2.1. QED

Key Lemma 6.3.5 Let o« € C. For any A, i € C*, the convolution
Hylo F)=¥, (F; o)

sits in a short exact sequence of D-modules on Gy,

proof By 5.2.1, twisting by x~%* reduces us to the case where o« = 0. By
5.1.9, (2), a multiplicative translation reduces us to the case where | =
A =1.By 5.2.3, we have

J¥FT(jxinv, (M) = M= ,(0; ).
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Applying this to M = H,(&; 0), we find
Hy(0; 2)%xH1(F; 0) = J*FT(jyinv H1(Z; 0))
= J¥FT(jxH_1(0; &)).
Now by inspection we have
H_1(0; g) = D /D (-x0 -x)
= Dg /Dy (0 +1)
= j*(Dp1/Dp1(0 + 1))

= j*(e”*CIx]),
SO

JxH_1(0; @) = ji*(e™XC[x]) = e7XC[x, x~1].
Consider the short exact sequence of D-modules on Al

0 » e XC[x] » e XC[x, x~ 1] - e7XC[x, x 11/e7%C[x] — 0.

The third term we may rewrite as

e XC[x, x 11/e”XC[x] = e XC((x))/e”XCl[x]] = C((x))/Clx]]
= D/DX = 80.

So the above exact sequence is
0 = Dp1/Dp1(d+1) = j,H_1(0; g) = 8 — 0.

The restriction to G, of its Fourier Transform is the required short

exact sequence. QED

(6.3.6) We now introduce a modified notion of hypergeometric D-
module, which is by its very definition well-behaved with respect to

convolution. Namely, we define
M}El(ocl, ey s F) = %1(0(1; &) .. *%1(0(1,1; )

M}El(g; B1, - > E)m) = }El(,@’; Bl)* *%1(@; Bm)
M}[’,l(ocl, vy Xy By o E)m) =
= Hqloog; F)x o xHqloy; F)xH1(F; B)x o xH 1 (F; Bry).

For » € C*, we define
MH, (o's; p's) i= [x = Ax],MHq(a's; B's).

In view of the preceeding lemmas, we see that MH, (a's; p's) is a
single holonomic D-module, which is PC on G, with HlDR(Gm/(E, M- )

one-dimensional (by 3.7.1). The effect of x¥ twisting is given by
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XX®MR>\(O(i'S; E;is) = MH, (o + ¥'s; Bj+ Y's).
The effect of inversion is given by
invMH, (x;'s; E;is)) = MH_yn+m ), ( “Bj's; —oi's).
By 5.3.2, we have
MH, (x's; p's) = Ho(a's; p's) if Hy(o's; p's) is irreducible.
By the associativity and commutativity of convolution, we have
MH, (ct's; E;'s)*l\/l}l’,u(y's; 8's) = M}[’Q\H(oc's, Y's; B's, 8's)
whatever the exponents. In particular, we have
MH, (a's; p's) = Hla's; F)=xH,(F; p's),
expressing every M¥ as a convolution of irreducible hypergeometrics.

Now the isomorphism class of an irreducible H,('s; p's) depends only

on A and on the classes mod Z of its exponents. So by the functoriality
of convolution, we find that
Scholie 6.3.7 The isomorphism class of MH,(a's; B's) depends only on A

and on the classes mod Z of the «'s and the p’s.

Open Question 6.3.8 If the o«'s and p's are not disjoint, is there a
simple expression for M¥, (oc's; p's)? Is it of the form H,(a's; B's) for

some particular choice of modified exponents (x's; g's) which are
termwise congruent mod Z to (x's, p's)?

Cancelation Theorem 6.3.9 Suppose given a modified hypergeometric
MH - (o's; E;is) of type (n, m). Then for any Y € C, and any integer d,

the modified hypergeometric MH, («;'s, ¥; E;J's, y +d) of type (n+1, m+1)
sits in a short exact sequence of D-modules
0 > MH,(o's; E)J'S) — MH, (o's, ¥; E;J"s, y +d) — V®(]:(Xy®) — 0,

where V is the 1-dimensional C-space

V := Hipp(6, /€, MYy (o - ¥'s; By~ ¥'s)).
proof We first reduce to the case d=0 by the Scholie above, then write

MH, (xi's, V; ﬁj's, Y) = MK, (o's; ﬁj's)*M}ﬁl(}{, Y).
By definition, M¥ (Y, Y) is the convolution #1(y; &)=xH,(Z; ¥), which by

6.3.5 sits in a short exact sequence of D-modules on G,
0 — 8 = K (y; Z)=H(F; ¥) > x¥0 - 0.
Convolving this exact sequence with MH, (aj's; E;is) ylelds, via 6.3.4.1,

the required short exact sequence. QED
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(6.3.10) In order to formulate the next result, it will be convenient

to introduce the operator Cancel on both hypergeometrics and on
modified hypergeometrics which “cancels” the exponents mod Z
common to numerator and denominator. Given

H o= }Ex(ocl, vy Ay By e E)m)

MH := M}E)\(Ocl, s X By e E)m)

1
there are r such common exponents, renumber so that
Xp-k = Pm-k mod Z for k<,

of type (n, m), look to see how many of the «

oy # B mod Z if 1 <n-randj<m-r,
and define
Cancel(H,(otq, ..., &) B1s - s By)) 1=
= Holotq, vy Opoys By s Brr—r)s
Cancel(M¥, (ctq, .. , &p; B1s -5 By)) i=
= M%x(oci, B N Y E;m_r).

Since the result of canceling is irreducible, we always have
Cancel(#) = Cancel(M¥),

whatever the exponents.

Semisimplification Theorem 6.3.11 The semisimplification of
M}[’,x(ocl, vy Ay By e E)m)

as holonomic D-module on (Em 1s the direct sum

Cancel(M’H’?\(ocl’ e O(h; E)l’ IR E’m))@( @ common exponents « XOCG)

proof This is immediate from the cancellation theorem 6.3.9. QED

6.4 Application to Fourier Transforms of Kummer Pullbacks
Hypergeometrics

s are also E>J's mod Z. If

of

Lemma 6.4.1 Let d = 1 be an integer, and ¥, (o;'s; ﬁj's) an irreducible

hypergeometric. Then we have an isomorphism of D-modules on Gy,
J¥FT([d]* ¥y (xi's; E,J's)) =
~ [d]*M}E(_l)m—n(d)d/%(l/d, 2/d, ey d/d, _E)J'IS; _O(iIS).
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proof By 5.2.3, for any D-module T on G,
J¥FT(jxinv (M) = T=xH,(0; &).

Applying this to TN = inv [d]*¥H, («;'s; E)J"S) = [dI¥inv H, ('s; E>J"5) gives
J¥FT([d]*Hy (xi's; BJ"S)) = ([d]*inv « Hy (o's; BJ'S))*}El(O; z).

By 5.1.9, (1b), for any two D-modules Il and Jl on Gy, and any integer

d > 1, we have
([dI*M)=T = [dI*(TMx([d],T)).
Thus we have
J¥FT(ju[d]* ¥y (oxy's; 5J"3)) =
= [dI*((inv, Hy (oy's; pj's))=([d]« (H4(0; 2)))).

By the Kummer Induction Formula 3.5.6.1 we have

[d](H4(0; &) = K d(1/d, .., d/d; &)
=~ M¥, d(1/d, ..., d/d; &).
By the inversion formula (3.1), we have
inv, ¥, (oi's; ﬁj's) = H_yn+m “Bj's; —oi's).
Combining these, we find
J¥FT([d]* ¥y (xi's; E;J'S)) =
= [d]* (K _jyn+m ,( Bj's; ~ag's)=H d(1/d, .., d/d; &),

and the result follows by the (tautological) convolution formula for M¥.
QED

The following theorem encompasses both 6.2.1 and the irreducible
case of Key Lemma 6.1.1 as special cases.

Theorem 6.4.2 Let d >z 1 be an integer, and # an irreducible
hypergeometric of type (n, m),

H = }[’,x(ocl, vy Xy By e Bm)
Then we have isomorphisms of D-modules on Al
(1) FT(\j!*[d]*}Ex(O(i'S; BJ"S)) =

J!*[d]*(Cancel}t(_l)n+m(d)d/7\(1/d, 2/d, ey d/d, _BJ'IS; _OCiIS)).
(2) Jis[d]* ¥ (oy's; E;J's) ~
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= FT(j!*[d]*(Cancel}l’,(_l)mmm(d)d/x(1/d, 2/d, ..., d/d, ‘5J"S§ —;'s))).

proof The isomorphism (2) is obtained from (1) by Fourier inversion. It
remains to prove (1).

We first claim that FT(ji[d]*¥H, (x;'s; E)J"S)) is a direct sum of

irreducibles, none of which is 6p. By Fourier inversion, it is equivalent

to show that ji[d]*H, (x's; 5le5) is a direct sum of irreducibles on Al,

none of which is the "constant” D-module G. Since jj, carries

irreducibles to irreducibles, it suffices to show that [d]*¥H, (o's; E;is) is a

direct sum of irreducibles on G none of which is . For this, we argue

m:
as follows.

Since H, (xj's; E;is) is irreducible on G, [d]*H (o's; E;is) is
semisimple, a direct sum of irreducibles. These irreducible constituents
are all pg-translates of each other (since ¥, («x;'s; E;is) is irreducible),
and hence if any of them were constant then [d]*H, (o's; E;is) would
be constant. But then its Euler characteristic on G, would be 0, rather
than -d (cf. 3.7.1, 3.7.5, proof of 3.7.6).

Therefore FT(jix[d]* ¥ (o's; ﬁj's)) is a sum of irreducibles on AT,

none of which is the delta sheaf 6 at the origin. Since any irreducible
M on Al other than 8 satisfies T = jij*7N, we have
FT(j!*[d]*}f)\(O(i'S; E)J'S)) = j!*j*FT(j!*[d]*}fx(O(i'S; E)JS))
So to prove the theorem it suffices to prove that on G,, we have
J¥FTrs [d]* Hy (a's; BJ"S)) =
= [d]*(Cancel%(_l)n+m(d)d/>\(1/d, 2/d, e d/d, _E)J'IS; _O(iIS)).
Since both of these D-modules are semisimple, it suffices to show that
they have isomorphic semisimplifications. For this, we argue as follows.
We have a short exact sequence of D-modules on Al
0 = Jixld]™H, (xi's; E;J's) = e ld]*Ho (axi's; E;J's) - VQréy — O,
for some punctual D-module Vg6 at zero. In view of the known
structure of the local monodromy at zero of }Ex(oci's; E;is), we see from

2.9.8 that V has dimension
r ;= Card(R),
R := {kin {1, ..., d} such that k/d mod Z is among the «; mod Z}.
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Taking the Fourier Transformed exact sequence, passing to

semisimplifications, and restricting to G we find

m:
\j*FT(\j*[d]*}E)\(O(i's; E)J's))ss = J*FT(j!*[d]*}tx(O(i'S; BJ"S)) é Or.
By the above lemma we have
JHFT([d]* ¥y (xi's; E)J-'s)) =

~ [d]*M}E(_i)m—n(d)d/%(l/d, 2/d, ey d/d, _E)JIS; _O(iIS).
By the semisimplification theorem 6.3.11, we have
M}E(_l)m—n(d)d/%(l/d, 2/d, e d/d, _ﬁ‘jls; _O(iIS)SS =
Cancel(¥ _ ym-ngd . (1/d, 2/d, ..., d/d, ‘5J"S§ -—xi's))D

oD, . xkdo).

Therefore after [d]* we have
[d]*M}t(_i)m—n(d)d/)\(l/d, 2/d, ee d/d, _ﬁJ'IS; _O(iIS)SS =

I~ [d]*Cancel(}t(_l)m—l’l(d)d/)\(l/d; 2/d, ey d/d, _ﬁJ'IS; _O(iIS))@ Gr.
Comparing these two expressions for j*FT(j,[d]*¥ (a's; BJ"S))SS, and

cancelling the common O, we find the required isomorphism
J¥FTrse[d* Hy ('s; E>J"S)) =
= [d]*Cancel(}t(_i)m—n(d)d/)\(l/d, 2/d, e d/d, _E)JIS; _O(iIS)). QED

Corollary 6.4.3 Let d = 1 be an integer, and ¥ an irreducible
hypergeometric of type (n, m),

H = }[’,x(ocl, ey Ky By e E)m)
Suppose in addition that for all 1, dx; is not in Z. Then we have

isomorphisms of D-modules on Al
(0) Jiseld* ¥y (aty's; pj's) = juld]*Hy(o's; Bj's).
(1) FT(uldP*Hy(ay's; Bj's)) =
= Jild* (M ynemgyan (17d, 2/d, .., d/d, -Bj's; —a's)).
(2) JuldP*Hy(ay's; pj's) =
= FT( s [d]* (8 ynemed(qyd 2 (1/d, 2/d, ..., d/d, -Bj's; —ay's))).
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proof If no doj is in Z, then (0) holds by 2.9.8, and
%(_1)n+m+d(d)d/>\(1/d, 2/d, cee d/d, —E;J"S; —O(i'S)

1s itself irreducible, so its own Cancel. QED

Corollary 6.4.4 l.et d > 1 be an integer, and ¥ an irreducible
hypergeometric of type (n, m),
H = }l’,x(ocl, ey Oy By e s Bm).
Suppose in addition that
Ho(o's; E;is)
i1s not Kummer induced of any degree dq > 1 which divides d. Then
Lj!*[d]*}l’,x(oci's; EJJS)
i1s irreducible on Al, and consequently the isomorphisms
FT(jix[d]* ¥ (oxy's; E)J"s)) =~
J!*[d]*(Cancel}t(_i)n+m(d)d/7\(1/d, 2/d, ey d/d, _E)J'IS; _O(iIS)),
j!*[d]*%)\(oci's; E’JS) =
~ FT(j!*[d]*(Cancel}f’,(_l)mmm(d)d/x(1/d, 2/d, ..., d/d, ‘BJ"S; —xi's))),

are Isomorphisms of irreducibles on Al

proof. Since ¥ := ¥, («j's; E;is) is an irreducible D-module, and [d] is

finite etale galois, either [d]*¥ is isotypical or ¥ is induced from an
intermediate covering. So the hypothesis insures that [d]*¥H is
isotypical. We first show that if [d]*¥ is isotypical, then it is irreducible.

If [d]*¥ is isotypical, say k > 1 copies of an irreducible X, then
since the isomorphism class of K is Hg-invariant, X itself descends

through the cyclic covering [d], to an irreducible X. Therefore the

natural map of D-modules

(K0®HOmOD((K0, }E) - 'J’f,,

is an isomorphism. But Hom (X, #) becomes constant of rank k after

[d]*, so it is a sum of k objects each of the form x%*0. with dx € Z.
Since ¥ = Xg®Hom (X, ) is irreducible, we have k = 1, and hence

[d]*¥H is irreducible on G,,. Its middle extension ji4[d]*¥ is therefore

irreducible on AL, QED
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7.1 Exceptional Sets of primes

Let b > 1 be an integer. Recall that in 2.8 we proved the following
two statements:
Corollary 2.8.2.1 If «, p, ¥, 6§ in B (C) satisfy o« - p = ¥ - §, then

either

(1) = p and Y= 8
or (2) x= Y and p= 8
or b is even and (3) x=-8 and p=-Y.

Corollary 2.8.3.1 If «, p, ¥ in W (C) satisfy a-p==Y, then 6 divides b,

o/p is a primitive sixth root of unity, and +y/p is (/)2
For each prime number p, consider the following three assertions:

»(p,b) If o, B, ¥, 8§ In ub(fp) satisfy o« = p = Y - §, then either

(1) = p and Y= 6
or (2) x= Y and p= 8
or b is even and (3) x=-8 and p=-Y.

*x(p,b) If o, B, ¥ In ub(?p) satisfy o-p=21Y, then 6 divides b, o/p is a

primitive sixth root of unity, and zyY/p is (oc/ﬁ)2.

xxx(p,b) If «, p in ub(?p) satisfy o« = - p, then b is even and « = p.

Lemma 7.1.1 For each integer b > 1, there exist entirely explicit
nonzero integers Nq(b) and No(b) such that =%(p,b) holds for all primes

p which do not divide Nq(b), and *%(p,b) holds for all primes p which
do not divide No(b). The assertion %%x(p,b) holds if p = 2.

proof Put ¢}, := exp(2mi/b) € C. Fix a prime p not dividing b, and fix a
prime ideal m of the cyclotomic integer ring Z[ty] lying over p. If we
view T as a ring homomorphism m : Z[tp] — ?p’ then m induces a
group isomorphism Wp(C) = wy(Z[gyl) = ub([Fp). So %(p,b) is equivalent
to the following condition:

if (o, B, ¥, 8) € (le(Z[Cb]))4 is such that such m((ex - p) - (y - 8)) = 0 in

[Fp, then either

(1) = p and Y= 6
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or (2) x= Y and p= 8
or b is even and (3) x=-8 and p=-Y.

This may be restated as follows: let Nq(b) € Z[¢}] denote the
product TT((ox = p) - (Y - 8)), extended to all quadruples («, p, ¥, 8) in
(ub((ﬁ))4 such that none of the three conditions

(1) = p and Y= 6
or (2) x= Y and p= 8
or (3) b is even and «=-8 and p=-Y
holds. This product is a nonzero element of Z[¢y], in virtue of 2.8.2.1

recalled above. As the conditions (1), (2), (3) are Galois-invariant, N4 (b)

1s in fact a nonzero element of Z. Then for a prime p not dividing b, the
condition %(p,b) holds if and only p is not a divisor of Nq(b). In fact

%(p,b) holds if and only p is not a divisor of Nq(b), for if ¢|b is any
prime divisor of b, then

(tp-1D)=(cp-1)-(1-1)
and hence ¢ itself is one of factors of N4 (b).

The proof for *x(p,b) is entirely analogous. One considers the
element No(b) := bNiN_ € Z[¢] where Ny = TI(£ Y - (x-p)), the product
extended to all triples (o, B, Y) in (}.Lb((E))3 for which it is not the case
that

o/p is a primitive sixth root of unity, and *Y/p is (oe/p)2.
Again No(b) is nonzero in Z, and for a prime p not dividing b, the

condition *x*(p,b) holds if and only p is not a divisor of No(b).
That the assertion =%%(p,b) holds if p # 2 is obvious. QED

Remark 7.1.2 If b=1, then Nq(b) = -No(b) = 1.

Remark 7.1.3 (Benji Fisher) The integer No(b) can contain very large
primes. The factors of N, include (2 - ¢) = (1 - (¢ -1)) for every

¢ € up(C), so No(b) is divisible by ob _ 1, which itself can have rather

large prime factors!
7.2 ¢-adic analogue of the main DE theorem 2.8.1

(7.2.1) In this section we fix a prime number p, an algebraically
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closed field k of characteristic p, a prime number ¢=p, and an algebraic
closure Qy of Qy. We denote by ¢ a nontrivial Qy-valued additive

character of a finite subfield [Fq of k. We denote by f,qJ the lisse rank
one @e—sheaf on Al/n:q (= Ga/ﬂ:q) obtained from the Artin-Schreier

covering (Lang torsor)

G, X
1 - Fy I} Fg l
(Ea x - x4

by extension of structural group via ¢. For any [Fq—scheme Y, and any

function f on Y, we view f as a morphism f: Y — Al = G, and we
denote by f,qj(f) the lisse rank one @e—sheaf f*f,Lp on Y.
(7.2.2) For F4 any finite subfield of k, and X a @e—valued character

of (Fy)*, we denote by £ the lisse rank one Qy-sheaf on G ®F =

Spec([Fq[x, %x~1]) obtained from the Kummer covering (Lang torsor)

(Em®[Fq X
_ X
1-Fgq | | (Fy) l
G ®F g x1-d

of degree 1 - q by extension of structural group via X. For any [Fq—

scheme Y, and any invertible function f on Y, we denote by ‘E’X(f) the

lisse rank one @e—sheaf f*f,X on Y.

Over the algebraically closed field k, any connected finite etale
covering of G, which is tame at both 0 and < 1s dominated by a

sultable Kummer covering. This allows us to identify

tame = =~ i X

11 (G, ®k) = Z(1) 01 o ® 1M fnite subfields of k (Fg) ™

with transition maps given by the norm. For X any continuous Q-
valued character of mq(G,,®k)t@Me = lim .. . . . (F)™, (we

will often refer to such a X simply as a "tame character”) we denote by
‘f’X the corresponding lisse rank one Qy-sheaf on G, ®k. [For X of finite

order, this notion of f,x coincides with the one given above.] For Y any

k-scheme, and {f any invertible function on Y, we denote by ‘E’X(f) the

lisse rank one @e—sheaf f*f,x on Y.
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(7.2.3) Let X/k be_a smooth connected affine curve over k, x € X a
geometric point of X, X the complete nonsingular model of X. Let F be a
lisse Qy-sheaf on X of rank n > 1. We denote by 14 the fundamental
group 14 (X, x), by p the n-dimensional @e—representation

p: ™ - GL(?X)
which ¥ "is", and by

Ggeom := the Zariski closure of p(ﬁl) in GL(?X).

For each point at infinity o € X - X, we can speak of the upper-
numbering "breaks” (or "slopes”) of ¥ as I, -representation (cf [Ka-GKM,

Chap. 1]), and of their sum, the Swan conductor Swan (%) €Z of F at
Given ¥ as above, for any linear representation A of G
A: Ggeom — GL(d),

the composite representation
Aep : 14 — GL(d)
gives rise to a lisse @e—sheaf of rank d on X, denoted F(A).

geom> 5&Y

Highest Slope Lemma 7.2.4 (compare 4.2.4) Notations as above,
suppose that the kernel I of A: Ggeom — GL(d) is a finite subgroup of

order prime to p. Then at every point e € X - X, ¥ and F(A) have the
same highest slope.

proof For any x > 0, ¥ has all slopes < x if and only if p((Ioo)(X+)) = {e},
and F(A) has all slopes < x if and only if p((IOO)(X+)) c I' . Since

p((Ioo)(X+)) is a p-group, and I' is prime to p, these two conditions are

equivalent. QED

Lifting Lemma 7.2.5 (compare 2.2.2.1) Notations as above, let
p:G— H B
be a surjective homomorphism of linear algebraic groups over Qy,

whose kernel I' is a finite central subgroup of G. Then any continuous
homomorphism ¢: mq(X, x) = H(Q,) lifts to a homomorphism

(Np . T[j_(x, X) —> G(@e)
with ¢ = p(Np.
proof The obstruction to lifting lies in H2(X, ['), which vanishes because
X is an affine curve over an algebraically closed field. QED
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We say that 7 is irreducible if the corresponding representation p
of mq on ¥ is irreducible, or equivalently if the given representation of

Ggeom on % 1s irreducible. We say that % is Lie-irreducible if the given

representation of G on 7 is Lie-irreducible, or equivalently if the

geom
restriction of p to every open subgroup of T remains irreducible.

The main results on and around Lie-irreducibility and its
alternatives are summarized in the following theorem.

Theorem 7.2.6 (cf [Ka-MG], 2.7 and 3.5) Let X be a smooth connected
affine curve over an algebraically closed field of characteristic p > 0, ¢ a
prime number ¢ = p, ¥ a lisse Qy-sheaf on X of rank n > 1 which is

irreducible.
(1) ¥ is either Lie-irreducible, or induced (i.e., the direct image .G of a

lisse & on a finite etale connected covering f : Y — X of degree d > 2) or
is, for some divisor d > 2 of n, a tensor product 9®H where § is Lie-
irreducible of rank n/d and where ¥ is irreducible of rank d with
corresponding representation py having finite image. Moreover, this

tensor decomposition is unique up to twisting (3, ®) » (§® L5, # L 1)
by some rank one L of finite order.

(2) 1f X is Al and p » 2n +1, then F is Lie-irreducible.

(3) If X is Al and p > n, then ¥ is not induced.
(4) If X is Gy, and p > 2n +1, then ¥ is either Lie-irreducible or is

Kummer-induced (i.e., of the form [d].9 for some prime-to-p divisor

d 2 2 of n and some lisse § on Gy, of rank n/d, where [d]: G, = Gy
denotes the d'th power map).

(5) If X is Gy, and p > n, then if ¥ is induced it is Kummer-induced.

(6)Supppose X is Gy - (s} for some s € k™, and that F has

pseudoreflection local monodromy at s (in the sense that under the
action of the inertia group I(s) on 7, via p, the space of invariants has

codimension one). If F is neither Lie-irreducible nor induced, then ¥ is
the tensor product LQH of a rank one £ with a rank n #¥ whose
corresponding representation py has finite image. If in addition det(%)

is of finite order, then ¥ itself has p with finite image.
(7) Suppose X is Gy, p > 2n +1, and ¥ has pseudoreflection local

monodromy at 0. Then either ¥ is Lie-irreducible or ¥ has rank two
and its local monodromy at 0 1s a tame reflection.
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(8) Suppose X is Gy, - {s} for some s € k™, p > n, and F has
pseudoreflection local monodromy at s. Suppose ¥ is induced, ¥ = {, G
for a lisse § on a finite etale connected covering f : Y — G, - {s} of
degree d = 2. Then either the covering f is (the restriction to Gy, - {s)

of ) the Kummer covering of degree d, or d = n and the covering is
either a Belyi covering or an inverse Belyi covering of type (a,b) for
some partition of n = a + b as the sum of two strictly positive integers.
Moreover, in the case of a Belyl or inverse Belyl covering, local
monodromy around s is a tame reflection.

proof Assertions (1), (2) and (4) are proven in [Ka-MG] as Prop.'s 1, 5, 6.
Assertions (3) and (5) are proven in the first paragraphs of the proofs of
[Ka-MG], Prop.'s 5 and 6 respectively. Assertion (6) follows from (1) by
the argument of 3.5.7.

To prove assertion (7), we argue as follows. By (4), if ¥ is not Lie-
irreducible it is [d]4§, with § lisse on Gy, and d = 2 prime to p. We first

observe that § is tame at zero. [If exactly M (counting with
multiplicty) of the slopes of G at zero are » 0, then exactly dM of the
slopes of [d],9 = F at zero are » 0. But F has at least n-1 of its slopes at

zero =0, so M=0.] Once @ is a tame I(0)-representation, the set with
multiplicity of the characters A occuring in [d],§ = F at zero is stable

under A = A®YX g4 for X4 any character of order d. As all but at most

one of the /A are trivial, we see first that d = 2, then that n = 2.

To prove assertion (8), we first note that as p > n > d, the galois
closure of the covering f is necessarily tame, because prime to p. The
proof is then entirely analogous to that of 3.5.2, making use of the fact
that for p > n, 3.5.1 1s equally valid with C replaced by an algebraically
closed field of characteristic p. QED

Main ¢-adic Theorem 7.2.7 (compare Main D.E. Theorem 2.8.1) Let X
be a smooth connected affine curve over an algebraically closed field of
characteristic p » 0, x € X a geometric point of X, £ a prime number

¢ = p, ¥ a Lie-irreducible lisse @e—sheaf on X of rank n. Suppose that at

some point o ¢ X - X, the highest slope of ¥, written a/b in lowest
terms, is > 0 and occurs with multiplicity b. If b = n, suppose that p > n.
If b < n, suppose that p does not divide the integer 2aN4(b)No(b).

Let G := Ggeom C GL(F ) be the Zariski closure of p(mq{(X, %)) in GL(F ),

GO its identity component, and GO.der the commutator subgroup of GO.

cO,der cO,der

Then GO is equal either to or to Gy , and the list of possible
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gU.der is given by:
(1) If b is odd, GO deT is SL(F ).

(2) If b is even, then either GO.der is SL(F ) or SO(7F ) or (if n is even)

SP(7F ), or b=6,n=7,8 or 9, and GO.der is one of
n=7/: the image of Go in its 7-dim’l irreducible representation
n=8: the image of Spin(7) in the 8-dim’'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std
n=9: the image of SL(3)xSL(3) in std®std.

proof If n = 1, there is nothing to prove. If b=n > 2, this is proven in
[Ka-MG, Thm.7] under the hypotheses that p > 2n+1 and that det(¥F) is
of finite order prime to p. In fact, the proof given there works mutatis
mutandis provided only that p > n and that det(7) is of finite order
prime to p. Let us explain how to reduce to this case. Denote by X =
det(p) the character of mq given by det(¥). The slope of X at e is an

integer s < a/b, and as a/b has exact denominator b > 2, we must have
s < a/b. We next claim that X has an n'th root. Indeed, the obstruction

lies in H2(X, Mp) = O (cohomological dimension of open curves), so there

exists a character A such that Al = X_l. We next claim that /A has
the same oo-slope as X. Indeed, for any real x > 0, a character g€ of [

has slope < x if and only if g kills the pro-p group 1(x4) 50 raising
characters to prime-to-p powers doesn't change their slopes. Therefore
/\ has the same slope s < a/b as X. So F®/\ has the the same highest
slope a/b, the same rank n, and trivial determinant. Moreover, T ®A is
still Lie-irreducible (= irreducible on all finite etale connected coverings)
since this property is invariant under twisting by characters.

[t remains only to remark that for any lisse ¥, and any

geom)O,der is the same for ¥ and for F®A.

Indeed, we have trivial inclusions

G (F) ¢ G,,G (FQAN), G (FQA) C Gy,G (F).

geom mgeom geom mgeom
Passing to connected components of the identity, we see that

G (Ggeom (FNY = Gy (Ggeom (FOAND,

character A, the group (G
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and passing to commutator subgroups we find
(Ggeom (FNET = (Ggoom (F@A)0-der,

as required. This concludes the proof in the case b = n.

We now treat the case b < n. The proof is very much analogous to
that of the Main D.E. Theorem, and we will only indicate what changes
need to be made. Exactly as in the proof of that theorem, we see that

g := Lie(G0.der) is a semisimple Lie-subalgebra of End(7 ) which acts
irreducibly on 9. By its very construction, § is normalized by any

subgroup K of G.

We now use the slope hypothesis that at some point at
infinity e the highest slope is a/b in lowest terms and its multiplicity is
b to construct a diagonal subgroup K of G, to which we will then apply
Gabber's "torus trick” 1.0.

As a representation of I, ¥ is the direct sum

T = F,pb® FT5/p = (slopea/b, rank b) @ (all slopes < a/b).
In order to describe the representation ¥,/ of I, explicitly, fix a

uniformizing parameter 1/x at oo. This identifies the eo-adic completion
of the function field of X with the Laurent series field K:=k((1/x)). Fix a
b'th root t of x, and denote by Ky the Laurent series field k((1/t)). In

this setting, I := I, is the local galois group Gal(KS€P/K), and
Gal(KS€P/Ky) is its unique closed subgroup I(b) of index b. The

representation ¥, /p of I is irreducible, and as p does not divide b, it is
induced from a character X of I(b) = Gal(KS®P/k((1/t))) of slope =a (cf.
[Ka-GKM,1.14]). Since p does not divide a, any such character X is, by

[Ka-GKM, 8.5.7.1], of the form
X = f’qJ(Pa(t))@(a character of slope < a - 1),

where P_(t) € k[t] is a polynomial of degree a. At the expense of scaling

the parameter 1/x, we may assume that P4(t) is monic, say t? + f. (1),
with f. (1) a polynomial of degree strictly less than a. As f’¢(f<a(t)) has
slope < a - 1, we have

X = f,qj(ta)(X)(a character of slope < a - 1).
Therefore the restriction of ¥/, to I(b) is a direct sum

S5, f,qj((ct)a)(@(a character of slope < a - 1).

ceub(ﬁp)

Because gcd(a, b) = 1, as ¢ runs over ub(fp) the t¢@'s are just a
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permutaion of the ¢'s, so we may rewrite this as

@ceub(?p) fw(gta)(@(a character of slope < a - 1).

Therefore as a representation of the upper numbering subgroup
I(b)(a), we have

F | I(b)(a) =~ @ f’qj(g’ta) @ ( trivial of rank n - b).

ceub(ﬁp)
For each € in k we denote by
X g := the character of I(b)(a) given by f’w(&ta)
The key observation is that for €, v in k we have
XeXy = Xe+us
X g is trivial on I(b)(@) iff £=0.
Let
[' .= the image of 1)@ in G,
Then [' is a diagonal subgroup of G, and the diagonal entries of [" are the

n characters B
the b characters X ¢ as ¢ runs over le(k) = ub([Fp),

n-b repetitions of the trivial character X .

We now apply the "torus trick” to I'. The discussion from here on
1s exactly the same as in the proof of the Main D.E. Theorem 2.8.1,
except that now one is analyzing all possible relations
Rel(b <« n)(Fp) o« -p=Y-38 where o, p, ¥, 8§ lie in ub(fp) u{0},

rather than in LLb((E) U{0}. But our hypothesis on p insures that all

three of %(p,b), *%(p,b), and *%*x(p,b) hold, in which case the
analysis is exactly the same as it was over C. QED

Remark 7.2.7.1 We could treat the case b=n by the above method
directly, but doing so would require us to exclude all primes which
divide aN4(n), rather than only those which are < n.

7.3 Construction of Irreducible Sheaves via Fourier Transform
In this section, we will explain the systematic use of the one-
variable ¢-adic Fourier Transform FTqJ to construct irreducible lisse

sheaves on open sets of Al := Spec(k[x]), k a perfect field of
characteristic p=4. We will make free use of the basic facts about FTqJ

(cf. [Ka-TL], [Ka-GKM chpt.8], [Lau-TF]). Let us recall the basic set-up.
(7.3.1) On any smooth, geometrically connected curve C/k, a
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constructible @g—sheaf F on C is called a middle extension if for some

(or equivalently for every) nonempty open set j: U = C on which j*%

is lisse, we have ¥ = j,j*7%. Given a middle extension sheaf ¥ on C, and
a nonempty open set j: U = C on which j*% is lisse, the sheaf

i (((F)7) (where j*(F) denotes the linear dual, i.e., the
contragredient representation of mq (U, u)) is agaln a middle extension,

which i1s independent of the auxiliary choice of the open set U. This
sheaf, denoted D(F), is called the dual of the middle extension F. A
middle extension ¥ on C is called irreducible if for some (or

equivalently for every) nonempty open set j: U = C on which j*7 is

lisse, j*7F is geometrically irreducible (i.e., irreducible as a

representation of ’IT:I_(U®E, u), for u € U®k any geometric point).

Lemma 7.3.2 Let f: X — Y be a dominating morphism of smooth,
geometrically connected curves over k. If ¥ is a middle extension on X,
then % is a middle extension on Y.

proof By [De-TF], f,F is constructible. Let j: U — Y be the inclusion of
a nonempty open set where f % is lisse. Because f is dominating, 1)

1s a nonempty open set of X; we denote its inclusion by h: 1) - X.

Let k: V — - 1(U) be a nonempty open set of f=1(U) where F is lisse.
Then we have a commutative diagram

k h
v — ) — x
fy | cart £
u — Y.

J

Because ¥ is a middle extension, ¥ = hy k (k*h>*%F) = h,h™*7, so taking

f, gives

[ F = f,h h*F = j (f))xh*F = j,j*,F. QED

(7.3.3) For any constructible @e—sheaf F on Al, 1ts "nalve Fourler

Transform" NFTqJ(?) is the constructible @e—sheaf F on Al defined (in
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terms of the two projections of A2 to ALl and the sheaf f’w(xy) on A?)
as

NFT,(F) := Rlproi(pri*F QL (xy)): B
By proper base change, the stalk of NFTLP(?F) at any point a in Aq(Kk) is

(NFT,(F)), = HL(AL®k, FRL ) (ax))-

(7.3.4) A constructible @e—sheaf F on Al is called elementary if it

satisfies the following two conditions:

Elem (1) ¥ has no (nonzero) punctual sections, i.e., HCO(A1®E, F) = 0.

[Equivalently, for every nonempty open set j: U — Al on which J*7F is
lisse, T &= j j*7F.]

Elem(2) for every t € k, HC2(A1®E, ?®‘f’q)(tx)) = 0.

(7.3.5) A constructible @e—sheaf F on Al is called Fourier if it

satisfies the following two conditions:
Fourier(1) for some (or equivalently for every) nonempty open set

i: U = Al on which j*7 is lisse, we have ¥ = j_j*7F, ie, F is a middle

extension on AL B
Fourier(2) for every t € k, we have

HOAT®K, F®L (15) = 0 = HAAT®K, FOL(1x))-

Equivalently, for an F that satisfies Fourier(1), Fourier(2) is the
condition that for some (or equivalently for every) nonempty open set

i: U = Al on which j*7 is lisse, the geometric object j*F| U®kE has no

subsheaf and no quotient sheaf of the form J*f’qj(tx)l U®kE for any

t € k. Notice that this condition is autodual.
Given a Fourier sheaf ¥, its dual D(7F) as a middle extension is
again a Fourier sheaf, called the dual of the Fourier sheaf 7.

(7.3.6) A Fourier sheaf ¥ on Al is called irreducible if F is
irreducible as a middle extension, i.e., if for some (or equivalently for

every) nonempty open set j: U — AT on which J*F is lisse, j*7F is
geometrically irreducible (i.e., irreducible as a representation of
mq(U®k, u), for u € U®k any geometric point).
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Thus a constructible @e—sheaf F on Al 1s an irreducible Fourier

sheaf if and only if it satisfies the following two conditions:
IrrFour(1) for some (or equivalently for every) nonempty open set

iU = Al on which j*¥ is lisse, we have F = Jxd*7F, and j*7F is

geometrically irreducible, i.e., ¥ is an irreducible middle extension. B
IrrFour(2) F is not geometrically isomorphic to f’LP(JEX) for any t in k.

(7.3.7) If k is a finite field,_X/k a smooth, geometrically connected
curve, and F a constructible Qp-sheaf on X, then for E a finite
extension of k, a point x € X(E), and a geometric point ¥ € X(k%®P) lying

over x, the stalk ¥ of ¥ at X is a finite-dimensional £-adic

representation of Gal(ES¢P/E). We denote by Fg the geometric Frobenius

element in this group (i.e.,, Fg is the inverse of o = O(Card(E))‘ Thus we
may speak of the trace, characteristic polynomial, eigenvalues, et

cetera of Fg acting on % We define the Qy-valued trace function of ¥

on X(E) by
x € X(E) » Trace( Fg | F5% ) = Trace(F)(E, x).
For a real number w, and an embedding t: @e — C, we say that ¥ is

punctually 1-pure of weight w if for every finite extension E of k, and
for every point x € X(E), the eigenvalues o of g on ¥« all satisfy

[v(o0)] = Card(E)W/2,
where |a|l denotes the usual complex absolute value. We say that 7 is
"pure of weight w" if for some (or equivalently for every) nonempty

open set j: U = X on which j*7 is lisse, we have ¥ = j, j*7, and j*7F is

punctually 1-pure of weight w for every embedding u: 68 - (.

We can now recall the first basic result (cf. [Ka-Lau, 2.1 and 2.2],
[Ka-GKM, Chpt. 8], and [Ka-TL]) on Fourier Transform.
Theorem 7.3.8 (Brylinski, Deligne, Laumon) Let ¥ be a constructible

@e—sheaf F on AL
(1) If F is elementary, then NFTqJ(EF) is elementary, and we have the
inversion formula
[-11*F(-1) = NFTqJ(NFTqJ(?)).
(2) If ¥ is Fourler, then NFTqJ(?F) is Fourier, and
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D(NFTqJ(?)) =~ NFTqJ([—l]*(D(?)))(l).
(3) If F is irreducible Fourier, then NFTqJ(?) is irreducible Fourier.

(4) If k is a finite field, ¢ a nontrivial additive character of k, and if F
1s elementary, then for every finite extension E of k, the trace function

of NFTLP(?F) on AL(E) = E is (minus) the finite field Fourier Transform of
that of 7:

Trace(NFTqJ(?))(E, y) = - 2, YElyx)Trace(F)(E, x),
where (g(a) := ¢(Traceg /i (a)).

(5) If k is a finite field, and if F is elementary and pure of weight w,
then NFTqJ(C;F) is elementary and pure of weight w+1.

Let us also recall (cf. [Ka-GKM], Chpt. 8) the numerology of the
Fourier Transform.
Lemma 7.3.9 Suppose k is algebraically closed, and that ¥ is
elementary. Denote by rank(%) the generic rank of F. Let § := NFTLP(C;F).

For each x € Al(k) = k, put drop,(F) := rank(¥F) - dim(F). Then

(1) For each t in Al(k), dim(gy) =
= Swanoo(?®f,q)(tx)) - rank(%F) + 3 ., (Swan, (F) + dropy(7F)).
(2) § := NFTqJ(C;F) has generic rank

= 2 7 max(0, x - 1) + 2 (Swany(7F) + drop,(7F)).

co-breaks A of x in k
(3) G is lisse at t € ALl(k) if and only if all the eo-slopes of ?®f’q;(tx) are

> 1.

7.4 Local monodromy of Fourier Transforms d'apres Laumon
(cf. [Lau-TF], [Ka-TLI)

We next review the analysis of the local monodromy of a Fourier
Transform, via Laumon's "local Fourier Transform”. For simplicity of
exposition, we will throughout this section suppose that the field k is

algebraically closed. Let us fix a geometric generic point 0 of Al, l.e.,

an algebraically closed overfield L. of k(x). Denote by k(x)%€P the
separable closure of k(x) in L. For each point t of PLk) = AL(k) v oo,
viewed as a discrete valuation of k(x)/k, pick a place t of k(x)S€P lying

over it, and denote by I(t) C Gal(k(x)S®P/k(x)) the inertia group at t.

Given a constructible @e—sheaf F on Al, its geometric generic fibre "Er"ﬁ
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is an ¢-adic representation of Gal(k(x)%®P/k(x)). We denote by F(t) the
I(t)- representation ¥ g (cf [Ka-TL]). For s in Al(k), we denote by ¥ the
stalk of ¥ at s, viewed as a trivial I(s)-representation. To avoid
confusion with Tate twists, we will denote the latter in boldface, e.g.
F(-1) is the Tate twist and F(-1) is the representation of the inertia

group at at he point s = -1.
Theorem of ¢-adic Stationary Phase 7.4.1 (Laumon) For each

point t in Al(k) v, there is an exact functor

FTLploc(t,oo): (4-adic I(t)-rep's) —(£-adic I(eo)-rep's)
such that if ¥ is a constructible @e—sheaf on Al which is the extension
by zero of a lisse sheaf on a nonvoid open set Al - S,there is a
canonical direct sum decomposition of NFTqJ(EF)(oo) as I(e0)-

representation

NFT(F)) = D oo FTyloc(t,e)(F (1),

The functors FTquoc(t,oo) have the following properties:

(1) For an I(e)-representation N, FTquoc(oo,oo)(N) = 0 if and only if all
slopes of N are < 1, and FTquoc(oo,oo)(N) has all slopes > 1. FTquoc(oo,oo) is

an autoequivalence of the category of ¢-adic (e )-representation with
all slopes > 1; for N an I(e)-representation with all slopes > 1, we have
the inversion formula

FTquoc(oo,oo)(Fquloc(oo,oo)(N)) =~ [-1]*N(-1).
If N has unique slope (a+b)/a with multiplicity a, then FTLploc(oo,oo)(N)

has unique slope (a+b)/b with multiplicity b. [N.B.. We do not assume
here that ged(a,b) = 1.]

(2) For any 1(0)-representation M, FTquoc(O,oo)(M) has all slopes < 1.

(3) For s in Al(k), denote by Add(s) : x = x + s the additive translation

by s. For L an I(s) representation, let Add(s)*L denote the 1(0)-
representation obtained by identifying I(0) to I(s) by Add(s). Denote by
y the Fourier Transform wvariable. Then

FTquoc(s,oo)(L) = (FTquoc(O,oo)(Add(S)*L))(X)f)qJ(Sy).

In particular, for s € k*, FTquoc(s,oo)(L) has all slopes =1.
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proof Everything except (3) is proven in [Ka-TL]. For the canonical
extension ¥ of L, we have FTquoc(oo,oo)(?(oo)) = 0 by (1), since F(eo) is
tame, so stationary phase gives

NFTqJ(?)(oo) =~ FTquOC(S,OO)(L).

For this F, Add(s)*¥ is the canonical extension of Add(s)*L, and so by
the same argument we have

NFT,(Add(s)*F)(ee) = FTloc(0,e0)(Add(s)*L).

Assertion (3) now follows from the fact that for any constructible 68_

sheaf ¥ on Al, we have the global formula

NFT(F) = NFT,(Add(s)*F)®L(sy). QED

Corollary 7.4.1.1 In the stationary phase decomposition, the
individual pieces may be characterized as follows:
(1) FTquoc(oo,oo)(?(oo)) has all slopes > 1

(2) FTquoc(O,oo)(?(O)) has all slopes < 1.
(3) For s € k™, FTquoc(s,oo)(?(s)) has all slopes =1, and
(FTquoc(s,OO)(?(s)))(X)f)qj(_sy) = Fquloc(O,OO)((Add(s)*?)(O))

has all slopes < 1.

Corollary 7.4.2 (Stationary Phase bis) Let ¥ be a constructible Q-

sheaf on Al which has no punctual sections, and which is lisse on a

nonvoid open set Al - S. Then there is a canonical direct sum
decomposition of NFTqJ(?)(oo) as I(eo)-representation

NFTLP(?F)(oo) = FT¢loc(w,w)(?(w)) ©® @ FTLPloc(s,oo)(?(s)/?S).

sin S
proof Denote by j: Al - s -5 Al the inclusion. Because F has no
punctual sections, we have a short exact sequence of sheaves on Al
0 — jj*F - F - &_,, 5 (F5 concentrated at s) = 0.
Taking Fourier Transform gives a short exact sequence of sheaves on
AL,
0 - &

sin S

Qo

Restricting to I(ee)-representations, we get a short exact sequence
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0 - &

sin S

?S®@ef)¢(sy) -

- FTquoc(oo,oo)(?(OO)) @@ FTquoc(s,oo)(?(s)) — NFTLP(C;F)(oo) - 0.
By 7.4.1.1, the term ¥ ,&® _ OCLIJ(SY) must land entirely inside in
Q

sin S

FTquoc(s,oo)(?F(s)). So it remains only to identify C;FS(X)@ ‘f’qJ(sy) with

FTquoc(S,oo)(?FS). But this is immediate from applying the above

considerations to the constant sheaf with value ¥., and S = {s}. QED

S

We next recall
Theorem 7.4.3 (Laumon) There is an exact functor
FTquoc(oo,O) : (L-adic I(ee)-rep's) — (£-adic 1(0)-rep's)

such that if ¥ is a constructible @e—sheaf on Al with no punctual

sections, there is a four term exact sequence of 1(0)-representations

0=H (AL, F)= NFT(F)(0)>FTloc(e,0)(F ()= H2(AL, F)—0.
If N is an I(ee)-representation with all slopes > 1, FTquoc(oo,O)(N) = 0.

Corollary 7.4.3.1 If F is elementary, and § := NFTqJ(C;F), then
3(0)/Gqg = FTquoc(OO,O)(?(OO)).

The fundamental interrelation of FTLPIOC(O,OO) and FTloch(oo,O) is

given by
Theorem 7.4.4 (Laumon)

(1) FTquoc(O,oo) and [—1]*FT¢loc(oo,O)(1) are quasi-inverse equivalences

of categories
(4-adic I(0)-rep's) «——— (¢-adic [(e)-rep's with all slopes < 1);

For M an I(0)-representation, and N an I(e)-representation with all
slopes < 1, we have the inversion formulas

FTquoc(oo,O)(FTquoc(O,OO)(M)) =~ [-1]1*M(-1),
FTquoc(O,oo)(FTquoc(oo,O)(N)) ~ [-1]1*N(-1).

(2) For X any continuous @g—valued character of (G, ®k)13Me with
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inverse character 7(, we have

FTLPIOC(O,OO)(etx) = L5, FTquoc(OO,O)(f)X) = L5,
(3) If M is of the form f)X(X)(a unipotent Jordan block of size n), then
FTquoc(O,oo)(M) is of the form ii;(@(a unipotent Jordan block of size n).
If N is of the form JZX(X)(a unipotent Jordan block of size n), then
FTquoc(oo,O)(N) is of the form ii;(@(a unipotent Jordan block of size n).

(4) If M has unique slope a/b > 0 with multiplicity b, then
FTquoc(O,oo)(M) has unique slope a/(a+b) with multiplicity a+b.

If N has unique slope a/(a+b) < 1 with multiplicity a+b, then
FTquoc(oo,O)(N) has unique slope a/b with multiplicity b.

proof Once (1) is proven, we argue as follows. One checks (2) by direct
global calculation; (3) then follows because the functors carry
indecomposables to indecomposables. They also carry irreducibles to
irreducibles, and (4) then follows from a global calculation of their
effects upon dimensions and Swan conductors.

A weaker version of (1) is proven somewhat clumsily in [Ka-TL,
Prop. 12 and Thm. 13]. Here is a simple proof of it, based on the bis
version 7.4.2 of stationary phase. Choose an auxiliary integer k > 2
which is prime to p (e.g., take k=2 unless p=2, in which case take k=3).

Let us begin with an [(0)-representation M, and denote by Tl its

canonical extension to G extended by zero to Al. Then define

m:
F = ‘.m®f,q)(xk). Since f,qj(xk) is lisse ( in fact canonically trivial) at the

origin, we have F(0) = M as I(0)-representation. The sheaf F is lisse on
G, and extended by zero across the origin, so 1t has no nonzero

punctual sections; as all its eo-slopes are k > 2, ¥ is elementary. Let
g = NFTqJ(?). By stationary phase applied to ¥, we have

F(eo) = FTkploc(oo,oo)(?(OO)) ® FTLPIOC(O,OO)(M).
Apply FTLploc(oo,O); since FTquoc(oo,O) kills (slopes > 1), we get
FTquoc(oo,O)(g(oo)) = FTquoc(oo,O)(FTquoc(O,oo)(M)).

By 7.4.3.1 applied to 9, if we denote ¥ := NFTqJ(%) = [-1]*7F(-1), we

have

HO0)/Hg = FTquoc(OO,O)(%(OO)).
Since # = [-1]*F(-1), we have Hy = 0, and
HO0) = [-11*F(0)(-1) = [-1]1*M(-1),
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so we may rewrite this
[-11*M(-1) = FTyloc(e,0)(g(e)),
whence
[-11*M(-1) =  FTyloc(e,0)(FTyloc(0,2)(M)).

Conversely, let us begin with an I(e)-representation N all of
whose slopes are < 1. Let Jl denote its canonical extension to G,. Let

9 = (n'@‘f’tp(l/xk)’ extended by zero across the origin. Then 9§ has no

nonzero punctual sections, and being totally wild at zero it 1s therefore
elementary. Since ‘f’qJ(i/Xk) extends across e as a lisse sheaf (which is

even canonically trivial at o), we have G(e) = N as [(e)-
representations. Let F := NFTqJ(g). By 7.4.3.1 we have

F(0)/%F g = FTyloc(e,0)(G(e=))= FTloc(e=,0)(N).
By stationary phase bis appled to ¥, we have
FTLPIOC(O,OO)(?(O)/?O) =~ the slope < 1 part of NFTL'J(?)(OO).
But NFT (%) = [-11*3(-1), so NFT,(F)(eo) = [-1]1*N(-1) as I(ee)-
representation. As N is entirely of slope < 1, we obtain
FTquoc(O,OO)(?(O)/?O) =~ [-1]*N(-1), whence

FTyloc(0,52)(FTloc(e,0)(N)) = [-1]*N(-1). QED

Corollary 7.4.5 Let ¥ be an elementary sheaf, 9:= NFTqJ(‘EF), and
s € Al(k). Then
(1) 9 is lisse at s if and only if ?(oo)@if,qj(sx) has all ec-breaks > 1.

(2) 9 is tame at s if and only if
?(oo)@JZLP(SX) ~ (all eo-breaks =0)@(all co-breaks > 1).

proof By translation, it suffices to treat the case s=0. Since ¥ is
elementary, ¢ is elementary, $g & 4(0), and we have

3(0)/Gq = FTLPIOC(OO,O)(?(OO)).
But FTquoc(oo,O)(?F(oo)) vanishes (resp. is tame) if and only if the part of
F (o) of slope < 1 vanishes (reps. is tame). QED

Corollary 7.4.6 (Pseudoreflection Monodromy Criterion) Let ¥ be
a Fourier sheaf, 9:= NFTqJ(?F), and s € AL(k). Then 9 has
pseudoreflection monodromy at s (in the sense that the subspace

9(5)1(3) = G4 of 9(s) is of codimension one in §(s)) if and only if either
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(1) ?(oo)@if,qj(sx) =~ (1-dim'l, o-break =0)®(all ~-breaks > 1)
= ‘f’X @ (all o-breaks > 1),
in which case I(s) acts on the line 4(s)/g¢ by the tame character

f’?{(x—s)’ or

(2) for some integer n > 1, we have

?(oo)@if,qj(sx) =~ (n+1l -dim'l, eo-breaks =n/(n+1))®(all e=-breaks > 1),

in which case I(s) acts on the line 4(s)/94 by a character of slope n. In

this latter case, there exists an element of the wild inertia group P(s)
which acts on 9(s) as a pseudreflection of determinant o

proof By translation, it suffices to treat the case s=0. Since ¥ is
Fourier, ¢ is Fourier. Therefore 4q = %(O)I(O), and

3(0)/Gq = FTLPIOC(OO,O)(?(OO)).
The cases listed are those where FTLPIOC(OO,O)(?(oo)) is of rank one. In

the second case, the character is wild, so its restriction to the pro-p
group P is nontrivial. QED

7.5 "Numerical® Explicitation of Laumon’'s Results

In this section we will make explicit the exact relation between
the I(0) and I(eo) representations of a pair of Fourier sheaves ¥ and 9
which are Fourier Transforms of each other. The only delicate part
concerns the unipotent part of local monodromy.

We continue to suppose k algebraically closed throughout this
section.
Lemma 7.5.1 Let ¥ be a Fouriler sheaf,

g = NFT,(F), [-11*F(-1) = NFT ().
Then
(1) dim(F(0)1(0)) = dim(F ).

(2) dim(F (e=)I(=)) < dim(g)
(3) dim(g(0)10)) = dim(g).
(4) dim(g(e=)I(=)) < dim(F ()
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proof The first assertion holds because 7F is Fourier. For the second,
denote by ;J: Al - Pl the inclusion, and consider the short exact
sequence of sheaves on pl

0 = ¥ — jxF — (the punctual sheaf ‘Er"(oo)l(oo) at =) — 0.
We have HO(IPl, JxF) = HO(Al, F) = 0 (since ¥ is Fourier), so the

coboundary of the long exact cohomology sequence given an injection
C;F(oo)l(oo) (@lN Hj-([Pj-, §F) = ch(Al, F) = 9o,

which proves (2). Assertions (3) and (4) are simply (1) and (2) with the
roles of ¥ and 9 reversed. QED

(7.5.2) We will use this lemmma in the following way. By part (3),
the number of unipotent Jordan blocks in §(0) as I(0)-representation is
precisely dim%q. By part (2), the number of unipotent Jordan blocks in

F (o) is at most dimGgy. We will adopt the convention (compare [Ka-

GKM, 7.1.3, 7.5.1.3) that F(e) has precisely dim3n unipotent Jordan

blocks, with the convention that some of these blocks are allowed to be
of size zero. Similarly 3(e) has precisely dim% g unipotent Jordan

blocks, with the convention that some of these blocks are allowed to be
of size zero. Using these conventions, we define polynomials in Z[T]

P(F, oo, 1, T) := 5 )T(dim. of block)’

all dimg, unip. blocks in F(e

P(g’ 0, 1, T) = Zall dimgo unip. blocks in ¢(0) T(dlm' of blOCk);

and similarly with the roles of ¥ and § reversed. Notice that the
polynomial P(g, O, 1, T) has no constant term, while P(F, o, 1, T) may
very well have a constant term (namely the number of "dummy”

Jordan blocks, dimGq - dim (F (e0)1(=2))) 1f %o vanishes, these

polynomials are identically zero. Clearly it is the same to know the
isomorphism class of the unipotent parts of F(e) and 9(0) as to know
these two polynomials.

(7.5.3) For each nontrivial continuous @e—valued character X of

ﬂl((]}m@)k)tame, with inverse character denoted ¥, we define

polynomials in Z[T]

P(F, e, X, T) = 2 unip. blocks in Ly ®@F (e) T(dim. of blOCk),
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P(g’ 0, X, T) = Zall unip. blocks in £X®9(O) T(dlm. of blOCk);

but this time with the "naive” convention that we only take the sum
over as many Jordan blocks as there actually are. With this
convention, these polynomials never have a constant term. They can
be identically zero.

These conventions established, we can restate the "numerical”
version of Laumon's results 7.4.1, 7.4.2, 7.4.4.

Theorem 7.5.4 (Laumon) Let ¥ be a Fourier sheaf, § = NFTqJ(EF), (and

hence also [-1]*F(-1) = NFTqJ(g)). Then 9(0) and §(e) are related to
F(0) and F(e) by the following rules: Write

F(oo) = F(o0) @ F(eo)

tame

=1 D ?(Oo)o<slope< 1 DF (co)

slope > 1 slope

F (o) ~ @(slope (a+b)/a, multiplicity a)

ope > 1

F()y ¢ clope <« 1 = D(slope c/(c+d), multiplicity c+d),

F(0) =%(0) @ F(0)

slope > O tame

F(0),,

Then we have

ope » 0 = D(slope e/f, multiplicity f)

(1) G(eo)ppe » 1 = D(slope (a+b)/b, multiplicity b).
(2) Gleo)y ¢ qope < 1 = D(slope e/(e+f), multiplicity e+f).

(3) P(Q, oo, X, T) = P(F, 0, X, T) for each nontrivial .
(4) P(G, =, 1, T) = P(%, 0, 1, T)/T.

(5) 9—(0)5101oe , o = @(slope c/d, multiplicity d).

(6) P(9, O, %, T) = P(F, o=, X, T) for each nontrivial X.

(7) P(Q, 0,1, T) = TxP(F, «, 1, T).
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proof Assertion (1) is 7.4.1 (1). Assertions (2) and (5) are 7.4.4 (4).
Assertions (3) and (4) are the same as (6) and (7) with the roles of F
and 9 reversed, so it remains to prove (6) and (7). From 7.4.3.1 we
have

3(0)/Gqg = FTquoc(oo,O)(?(OO));

taking X -components, we see that (6) is just Thm 7.4.4 (3). As for (7),
write

g(0)unip =~ D._1 0 dimg, Unip(n;).

Then taking unipotent components gives

FTloc(ee,0)((F(e0))UNIP) = (G(0)/G)UMMP = g(0)UnIP /g =
= g)unip /g0 = @, 4g, Uniplng - 1),

whence by 7.4.4 (3) we have
(Feo))UDIP = @, dim$ Unip(n; - 1),

which is exactly (7). QED

7.6 Pseudoreflection Examples and Applications

In this section we discuss in detail examples of pseudoreflection
local monodromy, and whenever possible apply to these examples the
Pseudoreflection Thm. 1.5. We continue to suppose k algebraically closed
throughout this section.

Example 7.6.1 ¥ is a Fourier sheaf with
F(eo) = (1 dim'l tame) @ (all slopes > 1)
Then § := NFTqJ(C;F) has pseudoreflection tame local monodromy at zero.

Example 7.6.2 F is a Fourier sheaf and
F(eo) = (1 dim'l, slope =1) @ (all slopes < 1).

