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A NOTE ON PSEUDO-CM REPRESENTATIONS AND
DIFFERENTIAL GALOIS GROUPS
Dedicated to Y. L Manin on his fiftieth birthday

NICHOLAS M. KATZ AND RICHARD PINK

Introduction. This note, a sequel to [Ka-1], falls into two parts. In the first, we
give a criterion for a connected semisimple algebraic subgroup of GL(n) to be
one of the following subgroups:

SL(n), if n > 2
Sp(n) or SO(n), if n is even and > 4.

The criterion is based on the classification of what we call "pseudo-CM repre-
sentations", a natural generalization of the notion of "CM representation"
introduced in [Ka-1]. The second part applies these results to determine the
differential galois groups of some concrete differential equations, including the
general Kloosterman equation on Gm.

Part 1. Throughout this section, k is an algebraically closed field of char-
acteristic zero, n is an integer > 2, V is an n-dimensional vector space over k, G
is a Zariski closed subgroup of GL(V), and GO is the identity component of G.

THEOREM 1. Suppose that

(1) GO lies in SL(V).
(2) As G-representation, V is irreducible.
(3) There exists an element g in G, and a connected torus T in Go such that

(a) As T-representation, V is the direct sum of n distinct characters cl,..., en.
(b) T is Ad(g)-stable, i.e., gTg- T.
(c) The automorphism Ad(g) of T cyclically permutes the n characters

Cl Cn.

Then there exist

an integer r > 1
a factorization of n as n nl... n with all n > 2 and the n pairwise relatively

prime.
algebraic groups Gx,..., Gr, with each G equal to one of the groups

SL(ni) is odd or 2
SL(n i) or Sp(n i) or SO(n i) if n is even > 4.
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such that (G, V) is isomorphic to (II(Gi), (R)(std(ni))), where std(ni) denotes the
standard n i-dimensional representation of Gi.

THEOREM 2. Hypotheses as in Theorem 1, suppose in addition that

(4) The group of components G/G is cyclic.
(5) As representation of G, V is not isomorphic to the tensor product of two strictly

lower-dimensional representations of G.

Then r 1, i.e., GO is either

SL(n) if n 2 or n odd
SL(n) or SO(n) or Sp(n) if n is even and > 4.

Moreover, in the case GO SO(n), G is not contained in G, SO(n).

Proof We first explain how Theorem 2 follows from Theorem 1. Consider the
action of G on GO by conjugation. This action must respect the individual factors
G of G, simply because between the various groups G in question, there are no
nontrivial homomorphisms. By the unicity of the decomposition of an irreducible
representation of a product group into a tensor product of irreducible representa-
tions of the factors, each representation std(n i) of Gi, viewed as a representation
of Go must remain isomorphic to itself under G-conjugation. Because G/G is
cyclic, any irreducible representation of Go whose isomorphism class is G-
invariant extends to an irreducible representation of G. In particular, the repre-
sentations std(ni) of Go each extend to representations std(ni) of G itself.
Consider the representation (R)(std(ni)) of G. It coincides on the normal sub-
group Go with the G-irreducible representation V of G, so it is G-irreducible,
and as a G-representation it must be the tensor product of V with a character c
of G/G (namely the one-dimensional space of G-homomorphisms from V to
(R) (std(ni))). Twisting a single one of the std(n) by the inverse of this character,
we find that V is itself a tensor product of strictly lower-dimensional representa-
tions of G unless r 1.

If G= SO(n), then G cannot lie in G SO(n), for then the element g in
hypothesis (3) of Theorem 1 would induce an inner automorphism of G, so
could be rechosen to lie in G, in which case we would find that the standard
representation of SO(n) is CM, and this is known (cf. [Ka-1], 3.2.7) not to be the
case. This completes the deduction of Theorem 2 rom Theorem 1.
We now turn to the proof of Theorem 1. Because Go is a connected irreducible

subgroup of SL(n), it is automatically semisimple (cf. [Ka-2], 11.5.3.2). We
reduce to the case when the torus T is a maximal torus of G. Let T be any
maximal torus of Go which contains the given torus T. Then we have obvious
inclusions

