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Introduction

As was known to Euler, the Riemann zeta function {(s) assumes rational values
at negative integers:

{(1=ky=—=b/k for k=1
where the b, are the Bernoulli numbers:

o k x e*
b, —= .
k;, Kkl er—1

Furthermore, for any integer a, we have
a1 —d*Y¢{(—k)eZ for k=0.

(This was known to Euler at least for a=2; for general aeZ it is the Sylvester-
Lipschitz theorem, cf. [16]). Now fix a prime p, an integer a which is prime to p,
and define

(=k=(1-a"* (1 -pH{(=k) for k=0.

These numbers are p-integral, and satisfy the following congruences, which were
essentially known to Kummer:

For any polynomial ) ¢, X*eZ[X] which satisfies a congruence of the
form

Y o x*=0modp"  for all xeZ),
there is a corresponding congruence
Yo (D(—k)=0 modp".
We can express the totality of these Kummer congrunces by the assertion

There exists a Z ,-valued p-adic measure u on the group Z) of p-adic units,
such that for all integers k=0, we have

| xtdp@=(1-d"* ) (1 =p(—k).

z;
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More generally, let p be a Dirichlet character modulo some power p" of p.
Because the “partial” zeta functions also take rational values at negative
integers, the values at negative integers of the Dirichlet L-series L(s,p) lie
intrinsically in Q(the values of p). If we pick a p-adic place of this field, and
view p as a p-adic-valued locally constant character of Z*, we find, for all in-
tegers k=0,

| X p(x)dp=(1—d""" p(a) (1 —p* p(p) L(—k. p).

ZP

(The equality takes place in the chosen p-adic completion of Q(values of p); p(p)
is defined to be 1 if p is trivial, O if not.)

Now consider an arbitrary totally real field K of finite degree over Q. We
“replace” the group Z by the group

lim {prime-to-p fractional ideals of K}/{(x)/aeK* totally positive

and =1mod* p"},

which by class-field theory is the galois group Gal(K(p*)/K) of the maximal
abelian unramified-outside-p extension of K. Let p be any C-valued locally-
constant character of Gal(K(p™)/K), and consider the corresponding Dirichlet
L-function

L(s,p)=) p(a)Na~*

the sum extended to all prime-to-p integral ideals a of K. According to Siegel
and Klingen, the values of L(s, p) at negative integers lie intrinsically in the field
Q(values of p). The generalization to these functions of the Kummer con-
gruences is due to Coates-Sinnott in the case of real quadratic fields, and to
Deligne-Ribet in the general case. Their result is

Let a be a prime-to-p ideal of K. Then there exists a Z,-valued p-adic
measure u on Gal(K(p”)/K such that for every integer k=0, and every
locally constant character p, we have

| p(B) N b*dpu® =(1—p(a) N a** ) L(—k, p).

Gal(K(p*),K)

(As before, the equality is to be understood in a chosen p-adic completion of
Q(values of p); the function Nb denotes the unique Z,-valued character on
Gal(K(p™)/K) whose value on (the Artin symbol of) a prime-to-p ideal b is its
norm.).

What, if any, is the generalization of these results to other fields? An initial
obstacle is the fact that if K is a finite extension of Q which is not totally real,
then the values at negative integers of any Dirichlet L-series L(s, p) are all zero
(thanks to the I'-factors in the functional equation). In compensation, we have
the possibility of studying the values at s=0 of Hecke L-series L(s, ) attached to
grossencharacters of type A, in the sense of Weil [26]. Recall that such a y, of
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conductor (dividing) a given integral ideal m of K, is by definition a homomor-
phism

{prime-to-m fractional ideals of K} — Q>

such that there exists integers n(4), one for each embedding A: K < Q such that,
for xe K* we have

2(@)=]]A)"* if a=1mod*m and a>0.
A

To define L(s, y), we must choose a complex embedding of Q.
When K is totally real, the only grossencharacters of type A4, are of the form

x(a)=p(a) N a"
for some Dirichlet character p and some integer n; furthermore, we have
L(Os X)=L(—na p)

so for K totally real, we’ve been speaking prose all along.

For what fields are there more y’s of type A, than those of the form p-N"?
By Weil [27], they are exactly the fields which contain a CM field (meaning a
quadratic, totally imaginary extension of a totally real field). Thus we still have
no candidates for p-adic interpolation for fields which are neither totally real nor
contain a CM-field.

Suppose now that L is a field which does contain a CM field. Then it contains
a maximal one, say L., Whose real subfield K is precisely the maximal totally
real subfield of L. Again by Weil, we know that every A,-grossencharacter of L
is of the form

1=p-(xo° NL/LCM)

with p a Dirichlet character of L, and y, an A,-grossencharacter of Ly.
Now fix a “CM-type” for Lcy; i.e., a subset Z of the set A of all embeddings
of L¢y into Q, such that

A=30x, InZ=40.

(Here the complex conjugate of an embedding ¢ is defined in terms of the
intrinsic complex conjugation a—a on L¢y by d(a)=a(a@).) By definition, there
exist integers k, {d(c)},.s such that y, is given on suitably principal ideals by the
formula

1ol@) =11 (G(L)k (o—_@_ >d<a>>.

P o(a)

According to Shimura [24], we can attach complex constants Q(ag)eC* to
the field Ly, the CM-type Z, and the chosen embedding of Q —C, such that the
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Hecke L-series values L(0, y,) for the field Ly, satisfy the following algebraicity
theorem:

d(a)

T
the product [] (W

and all d(o) =0, or (functional equation) provided k<1 and all k+d(c)—12=0.

). L(0, 7,) is an algebraic number, provided k=1

It would be tempting, but perhaps premature, to conjecture that for such a y,,
the L-series values for p-(yoo N, ) attached to L satisfy:

nd(o‘) ) )deg{ll Lcwm)

the product L(0, p (7o Ny, 1 .,)- (H (W

is an algebraic number, provided y, is as above.

This is trivially true if p=1 and L is abelian over Ly, but other cases remain
obscure.

It is perhaps worth pointing out the meaning of the restrictions k=1, all
d(6)=0, or k<1, all k+d(o6)—1=0. The functional equation of Hecke L-series
with grossencharacter can be written

# (1) L0, )=+ (y "N~ L0,z "N~

where *(y) is the product of some “root numbers,” which are always non-zero,
some powers of m, and some values of the I'-function. Let y, be an A,-
grossencharacter of Ly, such that

1=p (1o° NL/L(_«M)-

Then both *(y) and *(x~! N~1!) are finite and non-zero if and only if there exists
a CM-type X for L.y with respect to which the integers k,d(o)'s attached to y,
satisfy either k=1, all d(6)=0 or k<1, all k+d(o)—1=0.

In this paper, we study the case when L=L, is itself a CM field, and
attempt to construct a p-adic measure p on the galois group Gal(L(p*™)/L)
against which the integrals

xdp

Gal(L(p>)/L)
of p-power conductor A,-grossencharacters whose (k,d(o)’s) satisfy k=1, all
d(6)=0 or k<1, all k+d(c)—1=0 are closely related to the algebraic numbers

nd(a)

l:[ (W) - L(0, 7).

Of course to make this precise, we must

1) fix a CM-type X for L, to have the Q(a)’s.
2) fix an embeddingT)L»Cp(Cn the completion of the algebraic closure of
Q,) to be able to view y as a p-adic character of Gal(L(p™)/L).
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We succeed only when the fixed CM-type ¥ is “ordinary” at the given
embedding Q—C,, in the following sense: whenever geX and 7€,

o —
LE=23Q =&,
T

the p-adic valuations of L to which they give rise are distinct. Given an
embedding Q —C,, there exist such ordinary 2’s if and only if every place p of
K lying over p splits completely in the quadratic extension L/K:

p=PP with PR

If this is so, the 2’s which are ordinary at the given embedding correspond
exactly to the choice, for each p of K, of a p} lying over it in L; thus if we put

a=numbers of places p of K lying over p

there are 2* 2’s which are ordinary, out of a total of 2¢ (g=deg(K/Q)).

So for a given CM field L, our theory only applies to those p for which all p-
adic places of K split completely in L/K. This is a set of positive density (it
contains the primes which split completely in L), but its complement also has
positive density (if not, “all” primes of K would split in L). For example if L is
abelian over Q, and we denote by ceGal(L/Q) the intrinsic complex conjugation
of L, then our theory applies to p if and only if the cyclic subgroup of Gal(L/Q)
generated by F , the Frobenius at p, does not contain c. When L/Q is cyclic, this
just means that F, must have odd order, so the density of good p in that case is
1/2%, where 2° is the exact power of 2 which divides the order of G. In the
opposite direction, Ribet pointed out to me that if we consider the case of an
abelian L/Q of exponent two (i.e., Gal(L/Q) is Z/2Z-vector space), then the
good p are those for which F,#+c, and thus have density 1—1/(3 Gal).

Our construction is based on the well-known fact that for k=1, all d(¢)=0,
the complex numbers L(0,y) are finite sums of wvalues of (not necessarily
holomorphic) Eisenstein series with level on the Hilbert modular group attached
to the real subfield K of L, at points corresponding to abelian varieties with
complex multiplication by the field L. Such abelian varieties are known to be
“defined” over Q, and to have everywhere good reduction. The p-adic embedd-
ings Q— C, at which 2 is ordinary are precisely those for which the associated
abelian variety has ordinary reduction at the corresponding place of Q. The non-
holomorphic Eisenstein series in question are all obtained from holomorphic
ones by applying certain C* (but non-analytic) differential operators. These
operators are themselves obtained from “universal” holomorphic differential
operators on the symmetric algebra of Hp (of the universal abelian scheme with
suitable polarization and multiplication by K) which are themselves manufac-
tured out of the Gauss-Manin connection. The non-analyticity is introduced by
“projecting” our universal operators onto Symm(H"°) by making use of the
transcendental Hodge decomposition

HII)RZHLO@HO,I, HO‘I::HI‘O,
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Shimura’s algebraicity theorem, in our context, is an easy consequence of the
fact that the Hodge decomposition of the H), of our CM-abelian varieties is
purely algebraic (i.e. the subspace H% ! is defined over Q), and is valid for any
CM type .

The possibility of p-adic interpolation, when X is ordinary, of the resultingly
algebraic numbers springs from the fact that, in general, we have a p-adic
analogue of the Hodge decomposition for Hj, of p-adic abelian varieties with
everywhere ordinary reduction; the analogue of H% ! is the “unit root subspace”
introduced and systematically studied by Dwork, and more recently studied by
Mazur, Bloch, and others. We obtain p-adic differential operators by projecting
our universal operators onto Symm(H" °) using the “unit root"-splitting. Apply-
ing these p-adic differential operators to holomorphic, and hence purely alge-
braic, Eisenstein series, we obtain p-adic Eisenstein series, whose values at any
point have good interpolation properties. The fact that the values at our CM-
point coincide with their “complex” analogues results from the fact that for
ordinary CM abelian varieties, the unit-root subspace is also purely algebraic,
and coincides with H% !,

In this way we construct a p-adic measure u on Gal(L(p™)/L) such that for y
a p-power conductor grossencharacter of type A,, viewed as a p-adic character
of Gal, the integral

[ zdu

Gal
is closely related (cf. (5.3.6) for the explicit formula) to the complex number
L(0, y). We then establish a simple functional equation for our measure u, which
turns out, after a long computation (cf. 5.7), to be perfectly compatible with the
classical functional equation for Hecke L-series with grossencharacter. Does this
compatibility admit a proof by what Mazur calls “pure thought”? At any rate,
this compatibility extends our p-adic-classical comparison to be domain, k<1,
all k+d(o)—1=0.

In an earlier paper [10], we treated the case of a quadratic imaginary
extension of Q. In that case, the abelian varieties involved are simply elliptic
curves, and we were able to prove the theorems by dipping into the wealth of
classical material available for elliptic curves, e.g. the Halphen-Ficke operator

0 0

Nig =t —
oo, Piw,

the non-analytic weight two Eisenstein series

1
lim)

sm0 T (Mo, +mw,) nw, +mao,**’

and all their marvelous interrelations. We were for a long time blinded by these
riches to the sinple cohomological mechanism which in some sense underlies
them.

Unfortunately, the simplicity of the underlying cohomological mechanism is
itself obscured by the complications which arise in dealing with an arbitrary
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totally real number field K, rather than with Q. For this reason, the reader
should keep in mind the special case K=Q, especially for the first three
chapters.

The idea that Hilbert modular forms are relevant to the study of rationality
properties of zeta and L functions of totally real fields occurs prominently in
Siegel. That they could be used to develop a p-adic theory was seen clearly by
Serre. In a December, 1973 letter of Deligne to Serre, Deligne explains how he
could prove the “good” congruences on such L-functions (i.e., construct the
measure u@ alluded to above) if enough were known about the moduli space
over Z of Hilbert-Blumenthal abelian varieties. The general theory of such
moduli spaces was then worked out by Rapoport in his thesis [17]. The
particular irreducibility result upon which Deligne’s program depended was
supplied by Ribet, and is described in [18].

Another approach to the study of L-values is based on viewing them as
periods of suitable cusp forms. This idea occurs in Shimura [25]. Recently, it has
been vastly extended by Manin [12,14] and Manin-Vishik [13]. It would be
very interesting to understand the relation between their point of view and ours.

The debt that we owe to Deligne, Rapoport, and Ribet will be obvious to the
reader. Less obvious, but no less real, is the influence of Weil, especially through
[27] and [28]. It is a pleasure to acknowledge the support of the John Simon
Guggenheim Memorial Foundation, and the hospitality of IHES.

Chapter I: Review of the Theory of Hilbert Modular Forms

Throughout this paper, we fix a totally real field K of finite degree g over Q. We
denote @ its ring of integers, and by d~! its inverse different. We begin by
recalling some notions concerning Hilbert-Blumenthal abelian varieties (HBAV)
relative to the field K.

1.0. Over any ring R, an HBAV over R is a g-dimensional abelian scheme X

over R, together with an action of @ on it, such that, locally on R, the Lie

algebra Lie(X/R) is a free O®R module of rank one. We denote by wy , the
z

O®R module of invariant one-forms on X/R:
z

Dx/r= HO(X, Q)l(/R)-

As R-modules, Lie(X/R) and wy x are each locally free of rank g, and they are
R-duals of each other. As invertible ® ® R modules, they are related by an
isomorphism z
(1.0.1) Lie(X/R) ® wyr~—d '®R,

O0®R Z

whose composition with the trace map

(102) > '®@R—"%® ,Z®R=R
z z
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yields the R-pairing
(1.0.3) Lie(X/R)@gX/R—» Lie(X/R) ® Oyr 3 '®R trace ®1 R

R O®R

which defines their R-duality.
A “nowhere vanishing differential” is an element wewy x Which is an O ®R

z
basis of wyg. By “contraction” via (1.0.1), such an o gives rise to (and is
equivalent to) an ¢ ® R-isomorphism

z

(104) o: Lie(X/R)=>d '®R.
z

Let ¢ be a fractional ideal of K. Viewing an HBAV X over R as a functor (on
Schemes/R) in ¢-modules, we can define X ® ¢ as a functor (on Schemes/R):
4

(1.05) XR@)©O)LX(S)®c¢.
0 0

It is easily checked that X ®c¢ is itself an HBAV over R, and that there is a
[

natural injective ¢-linear map

(1.0.6) ¢—Homg ;,(X,X ®¢).
[

Let us denote by X' the dual abelian scheme to X (or, more precisely, the

functor Pic$ x) with its induced -structure. A c-polarization is an isomorphism
A of HBAV’s over R

(107) A X'->X®c¢
O

under which the symmetric elements of Hom,_;,(X, X') correspond precisely to
the elements of ¢ in Hom,_;,(X, X ®¢), and under which the totally positive
4

elements of ¢ correspond precisely to those symmetric ¢-homs coming from
polarizations (in the sense of [29], 6.3) of X/R.

For any (super)-natural number N, we denote by u, the (ind)-groupscheme
of “Nth roots of unity.” A I(N)-structure on an HBAV X over R is an O-
linear homomorphism which is a closed immersion of R-(ind) groupschemes

(1.0.8) i:d '@uy—X.
z

Later, we will be particularly concerned with the case N=p" with p prime,
0<n=oo0.

For any integer N=1, and any fractional ideal ¢ of K, we denote by
M (¢, I,o(N)) the moduli stack of c-polarized HBAV’s with I5,(N)-structure. We
recall that

(1.0.9) for all N=1, #(c,I,,(N)) is an algebraic stack, smooth of relative
dimension g over Z.
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(1.0.10) the natural forgetful map (¢, [{o(NM))— M (c,Io(N)) is formally
étale.

(1.0.11) for Nz4, M (c,I,,(N)) is represented by an algebraic space, itself
denoted .# (¢, I, (N)), which is smooth of relative dimension g over Z.
Let us denote by

(Xuniv’ /luniv’ iuniv)

(1.0.12) .
M (¢, I50(N))

the universal c-polarized HBAV with [, (N) structure. We denote by w and Lie
the sheaves n,(Qx. . ,) and Lie(X .,/-#) on .4 (¢, I;,o(N)) respectively. They are
each invertible € ® € 4. r,,vy-modules, linked by a canonical isomorphism

z

(1.0.13) Lie ® 0—>d'®0,.

=Y ¢

umv

“Hodge filtration” short exact sequence
(1.0.14) 0—w— H}r— Lie(X'/.4#)—0.

Using the ¢-polarization 4: X'~ X ® ¢, we can rewrite this
o

(1.0.15) 0—>w—H}z— Lie®c—0.
Under the Gauss-Manin connection

(1.0.16) V: Hpp— Hpr @ QY 7,
Cu

any local section DeTM/ZdQM((QW@’M) defines a derivation”
(1.0.17) V(D): Hpr— Hpg
which induces an ¢ ® ¢ ,-linear map K—S(D)
(1.0.18) M—L@Qm@c.
K-S (D)

The construction D+ K—S(D) defines the Kodaira-Spencer isomorphism

(1.0.19) T, —>Homgg,(® Lie®¢)
V]

which we may rewrite, using (1.0.1), as an isomorphism
(1.020) T, z— Lie®?®dec.

4
Its O ,-dual is an isomorphism

(1021) Q') w®?@c!

4
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(in the formulas (1.0.20-21) above, Lie®? and w®? mean “square as invertible
0® 0 ,~module”).

1.1.  We next give a brief account of the HBAV-analogue of the Tate elliptic
curve Tate(q) over Z((g)), which we will need for the algebraic theory of g¢-
expansion. Let a, b, ¢ be fractional ideals of K, such that

(1.1.1) ¢=ab~1,
We would like to work with the ring of all formal “series”

(1.12) ag+ Y a,q*, coefficients a,,a,eZ

acab
x>0

indexed by the elements of ab which are either zero or totally positive, with
multiplication given by

(1.13) ¢*-q*=¢*** q°=1.

Unfortunately, when g> 1, this ring is too pathological for the present state of
the art, so we must resort to an artifice. Consider a set S consisting of g linearly
independent Q-linear forms

(1.14) 1 K—>Q, i=1,..,g,

which each map the totally positive elements of K to positive rational numbers.
We say that an element a of K is S-positive if it satisfies

(1.1.5) l()=0  for all lS.

For any lattice (free Z submodule of rank g) 4 =K, we denote by A
submonoid consisting of its S-positive elements. Then Ag
ed monoid (unlike the submonoid 4
can recover Ay o,

We denote by Z[[A4;S]] the ring of all formal series

(L16) ) 4,4 qeZ

€A o

S-pos © A the
_pos 18 @ finitely generat-
wtpo. Of all totally positive elements), and we
v {0} as the intersection, over all S, of Ay

S-pos*

indexed by the S-positive elements of 4, and by Z((A.S)) the ring obtained by
inverting any (or every!) element ¢* with « totally positive. Thus Z((4,S))
consists of all formal series

(1L.17) Y a,q

acA
such that for some integer n> 0, we have
(1.1.8) a,=0 unless /()= —n for all [,€S.

We will now apply these constructions to the case A=ab.
Over the ring Z((ab, S)), we have the constant g-dimensional algebraic torus
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G, ®bd 'a~!, together with an O-linear group homomorphism
(1.19) ¢:b—>G,®d 'a~!

defined as follows. To give (1.1.9), it is equivalent to give an (-linear homomor-
phism

(1.1.10) g:ab—>G, ®d'.

To give (1.1.10), it is in turn equivalent to give the Z-linear group homomor-
phism

(1.1.11) gq:ab—>G,,
obtained from (1.1.10) by composing with the trace map
G,®d ' 2", G, ®Z=G,. We define the map (1.1.11) by the formula
(1.1.12) aecabg*eZ((ab,S)* =G, (Z(ab,S))).
The rigid analytic quotient (via (1.1.9))
(1.1.13) Gm®b‘1a‘1/g(b)

is algebrifiable to an HBAV denoted Tate, ,(q) over Z((ab, S)), which carries a
canonical c=ab~! polarization

(1.1.14) A, Tate, ,(q)' — Tate, ,(9) ® ab~" =Tate, ,(q).

For every integer N =1, the scheme-theoretic kernel of multiplication by N sits
in an exact sequence

1
(L115) 0—b~"a~'@py—(Tate, ;(4))y 3 b/b6—0.

In particular, every choice of an ¢-isomorphism
(1.1.16) &: O/NO—a~!/Na~?

gives rise to a Iyo(N)-structure i(¢) on Tate, ,(q). When the fractional ideal a is
prime to N, both ¢ and a~! have the same N-adic completions (inside

[1K ®Q),), so there is, in that case, a canonical isomorphism ¢. The correspond-
pIN
ing I}, (N)-structure on Tate, ,(q) is denoted simply i,,.

The Lie algebra of Tate, ,(q) is given by a canonical isomorphism
(1.1.17)  o,: Lie(Tate, () ~Lie(G,®d 'a~)=d"'a"'®@Z((ab,S)),

and o, is an O®Z((ab, S))-basis of a~' ® w. The Kodaira-Spencer mapping (cf.,
(1.0.19))

(1.1.18) K-S: Der(Z((ab,S)),Z((ab,S))) > Lie®*®@dc=d"?a"2dc®Z((ab,S))

l
b~ 'a~'b '@Z((ab,S)
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may be described as follows. Given an element yed 'a ™ 'b~! consider the
derivation D(y) of Z((ab, S)) into itself defined by

(1.1.19)  D(»)(} a,q") =) trace(ay)a,q*.

Then the image of D(y) under (1.1.18) is given by the simple formula
(1.1200 K—-S(D(y)=y®1 in d 'a 'b"'®Z((ab,S)).

