
CORRECTIONS TO EXPONENTIAL SUMS AND
DIFFERENTIAL EQUATIONS MANUSCRIPT

NICHOLAS M. KATZ

Corrections to Chapter 7, local page numbering

page 40, line 9: “7.40.4” should be 7.10.4
page 56, lines 5-8: They are false. They should be replaced by the

following discussion:

If the sign, call it ε, is +1, or if N is odd and the sign is −1, then
we can directly apply Deligne’s general theorem to the slightly
twisted sheaf (ε)deg⊗G(1/2) with Ggeom = SO(N). If, however,
N is even and ε = −1, then the situation is more complicated.
The Frobenii attached to points of even degree will still be ap-
proximately equidistributed in the space of conjugacy classes
of a compact form of SO(N). However, the Frobenii attached
to points of odd degree will be approximately equidistributed
according to a different law. For O(N,R) a compact form of
the full orthogonal group O(N), and

O(N,R) = SO(N,R)qO−(N,R)

its usual expression as a union of two SO(N,R)-cosets, the
Frobenii attached to points of odd degree will be approximately
equidistributed in the space of O(N,R)-conjugacy classes of
the “other” coset O−(N,R). See [Ka-Sar-RMFEM, 7.9.10] for
the general form of Deligne’s result that we need here, and see
[Ka-TLFM, 7.4.14] for a concrete discussion of its application
in the sort of situation we have here.

Corrections to Chapter 8, local page numbering

page 2, line 10 of (8.1.4) is false. The functor j!? is not exact, it is
only “end-exact”, i.e., it carries injections to injections, and surjections
to surjections, cf. [Ka-RLS, 2.17.1].

Corrections to Chapter 9, local page numbering

page 1, line 6 of proof of 9.1.1 should read

p > 2rank(G) + 1 = 15.
1
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Corrections to Chapter 10, local page numbering

page 1, penultimate line of 10.0: replace “rather that giving” by
“rather than giving”.

page 2, line 3: replace “casess” by “cases”.
page 19, lines 4,5: Assertion (3) of 10.8.1 should read

(3) There exists an isomorphism of lisse sheaves

H⊗ T ?
ζ1
H⊗ T ?

ζ2
H ∼= [3]?Hµ(!, ψ, ρ1, . . . , ρ8; Λ1/4,Λ3/4).

Corrections to Chapter 14, local page numbering

page 17, line 5 of 14.13.3: should read “a monic polynomial g(x) ∈
R[x]...” and not “a monic polynomial f(x) ∈ R[x]”. This error is
confusing, since f : X → A1

R is our function on X.
page 17, statement of 14.13.3: This is contaminated by this same

error. Its first paragraph should read

Proposition. 14.13.3 (Gabber) Let R Let R be a subring of C which
is a finitely generated Z[1/`]-algebra. Let X/R be an affine R-scheme
which is smooth over R, everywhere of relative dimension d ≥ 0. Let

f : X → A1
R

be a function on X, viewed as a morphism to A1
R. Suppose given a

stratification (A1
R −D,D) of A1

R, where D ⊂ A1
R is a divisor which is

finite etale over R of some degree δ ≥ 1, defined by a monic polynomial
g(x) ∈ R[x] of degree δ whose discriminant ∆ is a unit in R, such that
for any lisse Q`-sheaf G on X, the objects Rf!G and Rf?G of Db

c(A1
R,Q`)

are both adapted to (A1
R − D,D), and their formation commutes with

arbitrary change of base on Spec(R) to a good scheme.
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Introduction-1

This book is concerned with two areas of mathematics, at first
sight disjoint, and with some of the analogies and interactions between
them. These areas are the theory of linear differential equations in one
complex variable with polynomial coefficients and the theory of one-
parameter families of exponential sums over finite fields.

The simplest example of an exponential sum over a finite field is
this: take a prime number p, a polynomial f(X) in #[X], and form the
sum

‡
x in Ép

exp(2πif(x)/p).

By letting the polynomial f(X) vary in a one-parameter family
ft(X) Ÿ #[t, X], e.g., the family ft(X) := tf(X), one is led to one-parameter

families of exponential sums.
The above exponential ssssuuuummmm is formally analogous to a complex

path iiiinnnntttteeeeggggrrrraaaallll

—ef(x)dx.

And if we let the polynomial f(X) vary in a one parameter family
ft(X) Ÿ #[t, X], e.g., the family ft(X) := tf(X), the resulting integral, e.g.,

—etf(x)dx,

formally satisfies a differential equation with respect to the variable t.

There are four basic questions about this concrete situation with
which the book is concerned:

(1) For given p, how do the above exponential sums vary as t varies? Is
there a "Sato-Tate law" which governs their distribution, and if so what
is it? Thanks to Deligne, we know that under mild hypotheses there is
such a Sato-Tate law, and that it is in turn governed by a certain
complex semisimple algebraic group Ggeom,p, the "geometric

monodromy group" attached to our situation in characteristic p. So this
question is essentially "What is Ggeom,p?".

(2) How does the answer to (1) depend upon p? How does Ggeom,p
depend upon p? In practice, one finds that whenever one can compute
Ggeom,p, its identity component, and often Ggeom,p itself, is

independent of p >> 0. Can one prove this in general?
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(3) What is the differential galois group Ggal of the the differential

equation satisfied by the integral?

(4) What is the relation of Ggal to the common value of the groups

Ggeom,p (or of their identity components) for p >> 0? It turns out in

practice that when one can compute Ggal, and when Ggal turns out to

be semisimple, then for p >> 0 the groups Ggeom,p are all equal to Ggal.

Can one prove this in general?

There are of course more general sorts of exponential sums, and
we will deal with them systematically in the course of the book. The
reader should keep in mind that already the simple ones above
illustrate the essential phenomena and contain the essential difficulties.

The book is arranged in four parts, in a diamond pattern of logical
dependence

Part I
t p

Part II Part III
p t
Part IV.

Part I (Chapter 1): results from representation theory

Part II (Chapters 2,3,4,5,6): results about differential equations and
their differential galois groups Ggal.

Part III (Chapters 7,8,9,10) : results about one-parameter families of
exponential sums and their geometric monodromy groups Ggeom.

Part IV (Chapters 11,12,13,14): comparison theorems relating Ggal and

Ggeom of suitably "corresponding" situations.

We have tried to strike a balance of emphasis between the
underlying general theory and its application to concrete problems, in
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such a way that the two complement each other, with the applications
serving both to illustrate and to motivate the general theory. The
reader will judge how well we have succeeded.

Parts II and III especially are written in this spirit of "applied
mathematics"; there is a strong emphasis on the eeeeffffffffeeeeccccttttiiiivvvveeee
ccccaaaallllccccuuuullllaaaattttiiiioooonnnn of the groups Ggal and Ggeom respectively, when one is

given a concrete differential equation, or a concrete one-parameter
family of exponential sums.

The effective calculations in Parts II and III ultimately rely on the
general representation-theoretic results of Part I. However, in order to
be able to bring these results to bear, we make essential use of some
recent developments in the theory of differential equations and in the
theory of one-parameter families of exponential sums.

In the case of differential equations, there are four essential
ingredients. The first is the theory of the "slopes", or "breaks", of a
differential equation on an open curve at one of the points at infinity.
The second is the general theory of holonomic Î-modules on curves,
especially the theory of the "middle extension" and the structure
theory of irreducible Î-modules. The third is the theory of the Fourier

Transform of Î-modules on !1. The fourth is the idea of the (derived
category) convolution of holonomic Î-modules on both the additive

group !1 and on the multiplicative group ´m. [There is also a natural

notion of convolution of holonomic Î-modules on elliptic curves, which
seems well worth exploring.]

What happens in the case of one-parameter families of
exponential sums? Roughly speaking, studying a "one parameter
family" means studying a lisse …-adic sheaf on an open curve over a
field of postitve characteristc p ± …. In this case as well there are four
essential ingredients, which are closely analogous to the Î-module
ingredients discussed above. The first is the the theory of "breaks" (in
the sense of the upper-numbering filtration) of …-adic representations
of inertia groups at the points at infinity. This theory was in fact the
inspiration for its D.E. namesake. The second is the theory of perverse
…-adic sheaves on curves, especially the structure theory of
irreducibles. This theory is analogous to the theory of holonomic Î-
modules on curves over ^. The third is the theory of the …-adic Fourier

Transform for perverse sheaves on !1 over a field of positive
characteristic p ± …. In the …-adic case, we have much more precise
information about Fourier Transform than we do in the Î-module
case, thanks to Laumon's "principle of stationary phase", which
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effectively determines the local monodromy of a Fourier Transform.
[On the other hand, in the Î-module case we can "write down" the
Fourier Transform of a Î-module (just interchange x and d/dx and
change a sign) and then stare at it.] The fourth is the idea of
convolution, entirely analogous to what is done in the Î-module
context (and the inspiration for it).

Thus it is not surprising that there are remarkable similarities
between the results obtained in Part II and those obtained in Part III.
One of our guiding principles was to illustrate systematically these
similarities by working out as completely as possible the theory of the
generalized hypergeometric differential equation in Part II, and
developing in Part III the analogous theory of …-adic hypergeometric
sheaves in characteristic p. Roughly speaking, we show that the
differential galois group Ggal for a hypergeometric differential equation

is essentially "the same" as the geometric monodromy group Ggeom for

a "corresponding" …-adic hypergeometric sheaf in sufficiently large
characteristic p. We also give, in both the Î-module and …-adic
contexts, intrinsic characterizations of irreducible hypergeometrics
among all holonomic Î-modules (resp. perverse sheaves) on ´m. [We

also note that the "hypergeometric sums" which are the traces of
Frobenius at closed points of our …-adic hypergeometric sheaves are
already known in combinatorics (cf. [Gre]) as "hypergeometric functions
over finite fields".]

What is the "explanation" for these remarkable similarities? Is
there some general theory of "exponential sums over #" which explains
them? To the extent that most of the concrete calculations of both Ggal
and of Ggeom depend in analogous ways upon the same representation-

theoretic results of Part I, one might think that these similarities are
simply an instance of the anthropic fallacy, and that the true
similarity between the Î-module and …-adic cases we consider is that
they are the only ones where we can compute what is going on.
However, the results of Part IV show that this is not the case; they give
an intrinsic conceptual explanation for at least some of these
similarities.

The main result of Part IV is a comparison theorem which

compares, for an object which lives on !1 over # in a suitably strong
sense, the differential galois group Ggal of the Î-module Fourier

Transform of its ^-fibre to the geometric monodromy group Ggeom of

the …-adic Fourier Transforms of its Ép-fibres, as p runs over the
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primes. In contrast to Parts II and III, where we prove statements of
the form "X = Y" by explicitly computing both X and Y and noting that
they are equal, the main result of Part IV is of the form "X = Y", but it
is proven by proving, as it were, that "X - Y = 0", wwwwiiiitttthhhhoooouuuutttt evaluating
either X or Y.

In their most concrete instance, the results of Part IV provide
affirmative answers to the questions (2) and (4) raised at the beginning
of the introduction in the special case of the family ft(X) := tf(X). But

already the same questions (2) and (4) for the case of a general one-

parameter family of polynomial functions on !1 remain beyond the
scope of our present knowledge.

We believe that the results of Part IV are in fact just the "tip of
the iceberg" of a general theory, as yet inexistant, of "exponential sums
over #". We refer the interested reader to [Ka-ES, last few pages] for
some entirely speculative discussion of the possible categorical setting
for such a theory, and for a conjectural statement of a general
comparison theorem which would provide affirmative answers to the
questions (2) and (4) for the case of a general one-parameter family.

We now turn to a brief discussion of some of the other open
problems suggested by the results in this book.

That one obtains the classical groups in their standard
representations both as Ggal's of simple-to-write-down differential

equations, and as Ggeom's for easy-to-write-down corresponding

families of exponential sums in all characteristics p >> 0 is perhaps not
surprising. That one obtains G2 in its seven dimensional irreducible

representation in similarly concrete fashion is perhaps less expected.
Can one obtain all the exceptional groups so concretely? Can one obtain
interesting finite simple groups this way?

The results of Chapter 6 show that a number of explicit

differential equations on !1 have "diophantine meaning", including
those of the form

(Δ)n - xm, Δ := d/dx.
But what if any is the diophantine meaning of equations of the general
form

Pn(Δ) - Qm(x),

where Pn and Qm are constant coefficient polynomials in one variable?

Similary, what if any is the the diophantine meaning of
differential equations on an elliptic curve ^/L of the form
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(d/dz)n - ~(m)(z; L),

where d/dz is the invariant derivation, and where ~(m)(z; L) is the
m'th derivative of the Weierstrass ~-function ~(z; L)? And what is the
differential galois group of such an equation? Same questions for
equations of the more general form

Pn(d/dz) - (an elliptic function with poles only in L),

where Pn is a constant coefficient polynomial in one variable.

Our results on Ggeom for …-adic hypergeometric sheaves in

characteristic p were only valid for large p. For small p, can Ggeom be

an "interesting" group? In any case, what is it?
The …-adic hypergeometrics we construct in characteristic p live

naturally on ´m. Up to a multiplicative translation and a shift, they

are precisely those of the form Rƒ~Ï, for some integer n ≥ 0, some

homomorphism of tori

ƒ : (´m)n ¨ ´m,

and some lisse rank one sheaf Ï on the source (´m)n of the form

Ï := Ò¥(‡aixi)
º(‚iÒçi(xi

)).

There is an obvious generalization of this sort of object on ´m to a class

of "hypergeometric objects" on tori T of arbitrary dimension. One
considers Rƒ~Ï, for some integer n ≥ 0, some homomorphism of tori

ƒ : (´m)n ¨ T,

and Ï on the source as above. This class of "hypergeometrics" on tori is
stable by ~ convolution, by external product, and by ~ direct image by
homomorphisms of tori, and for ´m gives back the original notion. One

can also pursue the obvious holonomic Î-module analogue of this
generalization, obtaining hypergeometric holonomic Î-modules on tori
of arbitrary dimension over ^. This notion of hypergeometric in several
variables can be viewed as an algebraic incarnation of the classical
definitions [Er, 5.8] of hypergeometric functions of several variables as
inverse Mellin Transforms of monomials in Æ-functions. What is the
relation between this point of view and the current work of the Gelfand
school [Gel] on the general theory of hypergeometric functions?

My interest in the generalized hypergeometric differential
equation as a beautiful "test case" for the study and calculation of
differential galois groups was aroused by the paper [B-B-H] of Beukers,
Brownawell, and Heckman. Many of the results of the book were
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worked out with the collaboration of Ofer Gabber, whose contribution
cannot be overestimated. It was Bill Messing who first posed the crucial
question "If the groups Ggeom,p are independent of p >> 0, what is an a

priori description of the group to which they are all equal?".
It is a pleasure to acknowledge the support of the John Simon

Guggenheim Memorial Foundation, the I.H.E.S., the University of Paris
at Orsay, the National Science Foundation, and Princeton University
during the writing of this book. It is also a pleasure to thank Benji
Fisher for his meticulous proofreading of the entire manuscript, and his
many helpful comments, corrections, and suggestions.

I respectfully dedicate this book to my teacher Bernard Dwork,
who discovered the intimate relations between the p-adic theory of
classical differential equations and the p-adic variation with
parameters of zeta and L-functions. In particular, he was the first
person to understand (cf [Dw]) that classical differential equations with
iiiirrrrrrrreeeegggguuuullllaaaarrrr singularities had deep meaning in arithmetic algebraic
geometry. (The prevailing dogma held that only equations with regular
singular points should have meaning.) Indeed, he showed that in many
cases the p-adic variation with parameters of exponential sums was
controlled by the p-adic theory of precisely the differential equations
with irregular singularities whose Ggal's play such a crucial role in this

book.



Chapter I-Results from Representation Theory-1

Throughout this chapter, we work over an algebraically closed
field ^ of characteristic zero. We fix an integer n≥2, and denote by V an
n-dimensional ^-vector space. We suppose given a Lie-subalgebra Ì of
End(V) which is semisimple and which acts irreducibly on V. We first
give a fundamental "torus trick" (Theorem 1.0) of Ofer Gabber which is
extremely useful in diverse contexts. We then give a sequence of
criteria (Theorems 1.1-1.6), some classical and some new, which insure
that Ì is either ÍÒ(V) or ÍØ(V) or (for dimV even) Í∏(V) oooorrrr that dimV
is 7,8, or 9 (and we give the list of possible Ì's for these). The basic tool
in most of these proofs is that of "chains" of weights in representations;
I am indebted to Ofer Gabber for having explained to me both this
method and most of the criteria discussed below.

TTTThhhheeeeoooorrrreeeemmmm 1111....0000 (Gabber). Let Ì be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that a diagonal subgroup K of
GL(V) normalizes Ì. Let ç1, ... , çn be the n characters of K defined by

the diagonal matrix coefficients; i.e., k = Diag(ç1(k), ... ,ç1(k)) for k in K.

Consider the "torus" Ê in End(V) consisting of those diagonal matrices
Diag(X1,...,Xn) whose entries satisfy the conditions

‡Xi = 0

Xi - Xj = Xk - Xm whenever çi/çj = çk/çm on K.

Then Ê lies in Ì.

pppprrrrooooooooffff Consider the action of K on End(V) by conjugation. By
assumption Ì is stable under this action. For any character ® of K, the
®-eigenspaces of Ì and of End(V) are related by Ì(®) = Ì € End(V)(®).
Because K is diagonal, we have

Ì = ·® Ì(®), End(V) = ·® End(V)(®).

Now in End(V), the line Ei,j of matrices whose only possibly nonzero

entry is in the (i,j) place transforms under K by çi/çj. Therefore

End(V)(®) = 0 unless ® = çi/çj for some (i,j), and for such ® we have

End(V)(®) = ·i,j such that ® = çi/çj
Ei,j.

Now consider a diagonal matrix X = Diag(X1, ..., Xn). Acting on End(V),

ad(X) stabilizes each line Ei,j, and multiplies it by Xi - Xj. So if X

satisfies the condition
Xi - Xj = Xk - Xm whenever çi/çj = çk/çm on K

then for any ® with End(V)(®) ± 0, ad(X) acts on End(V)(®) by a scalar
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X® (namely X® := Xi - Xj for any (i,j) with ® = çi/çj). Therefore ad(X)

maps Ì(®) to itself (since ad(X) maps eeeevvvveeeerrrryyyy subspace of End(V)(®) to
itself), and hence ad(X) maps Ì to itself. Because ad(X) is a derivation of
End(V), it must be a derivation of the subalgebra Ì. Because Ì is
semisimple, every derivation of Ì is inner, so there exists an element Y
in Ì such that, on Ì, ad(X) = ad(Y); this means precisely that X-Y in
End(V) is an element which commutes with Ì. Since Ì acts irreducibly
on V, X - Y is necessarily a scalar. This scalar is necessarily
(1/n)trace(X-Y). Because Y is in the semisimple Ì, trace(Y) = 0. So if
trace(X) = 0 in addition, then X - Y = 0, whence X lies in Ì. QED

In the following discussion of "recognition criteria" for the
standard representations of the classical groups, we will sometimes
abbreviate as "std" the standard representation of ÍÒ(V), Í∏(V), ÍØ(V)
on V.

TTTThhhheeeeoooorrrreeeemmmm 1111....1111 (Kostant [Kos]) Let Ì be a semisimple Lie-subalgebra of
End(V) which acts irreducibly on V. Suppose that with respect to some
basis of V, Ì contains the diagonal matrix h :=Diag(n-1, -1,..., -1). Then
Ì is ÍÒ(V).

TTTThhhheeeeoooorrrreeeemmmm 1111....2222 (Kostant [Kos], Zarhin [Za-WS, A.2.1]) Let Ì be a
semisimple Lie-subalgebra of End(V) which acts irreducibly on V.
Suppose that with respect to some basis of V, Ì contains the diagonal
matrix h := Diag(1, 0, ..., 0, -1). Then Ì is either ÍÒ(V) or ÍØ(V) or (for
dimV even) Í∏(V).

TTTThhhheeeeoooorrrreeeemmmm 1111....3333 (Gabber) Let Ì be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that with respect to some basis of
V, Ì contains the "G2 torus" consisting of all diagonal matrices of the

form
h(x,y) := Diag(x+y, x, y, 0,...,0, -y, -x, -x-y).

Then Ì is either ÍÒ(V) or ÍØ(V) or (for dimV even) Í∏(V) or we have
one of the following exceptional cases:

n=7: Ì = Lie(G2) in the 7-dim'l representation of G2
n=8: Ì = Lie(SO(7)) in the 8-dim'l spin representation

Ì = Lie(SL(3)) in the adjoint representation
Ì = Lie(SL(2)≠SL(2)≠SL(2)) in stdºstdºstd
Ì = Lie(SL(2)≠Sp(4)) in stdºstd
Ì = Lie(SL(2)≠SL(4)) in stdºstd

n=9: Ì = Lie(SL(3)≠SL(3)) in stdºstd.
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In fact, one uses the full strength of having a G2 torus only to take care

of the non-simple cases; the simple case is handled by

TTTThhhheeeeoooorrrreeeemmmm 1111....4444 (Gabber) Let Ì be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that Ì is simple and that with
respect to some basis of V, Ì contains the diagonal matrix
h:=Diag(1,1,0,...,0,-1,-1). Then Ì is either ÍÒ(V) or ÍØ(V) or (for dimV
even) Í∏(V), or we have one of the following exceptional cases :

n=7: Ì = Lie(G2) in the 7-dim'l representation of G2
n=8: Ì = Lie(SO(7)) in the 8-dim'l spin representation

Ì = Lie(SL(3)) in the adjoint representation.

RRRReeeemmmmaaaarrrrkkkk 1111....4444....1111 If in Theorem 1.4 we no longer assume that Ì is simple,
the non-simple possibilities are the image of ÍÒ(3)≠ÍÒ(3) in std3‚std3,

and, for every k≥2, the image of
ÍÒ(2)≠((((ÍÒ(k) or ÍØ(k) or (for k even)Í∏(k))))) in std2ºstdk.

RRRReeeemmmmaaaarrrrkkkk 1111....4444....2222 In the simple case, there is an asymptotic result [Za-
LS,Thm. 6] of Zarhin which gives Theorem 1.4 as soon as the dimension
of the representation is sufficiently large. Zarhin proves that if Ì is a
simple irreducible subalgebra of End(V) and if there exists a semisimple
element h in Ì which has dim(h(V)) = d, then Ì is ÍÒ, Í∏ or ÍØ

provided that dimV > 72d2. This given Theorem 1.4 (whose h has d= 4)
as soon as dimV > 72≠16.

TTTThhhheeeeoooorrrreeeemmmm 1111....5555 (Kazhdan-Margulis, Gabber, Beukers-Heckman [B-H]) Let
Ì be a semisimple Lie-subalgebra of End(V) which acts irreducibly on V.
Suppose that Ì is normalized by a pseudo-reflection © in GL(V). Then Ì
is either ÍÒ(V) or ÍØ(V) or (for dimV even) Í∏(V). Moreover,

if det© ± _1, then Ì = ÍÒ(V);
if det© = +1, then Ì = ÍÒ(V) or (for dimV even) Í∏(V);
if det© = -1, then Ì = ÍÒ(V) or ÍØ(V).

TTTThhhheeeeoooorrrreeeemmmm 1111....6666 (Gabber) Let Ì be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that dimV is a prime p. Then Ì is

either ÍÒ(2) in Symp-1(std), or ÍÒ(V) or ÍØ(V) or, if n=7, possibly
Lie(G2) in the seven-dimensional irreducible representation of G2.
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1111....7777 TTTThhhheeee pppprrrrooooooooffffssss
Notice that in Theorems 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 the cases listed

can be easily checked to have the property in question; the problem is
to show that these are the oooonnnnllllyyyy cases. In doing this we will make
explicit use of classification, via the Bourbaki tables. Notice also that the
" Ì simple" case of Theorem 1.3 is a trivial consequence of Theorem 1.4.

Before beginning the proofs of Theorems 1.1 to 1.6, we need to
review some basic facts, which are certainly well-known to the experts
but for which we do not know a convenient explicit reference.

LLLLeeeemmmmmmmmaaaa 1111....7777....1111 Let Ì be a semisimple Lie subalgebra of End(V), Ó a
Cartan subalgebra of Ì, and h in Ó an element with rational
eigenvalues. Then there exists a Weyl chamber such that for the
corresponding notion of positive root, we have å(h) ≥ 0 for any positive
root å.

pppprrrrooooooooffff The $-dual of the $-span of the roots is a $-form Ó$ of Ó, and h

lies in Ó$. Picking a vector-space basis of Ó$ which starts with h, we

get a lexicographic order on the $-span of the roots, so a notion of
positive root, such that if å is a positive root, then å(h) ≥ 0. One knows
that this notion of positive root is the one associated to some Weyl
chamber ([Bour L6], 1, 7, Cor 2 of Prop 20). QED

Suppose that (Ì, Ó) is a split semisimple Lie algebra over ^, and
that we have chosen a Weyl chamber. Thus we may speak of positive
roots, simple roots, et cetera. We denote by w0 the unique element of

the Weyl group which interchanges positive and negative roots. Recall
the notion of a "chain" between two weights μ and ¬ of a finite-
dimensional representation M of Ì; this is a sequence of weights of M
starting with μ, ending at ¬, such that each successive weight in the
sequence after the first is obtained from the previous one by
subtracting a simple root. We will make essential use of the fact that

LLLLeeeemmmmmmmmaaaa 1111....7777....2222 Any two weights μ and ¬ of M such that μ - ¬ is a
nontrivial sum ‡nåå of simple roots with integral coefficients nå ≥ 0

can be joined by a chain.

pppprrrrooooooooffff The proof is by induction on ‡nå, the case ‡nå = 1 being trivial.

In terms of a W-invariant inner product on the $-span of the roots, we
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write
0 < (μ-¬, μ-¬) = (μ-¬, ‡nåå) = ‡nå(μ-¬,å).

Since all the nå ≥ 0 and at least one is >0, we see that for some simple

å we must have (μ-¬,å)>0, i.e., (μ,å) > (¬,å). Therefore either (μ,å) > 0
or 0 > (¬,å). Now for any W-invariant inner product, we have, for any
root å and any ß in the $-span of the roots

2(ß,å)/(å,å) = ß(Hå).

Thus we have that either μ(Hå)>0 or ¬(Hå)<0. In the first case μ-å is

also a weight, and in the second case ¬ + å is also a weight ([Bour L8],
7, 2, Prop 3(i), page 124 ). Now by induction on ‡nå we can pass from

μ-å to ¬, or from μ to ¬+å. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....7777....2222....1111 Let M be an irreducible representation of Ì. There
exists a chain going from the highest weight to any given weight of M,
and there exists a chain from any given weight to the lowest weight.

Given an irreducible representation M of Ì, denote by ¬ and √ its
highest and lowest weights respectively. For any chain ¬=¬1, ¬2,...,¬n=√

from ¬ to √, with successive drops the simple roots åi := ¬i - ¬i+1 for i

= 1,..,n-1, we have
¬ - √ = ‡i=1,...,n-1 åi = ‡nåå.

This shows that the multiplicity nå with which a given simple root å

occurs as drops in such a chain is independent of the chain. Moreover,
the length of any such chain is 1 + ‡nå.

LLLLeeeemmmmmmmmaaaa 1111....7777....3333 For a faithful irreducible representation M of Ì, every
simple root occurs as a drop in every chain from highest weight to
lowest.

pppprrrrooooooooffff If M is faithful, then every root, and in particular every simple
root ∫, is a difference of two weights of M , say ß and †: ß = † - ∫. So
if we take a chain from ¬ to † and concatenate to it a chain from ß to
√ we get a chain from ¬ to √ in which ∫ occurs as a drop; therefore
n∫ > 0 and hence ∫ occurs as a drop in eeeevvvveeeerrrryyyy chain from ¬ to √. QED

Using ([Bour L8], 7, 2, Prop 3(i), page 124 ), one sees

LLLLeeeemmmmmmmmaaaa 1111....7777....4444 For a fundamental representation M of Ì, with highest
weight ∑å, eeeeiiiitttthhhheeeerrrr

(1) å is an isolated point of the Dynkin diagram, the representation is
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the standard representation of the corresponding ÍÒ(2) factor, and the
only chain from highest weight to lowest is ∑å, ∑å-å.

oooorrrr
(2) å is not isolated, every chain from highest weight to lowest begins

∑å, ∑å-å, ∑å-å-∫,

where ∫ is any simple root adjacent to å in the Dynkin diagram, and
every chain ends

© -w0(å) + w0(∑å), -w0(å) + w0(∑å), w0(∑å),

where © is any simple root adjacent to -w0(å) in the Dynkin diagram.

(1.7.5) We now take up the proofs of Theorems 1.1, 1.2, 1.3, 1.4. We will
consider successively the three cases

Ì non-simple
Ì simple but V not fundamental
Ì simple and V fundamental.

We begin by considering the non-simple case. In Theorems 1.1, 1.2,
we are given a nonzero diagonal element h which has an eigenvalue of
multiplicity one on V. Therefore if V = V1ºV2 with each factor of

dimension at least two, then V1 cannot be the trivial representation of

h (otherwise all its weights in V would occur with multiplicity divisible
by dimV1). By symmetry, h is also non-trivial on V2 .

In Theorem 1.3, we are given commuting diagonal elements h(1,0)
and h(0,1), each of which has an eigenvalue of multiplicity two.
Therefore if V = V1‚V2 and dimV1 ≥ 3, then each of these h's is

nontrivial on V1 (for otherwise all its weights in V would occur with

multiplicity divisible by dimV1). If dimV1 = 2, then the sum h(1,0) +

h(0,1) is nontrivial on V1 (since it has an eigenvalue with multiplicity

one) and hence at least one of the h's is nontrivial on V1. Since dimV2
= dimV/2 ≥3, both h's are nontrivial on V2. Therefore at least one of

the two elements h(1,0) or h(0,1) must be nontrivial on both V1 and on

V2.

Thus if V = V1‚V2 in Theorems 1.1, 1.2, or 1.3, we have a

diagonal element h of Ì which acts nontrivially on both V1 and on V2.

This h is Xº1 + 1ºY with both X and Y non-trivial; both X and Y have
at least two distinct eigenvalues (because they are semisimple and
their traces are zero). Let Ù resp. Á denote the finite subset of $
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consisting of the distinct eigenvalues of X resp. Y. Then the set of
distinct eigenvalues of h = X‚1 + 1‚Y is the set Ù + Á := { x+y| x in Ù,
y in Á}. Then by the Card(Ù + Á) ≥ CardÙ + CardÁ - 1 inequality (valid
in any $-vector space), and the fact that CardÙ and CardÁ are both
≥2, we arrive at a contradiction in Theorem 1.1 (where h has only two
distinct eigenvalues) and in the other cases we see that X and Y each
have exactly two distinct eigenvalues. Thus we have X=Diag(a,...,a,b,...,b)
and Y = Diag(c,...,c,d,...,d); with a>b, a with multiplicity A, b with
multiplicity B and c>d, c with multiplicity C, d with multiplicity D.

To discuss Theorems 1.2 and 1.3 simultaneously, we introduce the
parameter k such that the nonzero eigenvalues of h :=Xº1 + 1ºY are 1
and -1, each with multiplicity k. Thus k=1 is Theorem 1.2, and k=2 is
Theorem 1.3. The highest weight in Xº1 + 1ºY is a+c, hence AC=k.
Similarly we have BD=k. Thus A≤k with equality iff C=1, and B≤k with
equality iff D=1. Thus dimV1 = A + B ≤ 2k, with equality iff dimV2 =

C+D = 2. So either we have (2 dim'l)‚(2k dim'l) or both Vi have

dimension in [3, 2k-1]. For k=1 this means (2dim)‚(2dim), so the
standard representation of ÍØ(4) § ÍÒ(2)≠ÍÒ(2). For k=2, this means
that either we have (2 dim, Diag(1/2,-1/2))‚(4 dim, Diag(1/2,1/2,-
1/2,-1/2)) or (3dim)‚(3dim). This last case can only be ÍÒ(3)≠ÍÒ(3) in
(std or its dual )‚(std. or its dual). In the penultimate case, the only
possibility for the four dimensional faithful representation is one of the
three classical groups ÍÒ(4), Í∏(4), or ÍØ(4) in std. or its dual (in the

representation Symm3(std2) of ÍÒ(2), the element Diag(1,1,-1,-1) is not

in the image of ÍÒ(2)).
We now turn to Theorems 1.1, 1.2, 1.4 in the case when Ì is

simple, but where V is not fundamental. We pick a maximal torus
containing the given element h and a Weyl chamber such that å(h) ≥
0 for all positive roots å.

In Theorem 1.1 this case does not arise (V is automatically
fundamental if h has only two distinct eigenvalues). In Theorems 1.2,
1.4, where the element h has exactly three eigenvalues, if V is not
fundamental then its highest weight is a sum of two fundamental
weights, in both of whose representations h has exactly two
eigenvalues. [For suppose that the highest weight of V is the sum of two
dominant weights ¬ and ¬'. If Ó and Ó' are the weights occurring in V¬
and in V¬' respectively, then the set of weights of V¬+¬' is Ó + Ó' ([Bour

L8], 7, 4, Prop. 10), hence the same is true of the sets of h-weights.
Denote by Ù := ¬(Ó), Á := ¬'(Ó') these sets of h-weights, and apply the
inequality
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Card (Ù + Á) + 1 ≥ Card(Ù) + Card(Á).
Because h is diagonal ±0 and the representations are faithful (Ì being
simple), we have Card(Ù), Card(Á) both ≥2. If h has only two distinct
eigenvalues on V, then Card (Ù + Á) = 2, and we have a contradiction,
whence V was fundamental. If h has three distinct eigenvalues on V,
then Card (Ù + Á) = 3, and hence Card(Ù) = Card(Á) = 2, whence by
the preceding argument both ¬ and ¬' must be fundamental weights.]

We now use the additional fact that if if „¬ denotes the sssseeeetttt ooooffff

wwwweeeeiiiigggghhhhttttssss wwwwiiiitttthhhh mmmmuuuullllttttiiiipppplllliiiicccciiiittttyyyy of V¬ then ¬' + „¬ occurs in „¬+¬' ([Bour

L8], 7, exc. 21). Passing to the opposite (w0) Weyl chamber, if we denote

by ¬''the lllloooowwwweeeesssstttt weight in V¬', it follows that ¬'' + „¬ occurs in „¬+¬'.

(In fact, the argument suggested in the Bourbaki exercise shows that if
≈ is aaaannnnyyyy weight of V¬', then ≈ + „¬ occurs in „¬+¬'.) Using this, we can

bound the pairs of fundamentals ¬ and ¬' for which an h in Ì acts on
V¬+¬' as

Diag(1,...,1 repeated k times,..some 0's.., -1,...,-1 repeated k times).
Let X and Y be the diagonal matrices of trace zero with exactly two
eigenvalues (necessarily rational) by which h acts on V¬ and on V¬'
respectively; say X = (a rep A times, b rep B times) with a>0>b, and
Y = (c rep C times, d rep D times) with c>0>d . The highest weight space
of V¬' must have h-weight c (rather than d). Because

(h-weight a on V¬)‚(highest wt ¬')

appears weightwise wwwwiiiitttthhhh mmmmuuuullllttttiiiipppplllliiiicccciiiittttyyyy in V¬+¬' , we conclude that the

h-weight a+c occurs with multiplicity ≥ A in V¬+¬', whence A≤k. We

claim that in fact A≤k-1 if C≥2. For if C≥2, there is a second h-positive
weight in V¬', and taking a chain from ¬' to it we find an h-positive

weight of V¬' of the form ¬' - μ for μ a simple root. Now use the fact

that
(any wt of V¬) + (any wt of V¬')

occurs as a weight in V¬+¬'. We claim that among the weights

(a wt where h=a on V¬) + (¬' -μ),

there is at least one which is nnnnooootttt of the form
(a wt where h=a on V¬) +¬',

for if this were not the case then the set of weights occuring in (h=a on
V¬) would be closed under subtracting μ, which is absurd. Thus we

have
A ≤ k, and A ≤ k-1 if C > 1.

Similarly arguing with the lowest weight, we obtain



Chapter I-Results from Representation Theory-9

B ≤ k, and B ≤ k-1 if D >1.
Putting this together, we see that A+B ≤ 2k, with equality if and only if
C=D=1. Thus either (i) one of our fundamentals is two-dimensional and
the other has dimension 2k, or (ii)both have dimension 3≤ dim ≤ 2k-1.

For k=1, only the first case is possible, and it is the case of ÍØ(3)
in its standard representation.

For k=2, neither of the fundamentals has dimension 2 (Ì would be
ÍÒ(2), which doesn't have a fundamental of dimension 2k for k≥2) so
each of the two fundamentals is three-dimensional, each with a
Diag(x,x,y) element, so by a trivial case of Kostant's theorem each is a
fundamental representation of ÍÒ(3). So the two possibilities are

Symm2(std. rep. or its dual of ÍÒ(3)), which by inspection does not
contain a G2 torus, or even a Diag(1,1,0,0,-1,-1), and the adjoint

representation of ÍÒ(3), which does by inspection contain a G2 torus.

We now turn to the case when Ì is simple and V is fundamental.
Again we pick a Cartan subalgebra containing h and a Weyl chamber
such that if ∫ is a positive root, then ∫(h) ≥ 0. We denote by w0 the

unique element of the Weyl group which interchanges positive and
negative roots. Because V is fundamental, its highest weight ¬ is ∑å for

some simple root å, and its lowest weight √ is w0(∑å) = -∑-w0(å)
. By

our choice of Weyl chamber we have
¬(h) ≥ any h-eigenvalue on V ≥ √(h),

so
¬(h) = the highest h-weight = n-1 in Thm 1, =1 in Thm's 2,4,
√(h) = the lowest h-weight = -1.

Pick a chain of weights ¬= ¬1, ¬2, ..., ¬d = √ from the highest to the

lowest, and consider the sequence ¬i(h) of h-weights. This is a non-

increasing sequence of integers, whose successive drops are the integers
åi(h), where åi := ¬i - ¬i+1.

In Theorem 1.1, this sequence is n-1,-1,...,-1, and hence å(h)=n
(from the first step ∑å to ∑å-å); after this first drop the h-weight

stays -1, so ∫(h) = 0 for ∫ simple, ∫±å. So in Theorem 1 the situation is
∑∑∑∑åååå ---- wwww0000∑∑∑∑åååå ==== åååå ++++ aaaa ssssuuuummmm ooooffff tttthhhheeee ooootttthhhheeeerrrr bbbbaaaassssiiiicccc rrrroooooooottttssss;;;;

the only case is (An, std or its dual) as may be checked from the

Planches in [Bour L6]. This concludes the proof of Theorem 1.1.
In Theorem 1.2, either Ì is ÍÒ(2) or every chain from top to

bottom has at least three terms ( ≥ 1 + rank, since every simple root
occurs) so has h-weights 1,0,...,0,-1. Looking at the beginning and ending
steps we see
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∑∑∑∑åååå ---- wwww0000∑∑∑∑åååå ==== åååå ++++ ((((---- wwww0000))))åååå ++++ ooootttthhhheeeerrrr bbbbaaaassssiiiicccc rrrroooooooottttssss....

If å ± (- w0)å, then this is the Theorem 1.1 situation above, while if

å = (- w0)å then

∑∑∑∑åååå ==== åååå ++++ ooootttthhhheeeerrrrssss,,,, åååå ==== ((((---- wwww0000))))åååå....

This occurs only for B≥3, C≥2, D≥4, std., again by checking the Planches

in [Bour L6]. This concludes the proof of Theorem 1.2.
We now consider the situation of Theorem 1.4, where the element

h is Diag(1,1,0,...,0,-1,-1). Since the highest weight ¬ and the lowest
weight √ each occur with multiplicity one, we see that there is a
unique weight (say ¬2) other than the highest weight for which

¬2(h) = 1, and this weight occurs with multiplicity one. Similarly there

is a unique weight ¬d-1 other than the lowest one with ¬d-1(h) = -1.

Taking a chain passing through ¬2, we see by looking at the h-weights

that ¬2 must be the immediate successor of ¬; similarly, looking at the

h-weights in a chain passing through ¬d-1 shows that its immediate

successor must be √. Therefore ( by Lemma 4) eeeevvvveeeerrrryyyy chain has the
form ¬, ¬2, ???, ¬d-1, √.

If ¬, ¬2, ¬d-1, √ is a chain, then there are no other weights in V

(otherwise some chain would exhibit it, and such a chain would have
intermediate terms; therefore ¬2 - ¬d-1 would be the sum of two or

more simple roots, and hence could not be a simple root itself). As these
weights occur with multiplicity one we see that ddddiiiimmmmVVVV ==== 4444;;;; aaaammmmoooonnnngggg
ffffuuuunnnnddddaaaammmmeeeennnnttttaaaallll rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnnssss ooooffff ssssiiiimmmmpppplllleeee ÌÌÌÌ''''ssss,,,, tttthhhheeee oooonnnnllllyyyy
ppppoooossssssssiiiibbbbiiiilllliiiittttiiiieeeessss aaaarrrreeee ÍÍÍÍÒÒÒÒ((((VVVV)))) aaaannnndddd ÍÍÍÍ∏∏∏∏((((VVVV)))) ((((tttthhhhiiiissss llllaaaasssstttt iiiissss ssssppppiiiinnnn ffffoooorrrr ÍÍÍÍØØØØ((((5555))))))))....

In case ¬, ¬2, ¬d-1, √ is not a chain, then every chain has the

form ¬, ¬2, ???, ¬d-1, √ with at least one ? term. In this chain, the

sequence of h-weights is 1,1,0,...,0,-1,-1 with at least one intermediate
zero. Therefore the simple roots ∫ have ∫(h) = 0 or 1, and in writing ¬-
√ as ‡n∫∫, either there are exactly two simple roots ∫ with ∫(h)=1,

each with coefficient n∫=1, or there is a unique one, with coefficient

n∫=2. But we have seen (Lemma 1.7.4) that any simple root adjacent

to å passes from second to third place in some chain, and similarly any
neighbor of -w0(å) passes from third last to second last in some chain.

So any neighbor ∫ of å occurs in ¬-√, as does any neighbor of -w0(å).

This means there are at most two distinct simple roots ∫,© with
∫(h) =1 =©(h). If there are precisely two, then
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∑å - w0∑å = ∫ + © + others,

∫ adajcent to å,
© adjacent to -w0(å), and

{simple roots adj to å} ¡ {simple roots adj to -w0(å)} = {∫, ©}.

If there is only one such, then it is the unique neighbor of å aaaannnndddd the
unique neighbor of -w0(å), and we have

∑å - w0∑å = 2∫ + others,

∫ the unique neighbor of å,
∫ the unique neighbor of -w0(å).

At this point one must patiently check the Bourbaki tables~ To do
this easily, we break up into four cases, depending on whether ∫=© or
not, and on whether or not å is self dual.

If ∫=©, then both å and -w0(å) have unique neighbors, so both

are extreme points of the Dynkin diagram. If å and -w0(å) coincide,

then å is a self-dual extreme point and we have
∑∑∑∑åååå ==== ∫∫∫∫ ++++ ooootttthhhheeeerrrrssss,,,, åååå aaaa sssseeeellllffff----dddduuuuaaaallll eeeexxxxttttrrrreeeemmmmeeee pppptttt,,,, ∫∫∫∫ iiiittttssss uuuunnnniiiiqqqquuuueeee

nnnnbbbbrrrr....
Among the exceptional groups, inspection shows that only GGGG2222,,,, ∑∑∑∑1111
qualifies. The classical self-dual extreme points are none for A…≥2, ∑1
and ∑… for B… and C…, ∑1 for Dodd, ∑1 and the two spins for Deven.

For ∑∑∑∑1111 iiiinnnn BBBB,,,,CCCC,,,,DDDD the coef of å2 is 1, so these occur. For ∑… in B… the

coef of å…-1 is (…-1)/2, which is 1 only for …=3, corresponding to the 8888----

ddddiiiimmmm ssssppppiiiinnnn rrrreeeepppp ooooffff ÍÍÍÍØØØØ((((7777)))). For ∑… in C…, the coef of å…-1 is …-1, only 1

for …=2, corresponding to the ssssttttaaaannnnddddaaaarrrrdddd rrrreeeepppp ooooffff ÍÍÍÍØØØØ((((5555)))). For either spin
in Deven… the coef of å…-2 is (…-2)/2, which is 1 only for …=4, in which

case by triality the image of the rep. is ÍÍÍÍØØØØ((((8888)))) iiiinnnn iiiittttssss ssssttttaaaannnnddddaaaarrrrdddd
rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnn....

If å and -w0(å) are distinct in the case (∫=©), then ∫ has two

extreme point neighbors, so one end of the diagram looks like the end of
the D…≥3 series, and … is odd because the two ends å and -w0(å) are

distinct. This means we can only have one of the spin representations,
but for these the sum ∑…-1 + ∑… contains å…-2 with coefficient …-2,

which is never 2 since … is odd. SSSSoooo tttthhhhiiiissss ccccaaaasssseeee ddddooooeeeessss nnnnooootttt eeeexxxxiiiisssstttt....
If we are in the case ∫±©, and if ∫ is the unique neighbor of å,

then å is extreme and hence so is -w0(å) ; similarly if © is the unique

neighbor of -w0(å) then -w0(å) is extreme and hence so is å. This then

means that both å and -w0(å) are extreme, and have different
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neighbors, so å cannot be selfdual and
∑∑∑∑åååå ---- wwww0000∑∑∑∑åååå ==== ∫∫∫∫ ++++ ©©©© ++++ ooootttthhhheeeerrrrssss,,,, åååå nnnnoooonnnnsssseeeellllffffdddduuuuaaaallll eeeexxxxttttrrrreeeemmmmeeee....

The possibilities here for nonselfdual extremes are only A…, ∑1 and ∑…;

Dodd, spin; E6, ∑1 and ∑6. The D case is ruled out by the requirement

that the unique neighbors of the duals be distinct. The E6 case is ruled

out because ∑1 + ∑6 has all coef's ≥2. The case of the ssssttttaaaannnnddddaaaarrrrdddd

rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnn ∑∑∑∑1111 ooooffff AAAA………… aaaannnndddd iiiittttssss dddduuuuaaaallll ∑∑∑∑………… iiiissss ffffiiiinnnneeee ffffoooorrrr …………≥≥≥≥4444 ( since

∑1+∑… = å1 + å2 + ... + å…).

If ∫±©,we see as above that if å (and hence -w0(å)) is nnnnooootttt

extreme, each of å and -w0(å) has both ∫ and © as neighbors. As there

are no closed diamonds in the diagram, it must be that å = -w0(å);

then å has exactly two neighbors ∫ and © and
∑∑∑∑åååå ==== 1111////2222(((( ∫∫∫∫ ++++ ©©©©)))) ++++ ooootttthhhheeeerrrrssss,,,, åååå sssseeeellllffffdddduuuuaaaallll wwwwiiiitttthhhh nnnnbbbbrrrrssss ∫∫∫∫,,,,©©©©

Again by inspection the exceptional groups are ruled out (no ∑å has

1/2 as any coef.). In the A series, the only selfdual is ∑k for A2k-1, and

this only works if k=3, corresponding to the ssssttttaaaannnnddddaaaarrrrdddd rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnn
ooooffff ÍÍÍÍØØØØ((((6666)))).... In the B and C series, no ∑å has two coef.'s 1/2. In the D

series, those with exactly two neighbors are ∑2 through ∑…-3, and

none of these has any coef. 1/2. This concludes the proof of Theorem
1.4, and with it, Theorem 1.3. QED

(1.7.6) We now turn to the proof of Theorem 1.5. We begin with the
case when Ì is normalized by a reflection ©. If the automorphism Ad(©)
of the corresponding connected semisimple group G in GL(V) is inner,
then G contains the diagonal (in a suitable basis of V) matrix

A := Diag(-a,a,a,...,a)
for some nonzero a. (Therefore Ì ± Í∏(V) if dimV ≥ 4, because the
group Sp(V) does not contain Diag(-a, a,...,a); in Sp(2d), the 2d
eigenvalues of any element can be grouped into d pairs of inverses.)
Taking a maximal torus T of G which contains A, and fixing some Weyl
chamber, we see that the (-a) eigenspace of A is a multiplicity one
weight space for T, say with weight †. Therefore there exists a simple
root å with å(A)=-1 (any simple root å that takes us to or from † in a
chain of weights which passes through †). Now consider the

corresponding ÍÒ(2) for this simple root. For any weight space V¬,

XåV¬ is in V¬+å and X-åV¬ is in V¬-å. So if we write V = Va · V-a
as the sum of the n-1 dimensional a-eigenspace for A and of the one
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dimensional (-a)-eigenspace for A, then Xå maps Va to V-a, and it

maps V-a to Va. Therefore

Image(Xå) = XåVa · XåV-a fi V-a · XåV-a
has dimension at most two.

If dim Image(Xå) ≤ 1, then dim Image(Xå) = 1 since the

representation is faithful. So the ÍÒ(2)-representation we have is the
direct sum of the standard one and a trivial one, and so the element
Hå is Diag(1,-1,0,...,0). Now apply Theorem 1.2.

If dim Image(Xå) = 2, then XåVa=V-a and XåV-a ± 0, so

(Xå)2 ± 0. Since dim Image(Xå) = 2, when we write our ÍÒ(2)

representation as a direct sum of Symmni(std)'s, we have ‡ni = 2.

Since (Xå)2 ± 0, we cannot have std·std·triv, so we must have

Symm2(std)·triv, and Hå is Diag(2,-2,0,...,0). Now apply Theorem 1.2.

Next we consider the case when Ì is normalized by a reflection ©,
but the automorphism ß = Ad(©) is not inner. (Here Í∏ is also ruled
out, because every automorphism of it is inner.) Any automorphism ß
of the corresponding connected semisimple group G stabilizes some Borel

subgroup B (look at the coherent cohomology Hi(G/B, Ø) of G/B, which

vanishes except for H0 = ^, and use the Lefschetz fixed point formula).
If ß is an involution we claim it stabilizes some maximal torus T in B.
For if we pick one maximal torus T in B, then ß(T) is another maximal
torus in the same Borel, so it is conjugate to T by an element u of the

unipotent radical U of B: ßT = uTu-1. Moreover, the element u in U is
uniquely determined, since inside B, T is its own normalizer. We need to

find an element v in U such that ß(vTv-1) = vTv-1 ,i.e., an element v

in U that satisfies ß(v)u = v. Since ß2 =1, we know ß2(T) = T and

hence ß(u)u =1, or u-1 = ßu. So if we write u = μ2 with μ in U, then

u-1 = ßu gives μ-2 = (ßμ)2, so both μ-1 and ßμ are square roots in U
of the same element. By the uniqueness of square roots in U we have

μ-1 = ßμ. Then (ßμ)u = μ-1u = μ, so μTμ-1 is the desired ß-stable
maximal torus.

Once ß stabilizes a pair (B, T), it induces an automorphism of the
Dynkin diagram. This automorphism is necessarily nontrivial (lest ß be
inner) and of order two, so a nontrivial involution of the Dynkin
diagram. Consider the action of ß on the weight spaces of our
representation; it must permute them nontrivially (otherwise it fixes
the weights, so fixes pointwise the $-span of the weights, so fixes all
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roots, so would be inner). This means that the matrix of the reflection ©
is a permutation-block shaped matrix. But the eigenvalues of a
permutation-block shaped matrix with cycles of length di are the

various di'th roots of the eigenvalues of the what the di'th power

induces on any block in the orbit.
Since © has eigenvalues {-1,1,1,...,1}, a set which contain no

clumps of size di which are principal homogenous under multiplication

by the di'th roots of unity with di > 1 except possibly for a single one of

size di = 2, we conclude that ß permutes precisely two weight spaces,

each of which is of multiplicity one, and stabilizes all the others.
Consider the $-span S of those weights fixed by ß; S must be a proper
subspace of the $-span of the roots (because ß does not fix all the roots,
not being inner), and hence we can find a 1-parameter torus in T
whose h kills S. This h, acting on V, acts as zero on the sum of all the
non-permuted weight spaces, which is of codimension 2 in V. By
faithfulness of V, h must act on V as Diag(x,-x,0,...,0) with x±0. Now
apply Theorem 1.2.

If Ì is normalized by a unipotent pseudoreflection u, then its
logarithm N:= log(u) lies in Ì (because every derivation of Ì is inner,
compare the proof of Theorem 0). As endomorphism of V, N has rank
one. Using Jacobson-Morosov to complete N to an ÍÒ(2)-triple (N, h, ?)
in Ì, we get a semisimple element h in Ì which in a suitable basis of V
is Diag(1,0,...,0,-1). Again apply Theorem 2.We have Ì ± ÍØ(V) simply
because ÍØ(V) doesn't contain any nilpotent N of rank one.

If Ì is normalized by a pseudoreflection © whose determinant ≈ is

not _1, then in a suitable basis of V, © is Diag(≈,1,...,1). Because ≈ ± ≈-1,
Gabber's Theorem 0 shows that Ì contains Diag(n-1, -1, ..,-1), whence Ì
is ÍÒ(V) by Theorem 1.1. This concludes the proof of Theorem 1.5. QED

(1.7.7) We now turn to the proof of Theorem 1.6 on prime-dimensional
representations. First of all, Ì must be simple since dimV is prime. If Ì
has rank one, we have the ÍÒ(2) possibility. Assume now that Ì has
rank at least two. Pick a Cartan subalgebra Ó, a Weyl chamber, et
cetera. The Weyl dimension formula for dimV in terms of the highest
weight ¬ of V and ® := ‡fd wts = (1/2)‡ pos rts is

dimV = °pos roots å [(¬ + ®, Hå)/ (®, Hå)].

The two key observations are that for Ì simple, and V irreduible with
highest weight ¬,

(1) the largest single term in the formula is the term (¬+®, Hhighest),
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where Hhighest is the highest root of (i.e., highest weight of the adjoint

representation of the algebra corrsponding to) the dual root system,
and this term is ssssttttrrrriiiiccccttttllllyyyy larger than any of the other terms.

(2) We have the inequality
(¬+®, Hhighest) ≤ dimV.

If we grant both of these points, the first of which is obvious, and
the second of which will be proven below, then for dimV = p, we find
that (¬+®, Hhighest) =dimV (otherwise every single term in the formula

is < p and hence prime to p). We will then examine those irreducible
representations V of simple Ì's for which

(¬+®, Hhighest) = dimV.

To prove (2), consider the highest weight of the restriction of V to
the principal ÍÒ(2) in Ì; this is one less than the dimension of its
biggest irreducible, so we have

dimV ≥ 1 + highest weight of the principal ÍÒ(2).
In virtue of ([Bour L8], 11, 4,Prop. 8 (i) and 7, 5, Lemma 2), the highest
weight under the principal ÍÒ(2) is

(¬, the element h0 in Ó such that ∫(h0)=2 for all simple ∫),

and h0 = ‡pos å Hå ("the sum of the positive roots is twice the sum of

the fundamental weights" for the dual root system). Thus

dimV ≥ 1 + highest weight of the principal ÍÒ(2)
= 1 + (¬, ‡pos å Hå).

Now pick some simple å such that ¬(Hå) > 0, and pick a chain which

runs from Hå up to the highest dual root Hhighest; we get

1 + (¬, ‡pos å Hå)

=1 + (¬, Hhighest) + ‡å pos, Hå not highest (¬, Hå)

≥ 1 + (¬, Hhighest) + ‡chain omitting Hhighest
(¬, Hin chain)

≥1 + (¬+®, Hhighest) - (®, Hhighest)+ ‡chain omitting Hhighest
(¬, Hin chain).

Now we will establish that in fact

1 + ‡chain omitting Hhighest
(¬, Hin chain) ≥ (®, Hhighest).
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Writing Hhighest = ‡simple ∫ n∫H∫ as a sum of simple dual roots, and

recalling that ® is the sum of the fundamental weights, we see that

(®, Hhighest) = ‡n∫ = the "length" of Hhighest,

so what is to be proved is

1 + ‡chain omitting Hhighest
(¬, Hin chain) ≥ length of Hhighest.

This inequality is obvious, because the length of any chain from the
simple root Hå to Hhighest = ‡simple ∫ n∫H∫ is obviously the length ‡n∫
of Hhighest, and å is chosen so that every term (¬, Hin chain) is at least

one. Thus we have established the inequalities

dimV ≥ 1 + highest weight of the principal ÍÒ(2)
= 1+ (¬, ‡pos å Hå) =1 + (¬, Hhighest) + ‡ å pos,not highest (¬, Hå)

≥ 1 + (¬, Hhighest)+ ‡chain omitting Hhighest
(¬, Hin chain)

≥ (¬, Hhighest) + length of Hhighest
= (¬+®, Hhighest).

Now suppose we have the equality
dimV = (¬+®, Hhighest).

Then we see, from the top end of the inequality, that V is irreducible
when restricted to the principal ÍÒ(2). By [Ka-GKM, 11.6], the only
possibilities outside ÍÒ(2) are ÍÒ, Í∏, and ÍØ(odd) in their standard
representations and Lie(G2) in its seven-dimensional representation.

QED

1111....8888 AAAAppppppppeeeennnnddddiiiixxxx:::: DDDDiiiirrrreeeecccctttt ssssuuuummmmssss aaaannnndddd tttteeeennnnssssoooorrrr pppprrrroooodddduuuuccccttttssss
Let Gi, i=1,2, be connected semisimple groups over ^ whose Lie

algebras are simple, and let ®i: Gi ¨ GL(Vi), i=1,2, be faithful irreducible

representations of the Gi on finite-dimensional ^-spaces Vi. We say that

(G1, V1) and (G2, V2) are GGGGoooouuuurrrrssssaaaatttt----aaaaddddaaaapppptttteeeedddd if either

(a) the Lie algebras of G1 and G2 are not isomorphic, or

(b) for any isomorphism © : Lie(G1) ë¨ Lie(G2), at least one of the

following two conditions holds:
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(b1) there exists an isomorphism A: V1 ë¨ V2 such that, viewing

Lie(Gi)fiEnd(Vi), we have ©(X) = AXA-1 for every XŸLie(G1). [If this A

exists, then gÿAgA-1 defines an isomorphism from G1 to G2.]

(b2) there exists an isomorphism A:(V1)
* ë¨ V2 from the dual of V1 to

V2 such that, viewing Lie(Gi) fi End(Vi), we have ©(X) = A(-Xt)A
-1

for

every XŸLie(G1), where X
t Ÿ End((V1)

*) denotes the intrinsic transpose

of X.[If this A exists, then gÿAg-tA-1 defines an isomorphism from G1
to G2.]

EEEExxxxaaaammmmpppplllleeeessss 1111....8888....1111 If both (Gi, Vi) are isomorphic to (G, stdn) where G is

one of the classical simple groups SL(n ≥ 3), SO(odd n ≥ 3), Sp(even n ≥
2), SO(even n ≥ 6) and stdn is its standard n-dimensional

representation ∑1, then only for (SO(8), std8) does Goursat-adapted fail.

Indeed, every automorphism of SO(odd n ≥ 3) or of Sp(even n ≥ 2) is
inner, the only nontrivial outer automorphism of SL(n ≥ 3) is the

Cartan involution X ÿ X-t, and every automorphism of SO(even n ≥ 6,
n î= 8) is induced by conjugation by an element of O(n).

If both (Gi, Vi) are isomorphic to (G, V), where G is a connected

semisimple irreducible subgroup of GL(V) such that Lie(G) is simple and
such that every automorphism of Lie(G) is inner (types B, C, F4, E7, E8,

G2) then they are automatically Goursat-adapted, wwwwhhhhaaaatttteeeevvvveeeerrrr the

particular irreducible representation V.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 1111....8888....2222 (Goursat-Kolchin-Ribet, [Kol], [Ri]) Let G be an
algebraic group over ^, n ≥ 2 an integer, and ®i: G ¨ GL(Vi), i=1, ..., n, a

set of n finite-dimensional irreducible representations of G whose direct
sum ·iVi is faithful. For each i, let Gi := ®i(G) be the image of G in

GL(Vi). Suppose that

(1) for each i, Gi
0,der operates irreducibly on Vi, and Lie(Gi

0,der) is

simple.

(2) for i±j, (Gi
0,der, Vi) and (Gj

0,der, Vj) are GGGGoooouuuurrrrssssaaaatttt----aaaaddddaaaapppptttteeeedddd.

(3) for i±j, and for any character ç of G, the representations ®i and

ç‚®j of G are not isomorphic.
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(4) for i±j, and for any character ç of G, the representations (®i)
* and

ç‚®j of G are not isomorphic.

Then G0,der is the subgroup °Gi
0,der of °GL(Vi).

pppprrrrooooooooffff By definition, G maps onto each Gi:=®i(G). Therefore G
0 maps onto

each Gi
0, and G0,der maps onto each Gi

0,der. By faithfulness we have

an a priori inclusion G fi °iGi, so G
0,der fi °Gi

0,der. Notice that G is

reductive (it has a faithful completely reducible representation) and

hence G0,der is semisimple.

We first reduce to the case where G=G0,der and Gi = Gi
0,der for

each i. Replacing G by G0,der does not change Gi
0,der = ®i(G)

0,der=

®i(G
0,der). Each Vi is G

0,der-irreducible, since it is Gi
0,der-irreducible. If

hypotheses (3) and (4) hold for G then they hold for G0,der [Indeed if H
is aaaannnnyyyy normal subgroup of G, and if two H-irreducible representations
V and W of G become isomorphic on H, then HomH(V, W) is a one-

dimensional representation of G/H, and HomH(V, W)‚V § W as G-

representations.]

So we may assume that G=G0,der and Gi = Gi
0,der for each i. By

Lie theory, it suffices to prove that Lie(G) = °Lie(Gi) inside °End(Vi).

Each Lie(Gi) being simple, it suffices by [Ri, pp. 790-791] to show that

for any two indices i±j, Lie(G) maps onto Lie(Gi)≠Lie(Gj). So (replacing G

by (®i≠®j)(G) )we are reduced to the case n=2.

When n=2, Lie(G) is a Lie-subalgebra of the product
Lie(G1)≠Lie(G2) which maps onto each factor, so by Goursat's Lemma,

either Lie(G) is the product Lie(G1)≠Lie(G2), or it is the graph of an

isomorphism ©: Lie(G1) ë¨ Lie(G2). In this second case, we will derive a

contradiction, by using the Goursat-adaptedness, which tells us that
either

(b1) there exists an isomorphism A: V1 ë¨ V2 such that ©(X) = AXA-1

for every XŸLie(G1), or

(b2) there exists an isomorphism A: (V1)
* ë¨ V2 such that for every

XŸLie(G1), ©(X) = A(-Xt)A
-1
.

Since Lie(G) is the graph of ©, we conclude that G is the graph of
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an isomorphism from G1 to G2 either of the form gÿAgA-1, which

contradicts (3), or of the form gÿAg-tA-1, which contradicts (4). QED

The following standard lemma is stated for ease of reference.
LLLLeeeemmmmmmmmaaaa 1111....8888....3333 Let G1, ... ,Gr be connected semisimple linear algebraic

groups over ^ whose Lie algebras Ìi are simple. Then

(1) if ß is any automorphism of °Ìi, there exists a permutation

i ÿ s(i) of the index set {1, ... , r} and isomorphisms ßs(i),i : Ìs(i) ¨ Ìi
such that

ß(g1, g2, ... , gr) = (ßs(1),1(gs(1)), ßs(2),2(gs(2)), ... , ßs(r),r(gs(r))).

(2) if ß is any automorphism of °Gi, there exists a permutation i ÿ s(i)

of the index set {1, ... , r} and isomorphisms ßs(i),i : Gs(i) ¨ Gi such that

ß(g1, g2, ... , gr) = (ßs(1),1(gs(1)), ßs(2),2(gs(2)), ... , ßs(r),r(gs(r))).

pppprrrrooooooooffff To prove (1), it suffices to note that the individual factors Ìi of

the product Ì := °Ìi are intrinsically the minimal nonzero ideals of Ì,

hence are necessarily permuted by any automorphism of Ì. To prove
(2), denote by ëß the automorphism induced by ß on the universal
covering °ëGi, and by Lie(ß) the automorphism induced by ß on

Lie(°Gi) = °Lie(Gi). By (1) applied to Lie(ß), and the equivalence of

categories between connected simply connected complex Lie groups and
finite dimensional Lie algebras over ^, we infer that there exists a
permutation i ÿ s(i) of the index set {1, ... , r} and isomorphisms
ëßs(i),i : ëGs(i) ¨ ëGi such that

ëß(ëg1, ëg2, ... , ëgr) = (êßs(1),1(ëgs(1)), êßs(2),2(ëgs(2)), ... , êßs(r),r(ëgs(r))).

But as ëß is induced by the automorphism ß of °Gi, ëß maps the finite

covering group Ker( °ëGi ¨ °Gi) = °(Ker(ëGi ¨ Gi))to itself. Therefore

each ëßs(i),i : ëGs(i) ¨ëGi maps Ker(ëGs(i) ¨ Gs(i)) isomorphically to

Ker(ëGi ¨ Gi), whence each ëßs(i),i : ëGs(i) ¨ëGi descends to an

isomorphism ßs(i),i : Gs(i) ¨ Gi. That ß is

(g1, g2, ... , gr)ÿ(ßs(1),1(gs(1)), ßs(2),2(gs(2)), ... , ßs(r),r(gs(r)))

follows from the fact that this automorphism of the connected group
°Gi induces Lie(ß) on the Lie algebra. QED
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LLLLeeeemmmmmmmmaaaa 1111....8888....4444 Let V be a ^-vector space of dimension n ≥ 2, and let
G fi GL(V) be one of the following groups:

SL(n),
Sp(n) if n is even,
SO(n) if n is odd.

Let Æ denote the image of G≠G≠...≠G in GL(Vºn). Then the normalizer of

Æ in GL(Vºn) is the semidirect product ´mÆ©Sn, where Sn acts on Vºn

by permuting the factors.

pppprrrrooooooooffff Suppose A in GL(Vºn) normalizes Æ. The automorphism
ß :=Ad(A) of Æ lifts to an automorphism ëß of G≠G≠...≠G in each of the
cases envisioned (for SL or Sp, G≠G≠...≠G is the universal covering of Æ,
and for SO(odd), G≠G≠...≠G § Æ). Any automorphism of G≠G≠...≠G is the
composition of a permutation of the factors with an automorphism of
the form °ßi : (gi)i ÿ (ßi(gi))i, where for each i, ßi is an automorphism

of G.
If G is Sp or SO(odd), each ßi is inner, say ßi = Int(gi). Then

successively correcting Ad(A) by the permutation it induces of the
factors and by Int(g1, ... , gn), we obtain an element of the centralizer

of Æ in GL(Vºn). But Æ acts irreducibly on Vºn (since G acts irreducibly
on V), so this centralizer consists of the scalars ´m.

If G is SL(V) with n = dimV ≥ 3, then an automorphism ß of G is
inner if and only if the given representation ® of G on V is equivalent to

(i.e., has the same trace function as) ®ß := ®«ß . Similarly, an
automorphism °ßi : (gi)i ÿ (ßi(gi))i of G≠G≠...≠G is inner if and only if

®‚®‚...‚® has the same trace function on G≠G≠...≠G as

(®«ß1)‚...‚(®«ßn). The given representation ®ºn of Æ on Vºn is the

restriction to Æ of the standard representaion of GL(Vºn), which is
tautologically equivalent to its transform by Ad(A) for aaaannnnyyyy A in

GL(Vºn). Applying this both to our A which normalizes Æ and to the
permutation it induces, we see that Ad(A) is the composite of a
permutation and of an inner automorphism of G≠G≠...≠G, as above. QED

LLLLeeeemmmmmmmmaaaa 1111....8888....5555 Let r ≥ 2, and pick r distinct integers ni,

2 ≤ n1 < n2 < ... < nr.

For each i, let Gi be one of the groups

SL(ni ),

Sp(ni) if ni is even,
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SO(ni) if ni is odd ≥ 7,

SO(3) if ni = 3 and no nj is 2,

SO(5) if ni = 5 and no nj is 4.

and denote by G the image of °Gi in ‚stdni
. Then the normalizer of G

in GL(‚stdni
) is ´mG.

pppprrrrooooooooffff For each i, let ®i denote the standard representation stdni
of Gi. If

Gi is SL(ni ), an automorphism ßi of Gi is inner if and only if (®i)
ßi is

equivalent to ®i. For the other possibilities, every automorphism ßi of Gi
is inner. So in all cases an automorphism ßi of Gi is inner if and only if

(®i)
ßi is equivalent to ®i.

Suppose A in GL(‚stdni
) normalizes G. Denote by ß the

automorphism Ad(A) : gÿAgA-1 of G it induces, and by Lie(ß) the
automorphism ß induces of Lie(G) = °Lie(Gi). Since the Lie(Gi) are

pairwise nonisomorphic, Lie(ß) = °Lie(ß)i where Lie(ß)i is an

automorphism of Lie(Gi). Because Gi is either simply connected or

adjoint, any automorphism Lie(ß)i of its Lie algebra is of the form

Lie(ßi) for some automorphism ßi of Gi. Therefore ß is induced by the

automorphism ëß := °ßi of °Gi. The representation ® := ‚®i of °Gi is

tautologically equivalent to ®ëß (by the intertwining operator A), and

®ëß is equivalent to ‚(®i)
ßi. Therefore ‚®i is equivalent to ‚(®i)

ßi.

Restricting both sides to the subgroup Gi of °Gi and comparing

characters, we see that ®i is equivalent to (®i)
ßi. Therefore each ëßi is

inner, ëß = °ßi is inner, and hence ß = Ad(A) is inner. Since G acts

irreducibly on (‚stdni
), we find A Ÿ ´mG, as required. QED

LLLLeeeemmmmmmmmaaaa 1111....8888....6666 Let r ≥ 2, and pick r distinct integers ni,

2 ≤ n1 < n2 < ... < nr.

For each i, let Gi be one of the groups

SL(ni ),

Sp(ni) if ni is even,

SO(ni) if ni is odd ≥ 7,
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SO(3) if ni = 3 and no nj is 2,

SO(5) if ni = 5 and no nj is 4.

For each i=1, ... ,r, pick an integer mi ≥ 1, denote by (Gi)
mi the mi fold

product Gi≠...≠Gi, and denote by G the image of °(Gi)
mi in

GL(‚i(stdni
)ºmi). Then the normalizer of G in GL(‚i(stdni

)ºmi) is the

semidirect product (´mG)©°iSmi
, where °iSmi

acts on ‚i(stdni
)ºmi by

permuting the factors.
.
pppprrrrooooooooffff Since the Lie(Gi) are pairwise nonisomorphic, any automorphism

of Lie(G) is of the form °i(an auto. of Lie((Gi)
mi)). Now Gi being either

simply connected or adjoint, any automorphism of Lie((Gi)
mi) is

induced by an automorphism of (Gi)
mi. Exactly as above, any

automorphism of (Gi)
mi is the composition of a permutation of the

factors and of an automorphism of the form °j=1,...,mi
ßi,j, where ßi,j

is an automorphism of Gi.

Suppose now that A in GL(‚i(stdni
)ºmi) normalizes G. Modifying A

by the element of °iSmi
that Ad(A) induces on the factors of each

Lie((Gi)
mi), we may suppose that there exist automorphisms ßi,j of Gi

such that the product automorphism °i,j ßi,j of °i,j Gi induces Ad(A)

on the Lie algebra. Denote by ëGi the universal covering of Gi, and by

ëßi,j the automorphism of ëGi induced by ßi,j. Since °i,jëGi is connected,

°i,j ëßi,j is the uuuunnnniiiiqqqquuuueeee automorphism of °i,j ëGi which induces Ad(A) on

its Lie algebra. But °i,j ëGi is also the universal covering of G, so by

uniqueness we conclude that Ad(A) acting on G induces °i,j ëßi,j on its

universal covering. Therefore °i,j ëßi,j stabilizes the two finite central

subgroups of °i,j ëGi corresponding to the two quotients °i,j Gi and G of

°i,j ëGi. Therefore the action of °i,j ßi,j on °i,j Gi is stable on the kernel
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of the canonical projection °i,j Gi ¨ G, and induces Ad(A) on G.

So if we denote by ®i,j the standard representation of Gi, then the

tensor product representation ‚i,j ®i,j of °i,j Gi is equivalent to

‚i,j (®i,j«ßi,j). Just as above, we infer that each ßi,j is inner. QED
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TTTThhhheeee bbbbaaaassssiiiicccc sssseeeetttt----uuuupppp aaaannnndddd tttthhhheeee MMMMaaaaiiiinnnn DDDD....EEEE.... TTTThhhheeeeoooorrrreeeemmmm
We will apply the representation-theoretic results of the last

chapter to the calculation of some differential galois groups. Let us first
recall the basic setup (cf [Ka-DGG, 1.1]).
(2.1) Let K be a field of characteristic zero, and X be a smooth
geometrically connected separated K-scheme of finite type with X(K)
nonempty, and ∑ a K-valued fibre functor on the category D.E.(X/K)
(for instance ∑="fibre at x" for any K-valued point x of X). We denote

by π1
diff(X/K,∑) the affine pro-algebraic K-group-scheme Autº(∑).

The fibre functor ∑ defines an equivalence of º-categories

D.E.(X/K) § (fin.-dim'l K-reps of π1
diff(X/K,∑)).

Given an object V in D.E.(X/K), denote by <V> the full subcategory
of D.E.(X/K) whose objects are all subquotients of all finite direct sums

of the objects Vºn‚(V£)ºm, all n,m ≥ 0. The restriction to <V> of ∑ is a

fibre functor on <V>. The K-group-scheme Autº(∑ | <V>), denoted
Ggal(V, ∑), is by definition the differential galois group of V; it is a

Zariski-closed subgroup of GL(∑(V)). The restriction to <V> of the
functor ∑ defines an equivalence of º-categories

<V> § (fin-dim K-reps of Ggal(V, ∑)).

If we view V as a representation ®V of π1
diff(X/K,∑) on ∑(V), then

Ggal(V, ∑) is none other than the image under ®V of π1
diff(X/K,∑) in

GL(∑(V)).

2222....2222 TTTToooorrrrssssoooorrrrssss aaaannnndddd LLLLiiiiffffttttiiiinnnngggg PPPPrrrroooobbbblllleeeemmmmssss
(2.2.0) What about the interpretation of homomorphisms of

π1
diff(X/K,∑) to a linear algebraic group H over K other that GL(n)?

There is a "general nonsense" interpretation of homomorphisms

ƒ : π1
diff(X, x) ¨ H as (isomorphism classes of) triples (P, æ, Px § H)

consisting of a right (etale) H-torsor P on X, an H-equivariant
integrable connection æ on P as X-scheme, and a trivialization of Px as

right H-torsor. Let us briefly sketch this interpretation. Suppose we

begin with the homomorphism ƒ : π1
diff(X, x) ¨ H. View H as a closed

subgroupscheme of some SL(N). Denote by A the coordinate ring of H,
and filter it as K-vector space by the finite dimensional subspaces
An := the functions on H which are the restrictions of polynomials of
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degree ≤ n in the functions Xi,j (:= (i,j)'th matrix coefficient) on the

ambient SL(N). Then An is stable by both the right and left translation

actions of H on its coordinate ring. Via the left action, and the given

homomorphism f : π1
diff(X, x) ¨ H, we may view An as a finite-

dimensional representation of π1
diff(X, x). By the main theorem of

Tannakien categories, this representation corresponds to a D.E. (!n,æ)

on X together with an isomorphism ∑x(!n) § An. The right action of H

on An commutes with its left action, so it commutes with the left

action of π1
diff(X, x), and thus gives a horizontal right action of H on

!n. The multiplication maps An‚KAm ¨ An+m are both right and left

H-equivariant, so we get horizontal multiplication maps
!n‚K!m ¨ !n+m which are right H-equivariant. Thus if we define !

to be the direct limit of the !n (via the inclusions !n¨!m
corresponding to An¨Am), then P := Spec(!) is an affine X-scheme

endowed with a right action of H, an integrable connection æ for which
this H-action is horizontal, and whose fibre over x is given as
Px := Spec(A) := H. It remains to verify that P is in fact a right H-torsor

on Xet. Indeed, P is faithfully flat over X [each !n is a locally free ØX-

module of finite rank, and the inclusions !n ¨ !n+m being horizontal,

have cokernels which are ØX-locally free as well; taking n=0 and

passing to the limit over m, we see that ØX ¨ ! has ØX-flat cokernel,

so for any OX-module ˜, the map ˜ ¨ ˜‚ØX
! is injective]. To show

that the map H≠KP ¨ P≠XP , (h,p) ÿ (p, ph) is an isomorphism of X-

schemes, it suffices that the corresponding map !‚ØX
! ¨ A‚K! be

an isomorphism of ØX-modules. But this is a horizontal map of ind-

objects of the category D.E.(X/K), whose fibre over x is an isomorphism,
so it is an isomorphism. Thus P is a right H-torsor on Xfpqc , and as H is

smooth over K, P is consequently a right H-torsor on Xet as well.

In the opposite direction, suppose we start with data
(P, æ, Px § H). Let ! denote the sheaf of ØX-algebras whose Spec is P.

Because P as right H-torsor is etale locally trivial, we see by descent
that there exists a unique filtration of ! by locally free ØX-modules !n
of finite rank, which, after any etale E¨X such that PE§H≠KE,

corresponds to the filtration of A‚KØE by the An‚KØE. The connection



Chapter2-D.E.'s and Î-Modules-3

æ on P is an integrable connection on ! for which the multiplication
map and the right action of H are both horizontal. Looking at æ after
etale localization, we see that the !n are horizontal. We are given an

isomorphism !(x) § A compatible with the right H-actions on both !

and A, so the tautological action of π1
diff(X, x) on A respects both its

ring structure and the right H-torsor structure of Spec(A):=H. Therefore

the action of π1
diff(X, x) on A must be through left translations by

elements of H; this is the required homomorphism ƒ of π1
diff(X, x) to H.

It is clear that these two constructions are mutually inverse.

(2.2.1) Let ® : G ¨ H be a finite etale homomorphism of linear
algebraic groups over K, whose kernel Æ is a finite etale central
subgroup of G (e.g., SL(n) ¨ PGL(n)). Suppose we are given a
homomorphism

ƒ: π1
diff(X, x) ¨ H

of algebraic groups over K. We look for homomorphisms

ëƒ : π1
diff(X, x) ¨ G

with ƒ = ®ëƒ, and we call such a ëƒ a lift of ƒ.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....2222....2222 The obstruction to the existence of a lifting of ƒ lies

in H2(Xet, Æ), and (if a lifting exists) the indeterminacy in a lifting is

the group H1(Xet, Æ).

pppprrrrooooooooffff This is best seen in terms of the associated torsors with
connection.

Using this interpretation, we argue as follows. Suppose we are
given a right G-torsor P on X. Denote by ®P the right H-torsor on X
gotten from P by the change of structural group ®:G¨H. Given a right
G-equivariant ( resp. integrable) connection æ on P, there is a natural
right H-equivariant ( resp. integrable) connection ®æ on ®P. We claim
that the construction æ ÿ ®æ is a bijection; in other words, right H-
equivariant ( resp. integrable) connections ®P lift uniquely to P. [To see
this unicity of lifting, it suffices by etale descent to treat the case when
P is the trivial torsor G≠KX on an affine X. Denote by A the coordinate

ring of G. Then a right G-equivariant connection on G≠KX, i.e., on

A‚KØX, is a rule which to every K-linear derivation Δ of ØX to itself

assigns a K-linear derivation æ(Δ) of A‚KØX to itself which prolongs Δ
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and which is right G-equivariant; to give such æ(Δ) it suffices to specify
the right G-equivariant derivation of A to the A-module A‚KØX given

by a ÿ æ(Δ)(a‚1), and this is none other than an element Dæ(Δ) of

Lie(G)‚KØX (where Lie(G) is viewed as the right G-equivariant K-linear

derivations of A to A). The mapping Δ ÿ Dæ(Δ) is ØX-linear, so all in all

our connection on P iiiissss an element ∑ of Lie(G)‚K¿
1
X/K. The induced

connection on ®P = H≠KX = Spec(B‚KØX) is Δ ÿ æ(Δ) restricted to the

subalgebra B‚KØX of A‚KØX. Since A is finite etale over B, this

restriction is the same element ∑ viewed in Lie(H)‚K¿
1
X/K, when we

identify Lie(G)§Lie(H) by ®. The connection is integrable if and only if
for any pair of commuting derivations Δi, i=1,2, of ØX the derivations

æ(Δi) of A‚KØX commute, or equivalently if their restrictions to

B‚KØX commute. ]

So the problem of lifting ƒ to a ëƒ is that of lifting a given H-torsor
P (which happens to have an integrable connection) to a G-torsor ëP
(which will then have a unique connection which lifts the given one).
In terms of the short exact sequence on Xet of aaaallllggggeeeebbbbrrrraaaaiiiicccc ggggrrrroooouuuuppppssss////XXXX

1 ¨Æ ¨ G ¨ H ¨ 1,
the cohomology sequence

H1(Xet, Æ) ¨ H1(Xet, G) ¨ H1(Xet, H) ¨ H2(Xet, Æ)

shows that the obstruction to lifting (the isomorphism class of) a given

H-torsor P is in H2(Xet, Æ), and the indeterminacy in lifting it is in

H1(Xet, Æ). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....2222....2222....1111 If K is algebraically closed and if X/K is an open
curve, then liftings exist.

(2.2.3) Suppose now that K is ^. The exact tensor functor V ÿ Van

from D.E.(X/^) to D.E.(Xan) § Rep( π1
top(Xan, x)) defines a

homomorphism “ : π1
top ¨ π1

diff from the topological π1 of the

complex manifold Xan to π1
diff(X, x). With respect to this

homomorphism “ : π1
top ¨ π1

diff, we have the following variant of

the lifting problem:
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Let ƒtop := ƒ«“ be the restriction of ƒ to π1
top . We look for liftings

ëƒtop of ƒtop, i.e., for homomorphisms ëƒtop : π1
top(Xan, x) ¨ G with

ƒtop = ®ëƒtop.

Of course, if ëƒ is a lift of ƒ, then (ëƒ)top := ëƒ«“ is a lift of ƒtop.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....2222....4444 When K = ^, the construction ëƒ ÿ (ëƒ)top := ëƒ«“

defines a bijection {lifts of ƒ} § {lifts of ƒtop}.

pppprrrrooooooooffff The analogous short exact sequence on Xan of aaaallllggggeeeebbbbrrrraaaaiiiicccc ggggrrrroooouuuuppppssss

1 ¨Æ ¨ G ¨ H ¨ 1,
and its cohomology sequence

H1(Xan, Æ) ¨ H1(Xan, G) ¨ H1(Xan, H) ¨ H2(Xan, Æ)

analyses the problem of lifting Pan; here the obstruction is in

H2(Xan, Æ), and the indeterminacy in H1(Xan, Æ). By the comparison of
etale and classical cohomology with finite coefficients, we have

Hi(Xet, Æ) ¶ Hi(Xan, Æ) for all i.

Therefore the liftings of the H-torsor P to a G-torsor ëP are equivalent

(by the functor ëP ÿ (ëP)an) to the liftings of Pan to a G-torsor on Xan.

When Pan has an integrable connection, its sheaf of germs of
horizontal sections (in its coordinate ring) is a principal H(^)-bundle on

Xan, and this construction is an equivalence of categories

{right H-torsors on Xan with H-equivariant integrable connection} §

§ {principal right H(^)-bundles on Xan}

Now look at the exact sequence on Xan of constant groups
1 ¨Æ ¨ G(^) ¨ H(^) ¨ 1.

The cohomology sequence here gives the obstruction and indeterminacy
for lifting corresponding principal H(^)-bundle to a principal G(^)-

bundle as again being the ssssaaaammmmeeee elements in H2(Xan, Æ), and H1(Xan,
Æ). But this lifting problem is that of lifting the map ƒtop. Thus we find

the asserted equivalences. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....2222....4444....1111 Suppose that the topological fundamental group

π1
top(Xan, x) of Xan is a free group (e.g., X an open curve or an Artin

good neighborhood). Let ® : G ¨ H be a surjective homomorphism of
linear algebraic groups over ^, whose kernel Æ is a finite central

subgroup of G. Then any homomorphism ƒ: π1
diff(X, x) ¨ H of
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algebraic groups over ^ lifts to a homomorphism ëƒ : π1
diff(X, x) ¨ G

with ƒ = ®ëƒ.
RRRReeeemmmmaaaarrrrkkkk 2222....2222....4444....2222 Here is a slightly more cohomological formulation.
Given a field K of characteristic zero, and a smooth X/K, we have the
"crystalline-etale site" of X/K, noted (X/K)crys-et. Its objects are the

pairs (U/X, “: U¨T) consisting of an etale X-scheme U/X and a closed
K-immersion “ of U into a K-scheme T such that U is defined in T by a
nilpotent ideal of ØT. The morphisms are the obvious commutative

diagrams, and a family of objects (Ui/X, “: Ui¨Ti) over (U/X, “: U¨T)

is a covering if and only if the Ti ¨ T are an etale covering of T.

Given any smooth K-groupscheme G, we get a sheaf, still noted G,
on (X/K)crys-et by the rule (U/X, “: U¨T) ÿ G(T). It is essentially

tautological that a right G-torsor on (X/K)crys-et is the same as a right

G-torsor on Xet endowed with a right G-equivariant integrable

connection. Now suppose that X(K) is nonempty. In view of the above

discussion, we see that the set H1((X/K)crys-et, G) of isomorphism

classes of right G-torsors on (X/K)crys-et, is none other than the

quotient set HomK-gpsch(π1
diff(X, x), G) modulo the conjugation action

of G (this action because we have not specified the trivialization over x).
In other words, we have

H1((X/K)crys-et, G) § HomK-gpsch(π1
diff(X, x), G)/G,

so that π1
diff(X, x) is a kind of "fundamental group" of (X/K)crys-et.

The point is that if we have ®: G ¨ H as above with finite etale
central kernel Æ, then we can use the standard cohomological setup on
(X/K)crys-et to investigate our lifting problem. Consider the exact

sequence of sheaves on (X/K)crys-et
1 ¨ Æ ¨ G ¨ H ¨ 1,

which gives rise to an exact sequence of cohomology

H1((X/K)crys-et, Æ) ¨ H1((X/K)crys-et, G) ¨

¨ H1((X/K)crys-et, H) ¨ H2((X/K)crys-et, Æ).

By its very construction the site (X/K)crys-et maps to (both the

usual crystalline site (X/K)crys, and to) the etale site Xet. The Cech-

Alexander calculation (cf. [Gro-CDR, 5.5], [Bert, V, 1.2]) of the
cohomology shows that for any eeeettttaaaalllleeee (resp. and commutative) K-
groupscheme Æ , the canonical maps
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Hi((X/K)crys-et, Æ) ¨ Hi(Xet, Æ)

are isomorphisms for i=0,1 (resp. for all i). On the other hand for the
smooth groups G and H, the canonical maps

H1((X/K)crys-et, G (resp. H)) ¨ H1(Xet, G (resp. H))

correspond to the map "forget the connection". Thus we find once again
that the obstruction and indeterminacy in our lifting problem lie in

H2(Xet, Æ) and H1(Xet, Æ) respectively, and are the same as the

obstruction and the indeterminacy in the lifting problem for the
underlying "naked" torsors without connection.

2222....3333 RRRReeeellllaaaattttiiiioooonnnn ttttoooo TTTTrrrraaaannnnsssscccceeeennnnddddeeeennnncccceeee
We now turn to a brief discussion of the relation between the

differential galois group of a D.E. and the transcendence properties of its
power series solutions. This material is "well-known", indeed it was a
large part of the basic motivation for the classical differential galois
theory, but it does not seem to be written down anywhere in the
Tannakian context (however cf. [De-CT, 9] for a Tannakian proof of the
general existence of Picard-Vessiot extensions).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....3333....1111 Let V be a D.E. on X/K, G := Ggal(V, x) its differential

galois group, v Ÿ Vx, and öv Ÿ V‚(ØX,x)
¢ be the corresponding

horizontal section. Suppose that K is algebraically closed. The the
transcendence degree over K(X) of the coefficients (with repect to any
K(X)-basis of V‚ØX

K(X)) of öv is the K-dimension of (the closure in Vx

of) the G-orbit Gv.

pppprrrrooooooooffff Inside V£, the annihilator of öv is a horizontal submodule W, so it

corresponds to a G-stable subspace Wx of (Vx)
£ which lies in the

annihilator of v. Being G-stable, Wx must annihilate the entire G-orbit

of v, so Wx is contained in the annihilator Sx of Gv; this Sx is a G-stable

subspace of (Vx)
£, so it corresponds to a sub-D.E. S of V£. Since S is

horizontal, and Sx annihilates v, S annihilates öv. Thus S fi W, and as

Wx fi Sx we have S = W. Therefore the K-dimension of the space Sx of

K-linear forms on Vx which annihilate Gv is the same as the ØX-rank

of W, i.e., the same as the K(X)-dimension of the space W‚ØX
K(X) of

K(X)-linear forms on V‚ØX
K(X) which annihilate öv.

Applying this equality of dimensions to the situation
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·j≤nSymmj(v) Ÿ ·j≤nSymmj(V)x, for all n, we obtain equality of the

corresponding Hilbert polynomials, whence the asserted equality of
dimensions. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....3333....1111....1111 Suppose K algebraically closed. The transcendence

degree over K(X) of the (rank(V))2 matrix coefficients of any
fundamental solution matrix at x is the dimension of Ggal.

pppprrrrooooooooffff Simply apply the above result to the internal hom D.E.
W := Hom(Vx‚KØX, V), whose fibre Wx is End(Vx) with G acting by

right translation. Fundamental solution matrices at x are precisely

those horizontal öw's in W‚(ØX,x)
¢ whose value w at x lies in GL(Vx).

Since G acts freely on GL(Vx), the orbit dimension is dimG. QED

RRRReeeemmmmaaaarrrrkkkk 2222....3333....2222 Here is a slightly more precise version of the above
numerical result. Consider the right G-torsor P on X corresponding to

the homomorphism π1
diff(X, x) ¨ G which "classifies" the D.E. V. An a

priori description of it is this. Consider the subcategory <V> of D.E.(X/K).
On it we have two obvious ØX-valued fiber functors, namely

∑x : W ÿ Wx‚KØX,

∑id : W ÿ W as ØX-module.

It is essentially tautological that P is the right G-torsor

Isom‚,<V>(∑x, ∑id). The horizontal sections of P over (ØX,x)
¢ are

precisely the set (actually a right G(K) torsor) S of those fundamental
solution matrices öw which have the following property: for every
"construction of linear algebra" Constr(V), and every sub-D.E. W of
Constr(V), the induced horizontal section Constr(w) of
Isom(Constr(V)x‚KØX, Constr(V)) maps Wx‚KØX to W. We claim that

if G(K) is Zariski dense in G (e.g., if K is algebraically closed), then this
set S is Zariski dense in P. Indeed, this is more general nonsense:

Suppose that G(K) is Zariski dense in G. Then for any right G-torsor
P on X with right G-equivariant integrable connection, the set (actually

a right G(K) torsor) S of its horizontal sections over (ØX,x)
¢ is Zariski

dense in P. [proof: the annihilator ideal I of S in ! is horizontal, the
union of the D.E.'s I€!n, so determined by its fibre at x. But at x it

annihilates all the K-rational points G(K) of G § Px, and as these are

Zariski dense I = 0.]
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CCCCoooorrrroooollllllllaaaarrrryyyy 2222....3333....2222....1111 Suppose K is algebraically closed. The algebraic group
G acts transitively on Vx - {0} if and only if for every nonzero v Ÿ Vx,

the corresponding horizontal section öv has its n=rank(V) coefficients
algebraically independent over K(X).
pppprrrrooooooooffff If G acts transitively, then for each nonzero v, the orbit Gv is n-
dimensional. Conversely, let v±0. If Gv is n-dimensional, then Gv must
be all of Vx - {0}, simply because Gv is constructible. QED

2222....4444 BBBBeeeehhhhaaaavvvviiiioooorrrr ooooffff GGGGggggaaaallll uuuunnnnddddeeeerrrr SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn

Let K be a field of characteristic zero, t an indeterminate, R the
ring K[[t]], X/R a smooth separated R-scheme of finite type with
geometrically connected fibres, and xŸX(R). Suppose we are given a
locally free ØX-module V of finite rank n together with an integrable

connection æ : V ¨ V‚ØX
¿1X/R relative to the base R. Let us denote

by ˙: R ¨ K((t)) the inclusion (generic point of Spec(R)), and by
s: R ¨ K the specialization map tÿ0 (special point of Spec(R)). Via these
extensions of scalars, we obtain D.E.'s V(˙) on X˙/K((t)) and V(s) on

Xs/K, and rational points x˙ Ÿ X˙(K((t))) and xs Ÿ Xs(K). Thus we can

speak of the differential galois groups Ggal(V(˙), x˙) fi GL(V(˙)x˙
) and

Ggal(V(s), xs) fi GL(V(s)xs
)

SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 2222....4444....1111 (Ofer Gabber) Let G/R be the closed R-
flat subgroupscheme of GL(Vx) § GL(n)/R obtained as the schematic

closure of Ggal(V(˙), x˙), and let Gs denote its special fibre. Then there is

natural inclusion Ggal(V(s), xs) fi Gs (inside GL(V(s)xs
) § GL(n)/K).

pppprrrrooooooooffff Denote by A the coordinate ring of GL(Vx), by Ad fi A the R-

submodule of those functions which are the restrictions of polynomials

of degree ≤ d in the n2 matrix coefficients Xi,j and the function

1/det(Xi,j), and by I˙ fi A˙ the ideal defining Ggal(V(˙), x˙) in GL(V(˙)).

Then the schematic closure G of Ggal(V(˙), x˙) in GL(Vx) is defined by

the ideal I˙€A. Since A is noetherian, this ideal is generated by I˙€Ad
for sufficiently large d.

For each d, there is a natural "construction of linear algebra"
!d := Constrd(V) whose pullback (!d )x by the section x is Ad. Since the

intersection I˙€(Ad)˙ is tautologically Ggal(V(˙), x˙)-stable, it makes
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sense to speak of the horizontal submodule Md of !d(˙) whose x˙-fibre

is I˙€(Ad)˙. Let ˜d denote the intersection Md€!d inside !d(˙). Then

˜d is visibly horizontal, R-flat, and ØX-coherent. Hence it is ØX-locally

free, as results from
LLLLeeeemmmmmmmmaaaa 2222....4444....2222 Let X/R as above. Let (˜, æ) be an ØX-coherent module

˜ together with an integrable connection æ: ˜ ¨ ˜‚ØX
¿1X/R

relative to the base R. Then
(1) ˜ is ØX-locally free if (and only if) it is R-flat.

(2) If there exists a section xŸX(R), then ˜ is ØX-locally free if (and

only if) it ˜x := x*˜ is R-flat.

pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa The "only if" is trivial, since X/R is flat. Because ˜ is
ØX-coherent and is endowed with an integrable connection, it is

automatically locally free on X˙. Suppose that ˜ is R-flat. To prove (1),

it suffices to show that ˜ is locally free over the local ring ØX,p of X at

every closed point p of the special fibre. Since finite extensions of K are
harmless, we may assume that p is K-rational. By faithful flatness of
the completion, it suffices to treat the formal case, where X is the spec
of R[[x1, ..., xn]]. But for any noetherian $-algebra R, the functor

"horizontal sections", ˜ ÿ ˜æ defines an equivalence of categories
{coherent R[[x1, ..., xn]]-modules with integrable connection over R} §

§ {coherent R-modules},
whose inverse functor is

M ÿ M[[x1, ..., xn]] with the trivial connection 1‚d.

From this explicit description of the inverse, it is obvious that for R
local we have

˜ is R-flat À ˜æ is R-flat À ˜æ is R-free À˜ is R[[x1, ..., xn]]-free.

Supose that there exists a section xŸX(R), and denote by p the
point xs. Working at p as above, we see from the explicit description

that ˜æ is R-isomorphic to x*˜. So if x*˜ is R-flat, then ˜ is R-flat
in a neighborhood of p in X. But the locus of non R-flatness of ˜ is the
support of Ker( Left(t): ˜ ¨ ˜); but this is a coherent ØXs

-module

with integrable connection, i.e., a D.E. on Xs/K, so it is ØXs
-locally free;

as it vanishes near p, it must be zero. QED
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By the definition of ˜d fi !d, the quotient !d/˜d is R-flat.

Therefore it too is ØX-locally free; in other words, ˜d is llllooooccccaaaallllllllyyyy aaaa

ddddiiiirrrreeeecccctttt ffffaaaaccccttttoooorrrr of !d. Pulling back by the section x, we find that (˜d)x
is a direct factor of (!d)x. = Ad. As the generic fibre of (˜d)x is

I˙€(Ad)˙, we conclude that (˜d)x is I˙€Ad
Now consider the special fibre Gs of G. It is defined by the ideal

(I˙€A)s of As. Since I˙€A is the union of the I˙€Ad, and each I˙€Ad is

a direct factor of Ad, we see that (I˙€A)s is the union of the (I˙€Ad)s.

But (I˙€Ad)s is the xs-fibre of (˜d)(s). Since ˜d is a locally direct

factor of !d, (˜d)(s) is a sub-D.E. of (!d)(s), and therefore its xs-fibre

(I˙€Ad)s is a Ggal(V(s), xs)-stable subspace of (!d)xs
= (Ad)s. Therefore

the entire ideal (I˙€A)s of As is Ggal(V(s), xs)-stable. As this ideal kills

the identity element in GL(n), it kills all of Ggal(V(s), xs). This means

precisely that Ggal(V(s), xs) fi Gs. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....4444....3333....1111 Hypotheses and notations as in the specialization
theorem 2.4.1 above, we have the inequality of dimensions

dimK(Ggal(V(s), xs)) ≤ dimK((t))(Ggal(V(˙), x˙)).

By successive specialization, we find
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....4444....3333....2222 Let K be a field of characteristic zero, R a smooth
geometrically connected affine K-algebra or a power series ring in
finitely many variables over K, X/R a smooth separated R-scheme of
finite type with geometrically connected fibres, and xŸX(R). Suppose
given a locally free ØX-module V of finite rank n with an integrable

connection æ : V ¨ V‚ØX
¿1X/R relative to R. Let ˙ be the generic

point of Spec(R), and s any closed point of Spec(R). Then we have the
inequality of dimensions

dimK(s)(Ggal(V(s), xs)) ≤ dimK(˙)(Ggal(V(˙), x˙)).

RRRReeeemmmmaaaarrrrkkkk 2222....4444....4444 Although the differential galois group Ggal "decreases

under specialization", it is not true that Ggal is algebraically

constructible in a family. Consider for example over the ground ring

R:=^[t] the scheme X:=(´m)R = Spec(R[x, x-1]), on X the rank one ØX-

module ØX with the connection (relative to R) given by æ(D)(f) = D(f) +
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tf, where D is xd/dx. For any irrational value of t, Ggal is ´m, while if t

is a rational number in lowest terms a/b, then Ggal is μμμμb.

2222....5555 SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn ooooffff MMMMoooorrrrpppphhhhiiiissssmmmmssss
Let K be a field of characteristic zero, R a discrete valuation ring

with residue field K, uniformizing parameter π, and fraction field L.
Denote by ˙: R ¨ L the inclusion (generic point of Spec(R)), and by
s: R ¨ R/πR = K the specialization map (special point of Spec(R)).Let
X/R be a smooth separated R-scheme of finite type with geometrically
connected fibres. Given a locally free ØX-module V of finite rank n

together with an integrable connection æ : V ¨ V‚ØX
¿1X/R relative

to the base R, we obtain D.E.'s V(˙) on X˙/L and V(s) on Xs/K by

restriction to the two fibres of X/R.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....5555....1111 On X/R as above, let V and W be two locally free
ØX-modules of finite rank together with integrable connections relative

to the base R. If HomD.E.(X˙/L)
(V(˙), W(˙)) is nonzero, then

HomD.E.(Xs/K)
(V(s), W(s)) is nonzero.

pppprrrrooooooooffff Suppose that ƒ: V(˙) ¨ W(˙) is a nonzero horizontal morphism.
Since V and W are locally free of finite rank, Hom

ØX
(V, W) is a torsion

free R-module and Hom
ØX

(V, W)[1/π] ¶ Hom
ØX˙

(V(˙), W(˙)). So

multiplying ƒ by a suitable power of π, we may suppose that ƒ(V) fi W
and ƒ(V) îfi πW. This "new" ƒ is still nonzero and horizontal (π is a
"constant") on X˙/L. Therefore ƒ is horizontal as a map V ¨W on X/R

(because the obstruction to its horizontality lies in the torsion free R-

module HomØX
(V, W‚ØX

¿1X/R)) . Its special fibre ƒs is therefore a

horizontal map V(s) ¨W(s) on Xs/K, which by construction is nonzero.

QED
One variant of this gives a sort of "Brauer theory":

VVVVaaaarrrriiiiaaaannnntttt 2222....5555....2222 (O. Gabber) On X/R as above, let V and W be two locally
free ØX-modules of finite rank together with integrable connections

relative to the base R. Denote by V(s)ss and by W(s)ss the
semisimplifications of V(s) and of W(s) respectively in the category
D.E.(Xs/K). If there exists an isomorphism V(˙) § W(˙) as D.E.'s on X˙/L,

then there exists an isomorphism V(s)ss § W(s)ss as D.E.'s on Xs/K.
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pppprrrrooooooooffff Let ƒ: V(˙) ë¨ W(˙) and ¥: W(˙) ë¨ V(˙) be inverse isomorphisms.
View V (resp. W) as an ØX-submodule of V(˙) (resp. W(˙)). Then for n >>

0, πnƒ(V) fi W, and πn¥(W) fi V. Now identify V(˙) to W(˙) by means
of ƒ and ¥; V and W then appear as horizontal ØX-submodules of their

common generic fibre V(˙) = W(˙) with

(πn)V fi W, (πn)W fi V.
For each pair of integers (a,b), let us denote

M(a,b) := πaV + πbW, an ØX-submodule of V(˙) = W(˙).

This M(a,b) is ØX-coherent (a quotient of V·W), horizontal, and R-flat

(being a submodule of V(˙) = W(˙)), so by 2.4.2 M(a,b) is ØX-locally free.

Its generic fibre M(a,b)(˙) is V(˙) = W(˙). Clearly we have
V = M(0,n), W = M(n,0).

So it suffices to show that the isomorphism class of M(a,b)(s)ss is
independent of (a,b). For this it suffices to compare (a,b) to both (a+1,b)
and to (a,b+1). By symmetry, it suffices to compare (a,b) to, say,
(a+1,b). We have

πM(a+1, b) fi πM(a,b) = M(a+1, b+1) fi M(a+1,b) fi M(a,b) .
Thus we are reduced to treating universally the case in which

πW fi πV fi W fi V.
In this case we have short exact sequences of DE.'s on Xs/K

0 ¨ W/πV ¨ V/πV ¨ V/W ¨0,
0 ¨πV/πW ¨W/πW ¨W/πV ¨ 0,

a/ π
V/W

which show that V(s) := V/πV has the same semisimplification as

W(s) := W/πW, namely (W/πV)ss · (V/W)ss. QED

In the case of several parameters, we have only the weaker
TTTThhhheeeeoooorrrreeeemmmm 2222....5555....3333 ((((SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn ooooffff ((((IIIIssssoooo))))mmmmoooorrrrpppphhhhiiiissssmmmmssss)))) Let K be a field
of characteristic zero, R a smooth geometrically connected affine K-
algebra or a power series ring in finitely many variables over K, X/R a
smooth separated R-scheme of finite type with geometrically connected
fibres. Suppose given locally free ØX-modules V and W of finite rank

with integrable connections relative to R. Let ˙ be the generic point of
Spec(R), and s any closed point of Spec(R). Then
(1) If HomD.E.(X˙/K(˙))

(V(˙), W(˙)) is nonzero, then

HomD.E.(Xs/K(s))
(V(s), W(s)) is nonzero.
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(2)If there exists an isomorphism V(˙) § W(˙) as D.E.'s on X˙/K(˙), and

if at least one of V(s) or W(s) is irreducible as D.E. on Xs/K, then there

exists an isomorphism V(s) § W(s) as D.E.'s on Xs/K(s).

pppprrrrooooooooffff Assertion (1) is immediate from the Proposition above by
successive specialization. For (2), notice that if V(˙) § W(˙) then V and
W have the same rank, and hence V(s) and W(s) have the same rank.
So if either V(s) or W(s) is irreducible as D.E., any nonzero map between
them as D.E.'s is an isomorphism. QED

For the rest of this chapter we will take K = ^ unless there is
explicit mention to the contrary.

2222....6666 DDDDiiiirrrreeeecccctttt SSSSuuuummmmssss aaaannnndddd TTTTeeeennnnssssoooorrrr PPPPrrrroooodddduuuuccccttttssss

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....6666....1111 (Goursat-Kolchin-Ribet, [Kol], [Ri]) Suppose that V1,

..., Vn are n ≥ 2 D.E.'s on X/^, ∑ a ^-valued fibre functor on D.E.(X/^).

Suppose that for each i, Vi has rank ni ≥ 2, and that its differential

galois group Gi := Ggal(Vi, ∑) fi GL(ni) has Gi
0,der one of the groups

SL(ni), any ni ≥ 2,

Sp(ni), any even ni ≥ 4,

SO(ni), ni = 7 or any ni ≥ 9,

SO(3), if ni = 3 and no nj = 2,

SO(5), if ni = 5 and no nj = 4,

SO(6), if ni = 6 and no nj = 4,

G2 fi SO(7), if ni = 7,

Spin(7) fi SO(8) if ni = 8, and no nj= 7.

Suppose that for all i±j, and all rank one D.E.'s L on X, there exist no

isomorphism from Vi to either L‚Vj or to L‚(Vj
£). Then the

differential galois group G of ·Vi has G
0,der = °Gi

0,der, and

(consequently) that of ‚Vi has G
0,der = the image of °Gi

0,der in

‚stdni
.

pppprrrrooooooooffff This is an immediate application of 1.8.2, taking G := Ggal(·Vi, ∑)

and ®i := the action of G on ∑(Vi), since we have eliminated SO(8), the
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nonsimple SO(4), the nonsemisimple SO(2), and the repetitions of
isomorphism classes of simple Lie algebras A1=B1, B2=C2, A3=D3. QED

2222....7777 AAAA BBBBaaaassssiiiicccc TTTTrrrriiiicccchhhhoooottttoooommmmyyyy

We say that V is iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee on X if it is irreducible as an object
of D.E.(X/^). This is equivalent to saying that ∑(V) is an irreducible
representation of Ggal(V, ∑), or equivalently that it is an irreducible

representation of π1
diff(X/^,∑).

In analogy with the case of …-adic sheaves (cf [Ka-MG, Part I]), we
say that V is LLLLiiiieeee----iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee if ∑(V) is an irreducible representation

of the identity component (Ggal(V, ∑))0 of Ggal(V, ∑). In view of [Ka-

DGG,1.2.5.4 and 1.4.4], V is Lie-irreducible if and only if for every

connected finite etale covering π:Y¨X, the inverse image π*(V) on Y is
irreducible on Y. Clearly V is Lie-irreducible if and only if its restriction
to some, or to every, finite etale connected covering is Lie-irreducible.

RRRRiiiiggggiiiiddddiiiittttyyyy LLLLeeeemmmmmmmmaaaa 2222....7777....1111 Suppose that V and W are Lie-irreducible D.E.'s
on X/^, and that π: Y ¨ X is a finite etale connected galois covering on

which π*V § π*W. Then there exists a rank one D.E. L on X with π*L
trivial and an isomorphism W § V‚L on X.

pppprrrrooooooooffff Denote by G the π1
diff of X, and by H that of Y. Then H is a

normal subgroup of G, and V and W are two representations of G whose
restrictions to H are both irreducible and isomorphic to each other. But
whenever H is a normal subgroup of G, two representations V and W of
G whose restrictions to H are both isomorphic and irreducible differ by

the character HomH(V, W) of G/H, i.e., V‚HomH(V, W) § W. QED

We say that V is iiiinnnndddduuuucccceeeedddd if there exists a connected finite etale
covering π:Y¨X of degree d≥2 and an object W in D.E.(Y/^) such that V
§ π*(W); equivalently(cf [Ka-DGG, 1.4.6, 1.4.7], V is induced if and only

if the representation ∑(V) of Ggal(V, ∑) is induced from a

representation of an open subgroup H of Ggal(V, ∑) of finite index d≥2.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....7777....2222 (compare Prop. 1 of [Ka-MG]) Suppose that the

topological fundamental group of the complex manifold Xan is a free
group (e.g.,X an open curve). Then for any irreducible object V in
D.E.(X/^), either V is induced, or V is Lie-irreducible, or there exists a
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divisor d≥2 of the rank n of V,and a factorization of V as a tensor
product V = W‚K where W is Lie-irreducible of rank n/d, and where K
is an irreducible of rank d which becomes trivial on a finite etale
covering of X. In this last case, the pair (W, K) is unique up to replacing

it by (W‚Ò, K‚Ò
£
) with Ò of rank-one and of finite order (i.e., Ò

corresponds to a character of finite order of π1
diff(X/^,∑)).

pppprrrrooooooooffff Let us denote by G the differential galois group Ggal(V, ∑), and

by G0 its identity component. Because G0 is a normal subgroup of G, we
have the customary dichotomy: an irreducible representation M of G is

either isotypical when restricted to G0, or M is induced from a

representation of a proper subgroup H of G which contains G0. Apply

this to M=∑(V): if either M is irreducible on G0, or if M is induced,
there is nothing further to prove.

The troublesome case is that in which the restriction of M to G0 is
isotypical but not irreducible, say M § d copies of an irreducible

representation M0 of G0 with d ≥ 2. In terms of differential equations,

this means there exists a connected finite etale galois covering of X, say
π:Y¨X with galois group H,such that on Y

π*(V) § d≥2 copies of a Lie-irreducible W on Y.
By Jordan-Holder theory, the isomorphism class of W must be H-
invariant (in the sense that for every h in H, there exists an

isomorphism of h*W with W). We now apply the following
LLLLeeeemmmmmmmmaaaa 2222....7777....3333 Suppose that the topological fundamental group of the

complex manifold Xan is a free group (e.g.,X an open curve). Let π:Y¨X
be a connected finite etale galois covering of X with galois group H, and
W an irreducible object of D.E.(Y/^) whose isomorphism class is H-
invariant. Then there exists a connected finite etale covering p : Z¨Y

p π

Z ¨ Y ¨ X

such that Z is finite etale galois over X and such that p*(W) on Z
descends to an object WWWW on X. Moreover, WWWW is Lie irreducible on X if W
is Lie-irreducible on Y.
pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa For each h in H, choose an isomorphism

A(h):W ¶ h*W. For each g in H, the pullback g*(A(h)) is an

isomorphism from g*W to g*h*W. If A(hg) were equal to g*(A(h))«A(g)
for all pairs (g,h) of elements of H, we could interpret our choice of
A(h)'s as descent data for W relative to the covering π, and our W
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would descend to X. At worst there exists a ^≠ factor a(h,g) with

a(h,g) =(A(hg))-1 g*(A(h))«A(g),
simply because the right hand side is an automorphism of the

irreducible object W. This a(h,g) is a two-cocycle on H with values in ^≠

(with trivial H-action). If its cohomology class were trivial, say a(h,g) =

b(hg)/b(h)b(g) for some ^≠-valued function b on H, then h ÿ b(h)A(h)
is descent data, and W descends to X.

Because H2(H, ^≠) is killed by N :=Card(H), the Kummer sequence

shows that every element of H2(H, ^≠) is in the image of H2(H, μμμμN(^)).

So we may correct the choice of the A(h)'s by scalar factors so that
a(h,g) lies in μμμμN(^).

Because the topological fundamental group π1 of Xan is free, any

subgroup F of π1 is also free. So for any finite abelian coefficient group

A (e.g., μμμμN(^)) with trivial action of π1, and any normal subgroup F of

finite index in π1, the Hochschild-Serre spectral sequence

E2a,b = Ha(π1/F, H
b(F, A)) à Ha+b(π1, A)

has E2a,b = 0 for b±0,1. Any element of H1(F, A) dies when restricted to

a smaller normal F of finite index, so the direct limit over all normal

F's of finite index of these spectral sequences has E2a,b=0 for b±0. Thus

H*(π1, A) = lim
finite quotients H of π1

H*(H, A).

For any i≥2, we have Hi(π1, A) = 0, so in particular the direct limit

lim
finite quotients H of π1

H2(H, A) must vanish.

Therefore any given element in H2(H, μμμμN(^)) dies in H2(ëH, μμμμN(^))

for some larger finite quotient ëH of π1. The covering Z of X defined by

such an ëH sits in a diagram
p π

Z ¨ Y ¨ X.
When we pull back W from Y to Z , and denote by ëhÿh the canonical
projection of ëH onto H,the dying means precisely that the choice of
isomorphisms on Z

A(ëh) := p*(A(h)) : p*W ¨ ëh*p*W = p*h*W

can be corrected by invertible scalars to give descent data on p*W for
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the covering Z ¨ X. Finally, if W is Lie-irreducible on Y, then p*W is

Lie-irreducible on Z, so any descent WWWW of p*W to X is itself Lie-
irreducible. QED

We now return to the proof of 2.7.2. Applying the lemma to W on
Y,we see that at the expense of enlarging the covering group H, there
exists a Lie-irreducible WWWW on X and a connected finite etale galois
covering π:Y¨X with galois group H such that on Y

π*V§ d copies of π*WWWW.
Denote by HomY(WWWW, V) the subobject of the internal hom object

Hom(WWWW, V) on X obtained by descending through π the ØY-span of the

global horizontal sections of the internal hom Hom(π*WWWW, π*V)

( = π*Hom(WWWW, V)) on Y. [Because WWWW and V are each irreducible on X,
their internal hom Hom(WWWW, V) is completely reducible on X (being a
representation of the reductive group Ggal(WWWW·V, ∑)), and so

π*Hom(WWWW, V) is completely reducible on Y. We are descending its
trivial isotypical component.] We have a canonical morphism of D.E.'s
on X

WWWW‚HomY(WWWW, V) ¨ V, (wwww, ƒ) ÿ ƒ(wwww)

which becomes an isomorphism on Y, so must already be an
isomorphism on X.

This is the desired factorization of V as W‚K, with W Lie-
irreducible of rank n/d and K of rank d becoming trivial on a finite
etale covering of X (K must be irreducible because W‚K is). To see its
essential uniqueness, suppose that W1‚K1 were another. Pulling back

to a sufficiently small connected finite etale galois covering Z of X, V
becomes isomorphic to d copies of the Lie-irreducible W, and to d1
copies of the Lie-irreducible W1. By Jordan-Holder theory, we must

have d = d1, and the two Lie-irreducible representations W and W1 of

π1
diff

(X/^,∑) become isomorphic irreducibles on the open normal

subgroup π1
diff(Z/^,∑). Therefore W and W1 are projectively

equivalent as representations of π1
diff(X/^,∑), and hence W1 § W‚Ò

for some character of π1
diff(X/^,∑)) which is trivial on π1

diff(Z/^,∑).

QED
RRRReeeemmmmaaaarrrrkkkkssss 2222....7777....3333 (1) The two non-Lie-irreducible cases of the Proposition



Chapter2-D.E.'s and Î-Modules-19

are not mutually exclusive. Indeed, if W is Lie-irreducible, and if K is
an irreducible which is induced from a K

0
on a connected finite etale

π:Y¨ X such that K0 itself becomes trivial on a finite etale covering of

Y, then W‚K is also the induction π*(π
*(W)‚K0). Of course this is a

reflection of the fact that already for a finite group G with a normal
subgroup H, the "dichotomy" for irreducibles of G to be either induced or
H-isotypical is not a true dichotomy; for H = {e}, every representation is
H-isotypical.
(2) One could also give a proof of this proposition which is analogous to
the proof of Prop. 1 of [Ka-MG], by using the fact (2.2.4.1) that when the

topological π1 is a free group, any projective representation of π1
diff

can be linearized.

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....7777....4444 (compare [Ka-MG], Cor.3) Suppose that X is an open
curve, and that V is an irreducible object of D.E.(X/^). Suppose that the
rank of V is a prime p. If det(V) is of finite order, then V is either Lie-
irreducible or induced or it becomes trivial on a finite etale covering.
pppprrrrooooooooffff Indeed if V is neither induced nor Lie-irreducible, it is a tensor
product W‚K of a Lie-irreducible W of rank one and of an irreducible K
of rank p which becomes trivial on a finite etale covering. So

det(V)§Wºp‚det(K), with det(K) of finite order. So if det(V) is of finite
order, W is of finite order, whence V = W‚K is trivial on a finite etale
covering. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....7777....5555 Suppose that X is an open curve, with complete
nonsingular model äX, and that V is an irreducible object of D.E.(X/^). At
each point at infinity ‘i Ÿ äX - X, let the slopes of V, written in lowest

terms, be the rational numbers ai,j/bi,j , with multiplicities ni,jbi,j.

Suppose that gcdi,j(all ni,j) = 1. Then V is either induced or V is Lie-

irreducible.
pppprrrrooooooooffff If V is neither induced nor Lie-irreducible, then for some integer
d≥2 we have a factorization of V as W‚K, where K is a rank d object
which becomes trivial on a finite etale covering of X. Such a K is
entirely of slope zero at any ‘i ( cf [Ka-DGG, 2.6.2]). Therefore the slopes

with multiplicity of V at ‘i are the slopes with multiplicity of W at ‘i,

repeated d times. In particular, d divides every ni,j. QED

RRRReeeemmmmaaaarrrrkkkk 2222....7777....6666 This slope criterion for "induced or Lie-irreducible" is
very easy to verify when it applies. The problem comes after, in
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deciding which of the two cases one is in. Only on ´m, where "induced"

is necessarily "Kummer induced", does one know a manageable
sufficient conditions that a D.E. V not be induced (namely that there
exist no integer d≥2 such that both V | I0 and V | I‘ are induced from

the unique subgroups of index d in I0 and I‘ respectively). Ignoring

this problem for a moment, we state a quite general result.

2222....8888 TTTThhhheeee MMMMaaaaiiiinnnn DDDD....EEEE.... TTTThhhheeeeoooorrrreeeemmmm

MMMMaaaaiiiinnnn DDDD....EEEE.... TTTThhhheeeeoooorrrreeeemmmm 2222....8888....1111 Suppose that X is an open curve, with
complete nonsingular model äX, and that V is a Lie-irreducible object of
D.E.(X/^) of rank n. Suppose that at some point at infinity ‘ Ÿ äX - X,
the highest slope of V, written a/b in lowest terms, is > 0 and occurs
with multiplicity b. Let G fi GL(∑(V)) denote the differential galois

group of V, G0 its identity component, and G0,der the commutator

subgroup of G0. Then G0 is equal either to G0,der or to ´mG0,der, and

the list of possible G0,der is given by:

(1) If b is odd, G0,der is SL(∑(V)); if b=1, then G is GL(∑(V)).

(2) If b is even, then either G0,der is SL(∑(v)) or SO(∑(v)) or (if n is

even) SP(∑(v)), or b=6, n=7,8 or 9, and G0,der is one of
n=7: the image of G2 in its 7-dim'l irreducible representation

n=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

n=9: the image of SL(3)≠SL(3) in stdºstd.

pppprrrrooooooooffff Since V is irreducible, G0 is reductive; its connected center

Z0 = (Z(G0))0 is a torus, its derived group G0,der is semisimple, and

G0 = Z0G0,der. Because V is Lie-irreducible, G0 acts irreducibly on ∑(V),

and therefore its center Z := Z(G0) acts as scalars. Since ∑(V) is a

faithful representation of G0, it follows that Z and a fortiori Z0 are

contained in the scalars. Since Z0 is a torus, either Z0 is trivial or it is

´m. Because G0 = Z0G0,der acts irreducibly on ∑(V), already G0,der

acts irreducibly on it. Therefore Ì:=Lie(G0,der) is a semisimple Lie-
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subalgebra of End(∑(V)) which acts irreducibly on ∑(V). By its very
construction, Ì is normalized by aaaannnnyyyy subgroup K of G.

We now use the slope hypothesis that at some point at infinity ‘
the highest slope is a/b in lowest terms and its multiplicity is b to
construct a diagonal subgroup K of G, to which we will then apply
Gabber's "torus trick" Theorem 0.

As a representation of I‘, V is the direct sum

V = Va/b · V< a/b = (slope a/b, rank b) · (all slopes < a/b).

In order to describe the representation Va/b of I‘ explicitly, fix a

uniformizing parameter 1/x at ‘. This identifies the ‘-adic completion
of the function field of X with the Laurent series field K:=^((1/x)). Fix a
b'th root t of x, and denote by Kb the Laurent series field ^((1/t)). In

this setting, I‘ is the local differential galois group I(K/^), and I(Kb/^)

is its unique closed subgroup of index b (cf [Ka-DGG, 2.6.3]). The
representation Va/b of I(K/^) is irreducible [Ka-DGG, 2.5.9.2], so it is the

direct image from Kb of a rank-one D.E. of the form (Kb, td/dt + Pa(t)),

where Pa(t) is a polynomial in t of degree a (cf [Ka-DGG, proof of 2.6.6]).

Therefore after pullback to Kb we have

Va/b‚Kb = ·ΩŸμμμμb
(Kb, td/dt + Pa(Ωt))

V< a/b‚Kb = all slopes < a.

At the expense of scaling the parameter 1/x, we may assume that

Pa(t) is monic, say ta + f<a(t), with f<a(t) a polynomial of degree strictly

less than a. As D.E. on Kb, we have

(Kb, td/dt + Pa(Ωt)) = (Kb, td/dt + (Ωt)
a)‚(Kb, td/dt + f<a(Ωt)).

We will now analyse V as representation of the upper numbering

subgroup (I(Kb/^))
(a) of I(Kb/^). Because (Kb, td/dt + f<a(Ωt)) has slope

< a, it is trivial as a character of (I(Kb/^))
(a). Therefore V as

representation of the upper numbering subgroup (I(Kb/^))
(a) of I(Kb/^)

is given by

V | (I(Kb/^))
(a) §·ΩŸμμμμb

(Kb, td/dt + Ω
ata)·(trivial of rank n-b).

Because gcd(a, b) = 1, as Ω runs over μμμμb(^) the Ω
a's are just a

permutaion of the Ω's, so we may rewrite this as

V | (I(Kb/^))
(a) §·ΩŸμμμμb

(Kb, td/dt + Ωt
a) · (trivial of rank n-b).

For each ≈ in ^ we denote by



Chapter2-D.E.'s and Î-Modules-22

ç≈ := the character of (I(Kb/^))
(a) given by (Kb,td/dt + ≈t

a).

The key observation is that for ≈, √ in ^ we have
ç≈ç√ = ç≈+√,

ç≈ is trivial on (I(Kb/^))
(a) iff ≈=0.

Let

K := the image of (I(Kb/^))
(a) in G.

Then K is a diagonal subgroup of G, and the diagonal entries of K are the
n characters

the b characters çΩ as Ω runs over μμμμ
b
(^),

n-b repetitions of the trivial character ç0.

We now apply the "torus trick" 1.0 to K. If b=n, we must find all
relations of the form

çå/ç∫ = ç©/ç∂ on K, where å, ∫, ©, ∂ lie in μμμμ
b
(^),

or equivalently all relations of the form

RRRReeeellll((((bbbb ==== nnnn))))((((^̂̂̂)))) å - ∫ = © - ∂, where å, ∫, ©, ∂ lie in μμμμ
b
(^).

If b < n, then we must find all relations of the form

RRRReeeellll((((bbbb <<<< nnnn))))((((^̂̂̂)))) å - ∫ = © - ∂, where å, ∫, ©, ∂ lie in μμμμ
b
(^) ⁄{0}.

