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ON THE MONODROMY GROUPS ATTACHED TO
CERTAIN FAMILIES OF EXPONENTIAL SUMS

Dedicated to Y. I. Manin on his fiftieth birthday

NICHOLAS M. KATZ

Introduction. The main theme of this paper is that very innocuous looking
one-parameter families of exponential sums over finite fields can have quite
strong variation as the parameter moves. Even when the parameter variety is the
affine line A or the multiplicative group G over a finite field, the algebraic group
Ggeom which controls the variation is often "as large as possible". These results
are the finite-field analogue of the fact that in characteristic zero, very simple
differential equations on A and on Gm can have very large differential galois
groups.

In Part 1 we develop some general results concerning irreducible lisse sheaves
on open curves in characteristic p > 0, in part modeled on [Ka-2] and [Ka-Pi]. In
Parts 2 and 3 we calculate Ggeom for the one-parameter families of exponential
sums in characteristic p which correspond to the Kloosterman and Airy differen-
tial equations respectively of any rank n > 2. It is very striking that in both of
these cases, our results on Ggom are in perfect analogy with the results of [Ka-2]
and [Ka-Pi] on the differential galois group Gga of the corresponding differential
equation, as soon as p > 2n + 1. Indeed, one can speculate that in some future
"motivic grand unification", the two sorts of results will both be "realizations" of
a single motivic result. For the moment, we must be content to offer the results
themselves as indirect evidence for the existence of such a unification.

Part 1. Lisse sheaves on open curves: general results. Throughout this paper,
we fix a prime number p, an algebraically closed field k of characteristic p, a
prime number ’#= p, and an algebraic closure Q__e of Qe- Let U be a smooth
connected affine curve over k, and - a lisse Qe-sheaf on U of rank n > 1.
We denote by q the fundamental group q(U, ) of U with base point a
geometric genetic point of U, by p the n-dimensional Qe-representation of q
on which -"is", by Ggom the Zariski closure of tg(cq) in GL(n, Qe), and by
(Ggom) the identity component of Ggom. We say that - is irreducible if p is
irreducible as a representation of q, or equivalently if Ggeom acts irreducibly in
its given n-dimensional representation. We say that -, or p, is Lie-irreducible if
the restriction of p to (Ggom)0 is irreducible, or equivalently if the restriction of p
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to every open subgroup of 7/" is irreducible. (More generally, a continuous
finite-dimensional representation p of a topological group is called Lie-irreduci-
ble if its restriction to every open subgroup of finite index is irreducible: clearly p
is Lie-irreducible if and only if its restriction to some, or to every, open subgroup
of finite index is Lie-irreducible.)

PROPOSITION 1. Suppose that is irreducible. Then either O is induced from a
representation of a proper open subgroup of ,rl, or p is Lie-irreducible, or there
exists an integer d > 2 dividing n and a factorization of p as a tensor product

(R) 60, where is a Lie-irreducible representation of q’l" of dimension n/d, and
where to is an irreducible representation of r of dimension d which factors through a

finite quotient of r1. In this last case, the pair (, to) is unique up to replacing it by
(" (R) X, to (R) X -I) with X a character of r offinite order.

Proof. Because (Ggeom) is a normal subgroup of ageo of finite index, either
p as a Ggeor-representation is induced from a proper subgroup H which contains
(Ggom), or its restriction to (Ggom) is isotypical. If p is induced from an H,
then p as q-representation is induced from the open subgroup p-l(H), and
there is nothing to prove. If p is not induced, then its restriction to (Ggeorn) is
isotypical, say isomorphic to d copies of an irreducible representation 0 of
(Ggom). If d 1, this exactly means that p is Lie-irreducible.

So suppose d > 2. Choose any open normal subgroup K of 7/" which is
sufficiently small that p(K) is contained in (Ggom). Then p(K) is Zariski dense
in (Ggom), so 0 is K-irreducible, and p lK--dz0. Therefore the isomorphism
class of Zo as K-representation is invariant by rl-conjugation. Therefore o
extends to a projective representation, say Zl, or rq. Because we are working on a
smooth affine curve U over an algebraically closed field, we know that H2(q, )
vanishes, so there is no obstruction to lifting the irreducible projective representa-
tion - to a (necessarily irreducible) linear representation r2 of rr1. Notice that on
K, 2 is projectively equal to z0, so of the form 0 (R) X for some character X of K.
Consider the d-dimensional representation to2 of rl defined as Homr(r, p). Its
restriction to K is scalar, namely X-1, and X-d is the restriction to K of the
character det(to2). Again by the vanishing of H, any O-valued character of ’B"

has a d th root. Twisting z2 by a dth root of det(t02), we obtain a representation
of r whose restriction to K differs from Zo by a character of order d. Shrinking

K, we may assume that r actually coincides with 0 on K. Because zolK is
Lie-irreducible, it follows immediately that r is Lie-irreducible. If we define to to
be Homr(z, p), we have the asserted factorization of p as (R) to, with to

factoring through a finite quotient of ,r1, and with Lie-irreducible. That to is
itself irreducible results from the fact that (R) to O is irreducible.
To see the uniqueness of such a factorization of p, let ’ (R) to’ be another, and

choose an open normal subgroup K of ,rx on which both to and to’ are trivial.
Then tglK is equal both to dim(to) copies of ,[K, and to dim(to’) copies of ,’[K,
with both of these irreducible. Therefore to and to’ have the same dimension, and
IK -- "]K. Therefore the space Homr(,, ’) is a one-dimensional representa-
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tion X of r which is trivial on K, so of finite order, and by construction we have

