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Local systems and Suzuki groups

Levent Alpoge, Nicholas M. Katz, Gabriel Navarro, E. A. O’Brien,
and Pham Huu Tiep

ABSTRACT. We study geometric monodromy groups Ggeom,]—‘q of the local

systems Fg4 on the affine line over Fa of rank D = /q/2(q — 1), ¢ = 22"+,
constructed in N. Katz [Ezponential sums, Ree groups and Suzuki groups:
congectures, Exp. Math. 28 (2019), 49-56.]. The main result of the paper
shows that Ggeom,]—‘q is either the Suzuki simple group 2B2(q), or the special
linear group SLp. We also show that Fg has geometric monodromy group
2B>(8), and arithmetic monodromy group Aut(?B2(8)) over Fa, thus estab-
lishing Katz’s Conjecture 2.2 in the above cited paper in the case ¢ = 8.
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16 ALPOGE ET AL.

Introduction

In an earlier paper [26], one of us, inspired by a paper [12] of Gross, defined, for
each n > 1, a local system on A!/F, of rank 27(22"+! — 1), whose geometric mon-
odromy group was conjectured to be the Suzuki group Sz(q) := ?Ba(q), q = 22",
in one of its two lowest dimensional nontrivial irreducible representations. These
representations, complex conjugates of each other, are of dimension 27(22"+1 — 1)
and have traces in Z[i], the Gaussian integers.

The definition involved p-Witt vectors of length 2 for p = 2, with values in
Fy-algebras. We identify Wy (Fy) with Z/4Z, by the map [a,b] — a? + 2b, with the
usual convention that we first lift a, b to Z and then reduce a? + 2b modulo 4. We
take the additive character of Z/4Z given by n +— ", and view it as the additive
character vy : Wa(F2) — pa(Z[i]) given by

¢2([a7b]) = -a2+2b.
Attached to a Witt vector of length 2 with coefficients in Fa[z], say [a(x), b(z)], is

the Artin-Schreier-Witt sheaf Ly, ((a(2),b(2))) OD A'/F,. Tt is lisse of rank one, and
its trace function is given as follows. For k/Fy a finite extension, and x € k,

Trace(FrobI’k |£¢2([a(z))b(z)])) = 1#2 (TI“aCGW2(k)/W2(]F2) ([a(:b), b(l‘)]))
If instead we take a(z), b(z) € ko[z] for some finite extension kg /Fz, then the Artin-
Schreier-Witt sheaf Ly, ((a(x),b(2))) 18 lisse of rank one on Al /kg, and for k/kq a finite
extension and x € k, the trace of Frob, j, is given by the same formula (which only
makes sense when k is an extension of k).
The unique nontrivial additive character i of Fy is related to 1, by the formula

¥(b) = ¥2([0,0]);
this is simply the identity (—1)? = 42°.

Under Witt vector addition, [a, b] = [a, 0]4[0,b]. Thus we have the factorization

Lo ((a@),b@)) = Loz (lat@),0) D Lyp)-
When both a(z) and b(x) are polynomials of degree prime to p = 2, Ly, (ja(x),0))
has Swan conductor Swan,, = pdeg(a(z)), while Ly () has Swan,, = deg(b(x)).
So in this case, Ly, ((a(x),b(z)]) has Swan,, = max(p deg(a(r)), deg(b(x))).

Quite generally, for an Artin-Schreier-Witt sheaf £ := Ly, ((a(z),b(2))) O Al/kg
with Swan conductor Swan., = n > 2, its Fourier transform FT, (L) on Al/kq is
an Airy sheaf in the sense of Such [44]. Tt is lisse of rank n — 1, and all its co-slopes
are . It is pure of weight one. Its trace function is given as follows: for k/ko a
finite extension, and t € k,

Trace(Frob i |[FTy (L)) = — Z Vo (Tracew, (1) /w, r,) ([a(z), b(z) + ta])).
ze€k

Some key facts about Airy sheaves and their monodromy groups are due to Such
[44], and are fundamental for the investigations reported on here.
We now turn to the Suzuki “candidates” of [26]. Here

n>1,q:=2", q:= 2qg7 t(q) :=q+1—2qp.
We take the Witt vector

{xt@, 3 x(mf)t(q)] ,
=1
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LOCAL SYSTEMS AND SUZUKI GROUPS 17

form the Artin-Schreier-Witt sheaf
L= Ly, (@, g, st

form its FT (L), and twist by the constant field twist (ﬁ)deg, to arrive at

the local system F, on A'/F5, whose trace function is given as follows. For k/F5 a
finite extension, and ¢ € k,

Trace(Froby x| Fy)

-1 n i
= A DI <Tfacew2<k>/w2<m> < [xt(q)v >t tx} ) > .
(1 — (=1~ Z) zek i=1

A key fact about F, is that the input Witt vector [z/(®, 37 2(1+201@)] js a

function of z*(?). So in the trace formula for Fy, if we restrict to ¢ # 0 and make
the substitution « — z/t, the formula becomes

Trace(Froby x| Fy)

1 2@ P (14+29)t(g)
(L= () ze%%(TraceW“’“)/%(F” <[tt(® ; {0204 +ID)

which is a function of t/(9). Thus F,|G,, has a descent to a lisse sheaf G, on G,,,/Fa
whose trace function is given by

Trace(Froby x|G,)

1 L) L (142)4(g)

- — deg(k/F2) Z (o (Tra’ceW’z(k)/Wz Fz) 72 1(1+27) I])),
(1= (=1)m4) zek i1

and such that under the ¢(¢) Kummer pullback,
[t(9)]"Gq = F4lGm

For the case n = 1, i.e., for 2By(8), we prove in Theorem [6.1] that Fg has the pre-
dicted geometric monodromy group Ggeom 7, = “B2(8) and arithmetic monodromy
group Garith, 7 7, = Aut(?Ba(8)) over Fa, and thus establish [26, Conjecture 2.2
in full in this case. For each n > 1, we show that Ggeom, 7, is either By (q) or SLp
for D = rank(F,) = go(¢—1). A (huge) calculation of fourth moment for Fg shows
that Ggeom, 7, cannot be SLi4. It remains an open problem to prove (or disprove)
that each 7, has Gyeom, 7, = “B2(q) when ¢ > 32.

In fact, we show in Theorem [R.4] that we have such a dichotomy of possible
geometric monodromy groups Ggeom, €ither ?Bs(g) or SLp, D = go(q — 1), for
a general class of local systems of “the same shape” as F, (see Remark and
Theorem for examples of such local systems with Ggeom = SLp). Key to
our investigation is the fact that these sheaves all satisfy the condition (S+) of
[30] Definition 1.2]. Somewhat to our surprise, the most difficult part of establishing
condition (S+) was to show the sheaves in question are geometrically primitive,
i.e., that the representation of their Ggeom is not induced. Our proof utilizes the
existence of primitive prime divisors of the integer ¢(q), cf. Theorem B4l We give
a second proof which will be useful in future studies of geometric monodromy
groups of quite general Airy sheaves. Condition (S+) implies that for each of these
sheaves, either Ggeom is a finite, almost quasisimple group, or has Gg.,, acting
irreducibly. This initial dichotomy, plus a substantial group-theoretic analysis, in
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18 ALPOGE ET AL.

which Theorem plays a key role, is what leads to the 2By(q)/SLp dichotomy.
Pursuing the study of primitive prime divisors, we prove in Theorems [3.4] 3.7 and
Corollary the existence of primitive prime divisors in the orders of maximal
tori of the Suzuki-Ree groups 2Bs(q), *G2(q), and ?Fy(q). We also extend in §7] the
classification of low-dimensional representations of classical groups in characteristic
p > 0, beyond the bounds in [32] and [33]. These results will be useful in other
situations as well. Finally, the structure of arithmetic monodromy groups, assuming
finiteness, is determined in Theorem

1. Descents of Suzuki candidates and moment calculations

For each odd power ¢ = 22"t! of 2, starting with ¢ = 8, the finite simple
group 2Bz (q) has two (complex conjugate) lowest dimensional nontrivial irreducible
representations, of dimension d(q) := go(¢ — 1), with go := 2™. In each case, we
have a factorization

1+d(g) = (g + 1t(q) with t(q) :=q+1—2qo.

In [26], for each such ¢ there is proposed an Airy sheaf in the sense of Such [44],
call it F, on A'/Fy which is lisse of rank d(q) and with Swan..(F,) = 1 + d(q).
1+d(q )

Its I(oo)-representation is irreducible of dimension d(g), with all co-slopes 700
Moreover, F, is given [26] Section 4] with an explicit descent to a lisse sheaf G,

on G,,/Fs whose Kummer pullback by t(q)"" power is (the restriction to G,,/F2
of) Fq:

[t(@)]"Gq = F4|Gm

Thus G, is lisse on G, /Fo, tame at 0 with 1(0)-representation a direct sum of Kum-

mer characters of order dividing ¢(g¢), and whose I(oco)-representation is irreducible

. . . g+l _  gotl
of dimension d(q), with all co-slopes ;(q) = #—1)'

Next we give a slight improvement of [28, Theorem 6.5].

THEOREM 1.1. Let Hy be a lisse sheaf on G,, /F, which is tame at 0 and pure
of weight zero. Let a,b be nonnegative integers, and consider the moment M.
Denote by

He? = HE @ (Hy)*™"
Denote by A, B,C, D the following constants:

C := dimension of the space of 1(0)-invariants in Hy'",
D := dimension of the space of 1(00)-invariants in ’Hg’b,
B = SwanOO(Hg’b) + M,
A=B+M,, —C—-D.

Then we have the following estimate:

A B-A
ZTrace Froby r, |Hg’ )S—Mab—i——\/_—l— )
q—1 1 q—1

q—l
u€elFy
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LOCAL SYSTEMS AND SUZUKI GROUPS 19

ProOF. For any lisse sheaf F on G,,, the Lefschetz trace formula gives

Z Trace(Frob, r, | F)

u€Ry

= Trace(Froby, |H? (G, /F,, F)) — Trace(Froby, |[H} (G, /Fq, F)).
If F is pure of weight zero, then H? is pure of weight 2, and H! is mixed of weight
< 1; indeed,

H!=HX(wt=1)® H}(wt <0).

Thus, for F pure of weight zero,

> Trace(Froby g, | F)| < gh? + /ghl(wt = 1) + hl(wt < 0).

u€Ry
When F is tame at 0, the Euler-Poincaré formula gives

Swane (F) = hl — k2.
To compute the dimension of H!(wt = 1), we use the fact that for the inclusion
j: Gy C PL, the group H(P!/F,, j.F) is pure of weight one. We exploit this by
looking at the short exact sequence of sheaves on P!/ E given by
0 = jiF = uF = (FID)o @ (FI)e = 0,
where the last two summands are skyscraper sheaves at 0 and oo. The group
H*(P' [y, joF) = H2 (G [Fy, F)

is the Tate-twisted group of 75°“™ co-invariants in F, but as F is pure, the action

of w3°°™ is semisimple, so this is also the (Tate-twisted) group of 7F°”" invariants.

The group

H (P! /Ry, j»F) = H* (G /Fy, F)
is the space of 78°°™ invariants in F, so has dimension h® = h2. Consider the long
exact sequence

0 — HO(P/F,, j.F) — FIO ¢ FI=) o HY(G,,/F,, F) = H'(P'/F,, j.Fo) — 0.

Apply it with F taken to be Hi*. Then h® = h2 is M, ;, and the Euler-Poincaré
formula gives

he = Swans (H5") + Mo
Thus we have the equalities
hl(wt = 1) = AL + h° — dim F'© — dim F1®) = 4,
and
hi(wt <0)=B - A.

Then the estimate

Z Trace(Frob, r, |]-")‘ < qh2 + Jght(wt = 1) + hi(wt < 0)
u€Ry
becomes

Z Trace(FrObuJFq\Hg’b)

u€Ry

< qﬂ4éi,4—14\/§-%(13-—44). ([l
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20 ALPOGE ET AL.

We will now apply this estimate to the descent Gs to G, /Fs of the lisse sheaf
Fs on Al/Fy. Recall from [26] §2] that Fg is the Fourier transform of the Artin-
Schreier-Witt sheaf L, (45 215]), With a constant field twist by l%ﬂ Thus for k/Fy
a finite extension, and ¢ € k,

Z P (Tracew, (k) /wa e, ([2°, 21 + ta])).

) >deg<k/wz>
zek

Trace(Froby x| Fs) = —(1 i

The descent Gy is the lisse sheaf on G, /5 whose trace function is given as follows.
For k/F5 a finite extension, and ¢ € k>,

. )deg(k/m)

> ha(Tracew, (1) /wa e, ([2° /8, 2" /7 +a])).

rck

Trace(Frob, x|Gs) = — (1 o

Thus one visibly has, for ¢t € k>, the identity
Trace(Froby 1| Fg) = Trace(Frobys j|Gs),

simply by the substitution x — z/t in the formula for Fg.

In any extension field k/Fy such that ged(5, #k*) = 1, the map t + t° is
bijective on k*. Such k/Fq are precisely those whose degree over Fs is not divisible
by 4. For such a k/F, the traces Trace(Frob; x|Gs) as ¢t runs over k™ are precisely
the traces Trace(Froby ;| Fs) as t runs over k*. An extensive calculation shows that
over F;m, the seven traces which occur, with their multiplicities, are

e —2;, multiplicity 16256,
—2, multiplicity 4095,
—1, multiplicity 52429,
0, multiplicity 112347,
1, multiplicity 60495,
2¢, multiplicity 16512,
14, multiplicity 9.

[We have not been able to find any conceptual explanation for the multiplicities of
these traces, let alone for the fact that all traces are algebraic integers. Had we
known that the traces of all Frobenii over all finite extensions of Fy are algebraic
integers, we would have been able to conclude that Gg has finite geometric mon-
odromy group Ggeom, and the proof of the main result Theorem would have
been much simpler.]

This computation was carried out using MAGMA 2.26-6 [3] at the University of
Auckland. Tt exploited a new feature of MAGMA which supports running tasks in
parallel on multiple processors: each task performed the necessary computation for
a given t € k*. Using 55 3.0GHz processors, the computation completed in 5.75
days, taking about 7500 hours of CPU time.

The empirical Ma 5 for Gg over s is thus approximately

3.99963378766551080898593515753.
Applying Theorem [[.T] we find
COROLLARY 1.2. For the lisse sheaf Gg on G, /Fa, Ma o > 2.

PROOF. The sheaf Fy is a geometrically irreducible Airy sheaf, lisse on Al /Fy
of rank 14, whose I(o0) representation is irreducible, with all slopes 15/14. Its
descent Gg is thus lisse and geometrically irreducible on G,,, its 1(0) representation
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LOCAL SYSTEMS AND SUZUKI GROUPS 21

is the direct sum with multiplicities of the characters of order dividing 5, and its
I(00) representation is irreducible, with all slopes 3/14.
Let us denote by
K= (Gs)®* ® (G5)**.
In the proof of Theorem [[L1] the estimate

< qh? + /ghe(wt = 1) + he(wt < 0)

Z Trace(Frob, r, |K)

teFy

can first be weakened to

Z Trace(Froby r, |IC)‘ < qh? + /ghl(wt = 1) + hl.
z€Fy

The equality
hl(wt =1) = Swan (K) + 2Ms 5 — dim K1 — dim k(=)
can be weakened to
hl(wt =1) < Swany (K) + My 5 — dim KO

simply because in the exact sequence, the space H? of global invariants of C injects
into the space KC!(>) of I(co)-invariants.

Thus K is lisse on G, its I(0) representation is the direct sum with multiplic-
ities of the characters of order dividing 5, and all its I(oco) slopes are < 3/14. So
we have the crude estimate

Swan, () < rank(KC)(biggest slope) < 14%(3/14) = 8232.

The I(0) representation of K is End(End(the I(0)-representation of Gg)).
We now turn to the I(0) representation of Gg. The action of I(0) is through
5. So in terms of a fixed character x of order 5, it is a direct sum

al 4+ by 4+ ex? + dx® + ex?,

with non-negative integers a, b, ¢, d, e which sum to 14. We also know from Deligne’s
“independence of ¢” result [11], Theorem 9.8] or from Serre-Tate [43], Theorem 2(ii)],
that the character of this representation of I(0) has values in the field Q(7) (because
Gs is part of a compatible system over Q(¢)). On the other hand, this character has
values in Q({5). But the intersection Qi) NQ(¢s) is just Q, so the trace has values
in Q. In other words, the quantity

a+bls + cCZ +d¢E + eCs

lies in Q. This in turn forces b = ¢ = d = e, and so a+b(5 +b(Z +b(3 +b(E = a—b.
But a + 4b = 14, so there are only four possibilities for the character, namely,

20+ 3x+3x2+3x3+3x?, , 61 +2x+2x2+2x 3 +2x*, 10T+ 1+ Ix* + 13 +1x*, 141.
More intrinsically, let us denote by Reg the regular representation of fi5:
Reg =1+ x + x>+ x* +x*
Then the I(0) representation of Gg is one of
—1 + 3Reg, 41 + 2Reg, 91 + Reg, 141.

Because the character takes real (in fact integer) values, dim K!(®) is the coefficient
of 1 in the fourth power of the character. For each of our four candidates, this is
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22 ALPOGE ET AL.

easily computed by hand, because Reg? = 5Reg, Reg® = 52Reg, Reg® = 5°Reg. The
least of the possible values of dim K1(©) is 7684, the value attained by the candidate
—1 + 3Reg. So the weakened estimate becomes

> Trace(Frobyg,,, [K)| < 2'8 My + (8232 + May — 7684)2° + (8232 + My o).
te]F;ls
Dividing by 2'® — 1, we get
218 (548 + M3 5)27 8232 4 My,
3.999 < mMQﬁQ + 218 _ 1 o8 —1
Here 218 — 1 = 262143, and 2°/(218 — 1) < (2 +1)/(21®¥ - 1) = 1/(2° — 1) = 1/511.
Thus if Ms o were 2, we would get
3.999 < (1 + (1/262143))2 + 550/511 + 8332/262143,

which is nonsense. O

2. Background results on determinants, rationality, and slopes

THEOREM 2.1. Let p be a prime, k/F, a finite extension, v > 1 an integer,
and F a lisse Qg sheaf on a smooth, geometrically connected scheme U/k which is
pure of weight zero and part of a compatible system of lisse sheaves on U whose
trace functions take values in Q((p»). Denote by Ggeom < Garith the geometric and

arithmetic monodromy groups of F. Then we have the following results:
(1) det(Garith) has finite order dividing 2p” if p is odd, dividing 2" if p = 2.
(i) det(Ggeom) has finite order dividing 2p¥ if p is odd, dividing 2" if p = 2.
(ili) Suppose that U is a dense open set of P', and that at each point x €
PL(k) \ U(k), all I(x)-slopes of F are < 1. Then det(Ggeom) has order
dividing 2, and is trivial if p = 2.

PrOOF. (i) For any finite extension L/k and any point ¢ € U(L), det(Frob; r|F)
lies in Q((pv). It has absolute value 1 at every archimedean place of Q(¢,+) (purity
of weight zero), and is a A-adic unit at every finite place A of residue characteristic
# p (being part of a compatible system). Because Q((,~) has a unique place above
p, the product formula tells us that this determinant is a unit at all finite places.
Thus it is a root of unity in Q({pv), so of order dividing 2p” for p odd, and of order
dividing 2" if p = 2.

As Ggeom is a subgroup of Garith, we trivially obtain (ii).

To prove (iii), the slope hypotheses imply that det as a character of Ggeom has
slope < 1, hence 0, at each missing point, and thus is everywhere tame, and hence
(being on a dense open set of P!) has order prime to p. |

THEOREM 2.2. Let p be a prime, k/F, a finite extension, v > 1 an integer,
and F a lisse Qg sheaf on a smooth, geometrically connected scheme U/k which is
pure of weight zero and part of a compatible system of lisse sheaves on U whose
trace functions take values in a number field E. Suppose further that there exists a
proper smooth curve with geometrically connected fibres

m:C—>U,
a finite group T of automorphisms of C/U, and a linear character

x:I'— E*
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LOCAL SYSTEMS AND SUZUKI GROUPS 23

such F is isomorphic to the x-component of R'7,(Qy). Then we have the following
results:
(i) For any finite extension L/k and any point t € U(L), the action of
Froby 1| F is semisimple.
(ii) If U is a curve, with complete nonsingular model X, then for each point
x € X(k)\ U(k), the character of the action of the inertia group I(x)
acting on F has values in K.

PROOF. The semisimplicity of Frobenii on H* of curves goes back to Weil. By
Serre-Tate [43] Theorem 2(ii)], the character of I(z) on R'm,(Q;) has values in
Z. When we project the I(z) action onto the x component, the character of the
resulting I(x) action has values in Q(x), a subfield of K. O

REMARK 2.3. Theorem 22 applies to the Airy sheaves of Such [44] and any of
their descents, where the family of curves in question is a family of Artin-Schreier-
Witt coverings of Al (compactified by adding its one point at 0o).

Next we record a general result on Ggeom of lisse sheaves on open sets of Al

THEOREM 2.4. Let U be a dense open set ofAl/E, and F a lisse Qq-sheaf on
U, with ¢ # p. Suppose all the co-slopes of F are at most o, for some 0 < o < 1.
Suppose the geometric monodromy group G = Ggeom 0of F admits a representation
D : G = GL4(F) over some algebraically closed field F of characteristic # p, of
dimension d < 1/o. Then ® is tame at co.

PROOF. The hypothesis that all co-slopes of F are < ¢ is that for all y > o, the
upper numbering subgroup I(00)¥ acts trivially on F, i.e., dies in Ggeom, and hence
dies under ®. Thus all co-slopes of F are < o, and hence Swan,.(®) < do < 1. As
Swan conductors are non-negative integers, Swans, (®) = 0. This means P(c0) acts
trivially in @, i.e., ® is tame at oc. (I

Now we prove a generalization of [30, Theorem 4.16].