LLLLeeeemmmmmmmmaaaa 2222....8888....2222 If å, ∫, ©, ∂ are complex numbers of absolute value one
which satisfy å - ∫ = © - ∂, then we are in one of the following three
cases:

(1) å= ∫ and ©= ∂
(2) å= © and ∫= ∂
(3) å=-∂ and ∫=-©.

pppprrrrooooooooffff Here is a geometric argument. Suppose that we are not in case
(1). Then the line segment å¨∫ is an oriented chord of the unit circle,
and ©¨∂ is a parallel oriented chord of the same circle having the same
length. So either the two chords coincide (this is case (2)) or they are
symmetric with respect to the unique diameter to which they are both
parallel (this is case (3)).QED
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....2222....1111 If å, ∫, ©, ∂ in μμμμb(^) satisfy å - ∫ = © - ∂, then

either
(1) å= ∫ and ©= ∂

or (2) å= © and ∫= ∂
or b is even and (3) å=-∂ and ∫=-©.
LLLLeeeemmmmmmmmaaaa 2222....8888....3333 If å, ∫, © are complex numbers of absolute value one
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which satisfy å-∫=©, then å/∫ is a primitive sixth root of unity, and

©/∫ is (å/∫)2.
pppprrrrooooooooffff Applying complex conjugation, äå-ä∫=ä©. Since å, ∫, © are on the

unit circle, we can rewrite this as å-1 - ∫-1 = ©-1. Then

(å-∫)(å-1 - ∫-1)=©©-1=1,

which simplifies to (å/∫) + (å/∫)-1 = 1, i.e. to (å/∫)2 - (å/∫) + 1 = 0.
Therefore å/∫ is a primitive sixth root of unity, and ©/∫ = (å/∫) -1 is

equal to (å/∫)2. QED
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....3333....1111 If å, ∫, © in μμμμb(^) satisfy å-∫=_©, then 6 divides b,

å/∫ is a primitive sixth root of unity, and _©/∫ is (å/∫)2.
Using these two corollaries, we can compute eeeexxxxpppplllliiiicccciiiittttllllyyyy the torus

Ê which Theorem 1.0 assures us lies in Ì.
If b=n, then the torus Ê is obviously contained in the set Íb of all

diagonal matrices (XΩ) of trace zero whose entries are indexed by the

b'th roots of unity in ^. The relations defining Ê in Íb are

Xå - X∫ = X© - X∂ whenever å, ∫, ©, ∂ Ÿ μμμμb(^) and å - ∫ = © - ∂.

By 2.8.2.1, these relations are of three types:
(1) Xå - Xå = X© - X© for all å,©

or (2) Xå - X∫ = Xå - X∫ for all a,∫

or if b is even (3) Xå - X∫ = X -∫ - X -å for all å,∫.

Of these, only type (3) relations impose any conditions, and these are
if b is even, Xå + X -å = X∫ + X -∫ for all å,∫.

Since the trace is zero on Íb, the common value of Xå + X -å can only

be zero, and so type (3) relations are equivlent to
if b is even, Xå + X -å = 0 for all å.

CCCCaaaasssseeee((((bbbb====nnnn,,,, bbbb oooodddddddd)))) Ê is all of Íb; thus Ê contains Diag(n-1, -1,...,-1),

whence Ì is ÍÒ(∑(V)) by Theorem 1.1.
CCCCaaaasssseeee ((((bbbb====nnnn,,,, bbbb eeeevvvveeeennnn)))) Ê consists of those elements of Íb whose entries

satisfy XΩ + X -Ω = 0 for every Ω in μμμμb(^). In particular, Ê contains

Diag(1,-1,0,...,0), and so Ì is ÍÒ(∑(V)) or ÍØ(∑(V)) or Í∏(∑(V)) by
Theorem 1.2.

If b < n, Ê is obviously contained in the set Íb,n of all diagonal

matrices of trace zero of the form
(XΩ's indexed by Ω in μμμμ

b
(^),X0 repeated n-b times).

[Use the observation that in applying the torus trick, whenever two of
the characters çi and çj of K are equal, then the corresponding entries
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Xi and Xj are equal, simply because çi/çj = çi/çi on K; apply this to

the n-b trivial characters of K to see that "their" entry X0 is repeated

n-b times.]
The relations defining Ê in Íb,n are

Xå - X∫ = X© - X∂
whenever å, ∫, ©, ∂ in μμμμb(^)⁄{0} and å - ∫ = © -∂.

To analyse these relations, it is best to distinguish cases according to
how many of å, ∫, ©, ∂ are nonzero. When all four are nonzero, we are
in the (b=n) case above; we get conditions on Ê only for b even, in
which case the relations imposed are
(if b even) Xå + X -å = X∫ + X -∫ for all å,∫ in μμμμb(^).

If exactly one of å, ∫, ©, ∂ is zero, say © or ∂, we get relations
Xå - X∫ = X© - X0 if å,∫,© in μμμμb(^) have å-∫=©,

Xå - X∫ = X0 - X∂ if å,∫,∂ in μμμμb(^) have å-∫=-∂.

By 2.8.3.1, such relations exist only if 6|b, in which case å/∫ is a

primitive sixth root of unity and ©/∫ (resp. -∂/∫) is (å/∫)2.
If exactly two of å, ∫, ©, ∂ vanish, we get either a trivial relation

Xå - Xå = X0 - X0 if å in μμμμb(^)

or, for b even, the nontrivial relation
(if b even) Xå - X0 = X0 - X -å if å in μμμμb(^)

which we rewrite as
(if b even) Xå + X -å = 2X0 if å in μμμμb(^).

Since the trace vanishes on Ín,b, we see that in fact

(if b even) Xå + X -å = 0= X0 if å in μμμμb(^).

If exactly three of å, ∫, ©, ∂ vanish, there are no relations, and if all
four vanish there is only the trivial relation X0 - X0= X0 - X0.

CCCCaaaasssseeee ((((bbbb <<<< nnnn,,,, bbbb oooodddddddd)))) Ê is all of Íb,n; Ê contains Diag(n-1,-1,...,-1), and

so Ì is ÍÒ(∑(V)) by Theorem 1.1.
CCCCaaaasssseeee ((((bbbb <<<< nnnn,,,, bbbb eeeevvvveeeennnn nnnnooootttt ddddiiiivvvviiiissssiiiibbbblllleeee bbbbyyyy 6666)))) Ê consists of those elements
of Íb,n whose entries satisfy X0 = 0, and XΩ + X -Ω = 0 for every Ω in

μμμμb(^). In particular, Ê contains Diag(1,-1,0,...,0), and so Ì is ÍÒ(∑(V))

or ÍØ(∑(V)) or (if n is even) Í∏(∑(V)) by Theorem 1.2.
CCCCaaaasssseeee((((bbbb <<<< nnnn,,,, 6666 ddddiiiivvvviiiiddddeeeessss bbbb)))) In this case, it is most convenient to choose
coset representatives å's for μμμμb(^) modulo μμμμ6(^), and a primitive sixth

root of unity Ω. Then Ê consists of those elements of Íb,n which satisfy

X0=0, and, for each coset representative å, the relations
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Xå - XåΩ + XåΩ2 = 0,

Xå + X-å=0,

XåΩ + X-åΩ = 0,

XåΩ2+X-åΩ2=0.

In this case, the set of elements of Ê with X≈=0 whenever ≈6±1 is a G2
torus. So by Theorem 1.3, either Ì is ÍÒ(∑(V)) or ÍØ(∑(V)) or (if n is
even) Í∏(∑(V)), or n is 7,8,or 9 (and so b =6, since 6|b and b < n) and Ì
is one of the exceptional cases of Theorem 1.3. This concludes the proof
of the Main D.E. Theorem 2.8.1, except for the fact that if b=1, then G is
GL(∑(V)). But in this case, the highest slope a/b > 0, which occurs with
multiplicity b=1, is the slope of det(V), so det(V) is necessarily of infinite
order. QED

2222....9999 GGGGeeeennnneeeerrrraaaalllliiiittttiiiieeeessss oooonnnn ÎÎÎÎ----mmmmoooodddduuuulllleeeessss oooonnnn ccccuuuurrrrvvvveeeessss

We now turn to the explicit examination of some D.E.'s on !1 and

on open sets of !1. Recall (cf. [Ka-DGG, 1.2.5]) that the differential galois

group of a D.E. on !1 is always connected, so any irreducible V in

D.E.(!1/^) is automatically Lie-irreducible. In general, the theory of Î-
modules provides us with reasonable sufficient conditions for the

irreducibility of D.E.'s on open sets of !1 (though not for their Lie-
irreducibility; this seems a much more difficult problem).

It will be convenient first to recall some of the basic facts about
Î-modules on open curves. Thus let X/^ be a nonempty smooth
connected affine curve with coordinate ring Ø = ØX. For simplicity of

exposition we assume that the invertible Ø-module Der^(Ø, Ø) is Ø-

free, and we pick an Ø-basis Δ of it . [For example, if X is an open set of

!1 := Spec(^[x]), then d/dx is such a basis; if X is an open set of ´m,

then xd/dx is such a basis; if X is an open set of an elliptic curve E :

y2=f3(x), then yd/dx is such a basis.]

We denote by Î = ÎX the ring Ø[Δ] of all differential operators on

X. The adjoint L* of an element L = ‡fiΔ
i of Î is defined by

L* = ‡ (-Δ)ifi. The map LÿL* is a ring isomorphism of Î to the opposite

ring Îopp, whose "square" is the identity.
Attached to an operator L in Î is the left Î-module Î/ÎL; it is

holonomic so long as L±0. Attached to any point å in X(^) is the "delta-
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module supported at å", the holonomic left Î-module ∂å :=Î/ÎIå,

where IåfiØ is the ideal of functions which vanish at å.

Recall that if ˜ is any holonomic left Î-module, then its intrinsic

dual ˜£ is the right Î-module Ext1leftÎ-mod(˜,Î), where the right

Î-module structure is via the right structure of the second argument.
If ˜ is Î/ÎL, its intrinsic dual is Î/LÎ (calculate the ext using the
resolution Right(L):Î¨Î of ˜). Formation of this intrinsic dual is an
exact equivalence of categories from the category of holonomic left Î-
modules to that of holonomic right Î-modules; it is involutive in the

sense that its inverse is ˆÿExt1rightÎ-mod(ˆ,Î).

Recall how one passes from right Î-modules back to left ones, by

using the Ø-invertible rrrriiiigggghhhhtttt Î-module ∑:=¿1X/^. In terms of the

chosen Δ, ∑ is Î/ΔÎ. For any two right Î-modules R1 and R2, the Ø-

module HomØ(R1, R2) carries a canonical structure of left Î-module

for which (Δƒ)(r1) = ƒ(r1Δ) - (ƒ(r1))Δ; applying this with R1 = ∑ and a

variable R=R2, we obtain a left Î-module Rleft:=HomØ(∑,R). If R is

Î/LÎ, then Rleft is Î/ÎL
*. Another way of describing the functor

RÿRleft is to view right Î-modules R as left Îopp-modules, and then

to use the adjoint isomorphism LÿL* to identify Î to Îopp.

If we apply the construction RÿRleft to ˜
£ we obtain a left Î-

module ˜*:= (˜£)left, called the adjoint of ˜. Formation of this

adjoint is a contravariant involution of the category of holonomic left
Î-modules, which commutes with Zariski (indeed, with etale)

localization on X. If ˜ is Î/ÎL, its adjoint ˜* is Î/ÎL*. The delta
module ∂å is its own adjoint.

For purposes of later globalization, it is important to keep in mind

that the notion of the adjoint ˜*of a holonomic left Î-module ˜ is an
intrinsic one which does not depend on the auxiliary choice of Δ,

namely it is ˜ÿHomØ(∑, Ext1Î(˜,Î)). On the other hand, the notion

of the adjoint L* of an operator L in Î does depend on the choice of Δ;

only the associated Î-module Î/ÎL* § (Î/ÎL)* is intrinsic.
Suppose that U is a nonempty open set of X, j:U¨X the inclusion.

There is a natural inverse image functor j* from Î-modules on X to

those on U, namely ˜ÿÎU‚Î˜ := j*˜, via the canonical inclusion of
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rings Î¨ÎU.There is a natural direct image functor j* from left Î-

modules on U to those on X, which is right adjoint to j*: given V on U,
j*V is the Î-module on X obtained by using the canonical inclusion of

rings Î¨ÎU to view the ÎU-module V as a Î-module. By Bernstein's

theorem ([Ber], [Bor]), if V is holonomic on U then j*V is holonomic on

X. The restriction of j*V to U is just V again. However, there is a

"better" prolongation of a holonomic V on U to a holonomic on X, the
"middle extension" j

~*
(V). It is defined as follows. On U, form the adjoint

V* of V and take its direct image j*(V
*); its adjoint (j*(V

*))* is called

j~(V). This j~(V) is also a prolongation of V (because formation of the

adjoint commutes with Zariski localization), so adjunction applied to

the resulting isomorphism j*j~(V) § V gives a canonical map

j~(V)¨j*V, whose image is defined to be j
~*
(V).

More generally, for any holonomic ˆ on X whose restriction to U

is V, from j*ˆ§V,we get by adjunction ˆ¨j*V. If ˆ1¨ˆ2 is any map

of such prolongations of V which is the identity over U, then by
functoriality of the adjunction map the commutative diagram

j*ˆ1¨j*ˆ2 gives the commutative diagram ˆ1¨ˆ2.

p t p t
V j*V.

For example, if we take for ˆ the module j*V, the adjunction map is

the identity. For the prolongation j~V of V, the adjunction map is the

canonical map j~(V)¨j*V above. Therefore if we have any prolongation

ˆ of V which sits in j~V¨ˆ¨j*V then the adjunction maps sit in

j~V¨ˆ¨j*V

canp Í t=
j*V,

and the rightmost arrow down is the identity, while the first one is the
canonical map j~(V)¨j*V. In other words, to identify the middle

extension ,i.e.,the image of j~(V)¨j*V, we have only to find an ˆ which

extends V and which is simultaneously a quotient of j~(V) and a

subobject ofj*V. Using this, we can easily prove

LLLLeeeemmmmmmmmaaaa 2222....9999....1111 (characterization of middle extensions) Given a
holonomic left Î-module ˜ on X, a nonempty open set U of X and
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j:U¨X the inclusion, then ˜ § j
~*
(j*˜) by an isomorphism which is

the identity on U if and only if ˜ satisfies
HomÎ(˜, ∂å) =0 = HomÎ(∂å, ˜) for every å in X-U,

or equivalently (by duality), if and only if ˜ satisfies

HomÎ(˜, ∂å) =0 = HomÎ(˜
*, ∂å) for every å in X-U.

or equivalently (by duality), if and only if ˜ satisfies

HomÎ(∂å, ˜) =0 = HomÎ(∂å, ˜
*
) for every å in X-U.

pppprrrrooooooooffff.We denote j*˜ by V. Notice that j*V has no nonzero Ø-torsion

outside of U, while any ∂-module consists entirely of Ø-torsion. Thus we
obviously have HomÎ(∂å,j*

(V))=0 for any å in X-U. Applying this to

V*, we see that HomÎ(∂å, j*
(V*))=0 for any å in X-U, so by duality

HomÎ(j~
(V),∂å)=0 for any å in X-U. Since j

~*
(V) is both a subobject of

j
*
(V) and a quotient of j

~
(V), we have

HomÎ(∂å, j~*
(V)) = 0 = HomÎ(j~*

(V), ∂å) for any å inX-U.

Now suppose we are given any holonomic ˆ on X whose
restriction to U is V, and which satisfies the two conditions

HomÎ(∂å, ˆ) =0 = HomÎ(∂å, ˆ
*) for every å in X-U.

We claim that ˆ is necessarilyj
~*
(V). From the given isomorphism

j*ˆ¨V we get by adjunction a map ˆ¨j*V. This map is injective

(because being an isomorphism on U its kernel can only be a successive
extension of ∂-modules supported in X-U, but in view of 0 =
HomÎ(∂å,ˆ) for å in X-U, ˆ contains no ∂-modules supported in X-U).

Similarly, the adjoint ˆ* restricts to V*, and the natural map of

adjunction ˆ*¨j*(V
*) is injective (its kernel is punctual; now use the

vanishing of HomÎ(∂å,ˆ
*) for å in X-U). So by duality ˆ is a quotient

of j~(V), as well as a subobject of j*V. As explained above, this

completes the proof.QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....1111....1111 If the holonomic left Î-module ˜ on X lies in

D.E.(X/^), then for any nonempty open set j:U¨X, ˜ § j
~*
(j*˜).

pppprrrrooooooooffff For ˜ in D.E.(X/^), viewed as coherent locally free Ø-module

with integrable connection, the adjoint ˜* is also in D.E.(X/^), being
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the dual Ø-module with the dual connection. [To see this, we may
Zariski localize and suppose ˜ is Ø-free of rank n, with connection

matrix A Ÿ Mn(Ø), so ˜ § În/În(Δ - A), whence Ext1leftÎ-mod(˜,Î)

is În/(Δ - A)În, and so ˜* is În/În(-Δ - At).] Therefore both ˜ and

˜* are torsion-free Ø-modules, so HomÎ(∂å, ˜) =0 = HomÎ(∂å, ˜
*
)

for every å in X-U. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....1111....2222 Given a nonempty open set j:U¨X, formation of the
middle extension j

~*
commutes with formation of the adjoint.

pppprrrrooooooooffff Indeed, given a holonomic left Î-module V on U, its middle

extension ˜ satisfies HomÎ(∂å, ˜) =0 = HomÎ(∂å, ˜
*
) for every å in

X-U; as this condition is symmetric in ˜ and ˜*, we see from the

characterization of middle extensions that ˜* § j
~*
(j*(˜*)). But

j*(˜*) is canonically (j*(˜))* = V*, whence ˜* § j
~*
(V*). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....1111....3333 Given a nonempty open set j:U¨X, and ˜,ˆ
holonomic on U, the restriction map defines an isomorphism of Hom
groups

HomÎ-mod on X(j~*˜, j~*ˆ) § HomÎ-mod on U(˜, ˆ).

pppprrrrooooooooffff The quotient j*ˆ/j~*ˆ is punctual with support in X - U, so we

have HomÎ-mod on X(j~*˜, j~*ˆ) = HomÎ-mod on X(j~*˜, j*ˆ) = (by

adjunction) = HomÎ-mod on U(j
*j~*˜, ˆ) = HomÎ-mod on U(˜, ˆ). QED

LLLLeeeemmmmmmmmaaaa 2222....9999....2222 Let å in X(^), and j : X-{å} ¨ X the inclusion. Suppose
that L is a nonzero element of Î. The following conditions are
equivalent:
(1) the natural map

Î/ÎL ¨ j*(j
*(Î/ÎL))

is an isomorphism.

(2) L* operates bijectively on the delta-module ∂å.

pppprrrrooooooooffff The question is Zariski local around å in X, so by shrinking down
we may assume that the ideal defining å in X is principal, with

generator denoted x. By definition we have j*(j
*(Î/ÎL)) = (Î/ÎL)[1/x],

so (1) is equivalent to the statement that the operator Left(x): ¬ÿx¬ is
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bijective on Î/ÎL.
To say that Left(x) is injective on Î/ÎL is to say that if a,b in Î

satisfy xa=bL in Î, then there exists c in Î such that a=cL; if this c
exists, then xcL=bL in Î, so b=xc. Read backwards, this is precisely the
condition that Right(L):¬ÿ¬L is injective on Î/xÎ.

To say that Left(x) is surjective on Î/ÎL is to say that for any a
in Î there exist b and c in Î such that a=xb+cL in Î. This is precisely
the condition that Right(L) is surjective on Î/xÎ.

Therefore Left(x) is bijective on Î/ÎL if and only if Right(L) is
bijective on Î/xÎ. Passing from right modules to left, this is in turn

the same as saying that Left(L*) is bijective on Î/Îx := ∂å. Thus (1)

and (2) are equivalent.QED

LLLLeeeemmmmmmmmaaaa 2222....9999....3333 Let å in X(^), and j : X-{å} ¨ X the inclusion. Suppose
that L is a nonzero element of Î. The following conditions are
equivalent:
(1) the natural map

j~(j
*(Î/ÎL))¨Î/ÎL

is an isomorphism.
(2) L operates bijectively on the delta-module ∂å.

pppprrrrooooooooffff The map (1) is the dual of the map (1) of the preceding Lemma

with L replaced by L*.QED

LLLLeeeemmmmmmmmaaaa 2222....9999....4444 Let å in X(^),and j : X-{å} ¨ X the inclusion. Choose a
formal uniformizing parameter x at å, i.e., an isomorphism ^[[x]] §

(ØX,å)
¢
. Let L be a nonzero element of Î of degree n ≥ 0 in Δ, which

satisfies the following condition (*):
(*) viewed in ^[[x]]‚ØÎ § ^[[x]][d/dx], L lies in the subring ^[[x]][xd/dx],

say

L = ‡i≥0 x
iPi(xd/dx),

where the {Pi(t)}i≥0 are a sequence of polynomials in ^[t] of degree ≤ n.

Then the following conditions are equivalent:

(1) L and L* both operate injectively on ∂å.

(2) L and L* both operate bijectively on ∂å.

(3) The "indicial polynomial" P0(t) has no zeroes in #.

(4) Î/ÎL § j~*j
*(Î/ÎL).
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(5) j~(j
*(Î/ÎL)) § Î/ÎL § j*(j

*(Î/ÎL)).

pppprrrrooooooooffff We have already seen that (1)À(4) and that (2)À(5), and
(2)à(1) is trivial. So it remains to show, under the hypothesis (*) made
on L, that (1)à(2)À(3). Let us denote by I the ideal which defines å in

X. L acts on ØX-{å} = ⁄n I
-n. Intrinsically, the hypothesis (*) is that L,

acting on ØX-{å}, maps every power In of I to itself. Thus for every

nŸ#, L induces a ^-linear endomorphism grn(L) of the one-dimensional

^-space In/In+1. This endomorphism grn(L) is none other than

multiplication by P0(n).

This shows both that (*) is independent of the choice of formal
parameter x, and that, when it holds, the condition (3) is also
independent of this choice. This allows us to choose the formal
parameter x in a convenient way. We will adopt its choice to the
derivation Δ used in the explicit definition of the adjoint,by requiring
that Δ(x)=1. [This is clearly possible, since for any initial choice of
formal parameter x, Δ is f(x)d/dx for some unit f(x) in ^[[x]]. The

required parameter is then —0
x
dt/f(t).] With this choice of x, the

adjoint of xd/dx =xΔ is -Δx=-1-xΔ = -1-xd/dx, and so the formal

expansion of the adjoint L* is

L* = ‡i≥0 Pi(-1-xd/dx)x
i = ‡i≥0 x

iPi(-1-i-xd/dx).

Thus L* also satisfies (*), and its indicial polynomial is P0(-1-t).

Now consider the delta-module ∂å :=Î/ÎI; it is isomorphic to

^((x))/^[[x]], by the Î-linear map 1ÿ1/x. By the hypothesis (*), each

of the finite-dimensional subspaces F-n := x-n^[[x]]/^[[x]], n≥1, is stable

by L (resp. L*); as ∂å is their union, we see that L (resp. L*) is injective

on ∂å if and only if it is injective on each F-n. Since F-n is finite-

dimensional, L (resp. L*) is injective on F-n if and only if it bijective on

F-n. Thus if L (resp. L*) is injective on ∂å, it is bijective on each F-n, so

surjective on ∂å and hence bijective on ∂å. Thus (1)à(2).

It remains to see that (2)À(3). Since L (resp. L*) is stable on each
F-n, and induces multiplication by P0(-n) (resp. P0(-1+n)) on F-n/F1-n,

we see that L (resp. L*) is bijective on F-n if and only if P0(-t) (resp.
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P0(-1+t)) has no zeroes in {1,2,...,n}. Thus L and L* are both bijective on

∂å if and only if P0(t) has no zeroes in #. QED

RRRReeeemmmmaaaarrrrkkkk 2222....9999....4444....1111 The proof as given shows that one has the slightly
more precise
LLLLeeeemmmmmmmmaaaa 2222....9999....5555 Hypotheses and notations as above, the following four
conditions are equivalent:

(1) L* (resp. L) operates injectively on ∂å.

(2) L* (resp. L) operates bijectively on ∂å.

(3) The "indicial polynomial" P0(t) has no zeroes in #<0 (resp. in #≥0).

(4) j~(j
*(Î/ÎL)) § Î/ÎL (resp. Î/ÎL § j*(j

*(Î/ÎL)).

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....5555....1111 Let j: ´m ¨ !1 the inclusion, Δ := d/dx, D := xΔ.

Then

(a) j~j
*Ø § Î/ÎxΔ = Î/ÎD.

(b) j*j
*Ø § Î/ÎΔx = Î/Î(D + 1).

pppprrrrooooooooffff On ´m, both Î/ÎD and Î/Î(D + 1) are isomorphic to j*Ø =

^[x, x-1], by the Î-linear maps 1 ÿ 1 and 1 ÿ 1/x respectively. So (a)
and (b) result from the above lemma's (3) À (4), applied to the
operators D and D + 1 respectively. QED

(2.9.6) One knows that in the category of holonomic left Î-modules,
every object is of finite length, and that the irreducibles are of two
kinds:
(1)for each å in X(^), the delta-module ∂å is irreducible.

(2)for each nonempty open U in X, with j:U¨X the inclusion, and each
irreducible object V in D.E.(U/^), j~*(V) is irreducible.

Recall that for an object V of D.E.(U/^), any subobject N of V as
holonomic (or even as Ø-quasicoherent) Î-module is itself an object of
D.E.(U/^), simply because D.E.(U/^) is precisely the category of Ø-
coherent Î-modules. This means that for an object V of D.E.(U/^), the
notions of "irreducible as D.E." and of "irreducible as holonomic Î-
module" coincide. Recall also that if an object V in D.E.(U/^) is
irreducible, then its restriction to any nonempty open set U` of U
remains irreducible in D.E.(U`/^) ("birational invariance of the
differential galois group, cf [Ka-CAT, 4.2]).
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Therefore, given an irreducible ˜ on X which is not a delta-

module, then for any nonempty open j:U¨X such that j*˜ lies in

D.E.(U/^), j*˜ is irreducible in D.E.(U/^) and ˜ is j~*(j
*˜).

Thus we find
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....6666....1111 Let ˜ be holonomic left Î-module on X whose
support is not punctual. Then ˜ is irreducible if and only if there exists
a nonempty open j:U¨X such that

j*˜ is an irreducible object in D.E.(U/^) and ˜§ j~*j
*˜.

Moreover, if this condition holds for some U, then it holds for any U
such that ˜|U is in D.E.(U/^).

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....6666....2222 Let f, g Ÿ Ø, with f±0. The first order operator L :=
fΔ + g has Î/ÎL an irreducible Î-module on X if and only if the
following conditions hold:
(1) at every simple zero å of f, the ratio g(å)/(Δf)(å) is not in #.
(2) at every multiple zero å of f, g(å)±0.
pppprrrrooooooooffff On the open set U where f is invertible, we have a rank one D.E.,
which is automatically irreducible. We must show that Î/ÎL is a
middle extension from U. At a zero å of f, choose a formal parameter x
with Δx=1. Formally at å, Δ is d/dx and so the operator L is f(x)d/dx +
g(x) = ((Δf)(å) + higher terms)xd/dx + g(x). Therefore 2.9.4 applies. The
indicial polynomial at å is P0(t) = (Δf)(å)t + g(å), so the conditions (1)

and (2) just amount to requiring P0(t) to have no roots in #. QED

LLLLeeeemmmmmmmmaaaa 2222....9999....7777 (Pochammer) Let å Ÿ X(^), U:= X-{å} j:U ¨ X the
inclusion. Choose a formal parameter x at å, i.e., an isomorphism

^[[x]] § (ØX,å)
¢
. Let L:=‡fiΔ

i be a nonzero element of Î of degree n ≥ 1

in Δ, whose leading coefficient fn has a simple zero at å, and is

invertible on U:= X-{å}. Let ˜:=Î/ÎL. Then

(1) j*˜ and j*˜* each lie in D.E.(U/^), and as D.E. on U each has a
regular singular point at å.
(2) if the formal parameter x is convergent, i.e., if x Ÿ ØXan,å, every

solution of Lƒ=0 ( resp. of L*ƒ=0) in ^((x)) is convergent in a punctured
(classical) neighborhood of 0 in ^.

(3) the equations Lƒ=0 and L*ƒ=0 have the same number ≥ n-1 of ^-
linearly independent solutions in ^((x)), i.e.,

dim^HomÎ(˜, ^((x))) = dim^HomÎ(˜
*, ^((x))) ≥ n-1.
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Moreover, at least one of ˜ or ˜* has dim^HomÎ(˜, ^[[x]]) = n-1.

(4) If ˜ § j~*(j
*˜), e.g., if ˜ is irreducible, then every solution of Lƒ=0

(resp. of L*ƒ=0) in ^((x)) lies in ^[[x]], and

dim^HomÎ(˜, ^((x))) = dim^HomÎ(˜
*, ^((x))) = n-1,

i.e., local monodromy around å is a pseudoreflection.

pppprrrrooooooooffff Notice first that the hypothesis on L is also satisfied by L*; its

leading coefficient is (-1)n fn. Because fn is invertible on U:=X - {å},

both j*˜ and j*˜* lie in D.E.(U/^), and as D.E.'s on U both visibly
(Fuch's criterion) have a regular singular point at å. This proves (1),

and (1)à(2). Let us denote Xan - {å} by Ë, and denote by Ò and Ò*

the dual local systems on Ë of germs of holomorphic solutions of L and

L* respectively. Because j*˜ and j*˜* both have a regular
singularity at å, their spaces of ^((x))-valued solutions are the
invariants of "local monodromy around å" in these dual local systems.
Looking at the Jordan normal form of local monodromy around å on
Ò, we see that it and its contragredient have equal-dimensional spaces
of invariants. This proves the "equal dimension" part of (3).

To prove the rest of (3), we argue as follows. The dimensions in

question depend on what happens over (ØX,å)
¢
§ ^[[x]] and over ØX -

{å}‚(ØX,å)
¢
§ ^((x)). Therefore we may and will choose the formal

parameter x so that Δ is d/dx. Then in ^[[x]][Δ], we can multiply L by a
unit u(x) in ^[[x]] so that it is of the form

u(x)L = xΔn + lower terms in Δ, coef's in ^[[x]],

= xΔn + (∫+ higher terms in x )Δn-1 + ‡j<n-1 fjΔ
j, fjŸ^[[x]].

One readily computes that (-1)
n
u(x)L* is of the form

xΔn + (n-∫ + higher terms in x)Δn-1 + ‡j<n-1 gjΔ
j, gjŸ^[[x]].

Let us admit for a moment
(*) if ∫ is not in #≤0, then dim^HomÎ(˜, ^[[x]]) = n-1.

Then we may complete the proof as follows. At the expense of

interchanging L and L* we may suppose that ∫ is not in #<0. Then by

(*) we trivially have dim^HomÎ(˜, ^((x))) ≥ n-1. This proves (3).

Finally, if ˜ § j~*(˜), then HomÎ(˜, ∂å)=HomÎ(˜
*, ∂å)=0, so (4)
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follows from (*) and (3) by applying the functors HomÎ(˜, ?) and

HomÎ(˜
*, ?) to the short exact sequence of Î-modules

0 ¨ ^[[x]] ¨ ^((x)) ¨ ∂å ¨ 0.

It remains to prove (*). Now HomÎ(˜, ^[[x]]) is precisely the

kernel of L on ^[[x]]. Because ^[[x]] is an integral domain, this kernel is

the same for L and for (xn-1u(x))L. This operator is readily seen to lie
in the subring ^[[x]][xd/dx] of ^[[x]][d/dx], and its expansion (cf 2.9.4)

(xn-1u(x))L = ‡i≥0 x
iPi(xd/dx)

has P0(T) = T(T - 1)(T - 2)......(T - (n-2))(T - (n-1-∫)), as one sees using

the identity

xk(d/dx)k =(xd/dx)(xd/dx - 1)(xd/dx - 2)......(xd/dx -(k-1)).
Therefore

(xn-1u(x))L acts stably on each ideal of ^[[x]], and, because (n-1-∫) is

not in #≥n-1, it acts bijectively on (xn-1)^[[x]]. The snake lemma for

the short exact sequence

0 ¨ (xn-1)^[[x]] ¨ ^[[x]] ¨ ^[[x]]/(xn-1)^[[x]] ¨ 0

then shows that (xn-1u(x))L has isomorphic kernels on ^[[x]] and on

^[[x]]/(xn-1)^[[x]]. But

(xn-1u(x))L = (xn-1)( an endomorphism of ^[[x]] )

so it kills ^[[x]]/(xn-1)^[[x]]. This concludes the proof of (*). QED

RRRReeeemmmmaaaarrrrkkkk 2222....9999....7777....1111 The indicial polynomial of xn-1u(x)L at å has roots

0,1,2,...,n-2, and n-1-∫, while that of xn-1u(x)L* has roots 0,1,2,...,n-2,
and ∫-1. So if either ∫ is a noninteger or if ∫ lies in {1,2,...,n-1}, then ˜

§ j~*(˜). [For then both xn-1u(x)L and xn-1u(x)L* act bijectively on

∂å, and hence L and L* are injective on ∂å.] In any case, if ˜ §

j~*(˜), then the determinant of the pseudoreflection which is its local

monodromy at å is exp(2πi∫).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....9999....8888 Let å Ÿ X(^), U:= X-{å} j:U ¨ X the inclusion.
Choose a formal parameter x at å, i.e., an isomorphism

^[[x]] § (ØX,å)
¢
. Given a holonomic ˜ on U, denote by Solnå the

finite-dimensional ^-vector space Solnå := HomÎ(˜, (ØX,å)
¢
[1/x]) =

HomÎ(˜, ^((x))) = HomÎ(˜‚Ø^((x)), ^((x))) of its formal meromorphic

solutions at å. Consider the tautological short exact sequence on X
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0 ¨ j~*˜ ¨j*˜ ¨ j*˜ /j~*˜ ¨ 0.

The quotient j*˜ /j~*˜ is the punctual Î-module

j*˜ /j~*˜ § ∂å‚^Hom^(Solnå , ^).

pppprrrrooooooooffff The question is Zariski local on X around å, and independent of
the choice of the uniformizing parameter x. So we may and will
assume that x is a function on X with a simple zero at å and no other
zeroes. Admit for a moment the following assertion (*):

(*) HomÎ(j*˜, (ØX,å)
¢
) = 0 = Ext1Î(j*˜, (ØX,å)

¢
).

In the short exact sequence
0 ¨ j~*˜ ¨j*˜ ¨ j*˜ /j~*˜ ¨ 0,

the quotient j*˜ /j~*˜ is holonomic and supported in å, so

necessarily of the form ∂å‚^V for some finite-dimensional ^-space V.

Apply the functor HomÎ( ?, (ØX,å)
¢
) and look at the long exact

cohomology sequence for this exact sequence. In virue of (*), the
coboundary induces an isomorphism

HomÎ(j~*˜, (ØX,å)
¢
) § Ext1Î(j*˜/j~*˜, (ØX,å)

¢
)

§ Ext1Î(∂å‚^V, (ØX,å)
¢
)

§ Hom^(V, ^)‚^Ext
1
Î(∂å, (ØX,å)

¢
).

The same consideration with ˜ replaced by the trivial Î-module Ø

shows that Ext1Î(∂å, (ØX,å)
¢
) is canonically ^. Therefore

HomÎ(j~*˜, (ØX,å)
¢
) § Hom^(V, ^).

From the short exact sequence

0 ¨ (ØX,å)
¢
¨ (ØX,å)

¢
[1/x] ¨ ∂å ¨ 0

and the vanishing of HomÎ(j~*˜,∂å) we obtain

HomÎ(j~*˜, (ØX,å)
¢
) § HomÎ(j~*˜, (ØX,å)

¢
[1/x]),

(by adjunction) §HomÎ(˜, (ØX,å)
¢
[1/x]) := Solnå.

Thus we find Solnå § Hom^(V, ^), as required.

It remains to prove the assertion (*). The vanishing of

HomÎ(j*˜, (ØX,å)
¢
) is obvious, for already HomØ(j*˜, (ØX,å)

¢
)=0,

simply because every element of the source j*˜ is infintely x-divisible,
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while no nonzero element of (ØX,å)
¢
§ ^[[x]] is infinitely x-divisible.

To prove the vanishing of Ext1Î(j*˜, (ØX,å)
¢
), we will use the

unique x-divisibility of j*˜ to show that any such extension splits (the

splitting is unique if it exists, because HomÎ(j*˜, (ØX,å)
¢
) = 0). Thus

suppose we have any short exact sequence of Î-modules

0 ¨ (ØX,å)
¢
¨ A π¨ B ¨ 0

in which B is a Î[1/x]-module. Denote by C fi A the intersection

C := €n ≥ 0 xnA. Clearly C is a Î-submodule of A (as Δ(xnA) fi xn-1A

for n ≥ 1), and C € (ØX,å)
¢
= 0 (for if fŸ(ØX,å)

¢
lies in xnA, say

f=xna, then 0=π(f) =xnπ(a) in B, so π(a)=0, so aŸ(ØX,å)
¢
, and so we

find fŸxn(ØX,å)
¢
). To split π, it suffices to show that π maps C onto B.

(For π|C : C ¨ B is automatically injective, as C € (ØX,å)
¢
= 0.)

Given an element ∫ of B, choose for each n ≥ 0 an element ånŸA

which lifts x-n∫. For each n ≥ 0, let fn := ån - xån+1. Then π(fn)=0,so

fnŸ(ØX,å)
¢
. The series ‡n≥0 xnfn converges in (ØX,å)

¢
, say to F. Now

define new liftings ©nŸA of the x-n∫ by ©n := ån - F. With this choice,

the differences cn := ©n - x©n+1 are cn = fn - (1-x)F, so ‡n≥0 xncn = 0.

For each n≥0, define CnŸ(ØX,å)
¢
to be Cn := ‡i≥0 xici+n. Then

©0 - xn+1©n+1 = ‡i=0,...,n xici = -‡i≥n+1 xici = -xn+1Cn+1,

and so ©0 = xn+1(©n+1
-Cn+1) lies in xn+1A for every n ≥ 0, and hence

©0 Ÿ C is a lifting of ∫ to C. QED

This Proposition leads immediately to the following Î-module
complement to Deligne's Euler-Poincare formula [De-ED,II, 6.21], which
was suggested to me by Ofer Gabber. Recall that for a holonomic Î-
module ˜ on X, we define

ç(X, ˜) := ç(H*DR(X, ˜)) = ‡(-1)idim^H
i
DR(X, ˜).

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....8888....1111 Let j : U ¨ X be the inclusion of a nonempty open
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set. Let ˜ be a holonomic Î-module on U. For each åŸX-U, denote by
Solnå the finite-dimensional ^-vector space of formal meromorphic

solutions of ˜ at å. Then
ç(X, j~*˜) = ç(U, ˜) + ‡åŸX-U dim^Solnå.

pppprrrrooooooooffff Because ˜ is Ø-quasicoherent, HDR(U, ˜) § HDR(X, j*˜), and so

ç(U, ˜) = ç(X, j*˜). The short exact sequence on X

0 ¨ j~*˜ ¨j*˜ ¨ j*˜ /j~*˜ ¨ 0

has
j*˜ /j~*˜ § ·åŸX-U ∂å‚^Hom^(Solnå , ^),

so
ç(X, j~*˜) = ç(X, j*˜) - ‡åŸX-U dim^(Solnå)ç(X, ∂å).

But ç(X, ∂å) = -1 (the map d/dx : ^((x))/^[[x]] ¨ ^((x))/^[[x]] is visibly

injective with one-dimensional cokernel). QED

(2.9.8.2) Denote by äX the complete nonsingulat model of X. For each x
in äX, denote by Irrx(˜) the irregularity (sum of the slopes with

multiplicity) of ˜ at x. Deligne's formula asserts that if ˜ is a D.E. on
X, i.e., if ˜ is Ø-locally free of finite rank, then

ç(X, ˜) = rankØ(˜)ç(X) - ‡xŸäX-X Irrx(˜),

where ç(X) := 2-2g(äX) - Card(äX - X) is the topological Euler
characteristic of X. Combining this with the above corollary, we obtain

TTTThhhheeeeoooorrrreeeemmmm 2222....9999....9999 (Deligne, Gabber) Let j : U ¨ X be the inclusion of a
nonempty open set, äX the complete nonsingular model of X. Suppose ˜
is a D.E. on U. For each åŸX-U define integers

dropå := rank(˜) - dim^Solnå,

totdropå := Irrå(˜) + dropå.

These integers are nonnegative, and
ç(X, j~*˜) = rankØ(˜)ç(X) - ‡xŸäX-X Irrx(˜) - ‡åŸX-U totdropå.

pppprrrrooooooooffff That dropå ≥ 0 is the fact that a rank n D.E. on ^((x)) has a

solution space of dimension at most n. The irregularity is by definition
nonnegative. The ç-formula is a trivial concatenation of the previous
corollary with Deligne's formula for ç(U, ˜). QED

LLLLeeeemmmmmmmmaaaa 2222....9999....11110000 Let å in X(^), U = X - {å}, j:U¨X the inclusion, ˜ a
D.E. on U of rank r ≥ 1. Then the following conditions are equivalent:
(1) j~*˜ is a D.E. on X.
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(2) totdropå = 0.

(3) dropå = 0.

pppprrrrooooooooffff Pick a formal parameter x at å. The quantities totdropå and

dropå depend only on ˜‚Ø^((x)). If ˆ := j~*˜ is a D.E. on X, then

ˆ‚Ø^[[x]] is spanned by its horizontal sections, so ˆ‚Ø^[[x]]§ (^[[x]])r.

As ˜ = j*ˆ, ˜‚Ø^((x)) § (^((x)))r, so obviously (1)à(2)à(3).

If dropå = 0, then ˜‚Ø^((x)) § (^((x)))r. It suffices to extend ˜

to a D.E. ˆ on X, i.e., to a Î-module ˆ on X which is a locally free Ø-

module of rank r (for then j~*˜ = j~*j
*ˆ = ˆ by 2.9.1.1). Now Ø-

locally free extensions of ˜ as Ø-module to X are in bijective
correspondence with ^[[x]]-lattices in ˜‚Ø^((x)), and the corresponding

locally free extension is Î-stable (inside j*˜) if and only if its ^[[x]]-

lattice is Î-stable (inside ˜‚Ø^((x))). Since ˜‚Ø^((x)) § (^((x)))r, we

have only to take for ^[[x]]-lattice (^[[x]])r fi (^((x)))r to produce the
required ˆ. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....9999....11110000....1111 Let å in X(^), U = X - {å}, j:U¨X the inclusion, ˜

a holonomic Î-module on X such that j*˜ is a D.E. on U of rank r ≥ 1.
Suppose x is a function on X which has a simple zero at å and which is
invertible on U. Then ˜ is a D.E. on X if and only if the following three
conditions hold:
(1) the map Left(x) : ˜ ¨ ˜ is injective, i.e., HomÎ(∂å, ˜) =0.

(2) the map Left(x) : ˜* ¨ ˜* is injective, i.e., HomÎ(∂å, ˜
*
) =0.

(3) dim^(˜/x˜) = r, or equivalently

(3 bis) The function on X(^) given by
∫ ÿ dim^(˜/I∫˜), I∫ := the ideal sheaf of ∫,

is constant.
pppprrrrooooooooffff The conditions listed are trivially necessary. To show that they
are sufficient, we argue as follows.

The first two conditions together imply

˜ § j
~*
(j*˜),

in virtue of 2.9.1. Using this, 2.9.8 gives a short exact sequence

0 ¨ ˜ ¨j*j
*˜ ¨ ∂å‚^Hom^(Solnå , ^) ¨ 0.
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Now apply the snake lemma to the endomorphism Left(x) of this short

exact sequence. Since Left(x) is bijective on j*j
*˜, the coboundary

defines an isomorphism
Hom^(Solnå , ^) § ˜/x˜.

So by (3), we see that dim^Solnå = r. By 2.9.10,(1) À (3), we conclude

that j
~*
(j*˜) is a D.E. on X, whence ˜ § j

~*
(j*˜) is a D.E. on X. QED

(2.9.11) We next recall what the general global duality theorem (for
coherent Î-modules with respect to projective morphisms) gives in our
situation. Thus suppose ˜ is a holonomic left Î-module on the smooth

connected curve X. The de Rham cohomology groups HiDR(X, ˜) can

also be described as the global Ext groups ExtiÎ(Ø, ˜). Passage to

adjoints gives ExtiÎ(Ø, ˜) § ExtiÎ(˜
*, Ø). We have a natural pairing

ExtiÎ(Ø, ˜
*) ≠ ExtjÎ(˜

*, Ø) ¨ Exti+jÎ(Ø, Ø),

which via the above isomorphisms becomes a pairing

HiDR(X, ˜
*) ≠ HjDR(X, ˜) ¨ Hi+jDR(X, Ø) := Hi+jDR(X).

The global duality theorem (cf. [Ber], [Bor]) asserts that if X = äX is a
ccccoooommmmpppplllleeeetttteeee nonsingular connected curve, then for any holonomic ˜ on
äX, the pairings

HiDR(äX, ˜
*) ≠ H2-iDR(äX, ˜) ¨ H2DR(äX) § ^

are perfect dualities of finite-dimensional ^-vector spaces.

To conclude this section, we give elementary Euler characteristic

formulas for the special case of Î-modules of the form Î/ÎL on !1

and on ´m.

LLLLeeeemmmmmmmmaaaa 2222....9999....11112222 On !1 with parameter x, write Δ for d/dx, and

consider a nonzero operator L := ‡ai,jx
iΔj. Define the integer d = d(L) by

d := max( i-j | ai,j ± 0).

Then ç(!1, Î/ÎL) = -d.

pppprrrrooooooooffff We have

ç(!1, Î/ÎL):=ç(ExtÎ(Ø, Î/ÎL))=ç(ExtÎ(Î/ÎL
*, Ø)),

= dim(Ker) - dim(Coker) for the map L* : ^[x] ¨^[x].
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Now L* = ‡ai,j(-Δ)
jxi, and each operator (-Δ)jxi is homogeneous of

degree i-j when it acts on the graded ring ^[x]. Moreover, the
associated graded map

(-Δ)jxi : (degree n) ¨ (degree n+i-j)
is given by a nonzero polynomial Pi,j(n) in n of degree j, namely

(-Δ)jxi(xn) = Pi,j(n)x
n+i-j, where Pi,j(t) = (-1)j°k=0,...,j-1(t+i-k).

So by definition of the integer d, there exists a nonzero polynomial P(t)

(namely P := ‡i-j=d ai,jPi,j) such that L* acting on ^[x] maps

(degree ≤ n) to (degree ≤ n+d), and induces xn ÿ P(n)xn+d on the
associated graded. So if we denote by Kn the complex

L*: (degree ≤ n) ¨ (degree ≤ n+d),
then the inclusion of Kn into Kn+1 is a quasiisomorphism if P(n+1)±0.

The direct limit K‘ of the Kn is the complex which calculates the Ext

groups, so if n is larger than any integer zero of P we have

H*DR(!
1, Î/ÎL) = H*(K‘) = H*(Kn).

But for n large enough that n+d ≥ 0 we have

ç(Kn) = ç[L*: (degree ≤ n) ¨ (degree ≤ n+d)] = -d. QED

LLLLeeeemmmmmmmmaaaa 2222....9999....11113333 On ´m with parameter x, write D for xd/dx, and

consider a nonzero operator L := ‡xiPi(D). Define integers a, b, d by

a := max( i | Pi ± 0), b := min( i | Pi ± 0), d:= a-b.

Then ç(´m, Î/ÎL) = -d.

pppprrrrooooooooffff. The proof is exactly analogous to that given above, taking for Kn
the subcomplex

L* : ( -n ≤ degree ≤ n) ¨ ( b-n ≤ degree ≤ a+n)

of the complex L* : ^[x, x-1] ¨ ^[x, x-1]. QED

2222....11110000 SSSSoooommmmeeee eeeeqqqquuuuaaaattttiiiioooonnnnssss oooonnnn !!!!1111,,,, wwwwiiiitttthhhh aaaa ttttrrrraaaannnnssssiiiittttiiiioooonnnn ttttoooo ´́́́mmmm

(2.10.0) We now turn to the special case where X is !1. We will
write Δ for d/dx. Thus Ø is the polynomial ring ^[x] and Î is the Weyl
algebra Ø[Δ] = ^[x,Δ].The Fourier Transform FT(L) of an element L =

‡fi(x)Δ
i of Î is defined by

FT(L) = ‡ fi(Δ)(-x)
i.
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The map LÿFT(L) is a ring isomorphism of Î with itself, whose square

is [-1]*:

for L = ‡fi(x)Δ
i, FT(FT(L)) = [-1]*L = ‡fi(-x)(-Δ)

i.

Notice that FT and adjoint nearly commute: one has

(FT(L))* = [-1]*(FT(L*)) = FT([-1]*(L*)).

Given a left (resp. left holonomic) Î-module ˜ on !1, its Fourier
Transform FT(˜) is the left (resp. left holonomic) Î-module Î‚Î˜,

where in forming the tensor product the leftmost Î is viewed as a
right Î-module by the ring isomorphism FT:Î¨Î. If ˜ is Î/ÎL, then
FT(˜) is Î/ÎFT(L).

EEEExxxxaaaammmmpppplllleeee 2222....11110000....1111 ((((1111)))) Let j: ´m ¨ !1 the inclusion. Then

FT(j~j
*Ø) § j*j

*Ø, FT(j*j
*Ø) § j~j

*Ø.

Indeed, by 2.9.5.1, j~j
*Ø § Î/ÎxΔ, and j*j

*Ø § Î/ÎΔx. Visibly we

have FT(xΔ) = -Δx, FT(Δx) = - xΔ.

EEEExxxxaaaammmmpppplllleeee 2222....11110000....1111 ((((2222)))) For å in ^, the delta module ∂å is Î/Î(x-å). Its

FT is Î/Î(Δ-å), which is isomorphic to the Î-module eåx^[x] by

means of the Î-linear map 1ÿeåx.

(2.10.2) Thus ˜ÿFT(˜) is an exact autoequivalence of the category
of left (resp. left holonomic) Î-modules. If we iterate FT, we find

FT(FT(˜)) § [-1]*(˜).
A key point for later applications is the apparently trivial consequence
that a holonomic left Î-module ˜ is irreducible if and only if FT(˜) is
irreducible. Here is a simple illustration :

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....3333 Let P:=Pn(x) = ‡ pix
i and Q:=Qm(x) = ‡ qix

i be

nonzero polynomials in ^[x], of degrees n and m respectively, and
suppose that

(1) if å is a simple root of Q, then P(å)/Q'(å) is not in #.
(2) if å is a multiple root of Q, then P(å)±0.

Denote by L the operator L := P(Δ) + xQ(Δ) , ˜ :=Î/ÎL. Then

(1) ˜ is an irreducible Î-module on !1.

(2) If n > m, ˜ is a Lie-irreducible object of D.E.(!1/^), whose largest
slope at ‘ is (n+1-m)/(n-m), with multiplicity n-m.

(3a) If n ≤ m, then for å := -pm/qm, ˜ | !1 - {å} is an irreducible
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object of D.E.(!1 - {å}/^). Its local monodromy at å is a
pseudoreflection of determinant exp(-2πi∫), where ∫ is given by

∫ := (pm-1qm - pmqm-1) /(qm)
2
.

(3b) If n ≤ m and if either m±2 or exp(2πi∫)± -1, then ˜ | !1 - {å} is
Lie-irreducible.
pppprrrrooooooooffff The operator L is the FT of the first order operator -ΔQ(x) + P(x)
= -Q(x)Δ + P(x) - Q'(x) to which we apply 2.9.6.2 to get the irreducibility
(1). (2) is obvious from the definition of L, and the fact that Lie-

irreducibility on !1 results from irreducibility(1). (3a) is just the
spelling out of 2.9.7 (4) and 2.9.7.1. For (3b), we argue as follows (cf. [Ka-
Pi],Cor.6 and Criterion 7). By additive translation, we may suppose that

å=0, so !1 - {å} is ´m. But an irreducible D.E. on ´m is either Lie-

irreducible or it is Kummer induced. If it is Kummer induced and
regular singular at zero, then its exponents at zero in ^/# are Kummer
induced. The exponents mod # are { 0 repeated m-1 times, -∫}, which
are visibly not Kummer induced unless m=2 and ∫•1/2 mod #. QED

RRRReeeemmmmaaaarrrrkkkk 2222....11110000....3333....1111 Another way to state the hypotheses on P and Q is
to say that P and Q are relatively prime and that the partial fraction
expression of P/Q is

P/Q = ‡ ¬i/(x - åi) + g'(x),

where g(x) in ^(x) blows up at those åi for which ¬i is in #.

Notice that L = P(Δ) + xQ(Δ) is the FT of P(x) - ΔQ(x), annihilator of

(1/Q(x))exp(—(P/Q)(t)dt) = (1/Q(x))(°(x - åi)
¬i)eg(x),

and L* = P(-Δ) + Q(-Δ)x is the FT of P(-x) - Q(-x)Δ, annihilator of

exp(—(P/Q)(-t)dt) = (°(x + åi)
-¬i)e-g(-x).

Conversely, if we begin with a function of the form (°(x - åi)
¬i)eg(x)

with g(x) a rational function which blows up at those åi for which ¬i is

in #, we recover P and Q by writing P/Q = ‡ ¬i/(x - åi) + g'(x) with

(P,Q)=1. If g=0, then n=m-1; otherwise m-1-n = ord‘(g). We will see

below that already the sequence of functions x-1/2exp(-xn/n) leads to
some surprises.

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....4444 Let P:=Pn(x) = ‡ pix
i and Q:=Qm(x) = ‡ qix

i be

nonzero polynomials in ^[x], of degrees n and m respectively, and
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suppose that
(1) if å is a simple root of Q, then P(å)/Q'(å) is not in #.
(2) if å is a multiple root of Q, then P(å)±0.

Suppose n > m. The differential galois group G of P(Δ) + xQ(Δ) on !1 is

connected and reductive. If pn-1 = qn-1 = 0, then G = G0,der; otherwise

G = ´mG0,der. The possibilities for G0,der are given by:

(1) If n-m is odd, G0,der is SL(n); if n-m=1, then G is GL(n).

(2) If n-m is even, then either G0 der is SL(n) or SO(n) or (if n is even)

SP(n), or n-m=6, n=7,8 or 9, and G0,der is one of
n=7: the image of G2 in its 7-dim'l irreducible representation

n=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

n=9: the image of SL(3)≠SL(3) in stdºstd.
pppprrrrooooooooffff In view of 2.10.3(2) above, this is just the Main D.E. Theorem

2.8.1 on !1, with a/b = (n+1-m)/(n-m), together with the remark that

on !1 one has detG ={1} or ´m, and detG ={1} if and only if the

coefficient of Δn-1 vanishes. QED

To give a concrete illustration of this theory, let us compute G for

the operator Δn - xΔ - 1/2, whose FT defines x-1/2exp(-(-x)n/n).

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....5555The differential galois group G of Δn - xΔ - 1/2 on !1 is
GL(2) for n=2,
SL(n) for n even ≥ 4,
SO(n) for n±7 odd ≥ 3,
G2 for n=7.

pppprrrrooooooooffff This is an instance of the above theorem with P(x)= xn - 1/2,
Q(x) = x, m=1. For n even, n-m = n-1 is odd, and so G is SL(n) or GL(n);

looking at the Δn-1 term, we see that G is inside SL iff n > 2. If n is odd,
this operator is self-adjoint (up to a sign), and as n is odd the resulting
autoduality is necessarily symmetric. Therefore G is inside SO(n) for
n≥3 odd; in view of the limited possibilities for G, it must be SO(n)
except for n=7, where the (only) other possibility is G2. That it is G2 in

this case results from the following
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GGGG2222 TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....6666 For any polynomial f in ^[x] of degree k prime to

6, the differential galois group G of Δ7 - fΔ - (1/2)f' on !1 is G2.

pppprrrrooooooooffff We first prove that the D.E.on !1

˜ := Î/ÎL, L := Δ7 - fΔ - (1/2)f'
is irreducible. Its ‘-slopes are 1 + (k/6) with multiplicity six and one
slope 0. Since (k, 6)=1 by hypothesis, the I‘-representation is the direct

sum of an irreducible of dimension 6 and a tame character. So if ˜ is

reducible on !1, its Jordan-Holder constituents must be an irreducible

D.E. ˆ on !1 of rank six and a rank one D.E. Ò on !1 which is regular
singular at ‘, and therefore isomorphic to the trivial Î-module Ø. So
either Ø is a quotient of ˜, or it is a subobject. Since ˜ is self-adjoint,
and ˆ and Ø are nonisomorphic irreducibles, ˜ § ˆ · Ø. Therefore Ø
is a quotient of ˜. This means that the equation Lƒ=0 has nonzero

solutions in ^[x]. But L acts injectively on ^[x]; indeed if f = Axk +...,

then L maps xd + lower terms to (-d - (1/2)k)Axd+k-1 + lower terms,
and as k is odd (being prime to 6), (-d - (1/2)k) is nonzero for all dŸ#.
Therefore ˜ is irreducible.

Once ˜ is irreducible, it is Lie-irreducible (we are on !1). Its ‘-
slopes qualify it for the Main D.E. Theorem. Because it is self-adjoint,
the only possibilities are G2 or SO(7). It thus suffices to rule out SO(7).

Because Ú3(std7) is irreducible for SO(7), it suffices to show that ˜ has

a nonzero horizontal section in Ú3˜. We can view ˜ as the free Ø-
module with basis e0,..., e6, where Δ acts by

Δei = ei+1 for i=0,1,...,5 Δe6 = (1/2)f'e0 + fe1.

Then one readily verifies that in Ú3˜ the element
e0¢e4¢e5 + e2¢e3¢e4 + 2e1¢e2¢e6

- e1¢e3¢e5 - e0¢e3¢e6 - fe0¢e1¢e2
is killed by Δ. QED

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....7777 Let P:=Pn(x) = ‡ pix
i and Q:=Qm(x) = ‡ qix

i be

nonzero polynomials in ^[x], of degrees n and m respectively, and
suppose that

(1) if å is a simple root of Q, then P(å)/Q'(å) is not in #.
(2) if å is a multiple root of Q, then P(å)±0.

Suppose m ≥ n. Define
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å:= -pm/qm, ∫ := (pm-1qm - pmqm-1)/(qm)
2
.

Suppose that either m ≥ 3 or m=2 and exp(2πi∫)± -1.Then the

differential galois group G of xQ(Δ) + P(Δ) on !1 - {å} is reductive. If

qm-1 = 0 and ∫ Ÿ $, then G0 = G0,der and detG is the cyclic subgroup

of ´m generated by exp(2πi∫); otherwise G0 = ´mG0,der. The group

G0,der is either SL(m) or SO(m) or (if m is even) Sp(m). Moreover,

(1) if exp(2πi∫) ± _1, G0,der= SL(m);

(2) if exp(2πi∫) = +1, G=G0 and G0,der = SL(m) or (for m even) Sp(m);

(3) if exp(2πi∫) = -1, G0,der = SL(m) or SO(m).

pppprrrrooooooooffff For any Lie-irreducible D.E., G is reductive, G0,der is semisimple

and irreducible in its given representation, and G0 = G0,der or

´mG0,der, depending on whether detG is finite or not. Here detG is the

differential galois group of Δ + (qm-1/qm) + ∫/(x - å) on !1 - {å}. For

any first order D.E. on any nonempty open set of @1, the differential
galois group is finite if and only if all the singularities are regular and
at each the exponent is rational. So detG is finite if and only if qm-1 =

0 (so that ‘ is regular singular) and ∫Ÿ$, in which case it is the cyclic
subgroup of ´m generated by exp(2πi∫).

The local monodromy around å is a pseudoreflection © of
determinant exp(-2πi∫). As G contains the monodromy group (cf. [Ka-

DGG], 1.2.2.1), G and hence G0,der are normalized by ©. The result
follows from the Pseudoreflection Theorem 1.5, except for the
connectedness of G when exp(2πi∫) = +1. If exp(2πi∫) = +1, then © is

unipotent, and, as as we are on !1 - {å}, whose π1 is generated by

local monodromy around å, Gmono is connected, whence G is connected

(cf. [Ka-DGG]1.2.5). QED

(2.10.8) We now return to the general properties of Fourier
Transform. We recall for later use the "Fourier integral" interpretation

(cf. [Ka-Lau, 7.1.4, 7.5]) of FT(˜) as —˜(x)exydx; one takes on

!2:=Spec(^[x,y]) the Î-module pr1
*(˜) (this is the term ˜(x) in the

integral), one tensors it over Ø with the Î-module Î/Î(Δx - y, Δy- x)

[which is the Î-module exy^[x,y] by means of the Î-linear map
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1ÿexy] (this is the term exy in the integral) and one takes the relative

H1DR for the map pr2 : !2¨!1 (this is the meaning of —dy; the other

HiDR vanish).

(2.10.9) Given a Î-module ˜ on !1, and åŸ^, we denote by ˜‚eåx

the Î-module ˜‚Ø(Î/Î(Δ-å)). An alternate description is this. For

each åŸ^, there is a ^-linear ring automorphism Aå of Î which sends

xÿx and which sends ΔÿΔ-å. (This automorphism is the Fourier
Transform of the automorphism of Î induced by the automorphism

xÿx-å of !1.) One could also describe ˜‚eåx as the Î-module
Î‚Î˜ obtained from ˜ by the extension of scalars Aå:Î¨Î.

LLLLeeeemmmmmmmmaaaa 2222....11110000....11110000 If ˜ is a non-punctual holonomic Î-module on !1,

all of whose slopes at ‘ are ≤ 1, there exists an åŸ^ such that ˜‚eåx

has some ‘-slope < 1
pppprrrrooooooooffff If ˜ has some slope < 1, there is nothing to prove. If ˜ has all
slopes 1, we use the following local
BBBBrrrreeeeaaaakkkk DDDDeeeepppprrrreeeessssssssiiiioooonnnn LLLLeeeemmmmmmmmaaaa 2222....11110000....11111111 (compare [Ka-GKM, 8.5.7.1]) Let
n ≥ 1 be an integer, and V a nonzero D.E. on ^((1/x)), all of whose

slopes =n. Then there exists an åŸ^ such that V‚eåx
n
has some ‘-

slope < n.
pppprrrrooooooooffff This is obvious from Levelt's structure theorem (cf. [Ka-DGG,
2.2.2]). For the assertion is invariant under extension of scalars from

^((1/x)) to ^((1/x1/m)) (with n replaced by nm). But after such an
extension, any D.E. becomes a successive extension of rank one D.E.'s. So
we reduce to the case when V is rank one and slope n, so isomorphic to

the D.E. for x∂eP(x) where P(x) is a polynomial of degree n, and the
assertion is obvious; take for -å the leading coefficient of P(x). QED

LLLLeeeemmmmmmmmaaaa 2222....11110000....11112222 Let ˜ be an irreducible holonomic Î-module on !1,

all of whose slopes at ‘ are ≤1. If ˜ is in D.E.(!1/^), then ˜ is the Î-

module Î/Î(Δ-å) corresponding to eåx for some åŸ^.

pppprrrrooooooooffff Twisting by a suitable eåx, we reduce to the case where all ‘-
slopes of ˜ are ≤ 1, and at least one slope is < 1. Therefore its
irregularity Irr‘(˜) is < rank(˜). By Deligne's Euler-Poincare formula

for a D.E. ˜ on !1/^,

dimH0DR(!
1/^, ˜) - dimH1DR(!

1/^, ˜) = rank(˜) - Irr‘(˜)
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is strictly positive. Therefore H0DR(!
1/^, ˜) = HomÎ(Ø, ˜) is nonzero,

and this contradicts the irreducibility of ˜ unless ˜ is Ø itself. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11110000....11112222....1111 Let ˜ be a holonomic Î-module on !1, all of

whose slopes at ‘ are < 1. If ˜ is in D.E.(!1/^), then ˜ is the trivial Î-

module H0DR(!
1/^, ˜)‚^Ø.

pppprrrrooooooooffff By the previous Lemma, ˜ is a successive extension of trivials.

Since Ext1Î(Ø, Ø) = H1DR(!
1/^, Ø) = 0, the extensions are themselves

trivial. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11110000....11112222....2222 Let ˜ be a holonomic Î-module on !1, all of

whose slopes at ‘ are ≤ 1. If ˜ is in D.E.(!1/^), then ˜ is the direct

sum ·å H0DR(!
1/^, ˜‚e-åx)‚^(Î/Î(Δ-å)).

pppprrrrooooooooffff Again by the previous Lemma, ˜ is a successive extension of the
Î/Î(Δ-å)'s, and again the extensions are trivial because

Ext1Î(Î/Î(Δ-å),Î/Î(Δ-∫)) = H1DR(!
1/^, Î/Î(Δ+å-∫)) = 0. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....11110000....11113333 Suppose that L = ‡fi(x)Δ
i is a monic polynomial in

Δ of degree n ≥ 1 with coefficients fi(x) in ^[x]. Suppose that the highest

slope at ‘ of L is a/b in lowest terms, with multiplicity b, and a/b > 1.

Then ˜ := Î/ÎL is irreducible on !1 if any of the following conditions
holds:
(1) Every other slope ¬ of L at ‘ satisfies 0 < ¬ < 1.

(2) Every other slope ¬ of L at ‘ satisfies ¬ < 1, and neither L nor L*

has any nonzero polynomial solutions.

(3) Every other slope ¬ of L at ‘ satisfies ¬ ≤ 1, and neither L nor L*

has any nonzero solutions in eåx^[x] for any å in ^.
(4) Every other slope ¬ of L at ‘ satisfies ¬ ≤ 1, and FT(L) is a middle

extension, i.e., for j:U¨!1 the inclusion of any nonempty open set on

which FT(˜)=Î/ÎFT(L) is a D.E., FT(˜)§j~*(j
*FT(˜)).

pppprrrrooooooooffff The slope hypotheses assure in the break decomposition of ˜ as
I‘-representation, ˜ §˜a/b·˜≤1, the term ˜a/b is I‘-irreducible.

Therefore if ˜ is reducible, it has either a nonzero subobject or a
nonzero quotient ˆ all of whose ‘-slopes are ≤ 1. At the expense of

switching ˜ and ˜*, we may assume the existence of such a quotient
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ˆ. In view of 2.10.12, ˆ itself has a quotient eåx^[x] for some å. The
sufficiency of (1), (2), (3) is now obvious, and (3)À(4) by Fourier
Transform. QED

EEEExxxxaaaammmmpppplllleeeessss 2222....11110000....11114444 In the examples below, Pn and Qm denote

polynomials in ^[x] of degrees n and m respectively.

example of (1): L = Pn(Δ) + xΔ
m with 2 ≤ m < n and P(0)±0; its slopes

are 1 + 1/(n-m) with mult. n-m, and 1 - (1/m) with mult. m.

example of (2) : L = Pn(Δ) + Qm(xΔ) with m < n, (n,m)=1, Pn(0) = 0, Qm
has no zeroes in #; its slopes are 1 + m/(n-m) with mult. n-m, 0 with

mult. m. Because P(0)=0, L(xd + lower terms) = Qm(d)xd + lower terms,

so L is injective on ^[x] if Qm(x) has no zeroes in #≥0. The adjoint L
*
is

Pn(-Δ) + Qm(-1-xΔ), which will be injective on ^[x] if Qm(-1-x) has no

zeroes is #≥0.

example of (3) via (4): L =Pn(Δ) + xQm(Δ), n > m, (n,m) =1, where at

simple roots of Q, P/Q' has non-# values, and P is nonzero at multiple

roots of Q. Let xd be the highest power of x which divides Qm. The

slopes are 1 + 1/(n-m) with mult. n-m, 1 with multiplicity m-d, and, if
d±0, 1 - 1/d with multiplicity d. This is the case we have already
discussed at some length, without the extra hypotheses on n and m.

Notice that taking Q to be Δm gives back our example of (1).

So only example (2) is really new. An alternate and more fruitful
approach to it comes by noticing that L:= P

n
(Δ) + Q

m
(xΔ) is the Fourier

transform of K:= Q
m
(-1-xd/dx) + P

n
(x), a "Kloosterman operator of

bidegree (m,n)" in the terminolgy of [Ka-DGG, 4.4]. The ‘-slopes of K are

all n/m, so Î/ÎK is irreducible on ´m (because (n,m)=1), and on !1 it

is the middle extension of (Î/ÎK) | ´m (because Q has no zeroes in #).

So in fact L= P
n
(Δ) + Q

m
(xΔ) defines an irreducible Î-module on !1

whether or not n > m.
If m > n, L gives a D.E. on ´m, which is regular singular at ‘ and

whose 0-slopes are n/(m-n) with multiplicity m-n, and 0 with
multiplicity n. It is Lie-irreducible as well. Indeed, if (Î/ÎL) | ´m were
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Kummer induced of degree d, then d would divide the multiplicity of
each 0-slope, and these multiplicities (m-n and n) are relatively prime.

Applying the Main D.E. Theorem 2.8.1, we find

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....11115555 Let P:=Pn(x) = ‡ pix
i and Q:=Qm(x) = ‡ qix

i be

nonzero polynomials in ^[x], of degrees n and m ± n respectively, and
suppose that

(1) Qm(x) has no roots in #, and P0(0)=0.

(2) (n,m)=1.

Denote by G the differential galois group G of P(Δ) + Q(xΔ) on !1 ( if
n > m) or on ´m (if m > n) and define N:= max(n,m). Then

(case n > m) G is connected. If pn-1 = qn-1 = 0, then G = G0,der;

otherwise G = ´mG0,der.

(case m > n) If m-n=1, then G is GL(m). If m-n ≥ 2 and qm-1/qm Ÿ $,

then G0 =G0,der and detG is <exp(2πiqm-1/qm)>; otherwise

G=´mG0,der.

In both cases,the possibilities for G0,der are given by:

(1) If n-m is odd, G0,der is SL(N); if |n-m|=1, then G is GL(N).

(2) If n-m is even, then G0 der is SL(N) or SO(N) or (if N is even) SP(N),

or |n-m| = 6, N=7,8 or 9, and G0,der is one of
N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.

LLLLooooccccaaaattttiiiioooonnnn ooooffff tttthhhheeee ssssiiiinnnngggguuuullllaaaarrrriiiittttiiiieeeessss ooooffff aaaa FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm

We conclude this section with a general result on the location of
the singularities of a Fourier Transform. Recall that any holonomic Î-

module ˜ on !1 is a D.E. on some dense open set of !1. Therefore it
makes sense to speak of the ‘-slopes of ˜.

TTTThhhheeeeoooorrrreeeemmmm 2222....11110000....11116666 (compare [Ka-GKM, 8.5.8]) Let ˜ be a holonomic Î-
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module on !1. Then
(1) FT˜ is a D.E. on ´m if and only if ˜ has no ‘-slope =1.

(2) FT˜ is a D.E. near å if and only if ˜‚eåx has all ‘-slopes ≥ 1.
(3) FT˜ is a D.E. near å if and only if the function ^ ¨ #

∫ ÿ Irr‘(˜‚e∫x)

is constant in a neighborhood of å.

pppprrrrooooooooffff We first show that (2) implies (1). Indeed, if ˜ has no ‘-slope

=1, then for any å ± 0, ˜‚eåx has all ‘-slopes ≥ 1 (cf. [Ka-DGG,
2.2.11.4]). Conversely, if ˜ has some ‘-slope =1, apply the "slope
decomposition" [Ka-DGG, 2.3.4] to ˜‚Ø^((1/x)) and then apply the

Break Depression Lemma 2.10.11 to its "slope =1" part to produce an å

such that ˜‚eåx has some ‘-slopes < 1.
To prove (2) and (3), we may, by additive translation, reduce to

the case å = 0. Thus we must show that FT˜ is a D.E. near zero if and
only if ˜ has all ‘-slopes ≥ 1. By Levelt's structure theorem [Le-JD], ˜
has all ‘-slopes ≥ 1 if and only if the function

^ ¨ #

å ÿ Irr‘(˜‚eåx)

is constant in a neighborhood of å = 0. [Indeed, if ˜ has ‘-slopes ¬1, ...

, ¬r, then Irr‘(˜) := ‡i ¬i, while for all but finitely many å ± 0,

Irr‘(˜‚eåx) = ‡i max(¬i, 1).] So (2) and (3) are equivalent.

We may further reduce to the case in which ˜ is irreducible. For
in any case ˜ is a successive extension of finitely many irreducibles
˜i, and FT˜ is a successive extension of the finitely many irreducibles

FT˜i. Now FT˜ is a D.E. near zero (i.e., is Ø-coherent near zero) if and

only if each of its Jordan Holder constituents FT˜i is a D.E. near zero

(i.e., is Ø-coherent near zero). Clearly the condition (2), that ˜ have all
‘-slopes ≥ 1, holds for ˜ if and only if it holds for each ˜i. Thus it

suffices to treat the case when ˜ is irreducible.
We first check by hand a few special cases.
If ˜ is a delta module ∂å, then it has no ‘-slopes, and

FT˜ § Î/Î(Δ-å) is a D.E. on all of !1.
If ˜ is the constant Î-module Ø § Î/ÎΔ, whose unique ‘-slope

is 0, then FT˜ is ∂0, which is not a D.E. near zero.

If ˜ is the Î-module Î/Î(Δ+å) § e-åx^[x] with å ± 0, whose
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unique ‘-slope is 1, then FT˜ is ∂å, which is a D.E. near zero.

Suppose now that ˜ is irreducible, not punctual, and not of the
form Î/Î(Δ+å) for any å in ^. For every å in ^ we have

H0DR(!
1, ˜‚eåx) = HomÎ(Î/Î(Δ+å), ˜) = 0.

The adjoint ˜* of ˜ is of the same type, as is its pullback by x ÿ -x,

[-1]*˜*, so we also have

H0DR(!
1, [-1]*˜*‚eåx) = HomÎ(Î/Î(Δ+å), [-1]

*˜*) = 0.

If we denote by U = !1 - S a nonempty open set of !1 on which ˜ is a

D.E., then ˜ § j~*j
*˜ (since ˜ is irreducible nonpunctual). The Euler-

Poincare formula for ˜ § j~*j
*˜ on !1 gives

ç(!1, ˜‚eåx) =

= rankØU
(j*˜‚eåx) - Irr‘(˜‚eåx) - ‡∫ŸS totdrop∫(˜‚eåx).

Because eåx is a rank one D.E. on all of !1, it is formally trivial at each
point ∫ Ÿ S, so we can rewrite the above formula as

ç(!1, ˜‚eåx) = rankØU
(j*˜) - Irr‘(˜‚eåx) - ‡∫ŸS totdrop∫(˜)

= (function of ˜ alone) - Irr‘(˜‚eåx).

We now express this information in terms of the De Rham

complexes of ˜‚eåx, and of [-1]*˜*‚eåx, which we view as the two-
term complexes (in degrees 0 and 1)

Δ + å Δ + å

˜ zzzzzzc ˜, [-1]*˜* zzzzzzzc [-1]*˜*.
We are told that both of these arrows are injective for all å in ^, and
that

dim^(˜/(Δ+å)˜) = Irr‘(˜‚eåx) - (function of ˜ alone).

In terms of the Fourier Transforms FT˜ and FT([-1]*˜*) § (FT˜)*,
this says precisely that the two arrows

-x + å -x + å

FT˜ zzzzzzc FT˜, (FT˜)* zzzzzzzc (FT˜)*.
are both injective for all å in ^, and that

dim^(FT˜/(x-å)FT˜) = Irr‘(˜‚eåx) - (function of ˜ alone).

According to 2.9.10.1, FT˜ is a D.E. near zero if and only if the
following three conditions hold:
(1) the map Left(x) : FT˜ ¨ FT˜ is injective.

(2) the map Left(x) : (FT˜)* ¨ (FT˜)* is injective.
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(3bis) the function å ÿ dim^(FT˜/(x - å)FT˜) is constant near å = 0.

Thus for ˜ is irreducible, not punctual, and not of the form
Î/Î(Δ+å) for any å in ^, FT˜ is a D.E. near zero if and only if the

function å ÿ Irr‘(˜‚eåx) is constant for å near zero. QED

2222....11111111 SSSSyyyysssstttteeeemmmmaaaattttiiiicccc ssssttttuuuuddddyyyy ooooffff eeeeqqqquuuuaaaattttiiiioooonnnnssss oooonnnn ´́́́mmmm
(2.11.0) We now turn to the systematic study of equations on

´m := Spec(^[x,x-1]). We write

Δ := d/dx, D := xd/dx.

The ring Î´m
on ´m is ^[x,x-1,D] = ^[x,x-1,Δ] = Î!1[1/x]. The

multiplicative inversion "inv" on ´m interchanges x and x-1, and sends

D to -D. Because we will sometimes want to think of ´m as sitting in

!1, we will use the induced notion of adjoint Δÿ -Δ , which sends D to
-1-D. Every element of Î´m

is the (right or left) product of a power of

x, which is a unit in Î´m
, and of an element of the subring ^[x,D]. We

will generally write elements of Î´m
in the form ‡ xiPi(D), where the

Pi(t) are polynomials in ^[t].

Given a Î-module ˜ on ´m and an åŸ^, we denote by ˜‚xå

the Î-module ˜‚Ø(Î/Î(D-å)). Notice that Î/Î(D-å)§ xå^[x,x-1] by

the Î-linear map 1ÿxå. For each åŸ^, there is a ^-linear ring
automorphism Bå of Î which sends xÿx and which sends DÿD-å. One

could also describe ˜‚xå as the Î-module obtained from ˜ by this
extension of scalars Bå:Î¨Î.

LLLLeeeemmmmmmmmaaaa 2222....11111111....1111 Let ˜ be a holonomic Î-module on ´m. Then for any

å Ÿ ^, ç(´m, ˜‚xå) = ç(´m, ˜).

pppprrrrooooooooffff This is immediate from the Euler-Poincare formula, because

xå^[x,x-1] is a rank one D.E. on ´m of slope zero at 0 and ‘. QED

.
LLLLeeeemmmmmmmmaaaa 2222....11111111....2222 Let V be a nonzero object of D.E.(´m/^) all of whose

slopes at both 0 and ‘ are zero. Then V is a successive extension of

objects xå^[x,x-1].
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pppprrrrooooooooffff Since V is regular singular at both 0 and ‘, it is uniquely
determined by the monodromy representation it gives of the topological
π1(´m) § #. As # is abelian, V is a successive extension of rank one

D.E.'s on ´m which are regular singular at 0 and ‘. So we are reduced

to the case when V is Ø-invertible. As Ø = ^[x,x-1] is a principal ideal

domain, V is free of rank one over Ø, say V = ^[x,x-1]e0 with De0=fe0,

so V§ Î/Î(D-f) for some fŸ^[x,x-1]. In terms of f, the slopes of V at 0
and ‘ are max(0, -ord0(f)) and max(0, -ord‘(f)) respectively. As V has

slope zero at both 0 and ‘, f is constant. QED

Here is a formal version of this, in a form which inductively
isolates the entire slope zero part from the rest.
FFFFaaaaccccttttoooorrrriiiizzzzaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 2222....11111111....3333(cf. [Ma]) Consider an element L of
^[[x]][D] of the form

L = ‡i≥0 x
iAi(D)

where the Ai(t) are polynomials in ^[t] of uniformly bounded degree.

Put N :=supi(degAi). Suppose that A0 is nonzero and that we are given

a factorization of A0,

A0(t)=P(t)Q(t), such that for all n ≥ 1, gcd(P(t+n), Q(t)) =1.

Denote by M the degree of P. Then in ^[[x]][D] there exists a unique
factorization of L

L = ( ‡i≥0 x
iPi(D) )\( ‡i≥0 x

iQi(D) )

such that
P0 = P, deg(Pi) < M for i > 0

Q0 = Q, deg(Qi) ≤ N - M for i > 0, with equality if deg(Ai)=N.

pppprrrrooooooooffff If such a factorization exists, then equating like powers of x and

using the commutation relation Pi(D)x
j = xjPi(D+j), we find

An(t) = ‡i+j=n Pi(t+j)Qj(t) =

= P(t+n)Qn(t) + Pn(t)Q(t) + ‡i+j=n, 1≤i,j≤n-1 Pi(t+j)Qj(t).

If we rewrite this as
An(t) - ‡i+j=n, 1≤i,j≤n-1 Pi(t+j)Qj(t) = P(t+n)Qn(t) + Pn(t)Q(t),

we see that Pn and Qn are obtained inductively by using the relative

primality of P(t+n) and Q(t) to write the left hand side as lying in the
ideal (P(t+n), Q(t)) they generate, in such a way that the coefficient Pn
of Q is of lowest possible degree. This shows the unicity, and also gives
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an inductive proof of existence. QED

IIIIssssoooommmmoooorrrrpppphhhhiiiissssmmmm LLLLeeeemmmmmmmmaaaa 2222....11111111....4444 (cf. [Ma]) Suppose that P(t) in ^[t] is a
polynomial of degree N ≥ 1 which satisfies

for all n ≥ 1, gcd(P(t+n), P(t)) =1.

Suppose that L = ‡i≥0 x
iPi(D) in ^[[x]][D] satisfies

P0 = P, and for i≥1, degPi < N.

Then there is a unique isomorphism of ^[[x]][D]-modules
^[[x]][D]/^[[x]][D]L § ^[[x]][D]/^[[x]][D]P(D) which modulo (x) is the
identity on ^[D]/^[D]P(D).
In particular, the two Î-modules on ^((x)), ^((x))[D]/^((x))[D]L and
^((x))[D]/^((x))[D]P(D) are isomorphic.

This is a special case of
IIIIssssoooommmmoooorrrrpppphhhhiiiissssmmmm LLLLeeeemmmmmmmmaaaa bbbbiiiissss 2222....11111111....5555 (cf. [Ma]) Suppose that V is a finite-
dimensional ^-vector space, and that ◊ :=V‚^^[[x]] is endowed with a

structure of ^[[x]][D]-module. Write the action of D on elements of V:

D(v) = ‡i≥0 x
iAi(v), for unique elements Ai in End^(V).

Suppose that the distinct eigenvalues of A0 are incongruent mod #.

Denote by ◊1 the ^[[x]][D]-module whose underlying ^[[x]]-module is

V‚^^[[x]] but where D(v) = A0(v) for v in V. Then there exists a unique

isomorphism of ^[[x]][D]-modules from ◊1 to ◊ which is the identity

modulo (x).

pppprrrrooooooooffff We must show that there is a unique sequence of elements
{Bi}i≥0 in End(V) such that B0=1 and such that in ◊, we have

D(‡i≥0x
iBi(v)) =‡i≥0x

iBi(A0(v)).

The desired isomorphism is then the unique ^[[x]]-linear one which

maps vÿ‡i≥0x
iBi(v). Expanding the left side we find

D(‡i≥0 x
iBi(v))=‡i≥0 ix

iBi(v) + ‡i≥0x
i‡j≥0 x

jAjBi(v).

Comparing coefficients of like powers of x, we find, for each n ≥ 1,
BnA0 = nBn + A0Bn + ‡j<n An-jBj, which we rewrite

-[A0, Bn] - nBn = ‡j<n An-jBj.

But the hypothesis on the eigenvalues of A0 is precisely that the

endomorphism ad(A0) of End(V) has no nonzero eigenvalue in #.
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Therefore this last equation allows us to solve uniqely for Bn
inductively. QED

EEEExxxxtttt LLLLeeeemmmmmmmmaaaa 2222....11111111....6666 (cf. [Ma]) Suppose that V and W are finite-
dimensional ^-vector spaces, and that ◊ :=V‚^^[[x]] and

„ :=W‚^^[[x]] are endowed with the structure of ^[[x]][D]-modules.

Write the actions of D on elements of V and W:

D(v) = ‡i≥0 x
iAi(v), for unique elements Ai in End^(V),

D(w) = ‡i≥0 x
iBi(w), for unique elements Bi in End^(W).

(1) If dim(V) > 0, and det(T - A0|V) = °(T - åi), then ◊ is a successive

extension of the objects ^[[x]][D]/^[[x]][D](D - åi).

(2) Suppose that A0 and B0 have no common eigenvalues mod #. Then

Hom^((x))[D](◊[1/x], „[1/x]) =0= Ext^((x))[D](◊[1/x], „[1/x]).

pppprrrrooooooooffff (1) Intrinsically, ◊ is a ^[[x]][D] module which is ^[[x]]-free of
some finite rank r ≥ 1, V is the r-dimensional ^-space ◊/x◊, and A0 in

End^(V) is the induced action of D on ◊/x◊. To prove (1), it suffices (by

induction on r) to exhibit an eigenvalue å of A0 and an element v‘ of

◊ such that both of the following conditions hold:
v
‘

mod x◊ is nonzero in V,

Dv‘ = åv‘ in ◊.

For such an element v‘ defines an injective mapping of ^[[x]][D]-

modules
^[[x]][D]/^[[x]][D](D - å) ¨ ◊

whose cokernel is ^[[x]]-free of rank r-1. To do this, pick for å any
eigenvalue of A0 whose real part Re(å) is minimal, and any nonzero

eigenvector v00 in V with eigenvalue å: A0v00 = åv00. Because Re(å)

is minimal, for every integer n ≥ 1, å-n is nnnnooootttt an eigenvalue of A0,

and consequently A0 - å + n is bijective on V, for every integer n ≥ 1.

Using this bijectivity, one shows that there exists a unique sequence of

elements vi in ◊/xi+1◊ which satisfy the three conditions

v0 = v00,

vi+1 • vi mod xi+1◊,

Dvi • åvi mod xi+1◊.
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The inverse limit of the vi is then the desired element v‘.

(2) Applying (1) to both ◊ and „, we reduce immediately to the
case where V and W are one-dimensional, and D(v)=av, D(w)=bw with
a-b not in #. Then the Hom and Ext in question are just the kernel and
cokernel of D+b-a on ^((x)); as a-b is not an integer, this map is
bijective. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....11111111....7777 Let L = ‡i≥0 x
iAi(D) be an element of ^[[x]][D] of

degree N in D, and suppose that A0 is nonzero of degree M. Let V be the

D.E. on ^((x)) given by L. Then in the the slope decomposition of V as
Vslope=0 · Vslope>0, we have

rank(Vslope=0 ) = M.

If M > 0, and A0(t) = (^≠ factor)°å(t - å)
nå, then Vslope=0 is a

successive extension of the rank one objects xå^((x)) with multiplicity
nå. Moreover, if the distinct zeros of A0(t) are incongruent mod #, then

Vslope=0 § ^((x))[D]/^((x))[D]A0(D) § ·å ^((x))[D]/^((x))[D](D-å)nå.

pppprrrrooooooooffff If M = 0, it is clear that all slopes are strictly positive. If M > 0,
then by the Factorization Lemma, we may reduce to the case N=M
with the same A0. If A0 has its distinct zeroes incongruent mod #,

apply the Isomorphism Lemma, and then the Ext Lemma to separate
the roots. If not, successively apply the Factorization Lemma to the å's
in increasing order of their real part, to express Vslope=0 as a successive

extension of rank one equations of the form D - f, where f=å + higher
terms in x. To each of these apply the Isomorphism Lemma. QED

To put this into perspective, recall that one always has
FFFFoooorrrrmmmmaaaallll JJJJoooorrrrddddaaaannnn DDDDeeeeccccoooommmmppppoooossssiiiittttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 2222....11111111....8888 Let V be any D.E. on
^((x)) which is entirely of slope zero. Pick any fundamental domain in
^ for ^/#. Then
(1) V is isomorphic to a direct sum of indecomposables of slope zero.
(2) Any indecomposable of slope zero is isomorphic to

Loc(å, nå) := ^((x))[D]/^((x))[D](D-å)nå,

for some unique å in the chosen fundamental domain, and some
integer nå≥1. We call such an indecomposable "of type å mod #".

(3) Given two indecomposables Loc(å, nå) and Loc(∫, m∫), we have
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HomÎ(Loc(å, nå), Loc(∫, m∫)) = 0 unless å • ∫ mod #, in which case

the Hom has dimension min(nå, m∫).

(4) Given an åŸ^, the number of indecomposables in V of type å mod #
is the ^-dimension of the space

Hom
Î
(V, xå^((x)))=Hom

Î
(V‚x-å, ^((x)))

of ^((x))-valued solutions of V‚x-å.
pppprrrrooooooooffff One knows that the restriction functor

D.E.(´m/^)RS at 0,‘ ¨ D.E.(^((x))/^)slope=0
is an equivalence of categories. In view of the topological interpretation
of the source as the category of representations of #, this lemma
amounts to Jordan normal form. QED

We now return to the global theory on ´m.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....11111111....9999 Let (d,n,m) be a triple of nonnegative integers with

d ≥ 1, n+m±0 and gcd(d,n-m)=1. Suppose the operator L = ‡ xiPi(D)

satisfies the following three conditions:
(a) Pi =0 except for i=0,...,d; P0 and Pd are nonzero.

(b) degP0 = n, degPd = m, and min(n,m) ≥ degPi for 0<i<d.

(c) P0 and Pd have no common zeroes mod # (i.e., if å is a zero of P0
and ∫ is a zero of Pd, then å-∫ is not in #).

Put ˜:= Î/ÎL. Then
(1) If n±m, ˜ is an irreducible object of D.E.(´m/^). If n>m (resp. if

m>n), ˜ is regular singular at 0 (resp. ‘), and at ‘ (resp. 0) its slopes
are d/|n-m| with multiplicity |n-m| and 0 with multiplicity min(n,m).
It is Lie-irreducible unless there exists a divisor D > 1 of gcd(n,m) such
that both the roots mod # of P0 and the roots mod # of Pd are

Kummer-induced of degree D.

(2) If n=m,(so d=1) write Pi(x) = ‡pi,jx
j for i=0,1 and define

å= -p0,n/p1,n U := ´m - {å}, j: U ¨ ´m the inclusion.

Then j*˜ is an irreducible object of D.E.(U/^) and ˜§j
~*
j*˜. Local

monodromy around å is a pseudoreflection.

pppprrrrooooooooffff The adjoint of an L which satisfies (a), (b), (c) is another one,

with the same (d,n,m), as is, for any ¬Ÿ^≠, its pullback by
multiplicative translation T¬: xÿ¬x. And if L is such an operator, then
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xdinv*(L) is one of type (d,m,n).
So to prove (1) it suffices (by an inversion) to treat the case n>m.

Then L is (up to a ^≠ factor) monic in D of degree n, so ˜ is certainly a
D.E. on ´m. The calculation of the slopes at zero and ‘ is immediate

from (b). Because gcd(d, n-m) = 1 by hypothesis, as I‘-representation

˜ is the direct sum of an irreducible of rank n-m and of a tame I‘-

representation of rank m. So if m=0, ˜ is already I‘-irreducible. If

m>0 and ˜ is reducible, it has either a nonzero subobject or a nonzero
quotient ˆ in D.E.(´m/^) all of whose slopes at both zero and ‘ are 0.

Replacing ˜ by its adjoint if necessary, we may assume that it has
such a quotient. But such an ˆ is itself a successive extension of Î-

modules of the form xå^[x,x-1], so M would admit some xå^[x,x-1] as
a quotient. Concretely, this means that L kills some nonzero element of

xå^[x,x-1], say xåf(x) where f = ‡i=a,...,b ¬ix
i is a Laurent polynomial

of bidegree (a,b). Looking at the highest order term in L(xåf)=0, we see
that Pd(å+b)=0; looking at lowest order terms we see that P0(å+a)=0,

contradicting (c). Thus ˜ is irreducible.
If ˜ is not Lie-irreducible, it is Kummer induced of some degree

D > 1. Looking at the slope decompositions of the I0- and I‘-

representations, we see that every slope=¬ component of each
decomposition is itself Kummer induced of degree D. Therefore D must
divide the multiplicities with which any of the slopes occurs, whence D
divides gcd(n,m). Looking at the semisimplification of the slope=0 part
at zero (resp. ‘), we see that the roots mod # of P0 (resp. Pd) are

Kummer induced of degree D. This concludes the proof of (1).

We now turn to the proof of (2). It is clear that j*˜ is a D.E. on U,
which is regular singular at 0, å, and ‘. Let us admit temporarily that

˜§j~*j
*˜. Then from Pochammer's Lemma 2.9.7 we see that local

monodromy around å is a pseudoreflection. So if j*˜ is not irreducible,
it has either a nonzero subobject or a nonzero quotient ˆ in D.E.(U/^)
which is regular singular at 0,å,‘ and whose local monodromy at å is

ttttrrrriiiivvvviiiiaaaallll. Such an ˆ is a successive extension of j*(xå^[x,x-1])'s, and
hence, at the expense of replacing ˜ by its adjoint, we may assume

that j*˜ has a quotient j*(xå^[x,x-1]). This means that ˜§j~*j
*˜

has a nonzero map to j~*j
*(xå^[x,x-1]) =xå^[x,x-1], which means
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precisely that L kills a nonzero element of xå^[x,x-1]. Exactly as above,

this contradicts (c), and so establishes the irreducibility of j*˜. Again

using ˜§j~*j
*˜, we find that ˜ itself is an irreducible Î-module on

´m.

Thus it remains only to establish that ˜§j~*j
*˜ in case (2). This

means showing that both L and L* act injectively on the delta-module
∂å. As the hypotheses are self-adjoint, it suffices to prove this for L. At

the expense of a multiplicative translation, we may assume that å=1.
We write

L= P(D) - xQ(D) with both P, Q of degree n ≥ 1.

Passing to the formal parameter t at å=1 such that x= et, our operator
becomes

L=P(d/dt) - etQ(d/dt),
and we must show that this operates injectively on ∂0 = ^((t))/^[[t]].

This is the Fourier Transform of the equivalent problem of showing
that, denoting by Sub = exp(-d/dt) the endomorphism of ^[t] given by
tÿt-1, the operator P(t) - Sub«Q(t) is injective on ^[t]. But if f(t) is a
nonzero polynomial which satisfies

P(t)f(t) = Q(t-1)f(t-1), i.e., f(t)/f(t-1) = Q(t-1)/P(t),
then for each k ≥ 2 we have

f(t)/f(t-k) = [Q(t-1)Q(t-2)...Q(t-k)]/[P(t)P(t-1)...P(t-(k-1))].
By hypothesis (c), the right hand fraction is in lowest terms, which
implies that f(t-k) has at least nk zeroes. Therefore no such nonzero f
exists. QED

Applying the Main D.E. Theorem 2.8.1 in the case n±m, (we will
take up the case n=m further on, in 3.5, 3.5.8) we obtain
TTTThhhheeeeoooorrrreeeemmmm 2222....11111111....11110000 Let (d,n,m) be a triple of nonnegative integers with

d ≥ 1, n±m and gcd(d,n-m)=1. Suppose the operator L := ‡xiPi(D)

satisfies the following four conditions:
(a) Pi =0 except for i=0,...,d; P0 and Pd are nonzero.

(b) degP0 = n, degPd = m, and min(n,m) ≥ degPi for 0<i<d.

(c) P0 and Pd have no common zeroes mod # (i.e., if å is a zero of P0
and ∫ is a zero of Pd, then å-∫ is not in #).

(d) There exists no divisor D > 1 of gcd(n,m) such that both the roots
mod # of P0 and of Pd are Kummer induced of degree D.

Let N:=max(n,m) be the order of L. Then the differential galois group G
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of ˜:=Î/ÎL on ´m is reductive. If det˜ is of finite order then

G0=G0,der; otherwise G0 = ´mG0,der.The possibilities for G0,der are

given by:

(1) If |n-m| is odd, G0,der is SL(N); if |n-m|=1, then G is GL(N).

(2) If |n-m| is even, then G0,der is SL(N) or SO(N) or (if N is even) SP(N),

or |n-m|=6, N=7,8 or 9, and G0,der is one of
N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.
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TTTThhhheeee ggggeeeennnneeeerrrraaaalllliiiizzzzeeeedddd hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc eeeeqqqquuuuaaaattttiiiioooonnnn
We now turn to the detailed study of the case d=1, which is the

case of the classical "generalized hypergeometric equation". My interest
in this case was aroused in 1986 by the paper [B-B-H] of Beukers,
Brownawell, and Heckman, concerned with the case d=1, n±m (cf. also
the recent paper [B-H] of Beukers and Heckman devoted to the case
d=1,n=m).

(3.1) Let (n,m) ± (0,0) be a pair of nonnegative integers. Given nonzero
polynomials P:= Pn, Q:= Qm in ^[t] of degrees n and m respectively, we

define the hypergeometric operator Hyp(P,Q) in Î to be
Hyp(P,Q) := P(D) - xQ(D).

We call it a hypergeometric operator of type (n,m). We define the
hypergeometric Î-module Ó(P, Q) on ´m by

Ó(P, Q) := Î/ÎHyp(P,Q).
Of course this Î-module does not change if we multiply Hyp(P,Q) by a

^≠ factor. This permits us when convenient (which it is not always) to
suppose that Q is monic.

It will sometimes be convenient to have a notation which makes
explicit the factorizations of P and Q. Suppose

P(t) = p°(t - åi), with pŸ^≠,

Q(t) = q°(t - ∫j), with qŸ^≠,

¬ := p/q.
In terms of the the n roots (with multiplicity) åi of P, the m roots

(with multiplicity) ∫j of Q, and the scaling factor ¬ in ^≠, we define

Hyp¬(åi's; ∫j's) := ¬°(D - åi) - x°(D - ∫j) = (1/q)Hyp(P,Q),

Ó¬(åi's; ∫j's) := Î/ÎHyp¬(åi's; ∫j's) = Î/ÎHyp(P,Q).

The effect of the operation ˜ÿ˜‚x© is particularly easy to see:

Ó¬(åi's; ∫j's)‚x© § Ó¬(©+åi's; ©+∫j's),

as is the behaviour under multiplicative translation:

[xÿμx]*Ó¬(åi's; ∫j's) § Ó¬/μ(åi's; ∫j's),

[xÿμx]*Ó¬(åi's; ∫j's) § Ó¬μ(åi's; ∫j's).

The behavior of the operators under multiplicative inversion and
passage to adjoint is given by

inv*Hyp(P(t), Q(t)) = inv*Hyp(P(t), Q(t)) = (-1/x)Hyp(Q(-t), P(-t))
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Hyp(P(t), Q(t))* = Hyp(P(-1-t), Q(-2-t)).
In the ¬,å,∫ notation this gives

inv*Ó¬(åi's; ∫j's) § inv*Ó¬(åi's; ∫j's) § Ó(-1)n+m/¬(-∫j's; -åi's)

Ó¬(åi's; ∫j's)
* § Ó¬(-1)n+m(-1-åi's; -2-∫j's).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....2222 Suppose that Ó¬(åi's; ∫j's)= Ó(P,Q) is an irreducible

Î-module on ´m. Then

(1) For fixed ¬, the isomorphism class of Ó¬(åi's; ∫j's) depends only on

the åi and the ∫j mod #.

(2) P and Q have no common zeroes mod #, i.e., for any root åi of P

and any root ∫j of Q, åi-∫j is not in # .

pppprrrrooooooooffff (1) We must show that if Ó¬(åi's; ∫j's) is irreducible, then for

any choice of ëåi's; ë∫j's which are congruent mod # to the åi's; ∫j's,

Ó¬(ëåi's; ë∫j's) is irreducible and isomorphic to Ó¬(åi's; ∫j's). Using the

fact that multiplicative inversion interchanges the role of å's and ∫'s,
and proceeding step by step, it suffices to treat the case when all å's
and ∫'s are equal to their respective ëå's and ë∫'s except for å1 and ëå1,

which differ by 1. Passing to the adjoint if necessary, it suffices to treat
the case where in addition ëå1 is å1 - 1. Writing simply å for å1, the

situation is that
å is a root of P, say P(D) = (D-å)R(D).

The commutation relation
[(D-å)R(D) -xQ(D)](D+1-å) = (D-å)[(D+1-å)R(D) -xQ(D)]

shows that Right(D+1-å) defines a map of Î-modules
Right(D+1-å) : Ó(P,Q) ¨ Ó((D+1-å)R(D), Q).

This map is nonzero (otherwise D+1-å Ÿ Î[(D+1-å)R(D) -xQ(D)]; looking
at degrees in D we infer that D+1-å = f(x)[(D+1-å)R(D) -xQ(D)] for some

f(x) in ^[x,x-1]. Looking at x-degrees now leads to a contradiction.).
Since its source is irreducible, it is injective. If n±m, both source and
target are Ø-locally free Î-modules on ´m of the same rank

max(n,m), so our map, being injective, is an isomorphism.
If n=m, then our map is an isomorphism on ´m - {¬}, and it is

injective on all of ´m. So if it fails to be an isomorphism, its cokernel is

a successive extension of delta-modules ∂¬. In particular, (D+1-å)R(D) -
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xQ(D) operates noninjectively on ∂¬. By a multiplicative translation, we

may assume that ¬=1. Exactly as in the proof of 2.11.9 above, this
noninjectivity then means that there exists a nonzero f(t) in ^[t] such
that

(t+1-å)R(t)f(t) = Q(t-1)f(t-1).
Multiply both sides by (t-å):

(t-å)R(t)f(t)(t+1-å) = Q(t-1)f(t-1)(t-å),
which says precisely that F(t):= f(t)(t+1-å) satisfies

P(t)F(t) = Q(t-1)F(t-1),
which in turn says that Hyp(P,Q) acts noninjectively on ∂1. But this is

not the case, because Ó(P,Q), being an irreducible Î-module on ´m, is a

middle extension across 1. This completes the proof of (1).
To prove (2), simply observe that in virtue of (1), any irreducible

Ó¬(åi's; ∫j's) is isomorphic to one all of whose å's and ∫'s lie in any

prechosen set of coset representatives for ^/# (e.g., in 0 ≤ Re(z) < 1). For
one of these, åi - ∫j Ÿ # implies åi = ∫j, whence D - åi is a right

divisor of Hyp¬(åi's; ∫j's), contradicting irreducibility. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....2222....1111 Ó = Ó¬(åi's; ∫j's)= Ó(P,Q) is an irreducible Î-module

on ´m if and only if P and Q have no common zeroes mod #.

pppprrrrooooooooffff This is immediate from 3.2 and 2.11.9. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....2222....2222 Suppose that Ó = Ó¬(åi's; ∫j's)= Ó(P,Q) is an

irreducible hypergeometric Î-module on ´m of type (n,m) (i.e., P=Pn
and Q=Qm have no common zeroes mod #).

(1) The formal Jordan decomposition of (Ó‚Ø^((x)))slope=0 is

(Ó‚Ø^((x)))slope=0 § ·0≤Re(å)<1 ^((x))[D]/^((x))[D](D-å)nå

and nå is the number of åi which are congruent mod # to å.

(2) The formal Jordan decomposition of (Ó‚Ø^((1/x)))slope=0 is

(Ó‚Ø^((1/x)))slope=0 § ·0≤Re(∫)<1 ^((1/x))[D]/^((1/x))[D](D-∫)
n∫

and n∫ is the number of ∫j which are congruent mod # to ∫.

(3)If n ≥ m (resp. if m ≥ n) the local monodromy at the regular singular
point 0 (resp. ‘) has eigenvalues with multiplicity {exp(2πiå)}P(å)=0
(resp. {exp(-2πi∫)}Q(∫)=0). It has a single Jordan block for each distinct

eigenvalue, of size the multiplicity of that eigenvalue (i.e., the minimal
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polynomial is the characteristic polynomial).

pppprrrrooooooooffff To prove (1) and (2), use the irreducibility and the previous
Proposition to reduce to treating the case when all the åi and the ∫j
have real part in [0,1), in which case it follows immediately from
2.11.7.

To prove (3), we may, by inversion, suppose n ≥ m. That the local
monodromy around zero has the asserted eigenvalues is standard from
the classical theory of the indicial polynomial at a regular singularity.
Using the irreducibility, we may as above assume that all the åi have

real part in [0,1). Twisting by x©, it suffices to show that if 0 is the only
integer root of P(t), then the unipotent part of the local monodromy
consists of a single Jordan block. Because we are at a regular
singularity, the number of unipotent Jordan blocks (which is always
the dimension of the space of single-valued solutions in a punctured
classical neighborhood of the singularity ) is the dimension of the space
of ^((x))-solutions. It follows from the shape of the formal

decomposition that this dimension is one; alternately, if ‡aix
i = xd + ...

is killed by P(D) - xQ(D), then looking at the lowest degree term we see
that P(d)=0, whence d=0 since 0 is the only integer root of P. The
coefficients an are subject to the two term recursion

P(n)an = Q(n-1)an-1.

Since P(0)=0, all aneg vanish, and the positive coefficients an>0 may be

determined uniquely by this recurrence, since for n > 0 the factor P(n)
does not vanish. QED

LLLLeeeemmmmmmmmaaaa 3333....3333 Suppose that Ó:=Ó¬(åi's; ∫j's) is a hypergeometric Î-

module on ´m of type (n,m). Then its isomorphism class as Î-module

on ´m determines the type (n,m), the set (with multiplicity) of the åi
mod #, the set (with multiplicity) of the ∫j mod #, and, if either n=m

or if Ó is irreducible, the scalar ¬Ÿ^≠.

pppprrrrooooooooffff Denote by r the generic Ø-rank of Ó. At least one of zero or ‘ is
a regular singularity. Performing a multiplicative inversion if
necessary, we may assume that zero is a regular singularity. Then n=r,
and m is the dimension of the slope zero part at ‘. The åi mod # and

the ∫j mod # are determined by the formal Jordan decompositions of

the slope zero parts at 0 and ‘ respectively.
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If n=m, then ¬ is the "other" singularity of Ó, i.e., it is the unique

point å in ´m such that, denoting by Ø¢ the complete local ring at å,

either Ó or its adjoint Ó* has dim^HomÎ(Ó, Ø
¢) = n-1 (by

Pochammer's Lemma 2.9.7).
If n±m, we do not know any a priori description of ¬, but we can

prove its unicity as follows when Ó is irreducible. If ¬ is not unique,

then for some μ±1 in ^≠ there exists an isomorphism of Ó with its
pullback by the map xÿμx. Then each piece of the slope decomposition
at ‘ is isomorphic to its pullback by this map. Since
(Ó‚^((1/x)))slope>0 has irregularity oooonnnneeee, this contradicts [Ka-DGG,

2.3.8]. QED

RRRReeeemmmmaaaarrrrkkkk 3333....3333....1111 If we knew that the isomorphism class of the
sssseeeemmmmiiiissssiiiimmmmpppplllliiiiffffiiiiccccaaaattttiiiioooonnnn of Ó as Î-module on ´m depended only on the

data (åi mod #, ∫j mod #, ¬), then at the last step we could replace

"isomorphism" by "isomorphism of semisimplifications". This would still
be adequate to show μ=1, using [Ka-DGG, 2.3.8].

DDDDuuuuaaaalllliiiittttyyyy RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 3333....4444 Suppose that Ó:=Ó¬(åi's; ∫j's) is

an irreducible hypergeometric Î-module on ´m of type (n,m). In order

that there exist an isomorphism of Ó with its adjoint, it is necessary
and sufficient that the following three conditions hold:
(1) n-m is even.
(2) there exists a permutation iÿi' of [1,...,n] such that åi' + åi Ÿ #.

(3) there exists a permutation jÿj' of [1,...,m] such that ∫j' + ∫j Ÿ #.

Moreover, if these conditions are satisfied, then the resulting
autoduality of Ó (on the dense open set where Ó is a D.E.) is alternating
if and only if

max(n,m) is even, and ©:= ‡∫j -‡åi Ÿ#;

otherwise (i.e., if max(n,m) is odd or if © Ÿ 1/2 + #) it is symmetric.
pppprrrrooooooooffff Indeed, the adjoint is Ó¬(-1)n+m(-1-åi's; -2-∫j's), so the first

assertion is obvious from 3.2 and 3.3. Because Ó is irreducible, it has at

most one autoduality (up to a ^≠ factor) <x,y>, which is either
alternating or symmetric.

If the generic rank max(n,m) of Ó is odd, the autoduality has no
choice but to be symmetric. The only problem comes when max(n,m) is
even. At the expense of an inversion, we may assume n ≥ m.
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If n=m, then local monodromy at ¬ is a pseudoreflection of
determinant exp(2πi©). If ©Ÿ#, this is a unipotent pseudoreflection, and
so <x,y> cannot be symmetric. [For denoting by N the log of this
unipotent pseudoreflection, <Nx, y> + <x, Ny>=0, so if <x,y>=<y,x>, we
find <Nx,x>=0. Since N has one-dimensional image, say ^e, we have
<e,x>=0 if Nx±0, and then for all x, whence e=0, contradiction.]
Conversely, if © Ÿ 1/2 + #, then we have a true reflection, which lies in
no symplectic group (in Sp(2d), the eigenvalues of any element can be
grouped into d pairs of inverses).

If n > m, and both n and n-m are even, then detÓ is a rank one
D.E. on ´m which has slope zero at both 0 and ‘ (because all the ‘-

slopes of Ó are 1/(n-m) < 1). So detÓ must be of the form x∂^[x,x-1] for
some ∂. Looking at the slope decompositions of Ó at both 0 and ‘, and
at the formal Jordan decompositions of the slope zero parts, we see
that

det(Ó‚^((x))) § xå^((x)) for å:=‡åi,

det(Ó‚^((1/x))) § det((Ó‚^((1/x)))slope>0)‚x∫^((1/x)) for ∫:=‡∫j.

Comparing these local expressions for detÓ with x∂^[x,x-1], we see first
that ∂•å mod # and then that

det((Ó‚^((1/x)))slope>0) § x-©^((1/x)).

So det((Ó‚^((1/x)))slope>0) is either trivial or of order two, depending

on whether ©Ÿ# or not.
On the other hand, our autoduality of Ó must induce an

autoduality on Ó‚^((1/x)), which in turn induces an autoduality on
each piece of the slope decomposition. As (Ó‚^((1/x)))slope>0 is

irreducible (because it has rank n-m and all slopes 1/(n-m)), it has at

most one autoduality (up to a ^≠ factor), say (x,y), and that
autoduality has a sign (i.e., is either symmetric or alternating) which
must be the ssssaaaammmmeeee sign as that of our global one <x,y>. So our sign rule
follows from the following
LLLLeeeemmmmmmmmaaaa 3333....4444....1111 Let d ≥ 2. Let W be a D.E. on ^((1/x)) of rank d all of
whose slopes are 1/d.
(1) The isomorphism class of W is determined up to a multiplicative
translate by the isomorphism class of det(W).

(2)W is self dual if and only if d is even and det(W)‚2 is trivial, and
the duality is alternating if and only if det(W) is trivial.
pppprrrrooooooooffff Any D.E. W on ^((1/x)) of rank d all of whose slopes are 1/d is a

multiplicative translate of one of the form ([d]*Ò)‚x¬ where Ò is the
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rank one D.E. for ex, and ¬ Ÿ^. Notice that the isomorphism class of

([d]*Ò)‚x¬ § [d]*(Ò‚xd¬) depends only on d¬ mod #. Now

det(([d]*Ò)‚x¬) § det([d]*Ò)‚xd¬ visibly determines d¬ mod #.

Because [d]*Ò has all slopes < 1, its determinant is of the form xμ^((x)),

so the isomorphism class of det([d]*Ò) is translation invariant.

Therefore the isomorphism class of det(W) is translation invariant, and
hence det(W) determines d¬ mod #. Therefore det(W) determines the
isomorphism class of W itself, up to a multiplicative translation. This
proves (1).

We next observe that if d is odd, then W cannot be self dual,
because W‚W has all slopes 1/d for odd d. [To see this, use the fact that

[d]*W as representation of the upper-numbering subgroup (I‘)(0+) is,

for some aŸ^≠,

[d]*W | (I‘)(0+) § ·ΩŸμμμμd
çaΩ,

where çaΩ is the character of (I‘)(0+) given by the rank one D.E. for

eaΩx.]

If W is self dual, so is det(W), whence det(W)‚2 is trivial. Suppose

now that det(W)‚2 is trivial. We argue globally as follows. Consider a
Kloosterman equation of even rank d,i.e., a hypergeometric equation of

type (d,0), say Ó¬(a1,..., ad; &). Since d≥2, its determinant is xa^[x,x-1]

for a=‡ai, so over ^((1/x)) we obtain a W as above with det(W) §

xa^((1/x)). As ¬ varies over ^≠, but the ai remain fixed, we obtain all

translates of this W. So it suffices to analyse the sign of the autoduality
for the two particular Kloosterman equations of even rank d

Ó¬(0, 0, 1/(d-1),..., (d-2)/(d-1); &),

Ó¬(1/2, 0, 1/(d-1),..., (d-2)/(d-1); &).

Consider for each the d-1'st power of local monodromy at zero. For the
first, it is a unipotent pseudoreflection (not in any O(d)), and for the
second it is a true reflection (not in any Sp(d)). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....4444....1111....1111 Hypotheses and notations as in the above lemma,

denote by Ò the rank one D.E. for ex. Then

(1) det([d]*Ò) § x(d-1)/2^((1/x)).

(2) W § a multiplicative translate of [d]*Ò if and only if we have
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det(W) § x(d-1)/2^((1/x)).

(3) If d is odd, then the dual of [d]*Ò is [x ÿ -x]*([d]*Ò).

pppprrrrooooooooffff To prove (1) and (3), we use a global argument. Ò is Ó1(0; &). As

will be shown later in 3.5.6 (but with no circularity), we have the
formula

[d]*Ó1(0; &) § Ó1(0, 1/d, 2/d, ... , (d-1)/d; &).

Clearly det(Ó1(0, 1/d, 2/d, ... , (d-1)/d; &)) § x∂^[x, x-1], simply

because its slope is 0 at zero and ≤ 1/d < 1 at ‘, so also 0 at ‘. To
evaluate ∂, we look at local monodromy at zero; this shows ∂ = (d-1)/2.
Now looking over ^((1/x)) we get the asserted formula for det([d]*Ò).

That (1) à (2) was proven as part (1) of the previous Lemma. To prove
(3), notice that for d odd, the dual of Ó1(0, 1/d, 2/d, ... , (d-1)/d; &) is

its multiplicative translate by -1. QED

(3.5) We now study the Lie-irreducibility of the hypergeometric
equation in the case n=m. Our analysis is a geometric version of the
more group-theoretic one of [B-H, 5.8].

Given a pair (a,b) of strictly positive integers, and ¬ in ^≠,
consider the "Belyi polynomial"

Bela,b,¬(x) := ¬μa,bx
a(1-x)b, where μa,b := (a+b)a+b/aabb.

We call it the Belyi polynomial because of the brilliant use Belyi makes

of it in [Bel, Part 4]. It is a morphism of degree n:=a+b from @1 to @1,
which induces a finite etale covering

@1 - {0, 1, a/(a+b), ‘} ¨ @1 - {0, ¬, ‘}
whose ramified fibres are

over 0: exactly two points; one with mult. a and one with mult. b,
over ‘: exactly one point,
over ¬: exactly n-1 points.

We call this covering the Belyi covering of type (a,b). The covering
defined by 1/Bela,b,¬-1(x) we call the inverse Belyi covering of type

(a,b).

LLLLeeeemmmmmmmmaaaa 3333....5555....1111 Over ^, any finite etale connected covering X¨ @1 - {0,
¬, ‘} of degree n such that the induced map of complete nonsingular

models π:äX¨@1 has exactly n-1 points in the fibre over ¬ is isomorphic
to either a Belyi covering or an inverse Belyi covering of type (a,b) for
some partition of n =a+b as the sum of two strictly positive integers.
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pppprrrrooooooooffff Since äX - π-1(0, ¬, ‘) is finite etale over @1 - {0, ¬, ‘} of degree
n, and we are in characteristic zero, the Euler characteristics multiply:

2 - 2g(äX) - Card(π-1(0)) -Card(π-1(¬)) - Card(π-1(‘)) = -n.

By assumption, Card(π-1(¬)) = n-1, so we find

2 - 2g(äX) - Card(π-1(0)) - Card(π-1(‘)) = -1, which we rewrite

2g(äX) + Card(π-1(0)) + Card(π-1(‘)) = 3.

Since each of Card(π-1(0)) and Card(π-1(‘)) is ≥ 1, and g(äX) ≥ 0, we see

that g(äX) = 0, and Card(π-1(0)) + Card(π-1(‘)) = 3. After a
multiplicative inversion on the base, we may assume that

Card(π-1(0)) = 2, Card(π-1(‘)) = 1.

Since äX is a noncanonical @1, we may decree that ‘ is the unique
point over ‘, and that the two points over 0 are 0 and 1. That ‘ is the
unique point over ‘ means that our covering is given by a polynomial
of degree n, and looking at the fibre over 0 shows that its only zeroes

are 0 and 1. So our covering is given by åxa(1-x)b for some å in ^≠.
The critical point a/(a+b) is mapped to å/μa,b, so å/μa,b = ¬. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....5555....2222 Suppose that Ó:=Ó¬(åi's; ∫j's) is a hypergeometric

Î-module on ´m of type (n,n). Suppose that the D.E. Ó | ´m - {¬} is

induced, i.e., it is the direct image of a D.E. ◊ on a connected finite etale
covering π: X ¨ ´m - {¬} of degree d ≥ 2. Then either the covering π

is isomorphic to a Kummer covering (i.e., the restriction to ´m - {¬} of

the d-fold Kummer covering of ´m by itself) or d=n and the covering is

isomorphic to either a Belyi covering or an inverse Belyi covering of
type (a,b) for some partition of n =a+b as the sum of two strictly
positive integers. Moreover, in the case of a Belyi or inverse Belyi
covering, local monodromy of Ó around ¬ is a true reflection.

pppprrrrooooooooffff Suppose that the fibre of π over ¬ consists of points pi with

multiplicities ei. Then Ó‚^((x-¬)) is the direct sum of the ei-fold

Kummer inductions of the ◊‚^((x-pi)):

Ó‚^((x-¬)) § ·i [ei]*(◊‚^((x-pi))).

Because Ó‚^((x-¬)) is of slope zero, with local monodromy a
pseudoreflection, we see all the terms [ei]*(◊‚^((x-pi))) are of slope

zero, exactly one of them (say i=1) has local monodromy a
pseudoreflection, and all the others have trivial local monodromy.
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Now in order for [e1]*(◊‚^((x-p1))) to have local monodromy a

pseudoreflection, either e1 = 1 and ◊‚^((x-p1)) itself has local

monodromy a pseudoreflecton, or e1 = 2 and ◊ is of rank one with

trivial local monodromy around p1. In this second case, notice that the

pseudoreflection is a true reflection.
If [ei]*(◊‚^((x-pi))) with i ≥ 2 is of slope zero and has trivial local

monodromy, then ei = 1, and ◊ is of slope zero at pi and has trivial

local monodromy around pi.

If all the ei = 1, then our covering is unramified over ¬, so it is

the restriction to ´m - {¬} of a d-fold connected finite etale covering of

´m, necessarily the d-fold Kummer covering of ´m by itself.

If e1 = 2 and all ei≥2 = 1, then ◊ has rank one, whence d=n, and

there are n-1 points in the fibre over ¬, so our covering is either Belyi
or inverse Belyi. QED

BBBBeeeellllyyyyiiii RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 3333....5555....3333 Suppose that Ó:=Ó¬(åi's; ∫j's) is an

irreducible hypergeometric Î-module on ´m of type (n,n). Then Ó is

Belyi induced (resp. inverse Belyi induced) of type (a,b), with a ≥ 1, b≥
1, n= a+b, if and only if its exponents mod # at 0 and ‘ are Belyi
induced (resp. inverse Belyi induced) of type (a,b) in the following sense:
there exist A, B Ÿ ^ such that the sets of åi's and of ∫j's mod # (with

multiplicity) are given by
{åi's} (resp. {∫j's}) = {(A+i)/a }i=0,...,a-1 ⁄ {(B+j)/b}j=0,...,b-1 mod #.

{∫j's} (resp. {åi's}) = { (A+B+k)/n}k=0,...,n-1 mod #.

pppprrrrooooooooffff By multiplicative inversion, it suffices to treat the case of Belyi
induced. If Ó is Belyi induced, then the inducing equation is a rank one

D.E. on @1 - {0, 1, ‘) which has only regular singularities. Any such
D.E. is of the form (Ø, d - Adx/x - Bdx/(x-1)) § Ó1(A; A+B) Looking at

the exponents of its Belyi induction at 0 and ‘ gives the formulas for
the åi mod # and the ∫i mod #. So far we have not used the

irreducibility of Ó. This is needed only for the converse.
Conversely, suppose that the exponents of Ó:=Ó¬(åi's; ∫j's) are

Belyi induced. We claim that Ó is the Belyi induction, say ◊, of the
corresponding Ó1(A; A+B). We know that ◊ is a D.E. on ´m - {¬} of

order n with regular singular points at 0, ¬, ‘, whose local monodromy
at ¬ is a true reflection, and whose exponents mod # at 0 (resp. ‘) are
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the åi (resp. the -∫j). Because Ó is irreducible, no åi is a ∫j mod #, and

hence (exactly as in the proof of 2.11.9, (2)), we see that ◊ is
irreducible on ´m - {¬}. We must show that ◊ is isomorphic to Ó on

´m - {¬}. Because both ◊ and Ó have regular singular points, it suffices

to show that on (´m - {¬})an they give rise to isomorphic local systems.

This is given by the following rigidity theorem 3.5.4. QED

The rigidity of the hypergeometric equation in the case n=m is
given by the following theorem. In the case n=2 it goes back to
Riemann (his "∏-scheme"; the point is that for n=2, we may always

twist by some (x-¬)© to make local monodromy around ¬ a
pseudoreflection). Levelt gave a simple group-theoretic proof [Lev-HF] in
the general case (cf [B-H, 3.5]). The proof we give below is due to Ofer
Gabber.

RRRRiiiiggggiiiiddddiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 3333....5555....4444 Let Ï and Ì be two irreducible local systems

on (´m - {¬})an of the same rank n ≥ 1, and suppose that

(a) the local monodromies at ¬ of both Ï and Ì are pseudoreflections.
(b) Ï and Ì have the same characteristic polynomial of local
monodromy at 0.
(c) Ï and Ì have the same characteristic polynomial of local
monodromy at ‘.

Denote by j: ´m - {¬}¨ @1 the inclusion, and by Hom(Ï,Ì) the

internal hom local system Ï£‚Ì on ´m - {¬}.Then

(1) ç(@1, j*Hom(Ï,Ì)) = 2 > 0.

(2) There exists an isomorphism Ï § Ì.

pppprrrrooooooooffff Let us first prove that (1) à (2). Since ç = h0 + h2 - h1, the

positivity forces at least one of h0 or h2 to be nonzero. By duality,

H2(@1, j*Hom(Ï,Ì)) is dual to H0(@1, j*Hom(Ì,Ï)), so at the expense

of interchanging Ï and Ì, H0(@1, j*Hom(Ï,Ì))=H0(´m-{¬},Hom(Ï,Ì))

= Hom(Ï,Ì) is nonzero. Since Ï and Ì are irreducible, any nonzero hom
is an isomorphism. It remains to prove (1). For this it is convenient to
give the following Lemma.

LLLLeeeemmmmmmmmaaaa 3333....5555....5555 Let Ï be an irreducible local system on (´m - {¬})an of

rank n ≥ 2, whose local monodromy at ¬ is a pseudoreflection. Then
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(1) ç(´m, j*Ï| ´m) = -1.

(2) Hic(´m, j*Ï| ´m) vanishes for i±1, and for i=1 it has dimension 1.

(3) the local monodromy of Ï at 0 (resp. ‘) has a single Jordan block
for each distinct eigenvalue, i.e., its characteristic polynomial is its
minimal polynomial. Moreover, if exp(2πi∂) is an eigenvalue of local
monodromy at 0 (resp. ‘) then exp(-2πi∂) is not an eigenvalue of local
monodromy at ‘ (resp. 0).

pppprrrrooooooooffff Let us denote by h: ´m - {¬}¨ ´m and by k: ´m¨ @1 the

inclusions (so j=kh). We have an exact sequence on ´m
0 ¨ h~Ï ¨ h*Ï ¨h*Ï/h~Ï ¨ 0, and

h*Ï/h~Ï is the punctual sheaf ÏI¬ at ¬.