" (R) X -- ’. Writing to as Homr(’, P), and to’ as Homc(z’, P), we find to =
to’ (R) X, as required. QED

Remark 2. Conversely, if is any Lie-irreducible representation of q, and to

any irreducible representation of 7/’1 which factors through a finite quotient, then
the tensor product z (R) to is irreducible. For let A be any subrepresentation.
Choose an open normal subgroup K on which to is trivial. Then A K is a sum of
copies of IK, so we have A -- (R) Homr(’, A) as q-representation. But the
second factor Homr(, A) is a subrepresentation of Homr(, r (R) to) -- to, so is
either 0 or to itself.

COROLLARY 3 (of Proposition 1). Suppose that is irreducible, that its
determinant is offinite order, and that its rank n is a prime number. Then either
is inducedfrom a character ofa subgroup of r of index n, or it is Lie-irreducible, or
it factors through a finite quotient of r1.

LEMMA 4. A Lie-irreducible , whose determinant is offinite order has (ageom)0
semisimple. If in addition (1): the determinant of has finite orderprime to p, (2):
the rank n of" isprime top, (3): the rank r of (Ggeom) is < p (e.g., if n < p, or

if n < 2p and (Ggeom) lies inside SO or Sp), then the index of (Ggeom) in Ggeom is

prime to p.

Proof. Once det(p) is of finte order, (Ggeom) lies in SL(n, Or), and as it acts
irreducibly, it must be semisimple. Suppose now that in addition the conditions
(1), (2), and (3) all hold. Consider the action of q on (Ggeom) by conjugation.
Let us denote by K the subgroup of q which acts by inner automorphism. The
quotient q/K injects into the automorphism group of the Dynkin diagram of
(Ggom), which is in turn a subgroup of the symmetric group on r

rank((Ggom)) letters. But as (Ggeom) has rank r < p, q/K is prime-to-p.
Because (Ggom) acts irreducibly, p(K) lands in G,. (Ggom). Taking determi-
nants, and using (1) and (2), we see that a subgroup K of K of index prime to p
lands in (Ggeom)0. The index of (Ggeom) in Ggeom divides that of K in q, so is
prime to p. QED

To go further, we need to use the Feit-Thompson sharpening [Fe-Th] of
Jordan’s theorem. Jordan’s theorem (cf. [Cu-Re], 36.13) is the fact that there
exists a function c(n) of n alone such that if F is a finite subgroup of GL(n, K),
K any field of characteristic zero, then there exists a normal abelian subgroup F0
of F such that the quotient group F/F0 has order < c(n). In particular, if p is a
prime number which is > c(n), then any p-Sylow subgroup F of F must lie in
Fo, and it must be a p-Sylow subgroup of the abelian group F0. Therefore Fp is
both unique, hence normal in F, and it is abelian. The Feit-Thompson sharpen-
ing is the fact that if p > 2n + 1 (rather than p > c(n)), any p-Sylow subgroup
of F is both normal and abelian.
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PROPOSITION 5. Suppose that U is the affine line A1, and that p > 2n + 1.
Then any irreducible of rank n is Lie-irreducible. If in addition det(-) is trivial,
then Ggeom is connected; in general, det(’) has finite p-power order, say order q,
and Ggeom is the product of (Ggeom) with the finite subgroup t q of the scalars. The
group (Ggeom) is semisimple.

Proof The basic fact we must exploit is that for A1, the fundamental group r
has no nonzero continuous homomorphism to a finite group of order prime to p.
Suppose first that O is induced from a proper open subgroup K of ,rl. Then the
index d of K is a divisor of n, and so d < n, whence d < p. But K contains an
open subgroup K0 which is normal in r and of index dividing d!. As d! is
prime to p, we must have K0 ,r, contradiction. So this case cannot arise.
Therefore (by Proposition 1) if O is not Lie-irreducible, it must be of the form
-(R) to, with to an irreducible finite-image representation of ,r of dimension
d > 2, d some divisor of n. Let us denote by I’ the image of to in GL(d, QC).
Since p > 2n + 1 > 2d 4, 1, Feit-Thompson tells us that "the" p-Sylow sub-
group I’, of F is both normal and abelian. But the quotient I’/F, is a prime-to-p
quotient group of r1, so it must be trivial. Therefore I’ I’p is itself abelian: as to

is irreducible, we must have d 1, again a contradiction. Therefore 0 is
Lie-irreducible.
Now consider the character ;( det(0) of r1. It actually takes values in the

units Ux of the integer ring of a finite extension Ex of QC, and this group is an
extension of a finite group by a pro-t’ group (the units in I 4- (2)). Because we
are on A1, any pro-d valued character of ,rl is trivial, so the vanishing of H2 and
the cohomology sequence shows that X has finite order. Once the order of X is
finite, we write X as a product of characters of finite prime-power order, of which
only the p-power character can possibly be nontrivial on A1. Therefore det(o) is
of finite p-power order.