THEOREM 2.5. Let U be a dense open set of A'/F,, F a lisse Qp-sheaf on U,
with £ # p, and let G be the geometric monodromy group of H. Suppose that the
following hold:

(a) All co-slopes of H are at most o for some 0 < o < 1, and H is not tame
at 0o,

(b) G is a finite almost quasisimple group: S < G/Z(G) < Aut(S) for some
finite non-abelian simple group S;

(¢c) For some normal subgroup R of G/Z(G) containing S, R admits either a
faithful d-dimensional linear representation

®: R — GL4(F),
or an e-dimensional projective representation
U : R — PGL.(F)

which is nontrivial over S, over some algebraically closed field F of char-
acteristic # p.
Then
1/o0 <d-[G/Z(G) : R] < d-|0ut(S)|,
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24 ALPOGE ET AL.

respectively,
1o < (2= 1)-[G/Z(G) : K] < (¢* = 1) - |Out(S)].

PROOF. Note that the given W is faithful. Indeed, Ker(¥) <« R does not
contain S, so it intersects S trivially by simplicity of S. Because both S and
Ker(¥) are normal in R, the commutator [S,Ker(¥)] C S N Ker(¥) = 1. Thus
Ker(¥) < Cr(S) < Cauys)(S) = 1. Hence R is embedded in PGL(U), where
U = F°. Composing this embedding with the faithful action of PGL(U) on
End’(U) = End(U) /scalars, we obtain a faithful action of R on a module of dimen-
sion < €? — 1. Thus it suffices to prove the bound 1/0 < d - [G/Z(G) : R] when
®: R — GL(V) is given.

So assume the contrary, i.e., ® : R — GL(V) is faithful for some V with
dim(V') = d, but

(2.5.1) 1)o > d-[G/Z(G): R].

Let f/' denote the G-module Indg(V) for G := G/Z(G). Note that G acts faithfully
on V. Indeed, let K <1 G denote the kernel of the action of G on V. By the
construction of V' as the induced representation, the R-module V' contains V' as a
submodule. But S acts faithfully on V', hence SN K = 1. As S <G, it follows that
[S, K] =1, and so
K < Cg(5) < Cauys)(5) = 1.
We also note that
dim(V) =[G : R]-dim(V) =d-[G: R] < 1/o

by @5I).

Now view V as a representation of G, of dimension < 1/0. By Theorem [2.4]
this representation is tame at oo. Thus the image @ in G of P(c0) acts trivially
on V. But G/Z(G) acts faithfully on V. Therefore Q lands in Z(G). Recall that
I(c0) has finite image J in G, and J/Q is cyclic. As Q < Z(J), it follows that J is
abelian. Thus all simple J-summands in H are one-dimensional, and at least one
of them is wild, as H is not tame at co. Each one-dimensional wild component has
Swan a strictly positive integer, which is also its slope, contradicting the hypothesis
that all co-slopes of H are < 1. O

3. Primitive prime divisors for Suzuki-Ree groups

The order of a finite group of Lie type G(IF,) over a field IF, is usually a product
of a power of ¢ = p/ (p the defining characteristic) and the values at ¢ of cyclotomic
polynomials ®,,,(q) for various m. In a number of problems on G(F,), the existence
of primitive prime divisors ppd(q,m) or ppd(p,mf) for certain m was helpful.
Recall [50] that for a, m € Z>q, a primitive prime divisor £ = ppd(a, m) is a prime
divisor of ™ — 1 that does not divide H;’;}l(ai — 1); such a prime divisor always
exists unless (a,m) = (2,6) or m = 2 and a + 1 is a 2-power. For the Suzuki-Ree
groups 2By (q) with ¢ = 2", 2{n > 3, %G2(q) with ¢ = 3", 24 n > 3, and 2F,(q) with
g =2",2¢n > 3, some factor ®,,(q) of |G(F,)| decomposes further into values at
/@ of polynomials over Z[v/2] or Z[v/3]. More precisely,

u(q) =q"+1=(q— 20+ 1)(qg+/2q+1)
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for 2By (q),
() =q* —q+1=(q—/3q+1)(g+/3q+1)
for ?G2(q), and

P(q) =¢" —*+1= (> —qv/2q+q— V2¢+ 1)(¢" + q/2¢ + g+ /29 + 1)

for 2F4(g). In applications, it is desirable to prove that these factors also possess
primitive prime divisors ppd(p,4n), respectively ppd(p,6n), ppd(p,12n), whose
existence does not follow from [50]. The main results of this section establish the
existence of such prime divisors for Suzuki-Ree groups.

3A. Almost equidistribution of coprime integers in congruence classes.
For n € Z>1, let ¢(n) denote the Euler function of n, let y(n) denote the Mobius
function of n, and let w(n) denote the number of distinct prime divisors of n (not
counting multiplicities). First we prove the following.

PROPOSITION 3.1. Let m,n € Z>1 be coprime integers. For any integer
0 < a < m-—1, the number N, of integers 1 < k < n such that ged(k,n) = 1
and k = a (mod m) satisfies

N, — $(n) < 9w(n)
m

PRrROOF. For k € Z>1, define F(k) := 0 if ged(k,n) > 1 and F(k) := 1 if
ged(k,n) = 1. By [37, Theorem 4.7], F'(k) = }_ ) gea(k,n) #(d). Now

(3.1.1) N, = > F(k)

1<k<n, k=a (mod m)
= > Y. pld) =) p(d)N(a,d),
1<k<n, k=a (mod m) d|gecd(k,n) d|n
with
N(a,d) := Z 1.
1<k<n, k=a (mod m), d|k

If d|n, then ged(d,m) = 1, so we can find 1 < e < m — 1 such that de = 1 (mod m).
Now write every 1 < k < n with d|k as k = dl with 1 < [ < n/d. Then the
condition that k = a (mod m) is equivalent to | = ea (mod m), in which case we
can write | = s+ mi with 0 <r <m —1, ea = r (mod m), and i € Z. To count
the number N(a,d) of i occurring, write n/d = gm + r with 0 < r < m — 1 and
q € Z>q. Certainly, every 0 < i < ¢ — 1 works, but neither ¢ = =1 nor ¢ =¢+1
can occur. It follows that

(3.1.2) n/md—1<qg<N(a,d) <qg+1<n/md+1.

We also note by [37, (4.1)] that ¢(n) = >_,, u(d)n/d and that 3, [n(d)] is the
number of square-free divisors of n and hence equals to 2¢(™. Combining with

BII) and BI2), this yields
e = 2 S (@ (a,d) —nfma)| < S @) =220, D
d| d|

We will also need the following analogue of Proposition 3.1t
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PROPOSITION 3.2. Let n € Z>; be an odd integer divisible by 3. For any
integer 0 < a < 11 coprime to 3, the number N, of integers 1 < k < n such that
ged(k,n) =1 and k = a (mod 12) satisfies

¢(n)

N, — —=| < 2¢(m=L,
o=

PROOF. As in the proof of Proposition 3.2, we have

(3.21) N, = > F(k) = > > u(d)

1<k<n, k=a (mod 12) 1<k<n, k=a (mod 12) d|gcd(k,n)
=Y w(d)N(a,d),
d|n
with

N(a,d) := Z 1.

1<k<n, k=a (mod 12), d|k
Now, if d|n but 3|d, then N(a,d) = 0 since 3 1 a. Hence,

(3.2.2) No= > p(d)N(a,d).
d|n, 3td
Next, u(d) = 0 if 9|d, and u(d) = —u(d/3) if 3|d. It follows from [37, (4.1)] that
n d d d 2 d
(3.2.3) %—Z%)_ 3 %)_ T u(dl) 2y %).
dln

3
dln, 3td 3d’'=d|n,3td’ dln, 3td

If dln and 3 1 d, then ged(d,12) = 1, and so we can find 1 < e < 11 such that
de =1 (mod 12). The proof of [BI2) repeated verbatim shows that

n/12d — 1 < ¢ < N(a,d) < qg+1<n/12d+ 1.
Combining with (3222)) and B23)), this yields
n _
N2 | Y s ad -2 < S @] =20

8
d|n, 3td d|n, 3td

3B. Primitive prime divisor for Suzuki groups. We make the choice
V2> 0. For odd n € Z>1 and a =1, 3, set

Py 4(n) == 11 (3 — 22 cos Z—Z)

1<k<8n, ged(k,n)=1, k=a (mod 8)
PROPOSITION 3.3. If2t{n > 2603 and a = 1,3, then Ps,(n) > 2n.
ProOF. (i) First we note that
(3.3.1) ¢(n) > max(22'2‘“("),n6/7)

when 2 { n and n # 1,3,9,15,21,33,45,75,105,165,195. Indeed, suppose s :=
w(n) > 1 and write n = [[_, p{" for some prime divisors 2 < p; < ps < ... < ps of
n. If p; > 5, then

- Pi < (5/4)° <597 <nl/7,

¢(n)  ipi—17
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and so ¢(n) > n%7. If p; > 7, then

Hp (1—1/p;) > 6° > 2255,
If p =5 and s > 2, then
Hp (1= 1/p)) > 4651 > 2225
If py =5 and s = 1, but n # 5, then ¢(n) > 20 > 245,

In the rest of the proof of (B31]), we may assume that p; = 3. First suppose
that s > 4. As (116/107)*2 < (2-4-6)7/(3-5-7)5,

s s—3 1/7
n Di 3 56 7 (11 _3 17
= <2.2.2. =) < (3.5.7-11° <nl/7.
o) Mp—1=2717% (10 "

Also, ¢(n) >2-4-6-105"3 > 22235,
Next suppose that s = 3. If p3 > 11, then

S
; 11
no_ pi §§§ <(3-5- 11)1/7 nl/7.
o(n) tpi—172 4 10

If p3 < 11 then (p1,pe, p3) = (3,5,7); thus if n # 105 then n > 3 - 105 and so

n/¢(n)=(3-5-7)/(2-4-6) <n'/7.
Also, if n # 105,165,195, then ¢(n) > 2-6- 10 > 2225,

Suppose now that s = 2. If py > 13, then n/¢(n) < (3/2)-(13/12) < (3-13)1/7 <
n'/7. If p3 = 11 and n # 33, then n/¢(n) = (3/2) - (11/10) < (3-3 - 11)Y/7 < pl/7.
If p3 = 7 and n # 21, then n/p(n) = (3/2) - (7/6) < (3-3-7)/T<n'/7. Ifps =5
and n # 15,45,75, then n/é(n) = (3/2) - (5/4) < (6-3-5)7 < nl/7. Also, if
n # 15,21, 33,45, then ¢(n) > 24 > 2225,

Finally, assume that s = 1, and n = 3% with @ > 3. Then n/¢(n) = 3/2 <
39/7 = n'/7 and ¢(n) > 18 > 2%, completing the proof of (F3.1).

(ii) Now assume that n > 2602. By @31) m := ¢(n) > n%7 > 846, so
m > 847, and 2¢(") < myd/11,

Fix a € {1,3} and let S; = {(j — )n < k < jn | ged(k,8n) = 1,
k = a(mod 8)} for 0 < j < 7. For each j, observe that k € S; if and only if
0 <k :=k—jn < niscoprime to n and ¥’ = a — jn (mod 8). By Proposition B]

1Sj| = {0 <k <n|ged(k,n) =1,k =a— jn(mod 8)}|
satisfies ¢(n)/8 — 2« < |S;| < ¢(n)/8 + 2#(™). By the above,
(3.3.2) m/8 —m®1 < |S;| < m/8 +m®/ 1,

Now, if k € Sy U S7, then 3 — 2v/2cos(km/4n) > 3 — 2v/2. If k € S; U Sg, then
3 - Zﬂcos(kﬂ/lln) >1. If k € Sy U S5, then 3 — 2\/5008(1@71’/471) > 3. Finally, if
k € S3U Sy, then 3 — 2v/2 cos(km/4n) > 5. Tt follows from ([B:3.2) that

Py o(n) > (3 — 2v/2)m/te2m™ ™ qpm/a=2m?T _ gm/dg2m
with A := 15(3 — 2v/2) and B := 15(3 + 21/2).

5/11
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Setting f(t) := AY/4B=2"""4=7/6,

9(t) = log () = (t/4) log(4) — 2%/ log(B) — (7/6) log(t).

Now ¢/(t) = log(A)/4—log(B)/(1.1t5/11) — (7/6t) is increasing, so ¢'(t) > ¢'(847) >
0.13 when ¢ > 847. It follows that g(m) > ¢(847) > 0.75, and so f(m) =
exp(g(m)) > 2.11. Thus, for m = ¢(n) > 847

Pao(n) > f(m)ym™6 > 2m™6 > 2n,
as desired. O

As we will see in part (iii) of the proof of the following theorem, Proposition B3]
actually holds for all odd n > 7.

THEOREM 3.4. Let ¢ =2" with2tn. If n > 7 thent(q) =t~ (q) == q—+/2q+1
is divisible by a primitive prime divisor ppd(2,4n) of ¢> + 1. In all cases, t*(q) =
q++/2q + 1 is divisible by a primitive prime divisor ppd(2,4n) of ¢* + 1.

PROOF. (i) The second statement is obvious for n < 5; also note that ¢(2) = 1,
t(8) = 5. Henceforth we may assume n > 7. Consider the sets

A;j={1<k<d4n|gecd(k,2n) =1, k= j (mod 8)},
Bj:={4dn+1<k <8n|gcd(k,2n) =1,k = j (mod 8)}
for j =1,3,5,7. Then the map k — 8n — k yields bijections
Ay +— By, A7 «— By, A3 +— By, A5 +— Bs,
and the map k — k + 4n yields bijections
Ay «— Bs, A5 +— By, A3 +— By, A7 +— Bs.
It follows that

(3.4.1) [Av| = |As| = |Bs| = [Brl, |As| = [A7| = [Bi| = | Bs].
Since Uj—1,357(A; U B;) = {1 <k < 8n | ged(k,8n) = 1}, we now see that
(3.4.2) [Aj| +1B;| = &(8n)/4 = ¢(n)

for each j =1,3,5,7.

(ii) Make the choice of ¢ := (s, = exp(mi/4n) and consider the cyclotomic

polynomial
By, (X) = 11 (X —¢h).
1<k<8n, gecd(k,2n)=1
If 1 <k < 4n then (X — ¢F)(X — k7)) = (X — ¢CF)(X +¢F) = X2 —¢},. Tt follows
that
(I)8n(X) = H (X2 - Célfn) = q>4n(X2)-
1<k<4n, gecd(k,2n)=1

In particular,

Setting
(3.4.4) Dy a(X) = 11 (X —¢h),

1<k<8n, gcd(k,2n)=1, k==a (mod 8)
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for a = 1,3, we have ®g,, (X ) = Pgy,,1(X)Pgp3(X). Next, since

(V2 - ¢F) (V2 = 3 F) =3 - 2v/2cos lz_w

n
for each 1 < k < 8n, using the bijection k — 8n — k in (3.4.1)
(345) P27a(n) = (b8n,a(\/§)7

for a = 1,3. Using (3:43) also

(346) ngl(n)ngg(n) = @471(2)

(iii) To show that P 1(n) and Ps 3(n) are integers, we use ged(8,n) = 1 to write
1 = ns + 8t for some s,t € Z with ged(s,8) = ged(t,n) = 1, and set ( = (s, = a8
with o := (™%, a 8" root of unity, and 3 := (8, an n*" root of unity. When k runs
over Ay U By, ¢¥ = o*B¥ = ap¥, and k (mod n) runs over units in Z/nZ, each at
most once. Using ([B:42), we see that each unit is met exactly once. Repeating the
same argument for k € A, Ll By, we get

g1 (X) = [ (X-ap)(X-a'8)= ] X’—(ata "X+,

! unit mod n ! unit mod n

Note that o+ a~! = /2 for some € = +1. It follows from ([BZ5) that
Pyi(n) =®sn1(vV2)= [] (2-2ec, +¢2

! unit mod n

is the norm Normg¢,,)/q of the algebraic integer 2 —2¢(, +¢2, hence it is an integer.
The same arguments show that P 3(n) is the norm Normg,)/q of the algebraic
integer 2 + 2¢(, + (2, hence it is an integer.

Using this norm interpretation for P;(n) and P 3(n), a calculation with
MAGMA shows that P, ,(n) > 2n for odd integers 7 < n < 2601. Together with
Proposition [3.3] this shows that

(3.4.7) P q(n) > 2n
fora=1,3 and odd n > 7.
(iv) We also set
FT(X) = X2 —V2X" 41, fH(X) = X2 V22X 4,
so that
t () = (V@) t7(0) = FF(V @), f7(X)fF(X) = X"+ 1.

Certainly, any root of X" + 1 is ¢* for some odd integer 1 < k < 8n. If k =
+1 (mod 8), then

F(¢%) = exp(kmi/2) + 1 — V2exp(kmi/4) = 0.
Similarly, if £ = £3 (mod 8), then

FH(CY) = exp(kmi/2) + 1+ V2exp(kmi/4) = 0.
It follows that

F(X) = 11 (X —¢Y), fH(X) = 11 (X —¢").

1<k<8n, k==1 (mod 8) 1<k<8n, k=%3 (mod 8)
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Comparing to (8.44) and (B.4.5]), we see that
F~(V2)/Py1(n) = H (V2-¢)

1<k<8n, gcd(k,2n)>1, k=41 (mod 8)

is an algebraic integer. But f~(v/2) = t~(q) is an integer, and P, ;(n) is an integer
by (iii). Hence Py ;(n) divides ¢t~ (q). Similarly, P> 3(n) divides ¢t (q).

(v) By B4.™), P,1(n) > n. Consider any prime divisor £ of P5 1(n), which then
divides t~ (¢) by the result of (iv), and divides ®4,(2) by (B4.6]). Suppose that ¢ is
not a primitive prime divisor of 24" — 1. By [34] Satz 1] (cf. [42 Proposition 2])
{|n, and moreover £? { &4, (2). It follows that the ¢-part of Py;(n) is £. Hence, if
t~(q) is not divisible by any primitive prime divisor of 24" — 1, then P, 1(n) divides
n, a contradiction.

The proof for t7(q) is entirely similar. a

COROLLARY 3.5. Let ¢ = 2" with 2 { n. If n > 3 then ®Y, = ¢®> — ¢/2q +
q—/2q + 1 is divisible by a primitive prime divisor ppd(2,12n) of ¢* —¢*> +1. In
all cases, ®h, = q> + q\/2q + q + /2q + 1 is divisible by a primitive prime divisor
ppd(2,12n) of ¢* — ¢®> + 1.

Proor. Note that if n = 1 then ®4, = 1 and @5, = 13. Assume that n > 3.
By Theorem [3.4]

(@) =’ —av2a+1=(a+ 20+ 1)(@* — ¢v/2¢ + q— /2q+ 1) = t7(q) 5,
is divisible by a primitive prime divisor ¢, = ppd(2,12n). Since t7(q)|(¢*> + 1) and
l1|(¢* — ¢*> + 1), we see that ¢1 1 t*(q), and so ¢1]|®4,. The argument for &, is
similar, using
(") = ¢* +¢v/20+ 1= (0= V20 + 1)(¢* + ¢v/20 + g + /20 + 1) = 17 () Py

(]

3C. Primitive prime divisor for Ree groups. The results in this subsection
are not needed for the rest of the paper, however they will be used elsewhere [31].
We make the choice v/3 > 0. For odd n € Z>1 and a = 1,5, set

P3 4(n) i= 11 (4 — 2v/3cos ]g—Z) :

1<k<12n, gcd(k,n)=1, k=a (mod 12)
PROPOSITION 3.6. If2{n >3 and a = 1,5, then P; ,(n) > 2n.

PROOF. A computation with Mathematica shows that Ps ,(n) > 2n when 3 <
n < 353. Now assume that n > 354. By B3d) m = ¢(n) > n%7 > 153, so
m > 154, and ow(n) < pb5/11,

Fix a € {1,5} and let R; := {(j — )n < k < jn | ged(k,12n) = 1,k =
a (mod 12)} for 0 < j < 11. For each j, observe that k € R, if and only if
0 <FE :=k—jn < mnis coprime to n and ¥ = a — jn (mod 12). If 3 { n, then
according to Proposition B.1],

|R;j| = {0 <k <n|ged(k,n) =1,k =a— jn(mod 12)}|

satisfies ¢(n)/12 — 290" < |R;| < ¢(n)/12 + 22(™). On the other hand, if 3|n then
3t (a — jn), so by Proposition [32]

|Rj| = {0 <k <n|ged(k,n) =1,k =a— jn(mod 12)}|
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satisfies ¢(n)/8 — 2~ < |R;| < ¢(n)/8 + 201,

Setting b := 12 when 3 { n and b := 8 when 3|n, by the above consideration,
now
(3.6.1) m/b—m® < |R;| < m/b+m®*
Now, if k € Sy U Sy1, then 4 — 2v/3 cos(kn/6n) > 4 — 2v/3. If k € Sy U Sip, then
4 — 2/3cos(kn/6n) > 1. If k € Sy U S, then 4 — 2v/3cos(kr/6n) > 4 — /3. If
k € S3USg, then 4—2\/3005(14:77/671) > 4. If k € S;US7, then 4—2\/3005(14577/671) >

4+4+/3. Finally, if k € S5USe, then 4 —2v/3 cos(km/6n) > 7. Tt follows from (Z.6.1)
that

Pg,a(’n) > (4 . 2\/§)2m/b+2m5/11 . ((4 B \/g) 4. (4 n \/g) . 7)2m/b—2’m5/11
5/11 > Am/GB—Qm
with A := 364(4 — 2v/3) and B := 364/(4 — 2V/3).
Setting f(t) := A/6B=2t"""=7/6,
g(t) =log f(t) = (1/6) log(A) — 2t°/ " log(B) — (7/6) log(1).
Now ¢'(t) = log(A)/6 — log(B)/(1.1t5/1) — 7/6t is increasing, so ¢'(t) > ¢'(154) >

0.48 when ¢ > 154. It follows that g(m) > g¢(154) > 0.74, and so f(m) =
exp(g(m)) > 2.09. Thus, for m = ¢(n) > 154

Ps 4(n) > f(m)m™% > 2m7/6 > 2n,
as desired. O

THEOREM 3.7. Let ¢ = 3" with 2t n. Ifn > 3, then t(q) =t~ (q) '= q¢—+/3¢+1
is divisible by a primitive prime divisor ppd(3,6n) of ¢*> — ¢+ 1. In all cases,
t+(q) := q++/3q+1 is divisible by a primitive prime divisor ppd(3,6n) of ¢> —q+1.

