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Estimates for Soto-Andrade sums

By Nicholas M. Katz at Princeton

Introduction and statement of results

Let & be a finite field of characteristic p, with ¢ elements, K/k a finite extension field of
degree n = 2. Denote by

N:K -k, Tr: K - k,

the norm and trace maps for K/k. Denote by U the multiplicative subgroup of K* con-
sisting of those elements « in K™ with Na = 1. Given any character of U,

w:U - C*,

any character of k£,

!

¢: k™ - C7*, extended to k by putting ¢(0):=0,

and any element ¢ in k, consider the “Soto-Andrade sum” (cf. [S-A])

Y e(Tr(x) + Ho(x).

xinU

Theorem 1. Suppose that n = 2. Then we have the estimate

| ¥ e(Tre) + Do) = 2()"?

xinU

unless we are in one of the following two exceptional cases:
exceptional case 1) both & and w are trivial,

exceptional case 2) both e and o have exact order 2, and t = +2.
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For higher n, it is more convenient to consider a slightly more general sum, depend-
ing also on a parameter o in K*:

Y e(t—Tr(@ex) o).

xinU

(For a = —1, we recover the Soto-Andrade sum as defined above.)

Theorem 2. Suppose that n 2 2, o in K>, and & nontrivial. Then we have

| Y e(t—Tr@x) o) S n(g)"v/?

xinU
unless we are in the following exceptional case:

n is prime to p, n is even, ¢ has exact order 2, o has exact order n, the n characters
@@ ~VIE-D 0 < i< n—1,are all distinct, and t" = n" N ().

In this exceptional case, we have the estimate

| Z e(t—=Tr(@x) o (x)|— (@"?| < n(g)"~ V2.

xinU

Theorem 3. Suppose that n = 2, o in K>, ¢ is trivial, and w is nontrivial. Then we
have

| Y e(t—Tr(@x)) o(x)| < n(g)" =22

xinU
unless we are in the following exceptional case:

n is prime to p, n is odd, w has exact order n, the n characters @ ~V/@=1)
0=<iZ<n-—1, are all distinct, and t" = n" N (x).

In this exceptional case, we have the estimate

| Y e(t—Tr(ax) o®)| — ()"~ V2| < n(g)"~ 22,

xinU
Theorem 4. Suppose that n 2 2, o in K™, b in k>, t in k. Denote by
f(®)=Card {x in K* with Nx = b and Tr(ax) =t} .
We have the estimate |
If({) —(@"—1)/q(g— DI = n(g)" 2.

Theorem 1 is, of course, a formal consequence of Theorems 2 and 3: take n = 2 and
a = —1. It is isolated here both because of its interest to graph theorists (it proves that
Audrey Terras’ “upper half plane H,” is a “Ramanujan graph”, cf. [Ter], pp.89-91),
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and because, unlike Theorems 2 and 3, it admits an elementary reduction to the Riemann
Hypothesis for curves over finite fields, proven by Weil a half-century ago. For these reasons,
we will devote a few pages to a separate proof of Theorem 1, which we hope will be at least
slightly intelligible to those who are not experts in £-adic cohomology. It is a pleasure to
thank Ron Evans for having told me both about the problem of estimating Soto-Andrade
sums with n = 2, and about its relevance to proving that H, is a Ramanujan graph.

Discussion and proof of Theorem 1

We will see that, because n = 2, Theorem 1 is an immediate consequence of the truth
of the “Riemann Hypothesis” for curves over finite fields ([We]), together with Grothen-
dieck’s Euler-Poincaré formula ([Ray]).

Let us first recall how, for general n, to use Weil’s “restriction of the ground field”
functor to reduce the study of such sums to the study of more ““usual” character sums in finite
fields. The “trick™ is to view the group U as the group of k-valued points of a certain
algebraic torus U over k which over k (and indeed already over K) becomes isomorphic
(for general n) to the n — 1 fold self-product of the multiplicative group &,,. The algebraic
group U is defined as follows. For any commutative, associative, unitary k-algebra 4,
K ®, A is an A-algebra which is free of rank n as an 4-module. Therefore we may speak of
the relative norm and trace

N K®@A > A, T:K® A~ A.
Then U as a functor on k-algebras is defined by
U(4)={oin K®, A with N (o) =1}.