T Z (r)

The hypothesis (3a) of Theorem 1 shows that ZGL(v)(T) is precisely the group of
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all diagonal (with respect to a T-eigenbasis of V) matrices in GL(V). Therefore
(ZG(T)) is itself a torus, so by maximality of T it must be equal to T itself. In
particular there is a unique maximal torus T of Go which contains T. By unicity,
T must be Ad(g)-stable if T is. Because T acts on V as the direct sum of n
distinct characters ci, T respects each ci-eigenspace. The characters e of T on
these eigenspaces must be n distinct characters of T which are cyclically per-
muted by Ad(g), simply because the e are determined by their restrictions c; to
T, and this holds for the c. This completes the reduction to the case when T is
maximal.
We now state and prove a classification theorem for pseudo-CM representa-

tions of semisimple Lie algebras, which, when applied to Lie(G) and its given
embedding into End(V), leads immediately to Theorem I exactly as in Chapter 3
of [Ka-1].

Let (R) be a nonzero semisimple Lie algebra over k, % a cartan subalgebra, and
fl a Lie algebra automorphism of which maps 2; to itself. We say that a
finite-dimensional representation V of (R) is pseudo-CM, or pseudo-CM with
respect to/3 and %, if the following conditions hold:

(1) V is faithful and irreducible.
(2) As %-representation, V is the direct sum of n dim(V) distinct weights

WI, W of %.
(3) V is (R)-isomorphic to its r-transform, i.e., there exists an element B in

GL(V) which, acting by conjugation on End(V), normalizes (the images
of) t and %, and induces/3 on (R).

(4) The element B, acting on V, cyclically permutes the n distinct one-dimen-
sional weight spaces of 2;.

(In the application, the element B in GL(V) will be the element g occurring in
hypothesis (3) of Theorem 1, and fl will be Ad(g).)

THEOREM 3. Notations as above, let V be a pseudo-CM representation of a
semisimple . Then there exist

an integer r > 1,
a factorization of n as n nl... n with all n > 2 and the n pairwise relatively

prime,
Lie algebras 1,..., (R)r, with each (R) equal to one of

(R) (ni) if n is odd or 2
(R)(ni) or (R)O(ni) or (R)(C)(ni) if n is even > 4,

such that (, V) is isomorphic to (II((R)i), (R)(std(ni))), where std(ni) denotes the
standard n i-dimensional representation of i.

Proof. First write (R) as a product of simple Lie algebras 6 , and then factor
V as (R) (V), where V is an irreducible representation of (R) which factors through
(R). Because the set of simple factors of (R) and the corresponding tensor factors
of V are unique, the fl-invariance of V shows that the fl-transform of a given V
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must be one of the Vj.. Group together in clumps the factors ((R) ;, V) according to

fl-orbit. This gives us a new, "coarser" factorization of ((R), V) as a product of
situations (@ i, V) each of which is fl-stable by construction. Let us denote by fli
the automorphism of (R) induced by/3, so that/3 is the product of the fl, and
choose elements B (unique up to scalars) in GL(V) inducing fl, such that B is
their tensor product. The cartan subalgebra % is the product of its projections %’i
onto the factors @ i, and each of these % is necessarily normalized by its Bi. It is
immediate (compare [Ka-1], 3.1.6) that V is a pseudo-CM representation of (R)
with respect to fl and % if and only if both the following two conditions hold"

(a) the numbers n dim(V/) are pairwise relatively prime,
(b) for each i, V is a pseudo-CM representation of (R); w.r.t, fl and %i.