By hypothesis, ÏI¬ has dimension n-1. But
ç(´m, h~Ï) = ç(´m -{¬}, Ï) = rank(Ï)ç(´m -{¬}) = -n,

so (1) is obvious.

For (2), the irreducibility of Ï forces the vanishing of the H2c, and

the fact that j*Ï| ´m has no punctual section on the affine curve ´m

forces the vanishing of the H0c. That H
1
c has dimension 1 now results

from (1).
For (3), consider the short exact sequence

0 ¨ k~h*Ï ¨ k*h*Ï ¨ÏI0 · ÏI‘ ¨ 0.

The long exact cohomology sequence on @1 has H0(@1, k*h*Ï)=0 by the

irreducibility of Ï, so the coboundary gives us an iiiinnnnjjjjeeeeccccttttiiiioooonnnn

0 ¨ ÏI0 · ÏI‘ ¨ H1(@1, k~h*Ï) = H1c(´m, j*Ï| ´m) = 1-dim'l.

Therefore at most one of ÏI0 or ÏI‘ is nonzero, and if nonzero is one-
dimensional. This means that if 1 is an eigenvalue of local monodromy
at either 0 or ‘, then it occurs at only one of 0 or ‘, and local
monodromy there has a single Jordan block which is unipotent.

Applying this to all twists Ï‚x© of Ï, we get (3). QED
We now return to the proof of the rigidity theorem. Let us denote

by  the internal hom sheaf Hom(Ï,Ì). The short exact sequence on

@1

0 ¨ j~¨ j* ¨ I0 · I‘ · I¬ ¨ 0
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gives

ç(@1, j*) = -n2 + dimI0 + dimI‘ + dimI¬.

Now for any of the missing points p = 0, ‘, or ¬, Ip is the space
HomIp

(Ï,Ì) of Ip-equivariant maps.

If p is 0 or ‘, then denoting by T the local monodromy, and by
P(T) its characteristic polynomial, we have proven that both Ï and Ì
as ^[T] modules are isomorphic to ^[T]/(P(T)). So HomIp

(Ï,Ì) is just

Hom^[T](^[T]/(P(T)), ^[T]/(P(T))) § ^[T]/(P(T)), which is n-dimensional.

So dimIp = n for both p=0 and p=‘.
At ¬, both local monodromies T are pseudoreflections. Their

determinants are equal, because they are determined by the
determinants of the local monodromies at 0 and ‘. If their common
determinant is ≈±1, then both Ï and Ì as ^[T]-modules are

·n-1 copies ^[T]/(T-1) · ^[T]/(T-≈),

whose space of ^[T]-endomorphisms has dimension (n-1)2 + 1. If their
common determinant is 1, then both Ï and Ì as ^[T]-modules are

·n-2 copies ^[T]/(T-1) · ^[T]/(T-1)2,

whose space of ^[T]-endomorphisms has dimension (n-2)2 + 2 + 2(n-2).

So in both cases we find miraculously that dimI¬ = n2 -2n + 2. Adding

up the contributions from 0, ‘, and ¬ we find ç(@1, j*) = 2. QED

Recall that this discussion of rigidity grew out of our desire to
recognize which hypergeometrics of type (n,n) are induced. For the
sake of completeness, we state the following
KKKKuuuummmmmmmmeeeerrrr RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 3333....5555....6666 Suppose that Ó:=Ó¬(åi's; ∫j's) is

an irreducible hypergeometric Î-module on ´m of type (n,m). Let

d ≥ 2 be a divisor of both n and m. Then the D.E. Ó | ´m - {¬} is

Kummer induced of degree d if and only if there exist A1,..., An/d and

B1,..., Bm/d in ^ such that the sets of åi's and of ∫j's mod # (with

multiplicity) are given by
{åi's} = { (Ai - j)/d }i=1,...,n/d; j= 0,...,d-1 mod #,

{∫j's} = { (Bi + j)/d }i=1,...,m/d; j= 0,...,d-1 mod #.

pppprrrrooooooooffff If Ó is Kummer induced of degree d, then looking at the effect of
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Kummer induction on the slope zero parts at 0 and ‘ shows that the
åi and the ∫j mod # are of the asserted form. Conversely, if the åi and

the ∫j mod # have the asserted form, then we may, by the

irreducibility of Ó, suppose that the åi and the ∫j are given exactly

(not just mod #) by the above formulas (with the asymmetry in the

sign of _j). Denote by μŸ^≠ any solution of the equation

(μdn-m)d = ¬.
We will establish the following KKKKuuuummmmmmmmeeeerrrr IIIInnnndddduuuuccccttttiiiioooonnnn FFFFoooorrrrmmmmuuuullllaaaa:
(3.5.6.1) Ó¬(åi's; ∫j's) § [d]*Óμ(Ai's; Bj's).

Notice first that Óμ(Ai's; Bj's) is irreducible, for if Ai = Bj + r for some

rŸ#, then dividing by d we would find that some åi is congruent to

some ∫j mod #, contradicting the irreducibility of Ó¬(åi's; ∫j's). Notice

next that by Frobenius reciprocity, [d]*Óμ(Ai's; Bj's) is irreducible (on

´m - {¬} if n=m, on ´m otherwise), because

[d]*[d]*Óμ(Ai's; Bj's) § ·ΩŸμμμμd
[xÿΩx]*Óμ(Ai's; Bj's)

§ ·ΩŸμμμμd
Óμ/Ω(Ai's; Bj's)

is a direct sum of d pairwise-nonisomorphic irreducibles (on ´m -{μμμμμd}

if n=m, on ´m otherwise).

So it suffices to construct a nonzero map of Î-modules from
Ó¬(åi's; ∫j's) to [d]*Óμ(Ai's; Bj's). We will do this explicitly. It will be

easier to see what is going on if we denote by P(t) and Q(t) the
polynomials

P(t) := μ°i=1,...,n/d(T - Ai), , Q(t) := °j=1,...,m/d(T-Bj).

For each integer k ≥ 1 we denote by Pk(t) and Qk(t) the polynomials

(note the asymmetry in the sign of _j)
Pk(t) := °j=0,...,k-1P(t - j), Qk(t) := °j=0,...,k-1Q(t + j),

and by Hypk(P, Q) the operator

Hypk(P, Q) := Pk(D) -x
kQk(D).

Thus Hypk(P, Q) for k=1 is just the operator Hyp(P,Q) defining

Óμ(Ai's; Bj's) := Î/ÎHyp(P,Q). One verifies easily by induction on k that

when Hypk(P, Q) acts on the left Î-module Î/ÎHyp(P,Q), it kills the

image of 1. Now the operator Hypk(P, Q) lies in the subring

Îk := ^[xk, x-k, D = kDk], where Dk := xkd/dxk,
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and so there is Îk-linear map

Îk/ÎkHypk(P,Q) ¨ Î/ÎHyp(P,Q), 1ÿ1.

This map is obviously nonzero. But for any Î-module ˜, the k-fold
Kummer induction [k]*˜ is precisely ˜ viewed as a Îk-module. So we

have constructed a nonzero map
Îk/ÎkHypk(P,Q) ¨ [k]*(Î/ÎHyp(P,Q)) = [k]*Óμ(Ai's; Bj's).

Write the operator Hypk(P,Q) in Îk in terms of t:=xk and Dk := td/dt,

and view Îk as isomorphic to Î by tÿx, DkÿD. Then for k=d,

Îk/ÎkHypk(P,Q) is none other than Ó¬(åi's; ∫j's). QED

LLLLeeeemmmmmmmmaaaa 3333....5555....7777 Suppose that Ó:=Ó¬(åi's; ∫j's) is an irreducible

hypergeometric Î-module on ´m of type (n,n). Then either

(1) Ó | ´m - {¬} is Lie-irreducible, or

(2) Ó | ´m - {¬} is induced, or

(3) Ó | ´m - {¬} is the tensor product W‚K of a D.E. W of rank one with

an irreducible D.E. K of rank n whose Ggal is finite. If in addition detÓ is

of finite order, then Ó | ´m - {¬} itself has Ggal finite in case (3).

pppprrrrooooooooffff By 2.7.2 we know that if Ó | ´m - {¬} is neither Lie-irreducible

nor induced, it is W‚K for some Lie-irreducible W of rank d < n with
d|n, and K some irreducible D.E. of rank d' := n/d whose Ggal is finite.

Therefore local monodromy at ¬ is of the form A‚B with A in GL(d)
and B in GL(d'). But if both d and d' are ≥ 2, no pseudoreflection can be

of this form. Therefore d=1, as required. Then detÓ § Wºn‚detK, with
detK of finite order, so W is of finite order if and only if detÓ is of finite
order; if it is, then Ó § W‚K itself has Ggal finite. QED

TTTThhhheeeeoooorrrreeeemmmm 3333....5555....8888 ([B-H], 6.5]) Suppose that Ó:=Ó¬(åi's; ∫j's) is an

irreducible hypergeometric Î-module on ´m of type (n,n) which is

neither Kummer induced nor Belyi induced nor inverse Belyi induced.
Denote by G the differential galois group of Ó | ´m - {¬}, by ©:=‡∫j-‡åi.

(1) The group G is reductive. If ©, ‡åi, and ‡∫j are all in $ (i.e., if detÓ

is of finite order), then G0 =G0,der. Otherwise, G0 = ´mG0,der.

(2) The group G0,der is either {1}, SL(n), SO(n), or (if n is even) Sp(n).

(3) if exp(2πi©) ± _1, G0,der= {1} or SL(n).
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(4) if exp(2πi©) = -1, G0,der = {1} or SL(n) or SO(n).

(5) if exp(2πi©) = +1, G0,der = SL(n) or (for n even) Sp(n).
(6) if © is irrational, G=GL(n).
pppprrrrooooooooffff The local monodromy around ¬ is a pseudoreflection of
determinant exp(2πi©). So if Ó | ´m - {¬} is Lie irreducible, the theorem

is an immediate consequence of the Pseudoreflection Theorem 1.5. In
view of the preceding Lemma, the only other case is when Ó | ´m - {¬}

is the tensor product W‚K of a D.E. W of rank one with an irreducible

D.E. K of rank n whose Ggal is finite. In this case G0 is either {1} or ´m,

depending on whether or not W, or equivalently detÓ | ´m - {¬}, is of

finite order. So (1) through (4) hold (trivially) in this case. If © is either
in # or is irrational, then we cannot be in this case, for then local
monodromy around ¬ is a either a unipotent pseudoreflection or is
Diag(exp(2πi©), 1, 1,..., 1), no power of which is scalar. QED

We can be more precise about the distinguishing the the various
Lie-irreducible cases. (We will discuss later, in 5.4-5.5 and then again in

8.17, how to detect the case when G0,der is {1}.)
CCCCoooorrrroooollllllllaaaarrrryyyy 3333....5555....8888....1111 Notations and hypotheses as above, suppose further

that G0,der ± {1}. Then G0,der is SO(n) (respectively Sp(n)) if and only if

there exists ∂Ÿ^ such that Ó‚x∂ :=Ó¬(åi + ∂'s; ∫j + ∂'s) is self dual and

its autoduality pairing is symmetric (resp. alternating).

pppprrrrooooooooffff Notice that G0,der is the same for any twist Ó‚x∂ as for Ó. So if

some twist Ó‚x∂ is self dual, then G0,der is ccccoooonnnnttttaaaaiiiinnnneeeedddd iiiinnnn SO(n) or
Sp(n), depending on the "sign" of the autoduality. In view of the paucity

of choices for G0,der, G0,der must bbbbeeee SO(n) or Sp(n).

Conversely, suppose that G0,der is SO(n) (so n ≥ 3 since SO(2) is
not semisimple) or Sp(n). We must distinguish several cases.

If G0,der is Sp(n), then G must be contained in the normalizer in
GL(n) of Sp(n), which is ´mSp(n). Since the only scalars in Sp(n) are _1,

we can construct a character ç of G by writing an element of G as tA

(t in ´m, A in Sp(n)) and defining ç(g)=ç(tA) := t2. This character of G

corresponds to a rank one D.E. which is in the tensor subcategory <Ó>.
Now Ó has regular singularities at 0,¬, and ‘, and its local monodromy
around ¬ is a unipotent pseudoreflection (otherwise we can't have
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G0,der = Sp(n)). Therefore every object in <Ó> is regular singular at 0,
¬, and ‘ and has unipotent local monodromy at ¬. Therefore the rank
one D.E. on ´m - {¬} corresponding to ç is regular singular at 0, ¬, and

‘ and has ttttrrrriiiivvvviiiiaaaallll local monodromy at ¬, so it must be the D.E. for x∂

for some ∂. Then Ó‚x-∂/2 has its differential galois group inside _Sp(n)
= Sp(n), as required.

If G0,der is SO(n), n ≥ 3, then G must be contained in the
normalizer in GL(n) of SO(n), which is ´mO(n). As O(n) contains no

scalars except _1, so we get a character ç of ´mO(n) by ç(tA):=t2. The

corresponding rank one D.E. is in <Ó>. But Ó has regular singularities at
0,¬, and ‘, and its local monodromy around ¬ is a true reflection

(otherwise we can't have G0,der = SO(n)), so any object in <Ó> is
regular singular at 0, ¬, and ‘. Let us denote by T¬ the local

monodromy of Ó around ¬. If we can show that ç(T¬) = 1, then just as

above ç corresponds to the D.E. for some x∂, and Ó‚x-∂/2 has its
differential galois group inside _O(N) = O(N), as required. To show that

ç(T¬) = 1, suppose not; then ç(T¬) = ≈2, where ≈2 ± 1. This means that

T¬=≈
-1A with A in O(n). But in a suitable basis e1,..., en of the

representation space, the reflection T¬ is Diag(-1, 1,..., 1). So we find

that the matrix A:=Diag(-≈, ≈,..., ≈) Ÿ O(n) for some nondegenerate
quadratic form < , >. To see that this is impossible for n ≥ 3, we argue as
follows. Denote by V the line ^e1, and by W the ^-span of e2,..., en.

Writing vectors in the form v+w, with vŸV and wŸW, we have A(v+w)
= -≈v + ≈w. As AŸO(N), we have

<v+w, v+w> = <A(v+w), A(v+w)> = <-≈v + ≈w, -≈v + ≈w>.
Expanding out, we find

<v, v> + 2<v, w> + <w, w> = ≈2<v, v> - 2≈2<v, w> + ≈2<w, w>.

Taking v=0 (resp. w=0), we see that ≈2 ± 1 forces <w, w> = 0 =<v, v>.
Therefore V and W are totally isotropic, and so W€–(V) = 0. But both
W and –(V) are codimension one subspaces, so W€–(V) = 0 is impossible
if n ≥ 3. QED

In the case n±m, we have
TTTThhhheeeeoooorrrreeeemmmm 3333....6666 Suppose that Ó:=Ó¬(åi's; ∫j's) is an irreducible

hypergeometric Î-module on ´m of type (n,m), n ± m, which is not

Kummer induced. Let N:=max(n,m) be the rank of Ó, and G its
differential galois group. Then
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(1) G is reductive. If detÓ is of finite order (i.e., if |n-m| > 1 and if

‡åi Ÿ$ when n > m (resp. ‡∫j Ÿ$ when m > n)) , then G0 =G0,der;

otherwise G0 = ´mG0,der.

(2) If |n-m| is odd, G0,der is SL(N). If |n-m| = 1 then G is GL(N).

(3) If |n-m| is even, then G0,der is SL(N) or SO(N) or (if N is even) SP(N),

or |n-m|=6, N=7,8 or 9, and G0,der is one of
N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.

pppprrrrooooooooffff This theorem, "mise pour memoire", is just the special case d=1
of 2.11.10. QED

The discrimination among the various possible cases is aided by

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....6666....1111 Notations and hypotheses as above, G0,der is contained
in SO(N) (resp. in Sp(N)) if and only if there exists ∂Ÿ^ such that

Ó‚x∂ := Ó¬(åi + ∂'s; ∫j + ∂'s) is self dual and its autoduality pairing is

symmetric (resp. alternating). Moreover, if N is odd, then G0,der is
contained in SO(N) if and only if there exists ∂Ÿ^ such that

Ó‚x∂ := Ó¬(åi + ∂'s; ∫j + ∂'s) has its Ggal fi SO(N).

pppprrrrooooooooffff The proof is entirely analogous to that of 3.5.8.1.... If some twist

Ó‚x∂ of Ó is self dual, then G0,der is certainly contained in SO(N) or in
Sp(N), depending on the sign of the autoduality.

If G0,der fi O(N) (resp. Sp(N)) , then G fi ´mO(N) (resp. ´mSp(N)).

Indeed, if Æ is any irreducible subgroup of GL(N) which respects a
nonzero bilinear form < , >, then its normalizer in GL(N) lies in in the
corresponding similitude group. [For if AŸGL(N) normalizes Æ then the
form (x,y) := <Ax, Ay> is also Æ-invariant, so a scalar multiple of < , >.]

Now consider the character ç of G defined by ç(g)=ç(tA):= t2. The
corresponding rank one D.E. on ´m is in <Ó>. Now |n-m| is nonzero (by
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assumption) and even (otherwise G0,der is SL(N)), hence |n-m| ≥ 2.
Therefore all slopes of Ó at 0 or ‘ are ≤ 1/|n-m| < 1, and hence every
object of <Ó> has all its slopes < 1 at 0 or ‘. So any rank one object in

<Ó> has slope zero at 0 and ‘, so is the D.E. for x∂ for some ∂. Taking

the ∂ corresponding to ç, Ó‚x-∂/2 has its differential galois group in
_O(N) = O(N) (resp. in _Sp(N) = Sp(N)).

If N is odd, then O(N) is the product {_1}≠SO(N), so if Ggal fiO(N)

but Ggal îfi SO(N), its projection onto the {_1} factor is a character of

order two corresponding to a rank one object of <Ó>, necessarily the

D.E. for x1/2. QED

LLLLeeeemmmmmmmmaaaa 3333....6666....2222 Let Ó:=Ó¬(åi's; ∫j's) be a hypergeometric Î-module on

´m of type (n,m), n > m. Then Ggal fi SL(n) if and only if n-m ≥ 2 and

‡åi Ÿ #.

pppprrrrooooooooffff If n-m=1, then detÓ has slope 1 at ‘, so nontrivial. If n-m ≥ 2,

then det(Ó) is necessarily the D.E. for x∂, some ∂; looking at zero we see
that ∂ • ‡åi mod #. QED

3333....7777 IIIInnnnttttrrrriiiinnnnssssiiiicccc cccchhhhaaaarrrraaaacccctttteeeerrrriiiizzzzaaaattttiiiioooonnnn ooooffff hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc eeeeqqqquuuuaaaattttiiiioooonnnnssss
. We now turn to the intrinsic characterization of irreducible
hypergeometric Î-modules on ´m among all irreducible Î-modules on

´m.

TTTThhhheeeeoooorrrreeeemmmm 3333....7777....1111 Let ˜ be an irreducible, nonpunctual holonomic Î-
module on ´m. Then ˜ is hypergeometric if and only if its Euler

characteristic ç(´m, ˜):=ç(H*DR(´m, ˜)) is -1.

pppprrrrooooooooffff It is obvious from the elementary Euler Poincare formula on ´m
(2.9.13) that ç(´m, Ó)= -1 for any hypergeometric Ó on ´m,

irreducible or not.
Suppose now that ˜ is an irreducible, nonpunctual Î-module on

´m with ç(´m, ˜)= -1. We will make essential use of

LLLLeeeemmmmmmmmaaaa 3333....7777....2222 (compare 3.5.5) If ˜ is an irreducible, nonpunctual Î-

module on ´m with ç(´m, ˜)= -1, then for any twist ˜‚x∂,

dim^Soln0(˜‚x∂) + dim^Soln‘(˜‚x∂) ≤ 1.

pppprrrrooooooooffff The twist ˜‚x∂ is also irreducible on ´m, and its ç is the same

as that of ˜ (this is obvious from the Euler-Poincare formula), so it
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suffices to prove
dim^Soln0(˜) + dim^Soln‘(˜) ≤ 1.

Let k: ´m ¨@1 denote the inclusion. Then by 2.9.8 we have a short

exact sequence on @1

0 ¨ k~*˜ ¨ k*˜ ¨ ∂0‚Hom^(Soln0, ^) · ∂‘‚Hom^(Soln‘, ^) ¨ 0

Let us admit temporarily that

(*) dim^H
1
DR(@

1, k*˜) = 1, H2DR(@
1, k~*˜) = 0.

Then as H1DR(@
1, ∂0) § ^ § H1DR(@

1, ∂‘), the long exact cohomology

sequence gives us a surjection

H1DR(@
1, k*˜) zn Hom^(Soln0, ^) · Hom^(Soln‘, ^),

whence the required inequality on dimensions.
To prove (*), we argue as follows. We have

HiDR(@
1, k*˜) § HiDR(´m, ˜),

and only H0 and H1 are possibly nonzero. But H0 = HomÎ(Ø,˜)

vanishes, because if not then ˜, being irreducible, would be isomorphic
to Ø, which is nonsense because ç(´m, Ø) = 0. This proves that

dim^H
1
DR(@

1, k*˜) = 1. To prove the vanishing of H2DR(@
1, k~*˜), it

is equivalent by duality to prove the vanishing of H0DR(@
1, k~*(˜

*)).

But k~*(˜
*)fi k*(˜

*), so H0DR(@
1, k~*(˜

*)) fi H0DR(@
1, k*(˜

*)) §

H0DR(´m, ˜*) which vanishes (otherwise ˜* § Ø by irreducibility,

whence ˜ § Ø, nonsense). QED

Let j:U¨´m be the inclusion of a dense open set such that j*˜ is

a D.E. on U. Because ˜ is irreducible, ˜ § j~*j
*˜. Since ç(´m)=0, the

Euler-Poincare formula gives

-1 = ç(´m, j~*j
*˜) = -Irr0(˜) -Irr‘(˜) - ‡åŸ´m-U totdropå,

i.e.,
Irr0(˜) + Irr‘(˜) + ‡åŸ´m-U totdropå = 1.

As all the lefthand terms are nonnegative integers, there are three
possibilities.
(case 1: reg) Irr0(˜) = 0 = Irr‘(˜), totdropå = 0 for all åŸ´m-U save

one, call it ¬, and totdrop¬ = 1.

In this case, totdrop¬±0 forces drop¬±0 (by 2.9.10), whence



Chapter3-The generalized hypergeometric equation-21

drop¬=1 and Irr¬(˜) = 0. This means exactly that ˜ | ´m - {¬} is an

irreducible D.E. with regular singularities at 0, ¬, ‘, and its local
monodromy around ¬ is a pseudoreflection.

(case 2: 0-irreg) Irr0(˜)=1, Irr‘(˜)=0, totdropå = 0 for all åŸ´m-U.

(case 3: ‘-irreg) Irr0(˜)=0, Irr‘(˜)=1, totdropå = 0 for all åŸ´m-U.

In cases 2 and 3, which are interchanged by multiplicative
inversion, ˜ is an irreducible D.E. on ´m, and the sum of its

irregularities at 0 and ‘ is 1.

By multiplicative inversion, we may assume henceforth that we
are in case 1 or case 3, i.e., that 0 is a regular singularity. By the
lemma above, the formal decomposition of ˜‚^((x)) is of the form

˜‚^((x)) § ·å ^((x))[D]/^((x))[D](D-å)nå,

and that of ˜‚^((1/x)) is of the form

˜‚^((1/x)) § ·∫ ^((1/x))[D]/^((1/x))[D](D-∫)m∫· (˜‚^((1/x)))slope>0,

and no å with nå±0 is congruent mod # to any ∫ with m∫±0.

Let n be the generic rank of ˜, and let m be the dimension of its
slope=0 part at ‘. Let å1, ..., ån be the å's with multiplicities nå > 0

occuring in ˜‚^((x)), P(t) := °(t - åi), and let ∫1, ..., ∫m be the ∫'s

with multiplicity m∫ > 0 occurring in the slope zero part of

˜‚^((1/x)), Q(t) := °(t - ∫j). We choose all the åi's and all the ∫j's to

lie in some fundamental domain for ^/#, say in 0 ≤ Re(z) < 1; by this
choice of å's and ∫'s we have

gcd(P(t), P(t+k)) = 1 and gcd(Q(t), Q(t+k)) = 1 for any k±0 in #.
By 2.11.4, we have

˜‚^((x)) § ^((x))[D]/^((x))[D]P(D),
˜‚^((1/x)) § ^((1/x))[D]/^((1/x))[D]Q(D) · (˜‚^((1/x)))slope>0.

We will show that there exists ¬Ÿ^≠ such that Ó:=Ó¬(åi's; ∫j's) § ˜.

In case 1, one takes for ¬ the unique point in ´m where ˜ is not

a D.E. In this case the existence of the isomorphism Ó § ˜ is given by
3.5.4.

In case 3, we will give an algebraic version of the proof of 3.5.4 in
the Î-module context. We must first explain how to choose ¬ in this
case. We will compare the slope decompositions of ˜‚^((1/x)) and of
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Ó1(åi's; ∫j's)‚^((1/x)). Let us write

W := (˜‚^((1/x)))slope>0, V := ( Ó1(åi's; ∫j's)‚^((1/x)))slope>0.

W and V both have rank d:=n-m, and all slopes 1/d.
Det˜ has slope zero at 0, and slope ≤ 1 (in fact ≤ 1/d) at ‘, so it

is the D.E. for x∂e©x, for some ∂, © Ÿ^. Moreover, ©±0 if and only if d=1
(if d > 1, then det˜ has slope zero at ‘, while for d=1 it has slope 1).
Looking at the local expression for ˜ near 0, we find ∂ •‡åi mod #.

Looking near ‘, we see that det(W)‚x‡∫j § x∂e©x^((1/x)) as D.E.'s on
^((1/x)), i.e.,

det(W) § x‡åi - ‡∫je©x^((1/x)), with ©±0 iff d=1.
Repeating this same argument for Ó1(åi's; ∫j's) instead of ˜, we find

det(V) § x‡åi - ‡∫je∂'x^((1/x)), with ∂'±0 iff d=1.
If d=1, these are expressions for W and V themselves, and they

show that some multiplicative translate of V is isomorphic to W. If
d ≥ 2, the ©=∂'=0, and det(V) § det(W), so by 3.4.1 some multiplicative
translate of V is isomorphic to W. So in either case, some multiplicative
translate Ó:=Ó¬(åi's; ∫j's) of Ó1(åi's; ∫j's) has Ó‚^((1/x)) §

˜‚^((1/x)). This determines ¬. Of course the choice of the åi's was

made in such a way that Ó‚^((x)) § ˜‚^((x)).
So it remains only to prove the following

RRRRiiiiggggiiiiddddiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 3333....7777....3333 Let ˜ and Ó be irreducible D.E.'s on ´m
such that
(1) ç(´m, ˜) = ç(´m, Ó) = -1.

(2) There exists an isomorphism Ó‚^((x)) § ˜‚^((x)), and ˜‚^((x))
has all slopes zero.
(3) There exists an isomorphism Ó‚^((1/x)) § ˜‚^((1/x)).

Denote by Hom(Ó, ˜) the internal hom D.E. Ó*‚Ø˜ on ´m, and by

k: ´m ¨@1 the inclusion. Then

(1) ç(@1, k~*Hom(Ó, ˜)) = 2 > 0,

(2) There exists an isomorphism Ó § ˜.

pppprrrrooooooooffff To prove (1) à (2), we argue exactly as in the proof of 3.5.4. The

positivity of ç = h0 + h2 - h1 implies that at least one of H0 or H2 is

nonzero. The H0DR(@
1, k~*Hom(Ó, ˜)) is HomÎ(Ø, k~*Hom(Ó, ˜)) =
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HomÎ(k~*Ø, k~*Hom(Ó, ˜)) = (by 2.9.1.3) HomÎ(Ø, Hom(Ó, ˜)) =

HomÎ(Ó, ˜), any nonzero element of which is necessarily an

isomorphism by irreducibility. Similarly, H2DR(@
1, k~*Hom(Ó, ˜)) is

dual to H0DR(@
1, k~*Hom(˜, Ó)) = HomÎ(˜, Ó).

So it remains to show that ç(@1, k~*Hom(Ó, ˜)) = 2. By the

Euler-Poicare formula, we have

ç(@1, k~*Hom(Ó, ˜)) = -Irr0 - Irr‘ + dim^Soln0 + dim^Soln‘.

We will prove that, denoting by n the rank of ˜, by m the rank of its
slope zero part at ‘, and by d:=n-m, we have
(1) dim^Soln0 = n.

(2) Irr0 = 0.

(3) dim^Soln‘ = m + 1.

(4) Irr‘ = d-1 + 2m.

Since n = d + m, this will give ç(@1, k~*Hom(Ó, ˜)) = 2.

First notice that solutions of any D.E. are the same as horizontal
sections of its dual, so we have

Soln0 = HomÎ(˜‚^((x)), Ó‚^((x))) § EndÎ(˜‚^((x))),

Soln‘ = HomÎ(˜‚^((1/x)), Ó‚^((1/x))) § EndÎ(˜‚^((1/x))),

the final isomorphisms because by hypothesis we have
˜‚^((x)) § Ó‚^((x)) and ˜‚^((1/x)) § Ó‚^((1/x)). Similarly, the
irregularities in question are those of End(˜)‚^((x)) and of
End(˜)‚^((1/x)) respectively.

We have seen that there exist polynomials P = Pn and Q = Qm
such that

˜‚^((x)) § ^((x))[D]/^((x))[D]P(D),
˜‚^((1/x)) § ^((1/x))[D]/^((1/x))[D]Q(D) · W,

and such that
gcd(P(t), P(t+k)) = 1 and gcd(P(t), P(t+k)) = 1 for any k±0 in #

EndÎ(˜‚^((x))) is thus the kernel of P(D) acting on the left Î-module

^((x))[D]/^((x))[D]P(D) § ^((x))‚^(^[D]/^[D]P(D)), and the relative

primality (gcd(P(t), P(t+k)) = 1 for any k±0 in #) shows that this kernel
is the subspace ^[D]/^[D]P(D) of "constant terms". This proves (1). And
(2) is obvious, because ˜ and hence End˜ have all 0-slopes zero.

To prove (3) and (4), notice that because W has all slopes > 0 and
is irreducible, while ^((1/x))[D]/^((1/x))[D]Q(D) has all slopes zero, there
are no nonzero homs between them in either direction, so we have
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EndÎ(˜‚^((1/x))) = EndÎ(^((1/x))[D]/^((1/x))[D]Q(D)) · EndÎ(W).

These two terms have dimensions m (proven just as above) and 1 (by
the irreducibility of W) respectively, which proves (3). To prove (4),
which only concerns slopes, it suffices to write ˜‚^((1/x)) as

(rank m, all slopes 0) · W, W of rank d, all slopes 1/d.
Then End˜‚^((1/x)) is

(rank m2, all slopes 0) · EndW ·

· (rank m, all slopes 0)‚W · W*‚(rank m, all slopes 0).
The last two terms contribute 2md slopes 1/d, so a total contribution of

2m. So it remains to see that EndW has d slopes 0 and d2 - d slopes

1/d. For this it suffices to check that [d]*(EndW) § End([d]*W) has d

slopes 0 and d2 - d slopes 1. But this is obvious, since for any W of rank
d with all slopes 1/d, by Levelt's structure theorem (cf [Ka-DGG],2.6.6])

there exist ∂Ÿ^ and ©Ÿ^≠such that

[d]*W § ·Ω Ÿ μμμμd
(the D.E. for x∂eΩ©x), and hence

End([d]*W) § ·Ω,˙ Ÿ μμμμd
(the D.E. for e(Ω-˙)©x). QED

RRRReeeemmmmaaaarrrrkkkkssss 3333....7777....4444
(1) The irreducible, ppppuuuunnnnccccttttuuuuaaaallll Î-modules on ´m are precisely the

delta-modules ∂¬:= Î/Î(¬-x), ¬Ÿ^≠; they also have ç(´m, ∂¬) = -1. The

operators ¬-x are precisely the hypergeometric operators Hyp¬(&,&) of

the excluded type (0,0).
(2) The proof given of 3.7.3 is just a Î-module translation of the
topological proof of 3.5.4. Of course one can give a similar Î-module
proof of the 3.5.4 itself.

As an application of this intrinsic characterization, we can also
partially analyse the semisimplification of non-irreducible
hypergeometrics.

LLLLeeeemmmmmmmmaaaa 3333....7777....5555 For any holonomic Î-module ˜ on ´m, ç(´m, ˜) ≤ 0,

and ç(´m, ˜) = 0 if and only if ˜ is a successive extension of the

objects xå^[x, x-1].
pppprrrrooooooooffff Any holonomic Î-module, having finite length, is a finite
successive extension of irreducible holonomics. By the additivity of ç,
we are reduced to the case where ˜ is irreducible. If ˜ is punctual,
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then it a delta-module with ç = -1. If ˜ is nonpunctual, then for any

dense open set j: U ¨ ´m such that j*˜ is a D.E. on U, ˜ = j~*j
*˜,

and the Euler-Poincare formula for ç(´m, ˜) = ç(´m, j~*j
*˜) is

ç(´m, ˜) =

=rankØ(j
*˜)ç(´m) - ‡xŸ@1-´m Irrx(˜) - ‡åŸ´m-U totdropå.

Since ç(´m) = 0, we see that ç(´m, ˜) ≤ 0. By 2.9.10 we have

equality if and only if ˜ is an irreducible D.E. on ´m which is regular

singular at both 0 and ‘, in which case ˜ is an xå^[x, x-1] by 2.11.2.
QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....7777....5555....1111 Let ˜ be a holonomic Î-module on ´m with

ç(´m, ˜)= -1.

If ˜ is not irreducible, its semisimplification ˜ss is the direct sum
ˆ·Ê where ˆ is irreducible with ç(´m, ˆ)= -1 and where Ê is a

direct sum of xå^[x, x-1]'s.

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....7777....5555....2222 Let Ó := Ó¬(åi's; ∫j's) be a hypergeometric Î-

module of type (n,m) which is not irreducible. Let ©1,..., ©r be the set

with multiplicity of common exponents mod # of the å's and the ∫'s,
i.e., the polynomial °k=1,...,r( t - exp(2πi©k)) is the gcd of the two

polynomials °k=1,...,n( t - exp(2πiåk)) and °k=1,...,m( t - exp(2πi∫k).

Remumber the å's and the ∫'s so that åi•∫i•©i mod # for i=1,..., r.

Then for some μŸ^≠, we have

Óss § ·x©i^[x, x-1] · Óμ(år+1, ..., ån; ∫r+1,..., ∫m).

Moreover, if n=m then μ=¬.
pppprrrrooooooooffff Apply the above corollary to Ó. In view of the intrinsic
characterization of irreducible hypergeometrics, the ˆ is an irreducible
hypergeometric. The exponents at 0 and ‘ of ˆ·Ê must be those of Ó,
so we get the asserted forms for ˆ and Ê. If n=m, then μ=¬ because it

is the unique point of ´m where Ó or equivalently Óss is not a D.E..QED

Another application is to analyse behavior under the d'th power
map [d]: ´m ¨ ´m. The following lemma gives an intrinsic proof of the

Kummer Induction Formula 3.5.6.1, but without specifying the
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multiplicative translates involved.

LLLLeeeemmmmmmmmaaaa 3333....7777....6666 Suppose ˜ is an irreducible holonomic Î-module on ´m,

and suppose that ç(´m, ˜) is relatively prime to d. Then [d]*˜ is

irreducible on ´m, and ç(´m, [d]*˜) = ç(´m, ˜).

pppprrrrooooooooffff Since [d] is finite etale, for any holonomic Î-module ˜ on ´m,

we have
ç(´m, [d]*˜) = ç(´m, ˜).

We also have

ç(´m, [d]*˜) = dç(´m, ˜),

say because [d]*[d]
*˜ § ·i mod d ˜‚xi/d, and ˜‚xå has the same ç

as ˜ (2.11.1).

Now [d]*[d]*˜ § ·ΩŸμμμμd
[x ÿ Ωx]*˜ is a sum of d pairwise

nonisomorphic irreducibles. [For if ˜ § [x ÿ Ωx]*˜ for some root of
unity Ω of exact order r | d, r > 1, then ˜, being irreducible, descends

through the finite etale map [r]: ´m ¨ ´m, say ˜ § [r]*ˆ, whence

ç(´m, ˜) = rç(´m, ˆ) is divisible by r, contradiction.] Therefore the

only subobjects Ò of [d]*[d]*˜ are the partial direct sums of the

objects [x ÿ Ωx]*˜, and of these only 0 and [d]*[d]*˜ are stable by

Ò ÿ [x ÿ Ωx]*Ò for every Ω Ÿ μμμμd. If [d]*˜ has a proper nonzero

subobject , then [d]* is a proper nonzero subobject Ò of [d]*[d]*˜

which is stable by Ò ÿ [x ÿ Ωx]*Ò for every Ω Ÿ μμμμd, contradiction.

QED

In the same vein, we have
LLLLeeeemmmmmmmmaaaa 3333....7777....7777 Suppose ˜ is an irreducible holonomic Î-module on ´m

with ç(´m, ˜) ± 0, and that for some μŸ^≠ there exists an

isomorphism ˜ § [x ÿ μx]*˜. Then μ is a root of unity of order
dividing ç(´m, ˜).

pppprrrrooooooooffff If μ is a root of unity, say of exact order r, then ˜ descends
through [r] and hence r divides ç(´m, ˜). If μ is not a root of unity,

then ˜ has Irr0 = 0 = Irr‘ (cf. [Ka-DGG, 2.3.8]), and consequently ˜
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must fail to be a D.E. at some points of ´m if it is to have

ç(´m, ˜) ± 0. So the set of its singularities is a finite nonempty subset

of ´m which is stable by xÿμx, whence μ must be a root of unity. QED

3333....8888 DDDDiiiirrrreeeecccctttt SSSSuuuummmmssss,,,, TTTTeeeennnnssssoooorrrr PPPPrrrroooodddduuuuccccttttssss,,,, aaaannnndddd KKKKuuuummmmmmmmeeeerrrr IIIInnnndddduuuuccccttttiiiioooonnnnssss

LLLLeeeemmmmmmmmaaaa 3333....8888....1111 Suppose that Ó and Ó' are irreducible nonpunctual
hypergeometric Î-modules on ´m, of types (n,m) and (n',m')

respectively, whose generic ranks max(n,m) and max(n',m') are both
≥ 2. Suppose that there exists a dense open set j: U ¨´m, a rank one

D.E. Ò on U, and an isomorphism of j*Ó § j*Ó'‚Ò in D.E.(U/^). Then

(1) (n,m) = (n',m').
(2) If n = m, denoting by ¬ (resp. ¬') the unique singularity of Ó (resp.
Ó') in ´m, we have ¬ = ¬'.

(3) If (n,m) is not (2,1),or (1,2) or (2,2), then Ò is xåØU for some åŸ^,

and Ó § Ó'‚xå as Î-modules on ´m.

pppprrrrooooooooffff Both Ó and Ó' have all their slopes at ‘ (resp. 0) ≤ 1. Since Ò is

a direct factor of Hom(j*Ó', j*Ó), its slope at ‘ (resp. 0) is ≤ 1, so
either 0 or 1.

Suppose that Ò has its ‘-slope 1. Either Ó' has all its ‘-slopes < 1,
or n' - m' =1 and Ó' has one ‘-slope =1 and m' ‘-slopes =0. In the
first case, Ó would have all its ‘-slopes =1, which is possible only if
(n,m) is (1,0), a case excluded by hypothesis. In the second case, Ó has
aaaatttt lllleeeeaaaasssstttt m' ‘-slopes =1. So m' ≤ 1. But m' ≥ 1 because Ó' has generic
rank ≥ 2, so m'=1, Ó has exactly m' ‘-slopes =1, and n' (=1+m')= 2. So
Ó has type (2,1), since it has the same generic rank 2 as Ó' and has a
single ‘-slope =1. Thus we conclude that (n,m)=(n',m')=(2,1) if Ò has
its ‘-slope 1.

Similarly, if Ò has its 0-slope =1, then (n,m)=(n',m')=(1,2).
If Ò has slope =0 at both 0 and ‘, then Ó and Ó' have the same

slopes at both 0 and ‘, so they have the same types (n,m)=(n',m'). So
(1) is proven in all cases.

If n±m, then both Ó and Ó' are D.E.'s on ´m, so j~*Ò is a D.E. on

´m, being a direct factor of the D.E. j~*Hom(j*Ó', j*Ó) = Hom(Ó', Ó).

Therefore j~*Ò § xå^[x, x-1] for some å. This proves (3) if n ± m.
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If n=m, then Ó (resp. Ó') has a finite singularity at a unique point
¬ (resp. ¬') in ´m, and the local monodromy there is a pseudoreflection.

We first show that ¬ = ¬'. For if ¬ ± ¬', the isomorphism

j*Ó § j*Ó'‚Ò

shows that j*Ó'‚Ò has trivial monodromy at ¬', which implies that

j*Ó' has scalar monodromy at ¬'. But as the rank is ≥ 2, no
pseudoreflection is scalar. This proves (2).

If n=m ≥ 3, then Ò must have trivial local monodromy at ¬'
(since the product tA of a nonzero scalar t with a pseudoreflection A in
GL(n ≥ 3) has ≥ n-1 ≥ 2 eigenvalues t, so cannot be either trivial or a

pseudoreflection unless t=1). So again we find that j~*Ò § xå^[x, x-1]

for some å. Therefore our isomorphism is j*Ó § j*(Ó'‚xå). Applying

j~* yields Ó § Ó'‚xå, as required. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 3333....8888....2222 Suppose that Ó1, ..., Ón are n ≥ 2 irreducible

nonpunctual hypergeometric Î-modules on ´m, with Ói of rank Ni ≥ 2.

Suppose that
(1) if Ni = 2, Ói is of type (2,0) or (0,2).

(2)for each i, the differential galois group Gi fi GL(Ni) of Ói (restricted to

some dense open U where it is a D.E) has Gi
0,der one of the groups

SL(Ni), any Ni ≥ 2,

Sp(Ni), any even Ni ≥ 4,

SO(Ni), Ni =7 or any Ni ≥ 9,

SO(3), if Ni = 3 and no Nj = 2,

SO(5), if Ni = 5 and no Nj = 4,

.SO(6), if Ni = 6 and no Nj = 4,

G2 fi SO(7), if Ni = 7,

Spin(7) fi SO(8) if Ni = 8, and no Nj= 7.

Suppose that for all i±j, and all å Ÿ ^≠, there exist no isomorphisms

from Ói‚xå to either Ój or to its adjoint (Ój)
*. Then the differential

galois group G of ·Ói has G
0,der = °Gi

0,der, and that of ‚Ói has

G0,der = the image of °Gi
0,der in ‚stdni

.

pppprrrrooooooooffff In view of the above Lemma, this is just the spelling out of the
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Goursat-Kolchin-Ribet Proposition 1.8.2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....8888....2222....1111 Let Ó:= Ó¬(å's; ∫'s) be an irreducible nonpunctual

hypergeometric Î-module on ´m of rank N ≥ 2. If N = 2, suppose that

Ó is of type (2,0) or (0,2). Suppose that Ó is self-dual, and that Ggal

(resp. (Ggal)
0) is one of the groups G:

Sp(N), if N even,
SO(N), if N ± 4, 8,
G2 fi SO(7), if N = 7,

Spin(7) fi SO(8) if N = 8.

Let d ≥ 2, and let μ1, ... , μd be d distinct elements of ^≠. Then the

direct sum

·i Ó¬/μi
(å's; ∫'s) = ·i [x ÿ μix]

*Ó

has Ggal (resp. (Ggal)
0) the d-fold product group Gd.

pppprrrrooooooooffff Because Ó is self-dual, each [x ÿ μix]
*Ó is self-dual, it suffices

by 3.8.2 to check that there exist no isomorphisms

[x ÿ μx]*Ó § Ó‚xå

for any μ ± 1, and any å in ^. But Ó and [x ÿ μx]*Ó have the same
exponents at zero (resp. ‘), so the map x ÿ x + å must map the

exponents at zero (resp. ‘) to themselves mod #. But then Ó‚xå § Ó,
and so we obtain an isomorphism

[x ÿ μx]*Ó § Ó.
But for μ ± 1, no such isomorphism exists, thanks to 3.7.7. QED

In the case of Kummer induction, 3.8.2 gives:
TTTThhhheeeeoooorrrreeeemmmm 3333....8888....3333 Let Ó:= Ó¬(å's; ∫'s) be an irreducible nonpunctual

hypergeometric Î-module on ´m of rank N ≥ 2. If N = 2, suppose that

Ó is of type (2,0) or (0,2). Suppose that Ó has (Ggal)
0,der one of the

groups G:
SL(N),
Sp(N), if N even,
SO(N), if N ± 4, 8,
G2 fi SO(7), if N = 7,

Spin(7) fi SO(8) if N = 8.



Chapter3-The generalized hypergeometric equation-30

Fix an integer d ≥ 2. Let S fi μμμμd(^) be a nonempty subset of μμμμd(^)

which is maximal among all nonempty subsets of μμμμd(^) which satisfy

the following condition:
whenever Ω1 and Ω2 are distinct elements of S, and ∂ Ÿ ^, there

exists no isomorphism from Ó¬Ω1
(å's; ∫'s)‚x∂ to either Ó¬Ω2

(å's; ∫'s)

or to its adjoint (Ó¬Ω2
(å's; ∫'s))*.

Then [d]*Ó¬(å's; ∫'s) has (Ggal)
0,der § GS.

ccccoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn----pppprrrrooooooooffff For any D.E., pullback to a finite etale connected

covering does not change (Ggal)
0, nor a fortiori (Ggal)

0,der. Now for any

Î-module ˜ on ´m, we have

[d]*[d]*˜ § ·Ω Ÿ μμμμd
[x ÿ Ωx]*˜.

Applying this to Ó, we find that the (Ggal)
0,der for [d]*Ó is equal to

that for
·Ω Ÿ μμμμd

Ó¬Ω(å's; ∫'s).

Since (Ggal)
0,der is insensitive to twisting any of the factors by rank

one D.E.'s, the (Ggal)
0,der for [d]*Ó is equal to that for

·Ω Ÿ S Ó¬Ω(å's; ∫'s).

Now apply 3.8.2. QED
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DDDDeeeettttaaaaiiiilllleeeedddd AAAAnnnnaaaallllyyyyssssiiiissss ooooffff tttthhhheeee EEEExxxxcccceeeeppppttttiiiioooonnnnaaaallll CCCCaaaasssseeeessss
(4.0) We now turn to a detailed discussion of the exceptional
possibilities for the differential galois group G of an irreducible
hypergeometric Î-module on ´m of type (n,m), n ± m, which is not

Kummer induced. Let N:=max(n,m). Recall that the exceptional

possibilities for G0,der can occur only for |n-m|=6, N=7,8 or 9:
N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.

By inversion, we may and will assume n > m.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 4444....0000....1111 (Ofer Gabber) For N=8, neither of the two groups
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

occurs as G0,der for a hypergeometric of type (8,2).

pppprrrrooooooooffff Suppose that G0,der for a hypergeometric Ó of type (8,2) is one
of the groups

the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd.

By 1.8.5, the normalizer in GL(std‚std) of this G0,der is ´mG0,der, so

we have G0,der fi G fi ´mG0,der. Therefore the conjugation-induced

action of G on Lie(G0,der) respects each of the two factors , and its
action on Lie(SL(2)) defines a surjection of G onto SO(3). View this
surjection as an irreducible three-dimensional representation ® of G,
and then view ® as an irreducible rank three object V in the
subcategory <Ó> of D.E.(´m/^). Because V is in <Ó>, all its slopes at both

0 and ‘ are ≤ 1/6. Since V has rank three, both Irr0 and Irr‘ are ≤

3/6 < 1, and hence V is entirely of slope zero at both 0 and ‘. But on
´m the only such irreducible D.E.'s are of rank one, contradiction. QED
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4444....1111 TTTThhhheeee GGGG2222 ccccaaaasssseeee

This case can arise only for hypergeometrics of type (7,1) or (1,7).
By inversion, it suffices to treat the case (7,1). Notice that an
irreducible hypergeometric of type (n,1) cannot be Kummer induced.

Now G2 fi SO(7), so if G0,der for Ó is G2, then by 3.6.1 there exists a

twist Ó‚x∂ with G fi SO(7).

LLLLeeeemmmmmmmmaaaa 4444....1111....1111 Suppose G fi SO(7) and G0,der is G2. Then G is G2.

pppprrrrooooooooffff Indeed, G2 is its own normalizer in SO(7) [every automorphism of

G2 is inner, and SO(7) contains no nontrivial scalars]. QED

LLLLeeeemmmmmmmmaaaa 4444....1111....2222 Ó¬(å1, ..., å7; ∫1) is irreducible with Ggal fi SO(7) if and

only if there exist x,y,z Ÿ^ such that after renumbering we have

(å1, ..., å7) • (0, x, -x, y, -y, z, -z) mod #7, and ∫1 • 1/2 mod #, and

none of x,y,or z is • 1/2 mod #.
pppprrrrooooooooffff First of all, such an equation Ó¬(0, x, -x, y, -y, z, -z; 1/2) is

irreducible, self dual and of determinant one. If Ó¬(å1, ..., å7; ∫1) is self

dual, then ∫1 must be 0 or 1/2 mod #. If Ggal lies in SO(7), then its local

monodromy at zero must lie in SO(7). But the eigenvalues of any

element of SO(7) are of the form (1, a, a-1, b, b-1, c, c-1) for some a,b,c

in ^≠. As the eigenvalues of local monodromy at zero are the
exp(2πiåj)'s, we get the existence of x,y,z Ÿ^ such that after

renumbering we have (å1, ..., å7) • (0, x, -x, y, -y, z, -z) mod #7.

Since Ó is irreducible, ∫1 cannot be 0 mod #, so ∫1 • 1/2 mod #.

Irreducibility now insures that none of x,y,z can be • 1/2 mod #. QED

LLLLeeeemmmmmmmmaaaa 4444....1111....3333 If Ó¬(å1, ..., å7; ∫1) is irreducible with Ggal fi G2 fi

SO(7), then there exist x,y Ÿ^ such that after renumbering we have

(å1, ..., å7) • (0, x, -x, y, -y, x+y, -x-y) mod #7, and ∫1 • 1/2 mod #,

and none of x,y,or x+y is • 1/2 mod #.

pppprrrrooooooooffff The eigenvalues of any element of G2 in its seven-dimensional

representation are of the form (1, a, a-1, b, b-1, ab, (ab)-1) for some

a,b in ^≠. Proceed as above. QED

In view of the above lemmas, the problem of recognizing which
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hypergeometrics have G0,der = G2 is sompletely solved by

TTTThhhheeeeoooorrrreeeemmmm 4444....1111....4444 Let x,y Ÿ^ such none of x,y,or x+y is • 1/2 mod #. For

any ¬ Ÿ ^≠, Ó := Ó¬(0, x, -x, y, -y, x+y, -x-y; 1/2) has Ggal = G2.

In view of the preceding Lemmas, this implies
GGGG2222 RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 4444....1111....5555 Let x,y Ÿ^ such none of x,y,or x+y is

• 1/2 mod #. Then for any ¬ Ÿ ^≠, Ó := Ó¬(0, x, -x, y, -y, x+y, -x-y;

1/2) has Ggal = G2. These are all the hypergeometric of type (7,1) with

Ggal = G2. The hypergeometrics of type (7,1) with G0,der = G2 are

precisely the x∂ twists of these.

pppprrrrooooooooffff ooooffff 4444....1111....4444.The only two possibilities for Ggal are SO(7) or its

subgroup G2. These two cases may be distinguished by the fact that for

SO(7), Ú3(std7) is irreducible, while G2 has a non-zero (in fact one-

dimensional) space of invariants in Ú3(std7). Thus we must show that

for Ó as above, Ú3(Ó) has H0DR(´m, Ú3(Ó)) nonzero. Here is a proof

suggested by Ofer Gabber, analogous to the proof of 3.7.3.

Denote by j: ´m ¨ @1 the inclusion. Since Ú3(Ó) is self dual

(because Ó is), its middle extension j~*Ú
3(Ó) is also self dual. By global

duality, the two cohomology groups HiDR(@
1, j~*Ú

3(Ó)) for i=0 and i=2

are dual to each other. By 2.9.1.3,

H0DR(@
1, j~*Ú

3(Ó)) = HomÎ(Ø@1, j~*Ú
3(Ó)) =

= HomÎ(j~*Ø´m
, j~*Ú

3(Ó)) = HomÎ(Ø´m
, Ú3(Ó)) = H0DR(´m, Ú3(Ó)).

Therefore the nonvanishing of H0DR(´m, Ú3(Ó)) will result from the

estimate

ç(@1, j~*Ú
3(Ó)) ≥ 2 > 0.

By the Euler-Poicare formula, we have

ç(@1, j~*Ú
3(Ó)) = -Irr0 - Irr‘ + dim^Soln0 + dim^Soln‘.

We will show that
(1) dim^Soln0 ≥ 5.
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(2) Irr0 = 0.

(3) dim^Soln‘ = 2.

(4) Irr‘ = 5.

In order to prove (1), let us denote by T the local monodromy of Ó
around zero, and by P(T) its characteristic polynomial. We know that
as ^[T]-module, Ó is ^[T]/(P(T)). In terms of the quantities

a:= exp(2πix), b:=exp(2πiy),
the roots of P(T) are (1, a, 1/a, b, 1/b, ab, 1/ab).
Since Ó is regular singular at zero, we have

dim^Soln0(Ú
3(Ó)) = dim Ker(T-1 acting on Ú3(^[T]/(P(T))).

We claim that this dimension is ≥ 5. To see this, we will resort to a
specialization argument to reduce to the case in which P has all
distinct roots.

We first treat the case where P has all distinct roots. Then T is

diagonalizable, say T § Diag(a1, ..., a7), hence Ú
3(T) is diagonalizable

with eigenvalues exactly all triple products aiajak with i < j < k. If we

number the ai so that they are (1, a, 1/a, b, 1/b, ab, 1/ab), then the

five triple products indexed by (1,2,3), (1,4,5), (1,6,7), (2,4,7), (3,5,6) are

all 1, so dimKer(Ú3(T) - 1) ≥ 5, as required.
In the general case, we argue as follows. Let us define, for

indeterminates A, B , the polynomial
PA,B(T) := (T -1)(T - A)(T - 1/A)(T - B)(T - 1/B)(T - AB)(T - 1/AB).

Then over the ring R := ^[A, B][1/AB], we can form the R[T]-module
M := R[T]/(PA,B(T)), which is free of rank seven over R. The general

case results immediately from the following elementary lemma, applied

to S:=Spec(R), ˜:= Ú3(M), Ê:= Ú3(T) - 1.

SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 4444....1111....6666 Let S be a scheme, ˜ an ØS-module

which is locally free of finite rank n, and Ê Ÿ EndØS
(˜). For each point

s in S, consider the induced endomorphism Ês of the n-dimensional

˚(s)-vector space ˜s. For any integer i ≥ 1, the set

{s in S where dimKer(Ês ) ≥ i}

is Zariski closed in S.
pppprrrrooooooooffff Since dimKer(Ês ) + dimIm(Ês ) = n, this is also the set where

dimIm(Ês ) ≤ n-i. But dimIm(Ês ) ≤ n-i À Ú1+n-i(Ês) = 0. Thus our set
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is the locus of vanishing of all minors of Ê of a given size. QED

This concludes the proof of (1). Since Ó is regular singular at zero,
(2) is obvious. We now turn to the proofs of (3) and (4), both of which
are tedious but straightforward. Let us denote by W the six-
dimensional wild part of Ó‚^((1/x)). Since ∫1 = 1/2,

Ó‚^((1/x)) § W · x1/2^((1/x)), whence

Ú3(Ó‚^((1/x))) § Ú3(W) · Ú2(W)‚x1/2.
To prove (3) and (4), it then suffices to prove (a) and (b) below:

(a) Ú3(W) has a 1-dim'l solution space, and irregularity 3.

(b) Ú2(W)‚x1/2 has a 1-dim'l solution space, and irregularity 2.

Since Ó has trivial determinant, we see that det(W) § x1/2^((1/x)).

Denoting by Ò the rank one D.E. for ex, it follows from 3.4.1.1 that W is
a multiplicative translate of [6]*Ò. Since the assertions (a) and (b) are

invariant under multiplicative translation, we may assume that
W § [6]*Ò.

(4.1.7) We now explain how to analyse the exterior powers of such
a Kummer-induced W. It will be clearer if we consider a slightly more
general situation. Fix a ^-valued fibre functor ∑ on D.E. (^((1/x))/^).
For any polynomial f(x) in ^[x], define

Òf(x) := ef(x)^((1/x)) = the rank one D.E. for ef(x) over ^((1/x)),

and denote by
Lf(x) := the one-dimensional ^-space ∑(Òf(x)).

¥f(x) := the corresponding character of I‘.

In order to describe [d]*(Òf(x)), it is equivalent via descent theory to

describe [d]*[d]*(Òf(x)) with its canonical action of the covering group

μμμμd. Using the canonical isomorphism of functors

[d]*[d]*(?) § ·ΩŸμμμμd
[x ÿ Ωx]*(?),

this amounts to making explicit the the natural action of the group μμμμd
on the d-dimensional representation space

W(d, f(x)) := ·ΩŸμμμμd
Lf(Ωx) of I‘.

Clearly an element μ Ÿ μμμμd maps Lf(Ωx) to Lf(μΩx), and μd induces the

identity. So there exists an eigenbasis {eΩ Ÿ Lf(Ωx) } of this
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representation space W(d, f(x)),
©(eΩ) = ¥f(Ωx)(©)eΩ for © Ÿ I‘,

on which μ Ÿ μμμμd acts by

[μ](eΩ) := eμΩ.

Thus W(d, f(x)) with its action of μμμμd corresponds via descent

theory to [d]*(Lf(x)). For any "construction of linear algebra" Constr,

Constr(W(d, f(x))) carries an induced μμμμd action, and it corresponds via

descent to Constr([d]*(Lf(x))). In order to avoid confusion, we will denote

by I‘(d) fi I‘ the two inertia groups in question, and by P‘(d) = P‘
their (common) wild inertia subgroup.

LLLLeeeemmmmmmmmaaaa 4444....1111....7777....1111 In terms of the descent dictionary, for any
construction of linear algebra Constr we have

(1) Constr([d]*(Lf(x)))
P‘ = Constr(W(d, f(x)))P‘(d)

(2) Constr(W(d, f(x)))P‘(d) =Constr(W(d, f(x)))I‘(d),and the action of I‘

on Constr([d]*(Lf(x)))
P‘ factors through its μμμμd quotient.

(3) If ç is a character of I‘ which is trivial on P‘ but which does not

factor through the μμμμd quotient, then

(Constr([d]*(Lf(x)))‚ç)I‘ = 0.

(4) If ç is a character of I‘ which factors through the μμμμd quotient,

then

(Constr([d]*(Lf(x)))‚ç)I‘ = (( Constr(W(d, f(x)))I‘(d) )‚ç)μμμμd.

pppprrrrooooooooffff Assertion (1) is a tautology, since P‘ = P‘(d) is a subgroup of

I‘(d). For (2), the point is that W(d, f(x)) is the direct sum of the

characters ¥f(Ωx). For these characters on this form one has

¥f(x)¥g(x) = ¥f(x)+g(x).
Therefore any Constr(W(d, f(x))) is a direct sum of characters of the
form ¥g(x) where g(x) is of the form ‡f(Ωix). Since characters of the

form ¥g(x) satisfy

¥g(x) is trivial on P‘(d) À Òg(x) has slope zero À

À g(x) is constant À ¥g(x) is trivial on I‘(d),
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we obtain (2). Assertions (3) and (4) then follow immediately. QED

We now turn to the explicit analysis of our [6]*Ò, which

corresponds to W(6, x) with its μμμμ6 action. Pick a primitive sixth root of

unity Ω, and denote by {ei}i Ÿ #/6# an eigenbasis of W(6, x) with

ei Ÿ LΩix, and the action of Ω given by Ω(ei) = ei+1. We will analyse the

exterior powers of W(6, x).

We already know that det(W) § x1/2^((1/x)), so it must be the
case that det(W(6, x)) is the unique character of order two of μμμμ6. We

can see this directly, since Ω cyclically permutes the ei, so maps

e1¢e2¢e3¢e4¢e5¢e6 to e2¢e3¢e4¢e5¢e6¢e1. Since W is self dual,so

are its exterior powers. Therefore if 0 ≤ i ≤ 6, the wedge product pairing

Úi(W) ≠ Ú6-i(W) ¨ Ú6(W)
induces an isomorphism

Ú6-i(W) § (Úi(W))‚x1/2.
This cuts our work in half. However, for increased reliability we will not
use it.

We now systematically list the P‘-invariants among the wedge

products of the ei's in each Ú
j
, and give the action of Ω on these

invariants. A given wedge expression ei1
¢...¢eij

with

1 ≤ i1 < i2 ... < ij ≤ 6 transforms under P‘ by the character ¥ax for a

=(Ω)i1 + ... + (Ω)ij, so it is is P‘-invariant if and only if (Ω)i1 + ... + (Ω)ij =

0; otherwise its irregularity is 1. We write [i1, .... ,ij] for ei1
¢...¢eij

:

i basis of (Úi(W(6, x)))P‘ action of Ω here, and its eigenvalues
1 none. none
2 [1,4], [2,5], [3,6], åÿ∫ÿ©ÿ-å, eigenvalues -μμμμ3
3 [1,3,5], [2,4,6], åÿ∫ÿå, eigenvalues _1
4 [1,2,4,5], [2,3,5,6], [1,3,4,6], åÿ∫ÿ-©ÿå, eigenvalues μμμμ3.

5 none. none

Thus we obtain the following table
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(4.1.7.2)

i Irr(Úi(W)) dim((Úi(W))I‘) dim((Úi(W)‚x1/2)I‘)
1 1 0 0
2 2 0 1
3 3 1 1
4 2 1 0
5 1 0 0

In particular, we see that (a) and (b) in the proof of 4.1.4 hold.
This concludes the proof of the G2 theorem 4.1.4. QED

4444....2222 TTTThhhheeee SSSSppppiiiinnnn((((7777)))),,,, PPPPSSSSLLLL((((3333)))) aaaannnndddd SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))) CCCCaaaasssseeeessss
We now turn to the remaining possible exceptional values of

G0,der for hypergeometrics of rank eight. These can occur only for type
(6,2) (or (2,6), by inversion). Both Spin(7) and PSL(3) are subgroups of
SO(8) fi O(8), while (the image of ) SL(2)≠SL(2)≠SL(2) is a subgroup of

Sp(8), so in virtue of 3.6.1, a x∂ twist reduces us to computing G0,der

for those Ó's with G fi O(8) or G fi Sp(8).
Our first observation is that if Ó has G fi O(8), then the question

of whether or not G fi SO(8) (i.e., whether or not detÓ is trivial) is
invariant under twisting Ó in such a way that it stays self dual. This a
general fact about even orthogonal groups.

LLLLeeeemmmmmmmmaaaa 4444....2222....1111 Suppose V is a symmetrically autodual Lie-irreducible
D.E. (on any X/^) of rank n: Ggal(V) fi O(n). Let L be any rank one D.E.

such that V‚L is autodual. Then Lº2 is trivial, and Ggal(V‚L) fi O(n).

In particular, if n is even, det(V) § det(V‚L).
pppprrrrooooooooffff Since both V and V‚L are self dual, their determinants have

order 1 or 2, so L is of finite order. Denote by ç the character of π1
diff

given by L, and by ® the representation given by V. Since V is Lie-
irreducible, so is V‚L, and they define the same (once we fix a basis of
the line ∑(L), so as to be able to identify ∑(V) with ∑(v‚L))

representation of the open subgroup Ker(ç) of π1
diff. By Lie-

irreducibility, there is a single (up to a ^≠ factor) nonzero bilinear form
< , > on ∑(V) = ∑(v‚L) which is invariant by this open subgroup. By
unicity, Ggal(V) fi SO(∑(V), < , >), and Ggal(V‚L) fi O(∑(v‚L), < , >).

So for any © Ÿ π1
diff, both ®(©) and ç(©)®(©) lie in O(∑(v‚L), < , >),
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whence ç(©), being a scalar in O(∑(v‚L), < , >), is _1. Therefore Lº2 is

trivial. If n is even, det(V‚L)=det(V)‚Lºn § det(V). QED

The next two lemmas show that if G fi O(8), then the Spin(7) case
(resp. the PSL(3) case) is possible only for G fi SO(8) (resp. G îfi SO(8)).

LLLLeeeemmmmmmmmaaaa 4444....2222....2222 if G fi O(8) and G0,der = Spin(7), then G = Spin(7) (and
consequently G fi SO(8)).

pppprrrrooooooooffff Spin(7) is its own normalizer in O(8). Indeed, every
automorphism of Spin(7) is inner, and the only scalars in O(8), _1, also
lie in the subgroup Spin(7), for instance because Spin(7) has a
nontrivial center. QED

LLLLeeeemmmmmmmmaaaa 4444....2222....3333 If a hypergeometric Ó has G fi SO(8), then G0,der ±
PSL(3).

pppprrrrooooooooffff The normalizer N of PSL(3) in SO(8) is _PSL(3). [Indeed, up to
inner automorphisms, the only nontrivial automorphism of ÍÒ(3)
(viewed as 3≠3 matrices of trace zero) is the Cartan involution

C : Xÿ -Xt.
So if we view O(8) as the orthogonal group of the Killing form on ÍÒ(3),
the Cartan involution of ÍÒ(3) (now viewd inside Lie(O(8)) by the
adjoint representation) is Ad(C). But det(C) = -1, so any element of N
inducing an outer automorphism must have det = -1. As N fi SO(8) by
its definition, every element of N induces an inner automorphism. And
the only scalars in SO(8) are _1. We remark for later use that this
same argument shows that the normalizer of PSL(3) in O(8) is the
semidirect product PSL(3)©{_1,_C}.]

Therefore if G fi SO(8) and G0,der = PSL(3), then G fi _PSL(3).
Projection onto the _1 is a character of G, so a rank one object of <Ó>,

so an x∂. So after an x∂ twist, we find an Ó with G =PSL(3). In virtue of

the fact that one can lift projective representations of π1
diff of an

open, there exists a rank three D.E. V on ´m whose Ggal is SL(3) such

that End0(V) is Ó. Now the highest ‘-slope of Ó is 1/6. Since the
adjoint representation of SL(3) has a finite kernel, it follows from the
next lemma that the highest ‘-slope of V is also 1/6. Since V has rank
three, this is impossible [the multiplicity of a slope is always a multiple
of its exact denominator, (cf. [Ka-DGG],2.2.7.3)]. QED
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HHHHiiiigggghhhheeeesssstttt SSSSllllooooppppeeee LLLLeeeemmmmmmmmaaaa 4444....2222....4444 Let ∑ be a ^-valued fibre functor on
D.E.(^((1/x))/^), V a D.E. on ^((1/x)), ®: I‘ ¨ GL(∑(V)) the

corresponding representation. Suppose that G is a Zariski closed
subgroup of GL(∑(V‘)) such that ®(I‘) fi G. Let Ú: G ¨ GL(d) be any

representation of G with a finite kernel, say Æ, and denote by VÚ the

D.E. corresponding to the composite representation Ú«® of I‘. Then V

and VÚ have the same highest slope.

pppprrrrooooooooffff For any x ≥ 0, V has all slopes ≤ x if and only if ®((I‘)(x+)) = {e},

and VÚ has all slopes ≤ x if and only if ®((I‘)(x+)) fi Æ ([Ka-DGG],

2.5.3.6). Since ®((I‘)(x+)) is connected ([Ka-DGG], 2.6.4.2), these two

conditions are equivalent. QED

LLLLeeeemmmmmmmmaaaa 4444....2222....5555 If Ó¬(å1, ..., å8; ∫1, ∫2) is irreducible with Ggal fi SO(8),

then there exist x,y,z,w Ÿ^ such that after renumbering we have

(å1, ..., å8) • (x, -x, y, -y, z, -z, w, -w) mod #8,

(∫1, ∫2)• (0, 1/2) mod #,

and none of x,y,z,w is • 0 or 1/2 mod #.
pppprrrrooooooooffff This is an exercise in the Duality Recognition Theorem 3.4. Since
the autoduality is symmetric, ‡åi - ‡∫j • 1/2 mod #. Since detÓ is

trivial, ‡åi Ÿ #, and hence ∫1+∫2 • 1/2 mod #. Since Ó is selfdual,

while ∫1+∫2 is not in #, we must have that 2∫1 and 2∫2 are in #.

Therefore after renumbering (∫1, ∫2) • (0, 1/2) mod #. The eigenvalues

of any element of SO(8) can be grouped into four pairs of inverses;
looking at local monodromy at zero thus gives the existence of the
x,y,z,w as asserted. None can be 0 or 1/2 mod # because of the
assumed irreducibility of Ó. QED

LLLLeeeemmmmmmmmaaaa 4444....2222....6666 If Ó¬(å1, ..., å8; ∫1, ∫2) is irreducible with

Ggal fi Spin(7), then there exist x,y,z Ÿ^ such that after renumbering

we have

(å1, ..., å8) • (x, -x, y, -y, z, -z, x+y+z, -x-y-z) mod #8,

(∫1, ∫2)• (0, 1/2) mod #,
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and none of x,y,z, or x+y+z is • 0 or 1/2 mod #.

pppprrrrooooooooffff In the subroup Spin(7) of SO(8), the eigenvalues of any element
are of the form (a, 1/a, b, 1/b, c, 1/c, abc, 1/ abc). Proceed as above.
QED

LLLLeeeemmmmmmmmaaaa 4444....2222....7777 If Ó¬(å1, ..., å8; ∫1, ∫2) is irreducible with Ggal fi O(8)

and detÓ nontrivial, then there exist x,y,z,w Ÿ^ such that after
renumbering we have

(å1, ..., å8) • (0, 1/2, x, -x, y, -y, z, -z) mod #8,

(∫1, ∫2)• (w, -w) mod #,

and w î• 0 or 1/2 mod #.

pppprrrrooooooooffff Since detÓ is nontrivial, but Ó is selfdual, detÓ has order two, so
‡åi • 1/2 mod #. Since the autoduality is symmetric, we must have

‡∫i in #. Autoduality forces the åi to break into pairs of additive

inverses mod #, and possibly a single (0, 1/2) mod #. But this (0, 1/2)
nod # must occur, since ‡åi • 1/2 mod #. QED

4444....3333 TTTThhhheeee PPPPSSSSLLLL((((3333)))) CCCCaaaasssseeee:::: DDDDeeeettttaaaaiiiilllleeeedddd AAAAnnnnaaaallllyyyyssssiiiissss

LLLLeeeemmmmmmmmaaaa 4444....3333....1111 If Ó has G:=Ggal fi O(8) and G0,der = PSL(3), then the

quotient group G/PSL(3) is cyclic of order two.

pppprrrrooooooooffff The normalizer N of PSL(3) in O(8) is the semidirect product
PSL(3)©{_1,_C} of PSL(3) with the abelian (2,2) group {_1}≠{1,C}. We
have PSL(3) fi G fi N. Because we are on ´m, whose topological π1 is

cyclic, any finite quotient group of G must be cyclic. Therefore G/PSL(3)
is a cyclic subgroup of the (2,2) group N/PSL(3). Since G îfi SO(8), this
quotient is nontrivial, so it must be of order two. QED

LLLLeeeemmmmmmmmaaaa 4444....3333....2222 If Ó := Ó¬(å1, ..., å8; ∫1, ∫2) has G:=Ggal fi O(8) and

G0,der = PSL(3), there exist x in ^, x î• _1/3 mod #, μ in ^≠, and an
isomorphism

[2]*Ó¬(å1, ..., å8; ∫1, ∫2) § End0(Óμ(x, -x, 0; &)).

This x, unique mod # up to x ÿ -x, is characterized by
{2å1, 2å2, ..., 2å8} = {0, 0, x, x, -x,-x, 2x, -2x}.

pppprrrrooooooooffff Projection of G onto G/PSL(3) is a nontrivial character of order

two of G, corresponding to the two-fold Kummer covering. Therefore
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[2]*Ó has its Ggal = PSL(3). Lifting this projective representation to an

SL(3) representation, we get a rank three D.E. V on ´m with det(V)

trivial and End0(V) § [2]*Ó. By the Highest Slope Lemma 4.2.4, V has
all its 0-slopes =0, and its highest ‘-slope is 1/3. Therefore aaaallllllll the ‘-
slopes of V are 1/3. Consequently, V is I‘-irreducible, and hence

irreducible. By the intrinsic characterization of irreducible
hypergeometrics, we see that V is a hypergeometric of type (3,0) with
trivial determinant. Therefore V § Óμ(x, y, -x-y; &) for some x,y Ÿ ^,

μ Ÿ ^≠.

Since End0(V) § [2]*Ó, the isomorphism class of End0(V) is

invariant under multiplicative translation [xÿ -x]*. Let us define

W := [xÿ -x]*(V).
Then V and W are two rank three D.E.'s, both with Ggal = SL(3), and

there exists an isomorphism of D.E.'s

End0(V) § End0(W).
Therefore there exists a rank one D.E. L on ´m such that

either V‚L § W or V‚L § W£.
This results from the (contrapositive of the ) Goursat-Kolchin-Ribet
Proposition 1.8.2, applied to Ggal(V·W, ∑) and its two representations

∑(V) and ∑(W), since the possibility that Ggal(V·W, ∑) =

SL(∑(V))≠SL(∑(W)) is incompatible with the representations

End0(∑(V)) and End0(∑(V)) of Ggal(V·W, ∑) being isomorphic. Since

both V and W have Ggal in SL(3), Lº3 must be trivial. So L is x∂ for

∂ = 0 or _1/3.
We now analyze the cases. Recall that

V = Óμ(x, y, -x-y; &), whence

W := [xÿ -x]*(V) § Ó-μ(x, y, -x-y; &), and hence

W£ § Óμ(-x, -y, x+y; &)

If V‚x∂ § W, then ∂ î• 0 mod # (if ∂ is in #, then V § W, whence

μ = -μ by 3.3, and this is impossible since μ is in ^≠). So ∂ is _1/3 mod
#. Therefore the set {x, y, z} is stable mod # by å ÿ å+∂. So mod # it
contains all the ∂-translates of say x, and as there are three of these it
must be {x, x+∂, x+ 2∂} = {x, x+ 1/3, x+ 2/3}.mod #. As these must sum
to 0 mod #, 3x Ÿ #, whence V § Óμ(0, 1/3, 2/3; &), which is Kummer-
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induced, so not Lie-irreducible, contradicting Ggal(V) = SL(3). So this

case cannot arise.

What about the case V‚x∂ § W£? We may rewrite this

V‚x∂ § W£ := ([x ÿ -x]*(V))£ § [x ÿ -x]*(V£),

or, tensoring both sides by the translation-invariant x∂ § (x2∂)£,

V‚x2∂ § [x ÿ -x]*((V‚x2∂)£).

Replacing V by V‚x2∂, it suffices to find V's such that V § W£ [since V

and V‚x2∂ have the same End0].

The condition V § W£ is equivalent to
{x, y, -x-y} = {-x, -y, x+y} mod #,

or that {x, y, -x-y} is stable mod # by negation. The set {x, y, -x-y}
mod # is thus of the form (x, -x, 0) for some x. To insure that this V is
not Kummer induced, we need x î• _1/3 mod #. Because x î• _1/3
mod #, _x mod # is uniqely determined (since the set {2åi's} is the set

{0,0,_x,_x,_2x} mod #, as follows from comparing local monodromies at
zero). QED

LLLLeeeemmmmmmmmaaaa 4444....3333....3333 Let Ó := Óμ(x, -x, 0; &), with x in ^, x î• _1/3 mod #, μ

in ^≠. ThenEnd0(Ó) has Ggal = PSL(3), and there exists a

hypergeometric Ó¬(å1, ..., å8; ∫1, ∫2) and an isomorphism

[2]*Ó¬(å1, ..., å8; ∫1, ∫2) § End0(Ó).

Moreover, any such Ó¬(å1, ..., å8; ∫1, ∫2) has nontrivial determinant

and its Ggal fi O(8), with (Ggal)
0 = PSL(3).

pppprrrrooooooooffff Such an Ó has Ggal = SL(3), being non-Kummer induced of type

(3,0) with trivial determinant, so End0(Ó) has Ggal = PSL(3). Such an

Ó has Ó£ § [x ÿ -x]*Ó, so End(Ó) § Ó‚Ó£ § Ó‚([x ÿ -x]*Ó) is

isomorphic to its [x ÿ -x]* transform. Now End(Ó) § End0(Ó)·(triv)
is a sum of two irreducibles of different ranks, so by Jordan Holder

theory each is isomorphic to its [x ÿ -x]* transform. Therefore

End0(Ó) descends through the two-fold Kummer covering, so is of the

form [2]*(W) for some (necessarily irreducible) D.E. W on ´m of rank

eight, whose (Ggal)
0 is PSL(3), and whose 0-slopes are all 0.

We now show that this W is hypergeometric. For this, it suffices,
by the intrinsic characterization of hypergeometrics, that ç(´m, W) =
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-1, or equivalently that ç(´m, End0(Ó)) = -2. Since End0(Ó) has 0-

slopes all 0, we need to see that End0(Ó) has Irr‘ = 2. To do this, we

will completely analyze the I‘-representation of End0(Ó). In virtue of

3.4.1.1, Ó as I‘-representation is a multiplicative translate of [3]*Ò,

where Ò is the rank one D.E. for ex.

LLLLeeeemmmmmmmmaaaa 4444....3333....4444 Let V := [3]*Ò. Then as I‘-representation, we have

End0(V) § (rank 6, slopes 1/3) · x1/3^((1/x)) · x2/3^((1/x)).
pppprrrrooooooooffff This is an easy computation using W(3, x) with its μμμμ3 action as

in the discussion 4.1.7. In that approach, once we fix a primitive cube
root of unity Ω, W(3,x) has an I‘-eigenbasis {ei}i mod 3, (©(ei) = ¥Ωix(©)ei
for © Ÿ I‘) on which Ω acts by ei ÿ ei+1. Similarly, the dual W(3, -x)

has an I‘-eigenbasis {fi}i mod 3, (©(fi) = ¥-Ωix(©)fi for ©ŸI‘) on which Ω

acts by fi ÿ fi+1. Now End(W(3, x)) is the tensor product W(3, x)‚W(3,

-x), on which Ω acts by ei‚fj ÿ ei+1‚fj+1. Among the basis vectors

ei‚fj, only the {ei‚fi}i mod 3 are P‘ invariant; the others each have

slope 1 (so slope 1/3 in End0(V)). This gives the (rank 6, slopes 1/3)
factor.

The three tame vectors {ei‚fi}i mod 3 are cyclically permuted by

Ω, so after removing the trivial character to come down from End to

End0, what remains are the two nontrivial characters of order three.
QED

Thus End0 has Irr‘ = 2, and hence that there exists a

hypergeometric Ó¬(å1, ..., å8; ∫1, ∫2) and an isomorphism

[2]*Ó¬(å1, ..., å8; ∫1, ∫2) § End0(Ó).

Consider the group G := Ggal(Ó¬(å1, ..., å8; ∫1, ∫2)). It contains

PSL(3) with index dividing two. We have already seen that G î= PSL(3)
(cf 4.3.1). Therefore the index is two. The normalizer in GL(8) of PSL(3)

is PSL(3)©{ ´m, C}. As C2 = 1 and PSL(3) contains no nontrivial scalars,

G must be _PSL(3) or PSL(3)©{1, ¬C} with ¬ = _1. We cannot have G =
_PSL(3) by 4.2.3. Thus G is PSL(3)©{1, ¬C}, ¬ = _1, and this group lies in
O(8) but not in SO(8). QED

TTTThhhheeeeoooorrrreeeemmmm 4444....3333....5555 Suppose Ó := Ó¬(å1, ..., å8; ∫1, ∫2) has G:=Ggal fi O(8)
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and detÓ nontrivial. Let x in ^, x î• _1/3 mod #, μ in ^≠. There exists
an isomorphism

[2]*Ó¬(å1, ..., å8; ∫1, ∫2) § End0(Óμ(x, -x, 0; &))

if and only if mod # eeeeiiiitttthhhheeeerrrr
{å1, ..., å8} = {0, 1/2, x/2, (1 + x)/2, -x/2, -(1 + x)/2, x, -x} := A1

{∫1, ∫2} = {1/3, 2/3} := B1

oooorrrr
{å1, ..., å8} = {0, 1/2, x/2, (1 + x)/2, -x/2, -(1 + x)/2, x + 1/2, -x- 1/2}

:= A2
{∫1, ∫2} = {1/6, 5/6} := B2.

pppprrrrooooooooffff Suppose first that there exists an isomorphism

[2]*Ó¬(å1, ..., å8; ∫1, ∫2) § End0(Óμ(x, -x, 0; &)).

We will analyze separately the possibilities for the ∫'s, and then for the
å's. After doing this, we will figure out which pairs of possibilities can
"go together".

Looking at the slope =0 part of End0(Óμ(x, -x, 0; &)) at ‘, we

see that {2∫1, 2∫2} = {1/3, 2/3} mod #. As ∫1 + ∫2 Ÿ #, the only

possibilities for {∫1, ∫2} are {1/3, 2/3} or {1/6, 5/6}.

We now turn to the åi's. Suppose first that x is neither 0 nor 1/2

mod #, so that the local monodromy at 0 of Óμ(x, -x, 0; &) is

semisimple. Then that of End0(Óμ(x, -x, 0; &)), and hence that of

Ó¬(å1, ..., å8; ∫1, ∫2) is also semisimple. Therefore there can be no

repeats mod # among the åi's. The 2åi's mod # are the exponents at 0

of End0(Óμ(x, -x, 0; &)), namely {0,0, x, x, -x, -x, 2x, -2x}. Since the

åi's do not repeat mod #, they must be

{0, 1/2, x/2, (1 + x)/2, -x/2, -(1 + x)/2, ?, ??}.
Since ‡åi • 1/2 mod #, the last two entries sum to zero, so are either

_x or _(x + 1/2), as asserted.
If x=0, then, writing unipn for an n-dimensional unipotent Jordan

block, the local monodromy of Óμ(x, -x, 0; &) at zero is unip3, so that

of End0 is unip5 · unip3. Since Ó¬(å1, ..., å8; ∫1, ∫2) has at most one

Jordan block for each slope =0 character at zero, its local monodromy
at zero is either

(unip5) · x1/2‚(unip3) or x1/2‚(unip5) · (unip3),
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as asserted.
If x = 1/2, then the local monodromy of Óμ(x, -x, 0; &) at zero is

(unip1) · x1/2‚(unip2),

so that of End0 is

(unip1) · (unip3) · x1/2‚(unip2) · x1/2‚(unip2).

So the local monodromy of Ó¬(å1, ..., å8; ∫1, ∫2) at zero, being self

dual of nontrivial determinant, is either

(unip1) · x1/2‚(unip3) · x1/4‚(unip2) · x3/4‚(unip2)

or

x1/2‚(unip1) · (unip3) · x1/4‚(unip2) · x3/4‚(unip2),

as asserted.

The situation now is this. Fix x in ^, x î• _1/3 mod ^, μ in ^≠. We

have proven that End0(Óμ(x, -x, 0; &)) descends through [2], and that

any descent is, for some ¬ in ^≠, on the following list of four possibilities
Ó¬(A1, B1), Ó¬(A1, B2), Ó¬(A2, B1), Ó¬(A2, B2).

Now from the definition of the exponent sets A1, A2, B1, B2, we see
that

Ó¬(A1, B1)‚x1/2 § Ó¬(A2, B2), Ó¬(A1, B2)‚x1/2 § Ó¬(A2, B1).

On the other hand, the only indeterminacy in descending through [2]

any irreducible D.E. on ´m is the possibility of twisting by x1/2 (cf

2.7.1). So the two descents of End0(Óμ(x, -x, 0; &)) through [2] are

either Ó¬(A1, B1) and Ó¬(A2, B2), which is precisely what we assert to

be the case, or they are Ó¬(A1, B2) and Ó¬(A2, B1).

If Ó¬(A1, B1) is not a descent of End0(Óμ(x, -x, 0; &)) for any μ,

then its G:= Ggal cannot have G
0,der = PSL(3), thanks to Lemma 4.3.2.

Since Ó¬(A1, B1) is irreducible and not Kummer induced, with G fi O(8)

and nontrivial determinant, the only other possibility is that G = O(8).

Similarly, if Ó¬(A1, B2) is not a descent of End0(Óμ(x, -x, 0; &)) for

any μ, then its Ggal is O(8). Thus exactly one of Ó¬(A1, B1), Ó¬(A1, B2)

has its Ggal = O(8), and the others' Ggal has G
0 = PSL(3). So the two

cases are distinguished by the ddddiiiimmmmeeeennnnssssiiiioooonnnnssss of their differential galois
groups (dimO(8) = 28, dimPSL(3) = 8).

We will decide which one is which by using the specialization
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theorem. Fix ¬, and regard x as a variable. In other words, denote by K
the field $(¬), and by R the polynomial ring K[x] in one variable x over
K. Then on the scheme (´m)R, both of our candidates

Ó¬(A1, B1) := Ó¬(0, 1/2, _x/2, _(1 + x)/2, _x; 1/3, 2/3),

Ó¬(A1, B2) := Ó¬(0, 1/2, _x/2, _(1 + x)/2, _x; 1/6, 5/6)

make sense as free Ø-modules of rank eight endowed with integrable
connections relative to the ground ring R.

In order to prove that Ó¬(A1, B1) has G
0 = PSL(3) for eeeevvvveeeerrrryyyy

x î• _1/3 mod #, it suffices to prove that Ó¬(A1, B1) has dimGgal ≤ 8

for eeeevvvveeeerrrryyyy x; by the specialization theorem it suffices to prove that
Ó¬(A1, B1) has dimGgal ≤ 8 at the generic point. This is equivalent to

showing that Ó¬(A1, B2) has dimGgal > 8 at the generic point. By the

specialization theorem it suffices for this to find a ppppaaaarrrrttttiiiiccccuuuullllaaaarrrr x where
Ó¬(A1, B2) has dimGgal > 8. For this, we take x= 1/3. Then

Ó¬(A1, B2)|x=1/3 is the rrrreeeedddduuuucccciiiibbbblllleeee hypergeometric

Ó¬(0, 1/2, _1/6, _2/3, _1/3; 1/6, 5/6)

whose semisimplification is

x1/6^[x, x-1] · x5/6^[x, x-1] · Ó¬(0, 1/2, _1/3, _1/3; &).

Therefore the Ggal of Ó¬(0, 1/2, _1/3, _1/3; &) is a quotient of that of

Ó¬(0, 1/2, _1/6, _2/3, _1/3; 1/6, 5/6), hence has lower dimension. But

Ó¬(0, 1/2, _1/3, _1/3; &) has Ggal = O(6) [being of type (6,0),not

Kummer induced, and orthonally self dual with nontrivial
determinant] which has dimension 15 > 8. QED

Thus we find
PPPPSSSSLLLL((((3333)))) TTTThhhheeeeoooorrrreeeemmmm 4444....3333....6666 A hypergeometric Ó := Ó¬(å1, ..., å8; ∫1, ∫2) of

type (8,2) has G0,der = PSL(3) if and only if there exists ∂Ÿ^ and xŸ^,
x î• _1/3 mod #,such that, mod #,we have
{åi + ∂} = {0, 1/2, _x/2, _(1 + x)/2, _x}, {∫

i
+ ∂} = {_1/3}.

4444....4444 TTTThhhheeee SSSSppppiiiinnnn((((7777)))) CCCCaaaasssseeee:::: DDDDeeeettttaaaaiiiilllleeeedddd AAAAnnnnaaaallllyyyyssssiiiissss
We have already seen (4.2.6) that if a hypergeometric of type

(8,2) has G0,der = Spin(7), then a twist of it is (isomorphic to one) of the
form Ó¬(_x, _y, _z, _(x+y+z); 0, 1/2) for some x, y, z Ÿ^.
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SSSSppppiiiinnnn((((7777)))) TTTThhhheeeeoooorrrreeeemmmm 4444....4444....1111 Let ¬Ÿ^≠, x, y, z Ÿ ^. If
Ó := Ó¬(_x, _y, _z, _(x+y+z); 0, 1/2)

is irreducible and not Kummer induced of degree 2, then Ggal = Spin(7).

pppprrrrooooooooffff This is very similar to the G2 case. Since Ó is irreducible, not

Kummer induced, and has Ggal fi SO(8), the only two possibilities for

Ggal are Spin(7) or SO(8). We may distinguish these by the fact that

Ú4(std8) is SO(8)-irreducible, but has a one-dimensional space of

Spin(7) invariants. So it suffices to show that, denoting by j: ´m ¨ @1

the inclusion, we have ç(@1, j~*Ú
4(Ó)) ≥ 2. Since

ç(@1, j~*Ú
4(Ó)) = -Irr0 - Irr‘ + dim^Soln0 + dim^Soln‘.

it suffices to show that we have
(1) dim^Soln0 ≥ 8.

(2) Irr0 = 0.

(3) dim^Soln‘ = 4.

(4) Irr‘ = 10.

In order to prove (1), let us denote by T the local monodromy of Ó
around zero, and by P(T) its characteristic polynomial. We know that
as ^[T]-module, Ó is ^[T]/(P(T)). In terms of the quantities

a:= exp(2πix), b:=exp(2πiy), c:=exp(2πiz),
the roots of P(T) are (a, 1/a, b, 1/b, c, 1/c, abc, 1/abc).
Since Ó is regular singular at zero, we have

dim^Soln0(Ú
4(Ó)) = dim Ker(T-1 acting on Ú4(^[T]/(P(T)))).

To show that this dimension is ≥ 8, it suffices by the specialization
lemma 4.1.6 to treat the case in which P has all distinct roots.Then T is

diagonalizable, say T § Diag(a1, ..., a8), hence Ú
4(T) is diagonalizable

with eigenvalues exactly all quadruple products aiajakan with

i < j < k < n. If we number the ai so that they are (a, 1/a, b, 1/b, c, 1/c,

abc, 1/abc), then the eight quadruple products indexed by (1,2,3,4),
(1,2,5,6), (1,2,7,8), (3,4,5,6), (3,4,7,8), (5,6,7,8), (1,3,5,8) and (2,4,6,7,)

are all 1, so dimKer(Ú4(T) - 1) ≥ 8, as required.
Since Ó is regular singular at zero, (2) is obvious. We now turn to

the proofs of (3) and (4). Let us denote by W the six-dimensional wild
part of Ó‚^((1/x)). Since (∫1, ∫2) is (0, 1/2),
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Ó‚^((1/x)) § W · ^((1/x))· x1/2^((1/x)), whence

Ú4(Ó‚^((1/x)))§Ú4(W) · Ú3(W) · Ú3(W)‚x1/2 · Ú2(W)‚x1/2.

Since Ó has trivial determinant, we see that det(W) § x1/2^((1/x)).

Denoting by Ò the rank one D.E. for ex, it follows from 3.4.1.1 that W is
a multiplicative translate of [6]*Ò. Since the assertions (3) and (4) are

invariant under multiplicative translation, we may assume that
W § [6]*Ò.

From the table 4.1.7.2, we read off that Ú4(Ó‚^((1/x))) has Irr‘ = 10

and dimSoln‘ = 4, as required. QED

4444....5555 TTTThhhheeee SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))) CCCCaaaasssseeee
We have already noted that if a hypergeometric Ó of type (8,2)

has G0,der = (the image of) SL(2)≠SL(2)≠SL(2), then a twist Ó‚x∂ has

its Ggal fi Sp(8), so Ó‚x∂ is (isomorphic to one) of the form

Ó¬(_x, _y, _z, _t; _w)

for some x, y, z, t, w in ^.
We will denote by Æ the image of SL(2)≠SL(2)≠SL(2) in Sp(8),

where Sp(8) is the symplectic group for std2‚std2‚std2 with the form

(x‚y‚z, u‚v‚w) := <x,u><y,v><z,w>. The action of the symmetric
group S3 on std2‚std2‚std2 visibly respects the symplectic form, so

we may view S3 as a subgroup of Sp(8). This S3 normalizes Æ; as every

outer automorphism of Æ is induced by the action of this S3, we see

that the normalizer of Æ in Sp(8) is Æ©S3. Therefore if V is any rank

eight D.E. with G:= Ggal fi Sp(8) and with G0,der = Æ, then

Æ fi G fi Æ©S3.

LLLLeeeemmmmmmmmaaaa 4444....5555....1111 If a hypergeometric Ó of type (8,2) has G := Ggal fi Sp(8)

and G0,der = Æ, then G is the subgroup Æ©A3 of Æ©S3, and there exist

three rank two D.E.'s V1, V2, and V3 on ´m, each hypergeometric of

type (2,0) with Ggal = SL(2), and an isomorphism

[3]*Ó § V1‚V2‚V3.

pppprrrrooooooooffff The quotient G/Æ is cyclic, because we are on ´m; as G/Æ is a

subgroup of S3, this quotient is either A3, or it has order 1 or 2. So if it

were not A3, then [2]*Ó has Ggal = Æ. Viewing Æ as the quotient of

SL(2)≠SL(2)≠SL(2) by the subgroup of {_1}≠{_1}≠{_1} of triples with
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product 1, we can (by 2.2.2.1) lift the homomorphism π1
diff ¨ Æ

corresponding to [2]*Ó to a homomorphism π1
diff¨SL(2)≠SL(2)≠SL(2).

Thus there exist three rank two D.E.'s V1, V2, and V3 on ´m, all with

Ggal = SL(2), and an isomorphism

[2]*Ó § V1‚V2‚V3.

By the Highest Slope Lemma 4.2.4, the highest ‘-slope of V1·V2·V3 is

the same as that of V1‚V2‚V3 § [2]*Ó, namely 1/3. But as Vi is of

rank two, it cannot have any ‘-slope 1/3. Therefore the quotient G/Æ
must be A3.

Once G/Æ has order 3, [3]*Ó has Ggal = Æ, and we repeat the

lifting argument to produce three rank two D.E.'s V1, V2, and V3 on

´m, all with Ggal = SL(2), and an isomorphism

[3]*Ó § V1‚V2‚V3.

. By the Highest Slope Lemma 4.2.4,,,, each Vi has its 0-slopes 0, and its

‘-slopes ≤ 1/2. So the ‘-slopes of a given Vi are either both 1/2 or

they are both 0. They cannot both be zero, for then Vi would be regular

singular at both 0 and ‘, so reducible, contradicting the fact that its
Ggal is SL(2). By the intrinsic characterization of irreducible

hypergeometrics, each Vi is hypergeometric of type (2, 0). QED

LLLLeeeemmmmmmmmaaaa 4444....5555....2222 Suppose V1, V2, and V3 are three hypergeometrics of

type (2,0) on ´m, such that V1·V2·V3 has Ggal = SL(2)≠SL(2)≠SL(2),

and such that for some D.E. V on ´m there exists an isomorphism

[3]*V § V1‚V2‚V3.

Then

(1) V is hypergeometric of type (8,2), and there exists a twist V‚x∂ of

V with ∂=0 or _1/3 such that after replacing V ÿ V‚x∂ (which

doesn't change [3]*V), Ggal(V) = Æ©A3.

(2)Fix a primitive cube root of unity Ω. After possibly renumbering the

Vi and replacing certain of them by their x1/2 twists, there exist

isomorphisms [xÿΩx]*Vi § Vi+1, where the index i is read mod 3.
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pppprrrrooooooooffff The Ggal of any such V obviously has G0 = Æ, and G/G0 is cyclic

of order 1 or 3. In particular, V is irreducible. By 4.2.4, such a V is
entirely of slope 0 at 0, and its highest ‘-slope is 1/6. Therefore
ç(´m, V) = -1, and so V is hypergeometric by the intrinsic

characterization; by its slopes, it must be of type (8,2). By the previous
lemma, some twist of V has its Ggal= Æ©A3 fi Sp(8), so G:=Ggal(V)fi

´mSp(8). The subgroup G0 is Æ fi Sp(8), so G fi μμμμ3Sp(8). Twisting V by

an x∂, ∂ =0 or _1/3 puts G fi Sp(8), whence G is Æ©A3 by the previous

lemma.
Let us denote by T := [x ÿ Ωx], the multiplicative translation by

the chosen primitive cube root of unity Ω. Since V1‚V2‚V3 descends

through [3], its isomorphism class is invariant under T*. Therefore

V1‚V2‚V3‚T*(V1)‚T*(V2)‚T*(V3)

has Ggal a quotient of Æ. Since both V1·V2·V3 and

T*(V1)·T*(V2)·T*(V3) have Ggal = SL(2)≠SL(2)≠SL(2), it follows by the

contrapositive of Goursat-Kolchin-Ribet 1.8.2 that for 1 ≤ i ≤ 3 there
exists a rank one D.E. L on ´m, an index 1 ≤ j ≤ 3, and an isomorphism

T*(Vi) §Vj‚L.

Since both sides have trivial determinant, we see that Lº2 is trivial

(i.e., L is x∂^[x, x-1] for ∂ = 0 or 1/2). We claim that i ± j. For if i=j,

then T*(Vi) § Vi‚L, and applying T* again we find

T*T*(Vi) § T*(Vi‚L) § Vi‚L‚L § Vi. But as Vi is irreducible with

ç = -1, this is impossible by 3.7.7.
Apply this with i=1, and renumber so the corresponding j =2.

Then replace V2 by V2‚L, and we find

T*(V1) § V2
Now apply this to i=2. We find

either T*(V2) § V1‚L or T*(V2) § V3‚L.

In the first case, this leads to T*T*(V1) § T*(V2) § V1‚L, which is

impossible as above. Therefore T*(V2) § V3‚L, so replacing V3 by

V3‚L we now find

T*(V1) § V2, T
*(V2) § V3.
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From this and the fact that T is of order 3 we see that T*(V3) §

T*T*(V2) § T*T*T*(V1) § V1, as asserted. QED

TTTThhhheeeeoooorrrreeeemmmm 4444....5555....3333 Let V be a hypergeometric of type (2,0) with Ggal =

SL(2), i.e., V is (isomorphic to) Ó¬(x, -x; &) for some x in ^, x î• _1/4

mod #. Let Ω be a primitive cube root of unity, T := [x ÿ Ωx]. Then

(1) V · T*V · T*T*V has Ggal = SL(2)≠SL(2)≠SL(2).

(2) For some μŸ^≠, there exists an isomorphism

V‚T*V‚T*T*V § [3]*Óμ(_x/3, _(1 + x)/3, _(2+ x)/3, _x; _1/4),

and this Ó is the unique descent of VºT*V‚T*T*V whose Ggal fi Sp(8).

pppprrrrooooooooffff To prove (1), by 1.8.2, and the fact that V is self dual, it suffices
that for any rank one D.E. L on ´m, there exist no isomorphism of V‚L

with either T*V or T*T*V. Suppose this were not the case. Looking at

determinants, we see that Lº2 is trivial. Replacing Ω by Ω2, we may

assume V‚L § T*V. We must have L nontrivial, by 3.7.7. Thus V‚x1/2

§ T*V. Comparing exponents at zero, we find that they must be _1/4,
contradiction. This proves (1).

To prove (2), notice that V‚T*V‚T*T*V is irreducible since
Ggal = Æ, and its isomorphism class is T-invariant, so it descends

through [3], and the descent is unique up to twisting by x∂ with
∂ = 0 or _1/3 (cf. 2.7.1). By 4.5.2, the descended D.E. is a hypergeometric
of type (8,2) which may be uniquely ( Sp(8)€μμμμ3 = {e}) specified by

requiring Ggal fi Sp(8). Let us denote by Ó this choice of descent.

It remains to determine the exponents of this Ó. The exponents of

V‚T*V‚T*T*V § [3]*Ó at zero are {_3x, _x, _x, _x}. Suppose first
that x î• 0 or 1/2 mod #, so that V has semisimple local monodromy at

zero. Then also V‚T*V‚T*T*V § [3]*Ó and consequently Ó itself have
semisimple local monodromy around zero. Therefore the exponents mod
# of Ó must be, mod #, {_x/3, _(1 + x)/3, _(2+ x)/3, ????,,,, ????????). Because the
local monodromy of Ó lies is Sp(8) fi SL(8), the last two exponents at
zero are _?, with ? either x or x + 1/3 or x + 2/3. If x is 0 (resp. 1/2),

then the local monodromy of [3]*Ó (resp. of ([3]*Ó)‚x1/2) at zero is
the tensor product of three unipotent Jordan blocks of size two, so it is
the direct sum of unipotent Jordan blocks of sizes 4, 2, and 2. This
means that the eight exponents at zero of Ó are all among {0, _1/3}
(resp. among {1/2, _1/6}) and that their multiplicities are, in some
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order, 4,2,2. So we see by inspection that our description of the
possbiilities is correct in this case also.

To partially analyse the I‘-representation attached to Ó, we will

use the descent method 4.1.7. After a multiplicative translation, V as

I‘-representation is ([2]*Ò)‚x1/4 (since det([2]*Ò) is x
1/2, while

det(V) is trivial). Therefore [2]*V as I‘-representation is W(2,x)‚x1/2,

[2]*(T*V) is W(2, Ωx)‚x1/2 and [2]*(T*T*V) is W(2, Ω2x)‚x1/2.
Therefore as I‘-representation, we have

[6]*Ó § [2]*[3]*Ó § [2]*(V‚T*V‚T*T*V)

§ W(2,x)‚x1/2‚W(2, Ωx)‚x1/2 ‚ W(2, Ω2x)‚x1/2

§(W(2,x)‚W(2, Ωx)‚W(2, Ω2x))‚x3/2

§(·indep. _'s Ò(_1 _Ω _Ω2)x)‚x3/2

§(rank 6, slope =1) · (trivial of rank 2)‚x3/2.
Because Ó is hypergeometric of type (8,2) with Ggal fi Sp(8), its two ‘-

exponents mod # must be _y for some y. By the above description of

[6]*Ó as I‘-representation, we must have 6y • 3/2 mod #. So the ‘-

exponents are either _1/4 or _1/12 or _5/12.
Let us summarize the situation so far. We began with

V := Ó¬(x, -x; &), x î• _1/4 mod #,

and showed that there is a unique symplectic Ó of type (8,2) for which

[3]*Ó §VºT*V‚T*T*V, and that this Ó is, for some μŸ^≠, isomorphic
to one of the following nine possibilities:
Poss(i,j):= Óμ(_x/3, _(1 + x)/3, _(2+ x)/3, _(x + i/3); _(1/4 + j/3)),

or, what is the same,
Poss(i,j):= Óμ(the six roots z of 3z • _x mod #, _(x + i/3); _(1/4 + j/3))

where i and j run independently over the set {0, _1}.
The ccccoooorrrrrrrreeeecccctttt Ó has Ggal = Æ©A3, dimGgal = 9. Moreover, for any

x î• _1/4 or _1/12 or _5/12 mod #, eeeeaaaacccchhhh of the nine possibilities
Poss(i,j) is irreducible, not Kummer induced, and has Ggal fi Sp(8). In

view of the general classification theorem, for x î• _1/4 or _1/12 or
_5/12 mod #, eeeeaaaacccchhhh of the nine possibilities Poss(i,j) has Ggal eeeeiiiitttthhhheeeerrrr

Sp(8) oooorrrr Æ©A3. We claim that the correct Ó is the oooonnnnllllyyyy oooonnnneeee of the

nine possibilities Poss(i,j) which has Ggal = Æ©A3. Indeed, suppose that

Ì were another. By 4.5.1 and 4.5.2, [3]*Ì §UºT*U‚T*T*U, for some U
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of the form Óå(_w, &). Comparing exponents at zero, we see that

w = _x, whence some multiplicative translate [x ÿ ≈x]*Ì of Ì is also a

symplectic [3]-descent of [3]*Ó. By uniqueness, we infer that

[x ÿ ≈x]*Ì § Ó. Comparing exponents at both 0 and ‘, we see that
Ì = Ó.

This being the case, it suffices to show that for any x î• _1/4 or
_1/12 or _5/12 mod #, the first possibility

Poss(0,0) := Óμ(the six roots of 3z • _x mod #, _x; _1/4)

has dimGgal ≤ 9. By the specialization theorem 2.4.1, it suffices to show

that Poss(0,0) has dimGgal ≤ 9 for ggggeeeennnneeeerrrriiiicccc x. For this, it suffices to

show that each of the ooootttthhhheeeerrrr eight possibilities Poss(i,j) has dimGgal ≥ 10

for ggggeeeennnneeeerrrriiiicccc x. By 2.4.1, it suffices to exhibit, for each of the other eight
possibilities, a ssssiiiinnnngggglllleeee numerical value xi,j of x for which the

corresponding specialized equation has dimGgal ≥ 10.

Consider first what happens when we specialize x to 1/4. If i±j,
write {0, _1} = {i, j, k}. Then Poss(i,j) specializes to

Óμ(_1/12, _(1/12 + 1/3), _(1/12 - 1/3), _(1/4 + i/3); _(1/4 + j/3))

= Óμ(_(1/4 + i/3), _(1/4 + j/3), _(1/4 + k/3), _(1/4 + i/3); _(1/4 + j/3))

whose semisimplification is of the form
Óμ'(_(1/4 + i/3), _(1/4 + i/3), _(1/4 + k/3);&) ·

· x∂^[x, x-1] · x-∂^[x, x-1]
for ∂ := 1/4 + j/3. Therefore Ggal for this specialization admits as

quotient the Ggal of Óμ'(_(1/4 + i/3), _(1/4 + i/3), _(1/4 + k/3);&). The

six cases of i±j are (i,k) = (0,1), (0, -1), (1,0), (1, -1), (-1, 1), (-1, 0), and
for these Óμ'(_(1/4 + i/3), _(1/4 + i/3), _(1/4 + k/3);&) is respectively

Óμ'(_1/4, _1/4, _5/12; &)

Óμ'(_1/4, _1/4, _1/12; &)

Óμ'(_5/12, _5/12, _1/4; &)

Óμ'(_5/12, _5/12, _1/12; &)

Óμ'(_1/12, _1/12, _5/12; &)

Óμ'(_1/12, _1/12, _1/4; &).

Each of these is irreducible, not Kummer induced (the exponents are
not stable by å ÿ å + 1/2 or by å ÿ å + 1/3), and symplectically
autodaual, so has Ggal = Sp(6), which has dimension dimension 21 ≥ 10.

Thus the correct possibility has i=j. Now let us consider the effect
of putting xi,i = 3/4. Then
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Poss(i,i) := Óμ(the six roots z of 3z • _x mod #, _(x + i/3); _(1/4 + i/3))

specializes, for i =1, -1, to
Óμ(the six roots of 3z • _1/4 mod #, _(3/4 + 1/3); _(1/4 + 1/3))

= Óμ(_1/12, _1/4, _5/12, _1/12; _5/12)

and to
Óμ(the six roots of 3z • _1/4 mod #, _(3/4 - 1/3); _(1/4 - 1/3))

= Óμ(_1/12, _1/4, _5/12, _5/12; _1/12)

Their semisimplifications contain
Óμ'(_1/12, _1/12, _1/4; &)

and
Óμ'(_1/4, _5/12, _5/12; &)

respectively, both of which have Ggal = Sp(6). So these cases are ruled

out. The only remaining possibility Poss(0,0) must be the correct one.
QED

Combining the above theorem with the two lemmas preceding it,
we obtain
SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))) TTTThhhheeeeoooorrrreeeemmmm 4444....5555....4444 The hypergeometrics of type (8,2)

whose G := Ggal has G
0,der = Æ := the image of SL(2)≠SL(2)≠SL(2) are

precisely the x∂ twists of those with Ggal = Æ©A3, and those with Ggal
= Æ©A3 are precisely those (isomorphic to one ) of the form

Óμ(_x/3, _(1 + x)/3, _(2+ x)/3, _x; _1/4)

for any μ in ^≠, and any x î• _1/4 mod #.

4444....6666 TTTThhhheeee SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333)))) CCCCaaaasssseeee
In this section, we will analyze those irreducible hypergeometrics

Ó of type (9,3) or (3,9) whose G := Ggal has G
0,der = (the image of)

SL(3)≠SL(3) in SL(9). By inversion, it suffices to treat the case (9,3).
Throughout this section, we will denote by

Æ := the image of SL(3)≠SL(3) in SL(9).
By 1.8.4, the normalizer of Æ in GL(9) is ´mÆ©S2. Therefore its

normalizer in SL(9) is μμμμ9(Æ©{1, -ß}), where -ß is the involution of

std3‚std3 given by x‚y ÿ -y‚x [the change of sign achieves

determinant 1].

LLLLeeeemmmmmmmmaaaa 4444....6666....1111 If an Ó of type (9,3) has G0,der = Æ, some x∂ twist of Ó
has Æ fi Ggal fi Æ©{1, -ß}. If Ó has Ggal fi SL(9), we can take ∂ Ÿ (1/9)#.
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pppprrrrooooooooffff Given any Ó of type (9,3), an x∂ twist of it has Ggal fi SL(9) (cf.

3.6.2), and the same G0,der. For such an Ó, we have
Æ fi Ggal fiμμμμ9(Æ©{1, -ß}). The only scalars in Æ©{1, -ß} are μμμμ3, so "the

cube of the μμμμ9 factor" is a character ç: Ggal ¨ μμμμ3 which is precisely

the obstruction to having Ggal fi Æ©{1, -ß}. This character of Ggal

corresponds to the rank one D.E. x∂^[x, x-1] for ∂ • 0 or _1/3 mod #. So

Ó‚x-∂/3has Æ fi Ggal fi Æ©{1, -ß}. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....2222 No hypergeometric Ó of type (9,3) has Æ fi Ggal fi ´mÆ.

pppprrrrooooooooffff If such an Ó exists, a twist of it has Ggal = Æ. The universal

covering of Æ is its triple covering by SL(3)≠SL(3). Lifting the surjective

classifying homomorphism π1
diff ¨ Æ through this covering, we find

two rank three equations V and W on ´m, such that V·W has

SL(3)≠SL(3) as its Ggal, and such that V‚W § Ó. Now Ó has highest ‘-

slope 1/6, and highest 0-slope =0, so by the Highest Slope Lemma 4.2.4
V·W has highest ‘-slope 1/6, and highest 0-slope =0. Therefore at
least one of V or W has highest ‘-slope 1/6, which is impossible as both
V and W have rank three. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....3333 If a hypergeometric Ó of type (9,3) has Æ fi Ggal fi Æ©{1,

-ß}, then Ggal = Æ©{1, -ß}. There exist two rank three D.E.'s V1 and V2
on ´m, such that V1·V2 has SL(3)≠SL(3) as its Ggal, each Vi is

hypergeometric of type (3,0) with Ggal = SL(3), and there exists an

isomorphism

[2]*Ó § V1‚V2.

pppprrrrooooooooffff By the above lemma we must have G = Æ©{1, -ß}.The quotient

G/Æ is thus cyclic of order two. Therefore [2]*Ó has Ggal = Æ. Lifting its

surjective classifying homomorphism π1
diff ¨ Æ through the universal

covering, we obtain two rank three equations V1 and V2 on ´m, each

with Ggal = SL(3), such that V1·V2 has SL(3)≠SL(3) as its Ggal, and

such that V1‚V2 § [2]*Ó. Now [2]*Ó has highest ‘-slope 1/3, and

highest 0-slope =0, so by 4.2.4 V1·V2 has highest ‘-slope 1/3, and
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highest 0-slope =0. Therefore each of V1 and V2 has highest ‘-slope ≤

1/3, and highest 0-slope =0. In fact, both of V1 and V2 must have

highest ‘-slope =1/3 [for if V1 had highest ‘-slope < 1/3, it would,

being of rank three, have all ‘-slopes =0, so would be regular singular
at both 0 and ‘, so reducible, so would not have SL(3) for its Ggal]. By

the intrinsic characterization of hypergeometrics, both Vi are

hypergeometric of type (3,0). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....6666....4444 If a hypergeometric Ó of type (9,3) has
Ggal = Æ©{1, -ß},

then Ó‚x1/2 has Ggal = Æ©{1, ß} = Æ©S2, and conversely.

pppprrrrooooooooffff Ó and Ó‚x1/2 both have G0 = Æ, and G/G0 of order two,
corresponding to the Kummer covering of degree two. So if we view Ó

and Ó‚x1/2 as representations ®1 and ®2 of π1
diff, and denote by ç

the unique nontrivial character of order two of π1
diff, then

®2 = ç‚®1, and Ker(ç) = (®1)
-1(Æ) = (®2)

-1(Æ) . Let g Ÿ π1
diff have

®1(g) = -ß. Then ç(g) = -1, since -ß îŸ Æ, and so ®2(g) = ß. Since

π1
diff = Ker(ç) ⁄ gKer(ç), Image(®2) = Æ ⁄ ßÆ, as asserted. The

converse is proven the same way. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....6666....5555 If Ó of type (9,3) has G0,der = Æ, there exists an x∂

twist of Ó which has Ggal = Æ©{1, -ß}, and another which has Ggal =

Æ©{1, ß}.
pppprrrrooooooooffff. This is immediate from the previous four results. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....6666 If a hypergeometric Ó of type (9,3) has Ggal = Æ©{1, ß},

there exist two rank three D.E.'s V1 and V2 on ´m, such that V1·V2
has SL(3)≠SL(3) as its Ggal, each Vi is hypergeometric of type (3,0) with

Ggal = SL(3), and there exists an isomorphism

[2]*Ó § V1‚V2.

pppprrrrooooooooffff Simply apply 4.6.3 to Ó‚x1/2, which in virtue of 4.6.4 has Ggal =

Æ©{1, -ß}, but the same [2]* as Ó. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....7777 If Ó of type (9,3) has Ggal = Æ©{1, -ß} or Æ©{1, ß}, then
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for ∂ • 0 or _1/3 mod #, Ggal(Óºx
∂) = Ggal(Ó).

pppprrrrooooooooffff For any ∂, Ggal(Óºx
∂)0,der = Æ, a group which contains μμμμ3. So if

3∂• 0 mod #, then Ggal(Óºx
∂) fi Ggal(Ó)μμμμ3 = Ggal(Ó), and Ggal(Ó) fi

Ggal(Óºx
∂)μμμμ3 = Ggal(Óºx

∂). QED

LLLLeeeemmmmmmmmaaaa 4444....6666....8888 Suppose V1 and V2, are two hypergeometric of type

(3,0) on ´m, such that V1·V2 has Ggal = SL(3)≠SL(3), and such that

for some D.E. V on ´m there exists an isomorphism

[2]*V § V1‚V2.

Denote by T := [x ÿ -x}, the multiplicative translation by -1.Then

(1) V is Lie-irreducible, and unique up to V ÿ V‚x1/2.
(2) V is hypergeometric of type (9,3), and there exists a unique twist

V‚xå of V with å=0 or 1/2 such that after replacing V ÿ V‚xå

(which doesn't change [2]*V), det(V) is trivial (resp. nontrivial). This V
has Ggal(V) = Æ©{1, -ß} (resp. has Ggal(V) = Æ©{1, ß}).

(2)There exists an isomorphism T*V1 § V2‚x∂ for ∂ • 0 or _1/3 mod

#.
(3) For this choice of ∂, we have:

(V1‚x∂) · T*(V1‚x∂) has Ggal = SL(3)≠SL(3),

[2]*V § (V1‚x∂)‚T*(V1‚x∂)

Ggal(V) = Æ©{1, -ß} if det(V) trivial, Ggal(V) = Æ©{1, ß} if not.

pppprrrrooooooooffff The Ggal of such a V obviously has G0 = Æ, and G/G0 of order at

most two. In particular, V is Lie-irreducible, and (1) follows from 2.7.1.
By 4.2.4, V has highest ‘-slope 1/6, and highest 0-slope =0. Therefore
ç(´m, V) = -1, and so V is hypergeometric by the intrinsic

characterization; by its slopes, it must be of type (9,3). Since [2]*V has

trivial determinant, det(V) is either trivial or is x1/2^[x, x-1]. Since V

has odd rank 9, exactly one of V or V‚x1/2 has G := Ggal fi SL(9). Since

G0 = Æ and G/G0 has order ≤ 2, while G î= Æ by 4.6.2, we must have G/Æ
of order two. Since G is not contained in ´mÆ, G must contain a scalar

times -ß, say ≈(-ß), and G = Æ ⁄ Æ≈(-ß). So if G fi SL(9), ≈ Ÿ μμμμ9. Since
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the square of every element of G lies in Æ, (≈(-ß))2 =≈2 is a scalar in Æ,

so ≈2 Ÿ μμμμ3. Therefore ≈ Ÿ μμμμ3. But μμμμ3 fi Æ, so from G = Æ ⁄ Æ≈(-ß) we

see that G = Æ ⁄ Æ(-ß) = Æ©{1, -ß} if det(V) is trivial. By the previous
lemma, it follows that G = Æ©{1, ß} if det(V) is nontrivial.

Since V1‚V2 descends through [2], its isomorphism class is

invariant under T*: V1‚V2 § T*(V1)‚T*(V2). Now consider the two

D.E.'s V1·V2 and T*(V1)·T*(V2). Both have Ggal = SL(3)≠SL(3). As

representations of π1
diff their isomorphism classes arise from (possibly

different) liftings of the classifying map for [2]*V. From the exact

sequence for Homalg. gp.(π1
diff, ?) applied to the central extension

0 ¨ μμμμ3 ¨ SL(3)≠SL(3) ¨ Æ ¨0,

we see that any lifting is isomorphic to one of
V1·V2,

(V1)‚x1/3 · (V2)‚x-1/3,

(V1)‚x-1/3 · (V2)‚x1/3.

Therefore either

T*(V1)·T*(V2) § V1·V2, or

T*(V1)·T*(V2) § (V1)‚x1/3 · (V2)‚x-1/3, or

T*(V1)·T*(V2) § (V1)‚x-1/3 · (V2)‚x1/3.

By Jordan Holder theory, the isomorphism classes of the irreducible

constituents of T*(V1)·T*(V2) are well defined, and they occur in any

decomposition of T*(V1)·T*(V2) into a sum of irreducibles. But

T*(V1)§ V1 is impossible by 3.7.7, and T*(V1) § (V1)‚x_1/3 would

imply that the exponents of V at zero are stable by å ÿ å + 1/3,
which in turn implies that V1 is Kummer induced of degree three,

which is impossible since Ggal(V1) = SL(3). So either

T*(V1) § V2, or

T*(V1) § (V2)‚x-1/3, or

T*(V1) § (V2)‚x1/3.

This proves (2): T*V1 § V2‚x∂ for ∂ • 0 or _1/3 mod #. Assertion (3) is
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immediate from (1) and (2), for by (2) we have

(V1‚x∂) · T*(V1‚x∂) § (V1‚x∂) · (V2‚x2∂). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....6666....8888....1111 Let V be hypergeometric of type (9,3) with Ggal =

Æ©{1, ß}. Then there exists a hypergeometric Ó of type (3,0) such that

Ó·T*Ó has Ggal = SL(3)≠SL(3), and such that [2]*V § Ó‚T*Ó.

pppprrrrooooooooffff Simply combine 4.6.6 and 4.6.8. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....9999 Let Ó := Ó¬(x, y, z; &) be a hypergeometric of type

(3,0), and T := [x ÿ -x] the multiplicative translation by -1. Then

Ó·T*Ó has Ggal = SL(3)≠SL(3) if and only if x, y, z satisfy the following

conditions mod #:
(1) x + y + z • 0 mod #.
(2) {x, y, z} î= {0, 1/3, 2/3} mod #.
(3) none of x, y, z is • 0 or _1/3 mod #.
pppprrrrooooooooffff Condition (1) is that detÓ be trivial. Once detÓ is trivial, (2) is
the condition that Ó not be Kummer induced. By 3.6 (2), Ggal = SL(3)

(since |n-m| = 3 is odd). So (1) and (2) together are equivalent to
Ggal = SL(3).

By Goursat-Kolchin-Ribet via 3.8.2, Ó·T*Ó will ffffaaaaiiiillll to have its

Ggal = SL(3)≠SL(3) if and only if for some åŸ^, either Ó‚xå or its

adjoint Ó*‚x-å is isomorphic to T*Ó. We now analyze these cases.

Suppose first that Ó‚xå § T*Ó. Comparing determinants, we see

that å • 0 or _1/3 mod #. If å • 0 mod #, then Ó § T*Ó, which is

impossible by 3.7.7. Therefore Ó‚x1/3 § T*Ó or Ó‚x-1/3 § T*Ó. In
either case, the 0-exponents mod # of Ó are stable by x ÿ x + 1/3, in
which case Ó would be Kummer induced of degree three, contradiction.
So this case cannot arise.

Suppose now that Ó*‚x-å § T*Ó. Again å • 0 or _1/3 mod #. So

(Ó‚x2å)* § Ó*‚x-2å § T*Ó‚x-å = T*Ó‚x2å § T*(Ó‚x2å), and
the 0-exponents mod # of Ó are stable by x ÿ -x -å. The only
possibility for Ó compatible with (1) is Ó¬(x, -x -å, å;&), and this Ó

has Ó*‚x-å § T*Ó. It is precisely this sort of Ó which is ruled out by
condition (3). QED

TTTThhhheeeeoooorrrreeeemmmm 4444....6666....11110000 Let Ó := Ó¬(x, y, z; &) be a hypergeometric of type
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(3,0), and T := [x ÿ -x] the multiplicative translation by -1. Suppose
that x, y, z in ^ satisfy

x+y+z • 0 mod #, and none of x, y, z is • 0 or _1/3 mod #,

i.e., suppose that Ó·T*Ó has Ggal = SL(3)≠SL(3).

Then
(1) There is a unique hypergeometric V of type (9,3) with det(V)

nontrivial for which there exists an isomorphism [2]*V § Ó‚T*Ó.

(2) This V has Ggal(V) = Æ©{1, ß}.

(3) For some μŸ^≠, V is isomorphic to
Óμ(x, y, z, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2; 0, _1/3).

(4) Any hypergeometric V of type (9,3) with Ggal = Æ©{1, ß} is obtained

in this way.

pppprrrrooooooooffff Assertion (4), "mise pour memoire" has already been proven

(4.6.8.1). Since Ó‚T*Ó is irreducible on ´m and isomorphic to its T*

pullback, it descends through [2], i.e., it is of the form [2]*V for some
D.E. V on ´m. Therefore assertions (1) and (2) result from 4.6.8. The

only subtle point is to compute the exponents mod # of the unique [2]-

descent V of Ó‚T*Ó whose determinant is nontrivial. Let us denote by
{åi}i=1,...,9 and {∫i}i=1,...,3 the exponents of V at zero and ‘

respectively. Thus for some μ in ^≠, V is Óμ(åi's; ∫j's). Exactly as in the

PSL(3) and SL(2)≠SL(2)≠SL(2) cases, we will first determine the
exponents up to a few possibilities, and then use the specialization
theorem to eliminate all but one of the possibilities.

Suppose first that x, y, z are all distinct mod #. Then Ó and T*Ó

has semisimple local monodromy at zero, so also [2]*V § Ó‚T*Ó and
hence V has semisimple local monodromy at zero. Therefore the
{åi}i=1,...,9 are all distinct mod #, and their doubles are those of

Ó‚T*Ó:
{2åi}i=1,...,9 = {2x, 2y, 2z, x+y, x+y, x+z, x+z, y+z, y+z}.

Since x+y+z • 0 mod #, we may rewite this
{2åi}i=1,...,9 = {2x, 2y, 2z, -z, -z, -y, -y, -x, -x}.

Because the {åi}i=1,...,9 are all distinct mod #, the åi must include both

the halves of -x, -y, and -z. The remaining three of them are some
choices

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z
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of halves of 2x, 2y, and 2z. Therefore the {åi}i=1,...,9 are

{ëx , ëy , ëz , -x/2, 1/2 - x/2, -y/2, 1/2 - y/2, -z/2, 1/2 - z/2}.

Since det(V) is to be nontrivial, det(V) is x1/2^[x, x-1]. As x + y + z •0
mod #, we must have ëx + ëy + ëz • 0. This can happen only if either

ëx = x , ëy = y , ëz = z
or if pppprrrreeeecccciiiisssseeeellllyyyy oooonnnneeee among x, y, z, has ët = t, and the other two have
ët = 1/2 + t.