Concretely, if we pick a k-basis e, ..., e, of K as a k-vector space, then for indeterminates
X, ..., X,, the polynomial in K[X’s]

N(Z X,e):= H (Z Xi(aei))

oin Gal(K/k) i

actually has coefficients in k, and U is the hypersurface in affine n-space over k defined by
the equation NV (3 X;e;) = 1. In these coordinates, the trace map Tr, becomes the restriction

i
to A-valued points of the morphism of algebraic varieties over k&

Tr:U - A', (X)) Tr(e)X;.

Notice that if « in K®, 4 has N, (x) =1, then « is invertible in K@, 4 (by the
Cayley-Haimilton theorem). So U is naturally a subgroup-scheme of the algebraic group
K™ over k defined by

K*(4)=(K®,4)".
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Concretely, K* is defined by the n quadratic equations in k[X;’s, Y;’s] obtained from the
equation
(2 Xie) (Z Ye) =1in K[X’s, Ys]
i i

by equating coefficients of the basis elements e; of K/k. In these coordinates, the norm map
N, becomes the restriction to 4-valued points of the homomorphism of algebraic groups
over k

N:KX - Grm (Xis l,l) e N(ZXiei)’
i

and U becomes the kernel of this norm homomorphism.

Because K/k is galois, for any K-algebra B, the B-algebra K ®, B is isomorphic to
the n-fold product (indexed by elements of Gal (K/k)) of B with itself, by the B-linear map

K® B - [l B
o in Gal(K/k)

defined by
Yo, ®b [T Eo@b).

o in Gal(K/k)

Therefore, after we extend scalars from k to K, the algebraic group K> becomes iso-
morphic to the n-fold product of G,, over K:

K*®K=~ [] Gnk-

o in Gal(K /k)

Concretely, the new coordinates Z, on this product are defined by

Z,=Y &(ei) X;.

i

In these coordinates, the norm and trace maps are given by

[1Z and Y Z, respectively.

The subgroup U® K of K*® K is defined by the equation [] Z, =1. If we identify

Gal(K/k) as a set with {1, 2, ..., n}, then U@® K becomes the n — 1 torus with coordinates
Z,...,Z,_,, and the trace map restricted to U® K is

TT: UK - A},
2Zy....2, )~ 2, +2,+--+2,_,+1/(2Z2,2,...2Z,_,).
With these preliminaries out of the way, we now return to the more direct discussion
of the Soto-Andrade sum
Y e(Tr()+ o,

xinU
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attached to a character of U,
w:U - C*,

a character of k*,

e:k* — C’ extended to k by putting £(0):=0,
and an element ¢ in &.

Pick a prime ¢ =+ char (k), and an embedding of C into @,. The “Lang torsor” con-
struction (cf. [De-AFT]) attaches to the character w of U = U(k) a lisse, rank on @,-
sheaf %, on U, whose trace of Frobenius at a rational point a in U(k) = U is w(x).
Similarly, it attaches to the character ¢ of k™ = G, (k) a lisse, rank one @,-sheaf %, on
G, Whose trace of Frobenius at a rational point a in G, (k) = k™ is &(a). The sheaves

%, and ¥, on G, , and U respectively are of finite order, hence both are pure of weight
Zero.

For ¢t in k, we have the function
U - Al definedby wu+sTr(u)+¢.

We denote by U[1/(Tr + ¢)] the open set of U where this function is invertible. On this open
set, we can speak of the pullback

(Tr + D* (L) = Liav +4 -

By Grothendieck’s Lefschetz trace formula ([Gr-FL]), the Soto-Andrade sum is the
alternating sum of the traces of Frobenius F; on the /-adic etale cohomology groups with
compact support: '

Y e(Tr(x) + ) w(x)

xinU

=Y, (1) Trace (§, H}(UL/(Tr + N1 @k, L4y ® £,)) -
i

In the case n = 2 (when U[1/(Tr + ¢)] is a curve, indeed it is G,, with at most two
points removed) we know by [We], and in the case of general n (when U[1/(Tr + ¢)] is a
smooth geometrically connected affine variety of dimension n—1) we know by [De-
Weil II], that the above H! is mixed of weight <i, and that it vanishes unless

n—1g5ig2(n—-1).

We henceforth restrict our attention to the case n = 2. Then the only possibly
nonvanishing cohomology groups are H! and H?. We must show that, save in the two
exceptional cases, we have

a) H(UN/(Mr+0]1®k, Ligern® 4,) =0,
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and
b) dim HX(UQ/(Te + D] ® F, Lpy 1y ® £) S 2.