Then there is a unique s in k* such if,qJ(SX)®°EF is of type (1), and § :=

NFTqJ(?F) has pseudoreflection tame local monodromy at s. In this case

g is lisse on ALl - {0, s}, and has all its «-slopes < 1.

Conversely, if § is Fourier, lisse on Al - {0, s} with tame
pseudoreflection local monodromy at s, and has all its eo-slopes < 1,
then

NFTqJ(%)(OO) = FTquOC(S, «)(9(s)/Gs) & FTLPIOC(O, > )(4(0)/G0)

is of this form. Thus these two classes of sheaves are interchanged by
Fourier Transform. If we add the requirement that ¥ be lisse on G,

this corresponds under Fourier Transform to the requirement that §
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have all its co-slopes < 1.

Theorem 7.6.2.1 Suppose 7F is an irreducible Fourier sheaf which is
lisse on Gy, with
F(eo) = (1 dim'l, slope =1) @ (all slopes < 1), say
= (Ly(-sx)®Ly) & (all slopes < 1).

Then § := NFTqJ(C;F) is irreducible Fourier, lisse on Al - {0, s}, has

pseudoreflection tame local monodromy at s of determinant X (x-s),
and all its eo-slopes < 1. Moeover,
(1) If p > 2rank(F) + 1, then ¥ is Lie-irreducible, the upper numbering

subgroup (1())(1) acts on F(eo) by pseudoreflections of determinant
‘E’qj(—SX)’ and G := Ggeom for ¥ has GO.der - SL(7F ).

(2) If 9 has det(9) of finite order, and if § is neither induced nor has
finite geometric monodromy, then § is Lie-irreducible, and for it

G:=Ggeom has GO.der one of the groups SL(G), S0(Gy), or (if rank(§g) is

even) Sp(9y).

proof For (1), we get Lie-irreduciblity by observing that ¥ cannot be
Kummer induced because it has an e -slope (namely 1) occuring with
multiplicity one. For (2), we have Lie irreducibility by 7.2.6(6). Now
apply the pseudoreflection theorem 1.5. QED

Example 7.6.3 ¥ is a Fourier sheaf of generic rank one, and the eo-
slope of ¥ is < 1. Then there is a unique s in k such that .IZLP(SX)(X)? is

tame at oo,say f’l_'J(SX)®? ~ f’X(X) as I(e)-representation, and ¢ is lisse
on Al - (s} with pseudoreflection tame local monodromy at s whose
determinant is f’?{(x—s) as I(s)-representation. Moreover, at = 9 has
all slopes < 1. For such a §, its NFTqJ(g)(oo) is the single term

FTquoc(s, «)(G(s)/Gs), which is 1-dim’l of slope < 1. Thus these two

classes of sheaves are interchanged by Fourier Transform.

Theorem 7.6.3.1 Suppose that ¥ is a Fourier sheaf of generic rank
one, with e-slope < 1. Then there is a unique s in k such that
‘f’Lp(sx)@? =~ ‘E’X(X) as I(eo)-representation,

and §:= NFTqJ(?) is lisse on AL - {s} of rank
rank(g) = 2 al (drop (F) + Swan (F)).

X 1n
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with pseudoreflection local monodromy at s of determinant ¥ (x-s).
Suppose that p > 2rank(9) + 1, and that either rank(9) = 2 or that X is
not the character X o of order two. Then ¢ is Lie-irreducible, and for it

G:=Ggeom has GO.der gne of the groups SL(G), SO(Gy), or (if rank(§g) is

even) Sp(%y). Moreover,
if X = 1,%X9, then GOder = sL(g.);
if x =1, then g0.der = SL(G,) or (for rank(g) even) Sp(G);
if X = X9, then GUder = S1(9.) or SO(g,,).

proof Notice that such an 7% is automatically irreducible Fourier
(simply because it is Fourier of generic rank one). Therefore § is
irreducible Fourier. By 7.2.6 (7), if p > 2rank(g) + 1, then § is Lie-
irreducible unless §'s local monodromy at s is a tame reflection (i.e,,
E’qJ(SX)@? = ‘E’X(X) as I(eo)-representation with % the character of

order two) and § has rank two. If 4 is Lie-irreducible, then 1.5 gives

the short list of possibilities for GO.der 1et us calculate the rank of 9.
By ¥ = f’w(sx)®?’ we may reduce to the case where ¥ is tame at oo,

and § is lisse on Gy,. Since 4 then has pseudoreflection local
monodromy at zero, we find

rank(9) = 1 + dimGq = 1 + h1 (AL, F)= 1 -x (AL, F)

1 - X(AL) + Swan o (F) + =, . a1 (dropy(F) + Swany(F))
= 2 iy al (drop(F) + Swan (F)). QED

Example 7.6.4 Suppose that C is a connected smooth complete curve
over k, with a marked point o. Fix an integer n > 1 such that n and n
+ 1 are both prime to p. Let £ be an ¢-adic sheaf on C - {e} which is
generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swan (L) = n. Let f

be a rational function on C whose only pole is at o, of order n + 1. View

f as a finite flat morphism f: C - {=} — Al (Because n+1 is prime to p,
f is generically etale.) Then F := {, L has generic rank n+1, ¥ is the

direct image of its restriction to a nonempty open set where it is lisse,
and all the eo-slopes of ¥ are n/(n+1). By its e -slopes, F is [(eo)-
irreducible. Therefore ¥ is an irreducible Fourier sheaf. Thus § :=
NFTqJ(EF) is an irreducible Fourier sheaf, lisse on G, with
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pseudoreflection local monodromy at zero whose determinant has slope
n.

Theorem 7.6.4.1 Suppose that C is a connected smooth complete curve
over k, with a marked point o. Fix an integer n > 1 such that n and n
+ 1 are both prime to p. Let £ be an ¢-adic sheaf on C - {e} which is
generically of rank one and 1s the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swan (L) = n. Let f

be a rational function on C whose only pole is at o, of order n + 1.
Define ¥ = f,L£, G := NFTqJ(?F). Then @ is an irreducible Fourier sheaf,

lisse on G, of rank
rank(g) = n + 2genus(C) + 2 ¢ _ (o) (dropy (L) + Swan, (L)),
with pseudoreflection local monodromy at zero whose determinant has

slope n. 1f If p > 2rank(9) + 1, then G:= Ggeop for ¢ has GO.der = 51.(g.).

proof If p > 2rank(g) + 1, then § must be Lie-irreducible (by wildness
of the pseudoreflection, cf. 7.2.6 (7)). In view of 1.5, we see that 4 must

have GU.der = SL(G). Alternatively, once § is Lie-irreducible and p = 2
we can apply the Main ¢-adic Theorem 7.2.7 to 4 at zero, with a/b =
n/1. The conclusion we reach, namely gO,der _ SL(%X), 1s of course the

same.
To see what "p > 2rank(9) + 1" means, let us calculate the rank of
. Since ¢ has pseudoreflection local monodromy at zero,

rank(9) = 1 + dimQg = 1 + hlc(Al, fol)=1 —XC(Al, f,. L)
=1 -%(C = {ee}, L)

1 - X(C - {e}) + Swan (L) + =

2 - X(C) + Swan (L) + 2

(e} (dropy (L) + Swan(L)). QED

C - (o) (dropg (L) + Swany (L))

X 1n

C - (o0) (dropy (L) + Swan(L£)).

n + 2genus(C) +

x in C -

7.7 A Highest Slope Application
We continue to suppose k algebraically closed throughout this
section.
(7.7.1) Suppose that C is a connhected smooth complete curve over
k, with a marked point . Fix integers h > 1 and d =2 1 such that
gcd(n, d) = 1, n = d, both n and d are prime to p.
Let £ be an ¢-adic sheaf on C - {e} which is generically of rank one
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and 1s the direct image of its restriction to a nonempty open set where
it is lisse. Suppose that Swan (L) = n. Let f be a rational function on C

whose only pole is at o, of order d. View { as a finite flat morphism

f: C - {eo) —» Al (Because d is prime to p, f is generically etale.) Then ¥F
= . has generic rank d, ¥ is the direct image of its restriction to a

nonempty open set where it is lisse, and all the eco-slopes of ¥ are n/d.
By its eo-slopes, F is I(eo)-irreducible. Therefore ¥ is an irreducible
Fourier sheaf. Therefore ¢ := NFTqJ(EF) is an irreducible Fourier sheaf. To

analyse § further, we must distinguish cases, according to whether
n>dord>n.

(7.7.2) If n>d, then @ is lisse on Al 1ts rank is therefore equal to
dim$q, so we find
rank(g) = dimGq = h1 (AL, f,8)= -x (AL, £,.2)

= - X (C = {ee}, &)
- X(C = {eo}) + Swan (L) + 2, ¢ _ (o) (dropg(L) + Swan, (L))
< in C - (o) (dropy (L) + Swan(L)).

If p> 2rank(g) + 1, then § is Lie-irreducible. As its highest «-slope is
n/(n-d) with multiplicity n-d, we may apply the main ¢-adic theorem
7.2.7 provided that p does not divide 2nNq(n-d)No(n-d).

n -1+ 2genus(C) + 2

(7.7.3) If d > n, then § is lisse on Gyy. Since 3(0)/Gq =
FTquoc(oo,O)(?F(oo)) has rank d-n and all slopes n/(d-n), we find
rank(¢) = d - n +dim@qg =d - n+hl (Al f,8)= d-n-x (AL f,2)-=
=d - n - X(C - (e}, &) =
=d-n- X(C-{e})+ Swan (L) + =
=d -1+ 2genus(C) + X

If p> 2rank(§g) + 1, then @ is either Lie-irreducible or Kummer-induced.
In fact, 9 cannot be Kummer induced if p > d. [Notice that the condition
p > d is satisfied if p > 2rank(g) + 1, since rank(g) > d-1 and d > n > 1.]
Once this point is established, we may apply the main ¢-adic theorem
7.2.7 to 9 (its highest slope at zero is n/(d-n), multiplicity d-n) provided
that p > 2rank(4) + 1 and p does not divide 2nN4(d-n)No(d-n).

C - (o) (dropy (L) + Swan(L£))=

X in

C - (o) (dropy (L) + Swan(L)).

X in

(7.7.4) We now explain why § cannot be Kummer induced. As I(0)-
representation, we have
3(0) = Gg & (rank d-n, all slopes n/(d-n)),
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which cannot be Kummer induced unless 3 vanishes. But
dim%qg = n - 1 + 2genus(C) + 2, (., (dropy(L) + Swany (L)),

which can only vanish if all of the following conditions are satisfied:
(1) n = 1.

(2) genus(C) = 0, i.e., C - {eo) is AL

(3) £ is lisse on AL
Therefore if G vanishes, £ must be ‘f’qJ(tX) for some t € k™, fis a
polynomial of degree d prime to p, and ¥ is f*rﬁqj(tx). In this case, there

is a simple sufficient condition which guarentees that ¢ is not Kummer
induced.

Lemma 7.7.5 Suppose that f(x) € k[x] is a polynomial of degree d,

1 <d<p.Then G := NFTqJ(f*f’Lp(tx)) is not Kummer-induced for any t in

k.
proof We will analyze G(e). Let us denote by
B1, -, By the critical values of f.

For each critical value pj, denote by
& 1, - 5 & (i) the critical points of f (zeroes of ) in f~1(p).

Since ‘f’qJ(tX) is lisse on Al, T = f*‘f’qJ(tx) 1s lisse outside the critical
values pq, ..., py of f. For each critical point o, denote by e(«) its
multiplicity as a zero of {'. Then

f(x) - f(a) = (x - a)1*ela)(a function invertible at ).
Since 1 + e(x) <1 +d-1 < p, we may rewrite this

f(x) - f(ax) = (a uniformizing parameter at o) 1+elod),
Therefore if we translate p = 0 the I(p)-representation ?(B)/?E) we get

an isomorphism of I(0)-representations

Add(R)*(F(B)/Fg) = By s g (1 + ()], 0yp)/Qy =
zGBO( = B 69all X1+e(oc) = 1, X nontriv ‘E’X(X)
Since F has all «-slopes 1/d (or 0, if t = 0) < 1, we have
G(eo) = EBﬁ FTLploc(ﬁ, 00)(?(5)/?5) =
= GBE)@O( = B 69all y1+elo) = g, y nontriv ‘E’LP(E)y)(gr;;((y)

If 9(eo) is Kummer induced of degree m = 2 prime to p, say
F(eo) = [m] ¥ for some I(e)-representation ¥,

then 1t 1s Kummer induced of degree g for any prime divisor q of m
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(since M1 ¥ = [qlyIm/ql ¥), so it suffices to show that () is not
Kummer induced of prime degree m = p. If it were so induced, then

(1% g(ee) = [MI*[mlLH = @ iy [y = tyl*&,

and so in particular ¥ itself is a direct factor of [m]*G(eo)

= 1, X nontriv

Therefore H is itself of the form

69[?)EBO( = E)Gasome X1+e(o<) = 1, X nontriv [m]*(f’w(ﬁy)@f’&(y))

By the projection formula, [m],¥H is

@E)EBO( = E)easome y1+elo) = 1, ¥ nontriv (‘f;ljJ(ﬁy)@f’;((Y))@[m]*@e =

= BB > gPsome x17e(®) - 1, % nontriv r:’qJ(ﬁy)(X)‘E’7((3/)(8)‘&()(3/).
all p* = 1

If this is to be the expression of G(eo)

= EBﬁa@oc = B Dan y1+e(®) - 1, % nontriv f’np(ﬁy)@ﬁ;((y)’

we see that for each critical value p of f, we have

(1) m divides the multiplicity with which ‘E’qJ(ﬁy) occurs in G(e)|P(eo).
(2) the set of characters with multiplicity

J‘I'O( = B J‘I'all X1+e(0‘) = 1, X nontriv X

1s stable under X = Xp, for any character p of order m.

Fix any critical value p. By (2), given p of order m, p is the ratio of two
characters X 1/X o where each X; has order dividing 1 + e(«;) for some

o:

; = p. Therefore as m is prime, at least one of the numbers 1 + e(x;)

must be divisible by m, say m | 1+e(x4). But then p_1 is itself a
nontrivial character X of order dividing 1+e(otq), and the stability

under X = Xp implies that the trivial character is a member of the
set in (2), contradiction. QED

Thus we obtain the following theorem.
Theorem 7.7.6 Suppose that C is a connected smooth complete curve
over k, with a marked point e. Fix integers n > 1 and d > 1 such that
gcd(n, d) = 1, n = d, both n and d are prime to p.
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Let £ be an £¢-adic sheaf on C - {e} which is generically of rank one
and is the direct image of its restriction to a nonempty open set where

it is lisse. Suppose that Swan (L) = n. Let f be a rational function on C
whose only pole is at oo, of order d. Define ¥ := f, L, § := NFTLP(?),
G:= @G for 9.

geom

(case n > d) If n > d, then § is lisse on Al of rank
rank($)= n - 1 + 2genus(C) + 2, - _ (., (dropy (L) + Swan,(L)).

Det(§) has finite p-power order q. If p > 2rank(§) + 1, then @ is Lie-
irreducible, g = 1 or p, and G =|.LqGO, with GO = Go’dersemisimple.

(case d > n) If d > n, then ¢ is lisse on G,y of rank
rank(g) = d - 1 + 2genus(C) + 2, ¢ _ (. (dropy(L) + Swany(L)).
If p> 2rank(§) + 1, then § is Lie-irreducible.

In either of these two cases, if p > 2rank(g) + 1 and p does not divide
2nNq(In-d)No(In-dl), then GO = G0der is one of

(1) 1f In-d| is odd, GY»der is SL(g,).
(2) If In-d| is even, then either GU.der js SL(G) or S0(g) or (if rank(g)
is even) SP(3y), or In-d|=6, rank(§)=7,8 or 9, and GO.der is one of

rank(§)=7: the image of Go in its 7-dim'l irred. representation

rank(9)=8: the image of Spin(7) in the 8-dim'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std
rank(9)=9: the image of SL(3)xSL(3) in std®std.

proof This is the main ¢-adic theorem 7.2.7. In the case n > d, we also

use [Ka-MG, Prop. 5] to know that if p > 2rank(9) + 1, then G =quO,
with GO = g0.der semisimple. QED

7.8 Fourier Transform-Stable Classes of Sheaves
In this section we will discuss in detail several classes of Fourier

sheaves on Al which are stable under NFTqJ, with particular attention

to "following" their highest slopes. Basically, all we are doing is spelling
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out Laumon's general results on the local monodromy of Fourier
Transforms in some speclal cases where they provide input for the
main ¢-adic theorem 7.2.7. One of the principal applications of the
material in this section will be to the definition and study of the
characteristic p ¢-adic sheaf analogue of the generalized
hypergeometric D-modules studied earlier.

In each example below of such a class C, we denote by ¥ and §
members of the class C. We write ¥ & § to indicate that ¥ and § are
Fourier Transforms of each other:

7T o g means g = NFTqJ(?F) and [-1]1*F(-1) = NFTqJ(%).

We continue to suppose k algebraically closed throughout this
section.

Class (1) The class of lisse sheaves on Al with all co-breaks > 1. Indeed,
any such sheaf is Fourier, and for Fourier sheaves, the two conditions

"lisse on Al" and "all ~e-breaks > 1" are interchanged by Fourler
Transform.

If ¥ & G in this class, then ¥ and 9 have the same number of
distinct e-breaks, and they correspond as follows:

o -break multiplicity
F (a+b)/a a
9 (a+b)/b b

rank? + rankg = Swan(F) = Swan(9).

On eo-breaks themselves, the rule is 1+x = 1 + (1/x). So the biggest oo-
slope of ¥ becomes smallest «~-slope of 9, and vice versa. This class of
sheaves is stable under additive translation and under ®‘f’q;(sx)'

Class (1 bis) The subclass of (1) which have a unique <-break.

Class (1 ter) The subclass of (1 bis) whose unique e -break has exact
denominator the rank of the sheaf. Recall from [Ka-MG, Thm 9] that

for such sheaves, if p > 2rank + 1 we always have GO = SL or (in even
rank) Sp.

Class (2) Fourier sheaves which are lisse on G with all eco-breaks =1.

m}
Indeed for Fourier sheaves, the two conditions “lisse on G,," and "all eo-
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breaks = 1" are interchanged by Fourier Transform. If ¥ & § in this
class, then visibly we have
Swang(7F) + Swan ,(F) = Swang(4) + Swan ().

In fact, if we calculate dim3qg = —XC(Al, F) by the Euler-Poincare

formula, we find
dim% g + dim%g

Swang(7F) + Swan(7F)
Swanp(g) + Swan,(9).

The polynomials (cf. 7.5.2, 7.5.3, 7.5.4) describing the tame parts of the
local monodromies are interrelated by

P(g, e, %, T) = P(F, 0, X, T) for each nontrivial .

P(g, e, 1, T) = P(F, 0, 1, T)/T.

P(9, 0, X, T)

P(F, o, X, T) for each nontrivial X.

P(g: O; ﬂ; T) = TXP(?, o, ﬂ, T)

(7.8.2.1) Within the class (2) of Fourier sheaves which are lisse on G,
and have all «o-breaks = 1, there are various supplementary Fourier-

stable conditions which define Fourier-stable subclasses. Here are two
examples. The parameter k is a nonnegative integer.

(ZCard = k)
Card{distinct =0 e -breaks} + Card{distinct =0 O-breaks} = Kk,

(ZSwan = k)
Swang(7) + Swan,(F) = k.

(7.8.2.2) Between these conditions there are the obvious implications
(ZSwan=k) = (2Card < k),
(XSwan = 0) & (2ZCard = 0).
For any k > 1, and any tame character X, the set of irreducible
Fourier sheaves F of class(2) which satisfy (2Card = k) [resp. which
satisfy (XSwan = k)] is stable by the operation

F o Ju(Ly ®j%F),

where j: G, — Al denotes the inclusion. (If k=0, the only such
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irreducibles are the f,x with X nontrivial, and the condition "X

nontrivial” is clearly not stable under this operation.)
There is another stability property worth noting. For each integer

n > 1, denote by [nl: x = x the n'th power map of AT to itself.

Lemma 7.8.2.3 (compare 3.7.6) Suppose that ¥ is a Fourier sheaf on
Al which is lisse on Gy, with k := Swan () + Swang(F). Let n > 1 be

an integer which i1s prime to p. Then
(a) If n > k, then [n],7 is Fourier, lisse on Gy, with all O-breaks < 1 and

and all eo-break < 1, and Swan([nl4¥) + Swang(nl,¥F) = k.
(b) If gcd(n, k) = 1 and ¥ is irreducible Fourier, then [n], ¥ is

irreducible Fourier.

proof (a) The condition Fourier(1) is stable by f, for any finite map of

Al to itself, as is the condition that HO(AL, ¥) = 0 = H2_(ALl, ¥). That
[nl 7 is lisse on Gy, has all breaks < k/n < 1, and has Swan(In],F) +

Swanq([nlx¥) = k, is obvious. For t = 0, ([n]*?)®f,q)(tx) consequently

has all eo-breaks =1, so has vanishing HO and H2c- Therefore [n] 7 is

Fourler.
(b) Suppose 7 irreducible Fourier. If n=1 or ¥ = 0, there is nothing to
prove. If n > 1 and ¥ = 0, then [n],7F has generic rank > 2, and is the

direct image of its lisse restriction to G,,. So to show that [n],7 is
irreducible Fourier, it suffices to show that [nl,7 | G, is irreducible. By

Frobenius reciprocity, this is the same as showing that F | Gy, has

multiplicity one in [n]*[nl,¥F | G, = & (%) [x = ¢x]*(F | Gyy). If this

CEM,
were not the case, then there would exist ¢=1 in Lln(k), say of exact
order d » 1, dIn, and an isomorphism

T |Gy = [x = ex]™(F | Gy
Since ¥ | G, 1s irreducible, this isomorphism allows us to descend
F | Gy through the d-fold Kummer covering, whence k := Swan (%) +
Swanqg(¥F) is divisible by d. But dln, and gcd(n,k) =1. Therefore d=1. QED

Class (3) The subclass of (2) consisting of Fourier sheaves which are
lisse on Gy, and which have all eo-breaks < 1. Indeed for Fourier
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sheaves, the condition "all eo-breaks < 1" is stable by Fourier transform.
If G in this class, then
F has ee-break a/(a+b) > 0 with multiplicity a+b &
& G has O-break a/b > 0 with multiplicity b.
On breaks themselves, the rule is
o -break x > 0 for ¥ & 0-break x/(1-x) > 0 for §.
O-break y > 0 for ¥ & oo-break y/(1+y) > 0 for 7.
This rule is order-preserving., so we can read biggest O-breaks in
terms of biggest co-breaks.
In addition to
dim% g + dim%g

Swang(7F) + Swan(7F)
Swanp(9) + Swan,(9),
we have the additional symmetry
Swan ., (F) = Swanp(4), Swan(4) = Swang(7).
(7.8.3.1) Within the class (3) of Fourier sheaves which are lisse on G,

and have all o-breaks < 1, there are (in addition to (2Card = k) and
(XSwan = k)) a few more supplementary Fourier-stable conditions
which define Fourier-stable subclasses. Again the parameter k is a
nonnegative integer.

(Card = k)
Card{distinct #0 oo-breaks} = Card{distinct =0 O-breaks} = k.

(ExDenom): both the following conditions:

the highest eo-break of ¥, if nonzero, has multiplicity its exact
denominator,

the highest O-break of %, if nonzero, has multiplicity its exact
denominator.

(7.8.3.2) Between these we have the implications

(ZSwan=k) = (2Card = k),

(>Swan = 0) & (2Card = 0)

(XSwan = 1) = (2Card = 1) and (ExDenom).
(7.8.3.3) For any k > 1, and any tame character X, the set of
irreducible Fourier sheaves F of class(3) which satisfy (2Card = k)
[resp. which satisfy (ZSwan = k)] is stable by the operation

F > J*(f,X(X)j*?),
where j: G, — Al denotes the inclusion. The supplementary condition

(ExDenom) is also stable by this operation.
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7.9 Fourier Transforms of Tame Pseudoreflection Sheaves
(7.9.1) We continue to work over an algebraically closed field k of

characteristic p > 0. We say that a constructible @e—sheaf F on Al is a

tame pseudoreflection sheaf if it satisfies the following three
conditions:

(TPR1) ¥ is everywhere tame, i.e., for every t € [Pl, F(t) is a tame
representation of I(t).
(TPR2) for some (or equivalently for every) nonempty open set

i: U = Al on which j*7 is lisse, we have F = j j*¥F.
(TPR3) For every s in Al(k) at which ¥ is not lisse, F(s)/F ¢ is one-

dimensional (i.e., local monodromy at s is by tame pseudoreflections).

(7.9.2) We say that a tame pseudoreflection sheaf 7 is irreducible if
in addition 1t satisfies
(IrrTPR) for some (or equivalently for every) nonempty open set

it U = Al on which j*7 is lisse, j*F is irreducible (as rep'n of 1 ).

(7.9.3) Any nonconstant irreducible tame pseudoreflection sheaf is
an irreducible Fourier sheaf, and its set 5 of points of nonlissity in Al is

a finite nonempty subset of Al(k).

Theorem 7.9.4 Let ¥ be a nonconstant irreducible tame
pseudoreflection sheaf on Al, with set S = {51, . Sr} of points of
nonlissity in Al(k) = k. Then

(1)g := NFTqJ(C;F) is an irreducible Fourier sheaf which is lisse on G, of

rank r := Card(S).
(2) The restriction of G(eo) to the wild inertia group P(ee) is isomorphic

to @iy Ly(siy)

(3) 9(e) is not Kummer induced.
(4) 9 is not Kummer induced.
B)If p>» 2r +1, 9 is Lie-irreducible.

proof Since ¥ is irreducible Fourier, so is 4. Since F(e) is tame, G is

.....

each ?(si)/?si is of the form E’Xj(x‘sj)’ SO
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.....

This proves (1) and (2). Assertion (3) trivially implies (4), and (1) and
(4) together imply (5). Assertion (3) holds because the distinct ‘f’qJ(Siy)

each occur with multiplicity one, thanks to the following lemma.

Lemma 7.9.5 Let M be an £¢-adic I(eo)-representation whose restriction
to P(eo) is a direct sum of r distinct characters pr(siy) with
multiplicities nj. If M 1s Kummer induced of degree m, then m divides

every nj. In particular, if gcd(all nj) = 1, M is not Kummer induced.

.....

If M is [m],¥ for some I(eo)-representation ¥, then (cf. the proof of

7.8.2.3) ® is a direct factor of [m]*M, so of the form
=6, f,qj(siym)@)(tame of dim. d; < nj),

.....

.....

This lemma proves (3), and so concludes the proof of the theorem. QED

Theorem 7.9.6 Let ¥ be a nonconstant irreducible tame

pseudoreflection sheaf on Al, with set S = {51, e Sr} of points of

nonlissity in Alk) = k. Supppose that
(1) among the numbers s; € k, there are no relations of the form

Si - SJ' = Sk - Sl’]
except for the trivial ones (i=j and k=n) or (i=k and j=n).
(2) p> 2r + 1.
Then G := Ggeom for ¢ 1= NFT,(F) has GVder = SL(r).

proof Since p > 2r + 1, we know that § is Lie-irreducible. We apply
Gabber’s torus trick 1.0 to the diagonal subgroup which is the image of

P(e). The hypothesis (1) of nonrelations then forces Lie(G0:deT) to
contain the full maximal torus of SL(r). If r < 2, Lie-irreducibilty forces

gO.der = sSi(r). If r > 3, apply 1.2 and then eliminate the other
possibilities SO or possibly Sp because their ranks are < r-1. QED

Here is a minor variant.
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Theorem 7.9.7 Let ¥ be a nonconstant irreducible tame

pseudoreflection sheaf on Al, with set 5 = {Sl, ., Sr} of points of

nonlissity in Alk) = k. Supppose that

(1) the numbers s; are all nonzero, the set 5 is stable under s = -s, and

there are no relations of the form
Si - SJ' = Sk - Sl’]
except for the trivial ones (i=j and k=n) or (i=k and j=n) or (s; = -sp
and - sj = Sk)-
(2) p> 2r + 1.
Then G := Ggoom for ¢ 1= NFT,(F) has GO.4€r = SL(r) or Sp(r) or SO(r).

proof This time the hypothesis (1) of nonrelations and the torus trick

1.0 forces Lie(G9:deT) to contain the full maximal torus of Sp(r), and we
apply 1.2. QED

7.10 Examples

We continue to work over an algebraically closed field k of
characteristic p > 0.
(7.10.1) (Lefschetz pencils) Start with a smooth connected projective

variety X C PN over k of dimension n > 2, and consider a Lefschetz
pencil of hyperplane sections XNH; of X, with associated fibration

f: X - Pl (e, f71(t) = XNHy). If p = 2 or if n-1 is odd, the quotient

sheaf on [P1
Eyn-1 :=Rn_1f*@e/(the constant sheaf Hn_l(X, @e))

1s, when restricted to any Al c IPl, an irreducible tame
pseudoreflection sheaf (cf [De-WI]).

(7.10.2) (Supermorse functions) This example is a slight
generalization of a Lefschetz pencil of relative dimension n-1 = 0. Let C
be a complete smooth connected curve over k, f a nonconstant rational
function on C, D the divisor of poles of f. View f as a finite flat
morphism

f:C-D — Al
whose degree we denote deg(f). We suppose that the differential df is
not identically zero (i.e.,, f is not a p'th power), and denote by Z € C - D

the scheme of zeroes of df on C - D. We put S := f(Z(k)) C AL(k). Then f
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makes C - D - Z a finite etale connected covering of Al - s.

Consider the sheaf f*ﬁe on Al. The trace morphism (for the finite
flat morphism f) is a surjective map Traces : f*ﬁé - 62’ whose
restriction to the subsheaf 68 of f*@e is multiplication by deg(f). Thus

7 := Kernel of Tracey : f*@@ - @g

is a direct factor of f*ﬁé of generic rank deg(f) - 1.

Lemma 7.10.2.1 If deg(f) < p, ¥ is a Fourier sheaf.
proof Since F is a direct factor of a sheaf (namely f*(D\e) which is the

direct image of its restriction to Al - S, 7 shares this property. Since
F (o) is tame (because deg(f) < p), we have

HO(AL, F® L (1x) = 0 = HZ (AL, F®L ) (1x))
for t # 0 by slopes. For t =0 this vanishing persists. Because C - D is a
smooth connected curve, HO(AL, f*@e) - HO(c - D, 68) = 68’ and

H2.(AY, £,0,) = H2.(C - D, @p) = Qy(-1), so the inclusion Q) — f,Q,
induces an isomorphism on both HO and H2c- QED

(7.10.2.2) We say that the function f on C - D is a supermorse function
if it satisfies the following three conditions:

(SM1) deg(f) < p.

(SM2) all zeroes in C - D of the differential form df are simple, i.e., the
scheme Z is finite etale over k.

(SM3) f separates the zeroes of df in C - D, i.e., Card(S) = Card(Z).

Lemma 7.10.2.3 If f is a supermorse function, then % is an irreducible
tame reflection sheaf. B
proof Since deg(f) < p, f«Qp and hence its direct factor F is everywhere

tame. By (SM2) and (SM3), f*ﬁe is a pseudoreflection sheaf (indeed a
reflection sheaf). To see that ¥ is irreducible, it suffices to show that on
the open set Al - S where f*ﬁe 1s lisse, Ggeom for f*@g i1s the full
symmetric group &4 in its standard d-dimensional representation. For

then Ggeom for ¥ will be &4 in its augmentation representation, which

is irreducible.

The group G for f*ﬁé is intrinsically a subgroup I of G4,

geom
well-defined up to conjugacy. In terms of a chosen geometric point g of

ALl - S T is the image of ﬁl(Al - S, £) acting on the finte set f=1(g),
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corresponding to the fact f makes C - D - Z a finite etale connected

covering of Al - S. Because C-D - Z is connected, the action of I' is
transitive. Because this covering is everywhere tame, [ is generated by
the conjugates of the images of the local inertia groups I(s) for each s in

S. By (SM2) and (SM3), each I(s) acts by a transposition. Thus I' is a
transitive subgroup of &4 generated by transpositions, hence I' is G4

itself. QED

(7.10.3) We now consider in detail the special case of supermorse

functions f on Ai, l.e.,, supermorse polynomials. We maintain the
notations

7 := Kernel of Tracey : f*ﬁé - @é’ 9 = NFTLP(C;F),

Z
S

the set of critical points of f in Al(k),
f(Z) = the set of critical values of f in ALl(k).

Lemma 7.10.4 Suppose that f is a supermorse polynomial in k[x] of
degree n.

(1) g(O) =~ @ all nontrivial X with x™ = 1 ‘f;X
(2) if =

zin 2

f(z) = 0, then det@lG, = (Ey )®N™D) where x5 denotes
the tame character of order two.
(3) If n is odd and the function f is odd, then 4|G,y, carries a symplectic

autoduality.

proof Assertion (1) is obvious from 7.4.3.1 and 7.4.4, since
9o = HI (AL, F) c HIL (AL, £,@p = HIL(AL, @) = O,
and

F(eo) = (f* @é/ﬁé)(oo) = @ all nontrivial X with ¥ = 1 ‘f;')(,

It >
is everywhere tame by (1). To evaluate it, we may proceed in two

different fashions. It suffices to show that (det§)® (£X2)®(n_1) is

f(z) = 0, then by 7.9.4 (2) det§ is tame at o, and hence det§

zin Z

unramified either at o or at zero. At zero, this is obvious from (1); if n
is even, the nontrivial characters killed by n occur in inverse pairs
except for X o, while for n odd they all occur in inverse pairs. At o, we

can use the fact that ¥ is a reflection sheaf to write

=) = &, 72 Ly 5(x)®Ly((2)x)>
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which, as 2 f(z) = 0, gives detQ(eo) = (£X2)®(n_1).

zin 2

If nis odd and the function f is odd, then ¢ is self-dual. In view of
the behaviour of duality under Fourier Transform (cf 7.3.8), amounts to
showing that

B _ D(F) = [-1]*7.
Since f,Qp = ¥ © Qp with ¥ irreducible Fourier, it suffices for this to
show that D(f*@e) = [—1]*(f*@€). Now for any f, f*ﬁé is self-dual, so it
suffices to note that since f is odd,
[F11%(f,,Qp) = [-11(f, @) = £, ([-11,Qp) = f, Q.
Now let us make explicit exactly what this duality is fibre by fibre. For
t # 0 in k, we have ch(Al, f’LP(JEX)) = 0, so
Gt =HI(AL, F®L (1x)) = HI(AL, (1,Q)® L (1x)) = HI(AL, & yyi1(x))-
The intrinsic dual to 94 is (up to a Tate twist)
[-11*

HL (AL, Eyiix) = HLAL Eyrex))) = HLAL Ly
To follow the signs, it is easiest if we view both ch(Al, ‘IzLP(iJEf(X))) as
direct factors of Hic(W, ﬁé), W the complete nonsingular model of the

Artin-Schreier curve of equation z9 - z = tf(x), where g is the
cardinality of a finite subfield of k over which ¢ is "defined”. Because
f(x) is odd, we can, define an involution A of W by A(z,x) := (-z, -x). The

autoduality of G4 occurs inside the autoduality of ch(W, Qp) induced
by the palring
(o, P) = x-AX(p),

where «:p 1s the cup-product pairing. Since cup-product is alternating,
and A is an involution, we find

(B,x) := B-AX(x) = A¥(p-A*(x)) = AX(p)-ox = —a-AX(p) = -(o,p).
QED

Theorem 7.10.5 Let n be an integer, p > n > 3. Then for any a = 0 in

k, the polynomial f(x) := x™ - nax is supermorse. Put

¥ := Kernel of Traces : f,Qy = Qp, G := NFTqJ(‘EF).
If p> 2n-1 and if the condition *(p, n-1) holds (cf. 7.1), then
(1) If n is even, Ggeom for 9 is the group +*SL(n-1),

(2) If n is odd, Ggoomn for 9 is Sp(n-1).
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proof Since a = 0 and k is algebraically closed, a = o1 for some
o = 0. Then Z is aly—1, and S = {(Z) is (1-n)acxuy_1. Thus f is
zin Z f(Z) = 0.
If If p> 2n-1 = 2(n-1)+1 and if the condition *(p, n-1) holds, then
7.9.6 and 7.9.7 apply.

Consider first the case when n is even. Then n-1 is odd, and by
*(p, n-1) we are in the situation of 7.9.6. So G contains SL(n-1). By

7.10.4, det9 is of order two.
If n is odd, then 7.40.4 shows that G C Sp(nh-1), so by the paucity
of choice in 7.9.7, we must have G = Sp(n-1). QED

supermorse. Since n > 3, 2

geom

Theorem 7.10.6 Let n > 5 be an integer. Let g(x) € Z[x] be a monic
polynomial of degree n, Q(g)/Q the splitting field of g. Suppose that
Gal(Q(g)/Q) is & . Let otq, ..., apy be the distinct roots of g, and let

f(x) € Q[x] be the unique primitive of g(x) such that 2; f(x;) = 0. Then

(1) (n+1)f(x) is monic of degree n+1, with coefficients in Z[1/(n+1)'l.
(2) there exists an explicitly computable nonzero element

N(f) € Z[1/(n+1)!] such that for any prime p > 2n+1 which does not
divide N(f), the polynomial fp(x) = f(x) mod p in [Fp[x] is supermorse,
and, putting

C;Fp = Kernel of Tracefp : (fp)*ﬁe - 68’ 910 = NFT‘P(?p)’

Ggeom for gp is

j SL(n) if n even
| +SL(n) if n odd.

proof Let F(x) := foxg(t)dt. Then (n+1)F is monic with coefficients in

Z[1/(n+1)!]. By galois theory and the monicity of g, o = 2; F(«;) lies in
Z[1/(n+1)']. So f(x) = F(x) - (1/n)o, and (1) is obvious.

We next claim that f separates the «;. Indeed, if not then after
renumbering the «'s we have f(aq) = f(ap). Applying elements of the

galois group &, we deduce that f(aq) = f(x;) for all i=1, ..., n. Since

n}
2f(xj) = 0, we infer that f(x;) = 0 for all i, whence f is divisible by g,
say (n+1)f(x) = (x-a)g(x). Differentiating, we find

(n+l)g = g + (x-alg,
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whence ng(x) is divisible by g'(x). But g(x) has n distinct zeroes, so this
1s impossible.

Once f separates the zeroes of g(x), then for any nonempty subset
S of {1, 2, ..., n}, the subfield Q(all f(e;), i € S) of Qlall &y, i € S) is in

fact equal to it:
Q(all f(ey), 1 € S) = Qall oy, i € S) inside Q(g).

For if T is an element of Gal(Q(g)/Q) which fixes f(x;), then T fixes «j,
simply because T(f(o;)) = f(T(x;)), f having coefficients in @Q, and, as f

separates the o's, from f(«;) = f(t(e;)) we may infer o = T(o;j).

Now suppose that for four indices i, j, k, m in {1, 2, ... , n} we have
a relation
floc;) - f(ocj) = flo) = flocy)
in Q(g), but i#j, ik, k#m, and j#m. Then either
i=m: 2f(oq) = f(o<J~) + f(a), whence o; € @(ocj, )

or i=m: f(o;) = flog) - floy,) + f(ocj), whence «; € @(ocj, A, Xy )-

Applying elements of Gal(Q(g)/Q) = &, we conclude that all the «; lie
in Q(oq, atp, xz). Since n 2 5 and Gal(Q(g)/Q) = &, this is nonsense.

Therefore if we define N(f) to be the product
N(f) := TT ((f(ox) - f(ocJ')) - (floy) = floey))),

we see that N(f) is a nonzero element of Z[1/(n+1)!].
Now let A denote the integral closure of Z[1/N(f)(n+1)!] in Q(g).
Then Spec(A) repesents the finite etale &, —-torsor over Z[1/N(f)(n+1)!] of

i=], i=k, k=m, j=m

all n-tuples of everywhere distinct critical points of f, with universal

n-tuple (a4, ..., &p). Spec(A) also represents the the finite etale & -

torsor over Z[1/N(f)(n+1)!] of all n-tuples of everywhere distinct critical
values of f, with universal n-tuple (f(ccq), ..., f(axy,)). By construction,

for each quadruple of indices (i, j, k, m) with i=j, ik, k#m, and j=m,
the element (f(o;) - f(ocj)) - (floe) = flotyy)) of A lies in A™.

[t is clear that for any prime p > n+1 which does not divide N(f),
fp 1s supermorse and 7.9.6 applies to its ?p. Therefore if in addition

p > 2n+1, then Ggeom for gp contains SL(n). By 7.10.4 (2), we get

det(p) = (Jix2)®n. QED

7.11 Sato-Tate Laws for One-Variable Exponential Sums

In this chapter, most of the applications we have given of the
main ¢-adic theorem 7.2.7 have concerned the Fourier Transforms of
sheaves which are essentially of rank one. This means that, over finite
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fields k, we are talking about one-variable exponential sums. Let us
make this explicit. Fix a nontrivial additive character { of the finite
field k. For E/k a finite extension, we denote by g the nontrivial

additive character of E given by x — ((Tracep /k(x)). If we are given a
multiplicative character X of k™, we denote by X the multiplicative

character of E* given by x = X(Normg /. (x)).

In 7.6.3.1, we are concerned with the Fourier Transform of a
Fourier sheaf ¥ of generic rank one, whose «-break is < 1. The
archtypical example of this is the following. One takes a non-polynomial

rational function f(x) on P1 which has a pole of order < 1 at oo, say
f(x) = -sx + holomorphic at oo,

all of whose poles have order prime to p. Let S C AT denote the divisor
of finite poles of f; viewing f as a morphism from ALl - S to Al, it
makes sense to speak of f,qj(f) on Al - S. The extension by zero of f,qj(f)
to all of Al is then a Fourier sheaf F of generic rank one. For this ¥,
G = NFTqJ(?) has trace function

teE = -2 r-gm YEER) + tx),
We can also add a multiplicative character to the story. Let X be a
nontrivial multiplicative character of k™, of order denoted order(7X),
and g(x) a nonzero rational function on Pl such that at any zero or
pole of g(x) in Al - S, the order of zero or pole of g there is not divisible
by order(x ). Let T denote the scheme of noninvertibility of g in Al - s.

We may view g as a morphism from Al -S-TtoG and thus we

m>

may speak of the sheaf ‘E’X(g) on Al -5 - T, and of the tensor product
f’lj)(f)@)f’)((g) on Al - S - T. The extension by zero of 'Isz(f)@f’X(g) to all

of A1 is then a Fourier sheaf F of generic rank one. For this ¥,
g = NFTqJ(?) has trace function

t ¢ E = _ZX in E - S(E) -T(E) LlJE(f(X) + tX)XE(g(X))

Theorems 7.6.4.1 and 7.7.6, and the results of the previous section
on supermorse functions are all concerned with the following sort of
situation: a complete smooth geometrically connected curve C over k, a
rational function f on C with polar divisor D, and an £ on C - D which
1s generically of rank one and is the direct image of its restriction to a
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nonempty open set where 1t 1s lisse. We are then concerned with the
Fourier Transform either of ¥ := f L on Al or, when L is the constant
sheaf, with 7 := Kernel of Traces : f*@e - 68'
When £ is the constant sheaf on C-D, then 9 has trace function
te EX = -2 e - pe VEME))
0 ¢ E = Card(E) - Card(C(E) - D(E)).

In 7.7.6, £ is nonconstant, D is a single rational point o of C, the
degree d of f is relatively prime to the eo-break n of £, and both n and
d are prime to p. The archtypical example of such an £ on C- {e} is
obtained from a rational function h on C with a pole of order n at oo,
and all poles of order prime to p. If we denote by C - S the open set
where h 1s holomorphic, then the extension by zero from C - S of f’qJ(h)

is an £. For this £, and ¥ = f L, § := NFTqJ(‘EF) has trace function
teE = =2 gm -sm YEI) + hix).
Similarly, we can insert a multiplicative character. Let X be a

nontrivial multiplicative character of k™, of order denoted order(7X),
and g(x) a nonzero rational function on C such that at any zero or pole
of g(x) in C - S, the order of zero or pole of g there is not divisible by
order(X). Let T denote the scheme of noninvertibility of g in C - S. For
£ the extension by zero of ‘f’qJ(h)(X)f’X(g) from C-S - T to C - {e}, and

F =f, L, 9 := NFTLP(?) has trace function
teE -2 o) s - 1) VEGE(x) + hi(x) X E(g(x)).

In all of these examples, the sheaf § in question is pure of weight
one. For any pure sheaf, we know from Deligne's fundamental results in

Weil II that Ggeom is semisimple. So we have determined, in these

0,der _
geom) AT = (Ggeom)
extent that one determines Ggeom precisely (not just up to a few

examples, (G 0 up to a few possibilities. To the

possibilities for its identity component) for a particular class of
exponential sums, and works out exactly what if any twist will make

all the Frobenii also lie in Ggeom’ one has, thanks to Weil II, proven an

explicit equicharacteristic "Sato-Tate Law” for the distribution of the
generalized "angles” of the exponential sums in question. Let us recall
the precise statement (cf. [De-WII, 3.5]).

Theorem 7.11.1 (Deligne) Let C be a smooth geometrically connected
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curve over a finite field k of characteristic p, ¢ = p, ¥ a lisse @@ sheaf

on C which is pure of weight zero, p the corresponding representation of

m1(C, E), and Ggeom := the Zariski closure of p(m(C® k, £)) its geometric

monodromy group. Suppose that for every finite extension E/k and

every t € C(E), each Frobenius Frobg ; for ¥ has p(Frobg ) ¢ Ggeom- Fix

an embedding of @e into €, and a maximal compact subgroup K of the
Lie group Ggeom(“:)- The conjugacy class of the semisimple part of each
p(Frobg ) meets K in a single conjugacy class, denoted 9(E, t). The

conjugacy classes 9(E, t) are equidistributed in the space K" of
conjugacy classes of K with respect to normalized Haar measure, in
any of the three senses of of equidistrbiution of ([Ka-GKM, 3.5]).

Taking the direct image by the trace, we get the equidistribution
of the traces.

Corollary 7.11.2 Hypotheses and notations as above, the traces
Trace(p(FrobE’t)) = Trace(FrobE’t | 97

are equidistributed in C with respect to the the direct image of
normalized Haar measure on K by the trace map Trace: K — C.

7.12 Special Linear Examples

In this section, we give some examples where the Sato-Tate law is
that given by a group containing the special linear group. Suppose we

have a lisse pure sheaf 4 on C/k of rank N whose Ggeom contains SL(N).

If t € C(k) is any rational point, and if we denote by o any N'th root of
1/det(Froby + | §7), then the arithmetically twisted sheaf «3€€®9 has

all its Frobenii in G and we may apply Deligne's result to ocdeg®9»

geom>
and Ggeom-

SL-Example(1) Let C be a complete smooth geometrically connected
curve over k, e a rational point on C. Take a rational function h(x) on
C with a pole of order n 2 1 at e with n prime to p, and all other poles
also of order prime to p. Take a second rational function g(x) on C
which is nonzero. Take a rational function f(x) on C which is

holomorphic on C - {e} and which has a pole at o of of order d prime
to p with d = n, gcd(d, n)=1.Let j:C - {o} - S = C - {} be the
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inclusion of the open set of C - {e} where h is holomorphic, and
kiC-{e0} -S-T > C-{e} -5
the inclusion of the open set of C - {e} - S where g is invertible. Let X

be a nontrivial multiplicative character of k™, of order denoted
order(X ), such that at any zero or pole of g(x) in T, the order of zero or
pole of g there is not divisible by order(x ). Take &£ :=

Jx(Ep(h)®kxLy (g) on C = (e}, F 1= 1,8 on Al, and § := NFT(F). Then

G is lisse on G, (indeed lisse on Al if d < n), and its rank N is

N= max(d,n) - 1 + 2genus(C) + Card(S(k)) + Card(T(k)) +
+ Zgeorn poles of h in C - {eo} (order of pole of h).

The trace function of § is
FeE > -3, s YEHG) + hG))XE(g(x).

If n-d is odd, p does not divide 2nN4(In-d[)No(In-d|) and p > 2N + 1,

then Gyeom for @ contains SL(N), by 7.7.6.

SL-Example(2) Let h(x) be a nonconstant rational function on P1

which is holomorphic at e, and has all its poles of order prime to p.

Take a nonzero rational function g(x). Let j : Al - s - Al be the

inclusion of the open set of AT where h is holomorphic, and
k:Al-s-T-> al-s

the inclusion of the open set of Al - S where g Is invertible. Let X be a

nontrivial multiplicative character of k™, of order denoted order(X),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(X ). Take F :=J*(f’¢(h)®k*f’x(g))’ and

g = NFTqJ(?). Then § is lisse on Gy, of rank N,

N =Card(S(k)) + Card(T(k)) + = a1l (order of pole of h).

geom. poles of h in
Denote by r := ord(g). If X¥ has order 2 3, and if p > 2N + 1, then
Ggeom for 9 contains SL(N). [Indeed, 1(0) acts on 4(0) by
pseudoreflections of determinant f,&r(x), so apply 7.6.3.1.]

SL-Example(3) Let h(x) be a nonconstant rational function on P21
which is holomorphic at o=, and has all its poles of order prime to p. Let

J: Al - s - Al be the inclusion of the open set of ALl where h is
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holomorphic, ¥F := j*f,¢(h), and @ := NFTLP(C;F). Then § is lisse on Gy, of

rank
N = >

where for each o € S(k), n, denotes the order of pole of h at «.

al (1 +n

geom. poles o of h in O()’

[ts trace function is
telk = _ZX in E -S(E) l‘pE(tX + h(x)).

The local monodromy of § at zero is a unipotent pseudoreflection, and
as I(eo)-representation G is
@ Al f,qj(ocy)@)(rank 1 + ng, slope= n,/(1+ng)).

Therefore det3, being lisse on G, ,trivial at zero and of break < 1 at o,

geom. poles « of h in

must be geometrically isomorphic to ‘E’Lp(Ay) for some A € k. Looking at
the above expression for 3(e) we see that
det3 | G, ®k = ‘f’qJ(Ay) with
A = 2
Suppose now that the rank N of § is prime to p. Then translating
h(x) by A/N, i.e, replacing h(x) by h(x + (A/N)), we may and will

suppose that det9 is geometrically trivial.
If in addition either p > 2N + 1, or N=2, then G

geom. poles o of h in Al (j‘ + 1flO()O('

geomn fOT G| Gy is
either Sp(N) or SL(N). To see this, we argue as follows. Since 4 | Gy is
pure, Ggeom 1s semisimple. Since the local monodromy at zero is a
uhnipotent pseudoreflection, we get the asserted possibilities for
(Ggeom)o- [If p > 2N + 1, by the paucity of choice in 7.6.3.1; if N=2 by
the fact that Gyeom Is @ semisimple (9 being pure) subgroup of SL(2), so
is either SL(2) or is finite: as the local monodromy at zero of § is a
unipotent pseudoreflection, Ggeom is not finite.] Since § has

geometrically trivial determinant, if (Ggeom)o is SL(N) we are done. If

(Ggeom)o is Sp(N), then Ggeom C upnSp(N), and the "square of the My

factor” is a character X of G of order dividing N. But as ¢ is lisse

geom
on G,, and unipotent at zero, the character X must be lisse on Al; as

its order is prime to p, it must be trivial.
On the other hand, § is geometrically self dual if and only if the

dual f’qJ(—h(X))Of ‘E’qJ(h(X)) is geometrically isomorphic to [‘1]*‘f’q;(h(x))’
le., If and only 1if ‘f’qJ(h(X)+h(—X)) 1s geometrically trivial. This function
h(x) + h(-x) has poles of order < sup,(ng). Soif p > 2N + 1, G is

geometrically self dual if and only if h(x) + h(-x) is constant. So all in all
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we get a complete determination of G for 9, provided only that p >

2N + 1.

geom

Theorem 7.12.3.1 Let h(x) be a nonconstant rational function on P1
which is holomorphic at e and has all poles of order prime to p,

jAl -s > al
the inclusion of the open set of Al where h is holomorphic,
F = J*f)qj(h), and @ := NFTqJ(?). For each o € S(k), let n, denote the

order of pole of h at «,
N = 2

A = 2

al (L+ny) €Z
Jou € k.

geom. poles o of h in

al (1 +n

geom. poles o of h in X

Then G is lisse of rank N on G,y,.
Suppose that p > 2N+1, and define
H(x) := h(x + (A/N)).

Then Ggeom for § is

SL(N) if A = 0 and H(x) + H(-x) is nonconstant,
upSL(N) if A 2 0 and H(x) + H(-x) is nonconstant,

Sp(N) if A = 0 and H(x) + H(-x) is constant,
upSp(N) if A = 0 and H(x) + H(-x) is constant.

SL-Example(4) Let h(x) be a nonconstant rational function on Pl
which has a pole of order n > 2 at o, with n prime to p, and all other
poles also of order prime to p. Take a nonzero rational function g(x). Let

J: Al - s - Al be the inclusion of the open set of Al where h is
holomorphic, and

k:Al-s-T7T-> nal-5s
the inclusion of the open set of Al - S where g is invertible. Let X be a
nontrivial multiplicative character of k™, of order denoted order( ),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(X ). Take F := J*(f’qJ(h)@k*iiX(g))’ and
g = NFTqJ(?). Then § is lisse on Al of rank N,

N =n-1+ Card(S(k)) + Card(T(k)) +

+ 2 geom. poles of h in Al (order of pole of h).

We have already seen (SL-Example(1), d=1, C - {e} = A1) that if n-1
is odd, p does not divide 2nN4(n-1)No(n-1) and p > 2N + 1, then G
for 9 contains SL(N).

geom
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In the special case when n=2, stationary phase shows that
G(e) = (break 2, rank1)®(breaks < 1),

so the upper numbering subgroup I(oo)(2) acts as wild pseudoreflections
on 9(ee). Soif p > 2N + 1, we have Ggoom = upSL(N).

Suppose henceforth that n > 3, p > 2N + 1, either n-1 = 6 or
N ¢ {7, 8, 9}, and also that p does not divide 2nN{(n-1)No(n-1). Because

n > 3, the largest eo-break of § is n/(n-1) < 3/2 < 2, and consequently

detY has o-break < 1. Since § is lisse on Al, there is a unique A in k
such that det§ is geometrically isomorphic to ‘f’qJ(Ay)' Here is the

“formula” for A:
Lemma 7.12.4.1 Write h(x) = P(x) +(holomorphic at ), with P a

polynomial of degree n, P(x) = 2,_; | aixi. Define
Ao = -(n-1l)ap-q1/na, € Kk,

Afinite 1= 2
Then

oo 2 € k.

geom. points o of S (1 tn geom. points p of T p

A= Asw * Afpjite
proof of Lemma Since we know a priori that det§ is f’LP(Ay)’ A is
characterized by the property that f,qj(_Ay)®det(9(oo)) is tame at oo.

By stationary phase, 4 as I(e)-representation is the direct sum of
three sorts of terms

FTquoc(oo,oo)(?(OO)) @
D
D

Taking determinants, we find

detG(eo) = det(FTLploc(oo,00)(?(00)))®f,q)(Af

.f,qj(o(y)@(rank 1 + ng, slope= n, /(1+ng))

geom. points o of S

f,qJ(By)(X)(rank 1, slope= 0).

geom points p of T
initey)®(tame)'

So we are reduced to computing det(Fquloc(oo,oo)(?(oo))). Now F(e=) as
[(eo)-representation is f’qJ(P(X))(X’(f’X(x))_ord‘x’(g)- So is enough to prove

the lemma for all ¥'s either of the form ‘E’LIJ(P(X)) (if Xordoo(g) is trivial;
strictly speaking we should write this ¥ as AﬁqJ(P(X))@JzX(g) with g the
constant function 1) or of the form f’qJ(P(x))(X)f’X(x) with nontrivial X
(namely X_Ordoo(g)).

For F := 'E’qJ(P(X))’ the determinant formula is proven in [Ka-MG,

Thm 17 (3)] under the sole hypothesis that P is a polynomial of degree
n > 3 prime to p. In the case when ¥ is ‘13L|J(P(X))®£’X(X) with
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nontrivial X, a similar argument works also. Here is a sketch.
We know there exists a constant A € k such that the lisse sheaf

.= NFT, (L QL ) on Al/k has detg = & Qdegree go A
9 (P () @4y (x) P(Ay)
is determined by knowing det(Froby y | §) for every rational point

y € k, since from the dependence rule
det(Frobk’y | 3) = y(Ay)det(Froby o[ 9)

we may calculate the additive character y = ((Ay) of k, and this
determines A itself. Now for y € k,

de‘c(Frobk,y | §) := det(Froby | ch((]}m@E, £¢(P(X)+YX)®£X(X)))
= det(Froby | H1 (A1®K, Ly(P(x)+yx)®ILy (),
where J!rﬁx(x) 1s the extension by zero of ‘ﬁx(x) from G, to Al
The L-function L(T) of Al/k with coefficients in £ y(p(x)+yx)®J1Ly (x)
is a polynomial of degree n, namely
L(T) = det(1 - TFroby | HL(AT®k, By (p(x)+yx) @1 Ly (x)):
Therefore (-1)nXdet(Frobk,y | §) is the coefficient of T in L(T). Let us

write explicitly the additive expression of L(T) as a sum over effective
divisors in Ai, i.e., over monic polynomials f4(x) : = Z(—l)d_iSd_i(f)xi in

k[x], with Newton symmetric functions NJ(f) of their roots, shows that

for each integer d > 1, the coefficient of Td in L(T) is the sum

2 X(SqUENY(E,_, a;N;(f) + ySq(f)),

monic f of degree d

where X (54(f)) :=0 if S4(f) = O.

Take d=n, and write the Newton symmetric functions N; of n

..... n

roots as isobaric polynomials in the elementary symmetric functions SJ
of n roots. The top two are, for n > 3,

N, = (-0 Ins  + (-1)Mnsys,1 + Q

Npj-1 = 1) (n-1)S,,-1 + + R,
where Q and R do not involve S,,_1 or S5,.

So the coefficient of T in L(T) is

.....

and substituting for N, and N, _q this becomes

25, X (Sp)wlan (-1)N* s, )~
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XZg s, V(2o np aiNj + yS +apqR + apQ)x

XZSn—i Play-1(-1)*n-1)S,-1 + an(-1)"nSq1SH-1).
The final term vanishes unless (n—i)an_l + napSq vanishes, in which
case it is q:= Card(k). So only terms with Sq = -(n-1)a_q/nap = A,
contribute to this expression, which is consequently
P(Asy)xax[Zg X (Sp)wlan (-1 ns)]x

-----

The important thing is that it is of the form
P(A y)x(a function of aj's alone). QED for 7.12.4.1

Replacing (h(x), g(x)) by
(H(x), G(x)) := (h(x + (A/N)), g(x + (A/N))),
we reduce to the case where det§ is geometrically trivial. By [Ka-MG,

Prop. 5] and 7.7.6, Ggeom is then either SL(N) or SO(N) or, if N is even,

Sp(N). But § is geometrically self dual if and only D(F) = [-1]*%F
geometrically, l.e., if and only if there exists a geometric isomorphism
‘EqJ(—H(X))@r;;((G(X)) =~ £¢(H(—X))®£’X(G(—X))’ i.e., if and only if both of
the following conditions are satisfied:
H(x) + H(-x) is constant, say «,
G(x)G(-x) is an order(X)'th power in k(x).
So if either of these conditions fails to hold, then Ggeom is SL(N).
Let us analyse the sign of the autoduality if both of these
conditions are satisfied. Replacing H(x) by H(x) - («/2) does not change
9 geometrically, and reduces us to the case when H is odd. Let
r:= order(X ), and pick a rational function L(x) with

(L(x))F = G(x)G(-x).
Since G(x)G(-x) is even, there is a unique sigh ¢ = *1, ¢f = 1, with

L(-x) = SL(_X).
Denote by X : Wp(k) = W (Qy) the unique faithful character of W (k) for
which the character X of k™ is

X () i= X (xd), di= (Card(k) - 1)/r.
The autoduality of § is symplectic if and only if € = 1. To see this,

view Gt as the (y, X )-eigenspace for the action of (k,+)xH, on ch of

the complete nonsingular model X of the curve in (x, z, w)-space of
equation (q := Card(k))
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z4d - z = H(x) + tx, w! = G(x),
where (a,¢) acts by (x, z, w) = (%, z+a, ¢w). Denote by A the
automorphism of this curve defined by A(x, z, w) = (-x, -z, L(x)/w).

