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TRAVAUX DE LAUMON

par Nicholas M. KATZ

To A. Grothendieck, on his 60’th birthday

par Nicholas M. KATZ

Seminaire BOURBAKI
40eme annee, 1987-88, n° 691

Février 1 988

In this expose we will try to explain Laumon’s "principle of
stationary phase" for the t-adic Fourier Transform; where it comes
from, what it is, and what it’s good for.

Background: The Formalism of Fourier Transform
Let us begin by recalling the classical Fourier Transform in the case

of a finite abelian group G, written additively, with Pontryagin dual
group G V . For a function f on G, its Fourier Transform FT(f) is the
function on G v defined as f(x) X (x). By means of the canonical

isomorphism G ~ (G v) v def ined by x( x ) := X(x), we have the inversion
formula FT(FT(f)) (x) _ ~ (G)f (-x). Traditionally we think of the functions
f in question as being complex-valued, but we can just as well allow
values in any subfield of C (or indeed in any field in which ~ G is
invertible) which contains all roots of unity of order dividing the
exponent of G.

The particular case of interest to us is this: k is a finite field, E is a
finite dimensional k-vector space, E v is the dual vector space, x,y> is

the canonical pairing of E with E Y , and ~: (k,+) -~ ~ x is a nontrivial
additive character of k. Then the pairing makes E and E v into
Pontryagin duals, and we can speak of’ the Fourier Transform FT J(f) of a
function f on E, defined as y 

The simplest example of this situation is when E = k; then we can
identify E v with k in such a way that x,y> is just xy, and we have
FT ’-V(f)(y) = In the case of the prime field Fp, a common
choice of 4J is x and with this choice the formula for FT(f)
becomes y H 

Let us briefly recall one sort of complex-valued function on Fp one
is interested in Fourier Transforming. Given a polynomial in several
variables ... , xn) c ... , xn], one is interested in the question of
S. M. F.
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for which N the equation P(x) = N has integral solutions, and "how
many" it has. In studying this question, one is led to the analogous "mod
p" question, namely how many Fp solutions the equation P(x) = N has
for each If we let f be the 2-valued function on Fp defined by
f(N) := the number of Fp solutions of P(x) = N, then FT(f) is the function
on Fp defined by the exponential sums

Y ~’ ~ xi, ... , xn ... , Xn)/p). 
.

It is the systematic consideration of such exponential sums that, with
the advent of t-adic cohomology, leads inexorably to the notion of the t-
adic Fourier Transform.

At this point, it is necessary to summarize, albeit crudely, those
aspects of Grothendieck’s t-adic cohomology theory which are
indispensable to the development of our story. For technical reasons, it is
necessary to choose a prime number t, and an algebraic closure Q~p of

the field Ql of t-adic numbers, and to think about Ql-valued (rather
than C-valued) functions in our discussion of the classical Fourier
transform on finite abelian groups.

Let X be a scheme of finite type over Then for any finite field

k, the set X(k) of k-valued points of X is a finite set. If X is connected,
then once we pick some geometric point ~ of X as a base point, we can
speak of the Grothendieck pro-finite fundamental ~) . A

lisse on a connected X is nothing other than a continuous

representation of 03C01 on a finite-dimensional Ql-space which is
definable over a locally compact subfield of We will admit as a

"black box" the more general concept of a constructible Ql-sheaf ?(a
"sheaf", if no confusion is overly likely) on X, and more generally the
concept of an object K (a "complex") in the corresponding derived

category The key point for us is that, for every finite field k,
a sheaf X gives rise to a Ql-valued function Tracek,F on the finite
set X(k), its "trace function", which is defined as follows. A point x in
X(k) may be viewed tautologically as a morphism 03C6x,k: Spec(k) ~ X; the
pullback of ? by this morphism is then a sheaf on Spec(k), i.e., a
continuous representation of Gal(k/k) on a finite-dimensional Q t-space
which is definable over a locally compact subfield. If we denote by Fk

the inverse of the standard generator x- xq, q = ~k, of Gal(klk), then

we may form the trace of Fk acting on (lp x, k )~(~), and we define
Tracek,F to be the function on X(k) defined by

1 (cp x,k )~(~’) ).



(If y is lisse on a connected X, then we can speak of the Frobenius
conjugacy class Fx , k in ~), namely the image of Fk under the map
of 03C01’s induced by and is just the trace of this class

Fx , k in the representation of r~1 which ? "is".)
In a similar vein, given a complex K, it has finitely many nonvanishing
cohomology sheaves W :_ ~i(K), and we define

It is tautologous that the trace function of a direct sum (respectively of
a tensor product) of complexes is the sum (resp. the product) of the
trace functions of the individual terms. In particular, the map

4~~) -~ TTk Maps(X(k), ~~)
K ~ its trace functions for every finite field k

factors through the Grothendieck group, and it results from febotarev
that on the Grothendieck group this map is in fact injective.

Now suppose that we are given a morphism X -~ Y of schemes of

finite type over Z. For every finite field k, cp induces a map

cpk: X(k) --~ Y(k) of finite sets, which in turn induces maps of pullback

and summation (integration) over the fibres ( cp ) i on the spaces of
functions on these two finite sets:

f on Y(k) ~ the fct. on X(k),

((p~), : f on X(k) - the fct. y ~ E f(x), sum over x in 1( ).
It is essentially tautologous that for K a complex on Y, the pulled back
complex has its trace function given by the pullback of the trace
function of K:

(Tracek,K).
It is a deep fact, namely Grothendieck’s Lef schetz Trace Formula ([Gr]),
that for a complex K on X, its lower shriek direct image on Y has

its trace function given by
Tracek, (CPk)1 (Tracek,K).