If we no longer assume that x, y, and z are distinct mod #, no
more than two of them can coincide mod #, since their sum is 0 mod #
and none is 0 or _1/3 mod #. Permuting x, y, and z, we may assume
that y=x, z = -2x. Then the local monodromy transformation of both Ó

and of T*Ó around zero has Jordan normal form

e2πix‚(unip2) · e-4πix‚(unip1),

where by unipn we mean a unipotent Jordan block of size n. Therefore

the local monodromy transformation of Ó‚T*Ó § [2]*V around zero
has Jordan normal form

e4πix‚(unip3) · e4πix‚(unip1) · e-2πix‚(unip2) ·

· e-2πix‚(unip2) · e-8πix‚(unip1).

Therefore V has five distinct mod # exponents at zero, occurring with
multiplicities 3,1,2,2,1, say {å1, å1, å1, å2, å3, å3, å4, å4, å5}, and

2å1 • 2x mod #,

2å2 • 2x mod #,

2å3 • -x mod #,

2å4 • -x mod #,

2å5 • -4x mod #.

Since the åi are distinct mod #, we have equalities mod #

{å3, å3, å4, å4} = {-x/2, -x/2, 1/2 - x/2, 1/2 - x/2},

{å1, å1, å1, å2} = {x, x, x, 1/2 + x}

oooorrrr = { 1/2 + x, 1/2 + x, 1/2 + x, x},
å5 = -2x oooorrrr = 1/2 - 2x.

All of these possibilities are obtained from the general case's possibilities
by specializing y ÿ x.

Consider now the I‘-representation.

LLLLeeeemmmmmmmmaaaa 4444....6666....11111111 Notations as in the theorem, Ó‚T*Ó § [2]*V as I‘-

representation is
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(rank 6, slopes 1/3) · ^((1/x)) · x1/3^((1/x)) · x2/3^((1/x)).
pppprrrrooooooooffff Denote by W the I‘-representation attached to Ó. Since Ó is of

type (3,0) with trivial determinant, it follows from 3.4.1.1 that W is a

multiplicative translate of [3]*Ò, where Ò is the rank one D.E. for ex,

and that T*W is the dual of W. Therefore

W‚T*W § End(W) § End0(W) · (triv),
and so the result has already been proven in 4.3.4. QED

From this lemma, we see that the ‘-exponents ∫i satisfy

{2∫i}i=1,2,3 = {0, 1/3, 2/3}.

So the unique [2]-descent V of Ó‚T*Ó whose determinant is
nontrivial (resp. trivial) is Óμ(åi's; ∫j's), where

{åi's} = {ëx, ëy, ëz, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z,
x+y+z • 0 mod #,
ëx+ ëy+ ëz • 0 (resp. • 1/2) mod #,
none of x, y, z is • 0 or _1/3 mod #,

{2∫i}i=1,2,3 = {0, 1/3, 2/3},

∫1 = 0 oooorrrr 1/2, ∫2 = 1/6 oooorrrr 2/3, ∫3 = 1/3 oooorrrr 5/6.

In order to decide which choice is correct, we now embark on a
series of lemmas.
LLLLeeeemmmmmmmmaaaa 4444....6666....11112222 Suppose x+y+z • 0 mod #, and none of x, y, z is • 0 or
_1/3 mod #. The set with multiplicity {x, y, z} mod # is uniquely
determined by the set with multiplicity S :={2x, 2y, 2z, -x, -x, -y, -y, -
z, -z} mod #.
pppprrrrooooooooffff Consider subsets with multiplicity T := {a, b, c} mod # of S such
that a+b+c • 0 mod #, and such that {a, a, b, b, c, c} mod # is a subset
with multiplicity of S. Clearly {-x, -y, -z} is such a T. We will show it is
the only one.

Suppose first that T is drawn entirely from {-x, -y, -z}, but is not
{-x, -y, -z}. Then T must (up to permutation of x, y, z,) be {-x, -x, -z}
or {-x, -x, -x}. The second case {-x, -x, -x} is impossible, because none of
x, y, z is • 0 or _1/3 mod #, while a+b+c • 0 mod # if T = {a, b, c}. If T
is {-x, -x, -z}, with x and z distinct mod #, we claim that y • x mod #.
For if not, then either y • z mod # [in which case -x and -y each occur
in S with multiplicity at lease four, so at least two out of {2x, 2y,
2z=2y} are -x mod #. Therefore 2y • -x mod #, and our original {x, y,
z} is {-2y, y, y}. So our T, namely {-x, -x, -z}, is {2y, 2y, -y}; but this T
fails to sum to 0 mod #, since none of x, y, z is • 0 or _1/3 mod #,
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contradiction] or x, y, and z are distinct mod # [in which case at least
two of {2x, 2y, 2z} are -x mod #. By hypothesis, 2x î• -x mod #, so we
must have 2y • 2z • -x mod #. Then our original {x, y, z} is {-2y, y, z},
and as x+y+z • 0 mod # we see that y • z mod #, contradiction].

Suppose now that T is not drawn entirely from {-x, -y, -z}. Then
there is an element of S other than -x, -y, -z which occurs in S with
multiplicity ≥ 2, and it occurs in T. So at least two out of {2x, 2y, 2z}
coincide, and their common value is none of -x, -y, -z mod #.

If 2x • 2y • 2z mod #, then at least two out of x, y, z coincide
mod #; as not all of x, y, z coincide mod #, precisely two of x, y, z
coincide. Permuting x, y, z, we may assume that y • x, z • x + 1/2
mod #. Since x+y+z • 0 mod #, x is 1/2 or _1/6 mod #, whence z is 0
or _1/3 mod #, contradiction.

Permuting x, y, z if necessary, we may assume that 2x • 2y mod
#, and 2x î• 2z mod #. Since 2x is present in S exactly twice, T is {2x, ?,
??} where ? and ?? are drawn from {-x, -y, -z}.

If -x, -y, -z are pairwise distinct mod #, then none of them can
occur in S with multiplicity > 3, so T is either {2x, -x, -y} or {2x, -x, -z}
or {2x, -y, -z}. Since T sums to 0 mod #, we find either y • x mod # or
z • x mod # or y+z • 2x mod #. The first two contradict the pairwise
distinctness, and the last forces 3x • 0 mod #, contradicting that none
of x, y, z is • 0 or _1/3 mod #.

If two of -x, -y, -z coincide mod #, then exactly two coincide
(since x+y+z • 0 mod # but none of x, y, z is • 0 or _1/3 mod #), so
either x • y mod # or x • z mod # or y • z mod #. Since 2x • 2y mod
#, and 2x î• 2z mod #, we must have x • y mod # and x î• z mod #.
Then z is -2x mod #, S is { 2x with mult. 4, -x with mult. 4, -4x}, and
the only possible T's are {-x, -x, 2x} or {-x, 2x, 2x}. The second is
impossible since T sums to 0 mod #, and the first is {-x, -y, -z}. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....11113333 Suppose that Óμ(åi's; ∫j's) is any hypergeometric of

type (9,3) such that {2∫i}i=1,2,3 = {0, 1/3, 2/3}, and such that ‡åi •

1/2 (resp. ‡åi • 0) mod #. If G := Ggal has G
0,der = Æ, then

Ggal = Æ©{1, ß} (resp. Ggal = Æ©{1, -ß}).

pppprrrrooooooooffff By an x1/2 twist the two cases are interchanged, so it suffices to

treat the case in which ‡åi • 0 mod #. Then Ggal fi SL(9), so if G0,der

= Æ, then by 4.6.1 there exists ∂ Ÿ (1/9)# such that Óμ(åi's; ∫j's)‚x∂

has Ggal = Æ©{1, -ß}. By 4.6.4 and 4.6.8.1, there exists a hypergeometric



Chapter4-Detailed Analysis of the Exceptional Cases-35

Ó of type (3,0) such that Ó·T*Ó has Ggal = SL(3)≠SL(3), and such that

[2]*(Óμ(åi's; ∫j's)‚x∂) § Ó‚T*Ó. In view of 4.6.11, the ‘-exponents of

Ó‚T*Ó are {0, 1/3, 2/3}, whence {2∂ + 2∫i}i=1,2,3 = {0, 1/3, 2/3}. By

hypothesis, the {2∫i}i=1,2,3 are themselves {0, 1/3, 2/3}, whence 2∂

mod # is in {0, 1/3, 2/3}. Since ∂ has denominator dividing 9, we infer

that 3∂ • 0 mod #. By 4.6.7, Óμ(åi's; ∫j's) = (Óμ(åi's; ∫j's)‚x∂)‚x-∂

has the same Ggal as Óμ(åi's; ∫j's)‚x∂, namely Æ©{1, -ß}. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....11114444 Suppose that x+y+z • 0 mod #, and that none of x, y, z
is • 0 or _1/3 mod #. Suppose that Óμ(åi's; ∫j's) is a hypergeometric of

type (9,3) whose exponents satisfy
{åi's} = {ëx, ëy, ëz, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z,
ëx+ ëy+ ëz • 0 (resp. • 1/2) mod #,

{2∫i}i=1,2,3 = {0, 1/3, 2/3}.

Suppose that G0,der = Æ. Then for some ¬ Ÿ ^≠, there exists an
isomorphism

[2]*(Óμ(åi's; ∫j's)) § Ó¬(x, y, z; &)‚T*Ó¬(x, y, z; &).

pppprrrrooooooooffff twisting by x1/2, it suffices to treat the case êx+ ëy+ ëz • 0 mod #.
By the above Lemma, Óμ(åi's; ∫j's) has Ggal = Æ©{1, ß}. By 4.6.8.1, and

4.6.9, there exist X, Y, Z in ^ and ¬ in ^≠ with X+Y+Z • 0 mod #, none
of X, Y, Z is • 0 or _1/3 mod #, and there exists an isomorphism

[2]*(Óμ(åi's; ∫j's)) § Ó¬(X, Y, Z; &)‚T*Ó¬(X, Y, Z; &).

Comparing exponents at zero, we find
{2åi} = {2X, 2Y, 2Z, -X, -X, -Y, -Y, -Z, -Z} mod #.

Now {2åi} is itself {2x, 2y, 2z, -x, -x, -y, -y, -z, -z}, so by 4.6.12 it

follows that {x, y, z} = {X, Y, Z} mod #. QED

LLLLeeeemmmmmmmmaaaa 4444....6666....11115555 Suppose that x+y+z • 0 mod #, and that none of x, y, z
is • 0 or _1/3 mod #. Suppose that V1 and V2 are two hypergeometrics

of type (9,3), of the form
V1 = Óμ1

(A1; B1)

V2 = Óμ2
(A2; B2)

where μ1 and μ2 are in ^≠,where A1 and A2 are choices of {åi's}
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satisfying
{åi's} = {ëx, ëy, ëz, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z,
ëx+ ëy+ ëz • 0 mod #,

and where B1 and B2 are choices of {∫i's} satisfying

{2∫i}i=1,2,3 = {0, 1/3, 2/3}.

If both V1 and V2 have G0,der = Æ, then V1 is a multiplicative

translate of V2.

pppprrrrooooooooffff By the previous lemma, for i=1,2 there exists ¬i Ÿ ^≠ and an

isomorphism

[2]*(Vi) § Ó¬i
(x, y, z; &)‚T*Ó¬i

(x, y, z; &).

By a multiplicative translation, we may suppose ¬1 = ¬2. Then V1 and

V2 are each [2]-descents of Ó¬i
(x, y, z; &)‚T*Ó¬i

(x, y, z; &) with

nontrivial determinant, so by the unicity of such a descent V1 and V2
must be isomorphic. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....6666....11115555....1111 Suppose that x+y+z • 0 mod #, and that none of x,
y, z is • 0 or _1/3 mod #. Among all possible (A, B) where A is a choice
of {åi's} satisfying

{åi's} = {ëx, ëy, ëz, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z,
ëx+ ëy+ ëz • 0 mod #,

and where B is a choice of {∫i's} satisfying

{2∫i}i=1,2,3 = {0, 1/3, 2/3},

there is one and only one (A,B) which satisfies the following equivalent
properties:

(1) There exists some μ Ÿ ^≠ for which Óμ(A, B) has G
0,der = Æ.

(2) For every μ Ÿ ^≠, Óμ(A, B) has G
0,der = Æ.

LLLLeeeemmmmmmmmaaaa 4444....6666....11116666 Suppose that x+y+z • 0 mod #, and that none of x, y, z

is • 0 or _1/3 mod #. Let μ Ÿ ^≠, and let
A = {x, y, z, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},
B = {0, 1/3, 2/3},
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Then
(1) Óμ(A, B) is irreducible and not Kummer induced.

(2) If G := Ggal(Óμ(A, B)) has dimG ≤ 16, then G = Æ©{1, ß}, and for

some ¬ Ÿ ^≠, there exists an isomorphism

[2]*(Óμ(åi's; ∫j's)) § Ó¬(x, y, z; &)‚T*Ó¬(x, y, z; &).

pppprrrrooooooooffff Since none of x, y, z is • 0 or _1/3 mod #, a fortiori none of
their "halves" is either, whence the irreducibility. If Óμ(A, B) is

Kummer induced, it must be Kummer induced of degree 3 = gcd(9,3),
in which case the set A is stable mod # by t ÿ t + 1/3. But then the set
2A of doubles is stable by t ÿ t + 2/3. By the uniqueness 4.6.12, it
follows that the set {x, y, z} is stable by t ÿ t + 1/3, in which case {x,
y, z} would be {x, x + 1/3, x + 2/3}, which is impossible since x+y+z • 0
mod #, and none of x, y, z is • 0 or _1/3 mod #. Therefore Óμ(A, B) is

irreducible and not Kummer induced. From the general classification

theorem 3.6, it now follows that G0,der is one of Æ, SO(9), or SL(9). So if

dimG ≤ 16 only the case G0,der = Æ is possible. The rest of assertion (2)
now follows from 4.6.13 and 4.6.14. QED

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 4444....6666....11117777 Suppose that x+y+z • 0 mod #. Let μ Ÿ ^≠. Let
A = {x, y, z, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},
B = {0, 1/3, 2/3}.

Then dimGgal(Óμ(A, B)) ≤ 16.

pppprrrrooooooooffff Since Ggal is invariant under multiplicative translation, it

suffices to prove this when μ = 1. By the specialization theorem, it
suffices to treat the case when x and y are algebraically independent
over $, and z := -x -y. More symmetrically, we work over the generic
point of the parameter ring $[x, y, z]/(x+y+z)$[x, y, z].

In this case, none of x, y, z is • 0 or _1/3 mod #. So by 4.6.15.1,
among all possible (ëA, ëB) where ëA is a choice of {åi's} satisfying

{åi's} = {ëx, ëy, ëz, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},

ëx = x oooorrrr 1/2 + x, ëy = y oooorrrr 1/2 + y, ëz = z oooorrrr 1/2 + z,
ëx+ ëy+ ëz • 0 mod #,

and where ëB is a choice of {∫i's} satisfying

{2∫i}i=1,2,3 = {0, 1/3, 2/3},

there is one and only one (ëA,ëB) for which Ó1(ëA, ëB) has G
0,der = Æ.
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Since x and y are independent variables, and z= -x-y, it is clear
that for any of the (ëA, ëB) above, Ó1(ëA, ëB) is irreducible (indeed none of

the ëA exponents lies in $) and not Kummer induced (same argument
as in 4.6.16 above). In view of the limited possibilities for G :=

Ggal(Ó1(ëA, ëB)), either G
0,der = Æ or dimG > 16.

Therefore among all possible (ëA, ëB) as above,there is one and only
one (ëA,ëB) for which Ó1(ëA, ëB) has dimGgal ≤16.

We will first show by a symmetry argument that A is the correct
ëA. Indeed, if ß is any permutation of the set {x, y, z}, then ß induces
an automorphism, still denoted ß, of the parameter ring R :=
$[x, y, z]/(x+y+z)$[x, y, z] over whose generic point we are working.
This same permutation induces a permutation, also noted ß, of the four
possibles ëA's, and it is tautological that Ó1(ßëA, ëB) is deduced from

Ó1(ëA, ëB) by the extension of scalars ß: R ¨ R. Since the formation of

Ggal commutes with extensions of the ground field, it follows that for

any ß, we have
dimGgal(Ó1(ßëA, ëB)) = dimGgal(Ó1(ëA, ëB)).

Since there is a uuuunnnniiiiqqqquuuueeee (ëA, ëB) where this dimension is ≤ 16, its ëA must
be a fixed under permutation of x, y, z. Among the the four possibles
ëA's, only A is fixed.

We next show by a symmetry argument that that correct ëB is
either {0, 1/3, 2/3} or {1/2, 5/6, 1/6}. Indeed, consider the
automorphism † of the parameter ring R := $[x, y, z]/(x+y+z)$[x, y, z]
given by x ÿ x + 1/3, y ÿ y + 1/3, z ÿ z - 2/3. Let us denote by †A
the image of A under †. Then Ó1(†A, ëB) is obtained from Ó1(A, ëB) by

the extension of scalars †, so just as above we have
dimGgal(Ó1(†A, ëB)) = dimGgal(Ó1(A, ëB)).

On the other hand, given any ëB := {∫i}, let ëB + 1/3 := {∫i + 1/3}. Then

Ó1(A, ëB)‚x1/3 § Ó1(†A, ëB + 1/3). So trivially

dimGgal(Ó1(A, ëB)) = dimGgal(Ó1(†A, ëB + 1/3)),

while we have seen above that (replacing ëB by ëB + 1/3)
dimGgal(Ó1(†A, ëB + 1/3)) = dimGgal(Ó1(A, ëB + 1/3)).

Therefore we have
dimGgal(Ó1(A, ëB)) = dimGgal(Ó1(A, ëB + 1/3)).

Since there is a uuuunnnniiiiqqqquuuueeee (ëA, ëB) where this dimension is ≤ 16, its ëB must
be a fixed under ëB ÿ ëB + 1/3. Among the possible ëB's, only {0, 1/3, 2/3}
or {1/2, 5/6, 1/6} are so fixed.
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It remains only to show that Ó1(A; 1/2, 5/6, 1/6 ) has

dimGgal >16; for this is suffices, by the specialization theorem, to

exhibit ppppaaaarrrrttttiiiiccccuuuullllaaaarrrr values of x and y where dimGgal >16. For this, take

x = 1/6, y = -1/6, z = 0. Then Ó1(A; 1/2, 5/6, 1/6 ) becomes

Ó1(1/6, -1/6, 0, -1/12, 5/12, 1/12, 7/12, 0, 1/2; 1/2, 5/6, 1/6 )

whose semisimplification contains, for some ¬ in ^≠,
Ó¬(0, -1/12, 5/12, 1/12, 7/12, 0; &).

So it suffices to show that Ó¬(0, -1/12, 5/12, 1/12, 7/12, 0; &) has its

Ggal of dimension > 16. This is a hypergeometric of type (6,0) which is

(automatically) irreducible and which is not Kummer induced (its
exponents are not stable by å ÿ å + 1/2 or by å ÿ å + 1/3). It is
symplectic (by the Duality Recognition Theorem 3.4) So its Ggal is Sp(6),

which has dimension 21 > 16. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....6666....11117777....1111 Suppose that x+y+z • 0 mod #, and that none of x,

y, z is • 0 or _1/3 mod #. Let μ Ÿ ^≠, and let
A = {x, y, z, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2},
B = {0, 1/3, 2/3},

Then Ggal(Óμ(A, B)) = Æ©{1, ß}, and for some ¬ Ÿ ^≠, there exists an

isomorphism

[2]*(Óμ(åi's; ∫j's)) § Ó¬(x, y, z; &)‚T*Ó¬(x, y, z; &).

pppprrrrooooooooffff This results formally from the preceding two lemmas. QED

This corollary establishes the truth of 4.6.10. Thus we obtain
SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333)))) TTTThhhheeeeoooorrrreeeemmmm 4444....6666....11118888 Hypergeometrics V of type (9,3) with
G := Ggal = Æ©{1, ß} are precisely those (isomorphic to one) of the form

Óμ(x, y, z, -x/2, -y/2, -z/2, 1/2 - x/2, 1/2 - y/2, 1/2 - z/2; 0, _1/3)

for some μŸ^≠, and for some x, y, z in ^ which satisfy x+y+z • 0 mod
#, and none of x, y, z is • 0 or _1/3 mod #. Hypergeometrics V of type

(9,3) with G0,der = Æ are precisely the x∂ twists of these.
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5555....1111 CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn ooooffff ÎÎÎÎ----mmmmoooodddduuuulllleeeessss;;;; GGGGeeeennnneeeerrrraaaalllliiiittttiiiieeeessss
(5.1.1) Given a smooth ^-scheme X/^, we denote by ÎMOD(X) the
abelian category of all sheaves of left ÎX-modules on X, by D(X; Î) its

derived category, and by Db,holo(X) the full subcategory of D(X; Î)

consisting of those objects K such that Ói(K) is holonomic for all i and

such that Ói(K) vanishes for all but finitely many i. For morphisms
f: X ¨ Y between smooth separated ^-schemes of finite type, one

knows (cf. [Ber], [Bor], [Ka-Lau], [Me-SO]) that these Db,holo support the
full Grothendieck formalism of the "six operations". Of these, we will

need only f* and f~, both of which have fairly concrete descriptions.

(The operations f~ and f* are ddddeeeeffffiiiinnnneeeedddd as the duals of these, and are

consequently less amenable to direct inspection.)
(5.1.2) We will need f* primarily when f: X ¨Y is ssssmmmmooooooootttthhhh of

relative dimension d; in this case one has f*K = RRRRf*(K‚ØX
¿\X/Y)[d], so

except for the dimension shift we are "just" talking about relative De
Rham cohomlogy:

Ói-d(f*K) = HiDR(X/Y, K), with its Gauss-Manin connection.

The deep fact here is that for K a single holonomic left ÎX-module,

each of the relative De Rham cohomology sheaves HiDR(X/Y, K), with

its Gauss-Manin connection, is holonomic on Y. The other case of f* we

will need is when f: X ¨Y is the inclusion of a ^-valued point y Ÿ Y(^).
Then f*ØX is the delta module ∂y.

(5.1.3) For a general f : X ¨ Y, and ˜ on Y, f~˜ is defined as

L

f~˜ = ÎX¨Y ‚f-1ÎY
f-1˜[dimX - dimY],

where ÎX¨Y is the (ÎX, f
-1ÎY)-bimodule

ÎX¨Y := DiffOps(f-1ØY, ØX) = ØX‚f-1ØY
f-1ÎY.

(5.1.4) Here is a more concrete description in some important

special cases. Denote by f+˜ the naive pullback of ˜ as module with
integrable connection. If f is a flat morphism (e.g., if f is smooth), or if
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˜ is a flat ØY-module (e.g., if ˜ is a D.E. on Y), then

f~˜ = f+˜[dimX - dimY].

For f etale, f~ = f+ = f*. For f smooth of relative dimension d, we have

f* = f~[-2d] = f+[-d].
If f is a closed immersion of codimension one, with X defined in Y

by one equation x=0 in Y, then f~˜ is the two term complex
mÿxm

˜ zzzzzzc ˜
placed in degrees zero and one.
(5.1.5) We will also use the following two elementary facts for an
arbitrary f:
(1) (base change) given a cartesian diagram

X' zzzzc X : ˜

d F

G

g

f d , g~f*˜ § F*G
~˜.

Y' zzzzc Y

(2) (projection formula) for any Ø-coherent Î-module Ò on Y, denoting

by f+Ò its naive pullback as a D.E. on X, we have

(f*K)‚ØY
Ò § f*(K‚ØX

f+Ò).

(5.1.6) Given two smooth ^-schemes X/^ and Y/^, "external tensor
product over ^" defines a bi-exact bilinear pairing,

ÎMOD(X)≠ÎMOD(Y) ¨ ÎMOD(X≠^Y)

(˜, ˆ) ÿ ˜≠ˆ,

which passes to Db,holo.
If K and L are objects of ÎMOD(X), we define their "exotic" tensor

product, denoted K‚~L, in terms of the diagonal map »: X ¨ X≠^X, by

K‚~L := »~(K≠L).
(5.1.7) If G/^ is a smooth separated ^-groupscheme, we denote by
the group law by

productG : G≠^G ¨ G.

We define the convolution of objects of Db,holo(G) by
(5.1.7.1) (K, L) ÿ K*L := (productG)*(K≠L).

The operation of convolution is associative, and the ∂-module ∂e
supported at the identity of G is a two-sided identity object. [For if we
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denote by “: e ¨ G the inclusion of the identity, then for any K in

Db,holo(G), we have
K = Øe≠K on e≠^G § G,

(“≠idG)*(Øe≠K) = (“*Øe)≠K = ∂e≠K on G≠^G.

Since the composite map (productG)«(“≠idG) is idG, the result follows.]

If G is commutative, then convolution is commutative as well.
(5.1.8) In general, even if we start with two holonomic Î-modules

˜ and ˆ on G, viewed as objects of Db,holo(G) which are concentrated

in degree zero, their convolution ˜*ˆ is "really" an object of Db,holo(G),
and nnnnooootttt simply a single holonomic Î-module placed in degree zero. It is
this "instability" of Î-modules themselves under convolution that

makes Db,holo the natural setting.
(5.1.9) The following formal properties of convolution are quite
useful.
(1a) If ƒ: G¨H is a homomorphism of smooth separated ^-
groupschemes of finite type, then

ƒ*(K*L) § (ƒ*K)*(ƒ*L).

This results from the fact that (ƒ≠ƒ)*(K≠L) = (ƒ*K)≠(ƒ*L) (valid for

any ƒ) and the fact that productH«(ƒ≠ƒ) = ƒ«productG (ƒ being a

homomorphism).
In the special case when H is the trivial group, this becomes:

Denote by π: G ¨Spec(^) the structural map. Then for any two objects

K, L in Db,holo(G), we have
π*(K*L) § (π*K)‚^(π*L).

(1b) If ƒ : G ¨ G is a homomorphism, then for any two objects K, L in

Db,holo(G), we have

ƒ~((ƒ*K)*L) § K*(ƒ~L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

G≠G zzzzc G≠G
f id≠ƒ d ƒ≠id

prodG | G≠G

d ƒ d prodG
G zzzzc G.
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(1c) If ƒ : G ¨ H is a homomorphism, then for K in Db,holo(G) and L in

Db,holo(H), we have

ƒ~((ƒ*K)*L) § K*(ƒ~L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

G≠G zzzzc G≠H
f id≠ƒ d ƒ≠id

prodG | H≠H

d ƒ d prodH
G zzzzc H

(2) For g Ÿ G(^) denote by Tg : G ¨G the map x ÿ gx "translation by g",

and by ∂g the delta module supported at g. Then for g Ÿ G(^), we have

(Tg)*(K*L) § ((Tg)*K)*L,

(Tg)*(L) § (∂g)*L.

The first results from Tg«productG = productG « (Tg≠idG). The second is

the special case K = ∂e of the first, since (Tg)*(∂e) = ∂g, and ∂e is the

convolutional identity.

(5.1.10) In discussing convolution, it is sometimes convenient to take
a slightly assymmetric point of view. Denoting points of G≠G as (x,y),
we can factor the product map as the composition of pr2 with the

shearing involution shear: (x,y) ÿ (x-1, xy) of G≠G. So we find, in an
obvious notation,

K*L := (productG)*(K≠L) = (pr
2
)*(shear)*(K≠L) =

= (pr
2
)*(K(x

-1)‚L(xy)) := —K(x-1)‚L(xy)dx

= (pr2)*((pr1
+inv*K)‚(productG)

+L).

5555....2222 CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn oooonnnn ´́́́mmmm aaaannnndddd FFFFoooouuuurrrriiiieeeerrrr ttttrrrraaaannnnssssffffoooorrrrmmmm oooonnnn !!!!1111

We now turn to the case of particular interest to us, when G is
´m.

LLLLeeeemmmmmmmmaaaa 5555....2222....1111 For å in ^, and K, L in Db,holo(´m), we have

(K‚xå)*(L‚xå) § (K*L)‚xå.
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pppprrrrooooooooffff Let Tå denote the Î-module xå^[x, x-1]. The Î-module version

of " (xy)å = (x)å(y)å " is

product+(Tå) = Tå≠Tå,

so the assertion is immediate from the projection formula. QED

(5.2.2) Denote by inv: ´m ¨ ´m the multiplicative inversion, by

j: ´m ¨ !1 the inclusion, Δ := d/dx on !1, by Ò the Î-module

Î!1/Î!1(Δ - 1) on !1 which is the D.E. for ex, and by j*Ò its

restriction to ´m. Thus j*Ò = Î´m
/Î´m

(xΔ - x) = Ó1(0; &) = Ó(t, 1) is

the basic hypergeometric of type (1,0) on ´m.

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 5555....2222....3333 (Compare [Ka-GKM, 8.6.1]) Convolution with

j*Ò = Ó1(0; &) = Ó(t, 1) on ´m and Fourier Transform on !1 are

related as follows: for any holonomic Î-module ˜ on ´m, we have

j*FT(j*inv*(˜)) § ˜*j*Ò = ˜*Ó1(0; &) = ˜*Ó(t,1).

pppprrrrooooooooffff We have

FT(j*inv*(˜)) = —
!1

(j*inv*(˜))(x)exydx

= —
!1

(j*inv*(˜))(x)Ò(xy)dx.

Denote by
pr1: ´m≠´m ¨ ´m the first projection,

pr2: ´m≠´m ¨ ´m the second projection,

ëj := (j≠id´m
) : ´m≠´m ¨ !1≠´m the inclusion,

ëpr2 : !1≠´m ¨ ´m the second projection,

ëpr1 : !1≠´m ¨ !1 the first projection

ëproduct : !1≠´m ¨ !1 the multiplication (x, ¬) ÿ x¬.

So with these notations, we can rewite the above FT formula as

j*FT(j*inv*˜) = (ëpr2)*((j*inv*˜)(x)exy).

Using smooth base change and the projection formula, we find

(ëpr2)*((j*inv*˜)(x)exy) =

= (ëpr2)*(ëpr1
+(j*inv*˜).‚(ëproduct)+Ò) =
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= (ëpr2)*ëj*((pr1
+inv*˜)‚(ëj )+ëproduct+Ò) =

= (pr2)*((pr1
+inv*˜)‚product+j*Ò) =

= ˜*j*Ò. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....2222....3333....1111 For any holonomic Î-module ˜ on ´m, we have

inv*j
*FT(j*˜) § ˜*(inv*j

*Ò).

pppprrrrooooooooffff The Key Lemma applied to inv*˜ gives

j*FT(j*˜) = (inv*˜)*(j*Ò).

Because inv: ´m ¨ ´m is a group homomorphism, we get

inv*j
*FT(j*˜) = (inv*inv*˜)*(inv*j

*Ò) = ˜*(inv*j
*Ò). QED

5555....3333 CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn ooooffff HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss oooonnnn ´́́́mmmm
We begin by explaining the heuristic motivation. Let P, Q, R, and

S be four nonzero polynomials in ^[t]. Recall the hypergeometric
differential operators

Hyp(P, Q) := P(xd/dx) - xQ(xd/dx),
Hyp(R, S) := R(xd/dx) - xS(xd/dx),

and the associated Î-modules on ´m
Ó(P, Q) := Î/ÎHyp(P, Q),
Ó(R, S) := Î/ÎHyp(R, S).

A formal series f(x) := ‡anx
n is killed by Hyp(P, Q) if and only if its

coefficients an satisfy the two-term recurrence relation

P(n)an = Q(n-1)an-1.

Similarly, a formal series g(x) := ‡bnx
n is killed by Hyp(R, S) if and

only if its coefficients bn satisfy the two-term recurrence relation

R(n)bn = S(n-1)bn-1.

Thus if f(x) := ‡anx
n and g(x) := ‡bnx

n are formal series solutions of

Hyp(P, Q) and of Hyp(R, S) respectively, then their "convolution"

(f*g)(x) := ‡anbnx
n

is visibly a formal solution of Hyp(PR, QS). This suggests that, at least
under reasonable hypotheses, one should have

Ó(P, Q)*Ó(R, S) § Ó(PR, QS)
as Î-modules on ´m.
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CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 5555....3333....1111 Suppose that P, Q, R, and S are four
nonzero polynomials in ^[t], such that the two polynomials PR and QS
have no common zeroes mod #, i.e., whenever (PR)(å) = 0 = (QS)(∫), å
- ∫ is not an integer. Then

Ó(P, Q)*Ó(R, S) § Ó(PR, QS)
as Î-modules on ´m.

pppprrrrooooooooffff We proceed by induction on deg(RS).
If deg(RS) = 0, then both R and S are nonzero constants, say r

and s. Then Hyp(R, S) = r-sx, so Ó(R, S) = ∂r/s is the delta module

supported at r/s. Similarly, we see that Ó(PR, QS) = Ó(rP, sQ) =
(Tr/s)*Ó(P, Q) (cf. 3.1). Since convolution is commutative on ´m, the

assertion to be proven is
(∂r/s)*Ó(P, Q) § (Tr/s)*Ó(P, R),

which is the translation formula 5.1.9 (2) (with g =r/s).
Suppose now that R or S is nonconstant. By multiplicative

inversion, it suffices to treat the case when R has degree ≥ 1. Twisting

by xå, we reduce by 5.2.1 to the case where the polynomial R(t) is
divisible by t, say R(t) = tR0(t). By induction, we know that

Ó(P, Q)*Ó(R0, S) § Ó(PR0, QS).

Since convolution is commutative,we know by induction that
Ó(R0, S)*Ó(t, 1) § Ó(t, 1)*Ó(R0, S) § Ó(R, S).

Therefore by the associativity of convolution we obtain
Ó(P, Q)*Ó(R, S) § Ó(P, Q)*Ó(R0, S)*Ó(t, 1) §

§ Ó(PR0, QS)*Ó(t, 1).

So we are reduced to showing universally that
Ó(P(t), Q(t))*Ó(t, 1) § Ó(tP(t), Q(t))

whenever tP(t) and Q(t) have no common zeroes mod #. By 5.2.3, we

have, denoting by j: ´m ¨ !1 the inclusion,

Ó(P(t), Q(t))*Ó(t, 1) § j*FT(j*inv*Ó(P(t), Q(t)))

§ j*FT(j*Ó(Q(-t), P(-t))).

Since Q(-t) has no zeroes in #, it follows from 2.9.4, (3) À(5) that

j*Ó(Q(-t), P(-t)) := j*j
*(Î!1/Î!1Hyp(Q(-t), P(-t)))

§ Î!1/Î!1Hyp(Q(-t), P(-t)),

whence

j*FT(j*Ó(Q(-t), P(-t))) § j*FT(Î!1/Î!1Hyp(Q(-t), P(-t)))
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§ j*(Î!1/Î!1FT(Hyp(Q(-t), P(-t))))

§ Î´m
/Î´m

FT(Hyp(Q(-t), P(-t))).

It is a simple matter to compute FT, since FT(x) = Δ := d/dx, FT(Δ) = -x,
and FT(-xd/dx) = Δx = 1 + xΔ. We find
FT(Hyp(Q(-t), P(-t))) := FT(Q(-xd/dx) - xP(-xd/dx))

= Q(FT(-xd/dx)) - ΔP(FT(-xd/dx))
= Q(1 + xd/dx) -(1/x)(xd/dx)P(1 + xd/dx)
= (-1/x)[(xd/dx)P(1 + xd/dx) - xQ(1 + xd/dx)]
= (-1/x)Hyp(tP(1 + t), Q(1 + t)).

Therefore we have
Î´m

/Î´m
FT(Hyp(Q(-t), P(-t))) § Ó(tP(1 + t), Q(1 + t)).

By 3.2 and 3.2.1, Ó(tP(1 + t), Q(1 + t)) § Ó(tP(t), Q(t)). QED
Making this explicit in terms of the exponents, we find

EEEExxxxpppplllliiiicccciiiitttt VVVVaaaarrrriiiiaaaannnntttt 5555....3333....2222 We have
Ó¬(å's; ∫'s)*Óμ(©'s, ∂'s) § Ó¬μ(å's, ©'s; ∫'s, ∂'s)

provided that Ó¬μ(å's, ©'s; ∫'s, ∂'s) is irreducible, i.e., provided that no

element of the set {å's, ©'s} is congruent mod # to any element of the
set {∫'s, ∂'s}.

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....3333....2222....1111 All irreducible hypergeometrics on ´m can be built

out of ∂1 and Ó1(0; &), using only the following operations on

holonomic Î-modules on ´m:

(1) convolution
(2) ˜ ÿ (Tå)*˜

(3) ˜ ÿ ˜‚x∂

(4) ˜ ÿ inv*˜.

Specializing the Key Lemma 5.2.3 and its Corollary 5.2.3.1 to the
case of hypergeometrics, we find

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 5555....3333....3333 Let Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m), with no åi - ∫j
in #.
If no ∫j lies in #, then

j*FT(j*inv*Ó) § Ó¬(0, å1, ... , ån; ∫1, ... , ∫m).
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If no åi lies in #, then

inv*j
*FT(j*Ó) § Ó-¬(å1, ... , ån; 0, ∫1, ... , ∫m).

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....3333....3333....1111 All irreducible hypergeometrics can be built out of
the delta module ∂1 on ´m using only the the following operations on

holonomic Î-modules on ´m:

(1) ˜ ÿ j*FT(j*inv*˜)

(2) ˜ ÿ inv*j
*FT(j*˜)

(3) ˜ ÿ (Tå)*˜

(4) ˜ ÿ ˜‚x∂

(5) ˜ ÿ inv*˜.

5555....4444 MMMMoooottttiiiivvvviiiicccc IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn ooooffff HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss ooooffff ttttyyyyppppeeee ((((nnnn,,,,nnnn))))

In our earlier discussion of the determination of (Ggal)
0,der for

irreducible hypergeometrics of type (n,n),
Ó¬(å1, ... , ån; ∫1, ... , ∫n), no åi - ∫j lies in #,

we put aside the problem of recognizing when Ggal is a finite group. We

now confront this problem. Since Ggal is invariant by multiplicative

translation, it suffices to treat the case ¬=1. By 3.2.2(3), a trivial
necessary condition for the finiteness of Ggal is that the å's and ∫'s all

lie in $. By the convolution theorem 5.3.1, Ó1(å1, ... , ån; ∫1, ... , ∫n) is

a multiple convolution:
Ó1(å1, ... , ån; ∫1, ... , ∫n) § Ó1(å1; ∫1)*Ó1(å2; ∫2)* ... *Ó1(ån; ∫n).

As we will now explain, this expression for Ó1(å1, ... , ån; ∫1, ... , ∫n)

leads directly to its motivic interpretation.
(5.4.1) The first step, then, is to understand completely Ó1(å, ∫),

when å, ∫ Ÿ$ and å - ∫ is not an integer. Let N be a common
denominator for å and ∫, and define integers A, B, C by

A := Nå, B := N∫, C := B - A.
Denote by U the open set ´m - {1} of ´m, and by j: U ¨ ´m the

inclusion. Denote by Z the subvariety of U≠´m (coordinates x,y) of

equation

yN = xA(1 - x)C.
This Z is a smooth (y is always invertible) affine curve on which μμμμN
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acts (on y). Via pr1, Z is a finite etale μμμμN -torsor over ´m - {1}. We

denote by π the etale map
π : Z ¨ ´m, π(x, y) := x,

which factors through j as

Z
pr1 Í j Ó π

U ¨ ´m.

The map π is μμμμN -equivariant, for the given action

(x,y) ÿ (x, Ωy) on Z, and the trivial action on ´m. Therefore the group

μμμμN acts on the holonomic Î-module π*ØZ. This action gives a direct

sum decomposition
π*ØZ § ·char.'s ç of μμμμN

(π*ØZ)ç

into isotypical components.
LLLLeeeemmmmmmmmaaaa 5555....4444....2222 For each ffffaaaaiiiitttthhhhffffuuuullll character çr of μμμμN,

çr(Ω) := Ωr with gcd(r, N) = 1, 1 ≤ r < N,

the çr-isotypical component of π*ØZ is given by

(π*ØZ)çr
§ Ó1(rå; r∫).

pppprrrrooooooooffff Since π = j«pr1, we have

π*ØZ § j*pr1*ØZ.

Because pr1 is μμμμN -equivariant, we have a direct sum decomposition

pr1*ØZ § ·char.'s ç of μμμμN
(pr1*ØZ)ç,

whose direct image by j is the decomposition
π*ØZ § ·char.'s ç of μμμμN

(π*ØZ)ç.

Thus for aaaannnnyyyy character ç of μμμμN,

(π*ØZ)ç § j*((pr1*ØZ)ç).

As an ØU -module, ØZ is free on 1, y, ... , yN-1. So for any r we have

(pr1*ØZ)çr
§ yrØU.

But j*Ó1(rå, r∫) := ÎU/ÎUHyp1(rå, r∫) § yrØU by the map 1 ÿ yr,

simply because yr = xrå(1 - x)r∫-rå, and Hyp1(rå, r∫) is the monic

first order operator on U which kills xrå(1 - x)r∫-rå. So we have

(pr1*ØZ)çr
§ j*Ó1(rå, r∫).
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If gcd(r, N) = 1, then rå- r∫, the exponent at 1 of Ó1(rå, r∫), is a

noninteger, so by 2.9.4, Ó1(rå, r∫) § j*j
*Ó1(rå, r∫). Thus

(π*ØZ)çr
§ j*((pr1*ØZ)çr

) § j*j
*Ó1(rå, r∫) § Ó1(rå, r∫). QED

The next step is to interpret the convolution of two direct images
as a direct image.
LLLLeeeemmmmmmmmaaaa 5555....4444....3333 Suppose that

f: X ¨ ´m, g: Y ¨ ´m,

are two smooth morphisms. Then the "product" morphism
fg : X≠^Y ¨ ´m, (fg)(x,y) := f(x)g(y),

is smooth, and there is a canonical isomorphism
(fg)*ØX≠^Y

§ (f*ØX)*(g*ØY).

If in addition we are given a finite group G acting f-linearly on X and a
finite group H acting g-linearly on Y, then for any irreducible
representations ® of G and ç of H, the corresponding isotypical
components are related by

((fg)*ØX≠^Y
)®ºç § ((f*ØX)®)*((g*ØY)ç).

pppprrrrooooooooffff The map fg is the composite of the smooth map product´m
with

the smooth map
f≠g : X≠^Y ¨ ´m≠^´m,

so fg is smooth. Since the trivial Î-module ØX≠^Y
is the external

tensor product (ØX)≠(ØY), we have

(fg)*ØX≠^Y
= (product´m

)*(f≠g)*((ØX)≠(ØY))

= (product´m
)*((f*ØX)≠(g*ØY))

:= (f*ØX)*(g*ØY).

In the presence of finite group actions, we have
f*ØX § ·® (f*ØX)®, g*ØY § ·ç (g*ØY)ç,

whence
(f*ØX)*(g*ØY) § ·®,ç ((f*ØX)®)*((g*ØY)ç),

and this is visibly the G≠H -isotypical decomposition of
(f*ØX)*(g*ØY) § (fg)*ØX≠^Y

. QED

TTTThhhheeeeoooorrrreeeemmmm 5555....4444....4444 Let å1, ... , ån and ∫1, ... , ∫n be 2n rational numbers,



Chapter5-Convolution of Î-Modules-12

such that for all (i, j), åi - ∫j is not an integer. Pick a common

denominator N for all the å's and ∫'s. For each i = 1, ... , n, define
integers A(i), B(i), C(i) by

A(i) := Nåi, B(i) := N∫i, C(i) := B(i) - A(i).

Denote by U the open set ´m - {1} of ´m. Denote by Z(i) the subvariety

of U≠´m (coordinates x
i
, y

i
) of equation

yi
N = xi

A(i)(1 - xi)
C(i).

This Z(i) is a smooth (yi is always invertible) affine curve on which μμμμN
acts (on yi). We denote by π(i) the etale, μμμμN -equivariant map

π(i) : Z(i) ¨ ´m, π(xi, yi) := xi.

Denote by
Z := Z(1)≠^ ... ≠^Z(n),

and by
π : Z ¨ ´m the "product" map π(x1, y1, ... , xn, yn) := °i xi.

Then π is equivariant for the product action of (μμμμN)
n on Z. For every

n-tuple of ffffaaaaiiiitttthhhhffffuuuullll characters (çr1
, ... ,çrn

) of μμμμN, i.e., gcd(ri, N) = 1

for each i, the (çr1
, ... ,çrn

)-isotypical component of π*ØZ is given by

(π*ØZ)(çr1
, ... ,çrn

) § Ó1(r1å1, ... , rnån; r1∫1, ... , rn∫n).

Equivalently, for every n-tuple of ffffaaaaiiiitttthhhhffffuuuullll characters (çr1
, ... ,çrn

) of

μμμμN, the (çr1
, ... ,çrn

)-isotypical component of the relative De Rham

cohomology sheaf HiDR(Z/´m) := Riπ*¿
\
Z/´m

with its Gauss-Manin

connection is given by

(Hn-1DR(Z/´m))(çr1
, ... ,çrn

) § Ó1(r1å1, ... , rnån; r1∫1, ... , rn∫n)

(HiDR(Z/´m))(çr1
, ... ,çrn

) = 0 if i ± n-1.

pppprrrrooooooooffff By 5.4.2 this is true for n=1. It then follows for general n by
induction, thanks to 5.4.3 and the Convolution Theorem 5.3.1. QED

5555....5555 AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo GGGGrrrrooootttthhhheeeennnnddddiiiieeeecccckkkk''''ssss pppp----ccccuuuurrrrvvvvaaaattttuuuurrrreeee ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee
In 1969, Grothendieck pointed out that, for a general D.E. on a

smooth variety Y over ^, "p-curvature zero for almost all primes p" of
any arithmetic "thickening" was a necessary condition for the finiteness
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of Ggal, and he asked whether it was also a sufficient condition.

It was proven in [Ka-AS, 5.7] that the equivalence
(**) Ggal finite À p-curvature zero for almost all primes p

holds for Picard-Fuchs equations, i.e. for (the restriction to a dense open

set of Y of the) the relative De Rham cohomology sheaves HiDR(X/Y) of

smooth morphisms f: X ¨ Y, endowed with the Gauss-Manin
connection. Moreover, if a finite group G acts f-linearly on X, and if we
pick any irreducible ^-representation ® of G and denote ®1, ... , ®d its

distinct conjugates by Aut(^/$), this equivalence (**) was proven to

hold for the direct factor ·j (H
i
DR(X/Y))®j

.

Let us apply this result to the smooth morphism π: Z ¨ ´m, the

finite group G = (μμμμN(^))
n, and the one-dimensional representation ® of

G defined by ®(Ω1, ... , Ωn) := °i Ωi. Thus in the notations of 5.4.4 ® is

(ç1, ... , ç1), d is ƒ(N) := Card((#/N#)≠), and the various ®i are the

characters (çr, ... , çr), as r runs over (#/N#)
≠. We find

pppp----CCCCuuuurrrrvvvvaaaattttuuuurrrreeee TTTThhhheeeeoooorrrreeeemmmm 5555....5555....1111 Let å1, ... , ån and ∫1, ... , ∫n be 2n

rational numbers, such that for all (i, j), åi - ∫j is not an integer. Pick

a common denominator N for all the å's and ∫'s. The equivalence (**)
holds for the (restriction to ´m - {1}, where it is a D.E, of the) direct

sum
·r mod N, gcd(r,N)=1 Ó1(rå1, ... , rån; r∫1, ... , r∫n).

The interpretation of "p-curvature zero for almost all primes p",
due to Beukers-Heckman, is given by

LLLLeeeemmmmmmmmaaaa 5555....5555....2222 ([B-H, 4.9]) Let å1, ... , ån and ∫1, ... , ∫n be 2n rational

numbers, such that for all (i, j), åi - ∫j is not an integer. Pick a

common denominator N for all the å's and ∫'s. Then
Ó1(å1, ... , ån; ∫1, ... , ∫n)

has p-curvature zero for almost all primes p if and only if the following
two conditions hold:
(1) å1, ... , ån; ∫1, ... , ∫n mod # are 2n distinct elements of (1/N)#/#.

(2) for each integer 1 ≤ r < N with gcd(r, N) = 1, the two subsets
Ar ={rå1, ... , rån} mod #, Br := {r∫1, ... , r∫n} mod #

of (1/N)#/# are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in (1/N)#/# in the sense that if we
display their images under x ÿ exp(2πix) on the unit circle, then as we
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walk counterclockwise around the unit circle we aaaalllltttteeeerrrrnnnnaaaatttteeeellllyyyy
encounter one from each subset.

pppprrrrooooooooffff We may assume that all the å's and ∫'s lie in the half open
interval [0, 1). We begin by a direct analysis of the p-curvature. The
operator

Hyp1(å's; ∫'s) := P(xd/dx ) - xQ(xd/dx)

P(t) := °(t - åi), Q(t) := °(t - ∫i),

lies in #[1/N][x, xd/dx], so it makes sense to reduce it mod p for any
prime p > N. Notice for any © and ∂ chosen from the set {å's, ∫'s}, we
have © = ∂ iff © • ∂ mod p (indeed, |N© - N∂| < N < p, so © • ∂ mod p iff
N© • N∂ mod p iff N© = N∂ iff © = ∂).

SSSSuuuubbbbLLLLeeeemmmmmmmmaaaa 5555....5555....2222....1111 Let å1, ... , ån and ∫1, ... , ∫n be 2n rational

numbers in [0, 1) such that for all (i, j), åi - ∫j is not an integer. Pick a

common denominator N for all the å's and ∫'s. Then for a fixed prime p
> N,

Ó1(å1, ... , ån; ∫1, ... , ∫n) mod p

has p-curvature zero if and only if the following two conditions hold:

(1) the å's and ∫'s have 2n distinct reductions mod p in Ép.

(2) the reductions mod p of the å's are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in Ép with those

of the ∫'s in the sense that as we walk through Ép in the standard

order 0, 1, 2, 3... we aaaalllltttteeeerrrrnnnnaaaatttteeeellllyyyy encounter å's and ∫'s.

pppprrrrooooooooffff To say that the reduced equation has p-curvature zero is
precisely to say that the reduced operator has n solutions in the
rational function field Ép(x) which are linearly independent over the

subfield Ép(x
p) ([Ka-AS, 6.0.5]). So if we view Ép(x) as a p-dimensional

vector space V over the field k := Ép(x
p), then Hyp1(å's; ∫'s) mod p is a

linear endomorphism L of V, and p-curvature zero means precisely
that this linear endomorphism L has an n-dimensional kernel, or
equivalently that L has rank p-n. Fix an integer d such that d+p-1 mod
p is one of the ∫i mod p. As basis of V over k we may take the elements

xd, xd+1, ... , xd+p-1,
and on this basis, the operator L = P(xd/dx ) - xQ(xd/dx) mod p acts as
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L(xi) = P(i)xi - Q(i)xi+1 for i= d, d+1, ... , d+p-2

= P(i)xi for i = d+p-1.
Let us denote by ai (resp. bi) Ÿ # the unique lift of åi mod p (resp. of ∫i
mod p) which lies in the interval [d, d+p-1]. Renumbering the b's, we
may suppose that there are precisely t ≥ 1 ddddiiiissssttttiiiinnnncccctttt elements among
the bi's, and that these are

d ≤ b1 < b2 <... < bt = d+p-1.

Then
Q(b1) = Q(b2) = Q(bt) = 0,

and these are all the zeroes mod p of Q on Ép.

The operator L is visibly stable on each of the t subspaces V0, ... , Vt-1
defined by

V0 := the span of those xj with d ≤ j ≤ b1,

Vi := the span of those xj with bi < j ≤ bi+1 for i > 0.

Since V is the direct sum of the Vi, we have

dimKer(L | V) = ‡i dimKer(L | Vi).

Now on each Vi, the matrix of L is of the form

? 0 0 0
*? 0 0
0 *? 0
0 0 *?

0000
0000
0000
0000

0 0 0 *
0 0 0 0
0 0 0 0
0 0 0 0

? 0 0 0
*? 0 0
0 *? 0
0 0 *?

where each subdiagonal * entry is nnnnoooonnnnzzzzeeeerrrroooo. Now such a matrix, if of
size d, has rank ≥ d-1, since its lower left d-1 ≠ d-1 minor is nonzero.
Being lower triangular, its rank is d À all the diagonal entries are
nonzero. Therefore we find that

dimKer(L | Vi) = 1 if P(aj) = 0 for some aj with bi-1 < aj ≤ bi,

= 0 if not.
Notice that we cannot have aj = bi, since by hypothesis åj ± ∫i, and

we chose p > N to avoid any coalescing mod p of å's and ∫'s.
Therefore we have dimKer(L | V) = n if and only if there are precisely
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t = n distinct bi's, and when we walk from d to d+p-1 we alternately

encounter a's and b's. QED

SSSSuuuubbbbLLLLeeeemmmmmmmmaaaa 5555....5555....2222....2222 Let å1, ... , ån, ∫1, ... , ∫n be 2n distinct rational

numbers in [0, 1), with common denominator N. Let p > N be a prime,
and denote by r the unique integer r in 1 ≤ r < N with gcd(r, N) = 1 for
which

rp + 1 • 0 mod N.
Then the following conditions are equivalent:

(1) the reductions mod p of the å's are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in Ép with those

of the ∫'s in the sense that as we walk through Ép in the standard

order 0, 1, 2, 3... we aaaalllltttteeeerrrrnnnnaaaatttteeeellllyyyy encounter å's and ∫'s.

(2)the two subsets
Ar ={rå1, ... , rån} mod #, Br := {r∫1, ... , r∫n} mod #

of (1/N)#/# are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in (1/N)#/# in the sense that if we
display their images under x ÿ exp(2πix) on the unit circle, then as we
walk counterclockwise around the unit circle we aaaalllltttteeeerrrrnnnnaaaatttteeeellllyyyy
encounter one from each subset.

pppprrrrooooooooffff For a real number x, we denote by <x> its fractional part; by
definition <x> lies in the half open interval [0, 1) and satisfies
<x> • x mod #. Denote by a1, ... , an, b1, ... , bn arbitrary integers

whose reductions mod p agree with those of å1, ... , ån, ∫1, ... , ∫n. Then

condition (1) is that in the interval [0, 1), the fractional parts <ai/p> are

intertwined with the fractional parts <bi/p>. And condition (2) is that in

the interval [0, 1), the fractional parts <råi> are intertwined with the

fractional parts <r∫i>.

Notice that each of the <råi> and each of the <r∫i> is one of the

numbers {0, 1/N, 2/N, ... , (N-1)/N}. So the minimal distance between
any two of them is 1/N. So if we add to each of them non-negative real
quantities which are each < 1/N, we will not alter their order in [0,1),
and in particular we will not alter the question of whether or not they
are intertwined. Since p > N, we have 1/p < 1/N. So it remains only to
observe that for each i we have the inequalities

1/p > <ai/p> - <råi> ≥ 0,

1/p > <bi/p> - <r∫i> ≥ 0.

To see this, recall that by the definition of r we have
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pr + 1 • 0 mod N.
Let © := C/N be any fraction with C an integer, 0 ≤ C < N. Then

© • ©(1 + pr) mod≠ p,
so © mod p is also the reduction mod p of the integer

c:= ©(1 + pr) = C((1 + pr)/N).
Then

<c/p> = <©(1 + pr)/p> = <(©/p) + r©> = < (©/p) + <r©>>.
Since 0 ≤ © < 1, we have 0 ≤ (©/p) < 1/p; since 0 ≤ <r©> ≤ (N-1)/N and
(N-1)/N < 1 - 1/p, we have

<c/p> = (©/p) + <r©>, whence 1/p > (©/p) = <c/p> - <r©> ≥ 0. QED

These two sublemmas together prove the lemma, since by Dirichlet's
theorem, any r in 1 ≤ r < N with gcd(r, N) = 1 occurs in 5.5.2.2 for an
infinity of primes p. QED

Combining this lemma 5.5.2 with the p-curvature theorem, we
obtain the complete description of irreducible hypergeometrics of type
(n,n) with Ggal finite. This description was obtained independently by

Beukers-Heckman by a different method.

TTTThhhheeeeoooorrrreeeemmmm 5555....5555....3333 ([B-H], 4.8) Let å1, ... , ån and ∫1, ... , ∫n be 2n

complex numbers, such that for all (i, j), åi - ∫j is not an integer. Let

¬ Ÿ ^≠. Then
Ó¬(å1, ... , ån; ∫1, ... , ∫n).

has Ggal finite if and only if the å's and ∫'s are all rational numbers,

say with common denominator N, such that the following two
conditions hold:
(1) å1, ... , ån; ∫1, ... , ∫n mod # are 2n distinct elements of (1/N)#/#.

(2) for each integer 1 ≤ r < N with gcd(r, N) = 1, the two subsets
Ar ={rå1, ... , rån} mod #, Br := {r∫1, ... , r∫n} mod #

of (1/N)#/# are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in (1/N)#/#

We refer the interested reader to their paper [B-H, 7.1, 8.3] for a
detailed discussion of exactly wwwwhhhhiiiicccchhhh finite groups occur as Ggal for

irreducible hypergeometrics of type (n,n).
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6666....1111 SSSSoooommmmeeee DDDD....EEEE....''''ssss oooonnnn !!!!1111 aaaassss KKKKuuuummmmmmmmeeeerrrr PPPPuuuullllllllbbbbaaaacccckkkkssss ooooffff HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss

In 2.10.6, we proved that the rank seven D.E. on !1

Δ7 - fΔ - f'/2,
has differential galois group Ggal the subgroup G2 of SO(7), for any

polynomial f(x) of degree k ≥ 1 prime to six. In this section, we will

show that this same result holds for f(x) = xk for aaaannnnyyyy integer k ≥ 1.

The idea is that equations on !1 of the form

Δn + åxkΔ + ∫xk-1

are Kummer pullbacks of hypergeometrics of type either (n, 1), if
å ± 0, or type (n, 0), for å = 0. As a consequence, one can explicitly
determine the group Ggal for all such equations.

More generally, for any non-negative integer m < n, and any
polynomial Pm(t) Ÿ ^[t] of degree m, equations of the form

Δn + (xk-1)Pm(D); D := xΔ,

are Kummer pullbacks of hypergeometrics of type (n, m); just as above
(the case m = 0 or 1), this leads to an explicit determination of their
Ggal's. For example, we will find that for any integer s ≥ 1,

Δ8 + x2s-1(D + s)(D -7/2)
has Ggal the subgroup Spin(7) of SO(8).

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 6666....1111....1111 Let q ≥ n > m ≥ 0 be integers. Denote by
[q] : ´m ¨ ´m

the q'th power endomorphism, and by j : ´m ¨ !1 the inclusion. Then

for any ∫1, ... , ∫m, we have an isomorphism of Î-modules on !1

j~*([q]
*Ó¬(-1/q, -2/q, ... , -n/q; ∫1, ... , ∫m)) § Î/ÎL

for L the operator on !1

L := Δn - (qn-m/¬)xq-n°j(D - n - q∫j).

pppprrrrooooooooffff Since Ó := Ó¬( -1/q, -2/q, ... ,-n/q; ∫1, ... , ∫m) is RS at the origin

with local monodromy of ffffiiiinnnniiiitttteeee order q, its pullback by [q]*Ó is RS at
zero with trivial monodromy, so it extends uniquely to a D.E. ˜ on all
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of !1. By 2.9.1.1, we have ˜ § j*~(j
*˜), so ˜ is the unique DE on !1

with j*˜ § [q]*Ó. Therefore it suffices to construct on ´m an

isomorphism

[q]*Ó § Î´m
/Î´m

L.

On ´m, we have

[q]*(x) = xq, [q]*(dx/x) = qdx/x, [q]*(D) = D/q,
so direct calculation shows that, as operators, we have

[q]*Ó = ¬°i=1, ... , n((D/q) + i/q) - xq°j=1, ... , m((D/q) - ∫j)

= (¬/qn)°i=1, ... , n(D + i) - (1/qm)xq°j=1, ... , m(D - q∫j)

= (¬/qn)(Δnxn) - (1/qm)xq-n(°j=1, ... , m(D -n - q∫j))xn
= L«(¬xn/qn).

So right multiplication by ¬xn/qn defines the required isomorphism

Î´m
/Î´m

L § [q]*Ó of Î-modules on ´m. QED

VVVVaaaarrrriiiiaaaannnntttt 6666....1111....2222 Let q ≥ n > m ≥ 0 be integers. For any integer å we
have

j~*([q]
*Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; ∫1, ... , ∫m)) § Î/ÎL

for L the operator on !1

L := Δn - (qn-m/¬)xq-n°j(D + å - n - q∫j).

pppprrrrooooooooffff The operator
Ó(å/q) := Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; ∫1, ... , ∫m))

is the xå/q twist of
Ó := Ó¬( -1/q, -2/q, ... , -n/q; ∫1 - å/q, ... , ∫m - å/q),

to which the above lemma applies. But [q]*Ó § [q]*(Ó(å/q)). QED

QQQQuuuueeeessssttttiiiioooonnnn 6666....1111....3333 Let q ≥ n > m ≥ 0 be integers. If å1, ... , ån are n

elements in (1/q)# which are all distinct mod #, then for any ∫1, ... ,

∫m, [q]*Ó¬(å1, å2 , ... , ån; ∫1, ... , ∫m)) extends to a D.E. on !1 of rank

n. The above variant gives an explicit formula for it when the åi are
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ccccoooonnnnsssseeeeccccuuuuttttiiiivvvveeee. Are there similar formulae when the åi are not

consecutive?

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....4444 Let q ≥ n > m ≥ 0 be integers. Let å be an integer. If
Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; ∫1, ... , ∫m)

is irreducible and not Kummer induced, then for L the operator on !1

L := Δn - (qn-m/¬)xq-n°j(D + å - n - q∫j),

Î/ÎL is an irreducible Î-module on !1.

pppprrrrooooooooffff If Ó is irreducible and not Kummer induced, it is Lie-irreducible

and hence [q]*Ó is irreducible on ´m, which implies that its middle

extension Î/ÎL is irreducible on !1. QED
CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....5555 Let q ≥ n > m ≥ 0 be integers. Let å be an integer.
Then group Ggal for

Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; ∫1, ... , ∫m)

contains that for

L := Δn - (qn-m/¬)xq-n°j(D + å - n - q∫j)

as a subgroup of finite index d which is a divisor of q.

pppprrrrooooooooffff Ggal for Î/ÎL on !1 is the same as Ggal for its restriction to ´m,

i.e., the same as for [q]*Ó. Now apply [Ka-DGG, 1.4.5]. QED

EEEExxxxaaaammmmpppplllleeeessss 6666....1111....6666
We consider first the case of hypergeometrics of type (n, 0). Then

we find
TTTTyyyyppppeeee ((((nnnn,,,, 0000)))) Let q ≥ n > 0 be integers. For any integer å we have

j~*([q]
*Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; &)) § Î/ÎL

for L the operator of Airy type (cf. [Ka-DGG, 4.2]) on !1

L := Δn - (qn/¬)xq-n.

TTTTyyyyppppeeee ((((nnnn,,,, 1111)))) Let q ≥ n > 1 be integers. For any integer å we have

j~*([q]
*Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q; ∫)) § Î/ÎL

for L the operator on !1

L := Δn - (qn-1/¬)xq-n(D + å - n - q∫).
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SSSSppppeeeecccciiiiaaaallll CCCCaaaasssseeee ((((7777,,,,1111)))),,,, åååå ==== 4444,,,, ∫∫∫∫ ==== ----1111////2222:::: For any integer q ≥ 7,

j~*([q]
*Ó¬(3/q, 2/q, 1/q, 0, -1/q, -2/q, -3/q; -1/2)) § Î/ÎL

for L the operator on !1

L := Δ7 - (q6/¬)xq-7(D + (q-6)/2).
We have already proven (4.1.4) that

Ó¬(3/q, 2/q, 1/q, 0, -1/q, -2/q, -3/q; -1/2)

has Ggal = G2. So the above corollary shows that

Δ7 - (q6/¬)xq-7(D + (q-6)/2)
has Ggal = G2 for every integer q ≥ 7. If we define k : = q-6, this gives

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....7777 For any integer k ≥ 1, and any nonzero constant μ,

Δ7 - μxkΔ - μkxk-1/2
has Ggal = G2.

TTTTyyyyppppeeee ((((nnnn,,,, 2222)))) Let q ≥ n > 2 be integers. For any integer å we have

j~*([q]
*Ó¬((å -1)/q, (å -2)/q, ... , (å -n)/q: ∫1, ∫2)) § Î/ÎL

for L the operator on !1

L := Δn - (qn-2/¬)xq-n(D + å - n - q∫1)(D + å - n - q∫2).

SSSSppppeeeecccciiiiaaaallll CCCCaaaasssseeee ((((8888,,,, 2222)))),,,, qqqq ==== 2222rrrr++++1111,,,, rrrr ≥≥≥≥ 4444,,,, åååå ==== rrrr++++5555,,,, ∫∫∫∫1111 ==== 0000,,,, ∫∫∫∫2222 ==== 1111////2222

j~*([q]
*Ó¬((r+ 4)/(2r+1), (r+3)/(2r+1), ... , (r-3)/(2r+1): 0, 1/2)) § Î/ÎL

for L the operator on !1

L := Δ8 - ((2r+1)6/¬)x2r-7(D + r -3)(D -7/2).

This Ó has Ggal = Spin(7) in SO(8), by 4.4.1. Writing s := r-3, we find

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....8888 For any integer s ≥ 1, and any nonzero constant μ,

L := Δ8 - μx2s-1(D + s)(D -7/2)
has Ggal = Spin(7) inside SO(8).

6666....2222 FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss ooooffff KKKKuuuummmmmmmmeeeerrrr PPPPuuuullllllllllllbbbbaaaacccckkkkssss ooooffff
HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss:::: AAAA RRRReeeemmmmaaaarrrrkkkkaaaabbbblllleeee SSSSttttaaaabbbbiiiilllliiiittttyyyy

The following result shows that we can obtain (a Kummer
pullback of) any (sufficiently general) hypergeometric of type (n, m)
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with n > m as the Fourier Transform of (a Kummer pullback of) a
hypergeometric of type (n, n). We will see later the importance of this
sort of "reduction to the RS case".

TTTThhhheeeeoooorrrreeeemmmm 6666....2222....1111 Suppose that n > m ≥ 0 are integers. Put d := n - m.
Suppose we are given a hypergeometric of type (n, m),

Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m) = Ó(P, Q)

which satisfies the following three conditions:
(i) Ó is is irreducible (i.e., for all i, j, åi - ∫j is not in #),

(ii) Ó is not Kummer induced,
(iii) for all i, dåi is not an integer.

Then we have isomorphisms of irreducible Î-modules on !1

(1) j~[d]
*Ó¬(åi's; ∫j's) § j~*[d]

*Ó¬(åi's; ∫j's) § j*[d]
*Ó¬(åi's; ∫j's),

(2) FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ j~*[d]
*(Ó(-d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)).

(3) j*[d]
*Ó¬(åi's; ∫j's) §

§ FT(j~*[d]
*(Ó(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)))

pppprrrrooooooooffff On ´m, Ó is Lie-irreducible by (i) and (ii), so [d]*Ó is irreducible.

It is RS at zero, and has all exponents at zero nonintegral, by (iii).
Direct calculation gives

[d]*Ó § Î´m
/Î´m

L,

for L the operator

L := [d]*Hyp(P, Q) = P(D/d) - xdQ(D/d).

By 2.9.4, on !1 we have
j~(Î´m

/Î´m
L) § Î/ÎL § j*(Î´m

/Î´m
L),

Î/ÎL § j~*(Î´m
/Î´m

L).

Therefore Î/ÎL on !1 is irreducible, being the middle extension of an
irreducible Î-module on ´m. This proves (1). Moreover, Î/ÎL has some

(n-m, to be precise) of its ‘-slopes =1, so Î/ÎL is not the trivial Î-
module Ø!1.

Therefore FT(Î/ÎL) is irreducible on !1, and it is not ∂0, so it is
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the middle extension of its restriction to ´m:

FT(Î/ÎL) § j~*j
*(FT(Î/ÎL)).

Now j*(FT(Î/ÎL)) is easy to calculate explicitly:

j*(FT(Î/ÎL)) § j*(Î/ÎFT(L)) = Î´m
/Î´m

FT(L).

Since FT(D) = FT(xΔ) = -Δx = -xΔ - 1 = -D - 1, we have

FT(L) = FT(P(D/d) - xdQ(D/d))

= P((-1 -D)/d) - ΔdQ((-1 -D)/d).

Since xd is a unit in Î´m
, FT(L) and xdFT(L) generate the same left

ideal, so we have
Î´m

/Î´m
FT(L) = Î´m

/Î´m
K, where K is is the operator

K := xdP((-1 -D)/d) - xdΔdQ((-1 -D)/d)

= [d]*M, for M the operator
M :=xP(-1/d - D) - [°j=0,...,d-1(dD -j)]Q(-1/d -D).

-M = dd[°j=0,...,d-1(D -j/d)]Q(-1/d -D) - xP(-1/d - D).

So all in all we have

j*(FT(Î/ÎL)) § [d]*(Î´m
/Î´m

M).

If we twist Î´m
/Î´m

M by x1/d, we do not change its pullback by

[d]*, so we have

j*(FT(Î/ÎL)) § [d]*(Î´m
/Î´m

M1) for M1 the operator

M1 := dd[°j=1,...,d(D -j/d)]Q(-D) - xP(-D).

If we return to å, ∫ notation:
P(t) = ¬°(t - åi), Q(t) = °(t - ∫j),

then

¬-1(-1)nM1 = Hyp(-d)d/¬(1/d, 2/d, ... , d/d, -∫1, ... , -∫m; -å1, .... , -ån).

So all in all we have

j*FT(j*[d]
*Ó¬(åi's; ∫j's))§

§ [d]*(Ó(-d)d/¬(1/d, 2/d, ... , d/d, -∫1, ... , -∫m; -å1, .... , -ån)).

Now applying j~*, to both sides yields

FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ j~*[d]
*(Ó(-d)d/¬(1/d, 2/d, ... , d/d, -∫1, ... , -∫m; -å1, .... , -ån)),
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which is (2). By Fourier inversion, (2) gives

[x ÿ -x]*(j*[d]
*Ó¬(åi's; ∫j's)) §

§ FT(j~*[d]
*(Ó(-d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))),

which is nearly (3). Because [x ÿ -x]* and j* (trivially) commute, we

have

[x ÿ -x]*(j*[d]
*Ó¬(åi's; ∫j's)) = j*[x ÿ -x]*([d]*Ó¬(åi's; ∫j's))

= j*[x ÿ (-x)d]*Ó¬(åi's; ∫j's) = j*[d]
*[x ÿ (-1)dx]*Ó¬(åi's; ∫j's)

= j*[d]
*Ó(-1)d¬(åi's; ∫j's),

so we have

j*[d]
*Ó(-1)d¬(åi's; ∫j's) §

§ FT(j~*[d]
*(Ó(-d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))).

Replacing ¬ by (-1)d¬ gives (3). QED

6666....3333 CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn ooooffff hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss wwwwiiiitttthhhh nnnnoooonnnn----ddddiiiissssjjjjooooiiiinnnntttt
eeeexxxxppppoooonnnneeeennnnttttssss,,,, vvvviiiiaaaa aaaa mmmmooooddddiiiiffffiiiieeeedddd ssssoooorrrrtttt ooooffff hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc

In this section, we will explore what happens to the convolution
formula 5.3.2 when the exponents are not disjoint.
(6.3.1) Given a smooth connected ^-scheme X, with structural map

π : X ¨ Spec(^),

we say that an object K in Db,holo(X) is PC (for perverse cohomology) if
π*K is a single Î-module, concentrated in degree zero. If X is n-

dimensional, this is the same as requiring that

HiDR(X/^, K) = 0 for i ± n.

LLLLeeeemmmmmmmmaaaa 6666....3333....2222 Let G be a smooth connected ^-groupscheme of finite

type. The convolution K*L of two PC objects K, L in Db,holo(G) is again
PC. Moreover, if we put n := dim^(G), then

HnDR(G/^, K*L) § HnDR(G/^, K)‚^H
n
DR(G/^, L)

pppprrrrooooooooffff This is immediate from 5.1.9,(1a). QED

LLLLeeeemmmmmmmmaaaa 6666....3333....3333 Let ˜ be a holonomic Î-module on ´m, and Ó a

hypergeometric of type (1, 0) or (0, 1).
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(1) The convolution ˜*Ó is a single (holonomic) Î-module on ´m.

(2) If ˜ is PC on ´m, then ˜*Ó is PC on ´m.

pppprrrrooooooooffff By multiplicative inversion, we reduce to the case when Ó is of

type (1, 0). Twisting by xå, we reduce to the case when Ó is Ó¬(0; &).

A multiplicative translation reduces us to the case when Ó is Ó1(0; &).

In this case, assertion (1) results from the formula (5.2.3)

j*FT(j*inv*(˜)) § ˜*Ó1(0; &).

Assertion (2) follows from the fact that Ó is PC on ´m (direct

computation), and the above lemma. QED

LLLLeeeemmmmmmmmaaaa 6666....3333....4444 Let ˜ be a holonomic Î-module on ´m which is PC.

Then the convolution ˜*Ø of ˜ with the "constant" Î-module Ø :=
Ø´m

is the constant Î-module V‚^Ø, with V the finite-dimensional ^-

space H1DR(´m/^, ˜) = π*˜.

pppprrrrooooooooffff This is the base change for the cartesian diagram
(x, y) ÿ (x, xy)

G≠G zzzzzzzzzzzc G≠G : ˜≠Ø
dproduct d pr2
G = G. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....3333....4444....1111 Let å Ÿ ^. Let ˜ be a holonomic Î-module on ´m

such that ˜‚x-å is PC. Then the convolution ˜*(xåØ) is the Î-

module V‚^x
åØ, with V := H1DR(´m/^, ˜‚x-å)= π*˜.

pppprrrrooooooooffff Indeed, xå‚((˜‚x-å)*Ø) § ˜*(xåØ) by 5.2.1. QED

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 6666....3333....5555 Let å Ÿ ^. For any ¬, μ Ÿ ^≠, the convolution
Ó¬(å; &)*Óμ(&; å)

sits in a short exact sequence of Î-modules on ´m

0 ¨ ∂¬μ ¨ Ó¬(å; &)*Óμ(&; å) ¨ xåØ ¨ 0.

pppprrrrooooooooffff By 5.2.1, twisting by x-å reduces us to the case where å = 0. By
5.1.9, (2), a multiplicative translation reduces us to the case where μ =
¬ = 1. By 5.2.3, we have

j*FT(j*inv*(˜)) § ˜*Ó1(0; &).
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Applying this to ˜ = Ó1(&; 0), we find

Ó1(0; &)*Ó1(&; 0) § j*FT(j*inv*Ó1(&; 0))

§ j*FT(j*Ó-1(0; &)).

Now by inspection we have
Ó-1(0; &) := Î´m

/Î´m
(-xΔ -x)

= Î´m
/Î´m

(Δ + 1)

= j*(Î!1/Î!1(Δ + 1))

= j*(e-x^[x]),
so

j*Ó-1(0; &) = j*j
*(e-x^[x]) = e-x^[x, x-1].

Consider the short exact sequence of Î-modules on !1

0 ¨ e-x^[x] ¨ e-x^[x, x-1] ¨ e-x^[x, x-1]/e-x^[x] ¨ 0.
The third term we may rewrite as

e-x^[x, x-1]/e-x^[x] § e-x^((x))/e-x^[[x]] = ^((x))/^[[x]]
§ Î/Îx = ∂0.

So the above exact sequence is
0 ¨ Î!1/Î!1(Δ + 1) ¨ j*Ó-1(0; &) ¨ ∂0 ¨ 0.

The restriction to ´m of its Fourier Transform is the required short

exact sequence. QED

(6.3.6) We now introduce a modified notion of hypergeometric Î-
module, which is by its very definition well-behaved with respect to
convolution. Namely, we ddddeeeeffffiiiinnnneeee

MÓ1(å1, ... , ån; &) := Ó1(å1; &)* ... *Ó1(ån; &)

MÓ1(&; ∫1, ... , ∫m) := Ó1(&; ∫1)* ... *Ó1(&; ∫m)

MÓ1(å1, ... , ån; ∫1, ... , ∫m) :=

:= Ó1(å1; &)* ... *Ó1(ån; &)*Ó1(&; ∫1)* ... *Ó1(&; ∫m).

For ¬ Ÿ ^≠, we define
MÓ¬(å's; ∫'s) := [x ÿ ¬x]*MÓ1(å's; ∫'s).

In view of the preceeding lemmas, we see that MÓ¬(å's; ∫'s) is a

single holonomic Î-module, which is PC on ´m with H1DR(´m/^, MÓ¬)

one-dimensional (by 3.7.1). The effect of x© twisting is given by
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x©‚MÓ¬(åi's; ∫j's) § MÓ¬(åi + ©'s; ∫j + ©'s).

The effect of inversion is given by
inv*MÓ¬(åi's; ∫j's)) § MÓ(-1)n+m/¬( -∫j's; -åi's).

By 5.3.2, we have
MÓ¬(å's; ∫'s) § Ó¬(å's; ∫'s) if Ó¬(å's; ∫'s) is irreducible.

By the associativity and commutativity of convolution, we have
MÓ¬(å's; ∫'s)*MÓμ(©'s; ∂'s) = MÓ¬μ(å's, ©'s; ∫'s, ∂'s)

wwwwhhhhaaaatttteeeevvvveeeerrrr the exponents. In particular, we have
MÓ¬(å's; ∫'s) § Ó1(å's; &)*Ó¬(&; ∫'s),

expressing every MÓ as a convolution of irreducible hypergeometrics.
Now the isomorphism class of an irreducible Ó¬(å's; ∫'s) depends only

on ¬ and on the classes mod # of its exponents. So by the functoriality
of convolution, we find that
SSSScccchhhhoooolllliiiieeee 6666....3333....7777 The isomorphism class of MÓ¬(å's; ∫'s) depends only on ¬

and on the classes mod # of the å's and the ∫'s.

OOOOppppeeeennnn QQQQuuuueeeessssttttiiiioooonnnn 6666....3333....8888 If the å's and ∫'s are not disjoint, is there a
simple expression for MÓ¬(å's; ∫'s)? Is it of the form Ó¬(ëå's; ë∫'s) for

some particular choice of modified exponents (ëå's; ë∫'s) which are
termwise congruent mod # to (å's, ∫'s)?

CCCCaaaannnncccceeeellllaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 6666....3333....9999 Suppose given a modified hypergeometric
MÓ¬(åi's; ∫j's) of type (n, m). Then for any © Ÿ ^, and any integer d,

the modified hypergeometric MÓ¬(åi's, ©; ∫j's, © +d) of type (n+1, m+1)

sits in a short exact sequence of Î-modules

0 ¨ MÓ¬(åi's; ∫j's) ¨ MÓ¬(åi's, ©; ∫j's, © +d) ¨ V‚^(x
©Ø) ¨ 0,

where V is the 1-dimensional ^-space

V := H1DR(´m/^, MÓ¬(åi - ©'s; ∫j - ©'s)).

pppprrrrooooooooffff We first reduce to the case d=0 by the Scholie above, then write
MÓ¬(åi's, ©; ∫j's, ©) = MÓ¬(åi's; ∫j's)*MÓ1(©, ©).

By definition, MÓ1(©, ©) is the convolution Ó1(©; &)*Ó1(&; ©), which by

6.3.5 sits in a short exact sequence of Î-modules on ´m

0 ¨ ∂1 ¨ Ó1(©; &)*Ó1(&; ©) ¨ x©Ø ¨ 0.

Convolving this exact sequence with MÓ¬(åi's; ∫j's) yields, via 6.3.4.1,

the required short exact sequence. QED
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(6.3.10) In order to formulate the next result, it will be convenient
to introduce the operator CCCCaaaannnncccceeeellll on both hypergeometrics and on
modified hypergeometrics which "cancels" the exponents mod #
common to numerator and denominator. Given

Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m)

MÓ := MÓ¬(å1, ... , ån; ∫1, ... , ∫m)

of type (n, m), look to see how many of the åi's are also ∫j's mod #. If

there are r such common exponents, renumber so that
ån-k • ∫m-k mod # for k < r,

åi î• ∫j mod # if i ≤ n-r and j ≤ m-r,

and define
CCCCaaaannnncccceeeellll(Ó¬(å1, ... , ån; ∫1, ... , ∫m)) :=

:= Ó¬(å1, ... , ån-r; ∫1, ... , ∫m-r),

CCCCaaaannnncccceeeellll(MÓ¬(å1, ... , ån; ∫1, ... , ∫m)) :=

:= MÓ¬(å1, ... , ån-r; ∫1, ... , ∫m-r).

Since the result of canceling is irreducible, we always have
CCCCaaaannnncccceeeellll(Ó) = CCCCaaaannnncccceeeellll(MÓ),

whatever the exponents.

SSSSeeeemmmmiiiissssiiiimmmmpppplllliiiiffffiiiiccccaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 6666....3333....11111111 The semisimplification of
MÓ¬(å1, ... , ån; ∫1, ... , ∫m)

as holonomic Î-module on ´m is the direct sum

CCCCaaaannnncccceeeellll(MÓ¬(å1, ... , ån; ∫1, ... , ∫m))·(·common exponents å xåØ).

pppprrrrooooooooffff This is immediate from the cancellation theorem 6.3.9. QED

6666....4444 AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss ooooffff KKKKuuuummmmmmmmeeeerrrr PPPPuuuullllllllbbbbaaaacccckkkkssss ooooffff
HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss

LLLLeeeemmmmmmmmaaaa 6666....4444....1111 Let d ≥ 1 be an integer, and Ó¬(åi's; ∫j's) an irreducible

hypergeometric. Then we have an isomorphism of Î-modules on ´m

j*FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*MÓ(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's).
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pppprrrrooooooooffff By 5.2.3, for any Î-module ˜ on ´m,

j*FT(j*inv*(˜)) § ˜*Ó1(0; &).

Applying this to ˜ = inv*[d]
*Ó¬(åi's; ∫j's) = [d]*inv*Ó¬(åi's; ∫j's) gives

j*FT(j*[d]
*Ó¬(åi's; ∫j's)) § ([d]*inv*Ó¬(åi's; ∫j's))*Ó1(0; &).

By 5.1.9, (1b), for any two Î-modules ˜ and ˆ on ´m, and any integer

d ≥ 1, we have

([d]*˜)*ˆ § [d]*(˜*([d]*ˆ)).

Thus we have

j*FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*((inv*Ó¬(åi's; ∫j's))*([d]*(Ó1(0; &)))).

By the Kummer Induction Formula 3.5.6.1 we have
[d]*(Ó1(0; &)) § Ódd(1/d, ... , d/d; &)

§ MÓdd(1/d, ... , d/d; &).

By the inversion formula (3.1), we have
inv*Ó¬(åi's; ∫j's) § Ó(-1)n+m/¬( -∫j's; -åi's).

Combining these, we find

j*FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*(Ó(-1)n+m/¬( -∫j's; -åi's)*Ódd(1/d, ... , d/d; &)),

and the result follows by the (tautological) convolution formula for MÓ.
QED

The following theorem encompasses both 6.2.1 and the irreducible
case of Key Lemma 6.1.1 as special cases.

TTTThhhheeeeoooorrrreeeemmmm 6666....4444....2222 Let d ≥ 1 be an integer, and Ó an irreducible
hypergeometric of type (n, m),

Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m).

Then we have isomorphisms of Î-modules on !1

(1) FT(j~*[d]
*Ó¬(åi's; ∫j's)) §

§ j~*[d]
*(CCCCaaaannnncccceeeellllÓ(-1)n+m(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)).

(2) j~*[d]
*Ó¬(åi's; ∫j's) §
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§ FT(j~*[d]
*(CCCCaaaannnncccceeeellllÓ(-1)n+m+d(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))).

pppprrrrooooooooffff The isomorphism (2) is obtained from (1) by Fourier inversion. It
remains to prove (1).

We first claim that FT(j~*[d]
*Ó¬(åi's; ∫j's)) is a direct sum of

irreducibles, none of which is ∂0. By Fourier inversion, it is equivalent

to show that j~*[d]
*Ó¬(åi's; ∫j's) is a direct sum of irreducibles on !1,

none of which is the "constant" Î-module Ø. Since j~* carries

irreducibles to irreducibles, it suffices to show that [d]*Ó¬(åi's; ∫j's) is a

direct sum of irreducibles on ´m, none of which is Ø. For this, we argue

as follows.

Since Ó¬(åi's; ∫j's) is irreducible on ´m, [d]*Ó¬(åi's; ∫j's) is

semisimple, a direct sum of irreducibles. These irreducible constituents
are all μμμμd-translates of each other (since Ó¬(åi's; ∫j's) is irreducible),

and hence if any of them were constant then [d]*Ó¬(åi's; ∫j's) would

be constant. But then its Euler characteristic on ´m would be 0, rather

than -d (cf. 3.7.1, 3.7.5, proof of 3.7.6).

Therefore FT(j~*[d]
*Ó¬(åi's; ∫j's)) is a sum of irreducibles on !1,

none of which is the delta sheaf ∂0 at the origin. Since any irreducible

˜ on !1 other than ∂0 satisfies ˜ § j~*j
*˜, we have

FT(j~*[d]
*Ó¬(åi's; ∫j's)) § j~*j

*FT(j~*[d]
*Ó¬(åi's; ∫j's)).

So to prove the theorem it suffices to prove that on ´m we have

j*FT(j~*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*(CCCCaaaannnncccceeeellllÓ(-1)n+m(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)).

Since both of these Î-modules are semisimple, it suffices to show that
they have isomorphic semisimplifications. For this, we argue as follows.

We have a short exact sequence of Î-modules on !1

0 ¨ j~*[d]
*Ó¬(åi's; ∫j's) ¨ j*[d]

*Ó¬(åi's; ∫j's) ¨ V‚^∂0 ¨ 0,

for some punctual Î-module V‚^∂0 at zero. In view of the known

structure of the local monodromy at zero of Ó¬(åi's; ∫j's), we see from

2.9.8 that V has dimension
r := Card(R),
R := {k in {1, ... , d} such that k/d mod # is among the åi mod #}.
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Taking the Fourier Transformed exact sequence, passing to
semisimplifications, and restricting to ´m, we find

j*FT(j*[d]
*Ó¬(åi's; ∫j's))

ss § j*FT(j~*[d]
*Ó¬(åi's; ∫j's)) · Ør.

By the above lemma we have

j*FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*MÓ(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's).

By the semisimplification theorem 6.3.11, we have

MÓ(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)
ss §

CCCCaaaannnncccceeeellll(Ó(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))·

·(·k Ÿ Rx
-k/dØ).

Therefore after [d]* we have

[d]*MÓ(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)
ss §

§ [d]*CCCCaaaannnncccceeeellll(Ó(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))· Ør.

Comparing these two expressions for j*FT(j*[d]
*Ó¬(åi's; ∫j's))

ss, and

cancelling the common Ør, we find the required isomorphism

j*FT(j~*[d]
*Ó¬(åi's; ∫j's)) §

§ [d]*CCCCaaaannnncccceeeellll(Ó(-1)m-n(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....4444....3333 Let d ≥ 1 be an integer, and Ó an irreducible
hypergeometric of type (n, m),

Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m).

Suppose in addition that for all i, dåi is not in #. Then we have

isomorphisms of Î-modules on !1

(0) j~*[d]
*Ó¬(åi's; ∫j's) § j*[d]

*Ó¬(åi's; ∫j's).

(1) FT(j*[d]
*Ó¬(åi's; ∫j's)) §

§ j~*[d]
*(Ó(-1)n+m(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)).

(2) j*[d]
*Ó¬(åi's; ∫j's) §

§ FT(j~*[d]
*(Ó(-1)n+m+d(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))).
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pppprrrrooooooooffff If no dåi is in #, then (0) holds by 2.9.8, and

Ó(-1)n+m+d(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)

is itself irreducible, so its own CCCCaaaannnncccceeeellll. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....4444....4444 Let d ≥ 1 be an integer, and Ó an irreducible
hypergeometric of type (n, m),

Ó := Ó¬(å1, ... , ån; ∫1, ... , ∫m).

Suppose in addition that
Ó¬(åi's; ∫j's)

is not Kummer induced of any degree d1 > 1 which divides d. Then

j~*[d]
*Ó¬(åi's; ∫j's)

is irreducible on !1, and consequently the isomorphisms

FT(j~*[d]
*Ó¬(åi's; ∫j's)) §

§ j~*[d]
*(CCCCaaaannnncccceeeellllÓ(-1)n+m(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's)),

j~*[d]
*Ó¬(åi's; ∫j's) §

§ FT(j~*[d]
*(CCCCaaaannnncccceeeellllÓ(-1)n+m+d(d)d/¬(1/d, 2/d, ... , d/d, -∫j's; -åi's))),

are isomorphisms of irreducibles on !1.

pppprrrrooooooooffff. Since Ó := Ó¬(åi's; ∫j's) is an irreducible Î-module, and [d] is

finite etale galois, either [d]*Ó is isotypical or Ó is induced from an

intermediate covering. So the hypothesis insures that [d]*Ó is

isotypical. We first show that if [d]*Ó is isotypical, then it is irreducible.

If [d]*Ó is isotypical, say k ≥ 1 copies of an irreducible , then
since the isomorphism class of  is μμμμd-invariant,  itself descends

through the cyclic covering [d], to an irreducible 0. Therefore the

natural map of Î-modules
0‚HomÎ(0, Ó) ¨ Ó,

is an isomorphism. But HomÎ(0, Ó) becomes constant of rank k after

[d]*, so it is a sum of k objects each of the form xåØ. with då Ÿ #.
Since Ó § 0‚HomÎ(0, Ó) is irreducible, we have k = 1, and hence

[d]*Ó is irreducible on ´m. Its middle extension j~*[d]
*Ó is therefore

irreducible on !1. QED
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7777....1111 EEEExxxxcccceeeeppppttttiiiioooonnnnaaaallll SSSSeeeettttssss ooooffff pppprrrriiiimmmmeeeessss
Let b ≥ 1 be an integer. Recall that in 2.8 we proved the following

two statements:
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....2222....1111 If å, ∫, ©, ∂ in μμμμb(^) satisfy å - ∫ = © - ∂, then

either
(1) å= ∫ and ©= ∂

or (2) å= © and ∫= ∂
or b is even and (3) å=-∂ and ∫=-©.

CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....3333....1111 If å, ∫, © in μμμμb(^) satisfy å-∫=_©, then 6 divides b,

å/∫ is a primitive sixth root of unity, and _©/∫ is (å/∫)2.

For each prime number p, consider the following three assertions:

****((((pppp,,,,bbbb)))) If å, ∫, ©, ∂ in μμμμb(äÉp) satisfy å - ∫ = © - ∂, then either

(1) å= ∫ and ©= ∂
or (2) å= © and ∫= ∂
or b is even and (3) å=-∂ and ∫=-©.

********((((pppp,,,,bbbb)))) If å, ∫, © in μμμμb(äÉp) satisfy å-∫=_©, then 6 divides b, å/∫ is a

primitive sixth root of unity, and _©/∫ is (å/∫)2.

************((((pppp,,,,bbbb)))) If å, ∫ in μμμμb(äÉp) satisfy å = - ∫, then b is even and å ± ∫.

LLLLeeeemmmmmmmmaaaa 7777....1111....1111 For each integer b ≥ 1, there exist entirely explicit
nonzero integers N1(b) and N2(b) such that ****((((pppp,,,,bbbb)))) holds for all primes

p which do not divide N1(b), and ********((((pppp,,,,bbbb)))) holds for all primes p which

do not divide N2(b). The assertion ************((((pppp,,,,bbbb)))) holds if p ± 2.

pppprrrrooooooooffff Put Ωb := exp(2πi/b) Ÿ ^. Fix a prime p not dividing b, and fix a

prime ideal π of the cyclotomic integer ring #[Ωb] lying over p. If we

view π as a ring homomorphism π : #[Ωb] ¨ äÉp, then π induces a

group isomorphism μμμμb(^) = μμμμb(#[Ωb]) ¶ μμμμb(äÉp). So ****((((pppp,,,,bbbb)))) is equivalent

to the following condition:

if (å, ∫, ©, ∂) Ÿ (μμμμb(#[Ωb]))
4 is such that such π((å - ∫) - (© - ∂)) = 0 in

äÉp, then either

(1) å= ∫ and ©= ∂
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or (2) å= © and ∫= ∂
or b is even and (3) å=-∂ and ∫=-©.

This may be restated as follows: let N1(b) Ÿ #[Ωb] denote the

product °((å - ∫) - (© - ∂)), extended to all quadruples (å, ∫, ©, ∂) in

(μμμμb(^))
4 such that nnnnoooonnnneeee of the three conditions

(1) å= ∫ and ©= ∂
or (2) å= © and ∫= ∂
or (3) b is even and å=-∂ and ∫=-©
holds. This product is a nnnnoooonnnnzzzzeeeerrrroooo element of #[Ωb], in virtue of 2.8.2.1

recalled above. As the conditions (1), (2), (3) are Galois-invariant, N1(b)

is in fact a nonzero element of #. Then for a prime p not dividing b, the
condition ****((((pppp,,,,bbbb)))) holds if and only p is not a divisor of N1(b). In fact

****((((pppp,,,,bbbb)))) holds if and only p is not a divisor of N1(b), for if …|b is any

prime divisor of b, then
(Ω… - 1) = (Ω… - 1) - (1 - 1)

and hence … itself is one of factors of N1(b).

The proof for ********((((pppp,,,,bbbb)))) is entirely analogous. One considers the
element N2(b) := bN+N- Ÿ #[Ωb] where N_ := °(_ © - (å-∫)), the product

extended to all triples (å, ∫, ©) in (μμμμb(^))
3 for which it is nnnnooootttt the case

that

å/∫ is a primitive sixth root of unity, and _©/∫ is (å/∫)2.
Again N2(b) is nonzero in #, and for a prime p not dividing b, the

condition ********((((pppp,,,,bbbb)))) holds if and only p is not a divisor of N2(b).

That the assertion ************((((pppp,,,,bbbb)))) holds if p ± 2 is obvious. QED

RRRReeeemmmmaaaarrrrkkkk 7777....1111....2222 If b=1, then N1(b) = -N2(b) = 1.

RRRReeeemmmmaaaarrrrkkkk 7777....1111....3333 (Benji Fisher) The integer N2(b) can contain very large

primes. The factors of N+ include (2 - Ω) = (1 - (Ω -1)) for every

Ω Ÿ μμμμb(^), so N2(b) is divisible by 2b - 1, which itself can have rather

large prime factors~

7777....2222 …………----aaaaddddiiiicccc aaaannnnaaaalllloooogggguuuueeee ooooffff tttthhhheeee mmmmaaaaiiiinnnn DDDDEEEE tttthhhheeeeoooorrrreeeemmmm 2222....8888....1111

(7.2.1) In this section we fix a prime number p, an algebraically
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closed field k of characteristic p, a prime number …±p, and an algebraic
closure ä$… of $…. We denote by ¥ a nontrivial ä$…-valued additive

character of a finite subfield Éq of k. We denote by Ò¥ the lisse rank

one ä$…-sheaf on !1/Éq (= ´a/Éq) obtained from the Artin-Schreier

covering (Lang torsor)
´a x

1 - Fq d ] Éq d

´a x - xq

by extension of structural group via ¥. For any Éq-scheme Y, and any

function f on Y, we view f as a morphism f: Y ¨ !1 = ´a, and we

denote by Ò¥(f) the lisse rank one ä$…-sheaf f
*Ò¥ on Y.

(7.2.2) For Éq any finite subfield of k, and ç a ä$…-valued character

of (Éq)
≠, we denote by Òç the lisse rank one ä$…-sheaf on ´mºÉq :=

Spec(Éq[x, x
-1]) obtained from the Kummer covering (Lang torsor)

´mºÉq x

1 - Fq d ] (Éq)
≠ d

´mºÉq x1-q

of degree 1 - q by extension of structural group via ç. For any Éq-

scheme Y, and any invertible function f on Y, we denote by Òç(f) the

lisse rank one ä$…-sheaf f
*Òç on Y.

Over the algebraically closed field k, any connected finite etale
covering of ´m which is tame at both 0 and ‘ is dominated by a

suitable Kummer covering. This allows us to identify

π1(´mºk)tame § ö#(1)not p § ò finite subfields of k (Éq)
≠,

with transition maps given by the norm. For ç any continuous ä$…-

valued character of π1(´mºk)tame § òfinite subfields of k (Éq)
≠, (we

will often refer to such a ç simply as a "tame character") we denote by
Òç the corresponding lisse rank one ä$…-sheaf on ´mºk. [For ç of finite

order, this notion of Òç coincides with the one given above.] For Y any

k-scheme, and f any invertible function on Y, we denote by Òç(f) the

lisse rank one ä$…-sheaf f
*Òç on Y.
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(7.2.3) Let X/k be a smooth connected affine curve over k, x Ÿ X a
geometric point of X, äX the complete nonsingular model of X. Let Ï be a
lisse ä$…-sheaf on X of rank n ≥ 1. We denote by π1 the fundamental

group π1(X, x), by ® the n-dimensional ä$…-representation

®: π1 ¨ GL(Ïx)

which Ï "is", and by
Ggeom := the Zariski closure of ®(π1) in GL(Ïx).

For each point at infinity ‘ Ÿ äX - X, we can speak of the upper-
numbering "breaks" (or "slopes") of Ï as I‘-representation (cf [Ka-GKM,

Chap. 1]), and of their sum, the Swan conductor Swan‘(Ï) Ÿ# of Ï at

‘.
Given Ï as above, for any linear representation Ú of Ggeom, say

Ú: Ggeom ¨ GL(d),

the composite representation
Ú«® : π1 ¨ GL(d)

gives rise to a lisse ä$…-sheaf of rank d on X, denoted Ï(Ú).

HHHHiiiigggghhhheeeesssstttt SSSSllllooooppppeeee LLLLeeeemmmmmmmmaaaa 7777....2222....4444 (compare 4.2.4) Notations as above,
suppose that the kernel Æ of Ú: Ggeom ¨ GL(d) is a finite subgroup of

order prime to p. Then at every point ‘ Ÿ äX - X, Ï and Ï(Ú) have the
same highest slope.

pppprrrrooooooooffff For any x ≥ 0, Ï has all slopes ≤ x if and only if ®((I‘)(x+)) = {e},

and Ï(Ú) has all slopes ≤ x if and only if ®((I‘)(x+)) fi Æ . Since

®((I‘)(x+)) is a p-group, and Æ is prime to p, these two conditions are

equivalent. QED

LLLLiiiiffffttttiiiinnnngggg LLLLeeeemmmmmmmmaaaa 7777....2222....5555 (compare 2.2.2.1) Notations as above, let
® : G ¨ H

be a surjective homomorphism of linear algebraic groups over ä$…,

whose kernel Æ is a finite central subgroup of G. Then any continuous
homomorphism ƒ: π1(X, x) ¨ H(ä$…) lifts to a homomorphism

ëƒ : π1(X, x) ¨ G(ä$…)

with ƒ = ®ëƒ.

pppprrrrooooooooffff The obstruction to lifting lies in H2(X, Æ), which vanishes because
X is an affine curve over an algebraically closed field. QED
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We say that Ï is irreducible if the corresponding representation ®
of π1 on Ïx is irreducible, or equivalently if the given representation of

Ggeom on Ïx is irreducible. We say that Ï is Lie-irreducible if the given

representation of Ggeom on Ïx is Lie-irreducible, or equivalently if the

restriction of ® to every open subgroup of π1 remains irreducible.

The main results on and around Lie-irreducibility and its
alternatives are summarized in the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 7777....2222....6666 (cf [Ka-MG], 2.7 and 3.5) Let X be a smooth connected
affine curve over an algebraically closed field of characteristic p > 0, … a
prime number … ± p, Ï a lisse ä$…-sheaf on X of rank n ≥ 1 which is

irreducible.
(1) Ï is either Lie-irreducible, or induced (i.e., the direct image f*Ì of a

lisse Ì on a finite etale connected covering f : Y ¨ X of degree d ≥ 2) or
is, for some divisor d ≥ 2 of n, a tensor product Ì‚Ó where Ì is Lie-
irreducible of rank n/d and where Ó is irreducible of rank d with
corresponding representation ®Ó having finite image. Moreover, this

tensor decomposition is unique up to twisting (Ì, Ó) ÿ (Ì‚Ò, Ó‚Ò-1)
by some rank one Ò of finite order.

(2) If X is !1 and p > 2n +1, then Ï is Lie-irreducible.

(3) If X is !1 and p > n, then Ï is not induced.
(4) If X is ´m and p > 2n +1, then Ï is either Lie-irreducible or is

Kummer-induced (i.e., of the form [d]*Ì for some prime-to-p divisor

d ≥ 2 of n and some lisse Ì on ´m of rank n/d, where [d]: ´m ¨ ´m
denotes the d'th power map).
(5) If X is ´m and p > n, then if Ï is induced it is Kummer-induced.

(6)Supppose X is ´m - {s} for some s Ÿ k≠, and that Ï has

pseudoreflection local monodromy at s (in the sense that under the
action of the inertia group I(s) on Ïx via ®, the space of invariants has

codimension one). If Ï is neither Lie-irreducible nor induced, then Ï is
the tensor product Ò‚Ó of a rank one Ò with a rank n Ó whose
corresponding representation ®Ó has finite image. If in addition det(Ï)

is of finite order, then Ï itself has ® with finite image.
(7) Suppose X is ´m, p > 2n +1, and Ï has pseudoreflection local

monodromy at 0. Then either Ï is Lie-irreducible or Ï has rank two
and its local monodromy at 0 is a tame reflection.
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(8) Suppose X is ´m - {s} for some s Ÿ k≠, p > n, and Ï has

pseudoreflection local monodromy at s. Suppose Ï is induced, Ï = f*Ì

for a lisse Ì on a finite etale connected covering f : Y ¨ ´m - {s} of

degree d ≥ 2. Then either the covering f is (the restriction to ´m - {s}

of ) the Kummer covering of degree d, or d = n and the covering is
either a Belyi covering or an inverse Belyi covering of type (a,b) for
some partition of n = a + b as the sum of two strictly positive integers.
Moreover, in the case of a Belyi or inverse Belyi covering, local
monodromy around s is a tame reflection.

pppprrrrooooooooffff Assertions (1), (2) and (4) are proven in [Ka-MG] as Prop.'s 1, 5, 6.
Assertions (3) and (5) are proven in the first paragraphs of the proofs of
[Ka-MG], Prop.'s 5 and 6 respectively. Assertion (6) follows from (1) by
the argument of 3.5.7.

To prove assertion (7), we argue as follows. By (4), if Ï is not Lie-
irreducible it is [d]*Ì, with Ì lisse on ´m and d ≥ 2 prime to p. We first

observe that Ì is tame at zero. [If exactly M (counting with
multiplicty) of the slopes of Ì at zero are > 0, then exactly dM of the
slopes of [d]*Ì = Ï at zero are > 0. But Ï has at least n-1 of its slopes at

zero =0, so M=0.] Once Ì is a tame I(0)-representation, the set with
multiplicity of the characters Ú occuring in [d]*Ì = Ï at zero is stable

under Ú ÿ Ú‚çd for çd any character of order d. As all but at most

one of the Ú are trivial, we see first that d = 2, then that n = 2.
To prove assertion (8), we first note that as p > n ≥ d, the galois

closure of the covering f is necessarily tame, because prime to p. The
proof is then entirely analogous to that of 3.5.2, making use of the fact
that for p > n, 3.5.1 is equally valid with ^ replaced by an algebraically
closed field of characteristic p. QED

MMMMaaaaiiiinnnn …………----aaaaddddiiiicccc TTTThhhheeeeoooorrrreeeemmmm 7777....2222....7777 (compare Main D.E. Theorem 2.8.1) Let X
be a smooth connected affine curve over an algebraically closed field of
characteristic p > 0, x Ÿ X a geometric point of X, … a prime number
… ± p, Ï a Lie-irreducible lisse ä$…-sheaf on X of rank n. Suppose that at

some point ‘ Ÿ äX - X, the highest slope of Ï, written a/b in lowest
terms, is > 0 and occurs with multiplicity b. If b = n, suppose that p > n.
If b < n, suppose that p does not divide the integer 2aN1(b)N2(b).

Let G := Ggeom fi GL(Ïx) be the Zariski closure of ®(π1(X, x)) in GL(Ïx),

G0 its identity component, and G0,der the commutator subgroup of G0.

Then G0 is equal either to G0,der or to ´mG0,der, and the list of possible
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G0,der is given by:

(1) If b is odd, G0,der is SL(Ïx).

(2) If b is even, then either G0,der is SL(Ïx) or SO(Ïx) or (if n is even)

SP(Ïx), or b=6, n=7,8 or 9, and G0,der is one of

n=7: the image of G2 in its 7-dim'l irreducible representation

n=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

n=9: the image of SL(3)≠SL(3) in stdºstd.

pppprrrrooooooooffff If n = 1, there is nothing to prove. If b=n ≥ 2, this is proven in
[Ka-MG, Thm.7] under the hypotheses that p > 2n+1 and that det(Ï) is
of finite order prime to p. In fact, the proof given there works mutatis
mutandis provided only that p > n and that det(Ï) is of finite order
prime to p. Let us explain how to reduce to this case. Denote by ç =
det(®) the character of π1 given by det(Ï). The slope of ç at ‘ is an

integer s ≤ a/b, and as a/b has exact denominator b ≥ 2, we must have
s < a/b. We next claim that ç has an n'th root. Indeed, the obstruction

lies in H2(X, μμμμn) = 0 (cohomological dimension of open curves), so there

exists a character Ú such that Ún = ç-1. We next claim that Ú has
the same ‘-slope as ç. Indeed, for any real x ≥ 0, a character ≈ of I‘

has slope ≤ x if and only if ≈ kills the pro-p group I(x+). So raising
characters to prime-to-p powers doesn't change their slopes. Therefore
Ú has the same slope s < a/b as ç. So Ï‚Ú has the the same highest
slope a/b, the same rank n, and trivial determinant. Moreover, Ï‚Ú is
still Lie-irreducible (= irreducible on all finite etale connected coverings)
since this property is invariant under twisting by characters.

It remains only to remark that for any lisse Ï, and any

character Ú, the group (Ggeom)0,der is the same for Ï and for Ï‚Ú.

Indeed, we have trivial inclusions
Ggeom(Ï) fi ´mGgeom(Ï‚Ú), Ggeom(Ï‚Ú) fi ´mGgeom(Ï).

Passing to connected components of the identity, we see that

´m(Ggeom(Ï))0 = ´m(Ggeom(Ï‚Ú))0,
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and passing to commutator subgroups we find

(Ggeom(Ï))0,der = (Ggeom(Ï‚Ú))0,der,

as required. This concludes the proof in the case b = n.
We now treat the case b < n. The proof is very much analogous to

that of the Main D.E. Theorem, and we will only indicate what changes
need to be made. Exactly as in the proof of that theorem, we see that

Ì := Lie(G0,der) is a semisimple Lie-subalgebra of End(Ïx) which acts

irreducibly on Ïx. By its very construction, Ì is normalized by aaaannnnyyyy

subgroup K of G.
We now use the slope hypothesis that at some point at

infinity ‘ the highest slope is a/b in lowest terms and its multiplicity is
b to construct a diagonal subgroup K of G, to which we will then apply
Gabber's "torus trick" 1.0.

As a representation of I‘, Ï is the direct sum

Ï = Ïa/b · Ï< a/b = (slope a/b, rank b) · (all slopes < a/b).

In order to describe the representation Ïa/b of I‘ explicitly, fix a

uniformizing parameter 1/x at ‘. This identifies the ‘-adic completion
of the function field of X with the Laurent series field K:=k((1/x)). Fix a
b'th root t of x, and denote by Kb the Laurent series field k((1/t)). In

this setting, I := I‘ is the local galois group Gal(Ksep/K), and

Gal(Ksep/Kb) is its unique closed subgroup I(b) of index b. The

representation Ïa/b of I is irreducible, and as p does not divide b, it is

induced from a character ç of I(b) = Gal(Ksep/k((1/t))) of slope =a (cf.
[Ka-GKM,1.14]). Since p does not divide a, any such character ç is, by
[Ka-GKM, 8.5.7.1], of the form

ç = Ò¥(Pa(t))
‚(a character of slope ≤ a - 1),

where Pa(t) Ÿ k[t] is a polynomial of degree a. At the expense of scaling

the parameter 1/x, we may assume that Pa(t) is monic, say ta + f<a(t),

with f<a(t) a polynomial of degree strictly less than a. As Ò¥(f<a(t))
has

slope ≤ a - 1, we have
ç = Ò¥(ta)‚(a character of slope ≤ a - 1).

Therefore the restriction of Ïa/b to I(b) is a direct sum

·ΩŸμμμμb(äÉp)
Ò¥((Ωt)a)‚(a character of slope ≤ a - 1).

Because gcd(a, b) = 1, as Ω runs over μμμμb(äÉp) the Ω
a's are just a
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permutaion of the Ω's, so we may rewrite this as
·ΩŸμμμμb(äÉp)

Ò¥(Ωta)‚(a character of slope ≤ a - 1).

Therefore as a representation of the uuuuppppppppeeeerrrr nnnnuuuummmmbbbbeeeerrrriiiinnnngggg ssssuuuubbbbggggrrrroooouuuupppp

I(b)(a), we have

Ï | I(b)(a) § ·ΩŸμμμμb(äÉp)
Ò¥(Ωta) · ( trivial of rank n - b).

For each ≈ in k we denote by

ç≈ := the character of I(b)(a) given by Ò¥(≈ta)
The key observation is that for ≈, √ in k we have

ç≈ç√ = ç≈+√,

ç≈ is trivial on I(b)(a) iff ≈=0.

Let

Æ := the image of I(b)(a) in G.
Then Æ is a diagonal subgroup of G, and the diagonal entries of Æ are the
n characters

the b characters çΩ as Ω runs over μμμμ
b
(k) = μμμμb(äÉp),

n-b repetitions of the trivial character ç0.

We now apply the "torus trick" to Æ. The discussion from here on
is exactly the same as in the proof of the Main D.E. Theorem 2.8.1,
except that now one is analyzing all possible relations
RRRReeeellll((((bbbb <<<< nnnn))))((((ääääÉÉÉÉpppp)))) å - ∫ = © - ∂, where å, ∫, ©, ∂ lie in μμμμ

b
(äÉp) ⁄{0},

rather than in μμμμ
b
(^) ⁄{0}. But our hypothesis on p insures that all

three of ****((((pppp,,,,bbbb)))), ********((((pppp,,,,bbbb)))), and ************((((pppp,,,,bbbb)))) hold, in which case the
analysis is exactly the same as it was over ^. QED

RRRReeeemmmmaaaarrrrkkkk 7777....2222....7777....1111 We could treat the case b=n by the above method
directly, but doing so would require us to exclude all primes which
divide aN1(n), rather than only those which are ≤ n.

7777....3333 CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn ooooffff IIIIrrrrrrrreeeedddduuuucccciiiibbbblllleeee SSSShhhheeeeaaaavvvveeeessss vvvviiiiaaaa FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm
In this section, we will explain the systematic use of the one-

variable …-adic Fourier Transform FT¥ to construct irreducible lisse

sheaves on open sets of !1 := Spec(k[x]), k a perfect field of
characteristic p±…. We will make free use of the basic facts about FT¥
(cf. [Ka-TL], [Ka-GKM chpt.8], [Lau-TF]). Let us recall the basic set-up.
(7.3.1) On any smooth, geometrically connected curve C/k, a
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constructible ä$…-sheaf Ï on C is called a mmmmiiiiddddddddlllleeee eeeexxxxtttteeeennnnssssiiiioooonnnn if for some

(or equivalently for every) nonempty open set j: U ¨ C on which j*Ï

is lisse, we have Ï § j*j
*Ï. Given a middle extension sheaf Ï on C, and

a nonempty open set j: U ¨ C on which j*Ï is lisse, the sheaf

j*(j
*(Ï)

£
) (where j*(Ï)

£
denotes the linear dual, i.e., the

contragredient representation of π1(U, äu)) is again a middle extension,

which is independent of the auxiliary choice of the open set U. This
sheaf, denoted D(Ï), is called the dddduuuuaaaallll of the middle extension Ï. A
middle extension Ï on C is called iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee if for some (or

equivalently for every) nonempty open set j: U ¨ C on which j*Ï is

lisse, j*Ï is geometrically irreducible (i.e., irreducible as a
representation of π1(Uºäk, u), for u Ÿ Uºäk any geometric point).

LLLLeeeemmmmmmmmaaaa 7777....3333....2222 Let f: X ¨ Y be a dominating morphism of smooth,
geometrically connected curves over k. If Ï is a middle extension on X,
then f*Ï is a middle extension on Y.

pppprrrrooooooooffff By [De-TF], f*Ï is constructible. Let j: U ¨ Y be the inclusion of

a nonempty open set where f*Ï is lisse. Because f is dominating, f-1(U)

is a nonempty open set of X; we denote its inclusion by h: f-1(U) ¨ X.

Let k: V ¨ f-1(U) be a nonempty open set of f-1(U) where Ï is lisse.
Then we have a commutative diagram

k h

V zc f-1(U) zc X
fU d CART f d

U zc Y.
j

Because Ï is a middle extension, Ï § h*k*(k
*h*Ï) = h*h

*Ï, so taking

f* gives

f*Ï = f*h*h
*Ï = j*(fU)*h

*Ï = j*j
*f*Ï. QED

(7.3.3) For any constructible ä$…-sheaf Ï on !1, its "naive Fourier

Transform" NFT¥(Ï) is the constructible ä$…-sheaf Ï on !1 defined (in
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terms of the two projections of !2 to !1 and the sheaf Ò¥(xy) on !2)

as

NFT¥(Ï) := R1pr2~(pr1
*Ï‚Ò¥(xy)).

By proper base change, the stalk of NFT¥(Ï) at any point a in !1(äk) is

(NFT¥(Ï))a = H1c(!
1‚äk, Ï‚Ò¥(ax)).

(7.3.4) A constructible ä$…-sheaf Ï on !1 is called eeeelllleeeemmmmeeeennnnttttaaaarrrryyyy if it

satisfies the following two conditions:

EEEElllleeeemmmm((((1111)))) Ï has no (nonzero) punctual sections, i.e., Hc
0(!1‚äk, Ï) = 0.

[Equivalently, for every nonempty open set j: U ¨ !1 on which j*Ï is

lisse, Ï ,c j*j
*Ï.]

EEEElllleeeemmmm((((2222)))) for every t Ÿ äk, Hc
2(!1‚äk, Ï‚Ò¥(tx)) = 0.

(7.3.5) A constructible ä$…-sheaf Ï on !1 is called FFFFoooouuuurrrriiiieeeerrrr if it

satisfies the following two conditions:
FFFFoooouuuurrrriiiieeeerrrr((((1111)))) for some (or equivalently for every) nonempty open set

j: U ¨ !1 on which j*Ï is lisse, we have Ï § j*j
*Ï, i.e., Ï is a middle

extension on !1.
FFFFoooouuuurrrriiiieeeerrrr((((2222)))) for every t Ÿ äk, we have

H0(!1‚äk, Ï‚Ò¥(tx)) = 0 = Hc
2(!1‚äk, Ï‚Ò¥(tx)).

Equivalently, for an Ï that satisfies Fourier(1), Fourier(2) is the
condition that for some (or equivalently for every) nonempty open set

j: U ¨ !1 on which j*Ï is lisse, the geometric object j*Ï| Uºkäk has no

subsheaf and no quotient sheaf of the form j*Ò¥(tx)| Uºkäk for any

t Ÿ äk. Notice that this condition is autodual.
Given a Fourier sheaf Ï, its dual D(Ï) as a middle extension is

again a Fourier sheaf, called the dddduuuuaaaallll of the Fourier sheaf Ï.

(7.3.6) A Fourier sheaf Ï on !1 is called iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee if Ï is
irreducible as a middle extension, i.e., if for some (or equivalently for

every) nonempty open set j: U ¨ !1 on which j*Ï is lisse, j*Ï is
geometrically irreducible (i.e., irreducible as a representation of
π1(Uºäk, u), for u Ÿ Uºäk any geometric point).
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Thus a constructible ä$…-sheaf Ï on !1 is an irreducible Fourier

sheaf if and only if it satisfies the following two conditions:
IIIIrrrrrrrrFFFFoooouuuurrrr((((1111)))) for some (or equivalently for every) nonempty open set

j: U ¨ !1 on which j*Ï is lisse, we have Ï § j*j
*Ï, and j*Ï is

geometrically irreducible, i.e., Ï is an irreducible middle extension.
IIIIrrrrrrrrFFFFoooouuuurrrr((((2222)))) Ï is not geometrically isomorphic to Ò¥(tx) for any t in äk.

(7.3.7) If k is a finite field, X/k a smooth, geometrically connected
curve, and Ï a constructible ä$…-sheaf on X, then for E a finite

extension of k, a point x Ÿ X(E), and a geometric point äx Ÿ X(ksep) lying

over x, the stalk Ï
äx

of Ï at äx is a finite-dimensional …-adic

representation of Gal(Esep/E). We denote by FE the geometric Frobenius

element in this group (i.e., FE is the inverse of å ÿ åCard(E)). Thus we

may speak of the trace, characteristic polynomial, eigenvalues, et
cetera of FE acting on Ï

äx
. We define the ä$…-valued trace function of Ï

on X(E) by
x Ÿ X(E) ÿ Trace( FE | Ï

äx
) := Trace(Ï)(E, x).

For a real number w, and an embedding “: ä$… ¨ ^, we say that Ï is

punctually “-pure of weight w if for every finite extension E of k, and
for every point x Ÿ X(E), the eigenvalues å of FE on Ï

äx
all satisfy

|“(å)| = Card(E)w/2,
where |a| denotes the usual complex absolute value. We say that Ï is
"pure of weight w" if for some (or equivalently for every) nonempty

open set j: U ¨ X on which j*Ï is lisse, we have Ï § j*j
*Ï, and j*Ï is

punctually “-pure of weight w for every embedding “: ä$… ¨ ^.

We can now recall the first basic result (cf. [Ka-Lau, 2.1 and 2.2],
[Ka-GKM, Chpt. 8], and [Ka-TL]) on Fourier Transform.
TTTThhhheeeeoooorrrreeeemmmm 7777....3333....8888 (Brylinski, Deligne, Laumon) Let Ï be a constructible

ä$…-sheaf Ï on !1.

(1) If Ï is elementary, then NFT¥(Ï) is elementary, and we have the

inversion formula

[-1]*Ï(----1111) § NFT¥(NFT¥(Ï)).

(2) If Ï is Fourier, then NFT¥(Ï) is Fourier, and
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D(NFT¥(Ï)) § NFT¥([-1]
*(D(Ï)))(1111).

(3) If Ï is irreducible Fourier, then NFT¥(Ï) is irreducible Fourier.

(4) If k is a finite field, ¥ a nontrivial additive character of k, and if Ï
is elementary, then for every finite extension E of k, the trace function

of NFT¥(Ï) on !1(E) = E is (minus) the finite field Fourier Transform of

that of Ï:
Trace(NFT¥(Ï))(E, y) = - ‡xŸE ¥E(yx)Trace(Ï)(E, x),

where ¥E(a) := ¥(TraceE/k(a)).

(5) If k is a finite field, and if Ï is elementary and pure of weight w,
then NFT¥(Ï) is elementary and pure of weight w+1.

Let us also recall (cf. [Ka-GKM], Chpt. 8) the numerology of the
Fourier Transform.
LLLLeeeemmmmmmmmaaaa 7777....3333....9999 Suppose k is algebraically closed, and that Ï is
elementary. Denote by rank(Ï) the generic rank of Ï. Let Ì := NFT¥(Ï).

For each x Ÿ !1(k) = k, put dropx(Ï) := rank(Ï) - dim(Ïx). Then

(1) For each t in !1(k), dim(Ìt) =

= Swan‘(Ï‚Ò¥(tx)) - rank(Ï) + ‡x in k (Swanx(Ï) + dropx(Ï)).

(2) Ì := NFT¥(Ï) has generic rank

= ‡‘-breaks ¬ of Ï max(0, ¬ - 1) + ‡x in k (Swanx(Ï) + dropx(Ï)).

(3) Ì is lisse at t Ÿ !1(k) if and only if all the ‘-slopes of Ï‚Ò¥(tx) are

≥ 1.

7777....4444 LLLLooooccccaaaallll mmmmoooonnnnooooddddrrrroooommmmyyyy ooooffff FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss dddd''''aaaapppprrrreeeessss LLLLaaaauuuummmmoooonnnn
((((ccccffff.... [[[[LLLLaaaauuuu----TTTTFFFF]]]],,,, [[[[KKKKaaaa----TTTTLLLL]]]]))))

We next review the analysis of the local monodromy of a Fourier
Transform, via Laumon's "local Fourier Transform". For simplicity of
exposition, we will throughout this section suppose that the field k is

aaaallllggggeeeebbbbrrrraaaaiiiiccccaaaallllllllyyyy cccclllloooosssseeeedddd. Let us fix a geometric generic point ä˙ of !1, i.e.,

an algebraically closed overfield L of k(x). Denote by k(x)sep the

separable closure of k(x) in L. For each point t of @1(k) = !1(k) ¡‘,

viewed as a discrete valuation of k(x)/k, pick a place ët of k(x)sep lying

over it, and denote by I(t) fi Gal(k(x)sep/k(x)) the inertia group at ët.

Given a constructible ä$…-sheaf Ï on !1, its geometric generic fibre Ï
ä˙
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is an …-adic representation of Gal(k(x)sep/k(x)). We denote by Ï(t) the

I(t)- representation Ï
ä˙
(cf [Ka-TL]). For s in !1(k), we denote by Ïs the

stalk of Ï at s, viewed as a trivial I(s)-representation. To avoid
confusion with Tate twists, we will denote the latter in boldface, e.g.
Ï(----1111) is the Tate twist and Ï(-1) is the representation of the inertia
group at at he point s = -1.
TTTThhhheeeeoooorrrreeeemmmm ooooffff …………----aaaaddddiiiicccc SSSSttttaaaattttiiiioooonnnnaaaarrrryyyy PPPPhhhhaaaasssseeee 7777....4444....1111 (Laumon) For each

point t in !1(k) ¡‘, there is an exact functor
FT¥loc(t,‘): (…-adic I(t)-rep's) ¨(…-adic I(‘)-rep's)

such that if Ï is a constructible ä$…-sheaf on !1 which is the extension

by zero of a lisse sheaf on a nonvoid open set !1 - S,there is a
canonical direct sum decomposition of NFT¥(Ï)(‘) as I(‘)-

representation

NFT¥(Ï)(‘) = ·t in S¡‘ FT¥loc(t,‘)(Ï(t)).

The functors FT¥loc(t,‘) have the following properties:

(1) For an I(‘)-representation N, FT¥loc(‘,‘)(N) = 0 if and only if all

slopes of N are ≤ 1, and FT¥loc(‘,‘)(N) has all slopes > 1. FT¥loc(‘,‘) is

an autoequivalence of the category of …-adic I(‘)-representation with
all slopes > 1; for N an I(‘)-representation with all slopes > 1, we have
the inversion formula

FT¥loc(‘,‘)(FT¥loc(‘,‘)(N)) § [-1]*N(----1111).

If N has unique slope (a+b)/a with multiplicity a, then FT¥loc(‘,‘)(N)

has unique slope (a+b)/b with multiplicity b. [N.B.: We do nnnnooootttt assume
here that gcd(a,b) = 1.]

(2) For any I(0)-representation M, FT¥loc(0,‘)(M) has all slopes < 1.

(3) For s in !1(k), denote by Add(s) : x ÿ x + s the additive translation

by s. For L an I(s) representation, let Add(s)*L denote the I(0)-
representation obtained by identifying I(0) to I(s) by Add(s). Denote by
y the Fourier Transform variable. Then

FT¥loc(s,‘)(L) § (FT¥loc(0,‘)(Add(s)*L))‚Ò¥(sy).