1.2. We are now in a position to recall the definitions and the principal

foundational results concerning Hilbert modular forms. Fix a fractional ideal ¢

of K. Fix a ground-ring R,, and let y be an algebraic character of the g-

dimensional torus | | (G,,), defined over R,. In concrete terms, this means that
7

for all R,-algebras R, y “is” a homomorphism

(12.1) 7: (O®R)* —>R*

whose formation commutes with arbitrary extension of scalars R— R’ of R,-
algebras.

A c-Hilbert modular form (c-HMF) of weight y on I,((N), defined over R, is
a rule f which assigns to every c¢-polarized HBAV (X, 1) over an R,-algebra R,
given with a nowhere vanishing differential w and a I;(N)-structure i, an
element f(X, 4, w,i)eR, subject to the following conditions (1.2.2-4).

(1.2.2) The value f(X,A, w,i) depends only on the R-isomorphism class of
(X, 4, ,1).

(1.2.3) Formation of the value f(X, 4, w,i)eR commutes with arbitrary exten-
sion of scalars R— R’ of R-algebras.

(1.2.4) For any (X, A, w,i) over R, and any ae(0 ®R)*, we have
f(X, A a " w,))=x(a)-f(X, 4 w,i).
(1.2.5) We denote by M(c, I[,o(N), x; Ro)

the R,-module of all ¢-HMF’s of weight x on I, (N), defined over R.

Equivalently, we may define a ¢-HMF of weight y on Ij(N), defined over
R,, as a rule f which, to each c¢-polarized HBAV with I5,(N) structure (X, 4, )
over an Rg-algebra R, assigns an element f(x,4,i)ewyg(x), where wyr(x)
denotes the invertible R-module obtained from wy, by extension of the struc-
tural group by means of y. This rule is subject to the following conditions (1.2.6—
7):

(1.2.6) The value f(X,A,i) depends only upon the R-isomorphism class of
(X,2,10).

(1.2.7) Formation of the value f(X,4,i) commutes with arbitrary extension of
scalars R— R’ of R,-algebras.
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A form f in this latter sense gives rise to a form f in the former sense by the
rule

(12.8) f(X, A w,i)-w(y)=f(X,Ai)

where w(y) is the R-basis of w(y) deduced from the (® R-basis w of w by
extension of the structural group.
Still another way to view ¢-HMF’s is this, at least for N=4. Take the
algebraic space //(c;FOO(N))R‘,dge/%(c;FOO(N)) x Spec(R,). Denote by w(y)
Spec(Z)
the invertible sheaf on it obtained from w by extension of the structural group

via 7. Then the elements of H?(.#(¢; Iyo(N))g,, w(x)) are precisely the ¢-HMF’s
of weight y on Io(N) defined over R,.

A «-HMF f of weight y on I;,,(N), defined over R, gives rise to a plethora of
g-expansions, as follows. Pick two fractional ideals a, b such that c=ab~!. Pick
an (-isomorphism

(1.29) e O/NO—>a '/Na~!,
and an 0 ® R ,-isomorphism

(12.10) j:ia - '®@R,—O®R,.
z z

(Such aj need not exist globally on R, but does exist locally on R,.) By extension of
scalars from Z((ab;S)) to Ry®Z((ab;S)), we obtain (Tate, ,(9), A.,.i(s)) over
Ro®Z((ab; S)), together with basis w, of a”'®w. By means of j (1.2.10), w,
gives rise to a basis w,(j) of w. Thus we may form the value

(1.2.11)  f(Tate, ,(q), Acan> 040 i(€)) € Ro®Z((a b, S))

Ro((aD,S)).

The actual expression

(1.2.12)  f(Tate, (q), 2,0} i(e)) = ). a(f o;0,b, ), i(¢))- ¢*

acab
is called “the g-expansion of f at the cusp (a;b.,j,i(¢)). The quantities
a(f,o;a,b,j,i(c))eR, are called the g-expansion coefficients of f at that cusp. The g-
expansion coefficients are independent of the auxiliary choice of S (cf., (1.1.4)). In the
case K +Q, one has the additional result that

(1.2.13) a(fio;a,b,j,i(e))=0 unless a=0 or a>0.

(1.2.14) According to a fundamental theorem of Ribet [ 18], the geometric fibres
of (¢, I,o(N)) over Spec(Z) are all geometrically irreducible, from which follows
the g-expansion (cf. [17]), in the following strong form.

(g-expansion principle) Fix an integer N=1, a ring R,, and a character y of
(]_[ G,)r,- Let (a,b,},i(¢)) be any cusp as in (1.2.9-12) above. Then we have:
O|Z
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(1.2.15) Let f be a ¢-HMF of weight y on I,(N), defined over R,,. If the ¢-
expansion of f at the cusp (a,b,j, i(¢)) vanishes identically, then f=0.

(1.2.16) Let Ro=R, and let f be a c-HMF of weight y on I,o(N) defined over R. If
the g-expansion of fat the cusp (a, b, j, i(¢)) has all its g-expansion coefficients in R,
then there exists a unique c-HMF of weight y on I')4(N) defined over R,,, which
gives rise to f by extension of scalars R,— R.

1.3.  We turn now to the case of a supernatural number N, say the inverse limit of
the integers N,, with N,|N,, ;. The natural inclusions

(13.1) 2 '®@uy=d '®@uy, .,
lead to “forgetting” morphisms of moduli schemes
M Too(N; 1))
(132) l
A (¢ To0(N))
Because these morphisms are affine, the inverse limit of these schemes exists.

dfn

(133) (e Tyo(N)E lim . 4/(c, I o (N)).

This .#(I,o(N)) is affine over each .#(c,I4(NV,)), and it represents the functor
“isomorphism classes of c¢-polarized HBAV’s with I}, (/N) structure.” Because the
maps (1.3.2) are all étale, the scheme .#(c,Io(N)) is pro-étale over each
(¢, Tyo(N,)), a fact which will be useful later.

To define a c-HMF of weight y on I},(N) over aring R, we can repeat either of
the two definitions (1.2.2-4) or (1.2.6-7). or equivalently we can define it to be an
element of

(1.3.4)  HOWA(c, Tyo(N)), ()

or, what is the same, an element of

(1.3.5)  lim HO(4(c, Tyo(N)), (7).

This last lequivalence, expressed in the notation of (1.2.5), becomes
M(c. Too(N), 13 Ro)=lim M(c. Ty o(N)). 2; R o).
The g-expansion prini:iple (1.2.15-16) remains valid.

1.4.  We next give a transcendental description of the situation over C. By a lattice
¥ < K®C, we mean an (-submodule of K ® C which, as ( -module, is locally free
of rank two, and whose real span ¢ ®R is all of K®C. Given an HBAV X over C
together with a nowhere vanishing differential w, we associate to it the lattice
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£ <K ®C ofall “periods” of w, as follows. The complex torus X*" is the quotient of
its universal covering, Lie(X*"), by its fundamental group =,(X*")< Lie(X*"):

(1.41) 0—- =, (X*)— Lie(X*")— X*" 0.
The nowhere-vanishing differential w provides an ¢ ® C isomorphism
(142) w:Lie(X*")—>d 'C=K®C

under which the image of n,(X*") is the desired lattice ¥ < K®C. Conversely,
given a lattice ¥ < K®C, one can show that the complex torus K®C/.¥, whose
Lie algebra is given as D '@ C=K ®C, is algebrifiable to a necessarily unique
(X, w). Thus we have a bijective correspondence

(1.4.3) {pairs(X, w)over C} « {lattices ¥ < K ® C}.

Via this correspondence, a ¢-polarization 4 on X corresponds exactly to an
alternating (-bilinear form

(144) (, > ML =5 d ' !

which, for some (necessarily unique) totally positive element A K @R is given by
the formula

(1.4.5) <u,u>=1mi“”) for u,ved

—the complex conjugation takes place in K®C, and the equality holds in
b !¢ !®@R=K®R. The constant 4 is so denoted because in the case K =Q, and
{, > corresponding to the canonical autoduality of an elliptic curve, it is nothing
other than the area of a fundamental parallelogram for the period lattice. By (1.4.5)
it is equivalent to know { , ) or to know 4. We call {, ) a c-polarization of the
lattice .. Thus we have a bijective correspondence

(1.4.6) {c-polarized (X, A, w)’s over C} < {c-polarized lattices (£, { , D)}

A T},o(N)-structure, N an ordinary integer, on (X, w) over C, corresponds, via the
exponential isomorphism

1 exp(2mi—)
(1.4.7) NZ/Z#LH Hy.
to an injective (-linear map

1 1
(1.4.8) i: Nh“/h“f—vﬁg/f,

or equivalently, as an injective ¢-linear map

(148 bis) i:d '®Z/NZ—LRL/NZ.
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When N is supernatural, say Nzlgg N; with N;|N; ., then a I;,,(N) structure

corresponds precisely to an injective @®Li_rEZ/NiZ-linear map
., — 1 . .
(1.49) i:d '®lmZ/NZ—ZLQlmZ/N,Z

whose cokernel is an invertible O ® mZ/NiZ-module. (This “extra” condition on
the cokernel i is automatic in the case of finite N.)

1.5. With this transcendental description at hand, we can write down some
explicit families of complex HBAV’s. Let 1e K®C be any element with Im(z)

totally positive. For any two fractional ideals a,b of K, we define a lattice
L, 5(1)cK®C by

(1.51) &L, (0)=2ni(d 'a~'+b1).
This lattice carries a canonical c=ab™ ' polarization { , >_,,, given by

(1.5.2) 2ri{fa+b1),2ni(c+d1))y, ., =ad—bc

can

for a,c in " 'a~!,b,d in b. The totally positive A(tr)eK ®R for which

(@
Uy U)oy = n:l((z;)v)

is given by

(1.5.3)  A(t)=472Im(q).

(1.5.4) Any c-polarized lattice is siomorphic to an %, ((t) (for some t with
Im(1)>0).

Given a (possibly super-) natural number N=Ilim N,, an O ®limZ/N,Z
- —
isomorphism
T N
(1.5.5) e O®UMZ/NZ —— a ®lLmZ/N,Z
determines a I;,o(N)-structure i(c) on %, (1), as the composite

(156) i(e):d '@UMZ/NZ — b 'a” ' ®lLimZ/N,Z
=2 4, (D@ ImZ/N,Z.
1.6. We now discuss c-HMF’s from the complex analytic point of view. Let y be a
character of the torus [ [(G,,), defined over C, and let fbe a -HMF of weight y on
07Z

I0(N), defined over C. Then f gives rise to a holomorphic complex-valued f*" on



216 N.M. Katz

the space of all ¢-polarized lattices with I4(N) structure (&, {, »,i), which
transforms under the action of ae(K ®C)* by the formula

(L6.1) f*a™'Z,aal, y,a~'=yla)f*NL. . i)
Let us temporarily denote by
(1.6.2)  M(c, Io(N), )*"

the C-vector space of all analytic functions on the space of c-polarized lattices with
Io(N)-structure which transform by (1.6.2).
We will make constant use of the following GAGA-style result:

(1.6.3) Theorem. If the field K is different from Q, the construction f +— f*" defines
an isomorphism

(1.6.4)  M(¢,I50(N), x5 €)= M(c, I o(N), 1)*"

(In the case K =AQ, this is false, but may be “corrected” by imposing a suitable
“meromorphic at c0” condition on the analytic side. For K #Q, this meromorphy
is automatic. See [7] for a detailed discussion of the case K=Q.)

1.7. Wenextrecall the complex-analytic description of g-expansion. Let us denote
by Jj... the equality-isomorphism

(17.1) ju. a '®C=0QC (inK®C).

Then we can consider the g-expansion of f at the cusp (a, b,j_,,,i(¢)) as in (1.2.12):

(1.7.2)  f(Tate, (@), Aean 0,0 i(e)) = . a(f 1, @B, ey, i(€)) - 4

On the other hand, we can consider the holomorphic function f, , , on
(1.7.3) {reK®C|Im(1)>0}

defined by

(L74) Syt T S ™ (L0 D 1))

Because the data (&, (1),{, Deun-i(¢)) remains unchanged if we additively
translate © by an element of D™ 'a”'b~ ", it follows that the function f, , , has a
Fourier expansion of the form

(1.7.5)  fop.(0)=> b(fio,a,b,e)exp(2mitrace(x 1))

aeab

The Fourier coefficients b( f, 2, a, b, ¢) occurring in (1.7.5) are none other than the
algebraically defined g-expansion coefficients a(f,a,a,b,j.,,,i(¢)) occurring in
(1.7.2):

(1.7.6) b(f,o,a,b,e)=alfa,a,b,j,,, i)
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1.8. We now recall the notion of a C” (meaning C” but not necessarily
holomorphic) c-HMF. By a C” ¢-HMF of weight y on I},,(N) we mean a C”
complex-valued function on the space of all c-polarized lattices with Iy (N)-
structure which transforms as in (1.6.1).

If we denote by .#(c, I,o(N))*" the complex manifold of all C-valued points of
M, Too(N)), by M (¢, [1o(N))(C”) the underlying C*-manifold, and by w(y)*" and
() (C”)theinvertible sheaves on these spaces obtained by tensoring w(y) with the
holomorphic and the C” -structural sheaves respectively, we have the following
diagram of inclusions and identifications:

Il

M(¢,150(N). 7. C)

N

(1.8.1) M, TN, )™ = H( (. Tyo(N)™ wl)™)

N N

M (¢, 5o (N), )(C*)=H (4t (¢, T30 (N)(C ™). 2()(C7)).

HO .7 (¢, Ty (N))e» (7))

Il

For later use, we record here one of the principal merits of .4 (¢, I o(N){C™):
over it, the Hodge short exact sequence (1.0.15)

(1.82) 0—»@—H}y—Lic®c—0

is canonically split by the Hodge decomposition:

(1.8.3) Hpp(C")=a(C")@a(CT)

where the bar denotes complex conjugation. Over each point of . # (¢, I, (N)), this
splitting is simply the ordinary Hodge decomposition

(184) leHl'O(-BHO‘I.HO'l:HI"O.
The C*-submodule
(1.85) w(C”)cHLe(C™)

is holomorphically horizontal in the following sense:
For any local holomorphic section D of the holomorphic tangent bundle of
M (¢, Ty (N))'", we have

(1.8.6) V(D)a(C")cw(C™).

In fact, if h is a holomorphic section of Hpg, and f is a C* function on
M (¢, T5o(N))(C™), then we have the tautological formulas

(1.8.7) V(D)(f-hy=D(f)-h, V(D)(h)=0.

Thus, the “complex conjugate” of any holomorphic subbundle of H})x, in particular
of w, is holomorphically horizontal.

(1.9) Wenow turn to the notion of p-adic HMFE’s. Our object is to develop certain
fruitful analogies between p-adic HMF’s and C* HMF’s.
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Fix a prime number p. We say that a ring R is “p-adic” if it is complete and
separated in its p-adic topology, i.e., if

(19.1) R—=>lim R/p"R.

We will be concerned with c-polarized HBAV’s with I;,,(p®)-structure, (X, 4, 1),
over p-adic rings R.

Let R, be a p-adic ring. A p-adic ¢-HMF defined over R, is a rule f which
assigns to every c¢-polarized HBAV with I, (p*)-structure (X, 4, i) defined over a p-
adic R,-algebra R, an element f(X, 4,i)eR, subject to the following conditions
(1.9.2-3).

(1.9.2) The value f(X, 4,i) depends only on the R-isomorphism class of (X, 4, i).

(1.9.3) Formation of the value f(X,4,i) commutes with arbitrary extension of
scalars of p-adic R -algebras.

We denote by V(c,R,) the R,-algebra of all p-adic :HMF’s defined over R,,.
Notice that we have, tautologically,

(194) V(¢ Rg)—= lim V(c. Ro/p"Ro).
and that V(c, R,) is itself a p-adic R-algebra. In case p is nilpotent in R, every R,,-
algebra is automatically p-adic, so that we have

(1.9.5) Tautology. When p is nilpotent in R, the ring V(c, R ) is nothing other than
the ring M (¢, Iy (P™), Xuriviats Ro) = HO (A (¢, T o (™))g,» @) of all - HMF’s of weight
zero (i.e., transorming by the trivial character) on I5,,(p®) defined over R,,.

Thus for any p-adic ring R,,, we may interpret V(c,R,) as the ring of global
sections of the structural sheaf of the formal scheme 4 (c)§** over R, defined as

(19.6) it () ={t (¢, I56(P™)) Ro/P" Ry}

In order to define g-expansions, we proceed as follows. Let a and b be fractional
ideals of K with c=ab™!, and choose an ®Z, isomorphism

(19.7) & 0®Z,~~>a 'QZ,.

/\ . .
By extension of scalars from Z((ab;S)) to R,((ab;S)) (the hat denoting p-adic
/\

completion), we obtain (Tate, ,(q), A.,, i(¢)) over the p-adic R-algebra R,((a b; S)).
Evaluating elements feV(c, R,) there gives a “g-expansion”-homomorphism

(19.8) V(c,Ro)— R,((ab: ).

(1.9.9) Theorem. The g-expansion homomorphism (1.9.8) is injective, and, when R , is
flat over Z , (i.e., when R, has no p-torsion), the cokernel

(19.10)  Ro{(ab; S)/V(c.Ry)

is flat over Z,, (i.e., it has no p-torsion).



p-Adic L-Functions for CM Fields 219

Proof. The injectivity is clear because (1.9.8) is the inverse limit of the g-expansion
homomorphisms

(1.9.11)  V(¢, Ro/p" Ro)=M (. I5o(P™), Kusiviar» Ro/P" Ro) = (Ro/p" Ro)((ab; S)),

each of which is injective by the usual g-expansion principle (1.2.15).

Suppose now that R, is flat over Z , and suppose we are given a representative
f(q) of a p-torsion element in the cokernel (1.9.10). This means that there exists an
element geV(c, R,) such that g has g-expansion p- f(q), and hence that the image of
gin V(¢, Ry/pR,) vanishes. Because .# (¢, I[,o(p™)) is flat over Z, and R, is flat over
Z ,, the formal scheme (1.9.6) is flat over R, and hence, denoting by ¢/ its structural
sheaf, the sequence

(19.12) 0055050} /p0,—0
is exact. Taking global sections, we get an exact sequence
(1.9.13) 0> V(c,Ry)—">V(c,Ry)— V(e,Ry/pRy).

Thus our element g may be written pffor a unique feV(¢, Ry), and the g-expansion

of fis our f(q). QED
For p-adic Ry’s which are flat over Z ,, we define

(19.14) V(.Ry)®Q,
z,

to be the space of “p-adic -HMF’s defined over R,®Q,.” The g-expansion
homomorphism (1.9.8) extends to a homomorphism

V(c.R)®Q, > (Ro((ab:S)®Q,
(19.15) N
(Ry®Q,)((ab)

where we denote by (R,®Q,)((ab)) the R,®Q, module of all formal series

(19.16) Y a,¢"

aeab

with coefficients a,eR,®Q,.
It follows immediately from (1.9.9) that we have

(1.9.17) Corollary. The g-expansion homomorphism (1.9.15) is injective, and the R ,-
submodule V(¢,Ry) of V(¢,R))®Q, consists precisely of those elements of
V(e,Ry)®Q, whose images under the g-expansion homomorphism (1.9.15) have
coefficients in R,.

Because the formal scheme (1.9.6) is itself flat over R, we can give a modular
description of V(¢,R))®Q, when R, is flat over Z,, as follows: an element of
V(¢,R)®Q, is precisely a rule f which assigns to every ¢-polarized HBAV with
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Ioo(p™) structure (X, 4, i) over a p-adic R,-algebra R which is flat over Z ,, a quantity
(1.9.18) f(X,4,)eR®Q,

subject to the following rules:

(1.9.19) The value f(X,4,))®Q, depends only on the R-isomorphism class of
(X, 4,10).

(1.9.20) Formation of the value f(X,4,)eR®Q, commutes with arbitrary
extension of scalars R — R’ of p-adic algebras flat over Z .
Alternately, we can view V(c,R)®Q, as the ring of global sections, over the
formal scheme (1.9.6) .#(¢)3;**', of the sheaf (cf., (1.9.12)) €, ®Q,.
z,

(1.10) We now come to one of the characteristic features of the p-adic theory,
namely that over a p-adic R, any ¢-HMF on I,(p”*) of any weight y, defined over
R,, gives rise to a p-adic :HMF over R, which has the same g-expansions. The
construction is based on the following lemmas.

(1.10.1) Lemma. Let X be an HBAV over a p-adic ring R. Then a [, (p” )-structure
over R

(1.102) i:d'®p, —X
is equivalent to an isomorphism of formal groups, denoted i,
(1.10.3) i:d '®G, X,

Proof. We can reduce immediately to the case when p is nilpotent. In this case, the
functors p, and G,, coincide, so also the functors d~ '®mp, andd~! ®G,,. Since
X < X, anisomorphism (1.10.3) gives rise to an inclusion (1.10.2). Conversely, given
an i as in (1.10.2), we can reinterpret it as an inclusion

(1.104) i1 '®G, —X.
This map necessarily factors through X, and so gives rise to an inclusion
(1105) b '®G,—X.

To see that it is an isomorphism, one reduces easily to checking the case when R is a
field k of characteristic p. Both source and target are g-parameter formal Lie groups
over K, and the injectivity of (1.10.5), applied to k[¢]/(¢?)-valued points, shows that i
is injective, and hence bijective, on tangent spaces. Hence { is an isomorphism.

(1.10.6) Lemma. Let a be a fractional ideal of K, and ¢ an isomorphism
(1.10.7) ¢ 0Q®Z,—>a 'QL,.

/\
Consider (Tate, (q). i(c)) over Z ,((ab; S)). Then the isomorphism

— T

(1.10.8) i(e): 2~ '®G,,— Tate, ,(q)
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corresponding via (1.10.1) to i(s), is none other than the composition of the isomorphism
of formal groups

(1.109) &2 '®G,-»d 'a '®G,,

with the canonical isomorphism

o

(1.10.10) d 'a '®G, —=> Tate, ,(q)

deduced from the construction of Tate, (q) as a quotient of 0™ 'a~ ' ®G,, by a discrete
subgroup.

Proof. This is tautological, in view of the original definition of i(¢) (cf.,
(1.1.15). QED

(1.10.11) Definition. Given an HBAV with I',(p” )-structure (X, i) over a p-adic
ring R, we denote by v, the isomorphism

(1.10.12) w,,,: Lie(X)—>d '®R

which is inverse to the isomorphism
(1.10.13) Lie(i): " '®@R — Lie(X)=Lie(X)
deduced from 7 (1.10.3) by passage to Lie algebras.

(1.10.14) Corollary. Given ¢ as in (1.10.7), let j denote its inverse. Then the
isomorphism w.,, attached (Tate, (q).i(e)) is none other than the one denoted m(j) in
(1.2.11).

Proof. Again a tautology.