Because det(o) has finite p-power order, say q, and n is prime to p, det(o) has
a unique n th root to. Twisting 0 by to-1, say A 0 (R) to-1, we have 0 to (R) A,
and det(A) is trivial. Let us denote by G (resp. G1) the group Ggeon for A (resp.
O). Lemma 4 shows that GO is semisimple and G/G is prime to p. As G/G is
also a quotient of ,r1, and we are on A1, we have G G. Because 0 to (R) A, G1
lies inside the product It q" G. Because to has finite order these two groups have
the same identity component. So G c G c ttq. G, and taking determinants
shows G ttq" G. QED

We now consider the case when U is G,,. For every integer d > 1 which is
prime to p, we denote by [d]" G,, -, G,, the dth power map, i.e., the d-fold
Kummer covering of G,, by itself. We say that an - on G,, is Kummer-induced
if it is of the form [d], (# for some lisse (# on G,,, and some d > 2 prime to p.

PROPOSITION 6. Suppose that U is G,, that p > 2n + 1, and that . is
irreducible of rank n. Then is either Kummer-induced or Lie-irreducible. If is
not Kummer-induced, and if its determinant is of finite order prime to p, then
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(Ggeom)0 is semisimple, and the group of components Ggeom/(Ggeom) 0 is cyclic of
finite order prime to p.

Proof. The fact we must exploit is that on Gin, there is a unique prime-to-p
quotient group of r of every finite order d > 1 prime to p, namely the cyclic
quotient corresponding to the d-fold Kummer covering. Suppose first that is
induced, from a proper subgroup K of r1. Then the index d of K divides n, so
d < p, and hence K contains an open subgroup K0 which is normal in q of
index dividing d!, so prime to p. Therefore the quotient q/Ko is cyclic, and
hence K is itself normal in r of index d prime to p, so by unicity K is the
subgroup corresponding to the d-fold Kummer covering. Thus our is
Kummer-induced if it is induced.

Suppose now that " is neither induced nor Lie-irreducible. Then by Proposi-
tion 1, the corresponding representation p must be of the form - (R) , with 0 an
irreducible finite-image representation of r of dimension d > 2, d some divisor
of n. Let us denote by F the image of 0 in GL(d, Qe)- Since p > 2n + 1 > 2d
+ 1, Feit-Thompson tells us that "the" p-Sylow subgroup Fp of 1" is both normal
and abelian. But the quotient F/Fp is a prime-to-p quotient group of q, so it is
cyclic prime-to-p. Therefore F is an extension of a prime-to-p cyclic group by a
finite abelian p-group, so by Schur-Zassenhaus F is the semidirect product of Fp
with a cyclic prime-to-p group. But any irreducible representation 0 of such a F
is either a character or is induced from a character of a (necessarily normal)
subgroup of index prime to p. (Proof by induction on the index of Fp in F: as Fp
is normal in F, either 0 is induced from an irreducible representation of a proper
subgroup F of F which contains Fp, and the induction hypothesis applies, or the
restriction of 0 to the normal abelian Fp is isotypical, so d copies of a character
X of Fp which is invariant by F-conjugation. Using the semi-direct product
structure, we see that X extends to a character, say X, of F. Twisting 0 by the
inverse of X, we reduce to the case when the irreducible representation o of F
factors through the abelian quotient F/Fp, which is possible only if d- 1.)
Therefore as d > 2, 0 .itself is Kummer-induced, and hence by the projection
formula so is (R) 0, contradiction.
Suppose now that " is not Kummer-induced, i.e., that it is Lie-irreducible,

and that its determinant is of finite order prime to p. Then by Lemma 4, (Ggeom)
is semisimple and the group of components geom/(ageom)0 is a prime-to-p
quotient of q, necessarily cyclic because we are on Gin. QED

The real problem in applications is recognizing whether or not a given is
Lie-irreducible in the first place; it is here that working on A or G seems to be
essential. Overlooking this problem for the moment, we have the following
general result. In it, we return to our open curve U. We denote by C its complete
nonsingular model.

THEOREM 7. Suppose that " is Lie-irreducible ofrank n on U, thatp > 2n + 1,
that det(-) is offinite order prime to p, and that there exists a point oo in C U
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at which all the breaks of as Io-representation have exact denominator n. Then
(Ggeom)0 is one of the following subgroups of GL(n)"

SL(n), /f n 2 or if n is odd
SL(n) or Sp(n) or SO(n) if n is even and > 4.

Moreover, in the case (Ggeom) is SO(n), Ggeo is not contained in G SO(n).

Proof We will show that Theorems 1 and 2 of [Ka-Pi] apply to the subgroup
G of Ggeom generated by (Ggeom) and by p(Ioo ), and to its given n-dimensional
representation pIG. Let us denote by Poo the wild inertia subgroup of Io, and by
an element of Ioo which generates I/Poo. The fact that p has all its o-breaks

with exact denominator n, with n prime to p and dim(p) n, insures that the
restriction of p to Po is the direct sum of n distinct characters X of Po, and that
the conjugation-induced action of 3’ cyclically permutes these n characters (cf.
[Ka-1], 1.14).