In particular, for s Ÿ k≠, FT¥loc(s,‘)(L) has all slopes =1.
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pppprrrrooooooooffff Everything except (3) is proven in [Ka-TL]. For the canonical
extension Ï of L, we have FT¥loc(‘,‘)(Ï(‘)) = 0 by (1), since Ï(‘) is

tame, so stationary phase gives
NFT¥(Ï)(‘) § FT¥loc(s,‘)(L).

For this Ï, Add(s)*Ï is the canonical extension of Add(s)*L, and so by
the same argument we have

NFT¥(Add(s)
*Ï)(‘) § FT¥loc(0,‘)(Add(s)*L).

Assertion (3) now follows from the fact that for any constructible ä$…-

sheaf Ï on !1, we have the global formula

NFT¥(Ï) § NFT¥(Add(s)
*Ï)‚Ò¥(sy). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....4444....1111....1111 In the stationary phase decomposition, the
individual pieces may be characterized as follows:
(1) FT¥loc(‘,‘)(Ï(‘)) has all slopes > 1

(2) FT¥loc(0,‘)(Ï(0)) has all slopes < 1.

(3) For s Ÿ k≠, FT¥loc(s,‘)(Ï(s)) has all slopes =1, and

(FT¥loc(s,‘)(Ï(s)))‚Ò¥(-sy) § FT¥loc(0,‘)((Add(s)*Ï)(0))

has all slopes < 1.

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....4444....2222 ((((SSSSttttaaaattttiiiioooonnnnaaaarrrryyyy PPPPhhhhaaaasssseeee bbbbiiiissss)))) Let Ï be a constructible ä$…-

sheaf on !1 which has no punctual sections, and which is lisse on a

nonvoid open set !1 - S. Then there is a canonical direct sum
decomposition of NFT¥(Ï)(‘) as I(‘)-representation

NFT¥(Ï)(‘) = FT¥loc(‘,‘)(Ï(‘)) ··s in S FT¥loc(s,‘)(Ï(s)/Ïs).

pppprrrrooooooooffff Denote by j: !1 - S ¨ !1 the inclusion. Because Ï has no

punctual sections, we have a short exact sequence of sheaves on !1

0 ¨ j~j
*Ï ¨ Ï ¨ ·s in S (Ïs concentrated at s) ¨ 0.

Taking Fourier Transform gives a short exact sequence of sheaves on

!1,

0 ¨ ·s in S Ïs‚
ä$…

Ò¥(sy) ¨ NFT¥(j~j
*Ï) ¨ NFT¥(Ï) ¨ 0.

Restricting to I(‘)-representations, we get a short exact sequence
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0 ¨ ·s in S Ïs‚
ä$…

Ò¥(sy) ¨

¨ FT¥loc(‘,‘)(Ï(‘)) ··s in S FT¥loc(s,‘)(Ï(s)) ¨ NFT¥(Ï)(‘) ¨ 0.

By 7.4.1.1, the term Ïs‚
ä$…

Ò¥(sy) must land entirely inside in

FT¥loc(s,‘)(Ï(s)). So it remains only to identify Ïs‚
ä$…

Ò¥(sy) with

FT¥loc(s,‘)(Ïs). But this is immediate from applying the above

considerations to the constant sheaf with value Ïs, and S = {s}. QED

We next recall
TTTThhhheeeeoooorrrreeeemmmm 7777....4444....3333 (Laumon) There is an exact functor

FT¥loc(‘,0) : (…-adic I(‘)-rep's) ¨ (…-adic I(0)-rep's)

such that if Ï is a constructible ä$…-sheaf on !1 with no punctual

sections, there is a four term exact sequence of I(0)-representations

0¨Hc
1(!1, Ï)¨NFT¥(Ï)(0)¨FT¥loc(‘,0)(Ï(‘))¨Hc

2(!1, Ï)¨0.

If N is an I(‘)-representation with all slopes ≥ 1, FT¥loc(‘,0)(N) = 0.

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....4444....3333....1111 If Ï is elementary, and Ì := NFT¥(Ï), then

Ì(0)/Ì0 § FT¥loc(‘,0)(Ï(‘)).

The fundamental interrelation of FT¥loc(0,‘) and FTloc¥(‘,0) is

given by
TTTThhhheeeeoooorrrreeeemmmm 7777....4444....4444 (Laumon)

(1) FT¥loc(0,‘) and [-1]*FT¥loc(‘,0)(1111) are quasi-inverse equivalences

of categories

(…-adic I(0)-rep's) vzzc (…-adic I(‘)-rep's with all slopes < 1);

For M an I(0)-representation, and N an I(‘)-representation with all
slopes < 1, we have the inversion formulas

FT¥loc(‘,0)(FT¥loc(0,‘)(M)) § [-1]*M(----1111),

FT¥loc(0,‘)(FT¥loc(‘,0)(N)) § [-1]*N(----1111).

(2) For ç any continuous ä$…-valued character of π1(´mºk)tame, with
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inverse character äç, we have
FT¥loc(0,‘)(Òç) § Òäç, FT¥loc(‘,0)(Òç) § Òäç.

(3) If M is of the form Ò
ç
‚(a unipotent Jordan block of size n), then

FT¥loc(0,‘)(M) is of the form Òäç
‚(a unipotent Jordan block of size n).

If N is of the form Ò
ç
‚(a unipotent Jordan block of size n), then

FT¥loc(‘,0)(N) is of the form Òäç
‚(a unipotent Jordan block of size n).

(4) If M has unique slope a/b > 0 with multiplicity b, then
FT¥loc(0,‘)(M) has unique slope a/(a+b) with multiplicity a+b.

If N has unique slope a/(a+b) < 1 with multiplicity a+b, then
FT¥loc(‘,0)(N) has unique slope a/b with multiplicity b.

pppprrrrooooooooffff Once (1) is proven, we argue as follows. One checks (2) by direct
global calculation; (3) then follows because the functors carry
indecomposables to indecomposables. They also carry irreducibles to
irreducibles, and (4) then follows from a global calculation of their
effects upon dimensions and Swan conductors.

A weaker version of (1) is proven somewhat clumsily in [Ka-TL,
Prop. 12 and Thm. 13]. Here is a simple proof of it, based on the bbbbiiiissss
version 7.4.2 of stationary phase. Choose an auxiliary integer k ≥ 2
which is prime to p (e.g., take k=2 unless p=2, in which case take k=3).

Let us begin with an I(0)-representation M, and denote by ˜ its

canonical extension to ´m, extended by zero to !1. Then define

Ï := ˜‚Ò¥(xk). Since Ò¥(xk) is lisse ( in fact canonically trivial) at the

origin, we have Ï(0) § M as I(0)-representation. The sheaf Ï is lisse on
´m and extended by zero across the origin, so it has no nonzero

punctual sections; as all its ‘-slopes are k ≥ 2, Ï is elementary. Let
Ì := NFT¥(Ï). By stationary phase applied to Ï, we have

Ì(‘) § FT¥loc(‘,‘)(Ï(‘)) · FT¥loc(0,‘)(M).

Apply FT¥loc(‘,0); since FT¥loc(‘,0) kills (slopes ≥ 1), we get

FT¥loc(‘,0)(Ì(‘)) § FT¥loc(‘,0)(FT¥loc(0,‘)(M)).

By 7.4.3.1 applied to Ì, if we denote Ó := NFT¥(Ì) § [-1]*Ï(----1111), we

have
Ó(0)/Ó0 § FT¥loc(‘,0)(Ì(‘)).

Since Ó § [-1]*Ï(----1111), we have Ó0 = 0, and

Ó(0) § [-1]*Ï(0)(----1111) § [-1]*M(----1111),
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so we may rewrite this

[-1]*M(----1111) § FT¥loc(‘,0)(Ì(‘)),

whence

[-1]*M(----1111) § FT¥loc(‘,0)(FT¥loc(0,‘)(M)).

Conversely, let us begin with an I(‘)-representation N all of
whose slopes are < 1. Let ˆ denote its canonical extension to ´m. Let

Ì := ˆ‚Ò¥(1/xk), extended by zero across the origin. Then Ì has no

nonzero punctual sections, and being totally wild at zero it is therefore
elementary. Since Ò¥(1/xk) extends across ‘ as a lisse sheaf (which is

even canonically trivial at ‘), we have Ì(‘) § N as I(‘)-
representations. Let Ï := NFT¥(Ì). By 7.4.3.1 we have

Ï(0)/Ï0 § FT¥loc(‘,0)(Ì(‘))§ FT¥loc(‘,0)(N).

By stationary phase bis appled to Ï, we have
FT¥loc(0,‘)(Ï(0)/Ï0) § the slope < 1 part of NFT¥(Ï)(‘).

But NFT¥(Ï) § [-1]*Ì(----1111), so NFT¥(Ï)(‘) § [-1]*N(----1111) as I(‘)-

representation. As N is entirely of slope < 1, we obtain

FT¥loc(0,‘)(Ï(0)/Ï0) § [-1]*N(----1111), whence

FT¥loc(0,‘)(FT¥loc(‘,0)(N)) § [-1]*N(----1111). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....4444....5555 Let Ï be an elementary sheaf, Ì:= NFT¥(Ï), and

s Ÿ !1(k). Then
(1) Ì is lisse at s if and only if Ï(‘)‚Ò¥(sx) has all ‘-breaks ≥ 1.

(2) Ì is tame at s if and only if
Ï(‘)‚Ò¥(sx) § (all ‘-breaks =0)·(all ‘-breaks ≥ 1).

pppprrrrooooooooffff By translation, it suffices to treat the case s=0. Since Ï is
elementary, Ì is elementary, Ì0 ,c Ì(0), and we have

Ì(0)/Ì0 § FT¥loc(‘,0)(Ï(‘)).

But FT¥loc(‘,0)(Ï(‘)) vanishes (resp. is tame) if and only if the part of

Ï(‘) of slope < 1 vanishes (reps. is tame). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....4444....6666 ((((PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn MMMMoooonnnnooooddddrrrroooommmmyyyy CCCCrrrriiiitttteeeerrrriiiioooonnnn)))) Let Ï be

a Fourier sheaf, Ì:= NFT¥(Ï), and s Ÿ !1(k). Then Ì has

pseudoreflection monodromy at s (in the sense that the subspace

Ì(s)I(s) = Ìs of Ì(s) is of codimension one in Ì(s)) if and only if either
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(1) Ï(‘)‚Ò¥(sx) § (1-dim'l, ‘-break =0)·(all ‘-breaks ≥ 1)

§ Òç · (all ‘-breaks ≥ 1),

in which case I(s) acts on the line Ì(s)/Ìs by the tame character

Òäç(x-s), or

(2) for some integer n ≥ 1, we have

Ï(‘)‚Ò¥(sx) § (n+1 -dim'l, ‘-breaks =n/(n+1))·(all ‘-breaks ≥ 1),

in which case I(s) acts on the line Ì(s)/Ìs by a character of slope n. In

this latter case, there exists an element of the wild inertia group P(s)
which acts on Ì(s) as a pseudreflection of determinant Ωp.

pppprrrrooooooooffff By translation, it suffices to treat the case s=0. Since Ï is

Fourier, Ì is Fourier. Therefore Ì0 = Ì(0)I(0), and

Ì(0)/Ì0 § FT¥loc(‘,0)(Ï(‘)).

The cases listed are those where FT¥loc(‘,0)(Ï(‘)) is of rank one. In

the second case, the character is wild, so its restriction to the pro-p
group P is nontrivial. QED

7777....5555 """"NNNNuuuummmmeeeerrrriiiiccccaaaallll"""" EEEExxxxpppplllliiiicccciiiittttaaaattttiiiioooonnnn ooooffff LLLLaaaauuuummmmoooonnnn''''ssss RRRReeeessssuuuullllttttssss

In this section we will make explicit the exact relation between
the I(0) and I(‘) representations of a pair of Fourier sheaves Ï and Ì
which are Fourier Transforms of each other. The only delicate part
concerns the unipotent part of local monodromy.

We continue to suppose k algebraically closed throughout this
section.
LLLLeeeemmmmmmmmaaaa 7777....5555....1111 Let Ï be a Fourier sheaf,

Ì = NFT¥(Ï), [-1]
*Ï(----1111) = NFT¥(Ì).

Then

(1) dim(Ï(0)I(0)) = dim(Ï0).

(2) dim(Ï(‘)I(‘)) ≤ dim(Ì0)

(3) dim(Ì(0)I(0)) = dim(Ì0).

(4) dim(Ì(‘)I(‘)) ≤ dim(Ï0)
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pppprrrrooooooooffff The first assertion holds because Ï is Fourier. For the second,

denote by j: !1 ¨ @1 the inclusion, and consider the short exact

sequence of sheaves on @1

0 ¨ j~Ï ¨ j*Ï ¨ (the punctual sheaf Ï(‘)I(‘) at ‘) ¨ 0.

We have H0(@1, j*Ï) = H0(!1, Ï) = 0 (since Ï is Fourier), so the

coboundary of the long exact cohomology sequence given an injection

Ï(‘)I(‘) ,c H1(@1, j~Ï) := H1c(!
1, Ï) := Ì0,

which proves (2). Assertions (3) and (4) are simply (1) and (2) with the
roles of Ï and Ì reversed. QED

(7.5.2) We will use this lemma in the following way. By part (3),
the number of unipotent Jordan blocks in Ì(0) as I(0)-representation is
precisely dimÌ0. By part (2), the number of unipotent Jordan blocks in

Ï(‘) is aaaatttt mmmmoooosssstttt dimÌ0. We will adopt the convention (compare [Ka-

GKM, 7.1.3, 7.5.1.3) that Ï(‘) has pppprrrreeeecccciiiisssseeeellllyyyy dimÌ0 unipotent Jordan

blocks, with the convention that some of these blocks are allowed to be
of size zero. Similarly Ì(‘) has precisely dimÏ0 unipotent Jordan

blocks, with the convention that some of these blocks are allowed to be
of size zero. Using these conventions, we define polynomials in #[T]

P(Ï, ‘, ú, T) := ‡all dimÌ0 unip. blocks in Ï(‘) T
(dim. of block),

P(Ì, 0, ú, T) := ‡all dimÌ0 unip. blocks in Ì(0) T
(dim. of block),

and similarly with the roles of Ï and Ì reversed. Notice that the
polynomial P(Ì, 0, ú, T) has no constant term, while P(Ï, ‘, ú, T) may
very well have a constant term (namely the number of "dummy"

Jordan blocks, dimÌ0 - dim(Ï(‘)I(‘))). If Ì0 vanishes, these

polynomials are identically zero. Clearly it is the same to know the
isomorphism class of the unipotent parts of Ï(‘) and Ì(0) as to know
these two polynomials.
(7.5.3) For each nontrivial continuous ä$…-valued character ç of

π1(´mºk)tame, with inverse character denoted äç, we define

polynomials in #[T]

P(Ï, ‘, äç, T) := ‡all unip. blocks in Òç‚Ï(‘) T
(dim. of block),
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P(Ì, 0, äç, T) := ‡all unip. blocks in Òç‚Ì(0) T
(dim. of block),

but this time with the "naive" convention that we only take the sum
over as many Jordan blocks as there actually are. With this
convention, these polynomials never have a constant term. They can
be identically zero.

These conventions established, we can restate the "numerical"
version of Laumon's results 7.4.1, 7.4.2, 7.4.4.

TTTThhhheeeeoooorrrreeeemmmm 7777....5555....4444 (Laumon) Let Ï be a Fourier sheaf, Ì = NFT¥(Ï), (and

hence also [-1]*Ï(----1111) = NFT¥(Ì)). Then Ì(0) and Ì(‘) are related to

Ï(0) and Ï(‘) by the following rules: Write

Ï(‘) = Ï(‘)slope > 1 · Ï(‘)slope = 1 · Ï(‘)0 < slope < 1 ·Ï(‘)tame

Ï(‘)slope > 1 § ·(slope (a+b)/a, multiplicity a)

Ï(‘)0 < slope < 1 § ·(slope c/(c+d), multiplicity c+d),

Ï(0) =Ï(0)slope > 0 ·Ï(0)tame

Ï(0)slope > 0 § ·(slope e/f, multiplicity f)

Then we have

(1) Ì(‘)slope > 1 § ·(slope (a+b)/b, multiplicity b).

(2) Ì(‘)0 < slope < 1 § ·(slope e/(e+f), multiplicity e+f).

(3) P(Ì, ‘, äç, T) = P(Ï, 0, ç, T) for each nontrivial ç.

(4) P(Ì, ‘, ú, T) = P(Ï, 0, ú, T)/T.

(5) Ì(0)slope > 0 § ·(slope c/d, multiplicity d).

(6) P(Ì, 0, äç, T) = P(Ï, ‘, ç, T) for each nontrivial ç.

(7) P(Ì, 0, ú, T) = T≠P(Ï, ‘, ú, T).
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pppprrrrooooooooffff Assertion (1) is 7.4.1 (1). Assertions (2) and (5) are 7.4.4 (4).
Assertions (3) and (4) are the same as (6) and (7) with the roles of Ï
and Ì reversed, so it remains to prove (6) and (7). From 7.4.3.1 we
have

Ì(0)/Ì0 § FT¥loc(‘,0)(Ï(‘));

taking äç-components, we see that (6) is just Thm 7.4.4 (3). As for (7),
write

Ì(0)unip § ·i=1 to dimÌ0
Unip(ni).

Then taking unipotent components gives

FT¥loc(‘,0)((Ï(‘))unip) § (Ì(0)/Ì0)
unip = Ì(0)unip /Ì0 =

= Ì(0)unip /Ì(0)I(0) § ·i=1 to dimÌ0
Unip(ni - 1),

whence by 7.4.4 (3) we have

(Ï(‘))unip § ·i=1 to dimÌ0
Unip(ni - 1),

which is exactly (7). QED

7777....6666 PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn EEEExxxxaaaammmmpppplllleeeessss aaaannnndddd AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss
In this section we discuss in detail examples of pseudoreflection

local monodromy, and whenever possible apply to these examples the
Pseudoreflection Thm. 1.5. We continue to suppose k algebraically closed
throughout this section.

EEEExxxxaaaammmmpppplllleeee 7777....6666....1111 Ï is a Fourier sheaf with
Ï(‘) § (1 dim'l tame) · (all slopes ≥ 1)

Then Ì := NFT¥(Ï) has pseudoreflection tame local monodromy at zero.

EEEExxxxaaaammmmpppplllleeee 7777....6666....2222 Ï is a Fourier sheaf and
Ï(‘) § (1 dim'l, slope =1) · (all slopes < 1).

Then there is a unique s in k≠ such Ò¥(sx)‚Ï is of type (1), and Ì :=

NFT¥(Ï) has pseudoreflection tame local monodromy at s. In this case

Ì is lisse on !1 - {0, s}, and has all its ‘-slopes ≤ 1.

Conversely, if Ì is Fourier, lisse on !1 - {0, s} with tame
pseudoreflection local monodromy at s, and has all its ‘-slopes ≤ 1,
then

NFT¥(Ì)(‘) § FT¥loc(s, ‘)(Ì(s)/Ìs) · FT¥loc(0, ‘)(Ì(0)/Ì0)

is of this form. Thus these two classes of sheaves are interchanged by
Fourier Transform. If we add the requirement that Ï be lisse on ´m,

this corresponds under Fourier Transform to the requirement that Ì
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have all its ‘-slopes < 1.

TTTThhhheeeeoooorrrreeeemmmm 7777....6666....2222....1111 Suppose Ï is an irreducible Fourier sheaf which is
lisse on ´m, with

Ï(‘) § (1 dim'l, slope =1) · (all slopes < 1), say
§ (Ò¥(-sx)‚Òç) · (all slopes < 1).

Then Ì := NFT¥(Ï) is irreducible Fourier, lisse on !1 - {0, s}, has

pseudoreflection tame local monodromy at s of determinant äç(x-s),
and all its ‘-slopes < 1. Moeover,
(1) If p > 2rank(Ï) + 1, then Ï is Lie-irreducible, the upper numbering

subgroup (I(‘))(1) acts on Ï(‘) by pseudoreflections of determinant

Ò¥(-sx), and G := Ggeom for Ï has G0,der = SL(Ïx).

(2) If Ì has det(Ì) of finite order, and if Ì is neither induced nor has
finite geometric monodromy, then Ì is Lie-irreducible, and for it

G:=Ggeom has G0,der one of the groups SL(Ìx), SO(Ìx), or (if rank(Ì) is

even) Sp(Ìx).

pppprrrrooooooooffff For (1), we get Lie-irreduciblity by observing that Ï cannot be
Kummer induced because it has an ‘-slope (namely 1) occuring with
multiplicity one. For (2), we have Lie irreducibility by 7.2.6(6). Now
apply the pseudoreflection theorem 1.5. QED

EEEExxxxaaaammmmpppplllleeee 7777....6666....3333 Ï is a Fourier sheaf of generic rank one, and the ‘-
slope of Ï is ≤ 1. Then there is a unique s in k such that Ò¥(sx)‚Ï is

tame at ‘,say Ò¥(sx)‚Ï § Òç(x) as I(‘)-representation, and Ì is lisse

on !1 - {s} with pseudoreflection tame local monodromy at s whose
determinant is Òäç(x-s) as I(s)-representation.... Moreover, at ‘ Ì has

all slopes ≤ 1.... For such a Ì, its NFT¥(Ì)(‘) is the single term

FT¥loc(s, ‘)(Ì(s)/Ìs), which is 1-dim'l of slope ≤ 1. Thus these two

classes of sheaves are interchanged by Fourier Transform.

TTTThhhheeeeoooorrrreeeemmmm 7777....6666....3333....1111 Suppose that Ï is a Fourier sheaf of generic rank
one, with ‘-slope ≤ 1. Then there is a unique s in k such that

Ò¥(sx)‚Ï § Òç(x) as I(‘)-representation,

and Ì:= NFT¥(Ï) is lisse on !1 - {s} of rank

rank(Ì) = ‡x in !1 (dropx(Ï) + Swanx(Ï)).
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with pseudoreflection local monodromy at s of determinant äç(x-s).
Suppose that p > 2rank(Ì) + 1, and that either rank(Ì) ± 2 or that ç is
not the character ç2 of order two. Then Ì is Lie-irreducible, and for it

G:=Ggeom has G0,der one of the groups SL(Ìx), SO(Ìx), or (if rank(Ì) is

even) Sp(Ìx). Moreover,

if ç ± ú,ç2, then G0,der = SL(Ìx);

if ç = ú, then G0,der = SL(Ìx) or (for rank(Ì) even) Sp(Ìx);

if ç = ç2, then G0,der = SL(Ìx) or SO(Ìx).

pppprrrrooooooooffff Notice that such an Ï is automatically irreducible Fourier
(simply because it is Fourier of generic rank one). Therefore Ì is
irreducible Fourier. By 7.2.6 (7), if p > 2rank(Ì) + 1, then Ì is Lie-
irreducible unless Ì's local monodromy at s is a tame reflection (i.e.,
Ò¥(sx)‚Ï § Òç(x) as I(‘)-representation with ç the character of

order two) and Ì has rank two. If Ì is Lie-irreducible, then 1.5 gives

the short list of possibilities for G0,der. Let us calculate the rank of Ì.
By Ï ÿ Ò¥(sx)‚Ï, we may reduce to the case where Ï is tame at ‘,

and Ì is lisse on ´m. Since Ì then has pseudoreflection local

monodromy at zero, we find

rank(Ì) = 1 + dimÌ0 = 1 + h1c(!
1, Ï)= 1 -çc(!

1, Ï)

= 1 - ç(!1) + Swan‘(Ï) + ‡x in !1 (dropx(Ï) + Swanx(Ï))

= ‡x in !1 (dropx(Ï) + Swanx(Ï)). QED

EEEExxxxaaaammmmpppplllleeee 7777....6666....4444 Suppose that C is a connected smooth complete curve
over k, with a marked point ‘. Fix an integer n ≥ 1 such that n and n
+ 1 are both prime to p. Let Ò be an …-adic sheaf on C - {‘} which is
generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swan‘(Ò) = n. Let f

be a rational function on C whose only pole is at ‘, of order n + 1. View

f as a finite flat morphism f: C - {‘} ¨ !1. (Because n+1 is prime to p,
f is generically etale.) Then Ï := f*Ò has generic rank n+1, Ï is the

direct image of its restriction to a nonempty open set where it is lisse,
and all the ‘-slopes of Ï are n/(n+1). By its ‘-slopes, Ï is I(‘)-
irreducible. Therefore Ï is an irreducible Fourier sheaf. Thus Ì :=
NFT¥(Ï) is an irreducible Fourier sheaf, lisse on ´m with
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pseudoreflection local monodromy at zero whose determinant has slope
n.

TTTThhhheeeeoooorrrreeeemmmm 7777....6666....4444....1111 Suppose that C is a connected smooth complete curve
over k, with a marked point ‘. Fix an integer n ≥ 1 such that n and n
+ 1 are both prime to p. Let Ò be an …-adic sheaf on C - {‘} which is
generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swan‘(Ò) = n. Let f

be a rational function on C whose only pole is at ‘, of order n + 1.
Define Ï := f*Ò, Ì := NFT¥(Ï). Then Ì is an irreducible Fourier sheaf,

lisse on ´m of rank

rank(Ì) = n + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)),

with pseudoreflection local monodromy at zero whose determinant has

slope n. If If p > 2rank(Ì) + 1, then G:= Ggeom for Ì has G0,der = SL(Ìx).

pppprrrrooooooooffff If p > 2rank(Ì) + 1, then Ì must be Lie-irreducible (by wildness
of the pseudoreflection, cf. 7.2.6 (7)). In view of 1.5, we see that Ì must

have G0,der = SL(Ìx). Alternatively, once Ì is Lie-irreducible and p ± 2

we can apply the Main …-adic Theorem 7.2.7 to Ì at zero, with a/b =

n/1. The conclusion we reach, namely G0,der = SL(Ìx), is of course the

same.
To see what "p > 2rank(Ì) + 1" means, let us calculate the rank of

Ì. Since Ì has pseudoreflection local monodromy at zero,

rank(Ì) = 1 + dimÌ0 = 1 + h1c(!
1, f*Ò)= 1 -çc(!

1, f*Ò)

= 1 -çc(C - {‘}, Ò)

= 1 - ç(C - {‘}) + Swan‘(Ò) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò))

= 2 - ç(C) + Swan‘(Ò) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)).

= n + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)). QED

7777....7777 AAAA HHHHiiiigggghhhheeeesssstttt SSSSllllooooppppeeee AAAApppppppplllliiiiccccaaaattttiiiioooonnnn
We continue to suppose k algebraically closed throughout this

section.
(7.7.1) Suppose that C is a connected smooth complete curve over
k, with a marked point ‘. Fix integers n ≥ 1 and d ≥ 1 such that

gcd(n, d) = 1, n ± d, both n and d are prime to p.
Let Ò be an …-adic sheaf on C - {‘} which is generically of rank one



Chapter7-The …-adic theory-26

and is the direct image of its restriction to a nonempty open set where
it is lisse. Suppose that Swan‘(Ò) = n. Let f be a rational function on C

whose only pole is at ‘, of order d. View f as a finite flat morphism

f: C - {‘} ¨ !1. (Because d is prime to p, f is generically etale.) Then Ï
:= f*Ò has generic rank d, Ï is the direct image of its restriction to a

nonempty open set where it is lisse, and all the ‘-slopes of Ï are n/d.
By its ‘-slopes, Ï is I(‘)-irreducible. Therefore Ï is an irreducible
Fourier sheaf. Therefore Ì := NFT¥(Ï) is an irreducible Fourier sheaf. To

analyse Ì further, we must distinguish cases, according to whether
n > d or d > n.

(7.7.2) If n > d, then Ì is lisse on !1. Its rank is therefore equal to
dimÌ0, so we find

rank(Ì) = dimÌ0 = h1c(!
1, f*Ò)= -çc(!

1, f*Ò)

= -çc(C - {‘}, Ò)

= - ç(C - {‘}) + Swan‘(Ò) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò))

= n - 1 + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)).

If p > 2rank(Ì) + 1, then Ì is Lie-irreducible. As its highest ‘-slope is
n/(n-d) with multiplicity n-d, we may apply the main …-adic theorem
7.2.7 provided that p does not divide 2nN1(n-d)N2(n-d).

(7.7.3) If d > n, then Ì is lisse on ´m. Since Ì(0)/Ì0 =

FT¥loc(‘,0)(Ï(‘)) has rank d-n and all slopes n/(d-n), we find

rank(Ì) = d - n + dimÌ0 = d - n + h1c(!
1, f*Ò)= d - n -çc(!

1, f*Ò)=

=d - n - çc(C - {‘}, Ò) =

= d - n - ç(C - {‘}) + Swan‘(Ò) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò))=

= d - 1 + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)).

If p > 2rank(Ì) + 1, then Ì is either Lie-irreducible or Kummer-induced.
In fact, Ì cannot be Kummer induced if p > d. [Notice that the condition
p > d is satisfied if p > 2rank(Ì) + 1, since rank(Ì) ≥ d-1 and d > n ≥ 1.]
Once this point is established, we may apply the main …-adic theorem
7.2.7 to Ì (its highest slope at zero is n/(d-n), multiplicity d-n) provided
that p > 2rank(Ì) + 1 and p does not divide 2nN1(d-n)N2(d-n).

(7.7.4) We now explain why Ì cannot be Kummer induced. As I(0)-
representation, we have

Ì(0) § Ì0 · (rank d-n, all slopes n/(d-n)),
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which cannot be Kummer induced unless Ì0 vanishes. But

dimÌ0 = n - 1 + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)),

which can only vanish if all of the following conditions are satisfied:
(1) n = 1.

(2) genus(C) = 0, i.e., C - {‘} is !1.

(3) Ò is lisse on !1.

Therefore if Ì0 vanishes, Ò must be Ò¥(tx) for some t Ÿ k≠, f is a

polynomial of degree d prime to p, and Ï is f*Ò¥(tx). In this case, there

is a simple sufficient condition which guarentees that Ì is not Kummer
induced.
LLLLeeeemmmmmmmmaaaa 7777....7777....5555 Suppose that f(x) Ÿ k[x] is a polynomial of degree d,
1 < d < p. Then Ì := NFT¥(f*Ò¥(tx)) is not Kummer-induced for any t in

k.
pppprrrrooooooooffff We will analyze Ì(‘). Let us denote by

∫1, ... , ∫r the critical values of f.

For each critical value ∫i, denote by

åi,1, ... , åi,s(i) the critical points of f (zeroes of f') in f-1(∫).

Since Ò¥(tx) is lisse on !1, Ï := f*Ò¥(tx) is lisse outside the critical

values ∫1, ... , ∫r of f. For each critical point å, denote by e(å) its

multiplicity as a zero of f'. Then

f(x) - f(å) = (x - å)1+e(å)(a function invertible at å).
Since 1 + e(å) ≤ 1 + d-1 < p, we may rewrite this

f(x) - f(å) = (a uniformizing parameter at å)1+e(å).
Therefore if we translate ∫ ÿ 0 the I(∫)-representation Ï(∫)/Ï∫ we get

an isomorphism of I(0)-representations

Add(∫)*(Ï(∫)/Ï∫) § ·å ÿ ∫ ([1 + e(å)]*ä$…)/ä$… §

§·å ÿ ∫ ·all ç1+e(å) = ú, ç nontriv Òç(x).

Since Ï has all ‘-slopes 1/d (or 0, if t = 0) < 1, we have
Ì(‘) § ·∫ FT¥loc(∫, ‘)(Ï(∫)/Ï∫) §

§ ·∫·å ÿ ∫ ·all ç1+e(å) = ú, ç nontriv Ò¥(∫y)‚Òäç(y).

If Ì(‘) is Kummer induced of degree m ≥ 2 prime to p, say
Ì(‘) § [m]*Ó for some I(‘)-representation Ó,

then it is Kummer induced of degree q for any prime divisor q of m
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(since [m]*Ó = [q]*[m/q]*Ó), so it suffices to show that Ì(‘) is not

Kummer induced of pppprrrriiiimmmmeeee degree m ± p. If it were so induced, then

[m]*Ì(‘) § [m]*[m]*Ó § ·Ω in μμμμm
[y ÿ Ωy]*Ó,

and so in particular Ó itself is a direct factor of [m]*Ì(‘)

§·∫·å ÿ ∫·aaaallllllll ç1+e(å) = ú, ç nontriv [m]*(Ò¥(∫y)‚Òäç(y)).

Therefore Ó is itself of the form

·∫·å ÿ ∫·ssssoooommmmeeee ç1+e(å) = ú, ç nontriv [m]*(Ò¥(∫y)‚Òäç(y)).

By the projection formula, [m]*Ó is

·∫·å ÿ ∫·ssssoooommmmeeee ç1+e(å) = ú, ç nontriv (Ò¥(∫y)‚Òäç(y))‚[m]*ä$… §

§ ·∫·å ÿ ∫·ssssoooommmmeeee ç1+e(å) = ú, ç nontriv Ò¥(∫y)‚Òäç(y)‚Ò®(y).
aaaallll llll ®m = ú

If this is to be the expression of Ì(‘)
§ ·∫·å ÿ ∫ ·aaaallllllll ç1+e(å) = ú, ç nontriv Ò¥(∫y)‚Òäç(y),

we see that for each critical value ∫ of f, we have
(1) m divides the multiplicity with which Ò¥(∫y) occurs in Ì(‘)|P(‘).

(2) the set of characters with multiplicity
‹å ÿ ∫ ‹aaaallllllll ç1+e(å) = ú, ç nontriv ç

is stable under ç ÿ ç®, for any character ® of order m.

Fix any critical value ∫. By (2), given ® of order m, ® is the ratio of two
characters ç1/ç2 where each çi has order dividing 1 + e(åi) for some

åi ÿ ∫. Therefore as m is pppprrrriiiimmmmeeee, at least one of the numbers 1 + e(åi)

must be divisible by m, say m | 1+e(å1). But then ®-1 is itself a

nontrivial character ç of order dividing 1+e(å1), and the stability

under ç ÿ ç® implies that the trivial character is a member of the
set in (2), contradiction. QED

Thus we obtain the following theorem.
TTTThhhheeeeoooorrrreeeemmmm 7777....7777....6666 Suppose that C is a connected smooth complete curve
over k, with a marked point ‘. Fix integers n ≥ 1 and d ≥ 1 such that

gcd(n, d) = 1, n ± d, both n and d are prime to p.
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Let Ò be an …-adic sheaf on C - {‘} which is generically of rank one
and is the direct image of its restriction to a nonempty open set where
it is lisse. Suppose that Swan‘(Ò) = n. Let f be a rational function on C

whose only pole is at ‘, of order d. Define Ï := f*Ò, Ì := NFT¥(Ï),

G:= Ggeom for Ì.

(ccccaaaasssseeee nnnn >>>> dddd) If n > d, then Ì is lisse on !1 of rank
rank(Ì)= n - 1 + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)).

Det(Ì) has finite p-power order q. If p > 2rank(Ì) + 1, then Ì is Lie-

irreducible, q = 1 or p, and G =μμμμqG
0, with G0 = G0,dersemisimple.

(ccccaaaasssseeee dddd >>>> nnnn) If d > n, then Ì is lisse on ´m of rank

rank(Ì) = d - 1 + 2genus(C) + ‡x in C - {‘} (dropx(Ò) + Swanx(Ò)).

If p > 2rank(Ì) + 1, then Ì is Lie-irreducible.

In eeeeiiiitttthhhheeeerrrr of these two cases, if p > 2rank(Ì) + 1 and p does not divide

2nN1(|n-d|)N2(|n-d|), then G0 = G0,der is one of

(1) If |n-d| is odd, G0,der is SL(Ìx).

(2) If |n-d| is even, then either G0,der is SL(Ìx) or SO(Ìx) or (if rank(Ì)

is even) SP(Ìx), or |n-d|=6, rank(Ì)=7,8 or 9, and G0,der is one of

rank(Ì)=7: the image of G2 in its 7-dim'l irred. representation

rank(Ì)=8: the image of Spin(7) in the 8-dim'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

rank(Ì)=9: the image of SL(3)≠SL(3) in stdºstd.

pppprrrrooooooooffff This is the main …-adic theorem 7.2.7. In the case n > d, we also

use [Ka-MG, Prop. 5] to know that if p > 2rank(Ì) + 1, then G =μμμμqG
0,

with G0 = G0,der semisimple. QED

7777....8888 FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm----SSSSttttaaaabbbblllleeee CCCCllllaaaasssssssseeeessss ooooffff SSSShhhheeeeaaaavvvveeeessss
In this section we will discuss in detail several classes of Fourier

sheaves on !1 which are stable under NFT¥, with particular attention

to "following" their highest slopes. Basically, all we are doing is spelling
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out Laumon's general results on the local monodromy of Fourier
Transforms in some special cases where they provide input for the
main …-adic theorem 7.2.7. One of the principal applications of the
material in this section will be to the definition and study of the
characteristic p …-adic sheaf analogue of the generalized
hypergeometric Î-modules studied earlier.

In each example below of such a class Ç, we denote by Ï and Ì
members of the class Ç. We write Ï À Ì to indicate that Ï and Ì are
Fourier Transforms of each other:

Ï À Ì means Ì = NFT¥(Ï) and [-1]*Ï(----1111) = NFT¥(Ì).

We continue to suppose k algebraically closed throughout this
section.

CCCCllllaaaassssssss ((((1111)))) The class of lisse sheaves on !1 with all ‘-breaks > 1. Indeed,
any such sheaf is Fourier, and for Fourier sheaves, the two conditions

"lisse on !1" and "all ‘-breaks > 1" are interchanged by Fourier
Transform.

If Ï À Ì in this class, then Ï and Ì have the same number of
distinct ‘-breaks, and they correspond as follows:

‘-break multiplicity
Ï (a+b)/a a
Ì (a+b)/b b

rankÏ + rankÌ = Swan‘(Ï) = Swan‘(Ì).

On ‘-breaks themselves, the rule is 1+x ÿ 1 + (1/x). So the biggest ‘-
slope of Ï becomes ssssmmmmaaaalllllllleeeesssstttt ‘-slope of Ì, and vice versa. This class of
sheaves is stable under additive translation and under ‚Ò¥(sx).

CCCCllllaaaassssssss ((((1111 bbbbiiiissss)))) The subclass of (1) which have a uuuunnnniiiiqqqquuuueeee ‘-break.

CCCCllllaaaassssssss ((((1111 tttteeeerrrr)))) The subclass of (1 bis) whose unique ‘-break has exact
denominator the rank of the sheaf. Recall from [Ka-MG, Thm 9] that

for such sheaves, if p > 2rank + 1 we always have G0 = SL or (in even
rank) Sp.

CCCCllllaaaassssssss ((((2222)))) Fourier sheaves which are lisse on ´m, with all ‘-breaks ±1.

Indeed for Fourier sheaves, the two conditions "lisse on ´m" and "all ‘-
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breaks ± 1" are interchanged by Fourier Transform. If Ï À Ì in this
class, then visibly we have

Swan0(Ï) + Swan‘(Ï) = Swan0(Ì) + Swan‘(Ì).

In fact, if we calculate dimÌ0 = -çc(!
1, Ï) by the Euler-Poincare

formula, we find
dimÏ0 + dimÌ0 = Swan0(Ï) + Swan‘(Ï)

= Swan0(Ì) + Swan‘(Ì).

The polynomials (cf. 7.5.2, 7.5.3, 7.5.4) describing the tame parts of the
local monodromies are interrelated by

P(Ì, ‘, äç, T) = P(Ï, 0, ç, T) for each nontrivial ç.

P(Ì, ‘, ú, T) = P(Ï, 0, ú, T)/T.

P(Ì, 0, äç, T) = P(Ï, ‘, ç, T) for each nontrivial ç.

P(Ì, 0, ú, T) = T≠P(Ï, ‘, ú, T).

(7.8.2.1) Within the class (2) of Fourier sheaves which are lisse on ´m
and have all ‘-breaks ± 1, there are various supplementary Fourier-
stable conditions which define Fourier-stable subclasses. Here are two
examples. The parameter k is a nonnegative integer.

(‡‡‡‡CCCCaaaarrrrdddd ==== kkkk)
Card{distinct ±0 ‘-breaks} + Card{distinct ±0 0-breaks} = k,

(‡‡‡‡SSSSwwwwaaaannnn ==== kkkk)
Swan0(Ï) + Swan‘(Ï) = k.

(7.8.2.2) Between these conditions there are the obvious implications
(‡Swan=k) à (‡Card ≤ k),
(‡Swan ± 0) À (‡Card ± 0).

For any k ≥ 1, and any tame character ç, the set of iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee
Fourier sheaves Ï of class(2) which satisfy (‡‡‡‡CCCCaaaarrrrdddd ==== kkkk) [resp. which
satisfy (‡‡‡‡SSSSwwwwaaaannnn ==== kkkk)] is stable by the operation

Ï ÿ j*(Òç‚j*Ï),

where j: ´m ¨ !1 denotes the inclusion. (If k=0, the only such
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irreducibles are the Òç with ç nontrivial, and the condition "ç

nontrivial" is clearly not stable under this operation.)
There is another stability property worth noting. For each integer

n ≥ 1, denote by [n]: x ÿ xn the n'th power map of !1 to itself.

LLLLeeeemmmmmmmmaaaa 7777....8888....2222....3333 (compare 3.7.6) Suppose that Ï is a Fourier sheaf on

!1 which is lisse on ´m, with k := Swan‘(Ï) + Swan0(Ï). Let n ≥ 1 be

an integer which is prime to p. Then
(a) If n > k, then [n]*Ï is Fourier, lisse on ´m, with all 0-breaks < 1 and

and all ‘-break < 1, and Swan‘([n]*Ï) + Swan0([n]*Ï) = k.

(b) If gcd(n, k) = 1 and Ï is irreducible Fourier, then [n]*Ï is

irreducible Fourier.

pppprrrrooooooooffff (a) The condition FFFFoooouuuurrrriiiieeeerrrr((((1111)))) is stable by f* for any finite map of

!1 to itself, as is the condition that H0(!1, Ï) = 0 = H2c(!
1, Ï). That

[n]*Ï is lisse on ´m, has all breaks ≤ k/n < 1, and has Swan‘([n]*Ï) +

Swan0([n]*Ï) = k, is obvious. For t ± 0, ([n]*Ï)‚Ò¥(tx) consequently

has all ‘-breaks =1, so has vanishing H0 and H2c. Therefore [n]*Ï is

Fourier.
(b) Suppose Ï irreducible Fourier. If n=1 or Ï = 0, there is nothing to
prove. If n > 1 and Ï ± 0, then [n]*Ï has generic rank ≥ 2, and is the

direct image of its lisse restriction to ´m. So to show that [n]*Ï is

irreducible Fourier, it suffices to show that [n]*Ï | ´m is irreducible. By

Frobenius reciprocity, this is the same as showing that Ï | ´m has

multiplicity one in [n]*[n]*Ï | ´m § ·ΩŸμμμμn(k)
[x ÿ Ωx]*(Ï | ´m). If this

were not the case, then there would exist Ω±1 in μμμμn(k), say of exact

order d > 1, d|n, and an isomorphism

Ï | ´m § [x ÿ Ωx]*(Ï | ´m).

Since Ï | ´m is irreducible, this isomorphism allows us to descend

Ï | ´m through the d-fold Kummer covering, whence k := Swan‘(Ï) +

Swan0(Ï) is divisible by d. But d|n, and gcd(n,k) =1. Therefore d=1. QED

CCCCllllaaaassssssss ((((3333)))) The subclass of (2) consisting of Fourier sheaves which are
lisse on ´m and which have all ‘-breaks < 1. Indeed for Fourier
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sheaves, the condition "all ‘-breaks ≤ 1" is stable by Fourier transform.
If ÏÀÌ in this class, then

Ï has ‘-break a/(a+b) > 0 with multiplicity a+b À
À Ì has 0-break a/b > 0 with multiplicity b.

On breaks themselves, the rule is
‘-break x > 0 for Ï À 0-break x/(1-x) > 0 for Ì.
0-break y > 0 for Ï À ‘-break y/(1+y) > 0 for Ï.

This rule is oooorrrrddddeeeerrrr----pppprrrreeeesssseeeerrrrvvvviiiinnnngggg., so we can read biggest 0-breaks in
terms of biggest ‘-breaks.

In addition to
dimÏ0 + dimÌ0 = Swan0(Ï) + Swan‘(Ï)

= Swan0(Ì) + Swan‘(Ì),

we have the additional symmetry
Swan‘(Ï) = Swan0(Ì), Swan‘(Ì) = Swan0(Ï).

(7.8.3.1) Within the class (3) of Fourier sheaves which are lisse on ´m
and have all ‘-breaks < 1, there are (in addition to (‡‡‡‡CCCCaaaarrrrdddd ==== kkkk) and
(‡‡‡‡SSSSwwwwaaaannnn ==== kkkk)) a few more supplementary Fourier-stable conditions
which define Fourier-stable subclasses. Again the parameter k is a
nonnegative integer.

(CCCCaaaarrrrdddd ==== kkkk)
Card{distinct ±0 ‘-breaks} = Card{distinct ±0 0-breaks} = k.

(EEEExxxxDDDDeeeennnnoooommmm): both the following conditions:
the highest ‘-break of Ï, iiiiffff nnnnoooonnnnzzzzeeeerrrroooo, has multiplicity its exact

denominator,
the highest 0-break of Ï, iiiiffff nnnnoooonnnnzzzzeeeerrrroooo, has multiplicity its exact

denominator.

(7.8.3.2) Between these we have the implications
(‡Swan=k) à (‡Card ≤ k),
(‡Swan ± 0) À (‡Card ± 0)
(‡Swan = 1) à (‡Card = 1) and (ExDenom).

(7.8.3.3) For any k ≥ 1, and any tame character ç, the set of
iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee Fourier sheaves Ï of class(3) which satisfy (‡‡‡‡CCCCaaaarrrrdddd ==== kkkk)
[resp. which satisfy (‡‡‡‡SSSSwwwwaaaannnn ==== kkkk)] is stable by the operation

Ï ÿ j*(Òç‚j*Ï),

where j: ´m ¨ !1 denotes the inclusion. The supplementary condition

(EEEExxxxDDDDeeeennnnoooommmm) is also stable by this operation.
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7777....9999 FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss ooooffff TTTTaaaammmmeeee PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn SSSShhhheeeeaaaavvvveeeessss
(7.9.1) We continue to work over an algebraically closed field k of

characteristic p > 0. We say that a constructible ä$…-sheaf Ï on !1 is a

ttttaaaammmmeeee ppppsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn sssshhhheeeeaaaaffff if it satisfies the following three
conditions:

(TTTTPPPPRRRR1111) Ï is everywhere tame, i.e., for every t Ÿ @1, Ï(t) is a tame
representation of I(t).
(TTTTPPPPRRRR2222) for some (or equivalently for every) nonempty open set

j: U ¨ !1 on which j*Ï is lisse, we have Ï § j*j
*Ï.

(TTTTPPPPRRRR3333) For every s in !1(k) at which Ï is not lisse, Ï(s)/Ïs is one-

dimensional (i.e., local monodromy at s is by tame pseudoreflections).

(7.9.2) We say that a tame pseudoreflection sheaf Ï is irreducible if
in addition it satisfies
(IIIIrrrrrrrrTTTTPPPPRRRR) for some (or equivalently for every) nonempty open set

j: U ¨ !1 on which j*Ï is lisse, j*Ï is irreducible (as rep'n of π1).

(7.9.3) Any nonconstant irreducible tame pseudoreflection sheaf is

an irreducible Fourier sheaf, and its set S of points of nonlissity in !1 is

a finite nonempty subset of !1(k).

TTTThhhheeeeoooorrrreeeemmmm 7777....9999....4444 Let Ï be a nonconstant irreducible tame

pseudoreflection sheaf on !1, with set S = {s1, ... , sr} of points of

nonlissity in !1(k) = k. Then
(1)Ì := NFT¥(Ï) is an irreducible Fourier sheaf which is lisse on ´m of

rank r := Card(S).
(2) The restriction of Ì(‘) to the wild inertia group P(‘) is isomorphic
to ·i=1,...,r Ò¥(siy)

.

(3) Ì(‘) is not Kummer induced.
(4) Ì is not Kummer induced.
(5) If p > 2r + 1, Ì is Lie-irreducible.

pppprrrrooooooooffff Since Ï is irreducible Fourier, so is Ì. Since Ï(‘) is tame, Ì is
lisse on ´m, and Ì(‘) § ·i=1,...,r FT¥loc(si, ‘)(Ï(si)/Ïsi

). By hypothesis

each Ï(si)/Ïsi
is of the form Òçi(x-si)

, so
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Ì(‘) § ·i=1,...,r Ò¥(siy)
‚Òäçi(y)

.

This proves (1) and (2). Assertion (3) trivially implies (4), and (1) and
(4) together imply (5). Assertion (3) holds because the distinct Ò¥(siy)

each occur with multiplicity one, thanks to the following lemma.

LLLLeeeemmmmmmmmaaaa 7777....9999....5555 Let M be an …-adic I(‘)-representation whose restriction
to P(‘) is a direct sum of r distinct characters Ò¥(siy)

with

multiplicities ni. If M is Kummer induced of degree m, then m divides

every ni. In particular, if gcd(all ni) = 1, M is not Kummer induced.

pppprrrrooooooooffff As I(‘)-representation, M is ·i=1,...,r Ò¥(siy)
‚(tame of dim. ni).

If M is [m]*Ó for some I(‘)-representation Ó, then (cf. the proof of

7.8.2.3) Ó is a direct factor of [m]*M, so of the form
Ó § ·i=1,...,r Ò¥(siy

m)‚(tame of dim. di ≤ ni),

whence [m]*Ó is ·i=1,...,r Ò¥(siy)
‚(tame of dim. mdi). QED

This lemma proves (3), and so concludes the proof of the theorem. QED

TTTThhhheeeeoooorrrreeeemmmm 7777....9999....6666 Let Ï be a nonconstant irreducible tame

pseudoreflection sheaf on !1, with set S = {s1, ... , sr} of points of

nonlissity in !1(k) = k. Supppose that
(1) among the numbers si Ÿ k, there are no relations of the form

si - sj = sk - sn
except for the trivial ones (i=j and k=n) or (i=k and j=n).
(2) p > 2r + 1.

Then G := Ggeom for Ì := NFT¥(Ï) has G
0,der = SL(r).

pppprrrrooooooooffff Since p > 2r + 1, we know that Ì is Lie-irreducible. We apply
Gabber's torus trick 1.0 to the diagonal subgroup which is the image of

P(‘). The hypothesis (1) of nonrelations then forces Lie(G0,der) to
contain the full maximal torus of SL(r). If r ≤ 2, Lie-irreducibilty forces

G0,der = SL(r). If r ≥ 3, apply 1.2 and then eliminate the other
possibilities SO or possibly Sp because their ranks are < r-1. QED

Here is a minor variant.
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TTTThhhheeeeoooorrrreeeemmmm 7777....9999....7777 Let Ï be a nonconstant irreducible tame

pseudoreflection sheaf on !1, with set S = {s1, ... , sr} of points of

nonlissity in !1(k) = k. Supppose that
(1) the numbers si are all nonzero, the set S is stable under s ÿ -s, and

there are no relations of the form
si - sj = sk - sn

except for the trivial ones (i=j and k=n) or (i=k and j=n) or (si = -sn
and - sj = sk).

(2) p > 2r + 1.

Then G := Ggeom for Ì := NFT¥(Ï) has G
0,der = SL(r) or Sp(r) or SO(r).

pppprrrrooooooooffff This time the hypothesis (1) of nonrelations and the torus trick

1.0 forces Lie(G0,der) to contain the full maximal torus of Sp(r), and we
apply 1.2. QED

7777....11110000 EEEExxxxaaaammmmpppplllleeeessss
We continue to work over an algebraically closed field k of

characteristic p > 0.
(7.10.1) (LLLLeeeeffffsssscccchhhheeeettttzzzz ppppeeeennnncccciiiillllssss) Start with a smooth connected projective

variety X fi @N over k of dimension n ≥ 2, and consider a Lefschetz
pencil of hyperplane sections X€Ht of X, with associated fibration

f: ëX ¨ @1 (i.e., f-1(t) = X€Ht). If p ± 2 or if n-1 is odd, the quotient

sheaf on @1

Evn-1 :=Rn-1f*ä$…/(the constant sheaf H
n-1(X, ä$…))

is, when restricted to any !1 fi @1, an irreducible tame
pseudoreflection sheaf (cf [De-WI]).

(7.10.2) (SSSSuuuuppppeeeerrrrmmmmoooorrrrsssseeee ffffuuuunnnnccccttttiiiioooonnnnssss) This example is a slight
generalization of a Lefschetz pencil of relative dimension n-1 = 0. Let C
be a complete smooth connected curve over k, f a nonconstant rational
function on C, D the divisor of poles of f. View f as a finite flat
morphism

f: C - D ¨ !1,
whose degree we denote deg(f). We suppose that the differential df is
not identically zero (i.e., f is not a p'th power), and denote by Z fi C - D

the scheme of zeroes of df on C - D. We put S := f(Z(k)) fi !1(k). Then f
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makes C - D - Z a finite etale connected covering of !1 - S.

Consider the sheaf f*ä$… on !1. The trace morphism (for the finite

flat morphism f) is a surjective map Tracef : f*ä$… ¨ ä$…, whose

restriction to the subsheaf ä$… of f*ä$… is multiplication by deg(f). Thus

Ï := Kernel of Tracef : f*ä$… ¨ ä$…
is a direct factor of f*ä$… of generic rank deg(f) - 1.

LLLLeeeemmmmmmmmaaaa 7777....11110000....2222....1111 If deg(f) < p, Ï is a Fourier sheaf.
pppprrrrooooooooffff Since Ï is a direct factor of a sheaf (namely f*ä$…) which is the

direct image of its restriction to !1 - S, Ï shares this property. Since
Ï(‘) is tame (because deg(f) < p), we have

H0(!1, Ï‚Ò¥(tx)) = 0 = H2c(!
1, Ï‚Ò¥(tx))

for t ± 0 by slopes. For t =0 this vanishing persists. Because C - D is a

smooth connected curve, H0(!1, f*ä$…) = H0(C - D, ä$…) = ä$…, and

H2c(!
1, f*ä$…) = H2c(C - D, ä$…) = ä$…(----1111), so the inclusion ä$… ¨ f*ä$…

induces an isomorphism on both H0 and H2c. QED

(7.10.2.2) We say that the function f on C - D is a supermorse function
if it satisfies the following three conditions:
(SM1) deg(f) < p.
(SM2) all zeroes in C - D of the differential form df are simple, i.e., the
scheme Z is finite etale over k.
(SM3) f separates the zeroes of df in C - D, i.e., Card(S) = Card(Z).

LLLLeeeemmmmmmmmaaaa 7777....11110000....2222....3333 If f is a supermorse function, then Ï is an irreducible
tame reflection sheaf.
pppprrrrooooooooffff Since deg(f) < p, f*ä$… and hence its direct factor Ï is everywhere

tame. By (SM2) and (SM3), f*ä$… is a pseudoreflection sheaf (indeed a

reflection sheaf). To see that Ï is irreducible, it suffices to show that on

the open set !1 - S where f*ä$… is lisse, Ggeom for f*ä$… is the full

symmetric group |d in its standard d-dimensional representation. For

then Ggeom for Ï will be |d in its augmentation representation, which

is irreducible.
The group Ggeom for f*ä$… is intrinsically a subgroup Æ of |d,

well-defined up to conjugacy. In terms of a chosen geometric point ≈ of

!1 - S, Æ is the image of π1(!
1 - S, ≈) acting on the finte set f-1(≈),
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corresponding to the fact f makes C - D - Z a finite etale connected

covering of !1 - S. Because C - D - Z is connected, the action of Æ is
transitive. Because this covering is everywhere tame, Æ is generated by
the conjugates of the images of the local inertia groups I(s) for each s in
S. By (SM2) and (SM3), each I(s) acts by a transposition. Thus Æ is a
transitive subgroup of |d generated by transpositions, hence Æ is |d
itself. QED

(7.10.3) We now consider in detail the special case of supermorse

functions f on !1, i.e., supermorse polynomials. We maintain the
notations

Ï := Kernel of Tracef : f*ä$… ¨ ä$…, Ì := NFT¥(Ï),

Z := the set of critical points of f in !1(k),

S := f(Z) = the set of critical values of f in !1(k).

LLLLeeeemmmmmmmmaaaa 7777....11110000....4444 Suppose that f is a supermorse polynomial in k[x] of
degree n.
(1) Ì(0) § · all nontrivial ç with çn = ú Òç.

(2) if ‡z in Z f(z) = 0, then detÌ|´m § (Òç2
)º(n-1), where ç2 denotes

the tame character of order two.
(3) If n is odd and the function f is odd, then Ì|´m carries a symplectic

autoduality.

pppprrrrooooooooffff Assertion (1) is obvious from 7.4.3.1 and 7.4.4, since

Ì0 = H1c(!
1, Ï) fi H1c(!

1, f*ä$…) = H1c(!
1, ä$…) = 0,

and
Ï(‘) = (f*ä$…/ä$…)(‘) § · all nontrivial ç with çn = 1 Òç.

If ‡z in Z f(z) = 0, then by 7.9.4 (2) detÌ is tame at ‘, and hence detÌ

is everywhere tame by (1). To evaluate it, we may proceed in two

different fashions. It suffices to show that (detÌ)‚ (Òç2
)º(n-1) is

unramified eeeeiiiitttthhhheeeerrrr at ‘ or at zero. At zero, this is obvious from (1); if n
is even, the nontrivial characters killed by n occur in inverse pairs
except for ç2, while for n odd they all occur in inverse pairs. At ‘, we

can use the fact that Ï is a reflection sheaf to write
Ì(‘) § ·z in Z Òç2(x)

‚Ò¥(f(z)x),
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which, as ‡z in Z f(z) = 0, gives detÌ(‘) § (Òç2
)º(n-1).

If n is odd and the function f is odd, then Ì is self-dual. In view of
the behaviour of duality under Fourier Transform (cf 7.3.8), amounts to
showing that

D(Ï) § [-1]*Ï.
Since f*ä$… § Ï · ä$… with Ï irreducible Fourier, it suffices for this to

show that D(f*ä$…) § [-1]*(f*ä$…). Now for any f, f*ä$… is self-dual, so it

suffices to note that since f is odd,

[-1]*(f*ä$…) = [-1]*(f*ä$…) = f*([-1]*ä$…) § f*ä$….

Now let us make explicit exactly what this duality is fibre by fibre. For

t ± 0 in k, we have H1c(!
1, Ò¥(tx)) = 0, so

Ìt =H
1
c(!

1, Ï‚Ò¥(tx)) = H1c(!
1, (f*ä$…)‚Ò¥(tx)) = H1c(!

1, Ò¥(tf(x))).

The intrinsic dual to Ìt is (up to a Tate twist)

[-1]*

H1c(!
1, Ò¥(-tf(x))) = H1c(!

1, Ò¥(tf(-x))) § H1c(!
1, Ò¥(tf(x))).

To follow the signs, it is easiest if we view both H1c(!
1, Ò¥(_tf(x))) as

direct factors of H1c(W, ä$…), W the complete nonsingular model of the

Artin-Schreier curve of equation zq - z = tf(x), where q is the
cardinality of a finite subfield of k over which ¥ is "defined". Because
f(x) is odd, we can, define an involution A of W by A(z,x) := (-z, -x). The

autoduality of Ìt occurs inside the autoduality of H1c(W, ä$…) induced

by the pairing

(å, ∫) := å\A*(∫),
where å\∫ is the cup-product pairing. Since cup-product is alternating,
and A is an involution, we find

(∫,å) := ∫\A*(å) = A*( ∫\A*(å)) = A*(∫)\å = -å\A*(∫) = -(å,∫).
QED

TTTThhhheeeeoooorrrreeeemmmm 7777....11110000....5555 Let n be an integer, p > n ≥ 3. Then for any a ± 0 in

k, the polynomial f(x) := xn - nax is supermorse. Put
Ï := Kernel of Tracef : f*ä$… ¨ ä$…, Ì := NFT¥(Ï).

If p > 2n-1 and if the condition *(p, n-1) holds (cf. 7.1), then
(1) If n is even, Ggeom for Ì is the group _SL(n-1),

(2) If n is odd, Ggeom for Ì is Sp(n-1).
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pppprrrrooooooooffff Since a ± 0 and k is algebraically closed, a = ån-1 for some
å ± 0. Then Z is åμμμμn-1, and S = f(Z) is (1-n)aåμμμμn-1. Thus f is

supermorse. Since n ≥ 3, ‡z in Z f(z) = 0.

If If p > 2n-1 = 2(n-1)+1 and if the condition *(p, n-1) holds, then
7.9.6 and 7.9.7 apply.

Consider first the case when n is even. Then n-1 is odd, and by
*(p, n-1) we are in the situation of 7.9.6. So Ggeom contains SL(n-1). By

7.10.4, detÌ is of order two.
If n is odd, then 7777....44440000....4444 shows that G fi Sp(n-1), so by the paucity

of choice in 7.9.7, we must have G = Sp(n-1). QED

TTTThhhheeeeoooorrrreeeemmmm 7777....11110000....6666 Let n ≥ 5 be an integer. Let g(x) Ÿ #[x] be a monic
polynomial of degree n, $(g)/$ the splitting field of g. Suppose that
Gal($(g)/$) is |n. Let å1, ... , ån be the distinct roots of g, and let

f(x) Ÿ $[x] be the unique primitive of g(x) such that ‡i f(åi) = 0. Then

(1) (n+1)f(x) is monic of degree n+1, with coefficients in #[1/(n+1)~].
(2) there exists an explicitly computable nonzero element
N(f) Ÿ #[1/(n+1)~] such that for any prime p > 2n+1 which does not
divide N(f), the polynomial fp(x) := f(x) mod p in äÉp[x] is supermorse,

and, putting
Ïp := Kernel of Tracefp

: (fp)*ä$… ¨ ä$…, Ìp := NFT¥(Ïp),

Ggeom for Ìp is

= SL(n) if n even

0 _SL(n) if n odd.

pppprrrrooooooooffff Let F(x) := —
0
xg(t)dt. Then (n+1)F is monic with coefficients in

#[1/(n+1)~]. By galois theory and the monicity of g, ß := ‡i F(åi) lies in

#[1/(n+1)~]. So f(x) = F(x) - (1/n)ß, and (1) is obvious.
We next claim that f separates the åi. Indeed, if not then after

renumbering the å's we have f(å1) = f(å2). Applying elements of the

galois group |n, we deduce that f(å1) = f(åi) for all i=1, ... , n. Since

‡f(åi) = 0, we infer that f(åi) = 0 for all i, whence f is divisible by g,

say (n+1)f(x) = (x-a)g(x). Differentiating, we find
(n+1)g = g + (x-a)g',
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whence ng(x) is divisible by g'(x). But g(x) has n distinct zeroes, so this
is impossible.

Once f separates the zeroes of g(x), then for any nonempty subset
S of {1, 2, ... , n}, the subfield $(all f(åi), i Ÿ S) of $(all åi, i Ÿ S) is in

fact equal to it:
$(all f(åi), i Ÿ S) = $(all åi, i Ÿ S) inside $(g).

For if † is an element of Gal($(g)/$) which fixes f(åi), then † fixes åi,

simply because †(f(åi)) = f(†(åi)), f having coefficients in $, and, as f

separates the å's, from f(åi) = f(†(åi)) we may infer åi = †(åi).

Now suppose that for four indices i, j, k, m in {1, 2, ... , n} we have
a relation

f(åi) - f(åj) = f(åk) - f(åm)

in $(g), but i±j, i±k, k±m, and j±m. Then either
i=m: 2f(åi) = f(åj) + f(åk), whence åi Ÿ $(åj, åk)

or i±m: f(åi) = f(åk) - f(åm) + f(åj), whence åi Ÿ $(åj, åk, åm).

Applying elements of Gal($(g)/$) = |n, we conclude that all the åi lie

in $(å1, å2, å3). Since n ≥ 5 and Gal($(g)/$) = |n, this is nonsense.

Therefore if we define N(f) to be the product
N(f) := °i±j, i±k, k±m, j±m ((f(åi) - f(åj)) - (f(åk) - f(åm))),

we see that N(f) is a nnnnoooonnnnzzzzeeeerrrroooo element of #[1/(n+1)~].
Now let A denote the integral closure of #[1/N(f)(n+1)~] in $(g).

Then Spec(A) repesents the finite etale |n-torsor over #[1/N(f)(n+1)~] of

all n-tuples of everywhere distinct critical points of f, with universal
n-tuple (å1, ... , ån). Spec(A) also represents the the finite etale |n-

torsor over #[1/N(f)(n+1)~] of all n-tuples of everywhere distinct critical
values of f, with universal n-tuple (f(å1), ... , f(ån)). By construction,

for each quadruple of indices (i, j, k, m) with i±j, i±k, k±m, and j±m,

the element (f(åi) - f(åj)) - (f(åk) - f(åm)) of A lies in A≠.

It is clear that for any prime p > n+1 which does not divide N(f),
fp is supermorse and 7.9.6 applies to its Ïp. Therefore if in addition

p > 2n+1, then Ggeom for Ìp contains SL(n). By 7.10.4 (2), we get

det(Ìp) § (Òç2
)ºn. QED

7777....11111111 SSSSaaaattttoooo----TTTTaaaatttteeee LLLLaaaawwwwssss ffffoooorrrr OOOOnnnneeee----VVVVaaaarrrriiiiaaaabbbblllleeee EEEExxxxppppoooonnnneeeennnnttttiiiiaaaallll SSSSuuuummmmssss
In this chapter, most of the applications we have given of the

main …-adic theorem 7.2.7 have concerned the Fourier Transforms of
sheaves which are essentially of rank one. This means that, over ffffiiiinnnniiiitttteeee
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fields k, we are talking about one-variable exponential sums. Let us
make this explicit. Fix a nontrivial additive character ¥ of the finite
field k. For E/k a finite extension, we denote by ¥E the nontrivial

additive character of E given by x ÿ ¥(TraceE/k(x)). If we are given a

multiplicative character ç of k≠, we denote by çE the multiplicative

character of E≠ given by x ÿ ç(NormE/k(x)).

In 7.6.3.1, we are concerned with the Fourier Transform of a
Fourier sheaf Ï of generic rank one, whose ‘-break is ≤ 1. The
archtypical example of this is the following. One takes a non-polynomial

rational function f(x) on @1 which has a pole of order ≤ 1 at ‘, say
f(x) = -sx + holomorphic at ‘,

all of whose poles have order prime to p. Let S fi !1 denote the divisor

of finite poles of f; viewing f as a morphism from !1 - S to !1, it

makes sense to speak of Ò¥(f) on !1 - S. The extension by zero of Ò¥(f)

to all of !1 is then a Fourier sheaf Ï of generic rank one. For this Ï,
Ì := NFT¥(Ï) has trace function

t Ÿ E ÿ -‡x in E - S(E) ¥E(f(x) + tx).

We can also add a multiplicative character to the story. Let ç be a

nontrivial multiplicative character of k≠, of order denoted order(ç),

and g(x) a nonzero rational function on @1 such that at any zero or

pole of g(x) in !1 - S, the order of zero or pole of g there is not divisible

by order(ç). Let T denote the scheme of noninvertibility of g in !1 - S.

We may view g as a morphism from !1 - S - T to ´m, and thus we

may speak of the sheaf Òç(g) on !1 -S - T, and of the tensor product

Ò¥(f)‚Òç(g) on !1 - S - T. The extension by zero of Ò¥(f)‚Òç(g) to all

of !1 is then a Fourier sheaf Ï of generic rank one. For this Ï,
Ì := NFT¥(Ï) has trace function

t Ÿ E ÿ -‡x in E - S(E) -T(E) ¥E(f(x) + tx)çE(g(x)).

Theorems 7.6.4.1 and 7.7.6, and the results of the previous section
on supermorse functions are all concerned with the following sort of
situation: a complete smooth geometrically connected curve C over k, a
rational function f on C with polar divisor D, and an Ò on C - D which
is generically of rank one and is the direct image of its restriction to a
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nonempty open set where it is lisse. We are then concerned with the

Fourier Transform either of Ï := f*Ò on !1 or, when Ò is the constant

sheaf, with Ï := Kernel of Tracef : f*ä$… ¨ ä$….

When Ò is the constant sheaf on C-D, then Ì has trace function

t Ÿ E≠ ÿ -‡x in C(E) - D(E) ¥E(tf(x))

0 Ÿ E ÿ Card(E) - Card(C(E) - D(E)).

In 7.7.6, Ò is nonconstant, D is a single rational point ‘ of C, the
degree d of f is relatively prime to the ‘-break n of Ò, and both n and
d are prime to p. The archtypical example of such an Ò on C- {‘} is
obtained from a rational function h on C with a pole of order n at ‘,
and all poles of order prime to p. If we denote by C - S the open set
where h is holomorphic, then the extension by zero from C - S of Ò¥(h)
is an Ò. For this Ò, and Ï := f*Ò, Ì := NFT¥(Ï) has trace function

t Ÿ E ÿ -‡x in C(E) -S(E) ¥E(tf(x) + h(x)).

Similarly, we can insert a multiplicative character. Let ç be a

nontrivial multiplicative character of k≠, of order denoted order(ç),
and g(x) a nonzero rational function on C such that at any zero or pole
of g(x) in C - S, the order of zero or pole of g there is not divisible by
order(ç). Let T denote the scheme of noninvertibility of g in C - S. For
Ò the extension by zero of Ò¥(h)‚Òç(g) from C - S - T to C - {‘}, and

Ï :=f*Ò, Ì := NFT¥(Ï) has trace function

t Ÿ E ÿ -‡x in C(E) -S(E) - T(E) ¥E(tf(x) + h(x))çE(g(x)).

In all of these examples, the sheaf Ì in question is pure of weight
one. For any pure sheaf, we know from Deligne's fundamental results in
WWWWeeeeiiiillll IIIIIIII that Ggeom is semisimple. So we have determined, in these

examples, (Ggeom)0,der = (Ggeom)0 up to a few possibilities. To the

extent that one determines Ggeom pppprrrreeeecccciiiisssseeeellllyyyy (not just up to a few

possibilities for its identity component) for a particular class of
exponential sums, and works out exactly what if any twist will make
all the Frobenii also lie in Ggeom, one has, thanks to WWWWeeeeiiiillll IIIIIIII, proven an

explicit equicharacteristic "Sato-Tate Law" for the distribution of the
generalized "angles" of the exponential sums in question. Let us recall
the precise statement (cf. [De-WII, 3.5]).

TTTThhhheeeeoooorrrreeeemmmm 7777....11111111....1111 (Deligne) Let C be a smooth geometrically connected
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curve over a finite field k of characteristic p, … ± p, Ï a lisse ä$… sheaf

on C which is pure of weight zero, ® the corresponding representation of
π1(C, ≈), and Ggeom := the Zariski closure of ®(π1(Cºäk, ≈)) its geometric

monodromy group. Suppose that for every finite extension E/k and
every t Ÿ C(E), each Frobenius FrobE,t for Ï has ®(FrobE,t) Ÿ Ggeom. Fix

an embedding of ä$… into ^, and a maximal compact subgroup K of the

Lie group Ggeom(^). The conjugacy class of the semisimple part of each

®(FrobE,t) meets K in a single conjugacy class, denoted ø(E, t). The

conjugacy classes ø(E, t) are equidistributed in the space K† of
conjugacy classes of K with respect to normalized Haar measure, in
any of the three senses of of equidistrbiution of ([Ka-GKM, 3.5]).

Taking the direct image by the trace, we get the equidistribution
of the traces.

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....11111111....2222 Hypotheses and notations as above, the traces
Trace(®(FrobE,t)) := Trace(FrobE,t | Ìät)

are equidistributed in ^ with respect to the the direct image of
normalized Haar measure on K by the trace map Trace: K ¨ ^.

7777....11112222 SSSSppppeeeecccciiiiaaaallll LLLLiiiinnnneeeeaaaarrrr EEEExxxxaaaammmmpppplllleeeessss

In this section, we give some examples where the Sato-Tate law is
that given by a group containing the special linear group. Suppose we
have a lisse pure sheaf Ì on C/k of rank N whose Ggeom contains SL(N).

If t Ÿ C(k) is any rational point, and if we denote by å any N'th root of

1/det(Frobk,t | Ìät), then the arithmetically twisted sheaf ådeg‚Ì has

all its Frobenii in Ggeom, and we may apply Deligne's result to ådeg‚Ì

and Ggeom.

SSSSLLLL----EEEExxxxaaaammmmpppplllleeee((((1111)))) Let C be a complete smooth geometrically connected
curve over k, ‘ a rational point on C. Take a rational function h(x) on
C with a pole of order n ≥ 1 at ‘ with n prime to p, and all other poles
also of order prime to p. Take a second rational function g(x) on C
which is nonzero. Take a rational function f(x) on C which is
holomorphic on C - {‘} and which has a pole at ‘ of of order d prime
to p with d ± n, gcd(d, n)=1. Let j : C - {‘} - S ¨ C - {‘} be the
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inclusion of the open set of C - {‘} where h is holomorphic, and
k: C - {‘} - S - T ¨ C - {‘} - S

the inclusion of the open set of C - {‘} - S where g is invertible. Let ç

be a nontrivial multiplicative character of k≠, of order denoted
order(ç), such that at any zero or pole of g(x) in T, the order of zero or
pole of g there is not divisible by order(ç). Take Ò :=

j*(Ò¥(h)‚k*Òç(g)) on C - {‘}, Ï := f*Ò on !1, and Ì := NFT¥(Ï). Then

Ì is lisse on ´m (indeed lisse on !1 if d < n), and its rank N is

N= max(d,n) - 1 + 2genus(C) + Card(S(äk)) + Card(T(äk)) +
+ ‡geom poles of h in C - {‘} (order of pole of h).

The trace function of Ì is
t Ÿ E ÿ -‡x in C(E) -S(E)-T(E) ¥E(tf(x) + h(x))çE(g(x)).

IIIIffff nnnn----dddd iiiissss oooodddddddd, p does not divide 2nN1(|n-d|)N2(|n-d|) and p > 2N + 1,

then Ggeom for Ì contains SL(N), by 7.7.6.

SSSSLLLL----EEEExxxxaaaammmmpppplllleeee((((2222)))) Let h(x) be a nonconstant rational function on @1

which is holomorphic at ‘, and has all its poles of order prime to p.

Take a nonzero rational function g(x). Let j : !1 - S ¨ !1 be the

inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

nontrivial multiplicative character of k≠, of order denoted order(ç),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(ç). Take Ï :=j*(Ò¥(h)‚k*Òç(g)), and

Ì := NFT¥(Ï). Then Ì is lisse on ´m of rank N,

N =Card(S(äk)) + Card(T(äk)) + ‡ geom. poles of h in !1 (order of pole of h).

Denote by r := ord‘(g). IIIIffff ççççrrrr hhhhaaaassss oooorrrrddddeeeerrrr ≥≥≥≥ 3333, and if p > 2N + 1, then

Ggeom for Ì contains SL(N). [Indeed, I(0) acts on Ì(0) by

pseudoreflections of determinant Òäçr(x), so apply 7.6.3.1.]

SSSSLLLL----EEEExxxxaaaammmmpppplllleeee((((3333)))) Let h(x) be a nonconstant rational function on @1

which is holomorphic at ‘, and has all its poles of order prime to p. Let

j: !1 - S ¨ !1 be the inclusion of the open set of !1 where h is
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holomorphic, Ï := j*Ò¥(h), and Ì := NFT¥(Ï). Then Ì is lisse on ´m of

rank
N := ‡ geom. poles å of h in !1 (1 + nå),

where for each å Ÿ S(äk), nå denotes the order of pole of h at å.

Its trace function is
t Ÿ E ÿ -‡x in E -S(E) ¥E(tx + h(x)).

The local monodromy of Ì at zero is a unipotent pseudoreflection, and
as I(‘)-representation Ì is

·geom. poles å of h in !1 Ò¥(åy)‚(rank 1 + nå, slope= nå/(1+nå)).

Therefore detÌ, being lisse on ´m ,trivial at zero and of break ≤ 1 at ‘,

must be geometrically isomorphic to Ò¥(Ay) for some A Ÿ k. Looking at

the above expression for Ì(‘) we see that
detÌ | ´m‚äk § Ò¥(Ay) with

A = ‡ geom. poles å of h in !1 (1 + nå)å.

Suppose now that the rank N of Ì is prime to p. Then translating
h(x) by A/N, i.e., replacing h(x) by h(x + (A/N)), we may and will
suppose that detÌ is geometrically trivial.

If in addition either p > 2N + 1, or N=2, then Ggeom for Ì | ´m is

either Sp(N) or SL(N). To see this, we argue as follows. Since Ì | ´m is

pure, Ggeom is semisimple. Since the local monodromy at zero is a

unipotent pseudoreflection, we get the asserted possibilities for

(Ggeom)0. [If p > 2N + 1, by the paucity of choice in 7.6.3.1; if N=2 by

the fact that Ggeom is a semisimple (Ì being pure) subgroup of SL(2), so

is either SL(2) or is finite: as the local monodromy at zero of Ì is a
unipotent pseudoreflection, Ggeom is not finite.] Since Ì has

geometrically trivial determinant, if (Ggeom)0 is SL(N) we are done. If

(Ggeom)0 is Sp(N), then Ggeom fi μμμμNSp(N), and the "square of the μμμμN
factor" is a character ç of Ggeom of order dividing N. But as Ì is lisse

on ´m and unipotent at zero, the character ç must be lisse on !1; as

its order is prime to p, it must be trivial.
On the other hand, Ì is geometrically self dual if and only if the

dual Ò¥(-h(x))of Ò¥(h(x)) is geometrically isomorphic to [-1]*Ò¥(h(x)),

i.e., if and only if Ò¥(h(x)+h(-x)) is geometrically trivial. This function

h(x) + h(-x) has poles of order ≤ supå(nå). So if p > 2N + 1, Ì is

geometrically self dual if and only if h(x) + h(-x) is constant. So all in all
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we get a complete determination of Ggeom for Ì, provided only that p >

2N + 1.

TTTThhhheeeeoooorrrreeeemmmm 7777....11112222....3333....1111 Let h(x) be a nonconstant rational function on @1

which is holomorphic at ‘ and has all poles of order prime to p,

j: !1 - S ¨ !1

the inclusion of the open set of !1 where h is holomorphic,
Ï := j*Ò¥(h), and Ì := NFT¥(Ï). For each å Ÿ S(äk), let nå denote the

order of pole of h at å,
N := ‡ geom. poles å of h in !1 (1 + nå) Ÿ #

A := ‡ geom. poles å of h in !1 (1 + nå)å Ÿ k.

Then Ì is lisse of rank N on ´m.

Suppose that p > 2N+1, and define
H(x) := h(x + (A/N)).

Then Ggeom for Ì is

SL(N) if A = 0 and H(x) + H(-x) is nonconstant,
μμμμpSL(N) if A ± 0 and H(x) + H(-x) is nonconstant,

Sp(N) if A = 0 and H(x) + H(-x) is constant,
μμμμpSp(N) if A ± 0 and H(x) + H(-x) is constant.

SSSSLLLL----EEEExxxxaaaammmmpppplllleeee((((4444)))) Let h(x) be a nonconstant rational function on @1

which has a pole of order n ≥ 2 at ‘, with n prime to p, and all other
poles also of order prime to p. Take a nonzero rational function g(x). Let

j : !1 - S ¨ !1 be the inclusion of the open set of !1 where h is
holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

nontrivial multiplicative character of k≠, of order denoted order(ç),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(ç). Take Ï := j*(Ò¥(h)‚k*Òç(g)), and

Ì := NFT¥(Ï). Then Ì is lisse on !1 of rank N,

N = n - 1 + Card(S(äk)) + Card(T(äk)) +
+ ‡ geom. poles of h in !1 (order of pole of h).

We have already seen (SL-Example(1), d=1, C - {‘} = !1) that iiiiffff nnnn----1111
iiiissss oooodddddddd, p does not divide 2nN1(n-1)N2(n-1) and p > 2N + 1, then Ggeom
for Ì contains SL(N).
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In the special case when n=2, stationary phase shows that
Ì(‘) = (break 2, rank1)·(breaks ≤ 1),

so the upper numbering subgroup I(‘)(2) acts as wild pseudoreflections
on Ì(‘). So if p > 2N + 1, we have Ggeom = μμμμpSL(N).

Suppose henceforth that n ≥ 3, p > 2N + 1, either n-1 ± 6 or
N îŸ {7, 8, 9}, and also that p does not divide 2nN1(n-1)N2(n-1). Because

n ≥ 3, the largest ‘-break of Ì is n/(n-1) ≤ 3/2 < 2, and consequently

detÌ has ‘-break ≤ 1. Since Ì is lisse on !1, there is a unique A in k
such that detÌ is geometrically isomorphic to Ò¥(Ay). Here is the

"formula" for A:
LLLLeeeemmmmmmmmaaaa 7777....11112222....4444....1111 Write h(x) = P(x) +(holomorphic at ‘), with P a

polynomial of degree n, P(x) = ‡i=1, ... ,n aix
i. Define

A‘ := -(n-1)an-1/nan Ÿ k,

Afinite := ‡geom. points å of S (1 + nå)å + ‡geom. points ∫ of T ∫ Ÿ k.

Then
A = A‘ + Afinite

pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa Since we know a priori that detÌ is Ò¥(Ay), A is

characterized by the property that Ò¥(-Ay)‚det(Ì(‘)) is tame at ‘.

By stationary phase, Ì as I(‘)-representation is the direct sum of
three sorts of terms

FT¥loc(‘,‘)(Ï(‘)) ·

·geom. points å of S Ò¥(åy)‚(rank 1 + nå, slope= nå/(1+nå))

·geom points ∫ of T Ò¥(∫y)‚(rank 1, slope= 0).

Taking determinants, we find
detÌ(‘) § det(FT¥loc(‘,‘)(Ï(‘)))‚Ò¥(Afinitey)

‚(tame).

So we are reduced to computing det(FT¥loc(‘,‘)(Ï(‘))). Now Ï(‘) as

I(‘)-representation is Ò¥(P(x))‚(Òç(x))
-ord‘(g). So is enough to prove

the lemma for all Ï's either of the form Ò¥(P(x)) (if ç
ord‘(g) is trivial;

strictly speaking we should write this Ï as Ò¥(P(x))‚Òç(g) with g the

constant function 1) or of the form Ò¥(P(x))‚Òç(x) with nontrivial ç

(namely ç-ord‘(g)).
For Ï := Ò¥(P(x)), the determinant formula is proven in [Ka-MG,

Thm 17 (3)] under the sole hypothesis that P is a polynomial of degree
n ≥ 3 prime to p. In the case when Ï is Ò¥(P(x))‚Òç(x) with
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nontrivial ç, a similar argument works also. Here is a sketch.
We know there exists a constant A Ÿ k such that the lisse sheaf

Ì := NFT¥(Ò¥(P(x))‚Òç(x)) on !1/k has detÌ § Ò¥(Ay)‚ådegree. So A

is determined by knowing det(Frobk,y | Ì) for every rational point

y Ÿ k, since from the dependence rule
det(Frobk,y | Ì) = ¥(Ay)det(Frobk,0 | Ì)

we may calculate the additive character y ÿ ¥(Ay) of k, and this
determines A itself. Now for y Ÿ k,

det(Frobk,y | Ì) := det(Frobk | H1c(´m‚äk, Ò¥(P(x)+yx)‚Òç(x)))

.= det(Frobk | H1c(!
1‚äk, Ò¥(P(x)+yx)‚j~Òç(x))),

where j~Òç(x) is the extension by zero of Òç(x) from ´m to !1.

The LLLL----ffffuuuunnnnccccttttiiiioooonnnn L(T) of !1/k with coefficients in Ò¥(P(x)+yx)‚j~Òç(x)

is a polynomial of degree n, namely

L(T) = det(1 - TFrobk | H1c(!
1‚äk, Ò¥(P(x)+yx)‚j~Òç(x))).

Therefore (-1)n≠det(Frobk,y | Ì) is the coefficient of Tn in L(T). Let us

write explicitly the additive expression of L(T) as a sum over effective

divisors in !1, i.e., over monic polynomials fd(x) : = ‡(-1)d-iSd-i(f)x
i in

k[x], with Newton symmetric functions Nj(f) of their roots, shows that

for each integer d ≥ 1, the coefficient of Td in L(T) is the sum
‡
monic f of degree d

ç(Sd(f))¥(‡i=1,...,n aiNi(f) + yS1(f)),

where ç(Sd(f)) :=0 if Sd(f) = 0.

Take d=n, and write the Newton symmetric functions Ni of n

roots as isobaric polynomials in the elementary symmetric functions Sj
of n roots. The top two are, for n ≥ 3,

Nn = (-1)n+1nSn + (-1)nnS1Sn-1 + Q

Nn-1 = (-1)n(n-1)Sn-1 + + R,

where Q and R ddddoooo nnnnooootttt involve Sn-1 or Sn.

So the coefficient of Tn in L(T) is
‡S1, ... , Snç(Sn)¥(‡i=1,...,n-2 aiNi + yS1 +an-1Nn-1 + anNn),

and substituting for Nn and Nn-1 this becomes

‡Snç(Sn)¥(an(-1)
n+1nSn)≠
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≠‡S1, ... , Sn-2 ¥(‡i=1,...,n-2 aiNi + yS1 + an-1R + anQ)≠

≠‡Sn-1 ¥(an-1(-1)
n(n-1)Sn-1 + an(-1)

nnS1Sn-1).

The final term vanishes unless (n-1)an-1 + nanS1 vanishes, in which

case it is q:= Card(k). So only terms with S1 := -(n-1)an-1/nan := A‘
contribute to this expression, which is consequently

¥(A‘y)≠q≠[‡Snç(Sn)¥(an(-1)
n+1nSn)]≠

≠[‡S2, ... , Sn-2 ¥(‡i=1,...,n-2 aiNi + an-1R + anQ) |S1:= A‘
].

The important thing is that it is of the form
¥(A‘y)≠(a function of ai's alone). QED for 7.12.4.1

Replacing (h(x), g(x)) by
(H(x), G(x)) := (h(x + (A/N)), g(x + (A/N))),

we reduce to the case where detÌ is geometrically trivial. By [Ka-MG,
Prop. 5] and 7.7.6, Ggeom is then either SL(N) or SO(N) or, if N is even,

Sp(N). But Ì is geometrically self dual if and only D(Ï) § [-1]*Ï
geometrically, i.e., if and only if there exists a geometric isomorphism
Ò¥(-H(x))‚Òäç(G(x)) § Ò¥(H(-x))‚Òç(G(-x)), i.e., if and only if both of

the following conditions are satisfied:
H(x) + H(-x) is constant, say å,
G(x)G(-x) is an order(ç)'th power in äk(x).

So if either of these conditions fails to hold, then Ggeom is SL(N).

Let us analyse the sign of the autoduality if both of these
conditions are satisfied. Replacing H(x) by H(x) - (å/2) does not change
Ì geometrically, and reduces us to the case when H is oooodddddddd. Let
r:= order(ç), and pick a rational function L(x) with

(L(x))r = G(x)G(-x).

Since G(x)G(-x) is even, there is a unique ssssiiiiggggnnnn œ = _1, œr = 1, with
L(-x) = œL(x).

Denote by çççç : μμμμr(k) ¶ μμμμr(ä$…) the unique faithful character of μμμμr(k) for

which the character ç of k≠ is

ç(å) := çççç(åd), d:= (Card(k) - 1)/r.
The autoduality of Ì is symplectic if and only if œ = 1. To see this,

view Ìät as the (¥, çççç)-eigenspace for the action of (k,+)≠μμμμr on H1c of

the complete nonsingular model X of the curve in (x, z, w)-space of
equation (q := Card(k))
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zq - z = H(x) + tx, wr = G(x),
where (a,Ω) acts by (x, z, w) ÿ (x, z+a, Ωw). Denote by A the
automorphism of this curve defined by A(x, z, w) := (-x, -z, L(x)/w).

Notice that A2 is (x, z, w) ÿ (x, z, œw). The autoduality of Ìät is given in

terms of the cup-product å\∫ on H1c(Xºäk, ä$…) as the pairing

(å, ∫) := å\A*(∫)
on the (¥, çççç)-eigenspace. If œ = 1, then A is an involution, and this

pairing is alternating. If œ = -1, then r must be even, (A2)*(å) = -å for
å in the (¥, çççç)-eigenspace, and the pairing is symmetric.

So all in all we get a fairly complete determination of Ggeom.

TTTThhhheeeeoooorrrreeeemmmm 7777....11112222....4444....2222 Let h(x) be a nonconstant rational function on @1

which has a pole of order n ≥ 2 at ‘, with n prime to p, and all other
poles also of order prime to p. Let g(x) be a nonzero rational function,

j : !1 - S ¨ !1

the inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

nontrivial multiplicative character of k≠, of order denoted order(ç),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(ç). Take Ï := j*(Ò¥(h)‚k*Òç(g)), and

Ì := NFT¥(Ï). Then Ì is lisse on !1 of rank N,

N = n - 1 + Card(S(äk)) + Card(T(äk)) +
+ ‡ geom. poles of h in !1 (order of pole of h).

(1) If n=2 and p > 2N + 1, then Ggeom for Ì is μμμμpSL(N).

(2)Suppose n ≥ 3, p > 2N + 1, and p does not divide 2nN1(n-1)N2(n-1).

Write h(x) = P(x) +(holomorphic at ‘), with P a polynomial of degree n,

P(x) = ‡i=1, ... ,n aix
i. Define A Ÿ k by

A := -(n-1)an-1/nan + ‡geom. pts å of S (1 + nå)å + ‡geom. pts ∫ of T ∫.

Define rational functions H(x), G(x) by
(H(x), G(x)) := (h(x + (A/N)), g(x + (A/N))).

Then we have
(2a) If n-1 is odd, Ggeom for Ì is

SL(N) if A = 0,
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μμμμpSL(N) if A ± 0.

(2b)If either n-1 ± 6 or N îŸ {7, 8, 9}, then Ggeom for Ì is

SL(N) if A = 0,
μμμμpSL(N) if A ± 0,

unles both of the following conditions are satisfied:
H(x) + H(-x) is constant, say å,
G(x)G(-x) is an order(ç)'th power in äk(x).

(2c) If either n-1 ± 6 or N îŸ {7, 8, 9}, and if both of the above

conditions are satisfied, let r:= order(ç), and let œ = _1 be the sign in k≠

obtained by picking a rational function L(x) with

(L(x))r = G(x)G(-x), and writing L(-x) = œL(x).
Then Ggeom for Ì is

Sp(N) if A = 0 and œ = 1,
μμμμpSp(N) if A ± 0 and œ = 1,

SO(N) if A = 0 and œ = -1,

μμμμpSO(N) if A ± 0 and œ = -1.

7777....11113333 SSSSyyyymmmmpppplllleeeeccccttttiiiicccc EEEExxxxaaaammmmpppplllleeeessss
We will now give examples where the Sato-Tate law is that given

by the symplectic group. Let us first explain why this case is
particularly easy to handle. Choose a square root of p in ä$…, so for each

n Ÿ # we can speak of the Tate twist sheaves ä$…(nnnn////2222) on any Ép-

scheme, and of the twists Ì(nnnn////2222) of any given sheaf Ì. In practice,
when one shows that a lisse sheaf Ì of some even rank N which is pure
of weight n has Ggeom = Sp(N), the proof shows that in fact Ì(nnnn////2222) is

itself symplectically self-dual. If this is the case, then it is tautological
that the Frobenii for Ì(nnnn////2222) land in Sp(N), and so we can apply
Deligne's general result directly to Ì(nnnn////2222), with Ggeom = Sp(N).

SSSSpppp----EEEExxxxaaaammmmpppplllleeee((((1111)))) Let h(x) Ÿ k(x) be an oooodddddddd nonzero rational function
which is holomorphic at ‘ and all of whose poles have order prime to

p. Let g(x) be a nonzero rational function. Let j : !1 - S ¨ !1 be the

inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

multiplicative character of k≠, of order r, such that at any zero or pole
of g(x) in T, the order of zero or pole of g there is not divisible by r.
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Suppose that there exists an eeeevvvveeeennnn rational function L(x) such that

L(x)r = g(x)g(-x). Take Ï := j*(Ò¥(h)‚k*Òç(g)), Ì := NFT¥(Ï). Then

Ì(1111////2222) is a lisse sheaf on ´m which is symplectically self-dual (by the

same "embed in the Artin-Schreier covering" argument as in SSSSLLLL----
EEEExxxxaaaammmmpppplllleeee((((4444)))) above) of (even) rank

N = Card(S(äk)) + Card(T(äk))+‡ geom. poles of h in !1 (order of pole of h).

and pure of weight zero.The trace function of Ì(1111////2222) is

t Ÿ E ÿ -(Card(E))-1/2‡x in E -S(E)-T(E) ¥E(tx + h(x))çE(g(x)).

If p > 2N + 1, or if N=2, then Ggeom for Ì(1111////2222)|´m is Sp(N). [If N ± 2

and p > 2N + 1, by the paucity of choice in 7.6.3.1; if N=2 by the fact
that Ggeom is a semisimple (Ì being pure) subgroup of SL(2), so is

either SL(2) or is finite: as the local monodromy at zero of Ì is a
unipotent pseudoreflection, Ggeom is not finite.]

SSSSpppp----EEEExxxxaaaammmmpppplllleeee((((2222)))) Take an oooodddddddd rational function h(x) with a pole of
order n ≥ 1 at ‘ with n prime to p, and all other poles also of order

prime to p. Let g(x) be a nonzero rational function. Let j : !1 - S ¨ !1

be the inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

multiplicative character of k≠, of order r, such that at any zero or pole
of g(x) in T, the order of zero or pole of g there is not divisible by r.
Suppose that there exists an eeeevvvveeeennnn rational function L(x) such that

L(x)r = g(x)g(-x). Let f(x) be an oooodddddddd nonzero polynomial of degree d
prime to p with d ± n, gcd(d, n) = 1. Take Ò := j*(Ò¥(h)‚k*Òç(g)),

Ï := f*Ò, Ì := NFT¥(Ï). Then Ì(1111////2222) is lisse on ´m (indeed lisse on !1 if

d < n) and just as above is symplectically self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(äk)) + Card(T(äk)) +

+ ‡ geom. poles of h in !1 (order of pole of h).

The trace function of Ì(1111////2222) is

t Ÿ E ÿ -(Card(E))-1/2‡x in E -S(E)-T(E) ¥E(tf(x) + h(x))çE(g(x)).

If p > 2N+1, p does not divide 2nN1(|n-d|)N2(|n-d|), and either N ± 8 or
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|n-d| ±6, then Ggeom for Ì(1111////2222) is Sp(N), by the paucity of choice in

7.7.6.

SSSSpppp----EEEExxxxaaaammmmpppplllleeee((((3333)))) Fix n ≥ 3 an odd integer, a Ÿ k≠, let f(x) := xn - nax,
Ï := Kernel of Tracef : f*ä$… ¨ ä$…, Ì := NFT¥(Ï). Here Ì(1111////2222) | ´m is

symplectically self dual and lisse of rank n-1. Its trace function is

t Ÿ E≠ ÿ -(Card(E))-1/2‡x in E ¥E(tf(x))

0 Ÿ E ÿ 0.
If p > 2n-1 and if the condition *(p, n-1) holds (cf. 7.1), then Ggeom for

Ì(1111////2222) | ´m is Sp(n-1).

7777....11114444 OOOOrrrrtttthhhhooooggggoooonnnnaaaallll EEEExxxxaaaammmmpppplllleeeessss
We now give examples where the Sato-Tate law is that given by

the orthogonal group. We work over a finite field k of characteristic

p ± 2, and denote by ç2 the character of order two of k≠.

OOOO----EEEExxxxaaaammmmpppplllleeee((((1111)))) Let h(x) Ÿ k(x) be an oooodddddddd nonzero rational function
which is holomorphic at ‘ and all of whose poles have order prime to

p. Let g(x) be a nonzero rational function. Let j : !1 - S ¨ !1 be the

inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

multiplicative character of k≠, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an oooodddddddd rational function L(x) such that

L(x)r = g(x)g(-x). Take Ï := j*(Ò¥(h)‚k*Òç(g)), Ì := NFT¥(Ï). Then

Ì(1111////2222) is a lisse sheaf on ´m which is orthogonally self-dual (by the

argument in SSSSLLLL----EEEExxxxaaaammmmpppplllleeee((((4444)))) above) of rank
N = Card(S(äk)) + Card(T(äk)) + ‡geom. poles of h in !1 (order of pole of h)

and pure of weight zero.The trace function of Ì(1111////2222) is

t Ÿ E ÿ -(Card(E))-1/2‡x in E -S(E)-T(E) ¥E(tx + h(x))çE(g(x)).

If p > 2N+1, and N ± 2, then Ggeom for Ì(1111////2222) is O(N). To see this,

note that Ggeom lies in O(N), so it must be either SO(N) or O(N), by the

paucity of choice in 7.6.3.1. In fact Ggeom is O(N), because the local
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monodromy of Ì around zero is, by 7.6.3.1, a reflection. (The odd
rational function L(x) necessarily has odd ‘-valuation, so from the

equation g(x)g(-x) = L(x)r we infer that ord‘(g) = (r/2)≠odd, so

Ï § Òç2
as I(‘)-representation. Alternately, by 7.6.3.1 this local

monodromy is a pseudoreflection which lies in O(N), and any orthogonal
pseudoreflection is necessarily a reflection( cf. 1.5).) It is tautological
that the Frobenii for Ì(1111////2222) land in O(N), and so we can apply Deligne's
general result directly to Ì(1111////2222), with Ggeom = O(N).

RRRReeeemmmmaaaarrrrkkkk 7777....11114444....1111....1111 If N = 2 in this example (e.g., h(x)=1/x, g(x) =x,
ç = ç2) then Ggeom is ffffiiiinnnniiiitttteeee, since it is a semisimple subgroup of O(2).

OOOO----EEEExxxxaaaammmmpppplllleeee((((2222)))) Take an oooodddddddd rational function h(x) with a pole of order
n ≥ 1 at ‘ with n prime to p, and all other poles also of order prime to

p. Let g(x) be a nonzero rational function. Let j : !1 - S ¨ !1 be the

inclusion of the open set of !1 where h is holomorphic, and

k: !1 - S - T ¨ !1 - S

the inclusion of the open set of !1 - S where g is invertible. Let ç be a

multiplicative character of k≠, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an oooodddddddd rational function L(x) such that

L(x)r = g(x)g(-x). Let f(x) be an oooodddddddd nonzero polynomial of degree d
prime to p with d ± n, gcd(d, n) = 1. Take Ò := j*(Ò¥(h)‚k*Òç(g)),

Ï := f*Ò, Ì := NFT¥(Ï). Then Ì(1111////2222) is lisse on ´m (indeed lisse on !1 if

d < n) and just as above is orthogonally self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(äk)) + Card(T(äk)) +

+ ‡ geom. poles of h in !1 (order of pole of h).

The trace function of Ì(1111////2222) is

t Ÿ E ÿ -(Card(E))-1/2‡x in E -S(E)-T(E) ¥E(tf(x) + h(x))çE(g(x)).

If p > 2N+1, p does not divide 2nN1(|n-d|)N2(|n-d|), and either

N îŸ {7,8} or |n - d| ± 6, then Ggeom for Ì(1111////2222) is either SO(N) or O(N),

by the paucity of choice in 7.7.6.

IIIIffff iiiinnnn aaaaddddddddiiiittttiiiioooonnnn nnnn >>>> dddd,,,, tttthhhheeeennnn ÌÌÌÌ iiiissss lllliiiisssssssseeee oooonnnn !!!!1111,,,, wwwwhhhheeeennnncccceeee GGGGggggeeeeoooommmm
hhhhaaaassss nnnnoooo nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll pppprrrriiiimmmmeeee----ttttoooo----pppp qqqquuuuoooottttiiiieeeennnnttttssss,,,, ssssoooo GGGGggggeeeeoooommmm iiiissss SSSSOOOO((((NNNN))))....
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Then det(Ì(1111////2222)) is a geometrically trivial character of order one or

two, so it is either trivial or it is (the pullback to !1 of) "(-1)deg ", the

unique character of order two of Gal(ksep/k). The question of wwwwhhhhiiiicccchhhh
oooonnnneeee is arithmetic, and in a given example can be decided by computing
the determinant of Frobenius on Ì(1111////2222)0 and seeing whether it is 1 or

-1. If we compute this sign _1 and choose an N'th root œ of it, then we
can directly apply Deligne's general result to the slightly twisted sheaf

(œ)deg‚Ì(1111////2222) with Ggeom = SO(N). [Another course of action: simply

replace the given ground field k by its quadratic extension k2, and

directly apply Deligne's general result to Ì(1111////2222) on !1/k2 with Ggeom =

SO(N).]
IIIIffff,,,, oooonnnn tttthhhheeee ooootttthhhheeeerrrr hhhhaaaannnndddd,,,, dddd >>>> nnnn,,,, tttthhhheeeennnn GGGGggggeeeeoooommmm iiiissss OOOO((((NNNN)))).... To show

that Ggeom is O(N), we make a series of reductions to a case where it is

obvious. First of all, since Ggeom is either SO(N) or O(N), and Ì is lisse

on ´m (say with coordinate t), det(Ì|´m) is geometrically either trivial

or Òç2(t)
. The key point is that these two possibilities on ´m are

already distinguished by their I(0)-representations. By 7.4.3.1, we know
that

Ì(0)/Ì0 § FT¥loc(‘,0)(Ï(‘))

as I(0)-representations. Taking determinants gives
det(Ì)(0) § det(FT¥loc(‘,0)(Ï(‘)))

as I(0)-representations.
To exploit this, we look closely at Ï(‘) as I(‘)-representation. By

definition, Ï := f*j*(Ò¥(h)‚k*Òç(g)). Write the odd rational function

h(x) as the sum
h(x) = (an odd polynomial H(x) of degree n) + (a fct. holo. at ‘).

Then as I(‘)-representation, j*(Ò¥(h)‚k*Òç(g)) is Ò¥(H)‚Òç(g).

From the equation g(x)g(-x) = L(x)r we infer that ord‘(g) = (r/2)≠odd,

so Òç(g) § Òç2
as I(‘)-representation and hence

Ï(‘) § (f*(Ò¥(H)‚Òç2(x)
))(‘).

Therefore det(Ì)(0) as I(‘)-representation is the same for the initial
data (h ,f ,g, ç) as it is for the data (H, f, x, ç2). We will now treat this

case by a global argument.
For the data (H, f, x, ç2), the lisse sheaf Ì on ´m‚äk (with

parameter t) is
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t ÿ H1c(´mºäk, Ò¥(H(x) + tf(x))‚Òç2(x)
).

Strictly speaking, we consider the product ´m≠´m with coordinates

(x,t), the lisse sheaf  :=Ò¥(H(x) + tf(x))‚Òç2(x)
on this product; then

Ì is R1(pr2)~(). Now  is tame at zero, and for t in ´m its Swan‘ is d.

Since the odd polynomial H has degree n < d, it follows from Deligne's
semicontinuity theorem ([Lau-SCS]) that Ì makes sense as a lisse sheaf
of rank d on the product space
(the ´m of t's)≠(the affine space of all odd polynomials H of degree ≤ n),

say ´m≠é, and Ì is orthogonally self-dual as a lisse sheaf on ´m≠é.

Since we are not in characteristic 2, the Kunneth formula shows that
for any point e Ÿ é(äk), the inclusion of (´m)ºäk into (´m≠é)ºäk by

t ÿ (t,e) induces an isomorphism

H1((´m≠é)ºäk, μμμμ2) § H1(´mºäk, μμμμ2),

whose inverse is induced by pullback along the projection of (´m≠é)ºäk

onto (´m)ºäk. Therefore det(Ì), viewed on (´m≠é)ºäk, is either trivial or

it is Òç2(t)
, and we can tell which by specializing H to be any

particular odd polynomial of degree ≤ n. We choose H = 0 for this
purpose.

So now we are reduced to computing the determinant on (´m)ºäk

of the lisse sheaf

t ÿ H1c(´mºäk, Ò¥(tf(x))‚Òç2(x)
).

We know that its determinant is either trivial or is Òç2(t)
. Since d is

odd, the Kummer pullback [d]*(Ì | ´m) has the same determinant. This

pullback sheaf is

t ÿ H1c(´mºäk, Ò¥(tdf(x))‚Òç2(x)
).

On the fibre ´m, we perform the automorphism x ÿ x/t; this allows us

to rewrite [d]*(Ì | ´m) as

t ÿ H1c(´mºäk, Ò¥(tdf(x/t))‚Òç2(x/t)
) §

§ Òç2(t)
‚H1c(´mºäk, Ò¥(tdf(x/t))‚Òç2(x)

).

In other words, [d]*(Ì | ´m) is Òç2
‚Ó, where Ó is the lisse,

orthogonally self-dual sheaf of rank d on ´m
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t ÿ H1c(´mºäk, Ò¥(tdf(x/t))‚Òç2(x)
).

Because d is odd, det([d]*(Ì | ´m)) = det(Òç2
‚Ó) § Òç2

‚detÓ, so it

suffices to show that detÓ is geometrically constant.

Now write f(x) = ‡aix
i; then

tdf(x/t) = ‡ait
d-ixi = adx

d + (terms of x-degree < d in k[t,x]).

By Deligne's semicontinuity theorem, the sheaf Ó extends to a lisse

sheaf on !1, which is still orthogonally self-dual. Therefore detÓ is lisse

on !1‚äk of order dividing two, and hence detÓ is geometrically
constant. This concludes the proof that Ì has Ggeom = O(N) if d > n,

p > 2N+1, p does not divide 2nN1(|n-d|)N2(|n-d|), and either N îŸ {7,8} or

|n-d| ±6.
We can then apply Deligne's general result to Ì(1111////2222) with

Ggeom = O(N).
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8888....1111 RRRRaaaappppiiiidddd RRRReeeevvvviiiieeeewwww ooooffff PPPPeeeerrrrvvvveeeerrrrssssiiiittttyyyy,,,, FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm,,,, aaaannnndddd
CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(8.1.1) Let k be a perfect field of characteristic p ± …. For variable

separated k-schemes of finite type X/k, we can speak of Dbc(X, ä$…). For

morphisms f: X ¨ Y between separated k-schemes of finite type, one
knows (cf. [De-WII] for the case when k is either algebraically closed or

finite, [Ek], [Ka-Lau], [SGA 4, XVIII, 3]) that these Dbc support the full

Grothendieck formalism of the "six operations". In this formalism, the

(relative to k) dualizing complex KX in Dbc(X, ä$…) is defined as π~ä$…,

where π denotes the structural morphism π: X ¨ Spec(k). In terms of

KX, the Verdier dual DDDD(L) of an object L of Dbc(X, ä$…) is defined as

RHom(L, KX). One knows that L § DDDDDDDD(L) by the natural map. The

duality theorem asserts that for f : X ¨ Y a morphism of finite type
between separated k-schemes of finite type, one has DDDD(Rf~L) § Rf*DDDD(L),

DDDD(Rf*L) § Rf~DDDD(L). If X/k is a smooth separated k-scheme of finite type

and everywhere of the same relative dimension, noted dimX, then KX
is ä$…[2dimX](ddddiiiimmmmXXXX), and so DDDD(L) is RHom(L, ä$…)[2dimX](ddddiiiimmmmXXXX).

(8.1.2) Given two separated k-schemes X/k and Y/k of finite type,
"external tensor product over ä$…" defines a bi-exact bilinear pairing,

Dbc(X, ä$…)≠D
b
c(Y, ä$…) ¨ Dbc(X≠kY, ä$…)

(K, L) ÿ K≠L := pr1
*K‚pr2

*L.

One knows that DDDD(K≠L) = DDDD(K)≠DDDD(L).

An object K of Dbc(X, ä$…) is called sssseeeemmmmiiiippppeeeerrrrvvvveeeerrrrsssseeee if its

cohomology sheaves ÓiK satisfy

dim Supp(ÓiK) ≤ -i.

An object K of Dbc(X, ä$…) is called ppppeeeerrrrvvvveeeerrrrsssseeee if both K and its dual DDDD(K)

are semiperverse. If f : X ¨ Y is an aaaaffffffffiiiinnnneeee (respectively a qqqquuuuaaaassssiiiiffffiiiinnnniiiitttteeee)
morphism, then Rf* (respectively f~ = Rf~) preserves semiperversity. So

if f is both affine and quasifinite (e.g., finite, or an affine immersion),
then by duality both f~ = Rf~ and Rf* preserve perversity. If f : X ¨ Y

is a smooth morphism everywhere of relative dimension d, then f*[d]
preserves perversity. In particular, if K is perverse on X, then its
inverse image on Xºkäk is perverse on Xºkäk. One knows that the full
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subcategory Perv(X) of Dbc(X, ä$…) consisting of perverse objects is an

aaaabbbbeeeelllliiiiaaaannnn category in which every object is of finite length. The objects
of Perv(X) are sometimes called "perverse sheaves" on X. However, we
will call them "perverse objects" to avoid confusion with "honest"
sheaves.
(8.1.3) If X is smooth over k, everywhere of relative dimension
dimX, the simplest example of a perverse object on X is provided by
starting with a lisse sheaf Ï on X, and taking the object Ï[dimX] of

Dbc(X, ä$…) obtained by placing Ï in degree -dimX. The object Ï[dimX]

is trivially semiperverse, and its dual DDDD(Ï[dimX]) = (Ï£(ddddiiiimmmmXXXX))[dimX],
being of the same form, is also. If X is connected, and if Ï is irreducible
as a lisse sheaf, i.e., as a representation of π1(X, x), then Ï[dimX] is a

simple object of Perv(X).
(8.1.4) Given a locally closed subscheme Y of X such that Y is affine,
the inclusion j: Y ¨ X is both affine and quasifinite (factor it as the
open immersion of Y into its closure äY, followed by the closed
immersion of äY into X). So for a perverse object K on Y, both j~K and

Rj*K are perverse on X, and as functors from Perv(Y) to Perv(X) both

j~ and Rj* are exact. There is a natural "forget supports" map from j~K

to Rj*K, and as Perv(X) is an abelian category it makes sense to form

j~*(K) := Image(j~K ¨ Rj*K) Ÿ Perv(X),

called the "middle extension" from Y to X of the perverse object K. The
functor j~* is an exact functor from Perv(Y) to Perv(X), it carries

simple objects to simple objects, and it commutes with duality. [The
middle extension functor j~* can be defined for any open immersion,

not just an affine one, but we will not have need of that more general
case here.]
(8.1.5) One knows that for any simple object S of Perv(X) there
exists an affine locally closed subscheme j: Y ¨ X such that Y is
smooth over k and irreducible, and an irreducible lisse sheaf Ï on Y
such that S is j~*(Ï[dimY]). Given the simple object S, we construct Y

and Ï as follows: the closure äY of Y is precisely the closure of the

support of ·iÓ
iS, Y is any smooth affine open set of äY on which all the

ÓiS are lisse, and Ï is Ó-dimY(S)|Y.
An object S of Perv(X) is called geometrically simple if its inverse

image on Xºkäk is simple. Of course "geometrically simple" à "simple".

(8.1.6) Consider the special case when X/k is a smooth,
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geometrically connected curve. Then an object K of Dbc(X, ä$…) is

perverse if and only if

ÓiK = 0 for i ± -1, 0,

Ó-1K has no nonzero punctual sections,

Ó0K is punctual.

We call a perverse object K "nonpunctual" if Ó0K = 0. If Ï is a lisse
sheaf on an open nonempty open set j: U ¨ X, then the middle
extension j~*(Ï[1]) is none other than (j*Ï)[1]. It is for this reason that

we adapted the terminology "middle extension" for sheaves of the type
j*Ï with Ï lisse on U. The dual DDDD(j~*(Ï[1])) of such a middle extension

is related to the naive dual D(j*Ï) := j*(Ï
£) defined in 7.3.1 by

DDDD(j~*(Ï[1])) = j~*(DDDD(Ï[1])) = j*(Ï
£(1111))[1] = D(j*Ï)(1111)[1].

There are two types of simple perverse object on X:
(1) the punctual ones, whose Y is a single closed point x of X; the
corresponding simple objects are x*Ï, where Ï is an irreducible

representation of Gal(äk/k(x)) [so if k is algebraically closed, only the
delta sheaf ∂x :=x*ä$… supported at x].

(2) the nonpunctual ones, whose Y is a nonempty open set j: U ¨ X of
X; the corresponding simple objects are (j*Ï)[1], where Ï is an

"arithmetically irreducible" lisse sheaf on U, i.e., one whose
representation of π1(U, äu) is irreducible [so the nonpunctual simples

which are geometrically simple are precisely the Ï[1] where Ï is an
"irreducible middle extension sheaf" in the terminology of 7.3.1].

(8.1.7) Consider now the particular case when X/k is !1/k. The
derived category versions of Fourier Transform are defined by

FT¥,~(K) := R(pr2)~(pr1
*K‚Ò¥(xy))[1],

FT¥,*(K) := R(pr2)*(pr1
*K‚Ò¥(xy))[1].

Both are exact functors from Dbc(!
1, ä$…) to itself, which are

essentially interchanged by duality:

DDDD(FT¥,~K)= FT¥,*([-1]
*\DDDDK)((((1111)))).

It is easy to prove that FT¥,~ is essentially involutive:

FT¥,~\FT¥,~ § [-1]*(----1111);

by duality it follows that the same holds for FT¥,*.
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The "miracle" of Fourier Transform is that there is really only one:
the natural "forget supports" map FT¥,~ ¨ FT¥,* is an isomorphism. We

denote it FT¥. As FT¥ (viewed as FT¥,*) preserves semiperversity, it

follows from the miracle that FT¥ preserves perversity, and so defines

an exact autoequivalence of Perv(!1). In particular, FT¥ sends perverse

simple objects to perverse simple objects.
The elementary sheaves Ï of 7.3.4 are precisely those for which

both K:= Ï[1] and FT¥(K) are perverse and nonpunctual. For Ï

elementary, we have
FT¥(Ï[1]) = NFT¥(Ï)[1]

The Fourier sheaves Ï are those for which both K:= Ï[1] and FT¥(K) are

perverse and are the middle extensions of their restrictions to all
nonempty open sets. The irreducible Fourier sheaves Ï are those for
which K:= Ï[1] is a geometrically simple perverse object such that
neither K nor FT¥(K) is punctual.

(8.1.8) Suppose G is a smooth separated k-groupscheme of finite
type of relative dimension noted dimG, π: G≠kG ¨ G the multiplication

map, e: Spec(k) ¨ G the identity section. Given two objects K and L in

Dbc(G, ä$…), we define their "compact" or "~" convolution, denoted K*~L,

by

K*~L := Rπ~(K≠L) Ÿ Dbc(G, ä$…).

We define their "*" convolution, denoted K**L, by

K**L := Rπ*(K≠L) Ÿ Dbc(G, ä$…).

Duality interchanges the two sorts of convolution:
DDDD(K*~L) § DDDD(K)**DDDD(L), DDDD(K**L) § DDDD(K)*~DDDD(L).

By the Leray spectral sequence and the Kunneth formula, we have
Gal(äk/k)-equivariant isomorphisms of cohomology algebras

Hc
*(Gºäk, K*~L) § Hc

*((G≠G)ºäk, K≠L) § Hc
*(Gºäk, K)‚Hc

*(Gºäk, L),

H*(Gºäk, K**L) § H*((G≠G)ºäk, K≠L) § H*(Gºäk, K)‚H*(Gºäk, L).

In general, even if we start with two constructible …-adic sheaves

Ï and Ì on G, and view them as objects of of Dbc(G, ä$…) which are

concentrated in degree zero, their convolutions Ï*~Ì and Ï**Ì are
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"really" objects of Dbc(G, ä$…), and nnnnooootttt simply single sheaves placed in

some degree. It is this "instability" of sheaves themselves under

convolution that makes Dbc(G, ä$…) the natural setting for

systematically discussing convolution.
(8.1.9) If K and L are semiperverse (resp. perverse) objects on G,
then K≠L is semiperverse (resp. perverse) on G≠kG. Therefore if G is

affine, and if K and L are both semiperverse on G, then K**L is

semiperverse on G. If K and L are both perverse on G and if moreover
the natural "forget supports" map is an isomorphism K*~L § K**L, then

K*~L § K**L is perverse (its dual being DDDD(K)**DDDD(L)).

(8.1.10) The formal properties of the two sorts of convolution are
easily established (cf. the analogous Î-module discussion in 5.1.8-9).
(1)Each sort of convolution is associative, and for each the ∂-sheaf

∂e := e*ä$…
supported at the identity of G is a two-sided identity object. If G is
commutative, then each sort of convolution is commutative as well.
(2a) If ƒ: G¨H is a homomorphism of smooth separated k-
groupschemes of finite type, then for K and L on G we have

Rƒ*(K**L) § (Rƒ*K)**(Rƒ*L),

Rƒ~(K*~L) § (Rƒ~K)*~(Rƒ~L).

(2b) If ƒ : G ¨ H is a homomorphism, then for K on G and L on H we
have

ƒ*((Rƒ~K)*~L) § K*~(ƒ
*L),

ƒ~((Rƒ*K)**L) § K**(ƒ
~L).

These two relations are duals of each other. The first is proper base
change for the following commutative diagram, whose outer square is
cartesian (verification left to the reader):

G≠G zzzzc G≠H
f id≠ƒ d ƒ≠id

mult | H≠H
d ƒ d mult
G zzzzc H

(3) For g Ÿ G(k) denote by Tg : G ¨G the map x ÿ gx "left translation

by g", and by ∂g := (Tg)*(∂e) the delta sheaf supported at g. Then for

g Ÿ G(k), we have
(Tg)* = R(Tg)* = (Tg)~ = R(Tg)~
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(Tg)*(K**L) § ((Tg)*K)**L,

(Tg)*(K*~L) § ((Tg)*K)*~L,

(Tg)*(L) § (∂g)*L.

Moreover, if G is commutative, then for g, h in G(k), we have
(Tgh)*(K**L) § ((Tg)*K)**((Th)*L),

(Tgh)*(K*~L) § ((Tg)*K)*~((Th)*L).

(4) If G is commutative, geometrically connected, and defined over a
finite subfield k0 of k, then for every ä$…-valued character ç of G(k0),

the associated lisse rank one Òç on G obtained from pushing out the

Lang torsor by ç satisfies π*Òç § Òç≠Òç, whence by the projection

formula
(K*~L)‚Òç § (K‚Òç)*~(L‚Òç),

(K**L)‚Òç § (K‚Òç)**(L‚Òç).

(8.1.11) We now recall (cf. [Ka-GKM, 8.6.1]) the relation between

Fourier Transform on !1 and convolution on ´m. Denote by

j: ´m ¨ !1 the inclusion,

inv: ´m ¨ ´m the multiplicative inversion x ÿ x-1.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....1111....11112222 (compare 5.2.3) For any object K in Dbc(´m, ä$…),

we have canonical isomorphisms in Dbc(´m, ä$…):

(j*Ò¥)[1]*~K § j*FT¥(j~inv
*K),

(j*Ò¥)[1]**K § j*FT¥(Rj*inv
*K),

(j*Ò¥)[1]*~inv
*K § j*FT¥(j~K),

(j*Ò¥)[1]**inv
*K § j*FT¥(Rj*K),

(inv*j*Ò¥)[1]*~K § inv*j*FT¥(j~K),

(inv*j*Ò¥)[1]**K § inv*j*FT¥(Rj*K),

pppprrrrooooooooffff The first is a formal consequence of the definitions of *~ and of

FT¥,~ (cf. 5.2.3).The second is the dual of the first, the third and fourth

are the first two applied to inv*K, and the last two are obtained from

the third and fourth by applying inv* = inv*. QED
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8888....2222 DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn ooooffff hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc ccccoooommmmpppplllleeeexxxxeeeessss aaaannnndddd
hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc ssssuuuummmmssss oooovvvveeeerrrr ffffiiiinnnniiiitttteeee ffffiiiieeeellllddddssss
(8.2.1) We work over a finite field k of characteristic p ± …. We
denote by ¥ a nontrivial ä$…-valued additive character of k. Let (n, m)

be a pair of nonnegative integers. Let
(ç's) := (ç1, ... , çn)

be an (unordered) n-tuple of not necessarily distinct ä$…-valued

multiplicative characters of k≠, and let
(®'s) := (®1, ... , ®m)

be an (unordered) m-tuple of not necessarily distinct ä$…-valued

multiplicative characters of k≠.
(8.2.2) Given any such data, we define an object

Hyp(~, ¥; ç's; ®'s) = Hyp(~, ¥; ç1, ... , çn; ®1, ... , ®m)

in Dbc(´m, ä$…) as follows:

(1) if (n, m) = (0, 0), then Hyp(~, ¥; &; &) := ∂1 := 1*ä$… is the delta

sheaf supported at 1.

(2) if (n, m) = (1, 0), then Hyp(~, ¥; ç; &) := (j*Ò¥)‚Òç[1].

(3) if (n, m) = (0, 1), then Hyp(~, ¥; &; ®) := inv*((j*Òä¥)‚Òä®)[1].

(4) if (n, m) = (n, 0) with n ≥ 2, then Hyp(~, ¥; ç's; &) is the n-fold
mutiple convolution

Hyp(~, ¥; ç1; &)*~Hyp(~, ¥; ç2; &)*~ ... *~Hyp(~, ¥; çn; &).

(5) if (n, m) = (0, m) with m ≥ 2, then Hyp(~, ¥; &; ®'s) is the m-fold
multiple convolution

Hyp(~, ¥; &; ®1)*~Hyp(~, ¥; &; ®2)*~ ... *~Hyp(~, ¥; &; ®m).

(6) in the general case, Hyp(~, ¥; ç's; ®'s) is defined to be
Hyp(~, ¥; ç's; &)*~Hyp(~, ¥; &; ®'s).

(8.2.3) Since ~ convolution is associative and commutative, we have
the general convolution formula

Hyp(~, ¥; ç's; ®'s)*~Hyp(~, ¥; Ú's; Æ's) = Hyp(~, ¥; ç's ⁄ Ú's; ®'s ⁄ Æ's)

for these objects. [This situation should be contrasted with the Î-
module case, where we had an a priori definition of hypergeometric Î-
modules "just" by writing down the corresponding DE, but where the
convolution behaviour was a theorem. Here we lack a "simple" a priori
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definition of hypergeometrics, and we are essentially imposing their
convolution behaviour as the definition.]
(8.2.4) Their behaviour under inversion is given by

inv*Hyp(~, ¥; ç's; ®'s) = Hyp(~, ä¥; ä®'s; äç's).
(8.2.5) Tensoring with a Kummer sheaf ÒÚ is also extremely

simple:
ÒÚ‚Hyp(~, ¥; ç's; ®'s) = Hyp(~, ¥; Úç's; Ú®'s).

(8.2.6) For E a finite extension of k, the pullback of Hyp(~, ¥; ç's; ®'s)
to ´mºkE is Hyp(~, ¥E; çE's; ®E's), where ¥E (resp. çE, ®E) is the

additive (resp. multiplicative) character of E (resp. E≠) obtained from ¥
(resp. ç, ®) by composition with TraceE/k (resp. NormE/k). [Indeed the

corresponding pullback of Ò¥ (resp. Òç, Ò®) is Ò¥E
(resp. ÒçE

, Ò®E
), cf

[Ka-GKM, 4.3], and ~ convolution commutes with arbitrary base
change.]
(8.2.7) The trace function of Hyp(~, ¥; ç's; ®'s) is easily computed in
terms of "hypergeometric sums", using the Lefschetz Trace Formula.
For (n, m) ± (0, 0),the result is this. For each finite extension E of k,

and each t Ÿ E≠, denote by

V(n, m; t) fi (´m)n+m

the hypersurface in (´m)n+m, with coordinates x1, ... , xn, y1, ... , ym,

defined by the equation
°ixi = t(°jyj).