Before discussing Laumon’s work on the t-adic Fourier Transform, it
is convenient to recall how Grothendieck’s formalism allows us to discuss
the general concept of an "integral transform" in l-adic cohomology.
The situation is this. We are given a scheme S of finite type over Z on
which Q is invertible, two S-schemes X and Y of finite type, and an ~-
adic sheaf ? on the fibred product XxSY. The idea is that ? is to play
the role of the kernel function for our integral transform. Given a



complex K on X, we define the complex on Y to be

In view of the Lef schetz Trace formula, the trace

function of on Y(k) at a point y, which lies over a given point s

in S(k), is given by

the sum over all points x in X(k) which lie over the given s in S(k).
In other words, the trace function of on Y(k) is obtained

from the trace function of K on X(k) by applying to it the integral
transform defined by the trace function of ? on the fibred product
X(k) xS(k)Y(k)

In a similar vein, we could define another version T -r J,* of this
integral transform by defining on Y to be 

There is a natural "forget supports" map of functors from T’f,1 to T~, ~ ,
which in general has no particular reason to have any particular
property.

With this in mind, we fix a finite field k of characteristic t, an

integer n ~ 1, the standard affine space An over k, with coordinates
xl,..., xn, and the dual affine space, with coordinates yi,...,yn. We also fix

a nontrivial Q t-valued additive character ~ of k. As Hasse [Ha] first

pointed out, pushing out the Artin-Schreier covering (the Lang isogeny
z ~ z - zq , q:=Card(k), for ~a over k) of ~11 by ~1 over k by the

additive character ~ of k gives a lisse rank one t-adic sheaf ~~, on Al
whose trace function is 03C8 itself on k, and 03C8°Tracek’/k on finite extensions

k’ of k. The pullback by any morphism f : Z ~ A1 of the sheaf L03C8 is
denoted in particular we have on An An, which we

take as our kernel for defining the two versions i and of

Fourier Transform. For any k-scheme S, pulling back the entire situation

to gives us and from (An)S to the dual (An)S .
Up to this point the discussion has been purely formal, granted the

Grothendieck formalism; we have done what we must (and what Deligne

did, cf. [De-3]) to define a notion (namely FT,) of FT for complexes on An
over a finite field which induces the classical FT on their trace functions

and observed in passing that FT, has a "lower star" analogue FT~ which

has no visible trace properties. The "miracle" of FT is the following

Theorem 1.(Verdier) Suppose that S is of f inite type over an extension
field of k. Then the canonical "forget supports" morphism
ex : ~S is an isomorphism.

Verdier’s proof, never published, may be sketched as follows. It is



easy to show that is essentially involutive up to a Tate twist and
a degree shift; [2n](n) is the identity. The same holds

with ~ replaced by the inverse character ~. The dual of is

so by duality satisf ies the same involutivity as 
Fix a choice of Vq , q := Card(k), so we can Tate twist by (1/2). Let us

denote by A (resp. A) the functor [n](n/2) (resp. [n](n/2))

by B (resp. B) the functor ~~ [n](n/2) (resp. FT ~ ~ ~~ [n](n/2)).
Consider the morphisms of functors

If we admit that both of the composites

are the identity endomorphism of the identity functor, then (~)o(D is idA,
and (~(~) is idg. Since ~1 and $ are each o([n](n/2), we see that a is
invertible with inverse Q (-n)(-n/2). QED

This remarkable result, taken together with Deligne’s Weil II results
([De-2]), functions as a very effective "black box"(i.e., one needn’t know
anything other than the statements) in the theory of exponential sums
in several variables, but in view of the genesis of FT in that theory, it is
not at all surprising that this should be the case. However, we will not
speak here of these applications (cf. [Br], [Ka-La], at all, but will
rather focus on the beautiful structure Laumon has found in the one-
dimensional (n = 1) FT over S = k itself, which he calls the "principle of
stationary phase", and on two applications he has given of it, neither of
which at first sight has anything to do with Fourier Transform of any
sort.

The Principle of Stationary Phase
Recall (cf. [Hor], 7.7) that the classical principle of stationary phase

in its simplest form applies to integrals of the form 
taken over IRn, where (p is function of compact support, f is 

function, and t is a real parameter. It asserts that if the derivative
grad(f) does not vanish at any point in Supp(cp), then the integral, as a
function of t, is rapidly decreasing at 00; this implies that if f has finitely
many critical points in Supp(03C6),then asymptotically for t tending to ~
this integral is a finite sum of contributions, one from each critical point
of f in 

In the p-adic case as well there is a principle of stationary phase,
which is even simpler than in real case in the sense that in sufficiently
nice cases it gives exact rather than asymptotic formulas. Suppose we
are given a smooth Zp-scheme V of finite type and of relative dimension



n , and a function f on V (i.e., f is a Zp-morphism from V to the affine
line Let us suppose that f is a "Morse function" in the following
sense: the subscheme D of V defined by the vanishing of grad(f) is finite
etale over Zp (e.g., V the variety xl x2.....xn+l = 1 in f the function

xl + x2 +......+ and n+1 prime to p). Consider the integral
exp(203C0itf(x))dx

over V(Zp), for t in Qp tending to oo p-adically. [The f unction cp of the
real case is here taken as the characteristic function of V(Zp), and the
role of Rn is played by V(Qp).] By this integral we mean the following: if

ordp(t) = -m  0 , then J is the sum the sum

over x in where the complex-valued function z ~ exp(203C0iz)
on Qp is defined by viewing Qp/Zp as lying in Q/Z as its p-primary
torsion subgroup. One sees easily that if D(Zp) is empty, then for m > 2,
the f vanishes, and that in general for m z 2 the f is a sum of
extremely simple local terms, one for each of the finitely many points
xcrit of D(Zp). For even m the local term is the value at xcrit of

whereas in the case of odd m z 3, the local term
is this value multiplied by the normalized multidimensional Gauss sum
(a fourth root of unity!)

sum over z in 

for the quadratic function H(z) given by the Hessian mod p of f at the
critical point xcrit). Unf ortunately(?), the situation for m = 1 is not so
simple as this.

How are we to interpret the principle of stationary phase for the
one-variable l-adic FT? The integral involves a cp(x) of
compact support, but this is present only as a convergence factor.
Omitting it, the finite field analogue of the integral is the sum 

over x in the finite field k. This sum we can rewrite as the sum

Ex q,(tx)(#{y in k with f(y) = x}), and we recognize this as

~x the FT of the trace function of the direct image
sheaf ? := or what is the same,.we recognize this sum as the trace

at time t of the complex FT(7). For a "reasonable" polynomial f (e.g., one
whose degree is prime to the characteristic of k, or more generally one
which as a map of A1 to itself is generically etale), the critical values
of f are precisely the points of Ai where ? is not lisse.