These are both geometric statements. So we may identify U® k =~ G, ;, with co-
ordinate Z. Then %, becomes the sheaf %, on G, ; which is the pullback from G,, x of the
Lang torsor attached to the character & of K* defined as the composition of w with the
surjective K/k norm map from K* = U(K) to U = U(k). (In fact, this map is x> x! %)

The variety U[1/Tr + #)] ® k itself becomes
G i[1/(Z+1/Z+ D] = G, ;[1/(Z*+tZ+1)],
the last equality because Z is an invertible function on G,,.

The sheaf %, ., ® £, becomes

-?;(z+1/z+:) ® '%(Z) = Lgz2+41Z+1) ® 3’5:3(2) .

This is a lisse sheaf of rank one, and finite order prime to p (because ¢ has order dividing
g — 1, and & has order dividing ¢ + 1 (the order of U). So this sheaf is tamely ramified at all
the “points at co”’. Therefore its Euler-Poincaré characteristic is the same as for the con-
stant sheaf:

2LWUH/(Tr+ D] QK L+ ® Z,)
=1 (UL/(Tr+ 01K, Q)
= 1(Gu i [1/(Z* +1Z +1)], Q)
= (G s> @,) — {number of zeroes of Z> +tZ +1 in k}
= —{number of zeroes of Z2+tZ+1 in k}
= —1or —2.

Since the only possibly nonvanishing groups are H! and H}, if H? vanishes, then
dim H! < 2 is automatic.

To prove a), we argue by contradiction, and suppose that H? is nonzero. Since our
sheaf is lisse of rank one, then

<

&

@ +1z+1) ® La is constant on G, ; — {zeroes of Z2 +1tZ +1}.

Suppose first that ¢ + +2. Then Z2 + tZ + 1 has 2 distinct roots in k, and both roots
are nonzero. If ¢ is nontrivial, the sheaf

‘?;(Zz +tZ+1) ® ‘?%o'i(l)
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is visibly ramified at each of these two points, hence cannot be geometrically constant. If
¢ is trivial, this sheaf if visibly ramified at the origin Z = 0, provided only that w (and hence
@) is nontrivial. So only exceptional case 1) arises here.

Suppose now that ¢t = +2. Then
Z2+tZ+1=(Z+1)?,
Lizr+1z+1® Loy = Lz ® Lo -

If this sheaf is constant, then it is unramified at both 0 and +1, so we must have both &2
and @/ e trivial. If ¢ is trivial, so is &, and hence w itself is trivial. This is exceptional case 1). If
¢ has exact order 2, then & must have exact order 2, and hence w itself has exact order 2.
This is exceptional case 2). QED for Theorem 1.

Proofs of Theorems 2 and 3, and a Corollary

Let us recall the situation. We are given K/k an extension of degree n = 2 of finite
fields, p := char (k), g := Card (k), ¢ a C-valued character of k¥, and w a C-valued character
of the subgroup U of elements of K™ of norm one.

We pick a C-valued character y of K* which agrees with @ on the subgroup U.
Concretely, the group K™ is cyclic of order ¢" — 1, U is its unique subgroup of index ¢ — 1,
and so if { is a generator of K*, then {9~ ! is a generator of U. Thus y?"*({) = w({?™Y),
and the value y({) may be chosen as any g — 1’st root of w({?™!). In particular, the order
of w as character of U is equal to the order of x?~* as character of K*. Once we have one
choice of y, any other is of the form yo, where g is a character of K* with p?™ ! trivial.

In terms of x, we have the following reformulations of Theorems 2 and 3.

Theorem 2bis. Suppose that n = 2, a in K*, and & nontrivial. Then we have

| Z E(t - Tr(ax))x(x)| < n(g) V2

xinU
unless we are in the following exceptional case:

n is prime to p, n is even, ¢ has exact order 2, y?~* has (exact) order n, the characters
x4~ for 0 £ i < n—1 are all distinct, and t" = n"N ().

In this exceptional case, we have the estimate

l Z e(t — Tr(@x)) x(x)| — (@"?*| S n(g)" V2,

xinU

Theorem 3bis. Suppose that n = 2, a in K*, and ¢ is trivial. Then we have

| Y e(t—Tr(@x) x(*)] < n(g)® =212

xinU
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unless we are in the one of the two follwing exceptional cases:

exceptional case 1) x*~! is also trivial,

exceptional case2) nisprime to p,nisodd, y*~* has exact order n, the characters y* ~!
Sfor 0 < i< n—1 are all distinct, and t" = n"N («) .