Define the "hypergeometric sum" Hyp(¥; ç's; ®'s)(E, t) Ÿ $(¥, ç's, ®'s) to
be the exponential sum

Hyp(¥; ç's; ®'s)(E, t) :=
‡V(n, m; t)(E) ¥E(‡ixi - ‡jyj)(°içi,E(xi))(°jä®j,E(yj)).

Then

‡(-1)iTrace(FrobE,t | Ó
i(Hyp(~, ¥; ç's; ®'s)))

=(-1)n+mHyp(¥; ç's; ®'s)(E, t).

(8.2.8) These hypergeometric sums, which include Kloosterman

sums as the special case n=0 or m=0, when viewed as functions on E≠,
are related by mmmmuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee Fourier Transform to monomials in

Gauss sums viewed as functions on the Pontrjagin dual of E≠. The
precise relation is this. For each finite extension E of k, and each

multiplicative character Ú of E≠, we have (by elementary calculation)
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‡t in E≠ Ú(t)Hyp(¥; ç's; ®'s)(E, t) = (°ig(¥E, Úçi,E))(°jg(ä¥E, äÚä®j,E)).

By multiplicative Fourier inversion, this gives (q := Card(E))

Hyp(¥; ç's; ®'s)(E, t) =
= (1/(q-1))‡Ú on E≠ äÚ(t)(°ig(¥E, Úçi,E))(°jg(ä¥E, äÚä®j,E)).

The Plancherel formula gives, for any complex embedding of the field
$(¥, ç's, ®'s),

‡t in E≠ |Hyp(¥; ç's; ®'s)(E, t)|2 =

= (1/(q-1))‡Ú on E≠ |(°ig(¥E, Úçi,E))(°jg(ä¥E, äÚä®j,E))|
2.

(8.2.9) From the Kunneth formula (cf. 8.1.8), and the Euler-
Poincare formula for the case n+m = 1, we see that

Hic(´m‚käk, Hyp(~, ¥; ç's; ®'s)) = 1-dim'l if i = 0

= 0 if i ± 0.
By the Lefschetz Trace Formula, it follows that for any finite extension
E of k, the action of FrobE on the one-dimensional space

H0c(´m‚käk, Hyp(~, ¥; ç's; ®'s)) is given by

(8.2.10) Trace(FrobE | H0c(´m‚käk, Hyp(~, ¥; ç's; ®'s))) =

= (°i(-g(¥E, çi,E)))(°j(-g(ä¥E, ä®j,E))).

Similarly, for any multiplicative character Ú of k≠, we have

(8.2.11) Hic(´m‚käk, ÒÚ‚Hyp(~, ¥; ç's; ®'s)) = 1-dim'l if i = 0,

= 0 if i ± 0,

and Trace(FrobE | H0c(´m‚käk, ÒÚ‚Hyp(~, ¥; ç's; ®'s))) =

= (°i(-g(¥E, Úçi,E)))(°j(-g(ä¥E, ääÚä®j,E))).

(8.2.12) In an entirely analogous way, we can use * convolution to

define objects Hyp(*, ¥; ç's; ®'s) in Dbc(´m, ä$…) by replacing all

occurrences of ~ by * in the above axioms 8.2.2 (1) through (6). There is
a natural "forget supports" map

Hyp(~, ¥; ç's; ®'s) ¨ Hyp(*, ¥; ç's; ®'s),
which in general is not an isomorphism. Duality interchanges these two
sorts of hypergeometrics:

DDDD(Hyp(~, ¥; ç's; ®'s)) § Hyp(*, ä¥; äç's; ä®'s)(nnnn++++mmmm).
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DDDD(Hyp(*, ¥; ç's; ®'s)) § Hyp(~, ä¥; äç's; ä®'s)(nnnn++++mmmm).

(8.2.13) It will also be convenient to consider systematically the
multiplicative translates of Hyp(~, ¥; ç's; ®'s) and of Hyp(*, ¥; ç's; ®'s).

For each point ¬ Ÿ k≠, we define
Hyp¬(~, ¥; ç's; ®'s) := [x ÿ ¬x]*Hyp(~, ¥; ç's; ®'s),

Hyp¬(*, ¥; ç's; ®'s) := [x ÿ ¬x]*Hyp(*, ¥; ç's; ®'s).

(8.2.14) These objects enjoy the following basic properties:

inv*Hyp¬(~, ¥; ç's; ®'s) § Hyp1/¬(~, ä¥; ä®'s; äç's).

inv*Hyp¬(*, ¥; ç's; ®'s) § Hyp1/¬(*, ä¥; ä®'s; äç's).

ÒÚ‚Hyp¬(~, ¥; ç's; ®'s) § (Ú(¬))deg‚Hyp¬(~, ¥; Úç's; Ú®'s).

ÒÚ‚Hyp¬(*, ¥; ç's; ®'s) § (Ú(¬))deg‚Hyp¬(*, ¥; Úç's; Ú®'s).

DDDD(Hyp¬(~, ¥; ç's; ®'s)) § Hyp¬(*, ä¥; äç's; ä®'s)(nnnn++++mmmm).

DDDD(Hyp¬(*, ¥; ç's; ®'s)) § Hyp¬(~, ä¥; äç's; ä®'s)(nnnn++++mmmm).

Hyp¬(~, ¥; ç's; ®'s)*~Hypμ(~, ¥; Ú's; Æ's) =

= Hyp¬μ(~, ¥; ç's ⁄ Ú's; ®'s ⁄ Æ's).

Hyp¬(*, ¥; ç's; ®'s)**Hypμ(*, ¥; Ú's; Æ's) =

= Hyp¬μ(*, ¥; ç's ⁄ Ú's; ®'s ⁄ Æ's).

8888....3333 VVVVaaaarrrriiiiaaaannnntttt:::: HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc ccccoooommmmpppplllleeeexxxxeeeessss oooovvvveeeerrrr aaaallllggggeeeebbbbrrrraaaaiiiiccccaaaallllllllyyyy
cccclllloooosssseeeedddd ffffiiiieeeellllddddssss
(8.3.1) Suppose instead of working over a finite field we work over
an algebraically closed field k. For ¥ a nontrivial ä$…-valued additive

character of a finite subfield k0 of k, we can speak (cf 7.2.1) of the lisse

rank one sheaf Ò¥ on !1ºk0
k. For any tame ä$…-valued character ç of

π1(´mºk0
k), with inverse character denoted äç, we can speak of the

lisse, rank one ä$…-sheaves Òç and Òäç on ´mºk0
k.

In terms of these objects, we define objects Hyp(~, ¥; ç's; ®'s) and

Hyp(*, ¥; ç's; ®'s) in Dbc(´mºk0
k, ä$…) exactly as above.

(8.3.2) For each point ¬ Ÿ k≠, we define the translated objects
Hyp¬(~, ¥; ç's; ®'s) := [x ÿ ¬x]*Hyp(~, ¥; ç's; ®'s),
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Hyp¬(*, ¥; ç's; ®'s) := [x ÿ ¬x]*Hyp(*, ¥; ç's; ®'s).

[When the ç's and ®'s are all of finite order, say all defined over k0,

and ¬ Ÿ (k0)
≠, these objects Hyp¬(~, ¥; ç's; ®'s) and Hyp¬(*, ¥; ç's; ®'s)

are just the pullbacks to ´mºk0
k of the earlier defined objects on

´m/k0 with the same names.]

(8.3.3) The properties

inv*Hyp¬(~, ¥; ç's; ®'s) § Hyp1/¬(~, ä¥; ä®'s; äç's),

inv*Hyp¬(*, ¥; ç's; ®'s) § Hyp1/¬(*, ä¥; ä®'s; äç's),

ÒÚ‚Hyp¬(~, ¥; ç's; ®'s) § Hyp¬(~, ¥; Úç's; Ú®'s),

ÒÚ‚Hyp¬(*, ¥; ç's; ®'s) § Hyp¬(*, ¥; Úç's; Ú®'s),

DDDD(Hyp¬(~, ¥; ç's; ®'s)) § Hyp¬(*, ä¥; äç's; ä®'s)(nnnn++++mmmm),

DDDD(Hyp¬(*, ¥; ç's; ®'s)) § Hyp¬(~, ä¥; äç's; ä®'s)(nnnn++++mmmm),

Hyp¬(~, ¥; ç's; ®'s)*~Hypμ(~, ¥; Ú's; Æ's) =

= Hyp¬μ(~, ¥; ç's ⁄ Ú's; ®'s ⁄ Æ's),

Hyp¬(*, ¥; ç's; ®'s)**Hypμ(*, ¥; Ú's; Æ's) =

= Hyp¬μ(*, ¥; ç's ⁄ Ú's; ®'s ⁄ Æ's)

hold for these objects.
(8.3.4) From the general convolution formalism (cf. 8.1.8), and
reduction to the case of hypergeometrics of type (1, 0) and (0, 1), we
see that

Hic(´m, Hyp¬(~, ¥; ç's; ®'s)) = 0 for i ± 0,

H0c(´m, Hyp¬(~, ¥; ç's; ®'s)) is one-dimensional,

and dually

Hi(´m, Hyp¬(*, ¥; ç's; ®'s)) = 0 for i ± 0,

H0(´m, Hyp¬(*, ¥; ç's; ®'s)) is one-dimensional.

RRRReeeemmmmaaaarrrrkkkk 8888....3333....5555 This situation should be compared to the situation over
^ for the hypergeometric Î-modules Ó¬(å's; ∫'s). The tame characters

ç's (resp. the ®'s) of π1(´mºk0
k) can be seen as playing the roles of the

characters x ÿ exp(2πiåx) (resp. x ÿ exp(2πi∫x)) of # § π1((´m)an).

Having all the ç's and ®'s of finite order is analogous to having all the
å's and b's rational. The choice of a ¥ is required to define the objects
Hyp(~, ¥; ç's; ®'s) and Hyp(*, ¥; ç's; ®'s) which are analogous to the Î-
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module Ó1(å's; ∫'s). [One might "explain" the fact that in the Î-module

case we define Ó1(å's; ∫'s) without having to make an analogous choice

by the catch-phrase "there are many Ò¥, but only one exp(x)".]

8888....4444 BBBBaaaassssiiiicccc PPPPrrrrooooppppeeeerrrrttttiiiieeeessss ooooffff HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc CCCCoooommmmpppplllleeeexxxxeeeessss;;;;
DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn aaaannnndddd BBBBaaaassssiiiicccc PPPPrrrrooooppppeeeerrrrttttiiiieeeessss ooooffff tttthhhheeee HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc SSSShhhheeeeaaaavvvveeeessss
ÓÓÓÓ¬¬¬¬((((~~~~,,,, ¥¥¥¥;;;; çççç''''ssss;;;; ®®®®''''ssss))))

(8.4.1) In this section we will establish the basic goemetric
properties of the objects Hyp¬(~, ¥; ç's; ®'s) and Hyp¬(*, ¥; ç's; ®'s) of

Dbc(´m, ä$…). We work over an algebraically closed field k of

characteristic p > 0, p ± ….
We say that Hyp¬(~, ¥; ç's; ®'s) and Hyp¬(*, ¥; ç's; ®'s) are

defined over a finite subfield k0 of k if ¬ Ÿ (k0)
≠, ¥ is an additive

character of k0, and each of the ç's and each of the ®'s is a tame

character of finite order defined over k0 (i.e., each of the ç's and each

of the ®'s has finite order dividing Card(k0) - 1).

We say that the ç's and the ®'s are iiiiddddeeeennnnttttiiiiccccaaaallll if n = m and if
after possible renumbering we have çi = ®i for every i = 1, ... , n.

We say that the ç's and the ®'s are ddddiiiissssjjjjooooiiiinnnntttt if (n, m) ± (0, 0) and
if we have çi ± ®j for any i = 1, ... , n and for any j = 1, ... , m. [Thus if

either n = 0 or if m = 0, but n+m ± 0, then disjointness holds
automatically.]

We denote by mult0(ç) (resp. mult‘(®)) the multiplicity with

which a particular character ç (resp. ®) occurs among the ç's (resp.
among the ®'s). In discussing …-adic representations of inertia groups,
for any integer n ≥ 1, we denote by Unip(n) a unipotent Jordan block of
size n (i.e., an indecomposable unipotent [and hence tame] n-
dimensional …-adic representation of the inertia group in question).

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....2222 Suppose that the ç's and ®'s are disjoint. Then
(1) Hyp¬(~, ¥; ç's; ®'s) is simple perverse and nonpunctual, i.e., there

exists an irreducible middle extension sheaf Ó¬(~, ¥; ç's; ®'s) on ´m
such that Hyp¬(~, ¥; ç's; ®'s) = Ó¬(~, ¥; ç's; ®'s)[1]. The Euler

characteristic ç(´m, Ó¬(~, ¥; ç's; ®'s)) = -1.

(2) Denote by j: ´m ¨ !1 the inclusion. Then j*Ó¬(~, ¥; ç's; ®'s) is an
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irreducible Fourier sheaf on !1 except if (n, m) = (1, 0) and ç is trivial
(in which case the sheaf j*Ó¬(~, ¥; ç's; ®'s) in question is Ò¥(x/¬)).

(3) If no ç is trivial, then
j~Ó¬(~, ¥; ç's; ®'s) § j*Ó¬(~, ¥; ç's; ®'s) § Rj*Ó¬(~, ¥; ç's; ®'s),

whence j~Ó¬(~, ¥; ç's; ®'s) is an irreducible Fourier sheaf on !1.

(4) If Hyp¬(~, ¥; ç's; ®'s) is defined over a finite subfield k0 of k, then

Ó¬(~, ¥; ç's; ®'s) is pure of weight n + m - 1.

(5) The natural map Hyp¬(~, ¥; ç's; ®'s) ¨ Hyp¬(*, ¥; ç's; ®'s) is an

isomorphism.
(6) If n > m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank n on ´m. As I(0)-

representation it is tame, isomorphic to
·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

(dim. n-m, brk. 1/(n-m)) · ·distinct ®'s Ò®‚Unip(mult‘(®)).

(7) If n < m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank m on ´m. As

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(m-n)) · ·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it is tame, isomorphic to
·distinct ®'s Ò®‚Unip(mult‘(®)).

(8) If n = m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank n on ´m - {¬},

from which it is extended by direct image. I(¬) acts by tame
pseudoreflections of determinant ÒÚ(x-¬), for Ú := °i®i/°içi.

As I(0)-representation it is tame, isomorphic to
·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it is tame, isomorphic to
·distinct ®'s Ò®‚Unip(mult‘(®)).

pppprrrrooooooooffff We proceed by induction on n+m. If n+m = 1, the theorem is
obvious by inspection. Suppose the theorem has already been proven
universally for all (n0, m0) with n0 + m0 < n+m; we must prove it

universally for (n, m). Notice that assertions (2) and (3) follow from
assertions (1), (6), (7) and (8).
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We are thus "reduced" to proving assertions (1) and (4) - (8)..By
multiplicative translation, we may assume ¬ = 1. By multiplicative
inversion, we may suppose that n ≤ m. For any tame character Ú, (1)
and (5) - (8) hold for Hyp1(~, ¥; ç's; ®'s) if and only if they hold for

ÒÚ‚Hyp1(~, ¥; ç's; ®'s) § Hyp1(~, ¥; Úç's; Ú®'s). For (4), we have this

same equivalence for any tame character Ú of finite order.
Suppose first that 0 < n ≤ m. Then by picking Ú to be the inverse

of one of the ç's we may assume that one of the ç's is trivial, say
çn = ú. To emphasize this, we will write our object of type (n, m) in

the form
Hyp1(~, ¥; ú, ç's; ®'s),

where now there are n-1 listed ç's in addition to ú.
Since {ú, the ç's} and the ®'s are disjoint by hypothesis, none of

the ®'s is trivial. Now apply the general formula relating convolution
with Fourier Transform

(j*Ò¥)[1]*~K § j*FT¥(j~inv
*K)

to the hypergeometric object K of type (n-1, m)
K := Hyp1(~, ¥; ç's; ®'s).

We find

Hyp1(~, ¥; ú, ç's; ®'s) § j*FT¥(j~inv
*K).

§ j*FT¥(j~inv
*Hyp1(~, ¥; ç's; ®'s))

§ j*FT¥(j~Hyp1(~, ä¥; ä®'s; äç's)).

Since none of the ä®'s is trivial, we have by induction that

j~Hyp1(~, ä¥; ä®'s; äç's) = j~Ó1(~, ä¥; ä®'s; äç's)[1]

§ j*Ó1(~, ä¥; ä®'s; äç's)[1]

is (an irreducible Fourier sheaf)[1]. Thus we find
Hyp1(~, ¥; ú, ç's; ®'s)[-1] §

§ j*FT¥(j*Ó1(~, ä¥; ä®'s; äç's))

= j*NFT¥(j*Ó1(~, ä¥; ä®'s; äç's)).

The key point is that NFT¥(j*Ó1(~, ä¥; ä®'s; äç's)) is irreducible Fourier.

This shows first that Hyp1(~, ¥; ú, ç's; ®'s)[-1] is an irreducible middle

extension sheaf on ´m, thus proving (1) and providing the required

Ó1(~, ¥; ú, ç's; ®'s). [Because the Euler characteristic of a convolution is

the product of the Euler characteristics of the convolvees (cf 8.1.8),
always ç(´m, Hyp1(~, ¥; ú, ç's; ®'s)) = 1.]
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If Ó1(~, ¥; ú, ç's; ®'s) is defined over a finite subfield k0 of k, then

by induction it is pure of weight n+m-1 (cf. 7.3.8).
That the local monodromy at zero and at ‘ of Ó1(~, ¥; ú, ç's; ®'s)

is as asserted in the theorem follows (by induction) from the known
effect (cf. 7.5.4) of NFT¥ on the local monodromies at zero and ‘ of

irreducible Fourier sheaves which are lisse on ´m.

If n < m, Ó1(~, ¥; ú, ç's; ®'s) is lisse on ´m because by induction it

is the NFT of an irreducible Fourier which is lisse on ´m and all of

whose ‘-slopes are 1/(m - (n-1)) < 1. This gives (7).

If n = m, then there exists a unique s Ÿ k≠ such that on ´m - {s},

Ó1(~, ¥; ú, ç's; ®'s) is lisse of rank n,with tame pseudoreflection local

monodromy at s. [The s in question is the unique element of k≠ for
which Ó1(~, ä¥; ä®'s; äç's) as P(‘)-representation is Ò¥(-sx)·(trivial).] We

must show that s = 1. If n=m=1, then by definition

Ó1(~, ä¥; ä®'s; äç's) := j*(Òä¥(x))‚Òä®(x) = j*(Ò¥(-x))‚Òä®(x),

as required.
Suppose now n=m is ≥ 2. Since Ó1(~, ¥; ú, ç's; ®'s) is a middle

extension sheaf, s is the unique point in k≠ where the rank of its stalk
at s is n-1. Pick a partition n= A + B of n as the sum of two strictly
positive integers, separate the {ú, ç's} into a collection of A characters
å's and B characters ∫'s, and then separate the ®'s into a collection of A
characters ©'s and B characters ∂'s. Let

Å := Ó1(~, ¥, å's; ©'s),

ı := Ó1(~, ¥, ∫'s; ∂'s).

Then by induction Å (resp. ı) is an irreducible middle extension sheaf
on ´m, lisse of rank A (resp. B) on ´m - {1}, with tame pseudoreflection

local monodromy at 1 and tame local monodromy at both zero and ‘.
Moreover, we have(by part (1) and the definition of hypergeometrics)

Ó1(~, ¥; ú, ç's; ®'s)[-1] § Å*~ı.

This implies that for any s in k≠,

dim(Ó1(~, ¥; ú, ç's; ®'s))s = -ç(´m, Å‚[x ÿ s/x]*ı).

The sheaf Å‚[x ÿ s/x]*ı is tame on ´m, and its only nonlisseness is at

the point 1 (where Å drops by 1) and at s (where ı drops by 1). So at

any point s ± 1, Å‚[x ÿ s/x]*ı has two distinct drops, at 1 of size B
and at s of size A; thus at s ± 1, the Euler-Poincare formula gives
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-ç(´m, Å‚[x ÿ s/x]*ı) = B + A.

But at s = 1, the only drop is at 1, of size AB - (A-1)(B-1) = A + B - 1,
so Ó1(~, ¥; ú, ç's; ®'s) is nonlisse at 1, as asserted. This proves (8); the

determinant of the tame local monodromy at 1 is forced by what it is
at zero and ‘.

To prove (5), it is equivalent to show that under the natural
pairing, Ó1(~, ¥; ú, ç's; ®'s) and Ó1(~, ä¥; ú, äç's; ä®'s) are (up to a twist)

duals. The first is j*NFT¥(j*Ó1(~, ä¥; ä®'s; äç's)), and the second is

j*NFTä¥(j*Ó1(~, ¥; ®'s; ç's)). In view of the duality behaviour of NFT

(and the trivial remark that NFT¥\[-1]
* = NFTä¥), the result again

follows by induction.
It remains to treat the case in which n=0. In this case we reduce

by twisting by a suitable ÒÚ to treating Hyp1(~, ¥; &; ú, ®'s). We treat

this case by applying the general formula

(inv*j*Ò¥)[1]*~K § inv*j*FT¥(j~K),

with ¥ replaced by ä¥, to the object K := Hyp1(~, ¥; &; ®'s). We find

Hyp1(~, ¥; &; ú, ®'s) § inv*j*FTä¥(j~Hyp1(~, ¥; &; ®'s)).

The proof by induction now proceeds as in the previous case. QED

RRRReeeemmmmaaaarrrrkkkk 8888....4444....3333 The Kloosterman sheaves denoted
Kl(¥; ç1, ... , çn; 1, ... , 1)

in [Ka-GKM] are precisely the sheaves Ó1(~, ¥; ç's; &) of type (n, 0)

above. The systematic use here of Fourier Transform to develop their
basic properties is only hinted at there (cf. [Ka-GKM, Chapter 8]), and is
independent of the method employed there.

(8.4.4) In terms of these Kloosterman sheaves
Kl(¥; ç's) :=Ó1(~, ¥; ç's; &),

we can rewrite the definition of the hypergeometric complexes:
Hyp(~, ¥; ç's; &) := Kl(¥, ç's)[1]

Hyp(~, ¥; &; ®'s) := inv*Kl(ä¥, ä®'s)[1]

Hyp(~, ¥; ç's; ®'s) := Kl(¥, ç's)[1]*~inv
*Kl(ä¥, ä®'s)[1].

Hyp(*, ¥; ç's; ®'s) := Kl(¥, ç's)[1]**inv
*Kl(ä¥, ä®'s)[1].

This point of view will be useful now in establishing the perversity of
the objects Hyp(~, ¥; ç's; ®'s).
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TTTThhhheeeeoooorrrreeeemmmm 8888....4444....5555 The objects Hyp¬(~, ¥; ç's; ®'s) and Hyp¬(*, ¥; ç's; ®'s)

of Dbc(´m, ä$…) are perverse.

pppprrrrooooooooffff By multiplicative translation, we may suppose that ¬ = 1. If
(n, m) = (0, 0), then by definition

Hyp(~, ¥; &; &) = Hyp(*, ¥; &; &) = ∂1
is perverse. If (n, m) ± (0, 0) but either n=0 or m=0, then the ç's and
®'s are automatically disjoint, and we may apply the previous theorem.

Suppose now that both n and m are strictly positive. Then

Hyp(*, ¥; ç's; ®'s) := Kl(¥, ç's)[1]**inv
*Kl(ä¥, ä®'s)[1]

is the * convolution of two perverse objects, and hence (cf. 8.1.9) is
sssseeeemmmmiiiippppeeeerrrrvvvveeeerrrrsssseeee. By the duality formulas (8.3.3)

DDDD(Hyp¬(~, ¥; ç's; ®'s)) § Hyp¬(*, ä¥; äç's; ä®'s)(nnnn++++mmmm),

DDDD(Hyp¬(*, ¥; ç's; ®'s)) § Hyp¬(~, ä¥; äç's; ä®'s)(nnnn++++mmmm),

it suffices to establish universally that

Hyp(~, ¥; ç's; ®'s) := Kl(¥, ç's)[1]*~inv
*Kl(ä¥, ä®'s)[1]

is semiperverse. For this we argue as follows. The sheaves Kl(¥, ç's) and

inv*Kl(ä¥, ä®'s) are each lisse sheaves on ´m which are irreducible and

which have Euler characteristic = -1. Now apply the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....6666 Suppose that Ï and Ì are lisse ä$…-sheaves on ´m over

an algebraically closed field k of characteristic p ± …. Suppose further
that Ì is irreducible and that ç(´m, Ì) ± 0. Then both Ï[1]*~Ì[1] and

Ï[1]**Ì[1] are perverse.

pppprrrrooooooooffff For any two lisse sheaves Ï and Ì, the objects Ï[1] and Ì[1] are
perverse, and hence Ï[1]**Ì[1] is semiperverse. So by duality, it

suffices to prove the semiperversity of Ï[1]*~Ì[1]. Concretely, we must

prove that the object Ï*~Ì has Ó2 punctual and Ói = 0 for i > 2.

For s Ÿ k≠, we have, by proper base change,

Ói(Ï*~Ì)s = Hic(´m, Ï‚[x ÿ s/x]*Ì).

So the vanishing Ói = 0 for i > 2 is obvious. We must show the

vanishing of H2c(´m, Ï‚[x ÿ s/x]*Ì) for all but finitely many values
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of s. Writing Ï as a successive extension of irreducbles, we reduce to

the case when Ï is irreducible. Then both Ï and [x ÿ s/x]*Ì are

irreducible, so H2c(´m, Ï‚[x ÿ s/x]*Ì) is nonzero if and only if there

exists an isomorphism Ï
£
§ [x ÿ s/x]*Ì. Now Ó2(Ï*~Ì) is either

punctual, or its stalk at s is nonzero for all s outside some finite subset

T of k≠.

So if Ó2(Ï*~Ì) were nonpunctual, the isomorphism class of

[x ÿ s/x]*Ì would be independent of s in k≠ - T. Replacing Ì by a
multiplicative translate of itself, we may assume that 1 is not in T, i.e.,

that Ï
£
§ inv*Ì. Since k is algebraically closed, k≠ - T contains roots

of unity of arbitrarily high order. If we take for s a root of unity ΩN of

order N, then the isomorphism class of inv*Ì is invariant under

multiplicative translation by ΩN. Since inv
*Ì is irreducible, it descends

through the N-fold Kummer covering of ´m by itself, and consequently

ç(´m, inv*Ì) • 0 mod N. Since we may choose N arbitrarily large, we

must have ç(´m, inv*Ì) = 0, contradiction. This proves the theorem,

and with it Theorem 8.4.5 above. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....6666....1111 Hypotheses and notations as in the theorem above,

suppose that no multiplicative translate of Ï
£
is isomorphic to inv*Ì.

Then Ï[1]*~Ì[1] is of the form Ó[1], for some sheaf Ó on ´m which has

no nonzero punctual sections.

pppprrrrooooooooffff Indeed, in this case H2c(´m, Ï‚[x ÿ s/x]*Ì) = 0 for all s, so the

perverse object Ï[1]*~Ì[1] is of the form Ó[1] for some sheaf Ó on ´m.

Because Ó[1] is perverse, Ó has no punctual sections. QED

Returning to Hyp¬(~, ¥; ç's; ®'s) and Hyp¬(*, ¥; ç's; ®'s), we can

be much more precise about their structure.

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....6666....2222 Suppose that the ç's and ®'s are not identical. Then
the perverse object Hyp¬(~, ¥; ç's; ®'s) is nonpunctual, i.e.,

Hyp¬(~, ¥; ç's; ®'s) = Ó¬(~, ¥; ç's; ®'s)[1]

for a sheaf Ó¬(~, ¥; ç's; ®'s) on ´m with no nonzero punctual sections.

pppprrrrooooooooffff If n=0 or m=0, this is proven in 8.4.2. By multiplicative
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translation, we may assume ¬ = 1. The Kloosterman expression

Hyp(~, ¥; ç's; ®'s) := Kl(¥, ç's)[1]*~inv
*Kl(ä¥, ä®'s)[1],

and 8.4.6.1 then give the existence of a sheaf Ó1(~, ¥; ç's; ®'s) on ´m
with no punctual sections such that

Hyp(~, ¥; ç's; ®'s) = Ó1(~, ¥; ç's; ®'s)[1]. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....6666....3333 Suppose that the ç's and ®'s are not identical. Then

Hic(´m, Ó¬(~, ¥; ç's; ®'s)) = 0 for i ± 1,

H1c(´m, Ó¬(~, ¥; ç's; ®'s)) is one-dimensional.

pppprrrrooooooooffff This is just the spelling out of 8.3.4 in the nonpunctual case. QED

CCCCaaaannnncccceeeellllllllaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....4444....7777 Given arbitrary ç's and ®'s, and a tame
character Ú, denote by V the one-dimensional ä$…-vector space

V := H0c(´m, Hyp¬(~, ¥; Ú
-1ç's; Ú-1®'s)).

In the category Perv(´m), Hyp¬(~, ¥; Ú, ç's; Ú, ®'s) sits in a short exact

sequence

0 ¨ V‚ÒÚ[1] ¨ Hyp¬(~, ¥; Ú, ç's; Ú, ®'s) ¨ Hyp¬(~, ¥; ç's; ®'s)(----1111)¨ 0.

pppprrrrooooooooffff Twisting by ÒäÚ, we reduce to the case when Ú is ú. Then by

definition we have
Hyp¬(~, ¥; ú, ç's; ú, ®'s) := Hyp¬(~, ¥; ç's; ®'s)*~Hyp1(~, ¥; ú; ú).

We have the following lemma:

LLLLeeeemmmmmmmmaaaa 8888....4444....8888 (compare 6.3.5) Denote by k : ´m - {1} ¨ ´m the

inclusion. Then we have a canonical isomorphism Hyp1(~, ¥; ú; ú) §

Rk*ä$…[1]. Writing Rk*ä$…[1] as an extension of its (shifted) cohomology

sheaves gives a short exact sequence of perverse sheaves on ´m
0 ¨ ä$…[1] ¨ Hyp1(~, ¥; ú; ú) ¨ ∂1(----1111) ¨ 0.

pppprrrrooooooooffff By the fundamental relation 8.1.12 between Fourier Transform

and convolution, denoting by j: ´m ¨ !1 the inclusion, we have

(j*Ò¥)[1]*~K § j*FT¥(j~inv
*K).

Applying this to K := inv*j*Òä¥[1], we find
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Hyp1(~, ¥; ú; ú) § j*FT¥(j~j
*Òä¥[1]) = j*FT¥(Òä¥‚j~ä$…)[1].

Now FT¥(Òä¥‚K) = [x ÿ x+1]*FT¥(K) for any K on !1, and it is proven

in [Ka-PES, Prop. A2] (cf. 2.10.1(1) for the Î-module analogue) that
FT¥(j~ä$…) = Rj*ä$…. Thus we find

j*FT¥(Òä¥‚j~ä$…)[1] § j*[x ÿ x+1]*Rj*ä$…[1] = Rk*ä$…[1]. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....8888....1111 ooooffff LLLLeeeemmmmmmmmaaaa 8888....4444....8888 For any ç, the perverse object
Hyp1(~, ¥; ç; ç) sits in a short exact sequence of perverse sheaves on

´m
0 ¨ Òç[1] ¨ Hyp1(~, ¥; ç; ç) ¨ ∂1(----1111) ¨ 0.

pppprrrrooooooooffff Simply tensor with Òç. QED

Apply 8.4.8 to calculate Hyp¬(~, ¥; ç's; ®'s)*~Hyp1(~, ¥; ú; ú). The

convolution Hyp¬(~, ¥; ç's; ®'s)*~ä$… is the constant sheaf with value

V := H0c(´m, Hyp¬(~, ¥; ç's; ®'s)).

The convolution Hyp¬(~, ¥; ç's; ®'s)*~∂1(----1111) is Hyp¬(~, ¥; ç's; ®'s)(----1111), so

we have the asserted short exact sequence
0 ¨ V[1] ¨ Hyp¬(~, ¥; ú, ç's; ú, ®'s) ¨ Hyp¬(~, ¥; ç's; ®'s)(----1111) ¨ 0.

QED

We now develop some of the immediate consequences of the
cancellation theorem.

CCCCaaaannnncccceeeellllllllaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 8888....4444....9999 Given arbitrary ç's and ®'s, and a
tame character Ú, denote by W the one-dimensional ä$…-vector space

W := H0(´m, Hyp¬(~, ¥; Ú
-1ç's; Ú-1®'s)).

In the category Perv(´m), Hyp¬(*, ¥; Ú, ç's; Ú, ®'s) sits in a short

exact sequence

0 ¨ Hyp¬(*, ¥; ç's; ®'s)(----1111) ¨Hyp¬(*, ¥; Ú, ç's; Ú, ®'s)¨W‚ÒÚ[1] ¨0.

pppprrrrooooooooffff This is the dual statement, with the dual proof. QED

SSSSeeeemmmmiiiissssiiiimmmmpppplllliiiiffffiiiiccccaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....4444....11110000 Suppose that the ç's and ®'s are
disjoint. Let r ≥ 1, and let Ú1, ... , Úr be r not necessarily distinct tame
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characters. In the category Perv(´m) over the algebraically closed field

k, the semisimplifications of Hyp¬(~, ¥; Ú1, ... , Úr , ç's; Ú1, ... , Úr , ®'s)

and of Hyp¬(*, ¥; Ú1, ... , Úr , ç's; Ú1, ... , Úr , ®'s) are each isomorphic

to the direct sum

Hyp¬(~, ¥; ç's; ®'s)··i=1, ... , r ÒÚi
[1].

pppprrrrooooooooffff This is obvious by the cancellation theorem and the fact (8.4.2)
that if the ç's and ®'s are disjoint, then

Hyp¬(~, ¥; ç's; ®'s) § Hyp¬(*, ¥; ç's; ®'s)

is simple. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....11110000....1111 The perverse object Hyp¬(~, ¥; ç's; ®'s) is simple if

and only if the ç's and ®'s are disjoint.

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....11111111 Suppose that the ç's and ®'s are not identical. Write
Hyp¬(~, ¥; ç's; ®'s) = Ó¬(~, ¥; ç's; ®'s)[1]

for a sheaf Ó¬(~, ¥; ç's; ®'s) on ´m with no nonzero punctual sections.

The local monodromy of Ó¬(~, ¥; ç's; ®'s) is the following:

(1) If n > m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank n on ´m. As I(0)-

representation it is tame, isomorphic to
·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

(dim. n-m, brk. 1/(n-m)) · ·distinct ®'s Ò®‚Unip(mult‘(®)).

(2) If n < m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank m on ´m. As

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(m-n)) · ·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it is tame, isomorphic to
·distinct ®'s Ò®‚Unip(mult‘(®)).

(3) If n = m, the sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank n on ´m - {¬},

from which it is extended by direct image. I(¬) acts by tame
pseudoreflections of determinant ÒÚ(x-¬), for Ú := °içi/°i®i.

As I(0)-representation it is tame, isomorphic to
·distinct ç's Òç‚Unip(mult0(ç)).

As I(‘)-representation it is tame, isomorphic to



Chapter8-…-adic hypergeometrics-22

·distinct ®'s Ò®‚Unip(mult‘(®)).

pppprrrrooooooooffff Suppose first n ± m. Then it follows immediately from the
cancellation theorem 8.4.7 (and 8.4.2 in the case when the ç's and ®'s
are disjoint) that Ó¬(~, ¥; ç's; ®'s) is lisse of rank max(n, m) on ´m,

and that the description claimed for its local monodromy at zero and ‘
is correct up to semisimplification. Similarly, if n=m, we see that the
sheaf Ó¬(~, ¥; ç's; ®'s) is lisse of rank n on ´m - {¬}, and that the

description claimed for its local monodromy at zero and ‘ is correct up
to semisimplification.

To see that the description claimed for its local monodromy at
zero and ‘ is absolutely correct, we must see that (universally, so
after any ÒÚ twist) the local monodromy at zero or at ‘ has at most

a single unipotent Jordan block. This is a consequence of the fact that

H1c(´m, Ó¬(~, ¥; ç's; ®'s)) is one-dimensional. Indeed, if we denote by

Ï := Ó¬(~, ¥; ç's; ®'s),

and denote by j: ´m ¨ @1 the inclusion, the coboundary of the short

exact sequence of sheaves on @1

0 ¨ j~Ï ¨ j*Ï ¨ ÏI(0)‚∂0 · ÏI(‘)‚∂‘ ¨ 0,

gives an injective map

(ÏI(0)·ÏI(‘))/H0(´m, Ï) ¨ H1c(´m, Ï).

Since H0(´m, Ï) injects into either ÏI(0) or ÏI(‘), it follows that ÏI(0)

and ÏI(‘) each have dimension at most one.
If n = m, it remains to examine the local monodromy at ¬ of the

sheaf Ï := Ó¬(~, ¥; ç's; ®'s). Denote by k : ´m - {¬} ¨ ´m the inclusion.

By the Cancellation Theorem 8.4.7 and 8.4.2, Ï is lisse on ´m - {¬} of

rank n, and it has a one-dimensional drop at ¬. Since Ï has no nonzero
punctual sections, either Ï has pseudoreflection local monodromy at ¬

and Ï § k*k
*Ï, or k*k

*Ï is lisse on ´m. In this latter case, k*k
*Ï

must be a successive extension of ÒÚ's, becaue we already know that Ï

is tame at both zero and ‘. But comparing the local monodromies of Ï
at zero and ‘, we see that Ï cannot be a successive extension of ÒÚ's.

Therefore Ï has pseudoreflection local monodromy at ¬, and

Ï § k*k
*Ï. Because ç(´m, Ï) = -1, Ï must be tame at ¬. The

determinant of the tame local monodromy at ¬ is determined by what
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it is at 0 and ‘, as indicated. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....11111111....1111 Suppose that the ç's and ®'s are not identical. Then
there exists a middle extension sheaf Ó¬(*, ¥; ç's; ®'s) on ´m such that

Hyp¬(*, ¥; ç's; ®'s) = Ó¬(*, ¥; ç's; ®'s)[1],

and assertions (1), (2), (3) of the theorem hold for Ó¬(*, ¥; ç's; ®'s).

pppprrrrooooooooffff Duality. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....11112222 If n = m and the ç's and the ®'s are identical, then

(1) the sheaf Ó-1(Hyp¬(~, ¥; ç's; ç's)) is lisse on ´m, a successive

extension of the Òç's.

(2) Ó-1(Hyp¬(~, ¥; ç's; ç's)) is isomorphic to

·distinct ç's Òç‚Unip(mult0(ç)).

(3) the sheaf Ó0(Hyp¬(~, ¥; ç's; ç's)) is a punctual sheaf, concentrated

at ¬, of rank one.

pppprrrrooooooooffff By multiplicative translation, we may assume ¬ = 1. For n = 1,
this is 8.4.8.1. Assertions (1) and (3) in the general case are proven
inductively, using the Cancellation Theorem 8.4.7.

To prove (2), we use the fact that Ó-1(Hyp¬(~, ¥; ç's; ç's)), being

lisse on ´m and tame, is determined by (indeed is the canonical

extension of, cf [Ka-LG, 1.5]) its local monodromy at zero. We must
show that, after any ÒÚ twist, this local monodromy has at most one

unipotent Jordan block. As explained above, this follows if we prove

universally that H1c(´m, Ó-1(Hyp¬(~, ¥; ç's; ç's))) has dimension ≤ 1.

To prove this, consider the perverse short exact sequence

0 ¨ Ó-1(Hyp¬(~, ¥; ç's; ç's))[1] ¨ Hyp¬(~, ¥; ç's; ç's) ¨(pctl) ¨0.

The long exact cohomology sequence for Hic(´m, ?) gives an injection

H1c(´m, Ó-1(Hyp¬(~, ¥; ç's; ç's))) ,c H0c(´m, Hyp¬(~, ¥; ç's; ç's)),

and the target is one-dimensional (cf. 8.3.4). QED

TTTThhhheeeeoooorrrreeeemmmm 8888....4444....11113333 Suppose that Hyp¬(~, ¥; ç's; ®'s) is defined over a

finite subfield k0 of k, that (n, m) ± (0, 0), and that the ç's and ®'s are
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not identical. Then the middle extension sheaf Ó¬(~, ¥; ç's; ®'s) is pure

of some weight (necessarily n + m - 1) if and only if the ç's and ®'s are
disjoint.

pppprrrrooooooooffff If the ç's and ®'s are disjoint, then the middle extension sheaf
Ó¬(~, ¥; ç's; ®'s) is pure of weight n + m - 1 (cf 8.4.2). By Deligne's main

result 3.3.1 in [De-WII], Ó¬(~, ¥; ç's; ®'s) is always mixed of weight

≤ n + m - 1. It suffices to show that if the ç's and ®'s are not identical,
then Hyp¬(~, ¥; Ú, ç's; Ú, ®'s) is nnnnooootttt pure of weight n + m + 1, but that

it has a nonzero quotient which is pure of weight n + m + 1. In the
cancellation theorem exact sequence

0 ¨ V‚ÒÚ ¨ Ó¬(~, ¥; Ú, ç's; Ú, ®'s) ¨ Ó¬(~, ¥; ç's; ®'s)(----1111) ¨ 0,

V is the geometrically constant sheaf H1c(´m, Ó¬(~, ¥; Ú
-1ç's; Ú-1®'s)),

which is pure of some weight ≤ n + m (since Ó¬(~, ¥; Ú
-1ç's; Ú-1®'s) is

mixed of weight ≤ n + m - 1). On the other hand, since the ç's and ®'s
are not identical, we can "extract duplicates" as much as possible from
the ç's and ®'s and still have some disjoint å's and ∫'s left at the end.
Iterating the above exact sequence, we see that if after extracting r
pairs of duplicates from the ç's and ®'s, Ó¬(~, ¥; å's; ∫'s)(----1111----rrrr) is a

nonzero quotient of Ó¬(~, ¥; ç's; ®'s)(----1111) which is pure of weight n + m

+1. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....4444....11113333....1111 Suppose that Hyp¬(~, ¥; ç's; ®'s) is defined over a

finite subfield k0 of k, that (n, m) ± (0, 0), and that the ç's and ®'s are

not identical. Then the canonical "forget supports" map
Ó¬(~, ¥; ç's; ®'s) ¨ Ó¬(*, ¥; ç's; ®'s)

is an isomorphism if and only if the ç's and ®'s are disjoint.

pppprrrrooooooooffff If the ç's and ®'s are disjoint, then the map is an isomorphism.
Conversely, suppose the map is an isomorphism. Then Ó¬(~, ¥; ç's; ®'s)

is pure of weight n + m - 1, for Ó¬(~, ¥; ç's; ®'s) is always mixed of

weight ≤ n + m - 1, and (by duality) Ó¬(*, ¥; ç's; ®'s) is always mixed

of weight ≥ n + m - 1. So the ç's and ®'s are disjoint. QED

8888....5555 IIIInnnnttttrrrriiiinnnnssssiiiicccc cccchhhhaaaarrrraaaacccctttteeeerrrriiiizzzzaaaattttiiiioooonnnn ooooffff hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss (compare 3.7)
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(8.5.1) We continue to work over an algebraically closed field k of
characteristic p ± …. We fix a choice of nontrivial ä$…-valued additive

character ¥ of a fintite subfield k0 of k.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....5555....2222 Let K be a perverse simple object of Dbc(´m, ä$…).

Then ç(´m, K) ≥ 0, and ç(´m, K) = 0 if and only if K = ÒÚ[1] for some

tame character Ú.

pppprrrrooooooooffff If K is punctual, then ç(´m, K) = 1. If K is nonpunctual, then K

of the form Ï[1] for some irreducible middle extension sheaf Ï on ´m
with ç(´m, Ï) = -ç(´m, K). In the Euler-Poincare formula for an Ï

without punctual sections on ´m
-ç(´m, Ï) = Swan0(Ï) + Swan‘(Ï) + ‡t in k≠ [dropt(Ï) + Swant(Ï)]

all of the terms on the right hand side are non-negative. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....5555....3333 Let K be a perverse simple object of Dbc(´m, ä$…)

whose Euler characteristic ç(´m, K) = 1. Then K is hypergeometric, i.e.,

there exist ¬ Ÿ k≠ and disjoint ç's and ®'s such that
K § Hyp¬(~, ¥; ç's; ®'s).

pppprrrrooooooooffff If K is punctual, it is ∂¬ for some ¬ Ÿ k≠, so K = Hyp¬(~, ¥; &; &).

Suppose now that K is nonpunctual. Then K of the form Ï[1] for
some irreducible middle extension sheaf Ï on ´m with ç(´m, Ï) = -1.

We claim that

Hic(´m, Ï) = 1-dim'l for i = 1,

= 0 for i ± 1.

Indeed, the H0c vanishes because Ï has no punctual sections, and the

H2c vanishes because Ï has no ä$… quotient (otherwise Ï would be the

constant sheaf, and this is incompatible with its Euler characteristic).
Dually, we have

Hi(´m, Ï) = 1-dim'l for i = 1,

= 0 for i ± 1.

Now denote by k: ´m ¨ @1 the inclusion. The long exact cohomology

sequence attached to the short exact sequence of sheaves on @1
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0 ¨ k~Ï ¨ k*Ï ¨ ÏI(0)‚∂0 · ÏI(‘)‚∂‘ ¨ 0,

gives an injective map

ÏI(0)·ÏI(‘) ¨ H1c(´m, Ï).

Therefore at most one of ÏI(0) or ÏI(‘) is nonzero, and if nonzero its
dimension is one.

In the Euler-Poincare formula for an Ï without punctual sections
on ´m
-ç(´m, Ï) = Swan0(Ï) + Swan‘(Ï) + ‡t in k≠ [dropt(Ï) + Swant(Ï)]

all of the terms on the right hand side are non-negative. So there are
two possibilities for our Ï:

(1) Ï is everywhere tame, lisse outside a single point t in k≠, and has
pseudoreflection local monodromy at t.
(2) Ï is lisse on ´m, and Swan0(Ï) + Swan‘(Ï) = 1.

We say that Ï is of type (n, m) for

n := dimension of ÏP(0) = the size of the "tame at 0" part of Ï,

m := dimension of ÏP(‘) = the size of the "tame at ‘" part of Ï.

The generic rank of Ï is max(n, m). The two cases (1) and (2) above
correspond to n = m and to n ± m respectively.

Suppose first that n = m. Tensoring with a suitable ÒÚ, an

operation under which the theorem is invariant, we may further
assume that ú is among the characters which occur in local

monodromy at zero. Denote by j: ´m ¨ !1 the inclusion. Then j*Ï is

an irreducible Fourier sheaf on !1 (it is an irreducible middle
extension, and as it is not lisse it cannot be Ò¥(tx) for any t Ÿ k). By

the numerology of Fourier Transform, one checks easily that NFT¥(j*Ï)

(= FT¥(j*Ï)), itself an irreducible Fourier sheaf on !1, is of the form

j~Ì for Ì an irreducible lisse sheaf on ´m of rank n-1 with

ç(´m, Ì) = -1. Moreover, Ì is of type (n, n-1). By Fourier inversion, we

have

[x ÿ -x]*Ï[1](----1111) = j*FT¥(j~Ì[1]) = (j*Ò¥)[1]*~inv
*Ì[1].

In view of the stability of hypergeometrics, it suffices to show that Ì[1]
is hypergeometric. Thus the case n=m results from the case n ± m.

We now turn to the case n ± m. We first treat the case when one



Chapter8-…-adic hypergeometrics-27

of n or m vanishes. In this case, we may, by a multiplicative inversion,
suppose that m = 0. Then Ï is tame at zero, and totally wild at ‘
withe Swan‘(Ï) = 1. Tensoring with a suitable ÒÚ, an operation under

which the theorem is invariant, we may further assume that ú is
among the characters which occur in local monodromy at zero. If
n=1,then by the break-depression lemma [Ka-GKM, 8.5.7] we see that Ï

is Ò¥(tx) for some t Ÿ k≠. If n ≥ 2, then j*Ï is an irreducible Fourier

sheaf on !1, and NFT¥(j*Ï) (= FT¥(j*Ï)), itself an irreducible Fourier

sheaf on !1, is of the form j~Ì for Ì an irreducible lisse sheaf on ´m of

rank n-1 with ç(´m, Ì) = -1. Moreover, Ì is of type (0, n-1). By

Fourier inversion, we have

[x ÿ -x]*Ï[1](----1111) = j*FT¥(j~Ì[1]) = (j*Ò¥)[1]*~inv
*Ì[1].

By induction on n, inv*Ì[1] and hence Ì[1] itself is hypergeometric,
whence Ï[1] is hypergeometric.

It remains to treat the case when n ± m and both n and m are
nonzero. By a multiplicative inversion, we may assume that 1 ≤ n < m,
or what is the same, that Ï is tame at ‘. Tensoring with a suitable
ÒÚ, an operation under which the theorem is invariant, we may

further assume that ú is among the characters which occur in local
monodromy at 0 [it is here that we use n ≥ 1]. Then j*Ï is an

irreducible Fourier sheaf on !1, and NFT¥(j*Ï) (= FT¥(j*Ï)), itself an

irreducible Fourier sheaf on !1, is of the form j~Ì for Ì an irreducible

lisse sheaf on ´m of rank m with ç(´m, Ì) = -1. Moreover, Ì is of type

(m, n-1). By Fourier inversion, we have

[x ÿ -x]*Ï[1](----1111) = j*FT¥(j~Ì[1]) = (j*Ò¥)[1]*~inv
*Ì[1].

By induction on min(n, m), inv*Ì[1] and hence Ì[1] itself is
hypergeometric, whence Ï is hypergeometric. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....5555....3333....1111 Let Ï be an irreducible middle extension sheaf on
´m whose Euler characteristic ç(´m, Ï) = -1. Then there exists a

unique ¬ Ÿ k≠ and unique disjoint sets of ç's and ®'s such that
K § Ó¬(~, ¥; ç's; ®'s).

pppprrrrooooooooffff The existence is given by the theorem. The ç's (resp. the ®'s)
with their multiplicities are the precisely the tame characters which
occur in the I(0)-semisimplification of Ï as I(0)-representation (resp. in
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the I(‘)-semisimplification of Ï as I(‘)-representation). The
uniqueness of ¬ results from the the following general lemma.

TTTTrrrraaaannnnssssllllaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 8888....5555....4444 (compare 3.7.7 and [Ka-GKM, 4.1.6]) Let Ï
be an irreducible middle extension sheaf on ´m whose Euler

characteristic ç(´m, Ï) is nonzero. Suppose that for some ¬ Ÿ k≠ there

exists an isomorphism Ï § [x ÿ ¬x]*Ï. Then ¬ is a root of unity of
order dividing ç(´m, Ï). In particular, if ç(´m, Ï) = -1, then ¬ = 1,

i.e., Ï is isomorphic to no nontrivial multiplicative translate of itself.

pppprrrrooooooooffff We first show that ¬ must be a root of unity. If Ï is not lisse on
´m, then its finite set S of points of nonlissenesss on ´m is stable by

s ÿ ¬s, hence ¬ is a root of unity of order dividing Card(S). If Ï is lisse
on ´m, but ¬ is not a root of unity, then by Verdier's lemma [Ver,

Prop. 1.1] Ï is tame at both zero and ‘, whence ç(´m, Ï) = 0,

contradiction.
Once ¬ is a root of unity, say of order N, then because Ï is

irreducible it descends through the N-fold Kummer covering, and hence
ç(´m, Ï) is divisible by N. QED

RRRRiiiiggggiiiiddddiiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 8888....5555....5555 Let Ï be an irreducible middle extension
sheaf on ´m whose Euler characteristic ç(´m, Ï) = -1. Then the

isomorphism class of Ï is determined up to (a unique) multiplicative
translation by the isomorphism classes of the I(0) and I(‘)-
semisimplifications of the tame parts of the local monodromy of Ï at
zero and ‘.

RRRRiiiiggggiiiiddddiiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy bbbbiiiissss 8888....5555....6666 Let Ï be an irreducible middle extension
sheaf on ´m whose Euler characteristic ç(´m, Ï) = -1.

(1) If Ï is not lisse on ´m, the isomorphism class of Ï is determined by

the following three data:
the I(0)-semisimplification of Ï,
the I(‘)-semisimplification of Ï,

the unique point ¬ Ÿ k≠ where Ï is not lisse.
(2) If Ï is lisse on ´m, the isomorphism class of Ï is determined by the

following two data:
the I(0)-semisimplification of Ï,
the I(‘)-semisimplification of Ï.
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pppprrrrooooooooffff The first assertion is an immediate consequence of the first
Rigidity Corollary, since fixing the unique point of nonlisseness in ´m
rigidifies the situation entirely.

The second assertion is a bit more delicate. We know that Ï is a
hypergeometric Ó¬(~, ¥; ç's; ®'s) of type (n, m) with n ± m. By

inversion, we may suppose that n > m. Then Ï as I(‘)-representation
is of the form

Ï § T · W = (tame of rank m) · (rank n-m, all breaks 1/(n-m)).
Since W is the unique wild irreducible I(‘)-constituent of Ï, it is an
intrinsic invariant of the the I(‘)-semisimplification of Ï. So it suffices
to show that W "detects" multiplicative translations. This is proven in
[Ka-GKM, 4.1.6, (3)]. QED

8888....6666 LLLLooooccccaaaallll RRRRiiiiggggiiiiddddiiiittttyyyy
(8.6.1) We continue to work over an algebraically closed field of
characteristic p ± …, with …-adic representations of I(‘).

We first note the following variant of Grothendieck's local
monodromy theorem [Se-Ta, Appendix].

TTTThhhheeeeoooorrrreeeemmmm 8888....6666....2222 Suppose that (W, ®) is an irreducible I(‘)-
representation. Then an open subgroup of I(‘) acts as scalars. If detW is
of finite order, then ®(I(‘)) is finite.

pppprrrrooooooooffff Clearly the first statement implies the second. To prove the first,
denote by

t… : I(‘) ¨ #…(1111)

the canonical projection defined by the …-power Kummer coverings.
Recopying the beginning of the proof of the local monodromy theorem,
one shows that there exists an endomorphism

N Ÿ Endä$…
(W)(----1111)

such that on a sufficiently small open subgroup Æ of I(‘), we have
®(©) = exp(t…(©)N)

for every © in Æ. This N is unique, and by unicity it is I(‘)-equivariant.
By irreducibility, N is scalar. QED

LLLLooooccccaaaallll RRRRiiiiggggiiiiddddiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 8888....6666....3333 Let V and W be I(‘)-representations,
each of the same rank d ≥ 1 with all breaks = 1/d. Then

(1) If ¬ Ÿ k≠ and W § [x ÿ ¬x]*W, then ¬ = 1.
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(2) If d ≥ 2, and if there exists ¬ Ÿ k≠ with V § [x ÿ ¬x]*W, then
detV § detW.

(3) If detV § detW, there exists a unique ¬ Ÿ k≠ with V § [x ÿ ¬x]*W.

pppprrrrooooooooffff Assertion (1), as noted above, is proven in [Ka-GKM, 4.1.6, (3)]. If
d ≥ 2, then detW is tame, necessarily some Òç, so its isomorphism

class is invariant by multiplicative translation, whence (2). Assertion
(3) is trivial for d=1, and in general the unicity in it results from (1).

The existence for d ≥ 2 is more delicate. Consider the canonical
extensions (cf. [Ka-LG, 1.5]) of V and W to ´m. Both of them are

necessarily hypergeometrics of type (d, 0) (by the intrinsic
characterization of hypergeometrics), say

Vcan = Ó¬(~, ¥; ç's; &), Wcan = Óμ(~, ¥; ≈'s; &).

Looking at determinants, we see that
°çi = °≈i.

Replacing W by a multiplicative translate of itself replaces Wcan by the

corresponding translate, so we may further assume that ¬ = μ. By a
further translation, we may suppose that ¬ = μ = 1. The problem now
is to show that for fixed ¥, the isomorphism class of the I(‘)-
representation of the Kloosterman sheaf

Kl(¥; ç's) := Ó1(~, ¥, ç's; &)

depends only on °çi. This is a special case of the following

CCCChhhhaaaannnnggggeeee ooooffff CCCChhhhaaaarrrraaaacccctttteeeerrrrssss TTTThhhheeeeoooorrrreeeemmmm 8888....6666....4444 Let Ó¬(~, ¥; ç's; ®'s) be a

hypergeometric sheaf of type (n, m) with n ± m. If n > m (resp. if
n < m), denote by W¬(~, ¥; ç's; ®'s) the wild part of its I(‘)-

representation (resp. of its I(0)-representation). For fixed (¬, ¥), the
isomorphism class of W¬(~, ¥; ç's; ®'s) as I(‘)-representation (resp. as

I(0)-representation) depends only on the tame character °içi/°j®j
and on the integer n-m.

pppprrrrooooooooffff The proof proceeds by induction on the quantity |n - m|. The
statement is invariant under multiplicative translation, so we may
assume that ¬ = 1. The statement is invariant under multiplicative
inversion, so we may suppose that n > m. The statement is also
invariant under ‚ÒÚ. Given two W¬(~, ¥; ç's; ®'s) and W¬(~, ¥; å's; ∫'s)

with the same n - m, and with °içi/°j®j = °iåi/°j∫j, twisting by a



Chapter8-…-adic hypergeometrics-31

sufficiently general ÒÚ reduces us to the case where none of the ç's

and none of the å's is ú. By the Cancellation Theorem 8.4.7, the
statement is invariant under "cancelling", so we may further assume
that the ç's and ®'s are disjoint, and that the å's and ∫'s are disjoint.

In this case, we have (cf. the proof of 8.4.2) equalities of

irreducible Fourier sheaves on !1

j*Ó1(~, ä¥; ú, ä®'s; äç's) § NFTä¥(j*Ó1(~, ¥; ç's; ®'s)),

j*Ó1(~, ä¥; ú, ä∫'s; äå's) § NFTä¥(j*Ó1(~, ¥; å's; ∫'s)).

The sheaves j*Ó1(~, ¥; ç's; ®'s) and j*Ó1(~, ¥; å's; ∫'s) are lisse on

´m, and tame at zero. If n-m ≥ 2, all their ‘-breaks are < 1, and the

sheaves Ó1(~, ä¥; ú, ä®'s; äç's) and Ó1(~, ä¥; ú, ä∫'s; äå's) are lisse on ´m and

tame at ‘. So by Fourier inversion and stationary phase (7.4.1.1, 7.4.2)
we have

W1(~, ¥; ç's; ®'s) § FTä¥loc(0, ‘)(W1(~, ä¥; ú, ä®'s; äç's)),

W1(~, ¥; å's; ∫'s) § FTä¥loc(0, ‘)(W1(~, ä¥; ú, ä∫'s; äå's)).

By induction on |n - m|, W1(~, ä¥; ú, ä®'s; äç's) and W1(~, ä¥; ú, ä∫'s; äå's) are

isomorphic, which concludes the proof in this case.
If n-m =1, j*Ó1(~, ¥; ç's; ®'s) and j*Ó1(~, ¥; å's; ∫'s) have a single

nonzero ‘-break, which is 1, and the sheaves Ó1(~, ä¥; ú, ä®'s; äç's) and

Ó1(~, ä¥; ú, ä∫'s; äå's) are lisse on ´m - {1}, everywhere tame, with tame

pseudoreflection local monodromy at 1. By stationary phase, we deduce
as in 7.4.6.1 that as I(‘)-representations

Ó1(~, ¥; ç's; ®'s)(‘) § (Ò¥(x)‚ÒÚ1
) · (succ. ext. of Ò®'s),

Ó1(~, ¥; å's; ∫'s)(‘) § (Ò¥(x)‚ÒÚ2
) · (succ. ext. of Ò∫'s).

for some tame characters Ú1 and Ú2. It remains only to show that

Ú1 = °içi/°j®j.

Consider Ò¥(-x)‚detÓ1(~, ¥; ç's; ®'s). It is lisse on ´m, everywhere

tame, so of the form ÒÆ for some tame character Æ. Looking at zero,

we see that Æ = °içi, while looking at ‘ we see that Æ = Ú1°j®j;

equationg these two expressions for Æ gives the asserted formula for Ú1.

QED

8888....7777 MMMMuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee TTTTrrrraaaannnnssssllllaaaattttiiiioooonnnn aaaannnndddd CCCChhhhaaaannnnggggeeee ooooffff ¥¥¥¥
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(8.7.1) Let k0 be a finite subfield of k over which ¥ is defined. For

any μ Ÿ (k0)
≠, denote by ¥μ the additive character of k0 defined by

¥μ(x) := ¥(μx).

The sheaves Ò¥ and Ò¥μ
are related by

Ò¥μ
= [xÿ μx]*Ò¥ = [x ÿ x/μ]*Ò¥.

Similarly, their multipicative inverses on ´m are related by

inv*j*Òä¥μ
= [xÿ x/μ]*inv*j*Òä¥ = [x ÿ μx]*inv

*j*Òä¥.

If ç is a multiplicative character of k0, then

Òç‚(ç(μ))deg § [xÿ μx]*Òç = [x ÿ x/μ]*Òç
on ´m over k0. For ç an arbitrary tame character, we have

Òç § [xÿ μx]*Òç = [x ÿ x/μ]*Òç
on ´m over k.

LLLLeeeemmmmmmmmaaaa 8888....7777....2222 Over an algebraically closed field k of characteristic
p ± …, for any hypergeometric Hyp¬(~, ¥; ç's; ®'s) of type (n, m), and

for any μ in any finite subfield of k, we have

Hyp¬(~, ¥μ; ç's; ®'s) § [x ÿ x/μn-m]*Hyp¬(~, ¥; ç's; ®'s)

§ [x ÿ xμn-m]*Hyp¬(~, ¥; ç's; ®'s).

Over a finite field k0 of characteristic p ± …, for any hypergeometric

Hyp¬(~, ¥; ç's; ®'s) of type (n, m) which is defined over k0, and for any

μ in k0, if we define å Ÿ ä$…
≠ to be

å := (°içi/°j®j)(μ),

we have

Hyp¬(~, ¥μ; ç's; ®'s)‚ådeg § [x ÿ x/μn-m]*Hyp¬(~, ¥; ç's; ®'s).

§ [x ÿ xμn-m]*Hyp¬(~, ¥; ç's; ®'s).

pppprrrrooooooooffff By the interrelation (cf. 8.1.10 (3)) of convolution and translation
we reduce immediately to the case when (n, m) is either (1, 0) or
(0, 1), where it is obvious. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....7777....3333 If p(n-m) is even, then over an algebraically closed
field k of characteristic p ± … we have
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Hyp¬(~, ä¥; ç's; ®'s) § Hyp¬(~, ¥; ç's; ®'s).

If in addition Hyp¬(~, ¥; ç's; ®'s) is defined over a finite subfield k0 of k,

and (°içi/°j®j)(-1) = 1 (a condition which always holds after passing

to a quadratic extension), then over k0 we have

Hyp¬(~, ä¥; ç's; ®'s) § Hyp¬(~, ¥; ç's; ®'s).

pppprrrrooooooooffff This is the Lemma with μ = -1. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....7777....4444 If n = m, then over an algebraically closed field k of
characteristic p ± … the isomorphism class of Hyp¬(~, ¥; ç's; ®'s) is

independent of ¥.
Over a finite field k0 of characteristic p ± …, for any

hypergeometric Hyp¬(~, ¥; ç's; ®'s) of type (n, n) which is defined over

k0, and for any μ in k0, if we define å Ÿ ä$…
≠ to be

å := (°içi/°j®j)(μ),

we have

Hyp¬(~, ¥μ; ç's; ®'s)‚ådeg § Hyp¬(~, ¥; ç's; ®'s).

pppprrrrooooooooffff This is the lemma with n=m. QED

8888....8888 GGGGlllloooobbbbaaaallll aaaannnndddd LLLLooooccccaaaallll DDDDuuuuaaaalllliiiittttyyyy RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn

DDDDuuuuaaaalllliiiittttyyyy RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....8888....1111 Suppose that the ç's and ®'s are
disjoint. The irreducible middle extension sheaf Ó¬(~, ¥; ç's; ®'s) is

geometrically self-dual (i.e., geometrically isomorphic to its dual), if and
only if the following three conditions hold:
(1) the set of ç's with multiplicity is stable under ç ÿ äç,
(2) the set of ®'s with multiplicity is stable under ® ÿ ä®,
(3) the product p(n - m) is even.

pppprrrrooooooooffff By (8.4.2, 8.3.3), the dual of Ó¬(~, ¥; ç's; ®'s) is Ó¬(~, ä¥; äç's; ä®'s),

so the conditons are obviously sufficient. In order for Ó¬(~, ¥; ç's; ®'s)

and Ó¬(~, ä¥; äç's; ä®'s) to be geometrically isomorphic, their local

monodromies at zero and ‘ must agree, whence (1) and (2). If (1) and
(2) hold, then the dual of Ó¬(~, ¥; ç's; ®'s) is its multiplicative translate

by (-1)n-m, to which it is isomorphic if and only if (-1)n-m = 1 in the
field k. QED
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PPPPaaaarrrriiiittttyyyy RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....8888....2222 Suppose that the ç's and ®'s are
disjoint, and that Ó¬(~, ¥; ç's; ®'s) is self dual. Then on the open set of

´m where Ó¬(~, ¥; ç's; ®'s) is lisse, the (unique up to a ä$…
≠-multiple,

by irreduciblity) autodaulity pairing is alternating if and only if
max(n, m) is even, n - m is even, and °içi/°j®j = ú.

Otherwise (i.e., if max(n, m) is odd, or or if n - m is odd, or if
°içi/°j®j ± ú) the pairing is symmetric.

pppprrrrooooooooffff If the generic rank max(n, m) is odd, the pairing has no choice
but to be symmetric.

Suppose now that max(n, m) is even. By multiplicative inversion,
we may suppose that n ≥ m. By multiplicative translation, we may
suppose ¬ = 1.

If n = m, then the character Ú := °içi/°j®j is of order dividing

two, because ÒÚ(x-1) is the determinant of the (pseudoreflection) local

monodromy at 1. If Ú = ú, local monodromy at ¬ is a unipotent
pseudoreflection; as O(n) contains no unipotent pseudoreflections (cf. the
proof of 3.4), the autoduality must be alternating. If Ú is nontrivial,
then the pairing must be symmetric; it cannot be alternating since
Sp(n) fi SL(n).

If n - m ≥ 1, then as I(‘)-representation we have (in the
notations of the proof of 8.6.4)

Ó1(~, ¥; ç's; ®'s) § W1(~, ¥; ç's; ®'s) · (tame),

with W1(~, ¥; ç's; ®'s) totally wild of Swan conductor 1, and (hence)

I(‘)-irreducible and Jordan-Holder disjoint from the "tame" factor.
Therefore the global autoduality of Ó1(~, ¥; ç's; ®'s) must induce an

autoduality of W1(~, ¥; ç's; ®'s) as irreducible I(‘)-representation. Of

course this local autoduality has the same sign as the global one which
induces it. By 8.6.4, W1(~, ¥; ç's; ®'s) depends, for fixed ¥, only upon the

integer d := n - m and the tame character Ú. Also, the character Ú has
order dividing two, since by the Duality Recognition Thm 8.8.1 it is
invariant by Ú ÿ äÚ. So we are reduced to proving that the global
theorem holds for the self-dual rank d Kloosterman sheaf

Kl(¥; Ú, d-1 ú's).
If d is odd, the duality must be symmetric.
If d ≥ 2, then detKl(¥; Ú, d-1 ú's) § ÒÚ. So if Ú is nontrivial (or if

d is odd), the pairing must be symmetric. It remains to treat the case
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where d ≥ 2 is even, and Ú is trivial, i.e., the case of the Kloosterman
sheaf Kl(¥; d ú's). We must show that the pairing is alternating in this
case. This is proven in [Ka-GKM, 4.2.1 or 5.5.1]. QED

LLLLooooccccaaaallll DDDDuuuuaaaalllliiiittttyyyy RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....8888....3333 Let W be an I(‘)-
representation of rank d ≥ 1, with all breaks = 1/d. Then
(1) W is self-dual if and only if det(W) has order dividing two and pd is
even.
(2) If W is self-dual, the autoduality pairing is alternating if and only if
d is even and det(W) is trivial.

pppprrrrooooooooffff If detW does not have order dividing two, W cannot be self dual.
So we may suppose henceforth that detW has order dividing two.

If d = 1, then W is Ò¥‚ÒÚ, which is self-dual if and only if p = 2

and Ú is trivial; in this case the autoduality is symmetric, as required .
If d ≥ 2, detW is tame, say ÒÚ. The canonical extension of W is an

Ó¬(~, ¥; ç's; &) of type (d, 0), which, being the canonical extension, is

self-dual of given parity if and only if W is self-dual of the same parity.
Comparing determinants, we find Ú = °içi.

If pd is odd, then Ó¬(~, ¥; ç's;&) cannot be self-dual (by 8.8.1), so

we may suppose that pd is even.
By 8.6.4, W is isomorphic to the I(‘)-representation attached to

Ó¬(~, ¥; Ú, d-1 ú's). So it suffices to show that if

d ≥ 2, pd is even, and Ú has order 1 or 2
then Ó¬(~, ¥; Ú, d-1 ú's) is self-dual, and the autoduality is alternating

if and only if d is even and Ú is trivial. This is a special case of the 8.8.1
and 8.8.2 QED

8888....9999 KKKKuuuummmmmmmmeeeerrrr IIIInnnndddduuuuccccttttiiiioooonnnn FFFFoooorrrrmmmmuuuullllaaaassss aaaannnndddd RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn CCCCrrrriiiitttteeeerrrriiiiaaaa

KKKKuuuummmmmmmmeeeerrrr IIIInnnndddduuuuccccttttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....9999....1111 Let d ≥ 1 be an integer which is
prime to p, and denote by [d] the d'th power endomorphism of ´m.

Over an algebraically closed field k of characteristic p ± …, for any
hypergeometric Hyp¬(~, ¥; ç's; ®'s) there exists an isomorphism

[d]*Hyp¬(~, ¥d; ç's; ®'s) §

§ Hyp¬d(~, ¥; all d'th roots of allç's; all d'th roots of all ®'s).

pppprrrrooooooooffff By multiplicative translation, we reduce to the case ¬ = 1. Since
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[d] is a homomorphism from ´m to itself, we have the convolution

relation
[d]*(K*~L) § ([d]*K)*~([d]*L).

So we are reduced to the case where Hyp1(~, ¥d; ç's; ®'s) is of type

(1, 0) or (0, 1). Since [d]* and inv* (= inv*) commute, the (0, 1) case

results from the (1, 0) case.

Since every tame character ç has a d'th root, say ç = ≈d, our

(1, 0) hypergeometric Ò¥d
‚Òç may be rewritten Ò¥d

‚[d]*Ò≈.

Applying [d]*, and using the projection formula, we get

[d]*(Ò¥d
‚Òç) § ([d]*(Ò¥d

))‚Ò≈.

So we are reduced to showing that, denoting by
Ú1, Ú2, ... , Úd

the d tame characters of order d, we have an isomorphism
[d]*(Ò¥d

) § Kl(¥; Ú1, Ú2, ... , Úd).

This is proven in [Ka-GKM, 5.6.2]. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....9999....2222 (KKKKuuuummmmmmmmeeeerrrr RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn) Let d ≥ 1 be an integer
which is prime to p, and denote by [d] the d'th power endomorphism of
´m. Over an algebraically closed field k of characteristic p ± …, an

irreducible hypergeometric Hyp¬(~, ¥; ç's; ®'s) of type (n, m) is

Kummer induced of degree d, i.e., of the form [d]*K for some K in

Dbc(´m, ä$…), if and only if the following three conditions are satisfied:

(1) d divides both n and m,
(2) there exists a set of n/d tame characters å's such that the ç's are
all the d'th roots of all the å's,
(3) there exists a set of m/d tame characters ∫'s such that the ®'s are
all the d'th roots of all the ∫'s.

Moreover, if these conditions hold, then for any μ Ÿ k with μd = ¬,
there exists an isomorphism

Hyp¬(~, ¥; ç's; ®'s) § [d]*Hypμ(~, ¥d; å's; ∫'s).

pppprrrrooooooooffff If any (not necessarily irreducible) Hyp¬(~, ¥; ç's; ®'s) of type

(n, m) satisfies (1), (2), and (3), then by the Kummer Induction

Theorem above, for any μ Ÿ k with μd = ¬,there exists an isomorphism
Hyp¬(~, ¥; ç's; ®'s) § [d]*Hypμ(~, ¥d; å's; ∫'s).
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Conversely, suppose that an iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee Hyp¬(~, ¥; ç's; ®'s) is of

the form [d]*K for some K in Dbc(´m, ä$…). Then [d]*K is perverse

simple with ç(´m, [d]*K) = 1. Since [d] is finite, K must be perverse

simple, and ç(´m, K) =ç(´m, [d]*K) = 1. Therefore K is itself

irreducible hypergeometric, so of the form Hypμ(~, ¥d; å's; ∫'s). Looking

at the Kummer induction formula for [d]*Hypμ(~, ¥d; å's; ∫'s), we see

that (1), (2), and (3) hold. QED

RRRReeeemmmmaaaarrrrkkkk 8888....9999....3333 An alternate formulation of conditions (1), (2), and (3) is
this: for some (or equivalently for every) tame character Ú of exact
order d, both the ç's and the ®'s as sets with multiplicity are stable
under the operation ≈ ÿ ≈Ú.

8888....11110000 BBBBeeeellllyyyyiiii IIIInnnndddduuuuccccttttiiiioooonnnn FFFFoooorrrrmmmmuuuullllaaaassss aaaannnndddd RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn CCCCrrrriiiitttteeeerrrriiiiaaaa

BBBBeeeellllyyyyiiii RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn CCCCrrrriiiitttteeeerrrriiiioooonnnn 8888....11110000....1111 Over an algebraically closed field
k of characteristic p ± …, let Hyp¬(~, ¥; ç's; ®'s) be an irreducible

hypergeometric of type (n, n), and suppose that p > n. Then
Hyp¬(~, ¥; ç's; ®'s) is Belyi induced of type (a,b) for some partition of

n = a + b as the sum of two strictly positive integers if and only if the
ç's and the ®'s are Belyi induced in the sense that there exist tame
characters å and ∫, ∫ ± ú, such that
(1) {ç's} = {all a'th roots of å} ⁄ { all b'th roots of ∫},
(2) {®'s} = { all a+b 'th roots of å∫}.

Moreover, if (1) and (2) hold, then
Hyp¬(~, ¥; ç's; ®'s) § [Bela,b,¬]*Hyp1(~, ¥; å; å∫),

and the local monodromy at ¬ of Ó¬(~, ¥; ç's; ®'s) is a reflection.

pppprrrrooooooooffff If an irreducible hypergeometric Hyp¬(~, ¥; ç's; ®'s) of type (n, n)

is of the form [x ÿ Bela,b,¬(x)]*K for some K in Dbc(´m, ä$…), then K is

perverse simple, lisse on ´m - {1}, and

ç(´m, K) = ç(´m, [Bela,b,¬]*K) = 1.

Therefore K is itself hypergeometric of type (1, 1) with singularity at 1,
i.e., K is Hyp1(~, ¥; å; å∫),with ∫ ± ú (by irreducibility). Looking at the

local monodromy at zero and ‘ of [Bela,b,¬]*Hyp1(~, ¥; å; å∫), we see

that (1) and (2) hold. By (7.2.6(8), its local monodromy at ¬ is a
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reflection.
Conversely, if (1) and (2) hold, we claim that

Hyp¬(~, ¥; ç's; ®'s) § [Bela,b,¬]*Hyp1(~, ¥; å; å∫).

To see this, we argue as follows. Since Hyp1(~, ¥; å; å∫) is perverse with

ç(´m, Hyp1(~, ¥; å, å∫)) = 1, and Bela,b,¬ is finite, the direct image

[Bela,b,¬]*Hyp1(~, ¥; å, å∫) is itself perverse and has

ç(´m, [Bela,b,¬]*Hyp1(~, ¥; å; å∫)) = 1.

In the caterory Perv(´m), any object K with ç(´m, K) = 1 is a

successive extension of ÒÚ's and of a single perverse simple L with

ç(´m, L) = 1. Moreover, there are no ÒÚ's if and only if the tame

parts of local monodromy at zero and ‘ of Ó-1K are disjoint. We may
apply this to the object K := [Bela,b,¬]*Hyp1(~, ¥; å; å∫), because its

local monodromy at zero is {ç's}, and that at ‘ is {®'s}, and by
hypothesis the {ç's} and {®'s} are disjoint. Therefore K is itself an
irreducible hypergeometic of type (n, n). Looking at its local
monodromy at zero, ¬, and ‘ shows (by rigidity) that K is none other
than Hyp¬(~, ¥; ç's; ®'s). QED

LLLLeeeemmmmmmmmaaaa 8888....11110000....2222 (compare 3.5.2, 3.5.7) Over an algebraically closed field
k of characteristic p ± …, let Ó¬(~, ¥; ç's; ®'s) be an irreducible

hypergeometric of type (n, n), and suppose that p > n ≥ 1. Then either
(1) Ó¬(~, ¥; ç's; ®'s) | ´m - {¬} is Lie-irreducible;

(2a) Ó¬(~, ¥; ç's; ®'s) | ´m - {¬} is Kummer induced of some degree

d ≥ 2 prime to p;

(2b) Either Ó¬(~, ¥; ç's; ®'s) | ´m - {¬} or inv*Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}

is Belyi induced of type (a,b) for some partition of n = a + b as the sum
of two strictly positive integers;
(3) Ó¬(~, ¥; ç's; ®'s) | ´m - {¬} is the tensor product Ò‚Ï of a lisse rank

one Ò with a lisse irreducible Ï of rank n whose Ggeom is finite. If in

addition det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) is of finite order, then

Ó¬(~, ¥; ç's; ®'s) | ´m - {¬} itself has finite Ggeom in this case (3).

pppprrrrooooooooffff This is a special case of 7.2.6, (1), (6), and (8). QED

LLLLeeeemmmmmmmmaaaa 8888....11110000....3333 (GGGGeeeeoooommmmeeeettttrrrriiiicccc DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt FFFFoooorrrrmmmmuuuullllaaaa) Over an
algebraically closed field k of characteristic p ± …, let Ó¬(~, ¥; ç's; ®'s) be
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an arbitrary hypergeometric of type (n, n). If °içi = °i®i = Ú, then

det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) § ÒÚ.

If °içi ± °i®i, then

det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) § Ó¬(~, ¥; °içi ; °i®i).

pppprrrrooooooooffff In the first case, local monodromy at ¬ is a unipotent
pseudoreflection, so det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) is unramified at ¬.

Since Ó¬(~, ¥; ç's; ®'s) is everywhere tame, its determinant must be an

ÒÚ, and we can compute Ú as the determinant of local monodromy at

zero. In the second case, det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) is everywhere

tame, lisse on ´m - {¬} of rank one with nontrivial local monodromy at

¬. So det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) must be Ó¬(~, ¥; °içi ; °i®i). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11110000....4444 Over an algebraically closed field k of characteristic
p ± …, let Ó¬(~, ¥; ç's; ®'s) be an arbitrary hypergeometric of type

(n, n). Then det(Ó¬(~, ¥; ç's; ®'s) | ´m - {¬}) is of finite order (resp.

trivial) if and only if both of the tame characters °içi and °i®i are of

finite order (resp. trivial).

8888....11111111 CCCCaaaallllccccuuuullllaaaattttiiiioooonnnn ooooffff GGGGggggeeeeoooommmm ffffoooorrrr iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss

(8.11.1) Throughout this section we work over an algebraically closed
field k of characteristic p ± ….

TTTThhhheeeeoooorrrreeeemmmm 8888....11111111....2222 (compare 3.5.8) Let Ó := Ó¬(~, ¥; ç's; ®'s) be an

irreducible hypergeometric of type (n, n). Suppose that p > n ≥ 1 and
that Ó | ´m - {¬} is neither Kummer induced nor Belyi induced nor

inverse Belyi induced. Let Ú := °içi/°i®i. Denote by G the group

G := Ggeom for Ó | ´m - {¬}. Then

(1) The group G is reductive. If both °içi and °i®i are of finite order,

then G
0
= G0,der. Otherwise, G

0
= ´mG0,der.

(2) The group G0,der is either {1}, SL(n), SO(n), or (if n is even) Sp(n).

(3) If Ú does not have order dividing 2, G0,der = {1} or SL(n).
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(4) If Ú has exact order 2, G0,der = {1} or SO(n) or SL(n).

(5) if Ú = ú, G0,der = SL(n) or (if n is even) Sp(n).
(6) If Ú is not of finite order, G = GL(n).

pppprrrrooooooooffff Local monodromy around ¬ is a pseudoreflection of determinant
ÒÚ(x - ¬). So if Ó | ´m - {¬} is Lie irreducible, the theorem is an

immediate consequence of the Pseudoreflection Theorem 1.5. In view of
8.10.2, the only other case is when Ó | ´m - {¬} is the tensor product

Ò‚Ï of a lisse rank one Ò with a lisse irreducible Ï of rank n whose

Ggeom is finite. In this case G0 is either {1} or ´m, depending on

whether or not Ò, or equivalently detÓ | ´m - {¬}, is of finite order. So

(1) through (4) hold (trivially) in this case. If Ú is either trivial or of
infinite order, then we cannot be in this case, for then local
monodromy around ¬ is a either a unipotent pseudoreflection or is
Diag(Ú, 1, 1,..., 1), no power of which is scalar. QED

We can be more precise about the distinguishing the various Lie-
irreducible cases. (We will discuss in section 8.17 how to detect the case

when G0,der is {1}.)
CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11111111....2222....1111 Notations and hypotheses as above, suppose further

that G0,der ± {1}. Then G0,der is SO(n) (respectively Sp(n)) if and only if
there exists a tame character ≈ such that

Ó‚Ò≈ := Ó¬(~, ¥; ≈ç's; ≈®'s)

is self dual and its autoduality pairing is symmetric (resp. alternating).

pppprrrrooooooooffff Entirely analogous to that of 3.5.8.1. QED

In the case n±m, we have
TTTThhhheeeeoooorrrreeeemmmm 8888....11111111....3333 Suppose that Ó:=Ó¬(~, ¥; ç's; ®'s) is an irreducible

hypergeometric of type (n,m), n ± m, which is not Kummer induced.
Let N:=max(n,m) be the rank of Ó, d := |n-m|, and G the group Ggeom
for Ó. Suppose p > 2N + 1. If d < N, suppose also that p does not divide
the integer 2N1(d)N2(d) of 7.1.1. Then

(1) G is reductive. If detÓ is of finite order (i.e., for n > m, if °içi is of

finite order; for m > n, if °j®j is of finite order ) , then G0=G0,der;

otherwise G0 = ´mG0,der.
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(2) If d is odd, G0,der is SL(N). If d = 1 then G fl μμμμpSL(N).

(3) If d is even, then G0,der is SL(N) or SO(N) or (if N is even) SP(N), or

|n-m|=6, N=7,8 or 9, and G0,der is one of
N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.

pppprrrrooooooooffff Since p > 2N + 1, Ó is Lie-irreducible, by 7.2.6 (4). So this theorem
is just the special case a/b = 1/d of the Main …-adic Theorem 7.2.7. The
only extra remark is that if d = 1, then detÓ has break =1 at either
zero (if n < m) or ‘ (if n > m), hence detÓ has order divisible by p. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....11111111....4444 (Ofer Gabber) For N=8, neither of the two groups
the image of SL(2)≠Sp(4) in stdºstd
the image of SL(2)≠SL(4) in stdºstd

occurs as G0,der for a hypergeometric of type (8,2).

pppprrrrooooooooffff Entirely analogous to that of 4.0.1. QED

The discrimination among the various possible cases is aided by

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....11111111....5555 Hypotheses and notations as in 8.11.3 above, G0,der

is contained in SO(N) (resp. in Sp(N)) if and only if there exists a tame
character ≈ such that Ó‚Ò≈ := Ó¬(~, ¥; ≈ç's; ≈®'s) is self dual and its

autoduality pairing is symmetric (resp. alternating). Moreover, if pN is

odd, then G0,der is contained in SO(N) if and only if there exists a tame
character ≈ such that Ó‚Ò≈ := Ó¬(~, ¥; ≈ç's; ≈®'s) has its

Ggeom fi SO(N).

pppprrrrooooooooffff Entirely analogous to that of 3.6.1. QED

LLLLeeeemmmmmmmmaaaa 8888....11111111....6666 (GGGGeeeeoooommmmeeeettttrrrriiiicccc DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt FFFFoooorrrrmmmmuuuullllaaaa) Let
Ó:=Ó¬(~, ¥; ç's; ®'s)
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be an irreducible hypergeometric of type (n,m), n > m. Let Ú := °içi.

Then
(1) if n - m ≥ 2, det(Ó) § ÒÚ.

(2) if n - m = 1, det(Ó) § Ó¬(~, ¥; Ú; &) := [x ÿ ¬x]*(Ò¥‚ÒÚ).

pppprrrrooooooooffff Since n > m, det(Ó) is lisse on ´m, tame at zero, and

(ÒÚ)
£‚det(Ó) extends to a lisse sheaf on !1.

If n - m ≥ 2, then det(Ó) is tame at ‘ as well (since Ó has all its

‘-slopes 1/(n-m) < 1), and hence (ÒÚ)
£‚det(Ó) is lisse on !1 and

tame at ‘, hence geometrically constant.
If n - m = 1, then as I(‘)-representation
Ó § (tame) · W¬(~, ¥; ç's; ®'s),

with W¬(~, ¥; ç's; ®'s) of rank one. By 8.6.4,

W¬(~, ¥; ç's; ®'s) § W¬(~, ¥; Ú/(°j®j); &) :=

:= [x ÿ ¬x]*(Ò¥)‚(ÒÚ/°j®j
) § (tame)‚[x ÿ ¬x]*(Ò¥‚ÒÚ).

Therefore Ó¬(~, ¥; Ú; &)£‚det(Ó) is lisse on !1 and tame at ‘, so

geometrically constant. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11111111....6666....1111 Suppose that Ó:=Ó¬(~, ¥; ç's; ®'s) is an irreducible

hypergeometric of type (n,m), n > m. Then Ggeom fi SL(n) if and only if

n-m ≥ 2 and °içi = ú.

8888....11111111....7777 DDDDiiiirrrreeeecccctttt SSSSuuuummmmssss aaaannnndddd TTTTeeeennnnssssoooorrrr PPPPrrrroooodddduuuuccccttttssss ((((ccccoooommmmppppaaaarrrreeee 3333....8888))))
We continue to work over an algebraically closed field k of

characteristic p ± ….
LLLLeeeemmmmmmmmaaaa 8888....11111111....7777....1111 (compare 3.8.1) Suppose that Ó and Ó' are
irreducible hypergeometrics of types (n,m) and (n',m') respectively,
whose generic ranks max(n,m) and max(n',m') are both ≥ 2. Suppose
that there exists a dense open set j: U ¨´m, a lisse rank one Ò on U,

and an isomorphism j*Ó § j*Ó'‚Ò of lisse sheaves on U. Then

(1) (n,m) = (n',m').
(2) If n = m, denoting by ¬ (resp. ¬') the unique singularity of Ó (resp.
Ó') in ´m, we have ¬ = ¬'.

(3) If (n,m) is not (2,1), (1,2) or (2,2), then Ò is Òç for some tame
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character ç, and Ó § Ó'‚Òç on ´m.

pppprrrrooooooooffff Entirely analogous to the proof of 3.8.1. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....11111111....7777....2222 (compare 3.8.2) Suppose that Ó1, ..., Ón are n ≥ 2

irreducible hypergeometrics, with Ói of rank Ni ≥ 2. Suppose that

(1) if Ni = 2, Ói is of type (2,0) or (0,2).

(2)for each i, denote by Gi fi GL(Ni) the group Ggeom of Ói (restricted to

some dense open U where it is lisse), and suppose that Gi
0,der is one of

the groups
SL(Ni), any Ni ≥ 2,

Sp(Ni), any even Ni ≥ 4,

SO(Ni), Ni =7 or any Ni ≥ 9,

SO(3), if Ni = 3 and no Nj = 2,

SO(5), if Ni = 5 and no Nj = 4,

.SO(6), if Ni = 6 and no Nj = 4,

G2 fi SO(7), if Ni = 7,

Spin(7) fi SO(8) if Ni = 8, and no Nj= 7.

Suppose that for all i±j, and all å Ÿ k≠, there exist no isomorphisms

from Ói‚Òç to either Ój or to its dual (Ój)
£. Then group G := Ggeom of

·Ói has G
0,der = °Gi

0,der, and that of ‚Ói has G
0,der = the image of

°Gi
0,der in ‚stdni

.

pppprrrrooooooooffff Entirely analogous to the proof of 3.8.2, using 8.5.4 in place of
3.7.7. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11111111....7777....2222....1111 (compare 3.8.2.1) Let Ó := Ó¬(~, ¥; ç's; ®'s) be an

irreducible hypergeometric of rank N ≥ 2. If N = 2, suppose that Ó is of
type (2,0) or (0,2). Suppose that Ó is self-dual, and that Ggeom (resp.

(Ggeom)0) is one of the groups G:

Sp(N), if N even,
SO(N), if N ± 4, 8.
G2 fi SO(7), if N = 7,

Spin(7) fi SO(8) if N = 8.
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Let d ≥ 2, and let μ1, ... , μd be d distinct elements of k≠. Then the

direct sum

·i Ó¬/μi
(~, ¥; ç's; ®'s) = ·i [x ÿ μix]

*Ó

has Ggeom (resp. (Ggeom)0) the d-fold product group Gd.

pppprrrrooooooooffff Entirely analogous to the proof of 3.8.2.1. QED

In the case of Kummer induction, 8.11.7.2 gives:
TTTThhhheeeeoooorrrreeeemmmm 8888....11111111....7777....3333 (compare 3.8.3) Let Ó := Ó¬(~, ¥; ç's; ®'s) be an

irreducible hypergeometric of rank N ≥ 2. If N = 2, suppose that Ó is of

type (2,0) or (0,2). Suppose that Ó has (Ggeom)0,der one of the groups G:

SL(N),
Sp(N), if N even,
SO(N), if N ± 4, 8.
G2 fi SO(7), if N = 7,

Spin(7) fi SO(8) if N = 8.
Fix an integer d ≥ 2 prime to p. Let S fi μμμμd(k) be a nonempty subset of

μμμμd(k) which is maximal among all nonempty subsets of μμμμd(k) which

satisfy the following condition:
whenever Ω1 and Ω2 are distinct elements of S, and ç is a tame

character, there exists no isomorphism from Ó¬Ω1
(~, ¥; ç's; ®'s)‚Òç to

either Ó¬Ω2
(~, ¥; ç's; ®'s) or to its dual (Ó¬Ω2

(~, ¥; ç's; ®'s))£.

Then [d]*Ó¬(~, ¥; ç's; ®'s) has (Ggal)
0,der § GS.

pppprrrrooooooooffff Entirely analogous to the proof of 3.8.3. QED

8888....11112222 AAAArrrriiiitttthhhhmmmmeeeettttiiiicccc DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt FFFFoooorrrrmmmmuuuullllaaaa
(8.12.1) In this section, we work over a finite field k0 of

characteristic p ± … and cardinality q. We will compute the
determinant of an arbitrary nonpunctual irreducible hypergeometric
Ó¬(~, ¥; ç's; ®'s) which is defined over k0. At the expense of a

multiplicative inversion and a multiplicative translation, we may and
will assume that n ≥ m and that ¬ = 1.

TTTThhhheeeeoooorrrreeeemmmm 8888....11112222....2222 (AAAArrrriiiitttthhhhmmmmeeeettttiiiicccc DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt FFFFoooorrrrmmmmuuuullllaaaa) Let k0 be a
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finite field of characteristic p ± … and cardinality q, and
Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual irreducible hypergeometric defined over k0 of type

(n, m) with n ≥ m and ¬ = 1. Define

Ú := °içi, a character of k0
≠,

Æ := °j®j, a character of k0
≠,

N := ‡distinct ç among the çi
(1/2)mult0(ç)(mult0(ç) - 1)

A := qN[°i1,i2
(-g(¥, çi1

/çi2
))]≠[°i,j (-g(ä¥, ä®j/äçi))]

= Ú((-1)n-1)qn(n-1)/2°i,j (-g(ä¥, ä®j/äçi)) Ÿ ä$….

Then

(1a) if n=m and Ú = Æ, det(Ó)‚(ÒÚ)
£ § Adeg.

(1b) if n=m and Ú ± Æ, det(Ó)‚(ÒÚ(x)‚Ò(Æ/Ú)(1 - x))
£ § Adeg.

(2) if n - m = 1, det(Ó)‚(Ò¥‚ÒÚ)
£ § Adeg.

(3) if n - m ≥ 2, det(Ó)‚(ÒÚ)
£ § Adeg.

pppprrrrooooooooffff In all cases, the left hand side is a lisse sheaf of rank one which is
geometrically constant (by the geometric determinant formulas 8.10.3

and 8.11.6), so it is necessarily of the form ådeg for some unit å in ä$….

Since the sheaves Ò(Æ/Ú)(1 - x) and Ò¥ are both canonically trivial at

zero, it follows that å is the determinant of det(Ó)‚(ÒÚ)
£ aaaassss DDDD((((0000))))----

rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnn. The verification that å = A is a straightforward if
tedious modification of that given in [Ka-GKM, 7.0.8, 7.2, 7.3, 7.4] in the
case of Kloosterman sheaves, with 7.3.1 there replaced by 8.2.10 in the
general case. That the two expressions for A coincide is [Ka-GKM, 7.4.1.1,
7.4.1.2 and 7.4.1.4]. QED

8888....11113333 SSSSaaaattttoooo----TTTTaaaatttteeee LLLLaaaawwww ffffoooorrrr HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc SSSSuuuummmmssss;;;; NNNNoooonnnneeeexxxxcccceeeeppppttttiiiioooonnnnaaaallll
CCCCaaaasssseeeessss
(8.13.1) Let k0 be a finite field of characteristic p ± …, and

Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual irreducible hypergeometric defined over k0 of type

(n, m) with n ≥ m and ¬ = 1. Denote by G the group Ggeom for Ó. Recall
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that since Ó is pure (of weight n + m - 1), Ggeom is semisimple, so

G0,der = G0. As above, put

Ú := °içi, a character of k0
≠,

Æ := °j®j, a character of k0
≠,

A := Ú((-1)n-1)qn(n-1)/2°i,j (-g(ä¥, ä®j/äçi)) Ÿ ä$….

We also pick a square root of q := Card(k0) so as to be able to speak of

the Tate twist Ó(((((nnnn++++mmmm----1111))))////2222) of Ó, which is pure of weight zero.

LLLLeeeemmmmmmmmaaaa 8888....11113333....2222 Notations and hypotheses as above, suppose that Ó is
geometrically self-dual. If (Ú/Æ)(-1) = 1 (a condition which is always
satisfied if either the autoduality is symplectic, or if p = 2, or if p is odd
and we replace k0 by its quadratic extension) then the Tate twist

Ó(((((nnnn++++mmmm----1111))))////2222)
is arithmetically self-dual with values in ä$….

pppprrrrooooooooffff Ó := Ó1(~, ¥; ç's; ®'s) and Ó1(~, ä¥; äç's; ä®'s)(nnnn++++mmmm----1111) are dual as

lisse sheaves on ´m - {1} (indeed on ´m if n > m), in virtue of the

duality formulas 8.2.12 and 8.4.2, (5). By the Duality Recognition
Theorem 8.8.1, Ó := Ó1(~, ¥; ç's; ®'s) is geometrically self dual if and

only if p(n-m) is even and the sets of the ç's and of the ®'s are each
stable by inversion. So the arithmetic dual of Ó is

Ó1(~, ä¥; ç's; ®'s)(nnnn++++mmmm----1111).

By 8.7.3, if (Ú/Æ)(-1) = 1, then
Ó1(~, ä¥; ç's; ®'s)(nnnn++++mmmm----1111) § Ó1(~, ¥; ç's; ®'s)(nnnn++++mmmm----1111). QED

TTTThhhheeeeoooorrrreeeemmmm 8888....11113333....3333 Hypotheses and notations as above, suppose that
G := Ggeom for Ó is either O(n) or, if n is even, Sp(n). Suppose also that

(Ú/Æ)(-1) = 1.
Then the Tate twist

Ó(((((nnnn++++mmmm----1111))))////2222)
is pure of weight zero, and all of its Frobenii land in Ggeom. Fix an

embedding of ä$… into ^, and a maximal compact subgroup K of the Lie

group Ggeom(^). The conjugacy class of the semisimple part of each

®(FrobE,t) for Ó(((((nnnn++++mmmm----1111))))////2222) meets K in a single conjugacy class,

denoted ø(E, t). The conjugacy classes ø(E, t) are equidistributed in the
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space K† of conjugacy classes of K with respect to normalized Haar
measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

pppprrrrooooooooffff Since Ó is pure of weight n+m-1, Ó(((((nnnn++++mmmm----1111))))////2222) is certainly
pure of weight zero. That all the Frobenii of Ó(((((nnnn++++mmmm----1111))))////2222) land in G is
precisely the content of the previous Lemma. The equidistribution
results from Deligne's Weil II, as recalled in 7.11.1. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....11113333....4444 Hypotheses and notations as above, suppose that
G := Ggeom for Ó is SO(n), and that

(Ú/Æ)(-1) = 1.
Then after replacing k0 by a quadratic extension, we have:

The Tate twist
Ó(((((nnnn++++mmmm----1111))))////2222)

is pure of weight zero and all of its Frobenii land in Ggeom. Fix an

embedding of ä$… into ^, and a maximal compact subgroup K of the Lie

group Ggeom(^). The conjugacy class of the semisimple part of each

®(FrobE,t) for Ó(((((nnnn++++mmmm----1111))))////2222) meets K in a single conjugacy class,

denoted ø(E, t). The conjugacy classes ø(E, t) are equidistributed in the
space K† of conjugacy classes of K with respect to normalized Haar
measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

pppprrrrooooooooffff By the above lemma, all the Frobenii of Ó(((((nnnn++++mmmm----1111))))////2222) lie in
O(n). The obstruction to their lying in SO(n) is a character of order
dividing two which is geometrically constant, hence is trivialized by
any constant field extension of even degree. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....11113333....5555 Hypotheses and notations as above, suppose that
Ggeom is SL(n). Let å Ÿ ä$… be any solution of

å-n = A.

Then Ó‚ådeg is pure of weight zero, and has all its Frobenii in Ggeom.

Fix an embedding of ä$… into ^, and a maximal compact subgroup K of

the Lie group Ggeom(^). The conjugacy class of the semisimple part of

each ®(FrobE,t) for Ó‚ådeg meets K in a single conjugacy class,
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denoted ø(E, t). The conjugacy classes ø(E, t) are equidistributed in the
space K† of conjugacy classes of K with respect to normalized Haar
measure, in any of the three senses of equidistrbiution of ([Ka-GKM,
3.5]).

pppprrrrooooooooffff This results from the arithmetic determinant formula (and Weil
II). QED

In a similar vein, we have the following slightly less precise result.

TTTThhhheeeeoooorrrreeeemmmm 8888....11113333....6666 Hypotheses and notations as above, suppose that
eeeeiiiitttthhhheeeerrrr

(1) (Ggeom)0 is SL(n) or Sp(n)

or

(2) n is odd and (Ggeom)0 is SO(n).

Then G := Ggeom is of the form μμμμdG
0 for some d, and there exists a

constant å in ä$…
≠ with

å-n = (root of unity of order dividing order of detGgeom)≠A,

such that Ó‚ådeg is pure of weight zero, and has all its Frobenii in
Ggeom. Fix an embedding of ä$… into ^, and a maximal compact

subgroup K of the Lie group Ggeom(^). The conjugacy class of the

semisimple part of each ®(FrobE,t) for Ó‚ådeg meets K in a single

conjugacy class, denoted ø(E, t). The conjugacy classes ø(E, t) are
equidistributed in the space K† of conjugacy classes of K with respect to
normalized Haar measure, in any of the three senses of equidistrbiution
of ([Ka-GKM, 3.5]).

pppprrrrooooooooffff In all the cases listed, the normalizer of G0 in GL(n) is ´mG0. The

rest of the proof proceeds as in [Ka-MG, Cor. 16]. QED

8888....11114444 CCCCrrrriiiitttteeeerrrriiiiaaaa ffffoooorrrr ffffiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy
(8.14.1) Let C be a smooth geometrically connected curve over a
finite field k of characteristic p ± …, and Ï a lisse ä$… sheaf on C. Fix a

geometric point ≈ of C‚käk, and denote by
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π1
geom := π1(C‚käk, ≈) fi π1

arith := π1(C, ≈)

the geometric and arithmetic fundamental groups respectively of C, by

®: π1
arith ¨ GL(Ï≈)

the …-adic representation that Ï "is", and by

Ggeom := the Zariski closure of ®(π1
geom),

Garith := the Zariski closure of ®(π1
arith).

(8.14.2) One knows that the radical of (Ggeom)0 is unipotent (this is

Grothendieck's global version of the local monodromy theorem, cf. [De-
WII, 1.3.8]). Thus if Ï is geometrically semisimple, its Ggeom is a

semisimple group. Applying this to det(Ï), we recover the fact that
det(Ï) is geometrically of finite order. Therefore a suitable twist

Ï‚ådeg has det(Ï‚ådeg) arithmetically of finite order.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....11114444....3333 Suppose that Ï is geometrically semisimple.
Consider the following conditions:

(1) Ggeom is finite (i.e., ®(π1
geom) is finite).

(2) the image of π1
arith (or equivalently of Garith) in PGL(Ï≈) is finite.

(3) for every finite extension E of k, and every point t Ÿ C(E), some
strictly positive power of ®(FrobE,t) is a scalar.

(4) for every finite extension E of k, and every point t Ÿ C(E), some
strictly positive power of ®(FrobE,t) has all its eigenvalues equal.

We have the implications
(2) à (3) à (4) à (1),

and if Ï is geometrically irreducible, these conditions are all equivalent:
(1) À (2) À (3) À (4)

pppprrrrooooooooffff We first show that (1) à (2) if Ï is geometrically irreducible.

Any element © of π1
arith normalizes π1

geom, so ®(©) normalizes

Ggeom. Since Ggeom is finite, its automorphism group is finite, say of

order N. Thus ®(©)N centralizes Ggeom; as Ggeom is an irreducible

subgroup of GL(Ï≈), ®(©)
N is a scalar. Therefore the image of π1

arith in

PGL(Ï≈) has every element of order dividing N. By Zariski density, the
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image of Garith has the same property. Therefore the Lie algebra of this

image is killed by N, so this image is finite.
That (2) à (3) à (4) is obvious.
It remains to show that (4) à (1). Since det(Ï) is geometrically of

finite order, the intersection of Ggeom with the scalars is finite.

Therefore the restriction to Ggeom of the adjoint representation of

GL(Ï≈) has a finite kernel. So it suffices to show that if (4) holds for Ï,

then End(Ï) has iiiittttssss Ggeom finite. But if (4) holds for Ï, then for

End(Ï) the following condition is satisfied:
for every finite extension E of k, and every point t Ÿ C(E), some
strictly positive power of (Ad«®)(FrobE,t) is unipotent.

We claim that this implies that there exists an N ≥ 1 such that
for every finite extension E of k, and every point t Ÿ C(E),

(Ad«®)(FrobE,t)
N is unipotent.

Indeed, Ï is definable over some finite extension E¬ of $…, so the

eigenvalues of (Ad«®)(FrobE,t) are roots of unity which are algebraic of

degree at most the rank of End(Ï) over E¬; as E¬ has only finitely

many extensions of any given degree, all the eigenvalues of
(Ad«®)(FrobE,t) lie in a fixed finite extension F¬ of $…, and in any such

field F¬ there are only finitely many roots of unity.

By Chebataroff, it follows now that (Ad«®)(©)N is unipotent for

eeeevvvveeeerrrryyyy element © in π1
arith, so a fortiori for every element © in

π1
geom. By Zariski density, it follows that gN is unipotent for every

element in the group G := Ggeom for End(Ï). But Ï and hence End(Ï)

is geometrically semisimple, so G is a semisimple group. Thus G0 is a
connected semisimple group in which the N'th power of every element
is unipotent; looking at elements of a maximal torus, we infer that its

rank is zero, hence that G0 = {e}, and hence that G itself is finite. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11114444....3333....1111 Suppose that Ï is geometrically irreducible and
that det(Ï) is arithmetically of finite order. Then the following
conditions are equivalent:
(1) Ggeom is finite.

(2) Garith is finite.

(3) for every finite extension E of k, and every point t Ÿ C(E), ®(FrobE,t)

is quasi-unipotent, i.e., all its eigenvalues are roots of unity.
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TTTThhhheeeeoooorrrreeeemmmm 8888....11114444....4444 Suppose that Ï is geometrically irreducible, that its
determinant is arithmetically of finite order, and that Ï is pure of
weight zero for all embeddings of ä$… into ^. Then the following

conditions are equivalent:
(1) Ggeom is finite.

(2) Garith is finite.

(3) for every finite extension E of k, and every point t Ÿ C(E), ®(FrobE,t)

is quasi-unipotent, i.e., all its eigenvalues are roots of unity.
(4)for every finite extension E of k, and every point t Ÿ C(E), all the
eigenvalues of ®(FrobE,t) are algebraic integers.

(5) for every finite extension E of k, every point t Ÿ C(E), and every

integer N ≥ 1, Trace(®(FrobE,t)
N) is an algebraic integer.

(6) for every finite extension E of k, and every point t Ÿ C(E),
Trace(®(FrobE,t)) is an algebraic integer.

pppprrrrooooooooffff We already know (1) À (2) À (3), and trivially (3) à (4) à (5)
à (6). We have (4) à (3), simply because roots of unity are
characterized among all algebraic integers as those all of whose
archimedean absolute values are one. We have (5) à (4) by [Ax], and
we have (6) à (5) for (E, t Ÿ C(E)) by applying (6) to each (EN, t),

where EN denotes the extension of degree N of E. QED

Here is a mild variant, which will be needed for dealing with
hypergeometrics of type (n, n).
TTTThhhheeeeoooorrrreeeemmmm 8888....11114444....5555. Let C be a smooth geometrically connected curve
over a finite field k of characteristic p ± …, and Ï a middle extension ä$…
sheaf on C. Let U fi C be any nonempty open set on which Ï is lisse. Fix
a geometric point ≈ of U‚käk, and denote by

π1
geom := π1(U‚käk, ≈) fi π1

arith := π1(U, ≈)

the geometric and arithmetic fundamental groups respectively of U, by

®: π1
arith ¨ GL(Ï≈)

the …-adic representation that Ï | U "is", and by

Ggeom := the Zariski closure of ®(π1
geom),

Garith := the Zariski closure of ®(π1
arith).
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Suppose that Ï | U is geometrically irreducible, that its determinant is
arithmetically of finite order, and that Ï | U is pure of weight zero for
all embeddings of ä$… into ^. Then the following conditions are

equivalent:
(1) Ggeom is finite.

(2) Garith is finite.

(3) for every finite extension E of k, and every point t Ÿ C(E),
FrobE,t | Ïät is quasi-unipotent, i.e., all its eigenvalues are roots of unity.

(4)for every finite extension E of k, and every point t Ÿ C(E), all the
eigenvalues of FrobE,t | Ïät are algebraic integers.

(5) for every finite extension E of k, every point t Ÿ C(E), and every

integer N ≥ 1, Trace((FrobE,t)
N | Ïät) is an algebraic integer.

(6) for every finite extension E of k, and every point t Ÿ C(E),
Trace(FrobE,t | Ïät) is an algebraic integer.

pppprrrrooooooooffff Restricting to t's in U, we see by the previous theorem that any
of (3), (4), (5), (6) implies the equivalent conditions (1) and (2). Trivially,
(3) à (4) à (5) à (6). So it suffices to show that (2) à (3). This is only
a problem at points t in C - U. By Deligne's result on integrality [SGA7
Part II, Expose XXI, Appendice, Cor. 5.3] we see that if (3) holds at all
point of U, then the eigenvalues of FrobE,t | Ïät are algebraic integers,

and by [De-WII, 1.8.1] we see that all their archimedean absolute
values are ≤ 1. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....11114444....6666 (pppp----aaaaddddiiiicccc ccccrrrriiiitttteeeerrrriiiioooonnnn ffffoooorrrr ffffiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy). Let k be
a finite field of characteristic p ± …, and Ó a middle extension ä$…-sheaf

on ´m over k. Let U fi ´m be any nonempty open set on which Ï is

lisse. Fix a geometric point ≈ of U‚käk, and denote by

π1
geom := π1(U‚käk, ≈) fi π1

arith := π1(U, ≈)

the geometric and arithmetic fundamental groups respectively of U, by

®: π1
arith ¨ GL(Ó≈)

the …-adic representation that Ó | U "is", and by

Ggeom := the Zariski closure of ®(π1
geom),

Garith := the Zariski closure of ®(π1
arith).

Suppose that
(1) Ó | U is geometrically irreducible of generic rank n ≥ 2,
(2) Ó | U is pure of some weight w“ for every embedding “ of ä$… into ^.
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(3) for every finite extension E of k, and every point t Ÿ E≠,
Trace(FrobE,t | Óät) is an algebraic number which is integral at all

places of ä$ of residue characteristic …' ± p.

(4) "the" number å in ä$…
≠ such that det(Ó‚å-deg | U) is

arithmetically of finite order (strictly speaking, å is only well defined
up to multiplication by a root of unity) is an algebraic integer which is
a unit at all places of ä$ of residue characteristic …' ± p.

Then the following conditions are equivalent:
(1) Ggeom is finite.

(2) for every finite extension E of k, every multiplicative character ç

of E≠, and every p-adic valuation "ord" of ä$, we have the inequality

ord(Trace(FrobE | H1c(´m‚käk, Ó‚Òç))) ≥ deg(E/k)ord(å).

pppprrrrooooooooffff Extending the finite field k if necessary, we may suppose that
the open set U where Ó is lisse contains a rational point u. Then we
may take for å any n'th root of det(Frobk,u | Óäu). Since Ó is pure of

some weight for every complex embedding, we see that Ó‚å-deg is
pure (necessarily of weight zero, since its determinant is pure of weight
zero, being arithmetically of finite order) for every complex embedding.

In view of the previous theorem (applied to Ó‚å-deg ) , Ggeom is finite

if and only if for every finite extension E of k, and every point t Ÿ E≠,

Trace(FrobE,t | (Ó‚å-deg)
ät
) := Trace(FrobE,t | (Ó)ät

)/ådeg(E/k)

is an algebraic integer. Since this trace is by hypothesis integral outside
of p, the condition is that for every p-adic valuation "ord" of ä$, we
have the inequality

ord(Trace(FrobE,t | (Ó)ät
)) ≥ deg(E/k)ord(å).

Fix the choice of the p-adic valuation "ord", and the field E, and allow t

to vary over E≠. Since Card(E≠) is pppprrrriiiimmmmeeee ttttoooo pppp, it is equivalent (by

multiplicative Fourier inversion on the finite group E≠) to show that for

every multiplicative character ç of E≠, we have
ord(‡t in E≠ ç(t)Trace(FrobE,t | (Ó)ät

)) ≥ deg(E/k)ord(å).

By the Lefschetz Trace Formula (applied to Ó‚Òç), and the vanishing

of Hic for a geometrically irreducible middle extension of generic rank

≥ 2 on an open curve, we see that
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-Trace(FrobE | H1c(´m‚käk, Ó‚Òç)) =

= ‡t in E≠ ç(t)Trace(FrobE,t | (Ó)ät
). QED

8888....11115555 IIIIrrrrrrrreeeedddduuuucccciiiibbbblllleeee HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss wwwwiiiitttthhhh ffffiiiinnnniiiitttteeee GGGGggggeeeeoooommmm
TTTThhhheeeeoooorrrreeeemmmm 8888....11115555....1111 (ffffiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy ccccrrrriiiitttteeeerrrriiiioooonnnn ffffoooorrrr
hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss)))) Let k be a finite field of characteristic p ± …,
q := Card(k), and

Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual, geometrically irreducible hypergeometric defined over k
of type (n, m) with n ≥ m, n ≥ 2 and ¬ = 1. Put

Ú := °içi, a character of k0
≠,

A := Ú((-1)n-1)qn(n-1)/2°i,j (-g(ä¥, ä®j/äçi)) Ÿ ä$….

å := any n'th root of A.
Then Ggeom for Ó is finite if and only if for every finite extension E of

k, every multiplicative character ˙ of E≠, and every p-adic valuation
"ord" of ä$, we have the inequality

‡i ord(g(¥E, ˙çi,E) + ‡j ord(g(ä¥E, ä˙ä®j,E) ≥ deg(E/k)ord(å).

pppprrrrooooooooffff This is immediate from the p-adic criterion 8.14.6, the fact
(8.2.11) that

Trace(FrobE | H1c(´m‚käk, Ò˙‚Ó1(~, ¥; ç's; ®'s))) =

= (°i(-g(¥E, ˙çi,E)))(°j(-g(ä¥E, ä˙ä®j,E))),

and the fact that Gauss sums are algebraic integers which are units
outside of p. QED

The next proposition shows that in searching for hypergeometrics
with finite Ggeom, we "lose" nothing by looking only at those defined

over finite fields.
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 8888....11115555....2222 Let k be an algebraically closed field of
characteristic p ± …, q := Card(k), and

Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual, geometrically irreducible hypergeometric defined over k
of type (n, m) with n ≥ m and ¬ = 1. Suppose that Ggeom is finite. Then

(1) the n çi's are all distinct and all of finite order (i.e., local
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monodromy at zero is of finite order).
(2) the m ®j's are all distinct and all of finite order (i.e., local

monodromy at ‘ is of finite order).
(3) Ó is defined over a finite subfield of k.

pppprrrrooooooooffff If Ggeom is finite, then the local monodromy at both zero and ‘

must be of finite order, whence (1) and (2). Once (1) and (2) hold, (3) is
tautologous. QED

8888....11116666 EEEExxxxpppplllliiiicccciiiittttaaaattttiiiioooonnnn vvvviiiiaaaa SSSSttttiiiicccckkkkeeeellllbbbbeeeerrrrggggeeeerrrr
(8.16.1) We now explicate the finite monodromy criterion 8.15.1 with
the aid of the Stickelberger formula for the p-adic valuations of Gauss
sums. For n ≥ 1, we denote by Ωn a primitive n'th root of unity in ä$….

We denote by Kp fi ä$… the subfield

Kp := $(Ωp, all ΩN with N prime to p),

by Øp fi Kp the subring

Øp := #[Ωp, all ΩN with N prime to p]

of all algebraic integers in Kp,

by Kp,nr fi Kp the subfield

Kp,nr := $(all ΩN with N prime to p),

and by Øp,nr fi Kp,nr the subring

Øp,nr := #[all ΩN with N prime to p]

of all algebraic integers in Kp,nr.

All multiplicative characters ç of finite fields E of characteristic p take
values in Øp,nr, and their Gauss sums g(¥, ç) lie in Øp.

(8.16.2) Fix an embedding of fields
“ : Kp,nr fi ä$p.

For any integer N prime to p, reduction mod ∏ defines an isomorphism
of groups μμμμN(ä$p) § μμμμN(äÉp), so we have

μμμμN(ä$…) = μμμμN(Øp,nr) = μμμμN(ä$p) § μμμμN(äÉp).

Taking N := q - 1 where q := Card(E) for a finite subfield E of äÉp , we

find

μμμμq - 1(Øp,nr) § μμμμq - 1(ä$p) § E≠.

The inverse of this isomorphism is the construction x ÿ Teich(x),
where Teich(x) denotes the "Teichmuller representative" of x.

Passing to the inverse limit, and recalling that the numbers q - 1
are cofinal among the N's prime to p, we obtain an isomorphism
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Tnot p(ä$…) = Tnot p(Øp,nr) § Tnot p(ä$p) § òNorm E≠.

By means of this identification, ä$…-valued characters of finite

order of the group òNorm E≠ are elements of the discrete group

($/#)not p. Concretely, an element x of ($/#)not p corresponds to the

ä$p-valued character çx, E of any finite E of cardinality q such that

(q - 1)x Ÿ #
defined by

çx,E (t) := (Teich(t))(q - 1)x for t Ÿ E≠.

(8.16.3) We denote by ordq the p-adic valuation of ä$p normalized by

ordq(q) = 1. For any real number x, we denote by <x> its "fractional

part", defined to be the unique real number in [0, 1) such that x • <x>
mod #. Since <x + n> = <x> for any n Ÿ #, we may speak of <x> for x in
%/#, so in particular for x in ($/#)not p.

(8.16.4) Given x in ($/#)not p, we define —p <x> to be the rational

number in [0, 1) defined as follows: pick an integer f ≥ 1 such that

(pf - 1)x Ÿ #,
and define

—p <x> := (1/f)‡i mod f <p
ix>.

It is immediate that this definition is independent of the auxiliary
choice of the integer f.

With these notations, we can state the classical Stickelberger
theorem.
TTTThhhheeeeoooorrrreeeemmmm 8888....11116666....5555 (Stickelberger) Fix an embedding “ : Kp,nr fi ä$p. Let

x Ÿ ($/#)not p,

and let E be a finite subfield of äÉp of cardinality q such that

(q - 1)x Ÿ #,
so that we can speak of the ä$p-valued multiplicative character çx,E of

E,

çx,E (t) := (Teich(t))(q - 1)x for t Ÿ E≠.

For any nontrivial ä$p-valued additive character ¥ of E, we have the

formula
ordq(g(¥, çx,E)) = —p <-x>.

(8.16.6)The extension Kp,nr of $ is Galois with group
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Gal(Kp,nr/$) § °…±p #…
≠ § Aut(($/#)not p).

Given an element

å Ÿ °…±p #…
≠ § Aut(($/#)not p),

we denote by ßå the unique element of Gal(Kp,nr) such that

ßå«çx,E = çåx,E
for every x in ($/#)not p and every finite subfield E of äÉp of

cardinality q such that (q - 1)x Ÿ #. We denote by ordå,q the p-adic

valuation of Kp,nr defined by

ordå,q(z) := ordq(ßå(z)).

Every p-adic valuation of Kp,nr with ord(q) = 1 is ordå,q for some å.

TTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 8888....11116666....7777 (Stickelberger) Fix an embedding “ : Kp,nr fi ä$p.

Let
x Ÿ ($/#)not p,

and let E be a finite subfield of äÉp of cardinality q such that

(q - 1)x Ÿ #,
so that we can speak of the ä$p-valued multiplicative character çx,E of

E,

çx,E (t) := (Teich(t))(q - 1)x for t Ÿ E≠.

For any nontrivial ä$p-valued additive character ¥ of E, and any

element

å Ÿ °…±p #…
≠ § Aut(($/#)not p),

we have the formula
ordå,q(g(¥, çx,E)) = —p <-åx>.

TTTThhhheeeeoooorrrreeeemmmm 8888....11116666....8888 (nnnnuuuummmmeeeerrrriiiiccccaaaallll ccccrrrriiiitttteeeerrrriiiioooonnnn ffffoooorrrr ffffiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy ooooffff
hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss)))) Let E be a finite field of characteristic p ± …, and

Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual, geometrically irreducible hypergeometric defined over E
of type (n, m) with n ≥ m and ¬ = 1. Fix an embedding “ : Kp,nr fi ä$p.

Let
x1, ... , xn, y1, ... , ym Ÿ ($/#)not p

be the unique elements of ($/#)not p such that

“«çi = çxi, E
for i = 1, ... , n,

“«®j = çyj, E
for j = 1, ... , m.
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Then Ó has finite Ggeom if and only if the following condition holds for

every å Ÿ °…±p #…
≠ § Aut(($/#)not p):

For every z Ÿ ($/#)not p, we have the inequality

‡i —p <åz - åxi> + ‡j —p <åyj - åz> ≥

≥ (1/n)[n(n-1)/2 + ‡i, j —p <åyj - åxi>].

pppprrrrooooooooffff This is just the Stickelberger spelling out of the finite
monodromy criterion 8.15.1, when the variable multiplicative
character ˙ of a variable finite extension F, card(F) := q, of E is written
as äçz, F, and the p-adic valuation tested is ordå,q. QED

8888....11117777 FFFFiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy ffffoooorrrr ttttyyyyppppeeee ((((nnnn,,,, nnnn)))),,,, iiiinnnntttteeeerrrrttttwwwwiiiinnnniiiinnnngggg,,,, aaaannnndddd
ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn
(8.17.1) In this section we will show that the very same intertwining
conditions which for irreducible hypergeometric Î-modules of type
(n, n) are equivalent to having finite Ggal (cf 5.5.3) are equivalent to

having finite Ggeom for irreducible …-adic hypergeometrics of type

(n, n).

TTTThhhheeeeoooorrrreeeemmmm 8888....11117777....2222 Suppose that x1, .... , xn, y1, ... , yn are 2n distinct

elements of ($/#)not p such that for every

å Ÿ °…±p #…
≠ § Aut(($/#)not p),

the two subsets
Xå := {åx1, .... , åxn} and Yå := {åy1, ... , åyn}

of ($/#)not p are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in ($/#)not p, in the sense that if we

display their images under x ÿ exp(2πix) on the unit circle, then as we
walk counterclockwise around the unit circle we alternately encounter
one from each subset. Then for every z Ÿ ($/#)not p, we have the

inequality
‡i —p <åz - åxi> + ‡j —p <åyj - åz> ≥

≥ (1/n)[n(n-1)/2 + ‡i, j —p <åyj - åxi>].

pppprrrrooooooooffff If the two subsets
Xå := {åx1, .... , åxn} and Yå := {åy1, ... , åyn}

of ($/#)not p are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in ($/#)not p, then so are their additive

translates by åz,



Chapter8-…-adic hypergeometrics-59

{åx1 + åz, .... , åxn + åz} and {åy1 + åz, ... , åyn + åz}.

Since the right-hand side of the asserted inequalities are invariant by
such additive translation, it suffices to treat universally the case in
which z = 0. We must show universally that

‡i —p < - åxi> + ‡j —p <åyj> ≥

≥ (1/n)[n(n-1)/2 + ‡i, j —p <åyj - åxi>].

Now pick a common denominator N for all the xi's and yj's, and an

integer f such that pf • 1 mod N. In view of the definition of —p, it

suffices to show that for every integer d = 0, 1, ... , f-1, we have

‡i < - p
dåxi> + ‡j <p

dåyj> ≥

≥ (1/n)[n(n-1)/2 + ‡i, j <p
dåyj - p

dåxi>].

Now pdå is simply another element å' of °…±p #…
≠ § Aut(($/#)not p).

Since the hypotheses are Aut(($/#)not p)-stable, it suffices to

prove universally that
‡i<-xi> + ‡j<yj> ≥ (1/n)[n(n-1)/2 + ‡i, j<yj - xi>]

whenever the two subsets
X := {x1, .... , xn} and Y := {y1, ... , yn}

of ($/#)not p are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in ($/#)not p.

The verification of this is straightforward. The only properties of
the function <x> which will be used in the proof are

<x> = x for x in [0, 1),
<-x> = 1 - <x> if x is not in #.

By renumbering, we may suppose that we are in one of the three
following cases:

(Case 1) 0 = x1 < y1 < x2 < y2 < ... <xn < yn < 1,

(Case 2) 0 < x1 < y1 < x2 < y2 < ... <xn < yn < 1,

(Case 3) 0 ≤ y1 < x1 < y2 < x2 < ... <yn < xn < 1.

In cases 1 and 2, we have
‡i, j<yj - xi> = ‡i ≤ j<yj - xi> + ‡i > j<yj - xi>

= ‡i ≤ j(yj - xi) + ‡i > j[ 1 - (xi - yj)]

= ‡i, j(yj - xi) + ‡i > j 1
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= n‡jyj - n‡ixi + n(n-1)/2.

In case 3, we have
‡i, j<yj - xi> = ‡i ≥ j<yj - xi> + ‡i < j<yj - xi>

= ‡i ≥ j[ 1 - (xi - yj)] + ‡i < j(yj - xi)

= n‡jyj - n‡ixi + n(n+1)/2.