In order to to pursue this chain of thought, it will be convenient to
recall the concrete "galois" description of an t-adic sheaf on a curve.



Let k be a perfect field, X a proper smooth geometrically connected
curve over k, K the function field k(X) of X, Ksep a separable closure of

K, Gal := Gal(Ksep/K). For each closed point x of X, viewed as a discrete
valuation of K/k, we fix a place x of Ksep lying over it, and we denote by
I(x) c D(x) c Gal the inertia and decomposition subgroups of Gal
attached to the choice x. In terms of this data, a constructible t-adic
sheaf g on a nonvoid open set U in X is a continuous t-adic

representation g- of Gal which is unramified almost everywhere ( I (x)
acts trivially for all but finitely many closed points x), together with
the giving for each x in U of a continuous representation g,x of D(x)/I(x)
and of a D(x)-equivariant ("specialization") map spx : 9-x -+ ~~ which is
an isomorphism for almost all x. One says that 9 is lisse at x in U if spx
is an isomorphism. If the map spx is injective for all x in U, one says

that g has no punctual sections. If U is open then H 
c 

~) vanishes

if and only if g has no punctual sections; indeed as Gal(k/k)-module

where Indk(x) is induction from D(x)/I(x) ~ Gal(k/k(x)) to Gal(k/k). ° If

the map spx defines an isomorphism of gx with the inertial invariants
for all x in U, one says that g is extended by direct image from

its open set of lisseness. The difference in dimensions dim g, - dim 9x
is called 

For purposes of analogy with the C~ case, it may be useful to think
of "g- as D(x)-representation" as being its "asymptotic expansion in a
punctured disc around x, modulo functions which are both ~°° in the
entire disc and which vanish at x to all orders" and of the extra data

spx : as being an attempted approximation of g in an entire
(undeleted) neighborhood near x by a constant.

Given g on U and a closed point x of X , we denote "g~ as D(x)-
representation" by It is important to notice that g(x) is meaningful
for every closed point in X, while gx is meaningful only for points x in
U. To avoid confusion with Tate twist, we will denote the latter in
boldface : e.g., 9(-1).

For later use, we recall the notion of the "slopes" or "breaks" of a
finite-dimensional l-adic representation M of an inertia group I(x) (cf.
[Ka-2] and [Se-2]). Recall that I := I(x) carries a decreasing "upper
numbering" filtration by closed normal subgroups I(r), r in with

I(~) = I itself, and the wild inertia subgroup P is the closure of



I ( r) . One knows that M has a canonical "break decomposition" M =

such that M0> = MP and such that for r>0, =0

while for any s > r, acts trivially on Mr>. It is useful to think of
breaks as analogous to orders of exponential growth. We say that r is a
break of M if Mr> is nonzero, and that its multiplicity is dimMr>.
According to the Hasse-Arf theorem, for any r with Mr> x 0, the
product rxdimMr> lies in ~. The sum rxdimMr> is the Swan

conductor of M as I(x)-representation, denoted Sw(M) or Swx(M). For 7
a lisse sheaf on a smooth connected curve U over an algebraically closed
field of characteristic * t, with complete nonsingular model X,
Grothendieck’s Euler-Poincar e formula (cf. [Ra]) is

~’) := ~’) - 

where XCU) is the topological Euler characteristic 2 - 2g - ~ (X - U).
With these preliminaries out of the way, we can now return to

explaining what the "principle of stationary phase" is to mean for the ~-
adic Fourier Transform.

If we take as the "asymptotic development at 00" of 
then the principle of stationary phase should be the statement that the

D( ~ )-representation is the direct sum of terms, one for each

point of nonlisseness of 7 on A1 and (possibly) one for the point oo, with
the understanding that the "local term" attached to such a point x is to
depend functorially on the data

For this to make sense, we need to know that (the [1] just

means to shift all degrees by 1; Xi(K) ) carries sheaves to
sheaves, or nearly does so. For any sheaf ? on Al, we define its "naive
Fourier Transform" sheaf by

Theorem 2. Suppose that 9’ is an ~-adic sheaf on G~1 over k such 
has no punctual sections. Then

(0) The sheaves vanish for i ~1,2 mid K2 is punctual.
(1) is a single sheaf (necessarily if and only if

~’~~ (ax)) _ ~ for all a in k.
(2) NFT,(5) has no punctual sections.
(3) There exists a largest nonempty open set U of A1 on which FT03C8(F) is

lisse in the sense that on U, coincides with and



U. A point t in k lies. in U if and only if 

I(-)-representation has all its breaks ~ 1, or equivalently if and only if
the integer-valued function on the dual y~ 

attains its maximum at t. The rank of NFT(?) ~n U is

breaks À > 1 of with mult. closed points x in ~11

(4) If ~ is the extension by direct image f rom a nonvoid open set U ~
lisse sheaf which is geometrically irreducible (i.e.,irreducible as a
representation of ~) ) and not geometrically isomorphic to

k, then is the single sheaf .and

NFT~(~’) satisfies the same conditions as y.
Proof. (0) and (1) are straightforward consequences of the fact that

~ (ax) is lisse on A1 with = 1 for The vanishing of

is equivalent to having no punctual sections. Part (2) now
follows from the fact that, by Fourier inversion, is a single

sheaf placed in degree 2, and the interpretation of punctual sections.
Part (3) follows from (2) and the Euler-Poincar e formula. Part (4), due
originally to Brylinski [Br], is another manifestation of Fourier
inversion.QED
Example In (1) above, if ?(~) has all breaks  1 (e.g., if ?(~) is tame)),
then U = Gm. We will see below how looks at 0 a bit further on.

Remark A complex K on ~1 is called m-perverse if ~1 
, 

= 0 for

i is punctual and xm-1 has no punctual sections. A
restatement of parts (0) and (2) above is to say that FT[1] preserves m-
perversity. This is the point of view taken by Laumon.