5/11

_ AQm/bB—Zm

ProOOF. (i) Note that ¢(3) = 1. Henceforth we will assume n > 3. Consider
the sets

A ={1<Fk<6n|gedk,12n) =1, k= j (mod 12)},
Bj:={6n+1<k<12n|gcd(k,12n) =1,k = j (mod 12)}
for 5 =1,5,7,11. Then the map k — 12n — k yields bijections
Ay <— Bq1, A1 <— By, A5 +— B7, A7 +— Bs,
and the map k — k + 6n yields bijections
Ay «— By, Ay «— By, A5 +— B11, A1 «— Bs.
It follows that

(3.7.1) |A1] = |As| = |Br| = |Bul, |A7[ = [A1u| = [Bi| = [Bs|.
Since Uj=15,711(4; U B;) = {1 <k < 12n | ged(k,12n) = 1}, we now see that
(3.7.2) [Aj] + [Bj| = ¢(12n) /4 = ¢(3n)/2

for each j =1,5,7,11.

(ii) Make the choice of ¢ := (32, = exp(mi/6n) and consider the cyclotomic
polynomial

D19, (X) = H (X—(jk).

1<k<12n, ged(k,12n)=1
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If 1 <k < 6n then (X — ¢F)(X — ¢FH67) = (X — ) (X +¢F) = X2 —¢k,. Tt follows
that
Bion(X) = 11 (X% —¢k) = Pon(X?).
1<k<6n, gcd(k,6n)=1
In particular,

(3.7.3) B (3) = P1on(V3).
Setting
(3.7.4) D13n,0(X) = 1T (X —¢h),

1<k<12n, gcd(k,12n)=1, k==+a (mod 12)
for a = 17 5, we have (I)lgn(X) = (I)lgml(X)q)lgn,{;(X). 1\16)@7 since

k
(V3 =M (V3 =12 k) =4 - 2v/3cos 6—7T
n
for each 1 < k < 12n, using the bijection k — 12n — k in (7))

(375) PB,G,(TL) = q>12n,a(\/§)7
for a = 1,5. Using (3.7.3) also
(3.7.6) Py 1(n)Ps5(n) = ®en(3).

(iii) Here we show that Ps;q(n) and Ps;5(n) are integers. Clearly, they are
algebraic integers in Q(¢). Hence it suffices to show that each of them is fixed
by any Galois automorphism o : ¢ ~ (!, ged(l,12n) = 1. First consider the
case j = +1 (mod 12). Then o fixes V3 = (12 + (15, and fixes each of the sets
C = Uj:l,ll(Aj U Bj) and D = Uj:l,ll(Aj @] Bj) modulo 12n. Since

Pyi(n) =[] (vV3=¢b), Pys(n) = T (V3-¢M),

keC keD

it follows that o fixes each of P3 1 (n) and Ps 5(n). Now assume that j = £5 (mod 12).
Then o sends v/3 to —v/3 and ¢* to ¢¥!, and thus

a(\/g_gk) — V3= _(\/g_ C6n+kl).
Note that modulo 12n, when k runs over C, 6n + kl runs over C, covering each
element of C' exactly once. Also, |C| = ¢(3n) by BL2), and so |C| is even. It
follows that o sends Ps1(n) to (—1)/¢IP31(n) = P31(n), and similarly o fixes
P375(TL).

(iv) We also set
FTX) = X2 —VBX" 41, fHX) = X? +V3X" +1,
so that
()= f~(V3), t7(@) = [T(VB), ST (X)fT(X) = X" - X 41

Certainly, any root of X4 — X2" 4 1 is ¢* for some integer 1 < k < 12n coprime
to 6. If k= 41 (mod 12), then

F7(¢F) = exp(kmi/3) + 1 — V3exp(kmi/6) = 0.
Similarly, if K = +5 (mod 12), then
¢k = exp(kmi/3) +1 + \/gexp(k:m’/6) =0.
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It follows that
fo(X) = II (X = ¢, 1)

1<k<12n, k=41 (mod 12)
= 11 (X —¢h).
1<k<12n, k=+5 (mod 12)
Comparing to [B.74) and [B7H]), we see that
£~ (V8)/Pra(n) = 11 (V3 ¢¥)

1<k<8n, gcd(k,12n)>1, k=+1 (mod 12)

is an algebraic integer. But f~(v/3) = t~(g) is an integer, and P3 ;(n) is an integer
by (iii). Hence Ps;(n) divides ¢~ (g). Similarly, P3 5(n) divides ¢ (q).

(v) By Proposition B.6] Ps1(n) > n. Consider any prime divisor ¢ of P 1(n),
which then divides ¢t~ (¢q) by the result of (iv), and divides ®g,(3) by [BL6). Since
0/(¢> —q+1), £ #2,3. Suppose that ¢ is not a primitive prime divisor of 35 — 1.
Again by [34] Satz 1] £|3n, whence ¢|n as £ > 5, and moreover £? { ®g,,(3). It follows
that the ¢-part of Ps1(n) is £. Hence, if t~(g) is not divisible by any primitive prime
divisor of 35" — 1, then Ps;(n) divides n, a contradiction.

The proof for t*(q) is entirely similar. |

3D. Primitive prime divisors for Suzuki-Ree groups: another ap-
proach. For 6 € ZT, a € (Z/§)*, and x € RT with 2 > 1, let

fiamedd(z) = II (= = G5p)-

a€(Z/én)* :a=+a (mod §)

Note that for such 4, , and z, f7(za mod 5)@) € R by pairing a with —a. Note also
that
fr(Ll mod 8)(\/5) = Pg’l(n) = (I)8n,1(\/§)’
f»,(lg mod 8)(\/5) — P273(’n,) = @871,3(\/5)7
fllmod 12)(\/3) — Py 1 (n) = ®19,.1(V3),
f7(L5 mod 12)(\/§) — P3,5(n) = (I)lgn,g,(\/g)
in the notation above.
LEMMA 3.8. Letn € Z*. Let x > 1. Then
fT(Lamodé)(I) ny(LamOdé)(l)' (I;’ ) .

PROOF. The claim is evident for x = 1, and we will show that

(o mod §) (IE)

n

2:6(5n)
(z+1) %0
is increasing in x. Indeed
7(lo¢ mod 5)(1') B ‘.’E—gﬂ
2-$(5n) H z+ 1 9
(il? + 1) #0) a€(Z/én)*:a=ta (mod §)
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and it suffices to show each factor is increasing in . But for all z € S', denoting
by 9(z) the real part of z,

lz— 22 2 —2z-Rz4+1 2z

(z+1)2  2242z4+1 = (z+1)2

1 1

S . = _ B .
which is increasing in x because TDE T T syl decreases in x when

x> 1. O

For a,b € Z*, write ged(a, b>®) := Hp‘bp”P(“), and rad(a) =[], p.

LEMMA 3.9. Letn € Z*t. Let m := Then

__n ___
ged(n,6%°) °

1 2.(—1)#I51
f(a mod 6)(1) _ H }1 _ C(‘;"npesl) (mod §)
n

SC{plm}

PROOF. We first claim that if rad (s ) = rad (geagss )
(e mod 6)(1) _

n ffﬁ mod 5)(1). This follows by repeatedly applying the following. If
p|n is such that k := v,(én) > 2, then, writing dn =: p* - s, because XP — Y? =
[Toer, (X — ¢b-Y) as elements of Z[(,][X, Y],

fT(la mod 6)(1) _ H H (1 B ;:_gk_l.&b)

a€(Z/pk—1s)*:a=+a (mod §) bEF,

= II (1= Gpomrey)-

a€(Z/pk—1s)*:a=+a (mod §)

, then

Therefore without changing fr(f‘ mod 8) (1), we may assume without loss of generality

that n is squarefree and such that ged(n,d) = 1.
Now if p|n, writing én =: p-ng and letting p’, ny, € Z be such that pp’+nonf = 1,

fr(za mod 6)(1) _ H H (1 . Sﬁf +bnon0)

a€(Z/no)* :a=Fa (mod §) beF )

= I1 [Ta-ar-¢m

a€(Z/no)* :a=Fa (mod §) beF )

- 11 [Ta-ar-a)

a€(Z/no)* :a=Fa (mod §) beF )

via b p-b. Now we apply the identity 2=~ = [T,epx (X — ¢} Y) to find:

1-¢%)
(o mod §) _ ( no
fn (1) - H (1 _ ap’)
a€(Z/np)* :a=%a (mod §) o
a mod &
et ()

- ap’ mod & :
et ()
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Since the lemma is evident for n = 1, by induction on the number of prime
factors of n, we find that

’1 _ Ca'l_[KSJ*l (mod 6)| 2-(—1)#I%I
fr(La mod 5)(1) — H ( .671' e 6)|>

scizy \[1 =G Mees

= H |1 _ C;x-l_[ees 27" (mod 6)’2.(_1)#|S\7

SC{{|n}

and we are done. O

COROLLARY 3.10. Let n € ZT with n > 3 be odd. Then

1 p|n : p = £1 (mod 8)
(1 mod 8) 1) = s
fn ( ) {(1+\/§)2w(n) 6[36
and
f3mod8 3p|ani1 (mOd 8)7
(1+ V?2) 22t else,
whence
2-¢(n)
(1 mod 8) (| /5 +1 Jpln : p = £1 (mod 8),
fa ( )= w(n)
(1+ \/_) 2 else
and

FEmod®) (/3 " Ip|n : p = £1 (mod 8),
" (1++/2)? else.

PrOOF. If there is a p|n with p = £1 (mod 8), then pair S —{p} with SU{p} in

the conclusion of Lemma[Zd to see that fi' ™7 8)( 1) = {3 med8) (1) = 1. Otherwise
every p|n is such that p = £3 (mod 8), so that by Lemma [3.9]

(1 mod 8) 1 — G5 2 _gw(n)
fn (”:(|1—<§|) = (V2

By the same reasoning
qw(n)

]- -3 w(n
f7(L3 mod 8)(1) _ | C8| _ (1 + \/5)2 ( ).
11— (sl
We are done by Lemma 3.8 a
COROLLARY 3.11. Letn € ZT with n > 3 be odd. Let m := —gcd(:(sx)' Then
Famod 12)(qy 1 o dpim : p= %1 (mod 12),
" (2++3)2 else
and
U5 mod 12) (1) _ 1 o Ip|m : p = +1 (mod 12),
(24 V/3)? else,
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whence
2Q2n)
Fmod12)((/3) > V3+1 )1 ’ Ip|m : p = £1 (mod 12),
" - 2 24 v3)"2" else
and

#(12n)

FEmod 12)((/3) > V341 ’ )1 ’ Ipim : p = £1 (mod 12),
" - 2 24 v3)2"  else.

PROOF. If there is a p|m := sedn o=y With p = +1 (mod 12), then pair S —

{p} with S U {p} in the conclusion of Lemma B to see that it med 12)(1) =
(5 mod 12)

n (1) = 1. Otherwise every p|m is such that p = +5 (mod 12), so that by
Lemma [3.9]
2w(7n)
1 mod 12 |1 — (o _gu(m)
= (=) —eevm
By the same reasoning
w(m)
mo 1-— CS 2 w(m)
(B
We are done by Lemma 3.8 O

4. Action on 2-groups and primitivity of local systems

We begin this section with a group theoretic lemma which will be used in the
proof of primitivity given in Theorem

LEMMA 4.1. Suppose A is a cyclic group of prime order p that acts faithfully
on a finite qg-group G, where p # q are primes. Let n be the order of ¢ modulo p.
Let x € Irr(G) be A-invariant and faithful, and write x(1) = ¢*. Then n < 2a.

PrOOF. We argue by induction on |G|. Let C = Cg(4) < G. Let C < N < G
be maximal A-invariant in G. Since G is nilpotent, N < G. Also, G/N is an
irreducible A-module. Notice that A cannot act trivially on G/N, because G =
[G, A]C, by coprime action. Hence, G/N is a faithful irreducible F,[A]-module. By
[35] Example 2.7], say, |G/N| = q". Let 6 € Irr(N) be A-invariant under x; such
exists by [20, Theorem 13.27]. Now, since G/N is an abelian chief factor of the
semidirect product GA and x is GA-invariant, by the Isaacs “going down” theorem
[20, Theorem 6.18], either xx = 6, or Yy = e with 2 = |G/N|, or §¢ = x.

In the third case, x(1) = ¢"0(1) = ¢"** = ¢, for some b > 0. Thus n <
n+b = a < 2a. In the second case, ¢" is a square, and that x(1)/0(1) = ¢"/2.
Then x(1) = ¢ 7¢ = ¢%, for some ¢ > 0. Then a = 5 + ¢, and again n < 2a.

In the first case, xy = 6 € Irr(N). If A does not act trivially on N, then A
acts faithfully on N. Since 6 is A-invariant and faithful, then we are done by the
inductive hypothesis. Otherwise, A acts trivially on N, and therefore N = Cg(A)
(because N is maximal A-invariant). By [39] Lemma 2.1], [G, A] C Ker(x). Since
x is faithful, A acts trivially on G. But this cannot happen. |

We will now introduce a general class of Airy sheaves F(q, f) that includes the
sheaves F,. Recall that ¢ = 22"*! = 2¢% and t(q) := q¢ — 290 + 1. Let ko/F2 be
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a finite extension, and f(z) € ko[z] a polynomial of degree (1 + ¢o)t(q). Form the
Artin-Schreier-Witt lisse sheaf

L(a: 1) = Lyy(lat@ s ()
on A /kg. Then F(q, f) is the constant field twisted Fourier transform

(4.1.1) Flg, f) = FTy(L(g, f)) @ (1 = (=1)")~ 4.
The trace function of F(q, f) at t € k, k/ko a finite extension, is

1 '
(4.1.2) ¢t ((1 - (_1)ni)deg(’“/ﬂ’2) ng(TraceWQ(k)/Wz(Fz)([x (q)’f(x) + tx])).

Assume in addition that
(4.1.3) f@) = fi("?)
for some polynomial fi(x) € ko[z] of degree 1 + go. If we make the substitution
x +— x/t, then [@I2) for ¢t € k* becomes
1

t gty D Y2 (Tracews, iy wage,) (2@ /119 f1 (2@ /819 a)) )
(1 — (=1~ Z) z€k
For
t(q) =rs,
we get a descent G(q, f,r) of F(q, f) to G,,/ko whose trace function is now
t— -1 21/)2 (Tracew, o) /wa ) (29 /1, fr (2D /%) + 2])),

(1= (1)
and whose Kummer pullback by 7t power is (the restriction to G,, /kg of) F(q, f):

[r]*G(q, f,7) = F(q, f)|Gm.

We next give a key lemma of Such, which is proved in [44], Proposition 11.1] but
not stated there explicitly.

LEMMA 4.2 (Such). Let F be an Airy sheaf of rank n > 2 on AYF,, ie.,
F is the Fourier transform FT(L) of a lisse, rank one sheaf L on A'/F, with
Swans (L) = n+ 1. If F is induced, then it is induced from an Artin-Schreier
covering of Al/E. In particular, if F is induced, then it is induced from a normal
subgroup of index p of its Ggeom-

PROOF. Let us recall the argument, which is contained in the proof of [44]
Proposition 11.1]. If F is induced, then it is g, in which case

End(F) = (¢:H) @ (¢ HY) D gu(HRHY) D g, 1,

and hence Endo(]:) D g.1/1. But ¢g,1/1 has rank < n, and all its slopes are
<(n+1)/n =14 1/n. But each slope of g,1/1 has denominator in lowest terms
at most the rank of g,1/1, which is < n. Therefore each slope, being at most
14 1/n, is in fact < 1. Then by [44] Corollary 3.3], ¢g,1/1 is the direct sum of
various Ly (az)-

The rest of the argument is given in the first eight lines of the second paragraph
of the proof of [44] Proposition 11.1]. O

We will need the following general result, a slight generalization of [30, Theo-
rem 4.6].
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THEOREM 4.3. Let F be a semisimple lisse sheaf on Gm/IF_p which is tame at 0.
Denote by J the image of 1(00) in G := Ggeom,r. Then G is the Zariski closure of
the normal subgroup of G generated by all G-conjugates of J.

PROOF. Denote by G, this Zariski closure. Then G is reductive, and hence its
quotient G /G is reductive. It suffices to show that every irreducible representation
of G/G is trivial. But a d-dimensional irreducible representation is a lisse sheaf
of rank d on G,,/F, which is tame at 0 (because P(0) dies in G) and lisse at oco.
By multiplicative inversion, this is an irreducible local system on A' /F_p which is

tame at 0o, so a representation of wi#™¢(Al/F,), which is the trivial group. O

We will also need a very special case (about subgroups of index 2) of (the second
part of) the following proposition. Since we cannot find a reference for it, we give
a proof.

PROPOSITION 4.4.

(i) Let G be a Lie group and H an abstract subgroup of finite index in G.
Then H is closed.

(ii) Let G be a reductive linear algebraic group over an algebraically closed
field k, and let H be an abstract subgroup of finite index in G. Then H is
Zariski closed.

PrOOF. (a) We give a proof of statement (i), which is due to Jason DeVito,
posted on MathStackExchange.

(al) First we show that if G is connected, then G is generated by its divisible
subgroups. Indeed, there is an open set U C G containing the identity such that
U C exp(L) for the Lie algebra £ of G. For any u in U, if u = exp(X), then u lies
in the divisible subgroup {exp(tX) | ¢t € R} of G. Since G is generated by U, the
claim follows.

(a2) Next we show that if G is connected and H < G is of finite index, then
H = G. Indeed, by considering the action via left translation of G on the finite set
G/H of left H-cosets, we see that H contains a normal subgroup K <1 G of finite
index. By (i), G, and so G/ K, is generated by its divisible subgroups. But G/K is
finite, so K = G.

(a3) In the general case, consider the map ¢ : G°/(H N G°) — G/H defined by
x(H N G°) — xH. Then ¢ is injective, and so H N G° has finite index in G°. By
(a2), H > G°, and so H is a union of a finite number of G°, each of which is closed.
Hence H is closed.

(b) For statement (ii), the argument in (a3) shows that it suffices to prove that
if G is connected reductive and H has finite index in G, then H = G. The argument
n (a2) allows us to further assume that H <G. Recall [5] p. 16] that G = TG, G|,
where T' = Z(G)° is a central torus of G, and the derived subgroup [G,G] is a
central product Gy o...0G, of simple groups. In particular, for each i, HNG; is a
normal (abstract) subgroup of finite index of G;. As G is generated by (unipotent)
root subgroups, [48] Main Theorem]| implies that H N G; is either equal to G; or
contained in Z(G;). The finite index assumption now ensures that H > G; for all
i, and thus H > [G, G]. Next, HNT is a normal (abstract) subgroup of finite index
say m in T. In particular, H contains t" for all ¢ € T. But the torus T is (k*)" for
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some 7, so k = k implies that any element in 7" is an m'" power, and hence H > T,
completing the proof. [The referee kindly pointed out a much simpler argument as
follows. If H <1 G has index N in G then G contains all powers ", g € G. But G,
being connected reductive, is generated by its maximal tori, and the map g — ¢v
is surjective on each maximal torus. Hence H = G'] ]

As pointed out by the referee, in both of the cases of Proposition [£.4], once H
is closed, it is also open (indeed, G \ H is a disjoint union of a finite number of
cosets gH, each being closed, and so it is closed).

THEOREM 4.5. Let ¢ = 221 with n € Z>1 and n # 2. Under the assumption
@EI3), the group Ggeom,F(q,1) 0f the Airy sheaf F(q, f) has no subgroups of index 2.
As a consequence, the Airy sheaf F(q, f) is not geometrically induced, and hence
none of the sheaves G(q, f,r) is geometrically induced.

PROOF. Assume to the contrary that the Airy sheaf F(g, f) is induced. Then,
by Lemma 2] the underlying representation V' of the geometric monodromy group
G 1= Ggeom of F(q, f) is induced from a subgroup G; of G of index 2.

(i) For each divisor » > 1 of ¢(g), consider the descent G(q, f,r). Because
F(q, f) is lisse at 0, the image of I(0) in the geometric monodromy group H of
G(q, f,r) is the cyclic group s, (F2) of order . Because the co-slopes of F(q, f) are

(2" + Dt(q) (2" + 1t(q)
(27 +1)t(q) — 1’ (27 4+ 1)t(q) — 1
< 1. Tt then follows from [30l Proposition 4.2] that H is equal to the Zariski closure
HZ* in H of the normal closure Hy in H of the image of I(0).

if r > 1, then the oco-slopes of G(q, f,r) are (1/r)

We next show that for » > 1, H has no subgroup of index 2. We argue by
contradiction. Suppose that H has a subgroup H; of index 2. Since every H-
conjugate of the image of I(0) has odd order r, all such conjugates are contained
in Hy, and thus Hy < H;. But H; is closed in H by Proposition [£4(ii), so H =
HOZar < Hi, and hence H = H1y, a contradiction. We have shown that H has no
subgroup of index 2.

(ii) We also know that G is a normal subgroup of H of index dividing r, simply
because by the r™ power map, G,,/F2 becomes a finite étale Galois covering of
itself with cyclic group of order r, and G and H are respectively the Zariski closure
of the images of 71(G,,/F2) and of a normal subgroup of cyclic index r of that
group. Now if H = G, then the existence of G; leads to a contradiction by (i). If
we now take r to be a prime dividing ¢(q), then H/G = C.

Let J and @ denote the images of I(o0) and of P(o0) in H. By Theorem [£.3]
H is equal to the Zariski closure HZ* in H of the normal closure Hy, in H of
J. Suppose for the moment that r t [J|. Then every H-conjugate of J has order
coprime to r, and so they are all contained in G, and thus H, < G. But G is
closed in H, so H%* < GG, and hence H = G, a contradiction.

We have shown that r divides |J|. Recall that J = Q x C, with C a cyclic
2'-group that permutes cyclically and transitively the ¢ — 1 simple Q-submodules
V; in V, each of dimension gy = 2. As @ is a 2-group, C' is of order divisible by 7.

(iii) Since n # 2, by Theorem B4l the integer t(¢) = ¢ — /2¢+ 1 admits a prime
divisor

(4.5.1) r = ppd(2,4(2n + 1)).
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At this point, we take for r a ppd(2,4(2n + 1)) which divides t(q). Fix ¢ € C
of order r. Since r|t(q), r 1 (¢ — 1), and so ¢ stabilizes each of the subspace V;,
and certainly normalizes Q). For each i, let ®; denote the representation of (Q, ¢)
on V;. We claim that ®;(c) centralizes ®;(Q). Otherwise, ®;(c) acts faithfully on
®,;(Q), of prime order r, and ®;(Q) is faithful and irreducible of degree 2". Hence
by Lemma 1] the order of 2 modulo r is at most 2n, which contradicts ([{.5.1).