In case 1, we have
‡i<-xi> + ‡j<yj> = ‡i ≥ 2(1 - xi) + ‡jyj = n - 1 + ‡jyj - ‡ixi.

In cases 2 and 3, we have
‡i<-xi> + ‡j<yj> = ‡i (1 - xi) + ‡jyj = n + ‡jyj - ‡ixi.

Comparing, we see see that the asserted inequality is in fact an
equality in cases 1 and 3, and that it holds with a margin of 1 in case
2. QED

Combining this last result with the numerical criterion 8.16.8, we
obtain
CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11117777....2222....1111 Let E be a finite field of characteristic p ± …, and

Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual, geometrically irreducible hypergeometric defined over E
of type (n, n) with n ≥ 1 and ¬ = 1, whose local monodromy at both
zero and ‘ is of finite order. Fix an embedding “ : Kp,nr fi ä$p. Let

x1, ... , xn, y1, ... , yn Ÿ ($/#)not p
be the 2n distinct elements of ($/#)not p such that

“«çi = çxi, E
for i = 1, ... , n,

“«®j = çyj, E
for j = 1, ... , n.

Then Ó has finite Ggeom if for every å Ÿ °…±p #…
≠ § Aut(($/#)not p),

the two subsets
Xå := {åx1, .... , åxn} and Yå := {åy1, ... , åyn}

of ($/#)not p are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in ($/#)not p.

(8.17.3) We will now establish the converse to this corollary: if an
irreducible hypergeometric of type (n, n) has Ggeom finite, then the

intertwining condition holds. In view of the numerical criterion 8.16.8,
this amounts to a purely combinatorial statement. However, we do nnnnooootttt
know a combinatorial proof; our proof is based upon Grothendieck's
theory of specialization of the fundamental group.
(8.17.4) Fix an integer N ≥ 1. Let
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”N(x) := the N'th cyclotomic polynomial,

RN := the ring #[1/N…, X]/(”N(X)),

μμμμN := the cyclic group μμμμN(RN) of order N,

SN := Spec(RN).

The group Hom(μμμμN, μμμμN) is canonically (1/N)#/#, with x in

(1/N)#/# corresponding to the character Ω ÿ ΩNx. If we fix an
embedding

“… : RN fi ä$…,

we have an induced isomorphism μμμμN § μμμμN(ä$…); this allows us to

identify ä$…-valued characters of μμμμN with elements of (1/N)#/#.

Over the base SN, the N'th power endomorphism of ´m/SN is a finite

etale μμμμN-torsor. For any character

ç : μμμμN ¨ ä$…
≠

we can speak of the lisse ä$…-sheaf Òç on ´m/SN obtained from this

μμμμN-torsor by pushing out via äç (sic). Similarly, for any nontrivial

character Ú: μμμμN ¨ ä$…
≠, we can speak of the ä$…-sheaf ÒÚ(1 - x) on

´m/SN; this sheaf ÒÚ(1 - x) is lisse of rank one on the complement of

the unit section "1" of ´m/SN, extended by zero to all of ´m/SN. Both

Òç and ÒÚ(1 - x) are tame along both zero and ‘ in the ambient

@1/SN.

(8.17.5) Given two distinct ä$…
≠-valued characters ç and ® of μμμμN, we

can speak of the ä$…-sheaf Òç(x)‚Ò(®/ç)(1 - x) on ´m/SN; it is lisse of

rank one on the complement of the unit section "1" of ´m/SN,

extended by zero to all of ´m/SN. This sheaf is also tame along both

zero and ‘.
(8.17.6) We denote by

Ó(ç; ®) := the ä$…-sheaf Òç(x)‚Ò(®/ç)(1 - x) on ´m/SN.

For any prime number p which is prime to N…, and for any ring
homomorphism

RN ¨ äÉp,

the induced map on N'th roots of unity is an isomorphism

μμμμN § μμμμN(äÉp). This allows us to view both ç and ® as ä$…
≠-valued

characters of μμμμN(äÉp). So viewing them, it makes sense to form the

sheaf Ó1(~, ¥; ç; ®) on ´m/äÉp. Clearly the restriction of Ó(ç; ®) to
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´m/äÉp is geometrically isomorphic to Ó1(~, ¥; ç; ®).

(8.17.7) We can use the multiplication morphism

π : (´m≠´m)SN
¨ (´m)SN

to define ~ convolution (relative to SN); for K and L in Dbc(´m/SN, ä$…),

K*~L := Rπ~(pr1
*K‚pr2

*L).

(8.17.8) Let us say that a ä$…-sheaf Ï on ´m/S is "tame and adapted

to the unit section" if it satisfies the following three conditions:
(1) Ï is lisse on the complement of the unit section "1" of ´m/S,

(2) the restriction of Ï to the unit section is lisse on S,
(3) Ï is tame along each of the three sections "0", "1", and ‘ of the

ambient @1/S.

Let us say that an object K of Dbc(´m/S, ä$…) is "tame and

adapted to the unit section" if each of its cohomology sheaves is "tame
and adapted to the unit section" in the above sense.

TTTThhhheeeeoooorrrreeeemmmm 8888....11117777....9999 Let S be any irreducible noetherian #[1/…]-scheme
whose generic point has characteristic zero. The subcategory of

Dbc(´m/S, ä$…) consisting of those objects K which are "tame and

adapted to the unit section" is stable by ~ convolution.

pppprrrrooooooooffff Let K and L be "tame and adapted to the unit section". That the
cohomology sheaves of K*~L are lisse outside the unit section and that

their restriction to the unit section is lisse on S both result directly
from the "trivial" case of Deligne's semicontinuity theorem [Lau-SCS]).
Once these cohomology sheaves are lisse outside the unit section, they
are automatically tame along the three sections "0", "1", and ‘ simply
because S is irreducible with generic point of characteristic zero (cf
[SGAI, Exposïe XIII, 5.5]). QED

TTTTwwwwoooo VVVVaaaarrrriiiiaaaannnnttttssss 8888....11117777....11110000 In these variants, S is any irreducible
noetherian #[1/…]-scheme whose generic point has characteristic zero.
(1) Let Æ be a finite etale subgroupscheme of ´m/S. Thus Æ is μμμμM for

some integer M ≥ 1 which is invertible on S. In the ambient @1/S, Æ, "0"
and ‘ are three disjoint smooth/S divisors. We say that an object K of

Dbc(´m/S, ä$…) is "tame and adapted to Æ" if each of its cohomology

sheaves is lisse on ´m - Æ, lisse on Æ, and tame along each of the
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divisors Æ, "0" and ‘. For Æ = μμμμM, K is "tame and adapted to Æ" if and

only if [M]*K is "tame and adapted to the unit section". The subcategory

of Dbc(´m/S, ä$…) consisting of those objects K which are "tame and

adapted to Æ" is stable by ~ convolution. (Indeed, since [M] is a
homomorphism, [M]*(K*~L) § ([M]*K)*~([M]*L), so this is immediate

from the theorem.)
(2) Let E/S be an elliptic curve over S, and Æ fi E a finite etale
subgroupscheme of E/S. Then Æ is a smooth/S divisor in E. We say that

an object K of Dbc(E/S, ä$…) is "tame and adapted to Æ" if each of its

cohomology sheaves is lisse on E - Æ, lisse on Æ, and tame along Æ. If we
denote by E1/S the quotient of E by Æ, and by π : E ¨ E1 the isogeny

with kernel Æ, then K is tame and adapted to Æ if and only if π*K is

tame and adapted to the unit section on E1/S. The subcategory of

Dbc(E/S, ä$…) consisting of those objects K which are tame and adapted

to Æ is stable by ~ convolution. (Since π is a homomorphism, π*(K*~L) §

(π*K)*~(π*L), so may we reduce to the case when Æ is the zero-section.

Now apply Deligne's semicontinuity theorem [Lau-SCS].)

(8.17.11) Given an integer n ≥ 1, a set {ç1, ... ,çn} of n not necessarily

distinct characters çi of μμμμN, and a disjoint set {ç1, ... ,çn} of n not

necessarily distinct characters ®j of μμμμN, we can define the multiple ~

convolution (relative to SN)

Ó(ç1; ®1)[1] *~ Ó(ç2; ®2)[1] *~ ... *~Ó(çn; ®n)[1].

as an object of Dbc(´m/SN, ä$…). In view of the above theorem, this

object is tame and adapted to the unit section. Looking fibre by fibre
over SN (permissible by proper base change), we see that this object is

of the form
Ó(ç's; ®'s)[1]

for some ä$…-sheaf Ó(ç's; ®'s) on ´m/SN which is tame and adapted to

the unit section. Furthermore, we see that the restriction of Ó(ç's; ®'s)
to each geometric fibre ´m/äÉp is geometrically isomorphic to the

hypergeometric sheaf Ó1(~, ¥; ç's; ®'s).
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Pick a complex embedding
RN fi ^.

The restriction of Ó(ç's; ®'s) to ((´m - {1})^)
an is an …-adic local system

˜… on ^≠ - {1} whose local monodromy at zero (resp.at ‘) is (via the

t ÿ {exp(2πit/N)}N embedding # ¨ ö#(1)) a successive extension of the

ç's (resp. of the ®'s), and whose local monodromy at 1 is a
pseudoreflection. Since the ç's and the ®'s are disjoint, this local system
is irreducible.

Pick any embedding of ^ into ä$… such that the composite

embedding
RN fi ^ fi ä$…

is the fixed embedding
“… : RN fi ä$….

By 3.5.4 (Rigidity), the local system ˜… must be the (extension of

scalars by the embedding ^ fi ä$… of the) complex local system attached

to the hypergeometric Î-module Ó1(x1, ... , xn; y1, ... , yn), where the

xi and the yj are the unique elements of (1/N)#/# to which the

characters ç1, ... , çn; ®1, ... , ®n correspond.

CCCCoooommmmppppaaaarrrriiiissssoooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....11117777....11112222 Hypotheses and notations as above,
suppose given an integer n ≥ 1, a set {ç1, ... ,çn} of n not necessarily

distinct characters çi of μμμμN, and a disjoint set {®1, ... ,®n} of n not

necessarily distinct characters ®j of μμμμN. Let the xi and the yj be the

unique elements of (1/N)#/# to which correspond the characters ç1, ...

, çn; ®1, ... , ®n. Then the following ä$…-algebraic subgroups of GL(n) are

all conjugate:
(1) for any complex embedding RN fi ^, the group Ggal‚^ä$…, where

Ggal is the differential galois group of the hypergeometric Î-module

Ó1(x1, ... , xn; y1, ... , yn).

(2) for any prime number p which is prime to N…, and for any ring
homomorphism RN ¨ äÉp, the group Ggeom for Ó1(~, ¥; ç's; ®'s).

pppprrrrooooooooffff Since the Î-module Ó1(x1, ... , xn; y1, ... , yn) has regular

singular points, its Ggal is the Zariski closure of the image of its
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monodromy representation. Thus Ggal‚^ä$… is the group Ggeom for the

restriction of Ó(ç's; ®'s) to the complex fibre of (´m - {1})/SN given by

RN fi ^. The sheaf Ó(ç's; ®'s) on (´m - {1})/SN is lisse, and tame along

"0", "1", and ‘.
For such a sheaf on (´m - {1})/SN (lisse, and tame along "0", "1",

and ‘), the groups Ggeom for its restrictions to the various geometric

fibres of (´m - {1})/SN are all conjugate in GL(n). This is a special case

of:

TTTTaaaammmmeeee SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....11117777....11113333 Let S be a normal irreducible
noetherian scheme with generic point ˙, X/S a proper smooth
morphism with geometrically connected fibres, D fi X a divisor with
normal crossings relative to S, U := X - D, and u Ÿ U(S) a section of U/S.
Let … be a prime number, and Ï a lisse ä$…-sheaf of rank n on U such

that Ï
ä˙
| U

ä˙
is tamely ramified at all the maximal points of D

ä˙
. Then

for any geometric point s of S, the image of π1(Us, us) in GL(n, ä$…) is

(conjugate to) the image of π1(Uä˙
, u

ä˙
) in GL(n, ä$…).

pppprrrrooooooooffff For this, it suffices to prove that the images of the π1's of these

geometric fibres in GL(n, ä$…) are all conjugate. For this, we may reduce

successively to the case of E¬-sheaves, then to Ø¬-sheaves, and finally

to the case of Ø¬/…
√Ø¬-sheaves.

Given a finite ring A (e.g., A = Ø¬/…
√Ø¬) and a lisse sheaf of free

A-modules Ï of rank n on U, denote by
E ¨ U

the associated finite etale GL(n, A) torsor.
The theorem is now reduced to the following finite variant

(compare [De-WII, 1.11.1 and 1.11.2]):

TTTTaaaammmmeeee SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 8888....11117777....11114444 Let G be a finite group.
Let S be a normal irreducible noetherian scheme with generic point ˙,
X/S a proper smooth morphism with geometrically connected fibres, D
fi X a divisor with normal crossings relative to S, U := X - D, and
u Ÿ U(S) a section of U/S. Let E ¨ U be a finite etale G-torsor such that
E
ä˙
¨ U

ä˙
is tamely ramified at all the maximal points of D

ä˙
. Then for

any geometric point s of S, the image of π1(Us, us) in G is (conjugate to)
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the image of π1(Uä˙
, u

ä˙
) in G.

pppprrrrooooooooffff For any geometric point s of S, we have a diagram of
homomorphisms of π1's induced by the evident inclusions

π1(Us, us)

d
π1(Uä˙

, u
ä˙
) ¨ π1(U˙, uä˙

) zn π1(U, uä˙
) § π1(U, us).

Because E ¨U is finite etale, there exists a finite galois extension L/˙
such that π1(Uä˙

, u
ä˙
) and π1(U˙‚L, u

ä˙
) have the same image in G.

Replacing S by its normalization in L, we reduce to the case when
π1(Uä˙

, u
ä˙
) and π1(U, uä˙

) have the same image in G.

In this case, the above diagram shows that for every geometric
point s of S, the image of π1(Us, us) in G is (conjugate to) a subgroup of

the image of π1(Uä˙
, u

ä˙
).

So to show that these two images are conjugate, it suffices to
show that both images have the same index in G. But these indices are
precisely the number of connected components of the geometric fibres
Es and E

ä˙
of E/S. By the reduction already performed, the connected

components of E are in bijection with those of E
ä˙
. So replacing E by one

of its connected components,say E1, and G by the subgroup G1 which

stabilizes E1, we are reduced to showing universally that (for a tame

covering G-torsor E ¨U) if E
ä˙
is connected, then Es is connected. For

this, we may reduce to the case where S is local and strictly henselian
(replace S by its strict henselization at s). Since E

ä˙
is connected, the

total space E is connected. By [SGA1, XIII, Thm. 2.4, 1] (applied to F := G,
S' := s and h := the inclusion of s into S), the functor "pullback from U
to Us" on the categories of tame G-torsors is an equivalence. In

particular, if Es is disconnected, then E itself is disconnected. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....11117777....11115555 Let E be a finite field of characteristic p ± …, and
Ó := Ó1(~, ¥; ç's; ®'s)

a nonpunctual, geometrically irreducible hypergeometric defined over E
of type (n, n) with n ≥ 1 and ¬ = 1, whose local monodromy at both
zero and ‘ is of finite order. Fix an embedding “ : Kp,nr fi ä$p. Let
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x1, ... , xn, y1, ... , yn Ÿ ($/#)not p
be the 2n distinct elements of ($/#)not p such that

“«çi = çxi, E
for i = 1, ... , n,

“«®j = çyj, E
for j = 1, ... , n.

Then the following conditions are equivalent.

(1) for every å Ÿ °…±p #…
≠ § Aut(($/#)not p), the two subsets

Xå := {åx1, .... , åxn} and Yå := {åy1, ... , åyn}

of ($/#)not p are iiiinnnntttteeeerrrrttttwwwwiiiinnnneeeedddd in ($/#)not p.

(2) Ó has finite Ggeom.

(3) the hypergeometric Î-module Ó1(x1, ... , xn; y1, ... , yn) has Ggal
finite.
(4) the hypergeometric Î-module Ó1(x1, ... , xn; y1, ... , yn) has p-

curvature zero for almost all primes p.

pppprrrrooooooooffff We have (1) à (2) by 8.17.2.1, we have (2) à (3) by the previous
theorem, (3) à (4) is elementary (formation of the p-curvature
commutes with etale localization, cf [Ka-AS, Intro]), and (4) À (1) is
the Beukers-Heckman lemma 5.5.2. QED

RRRReeeemmmmaaaarrrrkkkk 8888....11117777....11116666 The proof of the equivalence (3) À (4) in the above
corollary provides a third proof of Grothendieck's p-curvature
conjecture for hypergeometric Î-modules of type (n, n), (apparently)
independent of both the Beukers-Heckman "signature of a hermitian
form" proof (cf. [B-H, 4.8]) and of the "reduction to the Gauss-Manin
case" proof in 5.5.1.

8888....11118888 AAAAppppppppeeeennnnddddiiiixxxx :::: SSSSeeeemmmmiiiiccccoooonnnnttttiiiinnnnuuuuiiiittttyyyy aaaannnndddd SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn ffffoooorrrr GGGGggggeeeeoooommmm
dddd''''aaaapppprrrreeeessss RRRR.... PPPPiiiinnnnkkkk
(8.18.1) In this appendix, we will consider the following situation. S is
a normal connected noetherian scheme with generic point ˙, X/S is a
smooth S-scheme with geometrically connected fibres, … is a prime
number (which is nnnnooootttt assumed invertible on S) and Ï is a lisse ä$…-

sheaf of rank n ≥ 1 on X. For each geometric point s in S, the group
Æ(s) := the image of π1(Xs, any base point xs) in GL(n, ä$…)

is a closed subgroup, whose conjugacy class in GL(n, ä$…) is independent

of the auxiliary choice of base point xs.



Chapter8-…-adic hypergeometrics-68

SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 8888....11118888....2222 (compare [De-WII, 1.11.5]) Let S be a
normal connected noetherian scheme with generic point ˙, X/S a
smooth S-scheme with geometrically connected fibres, … a prime
number (which is nnnnooootttt assumed invertible on S) and Ï a lisse ä$…-sheaf

of rank n ≥ 1 on X. For each geometric point s in S, define
Æ(s) := the image of π1(Xs, any base point xs) in GL(n, ä$…).

Then
(1) the group Æ(s) decreases under specialization, in the sense that if t is
a specialization of s, then Æ(t) is conjugate in GL(n, ä$…) to a subgroup of

Æ(s).
(2) there exists an open neighborhood V of ˙ in S such that for any
geometric point s in V, Æ(s) is conjugate in GL(n, ä$…) to Æ(ä˙).

pppprrrrooooooooffff We first reduce to the case of lisse Ø¬-sheaves which are free of

rank n. In order to prove (1), it suffices to show universally that Æ(s) is
conjugate to a subgroup of Æ(ä˙). For this, one can reduce further to the

case of Ø¬/…
√Ø¬ -sheaves, and then to the case of G-torsors for a finite

group G. This case is then treated by repeating verbatim the first two
paragraphs of the proof of 8.17.14. In the notations used there, the
constructibility on S of the function "s ÿ number of irreducible
components of Es" [EGA IV, 9.7.8] shows that (2) holds for any lisse

Ø¬/…
√Ø¬ -sheaf.

To prove (2) for a lisse Ø¬-sheaf Ï, for each integer √ ≥ 1 let V√

be an open neighborhood ˙ in S on which (2) holds for the sheaf Ï/…√Ï.
We will show that for √ >> 0, (2) for Ï itself holds on V√. In view of

part (1), this results from the following lemma, applied to the group
K := Æ(ä˙) inside GL(n, Ø¬).

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 8888....11118888....3333 (R. Pink) Let Ø¬ be the ring of integers in a finite

extension of $…, n ≥ 1 an integer, and K a closed subgroup of GL(n, Ø¬).

There exists an integer √, depending only on K, with the following
property:
for any closed subgroup H of K, H = K if (and only if) H and K have the

same image in GL(n, Ø¬/…
√Ø¬).
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pppprrrrooooooooffff Denote by M a free Ø¬-module of rank n, and by G the group

AutØ¬
(M) § GL(n, Ø¬). For each integer d ≥ 2, define

Gd := Kernel of AutØ¬
(M) ¨ AutØ¬

(M/…dM),

Kd := K€Gd.

Then we have injective group homomorphisms
Kd/Kd+1 fi Gd/Gd+1 fi EndØ¬/…Ø¬

(M/…M)

X ÿ (X - 1)/…d.
For each d ≥ 2, we define

Ld(K) := the image of Kd/Kd+1 in EndØ¬/…Ø¬
(M/…M).

Notice that all the Ld(K) are subgroups of the ssssaaaammmmeeee ffffiiiinnnniiiitttteeee ggggrrrroooouuuupppp

EndØ¬/…Ø¬
(M/…M). The key observation is that the …-th power map

X ÿ X… defines an injective group homomorphism of Kd/Kd+1 into

Kd+1/Kd+2 for any d ≥ 2, which gives inclusions

Ld(K) fi Ld+1(K) fi Ld+2(K) fi ... fi EndØ¬/…Ø¬
(M/…M).

Therefore for some D, we have
Ld(K) = Ld+1(K) = L‘(K) for all d ≥ D.

We claim that we can take √ := D + 1 in the lemma. Indeed, let
H fi K be a closed subgroup. Then Ld(H) fi Ld(K) for every d ≥ 2.

Suppose that H and K have the same image mod …
D+1

, i.e., suppose that
H/HD+1 § K/KD+1.

Then H and K must have the same image mod any lower power of …, in

particular mod …D. So we have short exact sequences
0 ¨ LD(H) ¨ H/HD+1 ¨ H/HD ¨ 0

€ || ||
0 ¨ LD(K) ¨ K/KD+1 ¨ K/KD ¨ 0,

which show that LD(H) = LD(K). For any d ≥ D, we have

LD(H) = LD(K)

€ ||
Ld(H) fi Ld(K),

which shows that Ld(H) = Ld(K) for every d ≥ D. For any d ≥ D, the

short exact sequences
0 ¨ Ld(H) ¨ H/Hd+1 ¨ H/Hd ¨ 0

|| € €
0 ¨ Ld(K) ¨ K/Kd+1 ¨ K/Kd ¨ 0,
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allow us to show inductively that Card(H/Hd+1) = Card(K/Kd+1), and

hence that the inclusion H/Hd+1 fi K/Kd+1 is an isomorphism. Taking

the inverse limit over d, we deduce that H = K, as required. QED
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9999....1111 AAAAnnnnooootttthhhheeeerrrr GGGG2222 EEEExxxxaaaammmmpppplllleeee

In Theorem 2.10.5, we proved that the rank seven D.E. on !1

Δ7 - xΔ - 1/2,

whose FT defines x-1/2exp(-x7/7), has differential galois group Ggal the

subgroup G2 of SO(7). In this section, we will give a diophantine proof of

the following …-adic analogue of that result.

GGGG2222 TTTThhhheeeeoooorrrreeeemmmm 9999....1111....1111 Let k be an algebraically closed field of

characteristic p > 15. Denote by Ú1/2 the unique tame ä$…-valued

character of π1(´mºk) of exact order two. Denote by j: ´m ¨ !1 the

inclusion. Let ¥ be any nontrivial ä$…-valued additive character of a

finite subfield k0 of k. Then NFT¥(Ò¥(x7)‚j*ÒÚ1/2(x)
) has Ggeom = G2.

pppprrrrooooooooffff Let us define Ï := Ò¥(x7)‚j*ÒÚ1/2(x)
, Ì := NFT¥(Ï). Since Ï is

irreducible Fourier, Ì is irreducible Fourier. By stationary phase, Ì is

lisse on !1 of rank seven, with ‘-slopes {0 once, 7/6 six times}. Since

D(Ï) § [-1]*Ï, Ì is self dual. Since Ì has rank seven, the autoduality

must be orthogonal. Since Ì is lisse irreducible on !1 and
p > 2(rankÌ + 1) = 15,

Ì is Lie-irreducible. Since detÌ has order dividing two (being self-dual),
the group Ggeom is semisimple and connected. By Theorem 1.6 on

prime-dimensional representations, the only possibilities for Ggeom are

the image PSL(2) of SL(2) in Sym6(std2), or G2 or SO(7) or SL(7).

Of these, SL(7) is ruled out by the existence of the autoduality. We
can rule out PSL(2) by a slope argument. Indeed, if Ggeom were PSL(2),

then by the lifting lemma 7.2.5 there exists a lisse sheaf  on !1 of

rank two whose Ggeom is SL(2), such that Ì § Sym6(). By the highest

slope lemma 7.2.4, Ì and  have the highest ‘-slope. Therefore  has
rank two but has highest ‘-slope 7/6, contradicting the fundamental
integrality property of slopes (cf [Ka-GKM, 1.9]). Thus Ì has Ggeom
either SO(7) or G2.

To distinguish these two possibilities, recall that for the standard
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representation std7 of SO(7), the tensor cube (std7)
‚3 has no nonzero

SO(7)-invariants. [This amounts to the statement that std7 does not

occur in (std7)
‚2. But for any n ≥ 4, the decomposition of (stdn)

‚2 as

SO(n)-representation is

(stdn)
‚2 = ú · Spherical Harmonics of deg. 2 · Lie(SO(n)),

and none of three irreducible constituents has dimension n.]
On the other hand, one knows that under G2, already the

subspace Ú3(std7) has a one-dimensional space of G2-invariants. [In

fact these are all the G2-invariants in (std7)
‚3 , but will not use this.]

Therefore the following conditions are equivalent:
Ggeom = SO(7)

À Ì‚3 has no nonzero π1(!
1‚k, ä˙)-invariants,

À Ì‚3 has no nonzero π1(!
1‚k, ä˙)-coinvariants,

À Hc
2(!1‚k, Ì‚3) = 0.

Since the sheaf Ï is "defined over k0", so is Ì. By proper base

change, we may replace k by the algebraic closure of k0 in k without

changing the cohomology group Hc
2(!1‚k, Ì‚3) in question.

Since Ì is pure of weight one, Ì‚3 is pure of weight three. So if

Hc
2(!1‚k, Ì‚3) is nonzero, it is pure of weight five. On the other

hand, by Weil II we know that Hc
1(!1‚k, Ì‚3) is mixed of weight ≤ 4.

As Ì is lisse on the open curve !1‚k, these are the only two possibly
nonvanishing cohomology groups. By the Lefschetz Trace Formula, for
any finite overfield E of k0, we have

‡t in E (Trace(FrobE,t | Ì))
3 =

= Trace(FrobE | Hc
2(!1‚k, Ì‚3)) - Trace(FrobE | Hc

1(!1‚k, Ì‚3)).

Now let us denote by

hi = dimHc
i(!1‚k, Ì‚3) for i = 1, 2.

By a standard argument (cf [Ka-SE, 2.2.2.1]) we have

limsup all E/k0
Card(E)-5/2| ‡t in E (Trace(FrobE,t | Ì))

3 | = h2.

Therefore we have only to compute the sums

S := ‡t in E (Trace(FrobE,t | Ì))
3
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in order to decide whether Ggeom is SO(7) (the case h2 = 0) or G2 (the

case h2 > 0).

Let us fix attention on a single E. We denote Card(E) by q. We wish
to compute, for ¥ any nontrivial additive ^-valued character of E, and

for Ú the quadratic character of E≠, extended by zero to E, the sum

S := ‡t in E (Trace(FrobE,t | Ì))
3

= ‡t in E (-‡x in E ¥(tx + x7)Ú(x))3

= - ‡t,x,y,z in E ¥(t(x + y + z))¥(x7 + y7 + z7)Ú(xyz).

Summing first over t we see that only the terms with x + y + z = 0
survive:

S = -q‡x,y in E ¥(x
7 + y7 - (x + y)7)Ú(-xy(x + y)).

At this point, we extract the rabbit from the hat: the universal
identity

(x + y)7 - x7 - y7 =

= 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6

= 7xy(x + y)(x4 + 2x3y + 3x2y2 + 2xy3 + y4)

= 7xy(x + y)(x2 + xy + y2)2.
Substituting into our sum, we find

S = -q‡x,y in E ¥(-7xy(x + y)(x2 + xy + y2)2)Ú(-xy(x + y)).

Since Ú is the quadratic character of E≠ extended by zero, we have
-S/q = A + B,

A := ‡x,y in E ¥(-7xy(x + y)(x2 + xy + y2)2)Ú(-xy(x + y)(x2 + xy + y2)2)

B := ‡x,y in E with x2 +xy + y2 = 0 Ú(-xy(x + y)).

We first remark that the sum B is trivially bounded by 2q, since
it is the sum of at most 2q terms, each of which is _1. So B will not
affect our limsup.

What about the sum A? Consider the one parameter family
π : Ç ¨ ´m

of affine curves Cu, u ± 0, over the ´m/Ép of u's defined by the

equation

Cu : -xy(x + y)(x2 + xy + y2)2 = u.

Because xy(x + y)(x2 + xy + y2)2 is homogeneous of degree 7 but is not
a 7'th power, these curves Cu, u ± 0, are smooth and geometrically

irreducible over any field of characteristic ± 7 (cf. [Ka-PES, proof of Cor.
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6.5]). On the other hand, this family becomes constant after extracting

the seventh root of the parameter "u". Therefore the sheaves Riπ~ä$… on

´m‚k are all lisse on ´m, and everywhere tame (since they become

constant after [7]*). Moreover, we have

Riπ~ä$… = 0 for i ± 1, 2,

R2π~ä$… = ä$…(-1) for i = 2,

R1π~ä$… is mixed of weight ≤ 1.

In terms of these curves Cu,

A = ‡a in E≠ ¥(7a)Ú(a)Card(Ca(E))

= ‡a in E≠ ¥(7a)Ú(a)[q - Trace(Froba,E | R1π~ä$…)]

=q‡a in E≠ ¥(7a)Ú(a) - ‡a in E≠ Trace(Froba,E | Òë¥‚ÒÚ‚R1π~ä$…).

where we write ë¥(x) := ¥(7x).
The sum

‡a in E≠ ¥(7a)Ú(a)

is a Gauss sum, so it has absolute value q1/2. What about the sum

D := ‡a in E≠ Trace(Froba,E | Òë¥‚ÒÚ‚R1π~ä$…)?

Using the Lefschetz Trace Formula, we get

D = Trace(FrobE | Hc
2(´m‚k, Òë¥‚ÒÚ‚R1π~ä$…))

- Trace(FrobE | Hc
1(´m‚k, Òë¥‚ÒÚ‚R1π~ä$…)).

Because ÒÚ‚R1π~ä$… is tame on ´m, Òë¥‚ÒÚ‚R1π~ä$… is totally wild

at ‘, and consequently its Hc
2(´m‚k, Òë¥‚ÒÚ‚R1π~ä$…) = 0. On the

other hand, Òë¥‚ÒÚ‚R1π~ä$… is mixed of weight ≤ 1, so

Hc
1(´m‚k, Òë¥‚ÒÚ‚R1π~ä$…) is mixed of weight ≤ 2. So if we denote

by K the dimension of Hc
1(´m‚k, Òë¥‚ÒÚ‚R1π~ä$…), we get

|D| ≤ Kq.
So all in all we have

-S/q = A + B
|B| ≤ 2q
A = q‡a in E≠ ¥(7a)Ú(a) + D

|q‡a in E≠ ¥(7a)Ú(a)| = q3/2

|D| ≤ Kq,
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whence

| |S| - q5/2 | ≤ (2 + K)q2.

Taking the limsup of |S|/q5/2 over larger and larger E's, we see that

h2 := dimHc
2(!1‚k, Ì‚3) = 1. In particular, Ggeom = G2. QED

9999....2222 RRRReeeellllaaaattttiiiioooonnnn ooooffff SSSSiiiimmmmpppplllleeee FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss ttttoooo HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss
(9.2.1) What is the relation of the sheaf NFT¥(Ò¥(x7)‚j*ÒÚ1/2(x)

),

whose Ggeom we have proven to be G2, to hypergeometrics of type

(7, 1), some of which also have Ggeom = G2? We will see below that it is

the Kummer pullback by [7]* of just such a hypergeometric. Indeed
this is a special case of a general phenomenon.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....2222....2222 Suppose that n ≥ 2, and that p does not divide n. Let
k be an algebraically closed field of characteristic p. Let Ú1 be a

nontrivial tame ä$…-valued character of π1(´mºk) of finite order prime

to n. Let Ú2 be any tame ä$…-valued character of π1(´mºk) which

satisfies

(Ú2)
n = äÚ1.

Denote by {®1, ... , ®n} all the characters of π1(´mºk) of order dividing

n. Denote by j: ´m ¨ !1 the inclusion. Let ¥ be any nontrivial ä$…-

valued additive character of a finite subfield k0 of k. Then for some ¬ in

k≠ there exists an isomorphism of lisse sheaves on ´m‚k

j*NFT¥(Ò¥(xn)‚j*ÒÚ
1
(x)) § [n]*Ó¬(~, ¥; ®1, ... , ®n; Ú2

).

pppprrrrooooooooffff Define Ì := NFT¥(Ò¥(xn)‚j*ÒÚ1(x)
). By stationary phase, Ì is

lisse of rank n on !1, irreducible, and its I‘-representation is

ÒäÚ1(x)
· (rank n-1, all slopes n/(n-1)).

Enlarging k0 if necessary, we may assume that k0 contains a primitive

n'th root of unity, say Ω, and that Ú2 is defined over k0. For any finite

extension E of k0, it is obvious that the trace function of j*Ì on E≠

t Ÿ E≠ ÿ -‡x in E ¥E(tx + xn)Ú2,E(x
-n)

is invariant under the multiplicative translation t ÿ Ωt: simply replace
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x by Ω-1x in the sum. Therefore j*Ì and TΩ
*j*Ì have the same trace

function. Therefore they have isomorphic semisimplifications as
representations of π1(´m‚k0). Since they are π1(´m‚k0)-irreducible,

being irreducible for the subgroup π1(´m‚k), it follows that

j*Ì § TΩ
*j*Ì as lisse sheaves on ´m‚k0. Since j

*Ì is irreducible, we

can descend j*Ì through [n]. Thus there exists a lisse Ó on ´m‚k0 of

rank n with [n]*Ó § j*Ì. Any such Ó is irreducible on ´m‚k (since it

has an irreducible pullback).
The I‘-representation of Ó must be of the form

Òç(x) · (rank n-1, all slopes 1/(n-1)),

for some ç with çn = äÚ1. So if we twist Ó by a suitable tame ÒÚ of

order dividing n, we may assume that

[n]*Ó § j*Ì
Ó | I‘ § ÒÚ2(x)

· (rank n-1, all slopes 1/(n-1)).

In particular, Ó has Swan‘(Ó) = 1.

Since [n]*Ó is lisse on !1, Ó must be tame at zero. Being
irreducible lisse on ´m with Swan‘ = 1 and tame at zero, it must be a

hypergeometric of type (n, 1), so on ´m there exists an isomorphism

Ó § Ó¬(~, ¥; ç1, ... , çn; Ú2)

for some ¬ in k≠.

Since [n]*Ó is lisse on !1, each çi has order dividing n, and there

can be no repetition of the çi which occur (since local monodromy at

zero is of finite order dividing n). Therefore the çi are precisely all the

characters of order dividing n. QED

In an entirely similar fashion, one proves:
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....2222....3333 Suppose that n ≥ 2, and that p does not divide n. Let
k be an algebraically closed field of characteristic p. Let {®1, ... , ®n-1}

be all but one of the characters of π1(´mºk) of order dividing n. Denote

by j: ´m ¨ !1 the inclusion. Let ¥ be any nontrivial ä$…-valued

additive character of a finite subfield k0 of k. Then for some ¬ in k≠

there exists an isomorphism of lisse sheaves on ´m‚k

j*NFT¥(Ò¥(xn)) § [n]*Ó¬(~, ¥; ®1, ... , ®n-1; &).
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9999....3333 FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmmssss ooooffff KKKKuuuummmmmmmmeeeerrrr PPPPuuuullllllllbbbbaaaacccckkkkssss ooooffff
HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiiccccssss:::: aaaa rrrreeeemmmmaaaarrrrkkkkaaaabbbblllleeee ssssttttaaaabbbbiiiilllliiiittttyyyy ((((ccccoooommmmppppaaaarrrreeee 6666....2222,,,, 6666....3333,,,, 6666....4444))))
(9.3.1) The results of the previous section are themselves special
cases of a quite general and remarkable stability property, to which
this section is devoted.

We work over an algebraically closed field of characteristic p,
with hypergeometrics of arbitrary type (n, m), including (0, 0). In
order to formulate the main result of this section, it will be convenient
to introduce the operator CCCCaaaannnncccceeeellll on hypergeometrics which "cancels"
the characters common to numerator and denominator. Given a
hypergeometric

Hyp := Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)

of type (n, m), look to see how many of the çi's are also ®j's. If there

are r such common characters, renumber so that
çn-k = ®m-k for k < r,

çi ± ®j if i ≤ n-r and j ≤ m-r,

and define
CCCCaaaannnncccceeeellll( Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) :=

:= Hyp¬(~, ¥; ç1, ... , çn-r; ®1, ... , ®m-r).

Thus CCCCaaaannnncccceeeellll( Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) is an irreducible

hypergeometric of type (n-r, m-r).

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....2222 Over an algebraically closed field of characteristic p, let
Hyp¬(~, ¥; çi's; ®j's) := Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)

be an irreducible (i.e., no çi is a ®j) hypergeometric of type (n, m). Let

d ≥ 1 be an integer which is prime to p. Denote by {Ú1, ... , Úd} all the

characters of π1(´m) of order dividing d. Then we have isomorphisms

of perverse objects on !1

(1) FT¥(j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) §

§ j*[d]
*CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

(2) j*[d]
*Hyp¬(~, ¥; çi's; ®j's) §

§FT
ä¥
(j*[d]

*CCCCaaaannnncccceeeellll(Hyp(-1)n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's))

§FT¥(j*[d]
*CCCCaaaannnncccceeeellll(Hyp(-1)d+n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).
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pppprrrrooooooooffff The isomorphism (2) is obtained from (1) by Fourier inversion. In
order to prove (1), we will first establish the following

LLLLeeeemmmmmmmmaaaa 9999....3333....3333 Over an algebraically closed field of characteristic p, for
any hypergeometric Hyp¬(~, ¥; çi's; ®j's), and any integer d ≥ 1 prime

to p, we have an isomorphism of perverse objects on ´m

j*FT¥(j~[d]
*Hyp¬(~, ¥; çi's; ®j's)) §

§ [d]*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's).

pppprrrrooooooooffff As recalled in 8.1.12, for any object K we have

(j*Ò¥)[1]*~K § j*FT¥(j~inv
*K).

We apply this to the object

K := [d]*inv*Hyp¬(~, ¥; çi's; ®j's) = inv*[d]*Hyp¬(~, ¥; çi's; ®j's)

and find

j*FT¥(j~[d]
*Hyp¬(~, ¥; çi's; ®j's)) §

§ (j*Ò¥)[1]*~[d]
*inv*Hyp¬(~, ¥; çi's; ®j's)

By the base change formula for convolution (8.1.10, 2(b)), for any
two objects K and L on ´m, and any nonzero integer d, we have

K*~([d]
*L) § [d]*(([d]*K)*~L).

Thus we have

j*FT¥(j~[d]
*Hyp¬(~, ¥; çi's; ®j's)) §

§ [d]*(([d]*(j
*Ò¥)[1])*~inv

*Hyp¬(~, ¥; çi's; ®j's)).

It remains only to simplify the convolvees.
By the inversion property (8.3.3) and the change of ¥ formula

(8.7.2), we have

inv*Hyp¬(~, ¥; çi's; ®j's) § Hyp1/¬(~, ä¥; ä®j's; äçi's)

§ Hyp(-1)n-m/¬(~, ¥; ä®j's; äçi's).

By the Kummer Induction Theorem 8.9.1, we have

[d]*(j
*Ò¥)[1]) := [d]*(Hyp1(~, ¥; ú, &) §

§ Hyp1(~, ¥1/d; Ú1, ... , Úd; &),

and by 8.7.2, we have
Hyp(d)d(~, ¥; Ú1, ... , Úd; &) § Hyp1(~, ¥1/d; Ú1, ... , Úd; &).

Combining all this, we find



Chapter9-G2 examples, Fourier transforms and hypergeometrics-9

j*FT¥(j~[d]
*Hyp¬(~, ¥; çi's; ®j's)) §

§ [d]*(Hyp1(~, ¥1/d; Ú1, ... , Úd; &)*~Hyp(-1)n-m/¬(~, ¥; ä®j's; äçi's))

§ [d]*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's).

QQQQEEEEDDDD ffffoooorrrr lllleeeemmmmmmmmaaaa 9999....3333....3333

We now return to the proof of the theorem 9.3.2.

We claim that j*[d]
*Hyp¬(~, ¥; çi's; ®j's) is the direct sum of

perverse irreducibles on !1, none of which is j*ÒÚ[1] for any tame

character Ú of π1(´m). Indeed, since Hyp¬(~, ¥; çi's; ®j's) is perverse

irreducible on ´m, and [d] is finite etale, [d]*Hyp¬(~, ¥; çi's; ®j's) is

semisimple as a perverse object on ´m, and hence its middle extension

j*[d]
*Hyp¬(~, ¥; çi's; ®j's) is a direct sum of perverse irreducibles on

!1. To show that no j*ÒÚ[1] is a direct factor, it suffices to show that

on ´m, no ÒÚ[1] is a direct factor of [d]*Hyp¬(~, ¥; çi's; ®j's). But aaaallllllll

the irreducible constituents of [d]*Hyp¬(~, ¥; çi's; ®j's) are μμμμd-

translates of each other (since Hyp¬(~, ¥; çi's; ®j's) is irreducible). So if

ÒÚ[1] were a direct factor of [d]*Hyp¬(~, ¥; çi's; ®j's), then

[d]*Hyp¬(~, ¥; çi's; ®j's)

would be a direct sum of copies of ÒÚ[1]. This in turn would imply that

ç(´m, [d]*Hyp¬(~, ¥; çi's; ®j's)) = 0.

But this is nonsense, because

ç(´m, [d]*Hyp¬(~, ¥; çi's; ®j's)) = dç(´m, Hyp¬(~, ¥; çi's; ®j's)) = d.

Therefore FT¥(j*[d]
*Hyp¬(~, ¥; çi's; ®j's)) is a sum of perverse

irreducibles on !1, none of which is either the delta sheaf ∂0 at the

origin, or j*ÒÚ[1] for any nontrivial tame character Ú. Since any

perverse irreducible M on !1 other than ∂0 satisfies M § j*j
*M, we

have

FT¥(j*[d]
*Hyp¬(~, ¥; çi's; ®j's)) § j*j

*FT¥(j*[d]
*Hyp¬(~, ¥; çi's; ®j's)).

So to prove the theorem it suffices to prove that on ´m we have

j*FT¥(j*[d]
*Hyp¬(~, ¥; çi's; ®j's)) §
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§ [d]*CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

Since both of these perverse objects are semisimple, it suffices to show
that they have isomorphic semisimplifications. For this, we argue as
follows.

We have a short exact sequence of perverse objects on !1 of the
form

0¨V‚∂0 ¨ j
~
[d]*Hyp¬(~, ¥; çi's; ®j's) ¨ j*[d]

*Hyp¬(~, ¥; çi's; ®j's) ¨ 0,

for some punctual sheaf V‚∂0 at zero. In view of the known structure

of the local monodromy at zero of Hyp¬(~, ¥; çi's; ®j's), we see that V

has dimension
r := Card(R), R := {k in {1, ... , d} such that Úk is among the çi).

Taking the Fourier Transform of the above exact sequence, applying j*,
and using the lemma, we find a short exact sequence

0 ¨ (V‚ä$…[1]) ¨ [d]*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's) ¨

¨ j*FT¥(j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) ¨ 0.

On the other hand, by the Semisimplification Theorem 8.4.10, the
semisimplifiation of

Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)

is
·i in R ÒÚi

[1] · CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

Pulling back by [d]*, we find that the semisimplification of

[d]*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)

is

(ä$…[1])
r · [d]*CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

Comparing this with the above short exact sequence, we conclude
that the two perverse objects on ´m

[d]*CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)),

j*FT¥(j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)),

have isomorphic semisimplifications, hence, both being semisimple, are
themselves isomorphic. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....4444 Hypotheses as in 9.3.2, suppose in addition that for all

i, (çi)
d is nontrivial.
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Then we have isomorphisms of perverse objects on !1

(1) FT¥(Rj*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) §

§ j*[d]
*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's).

(2) Rj*[d]
*Hyp¬(~, ¥; çi's; ®j's) §

§FT
ä¥
(j*[d]

*Hyp(-1)n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's))

§FT¥(j*[d]
*Hyp(-1)d+n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

pppprrrrooooooooffff If no çi has order dividing d, then

Hyp := Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)

has

j~[d]
*Hyp § j*[d]

*Hyp § Rj*[d]
*Hyp,

and Hyp(-1)n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's) is its own CCCCaaaannnncccceeeellll. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....5555 Hypotheses as in 9.3.2, suppose in addition that
Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)

is not Kummer induced of any degree d1 which divides d. Then

j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)

is perverse irreducible on !1, and consequently the isomorphism

FT¥(j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) §

§ j*[d]
*CCCCaaaannnncccceeeellllHyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)

is an isomorphism of perverse irreducibles on !1.

pppprrrrooooooooffff Indeed, since H := Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m) is perverse

irreducible, and [d] is finite etale galois, either [d]*H is isotypical or H is
induced from an intermediate covering. So the hypothesis insures that

[d]*H is isotypical. It remains only to show that if [d]*H is isotypical,
then it is irreducible.

If [d]*H is isotypical, say k ≥ 1 copies of an irreducible K, then
since the isomorphism class of K is μμμμd-invariant, K itself descends

through the cyclic covering [d], to a perverse irreducible K0. Therefore

H is of the form K0‚M, with M the k-dimensional representation of
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π1(´m) given by Hom(K0, H). This M must be irreducible if H is to be

irreducible. But this M becomes trivial after [d]*, so it is a sum of ÒÚ's.

Therefore we have k = 1, and hence [d]*H is perverse irreducible on

´m. Taking its middle extension j*[d]
*H to !1, we find that j*[d]

*H and

with it FT¥(j*[d]
*H) are perverse irreducible on !1. QED

9999....4444 RRRReeeedddduuuuccccttttiiiioooonnnn ttttoooo tttthhhheeee TTTTaaaammmmeeee CCCCaaaasssseeee
(9.4.1) In the case when n > m and d = n-m is prime to p, we
obtain a striking relation between hypergeometrics of "wild" type (n, m)
and those of "tame" type (n-r, n-r). The above results give, in this case:
CCCCoooorrrroooollllllllaaaarrrryyyy 9999....4444....2222 Hypotheses as in the theorem, suppose that n > m and
that d = n - m is prime to p. Then

(a) we have isomorphisms of perverse sheaves on !1

(1) FT¥(j*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) §

§ j*[d]
*CCCCaaaannnncccceeeellll(Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

(2) j*[d]
*Hyp¬(~, ¥; çi's; ®j's) §

§FT
ä¥
(j*[d]

*CCCCaaaannnncccceeeellll(Hyp(-1)n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's))

§FT¥(j*[d]
*CCCCaaaannnncccceeeellll(Hyp(-1)d+n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

(b) If Hyp¬(~, ¥; çi's; ®j's) is not Kummer induced, these are

isomorphisms of perverse irreducibles.

(c) If none of the çi satisfies (çi)
d = ú, we may rewrite these

isomorphisms:

(1) FT¥(Rj*[d]
*Hyp¬(~, ¥; ç1, ... , çn; ®1, ... , ®m)) §

§ j*[d]
*Hyp(-1)m-n(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's).

(2) Rj*[d]
*Hyp¬(~, ¥; çi's; ®j's) §

§FT
ä¥
(j*[d]

*Hyp(-1)n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's))

§FT¥(j*[d]
*(Hyp(-1)d+n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

pppprrrrooooooooffff This is just rewriting the previous results for d = n - m. QED
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11110000....0000 IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn
This chapter is devoted to the exceptional possibilities for the

group Ggeom of an irreducible …-adic hypergeometric on ´m in

characteristic p of type (n,m), n ± m, which is not Kummer induced.
Let N:=max(n,m), d := |n - m|. Suppose that p > 2N + 1 and that p does
not divide the integer 2N1(d)N2(d) of 7.1.1. Recall (8.11.2-4) that the

exceptional possibilities for G0,der can occur only for |n-m|=6, N=7,8 or
9:

N=7: the image of G2 in its 7-dim'l irreducible representation

N=8: the image of Spin(7) in the 8-dim'l spin representation

the image of SL(3) in the adjoint representation
the image of SL(2)≠SL(2)≠SL(2) in stdºstdºstd

N=9: the image of SL(3)≠SL(3) in stdºstd.

We will show that the cases in which these exceptional groups
occur are "the same" as they were for hypergeometric Î-modules.
Indeed, the proofs in the two cases are quite analogous. We will largely
content ourselves with indicating these analogies, rather that giving
the …-adic proofs in complete detail.

11110000....1111 TTTThhhheeee GGGG2222 aaaannnndddd SSSSppppiiiinnnn((((7777)))) CCCCaaaasssseeeessss

GGGG2222 RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11110000....1111....1111 Let k be an algebraically closed field

of characteristic p > 15. Suppose that p does not divide the integer
2N1(6)N2(6) of 7.1.1. Let ç, ® be two tame ä$…-valued characters of

π1(´mºk) such that none of ç, ®, or ç® is the unique character Ú1/2

of exact order two. Then for any ¬ Ÿ k≠, and ¥ any nontrivial ä$…-

valued additive character of a finite subfield k0 of k

Ó := Ó¬(~, ¥; ú, ç, äç, ®, ä®, ç®, äçä®; Ú1/2)

has Ggeom = G2. These are all the hypergeometric of type (7,1) with

Ggeom = G2. The hypergeometrics of type (7,1) with G0,der = G2 are

precisely the tame ÒÚ twists of these.

pppprrrrooooooooffff Exactly as in the differential galois case (4.1), but using 8.11.5
instead of 3.6.1, the only nonobvious point is that such an Ó has
Ggeom = G2. To show this, we argue as follows. Ó is irreducible, and,

being of type (7, 1), it is not Kummer induced. Since p > 15, Ó is Lie-
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irreducible. Visibly Ó is self-dual with trivial determinant. Exactly as

in 9.1.1, we see that the only possibilities for (Ggeom)0 are PSL(2), G2, or

SO(7). In all of these casess, every automorphism of (Ggeom)0 is inner,

so Ggeom fi ´m(Ggeom)0. Since Ggeom fi SO(7), it contains no nontrivial

scalars, so Ggeom = (Ggeom)0. By the same slope argument as in 9.1.1,

we can rule out the PSL(2) possibility. So Ggeom is either G2 or SO(7).

To rule out the SO(7) possibility, it suffices to show that, denoting

by j: ´m ¨ @1 the inclusion, we have

ç(@1, j*Ú
3(Ó)) ≥ 2 > 0.

By the Euler-Poincare formula,

ç(@1, j*Ú
3(Ó)) =

= -Swan0(Ú
3(Ó)) - Swan‘(Ú3(Ó)) + dim(Ú3(Ó))I0 + dim(Ú3(Ó))I‘.

So it suffices to show that

(1) dim(Ú3(Ó))I0 ≥ 5.

(2) Swan0(Ú
3(Ó)) = 0.

(3) dim(Ú3(Ó))I‘ = 2.

(4) Swan‘(Ú3(Ó)) = 5.

The proofs of these four assertions are entirely analogous to those of
their differential galois theoretic avatars, using 8.6.4 and 8.9.1 instead
of 3.4.1.1. Assertions (1) and (2) hold in any characteristic p. In proving
(3) and (4), one needs that p is prime to 6, and that the relations of the
form Ω1 + Ω2 + Ω3 = 0, with the Ωi three distinct sixth roots of unity in

characteristic p are the two cases
{Ω1, Ω2, Ω3} = {all the cube roots of 1},

{-Ω1, -Ω2, -Ω3} = {all the cube roots of 1}.

We will now show that this is the case so long as p ± 2, 3, 7.
Indeed, suppose we have any relation

Ω1 + Ω2 + Ω3 = 0

where each Ωi is a sixth root of unity. Since either _Ωi is a cube root of

unity, we can rewrite this relation in the form
_ ∑1 _ ∑2 _ ∑3 = 0

where the ∑i are cube roots of unity. Dividing by _∑3, we get a

relation of the form
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1 = _ ∑1 _ ∑2,

where the ∑i are cube roots of unity.

We now analyze the possible cases. If ∑1 = 1, then its sign must

be minus (lest ∑2 = 0), and the relation is 2 = _ ∑2, whence 2 is a

sixth root of unity. But 26 - 1 = 63 ± 0 (since p ± 2, 3, 7). If ∑1 = ∑2,

then the relation is 1 = _2∑1, and again 2 would be a sixth root of 1.

So the only possible relation has ∑1 and ∑2 the two nontrivial cube

roots of unity, say ∑ and ∑2. The relation is one of

1 = ∑ + ∑2,

1 = - ∑ + ∑2,

1 = ∑ - ∑2,

1 = - ∑ - ∑2.
Of these, we claim that only the last one (which always holds so long as
p ± 3) holds in characteristic p ± 2, 3, 7. Using the last one, the first
three become

- ∑ - ∑2 = ∑ + ∑2,

- ∑ - ∑2 = - ∑ + ∑2,

- ∑ - ∑2 = ∑ - ∑2,
each of which trivially implies that p = 2. QED

RRRReeeemmmmaaaarrrrkkkk 11110000....1111....2222 We can summarize the result of the preceeding
calculation as the statement that N2(6) (cf 7.1.1) is divisible only by the

primes 2, 3, 7.

SSSSppppiiiinnnn((((7777)))) RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11110000....1111....3333 Let k be an algebraically closed

field of characteristic p > 17. Let ¬ Ÿ k≠, and ¥ any nontrivial ä$…-

valued additive character of a finite subfield k0 of k. Suppose that p

does not divide the integer 2N1(6)N2(6) of 7.1.1. Let ç, ®, ≈ be three

tame ä$…-valued characters of π1(´mºk) such that

Ó := Ó¬(~, ¥; ç, äç, ®, ä®, ≈, ä≈, ç®≈, äçä®ä≈; ú, Ú1/2)

is irreducible and not Kummer induced. Then Ó has Ggeom equal to

(the image in SO(8) of) Spin(7). These are all the hypergeometric of type
(8,2) with Ggeom = Spin(7). The hypergeometrics of type (8,2) with

G0,der = Spin(7) are precisely the tame ÒÚ twists of these.
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pppprrrrooooooooffff Again the only hard point is that such an Ó has Ggeom = Spin(7).

For this it suffices to show that, denoting by j: ´m ¨ @1 the inclusion,

we have

ç(@1, j*Ú
4(Ó)) ≥ 2 > 0.

By the Euler-Poincare formula,

ç(@1, j*Ú
4(Ó)) =

= -Swan0(Ú
4(Ó)) - Swan‘(Ú4(Ó)) + dim(Ú4(Ó))I0 + dim(Ú4(Ó))I‘.

So it suffices to show that

(1) dim(Ú4(Ó))I0 ≥ 8.

(2) Swan0(Ú
4(Ó)) = 0.

(3) dim(Ú4(Ó))I‘ = 4.

(4) Swan‘(Ú4(Ó)) = 10.

The proofs of these four assertions are entirely analogous to those of
their differential galois theoretic avatars. Assertions (1) and (2) hold in
any characteristic p.

In proving (3) and (4), one needs that p is prime to 6, and that all
relations of the two forms

Ω1 + Ω2 + Ω3 = 0, Ω1 + Ω2 + Ω3 + Ω4 = 0

with the Ωi three (resp. four) distinct sixth roots of unity in

characteristic p are exactly the same as in characteristic zero. Since -1
is a sixth root of unity, the relations in question can be rewritten to be
of the forms

Ω1 + Ω2 = Ω3 , Ω1 - Ω2 = Ω3 - ≈4.

So this is guaranteed by the hypothesis that p does not divide the
integer 2N1(6)N2(6). QED

11110000....2222 TTTThhhheeee PPPPSSSSLLLL((((3333)))),,,, SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))),,,, aaaannnndddd SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333)))) CCCCaaaasssseeeessss,,,, vvvviiiiaaaa
TTTTeeeennnnssssoooorrrr IIIInnnndddduuuuccccttttiiiioooonnnn
(10.2.1) We will give a unified treatment of these three cases by
thinking systematically about tensor induction (cf. [C-R-MRT, 13], [Ev])
of …-adic hypergeometrics. I am indebted to Ofer Gabber for making me
aware of this point of view. [This same method could also be used in the
differential galois case, where it would obviate the use of the
specialization theorem.]
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11110000....3333 SSSShhhhoooorrrrtttt RRRReeeevvvviiiieeeewwww ooooffff TTTTeeeennnnssssoooorrrr IIIInnnndddduuuuccccttttiiiioooonnnn
(10.3.1) Let us recall the basic setup (cf. [C-R-MRT, 13], [Ev]). Given a
group G and a subgroup H of finite index n, consider the "wreath

product" (H)n ©Sn, where π Ÿ Sn acts on (H)n by

π-1(h1, h2, ... , hn)π = (hπ(1), hπ(2), ... , hπ(n)).

If we pick an ordered set ©1, ... , ©n of left coset representatives for G/H,

we can, following Frobenius, define an injective group homomorphism

G ¨ (H)n ©Sn
g ÿ π\(h1, h2, ... , hn)

by writing
g©i = ©π(i)hi, with each hi in H, and π in Sn.

If we change the ordered set of coset representatives, this
homomorphism changes by an inner automorphism of the target.

Now suppose we are given a ring A, and a representation of H on

a free A module V of finite rank r. The wreath product (H)n ©Sn acts

on V‚n as follows: (H)n acts as
(h1, h2, ... , hn): (v1‚v2‚ ... ‚vn) ÿ (h1v1‚h2v2‚ ... ‚hnvn),

and Sn acts as

π-1 : (v1‚v2‚ ... ‚vn) ÿ (vπ(1)‚vπ(2)‚ ... ‚vπ(n)).

Restricting this representation of (H)n ©Sn to the subgroup G, we obtain

a representation of G on V‚n, a free A-module of rank rn. The
isomorphism class of this representation is independent of the auxiliary
choice of ordered set of left coset representatives used to define it. We
call it the tensor induction of V from H to G, and denote it

‚-IndHfiG(V).

(10.3.2) Here are some of the basic properties of tensor induction, all
of which result directly from the definitions:

(1) (additivity) If V and W are two representations of H in free A-
modules of finite rank, we have an isomorphism of G-representations

‚-IndHfiG(V‚W) § (‚-IndHfiG(V))‚(‚-IndHfiG(W)).

(2) (Jordan-Holder compatibility) Suppose that V is is a representation
of H in a free A-module of finite rank, and that we are given a finite
filtration

0 = Fild+1V fi FildV fi ... fi Fil0V = V
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of V by subrepresentations such that each griV is A-free. Consider the

induced filtration of V‚n defined by

Filk(V‚n) := ‡a1 + a2 + ... +an ≥ k Fila1(V)‚Fila2(V)‚...‚Filan(V).

This is a filtration of ‚-IndHfiG(V) by G-subrepresentations whose gri

are each A-free.

Moreover, if we filter the H-representation ·i gr
iV by the

submodules

Fil
k
(·i gr

iV) := ·i ≥ k griV,

the induced filtration on ‚-IndHfiG(·i gr
iV) is split, and has an

isomorphic associated graded:

grj( ‚-IndHfiG(·i gr
iV)) § grj( ‚-IndHfiG(V)).

In particular, we have an isomorphism of G-representations

‚-IndHfiG(·i gr
iV) § ·j gr

j( ‚-IndHfiG(V)).

(2bis) (inclusion) In the case of a two step filtration Fil1V fi V, the

subobject Filn(‚-IndHfiG(V)) of ‚-IndHfiG(V) is ‚-IndHfiG(Fil
1V), and

the quotient gr0(‚-IndHfiG(V)) is ‚-IndHfiG(V/Fil
1V).

(2ter) (inclusion) In the case of a direct sum decomposition V = ·i Vi,

there is a canonical inclusion
·i (‚-IndHfiG(Vi)) fi ‚-IndHfiG(V)

with A-free quotient.

(3) (transfer) If V is a representation of H in a free A-module of rank

one, i.e., a character ç: H ¨ A≠, then ‚-IndHfiG(V) is the character of

G defined by g ÿ ç(VGfiH(g)), where VGfiH : Gab ¨ Hab is the transfer.

(4) (inflation) Suppose that K fi H is a subgroup, and that K is normal in
G. For any representation V of H/K, we have an isomorphism of G-
representations

InflG/K to G(‚-IndH/K fi G/K(V)) § ‚-IndHfiG(InflH/K to H(V)).

The other basic properties of tensor induction which we will need
are almost all immediate consequences of the tensor version of the
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Mackey Subgroup Theorem. Here is the statement (cf [Ev]).

MMMMaaaacccckkkkeeeeyyyy SSSSuuuubbbbggggrrrroooouuuupppp TTTThhhheeeeoooorrrreeeemmmm ffffoooorrrr TTTTeeeennnnssssoooorrrr IIIInnnndddduuuuccccttttiiiioooonnnn 11110000....3333....3333
Suppose that K is an arbitrary subgroup of G, and H a subroup of G of
finite index n. Then G is a disjoint union of d ≤ n double cosets KgiH. Let

g1, ... , gd be double coset representatives. For each gi, let Hi := giHgi
-1.

Given an H-representation V, say ®: H ¨ Aut(V), denote by Vi the Hi-

representation ®i: H ¨ Aut(V) defined by ®i(gihgi
-1) := ®(h). Then

‚-IndHfiG(V) | K § ‚reps gi of K\G/H
(‚-IndHi€KfiK

(Vi)).

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....3333....4444 Hypotheses and notations as in the theorem above, if
A is a field of characteristic zero, and if V is semisimple (e.g.,
irreducible) as an H-representation, then ‚-IndHfiG(V) is semisimple as

a G-representation.
pppprrrrooooooooffff Since we are in characteristic zero, it suffices to show that the
restriction of ‚-IndHfiG(V) to some subgroup K of G of finite index is

semisimple as a K-representation. Take for K the intersection of all the
G-conjugates of H. Since K is normal in each Hi, each Vi | K is K-

semisimple, and hence so is their tensor product. Since Hi€K = K, the

theorem gives

‚-IndHfiG(V) | K § ‚reps gi of K\G/H
(Vi | K). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....3333....5555 Hypotheses and notations as in the theorem above,
suppose in addition that H is normal in G. Then

(1) ‚-IndHfiG(V) | K § ‚reps gi of K\G/H
(‚-IndH€KfiK(Vi)).

(2) If K maps onto G/H (e.g., if K has finite index m in G and if
gcd(n, m) = 1), then

‚-IndHfiG(V) | K § ‚-IndH€KfiK(V).

(3) If K = H, then

‚-IndHfiG(V) | H § ‚reps gi of G/H
(Vi).
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11110000....4444 AAAA BBBBaaaassssiiiicccc EEEExxxxaaaammmmpppplllleeee;;;; tttteeeennnnssssoooorrrr iiiinnnndddduuuuccccttttiiiioooonnnn ooooffff ppppoooollllyyyynnnnoooommmmiiiiaaaallllssss
(10.4.1) In this section we will consider the following situation: G is
the group #, H is the subgroup n#, V is a free A-module of rank r ≥ 1
on which the canonical generator ©n := "n" of H acts by an

automorphism ƒ. We take the integers {1, 2, ... , n} as ordered set of
coset representatives of G/H. By definition, the canonical generator ©1 :=

"1" of G acts on V‚n by the automorphism
©1(v1‚v2‚ ... ‚vn) := ƒ(vn)‚v1‚v2‚ ... ‚vn-1.

Let us define
P(T) := det(T - ©n | V),

P‚n(T) := det(T - ©1 | ‚-Indn#fi#(V)).

By using the Jordan-Holder compatibility and "reduction to the
universal case", one sees that P‚n(T) depends only on P(T), and that

this dependence is itself by means of universal formulas.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 11110000....4444....2222 We say that P‚n(T) is the n-fold tensor induction of

P(T), and that the roots of P‚n(T) are the "‚n'th roots of the roots of

P(T)".

(10.4.3) Here is a concrete way to make this explicit. Suppose that V
admits an A-eigenbasis e1, ... , er, with

ƒ(ei) = ¬iei.

(Thus P(T) is °i(T - ¬i)). Then V‚n admits as A-basis the rn vectors

ea1
‚ea2

‚ ... ‚ean
:= e[a1, ... , an],

indexed by the set E := {1, 2, ... , r}n. Consider the action of "cyclic
permutation of the n factors" on this set, and the corresponding
decomposition of E into orbits. Given an orbit Z, we can attach to it the

integer Card(Z), and the quantity ¬(Z) in A≠ defined as
¬(Z) := ¬a1

≠¬a2
≠ ... ≠¬a

Card(Z)
,

where [a1, ... , an] is any element of E which lies in the orbit Z. For each

orbit Z, we denote by Span(Z) fi V‚n the A-span of the corresponding
basis vectors. Then we have a G-stable direct sum decomposition

V‚n = ·orbits Z Span(Z).

One sees directly that the characteristic polynomial of ©1 on Span(Z) is
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det(T - ©1 | Span(Z)) = TCard(Z) - ¬(Z).

Thus we obtain the following formula:

P‚n(T) = °orbits Z (T
Card(Z) - ¬(Z)).

(10.4.4) In the special case when V has rank one, this specializes to
P‚n(T) = P(T).

(10.4.5) In the special case when the index n is a prime q (but
rank(V) is arbitrary), all orbits have Card either 1 or q, and the
formula becomes

P‚n(T) = P(T)≠H(Tq),

where H(T) is the monic polynomial defined (universally) by

det(T - ƒ‚q | V‚q)/det(T - ƒq | V) = H(T)q.
An alternate description of the polynomial H(T) is this: since q is a

prime, when we expand (X1 + X2 + ... + Xr)
q by the binomial theorem,

we get

(X1 + X2 + ... + Xr)
q = ‡i (Xi)

q + q‡W a(W)XW in #[the Xi],

with nonnegative integers a(W). Then H(T) is given by

H(T) = °W (T - ¬W)a(W).

11110000....5555 TTTThhhheeee GGGGeeeeoooommmmeeeettttrrrriiiicccc IIIInnnnccccaaaarrrrnnnnaaaattttiiiioooonnnn
(10.5.1) Suppose given connected schemes X and Y, and a finite etale
map f: Y ¨ X of degree n ≥ 1. If we pick geometric points y of Y and
x := f(y) of X, then H := π1(Y, y) is an open subgroup of index n in

G := π1(X, x). Let A be a coefficient ring, and Ï a lisse sheaf of free A-

modules of finite rank r ≥ 1 on Y. View Ï as a representation of
π1(Y, y) on the free A-module V := Ïy. Then we can form the tensor

induction ‚IndHfiG(V), and then interpret it as the fibre at x of a lisse

sheaf on X of free A-modules of rank rn. We will denote this sheaf
f‚*Ï,

and call it interchangeably the "tensor direct image", or the "tensor
induction", of the lisse sheaf Ï by the finite etale map f.

DDDDeeeesssscccceeeennnntttt PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11110000....5555....2222 Let Æ be a finite group, X a connected
scheme, and f : Y ¨ X a finite etale connected Æ-torsor over X. For any
coefficient ring A, and any lisse sheaf Ï of free A-modules of finite rank
r ≥ 1 on Y, we have an isomorphism of lisse sheaves of free A-modules
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f*(f‚*Ï) §‚©ŸÆ ©*(Ï).

pppprrrrooooooooffff This is just the geometric transcription of 10.3.5 (3). QED

BBBBaaaasssseeee CCCChhhhaaaannnnggggeeee PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11110000....5555....3333 Let Æ be a finite group, X a
connected scheme, and f : Y ¨ X a finite etale connected Æ-torsor over
X. Let Z be a connected scheme, π: Z ¨ X a morphism. Suppose that
the fibre product Z≠XY is connected. Consider the cartesian diagram

πY
*Ï Ï

y πY q
Z≠XY zzzzc Y

fZ d df
π

Z zzzzc X
Then on Z we have a "base-change" isomorphism of lisse sheaves

π*(f‚*Ï) § (fZ)‚*(πY
*Ï).

pppprrrrooooooooffff This is just the geometric transcription of 10.3.5 (2). QED

11110000....6666 TTTTeeeennnnssssoooorrrr IIIInnnndddduuuuccccttttiiiioooonnnn oooonnnn ´́́́mmmm
(10.6.1) In this section, we work over an algebraically closed field k
of characteristic p on ´m := Spec(k[t, 1/t]). We denote by I0 (resp. I‘) a

choice of inertia groups at 0 and ‘ respectively. For each integer n ≥ 1
prime to p, we denote by I0(n) (resp. I‘(n)) their unique subgroups of

index n, We fix a prime … ± p, and consider the tensor induction of lisse
Ä$…-sheaves Ï with respect to the Kummer coverings

[n]: ´m ¨ ´m
of degrees n ≥ 1 prime to p. We will also consider the corresponding
"local" tensor inductions of I0 (resp. I‘)-representations with respect to

the same Kummer coverings [n] of Spec(k((t))) (resp. of Spec(k((t-1))))
by itself.

For each å Ÿ k≠, we denote by
Tå : ´m ¨ ´m
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Tå(x) := åx

the multiplicative translation by å.

LLLLeeeemmmmmmmmaaaa 11110000....6666....2222 Let Ï be a lisse sheaf on ´m, and n ≥ 1 an integer

prime to p. Then its local and global tensor inductions with respect to
any Kummer covering [n] with n ≥ 1 prime to p are related by

[n]‚*(Ï) | I0 § [n]‚*(Ï | I0),

[n]‚*(Ï) | I‘ § [n]‚*(Ï | I‘).

pppprrrrooooooooffff This is the base-change proposition 10.5.3, with f := [n] and π the

inclusion of Spec(k((t))) (resp. Spec(k((t-1)))) into ´m. QED

LLLLeeeemmmmmmmmaaaa 11110000....6666....3333 Suppose that Ï is lisse of rank r on ´m and tame at

zero. If (Ï | I0)
ss § ·i=1, ..., r Òçi

, then for any integer n ≥ 1 prime to

p,

([n]‚*(Ï) | I0)
ss § ·j=1, ..., rn Ò®j

,

where the ®j are the r
n tame characters (with multiplicity) such that

for any topological generator © of I0
tame, if we define

P(T) := °i(T - çi(©))

then we have
P‚n(T) = °j(T - ®j(©)).

pppprrrrooooooooffff This is obvious from the previous lemma, the inflation
compatibility 10.3.2 (4) applied to K := P0 fiG := I0, and 10.3.5 (2)

applied to the inclusion of #© into I0
tame § °…±p #…(1). QED

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 11110000....6666....4444 Given r ≥ 1 not necessarily distinct tame characters

ç1, ... , çr, and an integer n ≥ 1 prime to p, we will refer to the rn

characters ®j in the above lemma as the "‚n'th roots of the {çi's}".

EEEExxxxaaaammmmpppplllleeeessss 11110000....6666....5555 (1) The ‚2'nd roots of {ç1, ... , çr} are the r
2

characters

{ç1, ... , çr} ⁄ ⁄1 ≤ i < j ≤ r
{both square roots of çiçj}.

(2) The ‚3'rd roots of {ç1, ç2} are the 8 characters
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{ç1, ç2} ⁄ {all cube roots of (ç1)(ç2)
2} ⁄ {all cube roots of (ç1)

2
(ç2)}.

LLLLeeeemmmmmmmmaaaa 11110000....6666....6666 Let ç be a tame ä$…-valued characters of π1(´mºk), ¥

a nontrivial additive character of a finite subfield k0 of k, and n ≥ 1 an

integer prime to p. Then we have isomorphisms of lisse sheaves on ´m
(1) [n]‚*(Òç) § Òç,

(2) [n]‚*(Ò¥) § ä$… if n ≥ 2,

(3) [n]‚*(Ò¥‚Òç) § Òç if n ≥ 2.

pppprrrrooooooooffff (1) follows from 10.6.2, 10.6.3 and 10.4.4, since [n]‚*(Òç) is lisse

of rank one on ´m and everywhere tame. For (2), the transfer

interpretation of tensor induction of characters shows that [n]‚*(Ò¥)

has order dividing p. But if n ≥ 2 is prime to p, then [n]‚*(Ò¥) is tame,

because by 10.5.2 we have

[n]*([n]‚*(Ò¥)) § ‚å Ÿ μμμμn(k)
Tå

*(Ò¥) = ‚å Ÿ μμμμn(k)
(Ò¥(åx)) §

§ Ò¥((‡å)x) § ä$….

Therefore [n]‚*(Ò¥) is trivial. Finally (3) follows from (1), (2), and the

"additivity" of tensor induction. QED

LLLLeeeemmmmmmmmaaaa 11110000....6666....7777 Let n ≥ 1 and m ≥ 1 be integers which are both prime
to p and which are relatively prime: (n, m) = 1. For any lisse ä$…-sheaf

Ï on ´m, we have an isomorphism

(1) [n]*([m]‚*(Ï)) § [m]‚*([n]
*(Ï)),

and an injective homomorphism
(2) [n]*([m]‚*(Ï)) ,c [m]‚*([n]*(Ï)).

pppprrrrooooooooffff The first assertion is a special case of the base-change
isomorphism, applied to the cartesian (because (n, m) = 1) diagram
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[n]*Ï Ï
y [n] q
´m zzzzc ´m

[m] d [n] d [m]

´m zzzzc ´m.

We next define the define the map (2) when (n, m) = 1. For this,
it suffices by adjunction to define a map

[m]‚*(Ï) ¨ [n]*([m]‚*([n]*(Ï))) § [m]‚*([n]
*[n]*(Ï))

§ [m]‚*(·å Ÿ μμμμn(k)
Tå

*(Ï)).

By 10.3.2 (2ter), we have an inclusion

·å Ÿ μμμμn(k)
[m]‚*(Tå

*(Ï)) fi [m]‚*(·å Ÿ μμμμn(k)
Tå

*(Ï)),

and the desired map is the restriction of this one to the direct
summand (å = 1) which is [m]‚*(Ï).

To show that this map
(2) [n]*([m]‚*(Ï)) ¨ [m]‚*([n]*(Ï))

is injective, it suffices to show that it is injective after pullback by [n].
But after this pullback, this map is none other than the above inclusion

·å Ÿ μμμμn(k)
[m]‚*(Tå

*(Ï)) fi [m]‚*(·å Ÿ μμμμn(k)
Tå

*(Ï)). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11110000....6666....8888 Suppose that p is odd. Let ç be a tame ä$…-valued

character of π1(´mºk), ¥ a nontrivial additive character of a finite

subfield k0 of k, and n ≥ 1 an odd integer prime to p. For any

hypergeometric of type (n, 0)
Ó := Ó¬(~, ¥; ç1, ... , çn; &) with ç = °i=1,...,n çi,

the I‘-representation [2]‚*(Ó) | I‘ is a direct sum

[2]‚*(Ó) | I‘ § [n]*(Òç) · (rank n2 - n, all ‘-slopes 1/2n).

pppprrrrooooooooffff By 10.6.2, [2]‚*(Ó) | I‘ depends only on Ó | I‘. By the change of

characters theorem 8.6.4, for fixed (¬, ¥), Ó | I‘ is the same for any n

tame characters whose product is ç. Since n is odd, we may take the n
n'th roots of ç as these characters, and prove the assertion for that
particular Ó.

In this case, we have (for some μ in k≠) a global isomorphism (cf.
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8.9.1 or [Ka-GKM, 5.6.2])
Ó § [n]*(Ò¥(μx)‚Òç(x)).

Let us first compute the ‘-slopes of [2]‚*(Ó). We must show that

[2]*[n]*([2]‚*(Ó)) has n
2 - n slopes of 1, and n slopes of zero. But this is

clear, since

[2]*[n]*([2]‚*(Ó)) = [2]*[n]*([2]‚*( [n]*(Ò¥(μx)‚Òç(x))))

§ [2]*([2]‚*( [n]
*[n]*(Ò¥(μx)‚Òç(x))))

§ ([n]*[n]*(Ò¥(μx)‚Òç(x)))‚T-1
*([n]*[n]*(Ò¥(μx)‚Òç(x)))

§ (·å Ÿ μμμμn
Ò¥(μåx)‚Òç(x))‚ (·å Ÿ μμμμn

Ò¥(-μåx)‚Òç(x))

§ ·å,∫ Ÿ μμμμn≠μμμμn
Ò¥(μ(å - ∫)x)‚Òç2(x).

It remains to see that the n-dimensional tame part, corresponding to
the pairs (å, ∫) with å = ∫, is in fact [n]*Òç. For this, we use part (2)

of the previous lemma, according to which
[n]*([2]‚*(Ò¥(μx)‚Òç(x))) fi [2]‚*( [n]*(Ò¥(μx)‚Òç(x))),

and 10.6.6, (3), according to which
[2]‚*(Ò¥(μx)‚Òç(x)) § Òç(x). QED

We now exploit the special case n = 3 of the above proposition, the
only case in which [2]‚*(Ó) has Swan‘ = 1.

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....6666....9999 Suppose that p is prime to 6. Let ç be a tame ä$…-

valued character of π1(´mºk), ¥ a nontrivial additive character of a

finite subfield k0 of k. For any hypergeometric of type (3, 0)

Ó := Ó¬(~, ¥; ç1, ç2, ç3; &) with ç = °i=1,...,3 çi,

denote by
{®1, ... , ®9} := the ‚2'nd roots of {ç1, ç2, ç3},

={ç1, ç2, ç3} ⁄ {both square roots of ç1ç2, of ç1ç3, of ç2ç3},

and by
{Ú1, Ú2 ,Ú3 } := the cube roots of ç.

Then for some μ Ÿ k≠, there exists an isomorphism of lisse sheaves on
´m

[2]‚*(Ó) § Óμ(~, ¥; ®1, ... , ®9; Ú1, Ú2 ,Ú3)
ss,

where "ss" means "semisimplification as lisse sheaf on ´m".
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pppprrrrooooooooffff Since Ó is irreducible, [2]‚*(Ó) is certainly semisimple. It has

Swan‘ = 1, with six slopes 1/6 and three slopes zero, and it is tame at

zero. By the intrinsic characterization of hypergeometrics (8.5.3) and
(8.5.2), either [2]‚*(Ó) is itself an irreducible hypergeometric,

necessarily of type (9, 3), or for some integer 1 ≤ k ≤ 3 it is the direct
sum of an irreducible hypergeometric of type (9 - k, 3 - k) with k
sheaves among the ÒÚi

. Looking at the tame parts of [2]‚*(Ó) and of

Óμ(~, ¥; ®1, ... , ®9; Ú1, Ú2 ,Ú3) at both zero and ‘, the result is

immediate from the cancellation theorem 8.4.7 and the rigidity
corollary bis 8.5.6 (2). QED

LLLLeeeemmmmmmmmaaaa 11110000....6666....11110000 Let q be a prime. There exists a nonzero integer D(q)
such that for any algebraically closed field k of characteristic not
dividing 2qD(q), the following statement (*) holds:

(*)for Ω any primitive q'th root of unity in k≠, of the 2q sums in k,

(_1) + (_Ω) + (_Ω2) + ... + (_Ωq-1),
where the signs _ are chosen independently, the only ones that vanish
are the two corrseponding to the choices (all +) and (all -).

Moreover, for q = 3 or q = 5, we have D(q) = 1.

pppprrrrooooooooffff Let k be an algebraically closed field of charcteristic neither two

nor q. Fix a primitive q'th root of unity Ω in k≠, i.e., Ω is a root in k of
the polynomial

”q(X) := 1 + X + X2 + ... + Xq-1 in #[X].

That (*) hold in k amounts to the statement that if we partition {0, 1,
2, ..., q-1} into two nonempty disjoint subsets S and T, then

‡nŸS Ω
n ± ‡mŸT Ω

m in k.

Since we always have

‡nŸS Ω
n = -‡mŸT Ω

m in k,

and k has odd characteristic, we can only have ‡nŸS Ω
n = ‡mŸT Ω

m in

k if in fact ‡nŸS Ω
n = 0 = ‡mŸT Ω

m in k.

Thus we must show that if S is any proper nonempty subset of {0,

1, 2, ..., q-1}, we have ‡nŸS Ω
n ± 0. Replacing S by its complement if

necessary, we may assume in addition that Card(S) ≤ (q - 1)/2. Thus
the cases q = 3 and q = 5 (lest -1 be a fifth root of unity) are trivially
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okay in any characteristic not dividing 2q.
For general q, we argue as follows. Multiplying the putative

relation by a power of Ω, we may further suppose that S does not
contain q-1. Define

FS(X) := ‡nŸS Xn Ÿ #[X].

Then if (k, Ω) "fails" for S, then X ÿ Ω is a k-valued point of the finite
#-scheme Spec(AS),

AS := #[X]/(”q(X), FS(X)).

But over $ the polynomial ”q(X) is irreducible, and as FS(X) is a

nonzero polynomial of lower degree, we must have
g.c.d.(”q(X), FS(X)) = 1 in $[X].

Clearing denominators, we find that the ideal (”q(X), FS(X)) contains

some nonzero integer DS(q). Therefore AS[1/DS(q)] is the zero ring, and

hence Spec(AS) has no k-valued points with values in fields where

DS(q) is invertible. So one can take for D(q) the product of the DS(q)

over all nonempty S not containing q-1. QED

RRRReeeemmmmaaaarrrrkkkk 11110000....6666....11110000....1111 Here is a method, due to J. Conway, to show that
in general D(q) ± 1. Suppose that q and p are distinct odd primes, that
r ≥ 2 is the least integer such that

pr • 1 mod q,
and that

pr - 1 = nq for some integer n with
p • 1 mod n.

Examples: (p = 3, q = 13, r = 3, n = 2), (p = 5, q = 31, r = 3, n = 4).
Then certainly r ≤ q - 1 by Fermat. We claim that there exists a

primitive q'th root of unity Ω in Épr whose trace from Épr to Ép
vanishes. But this trace is the sum of r distinct (since Ép(Ω) = Épr by

the choice of r) primitive q'th roots of 1, so p is a "bad" characteristic
for q.

To verify the claim, we argue by contradiction. The key point is
that

(Épr)
≠ = μμμμq ≠ μμμμn.

[Indeed all the n'th roots of unity lie in the ground field Ép, while any

element Ω ± 1 of μμμμq generates Épr over Ép, so μμμμq € μμμμn.= {1}.]

Suppose that each of the q-1 nontrivial q'th roots of unity in Épr
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has nonzero trace. Since all the n'th roots of unity lie in the ground
field Ép, the linearity of the trace shows that only the elements of

{0} ⁄ μμμμn of Épr can possibly have trace zero. Since there exist pr-1 > 1

elements of trace zero, some element of μμμμn must have trace zero, and

by linearity every element of μμμμn has trace zero. Therefore 1 has trace

zero, so p|r. and there are exactly 1 + n elements of trace zero. Thus

pr-1 = 1 + n. But if p|r, then every element of Ép has trace zero, so

p ≤ 1 + n. Therefore p = 1 + n, whence pr-1 = p, so r = 2. But p|r, so
p = 2, contradiction.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11110000....6666....11111111 Let q be an odd prime. Suppose that p is odd and
does not divide 2qD(q). Let ç be a tame ä$…-valued character of

π1(´mºk), and ¥ a nontrivial additive character of a finite subfield k0
of k. Denote by Ú1/2 the quadratic character. For any hypergeometric

of type (2, 0)
Ó := Ó¬(~, ¥; ç1, ç2; &) with ç = ç1ç2Ú1/2,

the I‘-representation [q]‚*(Ó) | I‘ is a direct sum

[q]‚*(Ó) | I‘ § [2]*(Òç) · (rank 2q - 2, all ‘-slopes 1/2q).

pppprrrrooooooooffff The proof is entirely analogous to that of the proposition above.
One first reduces to the case when Ó is [2]*(Ò¥(μx)‚Òç(x)). One shows

that [2]*(Òç) is a subrepresentation of [q]‚*(Ó) exactly as above.

The only nonobvious point is that

[2q]*([q]‚*(Ó)) § [q]*([q]‚*([2]
*Ó)) § ‚å Ÿ μμμμq

Tå
*([2]*Ó)

§ ‚å Ÿ μμμμq
Tå

*([2]*[2]*(Ò¥(μx)‚Òç(x)))

§ ‚å Ÿ μμμμq
Tå

*(Ò¥(μx)‚Òç(x) · Ò¥(-μx)‚Òç(x))

has all but two of its ‘-slopes =1. This amounts to the statement that

if Ω is a primitive q'th root of unity in k≠, then of the 2q sums in k,

(_1) + (_Ω) + (_Ω2) + ... + (_Ωq-1),
where the signs _ are chosen independently, the only ones that vanish
are the two corrseponding to the choices (all +) and (all -). This holds
precisely because we are in characteristic p not dividing 2qD(q). QED

We now exploit the special case q = 3, the only case in which
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[q]‚*(Ó) has Swan‘ = 1 for p not dividing 2qD(q).

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....6666....11112222 Suppose that p is prime to 6. Let ç be a tame ä$…-

valued character of π1(´mºk), ¥ a nontrivial additive character of a

finite subfield k0 of k. Denote by Ú1/2 the quadratic character. For any

hypergeometric of type (2, 0)
Ó := Ó¬(~, ¥; ç1, ç2; &) with ç = ç1ç2Ú1/2,

denote by
{®1, ... , ®8} := the ‚3'rd roots of {ç1, ç2}

= {ç1, ç2} ⁄ {all cube roots of (ç1)(ç2)
2, of (ç1)

2
(ç2)},

and by
{Ú1, Ú2} := the square roots of ç.

Then for some μ Ÿ k≠, there exists an isomorphism of lisse sheaves on
´m

[3]‚*(Ó) § Óμ(~, ¥; ®1, ... , ®8; Ú1, Ú2)
ss,

where "ss" means "semisimplification as lisse sheaf on ´m".

pppprrrrooooooooffff The proof is entirely analogous to that of 10.6.9. QED

11110000....7777 RRRReeeettttuuuurrrrnnnn ttttoooo tttthhhheeee PPPPSSSSLLLL((((3333)))),,,, SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))),,,, aaaannnndddd SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333))))
ccccaaaasssseeeessss

PPPPSSSSLLLL((((3333)))) RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11110000....7777....1111 Let k be an algebraically closed

field of characteristic p > 7. Let ¬ Ÿ k≠, and ¥ any nontrivial ä$…-valued

additive character of a finite subfield k0 of k. Let ç be a tame ä$…-

valued character of π1(´mºk) which is not of exact order three.

Denote by
Ú1/2 := the unique tame character of exact order 2,

Ú1/3, Ú2/3 := the two characters of exact order 3,

{®1, ... , ®8, ú} := the ‚2'nd roots of {ç, äç, ú}

= {ç, äç, ú} ⁄ {both square roots of ú, of ç, of äç}.

(1) Any hypergeometric of type (3, 0) of the form
Ó := Ó¬(~, ¥; ç, äç, ú; &)

has Ggeom = SL(3), and its dual is isomorphic to to T-1
*Ó.
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(2) The tensor direct image [2]‚*(Ó) admits, for some μ in k≠, a direct

sum decomposition
[2]‚*(Ó) § ä$… · Óμ(~, ¥; ®1, ... , ®8; Ú1/3, Ú2/3).

(3) There exists an isomorphism of lisse sheaves

End0(Ó) § [2]*Óμ(~, ¥; ®1, ... , ®8; Ú1/3, Ú2/3).

(4) For any μ in k≠, Óμ(~, ¥; ®1, ... , ®8; Ú1/3, Ú2/3) has (Ggeom)0 =

PSL(3) in its adjoint representation, and PSL(3) has index two in Ggeom.

(5) The hypergeometrics of type (8, 2) with (Ggeom)0,der = PSL(3) in its

adjoint representation are precisely the tame ÒÚ-twists of these.

pppprrrrooooooooffff In (1), the assertion about Ggeom is a special case of 8.11.3, and

the duality assertions 8.4.2 and 8.3.3. Assertions (2), (3), and (4) follow
from (1), via 10.6.9 and the semisimplification theorem 8.4.10. Assertion
(5) is proven exactly as its differential-galois analogue 4.3.6. QED

11110000....8888 TTTThhhheeee SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))) CCCCaaaasssseeee

SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222))))≠≠≠≠SSSSLLLL((((2222)))) RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11110000....8888....1111 Let k be an

algebraically closed field of characteristic p > 5. Let ¬ Ÿ k≠, and ¥ any
nontrivial ä$…-valued additive character of a finite subfield k0 of k. Let

ç be a tame ä$…-valued character of π1(´mºk) which is not of exact

order four. Denote by
Ω1, Ω2 := the primitive cube roots of unity in k,

Ú1/2 := the unique tame character of exact order 2,

Ú1/4, Ú3/4 := the two characters of exact order 4,

{®1, ... , ®8} := the ‚3'rd roots of {ç, äç}

= {ç, äç} ⁄ {all cube roots of ç, of äç}.

(1) Any hypergeometric of type (2, 0) of the form
Ó := Ó¬(~, ¥; ç, äç; &)

has Ggeom = SL(2), and Ó‚(TΩ1
*Ó)‚(TΩ2

*Ó) has Ggeom the image of

SL(2)≠SL(2)≠SL(2) in SL(8).

(2) There exists, for some μ in k≠, an isomorphism of lisse sheaves
[3]º*(Ó) § Óμ(~, ¥; ®1, ... , ®8; Ú1/4, Ú3/4).

(3) There exists an isomorphism of lisse sheaves
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Ó‚(TΩ1
*Ó)‚(TΩ2

*Ó) § [3]*Óμ(~, ¥; ®1, ... , ®8; Ú1/3, Ú2/3).

(4) For any μ in k≠, Óμ(~, ¥; ®1, ... , ®8; Ú1/4, Ú3/4) has Ggeom = the

image in Sp(8) of the semidirect product (SL(2)≠SL(2)≠SL(2))©A3.

(5) The hypergeometrics of type (8, 2) with (Ggeom)0,der = the image in

Sp(8) of SL(2)≠SL(2)≠SL(2) are precisely the tame ÒÚ-twists of these.

pppprrrrooooooooffff Similar to the case above, using 8.11.7 and 10.6.12, and imitating
4.5.3. QED

11110000....9999 TTTThhhheeee SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333)))) CCCCaaaasssseeee

SSSSLLLL((((3333))))≠≠≠≠SSSSLLLL((((3333)))) RRRReeeeccccooooggggnnnniiiittttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11110000....9999....1111

Let k be an algebraically closed field of characteristic p > 7. Let ¬ Ÿ k≠,
and ¥ any nontrivial ä$…-valued additive character of a finite subfield

k0 of k. Let ç1, ç2, ç3 be tame ä$…-valued characters of π1(´mºk)

none of which has order dividing three, and whose product is trivial:
ç1ç2ç3 = ú.

Denote by
Ú1/2 := the unique tame character of exact order 2,

Ú1/3, Ú2/3 := the two characters of exact order 3,

{®1, ... , ®9} := the ‚2'nd roots of {ç1, ç2, ç3}

= {ç1, ç2, ç3} ⁄ {both square roots of äç1, of äç2, of äç3}.

(1) Any hypergeometric of type (3, 0) of the form
Ó := Ó¬(~, ¥; ç1, ç2, ç3; &)

has Ggeom = SL(3), and Ó‚T-1
*Ó has Ggeom = the image in SL(9) of

SL(3)≠SL(3).

(2) There exists, for some μ in k≠, an isomorphism of lisse sheaves
[2]‚*(Ó) § Óμ(~, ¥; ®1, ... , ®9; ú, Ú1/3, Ú2/3).

(3) There exists an isomorphism of lisse sheaves

Ó‚T-1
*Ó § [2]*Óμ(~, ¥; ®1, ... , ®9; ú, Ú1/3, Ú2/3).

(4) For any μ in k≠, Óμ(~, ¥; ®1, ... , ®9; ú, Ú1/3, Ú2/3) has (Ggeom)0 =

the image in SL(9) of SL(3)≠SL(3), and (Ggeom)0 has index two in
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Ggeom.

(5) The hypergeometrics of type (9, 3) with (Ggeom)0,der = the image in

SL(9) of SL(3)≠SL(3) are precisely the tame ÒÚ-twists of these.

pppprrrrooooooooffff Exactly like those of the previous two theorems, now using 10.6.9
and imitating 4.6.10. QED
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11111111....1111 HHHHoooommmmooooggggeeeennnneeeeoooouuuussss SSSSppppaaaacccceeee RRRReeeeccccoooovvvveeeerrrryyyy ooooffff aaaa RRRReeeedddduuuuccccttttiiiivvvveeee GGGGrrrroooouuuupppp

(11.1.1) In this section we work over an algebraically closed field K of

characteristic zero. Suppose that we are given an integer n ≥ 1, an n-

dimensional K-vector space V, and an algebraic subgroup G of GL(V). We

know that we can recover G from the the Tannakian category

Ç := Rep(G) of its finite-dimensional K-representations and the fibre

functor

∑ := "forget the G-action" : Rep(G) ¨ (fin.-dim'l K-spaces).

(11.1.2) Suppose now that G is rrrreeeedddduuuuccccttttiiiivvvveeee. Following Ofer Gabber, we

will explain how to recover G (more precisely, the conjugacy class in

GL(n, K) of G(K)) from the Tannakian category Ç := Rep(G) using only

the functor

"G-invariants" : Ç ¨ (fin.-dim'l K-spaces)

W ÿ WG := HomÇ(ú, W),

but wwwwiiiitttthhhhoooouuuutttt using a fibre functor.

(11.1.3) Let us first describe the iiiiddddeeeeaaaa. Consider the space

X := IsomK(K
n, ∑(V)).

This is a left GL(∑(V))-torsor by postcomposition, and a right GL(n, K)-

torsor by precomposition. The quotient space Y := G\X is then a right

homogeneous space under GL(n, K). In terms of this homogeneous space

we recover G (up to GL(n, K)-conjugacy) as the ssssttttaaaabbbbiiiilllliiiizzzzeeeerrrr in GL(n, K) of

any chosen point y Ÿ Y.

(11.1.4) How are we to turn this idea into a proof? And where will

the hypothesis that G is reductive enter? First of all, we can construct

the space X using the fibre functor ∑ as follows. If we view X as the

space of ordered bases (v1, v2, ... , vn) of ∑(V), then X sits as an ooooppppeeeennnn

set in Vn. We will instead view X as the cccclllloooosssseeeedddd subscheme of Vn≠(V£)n

consisting of those tuples

(v1, v2, ... , vn; v1
£, ... , vn

£)

satisfying the n2 equations

vj
£(vi) = ∂i,j.

(This is just a longwinded way of saying that the vi are a basis of V

and the vj
£ are the dual basis of V£. For n=1, it amounts to defining

´m by the equation xy=1 rather than by the condition "x invertible".)

This description has the merit of exhibiting X as an affine K-
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scheme of finite type, say X = Spec(A). The group G, being a subgroup of

GL(V), certainly acts freely on X; indeed, for any K-algebra R, the group

G(R) acts freely on the set X(R). Because G is rrrreeeedddduuuuccccttttiiiivvvveeee, the quotient

Y := G\X exists and is affine, with coordinate ring B = AG. On K-valued

points, we have

Y(K) = G(K)\X(K).
Since X(K) = Isom(Kn, ∑(V)) is a left GL(∑(V))-torsor and a right

GL(n, K)-torsor we see that Y(K) is a right homogeneous space under

GL(n, K), and the stabilizer in GL(n, K) of any point y Ÿ Y(K) is (a

conjugate of) G(K).

(11.1.5) To conclude this discussion, it remains to construct the

coordinate ring B of the affine scheme Y and the left action of GL(n, K)

on B, using only the Tannakian structure of Ç and the functor "G-

invariants". To clarify the discussion which follows, let us denote by V1,

... , Vn n copies of V, and by V1
£, ..., Vn

£ n copies of V£. We can

construct X as the closed subscheme of the spectrum of the symmetric

algebra

S := ‚
i=1,...,n

Symm*(∑(Vi
£))‚Symm*(∑(Vi))

defined by the ideal I generated by the n2 elements

fi,j - ∂i,j,

where fi,j is the G-invariant element of

∑(Vi
£)‚∑(Vj) = ∑(V£)‚∑(V) = ∑(V£‚V)

which iiiissss the canonical map ú ¨ V£‚V. This fi,j is just the function

(v1, v2, ... , vn; v1
£, ... , vn

£) ÿ vj
£(vi),

described in an invariant way.

(11.1.6) Since G is reductive, and the ideal I is generated by the

invariants fi,j - ∂i,j, we have

B = (S/I)G = SG/(the ideal in SG generated by all the fi,j - ∂i,j),

and SG is the ó2n-graded algebra

·(a1,...,an,b1,...,bn) (‚
i
Symmai(∑(Vi

£))‚Symmb
i(∑(Vi)))

G

= ·(a1,...,an,b1,...,bn) ∑(‚i Symmai(Vi
£)‚Symmb

i(Vi))
G

= ·(a1,...,an,b1,...,bn) HomÇ(ú,‚i Symmai(Vi
£)‚Symmb

i(Vi))
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= HomInd-Ç(ú,‚i Symm*(Vi
£)‚Symm*(Vi))

= Hom
Ind-Ç(ú, Symm*((Kn‚V)£)‚Symm*(Kn‚V)).

In this last description, we see the left action of GL(n, K), through its

standard left action on Kn, the induced (A ÿ A‚idV) left action on

Kn‚V, and the contragredient left action on (Kn‚V)£. This left action

of GL(n, K) respects the ó2-grading.

(11.1.7) In order to simplify the bookkeeping which is about to follow,

we perform one final rewriting of SG as

SG = HomInd-Ç(ú, Symm*((Kn‚V)£ · (Kn‚V))).

This allows us to view SG as an ó-graded algebra:

SG = ·d≥0 S
G(d), with

SG(d) := HomÇ(ú, Symmd((Kn‚V)£ · (Kn‚V))).

In this picture, the left action of GL(n, K) respects the ó-grading.

11111111....2222 FFFFiiiirrrrsssstttt aaaannnnaaaallllyyyyssssiiiissss ooooffff ffffiiiinnnniiiitttteeeennnneeeessssssss pppprrrrooooppppeeeerrrrttttiiiieeeessss

(11.2.1) Since G is reductive, and we are in characteristic zero, the

graded ring of invariants SG is ffffiiiinnnniiiitttteeeellllyyyy ggggeeeennnneeeerrrraaaatttteeeedddd as a graded K-

algebra. To keep track systematically of generators and relations, it will

be convenient to introduce the following ad hoc terminology.

(11.2.2) For any finitely generated graded commutative K-algebra

A = ·d≥0 Ad,

and any integer D ≥ 1, we define an ó-graded commutative K-algebra

A{D} by setting

A{D} := Symm*(·0≤d≤D Ad) § ‚0≤d≤D Symm*(Ad),

with the grading that makes Ad isobaric of weight d. We denote by

A{D}m the part of A{D} which is isobaric of weight m.

There is a unique homomorphism of graded rings

åD : A{D} ¨ A

which is the identity on ·0≤d≤D Ad. Since A is finitely generated, this

homomorphism åD is surjective if D is sufficiently large, say D ≥ D0.

For each integer m ≥ 0, we denote by

Rel{D, m} := Ker(åD)€A{D}m
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the relations among the Ai with i ≤ D which are isobaric of degree m.

For each integer N ≥ 1, we denote by

Rel{D, ≤ N} fi A{D}

the graded ideal generated by all the Rel{D, m} with m ≤ N.

(11.2.3) For any (D, N) with D ≥ 1 and N ≥ D, we denote by A{D, N}

the quotient ring

A{D, N} := A{D}/Rel{D, ≤ N},

and by

åD,N : A{D, N} ¨ A

the canonical graded homomorphism induced by åD.

(11.2.4) The key point is this: for a fixed D which is ≥ D0, this map

åD,N is surjective, and for N sufficiently large, say N ≥ N0(D), åD,N is

an isomorphism, simply because A{D} is noetherian.

(11.2.5) Let us say that the graded ring A is ((((DDDD,,,, NNNN))))----ddddeeeetttteeeerrrrmmmmiiiinnnneeeedddd if

åD,N is an isomorphism. Clearly if A is (D, N)-determined, then A is

determined by the following ffffiiiinnnniiiitttteeee amount of data:

the element 1 in A0

the graded vector space ·0≤d≤N Ad

the multiplication maps Ai‚Aj ¨ Ai+j, for each (i, j) with i+j ≤ N.

Indeed, the ring A{D, N} is always determined by this data, whether or

not A is (D, N)-determined.

(11.2.6) We will now apply this to the situation A = SG. Notice that

the graded action of GL(n, K) on SG induces by functoriality a graded

action on each of the graded rings SG{D}, and this action stabilizes the

ideals Rel{D, ≤N}. So each of the approximations SG{D, N} carries a

graded left action of GL(n, K), and all the maps åD,N are GL(n, K)-

equivariant.

(11.2.7) For any integer D ≥ 2, SG{D} contains the n2 elements fi,j as

isobaric elements of degree 2. So for any (D, N) with N ≥ D ≥ 2, it makes

sense to form the quotient ring

B{D,N} := SG{D, N}/(ideal gen. by the fi,j - ∂i,j).

This is a (no longer graded) ring on which GL(n, K) acts, and the

canonical ring homomorphism

∫D,N: B{D,N} ¨ B := SG/(ideal gen. by the fi,j - ∂i,j)

deduced from åD,N is GL(n, K)-equivariant. If SG is (D, N)-determined,

then this map ∫D,N is an isomorphism.
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(11.2.8) How much data determines B{D,N} as a K-algebra with GL(n,

K) action? Clearly, it is determined by the following ffffiiiinnnniiiitttteeee amount of

data:

the element 1 in SG(0)

the elements fi,j in SG(2)

the graded vector space ·0≤d≤N SG(d)

the action of GL(n, K) on SG(d), for each 0 ≤ d ≤ N

the multiplication maps SG(i)‚SG(j) ¨ SG(i+j), for each (i, j) with

i+j ≤ N.

11111111....3333 TTTTrrrraaaannnnssssiiiittttiiiioooonnnn aaaawwwwaaaayyyy ffffrrrroooommmm TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn ccccaaaatttteeeeggggoooorrrriiiieeeessss

(11.3.1) We now make one further simplification in the presentation

of this data. Since the field K is of characteristic zero, for any object W

of Ç, the symmetric algebra Symm*(W) in Ind-Ç may be recovered as

a graded subring of the corresponding tensor algebra which in each

degree d is the image of the appropriate symmetrizing idempotent in

the rational group ring $[|d]. Therefore the invariants S
G(d) may be

viewed as the image of the symmetrizing idempotent on

TG(d) := HomÇ(ú, ‚d((Kn‚V)£ · (Kn‚V))).

The elements fi,j in TG(2) are the images of the canonical element ∂ in

HomÇ(ú, V
£‚V) via the n2 "mixed crossterms"coordinate inclusions of

V£‚V into ‚2((Kn‚V)£ · (Kn‚V)) in the Tannakian category Ç.

These inclusions depend only on the fact that Ç is a K-linear ACU ‚-

category whose ‚ is K-bilinear. [But the notion of the canonical

element ∂ in HomÇ(ú, V
£‚V) depends on the fact that Ç is Tannakian.]

(11.3.2) The action of GL(n, K) on TG(d) is deduced by functoriality

from the dual actions of GL(n, K) on the objects (Kn‚V)£ := Kn‚V£

and Kn‚V of Ç. These actions exist for any n and any objects V and

V£ of any K-linear additive category Ç.

(11.3.3) The multiplications SG(i)‚SG(j) ¨ SG(i+j) may be recovered

by symmetrization from the multiplications

TG(i)‚TG(j) ¨ TG(i+j),

and these in turn depend only on the fact that V and V£ are two

objects of a K-linear ACU ‚-category whose ‚ is K-bilinear.
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11111111....4444 MMMMoooocccckkkk TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn CCCCaaaatttteeeeggggoooorrrriiiieeeessss

(11.4.1) Exactly how much depends on having a Tannakian

category? We continue to work over our algebraically closed field K of

characteristic zero. Suppose we are given a K-linear additive category

˜ with an ACU ‚-operation in the sense of [Saa], with unit object ú,

whose ‚ is K-bilinear. Suppose we are given

two objects of ˜, denoted V and V£,

a morphism ∂V: ú ¨ V£‚V

an integer n ≥ 1.

(11.4.2) For each integer N ≥ 1, denote by ˜≤N(V, V£) the full

subcategory of ˜ consisting of all finite direct sums of the objects

W1‚W2‚... ‚Wr, r ≤ N,

where each object Wi is either ú or V or V£. Clearly the two objects

(Kn‚V)£ := Kn‚V£, and Kn‚V

both lie in ˜≤1(V, V£). The ‚ operation in ˜ defines for each (i, j) a

bifunctor

˜≤i(V, V£) ≠ ˜≤j(V, V£) ¨ ˜≤i+j(V, V£).

(11.4.3) So for each integer d ≥ 0 the object

‚d((Kn‚V)£ · (Kn‚V))

makes sense as an object of ˜≤d(V, V£) on which GL(n, K)≠|d acts. For

d = 0, we define this to be the unit object ú, with trivial action.

(11.4.4) For each d, we define

TG(d) := Hom˜(ú, ‚d((Kn‚V)£ · (Kn‚V))).

This is a K-vector space on which GL(n, K)≠|d acts, and their direct

sum is a (noncommutative) graded K-algebra, with multiplication given

by tensor product of morphisms in ˜. In each degree d we define SG(d)

to be the image of the symmetrization idempotent for |d on TG(d). The

direct sum SG of the SG(d) becomes a graded commutative K-algebra,

taking for product the symmetrization of the product in the ambient

tensor algebra, on which we have a graded action of GL(n, K).

(11.4.5) We can now define the graded algebras SG{D}, their quotients

SG{D, N}, and the maps åD,N; everything will be GL(n, K)-equivariant.

SSSScccchhhhoooolllliiiieeee 11111111....4444....6666 The approximation SG{D, N} with N ≥ D ≥ 1 is
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determined entirely by the full subcategory ˜≤N(V, V£) and all the

tensor product bifunctors

˜≤i(V, V£) ≠ ˜≤j(V, V£) ¨ ˜≤i+j(V, V£),

for all (i, j) with i+j ≤ N.

(11.4.7) There are n2 visible "mixed crossterms" maps

V£‚V ¨‚2((Kn‚V)£ · (Kn‚V)).

By composition with ∂V: ú ¨ V£‚V, we obtain n2 elements fi,j in

SG(2). If we aaaassssssssuuuummmmeeee that these elements fi,j are GL(n, K)-invariant, we

can define the quotient ring

B := SG/(ideal gen. by the fi,j - ∂i,j)

on which GL(n, K) acts, its approximations

B{D,N} := SG{D, N}/(ideal gen. by the fi,j - ∂i,j),

on which GL(n, K) also acts, and the GL(n, K)-equivariant maps

∫D,N : B{D,N} ¨ B.

We can then define the K-schemes

Y := Spec(B), Y{D,N} := Spec(B{D,N})

on which GL(n,K) acts on the right, and the GL(n, K)-equivariant maps

Spec(∫D,N) : Y ¨ Y{D,N}.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11111111....4444....8888 If ˜ above is a neutralizable Tannakian category

Ç, if V and V£ are dual n-dimensional objects of Ç, and if ∂V is the

canonical map ∂, and if the Tannakian galois group G of V is reductive,

then

(1) Y(K) is a right homogeneous space for GL(n, K), and the stabilizer in

GL(n, K) of any point y Ÿ Y(K) is (a conjugate of) G(K).

(2) there exists an integer D0 such that for any N ≥ D ≥ D0, the map

Spec(∫D,N) : Y ¨ Y{D,N}

is a closed immersion.

(3) for each D ≥ D0 there exists an integer N0(D) such that Y ¶ Y{D,N}

for all N ≥ N0(D).

pppprrrrooooooooffff The hypotheses, that V be n-dimensional and that its Tannakian

group G be reductive, are invariant under change of K-valued fibre

functor, as is the conjugacy class of G(K) in GL(n, K). Once we we pick a

fibre functor on the Tannakian subcategory <V> of Ç generated by V,
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this proposition reduces to the previous discussion (11.1, 11.2). QED

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 11111111....4444....9999 Hypotheses as in the above proposition, we say that

the object V of Ç is (D, N)-determined if Y ¶ Y{D,N}.

11111111....5555 SSSSttttaaaatttteeeemmmmeeeennnntttt ooooffff tttthhhheeee rrrreeeedddduuuuccccttttiiiivvvveeee ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn tttthhhheeeeoooorrrreeeemmmm

RRRReeeedddduuuuccccttttiiiivvvveeee SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnnTTTThhhheeeeoooorrrreeeemmmm 11111111....5555....1111 Let K be an algebraically

closed field of characteristic zero. Let ˜ be a K-linear additive category

˜ with an ACU ‚-operation in the sense of [Saa], with unit object ú,

whose ‚ is K-bilinear. Suppose we are given

two objects of ˜, denoted V and V£,

a morphism ∂V: ú ¨ V£‚V

an integer n ≥ 1.

For each integer d ≥ 1, denote by ˜≤d(V, V£) the full subcategory of ˜

consisting of all finite direct sums of the objects

W1‚W2‚... ‚Wr, r ≤ d,

where each object Wi is either ú or V or V£.

Suppose in addition we are given two neutralizable Tannakian

categories Ç^ and ÇÉ over K, and K-linear additive ACU ‚-functors

˜ ¨ Ç^ ˜ ¨ ÇÉ

M ÿ M^ M ÿ MÉ.

Fix an integer N ≥ 2 and suppose that the following conditions hold:

(1^ dual) The object V^ of Ç^ is n-dimensional, its dual is (V£)^, and

under this identification of (V£)^ with (V^)
£, (∂V)^ is the canonical

map ∂: ú ¨ (V^)
£‚V^ in Ç^.

(2^ red) The Tannakian group G^ of V^ is reductive.

(3^ ≤N) The induced functor ˜≤N(V, V£) ¨ Ç^
≤N(V^, (V

£)^) is an

equivalence of categories.

(1É dual) The object VÉ of ÇÉ is n-dimensional, its dual is (V£)É, and

under this identification of (V£)É with (VÉ)
£, (∂V)É is the canonical

map ∂: ú ¨ (VÉ)
£‚VÉ in ÇÉ.

(2É red) The Tannakian group GÉ of VÉ is reductive.

(3É ≤N) The induced functor ˜≤N(V, V£) ¨ ÇÉ
≤N(VÉ, (V

£)É) is an

equivalence of categories.
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Suppose that V^ is (D, N)-determined for some integer D with

1 ≤ D ≤ N. Then GÉ(K) is (conjugate in GL(n, K) to) a subgroup of G^(K).

11111111....6666 PPPPrrrrooooooooffff ooooffff tttthhhheeee rrrreeeedddduuuuccccttttiiiivvvveeee ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn tttthhhheeeeoooorrrreeeemmmm

For any D with 1 ≤ D ≤ N, the {D, N} approximations of the spaces

Y, Y^, and YÉ are related by GL(n, K)-equivariant isomorphisms

Y{D, N}

§t p§

YÉ{D, N} Y^{D, N}.

If in addition V^ is (D, N)-determined, the canonical map

Y^ ¨ Y^{D, N}

is an isomorphism, so we obtain a GL(n, K)-equivariant diagram

Y{D, N}

§t p§

YÉ{D, N} Y^{D, N}.

a a\ /
YÉ Y^.

So there exists a (unique) GL(n, K)-equivariant morphism

YÉ ¨ Y^

which makes the diagram commute. On K-valued points, this is a

GL(n, K)-equivariant morphism of right GL(n, K)-hhhhoooommmmooooggggeeeennnneeeeoooouuuussss

ssssppppaaaacccceeeessss. Fix a point yÉ in YÉ(K), with image y^ in Y^(K). Their

stabilizers Stab(yÉ) and Stab(y^) in GL(n, K) are (conjugates of) the

groups GÉ(K) and G^(K) respectively. Since the map is GL(n, K)-

equivariant, we have the inclusion of stabilizers Stab(yÉ) fi Stab(y^),

which means precisely that GÉ(K) is (conjugate to) a subgroup of G^(K).

QED

11111111....7777 AAAA mmmmiiiinnnnoooorrrr vvvvaaaarrrriiiiaaaattttiiiioooonnnn oooonnnn tttthhhheeee rrrreeeedddduuuuccccttttiiiivvvveeee ssssppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnn

tttthhhheeeeoooorrrreeeemmmm

Here is a minor variation, in which we onit mention of ∂V but
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insist that N ≥ 3.

RRRReeeedddduuuuccccttttiiiivvvveeee SSSSppppeeeecccciiiiaaaalllliiiizzzzaaaattttiiiioooonnnnTTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 11111111....7777....1111 Let K be an

algebraically closed field of characteristic zero. Let ˜ be a K-linear

additive category with an ACU ‚-operation in the sense of [Saa], with

unit object ú, whose ‚ is K-bilinear. Suppose we are given

two objects of ˜, denoted V and V£,

an integer n ≥ 1.

For each integer d ≥ 1, denote by ˜≤d(V, V£) the full subcategory of ˜

consisting of all finite direct sums of the objects

W1‚W2‚... ‚Wr, r ≤ d,

where each object Wi is either ú or V or V£.

Suppose in addition we are given two neutralizable Tannakian

categories Ç^ and ÇÉ over K, and K-linear additive ACU ‚-functors

˜ ¨ Ç^ ˜ ¨ ÇÉ

M ÿ M^ M ÿ MÉ.

Fix an integer N ≥ 3 and suppose that the following conditions hold:

(1^ dual) The object V^ of Ç^ is n-dimensional, and its dual is (V£)^.

(2^ red) The Tannakian group G^ of V^ is reductive.

(3^ ≤N) The induced functor ˜≤N(V, V£) ¨ Ç^
≤N(V^, (V

£)^) is an

equivalence of categories.

(1É dual) The object VÉ of ÇÉ is n-dimensional, and its dual is (V£)É.

(2É red) The Tannakian group GÉ of VÉ is reductive.

(3É ≤N) The induced functor ˜≤N(V, V£) ¨ ÇÉ
≤N(VÉ, (V

£)É) is an

equivalence of categories.

Suppose that V^ is (D, N)-determined for some integer D with

1 ≤ D ≤ N. Then GÉ(K) is (conjugate in GL(n, K) to) a subgroup of G^(K).

pppprrrrooooooooffff The point is to show that the map ∂V in the hypotheses of the

reductive specialization theorem is already uniqely determined by the

other data. As explained in [De-CT, 2.1.2], given an object X in a

Tannakian category Ç, the data consisting of its dual X£ together with

the maps

∂ : ú ¨ X£‚X, ev : X‚X£ ¨ ú

(which morally correspond to the identity mapping idX in End(X) and
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to the trace form on End(X£)) is entirely characterized by the sole

requirement that the two composites

X zzzX‚∂zzzzcX‚X£‚X zzzev‚XzzzzcX

X£zzz∂‚X£zzcX£‚X‚X£zzzX
£
‚evzzcX£

be the respective identities.

The key point is that these conditions can be stated entirely in

terms of the category Ç≤3(X, X£) and the tensor product bifunctors

Ç≤1(X, X£) ≠ Ç≤2(X, X£) ¨ Ç≤3(X, X£),

Ç≤2(X, X£) ≠ Ç≤1(X, X£) ¨ Ç≤3(X, X£).

Take Ç := Ç^ and X := V^. Then by axioms (1^ dual) and (3^ ≤N)

we may "back up" the maps ∂ and ev in Ç^ ttttoooo maps ∂V and evV in ˜,

∂
V
: ú ¨ V£‚V, ev

V
: V‚V£ ¨ ú

and these are the uuuunnnniiiiqqqquuuueeee maps in ˜ for which the two composites

V zzzV‚∂VzzzzcV‚V£‚V zzzevV‚VzzzzcV

V£zzz∂V‚V£zzcV£‚V‚V£zzzV
£
‚evVzzcV£

are the respective identities.

Replace Ç^ and V^.in the above paragraph by ÇÉ and VÉ, and

repeat the above "backing up" argument. By uniqueness, the backups to

˜ of the maps ∂ and ev in ÇÉ must coincide with the above ∂V and

evV in ˜.

Thus the map ∂
V
can be reconstructed from the the other data.

QED
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11112222....1111 TTTThhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn oooovvvveeeerrrr ^̂̂̂
In sections 12.2 through 12.8, we work over ^.

11112222....2222 AAAAddddddddiiiittttiiiivvvveeee CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn,,,, EEEExxxxoooottttiiiicccc TTTTeeeennnnssssoooorrrr PPPPrrrroooodddduuuucccctttt,,,, aaaannnndddd FFFFoooouuuurrrriiiieeeerrrr

TTTTrrrraaaannnnssssffffoooorrrrmmmm oooonnnn !!!!1111 oooovvvveeeerrrr ^̂̂̂
(12.2.1) To avoid confusion between convolution of Î-modules on ´m

and convolution of Î-modules on !1, we will continue to denote the
former by K*L, and we will denote the latter by K*+L.

(12.2.2) We first establish the basic notations. We denote by

π : !1 ¨ Spec(^) the structural map,

iå : Spec(^) ¨ !1 the inclusion of the point å Ÿ ^ = !1(^),

»: !1 ¨ !1≠^!
1 the diagonal embedding,

sum: !1≠^!
1 ¨ !1 the addition map (x, y) ÿ x+y,

j : ´m ¨ !1 the inclusion.

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 11112222....2222....3333 For K, L objects of Db,holo(!1), and å Ÿ ^, we

have canonical isomorphisms in Db,holo(Spec(^)) = Db(^-vector spaces)

(1) π*(K‚eåx) § iå
~(FT(K))[1],

(2) π*(FT(K)‚e-åx) § iå
~(K)[1],

(3) π*(K*+L) § π*(K)‚π*(L),

(4) iå
~(K‚~L) § iå

~(K)‚iå
~(L),

and a canonical isomorphism in Db,holo(!1)

(5) FT(K*+L) § FT(K)‚~FT(L)[1].

pppprrrrooooooooffff Assertion (1) is base change for the cartesian diagram

id≠iå

!1 zzzzzzzzzzzzzc !1≠^!
1 pr1

~(K)‚exy

πd iå dpr2
Spec(^) zzzzzzzzzzzzzc !1.

Assertion (2) is just (1) at -å applied to FT(K).
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Assertion (3), "mise pour memoire", has already been pointed out
in (5.1.9 1(a)). Assertion (4) is the transitivity of "upper shriek",
together with the observation that the composite

iå »

Spec(^) zzzc !1 zzzc !1≠^!
1

is the product map
iå≠ iå

Spec(^)≠Spec(^) zzzc !1≠^!
1.

Since formation of f~ is compatible with products, we have

iå
~(K‚~L) := iå

~»~(K≠L) = (iå≠ iå)
~(K≠L) =

= iå
~(K)≠iå

~(L) = iå
~(K)‚^iå

~(L).

Assertion (5), in the equivalent form

FT(K*+L)[1] § FT(K)[1]‚~FT(L)[1],

is base change for the following diagram, whose outer square is
cartesian:

(x,y,z) ÿ (x,z,y,z)

!1≠
^
!1≠

^
!1 zzzzzzzzzc!2≠

^
!2 (pr1

~(K)‚exy)≠(pr1
~(L)‚exy)

d sum≠id

!1≠
^
!1 d pr2≠pr2

d pr2 »

!1 zzzzzzzzzzzzc !1≠
^
!1. QED

RRRReeeemmmmaaaarrrrkkkk 11112222....2222....3333....1111 The use of the full Î-module formalism in the above
proof should not obscure the entirely elementary nature of the result.
Here is an entirely elementary proof of (1), (2), and (5) in the case
when K and L are themselves holonomic Î-modules.

If we think of an Ø-quasicoherent Î-module K on !1 as (the
sheaf associated to) a module over ^[x, Δ], then K "is" a triple (V, A, B),
with V a ^-vector space (namely the global sections of K as Ø-module)
endowed with an ordered pair (A, B) of ^-linear endomorphisms A and
B (i.e., the effects of x and Δ respectively) whose commutator satisfies

[A, B] = -1.
The Fourier Transform FT(K) of K = (V, A, B) is just (V, -B, A).
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The complexes π*(K‚eåx) and iå
~(FT(K))[1] are respectively

Δ+å x-å
K zzzc K FT(K) zzzc FT(K).

deg -1 deg 0 deg -1 deg 0

From the (V, A, B) point of view, these two complexes are
B+å -B-å

V zzzc V V zzzc V,
so (1) is obvious. Similarly for (2).

For (5), think of K and L as given by data (V, A, B) and (W, C, D)
respectively as above. Then K*+L := sum*(K≠L) is the two-term

complex

B‚1 - 1‚D
V‚^W zzzzzzzzzzzzzc V‚^W,

deg -1 deg 0

with operators (A‚1 + 1‚C, (1/2)(B‚1 + 1‚D)).
Applying FT, we see that FT(K*+L) is the ssssaaaammmmeeee two term complex

B‚1 - 1‚D
V‚^W zzzzzzzzzzzzzc V‚^W,

deg -1 deg 0

but with with operators (-(1/2)(B‚1 + 1‚D), A‚1 + 1‚C).

What about FT(K)‚~FT(L)[1]? This is the complex

x-y
FT(K)‚^FT(L) zzzzzzzzzzzzzc FT(K)‚^FT(L)

deg -1 deg 0,
with operators (x+y, (1/2)(Δx + Δy)).

If we trace this through, it means the complex

-B‚1 + 1‚D
V‚^W zzzzzzzzzzzzzc V‚^W,

deg -1 deg 0

with operators (-(1/2)(B‚1 + 1‚D), A‚1 + 1‚C). So (5) is proven.QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....2222....4444 For ˜, ˆ holonomic Î-modules on !1, we have

(1) FT(˜) § j*j
*FT(˜) if and only if π*˜ = 0.

(2) if either π*˜ = 0 or π*ˆ = 0, then π*(˜*+ˆ) = 0.

(3) If either of Å := j*FT(˜) or ı := j*FT(ˆ) is a D.E. on ´m, and if

π*(˜*+ˆ) = 0, then denoting by Å‚ı the usual Ø´m
-tensor product,

FT(˜*+ˆ) § j*(Å‚ı),

and ˜*+ˆ is a single Î-module, concentrated in degree zero.

pppprrrrooooooooffff (1):The canonical map FT(˜) ¨ j*j
*FT(˜) is an isomorphism if

and only if the map Left(x): FT(˜) ¨ FT(˜) is an isomorphism, i.e., if

and only if i0
~(FT(˜))[1] (= π*˜) vanishes.

(2): This is obvious from π*(K*+L) § π*(K)‚π*(L).

(3): Since π*(˜*+ˆ) = 0, part (1) above and 12.2.3 (5) give

FT(˜*+ˆ) § j*j
*(FT(˜*+ˆ)) § j*j

*(FT(˜)‚~FT(ˆ)[1]) := j*(Å‚
~ı[1]).

If say Å is a D.E. on ´m, then as Ø-module Å is locally free of finite

rank, in which case Å‚~ı[1] on ´m is visibly the usual Ø-tensor

product. Thus we have FT(˜*+ˆ) § j*(Å‚ı) is a single Î-module in

degree zero. So by Fourier inversion, ˜*+ˆ is a single Î-module in

degree zero. QED

11112222....3333 TTTThhhheeee TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn CCCCaaaatttteeeeggggoooorrrryyyy DDDDAAAA,,,,BBBB

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 11112222....3333....1111 Given a holonomic Î-module ˜ on !1, consider the
following conditions (A) and (B):

Condition(A) : π*˜ =0 (or equivalently, FT˜ § j*j
*FT˜).

Condition(B) : j*FT˜ is a D.E. on ´m (i.e., j*FT˜ is Ø´m
-locally free of

finite rank).