(1.10.15) Theorem. Let R, be a p-adic ring. The construction (X, 2, 1) (X, 2, w,,. 1)
defines, by transposition, a ring homomorphism

@ M(c, Toolp ™) s Ro) = V(e Ry)
1.10.16) ~ .
( ) o]

which preserves g-expansions in the sense that for all fractional ideals a,b of K such
that c=ab™ "', and for all isomorphisms ¢: ( ®Z,,—a"~ '®Z,. we have

(110.17) J(Tateq y(q). feums () =F (Tate, y(@). Zpme 0,6 ), i(6)).

Proof. Simply define f+— f by

dfn

=f(X, 4w, )

(1.10.18)  f(X.A4 i)
The assertion about g-expansions follows from (1.10.14). QED

When R, is flat over Z,, it is sometimes convenient to tensor the homomor-
phism (1.10.16) with Q ,, thus obtaining a g-expansion-preserving homomorphism,
still noted f— 1,

(1.10.19) @ M(c, Too(p” ). 2: Ry®Q,) — V(¢.R)®Q,,.
x
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1.11.  We now turn to the p-adic analogue of the C* splitting of the Hodge exact
sequence (1.8.21) by a holomorphically horizontal C* subbundle of H},. This
analogue is provided by the “unit root subspace” with respect to the action of the
Frobenius (compare [6]).

Let X be an HBAYV over a ring R in which p is nilpotent, and suppose that every
geometric fibre of X/R is an ordinary abelian variety. (This is equivalent to
supposing that for some n=1, X admits a I},,(p")-structure, at least after extending
scalars from R to some finite étale over-ring.) Let H_,, <X be the “canonical
subgroup” (compare [7]), defined by

(1.11.1) H_,,=Kernel of multiplication by p in X.
In terms of any I,,(p")-structure

(1L112) i '@up—X

we have

(1.11.3) H,,=id"'®mn,).

We denote by X' the quotient X/H_,_, and by = the projection map

(1.11.4) n: X —>X.

When p=0in R, i.e, when R is an F,-algebra, then X" is just the scheme X
obtained from X/R by the extension of scalars F,,;: R— R given by the absolute
Frobenius (F,,.(x)=x? for all xeR), and the morphism = is the relative Frobenius
morphism

(1115 F: XX,

(1.11.6) Lemma. Let (X, ) be a c-polarized HBAV over a ring R in which p is
nilpotent. Then there exists a unique c-polarization 2’ on X’ which reduces mod p to the
polarization AP’ on X7,

Proof. Unicity follows from standard deformation theory cf. [17]. To show
existence, we argue as follows. By the unicity, it suffices to construct A" after
replacing R by a finite étale over-ring, over which X admits a I4(p)-structure

(1117) i:d"'@u,—X.
Denoting by X, the “kernel of p” in X, we have a short exact sequence
(1.11.8) 0-d"'®u,——>X, - 'QZ/pZ—0.
Therefore we can factor the morphism “multiplication by p” on X as
(L119) XX -5 X

P
with the morphism 7’ sitting in a short exact sequence

(1.11.10) 0 —>¢ '®Z/pZ— X' —"> X —0.
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Passing to the duals, we get a short exact sequence
(L1111 050 'e@u, > X —"L0 (XY -0

so that (n')' provides an isomorphism
(1.11.12) (7Y (XY —> (X').
Combining the inverse of this isomorphism with the isomorphism given by 4

(1.11.13) (XY —>X®) =X'®¢
@ ¢

we obtain a ¢-polarization
(1.1114) 2 (X > X'®c
It is routine to check that, in case p=0in R, we have simply constructed A?’. QED

Given an HBAV with [,,(p*)-structure (X,i) over a ring R in which p is
nilpotent, we define a I')(p*)-structure i’ on X’ by requiring the commutativity of
the following diagram:

0——d"'®u,——d ' @m0 ' @, —0

(1.11.15) 1\" i i

l

0— H,, — X — X —0
By passage to the limit, the construction
(L.11.16) (X, 4, (X", A, 1)

continues to make sense in the case of a p-adic ground-ring R. Applying it to the
universal object

(X univs Aunivs Luniv)
(1.11.17) J
M)
we obtain
(X:miv’ ;":miv’ i;miv)
(1.11.18) J

,/%(C)I‘){:dic.
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Let us denote by
(11 1]9) F: ,,%(c)liz—;dic N "///(()ﬁli‘dic
the endomorphism of ////(c)g’;(;“““" which “classifies™ (1.11.18), i.e., such that

(1L11.20) (X i y=(XB A

univ® “funiv* ‘univ univ® “funiv * uni\')'

We also denote by F the induced endomorphism of V(¢, R,), defined modularly by
the rule

. dfn

(L1121 F(f) (X, A D) f (X, 2. 7).

(1.11.22) Lemma. For any fixed gq-expansion homomorphism (1.9.8), denoted simply
fi—f(q), we have the formula

(L1123) (F/)(q)=/(g")
e if (@)=Y a,q. then (Ff) (@)=Y a,q

Proof. This follows from that fact, obvious by inspection, that (Tate, ,(q), A.,,.i(¢))
is simply obtained from (Tate, ,(q), A, i(¢)) by the endomorphism ¢+ g” of
Z,((ab;S)). QED

We now turn to Hjp over ./4(¢)5*¥ . The morphism
(F)

(1.11.24) 7 X e = Xiniv =X

univ univ univ)

induces an F-linear endomorphism Fr of H},,=H (X

Univ/"///(c)g‘l‘:’diC):
(L1125) Frin*: (Hpe) " > Hpp

which respects the Hodge filtration, and whose 2 x2 ('® ( ,-“matrix”, in blocks
adopted to the Hodge filtration, is of the form

pA C)

(1.11.26) (0 D

where both 4 and D are invertible. As explained in ([6]), this gives
(1.11.27) Theorem. Over .#(¢)3 %, there exists a unique Fr-stable splitting
Hpr=0®U

with U an invertible ¢ ®( ,; module, which is (necessarily) horizontal for the
Gauss-Manin connection.

1.12.  For our later arithmetic applications (cf. (2.6.13, 2.6.27)), we must study this
p-adic splitting for Tate , ((q). To begin, we consider Tate, ,(q) over Z((a b, S)), and
the Hodge filtration on its Hjg:

(1.12.1) 0—>@—H}, »>Lie®ab~ ' 0.
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The canonical identifications (cf,, (1.1.17))

(1.122) w~a®Z((ab;S))
z
(1.12.3) Lie®ab '~d"1b"'®Z((ab; )
0 z

allow us to specify certain elements of @ and of Lie®ab™?, as follows:
¢

(1.12.4) for aeaq, denote by w(x)ew the element corresponding to «®1 under
(1.12.2)

for fed™ b~ !, we denote by /(f)eLie ® ab~ ! the element corresponding
4
to f®1 under (1.12.3).

For each element 7ed~'a~!'b~ !, we recall that D(3) is the derivation of Z((a b; S))
defined by

(1.12.5) D(y) Y. a,q*=) trace(ay)a,q"

aea

Under the Gauss-Manin connection, we have (cf., (1.1.20))
(1.12.6) MD(;)) (w())=I(y) mod w.

(1.12.7) Key Lemma. After extension of scalars to Z ,((ab;S)), the “unit root”
submodule U = H}, is spanned over Z,((ab; S)) by the elements V(D(y)) (o(a)).

Proof. The quotient Tate, ,(g)' by the canonical subgroup H_,, and the morphism
(1.12.8) n: Tate, ,(q) — Tate, ,(q)

in fact live over Z((a b; S)) (i.e., without passing to the p-adic completion). Indeed, as
noted above (1.11.22) we have

(1.12.9) Tate, ,(q)' =Tate, 4(g")

where Tate, ,(¢”) means the HBAV obtained from Tate, ,(q) by the extension of
scalars F: Z((ab; S))— Z((ab; S)) given by ¢— g*. The morphism

(1.12.10) n: Tate, ,(q)— Tate, ,(g")

is the map obtained from the map “multiplication by p” on G, ®a~'d~! by
passage to quotients:

p

G,@v 'aat 2 G,®d 'a!
(1.12.11)
G,®bd 'a~!/g(b)—"> G, @D 'a”!/p-q(b).
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In order to prove (1.12.7), it is sufficient to show that
(1.12.12) - n*(F*(N(D(7)) (()))) = UD(y)) (ex(e0))

ie., that Fr(=n*), viewed as an F-linear endomorphism of H},, actually fixes each of
the elements MD(y)) (w(x)). To verify this, we may extend scalars from Z to C, and
then check the corresponding complex analytic assertion.

Over C, the morphism n corresponds to the map of lattices

(1.12.13) &, (t)=2ni(d" 'a™! +b7) 5 27i(d " ta T +bpr) =2, (P )
the complex H} is given by

(1.12.14) Hpr=Hom,(Z, (1), C),

the element w(x)eH g is the composite linear form

trace

(1.12.15) &, ()=K®C— > K®C-——»C

and the element M(D(y))(w()) is the linear form given by

(1.12.16) 271?1:0(627'”'11._10_ ! »—->.0
2nifte2nibr—2nitrace(foy).

Similarly, F*(H}y) is given by
(112.17)  F¥(H}py)=Hom,(Z, ,(p1).C),
and the “inverse image” F*(V(D(y))) is the linear form

2nine2nid ta -0

1.12.
(1.12.18) 2nifpre2nibprs2mitrace(fay).

The truth of (1.12.12) is now apparent, for by definition of z*, we have

(m*(F*(AD()) (())) (2mio+2miff 7)
=(F*NMDM) () 2nipa+2nifipr)
=2mnitrace(foy)
=NDy) (w(x) 2ria+2nift). QED

Chapter II. Differential Operators on C* and p-Adic Hilbert Modular Forms;
Algebraicity Theorems
We begin with some algebraic preliminaries.

2.0. Let us denote by Q a fixed algebraic closure of Q, and by & the set
consisting of the g distinct field embeddings

(20.1) o: K—=Q.
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Let K#'=Q be the composition of all the fields o(K), and let ¢#*! denote its ring
of integers.

For any (**-algebra R, and any ¢€&, we have a ring homomorphism, still
denoted o:

0:OC®R—R

z
(202) a®@r—a(a)-r.

Taken simultaneously, these give a ring homomorphism

C®R—R®

203 a®@r—(...,o(@r,...)

which is an isomorphism if and only if the discriminant d, of K/Q is invertible in
R.

We can also view the ¢’s as being characters of the torus [[(G,,)x. In this
C/Z
way, any element ) n(c)o in the free abelian group Z[E&] generated by &
defines a character of this torus, by the formula

(204) Y a®re(C @Ry —[[(Lala)r).

Taken simultaneously, the characters ¢ define a homomorphism of R-tori

2.05) [[(G)e—(G,)E

G|Z

which is an isomorphism if and only if dy is invertible in R.
Given an ¢ ® R module M, we denote by M(o) the largest O ® R-quotient
module of M on which @ operates by the formula

(2.0.6) am{o)=0d(a)m(c) for acC, m(a)eM(o)
(more precisely, m(a)e M(o) is to be annihilated by a®1 - 1®a(a)e@ ® R).

(2.0.7) Given an invertible ©® ® R module M, and a character y of I_[ (G,)r. We
G|Z

denote by M(y) the invertible R-module obtained from M by extension of the
structural group by x. In the case that y is just a single o, “M /(o) as invertible
R-module” is precisely the underlying R-module of “M (o) as ¢ ® R-quotient of M
where ¢ acts through o,” so that there is in fact no ambiguity in the notation.

(2.0.8) Lemma. Let M be an invertible O ® R module, and suppose that R is an
O='-algebra in which dy is invertible. Then

{2.0.9) The canonical map M —P®M(o) is an O @R isomorphism.

(2.0.10) For every integer k=1, denote by M®* the k-th power of M as invertible
0O ® R-module. Then we have a canonical R-isomorphism

M@=, @ M(ko).
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(2.0.11) For every integer k=1, denote by Symm&(M) the k-th symmetric power
of M as R-module. Then we have a canonical R-isomorphism

(20.12) Symmyp(M)— @ kM(x),

120, |xl=
the sum being extended to all characters y of the form Y n(c)-o, with integers

n(o) =0 satisfying y n(a)=k.

a

Proof. The assertion (2.0.9) follows from the fact that (2.0.3) is an isomorphism
when dj is invertible in R. The last two assertions follow from (2.0.9).

2.1. This section is devoted to the construction and study of some purely
algebraic differential operators. We fix an (®'-algebra R, in which dy is
invertible, and a fractional ideal ¢ of K which is prime to R, in the sense that it
is prime to every prime number p which is a non-unit in R,. Then canonically
we have

(2.1.1) ¢ '@R,=0®R,
z z

(equality inside @[all 1/p with p invertible in R,]J®R).
z

We denote simply by .# any of the moduli schemes .Z(c,I;o(N))g,. The
Kodaira-Spencer isomorphism (1.0.21)

(212) QY ~0®*@c!
o

may be rewritten, using (2.1.1), as an isomorphism
(2.13) Qlyr,~0®%
The Gauss-Manin connection on Hpy
(21.4) V:Hpr—>Hpp ® Qlyr,

Cu
induces a connection, still denoted F, on each of the symmetric powers
Sym’(‘u (Hpp), k=1,2,...:
(2.1.5) V: Symmy, (Hpg)—Symmg, (Hpg) ® Qlyr,-

Ou

Using the isomorphism (2.1.3), we can rewrite this as a map
(2.1.6) V: Symmg, (Hpg)— Symm*“(Hpg) ® w®?.

Om
(217 @®*—> ®w(20),

so that (2.1.6) is the sum of maps Mo):

(2.1.8) Wo): Symm, (Hbe)— Symm*(H}p) ® w(20).

Ou
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Applying the decomposition (2.0.11) to M =w, k=2, we get an inclusion
(21.9) wo)=Symm;, (0)=@ w(o+0)

By means of the inclusion u_)cﬂi-{I,},R, we have

(2.1.10)  Symm¢, (w)=Symm¢, (Hpp).

Combining (2.1.19) and (2.1.10), we obtain an inclusion

2.1.11)  wo)=Symm¢, (Hpg).

We can now define D(o) as the composite

Vi)

Symm’(‘;ﬂ (Hpp) ", Symm’}ﬂ (H)r) ® w(20)
S Cau
N
(2.1.12) o Symmg, (Hpg) ® Symm¢, (Hpg)
D(o) Cu
‘ multiphcation
Symmg | *(H ).

It is clear from this definition that D(o) is a first-order differential operator
(being the composition of V with several ¢ ,-linear maps), and that it defines a
derivation, homogeneous of degree two, of the symmetric algebra
Symm,, (H}):

(2.1.13) D(o)(xy)=D(o)(x)- y+x-D(o)(yv) for x,yeSymm.
Less clear is the following

(2.1.14) Lemma. The D(ag)'s mutually commute.

Proof. By reduction to the universal case (R, = (*'[1/d,]) and then by extension
of scalars, we reduce to checking in the case R,=C, in which case it is adequate
to check complex-analytically.

Because all the objects involved (H} . its Gauss-Manin connection, ...) are
the inverse images on .Z(c, I',o(N)) of their analogues on the stack .#(c, I;)o(1))
by the étale morphism “forget the I;,o(N)-structure” (cf,, (1.0.12)), it suffices to
work on the stack of c¢-polarized lattices. Recall (cf., (1.5.4)) that given any two
fractional ideals a,b of K such that c=ab~ ! any c-polarized lattice & is
isomorphic to one of the lattices ¢, ,(7) for some 1e K ® C with Im(r)> 0. Let us
denote by H(K) the space of all such 7. The morphism (of “complex analytic
stacks”)

H(K) T

A oo™ L, (1)
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is étale and surjective, so it suffices to check the truth of (2.1.14) over $(K). Over
$H(K), we are given a horizontal isomorphism of Hj, with the “constant™ sheaf

(2.1.15) Hom,(27id 'a™'@27ib,C)® U4,
C

endowed with the trivial connection 1®d. For each g€ &, let X(6) and Y(o) be
the global horizontal sections of Hj, corresponding to the linear forms on
lattice £, () given by

X(o)2rio+2nifft)=2nio(x)

(2.1.16) {Y(a)(zni+2niﬁr)= —2mio(f). (sic!)

Then Symm(H ) becomes the sheaf of algebras

QLIT) CLX(@1). ... X(6,). Yo 1), ... Vo)1 ® Oy

with the trivial connection 1®d. The space $H(K) is simply the g-fold product H®
of usual upper-half planes, via the isomorphism (cf,, (2.0.3)):

H(K)— H°
(2.1.18) {TH(...,T(G),...).

The Hodge filtration @ < H} is provided by the subsheaf
(2119) ©=®w(0)=®(X(0)—t(0) Y(0)- Cgx)-

The Kodaira-Spencer isomorphism (cf., 2.1.3)

(2.1.20) Qg(,()/c:w“” =@ (X(a)—1(0) X (0))*- Cox)

is given by
(2.1.21) 2nidt(o)—(X(o)—1(0) Y(0))>.

From the Definition (2.1.12) of D(0), we see easily that it is the derivation

| :
(2.1.21) Dio)=5 - (X(0) =t(0) Y(0))* 5=

of C[X(a)’s, Y(0)s]®Ugx, (With D(0) X(a'))=D(0)(Y(6'))=0 for all ¢,¢"). That
the D(c)’s mutually commute is now obvious, since D(o) “involves” only X(o),
Y(0), and 1(0). QED

2.2. In this section we will construct, “purely algebraically”, some punctually
supported distributions on modular forms out of the operators D(s). We
continue to work over an (®![1/d,]-algebra R,,.

Suppose we are given, over an R-algebra R, the following data (2.2.1-3)

(2.2.1) an R-valued point x=(X,4,i) of our moduli scheme .# =some
M, Tyo(N)g,-
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{2.2.2) a nowhere vanishing differential (cf., (1.0.4)) w on X

(2.2.3) an ¢ ® R-splitting of the Hodge filtration on H),(x)*E H)(X/R), ie., an
invertible ¢ ®ZR sub-module “Split (x)” = Hjx(x) such that

(22.4) w(x)®Split(x)—> H}r(x).

Now let y be a character of the torus U(GM)RO, which is of the form
O/Z

(22.5 =Y n(o)o with integers n(0)=0, Y n(o)L

ae@

For every element of Z[&] of the form

(22.6) Y d(o)o, withall d(¢)20

ge@

we will define an R,-linear map

(227) M(C, 1_(,)0( ) 0) d a)o, x. . Spht(\)} R,

as follows. Given an element feM(c, I,(N), x; R,), view it as a global section of
w(y) over .#. Because y is of the special form (2.2.5), we obtain inclusions

(228) w(x)=Symm}, (w)<Symmf, (Hpby).
Composing these with the differential operator

(2.29 Dd“’ Symm¥ (H), )Hsymmk+22d(a)(H1)
(o) Cu

we obtain a differential operator
(2210) []D: w(z)— Symmt 2¥4 (HY ),
under which the image of f is a global section of Symm**2*4“(H[.). The

inverse image of this section via the given R-valued point x: Spec(R)— .# is an
element

(2.2.10) (HD‘“"))(f )(x)eSymml* 2@ (HL L (x)).

The given splitting (2.2.4) of H}z(x) gives us a projection operator
(2212) Hbp(x)—>(x)

which induces a projection

(22.13)  Symmi(Hpy(x))—> Symmy (@(x))

whose kernel is precisely the ideal generated by Split(x). Applying (2.2.13) in
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degree k+2) d(c), we get a map
(2.2.14)  Symmf" 224 (H L (x))— Symmk T 2E4@(w(y)).
By (2.0.12), we have a canonical decomposition

(2.2.15)  Symmk* 224 (g(x)) = &) a(x)(p)

p20.|lp|=k+2%d(o)
and in particular a canonical projection
(2.2.16)  Symmj"**“(w(x)) - w(x)(x +2 ) d(0)0).

Finally, the given (' @R basis w(x) gives an R-basis of each of the w/(x)(p)s,
whence, in particular,

(2217) wX)(z+2Y d(c)s)—>R.

Combining (2.2.14), (2.2.16) and (2.2.17), we get an R-linear map

(2.2.18) Symmfk" 2@ (H] (x))— R.

We define 3(3_d(0)a, x, w, Split(x)) f€R to be the image of (][ DL)(f)) under
the map (2.2.18). ’

(2.3) In this section, we will construct some C* differential operators out of the
D(a)’s, by using the antiholomorphic splitting (1.8.3) of the Hodge filtration.
To simplify notation, we will denote the sheaf w(C™) simply as

(notation)

(2.3.1) w(C*) "=="Split(C™).

Given an element of Z[&] of the form
Y. d(o)o  with all d(6)=0
we will define a C*-differential operator
(232) 9} d(c)o, C*): Symm*(w(C™))— Symm** 2> (¢(C™*))
as follows. The inclusion
(233) Symm¥(@(C*))=Symm*(Hb,(C*))
together with the differential operator
(234 11D{5): Symm*(Hpy(C7) - Symm* 224}, (C7))
gives a differential operator

(23.5)  Symm*(@(C”))— Symm" 22 (H}, (C*)).
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The projection

(2.3.6) Hpp(C*)—(C7)

deduced from the splitting (1.8.3) induces a projection

(2.3.7)  Symm'(Hpe(C*))— Symm’(w(C™))

whose kernel is the ideal generated by Split (C*). Composing (2.3.5) with the
projection (2.3.7), we get the desired 3(} d(o)o, C*).

(2.3.8) Theorem. The differential operators 3(3 d(a)a, C*) enjoy the following
properties

(2.3.9) They mutually commute.

(2.3.10) They are formed out of the operators 3(a, C*) by the rule
(Y d(o) o, C*)=[] Ha, C*)*.

(2.3.11) Each 3(o,C™) acts as a derivation, homogeneous of degree two, of
Symm’(@(C)) into itself.

(2.3.12)  For any character y of the form (2.2.5), 9(2 d(g)o, C*) maps w(x)(C™) to
w(x+2) d(0)a)(C™).

Proof. Because the submodule Split (C*)= Hpx(C™) is holomorphically horizon-
tal, the ideal it generates in Symm'(H}z(C®)) is holomorphically horizontal,
(hence stable by the D(o)’s) and the quotient is Symm'(w(C™)). The operator
303 d(s)o,C™) is, by definition, the one induced on this quotient by the

operator [ ] D{(5) on Symm’(H},(C*)), whence (2.3.9-11) follow from (2.1.12-13).

a

To prove (2.3.12), we use (2.3.10) to reduce to checking the operators 3(a, C*).
Using the fact (2.3.11) that 3{g, C*) is a derivation, we are reduced to checking
that 3(o, C*) maps O ,(C*) to w(20)(C™), and that it maps w(s')(C*™) to
w(o'+20)(C™). The first of these points is clear, for this map is just the map

dholo

(2.3.13) 0(C™) > QL (C*)~®(C*)~ D w(20)(C™)

projection
0. C*) l

@(20)(C*).