In exceptional case 2), we have the estimate

| Z 8(t - Tl‘(ax))x(x)l — (q)(""l)/2 < n(q)(n—z)/z .

xinU

Corollary of Theorem 3bis. Let K/k be a degree n extension of finite fields of
characteristic p, with q:= Card (k). Fix elements t in k, and a in k>, and denote by

X(t,a):={x in K™ with Tr(x) =t and N(x) = a}.

For any C-valued character y of K*, consider the sum

Y x).

x in X(t,a)

We have the estimate

I Y x®Isn@t 22

xin X(t,a)
unless we are in the one of the two following exceptional cases:

exceptional case 1) x?~! is trivial,

exceptional case 2) n is prime to p, n is odd, y*~' has exact order n, the characters
x4 ! for 0 £i < n—1 are all distinct, and t" = n"a.

In exceptional case 2), we have the estimate

| X 20— @ 2| S n@" 22,

xinX(t,a)

Proof of Corollary. Since thenormmap N: K™ — k™ is surjective, we may choose an
element a in K™ with N (&) = a. Then

xin X(t,a) < x=oay with yin U and Tr(ay) =¢.

So we may rewrite the sum in question as

Y x®W= ¥ xe=x@® Y 1.

x in X(t,a) yin U, Te(ay) =t yin U, Tr(ay) =t

Since |x(a)] = 1, it suffices to prove the corollary for the sum
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Y 0.

yinU, Tr(ay) =1t

If x*~! is nontrivial, then x| U is nontrivial, ) x(») =0, and so

yinU
X x»w=- Y 1.
yin U, Tr(ay) =t yin U, Tr(ay) *t

In terms of the trivial character 1 of k*, extended to k by 1(0):= 0, this last sum is

- ¥ ==Y 1(-Tr@)) 0,

yin U, Tr(ay) +t yinU

to which we apply Theorem 3 bis. QED for Corollary.

We now turn to the simultaneous proofs of Theorems 2bis and 3bis. Thus fix
characters ¢ of k* and x of K*, and assume that either ¢ or x?~! is nontrivial. For each
t in k, we have the sum

f@= 3 e(t=Tr@x))x().

xinU

The idea is to view ¢ — f(f) as a complex valued function on k, and then to exploit the fact
that its Fourier Transform has a simple expression in terms of Kloosterman sums.

Fix a nontrivial C-valued additive character y of k. The Fourier Transform FT (f)
of f is the C-valued function on k given by

s Yy f=Y Y ve(t—Tr(ex)x(x)

tink tink xinU
=Y 1®) X p(sH)e(t — Tr(ax)) .

xinU tink

Making the change of variable ¢+ ¢ + Tr(ax) in the inner sum, we get

FT(NE) = Y 20 Y w(s(r+Tr(@x))e®

xinU iink
= T x@v(TrEn) T vna®.
xin tin

If s = 0, we have

FT(/)(©0) = Zux(x) > =0,

in tink

because either ¢ or x ! is nontrivial. (This is the only place we use the hypothesis that either
& or x*~! is nontrivial.)
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For s % 0, we have

2 wEDe(®)=2(@) Y v(e@®)=E()gWw,e),

tink tink
SO
FT(f)(s) = &(s5)g(w, ¢) lZU 2 () (s Tr (ox))
=580 T 1@v(TrGax)

= £(s)g(y, ) Y 1 (/s p(Tr(»)

yin K*, Ny=s"Na

=&(s)g(y, &) x(sx) Z 1) (T ().

yin K*, Ny=s"Na

In order to go further, we must recall a bit of the theory of the “exotic” Kloosterman
sheaves [Ka-GKM], 8.8.4-7 attached to a finite etale k-algebra B of rank n (in our case K), a
nondegenerate C-valued additive character % of B (in our case y o Tr), and a C-valued
multiplicative character y of B (in our case x). Once we pick a prime £ % p, and an embedding
of C into @,, there exists a lisse @,-sheaf K1(B, i, x) on G,, ® k with the property that for
any finite extension E of k, and any point s in E* = G,,(E), the trace of Frobenius F, ; on
KI1(B, , x) is given by

Trace (I';.FlKl B, 9, 0)=(-1)"""* Z P (Trg ®wE/B () x(Npg ®xE/B ().

yin BOxE; Npey E/E(Y) =5

In our case (B = K, = y o Tr, x), this sheaf, once we pull it back to G, ® K, becomes
isomorphic to a usual Kloosterman sheaf [Ka-GKM], 8.8.7:

KIK,peTr, |G, @ K=KI(poTr, g, x% x4, ..., 27" 1.
In terms of KI1(K, y o Tr, x), we may rewrite the formula for FT (f)(s), s + 0, as
FT (f)(s) = (—1)""*&(5) g (, &) T (s%) Trace (Fno x| KI(K, 9 o Tr, 1)) -

(Recall that FT (f)(0) = 0.) So by Fourier inversion, we have, for any ¢ in &,

(=D =(-1)"""1/9) ¥ $EOFT()()

sink
= (X @ew,8)/q) Y. &(s)T(s)P(s?) Trace (Fany,il KI(K, v o Tr, 1)) .
sink*
To go further, consider the pullback sheaf
Fi=[ss"Na]*KI(K,p - Tr, x)
on G, ® k. Its trace at s # 0 in k is tautologically given by

Trace (F, 4| #) = Trace (Fwe s KI(K o Tr, 1))
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Let us temporarily denote by y, the additive character of k defined by

Y (8) = p(s?),

and by ¢ the multiplicative character of k™ which is the restriction to k* of x:

e(®)=x(9.
Notice that as characters of K, we have
Qo N = x1+q+q1+ Ve +qn—1 ,
and this uniquely characterizes g as a character of k. In terms of the Artin-Schreier sheaf

%, on A;, restricted to G,, ® k, the Kummer sheaf %, on G,, ® k, and the above sheaf
&, we may rewrite the above formula for f(¢) as follows:

(=" 'gfO/T@gw.0) = ¥ Trace(Fi|F ® £u®%,).

sin k>
By Grothendieck’s Lefschetz trace formula, we have

Y, Trace(F | F @ % ® %) =Y (—1)' Trace (R | H(G, ®k, F ® 4, ® £,)) -

sin k>

Thus we obtain the cohomological formula for f(¢):

(=D""'qfO/(G@gw,e) = ;(-—1)‘ Trace (B |H; (G, ®k, F ® 4, ® 4,)).

We now turn to a detailed discussion of the weights and dimensions of the cohomology
groups H (G, @ k, # ® %, ® %,,). Because the sheaf F ® %, ® %, on G, ® ks lisse,
only the terms with i = 1 or i = 2 are possibly nonzero. The sheaf & is lisse of rank n, pure
of weight n — 1, and tame at 0 [Ka-GKM], 8.8.7 and 4.1.1. If we write n = n,p® with
n, prime to p, then all the co-slopes of # are n,/n [Ka-GKM], 4.1.1(3),1.11 (1) and 1.13.1.
The sheaves %, and &, are lisse, and pure of weight zero.

By Deligne’s fundamental result [De-Weil II], 3.3.1,
H}(G,®k F ® £,® %,,) is pure of weight (n —1)+2=n+1,
H G, ®k F @ £, ® %,) is mixed of weight (@ —1)+1=n.

In discussing the dimensions of these groups, it is convenient to consider first the case
when the characteristic p divides , i.e., when ny < n. In this case, all the co-slopes of # are
no/n <1. Because %, has its co-slope =1 for t #0, =0 for ¢t = 0, the sheaf

f®‘%l®gﬁ
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has all its co-slopes equal to 1 for ¢+ 0, and equal to n,/n for ¢ = 0. So for any ¢ in
k, ¥ ® %, ® %, is totally wild at oo, and hence its H? vanishes (cf. [Ka-GKM], 2.1.1).
Since # ® %, ® &, islisseon G, @ k, and tame at zero, the Euler-Poincaré formula gives
1(G. @k F ® %, ® %)= —ny if t=0 and p|n,
=—n if t+0 and p|n.

So in the case when p divides n, we have H? = 0, and dim H! < n. From the coho-
mological formula for f(z), we get

I(=D""gf )/ (x@gw, )| < n(g)"?, if pin.