For ? a sheaf with no punctual sections, we will often write
for the D()-representation i.e., for what is

strictly speaking (This shift of [1] causes no end of

bookkeeping trouble; Laumon’s solution is to def ine his FT to be what we
call here FT[1]. )

We are at last able to state the principle of stationary phase for the
one-variable t-adic Fourier Transform over a perfect field k:



Theorem of l-adic Stationary Phase 3. (Laumon) For each closed
t in ~ ~~, there is an exact functor

(t-adic D(t)-rep’s) 
such that if ? t-adic sheaf on A~ which is the extension bv zero of
a lisse sheaf on a nonvoid open set S,there is a canonical direct sum
decomposition of NFT~(?)(c~) ~ D( 00 )-representation

Local Consequences : Detailed Study of Local Fourier Transform
Once we know the existence of such a decomposition into local

terms, we can deduce properties of the individual local terms
by the t-adic analogue of a "partition of unity" argument,

feeding in global ~’s which have given local behavior. This sort of
"global-to-local" argument, which has a long and honorable history in
number theory, is considerably simplified in our case by a systematic
use of the "canonical extension":
Lemma 4.(cf. [Ka-1]) Given an l-adic representation M of D(0), there
exists a lisse F Qn together with an isomorphism F(0) ~ M of D(0)-
representations. such that F(~) is tame. Moreover, I(0) 
geometric monodromy n) have the same image in
Aut(F -).

ti

as above is called a canonical extension. By feeding in (the
extensions by zero to 0~1 of) canonical ~’s and their additive translates
(to move the "bad" singularity from 0 to an arbitrary rational point s)
one gets a complete analysis of the local terms, modulo understanding
FT~loc( ~, ~) (M) for M a tame D(oo)-representation. Fortunately, this is
no obstruction:
Lemma 5. For M a tame D(oo)-representation, = 0, and
for. N a tame D(0)-representation, FTloc(0,~)(N) is

(~. . D(-)-representation of the same rank.
Proof. The question is geometric, so we may assume k algebraically
closed. By devissage on M, we reduce to the case where M is ?(~), for 7
either ~Q (lisse on or a Kummer (lisse on (Em extended

by zero) with x a nontrivial character of Since FT( 4~ ) is
the delta function supported at the origin, while Q~ is lisse on Al, we
have

and hence = 0 for any unramified M.



we have for x the inverse

character, whence
(*) 

= has rank one.

Therefore either or vanishes,

and the other is of rank one. A similar consideration whose

FT[1] is shows that either or

vanishes, and the other is of rank one. Now

consider the sheaf ? := on Gm -f 1}~ extended by zero.. It is
lisse at =~, 1(0)-isomorphic to at 0, 1(1)-isomorphic 
1, and its FT[1] is lisse of rank two on Gm. Because ? is lisse at ~, the

stationary phase decomposition of has no contribution,
whence

= 

Counting ranks, we see that both and

must be of rank one, whence the desired

vanishing of 
We now see from ( ~ ) that for x nontrivial

(a direct calculation shows that this is also true if ’~ is trivial) and this
proves the second assertion. QED
Proposition 6.
(1) For any D(0)-representation M,

dim = Swa(M) + dim(M).
(2) I(~)-representation has all breaks  1.

(3) If g is a sheaf on A1 with no punctual sections, then FT03C8(g) is lisse
Qn Gm if and only if g has no ~-break 1.

Proof. (1)Let T be the canonical extension of M, extended by zero to Al.
Then its vanishes, and so stationary phase gives

FT(~’)(~) ~ 
and by Thm.2,(3), FT(y) is lisse on Gm of rank Swo(M) + dim(M).
(2) We already know this in case M is tame, so it suffices to treat the
case when M has all breaks >0. For such an M, FT(?) is the single sheaf
g := which is lisse on Gm and has drop0(g) = dim(M). By
Fourier inversion, is (a Tate twist of) ~. Using Thm.2 (3) to

compute the generic rank of which we know to be dim(M), we

see that 9 has all its --breaks s 1. Once we know this, the fact that



is lisse on 6m reduces us to (3). For such ~, ~®~~(aX) has all
--breaks ~1 for all Therefore if we denote by N the part ~( ~ )  1 > of
break 1, we obtain a D(~)-representation with the property that

has all ~-breaks =1 for all a. Now reverse the roles of 0 and
00 in the canonical extension to produce a "canonical extension of N", i.e.,
a lisse sheaf X on 6m, extended by zero, which is tame at zero and
whose D(-)-representation is N. Then FT(X) is lisse on A1 of rank
dim(N), and playing with Fourier inversion and the formula for generic
rank shows that N= 0 (cf. [Ka-2], 8.5.7). QED
Corollary 7. For any D(oo)-representation N, FTloc(oo,oo)(N) = 0 if and
only if N has all its breaks ~ 1.
Proof. As above, let X be a canonical extension of N. Let ~i be the dimN
breaks of N, counting multiplicity. By stationary phase, 
if and only if the generic rank of FT(X), namely 03A3imax(03BBi, 1) is equal to

namely dimN. QED
Theorem 8. If N is a nonzero D(~)-representation with all breaks > 1,
1hen. is nonzero, it has all breaks >1, ~nd

N(-1).

The functor is an autoequivalence of the category of 
representations with all breaks >1; in particular it carries irreducibles to
irreducibles.
Proof. For N with all 00-breaks > 1, and X its canonical extension as

above, is lisse on Al. Applying stationary phase to its FT- we
find

N(-1) N 

and applying stationary phase to the inner term gives

whence the asserted involutivity, since kills (tame).

The rest is formal ; let = A~1 be its
decomposition into (breaks ~1) ® (breaks >1). In view of Cor.7, the
involutivity gives, up to a Tate twist, N ~ Applying

to this gives, up to a Tate twist,

A~1 has all breaks > 1, as asserted. QED
Remark 9 Since irreducibles have a single break (with some
multiplicity), one can calculate the effect of on breaks just
from its known effect on Swans and ranks. The conclusion is that if N
has break (a+b)/a with multiplicity a, then has break

(a+b)/b with multiplicity b.



In order to understand the situation at 0, we also need the following
Theorem 10. (Laumon) There is an exact functor

(1-adic D(oo)-rep’s) -~ «-adic D(0)-rep’s)

such that if ? ~-adic sheaf on G~1 with no punctual sections; there
is a four term exact sequence of D(0)-representations

~)-~0.