Therefore, for each i, ®;(c) = a; - Idy; for some «; € C*. But the cyclic group
C permutes the V;’s transitively and c € C,so a1 = ... = g1 =! o, i.e., c acts on
V as a-Idy. As|c| =7, a # 1 is a primitive 7" root of unity. Thus we may assume
that ¢ € J has trace dim(V') - ¢,. On the other hand, by Theorem 22 and (£.1.2),
the trace of every element in J belongs to Q(¢). Thus (. € Q(i), a contradiction
since r is an odd prime.

(iii) Since the irreducible representation V of G = Ggeom of F(qg, f) is not
induced, for any r|t(g), the representation of Ggeom 0of G(g, f,7) on V, which contains
G, is not induced. O

5. Condition (S+) and autoduality for Airy sheaves

In this section, we continue to consider Airy sheaves F(q, f) of the same general
shape ({11, but we consider them only geometrically, i.e., as lisse sheaves on
A'/Fy. The key insight on which the results of this section are based is due to
Such, cf. [44] Proposition 11.1].

LeEMMA 5.1 (Such). Let F be an Airy sheaf of rank D > 2 on AYJF,. Let H
be a direct factor of End(F) of rank v < D. Then H is a direct sum of Ly(az) for
Various a € IF_,,.

PRrROOF. The co-slopes of F are all 1+1/D. All slopes of End(F) are therefore
< 1+ 1/D. Thus all slopes of H are < 1+ 1/D. But each slope of H, written
in lowest terms, has denominator < r. Therefore H has all slopes < 1. Now take
an irreducible constituent K of H. Its Fourier transform, i.e., t — H.(A!/F,, K ®
Ly (tz)), is perverse irreducible on Al /F_p, so is either a single delta function J, or is
the extension by direct image of a lisse sheaf on a dense open set. But on a dense
open set of the ¢-line, K ® Ly 1) has all co-slopes 1, so H2(A'/F, K ® Ly (1z)) =0
and by the Euler-Poincaré formula x.(A'/F,, K®Lyz)) = 0, s0o FT(K) is punctual,
hence a single J,. This means in turn that each irreducible constituent of H is
an Ly(qe). Because F is irreducible, End(F) is completely reducible, hence H is
completely reducible, and so it is the sum of its irreducible constituents. O

THEOREM 5.2. Let F be an Airy sheaf of rank at least 2 on A'/F,. Then the
following conditions are equivalent:
(i) F is geometrically induced. -
(ii) End(F) contains a summand Ly 4q) for some a # 0 in Fp.
(iii) There exists a geometric isomorphism F = F @ Ly(_aq) for some a # 0
mn E.
PrROOF. Let us denote by n the rank of F. If F is induced, then it is g,H, in
which case
End(F) = (¢:H) @ (¢ HY) D gu(HRHY) D g, 1,
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and hence End’(F) D g, 1/1. But g,1/1 has rank less than n. So by Lemma 5.1}
gx1/1 is the direct sum of various Ly z). As End’(F) does not contain the trivial
sheaf (by irreducibility of F), we find that End’(F), and hence End(F), contains
some Ly (qq) for some nonzero a € F,.

Conversely, suppose End(F) contains a summand Ly (44 for some a # 0 in F,.
Thus there is a nonzero geometric homomorphism from F to F & Ly(—aq). But
source and target are geometrically isomorphic, so every nonzero homomorphism
is an isomorphism. Thus we have a geometric isomorphism

FE2FQ® [’w(—am)-

That F is geometrically induced is the special case, where G is Ggeom for F @
Ly(—az), V is F, L is Ly(—az), N is p, and E is Q, of the following general
statement in characteristic zero representation theory. ]

THEOREM 5.3. QOver an algebraically closed field E of characteristic zero, let V
be a finite dimensional irreducible representation of dimension d > 2 of a group G,
and L a one-dimensional representation of G which, viewed as a linear character
x of G, has finite order N > 1. Suppose that V =V ® L as representations of G.
Denote by Gy := Ker(x) the kernel of x, so that Go < G with G/Gy cyclic of order
N. Then V is induced from a representation of a subgroup H with Gy < H < G.

PROOF. We first reduce to the case when N is prime. If V 2V ® L, then by
induction V = V ® L®" for every integer n. Let r be a prime dividing N. Replacing
L by L®W/™) and Ker(x) by the overgroup K := Ker(x/")), we are reduced to
the case when N = r is prime.

Let U be a simple summand of Vg, which is semisimple since K < G. By
Clifford theory, cf. [7, (50.5)], V is induced so long as V| is not isotypic. Hence,
if V' is not induced, then V|x 2 eU :=U®U @ ... d U for some e € Z>1. Note

e times

that Ind% (E) = @7_, L®, so by Frobenius reciprocity, cf. [8 (10.20)],
Ind§ (V|x) 2 Ind% ((V|x) ®E) 2 V @ mdZ(E) = @l_ (V @ L®) 2 rV.
Again by Frobenius reciprocity [8 (10.8)],
e® = dim Homg (V |k, V| k) = dim Homg (V, Ind%(V|K)) = dim Homg(V,7V) =,
a contradiction as r is a prime. O
The following general result is stated for ease of later reference.

THEOREM 5.4. Let F be a lisse irreducible Qq-sheaf of rank d > 2 on a smooth,
geometrically connected X /IF,,. Suppose that Endo(]:) contains a rank one summand
L. Then F is induced.

PROOF. Because £ occurs in End’(F), it cannot be trivial (as by irreducibility
of F, End(F) contains 1 exactly once). Exactly as in the proof of the implication
(i) = (iii) in Theorem [5.2] we infer that F = F @ £~!. Taking determinants of
this isomorphism, we find that £8¢ is trivial. Thus £ has finite order N > 1 as a
character of m1(X). Now apply Theorem a

THEOREM 5.5. Let ko /Fo be a finite extension, and f(x) € kolz] a polynomial of
degree (14+qo)t(q). Then the Airy sheaf F(q, f) introduced in [EI1T) is geometrically
primitive, i.e., is not geometrically induced.
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PrOOF. (i) In view of Theorem [(.2] it suffices to show that there is no geo-
metric isomorphism from F(q, f) to F(q, f) ® Ly(ag) for any a # 0 in F,. We
argue by contradiction. Because F(q, f) was geometrically a Fourier transform,
s0 is F(q, f) ® Liy(ax); the effect of tensoring with Ly ,4) after FT is the same as
translating additively by —a before FT:

F(4, f) ® Ly(azy = FT([x = x — a]"L(q, f))-
Since FT is invertible, an isomorphism of F(q, f) with F(q, f) ® Ly(ae) gives an
isomorphism of L(q, f) with its additive translate by —a:

Lo (@, @) = Lapa(((2-a)@ f(z—a)))-
We will show no such isomorphism exists.

(ii) Suppose that n > 2. In this case, we argue as follows. If two lisse rank one
sheaves are isomorphic, then so are their tensor squares.
Quite generally, addition of Witt vector of length 2 over an Fs-algebra is given
by
(0,8 + [A, B] = [a+ A, B + b+ aA), [a,8] + [a,8] = [0, 0?].
Thus
®2 _ _ _ ~
Loag@) @) = Lvala@), f@)+a(@).f@)) = La((0,9@)2) = Lo(g(a)?) = Ly(g())-
So we would have a geometric isomorphism
Ly(at@)) = Ly((@—a)@));
or equivalently a geometric isomorphism
Loy ((z—a)t(@—gti@) = Q.

Now we use the explicit shape of t(q) = ¢+1—2q0 = 2¢3 —2qo+1 = (go—1)(2q0) +1.
The key point is that ¢(¢) = 14 dQ with d > 2 prime to p = 2 (here d = go — 1)
and @ a strictly positive power of p = 2 (here @ = 2gy). Then

(z = a)'*P = (z — a)(z? — a?)1
=(z —a) (de — da®z47V? 4 (terms of degree < (d — 2)Q))
= gtH4Q _ 4aQz1 (4D o (terms of degree <1+ (d—2)Q)
+ (polynomial in 2% of degree d).
Thus, up to Artin-Schreier equivalence,
(z — a)'*+9Q _ g1+dQ
= —da®Qz'T@=DC L (terms of degree < 1+ (d —2)Q) + (a term of degree d).

Thus Ly ((z—a)1+i@_z1+aq) has Swan = 1 + (d—1)Q > 0, so is not geometrically
trivial.

(iii) We now turn to the case n = 1, which requires a more delicate analysis.
What makes the n > 2 case argument work is that ¢gg —1 = 2 — 1 has n > 2 binary
digits. In the n = 1 case, t(8) = 5, so the above argument would involve examining

(x—a)® —2° = (z —a)(z* —a*) — 2° = az* — a*z + d®,

but this is Artin-Schreier equivalent to (a'/* — a*)z, which for a € 5 is Artin-
Schreier trivial.
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Thus we must look instead at

-1
L (((a—a)s, fa—a)])) @ Ly, (125, f(2)]) = Lvoa(((w—a)?,f(@—a)]~[25,f (z)])-
Here —[a,b] = [a,b — a?], implying —[2°, f(x)] = [25, f(x) — 2'°], so this is

Lo (((2—a)5+25 f(z—a) + [ (z) ~2104a> (2 —a)5])-
But f(z) has degree 15, say f(z) = bx'® + cz'* + dx'3 + lower terms with b # 0.
So under Artin-Schreier equivalence

f(z) = bx'® + da'® + lower terms.
Similarly, under Artin-Schreier equivalence
f(z —a) = bz —a)z'® + d(z — a)'® + lower terms.
Thus under Artin-Schreier equivalence
flx—a)+ f(z) — 2% + 25(z — a)® = b(z — a)'® — bx'® + lower terms.
The difference
b(z —a)'® — ba'® = —abx' + ba’x'® 4 lower terms

is thus Artin-Schreier equivalent to

ba’z'3 4 lower terms.
Now view Ly, ([(z—a)5 425, f(z—a)+f(z)—219425(z—a)5]) @S the tensor product (using

[av b] = [a7 0] + [07 bD

L, (((2—a)3+2%,0] @ Ly(f(2—a)+f(2)—21042% (2—a)?)-
The first factor has Swan., < 2 x 4, while the second factor, which is
L.y (a polynomial of degree 13); Nas Swan,, = 13, and hence their tensor product has
Swan., = 13, so is not geometrically trivial. |

Recall that a lisse sheaf H is Lie-irreducible if, in the underlying representation
of its Gigeom, the identity component G, acts irreducibly. It is Lie-self-dual if

the given representation of Ggeom, when restricted to Gigeoy,, is self-dual.

THEOREM 5.6. Suppose that a lisse sheaf F(q, f) as in (£I11) is Lie-irreducible
and Lie-self-dual. Then F(q, f) is self-dual.

PROOF. The two sheaves F(q, f) and its dual F(q, f)V are irreducible represen-
tations of Ggeom Whose restrictions to the identity component Gy, are isomorphic.
So the two, as representations of Ggeom, differ by a linear character of Ggeom/ Ggeom.
Thus

Fla.f)' =Flg.f)leL
for some lisse, rank one £ on Al. Both F(q, f)V and F(q, f) have all co-slopes
1+ 1/rank(F(q, f)) < 2. Therefore, Swan(£) < 1 (otherwise F(q, f)" would
have all co-slopes > 2).

If Swan., (£) = 0, then £ is lisse on Al and tame at oo, so geometrically trivial,
and F(q, f) is geometrically self-dual. If Swan,(£) = 1, then L is Ly 44 for some
nonzero a € IF_p. We will show that this case cannot arise.

Recall that F(q, f) := FTy(Ly,(2t@,f(z))))- In general, the interaction of FT
with duality is a geometric isomorphism
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In characteristic 2, where 1 takes values +1, we have 1) = v. Thus

F(q, )Y ZFTy(Lyy(—or@, @) = FTo (L (1@ ()4 (2t @)2]))

while

F(a@, ) @ Lyaz) = FTy([x =z — a]" Ly, (g1, p(2))) = FTo (Lo (((z-a)t@ , fz—a))))-

By Fourier inversion, this is equivalent to a geometric isomorphism

Lo (fat@ £ (@) +(@4@)2]) = Lapy (((2-a)t @, f(a—a)))-
We first treat the case n > 2. Already the tensor squares of these two lisse rank
one sheaves are not geometrically isomorphic, by the identical argument used to
treat the case n > 2 in the proof of Theorem
In the case n = 1, we must show that the lisse rank one sheaf

Lyy((z—a)*. fla—a)]) ® (sz([w5>f(w)+(w5)2]))7l

is not geometrically trivial. The second tensor factor is

(ﬁwz([ﬂcm>J“(90)+(w5)2]))71 = Ly (—[25,f(@)+@9)2) = L (2%, f(@)))-
So we must show that
sz([(w—a)57f(w—a)]) ® ﬁw([:ﬁ%ﬂx)]) = sz([(%—a)5vf(ﬁc—a)]+[$57f($)])
= Ly ((a—a)s+25,f (z—a) + f () +25 (2 —a)%))
= Lyy(((a—a)5+25,0)) @ Ly(f(@—a)+f(2)+a5(@—a)®)

is not geometrically trivial. Exactly as in the proof of the n = 1 case of Theorem 5.5,
the first factor has Swan,, < 2x4 = 8, while the second factor has Swan,, = 13. O

THEOREM 5.7. No sheaf F(q, f) introduced in [11]) is geometrically self-dual.

PrROOF. Recall that F(q, f) := FTy (EQ/JQ([zt(q)’f(m)])). In general, the inter-
action of the Fourier transform FT with the duality functor D(-) is a geometric
isomorphism

D(FTy(H)) = FT;(DH).

In characteristic 2, where v takes values 41, we have ¢ = 9. Therefore, F(q, f) is
self-dual if and only if Ly, [yt f(z))) 18 self-dual. Its dual is Ly, (_[e@ (2)))- We
have the Witt vector addition law [z, y] = [z, 0]+[0, y], and, for Witt vectors over Fa-
algebras, —[z,y] = [z, y+2?]. So the dual ofﬁwz([xt<q>7f(x)]) is sz([xt(q)vf(x)+(xt(q))2]),
and the asserted isomorphism is

Loy (zt@,0)) @ L)) F Lyy(for,0))) ® Ly(f(a)+(t@)2)-
This holds if and only if there is an isomorphism
Ly(s@) = Ly(@)+)2);

or equivalently if L ()2 1S geometrically trivial. By the Artin-Schreier
reduction, we have Ly ((zt0)2) = Lye@). The latter sheaf is not geometrically

trivial, because z'(% is a polynomial of odd degree t(q) and so the sheaf has
Swan o (Ly(ge)) = t(q) # 0. O

COROLLARY 5.8. Suppose that the sheaf F(q, f) introduced in {@IT) is Lie-
wrreducible. Then it is not Lie-self-dual.

ProoF. Combine Theorem and Theorem [5.71 a
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THEOREM 5.9. The sheaf F(q, f) introduced in ([EI1I]) is tensor indecompos-
able.

ProOOF. Welvill show that F (g, f) is tensor indecomposable as a representation
of 71 := m1(A'/F,). Because 71 has cohomological dimension < 1 (this is true for
the 1 of any smooth, connected affine curve over an algebraically closed field), the
argument of [27, Corollary 10.4] shows that if F(q, f) is tensor decomposable, then
it is linearly tensor decomposable, i.e., we have an isomorphism of local systems on
Al /Ty,

Flg, f) =A@ B,
with both rank(A), rank(B) > 2. To fix ideas, suppose rank(A) < rank(B). Then
End(F(q, f)) = End(A) ® End(B)
= (1 4+ End’(A)) ® (1 + End®(B)) contains 1 + End®(A).
Thus End®(F(q, f)) contains End’(A) as a direct factor. Now End”(A) has rank
less than
(rank(.A))? < rank(A) rank(B) = rank(F(q, f)).
So by Lemma B1, End”(F(q, f)) contains some Ly(az)y With a # 0 (a # 0 be-

cause End’(F(q, f)) only contains 1 once, by irreducibility of F). The proof of
Theorem shows this is impossible. O

LEMMA 5.10. For every integer n > 2, the integer 2 — 1 is never a perfect
power ™ with x € Z and m > 2.

PrOOF. We argue by contradiction. If 2" — 1 = 2™ then « is odd and z™ =
2" —1 = 3 (mod 4). Thus m is odd, and hence 2™ = 2™ + 1 is divisible by z + 1.

The quotient ””:++11 > 1 is the alternating sum of m powers of the odd integer z, so
is itself odd. Thus ’”Hﬁl is an odd divisor of 2", the desired contradiction. O

COROLLARY 5.11. Forn > 1, no lisse sheaf of rank 2"(22"*1 —1) can be tensor
induced. In particular, F(q, f) is not tensor induced.

THEOREM 5.12. The local systems F(q, f) on Al/Fy introduced in @I all
satisfy the condition (S+) of [30, Definition 1.2].

PRrROOF. First, by [44, Proposition 7.4] the underlying representation V of
Ggeom of F(q, f) is irreducible. That F(q, f) is primitive, tensor indecomposable,
and not tensor induced is the content of Theorem [(.5], Theorem and Corol-
lary BITl That det(F(q, f)) has finite order results from the fact that F(q, f)
began life over a finite subfield of F,, (in fact any subfield containing the coefficients
of f). O

THEOREM 5.13. For the local system F(q, f) on A'/Fy introduced in (ZI11),
every irreducible constituent of End®(F(q, f)) has dimension > rank(F(q, f)). In
particular, if Ggeom, 7(q,f) 5 N0t finite, then G;wm’}-(q’f) s a simple algebraic group
of dimension > rank(F(q, f)).

ProOF. By Lemma Bl any irreducible constituent of dimension < D :=
rank(F(q, f)) is a single Ly (4z), while Theorem shows that End®(F(q, f)) con-
tains no Ly (). Because F(q, f) satisfies condition (S+) by Theorem B.I2] if

o

Ggeom,F(q,f)) 18 not finite, then its identity component Ggoom,]-‘(q,f)) is a simple
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algebraic group. In that case, Lie(Ggeom g f))) is an irreducible constituent of
End’(F(q, f)), so has dimension > D. O

THEOREM 5.14. Consider the sheaf F(q, f) in (&I1I) subject to the condition
@I3). Then, for each r|t(q), the descent G(q, f,r) satisfies the condition (S+) of
[30] Definition 1.2].

PROOF. Because Gyeom,7(q,f) i @ subgroup of Ggeom,g(q,f,r) Of finite index, the
fact that F(q, f) satisfies condition (S+), see Theorem [5.12] implies that G(q, f,r)
does as well. [Condition (S+) holds for (G,V) if it holds for (H,V) with H a
subgroup of G of finite index.] O

We also record the following:

THEOREM 5.15. Under the condition &I13), if the sheaf F(q, f) in @EILI) is
Lie-irreducible, then it is not Lie-self-dual.

ProoF. This is just a restatement of Corollary [5.8] under the more restrictive
hypotheses of [@I3]). Given Theorem (.7, it suffices to show that if F(q, f) is
Lie-irreducible and Lie-self-dual, then it is self-dual.

However, there is a simpler proof of this last fact, using the descent G(g, f) :=
G(q, f,t(¢q)) in Theorem B4l Exactly as in the proof of Theorem (.6, we find an
isomorphism

Gla, /) =2G(q. /oL

for some lisse £ on G,, of rank one. Because G(q, f)¥and G(q, f) are both tame at
0 and with all co-slopes < 1, £ is tame on G,,, hence a Kummer sheaf £,. Because
G(q, f)Vand G(q, f) both have I(0) representations which are sums of characters
of order dividing ¢(g), x is a ratio of characters of order dividing ¢(g), so x has
order dividing t(q). Pulling back this isomorphism by #(¢q)*® power, we get an
isomorphism F(q, f)¥ = F(q, f)- O

6. A local system for the Suzuki group 2B5(8)

Now we can prove the first main result of the paper, which establishes [26],
Conjecture 2.2] in the case ¢ = 8:

THEOREM 6.1. Let ¢ = 8. Both the local systems F; and G4 have geometric
monodromy group Ggeom = 2B, (8) in one of its irreducible representations of de-
gree 14. Over Fy, the local systems F, and G, have arithmetic monodromy group
Glarith = Aut(?Ba(8)).

PRrROOF. (a) Let G, respectively H, denote the geometric monodromy group of
Fy, respectively of G,. Similarly, let Garitn, respectively Hyricn, denote the arith-
metic monodromy group of F,, respectively of G,, over Fa. We will use the fact that
f = Froby r, has order 15 and trivial determinant. Indeed, a MAGMA calculation
shows that

Trace(Froby f,,;|G,) = Trace(Froby r_,, |F;) = 14.
By Theorem 2.2] Frob; r,,;|G, is semisimple, hence (being of weight zero in a 14-
dimensional representation) is the identity. Therefore, det(Froby r,;|G,)) is a root

of unity of order dividing both 4 (by Theorem [Z1]) and 15, so this determinant
is trivial. But Htn = (f, H), and H has trivial determinant (by Theorem 27),
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and hence H,;in also has trivial determinant. As G <« H and Gaith < Haritn are
subgroups, both G and Gayitn have trivial determinants.

Recall that G is normal in H of index dividing ¢(¢) = 5. By Theorem 5121 H
satisfies (S+). Since the rank of the sheaves is 14, not a prime power, by [30, Lemma
1.1] this implies that either the identity component H® of H is a simple algebraic
group that acts irreducibly on the underlying representation V of H, or H is a
finite almost quasisimple group with L := H(*) also acting irreducibly on V.

(b) Consider the former case. Note that if H® is classical of rank r, then either
it is of type A and r < 13, or r < 7 by [32] Proposition 5.4.11]. Using the tables
of [33], we see that H® is of type SLa, SL14, Spy, Spg, Sp14, SO14, or Ga2. Since
[H: G] < oo, G°=H°.