Since | g(y, €)| is 1 if ¢ is trivial, and ¢'/? if not, this gives Theorems 2 bis and 3 bis in the
case when p divides n. It also gives the slight sharpening for f(0):

I(=1)""gf O)/(Z(@ g W, )| < no(@)™?, if pin.
We now turn to the case when p does not divide n.
Lemma 1. Suppose that p does not divide n. Denote by Y the set
Y:={y in k such that y" =n"Na} .
As P, -representation, & is isomorphic to the direct sum

F|P,x P Lo P

yinY
Proof. The question is geometric, so we may replace # by the sheaf
[s = s"Na]*Kl(yp o Tr, x, x%2%, ... 2 ),
to which it is geometrically isomorphic. Moreover, the P, -representation of
Ki(yoTr, x, x% 2%, ..., x*" 1)
does not depend on the particular characters which occur [Ka-GKM], 10.1, so it is

the same as that of Kl(y-Tr,1,1,1,...,1), the sheaf on G, ® k denoted Kl,(y) in
[Ka-GKM], 11.0.1. Thus

F|P, =[s+— s"Na]*K],(p).
Now pick an element z in £* with z* = Na. Then s" Na = (sz)", so
[s — s"Na]*Kl,(y) = [s — zs]* [s — s"]* K, (v) .
It is known [Ka-GKM], 10.4.5, that as P -representations, we have

[s— s"1*KI, (V)| E, = ;-@g Lol Fo -
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Pulling back by s+ zs, we find

R

FIP=2 @ %,.,.|P. QED
=1

Lemma 2. Suppose that p does not divide n. Then the oo-breaks of the sheaf
F QR %L, ® %, are all equal to 1, unless t" = n"Na, in which case n—1 of the co-breaks
are equal to 1, and the remaining one is equal to 0.

Proof. This is immediate from Lemma 1. QED
Corollary. Suppose that p does not divide n. If t" % n" Na, then

H}(Gm®k',.7"®.%,®.%t)=0,
dimH}(G,,,@k’,S"’@.%, ®yp) =n.
If t" =n"Na, then

Xc(Gm®k-s'¢®%z®ig¢t) =1—n9
dm H} (6, @k F ® £, @ ZL,)=0or 1,
dmH! (6, ®k F Q@ 4,8 %, )=n—1orn.

Proof. The sheaf # ® %, ® %, is lisse on G, ® k and tame at zero, so by the
Euler-Poincaré formula, its Euler characteristic is minus the sum of the co-slopes. If all
co-slopes are >0, the H? vanishes. In general, the dimension of H? is bounded by the
number of co-slopes which are zero (i.e., the dimension of the =, (G, ® k)-coinvariants is
~ at most the dimension qf the P_-coinvariants). QED

To conclude the proof of Theorems 2 bis and 3 bis, it remains to analyse more closely
the question of when H? is nonzero. We know this can only happen if both p does not divide
n, and " = n" Na. We also know that if it does happen, then the H? is one-dimensional.

Lemma 3. Suppose p does not divide n, and t" = n" No. Then

HX(G,®k FQ® %, %,)+0
if and only if the following two conditions hold:
1) x?~! has (exact) order n, and the characters y* ~! for 0 S i S n—1 are all distinct.

2) Either n is even and ¢ has exact order 2, or n is odd and ¢ is trivial.

Proof. The sheaf # ® %, ® <, is geometrically semisimple, by [Ka-GKM], 4.1.2.
So H2(G,®k, F ® £, ® £, is, up to a Tate twist, the space

Homg g5 (%. ® &, F).
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The question being geometric, we may replace # by
[s— s"Na]*Kl(ypoTr, 1, x4 2%, ..., x0" ).
Now pick an element z in k* with z" = Na. Then s" Na = (s2)", so
[s+ s"Na]*KI(p o Tr, g, 2% 2%, ..., 277 |
> [s> zs]*[s— s"1*Kl(p o Tr, 1, x4 2%, ..., x7" ).
Via the automorphism s — s/z, we have

Hom,, o5 (% ® Ly )
> Homg, o5 ([s = 5/21* (%, ® £,), [s - 5/21* %)
= Homg, 5(%, ® &, [s - 5/21* #)
=Homg, (%, ® &, [(MI*KI(W o Tr, 1, x% %5 ., 27 7))

where we have written [#] for the map s — s".

By Frobenius reciprocity for the finite etale map [n] of G, ® k, this last Hom
group is

=Homg, g1 ([7], (%, ® £,,.), KI(W o Tr, 1, 1 1%, .., 1" 7)) -
But both of the sheaves inside this last Hom are Kloosterman sheaves [Ka-GKM], 5.6.2,

so both are geometrically irreducible. Therefore this Hom group vanishes unless there exists
an isomorphism of lisse sheaves on G, ® kK

[1,(%,® %, ) =KI@@Tr, 1, 2% 2%, ... 27 ).
If such an isomorphism exists, the Hom group is one-dimensional.
Over G, ® k we know from [Ka-GKM], 5.6.2, that
(7], (%,.® %,,.) = Kl(y,,,, all the n’th roots of ge) .