As above, once we admit the existence of such a functor, we can
use the canonical extension to unveil its properties. For example:
Lemma 11. Ear unramified. we have

~(~)(-1).
Proof If is unramified, there exists a geometrically constant g on
~,1 with 9(~) ~ The NFT of such a 9 vanishes, and g)
~ Q~)~~(~) N ~(~)(-1) N 
Proposition 12. (1) If N i~~ D(oo)-representation with all breaks ~1,
then = 0. (2) If N is a tame D(~)-

representation. then is a tame (resp. I(0)-unipotent) D(0)-
representation of the same rank.
Proof. be the canonical extension of N, extended by zero to Al.
Then is, near zero, a single lisse sheaf in degree one, so
the result is immediate from the four term exact sequence of
Thm.10. (2). One reduces to the case k= k, in which case the

same exact sequence shows that then QED

Theorem 13. L4 M bg_4 D(0)-representation with MI(0) = 0, and N ~

D(~)-representation with all breaks  1 and NI(oo) = 0. Then we have
M(-1) N 

N(-i) ~ FT03C8loc(0,~)FT-loc(~,0)(N).

The functor FT03C8loc(0,~) is an equivalences of categories from (D(O)-rep’s
M with MI(0) = 0) tQ (D(~)-rep’s N with all breaks  1 and = 0),
with quasi-inverse It sends irreducibles to irreducibles,

03C8

and (M’s of break a/b with multiplicity b) 12 (N’s of break a/(a+b) with
multiplicity a+b).
Proof. Let us begin with an M as above, and denote by F its canonical
extension to extended by zero to Then is a single sheaf
K, and as is tame, stationary phase gives 
Applying Thm. 10’s exact sequence to X now gives the first isomorphism.



This isomorphism shows in turn that has no nonzero

I( ~)-invariants, thanks to Prop.12 (2). Now start with an N at 00 as
above, and denote by g its canonical extension to 6m, extended by zero.
Again FT-(g)[1] is a single sheaf K, lisse on Gm because N has all its

03C8
breaks  1, but Xo is possibly nonzero. But we have a short exact

sequence on Al
0 - {H0}conc at 0 ~ 0, j : Gm ~ A1 the inclusion.

Taking its FT gives a short exact sequence
0 - (the constant sheaf xp) -~ 9(-1) - 0.

Now stationary phase gives H(~) ~ FT-loc(0,~) (N) B 

but the second term vanishes because N has all breaks  1 (Cor.7), and
hence (Prop.6) has all breaks  1. This in turn implies that

the above exact sequence at oo

gives
0 -~ (the trivial D(-)-rep: K()) -~ ~(~)(-1) -~ 0.

Independently of all this, Thm.10 applied to g gives
0 ~ H0 ~ X(0) - 0,03C8

which in turn yields under an exact sequence

0 - (the trivial D(oo)-rep. Xo) - 
~ FT03C8loc(0,~)FT-loc(~,0)(N) ~ 0,

03C8
’ 

If’ 
,

which gives the second isomorphism upon comparison with the earlier
resolution of g(~)(-1). By Lemma 5, we now see that has

03C8
no nonzero I(0)-invariants. The slope formulas follow formally (cf. Rmk.
9). QED

In some ways, the two results Thm.8 and Thm.13 are the most

provocative and least understood part of all that has come out of
Laumon’s stationary phase insight so far, since they furnish remarkable
and unexpected transformations of the spaces of !-adic representations
of equal-characteristic decomposition groups. It would be of great
interest to "really" understand what is going on here to the point of
being able to do something similar in the case of mixed characterisic.

Consequences f or Determinants
Let us now explain a rather special-sounding consequence of the

above theory, which will turn out to have important consequences.
Suppose that 7 is lisse on (Em over a finite field k, extended by zero

to Al, and that is unramified. Then on is a lisse sheaf

NFT( ~’); its representation is a single local contribution



with all oo-breaks  1, and its D(0)-representation is
virtually equal to

y) - ~) + 

Therefore detNFT(F) is lisse on 6m; it is unramified at the origin
(because NFT(T) is itself unipotent at the origin, being an extension of
two trivial I(O)-representations) and it is tamely ramified at oo (by
Hasse-Arf, since all oo-breaks of NFT(7) are  1). Because A1~k is tamely
simply connected, detNFT(~) is unramified at oo, so its extension by
direct image to Pl, say D, is lisse Because P1~k is simply
connected, D is geometrically constant of rank one, necessarily of the
form adeg for some ~-adic unit cx. This means that for any closed point
x and any element Fx in D(x) lifting Frobenius, F x acts on D(x) as
cxdeg(x). Comparing oo and zero, we get two evaluations of cx, so a
strange-looking equality

(14) det( Fool ( x
’ 

.~ ~ 
~

x[det( Fk I y))/det( Fk I ~))]

giving det(Frob I Hc~(~’)) in terms of 7(0) and 

Slightly more generally, suppose that ? is lisse on 6m’ extended by
zero to A1, and that has all breaks  1 (e.g.,is tame). Then on 6m,
FT(?)[1] is a lisse sheaf NFT(1’); its representation is a single local
contribution all of whose --breaks are  1, and whose
D(0)-representation is virtually equal to

iF) - 7) + 

By the reciprocity law of global class field theory for the field k(x), if
we denote by FO and F~ arbitrary elements of D(0) and D(oo)
respectively whose images in the abelianizations correspond via local
reciprocity to the particular parameters x and 1/x respectively, then for
any lisse rank one J) on 6m we have 

det(F, I = det( Fo I D(0)),
whence a stationary phase determinant formula
(15) det( Fool det( Fg I x

x [det( Fk I I ~’))l.
These determinant formulas will be the key to the product formula for
local constants.