This reduces us to showing that if (@, V) is isotypical, i.e., a product of several
copies of a single situation (simple Lie algebra @ 0, irreducible representation Vo)
and if V is a pseudo-CM representation of (R) of dimension n > 2 with respect to
an automorphism/3 which cyclically permutes the factors, then the only possibil-
ities for @ are

(n) if n 2 or if n odd
(n) or (C)(n) or (R)p(n) if n even > 4,

with V std(n). To do this, we first show that ither (R) is itself simple, or (R) is
(C)(4), with V std(4). Indeed, if there are k > 2 factors cyclically permuted by

fl, and if we use fl to identify them Successively, we may suppose the automor-
phism B of the k th tensor power (V0)* k of Vo to be of the form

V (R) V2 Vk V2 V (R)Vk A(Vl)

for some A in GL(Vo) which normalizes both (R) 0 and % o- The k th iterate of B is
the automorphism A (R) (R)A, under which any weight of the form
(w, w,..., w) of % %0 % 0 has an orbit of cardinality at most dim(V0).
Therefore the B-orbit of such a weight has cardinality at most k. dim(V0). By
hypothesis, there is a single B-orbit, and its cardinality is dim(V). Thus we obtain
the inequalities

k. dim( Vo ) > dim(V ) (dim(Vo ))k with k > 2 and dim(V0) > 2,

which are only satisfied for k 2 dim(V0), in which case (R) 0 must be (R) (2),
(R) is (R) (2) (R) (2) (C)(4), and V is std(2) (R) std(2) std(4). We leave to
the reader the verification that the standard representation of (R)(C)(2k) is in fact
a pseudo-CM representation for any k > 2.

It remains only to treat the case in which @ is simple. If/3 is inner, then V is a
CM-representation, and by ([Ka-1], 3.2.7) we know that (R) is either (R) (n) or (if
n is even) (n), with V std(n).
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Suppose now that fl is not inner. Because the weights of V are transitively
permuted by an automorphism fl of (@, %), they all have the same length with
respect to any W-invariant scalar product on the Q-span of the roots of (@, %).
Therefore V is a minuscule representation of @, so in terms of any choice of base
of the root system of (@, %), V is a fundamental representation to. The
fl-invariance of V (together with Bourbaki Lie Chapter 8, Section 5, No. 2,
corollary of Proposition 4 applied to fl) shows that a is fixed under the nontrivial
automorphism of the diagram induced by ft. A glance at the tables (Bourbaki Lie
Chapter 8, Section 7, No. 3, and Chapter 6, Planches) shows that the only such
minuscule representations are the standard representation of (C)(2k) for k > 3,
and the jth exterior power of the standard representation of (R) (2j) for j > 3.
(The case j 2 coincides with the case k 3.) It remains only to check that the
second case is not a pseudo-CM representation of (2j) for j > 3.
For this, we argue as follows. The square t9 of fl is inner, so corresponds to an

element of the symmetric group on 2j letters, while the weights of the V in
question correspond to the subsets of these 2j letters having exactly j elements.
Because fl is supported to permute the weights transitively, t9 can have at most
two orbits acting on the weights. Consider the decomposition of t9 as a disjoint
product of cycles, of lengths dl,..., dr, with each d > 1, d + +d 2j.
Let Si be the "support" of the th cycle in , so that the S are just the orbits of

acting on the set (1, 2,..., 2j). For any subset K consisting of j elements, let
us define

e ei(K ) card(K intersects Si).

The e are clearly constant on 0-orbits, and, equally clearly, any set of integers
(el,..., er) satisfying

0 < e < d for 1,..., r, and e + +er j,

actually occurs for some K with j dements. Because t9 has at most two orbits
acting on the set of K’s, there can be at most two solutions (el,..., er) of the
above equations (.). This implies that either r 1, or that r 2 and d 1,
d2-2j-1. In either case, has order at most 2j, so dim(V)<4j. But
binomial coefficients increase towards the middle, so we have

4j > dim(V) dim(AJ(std(2j))) > dim(A2(std(2j))) =j(2j 1)

a contradiction since j > 3. This completes the proof of Theorem 3, and
concludes Part 1. QED

Part 2. We continue to work over an algebraically closed field k of character-
istic zero. Let U be a smooth connected affine curve over k, X its complete
nonsingular model, oo X- U a "point at infinity", to a fiber-functor on



62 KATZ AND PINK

D.E.(X/k), n > 2 an integer, V a D.E. on X/k of rank n, V co(V) its fiber at
co, Ggal c GL(V) its differential galois group with respect to co, and (Gga) the
identity component of G.
THEOREM 4. Notations as above, suppose that

(1) Det(V) is offinite order, i.e., (agal)0 lies in SL(n) SL(V).
(2) As representation of (Ggd), V is irreducible.
(3) At oc, all the slopes of V have exact denominator n.