Notice that A2 is (x, z, w) = (%, z, ew). The autoduality of i is given in
terms of the cup-product «-p on ch(X®E, 68) as the pairing

(o, p) i= x-AX(p)
on the (Y, X)-eigenspace. If ¢ = 1, then A is an involution, and this

pairing is alternating. If ¢ = -1, then r must be even, (A2)*(x«) = - for
o in the (¢, X )-eigenspace, and the pairing is symmetric.
S0 all in all we get a fairly complete determination of Ggeom-

Theorem 7.12.4.2 Let h(x) be a nonconstant rational function on P1
which has a pole of order n > 2 at o, with n prime to p, and all other
poles also of order prime to p. Let g(x) be a nonzero rational function,

j:al -s - pl

the inclusion of the open set of ALl where h is holomorphic, and
k:Al-s-T->pal-5s

the inclusion of the open set of Al - S where g is invertible. Let X be a

nontrivial multiplicative character of k*, of order denoted order( ),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(X ). Take F := J*(f’qJ(h)@k*iiX(g))’ and

g = NFTqJ(?). Then $ is lisse on Al of rank N,

N =n -1+ Card(S(k)) + Card(T(k)) +
+ 2 oom. poles of h in Al (order of pole of h).

(1) If n=2 and p > 2N + 1, then Ggoom for g is upSL(N).

(2)Suppose n =2 3, p > 2N + 1, and p does not divide 2nN4(n-1)No(n-1).
Write h(x) = P(x) +(holomorphic at o), with P a polynomial of degree n,
P(x) = 2,y . a;xl. Define A € k by

A = -(n-1)ap-1/nay, + 2 oo+ 2

geom. pts o of S (1 tn geom. pts p of T p-

Define rational functions H(x), G(x) by

(H(x), G(x)) := (h(x + (A/N)), g(x + (A/N))).
Then we have
(2a) If n-1 is odd, Ggeoom for g is

SL(N) if A = 0,
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upSL(N) if A = 0.
(2b)If either n-1 = 6 or N ¢ {7, 8, 9}, then Ggeom for G is

SL(N) if A = 0,
upSL(N) if A = 0O,

unles both of the following conditions are satisfied:
H(x) + H(-x) is constant, say «,
G(x)G(-x) is an order(X)'th power in k(x).
(2¢) If either n-1 = 6 or N ¢ {7, 8, 9}, and if both of the above

conditions are satisfied, let r:= order(?X ), and let ¢ = +1 be the sign in k*
obtained by picking a rational function L(x) with

(L(x)T = G(x)G(-x), and writing L(-x) = ¢L(x).

Then Ggeom for § is

Sp(N) if A= 0and e =1,
upSp(N) if A= 0and¢ =1,
SO(N) if A =0 and ¢ = -1,

upSO(N) if A= 0ande = -1.

7.13 Symplectic Examples

We will now give examples where the Sato-Tate law is that given
by the symplectic group. Let us first explain why this case is
particularly easy to handle. Choose a square root of p in 68’ so for each

n € Z we can speak of the Tate twist sheaves Qp(n/2) on any Fo-

scheme, and of the twists 4(n/2) of any given sheaf §. In practice,
when one shows that a lisse sheaf § of some even rank N which is pure
of weight n has Ggeom = Sp(N), the proof shows that in fact §(n/2) is

1tself symplectically self-dual. If this is the case, then it is tautological
that the Frobenii for §(n/2) land in Sp(N), and so we can apply

Deligne's general result directly to §(n/2), with Ggeormn = Sp(N).

Sp-Example(1) Let h(x) € k(x) be an odd nonzero rational function
which is holomorphic at « and all of whose poles have order prime to

p. Let g(x) be a nonzero rational function. Let j : Al - s - Al be the

inclusion of the open set of ALl where h is holomorphic, and
k:Al-s-T->pal-5s

the inclusion of the open set of Al - S where g is invertible. Let X be a

multiplicative character of k™, of order r, such that at any zero or pole
of g(x) in T, the order of zero or pole of g there is not divisible by r.
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Suppose that there exists an even rational function L(x) such that
L(x)I = g(x)g(-x). Take F := J*(£¢(h)®k*£x(g)), g = NFTqJ(?F). Then
3(1/2) is a lisse sheaf on Gy, which is symplectically self-dual (by the

same "embed in the Artin-Schreier covering” argument as in SL-
Example(4) above) of (even) rank
N = Card(S(k)) + Card(T(k))+= geom. poles of h in Al (order of pole of h).

and pure of weight zero.The trace function of 3(1/2) is

t e E = -(Card(E)™Y/22 b cprm WE(Ix + h(x) X E(g(x).

If p>2N + 1, or if N=2, then Ggeom for §(1/2)IG, is Sp(N). [If N = 2
and p > 2N + 1, by the paucity of choice in 7.6.3.1; if N=2 by the fact

that Ggeom is a semisimple (3 being pure) subgroup of SL(2), so is

either SL(2) or is finite: as the local monodromy at zero of § is a

uhipotent pseudoreflection, Ggeom is not finite.]

Sp-Example(2) Take an odd rational function h(x) with a pole of
order n 2 1 at e« with n prime to p, and all other poles also of order

prime to p. Let g(x) be a nonzero rational function. Let j : Al - s - Al

be the inclusion of the open set of ALl where h is holomorphic, and
k:Al-s-T-> nal-5s

the inclusion of the open set of Al - S where g is invertible. Let X be a

multiplicative character of k™, of order r, such that at any zero or pole
of g(x) in T, the order of zero or pole of g there is not divisible by r.
Suppose that there exists an even rational function L(x) such that

L(x)' = g(x)g(-x). Let f(x) be an odd nonzero polynomial of degree d
prime to p with d = n, gcd(d, n) = 1. Take £ := j*(iiqj(h)(@k*f)x(g)),
F =1L, 9 = NFTqJ(?). Then §(1/2) is lisse on Gy, (indeed lisse on Al if

d < n) and just as above is symplectically self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(k)) + Card(T(k)) +
+ 2 eom. poles of h in Al (order of pole of h).

The trace function of §(1/2) is

t € E o -(Card(EN™L/220 1 cprm YEGT) + h(x) X E(g(x)).

If p> 2N+1, p does not divide 2nN4(In-d)No(In-dl), and either N = 8 or



Chapter7-The ¢-adic theory-54

In-d| =6, then Ggoom for 3(1/2) is Sp(N), by the paucity of choice in
7.7.6.

Sp-Example(3) Fix n > 3 an odd integer, a € k™, let f(x) := x"' - nax,
T := Kernel of Traces : f,Qp = Qp, G := NFTqJ(?F). Here §9(1/2) | Gy, is

symplectically self dual and lisse of rank n-1. Its trace function is
t € EX o  -(Card(E))"1/22 | L wp(tf(x)

0Oe¢E » 0.
If p> 2n-1 and if the condition *(p, n-1) holds (cf. 7.1), then G for

geom
3(1/2) | Gy, is Sp(n-1).

7.14 Orthogonal Examples
We now give examples where the Sato-Tate law is that given by
the orthogonal group. We work over a finite field k of characteristic

p = 2, and denote by X o the character of order two of k™.

O-Example(1) Let h(x) € k(x) be an odd nonzero rational function
which is holomorphic at o« and all of whose poles have order prime to

p. Let g(x) be a nonzero rational function. Let j : Al - s > Al be the

inclusion of the open set of AL where h is holomorphic, and
k:Al-s-T->pal-s

the inclusion of the open set of ALl - S where g is invertible. Let X be a

multiplicative character of k™, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an odd rational function L(x) such that

L(x)I = g(x)g(-x). Take F := j*(ﬁ¢(h)®k*ﬁx(g)), g := NFTqJ(?F). Then
3(1/2) is a lisse sheaf on Gy, which is orthogonally self-dual (by the

argument in SL-Example(4) above) of rank
N = Card(S(k)) + Card(T(k)) + Z

and pure of weight zero.The trace function of 3(1/2) is

t e E = -(Card(E)™Y/22 b cpirm WE(IX + h(x) X E(g(x).

geom. poles of h in Al (order of pOIQ of h)

If p> 2N+1, and N = 2, then Ggeom for 3(1/2) is O(N). To see this,

note that Ggeom lies in O(N), so it must be either SO(N) or O(N), by the

paucity of choice in 7.6.3.1. In fact Ggoom Is O(N), because the local
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monodromy of § around zero is, by 7.6.3.1, a reflection. (The odd
rational function L(x) necessarily has odd e -valuation, so from the

equation g(x)g(-x) = L(x)I we infer that ord_(g) = (r/2)xodd, so

F = 'ﬁXQ as I(ee)-representation. Alternately, by 7.6.3.1 this local
monodromy is a pseudoreflection which lies in O(N), and any orthogonal
pseudoreflection is necessarily a reflection( cf. 1.5).) It is tautological

that the Frobenii for §(1/2) land in O(N), and so we can apply Deligne's
general result directly to 9(1/2), with Ggeom = O(N).

Remark 7.14.1.1 If N = 2 in this example (e.g., h(x)=1/%, g(x) =x,
X = X»o) then Ggoom 1S finite, since it is a semisimple subgroup of O(2).

O-Example(2) Take an odd rational function h(x) with a pole of order
n >1 at e with n prime to p, and all other poles also of order prime to

p. Let g(x) be a nonzero rational function. Let j : Al - s - Al be the

inclusion of the open set of Al where h is holomorphic, and
k:Al-s-T-> al-s

the inclusion of the open set of Al - S where g is invertible. Let X be a

multiplicative character of k™, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an odd rational function L(x) such that

L(x)' = g(x)g(-x). Let f(x) be an odd nonzero polynomial of degree d
prime to p with d = n, gcd(d, n) = 1. Take & := J*(f’w(h)@)k*f’x(g))’
F =1L, 9= NFTqJ(?). Then 9(1/2) is lisse on G, (indeed lisse on Al if

d < n) and just as above is orthogonally self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(k)) + Card(T(k)) +
+ 2 oom. poles of h in Al (order of pole of h).

The trace function of §(1/2) is
t e E = -(Card(EN7L/220 ¢ st PEGI(x) + h(x)XE(g(x)).

If p> 2N+1, p does not divide 2nN(In-d[)No(In-dl), and either
N ¢ (7,8} or In - d| = 6, then Ggeom for §(1/2) is either SO(N) or O(N),
by the paucity of choice in 7.7.6.

If in addition n > d, then & is lisse on Al, whence Ggeom

has no nontrivial prime-to-p quotients, so Ggeom is SO(N).
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Then det(9(1/2)) is a geometrically trivial character of order one or
two, so it is either trivial or it is (the pullback to AL of) "(-1)4€8 " the

unique character of order two of Gal(kS®P/k). The question of which
one is arithmetic, and in a given example can be decided by computing
the determinant of Frobenius on §(1/2)y and seeing whether it is 1 or

-1. If we compute this sigh £1 and choose an N'th root ¢ of it, then we
can directly apply Deligne's general result to the slightly twisted sheaf

(£)9€8®g(1/2) with Ggeom

replace the given ground field k by its quadratic extension ko, and

= SO(N). [Another course of action: simply

directly apply Deligne's general result to §(1/2) on Ai/k2 with G =

geom
SO(N).]
If, on the other hand, d > n, then Ggeom is O(N). To show

that Ggeom is O(N), we make a series of reductions to a case where it is
geom is either SO(N) or O(N), and @ is lisse

on G,y (say with coordinate t), det(4|G,,) is geometrically either trivial

obvious. First of all, since G

or ‘E’X2(t)- The key point is that these two possibilities on G, are

already distinguished by their 1(0)-representations. By 7.4.3.1, we know
that

3(0)/9g = FTyloc(e,0)(F (o))

as I(0)-representations. Taking determinants gives
det(9)(0) = det(FTquoc(oo,O)(?(oo)))

as I(0)-representations.
To exploit this, we look closely at F(eo) as I(eo)-representation. By
definition, ¥ := f*uj*(pr(h)@k*f’x(g))- Write the odd rational function

h(x) as the sum

h(x) = (an odd polynomial H(x) of degree n) + (a fct. holo. at o=).
Then as I(eo)-representation, J*(f’¢(h)®k*f’X(g)) is ‘E’qJ(H)@‘E’X(g)'
From the equation g(x)g(-%x) = L(x) we infer that ord.(g) = (r/2)xodd,
SO ‘E’X(g) =~ ‘E’XQ as I(eo)-representation and hence

Therefore det($)(0) as I(eo)-representation is the same for the initial
data (h ,f ,g, X) as it is for the data (H, f, x, X o). We will now treat this

case by a global argument. B
For the data (H, f, x, X o), the lisse sheaf 4 on G, ®k (with

parameter t) is
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t = HI.(G,®Kk, LyH(x) + tf(x))®£x2(x)).
Strictly speaking, we consider the product G,,xGy, with coordinates

(x,t), the lisse sheaf K :=r:'L|J(H(X) " tf(X))®f’X2(X) on this product; then

g is Rl(pr2)!(f}€). Now X is tame at zero, and for t in Gy, its Swan,, is d.

Since the odd polynomial H has degree n < d, it follows from Deligne's
semicontinuity theorem ([Lau-SCS]) that 4 makes sense as a lisse sheaf
of rank d on the product space

(the Gp, of t's)x(the affine space of all odd polynomials H of degree < n),

say G,y xE, and § is orthogonally self-dual as a lisse sheaf on G, x[.

Since we are not in Eharacteristic 2, the Kunn_eth formula sho_ws that
for any point e € E(k), the inclusion of (G,y)®k into (G, xE)®k by

t = (t,e) induces an isomorphism

HL(G, xE)®k, 1y) = HH(G, 0k, 1), B
whose inverse is induced by pullback along the projection of (G, xE)®k
onto ((Em)®E. Therefore det(9), viewed on ((EumX[E)®E, is either trivial or
1t is f,xz(t), and we can tell which by specializing H to be any

particular odd polynomial of degree < n. We choose H = 0 for this
purpose. B
So now we are reduced to computing the determinant on (G,,)®k

of the lisse sheaf

t - ch((ﬁm®k, f’w(tf(x))®f’x2(x))-
We know that its determinant is either trivial or is f’XQ(t)' Since d is
odd, the Kummer pullback [d]*(9 | Gy,) has the same determinant. This
pullback sheaf is

t — HI (G, ®k, ‘E’Lp(tdf(X))®f’X2(X))'

On the fibre G we perform the automorphism x = x/t; this allows us

mo
to rewrite [d]*(G | G,,) as
to HL(Gn ok, ytdi(x/1)® Ly o(x/1) =
~ £X2(t)®H1C(Gm®E, Ey(1df(x/1) @ Ly o (x)):
In other words, [d1*(3 | Gy,) is £y, ®K, where ¥ is the lisse,

orthogonally self-dual sheaf of rank d on G,
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t » Hl (G, ®k, f’qj(tdf(x/t))®f’)(2(x))-

Because d is odd, det([d]*(G | Gy,)) = det(f,XZ(X)}[’,) ~ £X2®det}ﬁ, so it

suffices to show that det¥H is geometrically constant.

Now write f(x) = Zaixi; then

tdf(x/t) = Zaitd_ixi = adxd + (terms of x-degree < d in k[t,x]).
By Delignhe's semicontinuity theorem, the sheaf H extends to a lisse
sheaf on I—\l, which is still orthogonally self-dual. Therefore det¥ is lisse

on AT®Kk of order dividing two, and hence det¥H is geometrically
constant. This concludes the proof that § has Ggoom = O(N) if d > n,

p > 2N+1, p does not divide 2nN(In-d[)N5(In-dl), and either N ¢ {7,8} or
In-d| =6.

We can then apply Deligne's general result to §(1/2) with
Ggeom = O(N).
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8.1 Rapid Review of Perversity, Fourier Transform, and
Convolution
(8.1.1) Let k be a perfect field of characteristic p = £. For variable

separated k-schemes of finite type X/k, we can speak of DbC(X, 68)' For

morphisms f: X — Y between separated k-schemes of finite type, one
knows (cf. [De-WII] for the case when k is either algebraically closed or

finite, [Ek], [Ka-Laul, [SGA 4, XVIII, 3]) that these DbC support the full
Grothendieck formalism of the "six operations”. In this formalism, the
(relative to k) dualizing complex Ky in DbC(X, 68) is defined as ’IT!@e,
where 1 denotes the structural morphism m: X — Spec(k). In terms of
Ky, the Verdier dual D(L) of an object L of DbC(X, 68) is defined as
RHom(L, Kx). One knows that L = DD(L) by the natural map. The

duality theorem asserts that for f : X — Y a morphism of finite type
between separated k-schemes of finite type, one has D(Rf|L) = Rf,D(L),

D(Rf4L) = RfiD(L). If X/k is a smooth separated k-scheme of finite type
and everywhere of the same relative dimension, noted dimX, then Ky
is Qyl2dimX](dimX), and so D(L) is RHom(L, Qp)[2dimX](dimX).
(8.1.2) Given two separated k-schemes X/k and Y/k of finite type,
‘external tensor product over Q)" defines a bi-exact bilinear pairing,
DP (X, @p)xDP (Y, Bp) = DP(Xx, Y, Q)
(K, L) = KxL := prq{*K®pro>L.
One knows that D(KxL) = D(K)xD(L).
An object K of DbC(X, ﬁé) is called semiperverse if its

cohomology sheaves KK satisfy
dim Supp(®IK) < -i.
An object K of DbC(X, 68) is called perverse if both K and its dual D(K)

are semiperverse. If f : X — Y is an affine (respectively a quasifinite)
morphism, then Rf, (respectively f| = Rf|) preserves semiperversity. So

if f is both affine and quasifinite (e.g., finite, or an affine immersion),
then by duality both f; = Rf; and Rfy, preserve perversity. If f : X = Y

is a smooth morphism everywhere of relative dimension d, then f*[d]
preserves perversity. In particular, if K is perverse on X, then its
inverse image on X®pk is perverse on X® k. One knows that the full
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subcategory Perv(X) of DbC(X, 68) consisting of perverse objects is an

abelian category in which every object is of finite length. The objects
of Perv(X) are sometimes called "perverse sheaves" on X. However, we
will call them "perverse objects” to avoid confusion with "honest”
sheaves.

(8.1.3) [f X is smooth over k, everywhere of relative dimension
dimX, the simplest example of a perverse object on X is provided by
starting with a lisse sheaf ¥ on X, and taking the object F[dimX] of

DbC(X, @e) obtained by placing ¥ in degree -dimX. The object F[dimX]

is trivially semiperverse, and its dual D(F[dimX]) = (F ¥ (dimX))[dimX],
being of the same form, is also. If X is connected, and if F is irreducible
as a lisse sheaf, i.e.,, as a representation of m{(X, x), then F[dimX]is a

simple object of Perv(X).

(8.1.4) Given a locally closed subscheme Y of X such that Y is affine,
the inclusion j: Y — X is both affine and quasifinite (factor it as the
open immersion of Y into its closure Y, followed by the closed
immersion of Y into X). So for a perverse object K on Y, both jK and

RjxK are perverse on X, and as functors from Perv(Y) to Perv(X) both

Ji and Rj, are exact. There is a natural "forget supports® map from jK

to Rj«K, and as Perv(X) is an abelian category it makes sense to form
Jix(K) = Image(jiK = RjxK) € Perv(X),

called the "middle extension” from Y to X of the perverse object K. The
functor jix is an exact functor from Perv(Y) to Perv(X), it carries

simple objects to simple objects, and it commutes with duality. [The
middle extension functor jix can be defined for any open immersion,

not just an affine one, but we will not have need of that more general
case here.]

(8.1.5) One knows that for any simple object S of Perv(X) there
exists an affine locally closed subscheme j: Y — X such that Y is
smooth over k and irreducible, and an irreducible lisse sheaf ¥ on Y
such that Sis ji(FldimY]). Given the simple object S, we construct Y

and 7F as follows: the closure Y of Y is precisely the closure of the
support of EBi}(’,iS, Y 1s any smooth affine open set of Y on which all the
KIS are lisse, and F is ¥~ dIMY(g)|y.

An object 5 of Perv(X) is called geometrically simple if its inverse
image on X®k is simple. Of course "geometrically simple” = "simple”.

(8.1.6) Consider the special case when X/k is a smooth,
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geometrically connected curve. Then an object K of DbC(X, @@) 1s
perverse if and only if

HIK = 0 fori= -1, 0,

#~1K has no nonzero punctual sections,

10K is punctual.

We call a perverse object K "nonpunctual” if HOK = 0. If F is a lisse
sheaf on an open nonempty open set j: U — X, then the middle
extension ji,(7F[1]) is none other than (j, ¥)[1]. It is for this reason that

we adapted the terminology "middle extension” for sheaves of the type
Jx T with 7 lisse on U. The dual D(ji4(F[1])) of such a middle extension
is related to the naive dual D(j,F) := j«(F ) defined in 7.3.1 by

D(j15(FI1D) = j15(D(FIL]D) = ju(F¥(1DIL] = D(j, F)(DIL].

There are two types of simple perverse object on X:
(1) the punctual ones, whose Y is a single closed point x of X; the
corresponding simple objects are x, %, where ¥ is an irreducible

representation of Gil(E/k(X)) [so if k is algebraically closed, only the
delta sheaf &, =%, Qy supported at x].

(2) the nonpunctual ones, whose Y is a nonempty open set j: U — X of
X; the corresponding simple objects are (jF)[1], where ¥ is an

‘arithmetically irreducib_le" lisse sheaf on U, i.e., one whose
representation of mq(U, u) is irreducible [so the nonpunctual simples

which are geometrically simple are precisely the F[1] where ¥ is an
"irreducible middle extension sheaf"” in the terminology of 7.3.1].

(8.1.7) Consider now the particular case when X/k is Al/k. The
derived category versions of Fourier Transform are defined by

FTy 1(K) 1= Rlpro)ilpr "K&L y,(xy)I1],
FTy (K) i= R(pro)y(pri *K@L ,(xy))[1].
Both are exact functors from DbC(Al, 68) to itself, which are
essentlally interchanged by duality:
D(FTWK)= FTqJ’*([—i]*-DK)(i).
[t is easy to prove that FTqJ I 1s essentially involutive:
by duality it follows that the same holds for FTqJ,*.
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The "miracle” of Fourier Transform is that there is really only one:
the natural "forget supports”™ map FTL|J [ FTqJ % 1s an isomorphism. We

denote it FTqJ. As FTqJ (viewed as FTLp «) preserves semiperversity, it

follows from the miracle that FTqJ preserves perversity, and so defines

an exact autoequivalence of Perv(Al). In particular, FTqJ sends perverse

simple objects to perverse simple objects.
The elementary sheaves F of 7.3.4 are precisely those for which
both K:= F[1] and FTLP(K) are perverse and nonpunctual. For F

elementary, we have

The Fourier sheaves ¥ are those for which both K:= F[1] and FTqJ(K) are

perverse and are the middle extensions of their restrictions to all
nonempty open sets. The irreducible Fourier sheaves F are those for
which K:= F[1] is a geometrically simple perverse object such that
neither K nor FTqJ(K) is punctual.

(8.1.8) Suppose G is a smooth separated k-groupscheme of finite
type of relative dimension noted dimG, m: Gx,G = G the multiplication

map, e: Spec(k) — G the identity section. Given two objects K and L in
DbC(G, 68)’ we define their "compact” or "!I" convolution, denoted Kx L,
by

K= L := Rm(KxL) € DP_(G, Qp).

We define their "x" convolution, denoted Kx L, by

Kx,L = Rm,(KxL) € DP_(G, Q).

Duality interchanges the two sorts of convolution:
D(KxL) = D(K)*,D(L), D(Kx L) = D(K)*D(L),

By the Leray spectral sequence and the Kunneth formula, we have
Gal(k/k)-equivariant isomorphisms of cohomology algebras

Ho*(Gek, Kx L) = H.*((GxG)®k, KxL) = H.*(Gok, K)QH_ *(Gok, L),
H*(Gok, Kx L) = H*((GxG)®k, KxL) = H*(Gok, K)®H*(G®k, L).

In general, even if we start with two constructible ¢-adic sheaves
F and § on G, and view them as objects of of DbC(G, 68) which are

concentrated in degree zero, their convolutions %4 and ¥%,G are
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‘really” objects of DbC(G, 68)’ and not simply single sheaves placed in
some degree. [t 1s this "instability” of sheaves themselves under
convolution that makes DbC(G, 68) the natural setting for

systematically discussing convolution.
(8.1.9) If K and L are semiperverse (resp. perverse) objects on G,
then KxL is semiperverse (resp. perverse) on Gx,G. Therefore if G is

affine, and if K and L. are both semiperverse on G, then Kx L is

semiperverse on G. If K and L are both perverse on G and if moreover
the natural "forget supports” map is an isomorphism Kx L = Kx_L, then

K= |L = Kx L is perverse (its dual being D(K)x  D(L)).

(8.1.10) The formal properties of the two sorts of convolution are

easily established (cf. the analogous D-module discussion in 5.1.8-9).

(1)Each sort of convolution is associative, and for each the §-sheaf
0o = e*ﬁg

supported at the identity of G is a two-sided identity object. If G is

commutative, then each sort of convolution is commutative as well.

(2a) If ¢: G=H is a homomorphism of smooth separated k-

groupschemes of finite type, then for K and L. on G we have
R (K% L) = (R K)x (Ro,L),

R(P!(K*!L) = (RQP!K)*!(R([J!L).

(2b) If ¢ : G = H is a homomorphism, then for K on G and L. on H we
have

@* (R iK)* L) = Kx(9>*L),
@ (R, K)* L) = Kx, (¢'L).
These two relations are duals of each other. The first is proper base

change for the following commutative diagram, whose outer square is
cartesian (verification left to the reader):

GxG — GxH

I idx ¢ I @xid
mult | HxH

l 0) l mult

G _— H

(3) For g € G(k) denote by Ty 1 G =G the map x = gx 'left translation
by ¢", and by Sg (= (Tg)*(Se) the delta sheaf supported at g. Then for

g € G(k), we have
(Tg)* = R(Tg)* = (Tg)! = R(Tg)!



Chapter8-£4-adic hypergeometrics-6

(Tg)*(K**L) = ((Tg)*K)**L,
(Tg)*(K*!L) = ((Tg)*K)*!L,
(Tg)*(]") = (Sg)*]_..

Moreover, if G is commutative, then for g, h in G(k), we have
(Tar)w (Kx L) = (Tg)  K)x (T L),

(Tgr)x(Kx1L) = ((Tg) K)x (T (L),

(4) If G is commutative, geometrically_connected, and defined over a
finite subfield kg of k, then for every Qp-valued character X of G(kg),

the associated lisse rank one f,x on G obtained from pushing out the

Lang torsor by X satisfies ﬂ*f,x =~ OCXX.IZX, whence by the projection

formula

(8.1.11) We now recall (cf. [Ka-GKM, 8.6.1]) the relation between

Fourier Transform on Al and convolution on G- Denote by

J Gy — Al the inclusion,

inv: G, - G the multiplicative inversion x = x~ 1,
Proposition 8.1.12 (compare 5.2.3) For any object K in Dbc((]}m, 68)’
we have canonical isomorphisms in Dbc((]}m, @e):

(\j*f)qj)[l]*!K = j*FTqJ(j!inv*K),

(\j*f)qj)[l]**K = j*FTqJ(Rj*inv*K),

(\j*f,qj)[l]*!inv*K = j*FTqJ(j!K),

(\j*f)qj)[l]**inv*K = j*FTqJ(Rj*K),

(inv*j*f)qj)[l]*!K = inv*j*FTLp(j!K),

(inv*j*f)qj)[l]**K = inv*j*FTqJ(Rj*K),
proof The first is a formal consequence of the definitions of x| and of
FTqJ’! (cf. 5.2.3).The second is the dual of the first, the third and fourth

are the first two applied to inv*K, and the last two are obtained from

the third and fourth by applying inv>* = inv,. QED



Chapter8-£4-adic hypergeometrics-7/

8.2 Definition of hypergeometric complexes and
hypergeometric sums over finite fields

(8.2.1) We work over a finite field k of characteristic p = 4. We
denote by ¢ a nontrivial @e—valued additive character of k. Let (n, m)

be a pair of nonnegative integers. Let

(X's) = (X1, oy Kp)
be an (unordered) n-tuple of not necessarily distinct @e—valued
multiplicative characters of k™, and let

(p's) := (p1, - Pery)

be an (unordered) m-tuple of not necessarily distinct @e—valued

multiplicative characters of k*.
(8.2.2) Given any such data, we define an object

Hyp(!, ¢; X's; p's) = Hyp(!, ¢; X1, . Xns P1s > Pm)
in Dbc((ﬁm, 68) as follows:
(1) if (n, m) = (0, 0), then Hyp(!, y; &; &) := &1 := 1*@€ is the delta
sheaf supported at 1.

(2) if (n, m) = (1, 0), then Hyp(!, ¢; X; &) := (j*£¢)®£x[1].
(3) if (n, m) = (0, 1), then Hyp(!, ¢; &; p) := inv*((j*ii@)@f,g)[l].
(4) if (n, m) = (n, 0) with n > 2, then Hyp(!, ¢; X's; &) is the n-fold

mutiple convolution
Hyp(!, ¢; X 1; Z)<iHyp(l, §; Xo; &)= .. x Hyp(!, ¢; Xy &).
(5) if (n, m) = (0, m) with m 2 2, then Hyp(!, ¢; &; p's) is the m-fold
multiple convolution
Hyp(l, ¢; &; p)<Hyp(!, b; &5 po)=; .. x Hyp(, ¢; &5 prpy).
(6) in the general case, Hyp(!, ¢; X's; p's) is defined to be
Hyp(!, ¢; X's; &)= Hyp(l, ¢; &; p's).

(8.2.3) Since ! convolution is associative and commutative, we have
the general convolution formula

Hyp(!, ¢; X's; p's)=Hyp(!, ¢; A's; T''s) = Hyp(!, ¢; X's U A's; p's U I''s)

for these objects. [This situation should be contrasted with the D-
module case, where we had an a priori definition of hypergeometric D-
modules "just” by writing down the corresponding DE, but where the
convolution behaviour was a theorem. Here we lack a "simple” a priori
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definition of hypergeometrics, and we are essentially imposing their
convolution behaviour as the definition.]

(8.2.4) Their behaviour under inversion is given by
inv*Hyp(!, ¢; X's; p's) = Hyp(l, §; p's; X's).

(8.2.5) Tensoring with a Kummer sheaf LA is also extremely

simple:

LA®Hyp(l, ¢; X's; p's) = Hyp(l, ¢; AX's; Ap's).
(8.2.6) For E a finite extension of k, the pullback of Hyp(!, ¢; X's; p's)
to Gy ®yE is Hyp(!, Yg; Xg's; pg's), where ¢g (resp. X, pg) is the

additive (resp. multiplicative) character of E (resp. EX) obtained from ¢
(resp. X, p) by composition with Traceg /i (resp. Normg /i). [Indeed the

corresponding pullback of f,LP (resp. ‘f’X’ f,p) is f,qJE (resp. ‘f’XE’ f,pE), cf

[Ka-GKM, 4.3], and ! convolution commutes with arbitrary base
change.]

(8.2.7) The trace function of Hyp(!, y; X's; p's) is easily computed in
terms of "hypergeometric sums”, using the Lefschetz Trace Formula.
For (n, m) = (0, 0),the result is this. For each finite extension E of Kk,

and each t € E*, denote by
Vin, m; t) C (Gm)n+m

n+m

the hypersurface in (Gy,) , with coordinates x4, .., Xy, Y1, -, Y

defined by the equation
]—riXi = t(WJ»yJ').
Define the "hypergeometric sum” Hyp(y; X's; p's)(E, t) € Q(y, X's, p's) to
be the exponential sum
Hyp(g; X's; p's)(E, t) := B
Zvin, m: 0@ YEEx] - 25y UK () TTp 4 gl 5)).

Then
Z(—1)i’l"race(FrobE’JE | }l’,i(Hyp(!, P; X's; p's)))
=(-1) M Hyp(y; X's; p's)E, t).
(8.2.8) These hypergeometric sums, which include Kloosterman

sums as the special case n=0 or m=0, when viewed as functions on E*,
are related by multiplicative Fourier Transform to monomials in

Gauss sums viewed as functions on the Pontrjagin dual of EX. The
precise relation is this. For each finite extension E of k, and each

multiplicative character A of E*, we have (by elementary calculation)
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> i g AHyp(g; X's; p's)E, t) = (TTig(yg, /\Xi,E))(WJg(ﬁE, /_\EJ’E))
By multiplicative Fourier inversion, this gives (q := Card(E))

Hyp(y; X's; p's)E, t) = _
= (1/(q-1)Z o px A OTiglgg, AX; ENAT 5800, Apj p)).

The Plancherel formula gives, for any complex embedding of the field
Q(y, X's, p's),
21 in px Hyp(g; X's; p's)(E, )2 =

= (W/(q-D)Z, o g (Tiglwp, AXi DT je(WE, Apj p)l2.

(8.2.9) From the Kunneth formula (cf. 8.1.8), and the Euler-
Poincare formula for the case ntm = 1, we see that

H (G, ® 1k, Hyp(l, &; X's; p's)) = 1-dim'lif i = 0
= 0if 1= 0.
By the Lefschetz Trace Formula, it follows that for any finite extension
E of k, the action of Frobp on the one-dimensional space
HOC((Em(X)kE, Hyp(!, ¢; X's; p's)) is given by
(8.2.10) Trace(Frobp | HOC((Em(X)kE, Hyp(!, ¢; X's; p's))) =
= (TT;(-g(yE, Xj,E)))(WJ(‘g(qJE, pj,E)))-
Similarly, for any multiplicative character A of k*, we have
(8.2.11)  H (G, ®yk, EA®Hyp(, ¢; X's; p's)) = 1-dim'Tif i = O,
=0ifi= 0,
and Trace(Frobg | HOC((Em(X)kE, LA®Hyp(l, ¢; X's; p's)))
= (TT;(-g(yE, AXi,E)))(ﬁj(_g(qJE’ APJ,E)))'

(8.2.12) In an entirely analogous way, we can use % convolution to
define objects Hyp(x, ¢; X's; p's) in Dbc((ﬁm, 68) by replacing all
occurrences of ! by % in the above axioms 8.2.2 (1) through (6). There is
a natural "forget supports” map

Hyp(!, ¢; X's; p's) = Hyp(x, ¢; X's; p's),
which in general is not an isomorphism. Duality interchanges these two

sorts of hypergeometrics: o B
D(Hyp(!, ¢; X's; p's)) = Hyp(x, ¢; X's; p's)(n+m).
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D(Hyp(x, ¢; X's; p's)) = Hyp(!, ¢; X's; p's)(n+m).

(8.2.13) [t will also be convenient to consider systematically the
multiplicative translates of Hyp(!, ¢; X's; p's) and of Hyp(x, ¢; X's; p's).

For each point A € kX, we define
Hypy(!, ¢; X's; p's) := [x = Axl Hyp(l, ¢; X's; p's),
Hypy(x, g; X's; p's) = [x = Axl Hyp(x, ; X's; p's).

(8.2.14) These objects enjoy the following basic properties:
inv*Hyp(!, g; X's; p's) = Hypq (L, g5 p's; X's).
inv*Hypy (%, §; X's; p's) = Hypq /5(%, &; p's; X's).
LEA®Hyp (L, ¢; X's; p's) = (A(%))deg(@Hyp)\(!, W; AX's; Ap's).
LEA®Hypy(x, ¢; X's; p's) = (/\(?\))deg(X)Hyp)\(*, U; AX's; Ap's).
D(Hypy(!, w; X's; p's)) = Hypy(x, ¢; X's; p's)(n+m).

D(Hyp (%, ¢; X's; p's)) = Hyp,(!, ;XS E's)(n+m).
Hypy (!, ¢; X's; p's)*!Hpr(!, P; A's; T's) =

= Hypap(h ¢ X's U A's; p's U T7s).
Hypa(x, 4; X's; p's)=, Hyp, (%, 4; A's; I''s) =

= Hypyu(*, 5 X's U A's; p's U I's).

8.3 Variant: Hypergeometric complexes over algebraically
closed fields

(8.3.1) Suppose instead of working over a finite field we work over
an algebraically closed field k. For ¢ a nontrivial @e—valued additive

character of a finite subfield kg of k, we can speak (cf 7.2.1) of the lisse
rank one sheaf f,qJ on A1®k0k. For any tame @e—valued character X of
ﬂl((]}m@)kok), with inverse character denoted 7(, we cah speak of the
lisse, rank one Q -sheaves f,x and f,& on (Em®k0k.

In terms of these objects, we define objects Hyp(!, ¢; X's; p's) and

Hyp(x, ¢; X's; p's) in Dbc((ﬁm@)kok, Qy) exactly as above.

(8.3.2) For each point A € k*, we define the translated objects
Hyp, (!, §; X's; p's) = [x = Axl Hyp(l, ¢; X's; p's),
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Hypy(*, ¢; X's; p's) 1= [x = Axl Hyp(*, §; X's; p's).
[When the X's and p's are all of finite order, say all defined over kg,
and A € (kg)™, these objects Hypy (!, ¢; X's; p's) and Hypy(x, ¢; X's; p's)
are just the pullbacks to (Em®k0k of the earlier defined objects on

Gy /kp with the same names.]
(8.3.3) The properties
inv*Hyp, (!, ¢; X's; p's) = Hypq /50, P a's; X's),
inv*Hyp, (=, ¢; X's; p's) = Hypq /o (%, P 5‘5; X's),
LEA®Hyp, (!, ¢; X's; p's) = Hypy(!, ¢; AX's; Ap's),
EA®Hypy(x, §; X's; p's) = Hypy(x, y; AX's; Ap's),
D(Hypy(!, &; X's; p's)) = Hypy(x, ¢; X's; p's)(n+m),
D(Hypy(x, &; X's; p's)) = Hypy(!, ¥; X's; p's)(n+m),
Hypa(h ¢; X's; p's)* Hyp (I, g; A's; I''s) =
= Hypo(!, P; X's U A's; p's U I''s),
Hypy(x, g5 X's; p's)xy Hyp (%, g; A's; T's) =
= Hypy (%, §; X's U A's; p's U I''s)

hold for these objects.

(8.3.4) From the general convolution formalism (cf. 8.1.8), and
reduction to the case of hypergeometrics of type (1, 0) and (0, 1), we
see that

Hlo(Gypy, Hypo(l, U5 X's; p's)) = 0 for i = 0,

HOC((Bm, Hyp, (!, ¢; X's; p's)) is one-dimensional,
and dually

Hi((ﬁm, Hypy(x, ¢; X's; p's)) = 0 for i = O,

HO((Em, Hyp (%, ¢; X's; p's)) is one-dimensional.

Remark 8.3.5 This situation should be compared to the situation over
C for the hypergeometric D-modules H,(a's; p's). The tame characters

X's (resp. the p's) of ﬂl((]}m@)kok) can be seen as playing the roles of the

characters x = exp(2miax) (resp. x = exp(2mipx)) of Z = 11 ((G,)3"M).

Having all the X's and p's of finite order 1s analogous to having all the
o's and b's rational. The choice of a { 1s required to define the objects
Hyp(!, ¢; X's; p's) and Hyp(x, ¢; X's; p's) which are analogous to the D-
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module ¥ (a's; p's). [One might "explain” the fact that in the D-module
case we define Hq(a's; p's) without having to make an analogous choice

by the catch-phrase "there are many f,qj, but only one exp(x)".]

8.4 Basic Properties of Hypergeometric Complexes;
Definition and Basic Properties of the Hypergeometric Sheaves

Ha(, g; X's; p's)

(8.4.1) In this section we will establish the basic goemetric
properties of the objects Hyp, (!, ¢; X's; p's) and Hyp,(x, ¢; X's; p's) of
Db,
characteristic p » 0, p = 4.

We say that Hyp, (!, ¢; X's; p's) and Hyp, (%, ¢; X's; p's) are

(G, 68)' We work over an algebraically closed field k of

defined over a finite subfield kg of k if X € (kg)™, ¢ is an additive
character of kg, and each of the X's and each of the p's is a tame
character of finite order defined over k (i.e., each of the X's and each
of the p's has finite order dividing Card(kg) - 1).

We say that the X's and the p's are identical if n = m and if
after possible renumbering we have X; = p;j for every 1 =1, .., n.

We say that the X's and the p's are disjoint if (n, m) = (0, 0) and
if we have X; = P for any i =1, .., n and for any j =1, .., m. [Thus if
either n = O or if m = O, but ntm = 0, then disjointness holds

automatically.]
We denote by multg(X) (resp. mult(p)) the multiplicity with

which a particular character X (resp. p) occurs among the X's (resp.
among the p's). In discussing ¢-adic representations of inertia groups,
for any integer n > 1, we denote by Unip(n) a unipotent Jordan block of
size n (i.e., an indecomposable unipotent [and hence tame] n-
dimensional ¢-adic representation of the inertia group in question).

Theorem 8.4.2 Suppose that the X's and p's are disjoint. Then
(1) Hypp (!, ¢; X's; p's) is simple perverse and nonpunctual, i.e., there

exists an irreducible middle extension sheaf J’E)\(!, P; X's; p's) on Gy
such that Hyp, (!, ¢; X's; p's) = Hy (L, ¢; X's; p's)ll]. The Euler
characteristic X (Gp,, ¥, (!, ¢; X's; p's)) = -1.

(2) Denote by j: Gy — Al the inclusion. Then Jx (!, 5 X's; p's) is an
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irreducible Fourier sheaf on Al except if (n, m) = (1, 0) and X is trivial
(in which case the sheaf j H, (!, §; X's; p's) in question is ‘f’qJ(X/%))'

(3) If no X is trivial, then

JIHA (L s Xs; p's) = e Ha (L gy X's; p's) = RjeHa (!, ¢; X's; p's),
whence j!}[i)\(!, P; X's; p's) is an irreducible Fourier sheaf on Al
(4) If Hyp,(!, ¢; X's; p's) is defined over a finite subfield kg of k, then
HA (L, §; X's; p's) is pure of weight n + m - 1.
(5) The natural map Hyp (!, ¢; X's; p's) = Hypo(x, §; X's; p's) is an

Isomorphism.
(6) If n > m, the sheaf H, (!, ¢; X's; p's) is lisse of rank n on Gp,. As I(0)-

representation it is tame, isomorphic to
69dis‘[inc‘[ X's ‘f;X@Unlp(mUltO(X))

As I(eo)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

(dim. n-m, brk. 1/(n-m)) @ &) f)p®Unip(multoo(p)).
(7) If n < m, the sheaf H, (!, ¢; X's; p's) is lisse of rank m on G,. As

distinct p's

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(m-n)) @ D istinet s Ly ®Unip(multg(x)).

As I(eo)-representation it is tame, isomorphic to

&) Ep®Unip(multoo(p)).
(8) If n = m, the sheaf H,(!, ¢; X's; p's) is lisse of rank n on G,y - (A},

distinct p's

from which it is extended by direct image. I(A\) acts by tame
pseudoreflections of determinant L a(x_y), for A = TT;p;/TTi X;.

As I(0)-representation it is tame, isomorphic to
D gistinct x5 Ly ®Uniplmultg(x)).

As I(eo)-representation it is tame, isomorphic to

&) f)P@Unip(multoo(p)).

distinct p's

proof We proceed by induction on n+m. If ntm = 1, the theorem is
obvious by inspection. Suppose the theorem has already been proven
universally for all (no, mo) with ng + mg < n+m; we must prove it

universally for (n, m). Notice that assertions (2) and (3) follow from
assertions (1), (6), (7) and (8).



Chapter8-¢-adic hypergeometrics-14

We are thus "reduced” to proving assertions (1) and (4) - (8).By
multiplicative translation, we may assume X\ = 1. By multiplicative
inversion, we may suppose that n < m. For any tame character A, (1)
and (5) - (8) hold for Hypq(!, ¢; X's; p's) if and only if they hold for
L A®Hypq (L, y; X's; p's) = Hypq (L, ¢; AX's; Ap's). For (4), we have this
same equivalence for any tame character A of finite order.

Suppose first that 0 < n < m. Then by picking /A to be the inverse

of one of the X's we may assume that one of the X's is trivial, say
Xpn = 1. To emphasize this, we will write our object of type (n, m) in

the form
Hypq (!, ¢; 1, X's; p's),
where now there are n-1 listed X 's in addition to 1.
Since {1, the X's} and the p's are disjoint by hypothesis, none of
the p's is trivial. Now apply the general formula relating convolution
with Fourier Transform

(J*f)qj)[l]*!K = j*FTqJ(J!inV*K)
to the hypergeometric object K of type (n-1, m)
K := Hypq(, ¢; X's; p's).
We find
Hyp1(!, ¢; 1, X's; p's) = j*FTLP(j!inv*K).

Q

j*FTqJ(j!inv*Hypl(!, P; X's; p's))
J*FTy(iHypq (! 5 p's; X's)).
Since none of the 5’5 i1s trivial, we have by induction that

Q

JHyp (L 5 p's; X's) = JiHq(L, s p's; X))
~ Jx 1, g5 p's; xs)A]
is (an irreducible Fourier sheaf)[1]. Thus we find
Hypq (!, ¢; 1, X's; p's)l-1] =
= J¥FTy (M1, 05 p's; X's))
= JXNFT,(jx®1(, 45 p's; X's)).
The key point is that NFTqJ(j*J{l(!, P; p's; X's)) is irreducible Fourier.
This shows first that Hypq(!, ¢; 1, X's; p's)[-1] is an irreducible middle
extension sheaf on Gy, thus proving (1) and providing the required
KU, g; 1, X's; p's). [Because the Euler characteristic of a convolution is

the product of the Euler characteristics of the convolvees (cf 8.1.8),
always X (Gpy, Hypq(!, ¢; 1, X's; p's)) = 1]
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If Hq0, ¢; 1, X's; p's) is defined over a finite subfield kg of k, then

by induction it is pure of weight n+m-1 (cf. 7.3.8).
That the local monodromy at zero and at o of H,(!, ¢; 1, X's; p's)

is as asserted in the theorem follows (by induction) from the known
effect (cf. 7.5.4) of NFTLP on the local monodromies at zero and o of

irreducible Fourier sheaves which are lisse on G,,.

If n<m, ®q0, ¢; 1, X's; p's) is lisse on Gy, because by induction it
is the NFT of an irreducible Fourier which is lisse on G, and all of
whose e -slopes are 1/(m - (n-1)) < 1. This gives (7).

If n = m, then there exists a unique s € k* such that on G, - {s},
}[’,1(!, P; 1, X's; p's) is lisse of rank n,with tame pseudoreflection local
monodromy at s. [The s in question is the unique element of k* for
which (!, ¢; p's; X's) as P(ee)-representation is f)qj(_SX)EB(trivial).] We
must show that s = 1. If n=m=1, then by definition

WO, g; p's; X's) = J*(ﬁ@(x))@)ﬁg(x) = J*(‘Iij(—X))@f’a(X)’
as required.

Suppose now n=m is = 2. Since H4(!, ¢; 1, X's; p's) is a middle

extension sheaf, s is the unique point in k* where the rank of its stalk
at s is n-1. Pick a partition n= A + B of n as the sum of two strictly
positive integers, separate the {1, X's} into a collection of A characters
o's and B characters p's, and then separate the p's into a collection of A
characters ¥'s and B characters 6's. Let

o = Hq(l, ¢, &'s; ¥'s),

B = Hq(, g, p's; 8's).
Then by induction o (resp. B) is an irreducible middle extension sheaf
on Gy, lisse of rank A (resp. B) on Gy, - {1}, with tame pseudoreflection

local monodromy at 1 and tame local monodromy at both zero and oo.
Moreover, we have(by part (1) and the definition of hypergeometrics)

H U gy 1, X's; p'sll-1] = o= B.
This implies that for any s in k*,
dim (¥ (1, ¢; 1, X's; p's))g = ~X(Gyyy, ¥®[x = s/x]™B).

The sheaf A ®[x — s/x]*B is tame on G
the point 1 (where of drops by 1) and at s (where B drops by 1). So at

m> and its only nonlisseness is at

any point s = 1, #®[x = s/x]*B has two distinct drops, at 1 of size B
and at s of size A; thus at s = 1, the Euler-Poincare formula gives
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X (G, HR®[x = s/x]*B) = B + A.

But at s = 1, the only drop is at 1, of size AB - (A-1)(B-1) = A+ B - 1,
so H1(!, ¢; 1, X's; p's) is nonlisse at 1, as asserted. This proves (8); the

determinant of the tame local monodromy at 1 is forced by what it is
at zero and oo.

To prove (b), it is equivalent to show that under the natural
pairing, ¥4, ¢; 1, X's; p's) and H (!, g 1, X's; 5’5) are (up to a twist)

duals. The first is j*NFTqJ(j*J{l(!, Ik 5’5; %'s)), and the second is
j*NFT@(j*}(’,l(!, P; p's; X's)). In view of the duality behaviour of NFT
(and the trivial remark that NFTqJ-[—l]* = NFT@), the result again

follows by induction.
[t remains to treat the case in which n=0. In this case we reduce
by twisting by a suitable £ A to treating Hypq(!, ¢; &; 1, p's). We treat

this case by applying the general formula
(inv*j*f,qj)[l]*!K ~ inv*j*FTqJ(j!K),
with ¢ replaced by ¢, to the object K := Hyp4(!, ¢; &; p's). We find
Hypq(!, ¢; &; 1, p's) = inv*j*FT@(j!Hypl(!, Py &5 p's)).

The proof by induction now proceeds as in the previous case. QED

Remark 8.4.3 The Kloosterman sheaves denoted
KIGp; X1, oo s X 15 ey 1)
in [Ka-GKM] are precisely the sheaves #,(!, ¢; X's; &) of type (n, 0)

above. The systematic use here of Fourier Transform to develop their
basic properties is only hinted at there (cf. [Ka-GKM, Chapter 8]), and is
independent of the method employed there.

(8.4.4) In terms of these Kloosterman sheaves
KI(g; X's) = (L, ¢; X's; &),
we can rewrlte the definition of the hypergeometric complexes:
Hyp(!, ¢; X's; &) = KI(g, x's)1]
Hyp(!, ¢; &; p's) := inv*KI(y, p's)[1]
Hyp(!, ¢; X's; p's) := KI(g, X's)[1]=inv*Kl(y, p's)[1].
Hyp(*, ¢; X's; p's) := Kl(y, % 's)1]*, inv*KI(y, p's)[1].
This point of view will be useful now in establishing the perversity of
the objects Hyp(!, ¢; X's; p's).
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Theorem 8.4.5 The objects Hyp, (!, ¢; X's; p's) and Hyp,(x, ¢; X's; p's)

of Dbc((]}m, 68) are perverse.

proof By multiplicative translation, we may suppose that A = 1. If
(n, m) = (0, 0), then by definition
Hyp(!, ¢; &; &) = Hyp(x, ¢; &; &) =
is perverse. If (n, m) = (0, 0) but either n=0 or m=0, then the X's and
p's are automatically disjoint, and we may apply the previous theorem.
Suppose now that both n and m are strictly positive. Then

Hyp(x, ¢; X's; p's) := KI(g, X '9)[L]%,inv*KI(y, p's)[1]

is the * convolution of two perverse objects, and hence (cf. 8.1.9) is
semiperverse. By the duality formulas (8.3.3)

D(Hypy(!, w; X's; p's)) = Hypy(x, ¢; X's; p's)n+m),
g X's;

D(Hypy (%, ¢; X's; p's)) = Hyp(!, y; p's)(n+m),

1t suffices to establish universally that

Hyp(!, ¢; X's; p's) := KI(g, X's)[1]xinv*Kl(y, p's)[1]
is semiperverse. For this we argue as follows. The sheaves KI({, X's) and
inv*K1(y, 5’5) are each lisse sheaves on G, which are irreducible and

which have Euler characteristic = -1. Now apply the following theorem.

Theorem 8.4.6 Suppose that ¥ and 9 are lisse @g—sheaves on G, over

an algebraically closed field k of characteristic p # ¢. Suppose further
that ¢ is irreducible and that X(Gy,, 94) = 0. Then both F[1]x3[1] and

Fl1]x,9l1] are perverse.

proof For any two lisse sheaves F and @, the objects F[1] and 9[1] are
perverse, and hence F[1]%,9[1] is semiperverse. So by duality, it

suffices to prove the semiperversity of F[1]%;3[1]. Concretely, we must
prove that the object ¥%,9 has 12 punctual and Kl =0 fori> 2.

For s € k¥, we have, by proper base change,

HUF=9)g = HL(G,, FRIx = s/x]1%G).

So the vanishing Hl =0 fori> 2 is obvious. We must show the

vanishing of H2C((Em, T Q[x = s/x]*9) for all but finitely many values
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of s. Writing % as a successive extension of irreducbles, we reduce to
the case when 7 is irreducible. Then both ¥ and [x — s/x]*% are

irreducible, so H2C((Em, FT®lx — s/x1*9) is nonzero if and only if there

exists an isomorphism F =[x s/x1*9. Now }(’,2(?*!9) is either
punctual, or its stalk at s is nonzero for all s outside some finite subset
T of k*.

So if }(’,2(?*!9) were nonpunctual, the isomorphism class of

[x = s/x]*9 would be independent of s in k* - T. Replacing § by a
multiplicative translate of itself, we may assume that 1 is not in T, 1.e,,

that ¥ = inv>*g. Since k is algebraically closed, k* - T contains roots
of unity of arbitrarily high order. If we take for s a root of unity ¢ of
order N, then the isomorphism class of inv*$ is invariant under
multiplicative translation by ¢y. Since inv*§ is irreducible, it descends

through the N-fold Kummer covering of G, by itself, and consequently
X Gy, iINVv*G) = 0 mod N. Since we may choose N arbitrarily large, we

must have X((Em, inv*9g) = 0, contradiction. This proves the theorem,
and with it Theorem 8.4.5 above. QED

Corollary 8.4.6.1 Hypotheses and notations as in the theorem above,

suppose that no multiplicative translate of F s isomorphic to inv>g.

Then F[1]%,9[1] is of the form ¥[1], for some sheaf ¥ on G, which has
no nonzero punctual sections.

proof Indeed, in this case H2C((Em, FQR[x = s/x1*9) = 0 for all s, so the
perverse object F[1]%x3[1] is of the form H[1] for some sheaf H on G,,.

Because ¥[1] is perverse, # has no punctual sections. QED

Returning to Hyp, (!, y; X's; p's) and Hyp, (%, ¢; X's; p's), we can

be much more precise about their structure.

Corollary 8.4.6.2 Suppose that the X's and p's are not identical. Then
the perverse object Hypx(!, y; X's; p's) is nonpunctual, i.e.,

Hyp, (!, g5 X's; p's) = Ho (1, ¢; X's; p's)i]
for a sheaf }[’0\(!, P; X's; p's) on G, with no nonzero punctual sections.

proof If n=0 or m=0, this is proven in 8.4.2. By multiplicative
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translation, we may assume A = 1. The Kloosterman expression
Hyp(!, ¢; X's; p's) 1= Kl(y, X's)[l]*!inv*Kl(a, 5’5)[1],
and 8.4.6.1 then give the existence of a sheaf (!, y; X's; p's) on G,

with no punctual sections such that

Hyp(l, ¢; X's; p's) = Hq(L, ¢; X's; p's)[1]. QED

Corollary 8.4.6.3 Suppose that the X's and p's are not identical. Then
Hl (G, Ho(l, W5 X's; p's)) = 0 for i = 1,
ch((ﬁm, HA (L, §; X's; p's)) is one-dimensional.

proof This is just the spelling out of 8.3.4 in the nonpunctual case. QED

Cancellation Theorem 8.4.7 Given arbitrary X's and p's, and a tame
character /\, denote by V the one-dimensional Qy-vector space

V = H9 (G, Hypy(, s A1xs; ATLps)).
In the category Perv(Gy,), Hypy (L, ¢; A, X's; A, p's) sits in a short exact

sequence
0 = VL AIL]l = Hypy(!, ¢; A, X's; A\, p's) = Hypy(!, ¢; X's; p's)(-1)— 0.

proof Twisting by LA, we reduce to the case when A is 1. Then by

definition we have
Hypy(L ¢; 1, X's; 4, p's) := Hypy (L, §; K's; p's)=Hypq (1, ¢; 15 1).
We have the following lemma:

Lemma 8.4.8 (compare 6.3.5) Denote by k : Gy, - {1} = G, the
inclusion. Then we have a canonical isomorphism Hypl(!, g; 1; 1) =
Rk*@e[i]. Writing Rk*@g[l] as an extension of its (shifted) cohomology
sheaves gives a short exact sequence of perverse sheaves on G,

0 = Qul1] = Hyp4(, ¢; 1; 1) > 84(-1) - 0.

proof By the fundamental relation 8.1.12 between Fourier Transform

and convolution, denoting by j: G, — Al the inclusion, we have
(Lj*f,qj)[l]*!K ~ J*FTqJ(j!inv*K).

Applying this to K := inv*j* @[1], we find
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Hypq(, @ 13 1) = JFT (0% Bl = j*FT (£ 5®0 001
Now FT“JZ@@K) =[x — x+1]*FT¢(K) for any K on Al, and it is proven
in [Ka—_PES, Prop;A2] (cf. 2.10.1(1) for the D-module analogue) that
FTqJ(j!GQe) = Rjx Qp. Thus we find

JPFTREG®1Q M = j*[x = x+11,Rj.Qyl1] = Rk, Qy[1]. QED

Corollary 8.4.8.1 of Lemma 8.4.8 For any X, the perverse object
Hypq (!, ¢; X; X) sits in a short exact sequence of perverse sheaves on

Gm
0 = Ly[1] = Hypq(}, ¢; %; X) = 84(-1) = 0.

proof Simply tensor with ‘E’X' QED

Apply 8.4.8 to calculate Hyp, (!, y; X's; p's)*xiHypq(}, ¢; 1; 1). The
convolution Hyp)\(!, y; X's; p's)*!@e 1s the constant sheaf with value
V = HO (G, Hypy (!, 45 X's; p's)).
The convolution Hyp, (!, ¢; X's; p's)=184(=1) is Hyp, (!, y; X's; p's)(-1), so
we have the asserted short exact sequence
0 — VI1] = Hyp, (!, ¢; 1, X's; 1, p's) = Hypy (!, ¢; X's; p's)(-1) — 0.
QED

We now develop some of the immediate consequences of the
cancellation theorem.