First Application: Product Formula f or "Global Constants"
Let us briefly recall the problem. Given a smooth geometrically



connected open curve U over a finite field k of characteristic p having q
elements, X/k its complete nonsingular model, of genus g, j: U -~ X the
inclusion, an l ~p, and a lisse l-adic sheaf F on U, one attaches to F its
L-function L(U/k,T; T) in Q~~[[T]], defined by the usual Euler product,
which by Grothendieck’s Lefschetz Trace Formula is in fact a rational
function of T, namely
L(U/k,7; T) = det(1 - TFkl TFkl 7).
We also define

T) := det(1 - TFkl H1(U0k, TFkl HO(U0k, ?)).
(In terms of L-functions of constructible complexes on X, L(U/k,7; T) is
the L-function of jy on X, while T) is that of on X.) If

we denote by ? 
v 

the linear dual to 7 (i.e., the contragredient
representation of 1tl)’ then by Poincare duality we have a functional
equation of the form

T) = 1/qT)

where the coefficient e(?) of T ~) called the "global constant"
("Artin root number" in the old terminology), is given by

e(?) = det( -Fk Fkl Hc2(U0k, 7)).
The concrete problem is this: once U is small enough that there exist

a meromorphic one-form w on X with neither zero nor pole in U, give a

" p roduct formula" for as the product over the closed
points x of X - U of local constants which satisfy a
reasonable list of axioms (cf. [De-1], [Ta-2]). It was proven up to sign by
Dwork (whose axioms were too strong, cf. [Dw] and [Ta-2],pp. 101-4) ,
then on the nose by Langlands(1968,unpublished), then reproven by a
global-to-local method by Deligne ([De-1]), that there exists a unique
theory of local constants satisfying the axioms, and that for 9"s whose
geometric monodromy is finite, the product of these local constants is
the global constant. In this case of geometrically finite monodromy, one
uses Brauer’s theorem to reduce to the abelian case, where the
existence of local constants and the product formula is classical ([Ta-1],
last page). Deligne’s argument also worked for mod 6 representations,
and gave a mod l product formula; from this Deligne deduced that the
product formula held for any t-adic T which is part of a compatible
system of l-adic representations for an inf inite set of primes 6. Deligne
also treated the case of an l-adic F which has only tame ramification
(1980, unpublished, but cf. [De-4]).

However, the case of a general t-adic representation remained
mysterious; no one knew an a priori reason why the global constant
should be any sort of product of local terms, although that it should be



so was suggested by the "Langlands program", and turns out to have
important consequences for it (cf. [Lau-2], 3.1.3 3.1.5, 3.2.2).

Here is a sketch of how Laumon’s principle of stationary phase solves
this problem.
Lemma 16.Let k be a perfect f ield of characteristic p > 0, and U ~
smooth, geometrically connected curve over k. There exists a nonempty
open set V in U and a f inite etale map V -~ ~1 over k.
Proof. This analogue of Belyi’s beautiful "three point" theorem [Be] over
Q may be proven as follows. We may assume by shrinking that U is
affine, with lots of points at oo. Taking a function f on X with simple
poles at 00 and no poles in U, we get a finite flat map of X to P1 which is
etale over 00 hence finite etale over some dense open set ~1 - S in
Al. For U = Al - S, let G be the finite (!) additive subgroup of k
generated by the elements of S(k). Shrink U to Al - G; the quotient
group ~1 is finite etale, and it makes ,,1 - G finite
etale over Gm. Finally, we make Gm a finite etale cover of A~- by the
function x ~ xP + l/x.QED

Using this lemma and the compatibility of local and global constants
with induction (direct image ), we reduce first to the case of an F which
is lisse on then by inverting (x ’-~1/x), we reduce to the case of an ?
on ~1 which is lisse on Gm extended by zero, and such that is

unramified. For such an ~’, the desired product formula is

8(y) = 

The stationary phase determinant formula (14) unscrews to give

for any choice of F~ in D(~o) lifting Frobenius.
The only problem left is to identify the corresponding terms in the two
formulas. That the co-terms coincide is an easy consequence of the
axioms for local constants, and the fact that iF(-) is unramified.
It remains only to show that for any D(0)-representation M, there is
some element F~ in D( ~) such that

(~~) eo(M, dx) = det( -Fool 
Theorem 17.(Laumon) For any D(0)-representation M, ( ~ ~ ) holds with
F ~ any element of D( ~ ) whose image in D(oo)ab corresponds by local
class field theory to the choice of uniformizing parameter 1/x in the ~-
adic completion of k(x).



Proof. If M is tame, this is done by a reduction to the case of 
with x of finite order, and then by a direct calculation. We will explain
how to reduce to this case.

By devissage, we reduce to the case when M is D(0)-irreducible, in
which case 1(0) acts through a finite group (by Grothendieck’s "local
monodromy App.). Now pass to the canonical extension
§ of M. Then § has finite geometric monodromy, so by Deligne we know
that the product formula holds for it:

= dx ) dx).

Because 9 is tame at oo, we may apply to it the stationary phase
determinant formula (15), which unscrews to

Comparing these two formulas it now suffices to show the

equality of their --terms. This is a problem about tame 
representations. We now repeat the above comparison argument, using
the canonical extension (switching the roles of 0 and co) of ~(~) to a
lisse K on Gm which is tame at 0, to reduce to showing that (* * ) holds
for the tame representation ~(0). QED

Second Application:Construction of the Artin Representation in
Equal Characteristic

Fix a finite quotient G of the inertia group 1(0) at the origin on A1
over an algebraically closed field of characteristic p > 0. Recall that for
any finite-dimensional characteristic-zero representation M of G, its
Artin conductor Artin(M) is the nonnegative integer defined by

Artin(M) := SwQ(M) + dimM - dimMG.
It vanishes if and only if M is a trivial representation of G. Here is how it
occurs in Fourier Transform.

We may restrict the functor FTloc(0,oo) to the category of G-
representations, and, forgetting the D(~)-structure, view it as landing in
(fin. dim. Since we know that

dimFTloc(O,oo)(M)= SwQ(M) + dimM,
it follows by the exactness of that for the quotient M/MG we
have

+ dimM - dimMG
= Artin(M), the Artin conductor of M.

Since the functorm - M/MG is exact (remember G is finite), the
composite functor



M~ 

is a 4~~-linear exact functor
(left modules of finite dimension) - (fin. dim. ~~-spaces).