The second map

(2.3.14) (o, C*): @(C*)— Symm’(w(C™))
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is the composite
0(C*)CHyp(C*)——  Hbe(C*)®Q4(C)

Lid®K-S§

Hpp(C*)®@ w®*(C™)

¢

Hpr(C*)®(® @(20)(C*)
id @ projection
Hpr(CT*)®@w(20)(C*)

(2.3.15)

proj ®id

o(C*)®w(2o)

In terms of any holomorphic local coordinates t,,...,t, on .#, and any local
section w of w(C*), we have

2316) V(@)=Y l7< ) )®d,
whence
(2.317) (o, C*)w)=), V( > -(the “26” component of K—S(dt,))

(the congruence modulo the ideal (Split(C*))). Thus to check that 3(g, C*) maps
@(0')(C™®) to w(o’+20)(C™), it suffices to observe that the derivations

d
(2.3.18) V¥ (E) cHyp— Hpg
although not linear over 0 ,, are linear over ¢, and hence by (2.0.6) map Hpz(c")

to itself for any ¢'e€. QED

(2.3.19) For later applications, we give explicit formulas for the operators
(o, C*). As in the proof of (2.1.14), fix two fractional ideals a,b of K such that ¢
=ab~!, and an O-isomorphism

e O/NO——a !/Na™ 1,

Then any c-polarized lattice with I5,(N) structure is isomorphic to one of the
form (&, x(1),{ . Dean> i(¢)) (cf, 1.5) for some t=(...,7(g),...,)eH(K)~H% The
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corresponding projection

H(K) T

(2.3.20) J }

M Too (N (L (D5 Deans 18))

is étale and surjective. Indeed for N =4, it is precisely the universal covering of
M (¢, T5o(N))™, whose fundamental group appears here as the group Iy o(N;a,b)
of all fractional linear transformations of 7 of the form

(2321) oo2ttF
yT+9
with
o, 0e0,yedab, fedb " ta"1b7!
a0—fy=1
(2.3.22) By
o, 0=1mod NO
yeN -Dab.

From this point of view, a holomorphic (resp. C*) ¢-HMF on I3,(N) of
weight y =) n(c) ¢ of type (2.2.5), is a holomorphic (resp. C*) function f(t) such
that the global section

(2.323) f()-[[(X(0)—1(0) Y(0)"

of Symm’(Hz) over $(K) is invariant under the left action of I;o(N;a,b) given
by
2T + ﬁ
yT40
(2.3.24) \ X —aX +pY
Y-y X +0Y

i.e., f/ must satisfy

ar+ﬁ)z(n(a(c)-r(a)+a(d))n<a))f(f) for all (: g)el“oo(N;a,b).

(2.3.25) f(m

(2.3.26) Formula. For any C* function f(r) on H(K), we have for g,€S

$(ao, C)Sf (@[] (X (0)=1(0) Y(0)"")

a

=x-(X(00)=1(0,) Y(0,))* - [ | (X(0) —1(0) Y(0))"*

with
n(o,)

2327) s= ¢
(2.3.27) =5 = f(”“4n1m(r(a0))

2ni 01(0,)

f@
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Proof. By definition, 3(g, C™) is the reduction modulo Split(C*) of D(s). The
explicit formula (cf, (2.1.21))

N
(2328) D(0)=(X(0)=1(0) Y(0))* 5 ==

reduces (2.3.27) to the assertion that (for 6 =0,) we have

1
23.29) —
( ) 2ni 0t(0)

_ -1
“4n Im(z(a))

(X(0)—1(0) Y(0))
X(6)—1(0) Y(¢)) modulo Split(C*).

But Split (C™®) is spanned by the elements

(2.3.30) X(o)—1(0) Y(0)

so that

(23.31) X(o)=1(0) Y(6) modSplit(C™).
Modulo this relation, (2.3.29) becomes the identity

1 -1 S
5 Y(0)=m(f(o)Y (0)—1(0) Y(0)). QED

(2.3.32) To include this section, we give the homogeneous version of (2.3.26).
Let us denote by GL} the complex manifold

(2.333) GLL={(w,w,)|w,;,0,eKQC, Im(®, w,) is totally positive in K®R}.
To each point (w,,w,)eGL}, we associate

the lattice ™ 'a ' w, +bw,

dfn Im(ﬂ U)

can —

(2.3.34) | the c-polarization {u,v) Im(@, wy)

the I, (N)-structure i(¢): D 'QZ/NZ—>d 'a 'w,®Z/NZ.

From this point of view, a holomorphic (resp. C*) c-HMF f on I},(N) of weight
x=Y.n(o)o is a holomorphic (resp. C*) function f(w,,w,) on GL'%, which is
invariant under the right action of Iyy(N;a,b) on GL},

(2.3.35) (wl,wZ)H(wl,w2)<Z g)

and which transforms under ae(K ® C)* by the rule

(2.3.36) fla 'w,,a 'wy)=yx(a)f(w,,w,).

Let us denote by w;(g), i=1, 2, g€ S, the holomorphic coordinates on G L}, we
obtain by writing, for i=1, 2

(2337 w;=(...,w0),...)eK®C~CE,
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(2.3.38) Formula. The operator 3o, C*) on C* functions f(w,,w,) on GL}
satisfying (2.3.35-36) coincides with the operator W(a) on GL}, given by

w 7" (o e
2339 W) e (wl @300 7@ @wz(a))

Proof: Given F(1r) on $H(K) satisfying (2.3.25), the corresponding function
flw,,w,) on GL} satisfying (2.3.35-36) is given by

(23.40) fl(w,,0)= Yw,2ni) F(w,/w,)
Le., F(1)=f(2ni2niT).

We must show that

(2341 zlo,/27i) (0,(0)21i)* W(o) f(0,, w,)

_1 oF n(o) Flw,/m,)
“2mi t(0) Y dn Im(, (o), (0)

Substituting for f via (2.3.40), the left-hand member becomes
(2.3.42) (w,(0)2ni)*  W(o)(F(w,/m,))
+F(w,/w,) - (0,(0)/27n i)ZX(UH/zn i) x W(o)(x™ (w,/2m i)

OF
=(@1(0)271)* 5 (@3/0,) W(o)3(0)/(0)
12 (1O W0, ()2 )
+F(w2/w1)-(w1(a)/2nl)2><( (w0, (0)27 ) >

Comparing this with (2.3.41), we see that we need only check that

(@,(0)/271)* W(0)((0)/, (0) =5 —
(2.3.43)

(@, (0)211)- W(a)(w,(0)/2mi) = Im(w,(6)/w,(0))’

a task we leave to the reader. QED

(2.3.43) Elaboration. For fixed («, f)ed~ ' a™ ! xb, let us denote by [ the K®C-
valued function

(2.344) I=aw,+fw,

on GL%, and by I(0), 6€S, its C-valued component functions.
(2.345) l(o)=0c(x)w,(0)+0(f)w,(0).

Let us denote by a the K @R-valued “area” function

(2.346) a=Im(w, w,)
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and by a(g), 0 its R-valued component functions

(2.3.47) a(o)=Im(w,(0) w,(09)).

The operators W(o) may be characterized as the unique C® derivations of GL}
which satisfy the following identies:

s _—

W(o)(l(0)) = ~ao) I(0),

(2.3.48) {1 W(0)(I(@) =0
W(a)(a(o))=0

(2.3.49) W(a)(l(e) = W(o)1(@) = W(s)(a(a)=0 if c+a.

(24) In this section, we give a fundamental algebraicity theorem for the
operators () d(a)a, C*). This theorem is essentially equivalent to Shimura’s
generalization ([24]) of Damerell’s theorem ([2]), but the proof is quite different
from Shimura’s.

Let R be an O*'[1/d,]-algebra given with an inclusion

(2.4.1) incl: R—C,

and let ¢ be a fractional ideal of K which is prime to R (cf, (2.1.1)). Let x
=(X, 4,i) be an R-valued point of the moduli scheme .# =.# (¢, I;,,(N))g, given
with a nowhere vanishing differential w on X. Let Split(x) = Hpg(x) be an O ® R
splitting of the Hodge filtration which satisfies the following very strong
condition:

(2.4.2) after the given extension of scalars R C—'-nil—%C the submodule
Split(x)® C = HYx(X)®C = H'(X¢", C)is the antiholomorphic subspace
R R
H*'cH'(X?%, C).

Let x be any character of [ [(G,,) of the form
(¥4

(243) =Y n(o)o with integers n(0)=0, ¥ n(e) Lk

and let f be an element of M(c, Io(N), x; R). After the given extension of scalars
R<C, we can view f as a (holomorphic) global section of w(x)(C*™) on
M (¢, I o(N)(C™). For any element

(244) Y d(o)oeZ[S], all d(0)20,

we can apply 3(}) d(s)o,C™) to f; and obtain a C™ global section of
Q(X-’rde(O’) 0)(C®), which we can then view as a C* ¢-HMF on [,(N) of
weight y+2 ) d(o)a.

(24.5) Theorem. Hypotheses and notations as in (2.4.1-4) above, the complex
number

(8} d(o) o, C*) ) (X, 4 w,i)ceC
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actually “lies in R”: it is given, in the notation (2.2.7), by the formula
(24.6) (3. d(0)o, C*) )X, 4 v,i)c=incl. (3(3 d(0) o, x, », Split(x)) f).

Proof. The first assertion is a consequence of the explicit formula (2.4.6). To
prove (2.4.6), we are immediately reduced to the case R=C. Then
(3 d(e)a, C*) /) (X, A w,i) (resp. 33 d(a) g, x, w, Split(x)) f) is obtained from

d{o)
(2.4.7) (U D(a)>f, a global section of Symmg* >*4@ (Hp,)

by going around the left (resp. right) side of the diagram

k+2Xd(a) 1
Symm “(Hpr)
Symm?* 2540)(oy(C) Symm* * 25401} ()
(reduce modulo the ideal
(take ﬁb’”‘\ gen. by Split (x))
(2.4.8) Symm** ZZd(d)((_l)_(X))

{project. by (2.0.12), onto the
1+2Y d(g)e compt)

sz)

~

{use the given w)

C

That this diagram is commutative results from the hypothesis (2.4.2) that, over
C, we have

(2.49)  Split(x)=(Split(C*))(x). QED

(2.5) In this section, we develop the p-adic analogues of operators
9. d(a)o, C*). We fix a p-adic 0%"-algebra R, which satisfies the following
condition:

(2.5.1) the discriminant d of K/Q is not a zero divisor in R,.

When p is unramified in K, this condition is automatically fulfilled, since dj is
then a unit in R,. When p is ramified in K, this condition is equivalent to R,’s
being flat over Z,.

We will denote simply by .# (p-adic) the formal scheme (cf,, (1.9.6))

(2.52) M (p-adic) T A ()29 = { M (¢, Tyo (N, pmro)

and by 0, (p-adic) its structural sheaf. To unify notation, and to emphasize the
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analogy with the C® case, we will denote by
(25.3) w(p-adic), Hjg(p-adic), Split(p-adic)

the sheaves w, Hpg, U (cf, (1.11.27)) on . (p-adic).

Let us temporarily view the formal scheme ./ (p-adic) as being the topologi-
cal space (¢, I50(P*))rypros togther with the p-adically complete and sepa-
rated structural sheaf of ¢ @ R,-algebras O ,(p-adic). Because this sheaf is flat
over R, the hypothesis (2.5.1) on R, assures the natural map

(254) 0 (p-adic)— 0,4 (p-adic)® Z, [1/dy] T 0 ,(p-adic) [1/d,]
is injective. For any locally free ¢ ,(p-adic) module &%, the corresponding map
255) Fo>FILF QL,[1/dg]

ZP

is also injective.
We now define, for every element of Z[S]

(256) Yd(e)o with all d(0)20

a differential operator
(2.5.7) 80> d(o)o, p-adic):  Symm*(w(p-adic))[1/d,]
— Symm**224€) (@ (p-adic) [ 1/d]

by repeating the Definition (2.3.3-7) of $(}_ d(0) o, C*), with the holomorphically
horizontal splitting Split(C™) of the Hodge filtration on H}z(C™) replaced by the
horizontal splitting Split(p-adic)[1/d,] of the Hodge filtration on Hjz(p-adic)[1/d].

(2.5.8) Theorem. (p-adic analogue of (2.3.8)). The differential operators
33 da, p-adic) enjoy the following properties:

(2.5.9) They mutually commute
(2.5.10) They are formed out of the operators (o, p-adic) by the rule

9(3 d(0)) o, p-adic)=] | ¥(s, p-adic)*®
(2.5.11) Each 3o, p-adic) acts as a derivation, homogeneous of degree two, of
Symm’(w(p-adic)) [1/dg] into itself.

(2.5.12) For any character y of the form (2.2.5), 303 d(o)a, p-adic) maps
w(x)(p-adic)[1/d,] to w(x+2} d(o)o)(p-adic)[1/d,].

Proof. Just repeat the proof of (2.3.8). QED

(2.6) In this section, we give the p-adic analogue of the algebraicity theorem
(2.4.5), and define some differential operators 6(s) on p-adic c-HMF’s. We fix an
O*!-algebra R, which is separated for the p-adic topology and a fractional ideal
¢ of K which is prime to R,. We denote by R, the p-adic completion of R;:

26.1) R,cR,*lim R,/P"R;.
1 0
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We make the hypothesis
(2.6.2) the discriminant d; is not a zero divisor in R,

Let x=(X, 4, 1) be an R, -valued point of the moduli scheme .# = .4 (¢, I;,o(p™))g,,
given with a nowhere vanishing differential @ on X. Let Split(x)= H}x(x) be an
O ® R,-splitting of the Hodge filtration, which satisfies the following very strong
condition:

(2.6.3) after the extension of scalars R, <R, the submodule
Split(x) ® Ry = Hpr(x) ® R, = H} p(p-adic)(x) is the “unit root” subspace
Ry Ro
U(x)(=Split (p-adic)(x) in the notation 2.5.3).

Let y be a character of | [(G,,)g, of the form

(d¥ A
(2.6.4) y=) n(s)c with integers n(c)=0, Zn(c)dg' k,

and let f be an element of M(c, [;o(p®). . R,). After the extension of scalars
R, —R,, we can view f as a global section f(p-adic) of w(y)(p-adic) over
M ()24 = 4 (p-adic). For any element

(26.5) Y d(e)oeZ[S], all d(0)20

we can apply 33 d(o) g, p-adic) to f(p-adic), and obtain a global section of
w(x+2Y d(o)o)(p-adic) [1/di], which has a well-defined value

(2.6.6) (9(Y. d(0) 0, p-adic) f(p-adic)(X, 4 , i)g,)€Ro[1/dg]

(2.6.7) Theorem (p-adic analogue of (2.4.5)). Hypotheses and notations as in
(2.6.1-6) above, the “p-adic” number

(3 (Y. d(0) g, p-adic) f(p-adic))((X, 4, w, )z, )€R o [1/dg]
actually lies in R (1/d]: it is given, in the notation (2.2.7), by the formula
(2.6.8) (33 d(0) o, p-adic) f (p-adic))(X, 2, w,)) = 3(} d(0) 0, X, w, Split(x)) /.
Proof. Just repeat the proof of (2.4.5). QED

For “numerical” applications, it is important to reinterpret this theorem in
terms of p-adic ¢-HMF’s and the construction (1.10.16). The sheaf w(p-adic) on
M (p-adic) is canonically trivialized

(269 w,: 0®0,{p-adic)—— w(p-adic)
z

by the construction (1.10.11), applied in the “universal case.” For any character
% of [ [(G,)g,. this trivialization induces a canonical trivialization
O/Z

(2.6.10)  (X)ean: U (p-adic) —— w(y)(p-adic)

can*

by “extension of the structural group.” In terms of these trivializations, the
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construction (1.10.16) sits in a commutative diagram

s i
(26.11) M6, Too(p™ ). 75 Ro)— 9, V(e Ry)

| |

fEHO(///(C Too (P ))me(x)) HC (A (p-adic), 0 , (p-adic))

=~ R U oean

~5 S~

[ (p-adic)e H(.# (p-adic), w(x)(p-adic))

in which the diagonal dotted arrow is just the map “pass to the associated
formal scheme,” i.e.,

(26.12) f(p-adic) =T 0(1)can-
(2.6.13) Theorem. For y of type (2.2.5), and any o, we have

(2.6.14) 9(o, p-adic)(@(Y)can) =0  in Symm’(w(p-adic))[1/d].

can

Proof. When y is the trivial character, w(x).,, is the constant function “1”, and
(2.6.14) holds. When y is of the form ) n(s)o with all n(c)=0, some n(e)=1,
then

(2615 0(@an= ] (@) in Symm'(@(p-adic)[1/dg].

owithn(e)= 1
Because 3(o, p-adic) is a derivation (2.5.11), it suffices to show that
(2.6.16) (o, p-adic)(w(d').,,) =0 in w(s’ +20)(p-adic)[1/d].
Because the w(y).., give global trivializations, we can write
Ho, p-adic)(w(0'),,) =* w(c’ +20)
with *eV(c, Ro)[1/d].

can

In order to prove that x=0, it suffices to show that at least one of its g-
expansions vanishes. This, in turn, is equivalent to establishing (2.6.16) over
some (Tatea,b(Q)’ Acan’ i(g))Ro'

(2.6.17) For simplicity, choose both a and b prime to p (i.e., prime to R,; this is
possible because we have assumed that c=ab™! is prime to R, and hence to p)
and take for ¢ the equality (cf., (2.1.1))

(2.6.18) (O®Zp=a‘1®Zp.
For each ge S, we denote by D(o) the derivation of R,((ab,S)) given by

(2.6.19) D(o)(>. a,q4) =Y o(x)a,q*

aEa
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Let w(o) be the element of w[1/d,] corresponding, via the isomorphism (cf,
(1.12.2)) furnished by w

(2.6.20) w[l/dg]=~(a[1/d] ® Ro)®, Ro((ab,$))
z
to the element “6”® 1, where “¢” is the unique element of a[1/d;]® R,, such
z
that
(2.6.21) trace(“o”-a)=a(o) for all xeC ® R,,.
z

It is thus a tautology that on Tate, (g), we have
(2.6.22) w(o)=w(o)

can*

By (2.1.21), the derivation D(s) of Symm'(H})[1/d;] is given, over
Tate, ,(q), by the formula

(2.6.23) D(a)=w(s) - V(D(a)).

We can now verify (2.6.16) over Tate, ,(q) by a simple computation:

(2.6.24) 3o, p-adic)(w(0").,,) = Ha, p-adic)(w(a))  (by (2.6.22))
D(o)(w(c’)) mod Split(p-adic)
(V(D(0))(w(c")))- w(c)*> mod Split(p-adic)
0 by Key Lemma (1.12.7). QED

(2.6.25) Corollary. For each o, there exists a derivation 8(a) of O, (p-adic)[1/d,]
such that for any y of type (2.2.5), the diagram

1l

I

(o)

@/Il(p'adlic)[l/dk'] O.u(p-adic)[1/d]
i |
(2.6.26) . 2ot +20),,

4(a. p-adic)

() (p-adic) [1/d,] @ +20)(p-adic)[1/d,]

commutes. The g-expansion of 0(c) at a cusp of type (2.6.17-18) is given by the
following formula:
(2.627) if geV(c,Ry)[1/di] has g-expansion Y a,q*, its image 0(c)g in
acab
V(e, Rg)[1/dg] has g-expansion

(0(0) g)(q) = Zbcf(a) ‘a,q"
Proof. The first assertion follows immediately from (2.6.14). The second follows
from (2.6.14), (2.6.23), and the definition of $(o, p-adic) in terms of Split (p-adic)
and D(s). QED
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(2.6.28) Remark. These operators 0(a) should be viewed as the Hilbert modular
d . .
version of Ramanujan’s operator G:qaa in the theory of modular forms in one

variable.
We now return to the situation (2.6.1-6). Recall that f denotes the image of f
under the map (1.10.16):

(2.6.29) M(c,Io(p™), s Ro)— V(¢,Ry).
Let us denote by
(2.6.30) ce(O®Ry)"

the “ratio” between the given nowhere vanishing differential w on x=(X, 4, i) and
)

can*

(2.631) w=c o on Xp..

can

(2.6.32) Lemma. Hypotheses as in (2.6.1-6), the values
(33 d(0) 0, p-adic) f(p-adic))(X, A, , i)z, €R o [ 1/d]

and
([TO@)* ) )X, A, i)g)ERG[1/dg]

are related by the formula

_ ([T 0y )X 4
1) [Tote

(2.6.33) (3(}. d(0) o, p-adic) f (p-adic))(X, A, w, i)

Proof. By (2.6.12), we have
(2.6.34)  f(p-adic) =" 0 (Y)can

whence by (2.6.26) and (2.5.10-12), we have

(2.6.35)  9(3. d(0) g, p-adic) f(p-adic) =(] [ 0(c)*) /- w(x +2 . d(6) 0)can-

By definition, the value at (X, 4, w, i)g, of the left-hand member is the ratio of its
value at x=(X, 4,i) in @(x)(x+2) d(c)0o) to the given basis w(y+2) d(c)o) of
w(x)(x+2) d()o). The formula (2.6.33) now follows from (2.6.35) and

(2.6.31). QED
Concatenating (2.6.8) and (2.6.33), we get

(2.6.36) Theorem. Hypothesis as in (2.6.1-6) and notations as above, the p-adic
ratio

(TTO@ ) 1) (X, 4, i)
X(C) l"[ o.(c)zd(a)

g

eR,[1/dy]
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actually lies in R,[1/d,]: it is given, in the notation (2.2.7), by the formula

(JTO@) ) )X, A1)
1]l

G

=3} d(o) 0, x,, Split(x)) f.

Chapter I11. Eisenstein Series

We begin with some convenient conventions and notations concerning
g-expansions.

(3.0) For the rest of this paper, we fix a prime number p. We will permanently
adopt the following conventions (3.0.1-2).

(3.0.1) We will only discuss the moduli scheme .# (¢, I',,(p™)), or the associated
modular forms, over a ring R when the fractional ideal ¢ is “prime to R” (in the
sense of (2.1.1)), and is prime to p.

(3.0.2) Whenever we take g-expansions of ¢-HMF’s over R by picking frac-
tional ideals a,b of K with c=ab™ !, we will always choose a to be “prime to R”
and prime to p. We will endow Tate_ (q) with the I, (p™)-structure i(¢,,), where
Scan 18 the equality

Cen: O '®Z,=C®Z, inside KQZ,.