Cancellation Theorem bis 8.4.9 Given arbitrary X's and p's, and a
tame character /\, denote by W the one-dimensional Qj-vector space

W = HO(G,py, Hypa(, w; A™1xs; A71ps)).
In the category Perv(Gy,), Hypy(x, ¢; A, X's; A, p's) sits in a short

exact sequence
0 — Hypy(x, ¢; X's; p's)(-1) = Hypy(x, ¢; A, X's; A, p's)>WRL Al1] —0.
proof This is the dual statement, with the dual proof. QED

Semisimplification Theorem 8.4.10 Suppose that the X's and p's are
disjoint. Let r = 1, and let /Aq, .., A, be r not necessarily distinct tame
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characters. In the category Perv(G,,) over the algebraically closed field
k, the semisimplifications of Hyp,(!, ¢; Aq, .., Ay, X's; Aq, oo, Ay, p's)
and of Hypy (%, ¢; Aq, .., Ap, X's; Aq, .., A, p's) are each isomorphic

to the direct sum

Hypa, o s po Do, Al

proof This is obvious by the cancellation theorem and the fact (8.4.2)
that 1f the X's and p's are disjoint, then

Hyp,(!, ¢; X's; p's) = Hypo(x, §; X's; p's)
is simple. QED

Corollary 8.4.10.1 The perverse object Hyp, (!, ¢; X's; p's) is simple if
and only if the X's and p's are disjoint.

Theorem 8.4.11 Suppose that the X's and p's are not identical. Write
Hyp, (!, ¢; X's; p's) = Ho (1, ¢; X's; p's)i]

for a sheaf }[’,7\(!, P; X's; p's) on G, with no nonzero punctual sections.

The local monodromy of H, (!, y; X's; p's) is the following:

(1) If n > m, the sheaf ¥, (!, §; X's; p's) is lisse of rank n on Gy,. As 1(0)-

representation it is tame, isomorphic to
69dist‘mc’t X's ‘E’X®Un1p(mU1tO(X))

As I(eo)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

(dim. n-m, brk. 1/(n-m)) @ D distinct p's f)p®Unip(multoo(p)).
(2) If n < m, the sheaf ¥, (!, §; X's; p's) is lisse of rank m on Gyy,. As

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(m-n)) @ D iictinet s Ly ®Unip(multg(x)).

As I(eo)-representation it is tame, isomorphic to
69dist'mct p's ‘Iip@Unlp(mUltoo(P))

(3) If n = m, the sheaf H, (!, §; X's; p's) is lisse of rank n on G,y - (A},

from which it is extended by direct image. I[(A\) acts by tame
pseudoreflections of determinant £ A(x-y), for A = TT;%;/TT;p;.

As I(0)-representation it is tame, isomorphic to
69dis‘[inc‘[ X's ‘f;X@Unlp(mUltO(X))

As I(eo)-representation it is tame, isomorphic to
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69dist'mct p's £p®Un1p(mU1too(P))

proof Suppose first n = m. Then it follows immediately from the
cancellation theorem 8.4.7 (and 8.4.2 in the case when the X's and p's
are disjoint) that ¥, (!, y; X's; p's) is lisse of rank max(n, m) on Gy,

and that the description claimed for its local monodromy at zero and oo
1s correct up to semisimplification. Similarly, if n=m, we see that the
sheaf H, (!, §; X's; p's) is lisse of rank n on Gy, - (A}, and that the

description claimed for its local monodromy at zero and o is correct up
to semisimplification.

To see that the description claimed for its local monodromy at
zero and oo is absolutely correct, we must see that (universally, so
after any LA twist) the local monodromy at zero or at e has at most

a single unipotent Jordan block. This is a consequence of the fact that

ch((ﬁm, HA (L, ¢; X's; p's)) is one-dimensional. Indeed, if we denote by
F = U\, g; X's; p's),

and denote by j: G, — Pl the inclusion, the coboundary of the short

exact sequence of sheaves on pl
0= jF - jF - Fll0gsy @ Fl=)lgs_ — 0,
gives an injective map

(FLO@FI(=)) /006, F) - HL (G, F).
Since HO((Em, F) injects into either F1(0) o C;FI(OO), it follows that F1(0)

and C;FI(OO) each have dimension at most one.
[f n = m, 1t remains to examine the local monodromy at A of the
sheaf F := H, (!, ¢; X's; p's). Denote by k : Gy - (N} = G, the inclusion.

By the Cancellation Theorem 8.4.7 and 8.4.2, ¥ is lisse on Gy, - {7} of

rank n, and it has a one-dimensional drop at A. Since ¥ has no nonzero
punctual sections, either ¥ has pseudoreflection local monodromy at A

and ¥ = k,k*7F, or ky k™7 is lisse on Gp,. In this latter case, k k*¥F
must be a successive extension of L A's, becaue we already know that F

is tame at both zero and e. But comparing the local monodromies of F
at zero and o, we see that ¥ cannot be a successive extension of f,/\'s.

Therefore ¥ has pseudoreflection local monodromy at A, and
F = kyk*7F. Because X (G, F) = -1, ¥ must be tame at A. The

determinant of the tame local monodromy at A\ is determined by what
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1t i1s at 0 and <, as indicated. QED

Corollary 8.4.11.1 Suppose that the X's and p's are not identical. Then
there exists a middle extension sheaf }(’0\(*, P; X's; p's) on Gy such that

Hypa(x, ¢; X's; p's) = Hy (%, §; X's; p'sll],
and assertions (1), (2), (3) of the theorem hold for ¥, (%, ¢; X's; p's).
proof Duality. QED

Theorem 8.4.12 If n = m and the X's and the p's are identical, then
(1) the sheaf %_1(Hyp>\(!, P; X's; X's)) is lisse on Gy, a successive

extension of the f,X's.
(2) }E_l(Hyp%(!, g; X's; X's)) is isomorphic to
69dis‘[inc‘[ X's ‘f;X@Unlp(mUItO(X))

(3) the sheaf }[’,O(Hyp%(!, g; X's; X's)) is a punctual sheaf, concentrated

at A, of rank one.

proof By multiplicative translation, we may assume A = 1. For n = 1,
this is 8.4.8.1. Assertions (1) and (3) in the general case are proven
inductively, using the Cancellation Theorem 8.4.7.

To prove (2), we use the fact that }E_l(Hypx(!, g; X's; X's)), being
lisse on G, and tame, is determined by (indeed is the canonical

extension of, cf [Ka-LG, 1.5]) its local monodromy at zero. We must
show that, after any LA twist, this local monodromy has at most one

uhnipotent Jordan block. As explained above, this follows if we prove
universally that ch((Em, }f’,_l(Hypx(!, P; X's; X's))) has dimension < 1.
To prove this, consider the perverse short exact sequence

0 — %_1(Hyp)\(!, P; X's; X'sHIL] = Hypo (!, ¢; X's; X's) = (pctl) —0.

The long exact cohomology sequence for HiC(G ?7) gives an injection

m}
HL (G, 1 Hypp(L @5 X's; X'8) = HO (G, Hypp(, 5 X's; X's)),
and the target is one-dimensional (cf. 8.3.4). QED

Theorem 8.4.13 Suppose that Hyp, (!, ¢; X's; p's) is defined over a
finite subfield kg of k, that (n, m) = (0, 0), and that the X's and p's are
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not identical. Then the middle extension sheaf }[’0\(!, P; X's; p's) is pure
of some weight (necessarily n + m - 1) if and only if the X's and p's are
disjoint.

proof If the X's and p's are disjoint, then the middle extension sheaf
HA (L, g; X's; p's) is pure of weight n + m - 1 (cf 8.4.2). By Deligne's main
result 3.3.1 in [De-WII], ¥, (!, ¢; X's; p's) is always mixed of weight

<n +m - 1. It suffices to show that if the X's and p's are not identical,
then Hyp, (!, ¢; A, X's; /A, p's) is not pure of weight n + m + 1, but that

1t has a nonzero quotient which is pure of weight n + m + 1. In the
cancellation theorem exact sequence

0 = VLA = H(, ¢ A, X's; A\, p's) = HL(L g; X's; p's)(-1) — 0O,
o, v A™Ixs; ALps)),

V is the geometrically constant sheaf ch((ﬁm,

which is pure of some weight < n + m (since H, (!, y; /\_1)('5; A_lp's) is

mixed of weight < n + m - 1). On the other hand, since the X's and p's
are not identical, we can "extract duplicates” as much as possible from
the X's and p's and still have some disjoint «'s and p's left at the end.
[terating the above exact sequence, we see that if after extracting r
pairs of duplicates from the X's and p's, H, (!, ¢; o's; B's)(-1-r) is a

nonzero quotient of H, (!, ¢; X's; p's)(-1) which is pure of weight n + m
+1. QED

Corollary 8.4.13.1 Suppose that Hyp,(!, y; X's; p's) is defined over a
finite subfield kg of k, that (n, m) = (0, 0), and that the X's and p's are
not identical. Then the canonical "forget supports” map

Holl, g5 X's; p's) = Hylx, ¢; X's; p's)

1s an lsomorphism if and only if the X's and p's are disjoint.

proof If the X's and p's are disjoint, then the map is an isomorphism.
Conversely, suppose the map is an isomorphism. Then ¥, (!, ¢; X's; p's)

is pure of weight n + m - 1, for H, (!, y; X's; p's) is always mixed of
weight < n + m - 1, and (by duality) ¥, (%, §; X's; p's) is always mixed
of weight 2 n +m - 1. So the X's and p's are disjoint. QED

8.5 Intrinsic characterization of hypergeometrics (compare 3.7)
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(8.5.1) We continue to work over an algebraically closed field k of
characteristic p = 4. We fix a choice of nontrivial Qy-valued additive

character ¢ of a fintite subfield k(y of k.

Proposition 8.5.2 Let K be a perverse simple object of Dbc(Gm, ﬁé)'
Then X(Gy,, K) =2 0, and X (G, K) = 0 if and only if K = L A[1] for some

tame character A.

proof If K is punctual, then X(G,,, K) = 1. If K is nonpunctual, then K
of the form 7F[1] for some irreducible middle extension sheaf ¥ on G,,
with X (Gy,, F) = -X(Gyy, K). In the Euler-Poincare formula for an ¥
without punctual sections on G,

X (Gyy, F) = Swanp(F) + Swan (F) + X, . x [drop(F) + Swan(F)]

all of the terms on the right hand side are non-negative. QED

Theorem 8.5.3 Let K be a perverse simple object of Dbc((]}m, 68)

whose Euler characteristic X((Em, K) = 1. Then K is hypergeometric, i.e.,

there exist A € k™ and disjoint X's and p's such that
K = Hyp,(!, ¢; X's; p's).

proof If K is punctual, it is 8, for some A € k™, so K = Hyp, (!, ¢; &; &).

Suppose now that K is nonpunctual. Then K of the form 7[1] for
some irreducible middle extension sheaf ¥ on G, with X(G,,, ¥) = -1.

We claim that
Hl (G, F) = 1-dim'l for i = 1,
= 0 fori1 = 1.
Indeed, the HOC vanhishes because ¥ has no punctual sections, and the
HZ,
constant sheaf, and this is incompatible with its Euler characteristic).
Dually, we have

HY(Gy,, F) = 1-dim'l for i = 1,
= 0 fori1 = 1.

Now denote by k: G, — Pl the inclusion. The long exact cohomology

vanhishes because ¥ has no 68 quotient (otherwise ¥ would be the

sequence attached to the short exact sequence of sheaves on pl
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0 - k¥ - k,F » Fll0gs; @ Fll=l®s,, - o,
gives an injective map
FlOgFll=) & Hl (6, F).

Therefore at most one of ?I(O) or ‘371(00) 1s nonzero, and if nonzero its
dimension is one.

In the Euler-Poincare formula for an % without punctual sections
on G,

-X(Gyy, F) = Swang(F) + Swan(F) + 2. . [dropi(F) + Swan(F)]

all of the terms on the right hand side are non-negative. So there are
two possibilities for our ¥:

(1) F is everywhere tame, lisse outside a single point t in k™, and has

pseudoreflection local monodromy at t.

(2) F is lisse on Gy, and Swang(¥F) + Swan(F) = 1.

We say that ¥ is of type (n, m) for
n := dimension of FP(0) = the size of the "tame at 0" part of 7,

m := dimension of FP(*) = the size of the "tame at oo part of 7.

The generic rank of ¥ is max(n, m). The two cases (1) and (2) above
correspond ton = m and to n # m respectively.
Suppose first that n = m. Tensoring with a suitable LA, an

operation under which the theorem is invariant, we may further
assume that 1 is among the characters which occur in local

monodromy at zero. Denote by j: G, — Al the inclusion. Then Jx T is
an irreducible Fourier sheaf on Al (it is an irreducible middle
extension, and as 1t Is not lisse it cannot be ‘f’qJ(tX) for any t € k). By

the numerology of Fourier Transform, one checks easily that NFTqJ(j*?)

(= FTqJ(j*?)), itself an irreducible Fourier sheaf on Al, is of the form
J19 for 4 an irreducible lisse sheaf on G, of rank n-1 with
X (G, 4) = -1. Moreover, § is of type (n, n-1). By Fourier inversion, we
have

[x = -x] F[11(-1) = j*FTqJ(J!%[l]) = (j*liqj)[l]*!inv*%[l].

In view of the stability of hypergeometrics, it suffices to show that g[1]
1s hypergeometric. Thus the case n=m results from the case n = m.
We now turn to the case n = m. We first treat the case when one
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of n or m vanishes. In this case, we may, by a multiplicative inversion,
suppose that m = 0. Then ¥ is tame at zero, and totally wild at <
withe Swan (%) = 1. Tensoring with a suitable £ A, an operation under

which the theorem is invariant, we may further assume that 1 is
among the characters which occur in local monodromy at zero. If
n=1,then by the break-depression lemma [Ka-GKM, 8.5.7] we see that ¥F

1s ‘f’qJ(tX) for some t € k*. If n 2 2, then j4«7 is an irreducible Fourier
sheaf on A1, and NFTL'J(j*?) (= FTqJ(j*?)), itself an irreducible Fourier

sheaf on I—\l, is of the form j19 for § an irreducible lisse sheaf on G, of
rank n-1 with X(G,,, 4) = -1. Moreover, § is of type (0, n-1). By
Fourier inversion, we have
(o —xl FI1I(-1) = J*FT(3i9[1]) = ((*E )] jinv*g[1].

By induction on n, inv*g[1] and hence 9[1] itself is hypergeometric,
whence F[1] is hypergeometric.

[t remains to treat the case when n #= m and both n and m are
nonzero. By a multiplicative inversion, we may assume that 1 < n < m,

or what is the same, that ¥ is tame at . Tensoring with a suitable
f,/\, an operation under which the theorem is invariant, we may

further assume that 1 is among the characters which occur in local
monodromy at O [it is here that we use n > 1]. Then j,.7 is an

irreducible Fourier sheaf on Al, and NFTLP(j*?) (= FTqJ(j*?)), itself an

irreducible Fourier sheaf on Al, 1s of the form ji§ for § an irreducible
lisse sheaf on G, of rank m with X(Gy,, 4) = -1. Moreover, ¢ is of type
(m, n-1). By Fourier inversion, we have

B o -l FI-1) = *FT(0 90D = (7*£)[1xinv*gl1]

By induction on min(n, m), inv*g9[1] and hence 9[1] itself is
hypergeometric, whence % is hypergeometric. QED

Corollary 8.5.3.1 Let ¥ be an irreducible middle extension sheaf on
Gy, whose Euler characteristic X(Gy,, ¥) = -1. Then there exists a

unique N € k™ and unique disjoint sets of X's and p's such that

K = (1, ¢; X's; p's).
proof The existence is given by the theorem. The X's (resp. the p's)
with their multiplicities are the precisely the tame characters which
occur in the I(0)-semisimplification of ¥ as I(0)-representation (resp. in
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the I(eo)-semisimplification of F as I(e)-representation). The
uniqueness of A results from the the following general lemma.

Translation Lemma 8.5.4 (compare 3.7.7 and [Ka-GKM, 4.1.6]) Let ¥
be an irreducible middle extension sheaf on (Em whose Euler

characteristic X (G,, ) is nonzero. Suppose that for some A € k™ there

exists an isomorphism F = [x = Ax]|*7F. Then A is a root of unity of
order dividing X (G, 7). In particular, if X(Gy,, ¥) = -1, then X\ = 1,

i.e., ¥ is isomorphic to no nontrivial multiplicative translate of itself.

proof We first show that A must be a root of unity. If ¥ is not lisse on
Gy, then its finite set S of points of nonlissenesss on G, is stable by

s = s, hence A is a root of unity of order dividing Card(S). If ¥ is lisse
on G,,, but A is not a root of unity, then by Verdier's lemma [Ver,

Prop. 1.1] ¥ is tame at both zero and <, whence X (G,,, ¥) = 0,

contradiction.

Once A is a root of unity, say of order N, then because ¥ is
irreducible it descends through the N-fold Kummer covering, and hence
X (Gyyy, F) is divisible by N. QED

Rigidity Corollary 8.5.5 LLet ¥ be an irreducible middle extension
sheaf on Gy, whose Euler characteristic X(Gy,, ¥) = -1. Then the

isomorphism class of ¥ is determined up to (a unique) multiplicative
translation by the isomorphism classes of the I(0) and I(e)-
semisimplifications of the tame parts of the local monodromy of F at
zero and oo.

Rigidity Corollary bis 8.5.6 LLet ¥ be an irreducible middle extension
sheaf on G, whose Euler characteristic X (Gy,, ¥) = -1.

(1) If ¥ is not lisse on G, the isomorphism class of ¥ is determined by
the following three data:

the 1(0)-semisimplification of 7,

the I(eo)-semisimplification of ¥,

the unique point A € k* where ¥ is not lisse.
(2) If ¥ is lisse on Gy, the isomorphism class of 7 is determined by the
following two data:

the 1(0)-semisimplification of 7,

the I(eo)-semisimplification of ¥F.
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proof The first assertion is an immediate consequence of the first
Rigidity Corollary, since fixing the unique point of nonlisseness in G,

rigidifies the situation entirely.
The second assertion is a bit more delicate. We know that F is a
hypergeometric H, (!, §; X's; p's) of type (n, m) with n = m. By

inversion, we may suppose that n > m. Then F as I(e)-representation
is of the form

F = T® W = (tame of rank m) @ (rank n-m, all breaks 1/(n-m)).
Since W is the unique wild irreducible I(e)-constituent of F, it is an
intrinsic invariant of the the I(e)-semisimplification of F. So it suffices

to show that W "detects” multiplicative translations. This is proven in
[Ka-GKM, 4.1.6, (3)]. QED

8.6 Local Rigidity
(8.6.1) We continue to work over an algebraically closed field of
characteristic p = ¢, with ¢-adic representations of I(eo).

We first note the following variant of Grothendieck's local
monodromy theorem [Se-Ta, Appendix].

Theorem 8.6.2 Suppose that (W, p) is an irreducible I(e)-
representation. Then an open subgroup of I(e) acts as scalars. If detW is
of finite order, then p(I(e)) is finite.

proof Clearly the first statement implies the second. To prove the first,
denote by

te i 1(e0) — Ze(l)
the canonical projection defined by the ¢-power Kummer coverings.
Recopying the beginning of the proof of the local monodromy theorem,

one shows that there exists an endomorphism
N € End@e(W)(—l)

such that on a sufficiently small open subgroup I' of I(e), we have
p(y) = exp(t,(Y)N)

for every ¥ in I'. This N is unique, and by unicity it is I(ee)-equivariant.
By irreducibility, N is scalar. QED

Local Rigidity Theorem 8.6.3 Let V and W be (e )-representations,
each of the same rank d > 1 with all breaks = 1/d. Then

(1) Ifx €k and W = [x = Ax]*W, then A = 1.
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(2) If d = 2, and if there exists A € k™ with V = [x = Ax]*W, then
detV = detW.

(3) If detV = detW, there exists a unique A € k* with V = [x = Ax]*W.

proof Assertion (1), as noted above, is proven in [Ka-GKM, 4.1.6, (3)]. If
d 2 2, then detW is tame, necessarily some ‘f’X’ so its isomorphism

class is invariant by multiplicative translation, whence (2). Assertion

(3) is trivial for d=1, and in general the unicity in it results from (1).
The existence for d = 2 i1s more delicate. Consider the canonical

extensions (cf. [Ka-LG, 1.5]) of V and W to G,,. Both of them are

necessarily hypergeometrics of type (d, 0) (by the intrinsic
characterization of hypergeometrics), say

vcan = }[)‘7\(!’ Py Xs; ), Wcan = }EU(!’ J; E's; ).
Looking at determinants, we see that

WXi = W(ﬁi.

Replacing W by a multiplicative translate of itself replaces W by the

can
corresponding translate, so we may further assume that A = . By a
further translation, we may suppose that A\ = @ = 1. The problem now
is to show that for fixed (, the isomorphism class of the I(e)-
representation of the Kloosterman sheaf

KI(p; x's) == Hq(l, ¢, X's; &)

depends only on TTX;. This is a special case of the following

Change of Characters Theorem 8.6.4 Let H, (!, ¢; X's; p's) be a

hypergeometric sheaf of type (n, m) with n = m. If n > m (resp. if

n < m), denote by W (!, ¢; X's; p's) the wild part of its I(eo)-
representation (resp. of its I(0)-representation). For fixed (A, §), the
isomorphism class of Wy (!, §; X's; p's) as [(ee)-representation (resp. as

[(0)-representation) depends only on the tame character WiXi/WJpJ

and on the integer n-m.

proof The proof proceeds by induction on the quantity |n - ml. The
statement 1s invariant under multiplicative translation, so we may
assume that A = 1. The statement is invariant under multiplicative
Inversion, so we may suppose that n > m. The statement is also
invariant under ® L A. Given two W (!, ¢; X's; p's) and W, (!, §; o's; p's)

with the same n - m, and with ﬁixi/ﬁjpj = Wioci/WJ-E;J, twisting by a



Chapter8-¢4-adic hypergeometrics-31

sufficiently general £ A reduces us to the case where none of the X's

and none of the o's 1s 1. By the Cancellation Theorem 8.4.7, the

statement is invariant under "cancelling”, so we may further assume

that the X's and p's are disjoint, and that the «'s and p's are disjoint.
In this case, we have (cf. the proof of 8.4.2) equalities of

irreducible Fourier sheaves on al
(L s 1, p's; X's) = NFT@(j*}El(!, P; X's; p's)),
Jx¥1(, g 1, p's; o's) = NFT@(J*}El(!, P; o's; p's)).
The sheaves j ¥ (!, §; X's; p's) and j ¥ (!, §; o's; p's) are lisse on
G
sheaves (!, g; 1, 5’5; X's) and Hq 0, g; 1, B's; «'s) are lisse on G, and

m and tame at zero. If n-m 2 2, all their eo-breaks are < 1, and the

tame at oo. So by Fourier inversion and stationary phase (7.4.1.1, 7.4.2)
we have

Q

W1, g5 X's; p's) = FTloc(0, ) (W (L g5 1, p's; X's)),

Q

Wi, 5 o's; p's) = FTloc(0, e)(Wq(l, ¢ 1, B's; o's)).
By induction on In - ml|, W(, e; 1, 5’5; *'s) and W (1, ¢g; 1, B's; o's) are
1somorphic, which concludes the proof in this case.

If n-m =1, j.¥®1(, §; X's; p's) and jH (!, §; &'s; B's) have a single

nonzero e -break, which is 1, and the sheaves }El(!, @; 1, 5'5; 7('5) and
}[’,1(!, @; 1, E's; o's) are lisse on Gy - {1}, everywhere tame, with tame
pseudoreflection local monodromy at 1. By stationary phase, we deduce
as in 7.4.6.1 that as I(e)-representations

HU, §; X's; p's)ee) = (Aﬁqj(x)®£A1) @ (succ. ext. of Jip's),

U, g o's; p's)(eo) = (£’¢(X)®EA2) @ (succ. ext. of E,E)'s).
for some tame characters Aq and Ay. It remains only to show that

/\1 = ﬁixi/ﬁjpj'

Consider f,qj(_x)(X)det%i(!, P; X's; p's). It is lisse on Gy, everywhere
tame, so of the form Jf,r for some tame character I'. Looking at zero,
we see that I' = TT,X;, while looking at « we see that I' = Al”JPJQ
equationg these two expressions for I' gives the asserted formula for Ay.
QED

8.7 Multiplicative Translation and Change of ¢
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(8.7.1) Let kg be a finite subfield of k over which  is defined. For
any k€ (kg)*, denote by ¢, the additive character of k( defined by
Py (%) = plux).
The sheaves L, and & are related b
y ™ y
- * -

‘ﬁLPLl = [x— ux] if,qJ =[x x/u]*lf,qj.
Similarly, their multipicative inverses on G, are related by

o osixe— i % ixe — % ixe —

inv™j lf,qJM =[x x/pl*inv™j f,qJ = [x = uxlinv™j f,qj.

[f X 1s a multiplicative character of kg, then

Ly ®@(x(u)dee = [xm pxl*Ly = [x = x/ul Ly

on Gy, over k. For X an arbitrary tame character, we have

on G over k.

m

Lemma 8.7.2 Over an algebraically closed field k of characteristic
p = ¢, for any hypergeometric Hyp, (!, ¢; X's; p's) of type (n, m), and

for any | in any finite subfield of k, we have
Hyp, (!, b s p's) = [x = x/p"M] _Hyp, (!, ¢; X's; p's)

=~ [x = x> Hyp, (1, ¢; X's; p's).
Over a finite field kg of characteristic p = £, for any hypergeometric
Hyp, (!, ¢; X's; p's) of type (n, m) which is defined over kg, and for any
W in kg, if we define o € @ex to be

X = (”1X1/WJ‘PJ)(M)’
we have
Hypa(h s X's; p's)®ocdeg = [x = x/pRTM] Hyp, (!, ¢; X's; p's).

= [x = xuNTM]P*Hyp, (1, ¢; X's; p's).

proof By the interrelation (cf. 8.1.10 (3)) of convolution and translation

we reduce immediately to the case when (n, m) is either (1, 0) or
(0, 1), where it is obvious. QED

Corollary 8.7.3 If p(n-m) is even, then over an algebraically closed
field k of characteristic p # ¢ we have
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Hyp, (!, P; X's; p's) = Hypy (!, ¢; X's; p's).
If in addition Hypx(!, P; X's; p's) is defined over a finite subfield kg of Kk,
and (ﬁixi/ﬁjpj)(_i) = 1 (a condition which always holds after passing
to a quadratic extension), then over kg we have

Hyp, (1, P; X's; p's) = Hyp,(!, ¢; X's; p's).
proof This is the Lemma with u = -1. QED

Corollary 8.7.4 If n = m, then over an algebraically closed field k of
characteristic p # ¢ the isomorphism class of Hyp, (!, ¢; X's; p's) is

independent of .
Over a finite field kg of characteristic p = £, for any

hypergeometric Hyp, (!, §; X's; p's) of type (n, n) which is defined over

kg, and for any W in kg, if we define « € @ex to be
we have

Hypa(!, 5 X's; p's)®ad®8 = Hypy (!, ¢; X's; p's).

proof This is the lemma with n=m. QED

8.8 Global and Local Duality Recognition

Duality Recognition Theorem 8.8.1 Suppose that the X's and p's are
disjoint. The irreducible middle extension sheaf H, (!, ¢; X's; p's) is

geometrically self-dual (i.e., geometrically isomorphic to its dual), if and
only if the following three conditions hold:

(1) the set of X's with multiplicity is stable under X = X,

(2) the set of p's with multiplicity is stable under p — p,

(3) the product p(n - m) is even.

proof By (8.4.2, 8.3.3), the dual of ¥, (!, ¢; X's; p's) is H, (!, ¢; X's; p's),
so the conditons are obviously sufficient. In order for }[’0\(!, P; X's; p's)
and %7\(!’ 5; 7('5; E'S) to be geometrically i1somorphic, their local
monodromies at zero and e must agree, whence (1) and (2). If (1) and

(2) hold, then the dual of H, (!, ¢; X's; p's) is its multiplicative translate

by (-1)7M " to which it is isomorphic if and only if (-1)27" = 1 in the
field k. QED
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Parity Recognition Theorem 8.8.2 Suppose that the X's and p's are
disjoint, and that ¥, (!, ¢; X's; p's) is self dual. Then on the open set of

Gy, where H, (!, §; X's; p's) is lisse, the (unique up to a @ex—multiple,

by irreduciblity) autodaulity pairing is alternating if and only if
max(n, m) is even, n - m is even, and ﬁixi/ﬁjpj = 1.

Otherwise (i.e., if max(n, m) is odd, or or if n - m is odd, or if
WiXi/WJpJ = 1) the pairing is symmetric.

proof If the generic rank max(n, m) is odd, the pairing has no choice
but to be symmetric.

Suppose now that max(n, m) is even. By multiplicative inversion,
we may suppose that n > m. By multiplicative translation, we may
suppose A = 1.

I[f n = m, then the character A := Wixi/ﬂjpj is of order dividing

two, because £ A(y-1) is the determinant of the (pseudoreflection) local

monodromy at 1. If A = 1, local monodromy at A is a unipotent
pseudoreflection; as O(n) contains no unipotent pseudoreflections (cf. the
proof of 3.4), the autoduality must be alternating. If A is nontrivial,
then the pairing must be symmetric; it cannot be alternating since
Sp(n) C SL(n).

I[f n-m 2 1, then as I(e)-representation we have (in the
notations of the proof of 8.6.4)

HU, g5 X's; p's) = Wqll, ¢; X's; p's) & (tame),
with W4 (!, y; X's; p's) totally wild of Swan conductor 1, and (hence)

[(eo)-irreducible and Jordan-Holder disjoint from the "tame" factor.
Therefore the global autoduality of 3{1(!, P; X's; p's) must induce an

autoduality of W4 (!, ¢; X's; p's) as irreducible I(e)-representation. Of

course this local autoduality has the same sign as the global one which
induces it. By 8.6.4, W4 (!, y; X's; p's) depends, for fixed Y, only upon the

integer d := n - m and the tame character /\. Also, the character A has
order dividing two, since by the Duality Recognition Thm 8.8.1 it is
invariant by A = A. So we are reduced to proving that the global
theorem holds for the self-dual rank d Kloosterman sheaf
Ki(g; A, d-1 1's).
[f d is odd, the duality must be symmetric.
If d 2 2, then detKI(y; A, d-1 1's) = L A. So if A is nontrivial (or if

d is odd), the pairing must be symmetric. It remains to treat the case
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where d > 2 is even, and A is trivial, i.e., the case of the Kloosterman
sheaf KI(; d 1's). We must show that the pairing is alternating in this
case. This is proven in [Ka-GKM, 4.2.1 or 5.5.1]. QED

Local Duality Recognition Theorem 8.8.3 Let W be an I[(e)-
representation of rank d > 1, with all breaks = 1/d. Then

(1) W is self-dual if and only if det(W) has order dividing two and pd is
even.

(2) If W is self-dual, the autoduality pairing is alternating if and only if
d is even and det(W) is trivial.

proof If detW does not have order dividing two, W cannot be self dual.
S0 we may suppose henceforth that detW has order dividing two.
Ifd =1, then W is f)qj®lf,/\, which is self-dual if and only if p = 2

and A is trivial; in this case the autoduality is symmetric, as required .
If d=> 2, detW is tame, say f,/\. The canonical extension of W is an

HA (1, g X's; &) of type (d, 0), which, being the canonical extension, is
self-dual of given parity if and only if W is self-dual of the same parity.
Comparing determinants, we find A = TT.X;.

If pd is odd, then H, (!, ¢; X's; &) cannot be self-dual (by 8.8.1), so

we may suppose that pd is even.
By 8.6.4, W is isomorphic to the I(ee)-representation attached to
HA (L s A, d-1 1's). So it suffices to show that if

d > 2, pd is even, and /A has order 1 or 2
then H, (!, ¢; A, d-1 1's) is self-dual, and the autoduality is alternating

if and only if d is even and A is trivial. This is a special case of the 8.8.1
and 8.8.2 QED

8.9 Kummer Induction Formulas and Recognition Criteria

Kummer Induction Theorem 8.9.1 Let d > 1 be an integer which is
prime to p, and denote by [d] the d'th power endomorphism of G,,.

Over an algebraically closed field k of characteristic p # ¢, for any
hypergeometric Hyp, (!, §; X's; p's) there exists an isomorphism

[d]Hypy(!, bq; X's; p's) =
=~ Hyp,d(!, y; all d'th roots of allX's; all d'th roots of all p's).

proof By multiplicative translation, we reduce to the case A = 1. Since



Chapter8-¢4-adic hypergeometrics-36

[d] is @ homomorphism from Gy, to itself, we have the convolution

relation
[d1, (K% L) = ([d],K)%([d],L).

So we are reduced to the case where Hyp4 (!, yq; X's; p's) is of type

(1, 0) or (0, 1). Since [d]lx and inv™ (= inv,) commute, the (0, 1) case
results from the (1, 0) case.
Since every tame character X has a d'th root, say X = &d, our

(1, 0) hypergeometric f’qid@f’X may be rewritten f’qid@[d]*f’ﬁ'

Applying [dl,, and using the projection formula, we get
(Al (£, ®Ly) = (dlu(Ly NOL;.
S0 we are reduced to showing that, denoting by
N1, No, .., Ng

the d tame characters of order d, we have an isomorphism

[d]*(f’tpd) = Kl(ljJ; /\1, /\2, e, /\d).
This is proven in [Ka-GKM, 5.6.2]. QED

Corollary 8.9.2 (Kummer Recognition) Let d > 1 be an integer
which is prime to p, and denote by [d] the d'th power endomorphism of
G- Over an algebraically closed field k of characteristic p = £, an

irreducible hypergeometric Hyp, (!, y; X's; p's) of type (n, m) is

Kummer induced of degree d, i.e., of the form [d] K for some K in

Dbc((]}m, @e), 1f and only 1if the following three conditions are satisfied:

(1) d divides both n and m,

(2) there exists a set of n/d tame characters «'s such that the X's are
all the d'th roots of all the «'s,

(3) there exists a set of m/d tame characters p's such that the p's are
all the d'th roots of all the p's.

Moreover, if these conditions hold, then for any p € k with ud = A,
there exists an isomorphism

Hypy(, g5 X's; p's) = [dlHyp (!, gg; o's; p's).

proof If any (not necessarily irreducible) Hyp, (!, ¢; X's; p's) of type

(n, m) satisfies (1), (2), and (3), then by the Kummer Induction

Theorem above, for any p € k with ud = A\,there exists an isomorphism

Hypa(, g5 X's; p's) = [dlHyp (!, gq; o's; p's).
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Conversely, suppose that an irreducible Hyp, (!, y; X's; p's) is of

the form [d] K for some K in DbC(Gm, @e). Then [d] K is perverse
simple with X (G4, [dIxK) = 1. Since [d] is finite, K must be perverse
simple, and X (Gy,, K) =X (G, [d]I4xK) = 1. Therefore K is itself
irreducible hypergeometric, so of the form Hypu(!, Ppg; o's; p's). Looking
at the Kummer induction formula for [d]*Hpr(!, Pq; o's; p's), we see
that (1), (2), and (3) hold. QED

Remark 8.9.3 An alternate formulation of conditions (1), (2), and (3) is
this: for some (or equivalently for every) tame character A of exact
order d, both the X's and the p's as sets with multiplicity are stable
under the operation £ — E/\.

8.10 Belyl Induction Formulas and Recognition Criteria

Belyi Recognition Criterion 8.10.1 Over an algebraically closed field
k of characteristic p = ¢, let Hyp, (!, §; X's; p's) be an irreducible

hypergeometric of type (n, n), and suppose that p > n. Then
Hyp, (!, ¢; X's; p's) is Belyi induced of type (a,b) for some partition of

n = a + b as the sum of two strictly positive integers if and only if the
X's and the p's are Belyl induced in the sense that there exist tame
characters o« and p, p = 1, such that

(1) {x's} = {all a'th roots of «} U { all b'th roots of p},

(2) {p's} = { all a+b 'th roots of ap}.

Moreover, if (1) and (2) hold, then
Hypo (!, ¢; X's; p's) = [Bela,b,x]*Hypl(!, ;o op),

and the local monodromy at A of %)\(!, P; X's; p's) is a reflection.

proof If an irreducible hypergeometric Hyp, (!, ¢; X's; p's) of type (n, n)

is of the form [x = Bel_ ,,(x)]14K for some K in Dbc((ﬁm, @Q), then K is
perverse simple, lisse on Gy, - {1}, and
X (G, K) = X (G, [Bel, 1K) = 1.

Therefore K is itself hypergeometric of type (1, 1) with singularity at 1,
i.e., Kis Hypq(!, ¢; o; op),with p = 1 (by irreducibility). Looking at the

local monodromy at zero and oo of [Bela’b,x]*Hypl(!, J; o ap), we see

that (1) and (2) hold. By (7.2.6(8), its local monodromy at A is a
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reflection.
Conversely, if (1) and (2) hold, we claim that

Hypa(, ¢; X's; p's) = [Bel_ LLHyp1 (!, ¥; o op).
To see this, we argue as follows. Since Hypq (!, y; o; op) is perverse with
X (G, Hyp1 (4, ¢; &, ap)) = 1, and Bel, }, , is finite, the direct image
[Bela,b,x]*Hypl(!, P; o, «p) is itself perverse and has

X (G, [Bel, pIxHypq (!, 5 o ap)) = 1.
In the caterory Perv(Gy,), any object K with X (G, K) = 1 is a
successive extension of LA's and of a single perverse simple L with
X(Gy,, L) = 1. Moreover, there are no L A's if and only if the tame
parts of local monodromy at zero and oo of ® 1K are disjoint. We may
apply this to the object K := [Bela’b’)\]*Hypl(!, J; o; op), because its

local monodromy at zero is {X's}, and that at o is {p's}, and by
hypothesis the {X's} and {p's}) are disjoint. Therefore K is itself an
irreducible hypergeometic of type (n, n). Looking at its local
monodromy at zero, A, and o shows (by rigidity) that K is none other
than Hyp,(!, ¢; X's; p's). QED

Lemma 8.10.2 (compare 3.5.2, 3.5.7) Over an algebraically closed field
k of characteristic p = ¢, let H, (!, y; X's; p's) be an irreducible

hypergeometric of type (n, n), and suppose that p > n > 1. Then either
(1) ¥ (1, 5 X's; p's) | Gy - (A} is Lie-irreducible;

(2a) Ho (!, ¢; X's; p's) | Gy - (A} is Kummer induced of some degree

d = 2 prime to p;

(2b) Either H, (!, ¢; X's; p's) | Gy = (N} or inv*Ho (L, §; X's; p's) | Gy — (N}
is Belyi induced of type (a,b) for some partition of n = a + b as the sum

of two strictly positive integers;
(3) HH (1, 5 X's; p's) | Gy - (A} is the tensor product L®F of a lisse rank

one L with a lisse irreducible ¥ of rank n whose Ggeom is finite. If in

addition det(¥H (!, ¢; X's; p's) | Gy - (A}) is of finite order, then

Ho(, g5 X's; p's) | Gy - (A} itself has finite G in this case (3).

geom
proof This is a special case of 7.2.6, (1), (6), and (8). QED

Lemma 8.10.3 (Geometric Determinant Formula) Over an
algebraically closed field k of characteristic p = ¢, let }[’0\(!, P; X's; p's) be
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an arbitrary hypergeometric of type (n, n). If TT;X; = TTip; = A, then
det(H (L, ¢; X's; p's) | Gy - (N}) = AL

If TT;X; = TTip;, then
det(H, (!, ¢; X's; p's) | Gy - (N})

Q

Q

o s T 5 TTipy).

proof In the first case, local monodromy at A is a unipotent
pseudoreflection, so det(H, (!, ¢; X's; p's) | Gy, - {N}) is unramified at A.

Since }[’0\(!, P; X's; p's) is everywhere tame, its determinant must be an
LA, and we can compute A as the determinant of local monodromy at
zero. In the second case, det(H, (!, ¢; X's; p's) | Gy - (N}) is everywhere

tame, lisse on Gy, - {A} of rank one with nontrivial local monodromy at

A So det(H(, ¢; X's; p's) | Gy = {A)) must be Hy (!, ¢; TTi%; 5 TTip;). QED

Corollary 8.10.4 Over an algebraically closed field k of characteristic
p = ¢, let €, (!, §; X's; p's) be an arbitrary hypergeometric of type

(n, n). Then det(H, (!, ¢; X's; p's) | Gy, - {A}) is of finite order (resp.
trivial) if and only if both of the tame characters TT;X; and TT;p; are of

finite order (resp. trivial).

8.11 Calculation of Ggeom for irreducible hypergeometrics

(8.11.1) Throughout this section we work over an algebraically closed
field k of characteristic p = 4.

Theorem 8.11.2 (compare 3.5.8) Let H := H, (!, §; X's; p's) be an

irreducible hypergeometric of type (n, n). Suppose that p > n > 1 and
that ¥ | Gy - (A} is neither Kummer induced nor Belyi induced nor

inverse Belyi induced. Let A := TI,X;/TT,p;. Denote by G the group

G := Ggeom for ¥ | Gy - {A}. Then

(1) The group G is reductive. If both TT,X; and TI,p; are of finite order,

then G° = GO.der, Otherwise, G = G,,,GO-der.

(2) The group G0-der is either {1}, SL(n), SO(n), or (if n is even) Sp(n).
(3) If A does not have order dividing 2, G9-der = {1} or SL(n).
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(4) If A has exact order 2, G%:der — {1} or SO(n) or SL(n).

(5) if A = 1, GO.der - S1.(n) or (if n is even) Sp(n).
(6) If A\ is not of finite order, G = GL(n).

proof Local monodromy around A is a pseudoreflection of determinant
LEA(x - ) Soif H | Gy - (A} is Lie irreducible, the theorem is an

immediate consequence of the Pseudoreflection Theorem 1.5. In view of
8.10.2, the only other case is when H | G, - {7} is the tensor product
L®F of a lisse rank one £ with a lisse irreducible F of rank n whose

Ggeom 1s finite. In this case GO is either {1} or Gy, depending on

whether or not L, or equivalently det¥ | G, - {7}, is of finite order. So

(1) through (4) hold (trivially) in this case. If A is either trivial or of
infinite order, then we cannot be in this case, for then local
monodromy around A is a either a unipotent pseudoreflection or is
Diag(A, 1, 1,..., 1), no power of which is scalar. QED

We can be more precise about the distinguishing the various Lie-
irreducible cases. (We will discuss in section 8.17 how to detect the case

when G0.der s {1}
Corollary 8.11.2.1 Notations and hypotheses as above, suppose further

that GY-der = {1}. Then GU.der is SO(n) (respectively Sp(n)) if and only if
there exists a tame character € such that
HOL = Uy (L, p; EX's; Ep's)

is self dual and its autoduality pairing is symmetric (resp. alternating).
proof Entirely analogous to that of 3.5.8.1. QED

In the case n=m, we have
Theorem 8.11.3 Suppose that H:=H, (!, §; X's; p's) is an irreducible

hypergeometric of type (n,m), n = m, which is not Kummer induced.

Let N:=max(n,m) be the rank of #, d := In-ml, and G the group Ggeom

for . Suppose p » 2N + 1. If d < N, suppose also that p does not divide
the integer 2N4(d)No(d) of 7.1.1. Then

(1) G is reductive. If detH is of finite order (i.e., for n > m, if TT;X; is of
finite order; for m > n, if ijj is of finite order ) , then GO=g0.der.

otherwise GO = (EmGO’der.
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(2) 1f d is odd, GO.der is SL(N). If d = 1 then G O M SLN).

(3) If d is even, then G9der is SL(N) or SO(N) or (if N is even) SP(N), or
In-m|=6, N=7,8 or 9, and G0-der is one of
N=7: the image of G in 1ts 7-dim'l irreducible representation
N=8: the image of Spin(7) in the 8-dim’'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std
N=9: the image of SL(3)xSL(3) in std®std.

proof Since p > 2N + 1, ¥ is Lie-irreducible, by 7.2.6 (4). So this theorem
is just the special case a/b = 1/d of the Main ¢-adic Theorem 7.2.7. The
only extra remark is that if d = 1, then det¥ has break =1 at either

zero (if n < m) or e (if n > m), hence det¥ has order divisible by p. QED

Proposition 8.11.4 (Ofer Gabber) For N=8, neither of the two groups
the image of SL(2)xSp(4) in std®std
the image of SL(2)xSL(4) in std®std

occurs as G0.der for 4 hypergeometric of type (8,2).

proof Entirely analogous to that of 4.0.1. QED

The discrimination among the various possible cases is aided by

Proposition 8.11.5 Hypotheses and notations as in 8.11.3 above, gO.der
is contained in SO(N) (resp. in Sp(N)) if and only if there exists a tame
character & such that R@iﬁa = HA (L, ¢; EX's; Ep's) is self dual and its

autoduality pairing is symmetric (resp. alternating). Moreover, if pN is

odd, then GY:der is contained in SO(N) if and only if there exists a tame
character & such that H’®’E’E = Ho(l, g; EX's; Ep's) has its

Ggeom C SO(N).

proof Entirely analogous to that of 3.6.1. QED

Lemma 8.11.6 (Geometric Determinant Formula) Let
Hi=H, (!, g; X's; p's)
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be an irreducible hypergeometric of type (n,m), n > m. Let A := TT;X;.

Then
()ifn-m = 2, det(H)

(2)ifn - m

\

Q

LA
1, det(¥) = ¥, (!, ¢; A; &) =[x & XX]*(JZLP(X)JZ/\).

proof Since n > m, det(¥) is lisse on Gy, tame at zero, and

(L A)Y ®det(H) extends to a lisse sheaf on Al

If n-m > 2, then det(¥) is tame at « as well (since ¥ has all its
e -slopes 1/(n-m) < 1), and hence (L)Y ®det(H) is lisse on Al and
tame at oo, hence geometrically constant.

If n-m =1, then as I(e~)-representation

H = (tame) @ Wy (!, ¢; X's; p's),
with W (!, y; X's; p's) of rank one. By 8.6.4,

Wl s X's; p's) = Wyl g A/(TTpg); &) =

=[x - 7‘X]*(f’tp)®(f’/\/ﬂjpj) = (tame)®[x XX]*(f)qJ(X)JZA).

Therefore X, (!, y; A\; &)Y ®det(H) is lisse on Al and tame at o0, S0

geometrically constant. QED

Corollary 8.11.6.1 Suppose that H:=H, (!, §; X's; p's) is an irreducible
hypergeometric of type (n,m), n > m. Then Ggeom € SL(n) if and only if
n-m > 2 and T1,X; = 1.

8.11.7 Direct Sums and Tensor Products (compare 3.8)

We continue to work over an algebraically closed field k of
characteristic p = 4.
Lemma 8.11.7.1 (compare 3.8.1) Suppose that ¥ and ¥' are
irreducible hypergeometrics of types (n,m) and (n',m’') respectively,
whose generic ranks max(n,m) and max(n',m’') are both > 2. Suppose

that there exists a dense open set j: U — G, a lisse rank one £ on U,

and an isomorphism j*H = j*H' ®L of lisse sheaves on U. Then

(1) (nh,m) = (n",m").
(2) If n = m, denoting by A (resp. A\') the unique singularity of ¥ (resp.
H') in Gy, we have A = A’

(3) If (n,m) is not (2,1), (1,2) or (2,2), then &£ is f,x for some tame
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character X, and # = %'@f,x on Gyy,.

proof Entirely analogous to the proof of 3.8.1. QED

Proposition 8.11.7.2 (compare 3.8.2) Suppose that ¥, ..., ¥, aren > 2
irreducible hypergeometrics, with H; of rank N; = 2. Suppose that

(1) if Ny = 2, #; is of type (2,0) or (0,2).

(2)for each i, denote by G; C GL(N;) the group Ggeom of H; (restricted to

GiO,der

some dense open U where it is lisse), and suppose that 1s one of

the groups
SL(N;), any Nj = 2,

Sp(Nj;), any even Nj = 4,
SO(N;), Ny =7 or any Nj = 9,
S0(3), if N
S0(5), if Nj =
.50(6), if N; = 6 and no N; = 4,

Gy C SO(7), if Nj = 7,

Spin(7) C s0(8) if Nj = 8, and no Nj=7.

SandnoNJ'= ,

5andnoNJ~— ,

Suppose that for all i=j, and all « € k*, there exist no isomorphisms

from }(’,i®f,x to either J{J or to its dual (}EJ)V. Then group G := Ggeom of
@ H; has gO.der - WGiO’der, and that of ®H; has GO.der = the image of
MG 0:der in @stdy, .

proof Entirely analogous to the proof of 3.8.2, using 8.5.4 in place of
3.7.7. QED

Corollary 8.11.7.2.1 (compare 3.8.2.1) Let ® := H, (!, §; X's; p's) be an

irreducible hypergeometric of rank N > 2. If N = 2, suppose that ¥ is of
type (2,0) or (0,2). Suppose that ¥ is self-dual, and that Ggeom (resp.

(G )0) is one of the groups G:

geom
Sp(N), if N even,
SO(N), if N = 4, 8.
Go C SO(7),if N = 7,

Spin(7) ¢ SO(8) if N = 8.
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Let d 2 2, and let 4, ..., g be d distinct elements of k*. Then the
direct sum

®; }f’,)\/ui(!, P; X's; p's) = B [x > ux]*H

has G (resp. (G )0) the d-fold product group Gd.

geom geom

proof Entirely analogous to the proof of 3.8.2.1. QED

In the case of Kummer induction, 8.11.7.2 gives:
Theorem 8.11.7.3 (compare 3.8.3) Let # := H, (!, ¢; X's; p's) be an

irreducible hypergeometric of rank N > 2. If N = 2, suppose that ¥ is of

type (2,0) or (0,2). Suppose that ¥ has (Ggeom)o,der one of the groups G:

SL(N),

Sp(N), if N even,
SO(N), if N = 4, 8.
Go C S0(7),if N = 7,

Spin(7) ¢ SO(8) if N = 8.
Fix an integer d > 2 prime to p. Let S C py(k) be a nonempty subset of

Hq(k) which is maximal among all nonempty subsets of ng(k) which

satisfy the following condition:
whenever ] and ¢o are distinct elements of S, and X is a tame

character, there exists no isomorphism from H’%Ci(!’ Py X's; p's)®f,x to
either }E7\C2(!’ P; X's; p's) or to its dual (}[’,)\C2(!, P; X's; p's))Y.

Then [d]x¥H, (!, ¢; X's; p's) has (Ggal)O,der ~ @S

proof Entirely analogous to the proof of 3.8.3. QED

8.12 Arithmetic Determinant Formula
(8.12.1) In this section, we work over a finite field kg of

characteristic p # ¢ and cardinality q. We will compute the
determinant of an arbitrary nonpunctual irreducible hypergeometric
HA (!, g; X's; p's) which is defined over kg. At the expense of a

multiplicative inversion and a multiplicative translation, we may and
will assume that n > m and that A = 1.

Theorem 8.12.2 (Arithmetic Determinant Formula) Let kg be a
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finite field of characteristic p # ¢ and cardinality g, and

Ho= ", §; A's; p's)
a nonpunctual irreducible hypergeometric defined over kg of type
(n, m) withn 2 m and A = 1. Define

N = TI,X;, a character of kg™,
[:= ijj, a character of kg™,
N := 2 (1/72)multg(X)(multg(x) - 1)

distinct X among the X

A= NIty X, /% DT, a(B, py/ X))

11,19

- A1) L)gn-D/2TT (g(y, pi/ %) € Q.

Then
(1a) if n=m and A = I, det(H)® (L A)Y = Adeg.

(1b) if n=m and A = T', det()Q(EA)®L(r/A)1 - %)) = adeg
(2)if n - m = 1, det(H)@ (L, ®L )Y = Adeg,
(3)if n - m = 2, det(H)®(L )Y = Adeg,

\

proof In all cases, the left hand side is a lisse sheaf of rank one which is
geometrically constant (by the geometric determinant formulas 8.10.3

and 8.11.6), so it is necessarily of the form «9©& for some unit « in 68'

Since the sheaves L(r/A)(1 - x) and f,qJ are both canonically trivial at

zero, it follows that o is the determinant of det(H)®(L A)Y as D(0)-

representation. The verification that o« = A is a straightforward if
tedious modification of that given in [Ka-GKM, 7.0.8, 7.2, 7.3, 7.4] in the
case of Kloosterman sheaves, with 7.3.1 there replaced by 8.2.10 in the
general case. That the two expressions for A coincide is [Ka-GKM, 7.4.1.1,
7.4.1.2 and 7.4.1.4]. QED

8.13 Sato-Tate Law for Hypergeometric Sums; Nonexceptional
Cases
(8.13.1) Let kg be a finite field of characteristic p = ¢, and

H o= H U, g X's; p's)
a nonpunctual irreducible hypergeometric defined over kg of type

(n, m) with n > m and A = 1. Denote by G the group Ggeom for ¥. Recall
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that since ¥ is pure (of weight n + m - 1), G is semisimple, so

geom
GgO.der = G0 As above, put
N = T, X, a character of kg™,

[:= T[J-pj, a character of kg™,

>
.

A(-1)n=)qn(n=D/2TT, - (~g(y, p /%) € Q.
We also pick a square root of g := Card(kg) so as to be able to speak of
the Tate twist #¥((n+m-1)/2) of ¥, which is pure of weight zero.

Lemma 8.13.2 Notations and hypotheses as above, suppose that ¥ is
geometrically self-dual. If (A/I')(-1) = 1 (a condition which is always
satisfied if either the autoduality is symplectic, or if p = 2, or if p is odd
and we replace kg by its quadratic extension) then the Tate twist

H((n+m-1)/2)

1s arithmetically self-dual with values in 68'

proof ¥ := H1(!, ¢; X's; p's) and H (!, ;XS 5’5)(n+m—1) are dual as
lisse sheaves on Gy, - {1} (indeed on Gy, if n > m), in virtue of the

duality formulas 8.2.12 and 8.4.2, (5). By the Duality Recognition
Theorem 8.8.1, H := H1(!, ¢; X's; p's) is geometrically self dual if and

only if p(n-m) is even and the sets of the X's and of the p's are each
stable by inversion. So the arithmetic dual of ¥ is

H1 U g; X's; p's)n+tm-1).
By 8.7.3, if (A/I")(-1) = 1, then

H1 O g X's; p's)intm=-1) = K.}, ¢; X's; p's)intm=-1). QED

Theorem 8.13.3 Hypotheses and notations as above, suppose that
G:=G for ¥ is either O(n) or, if n is even, Sp(n). Suppose also that

geom
(A/T)(-1) = 1.
Then the Tate twist
H((h+m-1)/2)

1s pure of weight zero, and all of its Frobenii land in Ggeom- Fix an
embedding of 68 into €, and a maximal compact subgroup K of the Lie

group G (C). The conjugacy class of the semisimple part of each

geom
p(FrobE,t) for ¥((n+m-1)/2) meets K in a single conjugacy class,

denoted ¢(E, t). The conjugacy classes 9(E, t) are equidistributed in the



Chapter8-¢-adic hypergeometrics-47

space K% of conjugacy classes of K with respect to normalized Haar
measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

proof Since ¥ is pure of weight n+m-1, ¥((n+m-1)/2) is certainly
pure of weight zero. That all the Frobenii of #((h+m=-1)/2) land in G is
precisely the content of the previous Lemma. The equidistribution
results from Deligne's Weil II, as recalled in 7.11.1. QED

Theorem 8.13.4 Hypotheses and notations as above, suppose that
G:=G for # is SO(n), and that

geom
(AN/T)(-1) = 1.

Then after replacing kg by a quadratic extension, we have:

The Tate twist
H((n+m-1)/2)

1s pure of weight zero and all of its Frobenii land in Ggeom- Fix an
embedding of 68 into €, and a maximal compact subgroup K of the Lie

group G (C). The conjugacy class of the semisimple part of each

geom
p(FrobE,t) for ¥((n+m-1)/2) meets K in a single conjugacy class,

denoted ¢(E, t). The conjugacy classes 9(E, t) are equidistributed in the
space K% of conjugacy classes of K with respect to normalized Haar

measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

proof By the above lemma, all the Frobenii of #¥((n+m-1)/2) lie in
O(n). The obstruction to their lying in SO(n) is a character of order
dividing two which 1s geometrically constant, hence is trivialized by
any constant field extension of even degree. QED

Theorem 8.13.5 Hypotheses and notations as above, suppose that

Ggeomn 18 SL(n). Let « € Q) be any solution of

o= Al
Then H®«deg is pure of weight zero, and has all its Frobenii in Ggeom-
Fix an embedding of Qp into €, and a maximal compact subgroup K of

the Lie group G (C). The conjugacy class of the semisimple part of

geom

each p(Frobg ) for H®xde® meets K in a single conjugacy class,
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denoted ¢(E, t). The conjugacy classes 9(E, t) are equidistributed in the
space K% of conjugacy classes of K with respect to normalized Haar

measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

proof This results from the arithmetic determinant formula (and Weil
I1). QED

In a similar vein, we have the following slightly less precise result.

Theorem 8.13.6 Hypotheses and notations as above, suppose that
either

(1) (Ggeom)o is SL(n) or Sp(n)
or

(2) n is odd and (G 0'is so(n).

geom)

Then G := Ggeom 1s of the form udGO for some d, and there exists a

constant « in @ex with

o~ = (root of unity of order dividing order of detG Ix A,

geom

such that H®«de8 is pure of weight zero, and has all its Frobenii in

Ggeom- Fix an embedding of 68 into €, and a maximal compact

subgroup K of the Lie group G (C). The conjugacy class of the

geom
semisimple part of each p(Frobg 4) for H®de8 meets K in a single

conjugacy class, denoted ¢(E, t). The conjugacy classes 9(E, t) are
equidistributed in the space K% of conjugacy classes of K with respect to

normalized Haar measure, in any of the three senses of equidistrbiution
of ([Ka-GKM, 3.5]).

proof In all the cases listed, the normalizer of GO in GL(n) is (BmGO. The
rest of the proof proceeds as in [Ka-MG, Cor. 16]. QED

8.14 Criteria for finite monodromy
(8.14.1) Let C be a smooth geometrically connected curve over a
finite field k of characteristic p = ¢, and ¥ a lisse Q) sheaf on C. Fix a

geometric point & of C®kE, and denote by
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T 8€0M = 1T1(C®kE, E) C Ttlarith = mq(C, E)

the geometric and arithmetic fundamental groups respectively of C, by
o: 1T1arith N GL(?g)

the ¢-adic representation that ¥ "is", and by

Ggeom = the Zariski closure of p(mq8EOM),

Ggrith (= the Zariski closure of p(ﬁlarith)‘

(8.14.2) One knows that the radical of (Ggeom)o is unipotent (this is

Grothendieck's global version of the local monodromy theorem, cf. [De-

WII, 1.3.8]). Thus if ¥ is geometrically semisimple, its Ggeom is a

semisimple group. Applying this to det(¥), we recover the fact that
det(7F) is geometrically of finite order. Therefore a suitable twist

F® 98 has det(F ® xd°8) arithmetically of finite order.

Proposition 8.14.3 Suppose that ¥ is geometrically semisimple.
Consider the following conditions:

(1) G is finite (i.e., p(m18€°M) is finite).

geom
(2) the image of ﬁlarith (or equivalently of G itp) in PGL(?E) is finite.

(3) for every finite extension E of k, and every point t € C(E), some
strictly positive power of p(Frobg 4) is a scalar.

(4) for every finite extension E of k, and every point t € C(E), some
strictly positive power of p(Frobg ) has all its eigenvalues equal.