Any such functor T is necessarily of the form
M ~ 

for some projective module A; moreover, this A can only be

the result of applying the functor T to the group-ring where the

left module structure on the group-ring is used up in viewing the group-
ring as being in the domain of T, defined on left modules, and the right
structure is used to endow with a structure of right module,
thanks to the fact that T is a functor. Therefore we see that

A = := 

is a projective right group-ring module with the property that
Artin(M)

for every left G-module M. This means precisely that A is the Artin
representation of G. Thus we obtain a geometric construction of the
Artin representation in equal characteristic. In the case of unequal
characteristic, there is still no a priori construction of either the Artin
or the Swan representation!
Sketch of the ingredients in and actual proof of Laumon’s
principle of stationary phase

The first ingredient we must discuss will seem at first rather
abstruse, but its relevance will soon become clear. This is the notion of
UBC (universal base change) data. We are given a finite local ring R
whose order is invertible on a scheme S, a morphism f : X -~ S of finite
presentation, and an R-flat sheaf 7 of R-modules on X. We say that the
data (f, 7),best viewed horizontally

is BC (base change) if for every quasi-compact and quasi-separated S-
scheme g : Y --~ S, and any R-sheaf 9 on Y, when we form the cartesian
square



the natural change of base morphism on X

is an isomorphism. We say that the data (f, iF) is UBC (universally BC) if

after any change of base S’ - S, the morphism fS’: XS~ -~ S’ with the

pulled back sheaf FS’ on XS’ is BC.
The main (hard) result on UBC that we need is the "smooth base

change" theorem ([SGA 4], Exp.XV), which says that if f is smooth and if
~ is a lisse sheaf of free R-modules, then the data (f, iF) is UBC. We will
also make use of the following six facts:

UBC(0). if f is finite, surjective and radicial, and if ? is a lisse sheaf
of free R-modules, then the data (f, Y) is UBC.

UBC(l). if (f, ~) is UBC, and if C is a direct factor of ~, then (f,~) is
UBC.

UBC(2). if (f, ~) is UBC, and if j : U ~ S is the inclusion of an open
set with complementary closed set Z such that ’f I f-l(2) is
zero, then for any C on S such that £ I U is a lisse sheaf of
free R-modules, (f, is UBC.

UBC(3). is (f, ~) is UBC, and if 9 is a lisse sheaf of free R-modules on
X, then (f, ~ ® ~’) is UBC.

UBC(4). if f can be factored as f = goh, and if (g, R) and (h, R) are
each UBC, then so is (f, R).

UBC(5). if (f, ~’) is UBC, and if f can be factored as f = goh with h
finite, then (g, h ~ ~’) is UBC.

Of these, 0, 1, 2, 3, 4 are elementary, while 5 uses the proper base

change theorem for the morphism h.
[A note for the experts: What we call here UBC is in fact equivalent to
what Illusie calls "universal strong local acyclicity" in SGA4½, where,
just as in the original SGA4, the emphasis in the definitions is on the
local acyclicity, and the UBC property is deduced. However, since it is
the UBC property which is used in the arguments which will follow, we
have chosen to emphasize it rather than the local conditions to which it
is equivalent.]

The first application of UBC is to the comparison of the ! and *
versions of an integral transform. Let S be a scheme, R a finite ring
whose order is invertible on S, X and Y two S-schemes of finite

presentation, ? an R-flat sheaf of R-modules on X x SY, and i

the integral transforms defined by 7.
Lemma 18. Let j: X 4.X be an open immersion of X into a proper S-
scheme X. Consider the morphism prl: X X, and endow its

source with ( j x If this data is BC, then the "forget supports" map
of functors from to is an isomorphism.



Proof. For any R-sheaf g on X, simply "test" the BC property against
the situation

This means considering

By BC, we have

and composing with R(pr2)’ i = for the projection pr2 of XxgY
onto Y gives the desired isomorphism from T~, to 

We now explain Laumon’s fundamental UBC result on Fourier
Transform, which gives a "geometric" proof of Verdier’s theorem that

FT* by the mechanism of the above lemma.
Theorem 19.(Laumon) Let k be a f inite field of characteristic p with q
elements, R a f inite local ring whose residue f ield contains p distinct p’th
roots of unity, ~: (k, +) ~ R" a nontrivial additive character. Denote by
~1 the standard affine line over k, and j : its standard

compactification. Consider the sheaf 03C8(xy) Qn 
extension by zero (j x The data

~ UBC.

Proof. The question is Zariski local and over the open ~1 we are
UBC by usual smooth base change. So we may work over any affine
open neighborhood of -. Inverting x, our situation becomes the following:
U is Al with coordinate z (= 1/x), j : U - {0} - U is the inclusion, and
we are looking at



Suppose we already know that for U, this situation is UBC

for ( j x Then by property UBC(2) above, this same

situation is UBC for (j x ~(J’C~(i/z)~ which is
isomorphic by the translation y H y-1 to the situation for our original

(j x and UXk(A1 - (1}) - U. As the UBC property is Zariski
local on the source, this would conclude the proof.

Over we can make a change of variable (t,y):= (z/y, y), in
terms of which our situation becomes

Now consider the completed Artin-Schreier covering
w H t:= 1/Cwq - w);

its restriction to the affine t line U is a covering

which is finite etale galois outside t= 0 with group and fully ramified

over t= 0.
Therefore we have a direct sum decomposition of sheaves on U

and by proper base change for the finite morphism it, we can take the
product of it with to obtain a direct sum decomposition
of sheaves on 

So by UBC(1) and UBC(5) we are reduced to showing that the map

xk U ~ r (w~ y) ~ y/(wq - w)
endowed with the constant sheaf R is UBC. Introducing yet another
change of variable v := l/w, this becomes the morphism

(~11 - u q _1) xk U; (v, y) I-t yvQ/(1 - vq 1).

In terms of the new coordinates (v, s) := (v, y/(l - vq-l)), this becomes
(v, s) ~ sv~,

which is the composite of the finite surjective radicial endomorphism
(v, s) ~ (vq, s)



and of the smooth morphism

(~’Hq-l)~k~m -~ U ~ (v, s) - vs,
both of which are UBC. QED

Notice that the initial data in Laumon’s theorem, namely the sheaf

on is symmetric in x and y. Therefore by symmetry we
also have the following theorem, whose significance for stationary phase
will soon become clear.