RRRReeeemmmmaaaarrrrkkkk 11112222....3333....2222 In virtue of 2.10.16 (1), a holonomic ˜ satisfies
Condition (B) if and only if all of its ‘-slopes are ± 1. In particular, if ˜
is RS then ˜ satisfies Condition (B).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....3333....3333 Suppose that ˜ is a holonomic Î-module on !1

which satisfies both Conditions (A) and (B). Then for any holonomic Î-
module ˆ, ˜*+ˆ is a single Î-module which satsifies (A). If in addition
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˜ is nonconstant (i.e., if j*FT(˜) ± 0), then ˜*+ˆ satisfies (B) if and

only if ˆ itself satisfies (B).
pppprrrrooooooooffff The first assertion is just a restatement of the previous corollary.

If in addition ˜ is nonconstant, then j*FT˜ is Ø-locally free of

nnnnoooonnnnzzzzeeeerrrroooo finite rank. Therefore j*FTˆ is Ø-coherent if and only if

j*FTˆ‚j*FT˜ is Ø-coherent. QED

(12.3.4) Recall (2.10.1 (1)) that FT(j~Ø´m
) = j*Ø´m

. So j~Ø´m
satisfies both conditions (A) and (B). Using j~Ø´m

as the ˜ above, we

find

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....3333....5555 For ˆ a holonomic Î-modules on !1, ˆ*+(j~Ø´m
)

is a single holonomic Î-module on !1 which satisfies Condition (A), and
we have a canonical isomorphism

FT(ˆ*+(j~Ø´m
)) § j*j

*FT(ˆ).

The operator ˆ ÿ ˆ*+(j~Ø´m
) is idempotent; it is the projector onto

those holonomic Î-modules ˆ which satisfy Condition (A).
pppprrrrooooooooffff All save the last assertion is a formal consequence of the

preceeding two results, and the fact that j*FT(j~Ø´m
) = Ø´m

.

If ˆ already satisfies Condition (A), then FT(ˆ) § j*j
*FT(ˆ), so

FT(ˆ*+(j~Ø´m
)) § j*j

*FT(ˆ) = FT(ˆ),

and by Fourier inversion we have ˆ*+(j~Ø´m
) § ˆ. QED

TTTThhhheeeeoooorrrreeeemmmm 11112222....3333....6666 Denote by ÎModholo(!1) the abelian catergory of all

holonomic Î-modules on !1, and by DA,B the full subcategory of

ÎModholo(!1) consisting of those objects which satisfy both Conditions
(A) and (B). Then

(1) DA,B is stable by convolution.

(2) The exact functor

ÎModholo(!1) ¨ ÎModholo(´m)

˜ ÿ j*FT(˜)
induces an equivalence of categories
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DA,B § D.E.(´m/^),

whose quasi-inverse D.E.(´m/^) § DA,B is given by

V ÿ [x ÿ -x]*FT(j*V).

(3) This equivalence carries convolution product of objects of DA,B to

usual tensor product of D.E.'s on ´m.

pppprrrrooooooooffff We have already seen (12.3.3) that DA,B is stable by convolution.

That ˜ ÿ j*FT(˜) carries DA,B to D.E.(´m/^) is built into condition (B).

That V ÿ [x ÿ -x]*FT(j*V) carries D.E.(´m/^) to DA,B and is a two-

sided quasi-inverse is Fourier inversion. That these inverse equivalences
interchange convolution in DA,B and usual tensor product in D.E.(´m/^)

is 12.2.4 (3). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....3333....7777 DA,B is abelian, and kernels and cokernels of

morphisms in it are the same as in the ambient ÎModholo(!1).

pppprrrrooooooooffff Denote by FTDA,B the full subcategory of ÎModholo(!1)

consisting of objects of the form j*V, for V a D.E. on ´m. Fourier

Transform makes DA,B equivalent to FTDA,B, so it suffices to prove the

same assertion for FTDA,B.

Suppose we are given any Ø-quasicoherent Î-modules V and W

on ´m, and a Î-module map ƒ: j*V ¨ j*W. Then ƒ = j*j
*(ƒ). Denote

by S and T the kernel and cokernel of j*(ƒ): V ¨ W. Since j* is exact,

it follows that j*S and j*T are the kernel and cokernel of ƒ. If now V

and W are D.E.'s on ´m, i.e., if V and W are each Ø´m
-coherent, then S

and T are Ø´m
-coherent, so S and T are D.E.'s on ´m. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....3333....8888 DA,B is a Tannakian category, with

(1) "tensor product" given by convolution *+,

(2) "unit object" ú given by j~Ø´m
,

(3) "dual" given by ˜Ö := ([x ÿ -x]*(˜*))*+(j~Ø´m
).

pppprrrrooooooooffff This is just the inverse Fourier Transform of the standard
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structure of Tannakian category on D.E.(´m/^). QED

RRRReeeemmmmaaaarrrrkkkk 11112222....3333....9999 For any å Ÿ ^≠, the functor
DA,B ¨ (fin. dim'l. ^-vector spaces)

˜ ÿ H0(π*(˜‚eåx)) := H1DR(´m/^, ˜‚eåx)

is a fibre functor. [It is the Fourier Transform of the usual fibre functor
∑å := fibre at å on D.E.(´m/^).] We do nnnnooootttt know how to construct

explicit fibre functors on DA,B without invoking Fourier Transform.

11112222....4444 TTTThhhheeee TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn CCCCaaaatttteeeeggggoooorrrryyyy DDDDAAAA,,,,RRRRSSSS
(12.4.1) Recall (cf. [Ber], [Bor]) that for X a smooth separated ^-
scheme of finite type, one has the notion of RS ("regular singular") Î-

modules, and of the full subcategory DRS(X) consisting of the RS objects

of Db,holo(X). One knows that DRS(X) is stable under the "six
operations". In particular, if X is a smooth ^-groupscheme G, then

DRS(G) is stable under convolution.

(12.4.2) We now return to the !1 setting. We define DA,RS to be the

full subcategory of DA,B consisting of those objects which are RS. Given

a short exact sequence
0 ¨ ˜1 ¨ ˜2 ¨ ˜3 ¨ 0

in DA,B, ˜2 is RS if and only if both ˜1 and ˜3 are RS. The

subcategory DA,RS of DA,B is stable under convolution and under

"dual", and contains the unit object ú := j~Ø´m
. Thus we find

TTTThhhheeeeoooorrrreeeemmmm 11112222....4444....3333 DA,RS is itself a Tannakian category with

(1) "tensor product" given by convolution *+,

(2) "unit object" ú given by j~Ø´m
,

(3) "dual" given by ˜Ö := ([x ÿ -x]*(˜*))*+(j~Ø´m
).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....4444....4444 Let ˜ be an object of DA,RS. Then ˜ and FT˜

have the same generic rank. In other words, the "dimension" of ˜ as
an object of the Tannakian category DA,RS is its generic rank.

pppprrrrooooooooffff Since FT˜ is a D.E. on ´m, say of rank r, for any å Ÿ ^≠ the

complex
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iå
~(FT˜) := FT˜ zzx-åzc FT˜,

placed in degree 0 and 1, has H0 = 0, dim^H
1 = r. Thus the generic

rank of FT˜ is -ç(iå
~(FT˜)) for any å ± 0. By 12.2.3, we have

π*(˜‚eåx) § iå
~(FT(˜))[1],

so the generic rank r of FT˜ is

r = ç(π*(˜‚eåx)) := - çDR(!
1, ˜‚eåx).

Because ˜ satisfies Condition (A), π*(˜) = 0, so we may rewrite this as

r = çDR(!
1, ˜) - çDR(!

1, ˜‚eåx).

At this point, we need the following numerological lemma.

LLLLeeeemmmmmmmmaaaa 11112222....4444....5555 For any å Ÿ ^, and any holonomic ˜ on !1 we have

çDR(!
1, ˜) - çDR(!

1, ˜‚eåx) = Irr‘(˜‚eåx) - Irr‘(˜).

pppprrrrooooooooffff Both sides are additive in ˜, and the assertion is obvious for ˜

punctual. So it suffices to treat the case when ˜ § k*k
*˜, k : U ¨ !1

the inclusion of a nonempty open set on which ˜ is a D.E. Looking at
Deligne's Euler-Poincare formula for ˜ (cf 2.9.8.2)

çDR(!
1, ˜) = çDR(U, k

*˜) =

rank(k*˜)çDR(U, ØU) - ‡x Ÿ !1-U Irrx(˜) - Irr‘(˜)

and comparing it term by term with that for ˜‚eåx, only the last

terms can differ (since eåx^[x] is a rank one D.E. on all of !1). QED

Returning now to the proof of the Proposition, the lemma gives

r = Irr‘(˜‚eåx) - Irr‘(˜),

for any å Ÿ ^≠. Since ˜ is RS at ‘, all its ‘-slopes are zero, (so

Irr‘(˜) = 0), and ˜‚eåx has all its ‘-slopes =1, so Irr‘(˜‚eåx) is

the generic rank of ˜. QED

11112222....5555 AAAA mmmmiiiinnnnoooorrrr vvvvaaaarrrriiiiaaaannnntttt:::: ~~~~ ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn ooooffff ÎÎÎÎ----mmmmoooodddduuuulllleeeessss
(12.5.1) In the world of Î-modules, the "natural" operations are f*

and f~; f~ and f* are ddddeeeeffffiiiinnnneeeedddd by duality. Since it is these latter

operations which are more natural in the "topological" world, we will
make a transition to this point of view.
(12.5.2) For a holonomic Î-module ˜ on a smooth ^-scheme X, let
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us write DX˜, or simply D˜ if no confusion is likely, for its adjoint ˜*.

Making use of Beilinson's theorem [Bei] that the natural functor

Db(ÎModholo(X)) ¨ Db,holo(X)
is an eeeeqqqquuuuiiiivvvvaaaalllleeeennnncccceeee of the bounded derived category of the abelian

category ÎModholo(X) of holonomic left Î-modules on X with the

subcategory Db,holo(X) of the bounded derived category of all left Î-
modules on X whose cohomology sheaves are holonomic, we can extend

the duality functor DX to an involutive autoduality of Db,holo(X).

(12.5.3) For X and Y smooth C-schemes, and any map f : X ¨ Y, the
functors

f~ : D
b,holo(X) ¨ Db,holo(Y), f* : Db,holo(Y) ¨ Db,holo(X)

are defined by

f~(K) := DY«f*«DX, f* := DX«f
~«DY.

(12.5.4) Given two objects K, L in Db,holo(X), their "naive" tensor
product K‚L is defined in terms of the diagonal embedding

»: X ¨ X≠X
by

K‚L := »*(K≠L).
Since duality is compatible with cartesian product, we have the
alternative description

K‚L := D(DK‚~DL).
(12.5.5) For any smooth group-scheme G over ^, with product map

product : G≠G ¨ G,

we define the ~ convolution of two objects K, L in Db,holo(G) by
K*~L := sum~(K≠L).

Since duality is compatible with cartesian product, we have the
alternative description

K*~L := D(DK*DL).

(12.5.6) We now apply this general setup to !1. In order to prevent
any confusion about which convolution we have in mind, we will
denote by

K*~+L

the additive ~ convolution on !1.

(12.5.7) For j : ´m ¨ !1, duality interchanges j~Ø´m
and j*Ø´m

,

and it tautologically interchanges the functors π* and π~. It respects
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the conditions B (no ‘-slope =1) and RS (no slopes >0 anywhere), since
˜ and D˜ have the same slopes everywhere. So it is natural to
consider the following condition (A~), which is satisfied by ˜ if and only
if D˜ satisfes our original condition (A):

Condition(A~): π~˜ = 0 (or equivalently, FT˜ § j~j
*˜).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....5555....8888 (dual to 12.3.5) For ˆ a holonomic Î-module on

!1, ˆ*~+(j*Ø´m
) is a single holonomic Î-module on !1 which satisfies

Condition (A~), and we have a canonical isomorphism

FT(ˆ*~+(j*Ø´m
)) § j~j

*FT(ˆ).

The operator ˆ ÿ ˆ*~+(j*Ø´m
) is idempotent; it is the projector onto

those holonomic Î-modules ˆ which satisfy Condition (A~).

TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....9999 (dual to 12.3.6) Denote by ÎModholo(!1) the abelian

catergory of all holonomic Î-modules on !1, and by DA~,B the full

subcategory of ÎModholo(!1) consisting of those objects which satisfy
both Conditions (A~) and (B). Then

(1) DA~,B is stable by additive ~ convolution.

(2) The exact functor

ÎModholo(!1) ¨ ÎModholo(´m)

˜ ÿ j*FT(˜)
induces an equivalence of categories

DA~,B § D.E.(´m/^),

whose quasi-inverse D.E.(´m/^) § DA,B is given by

V ÿ [x ÿ -x]*FT(j~V).

(3) This equivalence carries additive ~ convolution product of objects of
DA,B to usual tensor product of D.E.'s on ´m.

CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....5555....11110000 (dual to 12.3.8) DA~,B is a Tannakian category, with

(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by j*Ø´m
,

(3) "dual" given by ˜Ö := ([x ÿ -x]*(D˜))*~+(j*Ø´m
).



Chapter12-Fourier universality-11

(12.5.11) We define DA~,RS to be the full subcategory of DA~,B
consisting of those objects which are RS.

TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....11112222 (dual to 12.4.3) DA~,RS is itself a Tannakian category

with
(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by j*Ø´m
,

(3) "dual" given by ˜Ö := ([x ÿ -x]*(D˜))*~+(j*Ø´m
).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....5555....11113333 (dual to 12.4.4) Let ˜ be an object of DA~,RS.

Then ˜ and FT˜ have the same generic rank. In other words, the
"dimension" of ˜ as an object of the Tannakian category DA~,RS is its

generic rank.

11112222....6666 BBBBrrrriiiieeeeffff RRRReeeevvvviiiieeeewwww ooooffff RRRRiiiieeeemmmmaaaannnnnnnn----HHHHiiiillllbbbbeeeerrrrtttt;;;; TTTTrrrraaaannnnssssiiiittttiiiioooonnnn ffffrrrroooommmm ÎÎÎÎ----

mmmmoooodddduuuulllleeeessss ttttoooo DDDDbbbbcccc.

(12.6.1) Let X be a smooth ^-scheme of finite type. Denote by X(^)an

the underlying complex manifold. For any field F, denote by

Dbc(X(^)
an, F) the full subcategory of the bounded derived category of

sheaves of F-spaces on X(^)an whose cohomology sheaves are lisse of
finite rank on each piece of an algebraic stratification. By "Riemann-
Hilbert"(cf. {Ber], [Bor, VIII, 9.6], [Me-HR]), the DR functor defines an
equivalence of categories

Dbholo, RS(X, Î) ¶ Dbc(X(^)
an, ^)

which for variable X is compatible with the "six operations", and
induces an equivalence

ÎModholo,RS(X) § Perv(X(^)an, ^).

For ˜ a D.E. on X, the corresponding perverse object on X(^)an is

Ï[dimX], for Ï the local system on X(^)an of germs of horizontal

sections of ˜an.

(12.6.2) We now return to !1. Here the DR functor sets up the
following particular correspondences:
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Ø!1 ..............................^[1]

j*Ø´m
...................Rj*j

*^[1]

j~Ø´m
......................j~j

*^[1].

So the translation through Riemann-Hilbert of 12.5.8 is

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....6666....3333 For K in Perv(!1(^)an, ^) corresponding to a

holonomic RS Î-module ˜, K*~+(Rj*j
*^[1]) is perverse, satisfies

Condition (A~), and corresponds to a holonomic RS Î-module êˆ for
which we have a canonical isomorphism of holonomic Î-modules

FT(ˆ) § j~j
*FT(˜).

The operator on Perv(!1(^)an, ^)

K ÿ K*~+(Rj*j
*^[1])

is idempotent ; it is the projector onto those objects which satisfy
Condition (A~).

(12.6.4) Translating the succeeding Î-module results through
Riemann-Hilbert, we find the two following results, which are
interchanged by duality.

TTTThhhheeeeoooorrrreeeemmmm 11112222....6666....5555 Denote by PervA~(!
1(^)an, ^) the full subcategory of

Perv(!1(^)an, ^) consisting of those K with Rπ~K = 0. Then

PervA~(!
1(^)an, ^) is a Tannakian category with

(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by Rj*^[1],

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*~+(Rj*^[1]).

Moreover, for any K in PervA~(!
1(^)an, ^), its "dimension" is the

generic rank of Ó-1(K).

TTTThhhheeeeoooorrrreeeemmmm 11112222....6666....6666 Denote by PervA(!
1(^)an, ^) the full subcategory of

Perv(!1(^)an, ^) consisting of those K with Rπ*K = 0. Then

PervA(!
1(^)an, ^) is a Tannakian category with

(1) "tensor product" given by additive * convolution *+,

(2) "unit object" ú given by j~^[1],



Chapter12-Fourier universality-13

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*+(j~^[1]).

Moreover, for any K in PervA(!
1(^)an, ^), its "dimension" is the generic

rank of Ó-1(K).

11112222....7777 TTTTrrrraaaannnnssssiiiittttiiiioooonnnn ttttoooo ääää$$$$………… ccccooooeeeeffffffffiiiicccciiiieeeennnnttttssss

(12.7.1) Let X be a ^-scheme of finite type. Fix an isomorphism
“: ä$… § ^

of fields, and use it to identify Dbc(X(^)
an, ä$…) with Dbc(X(^)

an, ^). The

continuous map

œ: X(^)an ¨ Xet

induces a fully faithful functor œ*

Dbc(X, ä$…) ¨ Dbc(X(^)
an, ä$…),

which for variable X is compatible with the "six operations", and
induces an exact fully faithful functor between the abelian categories of
perverse objects

Perv(X, ä$…) ¨ Perv(X(^)an, ä$…).

Notice that an object K of Dbc(X, ä$…) is perverse if and only if its image

in Dbc(X(^)
an, ä$…) is perverse; this is obvious from looking at the

cohomology sheaves of K and DK in the two contexts.

LLLLeeeemmmmmmmmaaaa 11112222....7777....1111....1111 An object K of Perv(X, ä$…) is irreducible (resp. is a

direct sum of irreducibles) in Perv(X, ä$…) if and only if its image œ*(K)

is irreducible (resp. a direct sum of irreducibles) in Perv(X(^)an, ä$…).

pppprrrrooooooooffff By [B-B-D, 4.3.1], given an irreducible K in Perv(X, ä$…), there

exists a locally closed smooth irreducible subscheme j :U ¨ X, and an
irreducible local system Ï on U such that K § j~*Ï[dimU] is the middle

extension of Ï[dimU], and every object of this form is irreducible in
Perv(X, ä$…). Similarly, Riemann-Hilbert and the classification of

irreducible holonomic Î-modules (cf [Bor, 10.5 and 10.6]) shows that

given an irreducible K in Perv(X(^)an, ä$…), there exists a locally closed

smooth irreducible subscheme j :U ¨ X, and an irreducible local
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system Ï on U(^)an such that K § j~*Ï[dimU] is the middle extension

of Ï[dimU], and every object of this form is irreducible in

Perv(X(^)an, ä$…).

The functor œ* commutes with formation of middle extensions,

and for Ï an irreducible local system on U, œ*Ï is an irreducible local

system on U(^)an. Therefore œ* maps irreducibles in Perv(X, ä$…) to

irreducibles in Perv(X(^)an, ä$…), and hence it maps direct sums of

irreducibles to direct sums of irreducibles.

Conversely, suppose that K in Perv(X, ä$…) has œ
*K a direct sum of

irreducibles Li in Perv(X(^)an, ä$…). By the full faithfullness of œ*, each

projector πi of œ
*K onto Li comes from a unique projector ëπi on K, and

so K is the direct sum of the objects ëπi(K), and œ*ëπi(K) § Li is

irreducible. Since œ* is fully faithful, the irreducibility of œ*ëπi(K) § Li
implies the irreducibility of ëπi(K). QED

(12.7.2) We now return to the case of !1. The translation of 12.6.3
through this change of coefficients is

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....7777....3333 For K in Perv(!1^, ä$…), corresponding to a

holonomic RS Î-module ˜, K*~+(Rj*j
*ä$…((((1111))))[1]) is perverse, satisfies

Condition (A~), and corresponds to a holonomic RS Î-module êˆ for
which we have a canonical isomorphism of holonomic Î-modules

FT(ˆ) § j~j
*FT(˜).

The operator on Perv(!1^, ä$…)

K ÿ K*~+(Rj*j
*ä$…((((1111))))[1])

is idempotent ; it is the projector onto those objects which satisfy
Condition (A~).

(12.7.4) We have the following two results, which are interchanged
by duality.

TTTThhhheeeeoooorrrreeeemmmm 11112222....7777....5555 Denote by PervA~(!
1
^, ä$…) the full subcategory of

Perv(!1^, ä$…) consisting of those K with Rπ~K = 0. Then
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PervA~(!
1
^, ä$…) is a Tannakian category with

(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by Rj*ä$…((((1111))))[1],

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*~+(Rj*ä$…((((1111))))[1]).

Moreover, for any K in PervA~(!
1
^, ä$…), its "dimension" is the generic

rank of Ó-1(K).

pppprrrrooooooooffff The only tricky point is that the subcategory PervA~(!
1
^, ä$…) of

Perv(!1(^)an, ä$…) is itself a Tannakian category. But using Deligne's

version [De-CT, 2.1] of the axioms defining a Tannakian category, this
results from the full faithfulness of

Perv(!1^, ä$…) ¨ Perv(!1(^)an, ä$…)

and the stability of PervA~(!
1
^, ä$…) under the operation "dual". QED

TTTThhhheeeeoooorrrreeeemmmm 11112222....7777....6666 Denote by PervA(!
1
^, ä$…) the full subcategory of

Perv(!1^, ä$…) consisting of those K with Rπ*K = 0. Then

PervA(!
1
^, ä$…) is a Tannakian category with

(1) "tensor product" given by additive * convolution *+,

(2) "unit object" ú given by j~ä$…[1],

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*+(j~ä$…[1]).

Moreover, for any K in PervA(!
1
^, ä$…), its "dimension" is the generic

rank of Ó-1(K).

11112222....8888 RRRReeeeccccaaaappppiiiittttuuuullllaaaattttiiiioooonnnn ooooffff tttthhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn oooovvvveeeerrrr ^̂̂̂
(12.8.1) To help the reader keep track of the where we are so far, it
may be useful to keep in mind the following diagrams of Tannakian

categories, in which œ* and j*FT are exact, fully faithful ‚-functors,
and in which “ and DR are equivalences of Tannakian categories:
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œ* “

PervA~(!
1
^, ä$…) zzzc PervA~(X(^)

an, ä$…) § PervA~(X(^)
an, ^)

a/ DR
DA~,RS

d j*FT

D.E.(´m/^)

œ* “

PervA(!
1
^, ä$…) zzzc PervA(X(^)

an, ä$…) § PervA(X(^)
an, ^)

a/ DR
DA,RS

d j*FT

D.E.(´m/^)

LLLLeeeemmmmmmmmaaaa 11112222....8888....2222 Fix a fibre functor ∑ on PervA~(X(^)
an, ä$…), and let K

in PervA~(!
1
^, ä$…) be a semisimple object, i.e., K is a direct sum of

irreducibles in PervA~(!
1
^, ä$…). Then K and œ*K have the "same"

Tannakian galois group, i.e., the natural inclusion of Tannakian galois

groups Gœ*K, ∑ fi GK, ∑«œ* induced by œ* is an isomorphism.

pppprrrrooooooooffff K and œ*K are semisimple objects of PervA~(!
1
^, ä$…) and of

PervA~(X(^)
an, ä$…) respectively, by 12.7.1.1. Therefore they are

faithful, completely reducible representations of the groups GK, ∑«œ*

and Gœ*K, ∑ respectively, and hence, as we are over a field of

characteristic zero, these groups are both reductive. So the lemma
results from the explicit recovery of these groups, via invariants in
symmetric powers, given in 11.1, and the full faithfulness of the exact

‚-functor œ*. QED

LLLLeeeemmmmmmmmaaaa 11112222....8888....3333 Suppose that K in PervA~(!
1
^, ä$…) is a semisimple

object, i.e., K is a direct sum of irreducibles in PervA~(!
1
^, ä$…). Denote
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by ˜ the RS Î-module on !1^ which corresponds, via Riemann-

Hilbert and “, to the object œ*(K) of Perv(!1(^)an, ä$…). Fix a fibre

functor ∑ on D.E.(´m/^), and denote by

∑1 := ∑«j*FT, a fibre functor on DA~,RS,

∑2 := the unique fibre functor on Perv(!1(^)an, ^) for which

∑1 = ∑2«DR,

∑3 := ∑2«“, a fibre functor on PervA(!
1(^)an, ä$…),

∑4 := ∑3«œ
*, a fibre functor on PervA~(!

1
^, ä$…).

With respect to these fibre functors, the objects

j*FT(˜) in D.E.(´m/^)

˜ inDA~,RS

“œ*(K) in Perv(!1(^)an, ^)

œ*(K) in Perv(!1(^)an, ä$…)

K in PervA~(!
1
^, ä$…)

all have the same Tannakian galois group.

pppprrrrooooooooffff This is immediate from 12.5.9, 12.7.1.1, and 12.8.2. QED

11112222....9999 TTTThhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc pppp
(12.9.1) In this section, we fix an algebraically closed field k of

positive characteristic p ± … and a nontrivial additive ä$…
≠-valued

character ¥ of a finite subfield of k. We will work on !1k. We denote by

π : !1k ¨ Spec(k) the structural map,

iå : Spec(k) ¨ !1 the inclusion of the point å Ÿ k = !1(k),

»: !1 ¨ !1≠k!
1 the diagonal embedding,

sum: !1≠k!
1 ¨ !1 the addition map (x, y) ÿ x+y,

j : ´m ¨ !1 the inclusion.

We will denote additive * and ~ convolution by **+ and *~+
respectively.
(12.9.2) Recall (8.1.7) that the Fourier Transform
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FT¥ : Dbc(!
1
k, ä$…) ¨ Dbc(!

1
k, ä$…)

is defined by

FT¥(K) := R(pr2)~(pr1
*(K)‚Ò¥(xy))[1].

It commutes with duality up to an additive inversion,

D«FT¥ = FT¥«[x ÿ -x]*«D,

and is involutive up to a Tate twist of (----1111) and an additive inversion:

FT¥«FT¥(K) = [x ÿ -x]*(K)(----1111).

One knows (cf [Br, 9.6]) that FT¥[-1] interchanges tensor product and

additive ~ convolution:
FT¥(K*~+L)[-1] § FT¥(K)[-1]‚FT¥(L)[-1].

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 11112222....9999....3333 (compare Key lemma 12.2.3) For K, L objects in

Dbc(!
1
k, ä$…), and any å Ÿ k, we have canonical isomorphisms in

Dbc(Spec(k), ä$…)

(1) Rπ~(K‚Ò¥(åx)) § iå
*(FT¥(K))[-1],

(2) Rπ~(FT¥(K)‚Ò¥(-åx)) § iå
*(K)(----1111)[-1],

(3) Rπ~(K*~+L) § Rπ~(K)‚Rπ~(L),

(4) iå
*(K‚L) § iå

*(K)‚iå
*(L),

and a canonical isomorphism in Dbc(!
1
k, ä$…)

(5) FT¥(K*~+L)[-1] § FT¥(K)[-1]‚FT¥(L)[-1].

pppprrrrooooooooffff Assertion (1) is proper base change, (2) results from (1) by
Fourier inversion, (3) is the special case ƒ = π of 8.1.10(2a), (4) is
tautological, and (5), recalled just above, is "mise pour memoire". QED

Exactly as in the Î-module setting, this immediately gives

CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....9999....4444 (compare 12.2.4) For K, L in Perv(!1k, ä$…), we have

(1) FT¥(K) § j~j
*FT¥(K) if and only if Rπ~K = 0.

(2) If either Rπ~K = 0 or Rπ~L = 0, then Rπ~(K*~+L) = 0.

(3) If Rπ~(K*~+L) = 0, and if j*FT¥(K)[-1] and j*FT¥(L)[-1] are both lisse

sheaves, on ´m placed in degree zero, say Ï and Ì, then

FT¥(K*~+L)[-1] § j~(Ï‚Ì),

and K*~+L is perverse.
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11112222....11110000 TTTThhhheeee TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn CCCCaaaatttteeeeggggoooorrrryyyy PPPPeeeerrrrvvvvAAAA~~~~,,,,BBBB((((!!!!
1111,,,, ääää$$$$…………))))

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn 11112222....11110000....1111 Given K in Perv(!1k, ä$…), consider the following

conditions (A~) and (B):

Condition(A~) : Rπ~K =0 (or equivalently, FT¥(K) § j~j
*FT¥(K)).

Condition(B) : j*FT¥(K)[-1] is a lisse sheaf on ´m placed in degree zero.

RRRReeeemmmmaaaarrrrkkkk 11112222....11110000....2222 In virtue of [Ka-GKM, 8.5.8 (2)], K in Perv(!1k, ä$…)

satisfies Condition (B) if and only if all of its ‘-slopes (i.e., all the ‘-

slopes of its only nonpunctual cohomology sheaf Ó-1(K)) are ± 1. In
particular, if K is everywhere tame, then K satisfies Condition (B).

(12.10.3)According to [Ka-PES, A2], we have (cf 2.10.1 (1) for the Î-
module analogue)

FT¥(j~j
*ä$…[1]) § Rj*j

*ä$…[1],

which by Fourier inversion gives

FT¥(Rj*j
*ä$…(1111)[1]) § j~j

*ä$…[1].

Therefore the object Rj*j
*ä$…[1] satisfies Condition (B).

LLLLeeeemmmmmmmmaaaa 11112222....11110000....4444 The object Rj*j
*ä$…(1111)[1] satisfies Condition (A~).

pppprrrrooooooooffff (compare [Ka-LG, proof of 1.6.8], [Ka-GKM,2.2.1-3]) We must show

that Rπ~(Rj*j
*ä$…) = 0. By interchanging the points 0 and ‘ in @1, this

becomes the statement Rπ*(j~j
*ä$…) = 0. [Alternately, these two

statements are interchanged by duality.] This amounts to the vanishing

of the ordinary cohomology groups Hi(!1k, j~j
*ä$…). The H

i for i ± 0,1

vanish for reasons of cohomological dimension, the H0 vanishes by

inspection, and the remaining group H1 vanishes by the Euler-Poincare
formula. QED

Exactly as in the Î-module setting, this gives

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11112222....11110000....5555 For K in Perv(!1k, ä$…), K*~+(Rj*j
*ä$…((((1111))))[1]) is

perverse and satisfies Condition (A~), and we have a canonical
isomorphism

FT¥(K*~+(Rj*j
*ä$…((((1111))))[1])) § j~j

*FT¥(K).
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The operator on Perv(!1k, ä$…)

K ÿ K*~+(Rj*j
*ä$…((((1111))))[1])

is idempotent ; it is the projector onto those objects which satisfy
Condition (A~).

Proceeding as in the Î-module case, we now prove

TTTThhhheeeeoooorrrreeeemmmm 11112222....11110000....6666 Denote by PervA~,B(!
1
k, ä$…) the full subcategory of

Perv(!1k, ä$…) consisting of those K satisfying conditions (A~) and (B).

Then PervA~,B(!
1
k, ä$…) is a Tannakian category with

(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by Rj*j
*ä$…((((1111))))[1],

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*~+(Rj*j
*ä$…((((1111))))[1]).

The exact functor

j*FT¥[-1] : PervA~,B(!
1
k, ä$…) ¨ (lisse ä$…-Sheaves on (´m)k)

carries additive ~ convolution to usual tensor product of lisse sheaves on
´m, and thus defines an equivalence of Tannakian categories. The

quasi-inverse is

Ï ÿ [x ÿ -x]*FT¥(j~Ï(1111)[1]).

Moreover, for any K in PervA~,B(!
1
k, ä$…) with all ‘-slopes < 1, its

"dimension", i.e., the rank of the lisse sheaf j*FT¥(K)[-1] on ´m, is the

generic rank of Ó-1(K).

11112222....11111111 TTTThhhheeee TTTTaaaannnnnnnnaaaakkkkiiiiaaaannnn CCCCaaaatttteeeeggggoooorrrryyyy PPPPeeeerrrrvvvvAAAA~~~~,,,,ttttaaaammmmeeee((((!!!!
1111,,,, ääää$$$$…………))))

(12.11.1) Denote by PervA~,tame(!
1
k, ä$…) the full subcategory of

PervA~,B(!
1
k, ä$…) consisting of those K which are everywhere tame.

(12.11.2) Denote by Ê the full subcategory of the category of all lisse
ä$…-sheaves on ´m consisting of those objects Ï which satisfy the

following two supplementary conditions:

(Ê1) Ï is tame at 0.
(Ê2) Ï as I‘-representation is a direct sum of representations of the

form Ò¥(åx)‚(tame), åŸk.
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(12.11.3) Clearly Ê is a full thick abelian subcategory of the category
of all lisse ä$…-sheaves on ´m, which is stable by tensor product. By

Laumon's analysis of the local monodromy of Fourier Transforms (cf.
7.4, 7.5), the exact functor

j*FT¥[-1] : PervA~,B(!
1
k, ä$…) ¨ (lisse ä$…-Sheaves on (´m)k)

induces an equivalence PervA~,tame(!
1
k, ä$…) § Ê. Thus we obtain

TTTThhhheeeeoooorrrreeeemmmm 11112222....11111111....4444 PervA~,tame(!
1
k, ä$…) is a Tannakian category with

(1) "tensor product" given by additive ~ convolution *~+,

(2) "unit object" ú given by Rj*j
*ä$…((((1111))))[1],

(3) "dual" given by KÖ := ([x ÿ -x]*(DK))*~+(Rj*j
*ä$…((((1111))))[1]).

The exact functor

j*FT¥[-1] : PervA~,tame(!
1
k, ä$…) ¨ Ê

carries additive ~ convolution to usual tensor product, and defines an
equivalence of Tannakian categories. The quasi-inverse is

Ï ÿ [x ÿ -x]*FT¥(j~Ï(1111)[1]).

For any K in PervA~,tame(!
1
k, ä$…), its "dimension", i.e., the rank of the

lisse sheaf j*FT¥(K)[-1] on ´m, is the generic rank of Ó-1(K).

RRRReeeemmmmaaaarrrrkkkk 11112222....11111111....5555 One could dually develop the * version of this theory,

everywhere interchanging *~+ with **+, Rπ~ with Rπ*, Rj*j
*ä$…((((1111))))[1]

with j~j
*ä$…[1], and j~ with Rj*, to be exactly consonant with the

theory developed in the Î-module context.
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11113333....1111 GGGGeeeennnneeeerrrraaaalllliiiittttiiiieeeessss oooonnnn SSSSttttrrrraaaattttiiiiffffiiiiccccaaaattttiiiioooonnnnssss aaaannnndddd CCCCoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(13.1.1) In this section, we recall some of the basic definitions and
results about stratifications (cf. [Ka-Lau, section 3], [Ka-PES, section 1],
[B-B-D, 2.1, 2.2, 6.1.9]). Schemes are always understood to be separated
and noetherian. A good scheme S is one which admits a map f of finite
type to a scheme T which is regular of dimension at most one. [Thus a
good #[1/…]-scheme is a good scheme on which … is invertible, but it
need not be of finite type over #[1/…], e.g., Spec(^).] A good ring R is one
whose Spec is a good scheme. For variable good schemes X, and … any
fixed prime number, we can speak of the triangulated categories

Dbc(X[1/…], ä$…), which admit the full Grothendieck formalism of the "six

operations" (cf [De-TF], [De-WII], [Ek], [Me-SO]).
(13.1.2) Given a good #[1/…]-scheme S, an S-scheme

f : X ¨ S

of finite type, and an object K in Dbc(X, ä$…), we define its S-dual

DX/S(K) in Dbc(X, ä$…) by

DX/S(K) := RHom(K, f~ä$…).

We say (cf. [K-L, 1.1]) that K is S-semireflexive if the formation of
DX/S(K) commutes with arbitrary change of base on S to a good

scheme S'. We say that K is S-reflexive if both K and DX/S(K) are S-

semireflexive. If K is reflexive, the canonical map
K ¨ DX/S(DX/S(K))

is an isomorphism (check fibre by fibre) whose formation commutes
with arbitrary change of base on S to a good scheme.
(13.1.3) A stratification Ù := {Xå} of a scheme X is a finite partition

of Xred into a disjoint union of locally closed subschemes Xå. An object

K of Dbc(X[1/…], ä$…) is said to be adapted to Ù if on each connected

component of each stratum Xå[1/…], each of the cohomology sheaves

Ói(K) is lisse (in the sense of corresponding to a finite-dimensional ä$…-

representation of the profinite fundamental group which is definable
over a finite extension of $…).

(13.1.4) Suppose that S is a good #[1/…]-scheme, and π : G ¨ S is a
commutative group scheme over S which is separated and of finite
type. Denote by 0G the zero-section of G, and by ∂0,… the constant sheaf
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ä$… on the zero-section 0G, extended by zero to all of G. Using *~
convolution as the "tensor" operation, the ä$…-linear triagulated

category Dbc(G[1/…], ä$…) is an ACU ‚-category in the sense of [Saa],

with ∂0,… as unit object, in which ‚ is ä$…-bilinear and bi-exact ("exact"

in the sense of triangulated categories).
(13.1.5) For any good scheme X, and any morphism f : X ¨ S, we
denote GX := G≠SX the pullback of G/S to X. The pullback functor

f*: Dbc(G[1/…], ä$…) ¨ Dbc(GX[1/…], ä$…)

is an exact ä$…-linear ACU ‚-functor (the ‚-compatibility because, by

proper base change, the formation of K*~L commutes with change of

base on S).
(13.1.6) Let Ù be a stratification of G. By [Ka-Lau, section 3], there
exists an integer N ≥ 1, a dense open set U in S[1/N], and a
stratification Á of GU which refines ÙU such that

(1) If K on GU is adapted to ÙU, then K is U-reflexive and DK is adapted

to Á [Ka-Lau, 3.2.2 applied to G/S and Ù]
(2) If K and L on GU are adapted to ÙU, then K*~L is adapted to Á and

its formation commutes with arbitrary change of base on S to a good
scheme [Ka-Lau, 3.1.2 applied to sum : G≠SG ¨ G and Ù≠SÙ]

(3) If K on GU is adapted to ÙU, then Rπ~K and Rπ*K are lisse on U, and

their formation commutes with arbitrary change of base on S to a good
scheme [Ka-Lau, 3.3.3 applied to G/S and Ù].

(13.1.7) So if we do it twice (i.e., apply this result to Á on GU) then

we get Á2 and U2 such that if K and L on GU2
are adapted to Ù, then

(1) RHom(K, L) is adapted to Á2 and its formation commutes with

arbitrary change of base on S to a good scheme [since RHom(K, DM) =
D(K‚M), so taking M := DL gives

RHom(K, L) = RHom(K, DDL) = D(K‚DL)],
(2) Rπ*RHom(K, L) is lisse on U2, and its formation commutes with

arbitrary change of base on S to a good scheme [sinceRHom(K, L) is
adapted to Á2 and its formation commutes with arbitrary change of

base on S to a good scheme].

(13.1.8) Thus, if we start with G/S and Ù, and then we have
shrinking opens
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S = U0 fl U1 fl U2 fl U3 fl U4 fl U5 ... fl S‚$

with each Ui+1 open dense in Ui[1/Ni] for some Ni ≥ 1,

and successively refining stratifications Ái of GUi
, such that if K and L

on GUi
are both adapted to Ái-2, then

(1) K*~L is adapted to Ái-1 and its formation commutes with arbitrary

change of base on S to a good scheme.
(2) Rπ*RHom(K, L) is lisse on Ui and its formation commutes with

arbitrary change of base on S to a good scheme.
(3) the derived category homs along the geometric fibres,
s ÿ Hom(Ks, Ls), form a local system on Ui. [Take the zeroeth

cohomolology sheaf of Rπ*RHom(K, L), and apply (2).]

11113333....2222 IIIInnnntttteeeerrrrlllluuuuddddeeee:::: RRRReeeevvvviiiieeeewwww ooooffff EEEElllleeeemmmmeeeennnnttttaaaarrrryyyy SSSSttttrrrraaaattttiiiiffffiiiiccccaaaattttiiiioooonnnn FFFFaaaaccccttttssss
aaaabbbboooouuuutttt NNNNoooorrrrmmmmaaaallll CCCCrrrroooossssssssiiiinnnnggggssss
(13.2.1) Let S := Spec(R) be a good #[1/…]-scheme which is normal
and connected and whose generic point has characteristic zero. Let X/S
be proper and smooth, and let D = ⁄iŸI Di fi X a union of R-smooth

divisors Di with relative normal crossings in X/R (e.g., @1R, {0, 1, ‘}).

Recall that there is a natural "normal crossings stratification" of X
attached to this situation. For each subset S of the index set I, let

DS := €iŸS Di, with the convention D& = X,

US := DS - ⁄S<T DT.

Thus DS is proper and smooth over R, and US is the complement in DS
of a union of smooth divisors in DS with normal crossings relative to S

(namely the DS€Di for each i nnnnooootttt in S).

(13.2.2) Consider the stratification of X by the subschemes Un,

0 ≤ n ≤ Card(I),
Un := ‹Card(S)=n US.

The closure of Un is

äUn :=⁄Card(S)=n DS = ‹m ≥ n Um.

We denote by
jn : Un ¨ äUn

the inclusion of Un into äUn.

(13.2.3) We endow each äUn with the stratification ‹m ≥ n Um. In
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view of the definition of each Um as the disjoint union

Um := ‹Card(S)=m US,

an object Kn in Dbc(äUn, ä$…) is adapted to the stratification ‹m ≥ n Um
if and only if it is adapted to the finer stratification ‹Card(S)≥n US of

äUn.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....2222....4444 Hypotheses and notations as above, let

0 ≤ n ≤ Card(I), and suppose Kn in Dbc(äUn, ä$…) is adapted to the

stratification ‹m ≥ n Um. Then

(1) Rjn*jn
*Kn is adapted to ‹m ≥ n Um, and its formation commutes

with arbitrary change of base on R to a good scheme.
(2) Kn is R-reflexive, and DäUn/R

(Kn) is adapted to the ssssaaaammmmeeee

stratification ‹m ≥ n Um.

(3) In particular, if K in Dbc(X, ä$…) is adapted to the normal crossing

stratification of X, then K is reflexive and DX/R(K) is adapted to the

ssssaaaammmmeeee stratification.

pppprrrrooooooooffff That (1) holds for n = 0 is standard (cf. [Ill-ATF, A.1.1.3], [Ka-Lau,
3.4.3]). We first reduce (1) for general n to this case. The inclusion jn of

Un into äUn factors through ‹Card(S)=n DS, as

Un = ‹Card(S)=n US zåc ‹Card(S)=n DS

o d∫
jn p äUn = ⁄Card(S)=n DS = ‹Card(T)≥n UT.

In this factorization, å is the disjoint union of the inclusions of US into

DS, and ∫ is finite. Over each stratum UT of the target, ∫ is just several

copies (one for each S fi T with Card(S) = n) of the identity map. Using

this factorization to compute Rjn*jn
*Kn as ∫~Rå*(jn

*Kn), and

applying (1) with n=0 to å, (1) is obvious.
To prove (2), we proceed by descending induction on n (cf. [Ka-

Lau, 3.4.3]). Denote by
in :äUn+1 = äUn - Un ¨ äUn

the inclusion. Thus in is a closed immersion. The "exact sequence"
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0 ¨ jn~jn
*Kn ¨ Kn ¨ in*in

*Kn ¨ 0

gives under D a triangle

in* DäUn+1/R
(in

*Kn) ¨ DäUn/R
(Kn) ¨ Rjn*DUn/R

(jn
*Kn) ¨ ,

whose first term is handled by the induction, and whose third term is
handled by (1). This proves that K is R-semirelexive, and that
DäUn/R

(Kn) is adapted to the same stratification. To get (2), simply

apply this same argument to DäUn/R
(Kn). Assertion (3) is just the

special (but most important) case n=0 of (2). QED

CCCCoooorrrroooollllllllaaaarrrryyyy11113333....2222....5555 Let S := Spec(R) be a good #[1/…]-scheme which is
normal and connected and whose generic point has characteristic zero.
Let (X1, D1) and (X2, D2) be two normal crossing situations over R as

above. Suppose K1 in Dbc(X1, ä$…) and K2 in Dbc(X2, ä$…) are adapted to

the corresponding stratifications. On the fibre product X1≠RX2 with its

"product" divisor with normal crossings (D1≠RX2) ⁄ (X1≠RD2), consider

the tensor product complex pr1
*(K1)‚

Òpr2
*(K2), which is adapted to

the normal crossing stratification. This object is reflexive, its dual is
adapted to the same stratification, and the canonical map

D(pr1
*(K1))‚

ÒD(pr2
*(K2)) ¨ D(pr1

*(K1)‚
Òpr2

*(K2))

is an isomorphism whose formation commutes with arbitrary change
of base on R to a good scheme.
pppprrrrooooooooffff By the above 13.2.4 applied to the product, the above morphism,
source and target are all of formation compatible with arbitrary
change of base on R to a good scheme, so it suffices to check over
geometric points of R, where it becomes the compatibility of duality
with products. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11113333....2222....6666 Let S :=Spec(R) be a good #[1/…]-scheme which is
normal and connected and whose generic point has characteristic zero.
Let (X, D) be a normal crossing situations over R as above. Let U be an
open subscheme of X whose closed complement Z is a partial union of
the subschemes DS. Denote by Ë the stratification Ë := ‹(those UT in

U) of U. Then

(1) If K in Dbc(U, ä$…) is adapted to Ë, then K is R-reflexive and DU/R(K)

is adapted to Ë.

(2) If K and L in Dbc(U, ä$…) are each adapted to Ë, then on U≠RU,
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pr1
*(K)‚Òpr2

*(L) is reflexive, it and its dual are adapted to Ë≠Ë, and

the canonical map

D(pr1
*(K))‚ÒD(pr2

*(L)) ¨ D(pr1
*(K)‚Òpr2

*(L))

is an isomorphism whose formation commutes with arbitrary change
of base on R to a good scheme.

pppprrrrooooooooffff Let j:U ¨ X denote the inclusion. Then j~K on X is adapted to the

normal crossing stratification of X. Since j is open, we have

j*DX/R(j~K) = DU/R(j
~j~K) = DU/R(j

*j~K) = DU/R(K),

so (1) follows from 13.2.4 (3). Similarly, (2) follows from the above
Corollary. QED

11113333....3333 TTTThhhheeee ssssppppeeeecccciiiiaaaallll ccccaaaasssseeee ooooffff !!!!1111

(13.3.1) The general G/S discussion above has the merit of applying
quite generally, but the attendant disadvantage of not being very

explicit. However, in the special case when G is !1, the theory becomes
very explicit. [It does so also if G is either ´m or an elliptic curve E over

S. The common element is that G is, as a scheme, the complement in a
proper smooth S-curve äG of a disjoint union Z of sections. We leave to

the reader the task of adapting the following discussion of !1 to these
cases.] This allows us to apply the normal crossing results of the
previous section.

(13.3.2) For any ring R, we denote by !1R := Spec(R[x]) the affine

line over R.
(13.3.3) Fix a prime number …, and an isomorphism of fields

“:ä$… § ^.

Let R be a subring of ^ which is a finitely generated #[1/…]-algebra. Let

K be an object in Dbc(!
1
R, ä$…). At the expense of replacing R by R[1/r]

for some nonzero element r Ÿ R, we may further assume that R is

normal, and that K is adapted to the stratification (!1R - D, D) where

D fi !1R is a divisor which is finite etale over R of some degree d ≥ 1,

defined by a monic polynomial f(x) Ÿ R[x] of degree d whose
discriminant » is a unit in R.

Recall that in this situation, we have:

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....3333....4444 ([Ka-Lau,3.4]) Let R be a normal integral domain in
which … is invertible, whose fraction field has characteristic zero, and
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such that S := Spec(R) is a good scheme. Let D fi !1R be a divisor

which is finite etale over R of some degree d ≥ 1, defined by a monic
polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit in R.

Suppose that K in Dbc(!
1
R, ä$…) is adapted to the stratification

(!1R - D, D).

Denote by π : X :=!1R ¨ S := Spec(R) the structural morphism. Then

(1) For j: !1R - D ¨ !1R the inclusion, Rj*j
*K is adapted to the

stratification (!1R - D, D), of formation compatible with arbitrary

change of base on S to a good scheme.
(2) Rπ~K is lisse on S, of formation compatible with arbitrary change of

base on S to a good scheme.
(3) K is S-reflexive, and DX/S(K) is adapted to the ssssaaaammmmeeee stratification

(!1R - D, D).

(4) Rπ*K is lisse on S, of formation compatible with arbitrary change of

base on S to a good scheme, and we have canonical isomorphisms
D(Rπ*K) § Rπ~DK, D(Rπ~K) § Rπ*DK,

of formation compatible with arbitrary change of base on S to a good
scheme.
(5) For any algebraically closed field k, and any ring homomorphism

ƒ: R ¨ k, the inverse image Kƒ of K in Dbc(!
1
k, ä$…) is adapted to the

stratification (!1k - Dk, Dk), and Kƒ is tamely ramified at all points of

Dk ⁄ {‘}.

RRRReeeemmmmaaaarrrrkkkk 11113333....3333....5555 The key point of the above proposition is that "duality
costs us nothing" for objects K adapted to such a stratification. The
earlier discussion (13.1) thus gives:

CCCCoooorrrroooollllllllaaaarrrryyyy 11113333....3333....6666 Hypotheses and notations as in 13.3.4 above, suppose

that K and L in Dbc(!
1
R, ä$…) are both adapted to the stratification

(!1R - D, D). Then

(1) RHom(K, L) = D(K‚DL) is adapted to the stratification (!1R - D, D),

and of formation compatible with arbitrary change of base on S to a
good scheme.
(2) Rπ*RHom(K, L) is lisse on S, of formation compatible with
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arbitrary change of base on S to a good scheme.

(3) The zeroeth cohomology sheaf Ó0(Rπ*RHom(K, L)) is lisse on S, and

its fibre at each geometric point s in S is the ä$…-space of hom's from Ks

to Ls in Dbc(!
1
s, ä$…).

(13.3.7) In order to state the next result, it will be convenient to
introduce the following temporary notation. For any good R-scheme T,
denote by

Ç(T) fi Dbc(!
1
T, ä$…)

the strictly full subcategory of Dbc(!
1
T, ä$…) consisting of those objects

which are adapted to the stratification (!1T - DT, DT), and whose

restriction to each geometric fibre !1t is tamely ramified at all points

of Dt ⁄ {‘}.

(13.3.8) Notice that Ç(T) is a triangulated subcategory of

Dbc(!
1
T, ä$…); if two vertices of a triangle lie in Ç(T), then so does the

third, as is immediate from the long exact sequence of cohomology
sheaves.

By applying part (3) of the above result 13.3.6, we find

CCCCoooorrrroooollllllllaaaarrrryyyy 11113333....3333....9999 (compare [B-B-D, 6.1.9]) Hypotheses and notations as
in 13.3.4 above, suppose in addition that R is a strictly henselian local
ring. Let s and ä˙ be geometric points of S := Spec(R) which lie over the
special and generic points respectively. Then the natural inverse image
functors

Ç(S) ¨ Ç(ä˙), Ç(S) ¨ Ç(s)
are fully faithful.

By applying part (3) of the above result 13.3.6 to K and to all the
shifts L[i] of L, we find the more pecise result:

CCCCoooorrrroooollllllllaaaarrrryyyy 11113333....3333....11110000 (compare [B-B-D, 6.1.9]) Hypotheses and notations
as above, suppose in addition that R is a strictly henselian discrete
valuation ring. Let s and ä˙ be geometric points of S := Spec(R) which lie
over the special and generic points respectively. Then the natural
inverse image functors

Ç(S) ¨ Ç(ä˙), Ç(S) ¨ Ç(s)
are fully faithful, and the second is an equivalence of categories.
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pppprrrrooooooooffff That the functors are fully faithful is the content of the previous
corollary. It remains to explain why the second is essentially surjective.
We proceed by induction on the amplitude

ampl(K) := sup{i | Ói(K) ± 0} - inf{i | Ói(K) ± 0}.

If Ói(K) = 0 for i > n, then we have a triangle

†<nK ¨ K ¨ Ón(K)[-n] ¨(†<nK)[1],

so K is a cone of the morphism Ón(K)[-n] ¨(†<nK)[1] between objects of

lower amplitude.
It remains to treat the objects of amplitude zero. Any such is a

shift of a sheaf Ï which is lisse and tame on !1 - D, and lisse on D. If

we denote by j: !1 - D ¨ !1 and i: D ¨ !1 the inclusions, then Ï sits
in the short exact sequence

0 ¨ j~j
*Ï ¨ Ï ¨ i*i

*Ï ¨ 0,

so we recover Ï as the cone of the morphism i*i
*Ï ¨ j~j

*Ï[1].

For objects of the form i*i
*Ï the asserted equivalence is obvious:

they are simply the constant sheaves on D, extended by zero. For

objects of the form j~j
*Ï, the asserted equivalence results from

Grothendieck's theory of the tame fundamental group (cf. [SGA I, XIII,
Thm 2.4, 1] and the explication at the end the proof the Tame
Specialization Theorem bis 8.17.14). QED

11113333....4444 LLLLooooccccaaaattttiiiioooonnnn ooooffff tttthhhheeee SSSSiiiinnnngggguuuullllaaaarrrriiiittttiiiieeeessss ooooffff aaaa ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(13.4.1) In this section, we make precise the rough idea that
"singularities add under convolution".

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....4444....2222 Let R be a normal integral domain in which … is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that D1, D2, and D3 are three

divisors Di fi !1R each of which is finite etale over R of some degree

di ≥ 1, defined by a monic polynomial fi(x) Ÿ R[x] of degree di whose

discriminant »i is a unit in R. Suppose that

(D1 + D2)
red fi D3,

i.e., for every algebraically closed field k and every ring homomorphism
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ƒ : R ¨ k, if å1, å2 Ÿ k then

f3(å1 + å2) = 0 if f1(å1) = 0 = f2(å2) = 0.

Suppose that for i = 1, 2, Ki in Dbc(!
1
R, ä$…) is adapted to the

stratification (!1R - Di, Di). Then

(1) The additive ~ convolution K1*~+K2 in Dbc(!
1
R, ä$…) is adapted to the

stratification (!1R - D3, D3), and its formation commutes with

arbitrary change of base on Spec(R) to a good scheme.
(2) We have a canonical isomorphism D(K1*~+K2) § DK1**+DK2, whose

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

(3) The additive * convolution K1**+K2 in Dbc(!
1
R, ä$…) is adapted to

the stratification (!1R - D3, D3), and its formation commutes with

arbitrary change of base on Spec(R) to a good scheme.
(4) We have a canonical isomorphism D(K1**+K2) § DK1*~+DK2, whose

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

pppprrrrooooooooffff Making a finite etale base change on R, we may assume that all
the divisors Di are finite unions of disjoint sections, say D1 = {ai}, D2 =

{bj}, D3 = {ck}. The hypothesis that D1 + D2 fi D3 is the the statement

that each ai + bj is a ck.

We first prove that both convolutions are lisse on U := !1R - D3.

Over U, the sum map becomes pr2: !1 ≠RU ¨ U with coordinates

(x,y) ÿ y, the source endowed with the object K1(x)‚K2(y-x). This

object is adapted to (!1U - D, D), for D the divisor D1 ‹ (y - D2), which

is finite etale over U of degree d1 + d2, defined by the (_)monic

polynomial f(x) := f1(x)f2(y - x). So this is just 13.3.4, (2) and (4).

To see that K1*~+K2 is lisse on D3, we argue as follows. Since D3 is

the disjoint union of sections {ck}, we may, by translation, suppose that

{0} is one of these sections. We must then show that K1*~+K2 is lisse

along the zero section. By proper base change, (K1*~+K2)|{0} is

Rπ~(K1‚[x ÿ -x]*K2). But on !1R, K1‚[x ÿ -x]*K2 is adapted to the

stratification (!1R - D, D), for D union of the ddddiiiissssjjjjooooiiiinnnntttt sections, each
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taken with multiplicity one, given by {ai} ⁄ {-bj}. So again we may

apply 13.3.4 (2).
The base-change statement for K1*~+K2 is a special case of proper

base change. This concludes the proof of (1).
Statement (2) is Verdier duality for the "sum" map, in the form

D«Rsum~ = Rsum*«D, together with 13.2.6 (2) applied to the situation

U = !1, X = @1.
Once we have (2), apply it to the DKi. Since Ki § DDKi, this gives

D(DK1*~+DK2) § K1**+K2,

which makes the (3) obvious. Assertion (4) is obtained by applying D to
this, and recalling that DK1*~+DK2 is reflexive, because it is adapted to

(!1R - D3, D3). QED

In the special case when D2 is the zero section alone, i.e., when

f2(x) = x, then we can take D3 = D1, and we obtain:

CCCCoooorrrroooollllllllaaaarrrryyyy 11113333....4444....3333 Let R be a normal integral domain in which … is
invertible, whose fraction field has characteristic zero, and such that

S := Spec(R) is a good scheme. Suppose that D fi !1R is a divisor which

is finite etale over R of some degree d ≥ 1, defined by a monic
polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit in R.
Suppose that

K in Dbc(!
1
R, ä$…) is adapted to the stratification (!1R - D, D),

L in Dbc(!
1
R, ä$…) is adapted to the stratification ((´m)R, {0R}).

Then

(1) The additive ~ and * convolutions K*~+L and K**+L in Dbc(!
1
R, ä$…)

are both adapted to the stratification (!1R - D, D), and of formation

compatible with arbitrary change of base on Spec(R) to a good scheme.
(2) We have canonical isomorphisms

D(K*~+L) § DK**+DL, D(K**+L) § DK*~+DL,

whose formation commutes with arbitrary change of base on Spec(R)
to a good scheme.

11113333....5555 TTTThhhheeee bbbbooooooookkkkkkkkeeeeeeeeppppiiiinnnngggg ooooffff iiiitttteeeerrrraaaatttteeeedddd ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn
(13.5.1) Let R be a normal integral domain in which … is invertible,
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whose fraction field has characteristic zero, and such that S := Spec(R)

is a good scheme. Let D fi !1R be a divisor which is finite etale over R

of some degree d ≥ 1, defined by a monic polynomial f(x) Ÿ R[x] of
degree d whose discriminant » is a unit in R. At the expense of
replacing R by a finite etale overring, we may suppose that D is a
disjoint union of sections, i.e., that the polynomial f(x) splits completely
in R, say f(x) = °(x - ai) with d distinct roots ai. That » be a unit in R

is the condition that for any two distinct roots ai ± aj, the difference ai
- aj be a unit in R.

(13.5.2) Given any finite nonempty subset A of R, define its
discriminant »(A) Ÿ R - {0} by

»(A) := °å±∫ in A(å - ∫),

with the empty product convention that if A consists of a single
element, then »(A) = 1. Denote by fA(x) Ÿ R[x] the monic polynomial

fA(x) := °åŸA (x - å).

Then fA(x) defines a divisor D(A) in !1R which is finite flat over R of

degree Card(A), and which is finite etale precisely over R[1/»(A)].
(13.5.3) Given two finite nonempty subsets A and B of R, we denote
by A+B the finite nonempty subset of R consisting of all the sums a+b
with a in A and b in B.

In this language, the previous proposition becomes
PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....5555....4444 Let R be a normal integral domain in which … is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that A and B are finite nonempty
subsets of R, and that

»(A)»(B)»(A+B) is a unit in R.
Suppose that

K in Dbc(!
1
R, ä$…) is adapted to (!1R - D(A), D(A)),

L in Dbc(!
1
R, ä$…) is adapted to (!1R - D(B), D(B)).

Then

(1) The additive ~ and * convolutions K*~+L and K**+L in Dbc(!
1
R, ä$…)

are both adapted to the stratification (!1R - D(A+B), D(A+B)), and of

formation compatible with arbitrary change of base on Spec(R) to a
good scheme.
(2) We have canonical isomorphisms

D(K1*~+K2) § DK1**+DK2, D(K1**+K2) § DK1*~+DK2,
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whose formation commutes with arbitrary change of base on Spec(R)
to a good scheme.

(13.5.5) To keep track of multiple convolutions, we formulate
explicitly the following proposition, which follows immediately from the
previous result by induction.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....5555....6666 Let R be a normal integral domain in which … is
invertible, whose fraction field has characteristic zero, and such that S
:= Spec(R) is a good scheme. Suppose that A is a finite nonempty subset
of R. Define a sequence of subsets Ai, i ≥ 0, of R as follows:

A0 := {0}

A1 := A

Ai+1 := Ai ⁄ (A1 + Ai) for i ≥ 1.

Their discriminants satisfy
1 = »(A0) | »(A1) | »(A2) | »(A3) | »(A4) | ... .

Let Ri := R[1/»(Ai)], Ui := Spec(Ri). Thus

R = R0 fi R1 fi R2 fi R3 fi R4 fi ...

Spec(R) = U0 fl U1 fl U2 fl U3 fl U4 fl ... .

Let m ≥ 0 be an integer. Suppose given finitely many objects K1, ... , Kr

in Dbc(!
1
Rm

, ä$…), and for each i in [1, r] an integer n(i) ≥ 0 such that

‡i n(i) ≤ m,

for each i, Ki is adapted to (!1Rm
- D(A

n(i)
), D(A

n(i)
)).

Then
(1) The multiple ~ and * additive convolutions K1*~+K2*~+ ... *~+Kr and

K1**+K2**+ ... **+Kr are both adapted to (!1Rm
- D(Am), D(Am)), and

of formation compatible with arbitrary change of base on Spec(Rm) to

a good scheme.
(2) We have canonical isomorphisms

D(K1*~+K2*~+ ... *~+Kr) § DK1**+DK2**+ ... **+DKr,

D(K1**+K2**+ ... **+Kr) § DK1*~+DK2*~+ ... *~+DKr,

whose formation commutes with arbitrary change of base on Spec(Rm)

to a good scheme.

11113333....5555....7777 EEEExxxxaaaammmmpppplllleeeessss aaaannnndddd rrrreeeemmmmaaaarrrrkkkkssss
(1) If A is the subset {0, 1}, then An is the subset {0, 1, ... , n}, and Rn is
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obtained from R by inverting all the prime numbers which are ≤ n.
(2) If A is the subset {-1, 0, 1}, then An is the subset {-n, 1-n, ... , n-1,

n}, and Rn is obtained from R by inverting all the prime numbers

which are ≤ 2n.
(3) If R contains the d'th roots of unity for some d ≥ 3, and A is μμμμd,

then »(An) is a nonzero integer (since the set A is $-rational). It is

nontrivial to give a closed formula for the cardinality of An, much less

to specify which primes divide »(An). Indeed the discussion of

"exceptional primes" in 7.1 is basically the study of »(A2).

(4) Suppose that, rather than starting with a finite nonempty subset A

of R, we start with divisor D in !1R which is finite flat over R of some

degree d ≥ 1, defined by a monic polynomial f(x) in R[x] of degree d.
Then in the integral closure R' of R in some finite galois extension E of
the fraction field F of R, we can factor f(x) completely. Denote by A fi
R' the finite subset consisting of the distinct roots of f. Each of the sets
An fi R' is Galois-stable, so the polynomials

fn(x) := °å in An
(x - å)

have coefficients in R, and the quantities »(An) and their successive

ratios »(An+1)/»(An) all lie in R. Therefore the successive localizations

Rn := R[1/»(An)] make sense, and the divisors Dn defined by the

polynomial fn is finite etale over Rn. The previous proposition remains

true if in its statement we replace "D(Ai)" by "Di" throughout.

11113333....6666 VVVVaaaarrrriiiioooouuuussss ffffiiiibbbbrrrreeee----wwwwiiiisssseeee ccccaaaatttteeeeggggoooorrrriiiieeeessss
(13.6.1) Let R be a normal integral domain in which … is invertible,
whose fraction field has characteristic zero, and such that S := Spec(R)
is a good scheme. We denote by

Dbc,A~(!
1
R, ä$…) fi Dbc(!

1
R, ä$…)

the full subcategory of Dbc(!
1
R, ä$…) consisting of those objects which

satisfy Rπ~K = 0. We denote by

Dbc,tame(!
1
R, ä$…) fi Dbc(!

1
R, ä$…)

the full subcategory of Dbc(!
1
R, ä$…) consisting of those objects whose

restriction to every geometric fibre of π : !1R ¨ S = Spec(R) is

everywhere tame. We define
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Dbc,A~,tame(!
1
R, ä$…) := Dbc,A~(!

1
R, ä$…) € Dbc,tame(!

1
R, ä$…),

as full subcategory of Dbc(!
1
R, ä$…).

We denote by

Perv(!1R, ä$…) fi Dbc(!
1
R, ä$…)

the full subcategory of Dbc(!
1
R, ä$…) consisting of those objects whose

restriction to every geometric fibre of π : !1R ¨ S = Spec(R) is

perverse. We define

PervA~(!
1
R, ä$…) := Perv(!1R, ä$…) € Dbc,A~(!

1
R, ä$…),

Pervtame(!
1
R, ä$…) := Perv(!1R, ä$…) € Dbc,tame(!

1
R, ä$…),

PervA~,tame(!
1
R, ä$…) := Perv(!1R, ä$…) € Dbc,A~,tame(!

1
R, ä$…),

as full subcategories of Dbc(!
1
R, ä$…).

(13.6.2) For j : (´m)R ¨ !1R the inclusion, the object Rj*j
*ä$…(1111)[1]

of Dbc(!
1
R, ä$…) sits in a canonical distinguished triangle

ä$…(1111)[1] ¨ Rj*j
*ä$…(1111)[1] ¨ ∂0,… ¨.

So for any object K in Dbc(!
1
R, ä$…), we have a distinguished triangle of

additive ~ convolutions

K*~+ä$…(1111)[1] ¨ K*~+Rj*j
*ä$…(1111)[1] ¨ K ¨.

On the other hand, by proper base change, we have a canonical
isomorphism

π*Rπ~(K)(1111)[1] § K*~+ä$…(1111)[1].

Combining these, we obtain a distinguished triangle

π*Rπ~(K)(1111)[1] ¨ K*~+Rj*j
*ä$…(1111)[1] ¨ K ¨,

functorial in K.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11113333....6666....3333 Notations as in 13.6.1 above, we have:

(1) The object Rj*j
*ä$…(1111)[1] of D

b
c(!

1
R, ä$…) lies in

PervA~,tame(!
1
R, ä$…).

(2) For any object K of Dbc(!
1
R, ä$…), the additive ~ convolution

K*~+Rj*j
*ä$…(1111)[1]

lies in Dbc,A~(!
1
R, ä$…).
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(3) The canonical map

K*~+Rj*j
*ä$…(1111)[1] ¨ K

is an isomorphism if and only if K lies in Dbc,A~(!
1
R, ä$…). The operator

K ÿ K*~+Rj*j
*ä$…(1111)[1] on Dbc(!

1
R, ä$…) is idempotent; it is the

projector onto Dbc,A~(!
1
R, ä$…).

(4) Dbc,A~(!
1
R, ä$…) is a ä$…-linear triangulated category. Using additive

~ convolution as the "tensor" operation, Dbc,A~(!
1
R, ä$…) is an ACU ‚-

category in the sense of [Saa], with Rj*j
**ä$…(1111)[1] as unit object, in

which ‚ is ä$…-bilinear and bi-exact ("exact" in the sense of

triangulated categories).

(5) The subcategory Dbc,A~,tame(!
1
R, ä$…) of D

b
c,A~(!

1
R, ä$…) is a ä$…-

linear triagulated subcategory, stable under additive ~ convolution, so
itself forms an ACU ‚-category in the sense of [Saa], with

Rj*j
**ä$…(1111)[1] as unit object, in which ‚ is ä$…-bilinear and bi-exact

("exact" in the sense of triangulated categories).

(6) The ä$…-linear additive category PervA~,tame(!
1
R, ä$…) is stable

under additive ~ convolution. With this as ‚-operation, it forms an ACU

‚-category in the sense of [Saa], with Rj*j
*ä$…(1111)[1] as unit object, in

which ‚ is ä$…-bilinear

(7)The ä$…-linear additive category Pervtame(!
1
R, ä$…) is a ä$…-linear

additive category which is nnnnooootttt stable under additive ~ convolution, e.g.,

ä$…[1]*~+ ä$…[1] has Ó
0 § ä$…(----1111), so is not perverse. However, for K in

Pervtame(!
1
R, ä$…), the additive ~ convolution K*~+Rj*j

*ä$…(1111)[1] lies in

PervA~,tame(!
1
R, ä$…). The operator K ÿ K*~+Rj*j

*ä$…(1111)[1] on

Pervtame(!
1
R, ä$…) is idempotent; it is the projector onto

PervA~,tame(!
1
R, ä$…).

pppprrrrooooooooffff The formation of Rj*j
*ä$…(1111)[1] commutes with arbitrary change

of base on S = Spec(R) to a good scheme, so it suffices to check (1) when
R is an algebraically closed field, in which case it is 12.10.4.

For (2), the Kunneth formula gives
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Rπ~(K*~+Rj*j
*ä$…(1111)[1]) § Rπ~(K)‚Rπ~(Rj*j

*ä$…(1111)[1])

= Rπ~(K)‚0 = 0.

Assertion (3) is obvious from the exact triangle

π*Rπ~(K)(1111)[1] ¨ K*~+Rj*j
*ä$…(1111)[1] ¨ K ¨.

Assertion (4) is simply the projection onto Dbc,A~(!
1
R, ä$…) of the

corresponding ‚-structure on Dbc(!
1
R, ä$…), with ∂0,… as unit object

(cf. 13.1.4).
Assertion (5) amounts to the statement that over an algebraically

closed field, additive ~ convolution preserves tameness. This is vacuous
in characteristic zero. In characteristic p ± … it is proven by Fourier
Transform, where it becomes the stability under usual tensor product

of objects M in Dbc(´m, ä$…) whose cohomology sheaves are all lisse on

´m and lie in Ê (cf. 12.11 for the perverse version).

Assertion (6) results formally from (5), once we show that

PervA~,tame(!
1
R, ä$…) is stable under additive ~ convolution. For this

we are reduced to the case when R is an algebraically closed field k. In
positive characteristic, this is 12.11.4. In characteristic zero, we argue
as follows. If there exists an embedding of k into ^, then the required
stability is 12.7.5. In the general case, we may reduce to this case

because any finite collection of objects Ki in PervA~,tame(!
1
k, ä$…) is

definable over an algebraically closed subfield k0 of k of finite

transcendence degree over $. Indeed, if we pick a single stratification

(!1k - D, D), D a finite subet of k = !1k(k), to which all the Ki are

adapted, then we may descend all the Ki to an algebraic closure of ä$(D).

To see this, we argue as follows. Since k has characteristic zero,
"tame" is vacuous, and any descents of the Ki as perverse objects will

automatically satisfy condition A~ (proper base change for Rπ~ under

extension of algebraically closed field). So it suffices to descend a finite

collection of objects Ki in Perv(!1k, ä$…). Now these are successive

extensions of perverse simple objects; because we are in characteristic
zero, smooth base change assures us that the Ext groups in question
are invariant under (necessarily separable) extension of algebraically
closed field. So we are reduced to descending finitely many perverse
simple objects, all adapted to a common stratification. In the case of a
∂-module ∂å, we have a visible descent to ä$(å). In the case of the
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middle extension of an irreducible local system on !1k - D, the

invariance of π1(!
1
k - D) under extension of algebraically closed fields

of characteristic zero shows that we have a descent to any
algebraically closed overfield of ä$(D). This concludes the proof of (6).

Assertion (7) results from(3), once we know the result on the
geometric fibres. In positive characteristic, this is 12.10.5. In
characteristic zero, we reduce as above to the case when k embeds in
^, and apply 12.7.3. QED
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11114444....1111 TTTThhhheeee BBBBaaaassssiiiicccc SSSSeeeettttttttiiiinnnngggg
(14.1.1) Fix a prime number …, and an isomorphism of fields

“:ä$… § ^.

Let R be a subring of ^ which is a finitely generated #[1/…]-algebra. Let

K be an object of Dbc(!
1
R, ä$…). At the expense of replacing R by R[1/r]

for some nonzero element r Ÿ R, we may further assume that R is

normal, and that K is adapted to the stratification (!1R - D, D) where

D fi !1R is a divisor which is finite etale over R of some degree d ≥ 1,

defined by a monic polynomial f(x) Ÿ R[x] of degree d whose
discriminant » is a unit in R.
(14.1.2) In the following discussion, we view R fi ^ by the given

inclusion. This allows us to speak of the complex fibre !1^, and the

object K^ in Dbc(!
1
^, ä$…).

LLLLeeeemmmmmmmmaaaa 11114444....1111....3333 (cf. [Ka-PES, 1.7]) Hypotheses as above, the following
conditions are equivalent:
(1) K is fibre-wise perverse, in the sense that for any algebraically
closed field k, and any ring homomorphism ƒ: R ¨ k, the inverse image

Kƒ of K in Dbc(!
1
k, ä$…) is perverse.

(2) There exists an algebraically closed field k, and a ring
homomorphism ƒ: R ¨ k such that the inverse image Kƒ of K in

Dbc(!
1
k, ä$…) is perverse.

(3) The object K^ in Dbc(!
1
^, ä$…) is perverse.

(4) The cohomology sheaves Ói(K) and Ói(DK) both vanish for i ± 0, -1,

and for i = 0 both vanish on !1R - D.

pppprrrrooooooooffff Each of the cohomology sheaves Ói(K), Ói(DK) is adapted to the

stratification (!1R - D, D) of !1R, so its vanishing on either stratum is

detected on any geometric fibre. QED

(14.1.4) Suppose now that K is fibre-wise perverse. By 13.3.4 (5), we

know that K is an object of Pervtame(!
1
R, ä$…). We denote by ˜ the

holonomic RS Î-module on !1^ which corresponds to K^ via

Riemann-Hilbert and the change of coefficients via “. By 2.10.16, we
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know that j*FT(˜) is a D.E. on ´m,^. We denote

n(K) := the rank of the D.E. j*FT(˜) on ´m,^,

Ggal := the differential galois group of j*FT(˜) on ´m,^.

In this situation, we have

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11114444....1111....5555 For any algebraically closed field k of characteristic
p > 0, any ring homomorphism ƒ: R ¨ k, and any nontrivial additive
character ¥ of any finite subfield of k, the perverse object FT¥(Kƒ)|´m
is of the form Ïƒ[1], for Ïƒ a lisse sheaf on (´m)k of rank n(K).

pppprrrrooooooooffff Replacing K by K*~+(Rj*j
*ä$…(1111)[1]) does not change either the

D.E. j*FT(˜) on ´m,^ or the lisse sheaves Ïƒ (by 12.5.8 and 12.10.5).

Nor does it change the fact that K is adapted to the stratification

(!1R - D, D) (cf 13.4.3). So we may assume in addition that K lies in

PervA~,tame(!
1
R, ä$…). In this case, we have seen (12.5.13) that n(K) is

the generic rank of ˜, i.e., it is the generic rank of Ó-1(K^). Because K

is adapted to (!1R - D, D), this shows that the rank of the lisse sheaf

Ó-1(K) | !1R - D is n(K).

Since Kƒ is perverse, everywhere tame and satisfies condition

(A~), we know (12.11.4) that Ïƒ is lisse of rank equal to the generic

rank of Ó-1(Kƒ). But as K is adapted to (!1R - D, D), the generic rank

of Ó-1(Kƒ) is equal to the rank on !1R - D of the lisse sheaf

Ó-1(K) | !1R - D,

which as we have just seen is of rank n(K). QED

RRRReeeedddduuuuccccttttiiiivvvveeee CCCCoooommmmppppaaaarrrriiiissssoooonnnn TTTThhhheeeeoooorrrreeeemmmm 11114444....2222 Fix a prime number …, and
an isomorphism of fields “:ä$… § ^. Let R be a subring of ^ which is a

finitely generated #[1/…]-algebra. Let K be an object of Dbc(!
1
R, ä$…)

which is adapted to a stratification (!1R - D, D) where D fi !1R is a

divisor which is finite etale over R of some degree d ≥ 1, defined by a
monic polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit
in R. Suppose that K is fibre-wise perverse, with K^ corresponding to
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the RS holonomic Î-module ˜, whose Î-module Fourier Transform
FT(˜) is a D.E. on ´m,^ of rank n := n(K). Suppose that

(1) the differential galois group Ggal of j
*FT(˜) on ´m,^ is reductive.

(2) for any algebraically closed field k of characteristic p > 0, any ring
homomorphism ƒ: R ¨ k, and any nontrivial additive character ¥ of
any finite subfield of k, denoting by Ggeom,ƒ,¥ the group Ggeom for the

lisse sheaf Ïƒ := j*FT¥(Kƒ)[-1] on ´m,k of rank n := n(K) is reductive.

Then there exists a dense open set U of Spec(R), which depends only on

the original stratification (!1R - D, D) of !1R to which K

was adapted, and
the conjugacy class of Ggal in GL(n, ^),

such that for any ƒ lying over a point of U, Ggeom,ƒ,¥(ä$…) is conjugate

in GL(n, ä$…) to a subgroup of “-1Ggal(^).

pppprrrrooooooooffff Replacing K by K*~+(Rj*j
*ä$…(1111)[1]) does not change either the

D.E. j*FT(˜) on ´m,^ or the lisse sheaves Ïƒ. Nor does it change the

fact that K is adapted to the stratification (!1R - D, D). So we may

assume in addition that K lies in PervA~,tame(!
1
R, ä$…).

Consider the n-dimensional object K^ in the Tannakian category

PervA~,tame(!
1
^, ä$…), with convolution as the tensor operation. The

Tannakian galois goup of K^ is “-1Ggal (by 12.8.3). By hypothesis, this

group is reductive. So for some (D, N) with 1 ≤ D ≤ N and N ≥ 3, K^ is

(D, N)-determined.
For the dense open set U of Spec(R), we apply 13.5.6 and 13.5.7 (4),

and take U := Spec(RN). Fix an algebraically closed field k of

characteristic p > 0, a ring homomorphism ƒ: R ¨ k which lies over a
point u of U, and a nontrivial additive character ¥ of a finite subfield of
k. Consider the n-dimensional object Kƒ in the Tannakian category

PervA~,tame(!
1
k, ä$…), with convolution as the tensor operation. The

Tannakian galois goup of Kƒ is Ggeom,ƒ,¥.

Denote by Ru,hs the strict henselization inside ^ of the local ring

at u. Then ƒ is a geometric point of Spec(Ru,hs) lying over the closed

point, and the inclusion of Ru,hs into ^ is a geometric point lying over
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the generic point of Spec(Ru,hs).

It remains only to apply to this situation the reductive
specialization theorem 11.7.1. In the notations of that theorem, we take

˜ = PervA~,tame(!
1
Ru,hs

, ä$…), ú = Rj*j
*ä$…(1111)[1], ‚ = *~+,

V = K,

V£ = ([x ¨ -x]*DK)*~+(Rj*j
*ä$…(1111)[1]),

n = n(K),

Ç^ = PervA~(!
1
^, ä$…), ú = Rj*j

*ä$…(1111)[1], ‚ = *~+,

˜ ¨ Ç^ the functor "pullback to !1^"

ÇÉ = PervA~,tame(!
1
k, ä$…), ú = Rj*j

*ä$…(1111)[1], ‚ = *~+,

˜ ¨ ÇÉ the functor "pullback to !1k".

The hypotheses (1^) and (1É) are satisfied, by 12.7.5 and 12.11.4.
The reductivity hypotheses (2^) and (2É) are satisfied because we have
assumed this. The hypotheses (3^) and (3É) are satisfied in virtue of
13.3.10. QED

The following corollary shows that among reductive subgroups of
GL(n, ^), none smaller than Ggal "works" in the reductive comparison

theorem.

CCCCoooorrrroooollllllllaaaarrrryyyy 11114444....3333 Hypotheses and notations as in 14.2, let H be a proper
Zariski closed subgroup of Ggal which is reductive. Then there exists a

dense open set U1 of Spec(R), which depends only on

the original stratification (!1R - D, D) of !1R to which K

was adapted, and
the conjugacy class of Ggal in GL(n, ^),

the conjugacy class of H in GL(n, ^),
such that for any ƒ lying over a point of U1, Ggeom,ƒ,¥(ä$…) is nnnnooootttt

conjugate in GL(n, ä$…) to a subgroup of “-1H(^).

pppprrrrooooooooffff The idea is to exploit the fact that reductive subgroups of
GL(n, ^) = GL(V), are determined by their tensor invariants.

For each pair of nonnegative integers (a, b), we denote by Ta,b(V)

the representation Vºa‚(V£)ºb. For any subgroup Æ of GL(V), we
define
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inv(Æ; a, b) := dim((Ta,b(V))Æ) Ÿ #,
and the two-variable generating series

InvÆ(x, y) := ‡a,b inv(Æ; a, b)xayb Ÿ #[[x, y]].

Notice that the dimensions inv(Æ; a, b) and the generating series
InvÆ(x, y) depend only on the conjugacy class of Æ in GL(V).

Since H fi Ggal, we always have an inclusion of invariants

Ta,b(V)
Ggal fi Ta,b(V)

H
,

so in particular an inequality of dimensions
inv(H; a, b) ≥ inv(Ggal; a, b).

Since H is a proper reductive subgroup of the reductive group Ggal
inside GL(n, ^) = GL(V), the two groups cannot have the same tensor
invariants. Therefore there exists a pair of nonnegative integers (a, b)
for which we have a strict inequality

inv(H; a, b) > inv(Ggal; a, b).

Fix one such pair (a, b). In the notations of 13.5.6 and 13.5.7 (4),

consider the open set U := Spec(Ra+b) of Spec(R), and the object Ta,b(K)

of PervA~,tame(!
1
Ra+b

, ä$…). In virtue of 13.3.6 (3), we have an

equality of dimensions of spaces of invariants

dimHom(ú^, T
a,b(K^)) = dimHom(úƒ, T

a,b(Kƒ))

for every geometric point (k, ƒ: Ra+b ¨ k) of Spec(Ra+b). For a

geometric point of positive characteristic, we can read this in terms of
the Fourier Transforms:

dimHomD.E.(´m/^)(Ø´m
, Ta,b(j*FT(˜))) =

= dimHomlisse sheaves on ´m,k
(ä$…, T

a,b(Ïƒ)).

In other words, we have
inv(Ggal; a, b) = inv(Ggeom,ƒ,¥; a, b)

for every geometric point (k, ƒ: Ra+b ¨ k) of Spec(Ra+b) of positive

characteristic. Therefore we cannot have Ggeom,ƒ,¥ conjugate to a

subgroup of H, since it has too few invariants. QED

11114444....4444 RRRReeeemmmmaaaarrrrkkkkssss
(14.4.1) Indeed, over Spec(Ra+b), 13.3.6 (3) shows that we have an

equality of dimensions
inv(Ggal; c, d) = inv(Ggeom,ƒ,¥; c, d)

for every pair of nonnegative integers (c, d) with c + d ≤ a + b. In other
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words, by shrinking on Spec(R), we can make mmmmoooorrrreeee aaaannnndddd mmmmoooorrrreeee terms
of the generating series InvGgeom,ƒ,¥

(x, y) for Ggeom,ƒ,¥ coincide with

those of the generating series for Ggal. But we might never get all the

terms right.
(14.4.2) Here is a simple example. Start over #, with the perverse
object K given by the delta module ∂1 supported at 1. Over ^, the

Fourier Transform is the D.E. for ex, whose Ggal is ´m. So for Ggal the

generating series is
InvGgal

(x, y) = 1/(1 - xy).

In characteristic p, the Fourier Transform of ∂1 is Ò¥, whose Ggeom is

the subgroup μμμμp of ´m, so for any ƒ of characteristic p we have

InvGgeom,ƒ,¥
(x, y) = (1 - xpyp)/(1 - xy).

(14.4.3) This same example also illustrates the bookkeeping of
iterated convolution (cf. 13.5). The natural stratification to which both

K = ∂1 and [x ÿ -x]*DK = ∂-1 are simultaneously adapted is

(!1#[1/2] - A, A) for A := {1, -1}.

With this A, n ≥ 2 convolutions bring us to the set
An := {-n, 1-n, ... , n-1, n},

so inverting »(An) requires the inverting of all primes which are ≤ 2n.

(14.5) The following theorem shows that the above phenomenon of
the generating series for Ggeom,ƒ,¥ never reaching that of Ggal, no

matter how much we shrink, cannot occur if we require Ggal to be

semisimple (and not just reductive). The proof is due to Ofer Gabber.

SSSSeeeemmmmiiiissssiiiimmmmpppplllleeee CCCCoooommmmppppaaaarrrriiiissssoooonnnn TTTThhhheeeeoooorrrreeeemmmm 11114444....6666 Hypotheses and notations as
in the reductive comparison theorem 14.2, suppose in addition that the
group Ggal is semisimple. Then there exists a dense open set U of

Spec(R), which depends only on

the original stratification (!1R - D, D) of !1R to which K

was adapted, and
the conjugacy class of Ggal in GL(n, ^),

such that for any ƒ lying over a point of U, Ggeom,ƒ,¥(ä$…) is conjugate

in GL(n, ä$…) to “
-1Ggal(^).
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pppprrrrooooooooffff Let us admit temporarily the following result, which I learned
from Ofer Gabber.

TTTThhhheeeeoooorrrreeeemmmm 11114444....7777 Let G be a Zariski closed subgroup of GL(n)^ which is

semisimple. There exist finitely many proper reductive subgroups Hi of

G such that aaaannnnyyyy proper reductive subgroup H of G is G-conjugate to a
subgroup of one of the listed subgroups Hi.

Granting this, the semisimple comparison theorem is immediate.
First shrink on Spec(R) until the reductive comparison theorem comes
into effect, say on the dense open U

0
. Then apply the previous corollary

to G = Ggal and to each of the finitely many subgroups Hi of G; each

application produces a dense open UHi
of Spec(R) over which

Ggeom,ƒ,¥(ä$…) is nnnnooootttt conjugate in GL(n, ä$…) to a subgroup of “-1Hi(^).

So over the intersection of U0 and the finitely many UHi
,

Ggeom,ƒ,¥(ä$…) must be conjugate in GL(n, ä$…) to “
-1Ggal(^). QED

(14.8) It remains to prove the group-theoretic theorem 14.7. This
we will do by a combination of the unitarian trick and Jordan's
theorem on finite subgroups of GL(n, ^). We first carry out the
reduction to the compact case. Recall that reductive algebraic groups H
over ^ have maximal compact subgroups KH which are Zariski dense

and all of which are H-conjugate. If H is a reductive subgroup of a
reductive algebraic group G, then any choice of KH is a compact

subgroup of G, so contained in some maximal compact subgroup KG of G.

Moreover, any compact subgroup F of KG is the maximal compact

subgroup of a unique reductive subgroup HF of G (namely HF := the

Zariski closure of F in G). So the theorem in question is equivalent to
the following about compact Lie groups.

TTTThhhheeeeoooorrrreeeemmmm((((bbbbiiiissss)))) 11114444....9999 Suppose that G is a compact Lie group which is
semisimple. There exist finitely many proper compact subgroups Hi of G

such that aaaannnnyyyy proper compact subgroup H of G is G-conjugate to a
subgroup of one of the listed subgroups Hi.

pppprrrrooooooooffff For H a proper compact subgroup of G, we have an obvious
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inclusion

H fi NG(H
0).

According to [Bour-L9, 9, exc 12, a)], as H0 runs over the connected

compact subgroups of G, all the groups NG(H
0) fall into finitely many G-

conjugacy classes. So if H0 is not a normal subgroup of G, we are done.

If H0 is a normal subgroup of the semissimple G, then H0 is

necessarily semisimple (its connected center is normal in G). So Lie(H0)

is a semisimple ideal in Lie(G0), of which there are only finitely many
(cf. [Bour-L1, 6, exc 7]). Therefore there are only finitely many possible

H0 which are normal. For each of these finitely many, the group H

corresponds to a finite subgoup of the quotient group G/H0, which is
itself semisimple. For each of these finitely many quotient groups, we
must prove the theorem for all its finite subgroups.

Suppose now that H is a finite subgroup of G. In the proof of
Jordan's theorem as given in [C-R-RT], one constructs a small
neighborhood U of the identity in the compact group G (strictly
speaking, in an ambient unitary group) and shows that if H is any
finite subgroup of G, then any two elements of H€U commute.
Shrinking U, we may suppose that the log and exp maps are inverse
bijections to a neighborhood of zero in Lie(G), and that U is stable by G-
conjugation.

Suppose first that H€U is reduced to the identity element. Then
the order of H is bounded by the absolute constant c(G) := vol(G)/vol(U).
By [Bour-L9, 9, exc 20], there are only finitely many conjugacy classes
of finite subgroups of G of any given order.

Suppose now that H€U is not reduced to the identity element.
Consider the logarithms of the elements in H€U. This is a commuting
set of elements in Lie(G), stable by H-conjugation, not all of which are
zero, so their %-span in Lie(G) is the Lie algebra of a nonzero connected
torus T of G which is normalized by H. Therefore we have H fi NG(T).

Because G is semisimple, the torus T is nnnnooootttt normal in G, and so by the
earlier discussion the proper subgroup NG(T) lies in one of finitely many

G-conjugacy classes. QED

Using this same group-theoretic result, we can also give a
sharpening of the reductive comparison theorem, which includes the
semisimple comparison theorem as a special case.
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SSSShhhhaaaarrrrppppeeeennnneeeedddd RRRReeeedddduuuuccccttttiiiivvvveeee CCCCoooommmmppppaaaarrrriiiissssoooonnnn TTTThhhheeeeoooorrrreeeemmmm 11114444....11110000 Hypotheses and
notations as in the reductive comparison theorem 14.2, there exists a
dense open set U of Spec(R), which depends only on

the original stratification (!1R - D, D) of !1R to which K

was adapted, and
the conjugacy class of Ggal in GL(n, ^),

such that for any ƒ lying over a point of U, Ggeom,ƒ,¥(ä$…) is conjugate

in GL(n, ä$…) to a subgroup of “-1Ggal(^). Via this conjugation the two

groups have the same "semisimple connected parts",

Ggeom,ƒ,¥(ä$…)
0,der = “-1Ggal(^)

0,der,

and the composite map

Ggeom,ƒ,¥ fi Ggal ¨ Ggal/Z((Ggal)
0)0

is surjective.

pppprrrrooooooooffff For any reductive group G, one knows that G0 = G0,der\Z(G0)0,

the quotient G/Z(G0)0 of G is the universal semisimple quotient of G,
and the natural map

G0,der ¨ G/Z(G0)0

is an isogeny of the source onto the identity component of the target.

So if H is a closed reductive subgroup of G, then H0,der = G0,der if and
only if the composite

H fi G ¨ G/Z(G0)0,
maps H onto a subgroup of finite index.

We now apply these remarks to the situation at hand. An initial
shrinking on R allows us to assume that the conclusion of the reductive
comparison theorem already holds. We fix choices of conjugations, and
of “, and view each Ggeom,ƒ,¥ as a subgroup of Ggal. Then each

(Ggeom,ƒ,¥)
0,der is a subgroup of (Ggal)

0,der. As explained above, it

suffices to show that the canonical map

Ggeom,ƒ,¥ fi Ggal ¨ Ggal/Z((Ggal)
0)0

is surjective. If it is not surjective, its image is a proper reductive

subgroup of the semisimple group Ggal/Z((Ggal)
0)0, and hence by the

theorem 14.7 the image is conjugate to a subgroup of one of a ffffiiiinnnniiiitttteeee

lllliiiisssstttt of proper subgroups Hi of Ggal/Z((Ggal)
0)0. Denote by ëHi fi Ggal the

inverse image of Hi in Ggal. Then the ëHi form a finite list of proper

reductive subgroups of Ggal, and whenever the map
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Ggeom,ƒ,¥ fi Ggal ¨ Ggal/Z((Ggal)
0)0

is not surjective, Ggeom,ƒ,¥ is conjugate in Ggal to a subgroup of one of

the ëHi. Now apply 14.3 to each of the finitely many ëHi. QED

11114444....11111111 IIIInnnntttteeeerrrrlllluuuuddddeeee :::: aaaa ssssuuuuffffffffiiiicccciiiieeeennnntttt ccccoooonnnnddddiiiittttiiiioooonnnn ffffoooorrrr tttthhhheeee rrrreeeedddduuuuccccttttiiiivvvviiiittttyyyy ooooffff
GGGGggggaaaallll
RRRReeeedddduuuuccccttttiiiivvvviiiittttyyyy CCCCrrrriiiitttteeeerrrriiiioooonnnn 11114444....11111111....1111 Fix a prime number …, and an
isomorphism of fields “:ä$… § ^. Let R be a subring of ^ which is a

finitely generated #[1/…]-algebra. Let K be an object of Dbc(!
1
R, ä$…)

which is adapted to a stratification (!1R - D, D) where D fi !1R is a

divisor which is finite etale over R of some degree d ≥ 1, defined by a
monic polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit
in R. Suppose that K is fibre-wise perverse, with K^ corresponding to

the RS holonomic Î-module ˜, whose Î-module Fourier Transform
FT(˜) is a D.E. on ´m,^ of rank n := n(K). Suppose that for any

algebraically closed field k of characteristic p > 0, any ring
homomorphism ƒ: R ¨ k, and any nontrivial additive character ¥ of
any finite subfield of k, the group Ggeom for the lisse sheaf Ïƒ,¥ :=

j*FT¥(Kƒ)[-1] on ´m,k of rank n := n(K) is reductive.

Then the differential galois group Ggal of j
*FT(˜) on ´m,^ is reductive.

pppprrrrooooooooffff Replacing K by K*~+(Rj*j
*ä$…(1111)[1]) does not change either the

D.E. j*FT(˜) on ´m,^ or the lisse sheaves Ïƒ,¥. Nor does it change the

fact that K is adapted to the stratification (!1R - D, D). So we may

assume in addition that K lies in PervA~,tame(!
1
R, ä$…).

We begin by explaining the idea of the proof. Suppose first that for
for any algebraically closed field k of characteristic p > 0, any ring
homomorphism ƒ: R ¨ k, and any nontrivial additive character ¥ of
any finite subfield of k, the lisse sheaf Ïƒ,¥ on ´m,k has no nonzero

invariants under local inertia at zero:

(Ïƒ,¥)
I0 = 0, i.e., j~Ïƒ,¥ § j*Ïƒ,¥.

Then j~Ïƒ,¥[1] is the middle extension of Ïƒ,¥[1] to !
1
k. By hypothesis,

Ïƒ,¥ has Ggeom reductive, which is to say that Ïƒ,¥ is geometrically

the direct sum of irreducible lisse sheaves Ïƒ,¥,å on ´m,k. Therefore
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the middle extension j~Ïƒ,¥[1] is the direct sum of the middle

extensions of the Ïƒ,¥,å[1], each of which is perverse irreducible on

!1k. But FT¥(Kƒ) = j~Ïƒ,¥[1], so by Fourier inversion and the fact that

FT carries perverse irreducibles to perverse irreducibles, we deduce

that Kƒ is itself a direct sum of perverse irreducibles on !1k, for every

geometric fibre of !1R/Spec(R) of positive characteristic. By [B-B-D,

6.1.9], it follows that the perverse object K^ on !1^ is a direct sum of

perverse irreducibles. Then by 12.7.1.1 and Riemann-Hilbert, the

corresponding Î-module ˜ on !1^ is a direct sum of irreducible

holonomic RS Î-modules. Therefore its Î-module Fourier Transform

FT(˜) is a direct sum of irreducible holonomic Î-modules on !1^.

Since the restriction of an irreducible holonomic to a nonvoid open set

is (either zero or) irreducible holonomic, the restriction j*FT(˜) to
´m,^ of FT(˜) is a direct sum of irreducible holonomics on ´m,^. Since

j*FT(˜) is itself a D.E., each of its irreducible holonomic summands is

itself a D.E., so an irreducible D.E. on ´m,^. Therefore j
*FT(˜) is a

semisimple object of the category D.E.(´m/^), i.e., its Ggal is reductive.

We next explain how to reduce the general case to the one treated
above. The idea is that if we convolve K with a suitable j~Òäç[1], for ç a

character of finite order, we replace Ïƒ,¥ by Òç‚Ïƒ,¥, and if we take

ç sufficiently general, then this sheaf has no nonzero inertial
invariants at zero. On the other hand, the Î-module effect of the

change is to replace j*FT(˜) by an xå twist xå‚j*FT(˜) for some
rational number å whose exact denominator is the order of ç. By the

previous case, we conclude that xå‚j*FT(˜) has its Ggal reductive, i.e.,

xå‚j*FT(˜) is a semisimple object of the category D.E.(´m/^). Twisting

now by x-å, we find that j*FT(˜) is itself a semisimple object of the
category D.E.(´m/^), as required.

To see that we can choose a single ç which "works"
simultaneously in all the geometric fibres, recall that for any given

object K of Dbc(!
1
R, ä$…), there exists a finite extension E of $… inside

ä$… such that K "comes from" an object KE of Dbc(!
1
R, ä$…). The

nontrivial characters of I0 which occur in Ïƒ,¥ are, thanks to
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Laumon's analysis of the local monodromy of Fourier Transforms,
among the characters of I‘ which occur in the various cohomology

sheaves Ói(Kƒ). By the local monodromy theorem, the characters of I‘

which occur in any particular Ói(Kƒ) are all of finite order; because K

lives over E, looking at characteristic polynomials shows that these
characters take values which are algebraic over E of degree at most

the generic rank of Ói(K). Since E has only finitely many extensions of
any given degree, each of which contains only finitely many roots of
unity, we see that the orders of the possible characters of of I0 which

occur in Ïƒ,¥ are uniformly bounded, say ≤ N. So we have only to pick

any integer M > N, replace R by the overring R[1/M, ΩM] (inside ^), and

pick for ç any character of exact order M. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11114444....11111111....2222 (ccccrrrriiiitttteeeerrrriiiioooonnnn vvvviiiiaaaa ppppuuuurrrriiiittttyyyy) Fix a prime number …, and
an isomorphism of fields “:ä$… § ^. Let R be a subring of ^ which is a

finitely generated #[1/…]-algebra. Let K be an object of Dbc(!
1
R, ä$…)

which is adapted to a stratification (!1R - D, D) where D fi !1R is a

divisor which is finite etale over R of some degree d ≥ 1, defined by a
monic polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit
in R. Suppose that K is fibre-wise perverse, with K^ corresponding to

the RS holonomic Î-module ˜, whose Î-module Fourier Transform
FT(˜) is a D.E. on ´m,^ of rank n := n(K). Suppose that for any äÉp of

characteristic p > 0, any ring homomorphism ƒ: R ¨ äÉp, and any

nontrivial additive character ¥ of any finite subfield of äÉp, the lisse

sheaf Ïƒ,¥ := j*FT¥(Kƒ)[-1] on ´m/ äÉp is pure of some weight. Then

the differential galois group Ggal of j
*FT(˜) on ´m,^ is reductive.

pppprrrrooooooooffff Indeed, by [De-WII, 3.4.1] the purity of the lisse sheaf Ïƒ,¥
implies that its Ggeom is reductive (indeed, semisimple, in view of

Grothendieck's theorem [De-WII, 1.3.8] that the radical of Ggeom is

unipotent for any lisse sheaf on on ´m/ äÉp which begins life over a

finite field). QED

11114444....11112222 AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc sssshhhheeeeaaaavvvveeeessss
(14.12.1) We begin with a brief review of what we established earlier
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about hypergeometrics of type (n, n). Fix an isomorphism “: ä$… § ^.

For any integer N ≥ 1, denote by
”N(x) := the N'th cyclotomic polynomial,

RN := the ring #[1/N…, X]/(”N(X)),

μμμμN := the cyclic group μμμμN(RN) of order N,

SN := Spec(RN).

The group Hom(μμμμN, μμμμN) is canonically (1/N)#/#, with x in (1/N)#/#

corresponding to the character Ω ÿ ΩNx.
(14.12.2) Once we fix an embedding

“… : RN fi ä$….

we have an induced isomorphism μμμμN § μμμμN(ä$…); this allows us to

identify ä$…-valued characters of μμμμN with elements of (1/N)#/#.

(14.12.3) Suppose we are given an integer n ≥ 1, a set {ç1, ... ,çn} of n

not necessarily distinct ä$…-valued characters çi of μμμμN, and a ddddiiiissssjjjjooooiiiinnnntttt

set {®1, ... ,®n} of n not necessarily distinct ä$…-valued characters ®j of

μμμμN. Denote by xi and the yj be the unique elements of (1/N)#/# to

which the characters ç1, ... , çn; ®1, ... , ®n, correspond. In (8.17.11),

we constructed a ä$…-sheaf

Ó(ç's; ®'s)
on ´m/SN which is adapted to the stratification (´m - {1}, {1}), and

such that
(1) the restriction of Ó(ç's; ®'s) to each geometric fibre ´m/äÉp of

positive chararacteristic is geometrically isomorphic to the
hypergeometric sheaf Ó1(~, ¥; ç's; ®'s).

(2) The restriction (via the composite inclusion RN fi ä$… § ^) of the

sheaf Ó(ç's; ®'s) to the complex fibre corresponds (via passage to the
analytic, the change of coefficients “: ä$… § ^, and Riemann-Hilbert) to

the hypergeometric Î-module Ó1(x1, ... , xn; y1, ... , yn).

(14.12.4) We used the existence of such an "incarnation over #" in
8.17.12 to show that the differential galois group Ggal of the n'th order

D.E. Ó1(x1, ... , xn; y1, ... , yn) on ´m - {1} over ^ was "the same" as the

group Ggeom for the lisse, rank n sheaf Ó1(~, ¥; ç's; ®'s) on ´m - {1}

over äÉp, for any p prime to N….
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In this section, we will apply the sharpened reductive comparison
theorem 14.10 to the Kummer pullbacks of such "incarnations over #"
of hypergeometrics of type (n, n) to get a comparison theorem for
(Kummer pullbacks of) hypergeometrics of arbitrary mmmmiiiixxxxeeeedddd type.

TTTThhhheeeeoooorrrreeeemmmm 11114444....11112222....5555 Fix an isomorphism “: ä$… § ^, an integer N ≥ 1, and

an embedding “… : RN fi ä$…. Suppose we are given integers n > m ≥ 0,

a set {ç1, ... ,çn} of n not necessarily distinct ä$…-valued characters çi
of μμμμN, and a ddddiiiissssjjjjooooiiiinnnntttt set {®1, ... ,®m} of m not necessarily distinct ä$…-

valued characters ®j of μμμμN. Denote by xi and the yj be the unique

elements of (1/N)#/# to which the characters ç1, ... , çn; ®1, ... , ®m,

correspond. Define
d := n-m,

and fix a unit ¬ in the ring RN[1/d].

Denote by
Ggal fi GL(n, ^)

the differential galois group of [d]*Ó¬(x1, ... , xn; y1, ... , ym) on ´m/^.

For any algebraically closed field k of characteristic p > 0, any ring
homomorphism ƒ: RN[1/d] ¨ k, and any nontrivial additive character

¥ of any finite subfield of k, denote by
Ggeom,ƒ,¥ fi GL(n, ä$…)

the group Ggeom for the lisse sheaf [d]*Ó¬(~, ¥;ç1, ... , çn; ®1, ... , ®m)

on ´m,k.

The groups Ggal and Ggeom,ƒ,¥ are all reductive, and there exists

a dense open set U of Spec(RN[1/d]), which depends only on the

conjugacy class of Ggal in GL(n, ^), such that for any ƒ lying over a

point of U, we have

(1) Ggeom,ƒ,¥(ä$…) is conjugate in GL(n, ä$…) to a subgroup of “-1Ggal(^).

(2) Using (1) and the isomorphism “: ä$… § ^ to identify Ggeom,ƒ,¥ with

a subgroup of Ggal, we have in addition

(2a) (Ggeom,ƒ,¥)
0,der = (Ggal)

0,der.

(2b) Ggeom,ƒ,¥ maps onto the universal semisimple quotient

Ggal/Z((Ggal)
0)0 of Ggal.

pppprrrrooooooooffff The groups in question are invariant under multiplicative
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translation of ¬ in ´m(RN[1/d]). The D.E. Ó¬(x1, ... , xn; y1, ... , ym) on

´m/^ is irreducible, since the xi and the yj are disjoint mod #.

Therefore any Kummer pullback is completely reducible as a D.E. on
´m/^, and hence Ggal is reductive. Similarly, Ggeom,ƒ,¥ is reductive.

It remains only to apply the reductive comparison theorem in its
sharpened form (14.10). Recall that for k algebraically closed of
characteristic p prime to Nd… we have (9.4.2 (a) (2)) an isomorphism,

for any ¬ in k≠, of perverse sheaves on !1k

j*[d]
*Hyp¬(~, ¥; çi's; ®j's) §

§FT¥(j*[d]
*CCCCaaaannnncccceeeellll(Hyp(-1)d+n-m(d)d/¬(~, ¥; Ú1, ... , Úd, ä®j's; äçi's)).

And on the complex fibre, we have (6.4.2 (2)) an isomorphism, for any

¬ in ^≠, of holonomic Î-modules on !1^

j~*[d]
*Ó¬(xi's; yj's) §

§ FT(j~*[d]
*CCCCaaaannnncccceeeellllÓ(-1)n+m+d(d)d/¬(1/d, 2/d, ... , d/d, -yj's; -xi's)).

So for the particular choice

¬ := (-1)n+m+d(d)d,
the asserted result is just the reductive comparison theorem in its
sharpened form 14.10, applied to the object

K = j*[d]
*CCCCaaaannnncccceeeellll(Ó(~, ¥; Ú1, ... , Úd, ä®j's; äçi's))[1].

As the theorem is invariant under multiplicative translation of ¬ in
´m(RN[1/d]), it suffices to establish it in this case. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11114444....11112222....6666 ((((HHHHyyyyppppeeeerrrrggggeeeeoooommmmeeeerrrrttttiiiicccc ccccoooommmmppppaaaarrrriiiissssoooonnnn)))) In the situation of
the theorem 14.12.5, denote by

Ggal fi GL(n, ^)

the differential galois group of Ó¬(x1, ... , xn; y1, ... , ym) on ´m/^.

For any algebraically closed field k of characteristic p > 0, any ring
homomorphism ƒ: RN[1/d] ¨ k, and any nontrivial additive character

¥ of any finite subfield of k, denote by
Ggeom,ƒ,¥ fi GL(n, ä$…)

the group Ggeom for the lisse sheaf Ó¬(~, ¥;ç1, ... , çn; ®1, ... , ®m) on

´m,k.

The groups Ggal and Ggeom,ƒ,¥ are all reductive, and there exists
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a dense open set U of Spec(RN[1/d]), which depends only on the

conjugacy class of Ggal in GL(n, ^), such that for any ƒ lying over a

point of U, we have

(1) (Ggeom,ƒ,¥)
0 is conjugate in GL(n, ä$…) to a subgroup of “-1(Ggal)

0.

(2) Using (1) and the isomorphism “: ä$… § ^ to identify (Ggeom,ƒ,¥)
0

with a subgroup of (Ggal)
0, we have in addition

(2a) (Ggeom,ƒ,¥)
0,der = (Ggal)

0,der.

(2b) G(Ggeom,ƒ,¥)
0 maps onto the universal semisimple quotient

(Ggal)
0/Z((Ggal)

0)0 of (Ggal)
0.

pppprrrrooooooooffff The groups Ggal and Ggeom occuring here contain their

homonyms occuring in the theorem as open normal subgroups of index
dividing d with cyclic quotient. In particular they have the same
identity components. QED

RRRReeeemmmmaaaarrrrkkkk 11114444....11112222....7777 It is almost certainly true that the conclusions of the
theorem 14.12.5 actually hold for the groups Ggal and Ggeom of the

corollary 14.12.6, and not just for their identity components. For
instance, this is automatically the case if d := n-m = 1 (by the theorem
itself), or if both groups Ggal and Ggeom are connected, or... . In view of

our detailed knowledge of both of these groups for irreducible
hypergeometrics, one could envisage checking case by case.

11114444....11113333 AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo FFFFoooouuuurrrriiiieeeerrrr TTTTrrrraaaannnnssssffffoooorrrrmmmm ooooffff CCCCoooohhhhoooommmmoooollllooooggggyyyy aaaalllloooonnnngggg
tttthhhheeee ffffiiiibbbbrrrreeeessss

(14.13.1) Fix a prime number …, and an isomorphism of fields
“:ä$… § ^.

Let R be a subring of ^ which is a finitely generated #[1/…]-algebra. Let
X/R be an affine R-scheme which is smooth over R, everywhere of
relative dimension d ≥ 0. Let Ì be a lisse ä$…-sheaf on X of rank r ≥ 1.

[Typically, Ì will be the constant sheaf ä$…, or R will contain the N'th

roots of unity and Ì will be a sheaf of the form Òç(g) for some

invertible function g on X, and some ä$…-valued character ç of the

group μμμμN(R).] Let
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f : X ¨ !1R

be a function on X, viewed as a morphism to !1R.

(14.13.2) Now apply [Ka-Lau], 3.3.3] to the trivial stratification (X) of

X and the morphism f : X ¨ !1R. After shrinking on Spec(R), there

exists a stratification of !1R of the form (!1R - D, D), where D fi !1R
is a divisor which is finite etale over R of some degree d ≥ 1, defined by
a monic polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a
unit in R, such that for any lisse lisse ä$…-sheaf Ì on X, the objects Rf~Ì

and Rf*Ì of Dbc(!
1
R, ä$…) are both adapted to (!1R - D, D), and their

formation commutes with arbitrary change of base on Spec(R) to a
good scheme.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11114444....11113333....3333 (Gabber) Let R be a subring of ^ which is a
finitely generated #[1/…]-algebra. Let X/R be an affine R-scheme which
is smooth over R, everywhere of relative dimension d ≥ 0. Suppose

given a stratification (!1R - D, D) of !1R, where D fi !1R is a divisor

which is finite etale over R of some degree d ≥ 1, defined by a monic
polynomial f(x) Ÿ R[x] of degree d whose discriminant » is a unit in R,
such that for any lisse lisse ä$…-sheaf Ì on X, the objects Rf~Ìand Rf*Ì

of Dbc(!
1
R, ä$…) are both adapted to (!1R - D, D), and their formation

commutes with arbitrary change of base on Spec(R) to a good scheme.
For a given lisse ä$…-sheaf Ì on X, the following conditions are

equivalent:
(1) For every triple (k, ƒ, ¥) consisting of an algebraically closed field k
of positive characteristic, a ring homomorphism ƒ : R ¨ k, and a
nontrivial ä$…-valued additive character ¥ of a finite subfield of k, the

natural "forget supports" maps

Hic(X‚ƒk, Ì‚Ò¥(f)) ¨ Hi(X‚ƒk, Ì‚Ò¥(f))

are all isomorphisms.
(1 bis) For every triple (k, ƒ, ¥) consisting of an algebraically closed
field k of positive characteristic, a ring homomorphism ƒ : R ¨ k, and
a nontrivial ä$…-valued additive character ¥ of a finite subfield of k, we

have

Hic(X‚ƒk, Ì‚Ò¥(f)) = 0 = Hi(X‚ƒk, Ì‚Ò¥(f)) for i ± d,

and the natural "forget supports" map

Hdc(X‚ƒk, Ì‚Ò¥(f)) ¨ Hd(X‚ƒk, Ì‚Ò¥(f))
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is an isomorphism.

(2) The "forget supports" mapping cone
K := K(Ì) := [Rf~Ì ¨ Rf*Ì],

viewed as an object of Dbc(!
1
R, ä$…), is lisse on !1R, in the sense that

all its cohomology sheaves are lisse on !1R.

(2bis) K^ is lisse on !1^.

(2ter) The restriction of K to some geometric fibre of !1R/R is lisse.

pppprrrrooooooooffff Since K(Ì) is adapted to the stratification (!1R - D, D), it is lisse

on !1R if and only if it is lisse on any single geometric fibre !1k, i.e.,

the conditions (2), (2bis), and (2ter) are all equivalent.

For any lisse Ì on X, we have a triangle on !1R,

¨ Rf~Ì ¨ Rf*Ì ¨ K(Ì) ¨ ,

whose formation commutes with arbitrary change of base on Spec(R)

to a good scheme. Restrict to !1k, and apply FT¥,~ § FT¥,*
. We get a

triangle on !1k,

¨FT¥(Rf~Ì) ¨ FT¥(Rf*Ì) ¨ FT¥(K(Ì)) ¨.

Because Rf~Ì is everywhere tame on !1k, the object FT¥(Rf~Ì) is lisse

on ´m,k, and by proper base change it is automatically of formation

compatible with arbitrary change of base on ´m,k to a good scheme. In

terms of the morphism
pr2 : Xk≠´m,k ¨ ´m,k, (x, t) ÿ t,

we have (by the very definition of FT¥,~)

FT¥(Rf~Ì) | ´m,k = R(pr2)~(Ì‚Ò¥(tf))[1].

Hence its dual, which (up to a Tate twist and a shift) is

FT
ä¥,*

(Rf*Ì
£) | ´m,k = R(pr2)*(Ì

£‚Òä¥(tf))[1],

is itself lisse on ´m,k, of formation compatible with arbitrary change of

base on ´m,k to a good scheme. Applying this argument to Ì£ and ä¥,

we see that
FT¥(Rf*Ì) | ´m,k = R(pr2)*(Ì‚Ò¥(tf))[1]

is lisse on ´m,k, of formation compatible with arbitrary change of base
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on ´m,k to a good scheme.

Passing to fibres, we see that condition (1) for Ì holds if and only
if FT¥(K(Ì)) | ´m,k vanishes for every triple (k, ƒ, ¥), i.e., if and only if

FT¥(K(Ì)) is punctual, supported at the origin. By Fourier inversion,

this is in turn equivalent to saying that K(Ì) is geometrically constant,

and hence lisse, on each geometric fibre !1k of positive characteristic,

whence (2ter) holds.

Conversely, if K(Ì) is lisse on !1R, i.e., if condition (2) holds, then

the restriction of K(Ì) to each geometric fibre !1k of positive

characteristic is both lisse and everywhere tamely ramified, and hence
geometrically constant, whence FT¥(K(Ì)) | ´m,k vanishes. So looking

fibre by fibre, we see that condition (1) holds.
The equivalence of (1) with (1bis), "mise pour memoire" results

from the fact that each geometric fibre Xƒ is affine and smooth,

everywhere of dimension d, with Ì lisse, so by the Lefschetz affine

theorem the Hi vanish for i > d, and dually the Hic vanish for i < d. QED

TTTThhhheeeeoooorrrreeeemmmm 11114444....11113333....4444 Hypotheses and notations as in 14.13.3, suppose in
addition that the equivalent conditions (1) or (2) hold. Then

(1) There exists an integer n such that for any finite field k, any ring
homomorphism ƒ: R ¨ k, and any nontrivial additive character ¥ of k,
the restriction to ´m of the Fourier Transform of Rf~Ì[d] is of the form

Ïƒ,¥[1]:= j*FT¥(Rf~Ì[d])

with Ïƒ,¥ a single lisse sheaf of rank n on ´m/k. For any finite

extension E of k, and any point å Ÿ E≠ = ´m(E), the trace of FrobE,å
on Ïƒ,¥ is the sum

trace(FrobE,å | Ïƒ,¥) =

(-1)d-1‡x in Xƒ(E)
¥E(åf(x))trace(FrobE,x | Ì),

where ¥E is the additive character ¥«traceE/k of E.

(2) If Ì is pure of weight zero on X, then Ïƒ,¥ is pure of weight d on

´m, and (consequently) the geometric monodromy group Ggeom,ƒ,¥ of

Ïƒ,¥ is semisimple.
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(3) The object K on !1R defined as the additive ~ convolution

K := (Rf~Ì[d])*~+(Rj*j
*ä$…(1111)[1]),

is adapted to the stratification (!1R - D, D), is fibrewise perverse, and

on each geometric fibre of positive characteristic its Fourier Transform
is given by

FT¥(Kƒ) = j~Ïƒ,¥[1].

(4) Let ˜ be the RS holonomic Î-module corresponding to K^. The Î-

module Fourier Transform FT(˜) is a D.E. on ´m,^ of rank n. If Ì is

pure of weight zero, then the differential galois group Ggal for j
*FT(˜)

is reductive.
(5) If Ì is pure of weight zero, then there exists a dense open set U of
Spec(R), which depends only on

the original stratification (!1R - D, D) of !1R of 14.13.3, and

the conjugacy class of Ggal in GL(n, ^),

such that for any ƒ lying over a point of U, Ggeom,ƒ,¥(ä$…) is conjugate

in GL(n, ä$…) to a subgroup of “-1Ggal(^). Via this conjugation the two

groups have the same "semisimple connected parts",

Ggeom,ƒ,¥(ä$…)
0,der = “-1Ggal(^)

0,der,

and the composite map

Ggeom,ƒ,¥ fi Ggal ¨ Ggal/Z((Ggal)
0)0

is surjective.

pppprrrrooooooooffff (1)The statification hypotheses show that there exists an integer

n such that j*FT¥(Rf~Ì[d]) has lisse cohomology sheaves on ´m,k, the

alternating sum of whose ranks is -n. Condition (1bis) then shows that

j*FT¥(Rf~Ì[d]) is of the form Ïƒ,¥[1], with Ïƒ,¥ a single lisse sheaf of

rank n on ´m/k. The asserted trace formula is just a writing out of the

Lefschetz Trace Formula in this case.
(2)If Ì is pure of weight zero, then condition (1bis) forces the purity,

since Hdc is mixed of weight ≤ d, while Hd is mixed of weight ≥ d. If

Ïƒ,¥ is pure of some weight, then as recalled above (in the proof of

14.11.2) its Ggeom is semisimple.

(3) That K is adapted to (!1R - D, D) has already been proven (13.4.3).
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To show that K is fibrewise perverse, it suffices (by 14.1.3) to show that
its restriction to any single geometric fibre is perverse. On a fibre in
characteristic p, Kƒ is perverse if and only if FT¥(Kƒ) is perverse. But

FT¥(Kƒ) = j~j
*FT¥(Rf~Ì[d]) = j~Ïƒ,¥[1],

which is visibly perverse.

(4) That j*FT(˜) is a D.E. of the same rank n has already been proven
(14.1.5). That Ggal is reductive if Ì is pure results from part (2) above,

via the purity criterion 14.11.2.
(5) This is the sharpened reductive comparison theorem 14.10, applied
to K. QED

Here is the cohomological description of the D.E. j*FT(˜) on ´m.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 11114444....11113333....5555 With the hypotheses and notations of theorem
14.13.4, denote by ˆ Ÿ D.E.(X^/^) the R.S. object on X^ which

corresponds to the perverse object Ì[d] via Riemann-Hilbert. On the
product X^≠´m,^, with coordinates (x,t) consider the D.E.

pr1
+(ˆ)‚etf(x), and take its Î-module direct images in the * and ~

sense via pr2. The natural map

(pr2)~(pr1
+(ˆ)‚etf(x)) ¨ (pr2)*(pr1

+(ˆ)‚etf(x))

is an isomorphism, and the object

(pr2)*(pr1
+(ˆ)‚etf(x)) Ÿ Db

holo(´m,^)

has a single nonzero cohomology sheaf, namely j*FT(˜) in degree zero.

pppprrrrooooooooffff To see this, we argue as follows. The Î-module partners of
Rf~Ì[d] and of Rf*Ì[d] are f~ˆ and f*ˆ respectively, and the mapping

cylinder of
f~ˆ ¨ f*ˆ

is the Î-module partner of K(Ì), so has all its cohomology sheaves

constant (direct sums of Ø) on !1. Therefore convolving on !1 with
j*Ø in the ~ sense, gives, by 12.5.8, an isomorphism

(f~ˆ)*~+(j*Ø) § (f*ˆ)*~+(j*Ø).

The object (f~ˆ)*~+(j*Ø) is the Riemann-Hilbert partner of

K := (Rf~Ì[d])*~+(Rj*j
*ä$…(1111)[1]);

in other words, we have
˜ § (f~ˆ)*~+(j*Ø) § (f*ˆ)*~+(j*Ø).
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Taking the Fourier Transforms of these isomorphisms and restricting to

´m, we get isomorphisms in Db
holo(´m,^)

j*FT(˜) § j*FT(f~ˆ) § j*FT(f*ˆ).

Visibly we have

j*FT(f~ˆ) § (pr2)~(pr1
+(ˆ)‚etf(x)),

j*FT(f*ˆ) § (pr2)*(pr1
+(ˆ)‚etf(x)),

as results from base change via the diagram

X≠´m zzzzzc X

f≠id d df
!1≠´m zzzzc !1

pr2 d
´m. QED

11114444....11114444 EEEExxxxaaaammmmpppplllleeeessss
(1) Suppose that n ≥ 1 is an integer, and (x1, x2, ... , xn) are n functions

on X which define a finite morphism from X to !nR (e.g., if X is given

as a closed subscheme of !nR, one might take for the xi the coordinate

functions in the ambient !nR). Then by (the proof of) [Ka-Lau, 5.4],

there exists a nonzero homogeneous polynomial in n variables Yi,

F(Y1, Y2, ... , Yn) Ÿ R[Y1, Y2, ... , Yn],

with the following property: for any n-tuple (a1, ... , an) of elements of

R such that F(a) ± 0, condition (1) of 14.13.3 holds for X‚RR[1/F(a)]

over R[1/F(a)], the function
f := ‡i aixi,

and any lisse Ì on X‚RR[1/F(a)].

(2) If X is !nR, with coordinates (x1, x2, ... , xn), and f any polynomial

in R[x1, x2, ... , xn] whose degree d is invertible in R and whose leading

form fd(x1, x2, ... , xn) defines a smooth hypersurface in @n-1R, then

condition (1) of 14.13.3 holds for the constant sheaf Ì = ä$…. This
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example was given by Deligne in [De-WI]. See [Ka-SE, 5.1.1, 5.1.2] for
generalizations of this example, where X becomes the affine part of a
smooth projective variety äX/R, and the function f on X has a
particularly nice expression near äX - X, but in which Ì remains the
constant sheaf. The archetype of these generalizations is that of the
finite part of a Lefschetz pencil. See [Ka-Lau, 5.6.1] for a discussion of
the relations between these examples and those in (1) above.

(3) If the morphism f : X ¨ !1R is ffffiiiinnnniiiitttteeee, then condition (2) of 14.13.3

is trivially satisfied for any Ì, since Rf~ = Rf* and so K(Ì) = 0.

(4) For Ì the constant sheaf ä$…, the condition (2bis) of 14.13.3 that K^

be lisse on !1^ is the purely topological condition on the complex

morphism

(f^)
an : (X^)

an ¨ (!1^)
an,

that the mapping cylinder of

R(f^)
an

~$ ¨ R(f^)
an

*$

have lisse cohomology sheaves on (!1^)
an. With hindsight, many of the

situations considered in [Ka-SE, Chapter 5] can be seen directly to
satisfy this mapping cylinder condition.
5) Again for Ì the constant sheaf, Adolphson and Sperber (cf [Ad-Sp])
gives many "toroidal" examples where (1) of 14.13.3 holds. In their

examples, X is (´m,R)
n, and f is a Laurent polynomial whose "Newton

polytope" is sufficiently nice.

RRRReeeemmmmaaaarrrrkkkk 11114444....11115555 In all of the above examples, one may need to do some
initial shrinking on Spec(R) to arrange for the existence of the required

stratification (!1R - D, D) of !1R. To the extent that this initial

shrinking is not very explicit, the apparent precision of the theorem in
specifying upon what the final dense open U of Spec(R) may be taken to
depend is somewhat illusory, at least from the point of view of effective
calculation. This problem ddddiiiidddd nnnnooootttt aaaarrrriiiisssseeee in comparing Ggal and Ggeom
for hypergeometrics Ó1, because in that case the initial good

stratification of !1 is staring us in the face: (!1R - {0,1}, {0,1}).
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