We have the implications
(2) = (3) = (4) = (1),

and if ¥ is geometrically irreducible, these conditions are all equivalent:
(1) & (2) & (3) & (4)

proof We first show that (1) = (2) if ¥ is geometrically irreducible.

arith

Any element Y of mq normalizes 8¢9 so p(y) normalizes

Ggeom- Since Ggeom is finite, its automorphism group is finite, say of

order N. Thus p(X)N centralizes Ggeom5 as Ggeom is an irreducible

subgroup of GL(?g), p(}()N is a scalar. Therefore the image of ﬁlarith in
PGL(?E) has every element of order dividing N. By Zariski density, the
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image of G5 ,jtp has the same property. Therefore the Lie algebra of this

image is killed by N, so this image is finite.

That (2) = (3) = (4) is obvious.

It remains to show that (4) = (1). Since det(7F) is geometrically of
finite order, the intersection of G with the scalars is finite.

geom

Therefore the restriction to Ggeom of the adjoint representation of
GL(?E) has a finite kernel. So it suffices to show that if (4) holds for ¥,
then End(%) has its Ggeom finite. But if (4) holds for 9, then for

End(¥) the following condition is satisfied:
for every finite extension E of k, and every point t € C(E), some
strictly positive power of (Adep)(Frobp ) is unipotent.

We claim that this implies that there exists an N > 1 such that
for every finite extension E of k, and every point t € C(E),

(Adop)(FrobE’t)N is unipotent.
Indeed, ¥ is definable over some finite extension E, of Qp, so the
eigenvalues of (Adop)(FrobE’t) are roots of unity which are algebraic of
degree at most the rank of End(¥%) over E,; as E; has only finitely

many extensions of any given degree, all the eigenvalues of
(Adep)(Frobp 4) lie in a fixed finite extension F, of @y, and in any such

field 'y there are only finitely many roots of unity.

By Chebataroff, it follows now that (Adop)(y)N is unipotent for

arith

every element Y in 14 , so a fortiori for every element Y in

1 8€°M By Zariski density, it follows that gN

for End(¥). But ¥ and hence End(%)

1s unipotent for every

element in the group G := Ggeom

1s geometrically semisimple, so G is a semisimple group. Thus GO is a
connected semisimple group in which the N'th power of every element
1s unipotent; looking at elements of a maximal torus, we infer that its

rank is zero, hence that GO = {e}, and hence that G itself is finite. QED

Corollary 8.14.3.1 Suppose that F is geometrically irreducible and
that det(¥F) is arithmetically of finite order. Then the following
conditions are equivalent:

(1) Ggeom Is finite.
(2) G4pitp 1s finite.
(3) for every finite extension E of k, and every point t € C(E), p(Frobg )

1s quasi-unipotent, i.e., all its eigenvalues are roots of unity.



Chapter8-¢4-adic hypergeometrics-51

Theorem 8.14.4 Suppose that F is geometrically irreducible, that its
determinant is arithmetically of finite order, and that ¥ is pure of
weight zero for all embeddings of Qy into €. Then the following
conditions are equivalent:

(1) Ggeom Is finite.

(2) Ggpitn is finite.

(3) for every finite extension E of k, and every point t € C(E), p(Frobg ;)

1s quasl-unipotent, 1.e., all its eigenvalues are roots of unity.
(4)for every finite extension E of k, and every point t € C(E), all the
eigenvalues of p(Frobg ) are algebraic integers.

(5) for every finite extension E of k, every point t € C(E), and every
integer N > 1, Trace(p(Frobg t)N) is an algebraic integer.

(6) for every finite extension E of k, and every point t € C(E),
Trace(p(Frobg {)) is an algebraic integer.

proof We already know (1) & (2) & (3), and trivially (3) = (4) = (5)
= (6). We have (4) = (3), simply because roots of unity are
characterized among all algebraic integers as those all of whose
archimedean absolute values are one. We have (5) = (4) by [Ax], and
we have (6) = (5) for (E, t € C(E)) by applying (6) to each (Eyp, 1),

where Ep denotes the extension of degree N of E.  QED

Here is a mild variant, which will be needed for dealing with
hypergeometrics of type (n, n).
Theorem 8.14.5. Let C be a smooth geometrically connected curve
over a finite field k of characteristic p = ¢, and 7 a middle extension 68

sheaf on C. Let U C C be any nonempty open set on which F is lisse. Fix
a geometric point g of U® |k, and denote by
’ITlgeom = ’IT:I_(U®RE, E) C ’I'Eiarith = ’ITj_(U, &)
the geometric and arithmetic fundamental groups respectively of U, by
p: ATt — GL(F ;)
the ¢-adic representation that ¥ | U "is", and by

Ggeom := the Zariski closure of p(m8eom),

Garith .= the Zariski closure of p(ﬁiarith)_
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Suppose that F | U is geometrically irreducible, that its determinant is
arithmetically of finite order, and that F | U is pure of weight zero for

all embeddings of @e into €. Then the following conditions are
equivalent:

(1) Ggeom is finite.

(2) Ggpitn is finite.

(3) for every finite extension E of k, and every point t € C(E),
Frobp 4 | 7§ is quasi-unipotent, i.e., all its eigenvalues are roots of unity.

(4)for every finite extension E of k, and every point t € C(E), all the
eigenvalues of Froby ¢ | 7 i are algebraic integers.

(5) for every finite extension E of k, every point t € C(E), and every
integer N > 1, Trace((Frobg t)N | ¥37) is an algebraic integer.

(6) for every finite extension E of k, and every point t € C(E),
Trace(Frobg + | 7) is an algebraic integer.

proof Restricting to t's in U, we see by the previous theorem that any
of (3), (4), (5), (6) implies the equivalent conditions (1) and (2). Trivially,
(3) = (4) = (5) = (6). So it suffices to show that (2) = (3). This is only
a problem at points t in C - U. By Deligne's result on integrality [SGA7
Part II, Expose XXI, Appendice, Cor. 5.3] we see that if (3) holds at all
point of U, then the eigenvalues of FrobE’t | 7 i are algebraic integers,

and by [De-WII, 1.8.1] we see that all their archimedean absolute
values are < 1. QED

Theorem 8.14.6 (p-adic criterion for finite monodromy). Let k be
a finite field of characteristic p # ¢, and # a middle extension @Qy-sheaf

on G, over k. Let U C Gy, be any nonempty open set on which ¥ is
lisse. Fix a geometric point & of U®kE, and denote by
T8O 1= ’IT:I_(U®RE, E) C ﬁlarith = mq(U, &)
the geometric and arithmetic fundamental groups respectively of U, by
oF 1T1arith N GL('J’EE)
the ¢-adic representation that ¥ | U "is", and by

Ggeomn := the Zariski closure of p(m8eom),

Garith = the Zariski closure of p(ﬁlarith)_

Suppose that
(1) ¥ | U is geometrically irreducible of generic rank n > 2, B
(2) ¥ | U is pure of some weight w, for every embedding 1 of Qp into C.
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(3) for every finite extension E of k, and every point t € E*,
Trace(Frobp | H1) is an algebraic number which is integral at all

places of Q of residue characteristic ¢ = p.
(4) "the" number « in @gx such that det(H®o«~d€8 | U) is

arithmetically of finite order (strictly speaking, o is only well defined
up to multiplication by a root of unity) is an algebraic integer which is
a unit at all places of Q of residue characteristic 2" = p.

Then the following conditions are equivalent:

(1) Ggeom is finite.
(2) for every finite extension E of k, every multiplicative character X
of E*, and every p-adic valuation "ord" of @, we have the inequality

ord(Trace(Frobg | ch((Em@kE, R@Jix))) > deg(E/k)ord(«).

proof Extending the finite field k if necessary, we may suppose that
the open set U where ¥ is lisse contains a rational point u. Then we

may take for o any n'th root of det(Froby , | ¥3). Since ¥ is pure of
some weight for every complex embedding, we see that HRo~deg s
pure (necessarily of weight zero, since its determinant is pure of weight

zero, being arithmetically of finite order) for every complex embedding.

In view of the previous theorem (applied to HQ «~deg ) Ggeom is finite

if and only if for every finite extension E of k, and every point t € EX,
Trace(Frobg ¢ | (J’K@oc_deg)t—) := Trace(Frobg ¢ | (J{)t—)/ocdeg(E/k)

Is an algebraic integer. Since this trace is by hypothesis integral outside
of p, the condition is that for every p-adic valuation "ord” of Q, we
have the inequality

ord(Trace(FrobE’t | (}l’,)t—)) > deg(E/k)ord(o).
Fix the choice of the p-adic valuation "ord”, and the field E, and allow 1
to vary over EX. Since Card(E*) is prime to p, it is equivalent (by
multiplicative Fourier inversion on the finite group E*) to show that for
every multiplicative character X of E*, we have
ord(X, ;,, gx X(t)Trace(Frobg 4 | (}ﬂ)t—)) > deg(E/k)ord(o).
By the Lefschetz Trace Formula (applied to %@f,x), and the vanishing
of HiC for a geometrically irreducible middle extension of generic rank

> 2 on an open curve, we see that
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-Trace(Frobg | ch((ﬁm@kE, HRL ) =
= 2, g X()Trace(Frobg 4 | (}[’,)t—)_ QED
8.15 Irreducible Hypergeometrics with finite Ggeom

Theorem 8.15.1 (finite monodromy criterion for
hypergeometrics) Let k be a finite field of characteristic p = ¢,
= Card(k), and
W= Hq (U, g X's; p's)
a nonpunctual, geometrically irreducible hypergeometric defined over k
of type (n, m) with n > m, n > 2 and A = 1. Put

A = TI,Xi, a character of kg™,

A = A((=1)n"D)gnin-D727T 5 (=gly, pJ/X ) € Q.
o = any n'th root of A.
Then G for ¥ is finite if and only if for every finite extension E of

geom

k, every_multiplicative character n of E*, and every p-adic valuation
‘ord” of Q, we have the inequality

% ord(g(yg, nXj p) + % ord(g(gg, npj ) = deg(E/k)ord(x).

proof This is immediate from the p-adic criterion 8.14.6, the fact
(8.2.11) that

Trace(Frobp | HL (G, ® K, L@, ¢ KA's; p's))) =
= (TT;(-g(YE, ﬂXi,E)))(WJ(-g(%;, HBJ',E))),

and the fact that Gauss sums are algebraic integers which are units
outside of p. QED

The next proposition shows that in searching for hypergeometrics

with finite Ggeom’ we "lose” nothing by looking only at those defined

over finite fields.
Proposition 8.15.2 Let k be an algebraically closed field of
characteristic p = ¢, q := Card(k), and
W= H(, g X's; p's)
a nonpunctual, geometrically irreducible hypergeometric defined over k

of type (n, m) with n > m and A = 1. Suppose that Ggeom is finite. Then

(1) the n X's are all distinct and all of finite order (i.e., local
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monodromy at zero is of finite order).
(2) the m pJ"s are all distinct and all of finite order (i.e., local

monodromy at oo is of finite order).
(3) ¥ is defined over a finite subfield of k.

proof If G 1s finite, then the local monodromy at both zero and o

geom
must be of finite order, whence (1) and (2). Once (1) and (2) hold, (3) is
tautologous. QED

8.16 Explicitation via Stickelberger

(8.16.1) We now explicate the finite monodromy criterion 8.15.1 with
the aid of the Stickelberger formula for the p-adic valuations of Gauss
sums. For n > 1, we denote by ¢, a primitive n'th root of unity in 68'

We denote by Kp C @g the subfield

Kp = @(Cp, all ¢y with N prime to p),
by Op C Kp the subring

@p = Z[{;’p, all ¢y with N prime to p]
of all algebraic integers in Kp,
by K C Kp the subfield

p,nr

Kpnr = Q(all ¢y with N prime to p),
and by Gp,nr C Kp,nr the subring

Gp,nr := Z[all ¢y with N prime to p]

of all algebraic integers in Kp,nr'

All multiplicative characters X of finite fields E of characteristic p take

values in Gp,nr’ and their Gauss sums g(y, X ) lie in Gp.
(8.16.2) Fix an embedding of fields
1 Kp,nr C ®p.

For any integer N prime to p, reduction mod P defines an isomorphism
of groups “N((D\p) = LLN([Fp), so we have

UN(Qp) = uN(Op ) = BN(Qp) = 1y (Fp).
Taking N := g - 1 where g := Card(E) for a finite subfield E of ﬁp , we
find

Mg - 1(6p,nr) = MHq - 1(@10) =~ EX,
The inverse of this isomorphism is the construction x = Teich(x),
where Teich(x) denotes the "Teichmuller representative” of x.

Passing to the inverse limit, and recalling that the numbers g - 1
are cofinal among the N's prime to p, we obtain an isomorphism
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Thot p(®€) = Thot p(ﬁp,nr) = Thot p(Qp) = lmyoem ET
By means of this identification, Qy-valued characters of finite

order of the group lim E* are elements of the discrete group

Norm

(Q/Z) ot p- Concretely, an element x of (Q/Z) 0t p corresponds to the
@p—valued character Xy g of any finite E of cardinality g such that

(g-1xeZ
defined by

Yy g (1) := (Teich(t)(d = DX for t ¢ EX
(8.16.3) We denote by ordq the p-adic valuation of @p normalized by
ordq(q) = 1. For any real number x, we denote by <x> 1its "fractional

part”, defined to be the unique real number in [0, 1) such that x = <x>
mod Z. Since <x + n> = <x> for any n € Z, we may speak of <x> for x In

R/Z, so in particular for x in (Q/Z), st D

(8.16.4) Given x in (Q/Z) 4t p, we define fp <x> to be the rational

number in [0, 1) defined as follows: pick an integer f > 1 such that

(pf - 1)x € 7,
and define

[, <0 = (L/DZ oq ¢ PO
[t 1s immediate that this definition is independent of the auxiliary
choice of the integer f.

With these notations, we can state the classical Stickelberger
theorem.

Theorem 8.16.5 (Stickelberger) Fix an embedding 1 : Kp nr € Q. Let
and let E be a finite subfield of [, of cardinality g such that

p
(g-1)x € Z, B
so that we can speak of the Q

E,

p—valued multiplicative character Xx E of

XxE (1) 1= (Teich(t){d = DX for t € EX.
For any nontrivial @p—valued additive character  of E, we have the

formula
ordq(g(qJ, Xx E)) = Jp (=%

(8.16.6)The extension Kp,nr of Q is Galois with group
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Gal(Kp,nr/(D) = T7
Given an element

o € Ty Zp* = Aut((Q/Z)

Zex =~ Aut((Q/Z)

{=p not p)'

not p)’
we denote by o, the unique element of Gal(Kp’m,) such that

Ox°XxE = Xax,E B
for every x in (Q/Z) and every finite subfield E of F, of

not p
cardinality q such that (q - 1)x € Z. We denote by ordy g the p-adic
valuation of Kp,nr defined by
ordoc’q(z) i= ordq(cro((z)).

Every p-adic valuation of Kp,nr with ord(q) = 1 is Ordoc,q for some «.
Theorem bis 8.16.7 (Stickelberger) Fix an embedding 1 : K
Let

p,nr C Qp‘

and let E be a finite subfield of [Flo of cardinality q such that
(g-1)x € Z, B
so that we can speak of the (Dp—valued multiplicative character X g of
E,
Yy g (1) := (Teich())d = DX for ¢ ¢ EX.
For any nontrivial @p—valued additive character ¢ of E, and any

element

o € Tré#p Zex = Aut((@/Z)not p),

we have the formula
ordoc’q(g(qJ, Xx E)) = Jp <-oUx>.

Theorem 8.16.8 (numerical criterion for finite monodromy of

hypergeometrics) Let E be a finite field of characteristic p = £, and
Ho= ", §; X's; p's)

a nonpunctual, geometrically irreducible hypergeometric defined over E

of type (n, m) with n > m and A = 1. Fix an embedding v : K

Let

p,nr © ®p'

X1, s Xy Y1 0 Ym € (Q/Z)pot p

be the unique elements of (Q/Z) ¢t p such that
oX; = : fori=1, ..
1 Xl XXI’ g for1 , , h,

Lopj = ij’ g forg=1, ., m.
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Then ¥ has finite Ggeom if and only if the following condition holds for

Zy" = Autl(Q/Z)not p):
For every z € (Q/Z)

every o € TT,

not pr» We have the inequality

2 Jp<o<z—ocxi> + ZJ fp<ocyj—ocz> >

> (1/n)n(n-1)/2  + % ; [ <oy j = oxpdl.

proof This is just the Stickelberger spelling out of the finite
monodromy criterion 8.15.1, when the variable multiplicative
cha_racter n of a variable finite extension F, card(F) := g, of E is written

as X F, and the p-adic valuation tested is ord q QED

8.17 Finite monodromy for type (n, n), intertwining, and
specialization

(8.17.1) In this section we will show that the very same intertwining
conditions which for irreducible hypergeometric D-modules of type

(n, n) are equivalent to having finite Ggal (cf 5.5.3) are equivalent to

having finite G for irreducible ¢-adic hypergeometrics of type

geom
(n, n).
Theorem 8.17.2 Suppose that xq, ..., Xy, Y1, -, Y are 2n distinct
elements of (Q/Z)y ¢ p such that for every
o € W@#p Zex = Aut((@/Z)not p),
the two subsets
Xy = laxq, o, axy)d  and Y = {ayq, .., ayy)

of (Q/Z)yot p are intertwined in (Q/Z), ¢ p» In the sense that if we

display their images under x = exp(2mix) on the unit circle, then as we
walk counterclockwise around the unit circle we alternately encounter

one from each subset. Then for every z € (Q/Z) 5t p» wWe have the

inequality
> _fp <otz - axp o+ ZJ fp Cayj - az> 2

> (1/n)n(n-1)/2 + % ; e <oy j = oxpl.

proof If the two subsets
X = laxq, o, axpy)  and Y = {ayq, .., ayp)

of ((D/Z)not p are intertwined in (Q/Z) then so are their additive

not p’
translates by oz,
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{oxq + oz, ., axy + oz} and  {oyq + oz, .., oy, + oz}

n
Since the right-hand side of the asserted inequalities are invariant by
such additive translation, it suffices to treat universally the case in
which z = 0. We must show universally that
Zi Jp<—O(Xi> + ZJ' Jp <O‘Yj> z
> (1/n)n(n-1)/2 + 2 i Jp <oy = x> ).

Now pick a common denominator N for all the x;'s and yJ"S, and an

integer f such that pf = 1 mod N. In view of the definition of fp, it

suffices to show that for every integer d = 0, 1, ..., f-1, we have
2 < - pdocxi> + ZJ <pdo<yJ~> >
docxi>].

0=p Zex = AUt((Q/Z)not p).
Since the hypotheses are Aut((Q/Z),, .+ p)—stable, it suffices to

> (1/n)lnn-1)/2 + % ;<pday; - p

d

Now p“a is simply another element o' of T

prove universally that
Zi<_Xi> + ZJ'<yJ'> > (1/n)in(n-1)/2 + Zi, j<yj - Xi>]
whenever the two subsets
Xi={xq, ., xy) and Y i={yq, ., yp)
of (Q/Z)y ot p are intertwined in (Q/Z), ¢ D

The verification of this is straightforward. The only properties of
the function <x> which will be used in the proof are
<x> = x for x in [0, 1),
<-x> =1 -<x>if x is not in Z.
By renumbering, we may suppose that we are in one of the three
following cases:

(Case 1) 0

X1<y1<x2<y2<___<xn<yn<1,
(Case 2) 0 < xq < y1 < xop < yo < ..<xpy <yp <1,

(Case 3) 0

IA

V1 < X1 Cyo < xo <<y, <xp <L

In cases 1 and 2, we have
20V TED T Y TRy 2, YT R

=Zisj
=Zi,J(yj_Xi) + 2,51

(yJ'—Xi) + Zi>J[1_ (Xi—YJ)]
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=nXjyj - nZx; + n(n-1)/2.
In case 3, we have
2V TED T 2 Y TR 2 YT
= 2
= nXjy; - nIx; + n(n+1)/2.

[1-0g-yp) + 2y - %)

1> ]

In case 1, we have
2ioxp 2y o= 2y, ol xg) o+ yygo= - L Xy - X
In cases 2 and 3, we have

Zi¢mxp 4+ 2y o= (1 - %) 4 2y o= n+2yo- L
Comparing, we see see that the asserted inequality 1s in fact an
equality 1n cases 1 and 3, and that it holds with a margin of 1 in case

2. QED

Combining this last result with the numerical criterion 8.16.8, we
obtain
Corollary 8.17.2.1 Let E be a finite field of characteristic p = ¢, and
Ho= (U, §; X's; p's)
a nonpunctual, geometrically irreducible hypergeometric defined over E
of type (n, n) with n > 1 and A = 1, whose local monodromy at both
zero and oo is of finite order. Fix an embedding v : K Q.. Let

X1 s Xy Y1 5 Y € (Q/D)pot p
be the 2n distinct elements of (Q/Z) such that

p,nr c (Dp'

not p
voX = XXi’ g fori=1,..,n,

Lopj = ij’ g forg=1, ., n.

Then H has finite G if for every o € TT

geomn Zy* = Aut((Q/z)

¢=p not p)’
the two subsets

Xy = laxq, o, axy)  and Y = {ayq, .., aypy)

of (Q/Z)y ot p are intertwined in (Q/Z), ¢ D

(8.17.3) We will now establish the converse to this corollary: if an

irreducible hypergeometric of type (n, n) has Ggeom finite, then the

intertwining condition holds. In view of the numerical criterion 8.16.8,
this amounts to a purely combinatorial statement. However, we do not
know a combinatorial proof; our proof is based upon Grothendieck's
theory of specialization of the fundamental group.

(8.17.4) Fix an integer N > 1. Let
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¢n(x) := the N'th cyclotomic polynomial,

Ry := the ring Z[1/N¢, X1/(& (X)),
My = the cyclic group up(Ryy) of order N,
SN 1= Spec(Ryy).

The group Hom(upy, M) is canonically (1/N)Z/Z, with x in

(1/N)Z/Z corresponding to the character ¢ eNX 1f we fix an
embedding B

1y Ry C Qy,
we have an induced isomorphism Hp = HN(@Q); this allows us to
identify @e—valued characters of gy with elements of (1/N)Z/Z.
Over the base Sy, the N'th power endomorphism of G,,/5) is a finite
etale up-torsor. For any character

X P MN @gx
we cah speak of the lisse @e—sheaf f,x on G,,/Sy obtained from this

Mpn-torsor by pushing out via % (sic). Similarly, for any nontrivial

character A: py — @ex, we cahn speak of the @e—sheaf ‘E’/\(l - x) on
Gy /Sp; this sheaf f’/\(l ~ x) Is lisse of rank one on the complement of
the unit section "1" of G,/Sy, extended by zero to all of G,,/Sy. Both

‘E’X and LA(q1 - x) are tame along both zero and e in the ambient
Pl/sy.

(8.17.5) Given two distinct @ex—valued characters X and p of Wy, we
can speak of the @g—sheaf ‘E’X(X)(X)f’(p/)()(l - x)on Gy, /S 1t 1s lisse of
rank one on the complement of the unit section "1" of G, /Sy,

extended by zero to all of G,/Sy. This sheaf is also tame along both

zero and oo.
(8.17.6) We denote by
(X5 p) = the Qp-sheaf Ly (:)®L(p/y)(1 - x) o0 Gy /SN-
For any prime number p which is prime to N¢, and for any ring
homomorphism
Ry — ?p’
the induced map on N'th roots of unity is an isomorphism
N UN(?p)- This allows us to view both X and p as @ex—valued

characters of uN(fp). S0 viewing them, it makes sense to form the

sheaf H1(!, ¢; X; p) on Gm/fp. Clearly the restriction of H(X; p) to
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Gm/fp is geometrically isomorphic to #4 (!, ¢; X; p).
(8.17.7) We can use the multiplication morphism

U ((EmX(Em)SN - ((Em)SN
to define ! convolution (relative to Syp); for K and L in DbC(Gm/SN, 68)’

KL := Rmi(prq{*K®pro™L).
(8.17.8) Let us say that a @e—sheaf ¥ on Gy, /S is "tame and adapted

to the unit section” if it satisfies the following three conditions:
(1) 7 is lisse on the complement of the unit section "1" of G,,/S,

(2) the restriction of ¥ to the unit section is lisse on S,
(3) F is tame along each of the three sections "0", "1", and < of the

ambient P1/s.
Let us say that an object K of DbC(Gm/S, 68) s "tame and

adapted to the unit section” if each of its cohomology sheaves is "tame
and adapted to the unit section” in the above sense.

Theorem 8.17.9 Let S be any irreducible noetherian Z[1/2]-scheme
whose generic point has characteristic zero. The subcategory of

DbC(Gm/S, 68) consisting of those objects K which are "tame and

adapted to the unit section” is stable by ! convolution.

proof Let K and L. be "tame and adapted to the unit section”. That the
cohomology sheaves of Kx|L are lisse outside the unit section and that

their restriction to the unit section is lisse on 5 both result directly
from the "trivial" case of Deligne's semicontinuity theorem [Lau-SCS]).
Once these cohomology sheaves are lisse outside the unit section, they
are automatically tame along the three sections "0", "1", and o simply
because S is irreducible with generic point of characteristic zero (cf
[SGAI, Expose XIII, 5.5]). QED

Two Variants 8.17.10 In these variants, S is any irreducible
noetherian Z[1/¢]-scheme whose generic point has characteristic zero.
(1) Let T" be a finite etale subgroupscheme of G,,/S. Thus I' is upg for

some integer M > 1 which is invertible on 5. In the ambient IPl/S, [, "0"
and o are three disjoint smooth/S divisors. We say that an object K of
DbC(Gm/S, 68) is "tame and adapted to I'" if each of its cohomology

sheaves is lisse on Gy, - I', lisse on ', and tame along each of the
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divisors I', "0" and . For I' = g, K 1s "tame and adapted to I'" if and
only if [M] K is "tame and adapted to the unit section”. The subcategory

of DbC(Gm/S, 68) consisting of those objects K which are "tame and

adapted to I'" is stable by ! convolution. (Indeed, since [M] is a
homomorphism, [M],(Kx L) = (IM] K)*([M],L), so this is immediate

from the theorem.)
(2) Let E/S be an elliptic curve over S, and I' C E a finite etale
subgroupscheme of E/S. Then I' is a smooth/S divisor in E. We say that

an object K of DbC(E/S, 68) is "tame and adapted to I'" if each of its

cohomology sheaves is lisse on E - ['] lisse on [, and tame along I'. If we
denote by E4/S the quotient of E by I', and by m : E = E4 the isogeny

with kernel I', then K is tame and adapted to I' if and only if m K is

tame and adapted to the unit section on Eq /5. The subcategory of

DbC(E/S, 68) consisting of those objects K which are tame and adapted
to I' is stable by ! convolution. (Since m is a homomorphism, m, (K L) =
(M K)xi(my L), so may we reduce to the case when I" is the zero-section.

Now apply Deligne's semicontinuity theorem [Lau-SCS].)

(8.17.11) Given an integer n > 1, a set {Xl, ,Xn} of n not necessarily
distinct characters X of Wy, and a disjoint set {X 41, .. ,XpJ} of n not
necessarily distinct characters P of Hp, we can define the multiple !

convolution (relative to Sy
HX 15 pIL] =1 H(X o5 polld] %1 .. =« H(X s pp)IL]

as an object of DbC(Gm/SN, 68)' In view of the above theorem, this

object 1s tame and adapted to the unit section. Looking fibre by fibre
over Sy (permissible by proper base change), we see that this object is

of the form
_H(x's; predld]
for some Qp-sheaf H(X's; p's) on G,/Sy which is tame and adapted to

the unit section. Furthermor_e, we see that the restriction of H(X's; p's)
to each geometric fibre (Em/le 1s geometrically isomorphic to the

hypergeometric sheaf H (!, ¢; X's; p's).
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Pick a complex embedding
RN c C.

The restriction of H(X's; p's) to ((Gyy - {1})¢)3™ is an £-adic local system

Myon €* - {1} whose local monodromy at zero (resp.at <) is (via the
t = {exp(2mit/N)}yy embedding Z — 2(1)) a successive extension of the

X's (resp. of the p's), and whose local monodromy at 1 is a
pseudoreflection. Since the X's and the p's are disjoint, this local system
1s irreducible.

Pick any embedding of C into 68 such that the composite

embedding B

Ry € €Cc @
1s the fixed embedding

Ly Ry € Q.
By 3.5.4 (Rigidity), the local system 7Ly must be the (extension of
scalars by the embedding C C 68 of the) complex local system attached
to the hypergeometric HD-module H1(xq, ..., Xp; Y1, -, Yp), Where the
xj and the yj are the unique elements of (1/N)Z/Z to which the

characters X1, ..., Xpn; P1, - » Pp COrrespond.

Comparison Theorem 8.17.12 Hypotheses and notations as above,
suppose given an integer n > 1, a set {Xl, ,Xn} of n not necessarily

distinct characters X ; of Wy, and a disjoint set {pq, .. ,pp} of n not
necessarily distinct characters P of wp. Let the x; and the Y be the
unique elements of (1/N)Z/Z to which correspond the characters X1, ..
, Xps P15 - » Pp- Then the following @@—algebraic subgroups of GL(n) are

all conjugate: B
(1) for any complex embedding Ry C C, the group Goa1®¢Qy, where

Ggal is the differential galois group of the hypergeometric D-module
H1(xq, o) X V1 s V)

(2) for any prime number p which is prime to N¢, and for any ring
homomorphism Ry — [Fp, the group Ggeom for H (!, ¢; X's; p's).

proof Since the D-module H1(xq, ... , Xpy; V1, - , ¥p) has regular

singular points, its Ggal 1s the Zariski closure of the image of its
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monodromy representation. Thus Ggal®@@€ 1s the group Ggeom for the
restriction of H(X's; p's) to the complex fibre of (G, - {1})/S) given by
Ry € C. The sheaf H(X's; p's) on (G - {1})/Sy is lisse, and tame along
"0, "1, and oo,

For such a sheaf on (G, - {1})/S) (lisse, and tame along "0", "1",
and o), the groups Ggeom for its restrictions to the various geometric
fibres of (G, - {1})/S) are all conjugate in GL(n). This is a special case

of:

Tame Specialization Theorem 8.17.13 Let S be a normal irreducible
noetherian scheme with generic point n, X/S a proper smooth
morphism with geometrically connected fibres, D C X a divisor with
normal crossings relative to S, U := X - D, and u € U(S) a section of U/S.
Let ¢ be a prime number, and F a lisse @e—sheaf of rank n on U such

that ?ﬁl Uy Is tamely ramified at all the maximal points of Dg. Then

for any geometric point s of S, the image of w4 (Ug, ug) in GL(n, @e) is

(conjugate to) the image of ’IT:L(Uﬁ, uﬁ) in GL(n, ﬁé)'

proof For this, it suffices to prove that the images of the 1mq's of these
geometric fibres in GL(n, 63) are all conjugate. For this, we may reduce

successively to the case of E,-sheaves, then to 0,-sheaves, and finally
to the case of 05 /4V09,-sheaves.

Given a finite ring A (e.g., A = 0, /¢V0,) and a lisse sheaf of free

A-modules ¥ of rank n on U, denote by
E—-U
the assoclated finite etale GL(n, A) torsor.

The theorem is now reduced to the following finite variant
(compare [De-WII, 1.11.1 and 1.11.2]):

Tame Specialization Theorem bis 8.17.14 Let G be a finite group.
Let S be a normal irreducible noetherian scheme with generic point n,
X/S a proper smooth morphism with geometrically connected fibres, D
C X a divisor with normal crossings relative to 5, U := X - D, and

u € U(S) a section of U/S. Let E = U be a finite etale G-torsor such that
Eﬁ - Uﬁ 1s tamely ramified at all the maximal points of Dﬁ. Then for

any geometric point s of S, the image of mw{(Ug, ug) in G is (conjugate to)

S
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the image of ’IT:I_(Uﬁ, uﬁ) in G.

proof For any geometric point s of S, we have a diagram of
homomorphisms of 1q's induced by the evident inclusions
mq (Ug, ug)

|

T[j_(Uﬁ, uﬁ) - ﬁl(Un, uﬁ) —» 14 (U, uﬁ) =~ (U, ug).

Because E — U is finite etale, there exists a finite galois extension L/n
such that ’ITj_(Uﬁ, uﬁ) and ﬁl(Un(X)L, uﬁ) have the same image in G.

Replacing S by its normalization in L, we reduce to the case when
TTj_(Uﬁ, uﬁ) and mq (U, uﬁ) have the same image in G.

In this case, the above diagram shows that for every geometric
point s of S, the image of m{(Ug, ug) in G is (conjugate to) a subgroup of
the image of ’IT:I_(Uﬁ, uﬁ).

So to show that these two images are conjugate, it suffices to
show that both images have the same index in G. But these indices are
precisely the number of connected components of the geometric fibres
Es and Eﬁ of E/S. By the reduction already performed, the connected

components of E are in bijection with those of Eﬁ. So replacing E by one

of its connected components,say E4q, and G by the subgroup G4 which
stabilizes E1, we are reduced to showing universally that (for a tame
covering G-torsor E = U) if Eﬁ 1s connected, then Eg is connected. For

this, we may reduce to the case where S is local and strictly henselian
(replace S by its strict henselization at s). Since Eq 1s connected, the

total space E is connected. By [SGA1, XIII, Thm. 2.4, 1] (applied to F := G,
S':= s and h := the inclusion of s into S), the functor "pullback from U
to Ug" on the categories of tame G-torsors is an equivalence. In

particular, if Eg is disconnected, then E itself is disconnected. QED

Corollary 8.17.15 Let E be a finite field of characteristic p = ¢, and
H o= H U, g X's; p's)
a nonpunctual, geometrically irreducible hypergeometric defined over E

of type (n, n) with n > 1 and A = 1, whose local monodromy_ at both
zero and oo is of finite order. Fix an embedding v : Kp nr © (Dp. Let
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Xq, s Xpy V1o 5 Y € (@Q/Dpot p
be the 2n distinct elements of (Q/Z)not D such that

voX = XXi g fori=1,..,n,
Lop: = K, . for g=1, ..., n.
Pj= %y E J
Then the following conditions are equivalent.

(1) for every o € TT Zy* = Aut((Q/Z)p ot p), the two subsets

X nl  and Y, = {ayq, .., ayp)
of (Q/Z)y ot p are intertwined in (Q/Z)
(2) ® has finite Ggeom-

{=p
= {axq, o, ax

not p-

(3) the hypergeometric D-module H4(x4, .., Xpy; V1, -, Yp) has Ggal
finite.
(4) the hypergeometric D-module ¥4(x4, .., Xpy; V1, -, Yp) has p-

curvature zero for almost all primes p.

proof We have (1) = (2) by 8.17.2.1, we have (2) = (3) by the previous
theorem, (3) = (4) is elementary (formation of the p-curvature

commutes with etale localization, cf [Ka-AS, Introl), and (4) & (1) is
the Beukers-Heckman lemma 5.5.2. QED

Remark 8.17.16 The proof of the equivalence (3) & (4) in the above
corollary provides a third proof of Grothendieck's p-curvature
conjecture for hypergeometric D-modules of type (n, n), (apparently)
independent of both the Beukers-Heckman "signature of a hermitian
form" proof (cf. [B-H, 4.8]) and of the "reduction to the Gauss-Manin
case” proof in b.b.1.

8.18 Appendix : Semicontinuity and Specialization for Ggeom

d'apres R. Pink

(8.18.1) In this appendix, we will consider the following situation. S is
a normal connected noetherian scheme with generic point n, X/S is a
smooth S-scheme with geometrically connected fibres, ¢ is a prime
number (which is not assumed invertible on S) and ¥ is a lisse @e—

sheaf of rank n 2 1 on X. For each geometric point s in 5, the group

['(s) := the image of m{(Xg, any base point xg) in GL(n, 68)

is a closed subgroup, whose conjugacy class in GL(n, 68) 1s independent

of the auxiliary choice of base point xg.



Chapter8-£4-adic hypergeometrics-68

Specialization Theorem 8.18.2 (compare [De-WII, 1.11.5]) Let S be a
normal connected noetherian scheme with generic point n, X/S a
smooth S-scheme with geometrically connected fibres, ¢ a prime
number (which is not assumed invertible on S) and F a lisse @e—sheaf

of rank n = 1 on X. For each geometric point s in 5, define
['(s) := the image of m{(Xg, any base point xg) in GL(n, Q).
Then

(1) the group I'(s) decreases under specialization, in the sense that if t is
a specialization of s, then I'(t) is conjugate in GL(n, Qp) to a subgroup of

['(s).
(2) there exists an open neighborhood V of n in 5 such that for any
geometric point s in V, I'(s) is conjugate in GL(n, Q) to I'(n).

proof We first reduce to the case of lisse Oy -sheaves which are free of

rank n. In order to prove (1), it suffices to show universally that I'(s) is
conjugate to a subgroup of I'(n). For this, one can reduce further to the

case of (‘3)\/8’”@)\ -sheaves, and then to the case of G-torsors for a finite

group G. This case 1s then treated by repeating verbatim the first two
paragraphs of the proof of 8.17.14. In the notations used there, the
constructibility on S of the function "s = number of irreducible
components of E." [EGA IV, 9.7.8] shows that (2) holds for any lisse
95./2Y0 -sheaf.

To prove (2) for a lisse Uy-sheaf ¥, for each integer v > 1 let V,,
be an open neighborhood n in S on which (2) holds for the sheaf F/¢V¥F.
We will show that for v > 0, (2) for 7 itself holds on V. In view of

part (1)_, this results from the following lemma, applied to the group
K := I'(n) inside GL(n, 0-).

Key Lemma 8.18.3 (R. Pink) Let O, be the ring of integers in a finite
extension of Qy, n > 1 an integer, and K a closed subgroup of GL(n, Ty).

There exists an integer v, depending only on K, with the following

property:
for any closed subgroup H of K, H = K if (and only if) H and K have the

same image in GL(n, 0,/¢V04).
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proof Denote by M a free U, -module of rank n, and by G the group
Autg)\(l\/[) =~ GL(n, 0,). For each integer d > 2, define

Gdi

Kernel of Autg)\(l\/l) - Autg)\(l\/l/édl\/l),
Kd = KﬂGd.

Then we have injective group homomorphisms
Kd/Kd+1 C Gd/Gd+1 C Ehd@}\/e@)\(M/QM)

X = (X -1)/09,
For each d = 2, we define
Lq(K) := the image of K4y/Kg44q1 In End@)\/e@x(l\/l/él\/l).
Notice that all the L4q(K) are subgroups of the same finite group
End@x/g@)\(M/EM). The key observation is that the ¢-th power map

X — X? defines an injective group homomorphism of K3/Kg41 into
Kq+1/Kg+o for any d 2 2, which gives inclusions
Lq(K) € Lg41(K) € Lg4o(K) € .. C Endg)\/eg)\(M/eM).

Therefore for some D, we have
Lq(K) = Lg4+1(K) = Lo(K) foralld=zD.

We claim that we can take v := D + 1 in the lemma. Indeed, let
H C K be a closed subgroup. Then Ly(H) < Lg(K) for every d = 2.
Suppose that H and K have the same image mod €D+1, l.e., suppose that

H/HD+1 = K/KD+1.
Then H and K must have the same image mod any lower power of ¢, in

particular mod ¢D. So we have short exact sequences
0 — LD(H) - H/HD+1 - H/HD - 0

N I [
0 — LD(K) - K/KD+1 - K/KD - 0,

which show that Lp(H) = Lp(K). For any d = D, we have
Lp(H) = Lp(K)
N I

which shows that Ly(H) = L4(K) for every d = D. For any d = D, the

\

short exact sequences
0 — Ld(H) - H/Hd+1 - H/Hd - 0

[ N N
0 — Ld(K) - K/Kd+1 - K/Kd - 0,
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allow us to show inductively that Card(H/Hg4q) = Card(K/Kq4+1), and
hence that the inclusion H/Hqyq € K/Kg41 1s an isomorphism. Taking

the inverse limit over d, we deduce that H = K, as required. QED
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9.1 Another Gy Example

In Theorem 2.10.5, we proved that the rank seven D.E. on Al
o/ - xa - 1/2,

whose FT defines X_1/2€Xp(—X7/7), has differential galois group Ggal the
subgroup Go of SO(7). In this section, we will give a diophantine proof of

the following ¢-adic analogue of that result.

Gy Theorem 9.1.1 Let k be an algebraically closed field of
characteristic p > 15. Denote by A4 /5 the unique tame @e—valued

character of m{(G,,®k) of exact order two. Denote by j: G, — Al the
inclusion. Let ¢ be any nontrivial @e—valued additive character of a

finite subfield kg of k. Then NFTqJ(Jqu(X7)®j*JZA1/2(X)) has Ggoom = G2

proof Let us define ¥ := f’qj(x7)®uj*f’/\1/2(x)’ g := NFTqJ(EF). Since ¥ is

irreducible Fourier, ¢ is irreducible Fourier. By stationary phase, § is
lisse on Al of rank seven, with e -slopes {0 once, 7/6 six times}. Since
D(F) = [-11*F, G is self dual. Since § has rank seven, the autoduality

must be orthogonal. Since § is lisse irreducible on Al and

p > 2(rankg + 1) = 15,
G is Lie-irreducible. Since det3 has order dividing two (being self-dual),
the group Ggeom i1s semisimple and connected. By Theorem 1.6 on

prime-dimensional representations, the only possibilities for Ggeom are

the image PSL(2) of SL(2) in Sym6(std2), or Gop or SO(7) or SL(7).

Of these, SL(7) is ruled out by the existence of the autoduality. We
can rule out PSL(2) by a slope argument. Indeed, if Ggeom were PSL(2),

then by the lifting lemma 7.2.5 there exists a lisse sheaf X on Al of

rank two whose Gyoopp 1s SL(2), such that § = Sym®(X). By the highest

slope lemma 7.2.4, 4 and X have the highest c-slope. Therefore X has
rank two but has highest co-slope 7/6, contradicting the fundamental
integrality property of slopes (cf [Ka-GKM, 1.9]). Thus § has Ggeom

either SO(7) or Go.

To distinguish these two possibilities, recall that for the standard
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representation std of SO(7), the tensor cube (s’td7)®3 has no nonzero

SO(7)-invariants. [This amounts to the statement that std7 does not

occur in (std7)®2. But for any n > 4, the decomposition of (stdn)®2 as
SO(n)-representation is

(stdn)®2 = 1 @ Spherical Harmonics of deg. 2 @ Lie(SO(n)),
and none of three irreducible constituents has dimension n.]

On the other hand, one knows that under Gy, already the

subspace /\S(std7) has a one-dimensional space of Go-invariants. [In

fact these are all the Gyp-invariants in (Std7)®3 , but will not use this.]
Therefore the following conditions are equivalent:
Ggeom = 50(7)

s 9»®3 has no nonzero T[l(A1®k, n)-invariants,

s 9»®3 has no nonzero T[l(A1®k, n)-coinvariants,

s HA(Alek, g®3) - 0.

Since the sheaf 7 is "defined over kp", so is 4. By proper base

change, we may replace k by the algebraic closure of k in k without
changing the cohomology group HC2(A1®R, 9®3) in question.

Since 9 is pure of weight one, 9»®3 1s pure of weight three. 5o if
HC2(A1®k, 9®3) is nonzero, it is pure of weight five. On the other

hand, by Weil Il we know that H.2(Al®k, §®3) is mixed of weight < 4.

As G is lisse on the open curve A1®k, these are the only two possibly
nonvanishing cohomology groups. By the Lefschetz Trace Formula, for
any finite overfield E of kp, we have

2t in g (Trace(Frobg 4 | gn3 -
= Trace(Frobg | HC2(A1®R, g®3y) - Trace(Frobg | Hcl(ﬂl®k, q®3)),

Now let us denote by
hi = dimHJ(AT®k, 3®3) fori =1, 2.
By a standard argument (cf [Ka-SE, 2.2.2.1]) we have
Hmsup Ly gk, Card(E)~9/2| 2t in E (Trace(Frobg { | gnNd3| = h2

Therefore we have only to compute the sums
S:= 2t in g (Trace(Frobg 4 | 9»))3
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in order to decide whether Ggeom is SO(7) (the case he = 0) or Gy (the
case hop > 0).

Let us fix attention on a single E. We denote Card(E) by q. We wish
to compute, for Y any nontrivial additive C-valued character of E, and

for /A the quadratic character of EX, extended by zero to E, the sum
Si= 2, E (Trace(FrobE’t | g))3

= Time Tpimr Wx + xAK)D
>

Summing first over t we see that only the terms with x + y +z = 0
survive:

S=-9%,inc V(7 + v/ - (x + VDA(-xy(x + v)).

V(tlx + v + 2)p(x’ + v/ + 2/ )Alxyz).

t,x,y,z in E

At this point, we extract the rabbit from the hat: the universal
identity

(X+y)7—X7—y7=

= 7X6y + 21X5y2 + 35X4y3 + 35X3y4 + 21X2y5 + 7xy6
7xy(x + y)(x? + 2x3y + 3x2y2 + 2xyd + y9)
7xy(x + y)(x2 + xy + y2)2.
Substituting into our sum, we find

S=-92,,inE V(-7xy(x + y)(x2 + xy + y2)2)Al-xy(x + y)).

Since A is the quadratic character of E* extended by zero, we have
-S/q = A+ B,

2y ing W7xy(x + VI(x2 + xy + y2)2)Al-xy(x + v)(x2 + xy + y2)2)

Zx,y in E with x2 +xy + y2 =0 /\(—XY(X + Y))

We first remark that the sum B is trivially bounded by 2qg, since

it 1s the sum of at most 2q terms, each of which is £1. So B will not

affect our limsup.

What about the sum A? Consider the one parameter family
m:C = Gy

A
B:

of affine curves C,,

u = 0, over the Gm/[Fp of u's defined by the
equation

Cy & —xy(x + V)2 + xy + y2)2 = u.

2)2 is homogeneous of degree 7 but is not
u = 0, are smooth and geometrically

Because xy(x + y)(x% + xy + y

a 7'th power, these curves C,,,

irreducible over any field of characteristic = 7 (cf. [Ka-PES, proof of Cor.
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6.5]). On the other hand, this family becomes constant after extracting
the seventh root of the parameter "u”. Therefore the sheaves Riﬁ!ﬁe on

G ®k are all lisse on G and everywhere tame (since they become

m}
constant after [7]*). Moreover, we have
RimiQy = 0 for i = 1, 2,
R2m 0y = Qp(-1) fori= 2,

Rlﬁ!@g 1s mixed of weight < 1.

In terms of these curves C,

A =2 g W(7a)A(a)Card(C4(E))
= 2, inex V(7a)A(a)lq - Trace(Frob, g | Rl’l'[!@e)]
=q2, i, px Y(7a)A(a) - 2, gx Trace(Froby, p | ﬁ®®£A®R1W!@€).
where we write p(x) := $(7x).
The sum
> inpx $(7a)A(a)

is a Gauss sum, so it has absolute value q1/2. What about the sum
D:= 2, gx Trace(Froby g | ﬁ&@iﬁ/\@Rlﬁ!@g)?
Using the Lefschetz Trace Formula, we get
D = Trace(Frobg | HC2(Gm®k, ﬁ®®EA®R1n!@e))
- Trace(Frobg | H.H(G, ®k, £ 5®LA®RL™ Q).

a in

Because EA®R11T!@e is tame on Gp, E@@ﬁ/\@leﬁe is totally wild
at e, and consequently its HC2((Em®k, ﬁ&@ﬁ/\@Rth!@e) = 0. On the
other hand, ﬁ@@ﬁ/\@Rlﬁ!@e is mixed of weight < 1, so

H L (G, ®k, E®@EA®RI™ @) is mixed of weight < 2. So if we denote

by K the dimension of Hcl((ﬁm@)k, ﬁ@@ﬁ/\@Rlﬁ!@e), we get

ID| < Kq.
So all in all we have
-S/qg=A+DB
IBl < 2qg

A = g p(7a)A(a) + D

ain EX
g2, . ex W(7a)AR)] = g37/2

ID| < Kq,
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whence

1IS] - q°/2] < (2 + K)q2.
Taking the limsup of |S|/q°/2
h? = dimH 2(A1®k, §®3) = 1. 1n particular, Gyeom = Gp.  QED

over larger and larger E's, we see that

9.2 Relation of Simple Fourier Transforms to Hypergeometrics
(9.2.1) What is the relation of the sheaf NFTqJ(E,qJ(X7)®j*f,A1/2(X)),

whose Ggeom we have proven to be Gy, to hypergeometrics of type

(7, 1), some of which also have Ggeom = Go? We will see below that it is

the Kummer pullback by [7]* of just such a hypergeometric. Indeed
this is a special case of a general phenomenon.

Proposition 9.2.2 Suppose that n > 2, and that p does not divide n. Let
k be an algebraically closed field of characteristic p. Let Aq be a

nontrivial tame @@—valued character of mq(G,,®k) of finite order prime
to n. Let Ay be any tame @e—valued character of w4 (G, ®k) which
satisfies

(A1 = /_\1.
Denote by {pq, ..., pp) all the characters of mw{(G,,®k) of order dividing

n. Denote by j: G, — Al the inclusion. Let y be any nontrivial @e—

valued additive character of a finite subfield ky of k. Then for some A in
k™ there exists an isomorphism of lisse sheaves on G, ®k
j*NFTqJ(Jqu(Xn)@j*Ji/\l(X)) = n]*H (0, ¢; p1s s P /\2).
proof Define § := NFTqJ(f,qJ(Xn)(X)j*f,Al(X)). By stationary phase, 9 is
lisse of rank n on Al, irreducible, and its [, -representation is
f,/_\i(x) ® (rank n-1, all slopes n/(n-1)).

Enlarging kg if necessary, we may assume that kg contains a primitive

n'th root of unity, say ¢, and that Ay is defined over kq. For any finite
extension E of kg, it is obvious that the trace function of j*4 on E*
t e BX m -2 g Gpltx + xMA, p(x71)

1s iInvariant under the multiplicative translation t — ¢t: simply replace
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x by ¢~1x in the sum. Therefore j*§ and Tc*j*g have the same trace

function. Therefore they have isomorphic semisimplifications as
representations of mq(G,,®k). Since they are mq(G,,®kg)-irreducible,

being irreducible for the subgroup m{ (G, ®k), it follows that
j*g = Tc*j*g as lisse sheaves on Gy, ®kq. Since j*§ is irreducible, we
can descend j*¢ through [nl. Thus there exists a lisse ¥ on G, ®k( of

rank n with [n]*H = j*G. Any such ¥ is irreducible on G, ®k (since it

has an irreducible pullback).
The I -representation of #¥ must be of the form

L~ (x) ® (rank n-1, all slopes 1/(n-1)),

for some X with X = /_\1. So if we twist # by a suitable tame L A of
order dividing n, we may assume that

n]*H = j*g

K|l = ‘f’/\2(x) ® (rank n-1, all slopes 1/(n-1)).
In particular, ¥ has Swan(#) = 1.

Since [n]*¥ is lisse on Al, ¥ must be tame at zero. Being
irreducible lisse on Gy, with Swan,, = 1 and tame at zero, it must be a
hypergeometric of type (n, 1), so on Gy, there exists an isomorphism

o= W (L s Xq s X Ao)
for some A in k*.

Since [n]*¥ is lisse on I—\l, each X has order dividing n, and there
can be no repetition of the X; which occur (since local monodromy at
zero is of finite order dividing n). Therefore the X; are precisely all the

characters of order dividing n. QED

In an entirely similar fashion, one proves:
Proposition 9.2.3 Suppose that n = 2, and that p does not divide n. Let
k be an algebraically closed field of characteristic p. Let {Pl’ - Pn—l}

be all but one of the characters of m{(G,,®k) of order dividing n. Denote
by J: Gy — Al the inclusion. Let y be any nontrivial @@—valued

additive character of a finite subfield ko of k. Then for some A in k*

there exists an isomorphism of lisse sheaves on G,,®k

PNFT (L (n) = [n¥H (L 45 pyg, ey pracgs 2.
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9.3 Fourier Transforms of Kummer Pullbacks of
Hypergeometrics: a remarkable stability (compare 6.2, 6.3, 6.4)
(9.3.1) The results of the previous section are themselves special
cases of a quite general and remarkable stability property, to which
this section is devoted.

We work over an algebraically closed field of characteristic p,
with hypergeometrics of arbitrary type (n, m), including (0, 0). In
order to formulate the main result of this section, it will be convenient
to introduce the operator Cancel on hypergeometrics which "cancels”
the characters common to humerator and denominator. Given a
hypergeometric

Hyp := Hypy(L &5 X145 s Xps P15 5 Prn)
of type (n, m), look to see how many of the X;'s are also pj's. [f there

are r such common characters, renumber so that
Xn-k = Pm-k for k <r,
Xj;‘PJ'if 1 <n-randj< m-r,
and define
Cancel( Hyp, (!, ¢; X1, -y Xps P1s - Pp)) =
= Hypy (!, ¢5 X 15 s Xpn-p P1> s Prr-r)-

Thus Cancel( Hyp, (!, ¢; X1, ., X P1> - » Pm)) Is an irreducible

hypergeometric of type (n-r, m-r).

Theorem 9.3.2 Over an algebraically closed field of characteristic p, let
Hypy (!, ¢; Xi's; pj's) = Hypa (L 5 X1, s X P15 5 Pr)

be an irreducible (i.e.,, no X;is a pj) hypergeometric of type (n, m). Let

d = 1 be an integer which is prime to p. Denote by {Aq, .., Ag) all the

characters of mq(Gy,) of order dividing d. Then we have isomorphisms

of perverse objects on al

(1) FTyGuldHypy( 45 X gy s Xpi P1s s Pm)) =

= Jxld]®Cancel(Hyp_ym-nigd >0 ¢ Aq, o Ag, Ej's; ii's))_
(2)  jx[dI®Hypy (!, ¢; Xi's; pj'g) =~
zFTqj(J'*[d]*Cancel(Hyp(_l)n—m(d)d/%(!, P; /\1, ., /\d, aj's; 7(1'5))

zFTLlJ(J*[d]*CanCel(Hyp(_l)d+n—m(d)d/)\(I, LIJ, /\1, ey /\d, EJ'IS; ;(,1'5))
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proof The isomorphism (2) is obtained from (1) by Fourier inversion. In
order to prove (1), we will first establish the following

Lemma 9.3.3 Over an algebraically closed field of characteristic p, for
any hypergeometric Hyp, (!, ¢; Xi's; pJ"s), and any integer d =2 1 prime

to p, we have an isomorphism of perverse objects on G,
Lj*FTqJ(J![d]*Hypx(!, W; Xi's; pJ'S)) ~
= [dI*Hypgym-niqd (L Ui A, o Agy py'ss Xi's).

proof As recalled in 8.1.12, for any object K we have
(j*liqj)[l]*!K ~ j*FTqJ(j!inv*K).
We apply this to the object
K := [d]*inv*Hyp, (!, ¢; Xi's; pj's) = inv*[dI*Hyp, (!, ¢; Xi's; PJ"S)
and find
\j*FTq)(J'![d]*Hypx(!, P; Xi's; pys)) =
= (PR [dinv*Hypy O, ¢; Xi's; pj's)

By the base change formula for convolution (8.1.10, 2(b)), for any
two objects K and L on Gy, and any nonzero integer d, we have

K ([A1%L) = [d]1*(([d]K)* L).
Thus we have
\j*FTqJ(Jg[d]*Hypx(!, P Xi's; pj's)) ~
~ [d]*(([d]*(j*.ﬁw)[l])*!inv*Hypx(!, g5 Xi's; pj's)).
[t remains only to simplify the convolvees.

By the inversion property (8.3.3) and the change of ¢ formula
(8.7.2), we have

inv*Hypy(!, ¢; Xi's; pj's) = Hypq /50, P; Ej's; 7(_1'8) -
= Hypqyn-m (L @5 py's; Xi's).
By the Kummer Induction Theorem 8.9.1, we have
[d] (L yIIL]) o= [dlu(Hypq (4, ¢; 1, &) =
= Hyp, (!, g0 N1y - Ng; D),
and by 8.7.2, we have
Hyp(d)d(!, P; Aq, .., ANg; &) = Hyp,(}, V0 Ny s NG ).

Combining all this, we find
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kj*FTLP(Jg[d]*Hypx(!, g; Xi's; pj's)) ~
= [d]*(Hypl(!, By a N1, ., N\g Q)*!Hyp(_l)n—m/x(!, W EJ"S; &jls))

= [dP*Hyppym-n@d/ (b Ui A, 0 Ags pj'si Xi's):
QED for lemma 9.3.3

We now return to the proof of the theorem 9.3.2.

We claim that j,[d]*Hyp, (!, ¢; Xi's; pj's) is the direct sum of
perverse irreducibles on AL none of which is Jx L AlL]l for any tame
character A of mq(Gy,). Indeed, since Hyp, (!, ¢; Xi's; pJ's) is perverse
irreducible on Gu,, and [d] is finite etale, [d]*Hyp, (!, ¢; Xi's; pj's) is

semisimple as a perverse object on G and hence its middle extension

m}
Jx[dI™Hyp- (1, ¢ Xi's; pj's) is a direct sum of perverse irreducibles on
AL. To show that no Jx L Alllis a direct factor, it suffices to show that

on G no L Alllis a direct factor of [d]*Hyp, (!, ¢; Xi's; pj's). But all

m:
the irreducible constituents of [d]*Hyp, (!, ¢; Xi's; pj's) are HMg-
translates of each other (since Hyp, (!, ¢; Xj's; pJ"s) is irreducible). So if
L Alll were a direct factor of [dI*Hypy (!, ¢; Xi's; pj's), then

[dI*Hyp(, @5 Ki's; pj's)
would be a direct sum of copies of LAl1]. This in turn would imply that

X(Cppy, [AP*Hypy (5 45 Xi's; py's)) = 0.

But this is honsense, because
X (G, [AI*Hyp (L, 5 Xi's; pJ"S)) = dX(Gyy, Hypo (!, ¢; Xi's; pJ"S)) = d.
Therefore FTqJ(j*[d]*Hypx(!, P Xi's; pj's)) is a sum of perverse
irreducibles on Al, none of which is either the delta sheaf 85 at the

origin, or j4xL Alll for any nontrivial tame character A. Since any

perverse irreducible M on Al other than o satisfies M = IxJ M, we

have

FTLP(J*[d]*Hypx(!, P Xi's; pj's)) =~ J*J*FTqJ(J*[d]*Hypx(!, P Xi's; pj's)).
So to prove the theorem it suffices to prove that on G,, we have

j*FTqJ(J*[d]*Hyp)\(!, W; Xi's; pJ'S)) ~
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~ [d]*CanCel(Hyp(_l)m—n(d)d/%(', l.lJ, /\1, ey /\d, EJ'IS; RIIS))

Since both of these perverse objects are semisimple, it suffices to show
that they have isomorphic semisimplifications. For this, we argue as
follows.