Then (Gga)o is either

SL(n) if n 2 or n odd
SL(n) or SO(n) or Sp(n) if n is even and > 4.

Moreover, in the case (Gal)0 SO(n), Ggal is not contained in G SO(n).

Proof We apply Theorem 2 not to Gg,d but rather to the subgroup G of Ggal
generated by (Ggd) and by the image #(Ioo ) of Ioo in Ggl. By ([Ka-1], 2.6.3), the
image of I in the finite group G/(Gga) is cyclic, so GO (Ga), and
G/(Gga) is cyclic. To apply Theorem 2 we take for the torus T the image of

(Io)<+), and we take for g G the image of any element in Ioo which generates
its unique cyclic quotient of order n. By ([Ka-1], 2.5.9.3 and 2.6.6), all the
conditions (1) through (5) of Theorems 1 and 2 are satisfied. QED

Remark 4.1. In the proof of Theorem 4 above, we could also have taken for T
the smaller but "more explicit" torus which is the image in Ggl of (I)<r/),
where r/n is the unique slope at oo (cf. [Ka-1], 2.6.6).

In order for the above theorem to be useful, we need a criterion to decide the
G-irreducibility of an irreducible representation of G, when G/G is cyclic.

LV.MMA 5. Let V be a finite-dimensional k-vector space, G GL(V) a Zariski
closed subgroup of GL(V), and H G a Zariski closed normal subgroup of G such
that the quotient G/H is a finite cyclic group. Suppose that V is G-irreducible. Then
either V is H-irreducible, or V as G-representation is induced from a proper
subgroup K of G which contains H.

Proof. Because H is a normal subgroup of G of finite index and V is
G-irreducible, either V is induced as in the assertion of the lemma or the
restriction of V to H is H-isotypical, say V rW as H-representation, where W
is an irreducible representation of H. By Jordan-HSlder theory, the isomorphism
class of W must be invariant by G-conjugation. Because G/H is cyclic, 14/"

extends to a representation W of G. We have a natural map of G-representations

W @Homn(W, V) --, V,

which, being an isomorphism of H-representations, must be a G-isomorphism as
well. Because V is G-irreducible, its two tensor factors must themselves be
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G-irreducible. Thus Homn(W, V) is G-irreducible. As it is an r-dimensional
representation which factors through the cyclic quotient G/H, it can only be
G-irreducible if r 1, i.e., if V is itself H-irreducible. QED

We now turn to some concrete applications of the theory developed so far. We
work on the curve U Gm. For every integer d > 1, we denote by

[d]:Gm G

the dth power mapping. We say that a D.E. V on G is "Kummer-induced" if it
is of the form [d],(W) for some d > 2 and some D.E. W on Gm (cf. [Ka-1], 1.4.6
and 1.4.7 for the compatibility with the representation-theoretic sense of "in-
duced"). Note that if V is Kummer-induced, then its rank n must be divisible by
d, and the quotient n/d is the rank of W.

COROLLARY 6. Notations as above, let V be an irreducible D.E. on Gm.
either V is Kummer-induced, or V is (Ggal)-irreducible.

Then

Proof By ([Ka-1], 1.2.5 and 1.4.4), the finite quotient Ggal/(Ggal), for any
D.E. on Gm, is finite cyclic, being a finite quotient of rl(Gm) corresponding to
some Kummer covering of G,, by itself. The result now follows from Lemma 5, in
virtue of ([Ka-1], 1.4.6). QED

If V is regular singular at zero, there is a simple criterion, in terms of its
exponents at zero, to insure that it is not Kummer-induced. Let a1,... a be
these exponents, viewed as lying in the additive quotient group k/Z. If in fact
V [d].(W), then W is itself regular singular at zero, and if bl,..., bn/d are its
exponents at zero, then the n exponents a of V at zero are simply the n
quantities

(b + j)/d modz, fori=l,...,n/dandj=l,...,d.