Let us admit temporarily that P(Poo) lies in a unique maximal torus T of
(ageom)0. Because T centralizes p(Po), T must respect each of the n one-dimen-
sional xi-eigenspaces L of P(Po), and the action of T on each Li is by a
character X, whose restrictions to P(Poo) is Xi- The element B P(3’) of G
normalizes both p(P) and (Ggeom), so by the unicity of T, it must normalize T
as well. Because B cyclically permutes the n one-dimensional x-eigenspaces Lg
of P(Po), it cyclically permutes the n distinct (because their restrictions to Poo
are distinct) characters Xi of T. Because P(Po) lies in (Ggeom)0-- G, the
quotient G/G is a finite tame quotient of lo, so is cyclic (and prime-to-p, but
this is irrelevant for now). Finally, the given representation of G is not the tensor
product of two strictly lower-dimensional representations of G, because the break
hypothesis insures that already as a representation of p(Io ) it is not such a tensor
product (cf. [Ka-2], 2.5.9.3 for the completely analogous argument in the differen-
tial galois context). Thus all the hypotheses of Theorems 1 and 2 of [Ka-Pi] are
verified, whence the asserted list of possibilities for (Ggeom).

It remains to explain why P(Po) lies in a unique maximal torus T of (ageom)0.
It lies in (Geom) because, by Lemma 4, the index of (Ggeom) in Ggeom is prime
to p, while P(Poo) is a finite abelian p-group. Because P(Po) acts with n distinct
characters, its centralizer ZrL in the ambient GL(n) is the entire group D of
diagonal (with respect to a p(Poo)-eigenbasis) matrices in GL(n). Therefore its
centralizer Z in (Ggeom) lies in the torus D, and hence Z is itself a torus. But
any torus T of (Ggom) containing P(Po) trivially lies in Z, so that, once we
prove that there exists a torus T of (Ggeom) containing P(Po), we will conclude
that Z is the unique maximal one. This is a special case of the following general
fact, applied to F P(Poo) and to G (ageom) 0, for both the statement and
proof of which I am indebted to J. Bemstein.

PROPOSITION 8. Let G be a connected reductive group of rank r over an
algebraically closedfieM of characteristic zero, and F a finite abelian subgroup of G
whose order is divisible only by primes p > r + 1. Then F lies in a torus of G.
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Proof The proof is by induction on dim(G). Write G as the product of its
connected center by its derived subgroup; this gives a central extension

0 --> Gdero Z(G)0 )o---> Gder x Z(G ---> G --> 0

whose kernel, being a central subgroup of a connected semisimple group Gder of
rank < r, is (say by classification!) of order prime to that of F. Therefore F lifts
uniquely to an abelian subgroup, still denoted F, of Gder x Z(G), and this lifted
F is a subgroup of the product of its projections prl(F) x pr2(F). Thus it suffices
to show that pq(F) lies in a torus of Gder. If G was not semisimple to begin with,
this holds by induction.

If G is semisimple, let G# denote the universal covering group of G, which is
again a central extension of G with kernel of order prime to that of F. Thus F
lifts uniquely to an abelian subgroup, still denoted F, of G#. Because the order
of F is prime to that of Z(G#), either F is trivial and there is nothing to prove,
or the centralizer Z(,) of any nontrivial /in F is a proper closed subgroup. By a
result of Steinberg (cf. [St], Corollary 8.5) the centralizer of a semisimple element
in a simply connected semisimple group is itself a connected reductive group.
Because F lies in this centralizer, we are through by induction. This concludes the
proof of Proposition 8, and with it the proof of Theorem 7. QED

Combining Theorem 7 and Propositions 5 and 6, we obtain the following two
results.

THEOREM 9. Suppose that p > 2n + 1. Let be irreducible of rank n on A,
and suppose that at o all the breaks of as I-representation have exact
denominator n. Then (Ggeom)0 is one of the following subgroups of GL(n)"

SL(n), if n is odd
SL(n) or Sp(n) if n is even.

Moreover, Ggeom is the product of (Ggeom)0 with the finite p-power subgroup ll, q of
the scalars which is the image of its determinant.

Proof Just combine Proposition 5 with Theorem 7, and notice that on A the
SO(n) case is ruled out by the "moreover" in Theorem 7. QED

THEOREM 10. Suppose that p > 2n + 1. Let be irreducible of rank n on Gm,

and not Kummer-induced. Suppose that at o all the breaks of o, as Io-represen-
tation have exact denominator n. Then (ageom)0 is one of the following subgroups of
GL(n):

SL(n), /f n 2 or if n is odd
SL(n) or Sp(n) or SO(n) if n is eoen and > 4.

Moreover, in the case (Ggom) is SO(n), Ggeo is not contained in C SO(n).

Proof This is just Proposition 6 combined with Theorem 7. QED
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Part 2. Application to Kloosterman sheaves (cf. [Ka-1]). Let Fq be a finite
subfield of k, xI, a nontrivial (Qe)-valued additive character of Fq, n > 1 an
integer, and X1,-.-, X n a set of n not necessarily distinct, possibly trivial
(Qe)-valued multiplicative characters of (Fq) . We denote by Klq(X1,..., Xn),
or simply by K1, the corresponding Kloosterman sheaf on G (i.e., the sheaf
denoted Klq,(X1,..., Xn; 1,..., 1) with all b I in [Ka-1], 4.1.1). One knows
that K1 is lisse and irreducible of rank n on Gin, that on Gm/Fq it is pure of
weight n 1, that all its breaks at cc are l/n, and that its local monodromy at
zero is tame, a successive extension of the X i- One also knows that if n > 2, the
determinant of K1 is the tame character HX;. We will sometimes refer to
(X1,-.-, X) as the set of exponents of K1 at zero, to emphasize the analogy with
the Kloosterman differential equation (cf. [Ka-Pi]). The results of this section are
in perfect analogy with, and inspired by, the results of [Ka-Pi] on the differential
galois groups of Kloosterman equations.