We have a short exact sequence of perverse objects on Al of the
form

0=>V®8g = | [dI*Hypy(, 45 Xi's; py's) = JxldI®Hypy(, ; Xi's; pj's) = 0,
for some punctual sheaf V®©6p at zero. In view of the known structure
of the local monodromy at zero of Hypx(!, g5 Xi's; pj's), we see that V
has dimension
r := Card(R), R := {k in {1, .., d} such that Ay is among the ;).
Taking the Fourier Transform of the above exact sequence, applying j*,
and using the lemma, we find a short exact sequence
0 — (V®®€[1]) = [dI*Hypym-nigyd (L o5 Aq, o, Ag, EJIS; 7(1'8) -
N J*FTLlJ(Lj*[d]*Hypx(!, U X1, s Xy P15 Prr)) — O.
On the other hand, by the Semisimplification Theorem 8.4.10, the
semisimplifiation of B B
Hyp(_i)m—n(d)d/x(!, l.lJ, /\1, e /\d, pL]'IS; XiIS)
is B B
EBi in R EAi[l] ) Cancel(Hyp(_i)m_n(d)d/x(!, J; /\1, e /\d, pJ"S; XIS))

Pulling back by [d]*, we find that the semisimplification of
[d1*Hyp_pym-nigdnll b5 A, s Ags pj's; Xi's)
is
(Qpl1DT @ [dI*Cancel(Hyp_ ym-ngd (1, ¥ Aq, ., Ag, Ej's; X i's)).

Comparing this with the above short exact sequence, we conclude
that the two perverse objects on G,

[d]*Cancel(Hyp(_i)m—n(d)d/x(I, l.lJ, /\1, ee /\d, EJ'IS; ;(/iIS)),
J*FTqJ(j*[d]*Hypx(!, W X1y s Xy P1s s Pra))s

have isomorphic semisimplifications, hence, both being semisimple, are
themselves isomorphic. QED

Corollary 9.3.4 Hypotheses as in 9.3.2, suppose in addition that for all

i, (Xj)d is nontrivial.
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Then we have isomorphisms of perverse objects on a1

(1) FTy(Riu[dI*Hypa(, 3 X1, o Xps P15 o s Prn)) =

= JxldI®Hyp_ym-nig)d, (L U Aq, oo, Ag, Ej's; Xi's).
(2)  Ryx[dP*Hypy (!, g5 Xi's; pj's) =
zFTqj(J*[d]*Hyp(_l)n—m(d)d/%(!, P; Aq, o, g, EJ”S; %i's))
~FTy(JuldI*Hypqyam-m(qydn (g5 Aq, s Ag, pi's; Xi's)).

proof If no X; has order dividing d, then
Hyp := Hypy(L &5 X145 - Xns P15 = > Prn)
has
JildI*Hyp = j«ld]*Hyp = Rjx[d]*Hyp,
and Hyp_qyn-mgydn(h &5 Aq, s Ag, Ej's; 7(1'5) is its own Cancel. QED

Corollary 9.3.5 Hypotheses as in 9.3.2, suppose in addition that
is not Kummer induced of any degree dq which divides d. Then

Js[dI*Hypy (!, W5 X1, b X PLs > Prm)
Is perverse irreducible on Al, and consequently the isomorphism
FTqJ(J*[d]*Hypx(!, W Xy s Xy PLs s Pp)) &
= juldI®CancelHyp _;ym-nigd (L @5 Aq, o, Ag, aj's; 7(1'3)

Is an isomorphism of perverse irreducibles on Al

proof Indeed, since H := Hyp, (!, ¢; X1, .-, Xp P1> - » Pm) 1S perverse
irreducible, and [d] is finite etale galois, either [d]*H is isotypical or H is
induced from an intermediate covering. So the hypothesis insures that

[d]*H is isotypical. It remains only to show that if [d]*H is isotypical,
then 1t 1s irreducible.

If [d]*H is isotypical, say k > 1 copies of an irreducible K, then
since the isomorphism class of K is Wg-invariant, K itself descends

through the cyclic covering [d], to a perverse irreducible Kp. Therefore

H is of the form Ko®M, with M the k-dimensional representation of
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m1(Gyy) given by Hom(Kq, H). This M must be irreducible if H is to be

*

irreducible. But this M becomes trivial after [d]*, so it is a sum of f,/\'s.

Therefore we have k = 1, and hence [d]*H is perverse irreducible on

Gy Taking its middle extension j4[d]*H to Al we find that j, [d]1*H and

with it FTqJ(j*[d]*H) are perverse irreducible on Al QED

9.4 Reduction to the Tame Case

(9.4.1) In the case when n > m and d = n-m is prime to p, we
obtain a striking relation between hypergeometrics of "wild" type (n, m)
and those of "tame” type (n-r, n-r). The above results give, in this case:
Corollary 9.4.2 Hypotheses as in the theorem, suppose that n > m and
that d = n - m is prime to p. Then

(a) we have isomorphisms of perverse sheaves on Al

(1) FTyGuldHypa( 45 X gy s Xps P15 s Pn)) =

= jx[d]®Cancel(Hyp_ym-nigyd, 0, & Aq, o Ag, Ej's; 7(1'5)).
(2)  Jx[dI®Hypy(, 5 Xi's; pj's) =
zFTqj(j*[d]*Cancel(Hyp(_i)n—m(d)d/x(!, Wy A, s Ag, BJ"S; Xi's)
zFTqJ(J'*[d]*Cancel(Hylo(_de—m(d)d/%(!, W Aq, ., NG, Ej's; ii's)).

(b) If Hypy (!, 5 Xi's; pj's) is not Kummer induced, these are
Isomorphisms of perverse irreducibles.

(c) If none of the X ; satisfies (Xi)d = 1, we may rewrite these

isomorphisms:
(1) FTyRI[A*Hypa(, 45 X4, ) Xps P1s s P)) =
= JuldI"Hypym-nigyd s, U5 Aq, ooy Ag, aj's; Xi's).
(2)  Ryx[dI*Hypy(!, g5 Xi's; py's) =
=FTg(xldI*Hypn-myd n (1 45 A, s Ag, EJ"S; Xi's))
=FTy,(JuldI* (Hypyden-mgyd 0 (L &5 A, s Ag, EJ'S; Xi's)).

proof This is just rewriting the previous results for d = n - m. QED
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10.0 Introduction
This chapter is devoted to the exceptional possibilities for the

group G of an irreducible ¢-adic hypergeometric on G, In

geom
characteristic p of type (n,m), n = m, which is not Kummer induced.
Let N:=max(n,m), d := In - m|. Suppose that p > 2N + 1 and that p does
not divide the integer 2N (d)No(d) of 7.1.1. Recall (8.11.2-4) that the

exceptional possibilities for G0>d€r can occur only for In-ml|=6, N=7,8 or
9:
N

N=8: the image of Spin(7) in the 8-dim’'l spin representation

7: the image of G in 1ts 7-dim’l irreducible representation

the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in std®std®std
N=9: the image of SL(3)xSL(3) in std®std.

We will show that the cases in which these exceptional groups
occur are "the same" as they were for hypergeometric JD-modules.
Indeed, the proofs in the two cases are quite analogous. We will largely
content ourselves with indicating these analogies, rather that giving
the 4-adic proofs in complete detail.

10.1 The Gy and Spin(7) Cases

Gy Recognition Theorem 10.1.1 Let k be an algebraically closed field

of characteristic p > 15. Suppose that p does not divide the integer
2N1(6)No(6) of 7.1.1. Let X, p be two tame Qp-valued characters of

11 (G ®k) such that none of X, p, or Xp is the unique character Ay /9

of exact order two. Then for any A € k™, and ¢ any nontrivial ﬁé_
valued additive character of a finite subfield kg of k

K= Mo s 1, %X, X, Py py Xps X ps A/2)
has Ggeom = Go. These are all the hypergeometric of type (7,1) with
Ggeomn = Go. The hypergeometrics of type (7,1) with g0.der - Gop are
precisely the tame £ A twists of these.

proof Exactly as in the differential galois case (4.1), but using 8.11.5
instead of 3.6.1, the only nonobvious point is that such an ¥ has

Ggeom = Go. To show this, we argue as follows. ¥ is irreducible, and,

being of type (7, 1), it is not Kummer induced. Since p » 15, ¥ is Lie-
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irreducible. Visibly H is self-dual with trivial determinant. Exactly as

in 9.1.1, we see that the only possibilities for (Ggeom)o are PSL(2), Gop, or

SO(7). In all of these casess, every automorphism of (G 0 s inner,

geom)

SO Ggeom C Gm(Ggeom)O- Since Ggeom C SO(7), it contains no nontrivial

scalars, so G . By the same slope argument as in 9.1.1,
geom is either Gop or SO(7).

To rule out the SO(7) possibility, it suffices to show that, denoting

geom - (Ggeom
we can rule out the PSL(2) possibility. So G

by j: G — Pl the inclusion, we have

X (P1, j.AS()) = 2> 0.
By the Euler-Poincare formula,

w(PL, j AS() =

= -Swang(A3(R)) - Swan . (A3(H)) + dim(AS (K)o + dim(AS(H)) e,

So 1t suffices to show that

(1) dim(AS(®)lo > 5.
(2) Swang(AS(®)) = 0.

(3) dim(AS(H) e = 2.
(4) Swan ., (A3(K)) = 5.

The proofs of these four assertions are entirely analogous to those of
their differential galois theoretic avatars, using 8.6.4 and 8.9.1 instead
of 3.4.1.1. Assertions (1) and (2) hold in any characteristic p. In proving
(3) and (4), one needs that p is prime to 6, and that the relations of the
form 1 + Co + L3 = 0, with the ¢ three distinct sixth roots of unity in

characteristic p are the two cases
{t1, o, t3) = {all the cube roots of 1},

{-t41, -to, -tz} = {all the cube roots of 1}.

We will now show that this is the case so long as p = 2, 3, 7.
Indeed, suppose we have any relation

4+ Co + €z =20
where each ¢ is a sixth root of unity. Since either *¢; 1s a cube root of
unity, we can rewrite this relation in the form

+ W t woy *wz =0
where the w; are cube roots of unity. Dividing by w3z, we get a

relation of the form
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1 = £ wq = woy,
where the w; are cube roots of unity.
We now analyze the possible cases. If wq = 1, then its sign must

be minus (lest wo = 0), and the relation is 2 = * w9, whence 2 is a

sixth root of unity. But 26 -1 =63=0 (since p = 2, 3, 7). If w1 = Wo,
then the relation is 1 = #2w1, and again 2 would be a sixth root of 1.

So the only possible relation has wq and w9 the two nontrivial cube

roots of unity, say w and w?. The relation is one of

1 = oo+oo2,
1=-w+ w?,
1 = oo—oo2,
1= -w-w?

Of these, we claim that only the last one (which always holds so long as
p = 3) holds in characteristic p = 2, 3, 7. Using the last one, the first
three become

- w-w? = W+ W,
-w - wl = - w w2,
-w - w? = W= W,

each of which trivially implies that p = 2. QED

Remark 10.1.2 We can summarize the result of the preceeding
calculation as the statement that No(6) (cf 7.1.1) is divisible only by the

primes 2, 3, 7.

Spin(7) Recognition Theorem 10.1.3 Let k be an algebraically closed
field of characteristic p > 17. Let A € k*, and ¢ any nontrivial 68_
valued additive character of a finite subfield kg of k. Suppose that p
does not divide the integer 2N41(6)No(6) of 7.1.1. Let X, p, £ be three
tame @e—valued characters of m(Gy, ®k) such that

Moo= 0, 45 %X, X, p, ps &, B, XPE, XpE; 1, Aq /o)
is irreducible and not Kummer induced. Then ¥ has Ggeom equal to
(the image in SO(8) of) Spin(7). These are all the hypergeometric of type
(8,2) with Ggeom = Spin(7). The hypergeometrics of type (8,2) with

GgO.der - spin(7) are precisely the tame L A twists of these.
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proof Again the only hard point is that such an ¥ has Ggeom = Spin(7).

For this it suffices to show that, denoting by j: G, — Pl the inclusion,
we have

X(PL, j.A%3)) = 2> 0.
By the Euler-Poincare formula,

v(PL, j A =

= -Swang(A4(N)) - Swan .. (A%(H)) + dim(A%(H)To + dim(A%(KH)) e,

So 1t suffices to show that

(1) dim(A4(H)lo = 8.
(2) Swang(A%(H)) = 0.

(3) dim(AYH)) e = 4.
(4) Swan o (A%(H)) = 10.

The proofs of these four assertions are entirely analogous to those of
their differential galois theoretic avatars. Assertions (1) and (2) hold in
any characteristic p.

In proving (3) and (4), one needs that p is prime to 6, and that all
relations of the two forms

g1+ Co + ¢z =0, C1 +Co+Cz3+0C4=0
with the ¢i three (resp. four) distinct sixth roots of unity in
characteristic p are exactly the same as in characteristic zero. Since -1

1s a sixth root of unity, the relations in question can be rewritten to be
of the forms

€1 + 8o = ¢3, €1 - €9 =¢3 - E4g.
So this 1s guaranteed by the hypothesis that p does not divide the
integer 2N1(6)No(6). QED

10.2 The PSL(3), SL(2)xSL(2)xSL(2), and SL(3)xSL(3) Cases, via
Tensor Induction

(10.2.1) We will give a unified treatment of these three cases by
thinking systematically about tensor induction (cf. [C-R-MRT, 13], [Ev])
of ¢-adic hypergeometrics. [ am indebted to Ofer Gabber for making me
aware of this point of view. [This same method could also be used in the
differential galois case, where it would obviate the use of the
specialization theorem.]
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10.3 Short Review of Tensor Induction
(10.3.1) Let us recall the basic setup (cf. [C-R-MRT, 13], [Ev]). Given a
group G and a subgroup H of finite index n, consider the "wreath

product” (H)* XS, , where m € S, acts on (H)I* by

n
Tr_l(hl, ho, .., hpy)m = (h’l'[(l)’ hi2)s h’l‘[(l’l))‘
If we pick an ordered set Yq, .., ¥y, of left coset representatives for G/H,
we cahn, following Frobenius, define an injective group homomorphism
G — (H) XS,
g = m-(hq, ho, .., hy)
by writing
gY; = Xﬁ(i)hi’ with each hj in H, and 1 in S5,.

If we change the ordered set of coset representatives, this
homomorphism changes by an inner automorphism of the target.
Now suppose we are given a ring A, and a representation of H on

a free A module V of finite rank r. The wreath product (H) XS, acts

on VAN 55 follows: (H)M acts as
(hl’ h2, ey hn)i (V1®V2® ®V1’l) = (h1V1®h2V2® ®hnvn),

and 5, acts as
w1 (V1i®vo® .. ®vy) = (Vi (1)®V(2)® .. ®Vyr(n))-
Restricting this representation of (H)! XS, to the subgroup G, we obtain

a representation of G on V®n, a free A-module of rank rf'. The
1somorphism class of this representation is independent of the auxiliary
choice of ordered set of left coset representatives used to define it. We
call it the tensor induction of V from H to G, and denote it

(10.3.2) Here are some of the basic properties of tensor induction, all
of which result directly from the definitions:

(1) (additivity) If V and W are two representations of H in free A-
modules of finite rank, we have an isomorphism of G-representations

(2) (Jordan-Holder compatibility) Suppose that V is is a representation
of H in a free A-module of finite rank, and that we are given a finite
filtration

0 = Fild*lyv c Fildv ¢ .. c FilOv = v
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of V by subrepresentations such that each gri\/ 1s A-free. Consider the

induced filtration of V&N defined by

Filk(v®N) i= 3. 4 o) + . vay, 2 k FIIPL(V)®FiI22(V)®..@Fil*n(V).

This is a filtration of ®-Indy-g(V) by G-subrepresentations whose gri
are each A-free.

Moreover, if we filter the H-representation ®; gri\/ by the

submodules
Fil'(®; gr'V) = &, 5 | gr'Vv,
the induced filtration on ®-Indycg(®; gri\/) is split, and has an
isomorphic associated graded:
grd( ®-Indycg(®; griv)) = grd( ®-Indycg(V)).
In particular, we have an isomorphism of G-representations
®-Indycg(®; gr'V) = &;erd( @-IndycgV)).
(2bis) (inclusion) In the case of a two step filtration Fillv ¢ v, the
subobject Fil''(®-Indy g(V)) of ®-Indyc (V) is ®—IndHcG(F111V), and

the quotient gro(®—1ndHcG(V)) is ®—IndHcG(V/F111V).

(2ter) (inclusion) In the case of a direct sum decomposition V = &; Vj,

there is a canonical inclusion

with A-free quotient.

(3) (transfer) If V is a representation of H in a free A-module of rank

one, i.e,, a character X: H = A”, then ®-Indygcg(V) is the character of

G defined by g = X (Vgcpy(g)), where Ve @ GaP — Hab is the transfer,

(4) (inflation) Suppose that K C H is a subgroup, and that K is normal in
G. For any representation V of H/K, we have an isomorphism of G-
representations

InflG/K to G(®_IndH/K C G/K(V)) = ®_IndHCG(InﬂH/K to H(V)).

The other basic properties of tensor induction which we will need
are almost all immediate consequences of the tensor version of the
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Mackey Subgroup Theorem. Here is the statement (cf [Ev]).

Mackey Subgroup Theorem for Tensor Induction 10.3.3
Suppose that K 1s an arbitrary subgroup of G, and H a subroup of G of
finite index n. Then G is a disjoint union of d < n double cosets Kg;H. Let

g1, -, 84 be double coset representatives. For each g;, let H; := gngi_l.
Given an H-representation V, say p: H —» Aut(V), denote by V; the H;-

representation pj: H = Aut(V) defined by pi(gihgi_l) = p(h). Then

®-IndycaV) 1K = @y o e (®-Indy. g cg(V)).

Corollary 10.3.4 Hypotheses and notations as in the theorem above, if
A is a field of characteristic zero, and if V is semisimple (e.g.,
irreducible) as an H-representation, then ®-Indycg(V) is semisimple as

a G-representation.
proof Since we are in characteristic zero, it suffices to show that the
restriction of ®-Indy-g(V) to some subgroup K of G of finite index is

semisimple as a K-representation. Take for K the intersection of all the
G-conjugates of H. Since K is normal in each H;, each V; | K is K-

semisimple, and hence so is their tensor product. Since H;NK = K, the

theorem gives

®_IndHCG(V) | K = ® reps g; of K\G/H (Vl | K) QED

Corollary 10.3.5 Hypotheses and notations as in the theorem above,
suppose in addition that H is normal in G. Then

(1) ®_IndHCG(V) | K = ® reps g; of K\G/H (®_IndeKCK(Vi))‘

(2) If K maps onto G/H (e.g., if K has finite index m in G and if
gcd(n, m) = 1), then
®-IndygcgV) | K = ®-Indynkcr (V).

(3) If K = H, then

®-Indycg(V) | H = ®p o of /1 (V).
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10.4 A Basic Example; tensor induction of polynomials
(10.4.1) In this section we will consider the following situation: G is
the group Z, H is the subgroup nZ, V is a free A-module of rank r > 1
on which the canonical generator Y, := 'n" of H acts by an

automorphism ¢. We take the integers {1, 2, ..., n} as ordered set of

coset representatives of G/H. By definition, the canonical generator Y4 :=

"1" of G acts on V&N by the automorphism
Y1 (vi®vo® .. ®vy) = 9(v )RV ®Vvo® .. Qv _1.

Let us define
P(T) := det(T - v, | V),

P®n(T) = det(T - Y1 | ®—Il’1anCz(V)).

By using the Jordan-Holder compatibility and "reduction to the
universal case”, one sees that P g (T) depends only on P(T), and that

this dependence is itself by means of universal formulas.

Definition 10.4.2 We say that Pg(T) is the n-fold tensor induction of
P(T), and that the roots of Pg(T) are the "®n'th roots of the roots of
P(T)".

(10.4.3) Here is a concrete way to make this explicit. Suppose that V
admits an A-eigenbasis eq, ... , e,, with
(P(ei) = Ajej.
(Thus P(T) is TT{(T = ;). Then VON 3dmits as A-basis the r! vectors
ea1®ea2® ®ean = elaq, .., apl,

indexed by the set E := {1, 2, ..., r}1'. Consider the action of "cyclic
permutation of the n factors” on this set, and the corresponding
decomposition of E into orbits. Given an orbit Z, we can attach to it the

integer Card(Z), and the quantity A(Z) in A™ defined as

ANZ) = Ay XN4 X ol XN ,
a1 a2 %Card(2)

where [al, . an] 1s any element of E which lies in the orbit Z. For each

orbit Z, we denote by Span(Z) C VN the A-span of the corresponding
basis vectors. Then we have a G-stable direct sum decomposition

ven - g Span(Z).

One sees directly that the characteristic polynomial of yq on Span(Z) is

orbits Z
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det(T - yq | Span(2)) = TCard(Z) _ 3(z),

Thus we obtain the following formula:

Pon(T) = T ., (T6ard(2) - (2)),

(10.4.4) In the special case when V has rank one, this specializes to
Pon(T) = P(T).

(10.4.5) In the special case when the index n is a prime g (but

rank(V) is arbitrary), all orbits have Card either 1 or g, and the
formula becomes

Pon(T) = P(T)xH(TY),
where H(T) is the monic polynomial defined (universally) by

det(T - ¢®d | VOd)/det(T - ¢ | V) = H(T)I.
An alternate description of the polynomial H(T) is this: since q is a
prime, when we expand (X4 + X9 + ... + X )9 by the binomial theorem,
we get

(Xq + Xg + o+ X9 = 3 (X9 + g2y a(WXW in Z[the X;],
with nonnegative integers a(W). Then H(T) is given by
H(T) = TTy, (T - aW)a(W),

10.5 The Geometric Incarnation

(10.5.1) Suppose given connected schemes X and Y, and a finite etale
map {: Y = X of degreen > 1. If we pick geometric points y of Y and

x := f(y) of X, then H := mw{(Y, y) is an open subgroup of index n in

G := ’ITj_(X, x). Let A be a coefficient ring, and F a lisse sheaf of free A-

modules of finite rank r > 1 on Y. View F as a representation of
m1(Y, y) on the free A-module V := C;Fy. Then we can form the tensor

induction ®Indycg(V), and then interpret it as the fibre at x of a lisse

sheaf on X of free A-modules of rank r'. We will denote this sheaf
f®*?)

and call it interchangeably the "tensor direct image”, or the "tensor

induction”, of the lisse sheaf ¥ by the finite etale map f.

Descent Proposition 10.5.2 Let [' be a finite group, X a connected
scheme, and f : Y — X a finite etale connected ['-torsor over X. For any
coefficient ring A, and any lisse sheaf ¥ of free A-modules of finite rank
r >1 on Y, we have an isomorphism of lisse sheaves of free A-modules
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(fge®) = &, v (T).

proof This is just the geometric transcription of 10.3.5 (3). QED

Base Change Proposition 10.5.3 Let ' be a finite group, X a
connected scheme, and f : Y — X a finite etale connected ['-torsor over
X. Let Z be a connected scheme, m: Z - X a morphism. Suppose that
the fibre product ZxxY is connected. Consider the cartesian diagram

T[Y*CEF ‘3:

AN Ty 4

ZxyY —— Y

fz l lf

T

Z — X
Then on Z we have a "base-change” isomorphism of lisse sheaves

’IT*(f®*€F) = (fz)®*(’lTY*€F).
proof This is just the geometric transcription of 10.3.5 (2). QED

10.6 Tensor Induction on Gm

(10.6.1) In this section, we work over an algebraically closed field k
of characteristic p on G,y := Spec(klt, 1/t]). We denote by I (resp. I,) a

choice of Inertia groups at 0 and o respectively. For each integer n = 1
prime to p, we denote by Ig(n) (resp. I.,(n)) their unique subgroups of

index n, We fix a prime ¢ = p, and consider the tensor induction of lisse
Qy-sheaves ¥ with respect to the Kummer coverings

[nl: Gy = Gy
of degrees n > 1 prime to p. We will also consider the corresponding
"local” tensor inductions of Iy (resp. I, )-representations with respect to

the same Kummer coverings [n] of Spec(k((t))) (resp. of Spec(k((t_l))))
by itself.

For each o« € k™, we denote by

T Gy = Gy
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Ty(x) = ax

the multiplicative translation by o.

Lemma 10.6.2 Let ¥ be a lisse sheaf on Gy, and n > 1 an integer

prime to p. Then its local and global tensor inductions with respect to
any Kummer covering [n] with n > 1 prime to p are related by

(Nlgx(F) 1o = [nlgs«(F |1y,

(Ngx(F) 11 = [nlgx(T | 1)
proof This is the base-change proposition 10.5.3, with f := [n] and m the
inclusion of Spec(k((t))) (resp. Spec(k((t~1)))) into G- QED

Lemma 10.6.3 Suppose that ¥ is lisse of rank r on G, and tame at

zero. If (¥ [Ig)Ss = &, | ‘f’Xi’ then for any integer n > 1 prime to

1=1,

p}
(Inlg«(F) 1 19)s5 = @,

where the pjare the r' tame characters (with multiplicity) such that

tame

for any topological generator Y of I , if we define

P(T) := ﬂi(T - Xi(}f))

then we have

Pon(T) = WJ'(T - pJ'(X)).
proof This is obvious from the previous lemma, the inflation
compatibility 10.3.2 (4) applied to K := Py CG := I, and 10.3.5 (2)
applied to the inclusion of ZYy into Iotame =~ ﬂé#p Z,(1). QED

Definition 10.6.4 Given r > 1 not necessarily distinct tame characters
X1, -, Xy, and an integer n 2 1 prime to p, we will refer to the ri

characters P in the above lemma as the "®n'th roots of the {Xi's}".

Examples 10.6.5 (1) The ®2'nd roots of {X 1, ..., X} are the r
characters
(X1, ., Xy U U {both square roots of Xixj}-

1<i<j<r

(2) The ®3'rd roots of {X 1, X9} are the 8 characters



Chapter10-4-adic exceptional cases-12

{X1, X2} U {all cube roots of (Xl)(x2)2} U {all cube roots of (X1)2(X2)}.

Lemma 10.6.6 Let X be a tame @e—valued characters of mq(Gy, ®k), §
a nontrivial additive character of a finite subfield ky of k, and n 2 1 an

integer prime to p. Then we have isomorphisms of lisse sheaves on G,

(1) nlgw(Ly) = By,
(2) nlg«(Ly) = Qgif n 2 2,
(3) [n]®*(£§¢®£x) = By ifn 22

proof (1) follows from 10.6.2, 10.6.3 and 10.4.4, since [n]®*(.ﬁx) is lisse
of rank one on G, and everywhere tame. For (2), the transfer
interpretation of tensor induction of characters shows that [n]®*(£’,¢)
has order dividing p. But if n > 2 is prime to p, then [n]®*(f,q)) is tame,
because by 10.5.2 we have

[n]*([n]®*(cﬁ¢)) = Q¢ u (k) Toc*(‘f’np) = ®, ¢ u (k) (‘f’np(ocx))

~ f’LP((ZO()X) = Q.

Therefore [n]®*(if,q)) is trivial. Finally (3) follows from (1), (2), and the
"additivity” of tensor induction. QED

Lemma 10.6.7 Let n 2 1 and m > 1 be integers which are both prime
to p and which are relatively prime: (n, m) = 1. For any lisse Qp-sheaf

% on G,,, we have an isomorphism

(1) (N]*(Imlg (7)) = [mlg%(n]*(F)),
and an injective homomorphism
(2) [Nl (Imlg«(F)) — [Imlgs(n](F)).

proof The first assertion is a special case of the base-change
isomorphism, applied to the cartesian (because (n, m) = 1) diagram
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[n]*F F

[n] ya
> Gy
[n] l [m]
m > G-
We next define the define the map (2) when (n, m) = 1. For this,
1t suffices by adjunction to define a map

Mlg «(F) = [n]*(Im]g «([N]«(F))) = IMm]g »([n]*[Nn].(F))

= [m]®*(@0( € Lln(k) TO(*(?))

By 10.3.2 (2ter), we have an inclusion

Do e 0 MIgxTe*(F)) ¢ Imlgu(®, g To*(F)),

and the desired map is the restriction of this one to the direct
summand (« = 1) which is [m]g(F).

To show that this map
(2) [Nl (Imlg () = [mlg(n]i(F))

is injective, it suffices to show that it is injective after pullback by [n].
But after this pullback, this map is none other than the above inclusion

® w0 [Mlgu(Te () € mlgu(®, g To*(F).  QED

Proposition 10.6.8 Suppose that p is odd. Let X be a tame @e—valued
character of mwq(G,,®k), ¢ a nontrivial additive character of a finite
subfield kg of k, and n > 1 an odd integer prime to p. For any

hypergeometric of type (n, 0)
o= Ho (g X1, ooy Xy &) with X = TT._,

the I -representation [2]g«(H) | I, is a direct sum

.....

2]« (M) | I = [n]*(f)x) ® (rank n4 - n, all eo-slopes 1/2n).

proof By 10.6.2, [2]g () | I, depends only on ¥ | I. By the change of
characters theorem 8.6.4, for fixed (A, ¢), ¥ | I, is the same for any n

tame characters whose product is X. Since n is odd, we may take the n
n'th roots of X as these characters, and prove the assertion for that
particular .

In this case, we have (for some W in k™) a global isomorphism (cf.
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8.9.1 or [Ka-GKM, 5.6.21)

= [n]*(‘f’w(ux)@f’){(x))'
Let us first compute the co-slopes of [2]g (). We must show that
[2]*[n]*([2] g 5 (¥)) has n2 - n slopes of 1, and n slopes of zero. But this is

clear, since

[2]*In]*([2] g 5 () = [2]1*[n]*([2] g x( [n]*(f’qJ(LlX)@f’X(X))))
= [2]*([2] g s ( [n]*[n]*(ﬁqj(ux)@cﬁx(x))))
= ([n]*[n]*(fw(ux)(@f;X(X)))®T_1*([n]*[n]*(ﬁ¢(MX)‘X’f)X(X)))
= (By ¢ My izLP(LLO(X)®r;X(X))® (B ¢ My E’qJ(—MaX)@liX(X))
= EBO(,B € MpxHp f’qJ(u(oc - E»)X)®£’X2(X)'

[t remains to see that the n-dimensional tame part, corresponding to
the pairs (x, p) with o = p, is in fact [n]*f,x. For this, we use part (2)

of the previous lemma, according to which
[n]*([2]®*(f)qj(ux)@)iix(x))) C [2]gx( [n]*(f)qj(ux)(@iix(x))),
and 10.6.6, (3), according to which
[2]®*(f’¢(ux)®f’x(x)) = ‘E’X(X)' QED

We now exploit the special case n = 3 of the above proposition, the
only case in which [2]g s (#) has Swan, = 1.

Corollary 10.6.9 Suppose that p is prime to 6. Let X be a tame @é_
valued character of m(G,,®k), ¢ a nontrivial additive character of a
finite subfield kg of k. For any hypergeometric of type (3, 0)

Ho= Ho (s X1, Xo, X35 &) with X =TT,
denote by

{p1, -, pol} i= the ®2'nd roots of {X 1, X2, X3},

={%X 1, X2, X3} U {both square roots of X1 X9, of X1X3, of XoX3l,
and by

-----

{A\1, No ,Az } := the cube roots of X.

Then for some [ € k™, there exists an isomorphism of lisse sheaves on

Gm

[2]@x (M) = K (L g p1, s poi Agy Ag A3,

where "ss” means “"semisimplification as lisse sheaf on G,,".
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proof Since ¥ is irreducible, [2]g «(}) is certainly semisimple. It has
Swahn., = 1, with six slopes 1/6 and three slopes zero, and it is tame at

zero. By the intrinsic characterization of hypergeometrics (8.5.3) and
(8.5.2), either [2]g «(H) is itself an irreducible hypergeometric,

necessarily of type (9, 3), or for some integer 1 < k < 3 it is the direct
sum of an irreducible hypergeometric of type (9 - k, 3 - k) with k
sheaves among the f,/\i. Looking at the tame parts of [2]g «(H) and of
}EM(!’ P; p1s 5 P9 /A1, Ao ,Az) at both zero and eo, the result is

immediate from the cancellation theorem 8.4.7 and the rigidity
corollary bis 8.5.6 (2). QED

Lemma 10.6.10 Let g be a prime. There exists a nonzero integer D(q)
such that for any algebraically closed field k of characteristic not
dividing 2gD(q), the following statement (%) holds:

(%)for ¢ any primitive gq'th root of unity in k>, of the 29 sums in k,
Yy y

(£1) + (2¢) + (2¢2) + .+ (x2d7D),
where the signs + are chosen independently, the only ones that vanish
are the two corrseponding to the choices (all +) and (all -).

Moreover, for q = 3 or q = 5, we have D(q) = 1.

proof Let k be an algebraically closed field of charcteristic neither two

nor q. Fix a primitive g'th root of unity ¢ in k™, i.e.,, ¢ is a root in k of
the polynomial

(X)) = 1+ X + X2 + . +x9°1 in 7[x].

That (%) hold in k amounts to the statement that if we partition {0, 1,
2, .., d-1} into two nonempty disjoint subsets S and T, then

2. e o= 3 M in k.
Since we always have

ZneS Cn = _ZmeT Cm n k’

nes meT

and k has odd characteristic, we can only have ZnES el = ZméT el in

kif in fact 2_ o ¢? =0 = 2 ¢™ in k.
Thus we must show that if S is any proper nonempty subset of {0,
1, 2, .., g-1}, we have Z_.- ¢ = 0. Replacing S by its complement if

necessary, we may assume in addition that Card(S) < (q - 1)/2. Thus
the cases g = 3 and g = b (lest -1 be a fifth root of unity) are trivially
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okay In any characteristic not dividing 2q.

For general g, we argue as follows. Multiplying the putative
relation by a power of ¢, we may further suppose that 5 does not
contain g-1. Define

Fg(X) = 2 g X' € ZIX]
Then if (k, ¢) "fails” for S, then X — ¢t is a k-valued point of the finite
Z-scheme Spec(Ag),

Ag = ZIX1/(84(X), Fg(X)).
But over Q the polynomial @q(X) is irreducible, and as Fg(X) is a

nonzero polynomial of lower degree, we must have
g.c.d.(®4(X), Fg(X)) = 1 in QIX].

Clearing denominators, we find that the ideal (@q(X), Fg(X)) contains
some nonzero integer Dg(q). Therefore Ag[1/Dg(q)] is the zero ring, and
hence Spec(Ag) has no k-valued points with values in fields where
Dg(q) is invertible. So one can take for D(q) the product of the Dg(q)

over all nonempty S not containing g-1. QED

Remark 10.6.10.1 Here is a method, due to J. Conway, to show that
in general D(qg) = 1. Suppose that q and p are distinct odd primes, that
r > 2 is the least integer such that

pl = 1 mod g,
and that

pf - 1 = nq for some integer n with

p = 1 mod n.

Examples: (p =3, =13, r =3, n=2),(p=5,g=31,r =3, n =4).
Then certainly r < g - 1 by Fermat. We claim that there exists a

primitive g'th root of unity ¢ in [Fpr whose trace from [Fpr to [Flo

vanishes. But this trace is the sum of r distinct (since [Fp(C) = [Fpr by

the choice of r) primitive q'th roots of 1, so p is a "bad” characteristic
for q.

To verify the claim, we argue by contradiction. The key point is
that

(ﬂ:pl’)x = “‘q X L‘lh'

[Indeed all the n'th roots of unity lie in the ground field [F,, while any

p}
element ¢ = 1 of Mg generates [Fpr over [Fp, 50 Mg N Hp.= {1}.]

Suppose that each of the g-1 nontrivial g'th roots of unity in [Fpr
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has nonzero trace. Since all the n'th roots of unity lie in the ground
field [Fp, the linearity of the trace shows that only the elements of

{0} U uy of [Fpr can posslbly have trace zero. Since there exist 101“1 > 1
elements of trace zero, some element of W, must have trace zero, and
by linearity every element of W, has trace zero. Therefore 1 has trace
zero, so plr. and there are exactly 1 + n elements of trace zero. Thus

101“1 = 1 + n. But if plr, then every element of [Flo has trace zero, so

1 + n. Therefore p = 1 + n, whence p'~1 = p, sor = 2. But plr, so

2, contradiction.

IA

p
p

Proposition 10.6.11 Let g be an odd prime. Suppose that p is odd and
does not divide 2gqD(q). Let X be a tame Qp-valued character of

m1 (G ®k), and ¢ a nontrivial additive character of a finite subfield kq
of k. Denote by A4 /5 the quadratic character. For any hypergeometric
of type (2, 0)

o= Ha (L s X1, Xo; &) with X = X1 X2/ /9,

the I -representation [qlg«(H) | I, is a direct sum

[dlg« () | 1o = [2]*(f,x) @ (rank 249 - 2, all eo-slopes 1/2q).

proof The proof is entirely analogous to that of the proposition above.
One first reduces to the case when ¥ is [2]*(f’¢(ux)®f’x(x))' One shows

that [2]*(f,x) is a subrepresentation of [qlg «(¥) exactly as above.

The only nonobvious point is that

[2q]*([a]lg « (¥)) = [q]* (gl g« ([2]*H)) = & Ty ([2]7H)

x € Mg

~ ® T o 217121 (L 4y () ® Ly (x)))

x € Mg

* O e, Ta Ly ®Lx ) @ Lp-u0®Ly ()
has all but two of its eo-slopes =1. This amounts to the statement that

if ¢ is a primitive q'th root of unity in k>, then of the 29 sums in Kk,

(£1) + (£8) + (£22) + .+ (xcd71),
where the signs + are chosen independently, the only ones that vanish
are the two corrseponding to the choices (all +) and (all -). This holds
precisely because we are in characteristic p not dividing 2gqD(q). QED

We now exploit the special case g = 3, the only case in which
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[dlg % (H) has Swan, = 1 for p not dividing 2qD(q).

Corollary 10.6.12 Suppose that p is prime to 6. Let X be a tame 68_
valued character of mq(G,,®k), ¢ a nontrivial additive character of a
finite subfield kq of k. Denote by /Aq /o the quadratic character. For any

hypergeometric of type (2, 0)
o= My, g X1, Xo9; &) with X = X1 X2/ /9,

denote by
{p1, -, pg} := the ®3'rd roots of {X 1, Ko}

= {X 1, X2} U {all cube roots of (Xl)(X2)2, of (X1)2(X2)},
and by
{1, A9} := the square roots of X.

Then for some | € k™, there exists an isomorphism of lisse sheaves on

Gm

[3]®*(3’E) = }EM(!’ b; P1, 5 P8 /\1, /\2)55,

where "ss” means "semisimplification as lisse sheaf on G,,".

proof The proof is entirely analogous to that of 10.6.9. QED

10.7 Return to the PSL(3), SL(2)xSL(2)xSL(2), and SL(3)xSL(3)
cases

PSL(3) Recognition Theorem 10.7.1 Let k be an algebraically closed
field of characteristic p > 7. Let A € k™, and ¢ any nontrivial @e—valued
additive character of a finite subfield k of k. Let X be a tame 66_
valued character of mq(G,,®k) which is not of exact order three.

Denote by
/\q /9 = the unique tame character of exact order 2,

N1 /3, Ngy3 = the two characters of exact order 3,
{p1, -, pg, 1} 1= the ®2'nd roots of {¥, X, 1)
= {x, X, 1) U {both square roots of 1, of X, of XJ.

(1) Any hypergeometric of type (3, 0) of the form
}E = }EX(I; l'|J’ X; X; ﬂ; Q)

has Ggeom = SL(3), and its dual is isomorphic to to T_1*¥.
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(2) The tensor direct image [2]g «(}) admits, for some p in k*, a direct
sum decomposition

[2]®*(}t) = @@ S H’Ll(!’ b; P1, 5 P8 /\1/3, /\2/3).
(3) There exists an isomorphism of lisse sheaves

Endo(}(’,) = [2]*}E|~l(!’ Y; P15 5 P8 /\1/3, /\2/3).

(4) For any w in k*, # (1, ¢; pq, .., pg; N1 /3, Agy3) has (Ggeom)o -

PSL(3) in its adjoint representation, and PSL(3) has index two in Ggeom-
(5) The hypergeometrics of type (8, 2) with (GgeOm)O,der = PSL(3) in its

adjoint representation are precisely the tame £ A-twists of these.

proof In (1), the assertion about G 1s a special case of 8.11.3, and

geom
the duality assertions 8.4.2 and 8.3.3. Assertions (2), (3), and (4) follow
from (1), via 10.6.9 and the semisimplification theorem 8.4.10. Assertion
(5) is proven exactly as its differential-galois analogue 4.3.6. QED

10.8 The SL(2)xSL(2)xSL(2) Case

SL(2)xSL(2)xSL(2) Recognition Theorem 10.8.1 Let k be an

algebraically closed field of characteristic p > 5. Let A € k* and ¢ any
nontrivial Qp-valued additive character of a finite subfield kq of k. Let

X be a tame @e—valued character of mq(G,,®k) which is not of exact
order four. Denote by
€1, ¢o := the primitive cube roots of unity in Kk,
N4 /9 = the unique tame character of exact order 2,
N4 /4, Nz /4 = the two characters of exact order 4,
{p1, -, pg} 1= the ®3'rd roots of {X, X
= {%, ¥} U {all cube roots of %, of %J.

(1) Any hypergeometric of type (2, 0) of the form

K= (4 X, X 9)

has G = SL(2), and H’®(TC1*}E)®(TC2*}E) has G

geom the image of

geom

SL(2)xSL(2)xSL(2) in SL(8).

(2) There exists, for some | in k*, an isomorphism of lisse sheaves
[Blgu () = A, b pyy s pgs Aryar N3/4).

(3) There exists an isomorphism of lisse sheaves
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Q

(T, *HIB(Te,*H) = (31K, ¢; pq, -, pgi A1/3 Aoy3).

(4) For any p in k™, ?]’Eu(!, W; P11, 5 P8 /N1 /4, N3 /4) has Ggeom = the
image in Sp(8) of the semidirect product (SL(2)xSL(2)xSL(2))XAz.

(5) The hypergeometrics of type (8, 2) with (G )0.der - the image in

geom
Sp(8) of SL(2)xSL(2)xSL(2) are precisely the tame £ A-twists of these.

proof Similar to the case above, using 8.11.7 and 10.6.12, and imitating
4.5.3. QED

10.9 The SL(3)xSL(3) Case

SL(3)xSL(3) Recognition Theorem 10.9.1

Let k be an algebraically closed field of characteristic p > 7. Let A ¢ k™,
and ¢ any nontrivial Qp-valued additive character of a finite subfield

kg of k. Let X1, X2, X3 be tame @e—valued characters of (G, ®k)

none of which has order dividing three, and whose product is trivial:
X1XoX3z = 1L
Denote by
/\q /o = the unique tame character of exact order 2,
Nq /3, Np /3 = the two characters of exact order 3,
{p1, -, pol} i= the ®2'nd roots of {X 1, X2, X3}
= {X1, X2, X3} U {both square roots of 7(1, of 7(2, of 7(3}.

(1) Any hypergeometric of type (3, 0) of the form

has Ggeom = SL(3), and H®T_1*H has Ggeom = the image in SL(9) of

SL(3)xSL(3).

(2) There exists, for some [ in k™, an isomorphism of lisse sheaves
[2]®*(3’E) = H’U(!’ ¢; p1, 5 Pos 1, /\1/3, /\2/3).

(3) There exists an isomorphism of lisse sheaves
%@T_l*}ﬁ = [2]*}E|~l(!’ Y; P15 -5 PO 1, /\1/3, /\2/3).

(4) For any W in k*, H’Ll(!’ V; p1, s pos 1, Aq /3, Ngy3) has (Ggeom)o -

the image in SL(9) of SL(3)xSL(3), and (G 0 has index two in

geom)
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Ggeom-

(5) The hypergeometrics of type (9, 3) with (G )0.der = the image in

geom
SL(9) of SL(3)xSL(3) are precisely the tame L A-twists of these.

proof Exactly like those of the previous two theorems, now using 10.6.9
and imitating 4.6.10. QED
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11.1 Homogeneous Space Recovery of a Reductive Group
(11.1.1) In this section we work over an algebraically closed field K of
characteristic zero. Suppose that we are given an integer n = 1, an n-
dimensional K-vector space V, and an algebraic subgroup G of GL(V). We
know that we can recover G from the the Tannakian category
C := Rep(G) of its finite-dimensional K-representations and the fibre
functor

w = "forget the G-action" : Rep(G) — (fin.-dim'l K-spaces).

(11.1.2) Suppose now that G is reductive. Following Ofer Gabber, we
will explain how to recover G (more precisely, the conjugacy class in
GL(n, K) of G(K)) from the Tannakian category C := Rep(G) using only
the functor

"G-invariants" : C — (fin.-dim'l K-spaces)

W > WG = Homge(1, W),

but without using a fibre functor.
(11.1.3) Let us first describe the idea. Consider the space

X 1= Isomyp (KM, w(V)).

This is a left GL(w(V))-torsor by postcomposition, and a right GL(n, K)-
torsor by precomposition. The quotient space Y := G\X is then a right
homogeneous space under GL(n, K). In terms of this homogeneous space
we recover G (up to GL(n, K)-conjugacy) as the stabilizer in GL(n, K) of
any chosen point y € Y.

(11.1.4) How are we to turn this idea into a proof? And where will
the hypothesis that G is reductive enter? First of all, we can construct
the space X using the fibre functor w as follows. If we view X as the
space of ordered bases (vq, vo, ..., v) of w(V), then X sits as an open

set in VI, We will instead view X as the closed subscheme of VI1x (V¥ )I
consisting of those tuples
(Vi, Vo, o, Vs V17, oo, v )
satisfying the n?2 equations
VJ'V(Vi) = Si“]'.
(This is just a longwinded way of saying that the v; are a basis of V

and the VJ'V are the dual basis of VY. For n=1, it amounts to defining

G,y by the equation xy=1 rather than by the condition "x invertible".)

This description has the merit of exhibiting X as an affine K-
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scheme of finite type, say X = Spec(A). The group G, being a subgroup of
GL(V), certainly acts freely on X; indeed, for any K-algebra R, the group
G(R) acts freely on the set X(R). Because G is reductive, the quotient

Y := G\X exists and is affine, with coordinate ring B = AG. On K-valued
points, we have
Y(K) = GKON\X(K).

Since X(K) = Isom(K", w(V)) is a left GL(w(V))-torsor and a right

GL(n, K)-torsor we see that Y(K) is a right homogeneous space under
GL(n, K), and the stabilizer in GL(n, K) of any point y € Y(K) is (a
conjugate of) G(K).

(11.1.5) To conclude this discussion, it remains to construct the
coordinate ring B of the affine scheme Y and the left action of GL(n, K)
on B, using only the Tannakian structure of C and the functor "G-
invariants”. To clarify the discussion which follows, let us denote by Vy,

.., Vu n coples of V, and by V417, .., V7 n coples of VY. We can

construct X as the closed subscheme of the spectrum of the symmetric
algebra

S := ® ) Symm>*(w(V;¥))®Symm™(w(V;))
1=1,..., n
defined by the ideal I generated by the n? elements
fij = %,
where f; . is the G-invariant element of

1,J
WViM)I®w(Vj) = w(VY)®w(V) = w(VY®V)

which is the canonical map 1 - VY QV. This fij is just the function

(V1, Vo, o, Vs V17, o, vy 7)) P vjv(vi),
described in an invariant way.
(11.1.6) Since G is reductive, and the ideal I is generated by the

invariants fij -8 we have
J

1,J°
B = (5/1)G = sG/(the ideal in SG generated by all the fij- 8 J)’

and SG is the [Nzn—graded algebra
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Homppg-e(1, ® i Symm*(V;¥)®Symm™(V;))

= Homlnd_c(ﬂ, Symm*(K®V)Y)®Symm*(KI'®V)).
In this last description, we see the left action of GL(n, K), through its
standard left action on K, the induced (A = A®idy/) left action on

KN®V, and the contragredient left action on (KN®V)Y. This left action

of GL(n, K) respects the N2-grading.
(11.1.7) In order to simplify the bookkeeping which is about to follow,

we perform one final rewriting of SG as

sG = Homippg-c(1, Symm*(KRP®V)Y & (K"®V))).

This allows us to view SG as an N-graded algebra:

sG - @dzo 5G(d), with

SG(d) := Hompe(1, Symmd(KN®V)Y & (KN®WV))).
In this picture, the left action of GL(n, K) respects the N-grading.

11.2 First analysis of finiteness properties
(11.2.1) Since G is reductive, and we are in characteristic zero, the

graded ring of invariants sG is finitely generated as a graded K-
algebra. To keep track systematically of generators and relations, it will
be convenient to introduce the following ad hoc terminology.

(11.2.2) For any finitely generated graded commutative K-algebra

A= By, Ad
and any integer D > 1, we define an N-graded commutative K-algebra
A{D} by setting

A(D} 1= Symm*(D,_4.p Ag) = ®yqp Symm™(Ay),
with the grading that makes Ay isobaric of weight d. We denote by
A{D},,, the part of A{D} which is isobaric of weight m.
There is a unique homomorphism of graded rings

op : A{D}) = A
which is the identity on @,_,.p Ag. Since A is finitely generated, this
homomorphism oy is surjective if D is sufficiently large, say D 2 Dg.

For each integer m > 0, we denote by
Rel{D, m} := Ker(ap)NA{D},
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the relations among the A; with 1 < D which are isobaric of degree m.

For each integer N > 1, we denote by
Rel{D, < N} c A{D}
the graded ideal generated by all the Rel{D, m} with m < N.
(11.2.3) For any (D, N) with D > 1 and N > D, we denote by A{D, N}
the quotient ring
A{D, N} := A{D}/Rel{D, < N},
and by
O(D,N : A{D, N} - A

the canonical graded homomorphism induced by «p.
(11.2.4) The key point is this: for a fixed D which is > D, this map
ap N Is surjective, and for N sufficiently large, say N 2 NO(D), xp N 1s

an isomorphism, simply because A{D} is noetherian.
(11.2.5) Let us say that the graded ring A is (D, N)-determined if
XD N is an isomorphism. Clearly if A is (D, N)-determined, then A is

determined by the following finite amount of data:
the element 1 in A

the graded vector space @,_,.y Ag
the multiplication maps Aj®Aj — Ajj, for each (i, j) with i+j < N.

Indeed, the ring A{D, N} is always determined by this data, whether or
not A is (D, N)-determined.

(11.2.6) We will now apply this to the situation A = SG. Notice that
the graded action of GL(n, K) on SG induces by functoriality a graded
action on each of the graded rings SG{D}, and this action stabilizes the

ideals Rel(D, <NJ}. So each of the approximations SG{D, N} carries a
graded left action of GL(n, K), and all the maps ap N are GL(n, K)-

equivariant.
(11.2.7) For any integer D > 2, SG(D} contains the n? elements fij as

isobaric elements of degree 2. So for any (D, N) with N > D > 2, it makes
sense to form the quotient ring

B{D,N} := S4(D, N}/(ideal gen. by the fj j - & ;).

This is a (no longer graded) ring on which GL(n, K) acts, and the

canonical ring homomorphism
pp N: B(D,N} — B := SG/(ideal gen. by the fi,5 = 8 J)
deduced from o 1y is GL(n, K)-equivariant. If 3G s (D, N)-determined,

then this map pp |y I1s an isomorphism.
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(11.2.8) How much data determines B{D,N} as a K-algebra with GL(n,
K) action? Clearly, it is determined by the following finite amount of
data:

the element 1 in SG(O)

the elements fij in sG(2)

the graded vector space @,_;.y sG(q)

the action of GL(n, K) on SG(d), for each 0 < d < N

the multiplication maps SO(1)®SG(j) - SG(i+J), for each (i, j) with
i+j < N.

11.3 Transition away from Tannakian categories
(11.3.1) We now make one further simplification in the presentation
of this data. Since the field K is of characteristic zero, for any object W

of C, the symmetric algebra Symm>*(W) in Ind-C may be recovered as
a graded subring of the corresponding tensor algebra which in each
degree d 1s the image of the appropriate symmetrizing idempotent in

the rational group ring Q[& 4]. Therefore the invariants sG(d) may be

viewed as the image of the symmetrizing idempotent on

TG(d) := Homp(1, @d(k"®V)Y & (KN®@V))).

The elements fij in TG(2) are the images of the canonical element & in

Homc(ﬂ, VY ®V) via the n2 "mixed crossterms”coordinate inclusions of

VY ®V into @2((KN®V)Y @ (KN®V)) in the Tannakian category C.

These inclusions depend only on the fact that C is a K-linear ACU ®-
category whose ® is K-bilinear. [But the notion of the canonical

element & in Homge(1, VY ®V) depends on the fact that C is Tannakian.]

(11.3.2) The action of GL(n, K) on TG(d) is deduced by functoriality
from the dual actions of GL(n, K) on the objects (KNPQV)Y = KIQVY
and K®V of C. These actions exist for any n and any objects V and

VY of any K-linear additive category C.

(11.3.3) The multiplications SG(i)®SG(j) — SG(i+j) may be recovered
by symmetrization from the multiplications

TEH®TA() — TG(i+)),
and these in turn depend only on the fact that V and V"~ are two
objects of a K-linear ACU ®-category whose ® is K-bilinear.
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11.4 Mock Tannakian Categories

(11.4.1) Exactly how much depends on having a Tannakian
category? We continue to work over our algebraically closed field K of
characteristic zero. Suppose we are given a K-linear additive category
M with an ACU ®-operation in the sense of [Saal, with unit object 1,
whose ® is K-bilinear. Suppose we are given

two objects of I, denoted V and VY,
a morphism &y: 1 —» VY QV
an integer n > 1.

(11.4.2) For each integer N > 1, denote by ‘JTLSN(V, VYY) the full
subcategory of JIl consisting of all finite direct sums of the objects
WI®WHr®.. ®W,, r <N,

where each object W, is either 1 or V or VY. Clearly the two objects
(KN®V)Y = KIQVY, and KNV

both lie in M=1(V, V¥). The ® operation in I defines for each (i, j) a
bifunctor

MV, VY« MSI(V, V) - MY, v,
(11.4.3) So for each integer d > 0 the object

Xd(KNV)Y @ (KN®V))

makes sense as an object of M=d(V, VV) on which GL(n, K)x& 4 acts. For

d = 0, we define this to be the unit object 1, with trivial action.
(11.4.4) For each d, we define

TG(d) := Homqy (1, @((KN®V)~ & (KP®V))).
This is a K-vector space on which GL(n, K)XGd acts, and their direct
sum is a (noncommutative) graded K-algebra, with multiplication given
by tensor product of morphisms in Jll. In each degree d we define sG(q)
to be the image of the symmetrization idempotent for &4 on TG(d). The
direct sum SG of the SG(d) becomes a graded commutative K-algebra,

taking for product the symmetrization of the product in the ambient
tensor algebra, on which we have a graded action of GL(n, K).

(11.4.5) We can now define the graded algebras SG{D}, their quotients
SG{D, N}, and the maps XD N everything will be GL(n, K)-equivariant.

Scholie 11.4.6 The approximation SG{D, N} with N > D > 1 is



Chapterl11-Reductive tannakian categories-7

determined entirely by the full subcategory M=N(, v¥) and all the
tensor product bifunctors

MUV, VY)Y x MV, VY) - MSIHI(V, vV,
for all (i, j) with i+j < N.

(11.4.7) There are n? visible "mixed crossterms" maps
VYRV > Q2((KNQV)Y @ (KN®V)).

2

By composition with &,: 1 = VY ®V, we obtain n“ elements fij n

sG(2). If we assume that these elements fi,j are GL(n, K)-invariant, we
can define the quotient ring

B := SG/(ideal gen. by the fj j - & ;)
on which GL(n, K) acts, its approximations

B{D,N} := SG{D, N}/(ideal gen. by the f; ; - Si,j)’

on which GL(n, K) also acts, and the GL(n, K)-equivariant maps

E)D,N : B{D,N} — B.
We can then define the K-schemes

Y := Spec(B), Y{D,N} := Spec(B{D,N})

on which GL(n,K) acts on the right, and the GL(n, K)-equivariant maps
Spec(E;D’N) .Y — Y{D,N}

Proposition 11.4.8 [f Jl above is a neutralizable Tannakian category
C, if V. and VY are dual n-dimensional objects of C, and if & is the

canonical map 6, and if the Tannakian galois group G of V is reductive,
then

(1) Y(K) is a right homogeneous space for GL(n, K), and the stabilizer in
GL(n, K) of any point y € Y(K) is (a conjugate of) G(K).

(2) there exists an integer Dg such that for any N = D > Dg, the map

Spec(BD’N) Y — Y{D,N}

1s a closed immersion.
(3) for each D > D there exists an integer Ng(D) such that Y = Y{D,N}

for all N = Nqg(D).

proof The hypotheses, that V be n-dimensional and that its Tannakian
group G be reductive, are invariant under change of K-valued fibre
functor, as is the conjugacy class of G(K) in GL(n, K). Once we we pick a
fibre functor on the Tannakian subcategory <V> of C generated by V,
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this proposition reduces to the previous discussion (11.1, 11.2). QED

Definition 11.4.9 Hypotheses as in the above proposition, we say that
the object V of C is (D, N)-determined if Y = Y{D,N}.

11.5 Statement of the reductive specialization theorem

Reductive SpecializationTheorem 11.5.1 Let K be an algebraically
closed field of characteristic zero. Let Jll be a K-linear additive category
MM with an ACU ®-operation in the sense of [Saal, with unit object 1,
whose ® 1s K-bilinear. Suppose we are given

two objects of I, denoted V and VY,
a morphism &y: 1 —» VY QV
an integer n > 1.
For each integer d = 1, denote by ‘JTLSd(V, V) the full subcategory of Il
consisting of all finite direct sums of the objects
WiOWHr®.. W, r < d,
where each object W, is either 1 or V or V7.

Suppose in addition we are given two neutralizable Tannakian
categories C¢ and Cf over K, and K-linear additive ACU ®-functors

Mm — C(]: Mm — Cﬂ:

M - M(]: M - Mﬂ:.
Fix an integer N > 2 and suppose that the following conditions hold:
(1€ dual) The object V¢ of C¢ is n-dimensional, its dual is (VY)¢, and
under this identification of (V)¢ with (V)Y, (&y)¢ is the canonical
map & 1 = (V)Y ®Ve in Cg.
(2C red) The Tannakian group Gg of V¢ is reductive.
(3C <N) The induced functor MN(V, v¥) - =NV, (V¥)e) is an
equivalence of categories.
(1F dual) The object VF of Cf is n-dimensional, its dual is (VY)F, and
under this identification of (V) with (VF)Y, (&)F is the canonical
map & 1 = (VF)Y®VF in Cf.
(2F red) The Tannakian group G of V is reductive.
(3F <N) The induced functor MN(v, v¥) - =NV, (V¥)f) is an

equivalence of categories.



Chapterl11-Reductive tannakian categories-9

Suppose that V¢ is (D, N)-determined for some integer D with
1 < D < N. Then G(K) is (conjugate in GL(n, K) to) a subgroup of Gg(K).

11.6 Proof of the reductive specialization theorem
For any D with 1 < D < N, the {D, N} approximations of the spaces
Y, Y¢, and Y are related by GL(n, K)-equivariant isomorphisms

Y{D, NJ
zl/ \Iz

Y[F{D, N} Y(]:{D, N}
If in addition V¢ is (D, N)-determined, the canonical map
Y(]: - Y(]:{D, N}

is an isomorphism, so we obtain a GL(n, K)-equivariant diagram

Y{D, N}
Y[F{D, N} Y(]:{D, N}.
1 s
Y[ Y-

So there exists a (unique) GL(n, K)-equivariant morphism

Yﬂ: - Y(]:
which makes the diagram commute. On K-valued points, this is a
GL(n, K)-equivariant morphism of right GL(n, K)-homogeneous
spaces. Fix a point yf in Yp(K), with image y¢ in Y ¢(K). Their

stabilizers Stab(yf) and Stab(yg) in GL(n, K) are (conjugates of) the
groups Gp(K) and Gg(K) respectively. Since the map is GL(n, K)-
equivariant, we have the inclusion of stabilizers Stab(yp) C Stab(yg),
which means precisely that Gp(K) is (conjugate to) a subgroup of Gg(K).
QED

11.7 A minor variation on the reductive specialization
theorem
Here is a minor variation, in which we onit mention of &, but
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insist that N > 3.