Suppose first that H° = SL14(C). In this case, V is just the natural module
for H°; hence Mj (V') takes the smallest possible value 2 for all H°, H, G°, and
G. But this contradicts Corollary

Next suppose that G° = H® is of type SLg, Spy, Spg, Spi4, SO14, or Go. In all
these cases, the G°-module V is self-dual, and this contradicts Corollary B.8

(¢) We have shown that H is finite, and we are in the almost quasisimple case.
In this case, Hyin is also finite, and Héf’l;)h = H(®) = Ggfiot)h =G> = L. Let
¢ denote the character of H,., in the underlying representation V. Then the
formula for the trace function of G, and the existence of an element with trace 2¢s
show that

(6.1.1) Q(p) = Q(Ca).

Since any element z of Cpg, (L) = Z(Haritn) acts as a root of unity v on V, this
implies that v* = 1. Since H.,in has trivial determinant, 714 =1 and thus v = +1.
It follows that

(6.1.2) |C Hsion (L) = |Z(Haritn)| < 2.

Now, using (6.1.1]) and the fact that L acts irreducibly on V' = C4, the classification
results of [16] show that L = PSLy(13), SL2(13), A7, As, SU3(3), G2(3), 2+ Ja2, Ass,
or 2B5(8).

In all but the last case, @|, is real-valued; furthermore, |Out(L)| < 2. As shown
in the proof of Theorem [£5] G has no subgroups of index 2, so G can induce only
inner automorphisms of L. But Garith = (G, f), implying Garitn/G — Cis; so the
same conclusion holds for Guitn, and hence Garith = Ca,, (L)L = Z(Garith) L,
with |Z(Garitn| < 2 by (6I12). On the other hand, as we saw in the computation
for the proof of Corollary [[L2] some g € Gt has trace 2¢4 on V. Write g = zh
with z € Z(Garitn) and h € L. Tt follows that 2¢4 = ¢(g) = £p(h), a contradiction
since p(h) € R.

We have therefore shown that L = ?By(8). As |Out(L)| = 3, (6.1.2) implies
that |H/L| divides 6. On the other hand, H is the normal closure of the image of
order 5 of I(0), so we conclude that H = L. Since L <G < H, we also get G = L.

Recalling again that Gaith/G < Cis, we now see from ([61.2)) that Z(G aritn) =
1 and thus Gayith < Aut(L) = LxCs5. A MAGMA computation shows the existence
of a Frobenius element with trace (4, and this implies that G, > L, whence
Garith = Aut(L). Since Hayign is generated over H by f = Froby p,, an element of
order 15, Z(Hyitn) = 1 by (012). Thus Harigh < Aut(L), and so Hapign = Aut(L)
as Harith > Garith~ O
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7. Low-dimensional representations of classical groups

In this section, we will extend the classification results obtained in [32] Propo-
sition 5.4.11] and [33] Theorem 5.1]. Even though the intended applications in the
paper only need the complex case of these results, we establish them in the modular
case, which is interesting in its own right.

Let F be an algebraically closed field of characteristic p > 0 and let G be
a simple, simply connected, classical algebraic group of rank r over F. Fixing
a maximal torus in G, we consider the set of simple roots {a,...,a.} and the
corresponding set of fundamental weights {1, ...,@,} (in the ordering of [40]).

Then the set
AT = {Zalwl | a; € Z,ai > O}
i=1

of dominant weights admits the partial ordering > where A\ > p precisely when
A—p = >, kia; for some non-negative integers k;. As usual, W denotes the
Weyl group. If A € AT, let L(\) denote the irreducible FG-module with highest
weight \.

We will rely on the following two results.

THEOREM 7.1 ([41]). Let G be a simple, simply connected algebraic group in
characteristic p > 0. If the root system of G has different root lengths, then we
assume that p # 2, and if G is of type Gz, then we also assume that p # 3. Let
X be a restricted dominant weight. Then the set of weights TI(A\) of the irreducible
G-module L(X) is the union of the W-orbits of dominant weights p with X\ = p. O

LEMMA 7.2 ([17, Lemma 10.3B]). Let A = >!_, a;@; be a dominant weight.
Then the stabilizer of X in the Weyl group is the Young subgroup generated by the
reflections p; along the simple roots a; for which a; = 0. a

Our first result treats groups of type A and includes a strengthening for SLos:

THEOREM 7.3. Let G = SL,(F) with n = r+ 1 > 8, and let L(\) be an
irreducible FG-representation, which is restricted if p = Char(F) > 0. Suppose that
dim L(X\) < M, where M := (7}) if n # 22 and M := 8176 if n = 22. Then X\ =0,
awy or aw, with 1 < a < 3, wy + w,, Wy 0T Wyr_1, W3 OF Wy_3, Wy OT Wyr_3,
w1 + wy or w,_1 + W, 2w + @, or wy + 2w,, and we + w, Oor W1 + Wyr_1.

PROOF. Write the highest weight X\ as >.._, a;o; with a; € Z>o.
(a) First suppose that there is some weight p = >"'_, bjww; € AT with X\ =
and b; # 0 for some s+ 1 < j <r — s, where
s:=3ifn# 22 and s:=4if n = 22.
By Theorem [Tl TI()\) contains the W-orbit O(u) of u. By Lemma [[2]
Stabw (1) < (P15 Pj—1:Pj+1s -+ Pr) =Sj X Spj
(where p; = (i,i+ 1) € W =S,,). Hence

am L) 2 10601 2 15, 55 xSupl = (1) = (1)) 2 o1

a contradiction if n = 22, or if 5 < 7 < r — 4. Suppose j € {4,r — 3} and n # 22.
Then dim L(A) = |O(p)| = (7}), showing s is the unique dominant weight of L(X),
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whence g = A. This also forces Staby (A\) =S; x S,—;, and so A = ajw;. Now if
a > 2, then A = A —a; = wj_1 + (a; — 2)w; + w41, and the latter is another
dominant weight of L()), a contradiction. So A = w4 or w,_3 in such a case.

We may therefore assume that
(7.3.1) aj=0forevery s+1<j<r—s.
Next suppose that Y;_;ia; > s+ 1. By [14] Lemma 2.6] (applied with m = s),
there is some weight u = 22:1 biww; € AT with A = p and b1 > asy1. This
situation is already considered by the preceding analysis. Using the symmetry
under the graph automorphism 7 of G,

S

(7.3.2) Ziai <s, Ziar+1_i < s.

i=1 i=1
(b) Suppose ag > 0 or a,_3 > 0. By symmetry, we may assume a4 > 0. By
(C32) n=22, a4 =1, and a1 = a2 = a3 = 0. Now if A # wy, then a; > 1 for some
r—3<j <rby (3J). By Lemmal[(2]
Staby (A) < (p1, 02,03, 05,065 -+ Pj—15Pj41s- - Pr) =S4 X Y71,
with Y7 a proper Young subgroup of S,,_4 and hence |Y;| < (n—>5)!. It follows that
dim L(A) > [W : Staby (A\)] > (n — 4) (Z) > M,

a contradiction. Hence from now on we may assume that a4y = a,._3 = 0.

(c) Suppose that ag > 0 or a,_3 > 0. By symmetry, we may assume ag > 0,
and so ag = 1 by (Z32). Suppose a; > 1 for some r —3 < j <r. By Lemma[7.2]

(733) StabW(A) < <P17P2; P4y P55y Pi—15Pj+1y-+ - pr> = SB X YQ;
with Y5 a proper Young subgroup of S,,_3 and hence |Ys| < (n—4)!. Tt follows that

3

(as n > 8), a contradiction. Now, if n # 22, then using (3] and (T32]) we
see that A = ws. If n = 22 but A\ # w3, then A\ = w; + ws. In this case,
A — (a1 + az + a3) = wy is also a weight of L(A) by Theorem [T} and since

dim L(\) > [W : Stabw (\)] > (n — 3) (”) > M

Stabw(w1 + W3) = <p2,p4,p5, . ,pr> = SQ X Sn_g, Stabw(W4) = S4 X Sn_4
by Lemma [[.2]

(7.3.4) 1O(1 + 3)| + [0(w2)| = (232> /24 (242> — 11935 > M,

which contradicts dim L(X) < M.

(d) We may now assume that a; = 0 for 3 < i < r — 2. Suppose that as > 0
or a,—1 > 0. By symmetry, we may assume ag > 0. If ag > 2, then by (Z3.2)
n = 22, (az,a1) = (2,0). Note that A = A\ — as = @y + w3 + ar_1@r—1 + A,
It follows from Theorem [[T] that TI(\) contains w; + w3 + ar—1w,—1 + a,w@, and
wy + ar_1@yr—1 + a,w,. The lengths of W-orbits of these two weights are at least
11395 by ([34), and so dim L(A\) > M.

If as = 1 but a; > 2, then by (32) n = 22, (az,a1) = (1,2). Note that

A= A—a1 =2wy + ap_ 101 + Ap ;.
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The preceding arguments show that II(\) contains the weights w1 +ws+a,_1w,—1+
arw, and wy + ar_1wy—1 + a;w,, and again dim L(A) > M.

Hence as = 1 and aqy < 1. If a, = a,_1 = 0, then A\ = wy or w; + wsy. So
assume that a, + a,_1 > 0.

Suppose that a,_; > 0. Then by Lemma

(7.3.5) Stabw (A) < (p1,p3,p4,- -, Pr—2,pr) = S2 X Sp_4q X Sa.

It follows that
n!

dim L(\) > [W : Staby (A)] > (=21 (212

> M,

a contradiction. Hence a,_1 = 0.
Suppose next that a, > 2. Then
A= =A—a, =)A= 2w, —wy_1) = a1w1 + w2 + (ar—1 + Vw1 + (ar — 2)w,.
Thus v1 € II(A) N A, and (T.33) applied to 1 shows that
dim L(X) > [O(v1)] > [Sp = (S2 X Sn—s X S2)] > M.
We may therefore assume that a, = 1. If a; = 0 then A\ = wy 4+ w,. Otherwise

A = @) + @y + w,, in which case A = v5 ;= A — (g + ag) = A\ — (w1 + w2 — w3) =
ws + w,. But in such a case, ((33) applied to v5 shows that

dim L(\) > [O()| > (n — 3) (g) > M.

(e) We may now assume that a; = 0 for 2 < i <r —1, i.e., A = aw; + bw, with

s> a>b>0 (by symmetry). Suppose a > 4, whence n = 22 and a = 4 by (L3.2).
Then A = A—2a; = 2ws +bw,, and so dim L(A) > M by the first paragraph of (d).
Suppose a = 3 but b > 0. Then A > v3 := A — (201 + az) = A — (3w — w3) =
ws + bw,, and ((33)) applied to vs shows that dim L(A\) > |O(vs)| > M. Hence
A= w3.
Suppose a = b = 2, i.e., A = 2wy + 2w,. Then A = vy := A — (a1 + o) =
wy + wy_1. In such a case,

n!
(CEFRCIER

by using (Z3.3) for v4. So a+ b < 3, and thus A = 2w; + w,, 2w, w1 + w,, w1,
or 0. ([l

dim L) > |O(w)| >

To handle the other classical groups, we first consider a special case. Again,
we use the weight labeling as in [40].

PROPOSITION 7.4. Let G be a simply connected simple algebraic group over F
of type B, Cy, or D,., withr > 7. Then

dr(r* = 1)/3, ifp=3,
dr(r—=1)(2r—-1)/3, ifp#3.

PROOF. Note that |O(ws)| = 8(3) and |O(wy + w2)| = 4r(r — 1). Since
A := w + wy is the highest weight of L()), it suffices to show that y := w3 is a
weight of L(X), with multiplicity mp ) (1) > 1if p =3 and mp (1) > 2 if p # 3.
If p =3, then A = XA — (a1 + a2) = p, whence p € II(\) by Theorem [T1] and we
are done.
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In what follows we may assume p # 3. We realize the roots and the weights
of G using an orthonormal basis (e; | 1 < ¢ < ) of R" (with scalar product (-,-));
in particular, wy = ey, wy = €1 + e, w3 = e; + e + e3. Consider the simple
(Weyl) module V' ()) of the corresponding algebraic group over C. Then v € AT is
a weight of V() precisely when A > v. Writing w; in terms of simple roots (see
[40] Table 2]), it is straightforward to check that this is equivalent to

{\ @1}, if G =C, or D,,
(7.4.1) ve { (\ 11,2, 251,0, if G = B,.
Next we use Freudenthal’s formula [17, p. 122] to find the multiplicity my (x) (1)
of p as a weight of V(A\). Then we must find all multiples I« of positive roots «,
with | € Z>1, such that p + la is a weight of V/(A), i.e., W-conjugate to one of the
weights listed in (Z.41])). Again using [40] Table 2], we can check that this happens
precisely when [ =1 and o = e; — eg, €1 — e3, e2 — e3. In all these cases, p + la is
W-equivalent to A, and we readily obtain my (y)(u) = 2.
Suppose now that

(7.4.2) mpoy(p) < 1.

This can happen only when p is a weight of some composition factor L(vp) of a
reduction modulo p of V(X), where vy is listed in (T41]). Note that if v is such a
weight and v # u, then v fp. It follows that vg = u, i.e., L(p) is a composition
factor of a reduction modulo p of V(\). By the linkage principle, see [21], this
implies that w o A = p for some w € W,. Here, the affine Weyl group W, is
generated by the map p, ;0 A = py © A + Ipa, where « is a simple root, [ € Z and

pa denotes the reflection corresponding to «; furthermore, p, 0 A = po (A +0) — 6,
where § := Y| @;.

Write |v|? instead of (v,v) for v € R". Then, for any root a and any [ € Z
Ipai o X+ 012 = A+ 612 4+ 12p%|a)? + 2Ip(pa (X + 6), ).
Observe that |a|? € Z and
2(A+9,a)

(pa(A+0),a) = (()x—i-é) " (o) ,a) =—(A+p,a) €.

It follows that |pa; 0 A+ 8> = |A +6]? (mod ged(2,p)). Thus we have shown:
(7.4.3) If two weights A, p are linked, then |\ + 6|? = |u + | (mod ged(2,p)p).
(Note that a slightly weaker result than (Z.43]), namely only modulo p, was obtained

in [46] Lemma 2.1].) In our case, |A + 6| — |u + 6| = 6. Applying ([T43), we
conclude that ([T42]) can happen only when p = 3. |

THEOREM 7.5. Let G be a simply connected simple algebraic group over F of
type B, C,, or D,, with r > 12. Let L(\) be an irreducible FG-representation,
which is restricted if p := Char(F) > 0. Suppose that dim L(A\) < M, where
M = 2(r+1)3 ifr > 14, and M = 73 if r = 12,13. Then \ = aw; with
0<a<3, ws, ws, or wy +ws. Moreover, if \ = wy +ws and r > 16, then p = 3.

Proor. Write the highest weight A as 22:1 a;w; with a; € Z>¢ (note that
L(woy) is the natural module for G).

(a) First suppose that a; > 0 for some r—2 < ¢ < r. In this case, by Lemmal[7.2]
the length of the W-orbit O(\) of A is at least [W : Staby/(\)] > 27~ > M.
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Next suppose that a; > 0 for some 4 < ¢ < r — 3. In this case, if G is of type
X, so that W = W (X,.), then Staby (\) is contained in W(4,_1) x W(X,_;) by
Lemma [T.2} hence

dim L(\) > |[O(\)] > 2° (Z) > min (24 (Z>2—3(g>) >2(r +1)%,

since r > 9.
Applying this argument to p = >"._; bjem; € II(A) N AT, we deduce that
(7.5.1) bi=0for4<i<r.

(b) Suppose az > 0. If a; > 0 or ag > 0, then Staby, (\) < W(A;) x W(X,_3),
whence
(7.5.2) ION)| > 4r(r —1)(r —2) > 2(r +1)3
(since r > 9), contradicting the bound on dim L(X). So A = agws. Now, if ag > 2
(and so p # 2 as A is restricted), then by Theorem [Tl
A= N— a3 =ws+ w4 EH(/\)QAJ'_,

violating (5.1]). Hence A = w3 in this case.
We have shown that ag = 0. Suppose as > 0. Now, if as > 2 (so again p # 2),
then

A= A—az= (a1 + D)wy + (a2 — 2)ws + w3 € H()\),

leading to a contradiction by applying (5.2 to A — as. If as = 1 but a; > 2, then
p # 2 and

A=A — (041 —I-Oéz) = (a1 — )wy + w3 € H()\),
again yielding a contradiction by applying (Z52) to A — oy — a3. Hence A €
{wa, w1 + wa} in this case.

We are left with the case A = aw;. If a > 4, then again p # 2 and
A= A— (201 + Oé2) = (al — 3)w1 + w3 € H(/\)7

leading to a contradiction by applying (T52) to A — 2a; — as. So 0 < a < 3 as
stated.
(¢) We make some more comments about the cases A € {3w;, w3, w1 + w2}
Note that
3wy — o =wy + wa, (w1 +w2) — (a1 + a2) = ws.

So, assuming p # 2 when A\ = w; + wq, we may assume w3 € II(A) in all these
three cases. It now follows from Lemma that in these cases

dim L()\) > |O(w3)| = 4r(r — 1)(r — 2)/3 > r®.

Proposition [Z4] shows that if p = 2, then dim L(w; + @2) > 8(3) > 3 (as r > 12),
and if r > 16 and p # 3, then dim L(wwy + w2) > 4r(r — 1)(2r — 1)/3 > 2(r + 1)3.
Thus,

(7.5.3) If 7 > 12 and dim L(\) < 7*, then \ € {0, w0y, 21, w2}

This statement (5.3) was recorded in [33, Theorem 5.1], but we note that the
treatment of the weights aqw; +agtoy therein is incorrect. Also note that dim L(w;+
@9) may be smaller than 2(r + 1) when p = 3, see [33] for examples. O
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8. A dichotomy for monodromy groups

We will need some preliminary facts:

LEMMA 8.1. Let n € Z>1 and let D := 2"(22"*1 — 1). Then none of the
following equations
() D=a2—1,
(i) D=z(x—1)/2,
(iii) D=2(x—1)/2—1 and n > 2,

has a solution in the positive integers.

PROOF. (i) Suppose 2? — 1 = D for some x € Z>1. Checking the cases 1 <
n < 7 directly, we may assume n > 8. Now > 1 is odd, and ged(z — 1,2+ 1) = 2,
but 27|(z% — 1). Tt follows that there is some € = £1 such that 2"~ 1|(z — €). Write
x —e=2""1y for some y € Z>;. Then

237l+1 _ 27’L — D — ‘,1:2 _ 1 — (Qn—ly + 6)2 _ 1 — 22%—2y2 + 2n€y,

and so ey + 1 = 2772(2""3 — ¢2). This implies y > 1, and y + € is divisible by
22, Hence y + ¢ = 2" 2z for some 2z € Z>;. In this case, y > 2772 — 1,
x> 273 —92n=1 1 and so 22 — 1 > 247 > 23+l 5 D (as n > 8),
a contradiction.

(ii) Suppose z(x —1)/2 = D for some = € Z>1. Then ged(z — 1,2) = 1, but
2"+ (2 —1). It follows that there is some € € {0,1} such that 2"T1|(x —¢€). Write
x — e = 2"y for some y € Z>;. If € = 0, then

23n+2 _ 2n+1 —9D = J?(J? _ 1) —_ 22n+2y2 _ 2n+1y,

and so y — 1 = 2"T1(y? — 2"). This implies y > 1, and y — 1 is divisible by
2"+ Hence y — 1 > 2"+ 2 > 227+2 and so z(z — 1) > 2404 > 237+l 5 D g
contradiction. If e = 1, then

23n+2 _ 2n+l — 2D — fL'(fL' _ 1) — 22n+2y2 + 2n+ly,
and so y 4+ 1 = 2"+1(2" — ¢?). This implies 1 < y < 2*/2, and y + 1 is divisible by

27+1 which is impossible.

(iii) Suppose n > 2 and D = z(z —1)/2 -1 = (z + 1)(x — 2)/2 for some
T € Z>1. Then ged(z 4+ 1,2 — 2)|3, but 2" (z + 1)(z — 2). It follows that there is
some € € {—1,2} such that 2""!|(z —€). Write z — e = 2"y for some y € Z>q. If
€ = —1, then

232 _ontl — 9D = (z 4+ 1)(z — 2) = 22" 2%y% — 3. 27Ty,

and so 3y — 1 = 2"T1(y? — 2"). This implies that 3y — 1 > 2 is divisible by 27*1.
Hence y > (2"t +1)/3 > 2771 241> 22" and so (z+1)(z—2) > 227(22" - 3) >
2371 > D (as n > 2), a contradiction. If € = 2, then

23 H2 _ontl = 9D = (z + 1)(x — 2) = 22" 2y? + 3. 2"y,

and so 3y + 1 = 2"+t1(2" — ¢?). This implies 1 <y < 27/2 <2771 and 3y + 1 is
divisible by 2"*!, which is impossible when n > 2. O

Note that if (n, D) = (1,14), then D = (5) — 1 = (§) =6 = (3% + 1)/2.
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THEOREM 8.2. Suppose the sheaf F(q, f) in ELI), of rank D = 2"(22"+1 1),
has infinite geometric monodromy group G = Ggeom. Then G° = SLp. Under the
more restrictive condition [II13), G = SLp; moreover, the sheaf G(q, f,t(q)) has
geometric monodromy group equal to G.

PrOOF. By Theorem B12] G satisfies (S+). Thus G° < SLp, and Z(G) is
finite, but G° is infinite. It follows from [30, Lemma 1.4] that G° is irreducible on
the underlying representation V', i.e., F(q, f) is Lie-irreducible. By Theorem [(.13]
G° is a simple algebraic group of dimension > D.

(a) Suppose n > 3, so that D > 1016. Then G° must be a classical group of
rank say r, where r(2r + 1) > dim G°® > D > 1016, whence r > 23. Also, if G° is
of type A,, then

(8.2.1) D <dimG° =r(r+2) < <r Z 1),

and if G° is of type B,., C,., or D, then
(8.2.2) D<r@2r+1)<r®

In the case of A,., we can apply Theorem and, using the dimension formula for
L(\) given in [40 Table 5] and the bound (8Z1l), we see that the highest weight
A of the G°-module V is, up to duality, aw; with a = 1,2, ws, or wy + w,. If
A =wi, then D =r+ 1, G° = SLp, and hence G = SLp as stated. In the other
cases, D = (T'QH), (5), or (r+1)? — 1; all are impossible by Lemma Bl

In the case of types B,., C., and D,, we can apply Theorem [.5] (more precisely,
[CE23)), and, using the dimension formula for L()) given in [40, Table 5] and the
bound [BZ2), we see that the highest weight A of the G°-module V is aw; with
a=1,2, or wy. If A =10y, then G° = Sp(V) or SO(V), whence F(q, f) is Lie-self-
dual, contrary to Corollary 5.8 In the other cases, D = (7;) or (”21) — 1 for some
integer m > 2, and this is impossible by Lemma [8.]