In discussing Kloosterman sheaves, it is useful to recall that by means of the
Lang isogenies relative to the various finite subfields Fq of k, i.e., the Kummer
coverings of degrees q 1, the prime-to-p completion of 7/" is the inverse limit,
via the norm maps, of all the (Fq). This allows us to view multiplicative
characters of variable finite subfields of k, extended to larger ones by composi-
tion with the relative norm, as being precisely the characters of r of finite,
prime-to-p order.

LEMMA 11 (R. Pink).
induced.

If a Ktoosterman sheaf is induced, then it is Kummer-

Proof Let us denote by 0 the corresponding representation of rq on the
n-dimensional Q-space V Klr. Because 0 is irreducible, it is induced if and
only if there exists a decomposition of V as the direct sum of d > 2 subspaces W
which are transitively permuted among each other by the action of rr1, and in this
case the representation is induced from the stabilizer K of any chosen W,. acting
on W. Notice that the IV/ all have the same dimension, say r, and that rd n.
The permutation representation of rq on the set of the l/V/is a homomorphism/3
of rq to the symmetric group Sd which factors through O, hence is tame at zero
and has all breaks < 1/n at oo. But Sd embeds into GL(d-1) by the
augmentation representation, so the composite is a d- 1 dimensional represen-
tation fl of rq which is tame at zero and whose Swan conductor at o0 is
< (1/n)(d- 1) < 1. Therefore fl is tame at both zero and oo, and hence its
image in Sd must be a cyclic group of order prime to p. But its image is a
transitive subgroup, so being cyclic it must be generated by a single d-cycle.
Therefore all the have the same stabilizer, namely ker(fl), which is a normal
subgroup of 7/" of index d. Because the image of fl is prime-to-p, it follows that d
is prime to p, whence 0 is induced from the d-fold Kummer covering. QED

Let us say that a collection of n > 2 multiplicative characters (X1,.--, X,) is
Kummer-induced if there exists a prime-to-p divisor d > 2 of n, and a set of
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r n/d multiplicative characters ,l-l,... ’r of some finite extension of Fq contain-
ing the d th roots of unity, such that the n d r characters Xi (when composed
with the relative norm), give exactly all (counted with multiplicities) the dth roots
of the r characters i.

LEMMA 12. A Kloosterman sheaf KI,v(Xl,..., X,) is induced if and only if the
set (X1,.--, Xn) of its exponents at zero is Kummer-induced.

Proof By Pink’s lemma above, if K1 is induced it is Kummer-induced, say
[d],(f) for some lisse on Gm, with d > 2 a prime-to-p divisor of n. Therefore

is lisse of rank r n/d, tame and quasiunipotent at zero, and all its breaks at
oo are 1/r. By ([Ka-1], 8.7.1), f is itself a Kloosterman sheaf Kl+(zx,..., Zr) for
some q, possibly different from xI,, and some ri- Applying the direct image
formula of ([Ka-1], 5.6.2) to compute [d],(Kl(rl,..., r)), we find that
KI,I,(Xx,---, Xn) is a multiplicative translate of KI, (all dth roots of the ri).
Looking at its local monodromy at zero, we see that the Xi are precisely all the
d th roots of the z (counted with multiplicities).

Conversely, if(x1,..., Xn) is Kummer-induced, then ([Ka-1], 5.6.2) expresses
KI,(X1,..., Xn) as the Kummer-induction of a Kloosterman sheaf of rank r.

QED

THEOREM 13. Suppose that p > 2n / 1, that n > 2, and that KI(xI,..., X n)
is not Kummer-induced. Then (Ggeom) is one of the following subgroups of GL(n):

SL(n), /f n 2 or if n is odd
SL(n) or Sp(n) or SO(n) if n is even and > 4.

Moreover, in the case (ageom)0 is SO(n), ageom is not contained in Jm SO(n).

Proof. This is just a special case of Theorem 10, in view of the above
discussion of Kloosterman sheaves. QED

Algorithm 14. Hypotheses as in Theorem 13 above, suppose that n is even
and n > 4. Here is the algorithm to decide which of the three possibilities SL, Sp,
or SO one has for (Ggeom). One looks for a multiplicative character - (of some
finite overfield of Fq) such that the set of characters 0; defined as 0 Xi/Z is
stable under inversion. Notice that if such a exists, then 2 (1-Ix)2, so there
are at most 2n candidates to examine. If no such exists, then we are in the SL
case. If such a r exists, then (IItoi) 2 is trivial. If IIo is itself trivial, then we are
in the Sp case, and if not then we are in the SO case.
To see that this algorithm is correct, we argue as follows. Suppose first that

such a exists. Replacing the X by the 6d amounts to twisting K1 by -1, and
has no effect on (Ggeom). This reduces us to the case where our K1 is self-dual (cf.
[Ka-1], 4.1.4, 4.1.7). Because K1 is irreducible, the autoduality is unique up to a
scalar, so is either alternating or symmetric. In the first case, Ggeo lies in Sp;
since Sp lies in SL, the determinant II6o is trivial. In the second case, Ggeom lies
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in the orthogonal group O, but by Theorem 13 it does not lie in SO, which shows
that in this case the determinant IIt is nontrivial.