Symmetric Theorem 20.(Laumon) Let k be a finite field of
characteristic p with q elements. R a finite local ring whose residue field
contains p distinct p’th roots of unity, ~: (k, +) -~ nontrivial

additive character. Denote by Al the standard affine line over k, and by
j : Al - P~- its standard compactification. Consider the sheaf Qn

and its extension by zero (id x i~ The data

In order to explain the relevance of this result to stationary phase,
it is first necessary to recall the theory of vanishing cycles. Let us
consider the following geometric situation: S is the spec of a strictly
henselian discrete valuation ring A (e.g., complete, and with separably
closed residue field), and f : X -~ S is an S-scheme. We denote by s the
closed point of S, and we denote by 11 a geometric point lying over the
generic point of S. (i.e., the spec of a separably closed overfield of the
fraction field of A). We suppose given a torsion sheaf Y on X.

The object is to compare the cohomologies of the two fibres Xs and X-
with coefficients in (the pullbacks i*F = Fs and j*F:= Fn of) F, at least
when f is proper. By the (derived category version of the) Leray
spectral sequence, we have



The strict henselianity of S yields
Hi(S , Hi(s , 

and, if f is proper, then proper base change for f yields
Hi(s , i Rf ~ R ~ j (~~ )) = Hi( ( Xs , i~RJ~(~~ )).

The complex on Xs is denoted R~( ~’). Its grand merit is to be
a complex on Xs which, when f is proper, calculates the cohomology of

X-. There is a natural adjunction map
i~~ -~ 

whose mapping cone is denoted Thus we have a "distinguished
triangle" + 1

i*J’ - 

on Xs, and the corresponding long exact sequence of cohomology groups
on Xs is, for f proper,

... 
~ Hi( Xs , ~s) --~ Hi( X~ , ~ ~ ) --> Hi( Xs , R~(~)) --~ ...

The complex on Xs is called the complex of vanishing cycles. Its

global cohomology groups are, for f proper, the obstructions to the
isomorphy of the specialization maps

The stalks of the sheaves and at a geometric point x of

XS have the following purely local description. Denote by X(x) the strict
henselization of X at x, and by (X(x)) ~ its fibre over ~. Then we have

= Hi( (X(x))~, T) for all i

= for i ~ 1, = 0 for I 5 -2

and a four term exact sequence

0 -+R-1~(~)x --~ ~’X --~ H0( (X(X))~~ Y) 0.

Lemma 21. Suppose that R is a f inite local ring of order invertible on S,
that ? R-sheaf. and that U c X is an open set such that the data
(f I U, iF |U) is BC. Then the restriction to Us of R03A6(F) vanishes.

Proof. Simply "test" the BC property by the S-scheme ja : ~ -~ S, with
il endowed with the constant sheaf R. The cartesian diagram in
question is



and the natural change of base isomorphism on U given by BC is

Since S is strictly henselian, iO *Rjo*R is just the constant sheaf R on s,
and so pulling back this isomorphism to Us gives us that the natural

map i ~ ~ --> is an isomorphism over Us, as asserted.QED
Suppose now in addition that f is proper and that, denoting by Z the

complement Z := X - U, Zs consists of a finite set of closed points of Xs.
Then the cohomology sheaves of R~(~) are skyscraper sheaves
supported in Zs, and the long exact cohomology sequence of vanishing
cycles looks like

If in addition there is an integer N such that

then

vanishes for i ~ N,
and we have a four term exact sequence

(23) 0- HN( Xs , > ~s) -~ HN( X-, ~’- ) -~ Z ~~N~~~))Z --~
~ HIV+1( Xs , ?s) -~ 0.

When in addition ? vanishes on the entire special fibre. Xs, the
situation becomes



With this background, we can now sketch the proofs of the "f ine"
versions of Laumon’s stationary phase theorem (Thm.3) and his Thm.10,
namely with finite coefficients R (a finite local ring whose residue field
contains p distinct p’th roots of unity) rather than We fix a

nontrivial additive character 03C8 of Fp with values in R" .
Suppose that TF is a sheaf of R-modules over a perfect field k

of characteristic p, such that ? has no punctual sections, vanishes at

00, and on a nonvoid open set ~1 - S is a lisse sheaf of finite free R-
modules. To ? we functorially associate the sheaf kF of P1 k P1
defined by

Xy := on G~1 xk ext. by 0).

Notice that for any rational point (a,b) of pi the restriction of

Xy to the henselization of pi k P1 at (a,b) depends only on the
restriction of F to the henselization at the rational point a.

Consider the proper morphism

Since is lisse on (pi - (S U { ~})) this situation is UBC on

the open set ( ~ 1 - (S U { ~ }) ) xk Pl, by the symmetric version of
Laumon’s theorem (Thm.20).

The key point is this: if we denote j: the inclusion, then
from (proper base change and) the very definition of we see that

is precisely By Bvhat we already know (Thm.2)

about FT, vanishes for i~ 1, 2, has no punctual

sections, and is punctual. Therefore we are in the N = 1
situation considered above (22) whenever we strictly localize on the

target Pl at any closed point. Over the point 00 we have in
addition that ~,~ vanishes identically on the fibre over 00.

Localizing at 00, the above isomorphism (24) is none other than the
desired stationary phase decomposition of the functors



FT03C8loc(a, oo) are "just" T -the stalks of the punctual (and only non-
identically vanishing) sheaf of vanishing cycles for the

localization over 00 of our morphism. Concretely, for a E S U 

FT.,.loc(a, ~)(~(a)) := H1( Xk ~1) )-, x~)
for any T 0. 

When we localize over 0, it results easily from Deligne’s theorem on
semicontinuity for Swan conductors (cf. [Lau-l]) that of the finitely
many points (a,0), a E S U over which we are possibly not UBC,
only the point 0) can have 0.(Alternatively, we could

apply Deligne’s Cor. 2.16 [Thm. Finitude, SGA4½] to on X=A1 to
show this vanishing.) The functor is

FT loc(~,0)(~(~)) := H1( ((~1 xk ~1) )-, ~~)~
and the exact sequence of Thm.10 is the vanishing cycle exact sequence
(23) above.
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