Reductive SpecializationTheorem bis 11.7.1 Let K be an
algebraically closed field of characteristic zero. Let Il be a K-linear
additive category with an ACU ®-operation in the sense of [Saal, with
unit object 1, whose ® is K-bilinear. Suppose we are given

two objects of I, denoted V and V7,
an integer n > 1.

For each integer d = 1, denote by fde(V, V) the full subcategory of Il
consisting of all finite direct sums of the objects

WiQOWHr®.. W, r <d,
where each object W; is either 1 or V or V7.

Suppose in addition we are given two neutralizable Tannakian
categories C¢ and Cf over K, and K-linear additive ACU ®-functors

n - C¢ m - Cf

M = Mg M = Mf.
Fix an integer N > 3 and suppose that the following conditions hold:
(1€ dual) The object V¢ of Cg is n-dimensional, and its dual is (VY)¢.
(2C red) The Tannakian group Gg of V¢ is reductive.

(3C <N) The induced functor M=N(V, v¥) - €NV, (V¥)e) is an
equivalence of categories.

(1F dual) The object VF of Cf is n-dimensional, and its dual is (V).
(2F red) The Tannakian group G of V[ is reductive.

(3F <N) The induced functor M=N(v, v¥) - cpsN(VE, (V¥)p) is an

equivalence of categories.

Suppose that V¢ is (D, N)-determined for some integer D with
1 < D < N. Then G(K) is (conjugate in GL(n, K) to) a subgroup of Gg(K).

proof The point is to show that the map 8y in the hypotheses of the

reductive speclalization theorem is already uniqgely determined by the
other data. As explained in [De-CT, 2.1.2], given an object X in a

Tannakian category C, the data consisting of its dual X~ together with
the maps

6:1 —- XV ®X, ev : X®XY —> 1
(which morally correspond to the identity mapping idy in End(X) and
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to the trace form on End(XY)) is entirely characterized by the sole
requirement that the two composites

X®H5 ev@®X

X

X®XYQ®X

QX X Rev

X\/
be the respective identities.
The key point i1s that these conditions can be stated entirely in

XVQXQ®XY XY

terms of the category C<3(X, X¥) and the tensor product bifunctors
C=l(x, XV) x C22(X, X¥) - C=3(X, xXV),

C=2(x, x¥) x Csl(x, xv) - €33, xv).
Take C := Cg and X := V. Then by axioms (1€ dual) and (3C <N)

we may "back up” the maps & and ev in Cg to maps 6y and evy in N,

8\/ 1 - VYRV, evy, VRVY - 1

and these are the unique maps in Jl for which the two composites

\VAd 8V®Vv Vv®v®vv V ®eVV

are the respective identities.
Replace C¢ and V.in the above paragraph by Cg and V, and

V\/

repeat the above "backing up” argument. By uniqueness, the backups to
T of the maps 6 and ev in Cfp must coincide with the above 6y and

evy in Jl.
Thus the map 8\/ can be reconstructed from the the other data.

QED
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12.1 The situation over C
In sections 12.2 through 12.8, we work over C.

12.2 Additive Convolution, Exotic Tensor Product, and Fourier

Transform on Al over C
(12.2.1) To avoid confusion between convolution of D-modules on Gy

and convolution of D-modules on Al, we will continue to denote the
former by KxL, and we will denote the latter by Kx_L.

(12.2.2) We first establish the basic notations. We denote by

w: Al - Spec(C) the structural map,

iy @ Spec(C) — Al the inclusion of the point « € C = Al(D),
N Alx(EAl the diagonal embedding,

sum: Aix(EAl — Al the addition map (x, y) = x+y,

— Al the inclusion.

J: Gy

Key Lemma 12.2.3 For K, L objects of pb,holo(aly and o € €, we

have canonical isomorphisms in Db’hOIO(Spec((E)) = DP(C-vector spaces)

(1) T (K®e%X) = i (FT(K)I1],
(2) T (FT(K)®e™ %) = i ' (K)[1],
(3) Ty (Kx L) = my (K)® (L),
(4) i (K®'L) = iy (K)®iy (L),

and a canonical isomorphism in DP.holo(al)
(5) FT(Kx,L) = FT(K)®'FT(L)[1].

proof Assertion (1) is base change for the cartesian diagram

idxi,
nl AlxeAl pri’(K)®exy
T[J/ Lo J,pr2
Spec(C) Al

Assertion (2) is just (1) at -« applied to FT(K).
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Assertion (3), "mise pour memoire", has already been pointed out
in (5.1.9 1(a)). Assertion (4) is the transitivity of "upper shriek”,
together with the observation that the composite

i A

(04

Spec(C) —— Al Alxenl

1s the product map

Spec(C)xSpec(C) —— Alx(EAl.
Since formation of f' is compatible with products, we have
i (K®'L) 1= i !ANKXL) = (igx i) (KxL) =
= i (K)xig (L) = ig (K)® iy (L).
Assertion (5), in the equivalent form
FT(K=,L)[1] = FT(K)11®'FT(L)[1],

1s base change for the following diagram, whose outer square is

cartesian:
(x,v,z) = (x,2,y,2)
Alx Alx Al AZx A2 (pri'(K)®eXY)x(prq(L)®e*Y)
l sum xid
Alx(EAl l proxpro
l pro A
Al Alx(DAl. QED

Remark 12.2.3.1 The use of the full HD-module formalism in the above
proof should not obscure the entirely elementary nature of the result.
Here is an entirely elementary proof of (1), (2), and (5) in the case
when K and L are themselves holonomic D-modules.

If we think of an O-quasicoherent J-module K on Al as (the
sheaf associated to) a module over Cl[x, d], then K "is" a triple (V, A, B),
with V a C-vector space (namely the global sections of K as O-module)
endowed with an ordered pair (A, B) of C-linear endomorphisms A and
B (i.e., the effects of x and 0 respectively) whose commutator satisfies

[A, B] = -1.
The Fourier Transform FT(K) of K = (V, A, B) is just (V, -B, A).
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The complexes T (KQe™**) and iO(!(FT(K))[l] are respectively
d+ox X=X
K K FT(K) —— FT(K).
deg -1 deg O deg -1 deg O

From the (V, A, B) point of view, these two complexes are
B+ -B-«x
V——™V V—V,
so (1) is obvious. Similarly for (2).
For (5), think of K and L as given by data (V, A, B) and (W, C, D)
respectively as above. Then Kx_ L := sum (KxL) is the two-term

complex

B®1 - 1QD
VW V&cW,

deg -1 deg O

with operators (A®1 + 1Q®C, (1/2)(B®1 + 1®D)).
Applying FT, we see that FT(Kx,L) is the same two term complex

B®1 - 1QD
VW V&cW,

deg -1 deg O

but with with operators (-(1/2)(B®1 + 1®D), A®1 + 1QC).
What about FT(K)®'FT(L)[1]? This is the complex

x-y
FT(K)® ¢ FT(L) FT(K)®¢FT(L)
deg -1 deg O,
with operators (x+y, (1/2)(9, + ay)).

[f we trace this through, it means the complex

-B®1 + 1®D
V&cW V&cW,

deg -1 deg O

with operators (-(1/2)(B®1 + 1®D), AQ1 + 1Q®C). So (5) is proven.QED
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Corollary 12.2.4 For M, 7l holonomic D-modules on Al, we have

(1) FT(M) = jLJ*FT(M) if and only if I = O.

(2) if either m I = 0 or Tl = 0, then m (M=, T) = 0.

(3) If either of of := j*FT(IN) or B := j*FT(7) is a D.E. on Gy, and if

Ty (I x,T1) = 0, then denoting by ¥® B the usual @Gm—tensor product,
FT(Mx,N) = j(¥® B),

and =7 is a single JD-module, concentrated in degree zero.

proof (1):The canonical map FT(IM) — jJ*FT(I) is an isomorphism if

and only if the map Left(x): FT(MN) — FT(IN) is an isomorphism, i.e., if

and only if iO!(FT(‘JTL))[l] (= my M) vanishes.

(2): This is obvious from T (K=, L) = m, (K)®m,(L).

(3): Since My (Mx,T) = 0, part (1) above and 12.2.3 (5) give
FT(Mx,N) = jo i*(FT(Mx,N)) = j i*(FTOM)RFT(N1]) = jy (4R B[1]).
If say o4 is a D.E. on Gy, then as O-module o is locally free of finite
rank, in which case #®'B[1] on Gyy, is visibly the usual O-tensor
product. Thus we have FT(I=_T) = j (4®B) is a single H-module in
degree zero. So by Fourier inversion, Jl= 7l is a single D-module in

degree zero. QED

12.3 The Tannakian Category DA,B

Definition 12.3.1 Given a holonomic D-module T on I—\l, consider the
following conditions (A) and (B):

Condition(A) : m, M =0 (or equivalently, FTIN = j,j*FTI).
Condition(B) : j*FTIN is a D.E. on Gy, (ie., J*FTIN is @Gm—locally free of
finite rank).

Remark 12.3.2 In virtue of 2.10.16 (1), a holonomic I satisfies

Condition (B) if and only if all of its ec-slopes are = 1. In particular, if T
is RS then I satisfies Condition (B).

Proposition 12.3.3 Suppose that Il is a holonomic D-module on Al
which satisfies both Conditions (A) and (B). Then for any holonomic D-
module T1, M=, Tl is a single H-module which satsifies (A). If in addition
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M is nonconstant (i.e., if j*FT(IN) = 0), then M=, T satisfies (B) if and

only if Tl itself satisfies (B).
proof The first assertion is just a restatement of the previous corollary.

If in addition T is nonconstant, then j*FTI is O-locally free of
nonzero finite rank. Therefore j*FTJl is O-coherent if and only if
J¥FTN®J*FTIM is O-coherent. QED

(12.3.4) Recall (2.10.1 (1)) that FT(j!@Gm) = j*@(ﬁm . So j!@Gm
satisfies both conditions (A) and (B). Using J!G(Em as the M above, we
find

Proposition 12.3.5 For 7l a holonomic D-modules on Al ‘ﬂ*+(j!@(ﬁm)

is a single holonomic D-module on Al which satisfies Condition (A), and
we have a canonical isomorphism

FT(ﬂ*+(j!@Gm)) = jJ FT(N).
The operator Jl = ﬂ*+(j!®Gm) is idempotent; it is the projector onto

those holonomic D-modules Tl which satisfy Condition (A).
proof All save the last assertion is a formal consequence of the

preceeding two results, and the fact that j*FT(j!GGm) = @Gm.
If N1 already satisfies Condition (A), then FT(J) = j,j*FT(7), so
FT(ﬂ*+(j!®Gm)) = J J FT(N) = FT(N),

and by Fourier inversion we have ﬂ*+(j!®(ﬁm) ~ J1. QED

Theorem 12.3.6 Denote by DModl°lo(Al) the abelian catergory of all
holonomic D-modules on Al, and by Da p the full subcategory of

DModholo(al) consisting of those objects which satisfy both Conditions
(A) and (B). Then

(1) Dp g Is stable by convolution.

(2) The exact functor
DModholo(aly — pModholo(g )

M — J*FT(IM)

induces an equivalence of categories
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DA,B = D.E.(Gm/ﬂ:),
whose quasi-inverse D.E(G,/C) = Da p is given by
V b [x = -x]*FT(jV).
(3) This equivalence carries convolution product of objects of Dp p to

usual tensor product of D.E's on G,.

proof We have already seen (12.3.3) that Dy g is stable by convolution.
That T — j*FT(M) carries Dp p to D.E.(G,,/C) is built into condition (B).
That V — [x » -x]*FT(j.V) carries D.E.(G,,/C) to Dp g and is a two-

sided quasi-inverse is Fourier inversion. That these inverse equivalences
interchange convolution in Dy g and usual tensor product in D.E.(G,,/C)

is 12.2.4 (3). QED

Corollary 12.3.7 Dp p is abelian, and kernels and cokernels of

morphisms in it are the same as in the ambient DModholo(al),

proof Denote by FTDA g the full subcategory of DModholo(al)
consisting of objects of the form j,V, for V a D.E. on G,,. Fourier
Transform makes DA,B equivalent to FTDA’B, so 1t suffices to prove the
same assertion for FTDA,B.

Suppose we are given any U-quasicoherent D-modules V and W

on Gy, and a D-module map ¢: jV = jW. Then ¢ = j,j*(¢). Denote

by S and T the kernel and cokernel of j*(¢): V — W. Since j, is exact,

1t follows that j4S and jyxT are the kernel and cokernel of ¢. If now V

and W are D.E's on G, l.e., if V and W are each U _ -coherent, then S
m

and T are @Gm—coherent, so S and T are D.E.''s on G,,. QED

Corollary 12.3.8 Dp p is a Tannakian category, with
(1) "tensor product” given by convolution x_,

(2) "unit object" 1 given by j!@Gm,

(3) "dual” given by M = ([x —X]*(m*))*Jr(J!@@m)-

proof This is just the inverse Fourier Transform of the standard
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structure of Tannakian category on D.E(G,,/C). QED

Remark 12.3.9 For any o« € C*, the functor
Da p — (fin. dim'l. C-vector spaces)
M - HO(r, (M®e*X)) := HlpR(G,,,/C, M@®e*X)

is a fibre functor. [It is the Fourier Transform of the usual fibre functor
W = fibre at o on D.E.((Eum/(E).] We do not know how to construct

explicit fibre functors on D g without invoking Fourier Transform.

12.4 The Tannakian Category DA,RS

(12.4.1) Recall (cf. [Ber], [Bor]) that for X a smooth separated C-
scheme of finite type, one has the notion of RS ("regular singular"”) D-

modules, and of the full subcategory DRS(x) consisting of the RS objects

of DP:holo(x) One knows that DRS(X) is stable under the "six
operations”. In particular, if X is a smooth C-groupscheme G, then

DRS(G) is stable under convolution.
(12.4.2) We now return to the Al setting. We define DA Rg to be the
full subcategory of DA,B consisting of those objects which are RS. Given
a short exact sequence

00— Mgy » My » Tz - 0
in Da B, Mo is RS if and only if both 1 and Tz are R5. The

subcategory Dp rg of Do g Is stable under convolution and under

"dual”, and contains the unit object 1 := J!G(Em- Thus we find

Theorem 12.4.3 D) Rg is itself a Tannakian category with
(1) "tensor product” given by convolution x,

(2) "unit object" 1 given by J!GGm’

(3) "dual" given by M = ([x — —X]*(Tﬂ*))*+(J!@@m).

Proposition 12.4.4 Let Il be an object of Do grg. Then Tl and FTIN

have the same generic rank. In other words, the "dimension” of Jll as
an object of the Tannakian category Da Rpg Is its generic rank.

proof Since FTI is a D.E. on G

complex

m say of rank r, for any « € €* the
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i (FTI) := FTI —==%— FTM,
placed in degree O and 1, has HO = 0, dirn(]:H1 = r. Thus the generic
rank of FTIN is —X(io(!(FT‘JTl)) for any o = 0. By 12.2.3, we have

T (M®e®X) = i HFT(M)[1],

so the generic rank r of FTIN is
r= X(me(M®e*X)) := - xpr(Al, M®e*X),

Because T satisfies Condition (A), (M) = 0, so we may rewrite this as
r = XDR(Al, m) - XDR(Ai, M ReX),

At this point, we need the following numerological lemma.

Lemma 12.4.5 For any o« € C, and any holonomic Jll on Al we have
XDR(Al, m) - XDR(Al, MR®e*X) = Irr o (M@e*X) - Irr ().

proof Both sides are additive in Jll, and the assertion is obvious for Il

punctual. So it suffices to treat the case when I = k k™M, k : U — Al

the inclusion of a nonempty open set on which Tl is a D.E. Looking at
Deligne's Euler-Poincare formula for N (cf 2.9.8.2)

Xpr(AL, M) = Xpr(U, k*M) =
rank(k* T Xpr(U, Oy) - 2, ¢ al_y Irry (M) - Trr (M)

and comparing it term by term with that for M ®e*X, only the last

terms can differ (since e®*XC[x] is a rank one D.E. on all of ALl). QED

Returning now to the proof of the Proposition, the lemma gives

r=Irr,(MR®e*X) - Irr (M),

for any o € C*. Since T is RS at oo, all its e -slopes are zero, (so
Irr (M) = 0), and MRe*X has all its eo-slopes =1, s0 Irr (N ®e*X) is
the generic rank of J. QED

12.5 A minor variant: ! convolution of D-modules
(125.1) In the world of D-modules, the "natural” operations are f

and f'; fi and f* are defined by duality. Since it is these latter

operations which are more natural in the “"topological” world, we will
make a transition to this point of view.
(12.5.2) For a holonomic D-module M on a smooth C-scheme X, let
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us write Dy L, or simply DI if no confusion is likely, for its adjoint JN*.

Making use of Beilinson's theorem [Bei] that the natural functor

DP(DModholo(x)) — pb.holo(y)
is an equivalence of the bounded derived category of the abelian

category DMod0lo(X) of holonomic left D-modules on X with the

subcategory DPN0lo(X) of the bounded derived category of all left D-
modules on X whose cohomology sheaves are holonomic, we can extend

the duality functor Dy to an involutive autoduality of pb,holo(x).
(12.5.3) For X and Y smooth C-schemes, and any map f : X = Y, the
functors

£ - Db,hOIO(X) N Db,hOIO(Y)’ £% :Db,holo(y) N Db,hOIO(X)

are defined by
£1(K) := Dyofy oDy, £% ;= Dyof'oDy.

(12.5.4) Given two objects K, L in pb.holo(x) their "naive” tensor
product KL is defined in terms of the diagonal embedding
A: X = XxX
by
KL := AX(KxL).
Since duality 1s compatible with cartesian product, we have the
alternative description
K®L := D(DK®'DL).
(12.5.5) For any smooth group-scheme G over C, with product map
product : GxG — @,

we define the ! convolution of two objects K, L in DPsholo(G) py
KL := sum;(KxL).

Since duality 1s compatible with cartesian product, we have the
alternative description
Kx L := D(DK%DL).

(12.5.6) We now apply this general setup to Al 1n order to prevent
any confusion about which convolution we have in mind, we will
denote by

the additive ! convolution on AT,

(12.5.7) For j: G — Al duality interchanges J!G(Em and J*G(Em’

and it tautologically interchanges the functors m, and ;. [t respects
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the conditions B (no ee-slope =1) and RS (no slopes >0 anywhere), since
N and DIl have the same slopes everywhere. So it is natural to
consider the following condition (A!), which is satisfied by Il if and only
if DIN satisfes our original condition (A):

Condition(A!): ;T = 0 (or equivalently, FTI = jj* 7).

Proposition 12.5.8 (dual to 12.3.5) For Jl a holonomic d-module on

Al ﬂ*!+(j*66m) is a single holonomic D-module on Al which satisfies
Condition (A!), and we have a canonical isomorphism

FT(ﬂ*!+(j*®Gm)) = JiJ*FT(N).
The operator Jl — ﬂ*!+(j*66m) is idempotent; it is the projector onto

those holonomic D-modules Jl which satisfy Condition (A!).

Theorem 12.5.9 (dual to 12.3.6) Denote by DModN°lo(Al) the abelian
catergory of all holonomic D-modules on Al, and by Da1 p the full

subcategory of DModholo(al) consisting of those objects which satisfy
both Conditions (A!) and (B). Then

(1) Day g is stable by additive ! convolution.

(2) The exact functor
DModholo(aly — pModholo(g )

M — J*FT(IM)
induces anh equivalence of categories
DA!,B = D.E.(Gm/(]:),

whose quasi-inverse D.E(G,,,/C) = Dp p is given by
V - [x = =x]"FT(V).

(3) This equivalence carries additive ! convolution product of objects of
Da B to usual tensor product of D.E.'s on G, .

Corollary 12.5.10 (dual to 12.3.8) Da1 p is a Tannakian category, with
(1) "tensor product” given by additive ! convolution x4,

(2) "unit object" 1 given by J'*@Gm,

(3) "dual” given by M = ([x — —X]*(Dm))*!+(j*®Gm).
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(125.11) We define Dp| gg to be the full subcategory of Dol g

consisting of those objects which are RG.

Theorem 12.5.12 (dual to 12.4.3) Da| Rg is itself a Tannakian category
with
(1) "tensor product” given by additive ! convolution x4,

(2) "unit object" 1 given by J*GGm’

(3) "dual” given by M = ([x — —X]*(Dﬁm))*H(j*@Gm).

Proposition 12.5.13 (dual to 12.4.4) Let I be an object of DAl RS

Then M and FTIN have the same generic rank. In other words, the
"dimension” of JIl as an object of the Tannakian category DA!,RS is its

generic rank.

12.6 Brief Review of Riemann-Hilbert; Transition from D-

modules to Dbc.

(12.6.1) Let X be a smooth C-scheme of finite type. Denote by X(C)an
the underlying complex manifold. For any field I, denote by

DbC(X((E)an, F) the full subcategory of the bounded derived category of

sheaves of F-spaces on X(C)3" whose cohomology sheaves are lisse of

finite rank on each piece of an algebraic stratification. By "Riemann-
Hilbert"(cf. {Ber], [Bor, VIII, 9.6], [Me-HR]), the DR functor defines an
equivalence of categories

DPplo, RS(X, D) = DPL(X(©)30, €)
which for variable X is compatible with the "six operations”, and
induces anh equivalence

DModholo,RS(x) = perv(X(C)an, ).

For M a D.E. on X, the corresponding perverse object on X(C)aM" j

S
FldimX], for F the local system on X(C)3! of germs of horizontal
sections of JMan,

(12.6.2) We now return to Al. Here the DR functor sets up the
following particular correspondences:
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Y C[1]
J*@Gm ................... Rjxj*Cl1]
J!G(E'm ...................... j!j*ﬂ:[l].

So the translation through Riemann-Hilbert of 12.5.8 is

Proposition 12.6.3 For K in Perv(Al(€)2", €) corresponding to a
holonomic RS D-module TN, K% (Rj,j*C[1]) is perverse, satisfies

Condition (A!), and corresponds to a holonomic RS D-module Tl for
which we have a canonical isomorphism of holonomic D-modules

FT(N) = jij*FT(IM).

The operator on Perv(AL(C)an, C)
K = Kx 4 (Rjy,j*CIl1])

1s idempotent ; it is the projector onto those objects which satisfy
Condition (Al).

(12.6.4) Translating the succeeding D-module results through
Riemann-Hilbert, we find the two following results, which are
interchanged by duality.

Theorem 12.6.5 Denote by PervA!(Al((E)an, C) the full subcategory of
Perv(A1(C)aN, €) consisting of those K with RmK = 0. Then

PervA!(Al((E)an, C) is a Tannakian category with
(1) "tensor product” given by additive ! convolution x4,

(2) "unit object” 1 given by Rj,C[1],
(3) "dual" given by K := ([x -x]*(DK))* 1 (Rjy C[1]).
Moreover, for any K in PervA!(I-\l((E)an, C), its "dimension” is the

generic rank of 1 1K),

Theorem 12.6.6 Denote by PervA(Al((E)an, C) the full subcategory of
Perv(A1(C)a1N, €) consisting of those K with Rt K = 0. Then

PervA(Al((E)an, C) is a Tannakian category with
(1) "tensor product” given by additive % convolution x,

(2) "unit object” 1 given by jC[1],
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(3) "dual” given by K := ([x = -x]*(DK))*,(jC[1]).
Moreover, for any K in PervA(Al((E)an, C), its "dimension” is the generic

rank of }E_l(K).

12.7 Transition to @e coefficients
(12.7.1) Let X be a C-scheme of finite type. Fix an isomorphism
1:Qp = C
of fields, and use it to identify DP_(X(C)2", @) with DP_(X(C)an, C). The
continuous map
e X(C)2N - Xy

induces a fully faithful functor ¢*
Db (X, @y) — Db (x(C)an, @),
which for variable X is compatible with the "six operations”, and

induces an exact fully faithful functor between the abelian categories of
perverse objects

Perv(X, 68) — Perv(X(C)an, @g).
Notice that an object K of DbC(X, @e) 1s perverse 1f and only if 1ts image

in DbC(X((E)an, @e) is perverse; this is obvious from looking at the

cohomology sheaves of K and DK in the two contexts.

Lemma 12.7.1.1 An object K of Perv(X, 68) is irreducible (resp. is a
direct sum of irreducibles) in Perv(X, @8) if and only if its image £*(K)

is irreducible (resp. a direct sum of irreducibles) in Perv(X(C)a, 68)'

proof By [B-B-D, 4.3.1], given an irreducible K in Perv(X, 68)’ there

exlists a locally closed smooth irreducible subscheme j:U — X, and an
irreducible local system F on U such that K = ji,F[dimU] is the middle

extension of ¥[dimU], and every object of this form is irreducible in
Perv(X, @e). Similarly, Riemann-Hilbert and the classification of

irreducible holonomic D-modules (cf [Bor, 10.5 and 10.6]) shows that
given an irreducible K in Perv(X(C)aMn, 68)’ there exists a locally closed

smooth irreducible subscheme j:U — X, and an irreducible local
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system ¥ on U(C)3M such that K = jj,FldimU] is the middle extension
of FldimU], and every object of this form is irreducible in
Perv(X(C)an, @e).

The functor €¢* commutes with formation of middle extensions,
and for ¥ an irreducible local system on U, €¢*7 is an irreducible local
system on U(C)3". Therefore ¢* maps irreducibles in Perv(X, 68) to
irreducibles in Perv(X(C)an, 68)’ and hence it maps direct sums of
irreducibles to direct sums of irreducibles.

Conversely, suppose that K in Perv(X, 68) has €¢*K a direct sum of
irreducibles L; in Perv(X(C)amn, @3). By the full faithfullness of €*, each
projector m; of e*K onto L; comes from a unique projector 1NTi on K, and
so K is the direct sum of the objects 1NTi(K), and 8*1NTi(K) =~ L is

irreducible. Since €¢* is fully faithful, the irreducibility of s*%i(K) = L4
implies the irreducibility of m;(K). QED

(12.7.2) We now return to the case of AL The translation of 12.6.3
through this change of coefficients is

Proposition 12.7.3 For K in Perv(Alq:, @@), corresponding to a
holonomic RS D-module M, K*!+(Rj*j*@e(1)[l]) is perverse, satisfies

Condition (A!), and corresponds to a holonomic RS D-module Tl for
which we have a canonical isomorphism of holonomic D-modules

FT(N) = j!j*FT(m).
The operator on Perv(Al(E, @e)
K = Kx1(Rj,j*0Q,(1)1])

1s idempotent ; it is the projector onto those objects which satisfy
Condition (Al).

(12.7.4) We have the following two results, which are interchanged
by duality.

Theorem 12.7.5 Denote by PervA!(ﬂ\l(]:, @@) the full subcategory of
Perv(ﬂ-\l(]:, 68) consisting of those K with Rm /K = 0. Then
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PervA!(Al(E, 68) is a Tannakian category with

(1) "tensor product” given by additive ! convolution x4,

(2) "unit object” 1 given by Rj*@e(l)[l],

(3) "dual” given by K := ([x = -x]*(DK))» (R j, Q,(1)[1]).

Moreover, for any K in PervA!(Al(D, 68)’ its "dimension” is the generic

rank of }(’,_1(K).

proof The only tricky point is that the subcategory PervA!(Al(E, 68) of

Perv(Al(c)an, 68) is itself a Tannakian category. But using Deligne's

version [De-CT, 2.1] of the axioms defining a Tannakian category, this
results from the full faithfulness of

Perv(Al(E, 68) - Perv(Al(c)an, @e)

and the stability of PervA!(Al(E, 68) under the operation "dual”. QED

Theorem 12.7.6 Denote by PervA(Al(E, @8) the full subcategory of
Perv(Al(D, @e) consisting of those K with Rmn K = 0. Then

PervA(Al(E, @e) is a Tannakian category with

(1) "tensor product” given by additive % convolution x_,

(2) "unit object" 1 given by j!@e[l],

(3) "dual” given by K := ([x = -x]*(DK))*,(jiQpl1]).

Moreover, for any K in PervA(Alq:, 68)’ 1ts "dimension” is the generic

rank of }E_l(K).

12.8 Recapitulation of the situation over C
(12.8.1) To help the reader keep track of the where we are so far, it
may be useful to keep in mind the following diagrams of Tannakian

categories, in which €¢* and j*FT are exact, fully faithful ®-functors,
and in which v and DR are equivalences of Tannhakian categories:
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e* 1
Perval(Alg, @) — Perva (X(€)3N, Q) = Perv(X(C)2N, C)

s DR
DAl RS

b J7FT
D.E(G,/C)
e 1
PervA(Al(E, Qp) — Perv(X(C)aN, Q) = Perva(X(C)2N, C)

N

s DR
DA RS

b J*FT
D.E.(Gypy/C)

Lemma 12.8.2 Fix a fibre functor w on Perv (X(C)a1, 68)’ and let K
in PervA!(Al(E, 68) be a semisimple object, i.e., K is a direct sum of

irreducibles in PervA!(Ai(E, 68)' Then K and £¢*K have the "same"
Tannakian galois group, 1.e., the natural inclusion of Tannakian galois

groups Ge*p (y, C Gr (o> Induced by £* is an isomorphism.
proof K and £¢*K are semisimple objects of PervA!(Al(E, @e) and of
Perv a(X(C)an, 68) respectively, by 12.7.1.1. Therefore they are

faithful, completely reducible representations of the groups G (,yo¢*
and Gg*y y respectively, and hence, as we are over a field of

characteristic zero, these groups are both reductive. So the lemma
results from the explicit recovery of these groups, via invariants in
symmetric powers, given in 11.1, and the full faithfulness of the exact

®-functor ¢*. QED

Lemma 12.8.3 Suppose that K in PervA!(I-\l(]:, @E) is a semisimple

object, i.e., K is a direct sum of irreducibles in PervA!(#\l(]:, 62)' Denote
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by M the RS D-module on Al(t which corresponds, via Riemann-

Hilbert and i, to the object £¢*(K) of Perv(Al(C)an, 68)' Fix a fibre
functor w on D.E.(G,,/C), and denote by

w1 = wej*FT, a fibre functor on DAl RS

wo 1= the unique fibre functor on Perv(A1(C)a", €) for which
w1 = wop°DR,

w3z = Wool, a fibre functor on PervA(Ai((E)an, @g),

Wy = wzee™, a fibre functor on PervA!(Ai(E, 68)'

With respect to these fibre functors, the objects

J¥FT(M) in D.E(G,/C)
T inDa1 RS

1e*(K) in Perv(Al(C)21, C)
e*(K) in Perv(AL(C)aN, @)

K in PervA!(Alq:, @g)
all have the same Tannakian galois group.

proof This is immediate from 12.5.9, 12.7.1.1, and 12.8.2. QED

12.9 The situation in characteristic p
(12.9.1) In this section, we fix an algebraically closed field k of

positive characteristic p # ¢4 and a nontrivial additive @ex—valued
character ¢y of a finite subfield of k. We will work on Aik. We denote by
T Alk — Spec(k) the structural map,
iy @ Spec(k) — Al the inclusion of the point o« € k = AL(k),
N Alxkﬂl the diagonal embedding,
sum: Alxkﬂl — Al the addition map (x, y) = x+y,
J: Gy — Al the inclusion.
We will denote additive * and ! convolution by % ., and x|,

respectively.
(12.9.2) Recall (8.1.7) that the Fourier Transform
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FTy : DPo(ALy, @p) - DP(Aly, @)
1s defined by
FTy,(K) = R(pro)(prq*(K)® Ly (yy)I1]
[t commutes with duality up to an additive inversion,
= [e] - *O
D FTqJ = FTqJ [x = -x]*-D,
and is involutive up to a Tate twist of (-1) and an additive inversion:
FTyoFTy(K) = [x = -x]*(K)(-1).
One knows (cf [Br, 9.6]) that FTqJ[—l] interchanges tensor product and

additive ! convolution:
FTLP(K*!JrL)[—l] = FT¢(K)[—1]®FT¢(L)[—1].

Key Lemma 12.9.3 (compare Key lemma 12.2.3) For K, L objects in

DbC(Alk, 68)’ and any « € k, we have canonical isomorphisms in

Db _(Spec(k), @)

(1) RI(K® E i) = i (FTy(KDI-1],

(2) R (FT (K@ L (- ox) = o (K)(-1I-1],
(3) RTT!(K*!_,_L) = RT[!(K)®RT[!(L),

(4) ia*(K®L) = ioc*(K)®ioc*(L‘)’

and a canonical isomorphism in DbC(Alk, @g)
(5) FTLP(K*!J,L)[—l] =~ FTqJ(K)[—1]®FTqJ(L)[—1].

proof Assertion (1) is proper base change, (2) results from (1) by
Fourier inversion, (3) is the special case ¢ = 1 of 8.1.10(2a), (4) is
tautological, and (5), recalled just above, is "mise pour memoire”. QED

Exactly as in the D-module setting, this immediately gives
Corollary 12.9.4 (compare 12.2.4) For K, L in Perv(Alk, Eé)’ we have
(1) FTqJ(K) ~ j!j*FTqJ(K) if and only if RmK = 0.

(2) If either RmK = 0 or RmL = 0, then Rm (K% L) = 0.
(3) If Rt (K%,L) = 0, and if j*FTqJ(K)[-i] and j*FTLP(L)[—l] are both lisse
sheaves, on Gy, placed in degree zero, say ¥ and 4, then

FTy(Kx L)1) = j(F®9),

and K, L is perverse.
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12.10 The Tannakian Category PervA!,B(Ai, @e)

Definition 12.10.1 Given K in Perv(Alk, 68)’ consider the following
conditions (A!) and (B):
Condition(A!) : Rm K =0 (or equivalently, FTqJ(K) = j!j*FTqJ(K)).

Condition(B) : j*FTqJ(K)[—l] is a lisse sheaf on G,y placed in degree zero.
Remark 12.10.2 In virtue of [Ka-GKM, 8.5.8 (2)], K in Perv(Alk, 68)

satisfies Condition (B) if and only if all of its eo-slopes (i.e., all the eo-

slopes of its only nonpunctual cohomology sheaf ®~1(K)) are = 1. In
particular, if K is everywhere tame, then K satisfies Condition (B).

(12.10.3)According to [Ka-PES, A2], we have (cf 2.10.1 (1) for the D-
module analogue)

FTy (31 Ql1]) = Rj.j* Q,l1],
which by Fouriler inversion gives
FT(RjxJ™Q (11D = jij* Q,l1].
Therefore the object Rj*j*@e[l] satisfies Condition (B).

Lemma 12.10.4 The object Rj*j*@g(l)[l] satisfies Condition (A!).
proof (compare [Ka-LG, proof of 1.6.8], [Ka-GKM,2.2.1-3]) We must show
that Rﬁ!(Rj*j*@e) = 0. By interchanging the points 0 and e in PL, this

becomes the statement Rﬁ*(j!j*ﬁe) = 0. [Alternately, these two
statements are interchanged by duality.] This amounts to the vanishing

of the ordinary cohomology groups Hi(Alk, j!j*@e). The H! for i = 0,1

vanish for reasons of cohomological dimension, the HO vanishes by

inspection, and the remaining group H1 vanishes by the FEuler-Poincare
formula. QED

Exactly as in the D-module setting, this gives
Proposition 12.10.5 For K in Perv(Aly, Qp), Kx |, (Rj,j* Qp(1)[1]) is

perverse and satisfies Condition (A!), and we have a canonical
Isomorphism

FTj(Kx 14 (R j* Qp()LD) = jij*FT,(K).
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The operator on Perv(Alk, @g)
K = Kx1(Rj,j*Q,(1)1])

1s ldempotent ; it 1s the projector onto those objects which satisfy
Condition (Al).

Proceeding as in the JD-module case, we now prove

Theorem 12.10.6 Denote by PervA!’B(Alk, @8) the full subcategory of
Perv(Alk, 68) consisting of those K satisfying conditions (A!) and (B).
Then PervA!’B(Alk, @e) is a Tannakian category with
(1) "tensor product” given by additive ! convolution x4,
(2) "unit object" 1 given by Rj*j*@e(l)[l],
(3) "dual” given by K = ([x — —X]*(DK))*!+(Rj*j*@e(l)[l]).
The exact functor
j*FTqJ[—l] . PervA!’B(Alk, 68) — (lisse @e—Sheaves on (Gyy)k)

carries additive ! convolution to usual tensor product of lisse sheaves on
G, and thus defines an equivalence of Tannakian categories. The

quasi-inverse is

T e [xe —X]*FTqJ(j!?(l)[l]).
Moreover, for any K in PervA!,B(ﬂ\ik, 68) with all eo-slopes < 1, its
"dimension", i.e., the rank of the lisse sheaf j*FTqJ(K)[—l] on G, is the

generic rank of 1 1K),

12.11 The Tannakian Category PervA!’tame(Al, ﬁe)
(12.11.1) Denote by PerVA!,tame(Aik’ 66) the full subcategory of

PervA!’B(Alk, 68) consisting of those K which are everywhere tame.

(_12.11.2) Denote by T the full subcategory of the category of all lisse
Qp-sheaves on G, consisting of those objects ¥ which satisfy the

following two supplementary conditions:

(T1) F is tame at 0.
(T2) F as I -representation is a direct sum of representations of the

form ELP(O(X)(X)(tame), x€k.
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(12.11.3) Clearly T is a full thick abelian subcategory of the category

of all lisse Qy-sheaves on G, which is stable by tensor product. By

Laumon's analysis of the local monodromy of Fourier Transforms (cf.
7.4, 75), the exact functor

j*FTqJ[—l] : PervA!’B(Alk, 68) — (lisse @e—Sheaves on (Gyy)y)

induces an equivalence PervA!,tame(Alk’ @e) =~ T. Thus we obtain

Theorem 12.11.4 Perv tame(Alk’ 68) is a Tannakian category with

(1) "tensor product” given by additive ! convolution x4,
(2) "unit object" 1 given by Rj*j*@e(l)[l],
(3) "dual” given by K = ([x — —X]*(DK))*!+(RJ*j*@e(l)[l]).
The exact functor

JXETy[-1]: Pervai tame(Aly, @) = T

carries additive ! convolution to usual tensor product, and defines an
equivalence of Tannakian categories. The quasi-inverse is

F =[x —X]*FTqJ(j!?(l)[l]).
For any K in Perv i tame(Alk’ @8)’ its "dimension”, l.e., the rank of the

lisse sheaf j*FTLP(K)[—l] on G is the generic rank of ®~1(K).

mp

Remark 12.11.5 One could dually develop the x version of this theory,
everywhere interchanging =i, with *,,, R with R, Rj*j*ﬁg(l)[l]

with J!j*ﬁg[l], and j1 with Rjx, to be exactly consonant with the

theory developed in the D-module context.
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13.1 Generalities on Stratifications and Convolution

(13.1.1) In this section, we recall some of the basic definitions and
results about stratifications (cf. [Ka-Lau, section 3], [Ka-PES, section 1],
[B-B-D, 2.1, 2.2, 6.1.9]). Schemes are always understood to be separated
and noetherian. A good scheme S is one which admits a map f of finite
type to a scheme T which is regular of dimension at most one. [Thus a
good Z[1/2]-scheme is a good scheme on which ¢ is invertible, but it
need not be of finite type over Z[1/¢], e.g., Spec(C).] A good ring R is one
whose Spec is a good scheme. For variable good schemes X, and ¢ any
fixed prime number, we can speak of the triangulated categories

DbC(X[i/é], 68)’ which admit the full Grothendieck formalism of the "six

operations” (cf [De-TF], [De-WII], [Ek], [Me-S0]).
(13.1.2) Given a good Z[1/¢]-scheme S, an S-scheme
f: X > 5

of finite type, and an object K in DbC(X, 68)’ we define its S-dual
Dy /5(K) in DPL(X, @) by

Dy /5(K) := RHom(K, £'@ ).
We say (cf. [K-L, 1.1]) that K is S-semireflexive if the formation of
DX/S(K) commutes with arbitrary change of base on S to a good
scheme S'. We say that K is S-reflexive if both K and Dy /g(K) are S-
semireflexive. If K is reflexive, the canonical map
K — Dy /5(Dy /5(K))

is an isomorphism (check fibre by fibre) whose formation commutes
with arbitrary change of base on 5 to a good scheme.
(13.1.3) A stratification X := {X,} of a scheme X is a finite partition

of Xred into a disjoint union of locally closed subschemes X . An object

K of DbC(X[l/é], @8) is said to be adapted to X if on each connected

component of each stratum X[1/¢], each of the cohomology sheaves

HI(K) is lisse (in the sense of corresponding to a finite-dimensional 62_

representation of the profinite fundamental group which is definable
over a finite extension of (D\e).
(13.1.4) Suppose that S is a good Z[1/2]-scheme, and T : G = Sis a

commutative group scheme over S which is separated and of finite
type. Denote by 0g the zero-section of G, and by & p the constant sheaf
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68 on the zero-section O¢, extended by zero to all of G. Using x|

convolution as the "tensor” operation, the @@—linear triagulated

category DbC(G[l/é], @é) is an ACU ®-category in the sense of [Saal,
with &g p as unit object, in which & is @e—bilinear and bi-exact ("exact”
in the sense of triangulated categories).
(13.1.5) For any good scheme X, and any morphism f: X — 5, we
denote Gy := GxgX the pullback of G/S to X. The pullback functor

£*: DP_(G[1/¢], ©@p) - DP (Gx[1/¢], Qp)
1s an exact @e—linear ACU ®-functor (the ®-compatibility because, by
proper base change, the formation of KL commutes with change of

base on S).

(13.1.6) Let X be a stratification of G. By [Ka-Lau, section 3], there
exists an integer N > 1, a dense open set U in S[1/N], and a
stratification Y of Gy which refines Xy such that

(1) If K on Gyj is adapted to Xyj, then K is U-reflexive and DK is adapted

to Y [Ka-Lau, 3.2.2 applied to G/S and X]
(2) If K and L on Gyj are adapted to Xyj, then Kx L is adapted to Y and

1ts formation commutes with arbitrary change of base on S to a good
scheme [Ka-Lau, 3.1.2 applied to sum : GxgG = G and XxgX]

(3) If K on Gyj is adapted to Xyj, then RmiK and R K are lisse on U, and

their formation commutes with arbitrary change of base on 5 to a good
scheme [Ka-Lau, 3.3.3 applied to G/S and X].

(13.1.7) So if we do it twice (i.e., apply this result to Y on Gyj) then
we get Yo and Uy such that if K and L on GU2 are adapted to X, then

(1) RHom(K, L) is adapted to Y, and its formation commutes with

arbitrary change of base on S to a good scheme [since RHom(K, DM) =
D(K®M), so taking M := DL gives

RHom(K, L) = RHom(K, DDL) = D(K®DL)],
(2) RmyRHom(K, L) is lisse on Uy, and its formation commutes with

arbitrary change of base on S to a good scheme [sinceRHom(K, L) is
adapted to Yo and its formation commutes with arbitrary change of

base on S to a good schemel.

(13.1.8) Thus, if we start with G/S and X, and then we have
shrinking opens
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S=Upg>Uqg DUy DUz DUy D Ug..DSR0
with each Uj;q open dense in U;[1/N;] for some N; 2 1,

and successively refining stratifications Y; of GUi’ such that if K and L
on GUi are both adapted to Y;_o, then

(1) K%L is adapted to Y;_4 and its formation commutes with arbitrary

change of base on 5 to a good scheme.
(2) RmyRHom(K, L) is lisse on U; and its formation commutes with

arbitrary change of base on S to a good scheme.
(3) the derived category homs along the geometric fibres,
s = Hom(Kg, Lg), form a local system on U;. [Take the zeroeth

cohomolology sheaf of R, RHom(K, L), and apply (2).]

13.2 Interlude: Review of Elementary Stratification Facts
about Normal Crossings

(13.2.1) Let S := Spec(R) be a good Z[1/2]-scheme which is normal
and connected and whose generic point has characteristic zero. Let X/S
be proper and smooth, and let D = U;1 D; € X a union of R-smooth

divisors D; with relative normal crossings in X/R (e.g., IPlR, {0, 1, o}).

Recall that there is a natural "normal crossings stratification” of X
attached to this situation. For each subset S of the index set I, let

Dg := Nicg Dj, with the convention Dy = X,

Ug := Dg - Ugr Dr.
Thus Dg i1s proper and smooth over R, and Ug is the complement in Dg
of a union of smooth divisors in Dg with normal crossings relative to 5
(namely the DgND; for each i not in S).
(13.2.2) Consider the stratification of X by the subschemes Uy,
0 < n < Card(l),

Un = Lcaracs)-n Us:

The closure of U

n 15

UI’] :=UCard(S)=n DS - J‘I'm > n Um'
We denote by B
Jn :Up = Up

the inclusion of Un into Un-

(13.2.3) We endow each L_Jn with the stratification 1l U

n Um- In
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view of the definition of each Uy, as the disjoint union

Um = J‘I'Card(S)=m US’

an object Ky, in Dbc(Un, 68) is adapted to the stratification Ll U

m > n m

if and only if it is adapted to the finer stratification L., 4g)., Ug of

Up-
Proposition 13.2.4 Hypotheses and notations as above, let
0 < n < Card(l), and suppose K, in DbC(Un, 68) is adapted to the

stratification L, Uy, Then

(1) Ripxdn Ky is adapted to LI, , Uy, and its formation commutes
with arbitrary change of base on R to a good scheme.
(2) K, is R-reflexive, and DUn/R(Kn) is adapted to the same

stratification Ll ., Uy

(3) In particular, if K in DbC(X, 68) is adapted to the normal crossing
stratification of X, then K is reflexive and DX/R(K) is adapted to the

same stratification.

proof That (1) holds for n = 0 is standard (cf. [11I-ATF, A.1.1.3], [Ka-Lau,
3.4.3]). We first reduce (1) for general n to this case. The inclusion j, of

U, into L_Jn factors through J_LCard(S):n Dg, as

n

X

Ul’l = J‘I'Card(S)=n US J‘I'Card(S)=r1 DS
e
Jn N Uh = UCard(S)=n DS = J‘I'Card(T)zn UT‘

In this factorization, « is the disjoint union of the inclusions of Ug into

Dg, and p is finite. Over each stratum Ut of the target, p is just several
copies (one for each S C T with Card(S) = n) of the identity map. Using

this factorization to compute RjyxJpn Kp @s piRoy(j, Ky), and

applying (1) with n=0 to «, (1) is obvious.
To prove (2), we proceed by descending induction on n (cf. [Ka-
Lau, 3.4.3]). Denote by
i,, :Upsq = Up - Uy — Uy

the inclusion. Thus i, is a closed immersion. The "exact sequence”

n
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0 = jndn Kn = Ky = ipxip"Ky = 0

gives under D a triangle
I DUnJrl/R(in*Kn) - DUH/R(KI’]) - RJH*DUH/R(JH*KH) 5
whose first term 1s handled by the induction, and whose third term is

handled by (1). This proves that K is R-semirelexive, and that
DUH/R(KH) is adapted to the same stratification. To get (2), simply

apply this same argument to DUH/R(KH). Assertion (3) is just the

special (but most important) case n=0 of (2). QED

Corollary13.2.5 Let S := Spec(R) be a good Z[1/2]-scheme which is
normal and connected and whose generic point has characteristic zero.
Let (X1, D1) and (X9, Do) be two normal crossing situations over R as

above. Suppose K1 in DbC(Xl, 68) and Ko in DbC(X2, @@) are adapted to
the corresponding stratifications. On the fibre product X1 xpXy with its
"product” divisor with normal crossings (D1 xpX9) U (X1 xpDs), consider

the tensor product complex prl*(K1)®[Lpr2*(K2), which is adapted to

the normal crossing stratification. This object is reflexive, its dual is

adapted to the same stratification, and the canonical map
D(prq*(KN®LD(pro*(Kp)) — Dlpri*(K)®Lpro*(Ky))

1s an 1somorphism whose formation commutes with arbitrary change

of base on R to a good scheme.

proof By the above 13.2.4 applied to the product, the above morphism,

source and target are all of formation compatible with arbitrary

change of base on R to a good scheme, so it suffices to check over

geometric points of R, where it becomes the compatibility of duality
with products. QED

Corollary 13.2.6 Let S :=Spec(R) be a good Z[1/2]-scheme which is
normal and connected and whose generic point has characteristic zero.
Let (X, D) be a normal crossing situations over R as above. Let U be an
open subscheme of X whose closed complement Z is a partial union of
the subschemes Dg. Denote by U the stratification U := Ll (those Ut in

U) of U. Then

(1) If K in DbC(U, 68) is adapted to U, then K is R-reflexive and Dyj /Rr(K)
is adapted to U.

(2) If K and L in DbC(U, 68) are each adapted to U, then on UxRpU,
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prl*(K)®u-pr2*(L) is reflexive, it and its dual are adapted to UxU, and
the canonical map
D(pr1*(K)®LD(pro*(L)) = Dlpri*(K)®Lpry*(L))

1s an lsomorphism whose formation commutes with arbitrary change
of base on R to a good scheme.

proof Let j;U — X denote the inclusion. Then jK on X is adapted to the
normal crossing stratification of X. Since j is open, we have
i*Dy /r(1K) = Dy /RG'JIK) = Dy /R(i*JK) = Dy /R(K),

so (1) follows from 13.2.4 (3). Similarly, (2) follows from the above
Corollary. QED

13.3 The special case of Al
(13.3.1) The general G/S discussion above has the merit of applying
quite generally, but the attendant disadvantage of not being very

explicit. However, in the special case when G is Al, the theory becomes
very explicit. [It does so also if G is either Gy, or an elliptic curve E over

S. The common element_is that G is, as a scheme, the complement in a
proper smooth S-curve G of a disjoint union Z of sections. We leave to

the reader the task of adapting the following discussion of Al to these
cases.] This allows us to apply the normal crossing results of the
previous section.

(13.3.2) For any ring R, we denote by AlR = Spec(R[x]) the affine
line over R.
(13.3.3) Fix a prime number ¢, and an isomorphism of fields

1:Qy = C.
Let R be a subring of € which is a finitely generated Z[1/¢]-algebra. Let
K be an object in DbC(AlR, @(?)' At the expense of replacing R by R[1/r]
for some nonzero element r € R, we may further assume that R 1s

normal, and that K is adapted to the stratification (AlR - D, D) where

D C AlR 1s a divisor which is finite etale over R of some degree d > 1,

defined by a monic polynomial f(x) € R[x] of degree d whose
discriminant A is a unit in R.
Recall that in this situation, we have:

Proposition 13.3.4 ([Ka-Lau,3.4]) Let R be a normal integral domain in
which ¢ is invertible, whose fraction field has characteristic zero, and
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such that S := Spec(R) is a good scheme. Let D C AlR be a divisor

which is finite etale over R of some degree d > 1, defined by a monic
polynomial f(x) € R[x] of degree d whose discriminant A is a unit in R.

Suppose that K in DbC(AlR, @e) is adapted to the stratification

(Alg - D, D).
Denote by 1 : X :=A1R — S := Spec(R) the structural morphism. Then
(1) For j: Alg - D - Alg the inclusion, Rj,j*K is adapted to the

stratification (I—\lR - D, D), of formation compatible with arbitrary

change of base on 5 to a good scheme.
(2) RmiK is lisse on S, of formation compatible with arbitrary change of

base on S to a good scheme.

(3) K is S-reflexive, and Dy /g(K) is adapted to the same stratification
(Alg - D, D).

(4) Rt K is lisse on S, of formation compatible with arbitrary change of

base on S to a good scheme, and we have canonical isomorphisms
D(RmyK) = RmDK, D(RmK) = Rm DK,

of formation compatible with arbitrary change of base on 5 to a good
scheme.
(5) For any algebraically closed field k, and any ring homomorphism

¢: R = k, the inverse image K‘P of K in DbC(Aik, 63) is adapted to the

stratification (Alk - Dy, Dy), and K‘P is tamely ramified at all points of
Dk U {eo}.

Remark 13.3.5 The key point of the above proposition is that "duality
costs us nothing” for objects K adapted to such a stratification. The
earlier discussion (13.1) thus gives:

Corollary 13.3.6 Hypotheses and notations as in 13.3.4 above, suppose
that K and L in DbC(AlR, 68) are both adapted to the stratification

(Alg - D, D). Then
(1) RHom(K, L) = D(K®DL) is adapted to the stratification (AlR - D, D),

and of formation compatible with arbitrary change of base on S to a
good scheme.
(2) Rty RHom(K, L) is lisse on S, of formation compatible with
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arbitrary change of base on S to a good scheme.
(3) The zeroeth cohomology sheaf }EO(RTE*RHom(K, L)) is lisse on S, and

its fibre at each geometric point s in S is the @e—space of hom's from Kg

to Lg in DPL(AL,, @)

(13.3.7) In order to state the next result, it will be convenient to
introduce the following temporary notation. For any good R-scheme T,
denote by

c(T) ¢ DP.(ALT, @)
the strictly full subcategory of DbC(AlT, 68) consisting of those objects
which are adapted to the stratification (AlT - DT, D7), and whose

restriction to each geometric fibre Alt is tamely ramified at all points
of Dy U {eo}.

(13.3.8) Notice that C(T) is a triangulated subcategory of

DbC(AlT, 68); if two vertices of a triangle lie in C(T), then so does the

third, as is immediate from the long exact sequence of cohomology
sheaves.

By applying part (3) of the above result 13.3.6, we find

Corollary 13.3.9 (compare [B-B-D, 6.1.9]) Hypotheses and notations as
in 13.3.4 above, suppose in addition that R 1s a strictly henselian local
ring. Let s and N be geometric points of S := Spec(R) which lie over the
speclal and generic points respectively. Then the natural inverse image
functors

€(S) = C(n), C(S) = C(s)
are fully faithful.

By applying part (3) of the above result 13.3.6 to K and to all the
shifts L[i] of L, we find the more pecise result:

Corollary 13.3.10 (compare [B-B-D, 6.1.9]) Hypotheses and notations
as above, suppose in addition that R is a strictly henselian discrete
valuation ring. Let s and N be geometric points of S := Spec(R) which lie
over the special and generic points respectively. Then the natural
inverse image functors

C(S) = C(n), C(S) — C(s)

are fully faithful, and the second is an equivalence of categories.
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proof That the functors are fully faithful is the content of the previous
corollary. [t remains to explain why the second is essentially surjective.
We proceed by induction on the amplitude

ampl(K) := supli | HI(K) = 0} - inf(i | H(K) = 0).
If KI(K) = 0 for i > n, then we have a triangle
TpK = K = HUK)[-n] - (1., KII1],

so K is a cone of the morphism H™(K)[-n] — (1t,,K)[1] between objects of

lower amplitude.
[t remains to treat the objects of amplitude zero. Any such is a

shift of a sheaf ¥ which is lisse and tame on Al - D, and lisse on D. If

we denote by j: Al - D - Al and i: D - Al the inclusions, then ¥ sits
in the short exact sequence

0 = JIj*F = F - i, i*F - 0,
so we recover ¥ as the cone of the morphism i,i*F — jij*F[1].

For objects of the form i,i*7F the asserted equivalence is obvious:
they are simply the constant sheaves on D, extended by zero. FFor
objects of the form j!j*?, the asserted equivalence results from

Grothendieck's theory of the tame fundamental group (cf. [SGA I, XIII,
Thm 2.4, 1] and the explication at the end the proof the Tame
Specialization Theorem bis 8.17.14). QED

13.4 Location of the Singularities of a convolution
(13.4.1) In this section, we make precise the rough idea that
“singularities add under convolution”.

Proposition 13.4.2 Let R be a normal integral domain in which 2 is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that Dq, Dy, and Dz are three
divisors D; C AlR each of which is finite etale over R of some degree
d; 2 1, defined by a monic polynomial f;(x) € R[x] of degree d; whose
discriminant A; is a unit in R. Suppose that

(D4 + Dy)red ¢ Dy,

le., for every algebraically closed field k and every ring homomorphism
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¢ R = k,if a1, xp € k then
fz(ocg + o) = 0if fq(aq) = 0 = folaxp) = O.
Suppose that for i = 1, 2, Kj in DbC(AlR, 68) is adapted to the
stratification (AlR - D;, D;). Then
(1) The additive ! convolution Kq* ;Ko in DbC(AlR, @e) is adapted to the

stratification (AlR - D3, D3), and its formation commutes with

arbitrary change of base on Spec(R) to a good scheme.
(2) We have a canonical isomorphism D(Kqx*,Ko) = DKq%, DKoy, whose

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

(3) The additive x convolution Kqx4,1Ko in DbC(AlR, @é) is adapted to

the stratification (AlR - Dz, Dz), and its formation commutes with

arbitrary change of base on Spec(R) to a good scheme.
(4) We have a canonical isomorphism D(Kqx4,Ko) = DKq*,DKy, whose

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

proof Making a finite etale base change on R, we may assume that all
the divisors D; are finite unions of disjoint sections, say Dq = {ai}, Doy =

{bJ}, Dz = {ci}. The hypothesis that Dy + Dy C Dz is the the statement
that each a; + bj IS a Ci.
We first prove that both convolutions are lisse on U := AlR - Ds3.

Over U, the sum map becomes pro: Al xpU — U with coordinates
(x,y) = y, the source endowed with the object Kq(x)®Ko(y-x). This
object is adapted to (Alu - D, D), for D the divisor D1 Ll (y - Do), which
is finite etale over U of degree d4 + do, defined by the (£)monic
polynomial f(x) := f1(x)fo(y - x). So this is just 13.3.4, (2) and (4).

To see that Kq*1.Ky is lisse on Dz, we argue as follows. Since Dz is
the disjoint union of sections {ck}, we may, by translation, suppose that
{0} is one of these sections. We must then show that Kq= Ky is lisse

along the zero section. By proper base change, (Kq*3.K9)[{0} is
Rm (K1 ®[x = -x]*K»p). But on AlR, Kq®[x = -x]*Ks is adapted to the

stratification (AlR - D, D), for D union of the disjoint sections, each
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taken with multiplicity one, given by {a;j} U {"bj}- So again we may

apply 13.3.4 (2).
The base-change statement for Kqx,Ko Is a special case of proper

base change. This concludes the proof of (1).
Statement (2) is Verdier duality for the "sum"” map, in the form
DeRsum; = RsumD, together with 13.2.6 (2) applied to the situation

U-=nal x=-prl
Once we have (2), apply it to the DK;. Since K; = DDKj, this gives
D(DK:I_*!+DK2) = Kl**+K2,

which makes the (3) obvious. Assertion (4) is obtained by applying D to
this, and recalling that DKqx,,DK» 1s reflexive, because it is adapted to

(Alg - Dz, D3). QED

In the special case when Dy is the zero section alone, i.e., when

fo(x) = x, then we can take Dz = Dq, and we obtain:

Corollary 13.4.3 Let R be a normal integral domain in which ¢ is
invertible, whose fraction field has characteristic zero, and such that

S := Spec(R) is a good scheme. Suppose that D C AlR 1s a divisor which

1s finite etale over R of some degree d > 1, defined by a monic
polynomial f(x) € R[x] of degree d whose discriminant A is a unit in R.
Suppose that

K in DbC(AlR, 68) is adapted to the stratification (AlR - D, D),

L in Dbc(ﬂ-\lR, 68) is adapted to the stratification ((Gy,)gr, (OR}).
Then
(1) The additive ! and % convolutions Kx L. and Kx L in DbC(AlR, 68)

are both adapted to the stratification (AlR - D, D), and of formation

compatible with arbitrary change of base on Spec(R) to a good scheme.
(2) We have canonical isomorphisms
D(Kx L) = DKx= DL, D(K=, L) = DKx,,DL,

whose formation commutes with arbitrary change of base on Spec(R)
to a good scheme.