Conversely, suppose that (ageom) 0 is either Sp or SO. Then Ggom lies in the
normalizer, inside the ambient GL, of either Sp or SO, so Ggon itself lies in
either Gm Sp or in I O. In either case, forming the square of the Gm-factor is
a well-defined character X of finite order of % which factors through p, so is
tame both at zero (because p is), and at (because its break at is both an
integer and is < I/n, the largest break of p at ). Therefore X is a prime-to-p
character of r1, and as such it has a prime-to-p square root, say A. Twisting our
K1 by A-1, we do not change (Ggeom) 0, and we turn our K1 into a self-dual one
(i.e. into one whose Gom is contained in either Sp or O) whose exponents at
zero, the X.x/A, are stable by inversion. Thus we may take r to be A, and we are
in the situation of the last paragraph. Hence the algorithm is correct in all cases.

Remark 15. The attentive reader may be disturbed by the fact that the above
algorithm seems to rule out the SO case in characteristic p 2. He may be even
more disturbed by the apparent incompatibility of Theorem 13 with the fact,
proven in ([Ka-1], 1.1.1) that for p 2, n odd and all X trivial, one has
(Ggeom)0 SO(n) for n 4: 7, and G2 for n 7. The resolution of this perplexity
comes in recalling that, independently of our use of the Feit-Thompson sharpen-
ing of Jordan’s theorem, which required p > 2n + I but which was not used at
all in [Ka-1], we use the hypothesis p > rank((Geom)) in Lemma 4 to prove that
the index of (Ggeom) in Ggom is prime to p, and the hypothesis that p > I +
rank((Gom)) in proving, via Proposition 8, that P(Po) lies in a torus T
of (Ggeom)0
We now turn to the equidistribution consequences of Theorem 13. Recall from

([Ka-l], 4.1.1) that when we view KI(x, Xn) on Gm/Fq, then for E any
finite extension of Fq, and any E-valued point of G,,,, the trace of the
corresponding Frobenius Frobt, is the Kloosterman sum

(-1) "- E xlt(x1 q- "’"--Xn)XI(X1)X2(X2)’’" Xn(Xn),
X1X X

all x in E

where p (resp. each X) is extended to E via the relative trace (resp. norm).

COROLLARY 16 (Sato-Tate law for Kloosterman sums). Hypotheses and nota-
tions as in Theorem_ 13, suppose that all the Xi are characters of (Fq) x. There exists
a constant a in (Qe) x, of the form

(a root of unity) q-- 1/.,
such that after tensoring K1 with the geometrically constant rank one sheaf on

Gm/Fq giuen by tdeg, the resulting lisse sheaf Kl(ct) on Gm/Fq__has all of its
Frobenii in Ggeom, and is pure of weight zero. For any embedding of Qe into C, and
any choice of a maximal compact subgroup K of the Lie group of C-valued points of
Ggom, the conjugacy class of the semisimple part of each Frobenius Frobt, of
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Kl(a) meets K in a single conjugacy class, denoted O(t,E), of K. The conjugacy
classes O(t, E) are equidistributed in the space K# of conjugacy classes of K with
respect to normalized Haar measure, in any of the three senses of equidistribution of
([Ka-l], 3.5).

Proof We first show that there exists a constant a in (Q:) such that the
Frobenii of Kl(a) all land in Ggeom. This results from the explicit determination
of Ggeom, for in all cases considered its normalizer in the ambient GL(n) is equal
to Gm. Ggeom. The intersection of Gm with Ggeom is a finite subgroup IN, so
"formation of the Nth power of the Gin-factor" is a well-defined character of the
r1 of Gm/Fq which is geometrically constant, so of the form deg for some fl in

(Q:)X. We may take for a the inverse of any Nth root of ft.
Because Ggeom has a determinant of finite order, it follows that Kl(et) is pure of

weight zero (since it is pure of some weight, and its determinant is of finite
order). Because the determinant of K1 as a character of the arithmetic r is of the
form (I-[xi)Adeg, where A is ___qn(n-1)/2 (cf. [Ka-1], 7.4.1.3), any a such that
Kl(a) has a determinant of finite order is necessarily of the asserted form. The
equidistribution now follows immediately from Deligne’s Weil II, as explained at
length in [Ka-1], Chapter 3). QED

Part 3. Elementary Fourier transforms on A1. We begin this section by
explaining heuristically the classical forebearer of the finite-field situation we will
study. Fix an integer n > 2, and a polynomial f(x) _,aixi in C[x] of degree n.
We denote by 0 the derivation d/dx. The exponential ef<x) is annihilated by the
first order operator 0x- f’(x), so its Fourier transform

FT(e/)(t) fe: dx

is annihilated by the n 1st order operator f’(0t) + t, i.e., by (minus) the formal
Fourier transform of 0 -f’(x). If n > 3, the Wronskian of f’(Ot)+ is
annihilated by the first order operator na,,O / (n I)a,,_ 1, so for n > 3 it is
equal to a constant times e -bt, for b (n 1)a,,_i/na,,.

In ([Ka-2], 4.2.7, 4.2.8, 4.2.10) we computed the differential galois group Ggal of
the n 1st order operator f’(Ot) + t, by exploiting the fact that all of its slopes
at are equal to n/(n- 1). The result is that for n > 3, Ggaa is one of the
following four subgroups of GL(n 1):

SL(n 1) or G SL(n 1), if either n 1 is odd, or if n 1 is even and there
exist no constants c, d such that the polynomial f(x + c) + d is an odd
function of x,

Sp(n 1) or G Sp(n 1), if n 1 is even and there exist constants c, d such
that the polynomial f(x + c) + d is an odd function of x.