We will denote this [(p™) structure simply “i.,..” We will endow Tate _,(q)
with the nowhere vanishing differential w,(j_,,). (cf, (1.2.11)), where j,, is the
equality

Jeam: @ '®@R=C®R inside ¢ [all 1/] with | invertible in R]J®R.

LT}

We will denote w, (j,,) simply “w.,,.” (This should lead to no confusion,
because when R is p-adic, this “w,,,” is the w,,, associated to i, (cf, (1.10.14)).)
We will use the catch-phrase “g-expansion at (a,b)” to mean “evaluation at
(Tate, ,(9).(9), Acans Dcan» lean) (OF to mean “evaluation at (Tate, ,(q), Aean» ican)”
in the p-adic case).

(3.0.3) Remark. In practice, the restriction that ¢ be prime to R and to p is not
severe, for the following reason. Given any totally positive ae K™, and any
(super)-natural number N, the moduli problems .#(c,1;,(N)) and
A (%) ¢, T;,o(N)) are isomorphic, via the map

(X, 1, i)— (X, 0, ).

So we are “free” to move ¢ within its strict ideal class, and thus to “make” it
prime to any given finite set of primes. The restriction on a is even less severe,
since we are always permitted the choice a=(.

(3.1) In this section, we develop some notions of “partial fourier transform,” in
the context of a c¢-polarized lattice with Iy (p™)-structure (&£, , »,i). Let F be a
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locally constant function

(B.11) F:(C®Z)*x(RZ,)—C.

Its “partial fourier transform” PF is the compactly supported function
(312) PF:(d>'®Q,/Z,)x((®Z,)—C

defined by “fourier transform in the first variable” as follows: for any integer n
such that F is constant on cosets modulo p", PF is supported in

(3.13) (n* ! @%zp/zp) x(0®Z,),

where it is given by the formula

1
(3.14) PF(x,y)=-. Y Flay)expnitrace(2x))
aeC/p"C

1
for xeb“@E;Zp/Zp, yeORZ,.
One easily checks that this definition of PF is independent of the auxiliary n
which enters into it.

Now consider a c-polarized lattice with I'y,(p®)-structure (£, , »,i). The
polarization form

(3.1.5) ALL)—>d ',
when tensored with Zp, gives an isomorphism
(3.1.6) A§®ZP(£’®ZP)—~—> 0! c“‘®Zp:b‘l®Zp

(the last equality, inside K®Z,, holds because ¢ is prime to p). The I;,,(p”)-
structure i on & gives a short exact sequence of free ¢ ®Z -modules

(B17) 052 '®Z,—>L®L,—~?—-0,
whence an isomorphism

(318) A(ZL®Z,) >0 '®Z,) ® .

0®Z,

Comparing this with (3.1.6), we find an isomorphism
(319) 7~0RZ,,

and so we can rewrite (3.1.7) as

(3.1.10) 0— D_I®Zp—i>$®Zp~+(9®Zp~>O.
Tensoring with Q,, we get

(3.L11) 0-d"'®Q,—¢®Q,—~»0®Q,—0.



p-Adic L-Functions for CM Fields 247

(3.1.12)  Definition. We denote by PV,(¥) the ¢ ®Z,-submodule of Z®Q,
defined by

(B.1121) PV(£)=ZL®Z,+i(d"'®Q,).

Alternately, we can say that PV (%) is the complete inverse image of O ®Z, in
£ ®Q, by (3.1.11). (The notation “PV,” is for “partial V', from the Tate-module
notation which puts T(¥)=2¢®Z,, V,(L)=2®Q,).

Thus PV, sits in two short exact sequences

(3.L.13) 02 QZ,~PV,(%) b '®Q,/Z, 0,
(3.1.14) 050 '®Q,—PV,(#)—>0®Z,—0.

We denote by pr,, pr, the corresponding surjective maps

yt’_l@)Q"/Z"

Pr2

(3.115) PV(2)
CQZ,.

Given a locally constant function F as in (3.1.1), its partial fourier transform
PF gives rise to a locally constant, compactly supported function, still noted PF,
on PV, (%), by

(3.1.16) PF()E PF(pr,(l),pry(l) for IePV, ().
(3.2) In this section, we will construct Eisenstein series. We denote by E the

group @ of units of K, and by N the norm mapping ¢ — Z. For any ring R, the
norm mapping provides a map

(321) O®R—-R

whose restriction to (¢ ®R)™ is a group homomorphism

(322) (O®R)* —>R".

Thus N may be viewed as a character of the torus H(G ), whose expression

over 0% is just ) ¢ (ie., all n(o)=1). When speakmg of «-HMF's, we will say
“weight k” instead of “weight N*.”

(3.2.3) Theorem (Hecke). Let k=1 be an integer, R an arbitrary ring, and let
(324) F:(O®Z,)x(O®Z,)—R

be a locally constant R-valued function, which is supported in (0 ®Z,)*x (O ®Z,)",
and which satisfies

(3.2.5) F(e 'x,ey)=N(e)F(x,y) for all ecE.
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Then there exists a -HMF of weight k on Io(p®), defined over R, denoted G, p,
whose g-expansion at (a,b) is given by the formula

(32.6) G, plg;a,b)=Na ) g¢* Y Sgn(N(a))- N(a)*~* - F(a,b).

acab factorizations a=ab,
a>0 aea, beb,
modulo E

When R =C, the transcendental expression of G,  is given by the formula
(327) G (&, , >, i)=the value at s=0 of the entire function of s whose

k
expression for Re(s)>1—= is the absolutely convergent series

2
(=D I(k+s)E PF(])
328) —F——— Sl
( Vdg 1e2(1(p]0 PV, () N(*- IN(@D)?

Proof. We begin by explaining how to reduce to the case R=7Z. We claim that
any locally constant F supported in (0 ®Z,)* x((®Z,)* and satisfying (3.2.5),
is an R-linear combination of such Z-valued functions. To see this, let E¥ < E be
the subgroup, of index 1 or 2, consisting of all units of norm one, and consider
the profinite groups

(329) G*=(0®Z,)* x(O®Z,)*/closure of E*
G=.......... Jclosure of E.

Suppose first either k even or E=E™*. Then our F is just an R-valued locally
constant function on G, so an R-linear combination of characteristic functions of
compact open sets of G. If k is odd and E* %=E, let e, be any unit of norm —1.
Then e, projects to an element €, of G* which has exact order two, and our F is
precisely a locally constant R-valued function on G™ satisfying

(32.10) F(é,g)=—F(g) for geG™.

Let H=G* be a compact open subgroup of G* modulo which F is constant,
and which doesn’t contain e,. Then €, projects to an element &, of exact order
two in G*/H, and F “is” an R-valued function on G*/H satisfying

(3.2.11) F(é,g)=—F(g) for geG*/H.

Thus if we choose any set of coset representatives {g;} in G*/H for the cosets
modulo {l,&,}, F is uniquely determined by (3.2.11) by the values F(g,), and
conversely these values may be assigned arbitrarily.

The case R=7Z follows from the case R=C by the g-expansion principle. By
GAGA, we are then “reduced” to showing that the transcendental expression
(3.2.8) is an entire function of s, whose value at s=0 is a holomorphic function of
variable (&, { , >,i), of weight k, whose fourier series is indeed given by (3.2.6).
These analytic facts are due to Hecke (cf,, especially p. 394 of his Werke [4]).

For the convenience of the reader, we recall the main steps. First, we remark
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that the transformation law (3.2.5) of F yields, for PF, the transformation law
(3.2.12) PF(ex,ey)=N(e)* PF(x,y),

so that, in (3.2.8), the summation “modulo E” makes sense. Let F be constant on
cosets modulo p”, so that PF is supported in (b“ 1 ®$Z/Z) X(O®Z,)". Then

the value of (3.2.8) on the Tate lattice & ,(7) with its canonical Ij,(p®)-structure
is

(= 1Fe I (k+s)® PE (z%’b)

Y K
Vi et N (oni (Goebe) N o (G )
|

In the summation, we can restrict to terms (g, b) with b=+0, because PF(x, 0)=0
by the support hypothesis on F. Thus we may rewrite (3.2.13) as

(3.2.13)

2s°

a
PF —,b)
(=D Ik +s)® (p"
(3.2.14) " S X 25
VdeQriye(2m)* heb=(0) acdTa ! N (“a‘ﬁ‘bf) N (l')a?+br)
The inner sum can itself be rewritten as
(3.2.15)
1
PF (“—Ob) S .
aped” ta~!/pnp-la-! 14

aed~la-! ay ‘
N a+—n—|—br
P

N (a+a~3+br>
p

Let us agree that for any ze K®C whose imaginary part Im(z)eK®R is
totally non-zero, we will denote by S(z; 2" 'a™';s) the sum

dfn 1

RO TP RN i
(3216) Syzdta 9™ Y e

Then the quantity

(3217) L4br
14

occurring in (3.2.15) is such a z, simply because b=0 in b. Thus we can rewrite
(3.2.14) in the form

(3.2.18)

—1y¢ C(k+s)

(=D r(k+s) . Y PF(E%, )S,((a—g—i—b‘c;b‘la‘l;s)‘
]/d_K(2ni)"g(27I)2gs beb =10} med Talprbta 4 p
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The S,’s are now dealt with directly.
For each fixed ze K®C with Im(z) totally non-zero, we can apply the
Poisson summation formula to the function

1
(3.2.19) t%N(t NG

on K®R, summed over D~ 'a~ !, and obtain

(3220) S,(z;d 'a L s)=Na-Ydg Y Ce(hz,9)

Aea

where C, (4, z, s) is the Fourier transform of the function (3.2.19):

_ exp(—2mnitrace(it))dt
(220 Ghz9= | ST N+ o

and dt means ordinary Lebesgue measure di(g,)...dt(q,) on K®R=~RE. Sub-
stituting (3.2.20) into (3.2.18), we get an expression for (3.2.14):

(=1 I(k+sFNa
QrifQ2n)’® . .
- 5 PF (—0) Y C, (/”t,—g—+br,s).
beb—d{EO) aped " la-1/pnp-la-1 P Aea D

Using the obvious relation

(3.2.22)

(3.2.23) C /’L,a—0+bt,s =exp(2rnitrace(day/p")) C,(4,b1,s)
k pn

and interchanging the order of summation, (3.2.22) becomes

(=D Ir(k+s¥Na

(3.2.24)

Qrif2n®
<Y Y G4, br,s) Y PF (ﬁg,b) exp(2ni trace(ay/p")).
bf-:o:l(EO} Aea aped~la~1/pnp-la-1 D

The innermost sum is just F(4,b) (partial fourier inversion), so (3.2.24)
becomes

CIRIEESING 5 5 P b Gy b

(2 n l)kg(z n)ng beb— {0} Aea
mod E

(3.2.25)

Because F(0,b)=0, by hypothesis we can rewrite this

(—1¥er(k+sENa ,
(3.2.26) - - F(4,b) C (4, b1,s).
Qrif(2n)*® beb— {0} ze‘gm) ’
mod E
Of course, the above calculations are only meaningful for Re(s)> 0. Hecke now
provides an explicit analytic continuation of each integral C,(4,z,s), 4 totally
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non-zero in K®R, Im(z) totally non-zero in K®R, as follows. He writes C, as
the product

, * exp(—2nillo)t(o)dt{o)
(3227 Ci(4,zs)= UL TPy e

In each integral the complex powers extend to well-defined holomorphic func-
tions of ¢t in the complex plan, minus two vertical slits emanating from the
points —z(a), —z(0). {

@ —Z)for —2(0))

T ~z(o)(or —2(0)

i

For Re(s)>0 and A(g)>0 (resp. 4 , we can deform the path of integration

into one of the mandolin paths
& if Ao
W if A(o

with neck-width ¢— 0, and radius around —z(0) or —z(0) equal to 1 [Im(z(s)).
The integrals over these paths converge for all s, and define entire functions of s.
Further, for s in a fixed compact set, we have an estimate for these integrals
(Hecke, p.393, (10)) which insures that the series (3.2.26) without I”’s)

Y'Y F(2, b)(C, (4, bt,s)

converges for all s to an entire function of s.
The evaluation of these C,(4,z,5) at s=0 is then a simple residue calculation.
When s=0, each of the integrands

exp(—2nii(o)t(o))dt(o)

B229 (o) F2(0F **(tio) + (@)
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becomes a single-valued function of ¢, and we get

(3229) Cy(4z,0)=]]—2misgn(A(o)) (residue of (3.2.28) (s=0) at whichever
of —z(6), —z(o) has i;naginary part of the opposite sign as 1(a)).

Since the integrands (3.2.28), at s=0, are holomorphic except at —z(o) we get
(3.2.39) C,(4,z,0)=unless Im(4z) is totally positive and, if Im(4z) is totally
positive,

(3231)  Cy(hz,0)=(2m i) (— 1) sgn(NA) [ ] (residue of (3.2.28) (s=0) at —z(q))

1 d Y1
=Q2niE(—1Fsgn(NA)]] <f(-k_) <dt(a)) (exp(—2mi i(0) t(o)),_:>

=Q2mif(—1)F¥sgn(NYH[] (F(lk—)(Zni)L(a))" “lexp(2nii(o) z(a))

nkg _ 1\ke
:(—@)F(-IEF—I)—sgn(N(A)) -N(A Texp(2mitrace(/ z)).

Thus for A#0 in a we have

0 unless Ab>0
(3.2.32)  Co(Ab1,0)=] (27 i)s(— 1)}

Wk—1 b S hs
F(kF sgn(N(A) N4~ " g if 26> 0.

Substituting this into (3.2.26) then gives the asserted (3.2.6) (with a=4, a=21b). It
remains to explain why (3.2.26) is entire, i.c., to explain why the entire function

Y3 F(4,b) Ci (4, b1, )

has a g-fold zero at each point s=—n—k, n=0,1,2,.... In fact, this is true of the
individual terms C,(4,bt,s), because for these values of s, each of the g
integrands (3.2.28) becomes singlevalued and everywhere holomorphic in t(a),
hence gives residue zero a la (3.2.29). QED

(3.3) In this section, we give a “functional equation” for the Eisenstein series
G, p, in terms of a duality of HBAV’s.

Given a c¢-polarized HBAV with I, (p®)-structure (X, /,i) over a ring R, we
will define its “dual” (X', A,i"), which will be a ¢ !'-polarized HBAV with
Iy0(p™)-structure, as follows. The underlying HBAYV is simply the dual, X', of X.
The ¢ !-polarization /' is the isomorphism defined by the commutative diagram

(Xt)t At (Xt) ? o 1

(3_3.1) biduality ¢ ~ 1®id
/

| v
X = X®c®c L.
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The Iyq(p™)-structure I is defined by the commutative diagram

(3.3.2) 2 2
l
v
O ' @u, )Rt ——> X ®c.
Z ¢ [

(The isomorphism # is constructed out of the fact that ¢ is assumed prime to
p, by the diagram

b Ou, =0 L),

(because ¢ 1s prime to p)

(3.33) JK (d~1 c)®Zp)§<);l,,x

O '®u, )®c=>" ‘c(;)upw.

The construction (X, 4,i) — (X", . 1) defines an anti-equivalence
(3.3.4) (e, Foo(p"’))__‘_, (¢ 1 Tyo(p™).

Given a nowhere vanishing differential w on an (X, 4,i) over a ring R to which ¢
is prime, we can define a nowhere vanishing differential o' on (X', #',{) by the
commutativity of the diagram

Lie(X') —=—— d"'®R
4
(3.3.5) Lie(X®¢) (because ¢ is prime to R)
¢
i o®id
Lie(X)®¢ = b 'c®R.

This construction (X, 4, o, ))—(X", &', o, i) carries
(336) (Tatea,b(q)’ )“can’ a)can’ ican) - (Tateb,a(q)7 '{can’ wcan’ ican)'
By transposition, it defines an isomorphism of spaces of ¢-HMF’s

(3.3.7) M(c™ 1, Tyo(p™), s R)—> M(¢, I(p™), x: R)

fef
by

(3.3.8) [UX, 4w, ) (XA, o, 1),
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By (3.3.6) we have
(3.3.9) the g-expansion of f at (b, a)=the g-expansion of f' at (a, b).

When R is a p-adic ring, the construction (X, 4, i) (X", A, "} defines, by
transposition, an R-algebra isomorphism

(33.10) V(c=',R)—> V(¢,R)

by f=r

(3.3.11) fYX,A D= (X", A1)
which again (compare (3.3.9)) satisfies
(3.3.12) the g-expansion of f at (b, a)=the g-expansion of f* at (a,b).

(3.3.13) Theorem. Let F be a locally constant R-valued functionon 0 QZ,x O®Z,,.
which is supported in (O ®Z,)" x(O®Z,)" and which satisfies (3.2.5) with k=1.
Denote by F* the function

(3.3.14) F'(x,y)=F(y,x).

For any fractional ideal ¢ of K prime to both p and to R, let G, .. temporarily
denote the -HMF of “G, " of weight one on I'\o(p™) constructed in (3.2.3). Then
we have the functional equation

(33.15) (Gy pie- ) =N "G pe..
i.e. for any c-polarized (X, A, w, 1), we have
(33.16) G, g (XL 2,0, 1)=Nc G, p. (X, 4 w,i).

Proof. It suffices to check that both (G| p,.- ) and N ¢ ' G p., . have the same ¢-
expansion at some cusp(a, b). By (3.3.9), this comes down to the assertion

(33.17) G, p(g;b,0)=Nc~ "G plg;a,b)

which follows immediately from the explicit formulas (3.2.6). QED

3.4. In this section, we construct p-adic Eisenstein series G, .

(3.4.1) Theorem. Fix a p-adic ring R, a fractional ideal ¢ of K which is prime to p,
and an integer k= 1. Let F be any R-valued continuous (but not necessarily locally
constant) function on O ®Z,x O ®Z, which is supported in ((QZ,)* x(OQZ,)",
and which satisfies

©

(3.42) F(e 'x,ey)=N(e)*F(x,y) for all ecE.

Then there exists an element G, p in V(c, R) whose g-expansion at (a,b) is given by
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the formula
(343) G, fla:0,H)=Na ¥ ¢* Yy sgn(N(a))- N(@}~" F(a, b)
a; e;é) fmm:::?:: =ab
modulo E

When the function F is locally constant, this G, p€V(c,R) is just the image of the
earlier-constructed G, e M(¢,[o(p™), k; R) by the canonical map

(3.4.4) @M(c, Ioo(p®), x5 R)— V(¢, R).

Proof. For all n=1, the R/p" R-valued function “F mod p"” is continuous, hence
locally constant, so gives rise, by (3.2.3), to a well-defined element

(3.4.5) G pmoap€M(c, Iyo(p®), k,R/”" R)

whose image under (3.4.4) is an element

(34.6) Gy pmoapm€V (e, R/p"R),

whose g-expansion over R/p" R is the reduction mod p” of the right-hand side of
(3.4.3). By the g-expansion principle, these G pnoa,m» taken together, give an
element

(347) Gk,F = {Gk,Fmodp”}neliE V((, R/P" R) = V(C, R),

whose g-expansion is necessarily given by (3.4.3). The final compatibility follows
from the g-expansion principle. QED

(3.4.8) Corollary. Hypotheses and notations as in (3.4.1), we have the formula
(349) G, ;=G| nwr-1Fwy 10 V(GR),

where N(x)*~ ! F(x, y) means the function on (0 ®Z,) x (O ®Z,) given by
(3.4.10)  (x,y)— N1 F(x,y).

Proof. Obvious from the g-expansion principle.

(3.4.11) Corollary. Hypotheses as in (3.4.1), under the ring isomorphism (3.3.10)
V(c=!',R)—> V(¢,R)
f=r1
we have
(34.12) (G, =N 'Gyp in V(¢R)
(In the over-precise notation of (3.3.15), this should read

(3.4.13) (G, po-)=Nc"" Gy pe.
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Proof. Just as in (3.2.13) by the g-expansion principle. QED

(3.4.14) Corollary. Hypotheses and notations as in (3.4.1), suppose in addition
that R is an O*-algebra. Then the behavior of the Gy, p under the derivation 6(c)
(cf. (2.6.25)) is given by the formula

(3.4.15) 9(0)Gk,F=Gk,a(x)a(y)F(x.y)-
Proof. Combine (2.6.27) with the g-expansion principle.

3.5. In this section, we apply the algebraicity theorems of Chapter II to Eisen-
stein series.

Let us denote by C, the completion of a fixed algebraic closure of Q. Choose
field embeddings

C

(35.1) GH%
m

C

(3.5.2) Theorem. Let A be a subring of Q which contains (%%, and suppose given
over A a c-polarized HBAV with Tyo(p*)-structure x=(X, 4,i), a nowhere vanish-
ing differential w on X, and an O ® A splitting Split(x) = H z(x)= HLz(X/A) of the
Hodge filtration on H} (X /A). Let k=1 be an integer, and F a locally constant A-
valued function on OQ®Z,x O ®Z, which is supported in ((QZ,)* x(O®ZL,)"
and which satisfies

(3.5.3) F(e~!'x,ey)=N(e)*(F(x,y) for all ecE.

P

Suppose that after extension of scalars

(3.54) AcQ ™, ¢

the splitting Split(x) becomes the antiholomorphic splitting, i.e., that Split(x)®C
=H"! in H (X, C)=HLx(x)®C. Let (£,<,),i) be the c-polarized lattice with
[o(p™)-structure in K®C, corresponding to (X, A, w), with polarization constant
a(Z,{,>)eK®R;

Im(uv)
a(Z,{ )

Let the a(0) (%, <, »)eR denote the components of a(%,<,)).
Then for any element Y d(0) ¢ in Z[S] with all d(c) 20, the complex number

(3.5.5) <u,vy=

k
“the value at s=0 of the entire function of s whose expression for Re(s)>1 —3
is the absolutely convergent series

—1_ nd(”’l“(k—i-d(a) +S))_ Z PF(I) . l:[ (l(a'))d(a) )

1/@) e e [T INO™

IEY[E]APV,(Y) a

modulo E

(3.5.6) (
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lies in A[1/dg]; in fact, it is the image by incl(o0) of the quantity
(3.5.7) 93 d(o) o, x, w, Split(x)) (G, ) € A[1/d].

Proof. This is just (2.4.5) in the case R=A[1/d], f=G, 5, once we use (2.3.38)
and (2.3.48-49) to compute that 9(} d(6)o, C*)G, ; is indeed given by the
formula (3.5.6).