13.5 The bookkeeping of iterated convolution
(13.5.1) Let R be a normal integral domain in which ¢ is invertible,
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whose fraction field has characteristic zero, and such that S := Spec(R)
1s a good scheme. Let D C AiR be a divisor which is finite etale over R

of some degree d > 1, defined by a monic polynomial f(x) € R[x] of
degree d whose discriminant A is a unit in R. At the expense of
replacing R by a finite etale overring, we may suppose that D is a
disjoint union of sections, i.e., that the polynomial f(x) splits completely
in R, say f(x) = TT(x - a;) with d distinct roots aj. That A be a unit in R

- # a;, the difference a;

i1s the condition that for any two distinct roots a; i i

- A be a unit in R.
(13.5.2) Given any finite nonempty subset A of R, define its

discriminant A(A) € R - {0} by
A(A) = TT Lo in alo = B,

with the empty product convention that if A consists of a single
element, then A(A) = 1. Denote by fa(x) € R[x] the monic polynomial

falx) = TT o (x = o).

Then fa(x) defines a divisor D(A) in AiR which is finite flat over R of

degree Card(A), and which is finite etale precisely over R[1/A(A)]
(13.5.3) Glven two finite nonempty subsets A and B of R, we denote
by A+B the finite nonempty subset of R consisting of all the sums a+b
with a in A and b in B.

In this language, the previous proposition becomes
Proposition 13.5.4 Let R be a normal integral domain in which 2 is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that A and B are finite nonempty
subsets of R, and that

A(A)A(B)A(A+B) is a unit in R.

Suppose that

K in DP(AlR, @)) is adapted to (Alg - D(A), D(A)),

L in DP_(AlR, Q) is adapted to (AlR - D(B), D(B)).
Then
(1) The additive ! and % convolutions Kx ;L and K=, L in DbC(AlR, 68)

are both adapted to the stratification (AlR - D(A+B), D(A+B)), and of

formation compatible with arbitrary change of base on Spec(R) to a
good scheme.

(2) We have canonical isomorphisms
D(Kq%14K9) = DK%, DKy, D(Kqx, Ko) = DKqx, DKy,
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whose formation commutes with arbitrary change of base on Spec(R)
to a good scheme.

(13.5.5) To keep track of multiple convolutions, we formulate
explicitly the following proposition, which follows immediately from the
previous result by induction.

Proposition 13.5.6 Let R be a normal integral domain in which 2 is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that A is a finite nonempty subset
of R. Define a sequence of subsets A;, 1 > 0, of R as follows:

Ag = {0}

Aq = A

Ajy1 = A U (Aq + Ay fori =z 1.
Their discriminants satisfy

1 = A(Ao) | A(Ai) | A(A2) | A(Ag) | A(A4) | ...
Let R;j := RI1/A(A;)], U; := Spec(R;). Thus

R=RgCR{ CRypCRzCRyC ..
Spec(R) = Ug D Uy D Uy DUz DUy D ...

Let m 2 0 be an integer. Suppose given finitely many objects K4, ... , K,
in DbC(AlR , @é), and for each i in [1, r] an integer n(i) > 0 such that
m
2i n(i) < m,

for each i, K is adapted to (AiR - D(A ,..), D(A )).
m n n

(i) (i)

Then
(1) The multiple ! and % additive convolutions K1, Kox, ... %K, and

Kq%54Kox oy . %5, K are both adapted to (AlRm - D(A,), D(A,)), and

of formation compatible with arbitrary change of base on Spec(R,,) to

a good scheme.
(2) We have canonical isomorphisms
D(Kl*!+K2*!+ *!+Kr) = DKl**+DK2**+ **+DK

D(Kl**+K2**+ **+K1”) = DK:I_*!+DK2*!+ *!_'_DKF,

Yo

whose formation commutes with arbitrary change of base on Spec(R,,)

to a good scheme.

13.5.7 Examples and remarks
(1) If A is the subset {0, 1}, then A, is the subset {0, 1, ..., n}, and Ry, is
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obtained from R by inverting all the prime numbers which are < n.
(2) If Ais the subset {-1, 0, 1}, then A, is the subset {-n, 1-n, .., n-1,

n}, and R, 1s obtained from R by inverting all the prime numbers

which are < 2n.
(3) If R contains the d'th roots of unity for some d > 3, and A is Wy,

then A(Ap) is a nonzero integer (since the set A is Q-rational). It is

nontrivial to give a closed formula for the cardinality of A,,, much less

n
to specify which primes divide A(A},). Indeed the discussion of
"exceptional primes” in 7.1 is basically the study of A(A9).

(4) Suppose that, rather than starting with a finite nonempty subset A
of R, we start with divisor D in AlR which is finite flat over R of some

degree d > 1, defined by a monic polynomial f(x) in R[x] of degree d.
Then in the integral closure R" of R in some finite galois extension E of
the fraction field F of R, we can factor f(x) completely. Denote by A C
R’ the finite subset consisting of the distinct roots of f. Each of the sets
A, C R'is Galois-stable, so the polynomials

fr,(x) = TT

o in Ag (x - o)
have coefficients in R, and the quantities A(A,) and their successive
ratios A(Ay+1)/A(AL) all lie in R. Therefore the successive localizations
Ry = RI1/A(A)] make sense, and the divisors Dy, defined by the

polynomial f,, is finite etale over Ry,. The previous proposition remains

n
true if in its statement we replace "D(A;)" by "D;" throughout.

13.6 Various fibre-wise categories

(13.6.1) Let R be a normal integral domain in which ¢ is invertible,
whose fraction field has characteristic zero, and such that S := Spec(R)
1s a good scheme. We denote by

DbC,A!(AlR, @g) C DbC(AlR, @g)
the full subcategory of DbC(AlR, 68) consisting of those objects which
satisfy Rm/K = 0. We denote by

Dbc,tame(AlR’ 68) C Dbc(AlR’ 68)
the full subcategory of DbC(AlR, @é) consisting of those objects whose

restriction to every geometric fibre of m : AlR — S = Spec(R) is

everywhere tame. We define
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Dbc,A!,tame(AlR’ (Dé) = Dbc,A!(AlR’ ®€) N Dbc,tame(mlR’ ®€)’
as full subcategory of DbC(AlR, 68)'
We denote by
Perv(Alp, @) c DPL(AlR, Q)
the full subcategory of DbC(AlR, 63) consisting of those objects whose

restriction to every geometric fibre of m : AlR — S = Spec(R) is
perverse. We define
Perva(Alg, Qy) := Perv(Alg, Qy) N DbC,A!(AiR, Qy),
Pervtame(@‘lR’ Qp) := Perv(AlR, Qp) N Dbc,tame(AlR’ Qyp),
PervA!,tame(AlR’ Qp) := Perv(ﬂ-\lR, Qp) N Dbc,A!,tame(AlR’ Qyp),
as full subcategories of DbC(AlR, 68)'

(13.6.2) For j: (Gyp)r — AlR the inclusion, the object Rj*j*ﬁe(l)[l]
of DbC(AlR, 68) sits in a canonical distinguished triangle

QD] = Rjyei*Qp(11] = 8 p —.
So for any object K in DbC(AlR, 68)’ we have a distinguished triangle of
additive ! convolutions

K, Qp(1)[1] = Kx4Rjj*Qp(1)1] - K —.

On the other hand, by proper base change, we have a canonical
iIsomorphism

¥R (K)(D)[1] = K, Qp(1)[1].
Combining these, we obtain a distinguished triangle
¥R (K)(L)[1] = Kx4Rjj*Qp(1)1] - K —,

functorial in K.

Proposition 13.6.3 Notations as in 13.6.1 above, we have:

(1) The object Rj*j*@e(l)[l] of DbC(AlR, @@) lies in

PervA!,tame(AlR’ Qyp).

(2) For any object K of DbC(AlR, 68)’ the additive ! convolution
K% R j*Qe(1)[1]

lies in DP. A \(ATR, @)
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(3) The canonical map
K Rjj*Qp(1)[1] = K

1s an 1somorphism if and only if K lies in DbC’A!(AlR, 68)' The operator
K - Kx1,Rij*Qy(1)[1] on DP(AlR, @) is idempotent; it is the
projector onto DbC,A!(AlR, Q).

(4) DbC’A!(AlR, @8) is a @e—linear triangulated category. Using additive
I convolution as the "tensor” operation, DbC’A!(AlR, @e) 1s an ACU ®-

category in the sense of [Saal, with Rj*j**@e(l)[l] as unit object, in
which & is @e—bilinear and bi-exact ("exact" in the sense of
triangulated categories).

(5) The subcategory Dbc,A!,tame(AlR’ 68) of DbC’A!(AlR, @e) Is a 68_

linear triagulated subcategory, stable under additive ! convolution, so
itself forms an ACU ®-category in the sense of [Saal, with

Rj*j**@e(l)[l] as unit object, in which ® is @e—bilinear and bi-exact
("exact" in the sense of triangulated categories).

(6) The @e—linear additive category PervA!,tame(AlR’ @8) is stable
under additive ! convolution. With this as ®-operation, it forms an ACU
®-category in the sense of [Saal, with Rj*j*@e(l)[l] as unit object, in
which ® is @e—bilinear

(7)The @e—linear additive category Pervtame(ﬂlR, 62) is a @e—linear
additive category which is not stable under additive ! convolution, e.g.,

68[1]*!+ @@[1] has #0 = ﬁé(_l)’ so is not perverse. However, for K in
Pervtame(#\lR, 68)’ the additive ! convolution K*!+Rj*j*@é(1)[1] lies in
PervA!,tame(AlR’ 68)' The operator K — K*!+Rj*j*@e(1)[1] on
Pervtame(%\lR, @e) is idempotent; it is the projector onto

PervA!,tame(AlR’ 68)'

proof The formation of Rj*j*@g(l)[l] commutes with arbitrary change

of base on S = Spec(R) to a good scheme, so it suffices to check (1) when
R 1s an algebraically closed field, in which case 1t 1s 12.10.4.
For (2), the Kunneth formula gives



Chapterl13-Stratifications and convolution-17

RT(K* 4R j* Qp(11]) = R (K)QR™ (R jyj*Qp(1)[1])
= Rmi(K)®0 = 0.
Assertion (3) is obvious from the exact triangle
¥R (K)(D)[1] = Kx,Rjj*Qp(1)[1] - K —.

Assertion (4) is simply the projection onto DbC’A!(AlR, 68) of the

corresponding ®-structure on DbC(AlR, @@), with 80,8 as unit object

(cf. 13.1.4).

Assertion (5) amounts to the statement that over an algebraically
closed field, additive ! convolution preserves tameness. This is vacuous
in characteristic zero. In characteristic p # £ 1t is proven by Fourler
Transform, where 1t becomes the stability under usual tensor product

of objects M in Dbc((]}m, 68) whose cohomology sheaves are all lisse on

G, and lie in T (cf. 12.11 for the perverse version).

m
Assertion (6) results formally from (5), once we show that
Pervai tame(AlR’ @e) is stable under additive ! convolution. For this

we are reduced to the case when R is an algebraically closed field k. In
positive characteristic, this is 12.11.4. In characteristic zero, we argue
as follows. If there exists an embedding of k into C, then the required
stability 1s 12.7.5. In the general case, we may reduce to this case

because any finite collection of objects K; in PerVA!,tame(Aik’ @é) 1s
definable over an algebraically closed subfield kg of k of finite
transcendence degree over Q. Indeed, if we pick a single stratification
(Aly - D, D), D a finite subet of k = Aly(k), to which all the K; are
adapted, then we may descend all the K; to an algebraic closure of Q(D).

To see this, we argue as follows. Since k has characteristic zero,
“tame” is vacuous, and any descents of the K; as perverse objects will

automatically satisfy condition A! (proper base change for Rm under
extension of algebraically closed field). So it suffices to descend a finite
collection of objects K; in Perv(Alk, 68)' Now these are successive

extensions of perverse simple objects; because we are in characteristic
zero, smooth base change assures us that the Ext groups in question
are invariant under (necessarily separable) extension of algebraically
closed field. So we are reduced to descending finitely many perverse
simple objects, all adapted to a common stratification. In the case of a
6-module 65, we have a visible descent to Q(o). In the case of the
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middle extension of an irreducible local system on Alk - D, the

Invariance of ﬁl(Alk - D) under extension of algebraically closed fields

of characteristic zero shows that we have a descent to any
algebraically closed overfield of Q(D). This concludes the proof of (6).

Assertion (7) results from(3), once we know the result on the
geometric fibres. In positive characteristic, this is 12.10.5. In
characteristic zero, we reduce as above to the case when k embeds in
C, and apply 12.7.3. QED
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14.1 The Basic Setting
(14.1.1) Fix a prime number ¢, and an isomorphism of fields

1:Qy = C.
Let R be a subring of € which is a finitely generated Z[1/¢]-algebra. Let
K be an object of DbC(AlR, 68)' At the expense of replacing R by R[1/r]
for some nonzero element r € R, we may further assume that R 1s

normal, and that K is adapted to the stratification (AlR - D, D) where

D C AlR is a divisor which is finite etale over R of some degree d > 1,

defined by a monic polynomial f(x) € R[x] of degree d whose
discriminant A is a unit in R.
(14.1.2) In the following discussion, we view R C C by the given

inclusion. This allows us to speak of the complex fibre Ai(t, and the
object K¢ in DPL(ALl, Q).

Lemma 14.1.3 (cf. [Ka-PES, 1.7]) Hypotheses as above, the following
conditions are equivalent:

(1) K is fibre-wise perverse, in the sense that for any algebraically
closed field k, and any ring homomorphism ¢: R — k, the inverse image

K‘P of K in DbC(Alk, 68) is perverse.

(2) There exists an algebraically closed field k, and a ring
homomorphism ¢: R — k such that the inverse image K‘P of K in

DbC(Alk, 68) is perverse.

(3) The object K¢ in DbC(Al(E, @8) is perverse.

(4) The cohomology sheaves HI(K) and H1(DK) both vanish for i = 0, -1,
and for 1 = 0 both vanish on AlR - D.

proof Each of the cohomology sheaves HI(K), ®I(DK) is adapted to the

stratification (AlR - D, D) of AlR, so its vanishing on either stratum is

detected on any geometric fibre. QED

(14.1.4) Suppose now that K is fibre-wise perverse. By 13.3.4 (5), we
know that K is an object of Pervtame(ﬂlR, @3). We denote by T the

holonomic RS D-module on Al(]: which corresponds to K¢ via

Riemann-Hilbert and the change of coefficients via 1. By 2.10.16, we
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know that j*FT(J) is a D.E. on G, ¢. We denote
n(K) := the rank of the D.E. j*FT(IN) on G

Ggal .
In this situation, we have

m,C>

= the differential galois group of j*FT(I) on G, .

Proposition 14.1.5 For any algebraically closed field k of characteristic
p > 0, any ring homomorphism ¢: R — k, and any nontrivial additive
character ¢ of any finite subfield of k, the perverse object FTqJ(ch)le

is of the form ?(P[l], for ?(P a lisse sheaf on (Gp,)y of rank n(K).

proof Replacing K by K*!+(Rj*j*@e(1)[1]) does not change either the

D.E. j*FT(M) on G, ¢ or the lisse sheaves ?(P (by 12.5.8 and 12.10.5).
Nor does it change the fact that K is adapted to the stratification
(AlR - D, D) (cf 13.4.3). So we may assume in addition that K lies in

PervA!,tame(AlR’ 68)' In this case, we have seen (12.5.13) that n(K) is
the generic rank of Jl, i.e., it is the generic rank of }E_l(Kq:). Because K
is adapted to (AlR - D, D), this shows that the rank of the lisse sheaf
# 1k | Alg - Dis n(K).

Since K(P 1s perverse, everywhere tame and satisfies condition

(Al), we know (12.11.4) that ?(P is lisse of rank equal to the generic
rank of }E_l(K(P). But as K is adapted to (AlR - D, D), the generic rank
of }E_l(K(P) is equal to the rank on AlR - D of the lisse sheaf

w1l | alg - D,

which as we have just seen is of rank n(K). QED

Reductive Comparison Theorem 14.2 Fix a prime number ¢, and
an isomorphism of fields 1:Qy = C. Let R be a subring of € which is a

finitely generated Z[1/%]-algebra. Let K be an object of Dbc(#\iR, 68)

which is adapted to a stratification (AlR - D, D) where D C AlR is a

divisor which 1s finite etale over R of some degree d > 1, defined by a
monic polynomial f(x) € R[x] of degree d whose discriminant A is a unit
in R. Suppose that K is fibre-wise perverse, with K¢ corresponding to
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the RS holonomic D-module M, whose D-module Fourier Transform
FT(M) is a D.E. on G, ¢ of rank n := n(K). Suppose that
(1) the differential galois group Ggal of j*FT(IN) on Gy, ¢ Is reductive.

(2) for any algebraically closed field k of characteristic p > 0, any ring
homomorphism ¢: R — k, and any nontrivial additive character { of
any finite subfield of k, denoting by Ggeom @, the group Ggeom for the
. L x _ . . .
lisse sheaf ?(P = FTLP(K(P)[ 1] on Gy k of rank n : n(K) is reductive.
Then there exists a dense open set U of Spec(R), which depends only on
the original stratification (I—\lR - D, D) of AlR to which K

was adapted, and
the conjugacy class of Gggy) In GL(n, C),

such that for any ¢ lying over a point of U, Ggeom,cp,qJ(@é) is conjugate

in GL(n, 68) to a subgroup of L_ngal((E).

proof Replacing K by K*!+(Rj*j*@e(1)[1]) does not change either the
D.E. jJ*FT(M) on Gy, ¢ or the lisse sheaves C;F(P. Nor does it change the
fact that K is adapted to the stratification (AlR - D, D). So we may

assume in addition that K lies in PervA!,tame(AlR’ 68)'

Consider the n-dimensional object K¢ in the Tannakian category
Perv tame(AlﬂZ’ 68)’ with convolution as the tensor operation. The

Tannakian galois goup of K¢ is L_ngal (by 12.8.3). By hypothesis, this
group is reductive. So for some (D, N) with 1 < D < N and N > 3, K¢ is
(D, N)-determined.

For the dense open set U of Spec(R), we apply 13.5.6 and 13.5.7 (4),
and take U := Spec(R). Fix an algebraically closed field k of

characteristic p > 0, a ring homomorphism ¢: R — k which lies over a
point u of U, and a nontrivial additive character ¢ of a finite subfield of
k. Consider the n-dimensional object K(P in the Tannakian category
Pervai tame(Alk’ 68)’ with convolution as the tensor operation. The
Tannakian galois goup of K‘P is Ggeom,cp,qy
Denote by Ry, h5 the strict henselization inside C of the local ring
at u. Then ¢ is a geometric point of Spec(Ry, ys) lying over the closed

point, and the inclusion of R into € 1s a geometric point lying over

u,hs
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the generic point of Spec(R, ps)-

[t remains only to apply to this situation the reductive
specialization theorem 11.7.1. In the notations of that theorem, we take

m = PervA!,tame(AlRu hs' Qp), 1 = Rjyi*Qp(D1], ® = xy,,
vV =K, ’

VY = ([x = -xI*DK)»* (R j* Qp(1)I1]),

n = n(K),

C(]: = PervA!(Alq:, @e), 1 = RJ*J*@@(l)[l]: ® = X145
M — C¢ the functor "pullback to Al(t"
Cﬂ: = PervA!,tame(Alk’ @e), 1 = Rj*j*ﬁe(l)[l], ® = X4,

M — CF the functor "pullback to Alk".

The hypotheses (1C) and (1F) are satisfied, by 12.7.5 and 12.11.4.
The reductivity hypotheses (2C) and (2F) are satisfied because we have

assumed this. The hypotheses (3C) and (3[F) are satisfied in virtue of
13.3.10. QED

The following corollary shows that among reductive subgroups of
GL(n, C), none smaller than Ggal "works” in the reductive comparison

theorem.

Corollary 14.3 Hypotheses and notations as in 14.2, let H be a proper
Zariski closed subgroup of Ggal which is reductive. Then there exists a

dense open set Uq of Spec(R), which depends only on
the original stratification (AlR - D, D) of AlR to which K

was adapted, and
the conjugacy class of Ggal in GL(n, C),

the conjugacy class of H in GL(n, C), B
such that for any ¢ lying over a point of Uy, Ggeom, ¢ qj(@e) is not

conjugate in GL(n, 68) to a subgroup of v~ 1H(C).

proof The idea is to exploit the fact that reductive subgroups of
GL(n, €C) = GL(V), are determined by their tensor invariants.

For each pair of nonnegative integers (a, b), we denote by Ta,b(v)

the representation Ve®ag® (VY )®b For any subgroup I" of GL(V), we
define
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inv(T’; a, b) := dim((T&:Pv)H) € 7,
and the two-variable generating series

Invp(x, y) := Za,b inv(l’; a, b)Xayb € Z[[x, yll

Notice that the dimensions inv(I’; a, b) and the generating series
Invp(x, y) depend only on the conjugacy class of I" in GL(V).

Since H C G we always have an inclusion of invariants

gal

G H

Ta,by) gal ¢ rabry)”
so In particular an inequality of dimensions
inv(H; a, b) = inv(Ggal; a, b).

Since H is a proper reductive subgroup of the reductive group Ggal

inside GL(n, €C) = GL(V), the two groups cannot have the same tensor
invariants. Therefore there exists a pair of nonnegative integers (a, b)
for which we have a strict inequality

inv(H; a, b) » inv(Ggal; a, b).

Fix one such pair (a, b). In the notations of 13.5.6 and 13.5.7 (4),
consider the open set U := Spec(R_4}) of Spec(R), and the object Ta,b(K)

of PervA!,tame(AlRaer’ 68)' In virtue of 13.3.6 (3), we have an

equality of dimensions of spaces of invariants
dimHom(1g, T®P(Kg)) = dimHom(1,, T3P(K )
for every geometric point (k, ¢: R4, = k) of Spec(R_4p). For a

geometric point of positive characteristic, we can read this in terms of
the Fourier Transforms:

dimHomypp g /0) (96 TabG*FT(M)) =

= dimHomlisse sheaves on @m,k((D*é’ Ta’b(?ﬁp))
In other words, we have
inv(Ggal; a, b) = inV(Ggeom,cp,qJ; a, b)
for every geometric point (k, ¢: Rj4+}, — k) of Spec(R_41) of positive

characteristic. Therefore we cannot have G v conjugate to a

geom,,
subgroup of H, since it has too few invariants. QED

14.4 Remarks
(14.4.1) Indeed, over Spec(R 1), 13.3.6 (3) shows that we have an

equality of dimensions
inv(Ggal; c, d) = inV(Ggeom,Lp,qJ; c, d)

for every pair of nonnegative integers (c, d) with ¢ + d < a + b. In other
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words, by shrinking on Spec(R), we can make more and more terms

of the generating series Innge (%, y) for Ggeom,cp,np coincide with

om,q@,J

those of the generating series for Ggal' But we might never get all the
terms right.
(14.4.2) Here is a simple example. Start over Z, with the perverse
object K given by the delta module &1 supported at 1. Over C, the
Fourier Transform is the D.E. for e¥, whose Ggal 1s G- So for Ggal the
generating series is

Inngal(X’ y) = 1/(1 - xy).
In characteristic p, the Fourier Transform of 64 1is f,qj, whose Ggeom 1s

the subgroup Mp of G so for any ¢ of characteristic p we have

(x, y) = (1 - xPyP)/(1 - xy).

m>

nngeom,cp,qJ
(14.4.3) This same example also illustrates the bookkeeping of
iterated convolution (cf. 13.5). The natural stratification to which both

K = 84 and [x = -x]*DK = §_q are simultaneously adapted is

(Al711 /91 - A, A) for A := (1, -1).

With this A, n > 2 convolutions bring us to the set
A :={-n, 1-n, .., n-1, nJ,

so inverting A(A,) requires the inverting of all primes which are < 2n.

n

(14.5) The following theorem shows that the above phenomenon of
the generating series for Ggeom,cp,np never reaching that of Ggal’ no

matter how much we shrink, cannot occur if we require Ggal to be

semisimple (and not just reductive). The proof is due to Ofer Gabber.

Semisimple Comparison Theorem 14.6 Hypotheses and notations as
in the reductive comparison theorem 14.2, suppose in addition that the
group Ggal is semisimple. Then there exists a dense open set U of

Spec(R), which depends only on
the original stratification (AlR - D, D) of AlR to which K

was adapted, and
the conjugacy class of Ggal in GL(n, C),

such that for any ¢ lying over a point of U, Ggeom,cp,w(ﬁé) is conjugate

in GL(n, @p) to 171Gy, (C).
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proof Let us admit temporarily the following result, which I learned
from Ofer Gabber.

Theorem 14.7 Let G be a Zariski closed subgroup of GL(n)g which is
semisimple. There exist finitely many proper reductive subgroups H; of

G such that any proper reductive subgroup H of G is G-conjugate to a
subgroup of one of the listed subgroups H;.

Granting this, the semisimple comparison theorem is immediate.
First shrink on Spec(R) until the reductive comparison theorem comes
into effect, say on the dense open UO. Then apply the previous corollary

to G = Ggal and to each of the finitely many subgroups H; of G; each

application produces a dense open UHi of Spec(R) over which

Ggeom,cp,w(ﬁé) is not conjugate in GL(n, 68) to a subgroup of L_lHi((E).

S0 over the intersection of Uy and the finitely many UHi’

G w(@e) must be conjugate in GL(n, 68) to L_ngal((E). QED

geom,y,

(14.8) [t remains to prove the group-theoretic theorem 14.7. This
we will do by a combination of the unitarian trick and Jordan's
theorem on finite subgroups of GL(n, C). We first carry out the
reduction to the compact case. Recall that reductive algebraic groups H
over € have maximal compact subgroups Ky which are Zariski dense

and all of which are H-conjugate. If H is a reductive subgroup of a
reductive algebraic group G, then any choice of Ky is a compact

subgroup of G, so contained in some maximal compact subgroup Kg of G.
Moreover, any compact subgroup I of K5 is the maximal compact
subgroup of a unique reductive subgroup Hy of G (namely Hy := the

Zariski closure of F in G). So the theorem in question is equivalent to
the following about compact Lie groups.

Theorem(bis) 14.9 Suppose that G is a compact Lie group which is
semisimple. There exist finitely many proper compact subgroups H; of G

such that any proper compact subgroup H of G is G-conjugate to a
subgroup of one of the listed subgroups H;.

proof For H a proper compact subgroup of G, we have an obvious
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inclusion
H ¢ Ng(HO).

According to [Bour-L9, 9, exc 12, a)l, as HO runs over the connected

compact subgroups of G, all the groups NG(HO) fall into finitely many G-

conjugacy classes. So if HO is not a normal subgroup of G, we are done.
If HO is a normal subgroup of the semissimple G, then HO is
necessarily semisimple (its connected center is normal in G). So Lie(HO)

1s a semisimple ideal in Lie(GO), of which there are only finitely many
(cf. [Bour-L1, 6, exc 7]). Therefore there are only finitely many possible

HO which are normal. For each of these finitely many, the group H

corresponds to a finite subgoup of the quotient group G/HO, which is
1tself semisimple. For each of these finitely many quotient groups, we
must prove the theorem for all its finite subgroups.

Suppose now that H is a finite subgroup of G. In the proof of
Jordan's theorem as given in [C-R-RT], one constructs a small
neighborhood U of the identity in the compact group G (strictly
speaking, in an ambient unitary group) and shows that if H is any
finite subgroup of G, then any two elements of HNU commute.
Shrinking U, we may suppose that the log and exp maps are inverse
bijections to a neighborhood of zero in Lie(G), and that U is stable by G-
conjugation.

Suppose first that HNU is reduced to the identity element. Then
the order of H is bounded by the absolute constant c(G) := vol(G)/vol(U).
By [Bour-L9, 9, exc 20], there are only finitely many conjugacy classes
of finite subgroups of G of any given order.

Suppose now that HNU 1s not reduced to the identity element.
Consider the logarithms of the elements in HNU. This is a commuting
set of elements in Lie(G), stable by H-conjugation, not all of which are
zero, so their R-span in Lie(G) is the Lie algebra of a nonzero connected
torus T of G which is normalized by H. Therefore we have H C Ng(T).

Because G 1s semisimple, the torus T is not normal in G, and so by the
earlier discussion the proper subgroup Ng(T) lies in one of finitely many

G-conjugacy classes. QED

Using this same group-theoretic result, we can also give a
sharpening of the reductive comparison theorem, which includes the
semisimple comparison theorem as a special case.
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Sharpened Reductive Comparison Theorem 14.10 Hypotheses and
notations as in the reductive comparison theorem 14.2, there exists a
dense open set U of Spec(R), which depends only on

the original stratification (AlR - D, D) of AlR to which K

was adapted, and
the conjugacy class of Ggal in GL(n, C),

such that for any ¢ lying over a point of U, Ggeom,cp,qJ(@é) is conjugate

in GL(n, 68) to a subgroup of L_ngal((E). Via this conjugation the two

groups have the same "semisimple connected parts”,
Ggeom,(p,qJ((D*é)O’der _ L—ngal(@)O,der’

and the composite map

Ggeom,g,p € Ggal = Ggal/ZU(G
is sur jective.

gal)o)o

proof For any reductive group G, one knows that GO0 = g0.der.z(g0)0,

the quotient G/Z(G90 of G is the universal semisimple quotient of G,
and the natural map

gO.der — G/7(g9)0
1s an 1sogeny of the source onto the identity component of the target.
So if H is a closed reductive subgroup of G, then HO.der = g0.der i 5ng
only if the composite

Hc G- G/z2(G90,
maps H onto a subgroup of finite index.

We now apply these remarks to the situation at hand. An initial

shrinking on R allows us to assume that the conclusion of the reductive

comparison theorem already holds. We fix choices of conjugations, and
of 1, and view each Ggeom,cp,qJ as a subgroup of Ggal' Then each

(Ggeom ¢ qJ)O,der is a subgroup of (Ggal)O,der_ As explained above, it
suffices to show that the canonical map

Ggeomn,q,p € Ggal Ggal/z((Ggal
is sur jective. If it is not surjective, its image is a proper reductive

)0)0

subgroup of the semisimple group Ggal/Z((Ggal)O)O, and hence by the
theorem 14.7 the image is conjugate to a subgroup of one of a finite
list of proper subgroups H; of Ggal/Z((Ggal)O)O- Denote by Hi C Ggal the
inverse image of H; in Ggal- Then the Hi form a finite list of proper

reductive subgroups of G and whenever the map

gal
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Ggeomn,q,p € Ggal Ggal/Z((Ggal)O)O
1s not sur jective, Ggeom,cp,qJ is conjugate in Ggal to a subgroup of one of

the Hi- Now apply 14.3 to each of the finitely many Hi- QED

14.11 Interlude : a sufficient condition for the reductivity of
Ggal

Reductivity Criterion 14.11.1 Fix a prime number ¢, and an
isomorphism of fields 1:Qp = C. Let R be a subring of € which is a
finitely generated Z[1/%]-algebra. Let K be an object of DbC(AlR, 68)

which is adapted to a stratification (AlR - D, D) where D C AlR is a

divisor which is finite etale over R of some degree d > 1, defined by a
monic polynomial f(x) € R[x] of degree d whose discriminant A is a unit
in R. Suppose that K is fibre-wise perverse, with K¢ corresponding to

the RS holonomic D-module M, whose D-module Fourier Transform
FT(M) is a D.E. on Gy, ¢ of rank n := n(K). Suppose that for any

algebraically closed field k of characteristic p > 0, any ring
homomorphism ¢: R — k, and any nontrivial additive character ¢ of
any finite subfield of k, the group Ggeom for the lisse sheaf ?(P p =

J*FTLP(K(P)[_:]‘] on Gy, i of rank n := n(K) is reductive.

Then the differential galois group Ggal of j*FT(IN) on Gy, ¢ is reductive.
proof Replacing K by K*!+(Rj*j*@€(1)[1]) does not change either the
D.E. jJ*FT(M) on Gy, ¢ or the lisse sheaves C;F(P’qj. Nor does it change the
fact that K is adapted to the stratification (AlR - D, D). So we may

assume in addition that K lies in PervA!,tame(AlR’ @8)'

We begin by explaining the idea of the proof. Suppose first that for
for any algebraically closed field k of characteristic p > 0, any ring
homomorphism ¢: R — k, and any nontrivial additive character { of
any finite subfield of k, the lisse sheaf ?(P;‘P on Gy, k has no nonzero

invariants under local inertia at zero:

(?(P:LP) 0 =0, le, J!?(P’qj J*?(p’qj.
Then J!?(p,q)[i] is the middle extension of C;F(P’qj[l] to Aik, By hypothesis,
?(P;‘P has G

geom reductive, which is to say that ?(p,qJ is geometrically

the direct sum of irreducible lisse sheaves ?q),l]J,O( on (Elm,k. Therefore
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the middle extension J!?(P,QJM] is the direct sum of the middle

extensions of the ?(P P (1], each of which is perverse irreducible on

Alk. But FTqJ(K(P) = J!?(P qi[l]’ so by Fourier inversion and the fact that
FT carries perverse irreducibles to perverse irreducibles, we deduce

that K(p 1s 1tself a direct sum of perverse irreducibles on Alk, for every
geometric fibre of AlR/Spec(R) of positive characteristic. By [B-B-D,

6.1.9], it follows that the perverse object K¢ on Al(t 1s a direct sum of
perverse irreducibles. Then by 12.7.1.1 and Riemann-Hilbert, the
corresponding D-module Tl on Al(E is a direct sum of irreducible
holonomic RS D-modules. Therefore its Jd-module Fourier Transform
FT(IN) is a direct sum of irreducible holonomic D-modules on Al(t.
Since the restriction of an irreducible holonomic to a nonvoid open set
is (either zero or) irreducible holonomic, the restriction j*FT(JIN) to
Gm,(]i of FT(M) is a direct sum of irreducible holonomics on Gm,(]i- Since
JXFT(M) is itself a D.E., each of its irreducible holonomic summands is
itself a D.E., so an irreducible D.E. on G, ¢. Therefore J¥FT(IM) is a
semisimple object of the category D.E(Gy,/C), i.e, its Ggal 1s reductive.

We next explain how to reduce the general case to the one treated
above. The idea is that if we convolve K with a suitable Lj!f,&[l], for X a

character of finite order, we replace ?(p,qJ by ‘E’X®?(P,¢’ and if we take

X sufficiently general, then this sheaf has no nonzero inertial
invariants at zero. On the other hand, the D-module effect of the

change is to replace j*FT(I) by an x&* twist x*®@j*FT(IN) for some
rational number o whose exact denominator is the order of X. By the

previous case, we conclude that x*® j*FT(JN) has its Ggal reductive, l.e.,

x*®j*FT(IM) is a semisimple object of the category D.E.(G,,/C). Twisting
now by x~% we find that j*FT(JN) is itself a semisimple object of the
category D.E.(Gy,/C), as required.

To see that we can choose a single X which "works”
simultaneously in all the geometric fibres, recall that for any given

object K of DbC(AlR, 68)’ there exists a finite extension E of Q) inside
68 such that K "comes from" an object K of DbC(AlR, 68)' The

nontrivial characters of I which occur in ?Lp p are, thanks to
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Laumon's analysis of the local monodromy of Fourier Transforms,
among the characters of I, which occur in the various cohomology

sheaves }[’,i(K(P). By the local monodromy theorem, the characters of I

which occur in any particular }(’,i(K(p) are all of finite order; because K

lives over E, looking at characteristic polynomials shows that these
characters take values which are algebraic over E of degree at most

the generic rank of HI(K). Since E has only finitely many extensions of
any given degree, each of which contains only finitely many roots of
unity, we see that the orders of the possible characters of of Iy which

occur in ?(P p are uniformly bounded, say < N. So we have only to pick
any integer M > N, replace R by the overring R[1/M, ¢p/] (inside €), and
pick for X any character of exact order M. QED

Corollary 14.11.2 (criterion via purity) Fix a prime number ¢, and
an isomorphism of fields 1:Qp = C. Let R be a subring of € which is a

finitely generated Z[1/%]-algebra. Let K be an object of DbC(AiR, 68)

which is adapted to a stratification (AlR - D, D) where D C AlR is a

divisor which is finite etale over R of some degree d > 1, defined by a
monic polynomial f(x) € R[x] of degree d whose discriminant A is a unit
in R. Suppose that K is fibre-wise perverse, with K¢ corresponding to

the RS holonomic D-module M, whose D-module Fourier Transf_orm
FT(M) is a D.E. on Gy, ¢ of rank n := n(K). Suppose that for any Fp of

characteristic p > 0, any ring homomorphism ¢: R = [, and any

p)

nontrivial additive character  of any finite subfield of [Fp, the lisse

L% _ = . )
sheaf ?(p,qJ = FTqJ(ch)[ 11 on G/ [Flo is pure of some weight. Then

the differential galois group Ggal of j*FT(IN) on Gy, ¢ Is reductive.

proof Indeed, by [De-WII, 3.4.1] the purity of the lisse sheaf ?(p,qJ
implies that its Ggeom is reductive (indeed, semisimple, in view of
Grothendieck's theorem [De-WII, 1.3.8] that the radical of Ggeom is
unipotent for any lisse sheaf on on G,/ [Flo which begins life over a
finite field). QED

14.12 Application to hypergeometric sheaves
(14.12.1) We begin with a brief review of what we established earlier
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about hypergeometrics of type (n, n). Fix an isomorphism t: 68 = (.

For any integer N > 1, denote by
¢n(x) := the N'th cyclotomic polynomial,

Ry := the ring Z[1/N¢, X1/(& (X)),
My = the cyclic group up(Ryy) of order N,
SN 1= Spec(Ryy).

The group Hom(ppy, M) is canonically (1/N)Z/Z, with x in (1/N)Z/Z

corresponding to the character ¢ & CNX.
(14.12.2) Once we fix an embedding

Ly Ry € Q.
we have an induced isomorphism Hpy = HN(@Q); this allows us to
identify @e—valued characters of gy with elements of (1/N)Z/Z.
(14.12.3) Suppose we are given an integer n > 1, a set {Xl, ,Xn} of n
not necessarily distinct @e—valued characters X; of Wy, and a disjoint
set {pl, ,pn} of n not necessarily distinct @e—valued characters P of
M- Denote by xj and the yj be the unique elements of (1/N)Z/Z to
which the characters X1, ..., Xpn; P1, - » P> correspond. In (8.17.11),
we constructed a @e—sheaf

H(xX's; p's)

on G,,/SN which is adapted to the stratification (G, - {1}, {1}), and

such that B
(1) the restriction of H(X's; p's) to each geometric fibre Gm/[Fp of

positive chararacteristic is geometrically isomorphic to the
hypergeometric sheaf H (!, y; X's; p's).
(2) The restriction (via the composite inclusion Ry C 68 = () of the

sheaf #(X's; p's) to the complex fibre corresponds (via passage to the
analytic, the change of coefficients 1: Qy = C, and Riemann-Hilbert) to

the hypergeometric HD-module H1(xq, ... , Xpy; Y1, - > Yn)-

(14.12.4) We used the existence of such an "incarnation over Z" in
8.17.12 to show that the differential galois group Ggal of the n'th order

DE Hq(xq, .., X5 V1, > ¥Ypn) on Gy - {1} over € was "the same” as the

group_Ggeom for the lisse, rank n sheaf ¥1(!, ¢; X's; p's) on G, - {1}

over IFp, for any p prime to N4.
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In this section, we will apply the sharpened reductive comparison
theorem 14.10 to the Kummer pullbacks of such “incarnations over Z°
of hypergeometrics of type (n, n) to get a comparison theorem for
(Kummer pullbacks of) hypergeometrics of arbitrary mixed type.

Theorem 14.12.5 Fix an isomorphism u: @e = (C, an integer N = 1, and
an embedding 1y : Ry C 68' Suppose we are given integers n > m = O,
a set {Xl’ ,Xn} of n not necessarily distinct @e—valued characters X;
of My, and a disjoint set {pq, ... ,py,} of m not necessarily distinct ﬁé—

valued characters P of Wp. Denote by x; and the Y be the unique

elements of (1/N)Z/Z to which the characters X1, .., Xpn P1s -~ > P>
correspond. Define
d:= n-m,
and fix a unit A in the ring Ry[1/dl.
Denote by
Ggal € GL(n, €)
the differential galois group of [d]*Hy(x1, ..., Xy V1, - Yim) on Gy /C.

For any algebraically closed field k of characteristic p > 0, any ring
homomorphism ¢: Ryl1/d] = k, and any nontrivial additive character

y of any finite subfield of k, denote by
Ggeom,(p,qJ C GL(n, Q)

the group Ggeom for the lisse sheaf [dI*H, (!, ¢;%X 1, ., X5 P1> > Pr)
on G, k-
The groups Ggal and Ggeom,cp,qJ are all reductive, and there exists
a dense open set U of Spec(Ry[1/d]), which depends only on the
conjugacy class of Ggal in GL(n, C), such that for any ¢ lying over a
point of U, we have

(1) Ggeom,cp,w(ﬁé) is conjugate in GL(rl, 68) to a subgroup of L_ngal((E).
(2) Using (1) and the isomorphism 1: Qy = C to identify Ggeom,cp,qJ with

a subgroup of Ggal’ we have in addition

(2a) (Ggeom,¢,¢)0’def - (Ggal)o’der-

(2b) Ggeom @, Maps onto the universal semisimple quotient

Ggal/Z((Gga)?)V of Ggy.

proof The groups in question are invariant under multiplicative
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translation of X\ in G (Ryn[1/d]). The D.E. H4(xq, ..., Xp3 Y15 - » Ym) ON
Gy, /C 1s irreducible, since the x; and the yjare disjoint mod Z.

Therefore any Kummer pullback is completely reducible as a D.E. on
Gy, /C, and hence Ggal 1s reductive. Similarly, Ggeom,cp,qJ 1s reductive.

[t remains only to apply the reductive comparison theorem in its
sharpened form (14.10). Recall that for k algebraically closed of
characteristic p prime to Nd¢ we have (9.4.2 (a) (2)) an isomorphism,

for any A in k™, of perverse sheaves on Alk
j*[d]*Hypx(!, Py Xi'ss sz) =
And on the complex fibre, we have (6.4.2 (2)) an isomorphism, for any

A in C*, of holonomic D-modules on Al(]:
Jrse (Al ¥ (x4's; yJ"s) =
= FT(jixld]*Cancel¥ _;jn+m+dqyd 5 (1/d, 2/d, .., d/d, —yJ"s; -x3's)).

So for the particular choice
A= (-1)n+m*d(q)d,
the asserted result is just the reductive comparison theorem in its
sharpened form 14.10, applied to the object

K = jeld]*Cancel(®(!, ¢; Aq, ..., Ay, aj's; 7(1'5))[1].

As the theorem is invariant under multiplicative translation of A\ in
Gy (R[1/7d]), it suffices to establish it in this case. QED

Corollary 14.12.6 (Hypergeomertic comparison) In the situation of
the theorem 14.12.5, denote by
Ggal C GL(n, C)

the differential galois group of ¥ (xq, ..., Xp; Y1, - » Ym) on Gy /C.
For any algebraically closed field k of characteristic p > 0, any ring

homomorphism ¢: Ryl1/d] = k, and any nontrivial additive character
P of any finite subfield of k, denote by
Ggeom,cp,qJ C GL(n, Q)
for the lisse sheaf H (!, ;X 1, ., X P1s -

the group G ) on

G

geom s Pm
m,k-

The groups Ggal and Ggeom,cp,qJ are all reductive, and there exists
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a dense open set U of Spec(Ry[1/d]), which depends only on the
conjugacy class of Ggal in GL(n, C), such that for any ¢ lying over a
point of U, we have

(1) (Ggeom,cp,qJ)O is conjugate in GL(n, 68) to a subgroup of L_i(Ggal)O.
(2) Using (1) and the isomorphism u: @é ~ C to identify (Ggeom,(p,qJ)O
with a subgroup of (Ggal)o, we have in addition

(2a) (Ggeom,ap,tp)o’der - (Ggal)o’der-

(2b) G(Ggeom,cp,qj)o maps onto the universal semisimple quotient

(GgaD®/2((Gga )Y of (Ggap)P.

proof The groups Ggal and Ggeom occuring here contain their

homonyms occuring in the theorem as open normal subgroups of index
dividing d with cyclic quotient. In particular they have the same
identity components. QED

Remark 14.12.7 It is almost certainly true that the conclusions of the

theorem 14.12.5 actually hold for the groups Ggal and Ggeom of the

corollary 14.12.6, and not just for their identity components. For
instance, this is automatically the case if d := n-m = 1 (by the theorem

itself), or if both groups Ggal and Ggeom are connected, or... . In view of

our detailed knowledge of both of these groups for irreducible
hypergeometrics, one could envisage checking case by case.

14.13 Application to Fourier Transform of Cohomology along
the fibres

(14.13.1) Fix a prime number ¢, and an isomorphism of fields

1:Qy = C.
Let R be a subring of € which is a finitely generated Z[1/¢]-algebra. Let
X/R be an affine R-scheme which is smooth over R, everywhere of
relative dimension d 2 0. Let § be a lisse Qp-sheaf on X of rank r 2 1.

[Typically, § will be the constant sheaf ﬁé’ or R will contain the N'th
roots of unity and ¢ will be a sheaf of the form ‘E’X(g) for some
invertible function g on X, and some @@—valued character X of the

group Mp(R).] Let
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f:X - alg
be a function on X, viewed as a morphism to AlR.

(14.13.2) Now apply [Ka-Laul, 3.3.3] to the trivial stratification (X) of
X and the morphism f : X — AlR. After shrinking on Spec(R), there

exists a stratification of AlR of the form (AlR - D, D), where D C AlR

1s a divisor which is finite etale over R of some degree d > 1, defined by
a monic polynomial f(x) € R[x] of degree d whose discriminant A is a
unit in R, such that for any lisse lisse Qy-sheaf § on X, the objects Rf|§

and Rf G of Dbc(ﬂ-\lR, 68) are both adapted to (AlR - D, D), and their

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

Proposition 14.13.3 (Gabber) Let R be a subring of C which is a
finitely generated Z[1/¢]-algebra. Let X/R be an affine R-scheme which
1s smooth over R, everywhere of relative dimension d > 0. Suppose

given a stratification (I—\lR - D, D) of AlR, where D C AlR is a divisor

which is finite etale over R of some degree d > 1, defined by a monic
polynomial f(x) € R[x] of degree d whose discriminant A is a unit in R,
such that for any lisse lisse Qp-sheaf 4 on X, the objects Rf|3and Rf, g

of DbC(AlR, 68) are both adapted to (AlR - D, D), and their formation

commutes with arbitrary change of base on Spec(R) to a good scheme.
For a given lisse Qy-sheaf § on X, the following conditions are

equivalent:

(1) For every triple (k, ¢, {) consisting of an algebraically closed field k
of positive characteristic, a ring homomorphism ¢ : R — k, and a
nontrivial @e—valued additive character ¢ of a finite subfield of k, the

natural "forget supports” maps
ch(x®q)k; 9®ﬁ¢(f)) - HI(X(X)(PR, 9®ﬁ¢(f))

are all isomorphisms.

(1 bis) For every triple (k, ¢, ¢) consisting of an algebraically closed
field k of positive characteristic, a ring homomorphism ¢ : R = k, and
a nontrivial @e—valued additive character ¢ of a finite subfield of k, we

have
HIC(X®(PR, 9®ﬁ¢(f)) =0 = HI(X®(Pk, 9®f)q)(f)) for i = d,
and the natural "forget supports®™ map

HAL(X® gk, 3®L (1)) = HAX®k, GOL (1)
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Is an isomorphism.

(2) The "forget supports” mapping cone
K := K(9) := [Rfi3 = Rf, 9],

viewed as an object of DbC(AlR, @e), 1s lisse on AlR, in the sense that
all its cohomology sheaves are lisse on AlR.
(2bis) K¢ is lisse on Al

(2ter) The restriction of K to some geometric fibre of AiR/R is lisse.

proof Since K(9) is adapted to the stratification (AlR - D, D), it is lisse

on AlR if and only if 1t is lisse on any single geometric fibre Alk, lLe.,
the conditions (2), (2bis), and (2ter) are all equivalent.
For any lisse § on X, we have a triangle on AlR,
- Rfig —» Rf 9§ — K(§) -,
whose formation commutes with arbitrary change of base on Spec(R)

to a good scheme. Restrict to Alk, and apply FTqJ | = FTqJ % We get a

triangle on Alk,
—>FT¢(R1‘!%) - FTqJ(Rf*%) - FTqJ(K(%)) —.

Because Rf|$ is everywhere tame on Alk, the object FTqJ(Rf!Q) is lisse
on Gm,k’ and by proper base change 1t is automatically of formation
compatible with arbitrary change of base on Gm,k to a good scheme. In
terms of the morphism

pro : XkXGm,k - G

m k; (X; t) = t;

we have (by the very definition of FTy, )
FTLP(Rf!%) | G k= R(pr2)!(9®f)q}(tf))[1].
Hence its dual, which (up to a Tate twist and a shift) is

Fqu,*(Rf*%V) | Gk = R(pr2)*(9v®£$(tf))[l],

is itself lisse on G of formation compatible with arbitrary change of

m,k>
base on Gy, | to a good scheme. Applying this argument to 4 and @,

we see that
FTqJ(Rf*%) | Gm,k = R(pFQ)*(g(@ﬁw(tﬂ)[l]

1s lisse on Gy, |k, of formation compatible with arbitrary change of base
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on G,, k to a good scheme.

Passing to fibres, we see that condition (1) for § holds if and only
if FTLP(K(Q)) | (Eum’k vanishes for every triple (k, ¢, ¥), i.e., if and only if

FTqJ(K(g)) is punctual, supported at the origin. By Fourier inversion,
this is in turn equivalent to saying that K(3) is geometrically constant,
and hence lisse, on each geometric fibre Alk of positive characteristic,
whence (2ter) holds.

Conversely, if K(3) is lisse on AlR, i.e., if condition (2) holds, then

the restriction of K(3) to each geometric fibre Alk of positive

characteristic is both lisse and everywhere tamely ramified, and hence
geometrically constant, whence FTqJ(K(%»)) | Gy k vanishes. So looking

fibre by fibre, we see that condition (1) holds.
The equivalence of (1) with (1bis), "mise pour memoire” results
from the fact that each geometric fibre X‘P is affine and smooth,

everywhere of dimension d, with ¢ lisse, so by the Lefschetz affine

theorem the H! vanish for i > d, and dually the HiC vanish for 1 < d. QED

Theorem 14.13.4 Hypotheses and notations as in 14.13.3, suppose in
addition that the equivalent conditions (1) or (2) hold. Then

(1) There exists an integer n such that for any finite field k, any ring
homomorphism ¢: R — k, and any nontrivial additive character {§ of k,
the restriction to G, of the Fourier Transform of Rf|9[d] is of the form

F g gl1l= J¥FTy,(Rf,31d])

with ?(P p @ single lisse sheaf of rank n on G,,/k. For any finite

extension E of k, and any point o« € E* = G, (E), the trace of FrobE’O(
on C;F(P’qJ is the sum
trace(Frobg | ?(P lJJ) =

(-1)d-12]

where g is the additive character otracep /| of E.

) WE(ot(x))trace(Frobg | 9),

meLP

(2) If 9 is pure of weight zero on X, then ?(p,lb is pure of weight d on
G

?(P;‘P is semisimple.

m> and (consequently) the geometric monodromy group Ggeomn, ¢,y ©f
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(3) The object K on AlR defined as the additive ! convolution
K = (REGIAD* 14 (R, j* Qp(1)[1]),

is adapted to the stratification (AlR - D, D), is fibrewise perverse, and

on each geometric fibre of positive characteristic its Fourier Transform
1s glven by

FTy(Kg) = 0t g olL]
(4) Let TN be the RS holonomic H-module corresponding to Kg¢. The D-

module Fourier Transform FT(J) is a D.E. on G, ¢ of rank n. If G is

pure of weight zero, then the differential galois group Ggal for j*FT(IN)

1s reductive.
(5) If G is pure of weight zero, then there exists a dense open set U of
Spec(R), which depends only on

the original stratification (Alp - D, D) of Alg of 14.13.3, and
the conjugacy class of Gggy) In GL(n, C),
such that for any ¢ lying over a point of U, Ggeom,cp,qJ(@é) is conjugate

in GL(n, 66) to a subgroup of L_ngal((E). Via this conjugation the two

groups have the same "semisimple connected parts”,

Ggeom,(p,lp(@@)o’der — L—ngal(q:)O,del”

and the composite map
Ggeomn,q,p € Ggal Ggal/z((Ggal)O)O

1s sur jective.

proof (1)The statification hypotheses show that there exists an integer
the
alternating sum of whose ranks is -n. Condition (1bis) then shows that

j*FTLP(Rf!%[d]) is of the form ?(P 41[1]’ with ?(P p @ single lisse sheaf of

n such that j*FTLP(Rf!%[d]) has lisse cohomology sheaves on Gy, i,

rank n on G,,/k. The asserted trace formula is just a writing out of the

Lefschetz Trace Formula in this case.
(2)If 9 is pure of weight zero, then condition (1bis) forces the purity,

since Hdc 1s mixed of weight < d, while HY is mixed of weight > d. If
?(P v is pure of some weight, then as recalled above (in the proof of

14.11.2) its G is semisimple.

geom

(3) That K is adapted to (AlR - D, D) has already been proven (13.4.3).
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To show that K is fibrewise perverse, it suffices (by 14.1.3) to show that
its restriction to any single geometric fibre is perverse. On a fibre in
characteristic p, K(P 1s perverse 1f and only if FTLP(K(P) Is perverse. But

FTy(Ky) = Jii*FT,(ROGMAD = jiF g yl1]
which is visibly perverse.

(4) That j*FT(IM) is a D.E. of the same rank n has already been proven
(14.1.5). That Ggal is reductive if G is pure results from part (2) above,

via the purity criterion 14.11.2.
(5) This is the sharpened reductive comparison theorem 14.10, applied
to K. QED

Here is the cohomological description of the D.E. j*FT(I) on G,p.

Proposition 14.13.5 With the hypotheses and notations of theorem
14.13.4, denote by Jl € D.E(X/C) the R.S. object on X¢ which
corresponds to the perverse object §[d] via Riemann-Hilbert. On the
product X¢xGp, ¢, with coordinates (x,t) consider the D.E.
pr1+(‘ﬂ)®etf(X), and take its D-module direct images in the * and !

sense via pro. The natural map

(pro)i(pri (M) ®etf(x)) 5 (pro), (pri+H(N)@eti(x))
Is an isomorphism, and the object
(pro)y(prq*(M@et(x)) e pyholog ()

has a single nonzero cohomology sheaf, namely j*FT(IN) in degree zero.

proof To see this, we argue as follows. The JD-module partners of
Rfi9ld] and of Rf,4ld] are f|Jl and f 7l respectively, and the mapping

cylinder of

f!ﬂ - f*ﬂ
is the D-module partner of K(9), so has all its cohomology sheaves

constant (direct sums of @) on Al. Therefore convolving on Al with
Jx 0 in the ! sense, gives, by 12.5.8, an isomorphism

(1T =140 ) = (£, T)%11(j<O).
The object (fiT1)%1,(j4O) is the Riemann-Hilbert partner of
K = (REGIAD* 11 (Rj,j* Qp(1)[1]);

in other words, we have
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Taking the Fourier Transforms of these isomorphisms and restricting to

Gy, We get isomorphisms in DbhOlO(Gm’@)

JXFT(M) = J*FT(f;N) = j¥FT(f, ).
Visibly we have
JPXFT(H7) = (pro)i(prit(N)@etfx)),

P*FT(1,.T) = (pro) . (prq*(N)@etf(x),

as results from base change via the diagram

fxid [, J,f

pr2 WV
. QED
14.14 Examples
(1) Suppose that n = 1 is an integer, and (x4, %9, ..., ;) are n functions

on X which define a finite morphism from X to AHR (e.g., if X is given
as a closed subscheme of AHR, one might take for the x; the coordinate

functions in the ambient A™R). Then by (the proof of) [Ka-Lau, 5.4],

there exists a nonzero homogeneous polynomial in n variables Yj,
F(Yq, Yo, .., Yy) € RIYq, Yo, .., Yyl

with the following property: for any n-tuple (aq, .. , ap) of elements of

R such that F(a) = 0, condition (1) of 14.13.3 holds for X®pRI[1/F(a)]

over R[1/F(a)], the function

f:= Zi a;Xy,

and any lisse § on X®prRI[1/F(a)l

(2) If X is AR, with coordinates (xq, x9, .., x), and f any polynomial

in R[Xl, X0, ey Xn] whose degree d is invertible in R and whose leading

form fd(xl, X0, ey Xn) defines a smooth hypersurface in IPn_lR, then
condition (1) of 14.13.3 holds for the constant sheaf 4 = 68' This
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example was given by Deligne in [De-WI]. See [Ka-SE, 5.1.1, 5.1.2] for
generalizations of this example, where X becomes the affine part of a
smooth projective variety X /R, and the function f on X has a
particularly nice expression near X - X, but in which 9 remains the
constant sheaf. The archetype of these generalizations is that of the
finite part of a Lefschetz pencil. See [Ka-Lau, 5.6.1] for a discussion of
the relations between these examples and those in (1) above.

(3) If the morphism f : X — AlR is finite, then condition (2) of 14.13.3
is trivially satisfied for any ¢, since Rf| = Rfy and so K(4) = 0.
(4) For @ the constant sheaf 68’ the condition (2bis) of 14.13.3 that K¢

be lisse on Al(t 1s the purely topological condition on the complex
morphism
(fc)an : (Xg)an — (Al(t)an’
that the mapping cylinder of
R(f¢)20,Q — R(fg)an, Q
have lisse cohomology sheaves on (Al(t)an_ With hindsight, many of the

situations considered in [Ka-SE, Chapter 5] can be seen directly to
satisfy this mapping cylinder condition.

5) Again for § the constant sheaf, Adolphson and Sperber (cf [Ad-Spl)
gives many "toroidal” examples where (1) of 14.13.3 holds. In their

examples, X is (G, R)n, and f 1s a Laurent polynomial whose "Newton

polytope” is sufficiently nice.

Remark 14.15 In all of the above examples, one may need to do some
initial shrinking on Spec(R) to arrange for the existence of the required

stratification (I—\lR - D, D) of AlR. To the extent that this initial

shrinking i1s not very explicit, the apparent precision of the theorem in
specifying upon what the final dense open U of Spec(R) may be taken to
depend is somewhat illusory, at least from the point of view of effective

calculation. This problem did not arise in comparing Ggal and Ggeom

for hypergeometrics ¥, because in that case the initial good

stratification of Al is staring us in the face: (AlR - {0,1}, {0,1}).
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