The homotheties Gm
vanishes.

are absent if and only if the coefficient a,_ of f(x) F.aix
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We now turn to the situation with which we shall be concerned for the
remainder of this section. Let F be a finite subfield of k, xI, a nontrivial
(Qe)X-valued additive character of F, n > 2 an integer, and f(x)= Eaix a
polynomial of degree n in k[x]. The lisse rank one sheaf Z’,f) f.(a,) on A
is the analogue of ey (cf. [Ka-1], 4.3, 8.2). We denote by " (or ) the naive
Fourier transform NFT,.L,e,f) of .ca.y (cf. [Ka-1], 8.4 and 8.5). The adic
analogue of the fact that FT(eY)(t)= fey<x+tx dx satisfies a linear differential
equation of order n 1 with all o-slopes n/(n 1), whose Wronskian is e -bt

for n > 3, is the following theorem.

THEOREM 17.
Then

Notations as above, suppose in addition that n > 2 is prime to p.

(1) - is lisse on A of rank n- 1, and all of its breaks at are equal to
n/(n- 1).

(2) lff(x) has coefficients in F, then lives naturally on A over F, and there it
is pure of weight one. For any finite overfieM E of F, and any in
E AI(E), the trace of Frobenius at is given by

trace(Frb/,El )= E .(f(x) + tx),
xE

where denotes the additive character (Trace/l(-)) of E.
(3) lfn > 3, det(’) (R) *(bt) is geometrically constantfor b (n 1)an_l/na n.

Proof (1) Because n is prime to p, the (unique) break of Za, at c is n.
Because n > 2, and ,,,(f) is lisse of rank one, it follows that .e,y is an
irreducible Fourier sheaf (by [K-l], 8.3.1(1), 8.4). Therefore (cf. [Ka-1], 8.2.5,
8.4.1, and 8.5.8(1)) " is an irreducible Fourier sheaf, which is lisse on Ax, and all
of its -breaks are > 1 (because its NFT is the lisse sheaf Z’.f)). From the
Euler-Poincare formula ([Ka-1], 8.5.3) one sees that if two lisse sheaves on A are
inverse NFT’s of each other, then the sum of their ranks is the Swan conductor of
each at o; this shows that has rank n- 1, and Swan conductor n at .
Since all the n 1 o-breaks of " are > 1, and their sum is n, they must each
be equal to n/(n 1). [For if we write each as 1 + ,, then E, 1, each h is
> 0 and rational, and the multiplicity of each of the distinct numbers which
occur among the ’i is multiple of its exact denominator, so already the partial
sum of only those , equal to a given one contributes at least 1 to the sum,
whence all the must be equal.] This concludes the proof of (1).

Suppose now that f has coefficients in F. Then (2) follows from the basic facts
about Fourier transform and the Lefschetz trace formula (of. [Ka-1], 2.3, 8.2.5(3),
8.2.4).

Suppose now that n > 3. We must prove that det(’) (R) **bO is geometri-
cally constant. Consider the universal family of monic polynomials of degree n
over an F-scheme. The parameter space S of this family is the Gm An over F
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with coordinates the coefficients An,..., A0 of fuiv(X) ,Aix i. From Deligne’s
semicontinuity theorem (cf. [La-1]) one sees that over S we have a lisse -uiv
which is lisse of rank n 1 and whose trace of Frobenius at the E-valued point
corresponding to a given polynomial f(x) with coefficients in E is the exponen-
tial sum -Y’.9(f(x)) over x in E. Our " is just the pullback to ,4,1 of urav by
the map

q: A S, (an,..., a2, + al, ao).

The idea is to compute the traces of Frobenius on det(urav) by the following
trick of Hasse-Davenport (cf. [Ha-Da], Section 3, 11, pages 162-165). Given an
E-valued point of S, corresponding to an f, consider the L-function of A over E
with coefficients in .oq’,(f). The cohomological expression of this L-function is

L (T ) det(1 TFrob r.[H(A, a,(f))),
which exhibits it as a polynomial of degree n 1 in T, and shows that

det(Frobf,luniv ) (-1)n- (the coef. of Tn- in L(T)).

The naive additive expression of this same L-function as a sum over all effective
divisors of A over E (i.e., over all monic polynomials in E[x]) shows that for any
d > 1, the coefficient of Td in L(T) is

monic h of deg d over E
E f(a)).

zeroes a of h, with mult.

Notice that the innermost sum is actually E-rational. Indeed, if we denote by
N(h) the Newton symmetric functions of the roots of h, then the innermost sum
is just Y’.aiNi(h), where f(x) Eaixi.
Now we specialize to the case d n 1. The monic h’s of degree n 1 over

E are given by their coefficients sl,..., sn_ , i.e., by the elementary symmetric
functions of their roots. The Ng are universal polynomials in the ss, so we obtain
the formula

Frobf, r, ldet(iv) (--1) n-1

the outer sum over all (s,..., sn_) in En-. One easily sees by isobaricity that
among No,..., Nn, only the last two Nn_ and N can involve sn_, and one
readily calculates that, for n 1 > 1, the involvement is

Nn_l(S1,... Sn_l) (-1)n(n 1)s,_l + a poly. in $1,..., Sn_2,

Nn(sl,..., sn_) (-1)(n)SSn_i + a poly. in s,..., sn_ 2.
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Substituting, we find that

(-1)n-lFrob/,E[det(uv) 4lE((-1)nsn_l[nansl + (n- 1)an_l] -- als
+(n- 1)ao+ EaiPi(Sl,..-,Sn-2)).

i>2

Summing last over the variable sn_x, we see that only the terms with

S -(n- 1)an_l/na

survive, and that

(-- 1)n-lFrobf, rldet(’univ) qX.(--al(n 1)an_/nan)

X ExIt:((n- 1)ao + _.aiPi(Sl,...,Sn_2)),
i>2

the outermost sum over all (S1,... Sn_2) in En-2 for which

S (n 1) a,_ /na,.