(3.5.8) Theorem. Hypotheses and notations as in (3.5.2), suppose that under the
given p-adic embedding incl(p): Q —=C,, the subring AcQ lands in the ring of
integers of C,. Let A=C, be the completion of A for the absolute value on C,. Let

(3.59) ce(O®A)*

be the ratio between the given w as x=(X, 4,i) and the canonical w_,, on (X, /i)
considered over A:

(3.5.10) w=c-w,, on X,
Then the p-adic number,

|

(3.5.11) W(,)zd’w_) (Gk.T:(a(x)rr()‘))‘l‘”)F(x, .v)) (X, 4y i)/i)

a

a priori in A, actually lies in A[1/d,]. In fact, it is the image by incl(p) of the
quantity

(3 d(o) o, x,w, Split(x)) G, peA[1/dy].
Proof. This is (2.6.33) for G, p, combined with (3.4.15). QED

Chapter IV. Review of Measures and their Mellin Transforms;
the Eisenstein Measure

4.0. In this section, we review abstract p-adic measures. Let Y be a profinite
(i.e., compact and totally disconnected) topological space, and R a p-adic ring.
Denote by Contin (Y,R) the p-adic R-algebra of all continuous R-valued
functions on Y. An R-valued p-adic measure g on Y is, at choice, one of the
following (4.0.1-3):

(4.0.1) a Z,-linear map pu: Contin(¥,Z,) — R
written symbolically ff fdu
Y

or sometimes I 0 () duy)
Y

(4.0.2) an R-linear map pu: Contin(Y,R) — R
written symbolically fr{ fdu
Y

or sometimes [ fmduy)
Y
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The two notions are equivalent, via the canonical isomorphism

Contin(Y,Z,)® R— Contin(Y, R).

Z,

If perchance R is an R,-algebra with R, itself a p-adic ring, these notions are
equivalent to that of

(4.0.3) an R-linear map pu: Contin(Y,R;) — R
written symbolically f{fdu
Y

or sometimes [ du(y)
Y

Given an R-valued p-adic measure u on Y, and a function geContin(Y,R),
the product g u is the R-valued measure defined by

(4.0.4) W‘g m"é"g fgdu.

Given an R-valued p-adic measure p on Y, and a homomorphism ¢: R— R’
of p-adic rings, we get an R’-valued measure u(¢) on Y, defined by

(4.0.5) [ fdu(@)=o(| fdu) for feContin(Y,R).
Y Y

Suppose that R is flat over Z,. Let u be an R-valued measure on Y. Because
Y is compact, we have

Contin(Y,R)[1/p]=Contin(Y,R[1/p]),

so that u extends by linearity to give an R[1/p] linear map
Contin(Y,R[1/p])— R[1/p]

still denoted

fr——»ifdu.

(4.0.6) Proposition (abstract Kummer congruences). Suppose R flat over Z,, and
let {f};c; be a collection of elements of Contin(Y,R), whose R[1/p]-span is
uniformly dense in Contin(Y, R[1/p]). Let {a;};.; be a family of elements of R (with
the same indexing set I). Then there exists an R-valued p-adic measure u on Y such
that

4.0.7) [ fidu=a; for all iel

if and only if the a; satisfy the following “ Kummer congruences”:

1
(4.0.8) for every collection {b;},.; of elements of R [E] which are zero for all but
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Sfinitely many i, and every integer n such that
y 8
Zbif;:(Y)EP"R for all yeY,

we have
Y b,a;ep"R.
Proof. The necessity is clear, because
(4.09) > b;a;=[(a p"R-valued function)du
=p" {(an R-valued function)dpu
e p"R.
To prove the sufficiency, we will construct u out of the g;. Given feContin(Y, R),

and an integer n= 1, there exist b,eR E], almost all zero, such that
(4.0.10) f—Y b, fiep" Contin(Y, R).

By hypothesis, the quantity

(4.0.11) Y b;q;

lies in R, and is well-defined (i.e., independent of the choice of the b;) modulo
p"R. If we call it “{ fdpmod p",” then we get the desired element

(4.0.12) jfd,udg{“jfd,umodp""},,eli_rrlR/p"R:R. QED

4.1. In this section, we recall the “Mellin transform™ (L-function) of a p-adic
measure on a profinite abelian group. Let u be an R-valued p-adic measure on a
profinite abelian group G. Let GY(R) denote the group of all continuous group
homomorphisms

(4.1.0) x:G—>R™,

with the uniform topology.
The Mellin transform of u is the continuous R-valued function L, on G (R}
defined by

(4.1.1) Lu(x)d;“ixd/,t.

(4.1.2) Proposition. Suppose that R is flat over Z,, and that for every divisor n of
the supernatural order of G, R contains a primitive n’th root of unity (meaning a
root of the w'th cyclotonic polynomial). Let u be an R-valued p-adic measure on G.
Fix a character y,€G" (R), and consider the values

{xoxdu=L,(xox) for all locally constant yeG" (R).
G
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Then u is uniquely determined by these values.

Conversely, if we fix y,€G" (R), then a family {a, } of elements of R, indexed
by all characters of the form y,y with y locally constant, arises from a (necessarily
unique) measure i on G by the rule

L,(xox)=0,,

if and only if the {a,  } satisfy the Kummer congruences (4.0.8) (with respect to the
Sfamily of functions {y,x} on G).

Proof. Under the hypothesis on R, any locally constant R[1/p]-valued locally
constant function on G is a finite R[ 1/p]-linear combination of locally constant y’s.
Hence, the R[1/p]-span of the {),x}’s is uniformly dense in Contin(G, R[1/p]),
as it contains all functions of the form

Yox(any locally constant function)
and y, is invertible in Contin(G, R). The result now follows from (4.0.6).
42. We now give a non-trivial example of a p-adic measure, the “Eisenstein
measure.”
(4.2.0) Lemma. Ouver any p-adic ring R, the inverse constructions

H(x,y)=N—1x—)-F(£.y)

4.2.1) 1 1
= .H(=

F(x,y) N (x,y)

define an R-linear bijection between

(4.2.2)  continuous R-valued functions F on (OQZ,)* x(O®Z,)*, which satisfy
F(e='x,ey)=N(e) F(x,y) for all ecE

and

(4.2.3)  continuous R-valued functions H on (0Q®Z,)* x(O®Z,)", which satisfy
H(ex,ey)=H(x,y) for all ecE.

Proof. Compute. QED
If we define G to be the group

(424) G=(0®Z,)" x(O®Z,) " /the closure of E, viewed diagonally as the
subgroup of (e, e)’s.

then the functions H of (4.2.3) are precisely the continuous R-valued functions
on G.

(4.2.5) Definition. Let ¢ be a fractional ideal of K, prime to p. The Eisenstein
measure p. is the V(c,Z,)-valued measure on G defined by

426) [Hdu=G,, in V(.Z,)
G



p-Adic L-Functions for CM Fields 261

for HeContin(G,Z,), and F the corresponding function

1 1
(4.2.7) F(x,y) ZN(_x)H (;, y)

of type (4.2.2) (and extended by zero to all of O0®Z,xOQ®L,). The g-expansion
of this measure at (a,b) is given by

sgn(N(a)) 1
(42.8) ([H-du)(q;a,b)=Na ¥ ¢* ——H(»,b)
t‘; K agb 1 factorizauzons a=ab N(a) a
>0 aea, beb,

modulo units

By extension of scalars, we get a V(¢, R)-valued measure y_ on G for any
p-adic ring R, defined by

[Hdu.=G, , in V(¢,R)
(4.29) ¢ 1 {
for HeContin(C,R), F(x, y)zﬁ(—x_)H(;’y)'

If we are given a c-polarized HBAV with I;,,(p®)-structure (X, A,i) over a p-
adic ring R, then we can define an R-valued measure u(X,4,i) on G by
“evaluation™:

§Hdp(X, 4 )G, (X, 4,0)
(4.2.10) {¢ -
for HeContin(G,R), F(x,y)=—H (—,y)
Nx \x
ie.,
@2.11) [Hdp(X,2i)=({ Hdu)(X, ).
G G

Given a function H=H(x,y) on G, we define H to be the function on G
defined by

y | 11
42. - H(-).
(4212 HE)=TINy (y x)

This definition is so rigged that under the correspondence (4.2.1), the involution

H— H corresponds to FF". In view of (3.4.11), we have

(4.2.13) Lemma. Let (X, 4,i) be a c¢-polarized HBAV with I,o(p™)-structure over
a p-adic ring R, and denote by (X',2,i") its ¢ '-polarized dual. Then for any
continuous function H on G, we have the “functional equation”

(42.14) [Hdp (X, 2, 1=Nc "' [Hdp(X,41).
G G
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Chapter V. p-Adic L-Functions for CM-Fields

5.0. In this section we review some basic notions concerning grossencharacters
of type A,. Let L be a finite extension of Q. A the set of all field embeddings

(50.1) i:L—Q,

and m an integral ideal of L. Let I(m) denote the group of all fractional ideals of
L which are prime to m, and let Prin(m)< I(m) denote the subgroup

(5.0.2) Prin(m)={(a)|aeL*, a=1mod* m, o> 0}.
(as customary, “a>0” means “o positive at all real places”). The factor group
(5.0.3) H(m)=I(m)/Prin(m)

is the “strict ideal class group of conductor m.” Let L(m) denote the maximal
abelian extension of L whose conductor divides m (and is possibly “ramified” at
some real places). The Artin symbol defines an isomorphism

(504)  H(m)—— Gal(L(m)/L)
A — (A, L(m)/L)
Now let Y n(4) A be an element of Z[A]. A homomorphism
(50.5) x:I(m)—>Q~

is said to be a “grossencharacter of type A,” of “oco-type” ) n(i)i and
conductor dividing m if its restriction to Prin(m) is given by the formula

(506) x(@)=]]A@" for (x)ePrin(m).

A
For fixed m, the 4 -grossencharacters of conductor dividing m form a group
Ay-Grossen (m), which sits in an exact sequence
(50.7) 0—Hom(H(m), Q*)— A,-Grossen(m) ——2* Z[A].
Let us now fix field embeddings

|ncl(.:r/i/7/? C

[
Q '—\ﬂt“m
T

(5.0.8)
C

P

Associated to deg incl(o0)-  is the Hecke L-series

(509 Lisx,)= Y  r. (N
U integral ideal
prime to m
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This series is convergent only for Re(s)>0, but it has a meromorphic con-
tinuation to the whole s-plane, which is known to be holomorphic at s=0
provided that y+N~"'. We define

(5.0.10) Lw(x)dgthe value at s=0 of L(s, x)-

On the p-adic side, let D,=C, denote the ring of integers. Then
Xpdé' incl(p)- y maps I(pm) to D, as follows immediately from (5.0.6) and the

p’
finiteness of H(p m)/Prin(pm), and %, maps Prin (p"m) to 1+4p"D,, as follows
from (5.0.6).

Passing to the inverse limit over n, we get a continuous homomorphism
(5.0.11)  z,: lfi_nll(p m)/Prin(p"m)— li_@D;/(l +p"D,)=D,.

Now let L(p® m) be the union of all the fields L(p" m). Then the Artin symbol
defines an isomorphism

(5.0.12)  1im I(p m)/Prin (p" m) — lim Gal(L(p" m)/L)

Gal(L(p* m)/L
W (A, L(p™ m)/L).
This allows us to view y, as a continuous caracter
(5.0.13) g, Gal(L(p* m))/L— D
whose relation to the “original” y on I(pm) is given by
(5.0.14) (A, L(p* m)/L)) = incl(p) (x(A)).

(5.1) We now recall the HBAV’s attached to a CM-field. Thus we suppose that
L is a quadratic, totally imaginary extension of our fixed totally real field K,

necessarily of the form K(}/ —o) with aeK totally positive. We denote by x+x
the non-trivial automorphism of L/K. For any AeA=Hom(L,Q), we denote by
A€ the embedding defined by

(5.1.0)  A(x)=A(x).
Let us fix a CM-type for L, i.e, a subset X — A such that
(5.1.1) ZnZ=@ ZuX=A

Given an element ceS=Hom(K,Q), there is a unique element of ¥ which
prolongs it. This unique element of X we also call ¢, when no confusion can
arise.

In terms of X, we can label the oco-types which arise from A,-
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grossencharacters of L; they are of the form

(512) —kY o—Y d(o)(c—3)

oel oel

with arbitrary integers k and d(o)’s (cf. [21,27]).
We now use the field embeddings chosen above (5.0.8):

md(ﬁl//,——’*(:
(5.1.3) —Q.CQ.:\JPCNPD

\’c

-
Using incl(o0), we can view each g€ as a complex embedding of L, thus
obtaining an isomorphism
(5.149) LOR—>K®C~C®
L—(...,a(]),...)
By means of this isomorphism (5.1.4), each fractional ideal U of L becomes a

lattice in K ®C. In order to polarize these lattices, we fix an element de L which
satisfies

(5.1.5) 4 is purely imaginary, i.e, 6= — &, and its image in K®C by (5.1.4) has
Im(0) totally positive in K ®R.

(5.1.6) the alternating ¢-bilinear form

Uv—uv

o ==5

defines an isomorphism of invertible (¢-modules
AHO) > !

with ¢ prime to p.

(The strict ideal class of ¢ is a well-defined invariant of L/K. The possibility of
“correcting” a ¢ which satisfies only (5.1.5) to one satisfying (5.1.5-6) results
from the existence of a prime-to-p representative of the class of «¢.)

(5.1.7) For any fractional ideal A of L, the pairing (5.1.6) defines a ¢ N ()~ 1
polarization of A, whose area a(U, {,>)e K®R is none other than Im(J).

We next wish to endow the prime-to-p fractional ideals U of L with I},,(p*®)-
structure. In order to do this in a way “adopted to incl(p),” we must assume that
the CM-type 2 is “ordinary at incl(p),” in the following sense:

(5.1.8) whenever ceX and ieZ, the p-adic valuations on L induced from the p-
adic embeddings incl(p)o o and incl(p)o A are inequivalent.

The existence of a CM-type which is ordinary at incl(p) is equivalent to the
following condition on p and L/K:
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(5.1.9) every prime p of K which lies over p splits completely in the quadratic
extension L/K.

If this condition is satisfied, then there is a bijection

CM-types X which are}H{the choice, for each p of K over p,}

.1.10 . . .
S ) {ordmary at incl(p) of an overlying P of L

{‘B induced by the p-adic embeddings}
N
incl(p)ea, oeX

. lincl(p)o Ainduces
2=<4eA —
a3, not a‘P

Now suppose that X is ordinary at incl(p), and let P’s denote the chosen
primes of L, and P's their conjugates. Then we have a canonical ring isomor-
phism

} « {chosen P’s}.

G111 0,0Z,—0®Z,x0QL,
x = (@(x), (X))

where ¢ is the map

(51.12) 0,®Z,—]](B-adic completion of O,)

[

[ (p-adic completion of ()

O®Z,.

Given a fractional ideal 2 of L which is prime to p, we have isomorphisms
(5.1.13) QI®\Zp=(‘,‘(>‘9Zp (inside L®Z,)

0\ ! | (5.1.10)

C>® 1,x0Q®L,

whence an isomorphism
(5.1.14) A§®ZP(QI®ZP):(9®ZP.
The polarization (5.1.6), p-adically completed, gives an isomorphism
(5.1.15) Afo@Zp(QI@Zp):(b"c“NL,K(QI))®ZP=D‘1®ZP
which, combined with (5.1.14) gives
(5.1.16) OQZ,~d"'Z,.
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Combining (5.1.16) with the diagonal arrow of (5.1.13), we get an isomorphism
(5.1.17) ARZ,~(d"'®Z,)x(OQZL,).

We now define the I;4(p*)-structure on .
(5.1.18) i(W: > '®RZ,—ARZ,

to be “the inclusion of the first factor” in (5.1.17).
According to the theory of complex multiplication, we have the following
algebraicity and good reduction results:

(5.1.19) for any CM-type X, and any fractional ideal A of L, the ¢ N ()~ '
polarized complex HBAV (2, {, >) comes from a ¢ N ()~ L_polarized HBAV
(X(A), A(0)) over Q by the extension of scalars incl(c0): Q— C, and (X (), A(d))
has good reduction everywhere.

(5.1.20) Suppose further that the CM-type ¥ is ordinary at incl(p), and that A
is prime to p. Then (X(2), A(9), i(A)) over Q has good reduction at all places of
residue characteristic prime to p, and at the p-adic place given by incl(p).

We now consider in more detail the situation of a CM-type X which is
ordinary at incl(p), and an U which is prime to p. Let us denote by 4= Q the
valuation ring of incl(p), ie.,

(5.1.21) A={aeQlincl(p)(a)eD,}.
Then we have a canonical ring isomorphism

(5122) €(,@A—>O0RAXO®A
x®ar (pg(x®a), ps(X®a))

where ¢, is the ring homomorphism which sits in the commutative diagram

x®acl,®A4 —*— ORA3yR®a

o T

(...,0(x)a,...)eA* === A%3(...,0(»)q,...)

Given any ¢0; ® A-module M, it has a corresponding ¢ ® A decomposition as
the direct sum of two ¢ ® 4 modules

(5.124) M~MZ)@M(Z)
where

M(Z)={meM| for all xe@,, x - m=q5(x)-m}

(5.1.25) {M(f) ={meM| for all xeO,, x-m=q@(X)-m}.

If M is invertible as ¢/; ® A-module, then M(X) and M(Z) are invertible as O ® A4-
modules.
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In particular, we can apply this decomposition to
(5.1.26)  Hpp(X(2)/4),

when we view (X(2), 2(9), i(A)) as a ¢ N x(A)~ '-polarized HBAV with I,o(p™)-
structure over A (cf,, (5.1.20)). The key point for our applications is the following
apparently trivial lemma.

(5.1.27) Key Lemma. Suppose that X is ordinary at incl(p), and that U is prime to
p. Then the O ® A-submodule (HLg)(2)c HL(X(N)/A) splits the Hodge filtration
w<Hpy; in fact, the supspace w =H}y is none other than (H})(Z). After the
extension of scalars

incl(c): 4A—C,

the subspace (H)g)(Z) becomes the antiholomorphic subspace H®', and after the
extension of scalars

incl(p): A — D,=the ring of integers in C,,
the subspace (HLz)(X) becomes the unit root subspace U H)y.

Proof. By construction, the action of ¢; on Lie (X ()) is through the homomor-
phism @y: 0, - 0 ® A, while its action by transposition on

Lie(X(21)) > Lie(X(2) @ Ny (%)

is by the homomorphism xe@, — ¢ (X)e0 ® A. Now consider the Hodge exact
sequence for (X():

(5.1.28) 0—w— Hpz— Lie(X(A))—0
Because this is a sequence of ¢/, ® A-modules with H}, invertible, we have
(5129) Hpr=(Hpa)(Z)D(Hpp) (2)

with (H)z)(X) and (HLg)(Z) invertible ¢ ® A-modules. Because ¢, acts on
Lie(X(A)) by x> ¢(X), we must have

(5.1.30) (Hpg)(2) projects to zero in Lie(X())
whence
(5.131) (Hhp ()

Because both the quotients Hjg/(Hpg)(Z) and Hjp/w are invertible O® A-
modules, we necessarily have

(5.1.32) (Hpp)(2)=w

Thus (H},)(Z) does provide a splitting of the Hodge filtration. To see that this
splitting becomes the Hodge decomposition after extension of scalars to C, we
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simply remark that
(5133) Hpr®C=(0®C)®H"!

is a O -stable decomposition into two invertible ¢ ® C modules, on the first of
which O, operates by ¢;. If we take the 2-components in (5.1.33), we get

(5.1.34) (Hpr®C)(2)=(@®C)(Z)DH*")(2)
In view of (5.1.32), we conclude that

(5.1.35) (H>")(2)=0,

and hence, by (5.1.24), that

(5.1.36) HO®'=(H*1)(2).

Taking the Z-components of (5.1.33), we get
(5.137) (Hpr®O)(2)=(@®C)(2)®H" ().
Combining (5.1.32) and (5.1.36), we find
(5.138) (Hpe®O)(E)=(H"")(£)=H"".

The proof that (H})R®Dp) (Z) becomes the unit root subspace U follows in a
similar formal fashion from the functoriality of the splitting

(5139) Hpz®D,=(@®D,)®U. QED

To conclude this section, we will explain how to simultaneously pick a
nowhere vanishing differential on all the X(2)/4, once we have done so on a
single one. For variable 2’s which are prime to p, we have

(5.1.40) Lie(X())=Lie(X(Oy)) ®,, A.
Because U is prime to p, it is prime to the ring 4, and hence

(5.141) Lie(X(0,)®A=Lie(X(0,))

Or
(equality in Lie®L). Combining (5.1.40) and (5.1.41), we obtain a canonical
o

identification of (5‘L®A-modules
(5.1.42) Lie(X(A)=Lie(X(0,)) for A prime to p.

Fix a nowhere vanishing differential on X () over A:
(5.143) w:Lie(X(0) —>d '®A.

For each U prime to p, denote by w(2A) the nowhere-vanishing differential on
X(A) over A obtained as the composite

(5.1.44)  w(@): Lie(XQ) = Lie(X(0p)—>— "' ®A.
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After extension of scalars by incl(oc): A— C, we obtain another nowhere
vanishing differential w,,,,(2) on X(A)c, such that the pair (X(W)c, 040s(W))
corresponds to the lattice W< K ®C by the correspondence (1.4.3).

(5.1.45) Lemma. There exists a unit Q=(...,Q(0),...) in (KQC)* ~(C*)® such
that for every prime-to-p ideal N of L, the differentials w(N) and w,,,,(N) are
related by

(5.1.46) w(W=Q v, (AN).

trans(
Proof. Obvious, in view of the definition of w(2)’s in terms of w(C ;).

After extension of scalars by incl(p): A<>D,, we obtain the canonical
nowhere vanishing differential w,,, (W) on X(A), attached to the I,4(p™)-
structure i(20).

(5.1.47) Lemma. There exists a unit ¢=(...,c(0),...) in ((®D )" =(D; )®, such

that for every prime-to-p ideal W of L, the differentials (W) and o, (W) are
related by

can

(5.1.48) w(M)=c-w,,, ().

can(

Proof. Over A, the p-divisible groups X () (p™) of the various X (), A prime to
p, are canonically isomorphic, via

(5.149) X(W(p™)=X(C)(p") ® (URZL,)=X(C)(p")

.OZ,

the last equality because (¢, ®Z,=NRZ, inside LRQZ,. The I,(p”)-structure
i(A) sit in the commutative diagram.

D' @p,. = X(W(p™)

R\
\

(5.1.50) @\ |

X(O)(p™)

Over D, we can pass to the associated formal groups

(5.1.49)

i) T~

»'®G, ~ s XD
\\ - l\l
(5‘151) ,((r) \\\ ‘ (5.1.49)
>\
X(,)

Passing to Lie algebras, we get
Lie(i ()

> @D, —~—— Lie(X(2))

(5.1.52) Lie(i(0,)) \\

Lie(X(C,))

Lie(5.1.49)
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and now the vertical equality “Lie(5.1.49)” is none other then the equality
(5.1.42) used to define w(A) in terms of w(¢,). QED

5.2. In this section, we give some conventions concerning conductors of A4,-
grossencharacters of L, and define a “local term” for those whose conductor
divides p*.