Let us say that a set of n not-necessarily-distinct elements of k/Z is Kummer-
induced if there exist a divisor d > 2 of n and n/d elements b of k/Z such that
the a are the n quantities displayed above. Thus we have:

CRITERION 7. Let V be a D.E. on G which is regular singular at zero. If the
exponents of V at zero are not Kummer-induced, then V is not Kummer-induced.

Combining the above results, we find

TrIEOREM 8. Let V be a D.E. on G,, of rank n > 2. Suppose that

(1) Det(V) is offinite order.
(2) At o, all the slopes of V have exact denominator n.
(3) At zero, V is regular singular and its exponents are not Kummer-induced.
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Then ((gal)0 is either

SL(n) if n 2 or n odd
SL(n) or SO(n) or Sp(n) if n is even and > 4.

Moreooer, in the case (Ga) SO(n), Gal is not contained in Gm SO(n).

Example 9. Let n > 2, ax,..., a n a set of n elements in k whose image in
k/Z is not Kummer-induced, and whose sum lies in Q. Denote by D the
invariant derivation 2d/d2 on G,. Let rn > 1 be an integer prime to n, and
,(z) a polynomial of degree m with m(0)= 0. Then the D.E. on G
corresponding to the n’th order operator

II(D- a,) Q,(z)

satisfies all the hypotheses of Theorem 8 (its exponents at zero are the a mod Z,
its determinant is the first order operator D- Eai, and its slopes at c are all
equal to m/n), and hence its conclusion as well. In the particular case m 1, we
find the general Kloosterman equation, of which a very special case was treated
in [Ka-1].

Algorithm 10. Here is a simple algorithm in terms of exponents to determine,
when n is even and > 4 and the exponents are not Kummer-induced, which of
the three possibilities SL, Sp, or SO for (G,a) one has in the Kloosterman case
m 1. One first looks for a number c in k such that for the quantities b defined
as a -c, the two sets of exponents (bx,..., b) and (-b,...,-bn) coincide
(mod Z). If no such c exists, then we are in the SL case. If such a c exists, then
Eb is either an integer or a half-integer, and we are in the Sp or SO cases
accordingly.
To see that this algorithm is correct, suppose first that such a quantity c exists.

Then c is necessarily a rational number (because Ea is assumed rational), so the
first-order operator D c is of finite order. Therefore tensoring our given D.E.
by D- c, which exactly has the effect of replacing the a by the b, does not
change the identity component of G,a, and reduces us to the case where our
Kloosterman equation is self-dual (cf. [Ka-1], 4.5.2 and 1.5.3). If the autoduality,
unique up to a scalar, is alternating, then G, lies in the corresponding symplectic
group Sp; since Sp lies in SL, the determinant D Y’.b is trivial, which means
exactly that Ebi is an integer. If the autoduality is symmetric, then G,a lies in the
corresponding orthogonal group O, but by Theorem 8 it does not lie in SO; thus
the determinant has order two but is nontrivial, which means exactly that Eb is a
half-integer but not an integer.

Conversely, suppose that (G,) is equal to Sp or to SO. Then G, lies in the
normalizer, inside GL, of either Sp or SO, so G,m is itself contained in either
G. Sp or G,,. 0. In either case, forming the square of the Gin-factor is a
well-defined character X of G,l, which corresponds to a rank one D.E. on
which is regular singular at both zero (because the original Kloosterman D.E. is)
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and at oo (because its slope at oo is an integer which is < 1/n, the largest [and
only] slope at oo of the original Kloosterman D.E., cf. [Ka-1], 2.5.8). Such a rank
one D.E. must be of the form D d, for some element d in k. Now define c to
be -d/2. The D c is an inverse square root of D d, so tensoring with D c
turns our original Kloosterman D.E. into a self-dual one (i.e., into one whose Ggl
is contained in either Sp or 0), whose exponents at zero, the b, are consequently
stable mod Z by negation. This means exactly that we are in the situation of the
previous paragraph. Hence the algorithm is correct in all cases.
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