(b) Suppose n = 2, so that D = 124. Then G° is of type A, with r > 11, B,.,
C,, or D, with r > 8, E7, or Eg. Neither F7 nor Eg has irreducible representations
of degree 124, see [33], so G° is classical of rank r. If G° is of type B,, C,., or D,
with 8 < r < 11, then using [33] we check that G° has no irreducible representation
of degree 124. So r > 12, and we apply Theorem [[3] respectively (Z5.3)), as above
to conclude that G = SLp.

Finally, assume that n = 1, so that D = 14. The arguments in part (b) of the
proof of Theorem repeated verbatim show that either G° = SLp, or V|go is
self-dual. In the former case G = SLp as in (a), and the latter case is ruled out by
Corollary

(¢c) Now assume (LI3). Then we can consider the descent G(q, f,t(q)), for
which the trace function takes values in Q((4) and all slopes are less than 1. Since
p = 2, Theorem [ZT[(iii) implies that G(q, f,t(q)) has trivial determinant, and thus
G(q, f,t(q)) has geometric monodromy group H < SLp. But H > G, so we conclude
H =G =SLp. ]

THEOREM 8.3. Suppose the sheaf F(q, f) in (@13), of rank D = 27(22n+1 1),

has finite geometric monodromy group G = Ggeom. Then G = ?Ba(q) with q =
22n+1.
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Proor. (a) Let V denote the underlying representation. By Theorem [5.12]
G satisfies (S+) on V. But the dimension D = dim(V) = qo(q — 1), with gy =
2" is not a prime power. Hence G is almost quasisimple by [30, Lemma 1.1]:
S < G/Z(G) < Aut(S) for some finite, non-abelian simple group S. Then the
quasisimple subgroup L := G(°°) acts irreducibly on V by [30, Lemma 1.4].

The condition ([@I3) allows us to consider the descent G(q, f,t(q)) on G,,, with
geometric monodromy group H. Then G < H of finite index, whence H is finite
and satisfies (S+), and L = H(®) as H/G — Cy(q)- The representation of H on
V has oco-slopes o := (g0 + 1)/D < 1, and is not tame at co. Hence Theorem
applies to G and H. We collect some further facts about (G, V') and the character
@ of H on V that we will use in the proof:

(1) Qlpla) = Q(¢) = Q(4). Indeed, by Theorem [2.1i), the arithmetic mon-
odromy group Hayith,k, of G(g, f,t(q)) over ko has finite determinant. But
it normalizes the finite irreducible subgroup H, so finite determinant im-
plies that Hyyith, i, is finite. Now, by Chebotarev density, the finiteness of
Hrith,k, implies that all elements of it are Frobenii, and all Frobenii have
traces in Q(¢). But G < H < Hayith kg, SO Q(gp\g) C Q(¢) C Q(7). But
V¢ is not self-dual by Theorem [5.7], hence Q(¢|¢) = Q(4) = Q(y). Since
each element of Z(H) acts as a root of unity on V', and the only roots of
unity in Q(¢) are in ug4, both |Z(G)| and |Z(H)| divide 4.

(ii) If n # 2, then G is perfect and hence G = L. Indeed, by [Il Proposition
6], 71 (A'/F,) has no nontrivial finite p’-quotient. Since F(q, f) lives on
A'/Fy, G has no nontrivial quotient of odd order. On the other hand,
the proof of Theorem shows that G has no quotient of order 2 when
n # 2.

(iii) The image J = QC of I(c0) has Q@ = O2(J) and C = (¢gso), where the
central order 6(g,) is divisible by ¢ — 1. Indeed, since the oco-slope of
Fl(g, f) is 1 4+ 1/D, this implies, by [23 Proposition 1.14], that I(co)
acts irreducibly on V, of dimension D = ¢o(q — 1). Since the image J of
I(00) is cyclic of p’-order modulo the image @ of P(c0), it follows that
Joo Permutes the pairwise non-isomorphic ¢ — 1 simple @-summands on
V', each of dimension g, transitively.

(b) Consider the case n > 3, so that D > 1016, and G = L by (ii).

(b1) First suppose that S = A,, for some m > 3. As G/Z(G) = A,, —
GL;,-1(C), by Theorem 25, m —1 > 1/0. Note that [1/0] = ¢ — 2¢p + 1, so
m > q—2qo + 2 > 114. Tt follows that D = qo(q — 1) < (m? — 5m + 2)/2. In this
case, by [15, Lemma 6.1] m = D+ 1, G = Apy1, and V = CP is the heart of the
natural permutation module. But then V is self-dual, contrary to (i).

(b2) Next suppose that S is a sporadic simple group. By (iii), the maximum
order meo(.S) of elements in S is at least ¢ —1 > 127. On the other hand, meo(S) <
119, as one can check using the [6] (see also [0, Table 2]), a contradiction.

(b3) Consider the case S is a simple group of Lie type in characteristic r # 2. By
Theorem 5], the degree e of every nontrivial projective representation over F,. of S
satisfies €2 — 1 > 1/0; in particular, e > 11. Similarly, the degree d of every faithful
linear representation over F, of S satisfies d > 1/0; in particular, d > 114. This
rules out all classical groups of types A,, or 24, with m < 9, B,, with m < 56, and
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Cyn ot D, with m < 7 (as PSpy,, (r%) and PQZ, (%) have faithful representations of
degree m(2m —1) over F,.). This also rules out exceptional groups of types Ga, %Ga,
and 3Dy. For the remaining exceptional groups of type Fy(s), Eg(s), 2Eg(s), E7(s),
and Eg(s), with s = r% by [22] Table A7] we have the following upper bounds:
s(s+1)(s24+1), s(s=1)/((s — 1) ged(3,5—1)), (s+1)(s2+1)(s®> —=1)/ ged(3, s+ 1),
(s4+1)(s2+1)(s*+1)/2, and (s+1)(s2+s+1)(s°—1) for meo(S), respectively. On the
other hand, go(g—1) = D is at least the smallest degree 9(.5) of nontrivial projective
complex representations of S, which in turn is at least s5(s? — 1), s%(s% — 1),
s9(s% —1), s15(s2 — 1), s27(s2 — 1), respectively, see e.g. [47), Table I]; and we arrive
at a contradiction in all five cases, as ¢ — 1 < meo(S) by (iii) and D < 1/¢3/2.

If S = PSL,,(s) or PSU,,(s) with m > 11, then m? — 1 > 1/o, and so m? >
q — 2qo + 2, by Theorem Since m > 11, by [47, Theorem 1.1]

m m
D> Ss+ls >3 I S om? > (g - 200+ 22 > qola— 1),

a contradiction. For S of type BC'D,,, with m >7, we have min(m(2m—1), 2m+1) >
1/o, and so 2m? > q—2qo + 1, by TheoremiZ5l Since m > 7, by [47, Theorem 1.1],

sm—-1_3m—
>
2 = 2

again a contradiction.

1
D > > 3m® > (3/2%%)(q — 2q0 + 1)%2 > qo(q — 1),

(b4) We may now assume that S is a simple group of Lie type in characteristic
2, defined over a field F; with s = 2. Since n > 3, by Theorem[34] t(¢q) = ¢—2¢p+1
admits a divisor £ = ppd(2,4(2n+1)). Next, we use the fact that the image of I(0)
in H has order ¢ — 2¢g + 1, which implies that H has an element of prime order /¢
that normalizes G = L. But Cy(G) = Z(H) has order dividing 4 by (i), so

(8.3.1) ¢ divides |Aut(L)|.

First suppose that S = Sps,,(s) with m > 2 or PQZ (s) with m > 3. Then,
[®3J) implies that £ > 4(2n + 1) + 1 > 29 divides a|S|. If moreover £ t a, then ¢
divides []/~, (s* — 1), which implies 2ma > 4(2n + 1) by primitivity of £. In either
case,

(832) g — gma > 22(2n+1) — q2 > 214

Now, applying [47, Theorem 1.1] for m > 3 we obtain

("~ = 1)
s2—1

a contradiction. If S = PSp,(s), then s > ¢ > 27 by (83.2)), and so

¢?>D>08)> > 232 > §M /2 > ¢2 /2,

¢*? > D>0(S) =s(s —1)°/2 > q(g—1)*/2> ¢*,

again a contradiction.

Next suppose that S = PSL,,(s) or PSU,,(s) with m > 2. The same arguments
as above show that [83.2) still holds; in fact, s™ > ¢* for S = PSL,,(s). Assume
that S = PSL,,(s) with m > 2; in particular, s™~' > s™/2 > ¢?. Then using
[47 Theorem 1.1] we obtain that

m

S S
¢?>D>0(S) > > s> 2,

s—1
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a contradiction. Next, assume that S = PSU,,(s) with m > 5; in particular,
¢*/? < §3m/* < sm=5/4 Then using [47, Theorem 1.1] we obtain that

3/2 m __ 9 25/4
q s s m—1 m—5/4
>D >0(S) > > - -1)> -1
V2 23(5) 2 s+1 — 3(8 ) 3 (s )
/4 P2
2 (32— I
> 1) > ,
3 (a ) V2

again a contradiction. When S = PSUy(s), £|a or ¢ divides (s + 1)(s? — 1)(s® +
1)(s* — 1), so instead of [B3.2) now s*> > ¢*. Again using [47, Theorem 1.1] we
obtain

Va)

4

1
@#?>D>0(9) > 2 > 22 )2,
S

a contradiction. Finally, if S = PSUjs(s), then s3> > ¢? > 2! from ([832). But
every irreducible character of SUs(s) of even degree has degree divisible by s > ¢2/3,
and hence cannot be equal to D = ¢go(q — 1).

Let S be one of the exceptional groups of type Ga(s) with s > 2, 3Dy(s),
2Fy(s)" with s > 2, Fy(s) with s > 2, Eg(s), *Es(s), E7(s), and Fs(s). That ¢
divides |Aut(S)| implies ¢* < s¢, where

c=06, 12, 12, 12, 12, 18, 18, 30,
respectively. It follows that D < ¢3/2 < s3¢/8, with
3¢/8=9/4, 9/2, 9/2, 9/2, 9/2, 27/4, 27/4, 45/4,

respectively. But this contradicts the lower bounds D > d(S) > s(s?—1), s3(s*—1),
st(s—1)/5/2, s5(s2 — 1), s°(s2 —1), s°(s2 —1), s'%(s2 — 1), s*7(s? — 1), respectively,
see e.g. [47), Table I]; and we arrive at a contradiction in all eight cases. The cases
2F,(2) and Fy(2) are ruled out because |Aut(S)| is not divisible by the prime ¢ > 29.

The only remaining case is that S = ?By(s). That ¢ divides |[Aut(S)| implies
¢* < s ie., ¢ <s. But D= qy(q—1) is the degree of some irreducible character
of G, 50 ¢ = s, i.e., S =2By(q). In this case also G = L = ?By(q), as stated.

(¢) Now we consider the case n = 2, i.e., D = 124.

(c1) As the quasisimple subgroup L = G(*) acts irreducibly on V = CP, by
[16] we have the following possibilities for S:

PSL2(125), SL3(5), SL5(2), C;(2(5)7 A125, or 232(32)

Here, a generator gg of the image of I(0) in H has order ¢(¢q) = 25 and normalizes
G and L. Since Cy(L) = Z(H) < C4 by (i), 25 divides |Aut(S)|. This rules out
the first three cases.

In the two cases S = G2(5) and Ajs5, L = S and V|, is self-dual. Since
Cp(L) < C4 and |Out(S)| < 2, it follows that H/L is a 2-group. On the other
hand, H has no quotient of order 2, as shown in part (i) of the proof of Theorem [L.5]
(which also works for n = 2). Hence H = L = G, and so F(q, f) is self-dual. But
this contradicts Theorem .71

The only remaining case is S = 2B, (32), in which case L = S.

(c2) The rest of this paragraph applies to all n > 1, for which we know L =
S = 2By(q). Since Out(S) = Cypy1, but G = 0% (G), we see that G = Z(G)S,
with Z(G) < C4. Recall that H/G — Cyq) and Z(H) < Cy. In particular,
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Z(H)G/G = Z(H)/Z(G) has order dividing both 4 and t(¢q), whence Z(H) = Z(G).
Next, H/G acts trivially on G/S = Z(G), i.e., G/S < Z(H/S), and the quotient
(H/S)/(G/S) = H/G is cyclic. Tt follows that H/S is an abelian group. As
mentioned above, H has no quotient of order 2, so 21 |H/S|, whence Z(G) = 1; in
particular, G = S when n = 2. We have also shown that Cy(S) = Z(H) =1, so

(833) S<H<L Aut(S) =95 % Copt1

(d) Finally, we consider the case n =1, i.e., D = 14. As the quasisimple group
G = L acts irreducibly on V = CP and Q(p) = Q(i), by [16] the only possibility is
that G = 2B»(8). O

Now we are ready to prove the second main result of the paper:

THEOREM 8.4. For the geometric monodromy group G' = Ggeom of the sheaf
F(q, f) in @EIL3), of rank D = 2" (22"t — 1), either G = SLp or G = ?By(q) with
q = 22"t Furthermore, for any r|t(q), the geometric monodromy group of the
descent G(q, f,r) is also equal to G.

PROOF. Suppose G is infinite. Then the statements follow from Theorem

From now on, assume that G is finite. Then G = S = 2By (q) by Theorem B3
Since for any r|t(q), the geometric monodromy group of G(q, f,r) contains G and is
contained in the geometric monodromy group H of F(q, f,t(q)), it suffices to show
that H = S.

First, note that the oco-slope of G(q, f,t(¢)) is 0 = (qo +1)/D and D + 1 =
(go+1)t(q), so ged(D, go+1) = 1. Tt follows from [23] Proposition 1.14] that I(c0)
acts irreducibly on V, of dimension D = ¢o(¢ — 1). Since the image J of I(o0)
is cyclic of p’-order modulo the image @ of P(o0), @ = O2(J) and J = (Q, goo),
where the p’-element g, transitively permutes the pairwise non-isomorphic ¢ — 1
simple @-summands on V', each of dimension ¢q.

Since ¢ = 22"*1, using [50] we can find a primitive prime divisor ¢ = ppd(2,
2n + 1), and fix a power h of g, that has order ¢. Clearly, the prime ¢ is at least
2n+ 3, so it is coprime to 2n 4+ 1 = |Out(S)|. On the other hand, S < H < Aut(S)
by B33]). Hence h € S and @ < S.

We can write h = 2(2=D/¢ where on the natural module U = ]Fé for S =
2By(q) < Sp(U), the spectrum of z € S consists of 4 eigenvalues €2, £-2",
€1-2" ¢2"=1 where £ € F, has order ¢ — 1, see [4], [45]. We may write Aut(S) =
(S,0), where 6 acts as the Galois automorphism A ~ A% of Fy. Suppose that for
some 1 < a < 2n and for some y € S, the element y6® centralizes h. Note that §¢
sends x to 22" and h = 24~ D/ o 22" (@a=1/_ Tt follows that

22 @D/ = gopg= =y~ (y0*)h(y0®) 'y =y thy

is S-conjugate to h = x(@~1/¢. On the other hand, it is known [4] that if b,c € Z
then z° and z¢ are S-conjugate if and only if ¢ = £b (mod (g — 1)). It follows that
¢ divides 2% & 1; in particular, ¢ divides 22¢ — 1. The primitivity of £ then implies
that 2n 4+ 1 divides 2a, a contradiction.

We have shown that Cauyg)(h) < S. As goo centralizes h, it follows that
Joo € S. Hence J = Q(goo) < S. Now S < H and H is finite, so H = S by
Theorem [4.3] O

Theorems [6.1] and B4l imply the following.
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COROLLARY 8.5. The sheaves Fy and G, in {1, of rank D = 2" (22"+1 —1), have
the same geometric monodromy group G = Ggeom. Furthermore, either G = ?Ba(q)
with ¢ = 22" orn > 2 and G = SLp.

REMARK 8.6. It is plausible that for each ¢ = 22**! > 32, we can find a
polynomial f; € Fa[z] of degree 2™ + 1 such that the sheaf F(q, f) with f(x) =
f1(z9)) as in ([@I3) has infinite geometric monodromy group, which then is SLp
by Theorem B4l Indeed, a MAGMA calculation shows for each 2 < n < 25 that
Froby r ., has non-integral trace on Flq, 2014249 for some choice of k(n) €
Z>. For instance, Froby f , . has trace (2i—7)/2 for (n, (k(n)) = (2,7), (5i+3)/2
for (n,k(n)) = (3,5), (7—3i)/4 for (n,k(n)) = (4,7), and 5/2 for (n,k(n)) = (5,7).
In fact, for infinitely many integers n > 2, we offer in Theorem a construction
of a sheaf F(q, f) with Ggeom = SLp.

9. Arithmetic vs. geometric monodromy groups

9A. Glauberman and Dade correspondences. Our next results depend
on the Glauberman correspondence. Recall that if A is a solvable finite group
acting by automorphisms on another finite group S with (|A|,|S|) = 1, then there
exists a canonical bijection * : Trr4(S) — Irr(C), where C = Cg(A) is the fixed-
point subgroup and Irr4(S) is the set of A-invariant irreducible characters of S.
(See [20, Chapter 13].) Since the map is canonical, it is not difficult to see that
Q(0) = Q(0), where Q(0) is the field of values of 6. (See [20] Problem 3.1].)

Suppose now that S = 2By(2"), where n is odd. Then it is well known that
S admits a field automorphism a of order n. Assume further that (m,[S]) = 1
for some divisor m > 1 of n. Consider A = (a™/™) = C,,. If m = n, then
C = Cg(A) = 2By(2) = C5 x C4 has 5 irreducible characters; two of its four linear
characters are rational, the others have field of values Q(¢). It also has a rational
irreducible character of degree 4. In particular, it follows that Irr(S) has exactly
5 irreducible A-invariant characters, and exactly two of them have field of values
Q(i). On the other hand, if m < n, then C = Cg(A) = 2By(2"/™) has exactly
2 irreducible A-invariant characters with field of values Q(¢), namely the ones of
degree (r — 1)y/7/2 with 7 := 2"/™; see [4]. This proves the following.

LEMMA 9.1. Suppose that S = ?By(2"), where n is odd. Assume further that
(m,|S]) = 1 for a divisor m > 1 of n, and let A be the subgroup of field auto-
morphisms of S of order m. Let C = Cg(A). If 0 € Irra(S) has field of values
Q(i), then 0* has degree (r — 1)/r/2 with r := 2"/™.

LEMMA 9.2. Suppose that A is a cyclic group of order m acting faithfully and
coprimely on S. Let 6 € Trr(S) be A-invariant, C = Cg(A), and let n € Irr(C) be
the A-Glauberman correspondent of 6. Let G = S x A be the semidirect product,
and let ¢ € Irr(G) be an extension of 6. Consider x € G\ S such that (z,S) = G.

(i) If n is linear, then |Y(z)| = 1.
(ii) In all cases, there exist a Toot of unity v € C* of order dividing 2m and
¢ € C such that ¥ (x) = yn(c).

PRrROOF. Let ¢ € Irr(G) be the canonical extension of 6 to G. (This is the
unique extension ¥ such that the determinantal order is coprime with |A|, see
[20] Corollary 6.28].) Since every extension of 6 to G is a multiple of ¢ by a linear
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character A of G/S, we may assume that ¥ = M)y, where g is the canonical
extension.

Observe that m divides the order of . Since m is coprime to |S|, we can write
x = cb = bc, with b being a m-element and ¢ being a 7’-element, where 7 is the set
of prime divisors of m. Also |b| = m, and S 2 2™ = b™c™ = ¢™, implying ¢ € §
since ged(m,|S]) = 1. Moreover, G = S x (b), so without any loss we may replace
A by (b), and now ¢ € C = Cg(b) = Cg(A). By [20, Theorem 13.6]

Yo(x) = tho(cb) = en(c),
where € = +1. Hence, ¥(z) = yn(c), where v = e\(x) and A\(x)™ = 1. O

Since each of the two irreducible characters of S := 2By(q) of degree (¢q—1)+/q/2
has field of values Q(i) and is Aut(S)-invariant, Lemmas and imply the
following.

COROLLARY 9.3. Let ¢ = 2™ with 21 n and let 0 be either of the two irreducible
characters of S := 2Ba(q) of degree (¢ —1)\/q/2. Then 6 extends to G = Aut(S) =

S x Cy. If furthermore n is coprime to |S|, then |Y(x)| =1 for any extension ¥ of
0 to G and for any x € G\ S with G = {(x, S).

We remark that the character 6 in Corollary has a canonical extension
to G. Indeed, by [38, Theorem A], there exists a unique ¢ € Irr(G) such that the
field of values of ¥ is Q(¢). In particular, notice that the restriction @ to C,, is
rational-valued.

In some non-coprime situations, we can use the following statement. This also
follows from results in [9] §9], but in the situation under consideration, our approach
is more straightforward.

LEMMA 9.4. Suppose that G = SA, where A = {(a), S< G and ANS = 1.
Let C = Cg(A), and assume that x € Irr4(S) has an extension i € Irr(G) such
that 14 is rational-valued. Suppose that for every x € G . S, there exists some
g € G such that x9 = cb for some ¢ € C and b € A. Then there exist a character
0 € Irr(C) and a sign € = £ such that ¥(cb) = €b(c) for every ¢ € C and every
generator b of A.

PRrOOF. By the proof of [20, Lemma 13.5], we can write
Yoa = > BN Yg,
Belrr(C),[xc,Bl#0
where 93 is a rational-valued character of S. Now, define 6(c) = ¢(ca) for c € C.