As in 5.1, we fix the following data (5.2.1-3):

(5.2.1) field embeddings

incl (oo)_/‘C

Q-

— incl (p)

\

C

p

(5.2.2) a quadratic totally imaginary extension L of K, and a CM-type X for L
which is ordinary at incl(p).

(5.2.3) an element deL satisfying (5.1.5) and (5.1.6).

We adopt the following convention concerning conductors. Given an A -
grossencharacter y of L, we denote by cond(y) its exact conductor, and we view
x as defined on all fractional ideals of L which are prime to cond(y). We extend
x to all integral ideals A of L by the convention

(5.2.4) x(AW)=0 if A is not prime to cond(y).

We also adopt the convention that L(s, y) means

(525 Y 2N, o)

Aintegral

the L-series for y viewed as having its exact conductor.
Given an A,-grossencharacter y of L, we denote by j the A,
grossencharacter defined by

(5.2.6) %(2M) 7(W= (N (W)~ "3
thus its exact conductor is given by the formula
(5.2.7) cond(¥)=cond(y).

Given an A,-grossencharacter y of L whose conductor divides p*, we can
attach to it a “local term”

(5.2.8) Local(y; Z,)eincl(0)Q =C

as follows. Write the exact conductor of y in terms of the chosen (by 2 and
incl(p)) primes B; of L as

(5.2.9) cond(x)=[] P B,
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and write the ideal || B{* as a product

(52.10) J[Bi=(a)-B, ael*, B prime to p.

Write the oo-type of y in the form

(5.2.11) —kXo—2d(c)(c—0)

and denote by y;;.,. the unique locally constant character
(5212)  fpime: (€, QZ,)% Q"

such that for any beL* which is prime to p, we have

1 k E d(c)
(52.13) x«b))=xﬁnne<b)-nﬂ((a—(b—)> (Z»%) )

Via the canonical isomorphism (cf., 5.1.11)
(52.14) (O,®Z,) —>(O®ZL,) x(CQRL,)"

We VIEW Jpin; as a locally constant character of (0®Z,)* x(OQZ,)*.

- n 1
(5.2.15) Flx.y)® x(xy)

Using the canonical isomorphism

(5.2.16) O®Z,~]]0, O, = p-adic completion of ¢
P
we can view F(x,y) as a product function on [0 x [0
P »

(5.217) F(x,y)=[]F, (x,) F, ,(v,).
Now let F, , be the function on ¢, defined by

3 on 00X, extended by zero if F. | is nontrivial
(O-218) £, 2{11%,1 if £, is trivial. ' "
Let F, , be the function on ¢,
(5.2.19) F,,=F,, on (O], extended by zero,
and let F(x, y) be the function on (O ®Z,) x (O ®Z,) defined by

(52.20) F(x,y)= HF 20y):

Taking its partial Fourier transform in the first variable, we obtain

(5221) PF:(0"'®Q,/Z,)x((®Z,)—C.

271

We define
another locally constant character F(x, y) of this group by the formula
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Let us denote by J, the C®Z, basis of b"@ZP given by (5.1.16), and

denote by B, F the function on ((®Q,/Z,) x (O ®Z,) defined by

(5222) P, F(x,y)"® PF(xd,, ).

Via the isomorphism (5.1.11)

(5223) €, ®Z,—~—(RZ,xORZ,

we have

(5224) (U n*3,.‘"‘®Zp)/g_L®Zp—1-~>((9®QP/ZP)><((£'®ZI,),

n 20

by means of which we can view F; F as a function on

(52250 U (1 ‘Jsf"')®Z,,/QL®Z,,.

n=0

Returning to (5.2.10), we can now define

fn ()() ( ‘l)
k O'(a) d(a) "
1 }n<a(a > (a(a))

That the right-hand member is independent of the particular factorization of
[T used in (5.2.10) follows from the fact that the function P F transforms

(5.2.26) Local(:Y.0)"

under (O, ®Z,)* by Ygini | this last fact is clear from the definition of P, F as
. ) . 1
the partial Fourier transform in the first variable of Xﬁniw(;,y».

(5.2.27) Lemma. If y unramified at all the chosen primes B;, then
(5.2.28) Local(y,2,0)=1

Proof. We can take a=1, B trivial. We need F F(1)=1. But our F on
O®Z,xO0RL, is F(x,y)=F,(y), where F, is a character of ((/®Z,)", extended
by 0. Thus PF is the product function on (0 ~'®Q,/Z,) x ((®Z,) given by (char.
fct. of h‘1®Zp) x F,, whence F; becomes the function (char. fct. of O®Z,) x F,
on (0®Q,)x(C®Z,), and this last function does indeed take the value 1 at
the point (1.1). QED

(5.2.29) Lemma. For any y, we have Local(y, 2, ) +0.
Proof. In view of the definition (cf,, (5.2.26)), it suffices to show that

P F(a™")+0.

In fact, we have the more precise

(5230) |B,F(a™")=——

L L/Q a
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simply because P, F(a™') is essentially a product of gauss sums. To be more
explicit, use the decomposition

(5231) K®Z,~[]K, 0®Z,~[]0,
P p

to write J, as a vector (...,d4(p),...)€[ [ K,. Thus d,(p) generates the inverse
different of K relative to Q,. The function B, on (0®Q,/Z,) x(CR®Z,) becomes
the product function on

(5.2.32) (1:[ 0,®Q,/Z,) (1} 0,)

given by

(5.2.33) EI F, | x I;I F,

where Fp.l is the Fourier transform of F, , defined by

(5.2.34) F, (t,)= Y F, (a,)exp(—2mitrace,(a, t, 5o(p)))

€0,
d

"

1
#(O,/0") o

mox

when 7,ep ™", and when F, , is constant on cosets modulo p".
Via (5.1.11), the element a~ '€ L becomes an element

(5235 (..o, ) X (o Byn e[ Ky x [0,
with

(5.2.36) o, O, =p;“,  B,el),

and we get

(52.37) B Fa Y)=T1F, () F, »(B,).

In this expression, each term F, ,(B,) is a root of unity. What abgut the
Fp 1(0,)? When a,=0, F, , is the constant function 1, o, is a unit, and F,_,(«,)
=1. When ¢;+0, then F,  is a character of ({/1;(; of exact conductor p{’, extended
by zero, o, lies in p; “ O, do(p;) generates d, °, and F, () is a standard gauss
sum for a primitive character mod p{* and hence has absolute value

- 1
5.2.38) |F, e —
(5239 1F,, ()P =5 s

The asserted formula (5.2.30) now follows, if we remember that p,= N, xB). QED

5.3. We can now state the main theorem.
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(5.3.0) Theorem. Suppose we are given
(5.3.1) field embeddings
C

~ &
BT

C

p

(5.3.2) a quadratic totally imaginary extension L of K, and a CM-iype X for L
which is ordinary at incl(p).

(5.3.3) an element 5eL which is purely imaginary, has Im(a(9))>0 for all ceZ,
and such that

uv—ovu

Wy =—75

defines an isomorphism A?@, —~>d" "¢~ !, with ¢ prime to p.

Then there exists a D -valued p-adic measure p on the galois group Gal(L(p™)/L)
of the maximal abelian unramified-outside-p extension of L, whose Mellin trans-
form L (x,) provides a p-adic interpolation of the complex Hecke L-function L. (x)
in the following sense. Choose a nowhere vanishing differential w(0);) on X(O,)
over A, (A=the valuation ring of incl(p) in Q), and denote by Qe(K®C)*
and ce(O®D,)* the constants to which it gives rise by (5.1.46) and (5.1.48).
Denote by Q(0)eC* and c(o)eD, the o-components of these constants. Then

(5.3.4) For any A,-grossencharacter y of L whose conductor divides p®, and
whose infinity-type

—kY o) d(o)(c—0)

oel cel

satisfies
k=1, all d(o)=0,

the p-adic number (cf. (5.0.13))

L L ~
@=m(i;%<i)7“5 lies in incl(p) Q

a

(5.3.5) For y as in (5.3.4), the complex number
=Local(X, Z, ) [units of L: units of K]-J]((1 — ) (1 —1(F)
P
(= 1)8 (m)¥4@ [17(k+d(o)
. g . L
I/‘TK ]_[ Im(a(é))d(a) I_I (Q(O')’“’ 2d(o) OO(X)

lies in incl(c0) Q.
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(5.3.6) For y as in (5.3.4-5), we have the equality (in Q)

incl(p)~ (@) =incl(c0)~ " ((B)).

(5.3.7)  Moreover, the p-adic function L, has the following functional equation: for
any peHom,;.(Gal(L(p™)/L), D), denote by p the character defined by

1

PED= @N, o)

then
L,(p)=Ng () p(c) L,(p).

The proof will be given in the following sections. The role of the auxiliary
choice of w(¢,) is simply to provide a common ground for comparing the p-adic
W,y to the complex w,,,,.: if we replace w(0;) by Aw(0;) with ie(O®A)*, we
simultaneously change the constants Q and ¢ to 242 and Ac respectively, and do
not alter the validity of (5.3.5).

54. In this section, we will define the required p-adic measure u on
Gal(L(p™)/L), in terms of the Eisenstein measure of 4.2. As in 4.0, we denote by
L(p") the maximal abelian extension of L of conductor dividing p”, and by H(p")
the “ideal class group with conductor p".” Thus L(1) is the Hilbert class-field of
L, and H(1) is the usual ideal class group of L. Let us denote
(54.1) E(L)=unij[s of L=(C,)*

E(K)=units of K=0*

Consider the exact sequence of galois groups

(5.4.2) 0— Gal(L(p™)/L(1))— Gal(L(p*)/L)— Gal(L(1)/L)— 0.
By means of the Artin symbol, we have isomorphisms
(54.3) H(Q)—> Gal(L(1)/L),
(5.4.4) LiEH(p") —= Gal(L(p™)/L),
(54.5) liﬂ(Ker: H(p")— H(1))— Gal(L(p*)/L(1)).

|

)

lim (0, ®Z,)" /E(L)(1+p" 0, ®Z,)
¢
(O, ®Z,)" /closure of E(L).
We denote this last group by G,:
(546) G,=(0,®Z,) /closure of E(L).
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Thus we can rewrite (5.4.2) as
(547 0-G,— Gal(L(p®)/L)— H(1)— 0.

For any prime-to-p fractional ideal % of L, we denote by
(5.4.8) WUeGal(L(p~)/L)

the image of A by the Artin symbol. Thus if we choose any h= #(H(1)) prime-
to-p fractional ideals ;' which are representatives of the ideal classes of L,
then we have an explicit coset decomposition:

(549) Gal(Lp=)y/L)=[]21; " G,

Thus Gal is the disjoint union of h pieces, each of which is explicitly isomorphic
to G,. By means of this decomposition, it is equivalent to give a measure p on
Gal(L(p*)/L), or to give h distinct measures u(2;) on G, as follows:

h
(5.4.10) Gflfdﬂ= Y S o) du(A) (go).
a i=1Go

In order to construct the measures u(,) on G,, we proceed as follows.
Recall the group (cf., 4.2)

(54.11) G=(0®Z,)* x(V®Z,)* /closure of E(K) embedded diagonally
By means of the (B, B) isomorphism (cf., 5.1.12)

(54.12) (O,®Z,) —> (0RZ,) x(ORZL,)"

we have

(54.13) G=(0,®Z,)* /closure of E(K)

whence a short exact sequence

(54.14) 0— E(L)/E(K)—>G—G,—0,

by means of which we can and will view continuous functions on G, as being
those continuous functions on G which are invariant under the (finite) group
E(L)/E(K). We will first construct measures u(2(;) on G, then take their direct
images on G,, i.e., given a continuous function f on G,, and the forthcoming
w(2,) on G, we define u(A;) on G, by the formula

(5.4.15) Gf fdu(mi)=(j;fd#(‘lli)

where the “f” on the right is “f viewed as E(L)/E(K)-invariant function on G.”
The measure u(2A;) on G is constructed as follows. We have already con-
structed, in 5.1, a ¢Np (W) '-polarized HBAV with I},(p™)-structure
(X (), A(9), i(A,)) over A, the valuation ring of incl(p) in C,,. Extending its scalars
to D,=integers in C,, we get a point at which we can evaluate the Eisenstein
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measure iy, .-+ of 4.2, to obtain the desired D, -valued measure on G:
(5:416) 1) = Hon, - (X (), 20 Iy,

5.5. In this section, we will show that when we construct the measure 4, using a
fixed set A; ' of prime-to-p representatives for the ideal classes, then parts
(5.3.4-5-6) of the theorem are true.

Let y be a fixed A,-grossencharacter of L of conductor dividing p™, whose
infinity type is

(55.1) —k) o->do)(c—a), with k=1, all d(g)=0.

Viewing y as a D -valued character of Gal(L(p™)/L), and restricting it to G,

we get an expression
H O_(&)d(a)

(55.2)  x((2) = Xginice(®)- ﬁm

for any ae(C; ®Z,)*, where yg,;. is a locally constant character of (0, ®Z,)*
which satisfies
[Te@*”

(5.5.3) ;(ﬁn“e(e)-l—_l"T(eszl for all eeE(L).

In terms of the (B, P)-isomorphism (cf., 5.1.12)
(5.54) (O,QZ) —> (ORZL,) x((®ZL)",
we get the expression

1—[ o_(y)d(c)
(5.5.5) 1%, ¥) = Xiniee (X V) - 1—[60(

x)k +d(o) "

Let F(x, y) be the character of ((®Z,)* X (O ®Z,)* defined by

11
(5:56) Fle)=giy x(;, y>

1
= Xfinile<;’ y) ! N(x)k R I_I G(X y)d(o)-

4

According to the Definition (4.2.5) of the Eisenstein measure, we have, for any
prime-to-p ¢, an equality in V(c,D)):

(5.5.7) (! x(x, y)dp.= Gl- F— Gl. lfinite(%’ y)»N(x)k-‘l;Ia(xy)d“’)
(by 34.8)=G

k, lfinile(éﬁ v)- Mo(x y)d©)

(by 3.4.14)=([] 0(0)*)(G ).

k, Xfinite (é» Y)
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By definition of the measures (), we thus have

(5.58) | xduw@)=([](O@)"")(G ) (X (), 4(0), i(A)).
Go o

K xeine( L. y)

Referring to the definition of x4 on Gal(L(p*)/L) in terms of the (), we find

h
(5.59) Fooordu= ) | (A7 go)du() (go)

Gal(L(p=)/L) i=1Go

h
= ‘Zl x (W)~ ! E[;Xd.u(‘ui)

™M=

= ¥ 20 (10" )G, .. 1 )KL, AG) KA,

1l

13

The algebraicity assertion (5.3.4) now follows directly from (3.5.8), (5.1.27) and
(5.1.48), because the constants c(o) in (5.3.4) are none other than the constants
o(c) occurring in (3.5.8).

In the notations of (3.5.7) and (3.5.8), let us denote

X(2,) =(X(A,), A(S), i(A)) over A

Then we can rewrite (5.5.9) as

| xdpu

Gal
(5.5.11) [eop 5

T

h
= Y (W)~ 9L d(o) o, x(AY, (W), SPtANG, .
i=1 X

Let us denote by F the locally constant character of (¢ x Z,) x(0O®ZL)"

R . 1
(5:512) F(0) L ttmie (;, y),
extended by zero to all of O®Z,x OQZ,.
Using (3.5.6), we find a complex expression for the algebraic number
(5.5.13) 9 d(o) g, x(A,), w(A,), Split(A,)) (Gk,x“mw(l. ‘_))eﬁ

=the value at s=0 off the entire function

1 1 (1P O (k +d(c)+s)
[T®@) 24 \/d, o Im(a(3))*”

4

PF(a)-[](a@)"®

n (o(a)** 2d(6)|NL/Q(a)IS '

a

x )
aed, HnPV,,(m,)
amodE(K)
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Notice that the terms in the series above are in fact invariant under E(L), so that
the sum is [E(L): E(K)] times the same sum taken over “a’s modulo E(L).”

Thus to establish both (5.3.5) and (5.3.6), we are reduced to proving the
following “purely complex” statement.

(5.5.14)  Local(y. 2,0)- [T((1 = Z(B) (1 — x(F))- L(0, x)

=the value at s=0 of
PF(a)- ]—[ a(@)t
[To@* *@IN, o(@l*

aed, [ ]mPV (A)
anfodE(L)

This is a routine but tedious computation. Write the exact conductor of y

(5.5.15) Cond(x 1‘[*1%“1 b,

and write the ideal [ | B{* as a product:
(5.5.16) [[Bi=()B oael*, B prime to p.
To fix ideas, let us first treat the case
(5.517) allg;=1; ie., x is ramified at all the B,.
Then the function PF is supported in
(5518) (B A= "B~ ' YA,
where it is given by (in the notation of (5.2.22))
(5.5.19) PF(x"'a)=B F(o ") frnicla) for aeB ™' A,
Thus we can rewrite

\ PF()[]o(@
(5.5.20) -:zl (W)Y ;

k+d(o) s
o, [ op ) I;I o(a) INL (@)l

amodE(L)

) PF(O( a)n d(o)
— ~ -1
(by 5.5.18) —z_l () aEgZ_lm na(fla)wm.;NL/Q(a-la)ls

amod E(L)

(by 5.5.19)

- s Atini e(a) U(a)d(a)
- B;OF((X I)INL/Q(a“ i X(QI)——I Z finit 1:[
( n (—)d(a i=1 ' ae%gég‘,) 0(‘7’)k+‘“‘”|NL/Q(01)|s

l—I o OC)k +d(a)
o
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(by 5.2.26)

h
=Local(z. Z,0) 1(B)Nyolf" X 2(M)™" 3. A@)

aeB L, |NL/Q(a)IS
amod E(L)

h
=Local(y, Z, )N, oF ¥ 2B~ ')~ ¥ A))_S
i=1 ,,eqz”;(m INL/Q(G)I

mo:

=Local(y, 2, 0)IN o(@)l° L (s, x viewed as having conductor a power of p)
=Local(y, Z, 0)- [N o)l x L(s, x) x (Euler factors at primes over p).

Because we assumed y to be ramified at all the P’s this is

=Local(y, Z, 0)IN o(0)I*- L(s, 1) - H(l— B)YN T ).

To conclude the proof of (5.5.14) in this case, we have only to remark that under
the assumption that y is ramified at all the B’s, y is ramified at all the s, and
hence

7(B)=0.

In the general case, when y is unramified at some of the ’s (those B; with a;
=0 in 5.5.15) the functions F and F (in the notations of (5.5.22)) no longer
coincide. Let us denote by

(5.5.21) y,=the grossencharacter y on ideals prime to p, extended by zero to
other integral ideals

1, =the grossencharacter y on ideals prime to those B, where a,>1
and prime to all the ‘B,’s, extended by zero to other integral ideals.

Thus we have

1
(5522 Lesi)= Y d@NUAU =[] {—— || 2)
9 integral RY 1— X(B)
Pand to a0 N(By
and hence

(5.5.23)  L(s, %) (H(l—x(‘B NP7 L(s, 1)

Thus we can reformulate (5.5.14) in terms of y,. It becomes
(5.5.24) Local(y, Z,8) [ T(1=#(F) L(0, x,)
»

=the value at s=0 of

0 PF(a)[]a(@)"”
Yyt ¥ :

aed, [ ]nPV(QI) H G(a)kM(a)INL/Q(a)P

amodE(L)

N ) 1 .
The function PF is the partial Fourier transform of x(;,y), viewed as
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supported on ((®Z )" x (OQZ,)" (and then extended by zero to (IRZ,) x ((QZ m)2

. . . . 1 . .
The function PF is the partial Fourier transform of y (—, y) , viewed as supported in
X

(11 G5 x 11 6,)x(0®Z,)"
a; =1 a,=0
after being extended from (0 ®Z,)* x (O ®Z,)* by (5.2.18-20).

The function PF on 2, [i] APV,(AU,) is supported in

(5.5.25) ([T B[] B;H,

a1 a;=0

=@ B[] B;HU.

a;=0

Because the ideal 8~ '( [[ B; 1), is prime to those P; with a,+0, and to all
_ a,;=0

B, the function y, ;.. (the ratio of y, to its infinity type) is defined on this
ideal. A routine Fourier transform computation shows that

(5526) for aeB '([] B;HA;, we have

M1 “=0 -1 —T
PF(a™'a)=PB F(2™ ") 15 rinie(@- [] char($)(a)
a,;=0
where 1
— I—Nqu if ordg ()20
(5.5.27) char(*B;)(a)= :
— if ordg (@)= —1.
NT, 2@

Thus we may rewrite the second member of (5.5.24) as

PEo 'a)[Jo 'ay®

h
(5.5.28) AN~ ! - - -
ig,l 1 aeB (T 99, H oo la)k+d( )‘NL/Q(O( la)|s

am(‘;Jd:}O:‘(L)
B F(o™ )N, o) - x2((a) e
5529) =-% (O 5 % (AT L2 T char(B)(a
( ) [Te@¢* () aes (] 79, 'NL/Q(a)Isa,]:[() (B
—— amod E(L)
(1_[ O_(a)k+d(a)

(4

h
(5.530) =Local(y, Z, )Ny o) Y »(B~ )"
i=1

%2((a)) e
e char (‘B ) (a).
ae( ] B, HB 'Y, |NL/Q(a)| aEO !
“amodE(L)
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/\
To proceed further, we extend the functions char(®B) to the set I of fractional

ideals I of L of the form !

(5.531) I=(]] B DA with A an integral ideal, prime to those *B;
a*0 with a;+0 and to all P,
given such an ideal I€l, we define
1
N B,
1

- if I is *P-integral
(5.5.32) char(®B,) ()=
if not.

N,

Thus we can rewrite (5.5.30) as

(5.533) Local(z, Z, )N, (@) i IN(B~ 10

12()
IZEI N(Y a,EIo har(‘B)([)

I~8u-!