Since ¢" = n" N, and z was any element in k* with z" = Na, we may choose z = ¢/n. For
this choice, we find

(7], (. ® Z,,,.) = Kl(y, all the n’th roots of ge) .

Thus our H? is nonzero if and only if, on G,, ® k, we have an isomorphism of Kloosterman
sheaves

Kl(, all the n’th roots of g¢) = Kl(y » Tr, x, x%, 2y,

But two such Kloosterman sheaves are isomorphic if and only if they have the same
sets of characters with multiplicities (all characters viewed as characters of some sufficiently
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large common finite extension of both K and &, by composition with the norm) [Ka-GKM],
4.1.1 (1)-(2) and 4.1.2 (2a) for “if’, 7.4.1 for “only if’. So we are reduced to asking when

{all the n’th roots of g&} = {x, x% x*, ..., x¥" '}
To analyze this question, notice first that in order for the set

{X! qu qu’ seey an—l}

to be all the n’th roots of any character, it is necessary for the set of ratios to y,

L 42,

to consist of the n distinct characters of order dividing ». Since the characters y? ~! are
all powers of x?~1, this holds if and only if y?~! is a character of exact order n, and the
n characters

L L y? L, Y

are all distinct. If this condition holds, then {x, x% x%, ..., x?" '} is the set of all n-th
roots of the character x". So in order to have

Kl (i, all the n’th roots of gg) = Kl(p o Tr, x, x% 2%, ..., %" ),

we must have in addition
n

X =0¢.

1+q+q2+... +q"

Since go N =y "', this condition may be rewritten

x" = (g0 N)yl*ta+a+ .- +4""" a5 characters of K*,
or equivalently, as

EoN =10 )™ Y
= the product of all the characters of order dividing n

=1 if n is odd, the quadratic character is n is even. QED

Combining this last lemma with the preceding corollary, we find that Theorems 2bis
and 3bis are proven.

Remarks on Theorems 2bis and 3bis. 1) If p divides n, we have already seen that for
t = 0 the constant in the bound may be taken to be #n,, the “prime to p part of n”, rather
than n itself.

2) Suppose p does not divide n, and we are not in any of the exceptional cases of
Theorems 2bis or 3bis. By Lemma 3, we have

HX(G,®K F® £, %,)=0.

11 Journal fiir Mathematik. Band 438
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If ¢ satisfies 1" = n" Na, we have seen in Lemma 2 that

26,9k F® £, %)=1—-n,
whence
dichl(Gm®an®-%!®$¢‘)=n'—1

in this case. So if we are not in an exceptional case, for ¢ satisfying " = n"Na, the
constant in the bound may be taken to be n — 1 rather than n.

3) Suppose again that p does not divide ». If x" + &g, the sheaf # ® %, ® ¥, has
no nonzero invariants under the local monodromy group I,. (More generally, the semi-
simplification of this sheaf as I -representation is the direct sum of the n tame characters
x""/e, for 0 S i < n—1. As both ¢ and @ are characters of k*, (¢¢)? = ¢o, 50 these are
the characters (x/eg)?’, which all have the same order, being K/ k-conjugates.) Thus if both
X" *+ ¢¢ and t" + n"Na, then F Q@ £, ® £, has no nonzero inertial invariants at either
0 or oo (it has all co-slopes 1), and so by [De-Weil I1], 3.2.3, H! (6, Q@ k, ¥ @ 4, ® £,
is pure of weight n.

4) One might ask about the compact cohomology groups which tautologically give

rise to the Soto-Andrade sums. In the notations of our earlier discussion of Weil restric-
tion, these are the groups

H:(UU/(’ -Tr,)]1 ®k, Lot -1 ® -?x) .
In terms of the inclusion j : G, — A!, we may rewrite these groups as
H (UK Z,@[x t —Tr(@x)]* (1L L)) .

They are the stalks at ¢ of the chomology sheaves of the complex R(pr,)¥ for the
second projection

pr,:Ux A - A,

and the sheaf on the source
$=pr} £, @ [(x, ) — t = Te (@0)]* (1 %) .