Then
0=> 1s(s)B.
3

Thus 6 is a virtual character of C. We claim that [0,0] = 1. Let T be a set
of representatives for the right cosets of C' in S. In order to use the proof of
[20] Theorem 13.6], we claim that

Sa = U (Ca)t
teT
is a disjoint union. By hypothesis,

Sa = U (Ca)® = U (Ca)'.

seS teT
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Now,

S| = |Sa| = | |J(Ca)'| < [(Ca)'| = Tl|C| = |S],

teT teT
and the claim follows. The rest of the proof follows as in [20, Theorem 13.6]. O

Finally, to address the general situation in the Suzuki case, we must go much
deeper into [9] §9].

COROLLARY 9.5. Let ¢ = 2™ with 21 n and let 6 be either of the two irreducible
characters of S :=?Ba(q) of degree (q —1)+/q/2. Then 6 extends to G = Aut(S) =
S xCy, and |Yp(x)| =1 for any extension ¥ of 0 to G and for any x € G\ S with
G=(z,9).

PRrROOF. We adapt the notation of [9, §9] to ours. We know that Cg(A) =
B x R, where B = () has order 5, and R is a cyclic group of order 4. Now,
let G' = Ng(B) = 5" x A, where S’ = Ng(B). Let Gy be the set of z € G
such that (zS) = G/S, and let G{, be the set of x € G’ such that (zS") = G'/S".
By [9, Lemma 9.3], S’ = C x R, where C is a cyclic group described there. By
[9] Proposition 9.7], G}, is a trivial intersection subset of G with normalizer G’. In
Dade’s language, it satisfies (6.4) of [9]. In particular, by [9], Lemma 6.5],

Go = |J(Go)
TeT

is a disjoint union, where G = |, G'7 is a disjoint union. (In that lemma right
cosets are used.) In particular, if © € Gj, and 7 is a class function of G’, then

n%(z) = n(x).

By [9, Theorem 9.8], 6 naturally corresponds to some irreducible character n €
Irr 4 (S”), which therefore has field of values Q(i). Now, S only has two A-invariant
irreducible characters with field of values Q(%), so using the inverse of Dade’s natural
correspondence from that theorem, necessarily 7 is one of the two linear characters
of 8’/C = R.

By hypothesis (x,S) = G, and so x € Gy. Since

Go = U (G:))T )
TeT
we may assume that z € Gf. By [19], Lemma GJ, ¥(z) = ey(x), where y € Irr(5'A)
is an extension of 7, and € is a root of unity. In particular, 7 is linear. We conclude
that [1(x)| = 1, as desired. O

LEMMA 9.6. Let S <G < GL(V) = GL4(C), where G is finite, S = %Bs(q),
D = qo(q—1) with qo = 2", q¢ = 22"t and V = CP is irreducible over S. Suppose
that G contains two elements go, g1 such that Trace(go) = +i, Trace(g1) = £1, and
g1 € goS. Suppose in addition that the trace of every element in Z(G) belongs to
Q(4). Then go and g1 both induce non-inner automorphisms of S.

PROOF. Assume the contrary. As g1 € goS, go induces an inner automorphism
of S. Hence we can write g9 = zs for some s € S and some z € Cg(5) = Z(G).
Since G is finite, z has finite order, whence z = ( -idy for some root of unity . By
assumption, ¢ € Q(i), whence ¢* = 1.
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First suppose that ¢ = +1. Then Trace(s) = (~! Trace(gy) = +i, but this is
impossible for any element in S, see [45]. Hence, { = +i. Recalling that ¢; €
goS, we can write g1 = got = zst for some ¢t € S. In such a case, Trace(st) =
¢~ ! Trace(g1) = 44, and we again arrive at a contradiction since st € S. ]

9B. Traces of Frobenii and arithmetic monodromy groups. We now
give a lemma on traces for those local systems F(q, f) in which the polynomial
f(z) of degree (qo + 1)t(q) lies in Fa[z] and has f(0) = 0. Recall that gy = 2™,
n>1,q=2q¢,t(q) = q+1—2q; for k/Fy a finite extension and i = (4, the trace
function of F(q, f) is

1 .

ek T Dy gy 2 VMmoo wagen (210 S (o) + tal)).

LEMMA 9.7. For F(q, f) as above, i.e., with f(x) € Fa[x] of degree (qo + 1)t(q)
and f(0) =0, define

A = the number of nonzero monomials in f(z),

so that A = f(1) (mod 2). Then the traces at points of Fo are given as follows, with
1= C4 N
_ =1, if24(A—n),
Trace(Frobo g, | F(q, f)) = { (=), if 2l(A—n),

-1, if2|(A—n).
Furthermore, for any finite extension k/Fy and any t € k, | Trace(Froby x| F (g, f))]

< VF#E.

PROOF. The trace at time 0 € 5 is

Trace(FrobL]F?\]-'(q,f)) = { —(=D", if24(A-n),

—1 .
(= ey times the sum

2[0,0] 4+ 1ha[1, A] = 1 + (—=1)44,

while the trace at time 1 € Fqy is i

ﬁll)ni) times the sum

¥2[0,0] + ¢o[l,A+1] =1+ (—1)A+1i.

If (-=1)4 = —(—1)", these traces are respectively —1 and —(—1)"4. If (=1)4 =
(—=1)™, these traces are respectively —(—1)"i and —1. For the second statement,
note that Trace(Frob, ;| F(q, f)) is a sum of #k terms, each of absolute value 1,
divided by a clearing factor of absolute value \/#Fk; hence it has absolute value

< V#Ek. 0

THEOREM 9.8. Let n € Z>1 and q = 2!, Suppose the Airy sheaf F(q, f)
defined in [A13) with ¢ = 22"*1, f(x) € Fa[z], and f(0) = 0, has finite geometric
monodromy group S. Then the following statements hold for S and the arithmetic
monodromy group G := GaritnF, of F(q, f) over Fa:

(i) S = 2By(q). Furthermore, G induces non-inner automorphisms of S,
G =Z(G) X R for some S < R < Aut(S) = S X Capy1, and Z(G) < Cy.
(ii) If 2n+ 1 is coprime to |S|, then G = Z(G) x Aut(S5).
(ili) Suppose that | Trace(Frobop ,)| = qo := 2". Then G = Z(G) x Aut(S).
Moreover, |Z(G)| < 2 if Trace(Frobor ,) = —qo or Trace(Frobyp,)
= +qoi, and Z(G) =1 if Froby 7, has odd order.
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Proor. (i) By Theorem B4 the geometric monodromy group of F(g, f) is
S = 2B,(q) in its irreducible representation of degree D = qo(q¢—1). By Lemma[@.7]
for the images g of Frobg r, and g; of Frob; r, in G, one has trace +i and the other
has trace +1. Note that g1 € goS, and since G is finite, the traces of all elements
in G belong to Q(i) by Chebotarev density. By Lemma[0.06] g induces a non-inner
automorphism of S.

Recall that Out(S) = Cyp41. Then G projects onto a subgroup S x C,, of
Aut(S) with kernel Cg(S) = Z(G), for some divisor m > 1 of 2n + 1. Again, each
element in Z(G) acts as a scalar & on CP and has trace a root of unity belonging to
Q(4), whence a* = 1, and thus Z(G) < C4. Now (G/S)/(Z(G)S/S) = G/Z(G)S =
Cyp is cyclic, and Z(G)/S < Z(G/S). It follows that G/S is abelian of order
m|Z(G)|, with cyclic quotient of odd order m and a cyclic 2-subgroup Z(G)S/S of
order |Z(G)|. Hence G/S = R/S x Z(G)/S, with R =2 S x C,,. The composition
factors of R are S and cyclic groups of odd order (dividing m), so RNZ(G) =1
and G = Z(G) x R.

(ii) Now assume that 2n + 1 is coprime to |S|, but m < 2n + 1. Let 9 be the
character of R = S x C,, acting on the sheaf, which extends the character 6 of S.
Let 1 denote the Glauberman correspondent of 6 as in Lemma [0.2} in particular, it
has degree (r—1)y/r/2 for r := 2(27+1D/™ > 8 We can write gy = zhg and g1 = zhy
for some ho, h; € R and z € Z(G) (recall goS = g1.5). Now z acts as a root of unity
B with g4 = 1, and (h;) = v;n(c;) with ¢; € C = 2Ba(r) and ’yjzm =1forj=0,1
by Lemma [0.21 Since n(c;), 5,%(g;) € Q(7), we see that v; € Q(i). But 'yjzm =1
and 2{m, so y; = £1.

Note that, since r > 8, the character 1 does not take value +i, see [45]. Without
loss of generality, we may assume t(go) = £1 and 9(g1) = *+i. Now, if § = =i,
then n(go) = ¥(g0)/(Sy0) = %i, which is impossible. On the other hand, if § = %1,
then n(g1) = ¥(91)/(By1) = £, which is again impossible. Hence m = 2n + 1, as
stated.

(iii) By assumption, |¢(g5""?)| = qo, where ¢ is the character of G acting on

Fl(q, f). Using G = Z(G) x R, we again write go = zhg with z € Z(G) acting on
F(q, f) as a root of unity 8, and hg € R. Then Z(G) = (z) since G = (go, S), and
Bt =1. Now s := h3"*t € S as R/S < Cany1, and |¢(s?)| = go. Checking the
character table of S [4], we see that |s?| = 2 or 4 and thus s is a 2-element. But
every 2-element of S has order dividing 4, so |s| = 4. Hence we can write |hg| = 4e
for some e|(2n + 1).

Suppose that e < 2n + 1, whence e < (2n + 1)/3. Then g¢§ is the image of
Frobg 2, and so

go = 2" > 2 TN/6 > 2¢/2 > 15(g8)| = |p(h))

by Lemma On the other hand, since R/S < Cap41 and h§ has order 4,
h§ € S and hence |p(h§)| = qo, a contradiction. Thus |hg| = 4(2n + 1). Note that
|Cs(s?)| = ¢?, hence |Cg(s?)| has order dividing ¢*|Z(G)| - |R/S|. But hg belongs
to Cg(s?) and has order 4(2n+1); thus, (2n+1) divides |R/S| and so R = Aut(.5).

Since G = (g1, S), the assumption that the image g; of Froby g, has odd order
implies that 2 { |G/S], and so Z(G) = 1. Next suppose that |Z(G)| > 2 but

ap(gg‘"”) = —qp or @(gg"'H) = 4qgi. Then 8 = +i. In the former case,

e(g"?) = (B T2hg™T?) = —p(hg"T?) = —p(s?),
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and thus the involution s?> € S has trace qo, which is impossible, cf. [4]. In the
latter case,

plgo™t) = (B2 hg"t?) = Fip(hg") = ip(s),
and thus s € S has trace £qo, which is again impossible, cf. [4]. O
PROPOSITION 9.9. We consider the sheaf F,, ¢ = 2*"T1, as defined in the

Introduction. Thus Fy = F(q, f) with f(z) :== f1(z¥D), fi(z) =31, 2142 g
in (I3). For a finite extension k/Fa, define

2n
Ker(k) := {x €k | chzl = 0}.
i=0

Then we have the following results:
(i) For any subfield k of F 2, | Trace(Frobg x| F,)|? is either O or # Ker(k).
(i) |[Trace(Frobog ,|7g) 2 = #Ker(F,2) = # Ker(F,) = q/2.

PROOF. We first observe that ged(t(g),q®> — 1) = 1. To see this, note that
t(q) = ¢+ 1 —2qo divides ¢® + 1 (indeed (¢ + 1 —2q0)(q+ 1+ 2q0) = ¢*> + 1), while
ged(¢? —1,¢* + 1) = ged(¢? — 1,2) = 1. Thus for any subfield k of of F 2, the map
z — z'(@ is bijective on k.

The sheaf F, was built out of the Witt vector

{xt@, 3 $t<q><1+2”>] ,
1=1

Let us denote by H, the sheaf built by the same recipe, with same clearing factor,
out of the Witt vector

Then for any subfield % of of IF -
(9.9.1) Trace(Frobg x| F,) = Trace(Frobg x|H,),

precisely because the map z — z!(9 is bijective on k.
Let us rewrite the input Witt vector for H, as

n

(9.9.2) {x, quzi} = [z,zR(z)] with R(z) := Zmzi.

i=1

With this rewriting, we apply the idea of van der Geer-van der Vlugt, cf. [49] §5],
as follows. Let us define

(9.9.3) V(z) := [z, 2R(z)].
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In Witt vector addition in Fy-algebras, using the fact that R(z) is an additive
polynomial, we get

V(z+y)—V(z)-V(y)

= [z +y, (x+y)(R(x) + Ry))] + [z, 2R(x) + 2°] + [y, yR(y) + ]

= [y, (@ + y)x + (z + y)(R(x) + R(y)) + zR(x) + 2°] + [y, yR(y) + ]
=[0,4% + (z + y)z + (z + y)(R(z) + R(y)) + zR(z) + 2* + yR(y) + y°|
= [0,zy + zR(y) + yR(z)]
=10, (2, y)]

for

(9.9.4) (x,y) == zy + zR(y) + yR(x).

The key point is that (z,y) on k x k is a symmetric Fo-bilinear map to k, and

Tracey, r, ((x,y)) is a symmetric Fp-bilinear form on k& x k as Fy vector space.
Then

| Trace(Frobo x| Hq)|* = (1/#k) Y tha(Tracey, s, (V(z) = V(y)))

z,y€k

(by the shearing transformation (z,y) — (z + v, y))
= (1/#k) > a(Tracey s, (V(z +y) — V(1))

z,y€k
= (1/#k) > ta(Traces s, (V(z) + 0, (z,))))
z,y€k
= Zq/;Q (Tracek/FZ(V(x))) <(1/#k) Zw(Tracek/Fz((x, y)))>
€k

yek

The second summand vanishes unless the given x € k has Tracey,r, ((x,)) = 0 for
all y € k, in which case it is 1. But = € k has Traceyr,((z,y)) = 0 for all y € k if
and only if « € Ker(k). To see this, note that for z,y € k,

(x,y) = 2y + xR(y) + yR(z —xy+zxy +Zy:v

has the same Tracey/p, as (:v +30, /2 S a? )y So by nondegeneracy of
the trace, € k has Traceyr, ({7, y)) =0 for all y € k if and only if

n n 2n
x4+ le/T + szt =0, i.e., if and only if szt =0
Thus for k£ a subfield of F ;.

‘Trace(Frobo7qu)|2: Z P2 (Tracey g, (V(2)))-
z€Ker(k)

To show (i), notice that on Ker(k), z +— Trace,p,(V(z)) is additive, i.e., it is
a linear form on Ker(k). If it is nontrivial, the sum giving | Trace(Frobg H,)[?
vanishes. If it is trivial, this sum is # Ker(k).
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To show (ii), notice that for any k C Fo, Ker(k) is precisely the set of elements
r € kNF, with Traceg,_/r,(r) = 0. (Indeed, if 2 € Ker(k), then

2n+1

2n ) 2n . )
0=> Fi(x)= F(ZF’(w)) =Y Fi(),
=0 =0 i=1

and so x = F?""!(2), ie, © € F,.) In particular, Ker(F,2) = Ker(F,) and
#Ker(F,) = q/2. Now for = € Ker(F,2), we have
Tracer , /r, (V () = Tracer, /r, (Trace]Fq2 e, (V(2)))
= Traceg, /r, (V(2) + V(z))
= Tracer, /r, ([o, xQ])
= [O,Tracqu/Fz (xQ)]
= [0,0],
precisely because every x € Ker(F;2) is an element of [, of trace zero. So we see

directly that each of the summands in the sum giving | Trace(Frobo , |H,)|? is
simply 1. |

PROPOSITION 9.10. For g = 2?"*! and the Airy sheaf F,,
Trace(Frobgr, | Fy) = —€2"4,
where € := (—1)""+t1/2 s the Jacobi symbol

B 2 - 1, 4f2n+1=+1(mod 8),
1= {9 77 ) T 1, if 2n + 1 = +3 (mod 8).

PROOF. (i) Proposition@.9implies that Trace(Frobg r, |F,) lies in Z[i] (because
the only possible non-integrality is at the unique place of Q(i) over 2, where this
trace and its complex conjugate have the same 2-adic ord). Furthermore, we can
work with traces over H, instead of F,.

Let us denote by F the absolute Frobenius z — 22, and define

R,(z) = izﬂ(x), V() = [z, 2R, (2)] = F%im@ﬂ

Consider the non-normalized sum

RawTrace(Frobqu |Fq) = — Z o (Tracqu/]F2 (Vn(x))),

z€F,
so that
RawTrace(Frobg g, |F,) = (1 — (—1)"4)***! Trace(Frobg g, | F,).
(ii) To explain the idea of the proof, consider first the case when 2n + 1 is an odd

prime p. Then Fo» /Fo has degree p, and For \ Fy is the disjoint union of F-orbits
of length p. On each such F-orbit, the value of Tracer, /r,(Vn(7)) is constant, and
this constant value is then repeated p times as we sum over this orbit. So we have
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a congruence modulo pZli]:

RawTrace(Frobg r, |F;) = — Z Yo (Tracqu/Fz(Vn(x)))

z€F2
= —n (Tracelgq 7> (Va(0))) — 2 (Tracqu/F2 (Va(1)))
= —1)y (Tracelgq /s, [0, O]) — 1y (Tracelpq/]gz 1, n])

(remembering that F,/Fy has odd degree p, and both V,,(0), V,,(1) are already Fa-
rational)

= —2(p[0,0]) = ¥a(p[1, (p = 1)/2]) = =1 = ¢2([1, (p = 1)/2])*
=1 (e = = 1,
So when 2n + 1 = p, we have a congruence modulo pZ][i]:
(1—(—1)P=/24p Trace(Frobg r, |Fy) = —1 —i.
Multiplying both sides by (1 + (—1)®~1/24)? we get a congruence modulo pZ[i]:
27 Trace(Frobo g, |[Fy) = —(1 +14)(1 + (—1)P=H/2)P,

If p =1 (mod 4), the right side is

—(1 43Pt = _(21-)(21-)(;)71)/2 — _(21')2(1’*1)/21'(17*1)/2.
If p = 3 (mod 4), the right side is

—(14i)1—i)P = =21 —i)P~t = _2(_21-)(1)*1)/2 — op+1)/2;(r=1)/2

Recalling that 27 = 2 (mod p), and that (p—1)/2 = n, we get a congruence modulo
pZli):
—i27i(P=D/2 " if p =1 (mod 4),

Trace(Frobog, | 7q) = { 9ni(P=1/2 if p = 3 (mod 4).

Thus
(9.10.1) Trace(Frobg r, |F,) = —€,2"1,
where ¢, is given by i®~D/2 = (—1)(=1D/4 — (=1)®"~1/8 when p = 1 (mod 4),
and by iP+1D/2 = (=1)P+1/4 = (—1)®*~1)/8 when p = 3 (mod 4). Thus in both
cases €, is the Legendre symbol (%) = (-1)@*-1/8,

In view of Proposition (1.9, Trace(Frobgr, |F,) is either 0 or an element of Z[i]
of absolute value 2". Tt cannot be 0 because of (@IOI). So it must be one of
+2™ or £2™4. Of these four possibilities, only —e,2"3 is congruent modulo pZ[i] to

—€p2™4 (this is just the statement that for an odd prime p, the four powers of i are
distinct modulo pZ[i]).

(iii) We now turn to the general case, where we proceed by induction on the
total number (counting multiplicity) of primes dividing 2n + 1. Thus we write

2n+1=ps, s=2a+1, p=2b+1, with a,b > 1 and p prime.
We will need to deal with both Fops and Fas. To simplify notation, let us write
Q=2 ¢ :=2°.

Here
ps=s5(2b+ 1) =2bs+s=2(sb+a)+ 1.
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The idea is that Fg ~\ F, is the disjoint union of F*-orbits, each of length p, and
on each of these orbits, the value of Traceg,, /r,(Vipra(2)) is constant, and this
constant value is then repeated p times as we sum over this orbit. Thus we get a
congruence modulo pZ[i]:

RawTrace(Frobg r, | Fg) = — Z Yo (Tracep,, sk, (Vibta(z))).

IE]Fq/
But for z € F, the trace from Fg down to F, is just multiplication by p, so
Tracer,, /r, (Vspta(x)) = Tracelgq, JFs (PVisbra()).

Suppose first that b is even, i.e., that p = 1 (mod 4). Recall 4[z,y] = 0. So for
x € Fql,

PVobral) = Viosa(2) = [, Rala) 4.2 3 Fia))|

i=at1
= [x,xR.(x) + x(b Tracqu,/[Fz (x))] = [z, 2Rq(x)] = Vo (x),
where the last equality holds because b is even. So in this even b case,
RawTrace(Frobg r, | Fg) = RawTrace(Frobg r, | F¢) (mod pZ[i]).
Suppose now that b is odd, i.e., that p = —1 (mod 4). Then for z € Fy/,

PVabrali) = ~Vinta(o) = ~[r,Rali) + o 3 Fw)]

1=a+1
= —|z,2Re(z) + z Tracer , /v, (7)] = [z, 2Ra(2) + z? + z Tracer,, /v, ()]

= [z, 2Ry (x)] + [0, 2% + x Tracep , /r, (2)]

=V, (x)+ 0,22 + = Tracer,, /r, (7)].
But the term [0, 2% + x Tracer, , /r, ()] has
Tracer,, /r, ([0, 4z Tracer,, /r, (x)]) = [0, Tracer, , /r, (a:2—|—x Tracer,, /r, (:v))] = [0, 0],
where the last equality holds because

Tracer,, /r, (z%) = Tracer, , /r, () = (Tracer , /r, ()%
So in this odd b case as well, also
RawTrace(Frobg r, | Fg) = RawTrace(Frobg r, | F¢) (mod pZ[i]).
We have shown that
(9.10.2) (1 — (=1)**4)P* Trace(Frobg r,|Fo)
= (1 — (—1)")" Trace(Frobo r , [ Fy) (mod pZl[il).

By the induction hypothesis,
(9.10.3) Trace(Frobo g, , [Fy) = —€s2%.