Because we are only interested in the value of (5.5.31) at s=0, we may put
the “first two” s’s in it to zero, and work with

5534) Local(y. 2.6y 20 har () (1).
(5534) Local(r.2.0) 5, G5 T] char %) 1)

Now let I(p) denote the set of prime-to-p integral ideals; then every element
of I can be written uniquely in the form

(5535 I=(]] B, with I,el(p), and all n;>—1.

a;=0

We can factor (5.5.34) as the product

x(Io)
5. ,2,0) -
(5.5.36) Local(y,2,9) IO;@ N(I ;

) har () (5B,

<11 ¥ &

g ns
a,—On>—1N B

We easily evaluate the inner sums:

(5537 Y ﬁ)Lch/ar(\‘lsj)((‘B,~)"))

n——l

—1
N(‘B)nglN‘B)"s

:( —1 )" )(Z xzm )
NER) N ;
1

N(B))"
RO AT
Xz(“Bj)N(‘B Xz (‘B))

NPy
=(1"Zz(‘3j)N(ﬂ3j))(1—12(‘13,') (SBJ) 57!
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Also, the first sum in (5.5.34) is just L(s, x,):

x(o)
5.5.38 =L(s,;
( 3 ) Iog,(p) N(IO)S L(% ll)

Combining (5.5.35) and (5.3.36), we see that (5.5.34) is just

(5.5.39) Local(z,2,0) L(s.z;) [ ( 11—_;2(%)1\11\1;?;)“)
W28 J

a;=0

whose value at s=0is
_ 1
(5.5.40) Local(y, Z,d) (] [(1—7(B)) (H<1—:XFB“))> L0, %1)

(by 5.522) =Local(z. Z,8)-[](1 —#®)-L(0.z,). QED

5.6. In this section, we complete the proof of Theorem 5.30 by veryfying the
functional equation (5.3.7). The key point is that the measure x4 on Gal(L(p*)/L)
is independent of the auxiliary choice of representatives U, used in its definition
(the independence because, by (4.1.2), the measure p is uniquely determined by
the knowledge of all L,(y) when y runs over all p-power conductor grossenchar-
acters of any fixed infinity type, and this knowledge is given, rather abundantly,
by (5.3.6)).

Let p be a D -valued character of Gal(L(p”)/L). For each prime-to-p
fractional ideal 2 of L, let py denote the D, -valued function on G,=(0,®Z,)*/
(closure of E(L)) defined by

(5.61)  pulgo)=p(A""go)=p(W~ " p(go).

For any function H on G,, we have already defined (cf., (4.2.12)) another
function H on G, by the formula

(5.6.2) ﬁ(a):NLl (a)~H(1/Ez) for ae(0,®Z,)".
/Q

The functional equation for the Eisenstein measure (cf., (4.2.14)) gives

(5.6.3) [ Hdu() = | Hdpten, a1 (XL A(5), i)
Go G
(by 4.2.14) =N () Ny o(2) ! £ Hd i eanX (), A(SY, ().

But the dual of (X(), A(5),i(2A)), as ¢ N, x(A)~'-polarized HBAV with Ioo(p™)-
structure, is given by
(5.64)  (X(AY, ASY, i(W)=(X(c A", A3), i(c A1)

as follows immediately from the constructions of 5.1. Thus we can rewrite (5.6.3)
as a functional equation

(5.6.5) [ Hdu(W)=Ng,o()Npo(2)~" g Hdu(c A1)
Go 0



284 N.M. Katz

To apply this to p, we must calculate (pg),", as function on G, in terms of g
on Gal(L(p”/L).

1
(5.6.6) (py)(a)= N (@ pa(l/a)

L/Q( )

p(A~1) p(1/a)

:NL/Q(a)
while
1 .
5.6.7 A-! a)” YA
(567) H@N =g S o@D
p(A) _
— . 1
Ny ol@ N+ P

(by 5.6.6)=p() p(AW N () (py)"(a).

We now calculate

h
(5.6.8) j Z [ a) A7) du(,) (a)
=1Go

Gal(L(Ilw)/L)
h

(by 5.6.7)= Z p(A) p(2A,) N o(2) f (pa,)"d ()
i=1 Go

h
(by 5.6.5)= Z p(U) P(ﬁi) NL/Q(QIi) NK/Q(C) (NL/Q(QIL')“ ! J pudu(c Q—Ii_ Y

i=1

= Z p(2) N q(©) f p@)du(c A7)

i=1 Go
h
=2, p(0) N o(0) f pl(@)e™ " Wdp(c A"

=p(c) Ng/olc fpdl‘ QED

5.7. 1In this section, we verify the compatibility between the p-adic and the
complex functional equations.

For any A,-grossencharacter y of L, whose conductor divides p®, and whose
infinity type is

+kY o—) d(o)(c—05),

cel oel

we denote by

@mec,, BpeC

the quantities (4) and (B) defined in (5.3.4) and (5.3.5). Thus

L,
(571) @() H(C(G(X"Ifz‘i(ﬂ)
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(5.7.2) (X)=Local(x, Z,0)[units of L: units of K]-[T(1—=7#(P)) (1 — ()

[T I(k+d(c))

x (-1 i L, (0
Vg TTim@@)y@ [ Q)24 =

Recall that 7 is the A -grossencharacter defined by

1

(5.7.3) Z(QI)=W;

it is ramified precisely at the complex conjugates of those primes at which y is
ramified, and its infinity-type is

(574 —Q2—=kY o= (k+d(o)—1)(c—5).

oeX cel

Notice that
(5.7.5) k+2d(o)=Q2—k)+2(k+d(o)—1).

The construction y y establishes a bijection

(5.7.6) {A o-grossencharacters with} - {Ao-grossencharacters with}

k=1, all d(o)=0 k<1, all k+d(@)—120

(5.7.7) Theorem. For any A,-grossencharacter y of L of conductor dividing p®,
we have the p-adic functional equation

@) =Ng,0(0)- 20D ().

Proof. By 5.7.5, this is just the functional equation 5.3.7 for L,, divided by
[ T(c(o)y* 24 on each side.

a

(5.7.8) Theorem. For any A,-grossencharacter y of L of conductor dividing p*,
we have the complex functional equation

B)(7)=Ny,o(0)- 1) B)(x)-

Before giving the rather long proof, notice that (5.7.7) and (5.7.8) taken
together with (5.2.6), give

(5.7.9) Corollary. The assertions (5.3.4), (5.3.5), (5.3.6) of Theorem (5.3.0) are also
valid for all y whose infinity types satisfy
k<1, all k+d(e)—120.

We now turn to the proof of (5.7.8). We will simply take the classical
functional equation out of Tate’s thesis, and compare the local terms which
occur in it to the local terms which occur in our (x). For ease of reference, we
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will adopr the notations of Tate’s thesis as well —thus “c” will henceforth be the
quasicharacter of the idele class group of L which corresponds to y, with local
components c, at the finite places and c, at the archimedean places. We will also
denote by y the infinity type of y, viewed as the character

(5.7.10) y :L* —>Q=""2, ¢

given by

—\d (o)
61n)xam=ﬂj%%m?

Given a finite set S of finite places of L, and an ideal U of L, we denote by
dfn
(5.7.12) AmS =[] g™
a¢s
the “prime to S part” of the ideal AU. We will have particular occasion to apply

this construction when S is the set

Ram (always meaning Ram(y): Ram(y), when
meant, will be written in full)

of places where our given y is ramified.
The quasicharacter ¢ of idele classes is a product

(5.7.13) c=[]¢,I]es

gel v

where the local quasicharacters are given by

¢,:C*—>C~
(5.7.14)

Zk +d(o)
__(rZ)k/Z el(k+ Zd(a'))(),

Co(r eiﬂ) = CG(Z) = Zd(o‘) -

(5.7.15) if v¢Ram, c,;:L;—C* is c(a)=y(v) @

v

where y(v) means y(“v viewed as prime ideal”),

(5.7.16) the ¢, for veRam satisfy, for any aeL*, the product formula

[T (@) x((@™ ") =7, (a).

veRam
We now select a “product” formula f=[] f,]] f, in the Schwarz space of the

adele group of L in such a way that

at complex places o, f, is the function “f,” in the notation of [0],
(5.7.17) !p.318, with n=k+2d(0)

at v¢ Ram, f, is the function “f,” in the notation of [0], p. 320.
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At each finite place v, let

(5.7.18) d,(v)=the exact power of “v viewed as prime ideal” dividing the
absolute different b ¢, of L.

The global zeta function {(f;c) is given by
(5719 {(Lo=]1Qn) " ' T(k+d(a) L, (x)-*

where = is given by

(5.7.20) w=( [T N@ @)™ "2 "0 o) [] &.c.):

v¢Ram veRam

Its alter-ego {(f,¢) is given by

(57210 (L=} T +de) L ("' N1 4

where # is given by

(5.722) #= [] .2

veRam

We now combine the local functional equations
(5723) Uf,,c)=plc,) (f.6)
with the global functional equation
(5724) {(f)=U[0)

to obtain

(5.7.25) ﬂ it 2@ O 4-d(o))- L (x "N
=([[@rn)*"* ' T'(k+d(0))) L ()

(TT puleC TT (NEL) 22 o).

veRam véRam
We now combine this with the trivial functional equation
(5726) L_(x"'N"Y=L_(
to rewrite (5.7.25) as
(5727) []@*“" 1 r(1+d(e) L (%)
’ N(DnolRam)— 1/2 Xﬁ l(bnolRam)

= e L e 1@ Tk oD L),

veRam a
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We next break up the p,(c,) according as the veRam is a ‘P (one of the
primes over p chosen by 2 and incl(p)) or a ‘B. We define

Local(y, B's)= [] palcy)
(5728) PeRam

Local(y, B’s) = - [T palcp)

PeRam

From the relation ([0], p.315)
(5729) ple,)p,(6)=c,(~1)
we get

(5.7.30) Local(y ' N~!, P’s) Local(y, P's) = cg(—1),
T

eRam

while by “transport of structure” we have
(5.7.31) Local(y, B's)=Local(y ' N~ Ps),
and hence
T ex(=1D)
(5.7.32) Local(j, %’s):%@—s).
This allows us to rewrite (5.7.27) as
(5.7.33) []@*"4" ' F(1+d(a))- L, (7)
N(getem) =112 g1 getkem). [T cg(—1)

PeRam

QiFE D@ (= )FE

Local(x, B’s) .
* Local(z, ) || Tk +d@)- L)

Referring now to the Definition (5.7.2) of (x), we see that (5.7.33) is
equivalent to the following equality:

_ Local(}, 2, 9) Local(x, P’s)
(5.7:34) .( 0= Local(y, B’s) Local(y, 2,0
N(bzotkam) 1/2 X_ l(bzotRam) - n C?F( . 1)

PeRam
(H(2llm(0(5)))" L) (—1)H@ X(X)’

Our problem is now to “recognize” (5.7.34) as being the asserted (5.7.8), which
will require a closer look at the various local terms.

(5.7.35) Lemma. The quantity 6 given in (5.3.3) satisfies
(20)=cD,.



p-Adic L-Functions for CM Fields 289

Proof. By hypothesis, the image of A2, under

v uv
=traceL/K(2—5)

is precisely 2~ '¢~!, which is to say

(57.36) Cuvy=""

—u
20

1 _ 1 _
traceL/K<55c(9L> =d"!, whence <§3> ¢=93'. QED
(5.7.37) Lemma. We have the formula

PP No(6) - x(9)
N (protRam)—1/2 1(pnotRam) _ K/Q
( L ) X ( L ) X((zé)notRam) N((25)“°‘Ram)

Proof. Because ¢ is prime to p, hence to all primes where y is ramified, the “not
Ram” part of (5.7.36) is

¢

notRamy—1 __ S
(5738) (bL ) —(2 5)m)lRam

The result now follows upon applying y-N'/2 to both sides, and remember-
ing that, because ¢ is an ideal of K, we have

(5.7.39) Y N0(6)=Ngol0).
By (5.7.16), we have

notRamy __ 1 .
(5.7.40)  x((29) )———n 29) Xo(20)

veRam

Qb
= H cv(25) 1:[0_(25)k+d(d)

veRam

B (_ l)zd(a)
(] o) (o)

veRam

(because 6= — ).

Substituting (5.7.37) and (5.7.40) into (5.7.34), and remembering that
2iIm(o(d))=06(28) because o is purely imaginary, we find

.. Local(y, 2, 0) Local(y, P’s) 1
(5.7.41) (X)_ Local(7, P’s) Local(y, Z, 9) % N((28)tRam)

x TT (2 T1(=ic2d) 1 cal—=1Dx Ny o0 x(0)-B).

veRam a BeRam

(5.742) Lemma. We have the formula

[T(—i0(28)=1/Ny,o(26)
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Proof. Since a(d) is purely imaginary with positive imaginary part, each term
—i0(20) is a positive real number, and

N.o(28)=[10(20)5(20)
=[1(a(26)-(=1)a(20))
=([](—io(20))* QED

Thus we can rewrite (5.7.41) as

Lo , [T c.(20)
v R
(5743 BH- Local(7, 2,0) Local(y. ¥’s) [ ycram

= Local(y, 's) Local(, 2, 0) V 1T 1201,

veRam

([T eql=1)Ngol©) 2(0)-BX2).

PeRam

(5.7.44) Key Lemma. We have the formula

(20
Local(x,Z,é)_mg‘m%( :

Local(y, B's) T Vi2dly

PeRam

Let us admit this lemma for a moment, and use it to conclude the proof of
theorem. Using (5.7.44) for y, and denoting by ¢ the quasicharacter correspond-
ing to ¥, we obtain

. Cq(29)
(5 7 45) Local(X$ 29 6) - ‘BER'E’I(‘Z’) ¥
Local(7, ¥s) [T 1/20ly
PBeRam(7)

By “transport of structure,” we have

26y _ =20l _ 126l

5.7.46) Cp(20)=—=-= -
( ) Eq(20) cg(20) cg(—20)  cg(20)cq(—1)

But B lies in Ram(¥) if and only if feRam(y), and
V126lg =1/ 120l =1/1-26lg =1/ 124ls,

so we can rewrite (5.7.45) as

, 126l
(5747 Locl@Z.o)_ st
T Local(Bs) [ cg(20)cq(—1)

PeRam (x)
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Combining (5.7.44) and (5.7.47), we find

Local(y, Z,0) Local(y, B’s)
Local(y,*B’s) Local(y, Z, )

M Vizole [T Vi2dlg

PeRam(x) PeRam (x)

[T 20 J] cq28)cg(—1)

PeRam (x) ReRam(x)

[T vi2l.

veRam

[T c28) [T eq(—1)

reRam ReRam

(5.7.48)

Substituting into (5.7.43), we find (5.7.8).
We now turn to the proof of (5.7.44). We need a few lemmas.

(5.7.49) Lemma. The function y... on (€, ®Z,)" defined by (5.2.13) is related to
the p-adic components cy, ¢ of the quasicharacter ¢ which corresponds to y by the
Sformula

Gime=11 cx' [T eg'  on (€,®Z)".
all'p all |
Proof. Obvious from (5.2.13) and (5.7.16).

(5.7.50) Lemma. The function F, | on Cf‘pzc(m; is given by

if ¢y is ramified

F 1:{0% on (€r,)", extended by zero to ¢,

b 1 if ¢q is unramified
Proof. This follows from (5.7.49), and the definitions (5.2.18) and (5.2.15) of F, ;
in terms of Ygipire-

(5.7.51) Lemma. The factor pg(cy) which occurs in Tate’s local functional equa-
tion is given by the formula

NP F (- 1)
Cm(o‘)

P‘B(Cm)

where d,(B) is the exact power of B dividing the absolute different, and where o is
any element of Lg satisfying
ordg(e) =ordg(d,) + ordg(cond(cg)).

Proof. This is just a “coordinate-free” reformulation of Tate’s formula
(L0, p-372).

(5.7.52) Lemma. The quantity 0,6 KQZ,=[[K,~[] Ly is the image in [] Ly
of —1/26. » ® ¥



292 N.M. Katz

Proof. Via the isomorphism
(57.53) L®Z,~(]|Lg) x (];[ Lo~ K)x([K)=K®Z,)x(KRZ,)
B ) P

the element 2d0eL becomes the element
(20(P’s), —20(Ps)e(K®Z,) x (KKZ,),

where 20(®B’s) is the image of 26 under the isomorphism
HLm:H Kv:K®Zp.
B »

The pairing <, )
()i ARO, ~d e !
uv—uv

=735

induces an isomorphism
oo Aﬁézp((OL®Zp) —~5>p! c“@ZP
whose expression via (5.7.53) is

d-b
(e b (e, = =5 s

By definition, d, is the quantity
3o {(1,0),(0,1)>. QED

To prove (5.7.44), we simply compute. As in (5.2.10), we choose an element
aeL which satisfies

ordg(a)=ordg(cond(y))  at all P’s

5.7.54 —
( ) ordg(a—1)=1+ordg(cond(y))  at all P’s.
The ideal B is such that

(5.7.55) (a)B=]] Perdwtond
P

is prime to all P’s and P’s, hence
(5.7.56) B! =(ayotRam,

By definition of Local(y, X, d), we have

=1 {

E |— F .=

(5.7.57) Local(x,Z,é):”Er“]“"‘ °’1<25“> lrv[% ”’2<a>_
x(B) 1, (a)
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Because a is sufficiently near 1 at all P’s, the terms F, ,(1/a) are all 1, and the
denominator can be simplified:

1 X((a)notRam)
5.7.58 =
BT @@ 1@
CIT cf@)x(@rerrem

__ veRam

(II efa)r.(a)

veRam

Il C‘B(a)’

BeRam

the last equality because a is sufficiently near 1 at all the P¥’s. Thus we can
rewrite (5.7.57) as

. (=1
1% (55
PeRam 28a
(5.7.59) Local(y, 2, d) =*—"T—""—2.
H cyla)
eRam
If we use the quantity 2da for the “o” of (5.7.51), we get an expression for
Local (y, B’s):
(5.7.60) Local(y, Bs)= [] palcy)
PeRam
-1
N@(B) "2F, ,
1 < 26a )
—‘BERam C‘B(25a) '
Dividing, we get
cq(20)
(57.61) Local(y, 2,0) cnelgdm ¥ B
o Local(y, P's)  [] N@(B) '
PeRam

Because (20)=D>, ¢ with ¢ prime to p, we have
(5.7.62) N (B)=(126l) "
whence we get (5.7.44) as required. QED

5.8. In this final section, we explain the dependence of the p-adic L-function
upon the choice (5.3.3) of 4. For each possible 6, let us denote by u(d) the
measure on Gal(L(p™)/L) whose existence and properties are given by Theorem
(5.3.0). Given one 6, any other is of the form A4, with AeK* prime to p and
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totally positive. Given any such 4, we denote by
(5.8.0) (A~', 1)eGal(L(p~™)/L)
the image of (1™, 1)e(O®Z,)* x (¢ ®Z,)* under the map

(B, P's)
(58.1) (O®Z,) x(OQZL,) - (O,®Zy) — (0, ®Z,)”/(closure of E(L))

d
Gal (L(p”)/L(1)

N

Gal(L(p™)/L).

(5.8.2) Theorem. For any Ae K* which is prime to p and totally positive, and any
o satisfying (5.3.3), the measures u(é) and p(A9) on Gal(L(p™)/L) constructed in
(5.3.0) are related by the formula

for any continuous D ,-valued function f(g) on Gal(L(p*)/L),
CE8) 1 f@duia@= | S D9dub)@).

Gal(L(p=)/L) Gal(L(p=)/L)
(5.8.4) Corollary. The p-adic L-functions L, and L,,; are related by the
formula

(5-8-5) Lu(xa)(p):p(l_ 1’ 1) Lu(é)(p)’
valid for any continuous D -valued character of Gal(L(p~)/L).

Proof. The corollary is simply (5.8.3) in the case f=p. By (4.1.12), the theorem
follows from the truth of (5.8.5) for any set of p’s which are stable by multipli-
cation by arbitrary locally constant D -valued characters of Gal. Thus it suffices
to verify (5.8.5) for all A,-grossencharacters of any fixed infinity type. In fact,
our explicit formula (5.3.6), together with (5.7.44), will allow us to verify
(5.8.5) explicitly when p is any A,-grossencharacter y whose infinity type
—kZo—2d(c)(c—0) satisfies

(586) k=1, all d(c)=0.

To see this, we agrue as follows. As in 5.1, we fix a nowhere-vanishing
differential w(0;) on X(O,) over A. The constants (o) appearing in (5.3.5) are
the ratio of this w((;) to the transcendental w,,,,(¢;):

(58‘7) w(@L) = Q ' wlrans((QL)'

The quantity Q=(...,Q(0),...)e(K®C)* is independent of the choice of polariza-
tion imposed upon X(O,).

However, the I,,(p®)-structure carried by X((;) does depend very much on
the choice of J: let us denote it

(5.8.8) is(0,).
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By (5.7.52), the transcendental expression for is((;) sits in the commutative
diagram

15(

U=

J

b*@f)zl, 0,®Z,

(5.8.9) ¢ < (=200 U

0®Z,=]10, —— [,;I@Lm’
P

so that iy(¢;) and i,,(¢,) are related by

(5.8.10) i, 4(C)=Ais(C)).

The associated canonical differentials on X(¢';) over D, are defined (cf., 1.10.11)
in terms of these I)o(p™)-structures, hence are related by

(58.11) @y (A6,0,)=2" (8 C,).

can(

Let us denote by ¢(6)e(C®D,)* the ratio of w(('}) to w
(5.8.12) (€ ;)=c(d) w,,(0; C}).

can(é; (fL)
Combining (5.8.11) and (5.8.11), we see that
(5.8.13) c(L8)=4Ac(d).

Now let us denote by

(5.8.14) B

the quantity of (5.3.5). Applying (5.3.6) (with o), we obtain, for any A,-
grossencharacter y whose infinity type satisfies (5.8.6), the formula

L2y
0)
(5.8.15) ——————~—*‘ ,f’wm =(B)s ().

[T(otel

Applying it with 19, we get

L, s
(5816) 1—] (g(/zuc(i{;;))k-k 2d(a) :).6(X)
Looking at the explicit formula for (;(), we obviously have

(5.8.17) .ﬁ M%Z))—f‘),—) (independent of J),

and hence

Local(y, 2, 1 9) Hlm (@)
(5.8.18) 2.6( HIm(O'(A 5))d(a) Local(y, X, ) ’5( )
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Using (5.7.44), we can rewrite this in terms of the local quasicharacters cg
attached to y as

[T cp(249)

(5.8.19) Aa(X)=‘nERliin 25) H (A)d(a) .a(X)

PBeRam
[T co®

‘BsRam
H (A d(o) '6(X

Because 4 is prime to p, we have

(5.8.20) l—[ C‘nu)= n C‘B(A')ZXfinile(i_ L),

PeRam all'p

and (5.8.19) becomes

1me}'
(5821) (B),4(0)="4 to((i‘”"’ B

Substituting by (5.8.15) and (5.8.16), we get

(5.8.22) Lys(0) e 1) ‘ L,
[T(e(Ae(@))* 24~ TTa(*  [](a(c(3))+21@

whence

(5:823) Ly =simie(A ™ D) [T A0 T4 Ly, 5(0)

a

= Xfinite (A~ L D)y, (A” L 1) Ly(a)(X)
=x(A" 1)L, (0. QED
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