One can compute, in the derived category, the object FT,, (R(pry)1 %), cf. [1II-DFT]. By
definition, it is the object defined as R(pr;), L for the third projection

pry: Ux A'x A! - A,
and the sheaf on the source
L=pr}Z Q[(x,0) = t —Tr(@x)]* (1 L) B [(1,5) — st]* &, .
Applying the shearing autc;morphism

(x,t,5) - (x,1+Tr(ax),s)
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of Ux A x A' as A'-scheme by pr,, L becomes
prt &, @ pr (1 L) ® Loy @ Lotstriany -
At s =0, proper base change gives
(R(pry)1 L), = RI,(Ux A") @ k, pr} %, @ pri (1 £,))
(Kunneth) =RIL(URK, £)®RI(AY®K, j1<,)
=RIL(U®k, £)QRI(G,Qk, %)

=0, if either y?~! or ¢ is nontrivial .

Over the open set where s + 0, we apply the further isomorphism (x, ¢, s) - (xsa, ¢, 5) of
Ux A! x G,, with the subgroup of

K*x A'x G, of (x,t,5) where Nx =s"Nua.
For any B in @,, we denote by B9°% the geometrically constant lisse @,-sheaf of rank one
on G, , on which, for any finite extension E of k and for any point s in £ = G,, ,(E), F, ¢
acts as B98E/®: equivalenty, B8 is the pullback to G,, , of the lisse rank one @,-sheaf

on Spec(k) on which F, acts as B. By the relative Kunneth formula for pr,, and
[Ka-GKM], 8.8.5, we find

ROL)LIG, = F[1-n1® %0 L[-110 8 8.
Thus all in all we find
FT, (R, %) = ji(F[1 -] ® 4@ LH[-1]) ® gy, e)**
is a single lisse sheaf on G,,, placed in degree n, extended by zero to A*.
By Fourier inversion, we get

R(pr,)1% = FT,FT, R(pr,) % [2]1 (D)
=FT,(/i(F ® 4 H)[2—-n1® (g(v,e)/q)**.
Thus we find that for ¢ in kK, we have
H(UN/(E-T)I®K Lyxry ® %)
=0 ifi+n—1orn,
= H) G, @k F® %4, %) (g, 6)/q)* for i=n—1,
= H}(6, QK F ® 4,0 £)® (g(v,9)/q)** for i=n.

So we have been “‘speaking prose” all along.
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Proof of Theorem 4

Recall that « in K*, bin k*, t in k, and
f(#)=Card {x in K* with Nx =b and Tr(ax) =1¢}.

We must show that

laf @) — (" —D/(g—DI s n(g@"*.

The idea is once again to compute the Fourier transform FT (f) of the function f.
We compute, for s in k,

FT(NHE) = Y v6f= Y  p(ETr@x).

tink xin KX, Nx=b

Since the norm map N: K* — k™ is surjective, for s = 0 we find
FT(f)(0) = Card {x in K*, with Nx =b} =(¢"—1)/(q—1).
For s #+ 0, we make the substitution y:=sax to rewrite

FT(f)(s) = y v(Tr(x)), for s+0.

x in K*, Nx =bs" Na

In terms of the exotic Kloosterman sheaf K1(X, y o Tr, 1) on G,, ® k and its pullback

F=[srs"bNa]*KI(K,p-Tr, 1),

we have
FT(f)(s) = (—1)"" "' Trace(F,,|#) for s+0.

So by Fourier inversion, we have
af®)= Y $G6OFT(f)()

sink

=FT()O+(-=1)""" } Trace(F.|F ® %,).

sin k>

Thus we find |
lef)—("—-D/(g—-DI= l’%" Trace (F, | ¥ ® Z,)|.
By the Lefschetz trace formula,
121x Trace (F,,|# ® £,)

= ¥ (—1)'Trace(§|H!(G.®F, F ® %,)).

i=1,2
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Geometrically, the sheaf KI(K,y - Tr,1) is isomorphic to the standard Kloosterman
sheaf Kl,(y)=Kl(y;1,...,1). This sheaf is Lie-irreducible (by [Ka-GKM], 11.1) of
rank n. Therefore its pullback by a finite map, & is geometrically irreducible, and hence
F ® %, is geometrically irreducible, of rank n 2 2. Therefore its H? vanishes, and we find

laf () —(@"— D/(g—1)| = |Trace (| H} (G, ®k, F ® £,))|.

Now £ is lisse on G,,, pure of weight » — 1, tame at zero, with all co-slopes <1. So the
H} is mixed of weight <n. As H? vanishes,

dmH}! = —y, = Swan, (¥ ® &,) <n.
Thus we find

laf (@) —(@"—1/(g— D= n(@"? asrequired. QED
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