The clearing factors are invertible modulo pZ[i]. We next show that the clearing
factors are equal modulo pZ[i]. Their ratio is
(1= (1P (1= (<)) (1+ (<))

11— (—1)i)® 95
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If b is odd, then (p+ 1)/2 is even, and this ratio is
(L+ (=D rets  (2(=1))*@HD/2

2 B 2
— 28(1}*1)/2((_1)ai)8(p+1)/2 — 9s(p—1)/2;s(p+1)/2

If b= (p—1)/2 is even, this ratio is
(1— (_1)%)(?*1)5 - (_2(_1)%’)5(20*1)/2 — 95(p=1)/2;5(p—1)/2

Let Xp,quaa be the quadratic character of F), so 2P~1/2 = x, (1.4(2) (mod pZli]).
As s is odd, the ratio of clearing factors modulo pZ[i] is Xp,quada(2)i*®~1/2 when p =
1 (mod 4), and X quad (2)i*®+1/2 when p = 3 (mod 4). Next, when p = 1 (mod 4),

;(P=1)/2 _ Xp,quad(2)~

When p = 3 (mod 4),
Jp+D/2 — Xpquad (2)-
As s is odd, we find that in all cases the ratio of clearing factors is 1 (mod pZ[i]),
as stated. Hence (0.10.2) and (Q.10.3)) imply the congruence
Trace(Froby v, | Fo) = Trace(Frobor , [Fy) = —€52" (mod pZ[i]).

Note that

20 = (2P7V/2)* =\ 1uad (2)° = Xp.quad (2) = € (mod p).
Hence
692707 = €,46,2% = €,2% (mod p)
by multiplicativity of the Jacobi symbol. It follows that
Trace(Frobo r, | Fo) = —€ps2° i (mod pZ]i]).

This congruence shows that Trace(Frobg r,|Fq) is nonzero, so by Proposition
it is one of £25%@ or £250+a; Again, of these four possibilities, only —e,s2"i is
congruent modulo pZ[i] to —eps2™4, and the induction step is complete. O

PROPOSITION 9.11. For g = 22" %1 consider the Airy sheaf F,. Then for any
subfield k of IF,
| Trace(Froby | F,)|> = 1.

PROOF. Let k be a subfield of F2. Note that N := (g + 2¢o + 1)¢*/2 divides
(¢*>+1)¢? and so is coprime to g?—1. Hence the map x — 2!V is a bijection on k, and
it sends 2@ to 2(@*+D9°/2 = 1 for any x € k. As in the proof of Proposition .10

let us denote by F the absolute Frobenius 2 ~— x2. For each integer j > 0, we
define

Rj(x) = ZFz(x)

Consider the non-normalized sum

RawTrace(Frob; x| Fy) := — Z o (Tracek/]lr2 (V(ac))),
z€k

where V() = [z, 7R, (z) + 2VV]. Then we have
RawTrace(Froby ;| F,) = (1 — (—1)"4)%8*/¥2) Trace(Frob 4| F,).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



70 ALPOGE ET AL.

We now take k to be a subfield of F,. We examine the function z — 2™ on k. This
function depends only on N (mod (¢ — 1)). Then

N=(1+1+2)q/2=(2+42q0)q/2=q+qq =1+ q =1+2" (mod (¢ —1)).
Thus if z € k, then 2V = zF"(z), and hence
V(z) = [z, 2R, (z) + 2] = [z, 2R, (2) + F"(z)] = [z, 2Rn_1(2))].
At this point, we repeat the van der Geer-van der Vlugt argument of Theorem
We find that if £ is a subfield of IF;, then
| Trace(Froby | F,)|? = Z Vo (Traceyr, (V(2))),
zeKer’ (k)

with
2n—2

Ker' (k) := {3: € k| Z Fi(z) = 0}.
=0
The key observation is that for k a subfield of F,, Ker’(k) = {0}. Indeed, since
0 € Ker'(k) C Ker'(F,),

it suffices to show that Ker'(F,) = {0}. But for z € Ker'(F,),

2n—2

Tracer, /r, () = ( Z F’(x)) 4 FP2L(g) 4 F2(z) = F2L(g) 4+ F2(g).
=0

Thus for = € Ker'(F,), Tracer, /r,(z) = F?"~'(x + F(z)). As Traceg,/r,(z) € Fa,
this gives

Tracer, /r, () = + z2.
If Tracqu/]FQ(:E) =0, then x + 22 = 0, ie.,, x € Fy, so x is 0 or 1. Of these,
only z = 0 has Tracep, ;r,(x) = 0. If Tracer,/p,(z) = 1, then z 4+ 2° = 1 and so

Fy(x) = F4. But Fy is not a subfield of Fy, which has odd degree 2n + 1 over Fs.
So in this second case, there are no possible x.

Thus
| Trace(Froby 1| F) | = Y wha(Tracey s, (V(x))) = ta(Trace/s, (V(0)))
zeKer’ (k)
=4([0,0)) = 1. -

PROPOSITION 9.12. For q = 22"+ and the Airy sheaf F,
Trace(Froby r, | Fq) = —1.

PrOOF. (i) The quantity Trace(Frob; ;|F,) lies in Q(¢) and is integral out-
side the unique place over 2, so by Proposition [L.TT], Trace(Frob; r, |F,) is one of
{1,—1,i,—i}. For any odd prime p, these four elements are distinct modulo pZ[i].
We proceed by induction on the total number (counting multiplicity) of primes in
the factorization of 2n + 1.

For the induction base, suppose that k = F; = Fa». Then F, \ Fy is the
disjoint union of F-orbits of length divisible by p. On each such F-orbit, the value
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of Tracer, /r, (V/()) is constant, and this constant value is then repeated a multiple
of p times as we sum over this orbit. So we have a congruence modulo pZli]:

RawTrace(Froby r, |F;) Z )2 TT&CGIF 2/Fa (V(z )))

z€F,

= — o (Traces, i, (V(0))) — ga(Traces, ,(V(1)))
= —);(Tracey, /F2 [0,0]) — o (Traceg, /g, (1,7 + 1])
= —12(s[0,0]) — ¥2(p[1, (p+1)/2])
=-1-([1,(p+1)/2))"

=—1-(i 1+(p+1))p SR 7 S
So for Frob; r,, we have a congruence modulo pZ[i):

(1—(=1)P=D/2;p Trace(Frob, f, |F4) = RawTrace(Frob, r, |Fy) = —1 + .
Multiplying both sides by (1 + (—=1)P=1/2§)P we get a congruence modulo pZ[i]:
27 Trace(Frobo g, |[Fy) = —(1 — i)(1 + (—=1)®~1/2)P,

If p = 3 (mod 4), the right side is
—(1— )Pt = —(20)Pt1/2 = _o+1)/2(_1)(pHD/4 = _2(_1)(p2—1)/8+(p+1)/4
= —2 (mod p).
If p =1 (mod 4), the right side is —(1 —4)(1 + ¢)?, which is
—2(1 4 4)" 1 = —2(24)P~D/2 = _2(pH)/2(_1)(-1)/4 = _2(_1)(p271)/8+(p71)/4

= —2 (mod p).
Thus in both cases g Trace(Frob; r [ F4) = —2 (mod pZ[i]). Using Proposition (LT}
we conclude that Trace(Frob; r, [F,) = —1 in this case.

(ii) Suppose now that 2n 4+ 1 = ps with an odd prime p and an odd integer s.
Then just as in (iii) of the proof of Proposition @10 we write

s=2a+1, p=2b+1, ps=2(sb+a)+ 1.
We will need to deal with both Fars and Fas. To simplify notation, let us write
Q=27 ¢ =2°
Then, just as in the proof of Proposition [0.1T],

RawTrace(Froby p, | Fq) = Z Yo(Tracer,, /r, ([7, Rspra—1(2)]))-
IE]FQ

The elements of Fg \ F, fall into F-orbits of length p, and the elements from each
of these orbits have the same Tracer,, /r, ([7, Rsp+a—1(2)]). So we get a congruence
modulo pZli]

RawTrace(Froby | Fq) = Z Yo (Traceg,, /r, ([T, Rspra—1(2)]))
z€F
=— Y ¢s(Tracer,, /k, (p[z, Revya—1(2)])).
:CE]Fq/
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Notice that for x € Fy,
Rgpia—1(z) = Ra—1(2) + bTracer , s, (2).
Suppose first that p = 1 (mod 4). Then b is even,
p[x;Rsb-i-a—l(-T)] = [vasb-l-a—l(x)] = [x,.’lfRa_l(.’lf)],
and hence
RawTrace(Froby o [Fq) = RawTrace(Froby g , |[Fy/) (mod pZli])
when p = 1 (mod 4).
Suppose next that p = —1 (mod 4). Since b is odd,
plr, Repra—1(2)] = —[2, Rspya—1(2)] = [2,2% + Rypya—1()]
= [$, $2 +x Tracqu, /Fy (-I) =+ IRa_l(I)]
= [z,2Rq_1(x)] + [0, 2% + z Tracer,, /r, ()]
But for z € Fy/, Trace]pq, /7, annihilates 22tz Trace]Fq, /7, (), s0 again
RawTrace(Froby , [Fq) = RawTrace(Froby r,, |[Fy ) (mod pZli])
when p = —1 (mod 4).
It remains only to show that the ratio of clearing factors is 1 (mod pZ[i]) in
both cases. When p =1 (mod 4), (p — 1)/2 is even, and this ratio is
(1= (1% /(1= (~1)%)° = (1 = (1))@ = (=2(~1))(@-1/
:(2(10*1)/2(_1)(?71)/4)5 =1 (mod p),
since 2°-1/2 = (=1)(P*~1/8 (mod p). When p = —1 (mod 4), (p + 1)/2 is even,
and the ratio is
1+ (D)7 /(1= (=1)%)" = 1+ (=1)")" (1 + (=1)"0)*/2°
= (1 + (_l)ai)(p+1)5/25 — (2(_1)ai)s(p+1)/2/25
:(2(17—1)/2(_1)(;0+1)/4)S =1 (mod p),
again because 2(°7~1/2 = (—1)®*=1/8 (mod p). O

LEMMA 9.13. For q = 22"*! and S := 2B(q), suppose that s € Aut(S) has odd
order and that (s,S) = Aut(S). Then |s| divides 5(2n + 1).

PROOF. Let G := Sp,(Fs). It is well known that there is a Steinberg endo-
morphism ¢ : G — G such that ¢2 is the standard Frobenius map (ai;) — (a?)

ij
on G, and then we can identify § with g7 """ = {X € G| o(X) = X},
which is then o-invariant. Letting o also denote its action on S, we can write
Aut(S) = (o, S). Without loss of generality, we may assume Ss = So~1, and write

s = zo~'. By the Lang-Steinberg theorem, there is some a € G such that

(9.13.1) x = ao(a)"t.
We also note that in Aut(S)
(9.13.2) (zo )" =2 o(2) - %) - ... 0¥ (2).
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. _ _1\2n+1
As in the proof of [I3] Theorem 2.16], define t := a~1s"*Yq = (zo~1) a.

Then using QI3 and (@I32]) we obtain
ot)=0c(a)" (o(z)-o*(@) ... - c*(z) " (2))0(a)
= (a(a)flafl) (z-o(@)- ... 02"(1)) - (zo(a))
=a ! (xo_l)Qn—Ha =1t.

Thus t € G° = 2By(2), and note that |2B2(2)| = 20. Since s has odd order and
t,s?"t1 are conjugate in G, |t| is odd, whence |s>"T!| = |t| divides 5. Thus |s|
divides 5(2n + 1), as stated. O

THEOREM 9.14. Suppose the Airy sheaf F, for ¢ = 2*"*1 has finite geometric
monodromy group Ggeom. Then the following statements hold:

(i) The arithmetic monodromy group over Fy of Fy is Gayitn 7, = Cx Aut(*Ba(q)),
with |C] < 2.

(ii) Moreover, C = 1 if 2n +1 = £3 (mod 8), and C = Cs if 2n + 1 =
+1 (mod 8).

(iii) Suppose 2n + 1 = +3 (mod 8). For the arithmetic monodromy group
Garith ke 0f Fy over a finite extension k/Fa, we have Gayigh r, = Aut(®Bz2(q)),
Garith,k = Ggeom = 2-82 (q) when k 2 IE‘q; and [Garith,k : Ggeom] =
deg(F,/k) when k CF,.

(iv) Suppose 2n + 1 = +1 (mod 8).

(o) For the arithmetic monodromy group Garignk of Fq over a finite ex-
tension k/Fa, we have Gavith k = Ggeom = ’By(q) when k D Fy2, and
[Garith,k © Ggeom) = deg(F 2 /k) when k C F .

(8) For the arithmetic monodromy group Gositn, 7, 1 Of the sheaf F, =
F, @ (=1)38/F2 gver k/Fy, we have G oavith, 7, Fs = Aut(®Ba(q)),
Garith,]}q,k = chom,]:'q = 2‘BQ(q) when k 2 IFQ’ and [Garith,ﬁq,k :
G = deg(F,/k) when k CF,.

gcom,]:'q]

PROOF. Part (i) follows from Propositions [0.9] @10, and Theorem [@:8(iii).

(ii) Let g denote the image of Froby g, in Garith 7,- AS (9, Ggeom) = C x Aut(S)
for S := 2Bs(q), we can write ¢ = 2zs with C = (2) < Cy and s € Aut(S) =
S % Capy1. The central element z acts on F, as the scalar €, where { = 1if |C] =1
and { = —1 if |C| = 2. The finiteness of Ggeom implies that Garith,r, is finite, and
so Trace(g™) is a Gaussian integer for any m € Z. Now Proposition implies
that

(9.14.1) Trace(s*" 1) = ¢ Trace(¢g*" ) = —¢,

and note that t := s+ € §.

Also note that since Aut(S) = (s,.5), s has order 2n + 1 modulo S, whence
|s| = e(2n + 1) for some e € Z>1, whence |t| = e. Inspecting the character table
of S [] and using (@I47]), we see that e = [¢| is odd and greater than 1; in fact e
divides g — 2qp + 1 if £ = 1 and e divides g + 2qp + 1 if £ = —1, where ¢p := 2. It
follows that |s| = e(2n + 1) is odd. By Lemma [013] e > 1 divides 5, so e = 5; in
particular, |s| = 5(2n+1). An easy computation shows that 5|(q —2go + 1) precisely
when n = 1,2 (mod 4) (equivalently, 2n + 1 = £3 (mod 8)), and 5|(¢ + 2¢qo + 1)
precisely when n = 0,3 (mod 4) (equivalently, 2n + 1 = +1 (mod 8)). Hence the
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statement follows, and we have also proved that the image g of Frob; y, has order

(9.14.2) { 102n+ 1), if 2n+ 1= %1 (mod 8),

52n+1), if 2n+ 1= 43 (mod 8).

Parts (iii) and (iv)(«) follow from (i), (ii), and the facts that Ggeom = 2B2(q)
and Garith,F,/Ggeom 18 cyclic of order |C|(2n + 1).

To prove (iv)(3), note that when k D F4, the images of m1(A'/k) on F, and
]:"q are the same. Hence Garith,fq,k: = Garith,k = “B2(q) whenever k D F,2, whence

G : =2By(q) = S. Now Garith,ﬁq,FQ = (g, 5), where g is the image of Froby p,

geom, F
on F,. By its definition, § = —g, where g is the image of Frob; y, on F,, and the
proof of (ii) shows (recalling 2n + 1 = 41 (mod 8)) that ¢ = —s with Aut(S) =
(s,S). Hence G ovith, 7, Fs = (s,8) = Aut(S) = S % Cs,41, and the assertion
follows. ]

REMARK 9.15. Computations in MAGMA suggest that, for the Airy sheaf F,
with ¢ = 22"+ the Frobenii Frob,p,, with a € Fy; and ged(j,2n + 1) = 1,
all have traces of absolute value 1. If one knew that F, has geometric monod-
romy group Ggeom,7, = 2By(q), then this “absolute value one” property agrees
with Corollary Also, for n = 1,2, computations show that Frob; p, has order
5(2n 4 1), and this again agrees with (@.14.2]).

On the other hand, the infinite case of the dichotomy, namely Ggeom = SLp
would imply by Deligne’s equidistribution theorem [29], Theorem 9.7.13] that when
J is large enough (compared to ¢), some (in fact most) Frobenii Frob,r,; would
have traces of absolute value # 1. This again gives some evidence in support of the
geometric part of [26], Conjecture 2.2] asserting that Ggeom, 7, = By (q). However,
Theorem [0.T4(iii) shows that the arithmetic part of [26], Conjecture 2.2] stating that
Garith, 7, 5, = Aut(*Ba(g)) is false when ¢ = 2™ with m = £1 (mod 8); it should be
corrected in that case by replacing F, by F, as in (iv)(3) of Theorem

9C. Local systems with infinite monodromy groups. Theorem [0.8 allows
us to prove the following criterion for infinite monodromy.

PROPOSITION 9.16. Let n € Z>y1, ¢ = 22" and consider the Airy sheaf
F(q, f) defined in (EILI) with q = 22"+, f(x) € Fa[z], and f(0) = 0. Suppose that
(i) 2n+ 1 is coprime to |*Ba(q)|, and

(ii) there is some odd integer m coprime to 2n + 1 such that
| Trace (Frobg g,m | F (g, )| # 1.

Then F(q, f) has infinite geometric monodromy group.

PROOF. Assume the contrary: F(q, f) has finite geometric monodromy group
S. By Theorem 0.8 S = 2B,(q) and the arithmetic monodromy group of F(q, f)
over Fy is G = Z(G) x Aut(S), where Z(G) < Cy. In particular, |G/S| divides
4(2n 4 1), and so S equals the arithmetic monodromy group of F(q, f) over Fa.
Moreover, G = (g, 5) for the image g of Frobgp, in G, and we can write g = zs
with z € Z(G), s € Aut(S), and Aut(S) = (s,S). Applying Corollary [05] we see
that | Trace(g)| = | Trace(s)| = 1, a contradiction. O
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PROPOSITION 9.17. Let n € Zsg, q := 22" r:=[(n —1)/2], and define
r s
filz) = leJrQn "
=0

Consider the sheaf F(q, f) with f(z) := fi(z*9) as in @IL3). Then for m =
2[n/2] + 1, we have | Trace(Frobg g, |F (g, f))| # 1.

PRrROOF. As in the proof of Proposition @9 the starting point is that
ged(t(q),2™ — 1) = 1. To see this, note that t(q) = ¢ + 1 — 2qq divides ¢* — 1,
and ged(g* — 1,2™ — 1) = 28cd(@@n+1)m) _ 1 — 1. Thus for the field k := Fam, the
map = — (9 is bijective on k.

The sheaf F(q, f) was built out of the Witt vector [2/(9), fi(z"?]. Let us
denote by H(q, f1) the sheaf built by the same recipe, with same clearing factor,
out of the Witt vector [z, fi(x)]. Then we have

Trace(Frobg x| F(q, f)) = Trace(Frobg 1| H (g, f1)),

precisely because the map z — z*(@ is bijective on k.
Next, as in ([@9:2), we write the input vector [z, f1(x)] as [z, xR(x)], with

T

R(x) =Y 2% " = F(2) + F""2(2) + ...+ F""(x),
=0

and F' denotes the absolute Frobenius. Now we can repeat the arguments in the
proof of Proposition L9 and compute the form Tracey s, ((x,y)) on k x k with
(x,y) = zy + 2R(y) + yR(z) as in (@34). For any z,y € k we have F"(z) = z,
F™(y) =y. If 2|n, then n = 2r + 2, m = 2r + 3, and

r4+1 ) r4+1 )
) =y (3P0 )+ S )

i=1

has the same trace over Fy as

r+1 . r+1 . )
Ty + y<z F21(x)> + ZF2r+3—21 (J,‘F2z(y))

i=1 i=1

r+1 r+1
=+ y( P @) + Y )

i=1 i=1
2r+2 )
= y(Z F (gc)) = y Traceyr, (2).
§=0
If 2t n, then n =m = 2r + 1, then

() =+ (X P ) + ek )
=0

i=0
r—1 . r—1 )

=3zy+y (Z F2’+1(w)> + Y @Rt (y)
i=0 i=0
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has the same trace over Fy as

xy 4 y<z_: F2i+1(I)) 4 X_:F2T72i($F2i+l(y))

=0 1=0
r—1 ) r—1 ) 2r )
=ay+y <Z F2’L+1(.,L,)) + Z yF2r—21(x) =y (Z FI (JJ)) =y 'I‘racek/]F2 (!E)
i=0 i=0 =0

So in both cases, the symmetric bilinear form Tracey, /r, ((x,y)) on k x k has kernel
consisting of the elements x € k with Tracey/r, (r) = 0, that is, of exactly 2m~!
elements. Then the proof of Proposition 1.9 shows that | Trace(Frobo g,. [F (g, f))|
is either 0 or 20™~1/2 > 1, and hence can never be equal to 1 (since by hypothesis
n > 2, and hence m > 3). O

THEOREM 9.18. Letn € Z>o, q := 2*"T1, and consider the sheaf F(q, f) of rank
D = 27227+ 1), with f(x) = f1(2*9) and fi(x) as defined in Proposition 1T
Assume in addition that 2n+1 is coprime to |?Ba(q)|; for instance, take 2n+1 = (¢
for any odd prime £ # 5 and any a € Z>1. Then the geometric monodromy group

of F(q, f) is SLp.

PRroOOF. We first apply Proposition[0.9], and note that m is coprime to 2(2n+1).
It then follows from Proposition @ I6lthat F (g, f) has infinite geometric monodromy
group Ggeom. By Theorem B4 Ggeom = SLp.

Suppose that 2n + 1 = (¢ for a prime ¢, but ¢ divides |?B(q)|. Then ¢ divides
q*—1=2%"—1. Since ¢| (2" —1), £ divides ged (2*¢" —1,2¢71 —1) = 28cd(4¢".6=1) 1
and so £ divides 2* — 1 = 15. But 3 |?B2(q)|, so r = 5. O

More generally, to ensure that 2n + 1 is coprime to |?Bs(q)| for ¢ = 22"+, we
can take any n such that 2n + 1 = p{*p3?...pt, where p1 < pa < ... < p; are
primes, p; # 5, a; € Z>1, and p; { (p; — 1) whenever i < j. Indeed, suppose p;
divides |?Bx(q)| for some j. Then p; divides both 2Pi ' —1 and ¢* —1 = 242+ 1,
Since ged(p; — 1,4(2n + 1)) = ged(p; — 1,4]_[2:1 p;?) divides 4, it follows that p;
divides 2% — 1 = 15. But p; # 5 by assumption, and p; # 3 since 3 1 |*B2(q)], a
contradiction.

Added in Proof

After the proofs of the paper were produced and proofread, we were informed
that a stronger version of Theorem 7.5 was obtained in [36].
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