We now exploit the fact that the second factor above is independent of a1. To
do this, let us denote by Z the closed subscheme of S defined by the condition
A1 0, by i: Z S the inclusion, and by r: S Z the linear projection
(An,..., A1, A0) (An,... A2, 0, .40). The independence of a of the second
factor above means that, by Chebataroff, we have an isomorphism of lisse rank
one sheaves on S

det(o’univ ) (R) .’(Al(n 1)A,,_/nAn) = r*i*(det(uv)).

In the Fourier transform situation we are studying, our det(o-) is obtained
from det(-uiv) by pulling back by the map

(an,..., a 2, + al, a0).

The composite map irtp is the map (an,..., a2, 0, a0), which is geometri-
cally constant. Therefore det(-)(R) "’bt+al)) is geometrically constant, and
hence so is det(-) (R) ,bt) itself. QED

COROLLARY 18. Hypotheses and notations as in Theorem 17 abooe, suppose
that n 1 0 mod p. Then ageo lies in SL(n).
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Proof Indeed, we have b 0. QED

THEOREM 19. Notations as in Theorem 17 above, suppose further that n > 3
and that p > 2n + 1. Then GGeom is one of the following subgroups of GL(n 1)"

SL(n 1) or !1, SL(n 1), if either n 1 is odd, or if n 1 is even and there
exist no constants c, d in k such that the polynomial f(x + c) + d is an odd
function of x,

Sp(n 1) or p. Sp(n- 1), if n- 1 is even and there exist constants c, d such
that the polynomial f(x + c) + d is an odd function of x.

The homotheties ip are absent if and only if the coefficient an_ off(x) Eaixi
vanishes.

Proof This is almost entirely a formal consequence of Theorems 9 and 17(1).
The only point that needs to be explained is how, when n- 1 is even, one
distinguishes the SL case from the Sp case. By an additive translation in the x
variable, we may suppose that an_ 0, and hence that Ggeo is equal to either
SL(n- 1) or to Sp(n- 1). The keypoint is that up to an additive inversion,
formation of the Verdier dual D commutes with Fourier transform (cf. [La-2],
1.3.2.2)"

D(FT(K)) FT,(D([x -xl*(K))).

In our down-to-earth situation, taking for K the single sheaf .,xi,(f), we have

where g(x) -f( x). The above duality formula then says that D(f) g.
By Fourier inversion, then, f is self-dual if and only if La,(f) is isomorphic to
Za,(g), i.e., if and only if the sheaf &%(f)(R) (Za,(g))-I Za,(f_g) is constant.
This is trivially the case if f- g is constant. If f- g is not a constant, then as
f-g has degree < p, the Swan conductor of La,(f_g) at oo is deg(f-g).
Therefore, f is self-dual if and only if f- g is a constant. QED

COROLLARY 20 (Sato-Tate law for one-variable polynomial sums). Hypothe-
ses and notations as in Theorem 17 above, suppose further that the polynomialf has

coefficients in q. Then there exists a constant t in (QC), of the form

root of unity) X q- 1/2,

such that after tensoring with the geometrically constant rank one sheaf on A1/Fq
given by adeg, the resulting lisse sheaf () on A1/Fq__has all of its Frobenii in

Ggeom, and is pure of weight zero. For any embedding of Qe into C, and any choice

of a maximal compact subgroup K of the Lie group of C-valuedpoints of Ggeom, the
conjugacy class of the semisimple part of each Frobenius Frobt, E of() meets K
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in a single conjugacy class, denoted O( t, E), of K. The conjugacy classes O( t, E) are
equidistributed in the space K# of conjugacy classes ofK with respect to normalized
Haar measure, in any of the three senses of equidistribution of ([Ka-1], 3.5).

Proof The proof of Corollary 16 works mutatis mutandis except for the
evaluation of a up to roots of unity. To evaluate a, it suffices to show that in the
universal case, when we write det(urv) in the form (char. of finite order) Adeg,
for some A (this is always possible, cf. [De-l], 1.3.4(1)), we have A (a root of
unity) qtn-1)/2. To show this, we first may make a finite extension of Fq, and
reduce to the case when all the n th roots of unity lie in Fq. We may take
A det(FroblH(A, Zatf))) for a single choice of f(x) of degree n over Fq. We
take f(x)= xn; an elementary calculation then gives A II(-g(xI,, X)), the
product over all the nontrivial characters X of order dividing n. QED

Remark 21. In the case n 3, f(x)= x 3, the question of how the sums
)2xff’(f(x ) + tx) are distributed was first raised by Birch’s note [Bi], and first
worked out by Livne ([Li]), whose work was the starting point of my own interest
in such sums.
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