A NOTE ON PSEUDO-CM REPRESENTATIONS AND DIFFERENTIAL GALOIS GROUPS

Dedicated to Y. I. Manin on his fiftieth birthday

NICHOLAS M. KATZ AND RICHARD PINK

Introduction. This note, a sequel to [Ka-1], falls into two parts. In the first, we give a criterion for a connected semisimple algebraic subgroup of GL(n) to be one of the following subgroups:

SL(n), if $n \ge 2$ Sp(n) or SO(n), if n is even and ≥ 4 .

The criterion is based on the classification of what we call "pseudo-CM representations", a natural generalization of the notion of "CM representation" introduced in [Ka-1]. The second part applies these results to determine the differential galois groups of some concrete differential equations, including the general Kloosterman equation on \mathbf{G}_m .

Part 1. Throughout this section, k is an algebraically closed field of characteristic zero, n is an integer ≥ 2 , V is an n-dimensional vector space over k, G is a Zariski closed subgroup of GL(V), and G^0 is the identity component of G.

THEOREM 1. Suppose that

- (1) G^0 lies in SL(V).
- (2) As G^0 -representation, V is irreducible.
- (3) There exists an element g in G, and a connected torus T in G^0 such that
 - (a) As T-representation, V is the direct sum of n distinct characters c₁,..., c_n.
 (b) T is Ad(g)-stable, i.e., gTg⁻¹ = T.
 - (c) The automorphism Ad(g) of T cyclically permutes the n characters c_1, \ldots, c_n .

Then there exist

an integer $r \ge 1$

- a factorization of n as $n = n_1 \dots n_r$ with all $n_i \ge 2$ and the n_i pairwise relatively prime.
- algebraic groups G_1, \ldots, G_r , with each G_i equal to one of the groups

 $SL(n_i)$ is odd or = 2

 $SL(n_i)$ or $Sp(n_i)$ or $SO(n_i)$ if n_i is even ≥ 4 .

Received October 11, 1986. Second author supported by deutscher Akademischer Austauschdienst (DADD) during the academic year 1985–86.

such that (G^0, V) is isomorphic to $(\Pi(G_i), \otimes (\operatorname{std}(n_i)))$, where $\operatorname{std}(n_i)$ denotes the standard n_i -dimensional representation of G_i .

THEOREM 2. Hypotheses as in Theorem 1, suppose in addition that

- (4) The group of components G/G^0 is cyclic.
- (5) As representation of G, V is not isomorphic to the tensor product of two strictly lower-dimensional representations of G.

Then r = 1, i.e., G^0 is either

SL(n) if n = 2 or n odd

SL(n) or SO(n) or Sp(n) if n is even and ≥ 4 .

Moreover, in the case $G^0 = SO(n)$, G is not contained in $G_m \cdot SO(n)$.

Proof. We first explain how Theorem 2 follows from Theorem 1. Consider the action of G on G^0 by conjugation. This action must respect the individual factors G_i of G^0 , simply because between the various groups G_i in question, there are no nontrivial homomorphisms. By the unicity of the decomposition of an irreducible representation of a product group into a tensor product of irreducible representations of the factors, each representation $std(n_i)$ of G_i , viewed as a representation of G^0 , must remain isomorphic to itself under G-conjugation. Because G/G^0 is cyclic, any irreducible representation of G^0 whose isomorphism class is Ginvariant extends to an irreducible representation of G. In particular, the representations $std(n_i)$ of G^0 each extend to representations $std(n_i)$ of G itself. Consider the representation \otimes (std(n,)) of G. It coincides on the normal subgroup G^0 with the G^0 -irreducible representation V of G, so it is G-irreducible, and as a G-representation it must be the tensor product of V with a character cof G/G^0 (namely the one-dimensional space of G^0 -homomorphisms from V to \otimes (std(n_i))). Twisting a single one of the std(n_i) by the inverse of this character, we find that V is itself a tensor product of strictly lower-dimensional representations of G unless r = 1.

If $G^0 = SO(n)$, then G cannot lie in $G_m \cdot SO(n)$, for then the element g in hypothesis (3) of Theorem 1 would induce an inner automorphism of G^0 , so could be rechosen to lie in G^0 , in which case we would find that the standard representation of SO(n) is CM, and this is known (cf. [Ka-1], 3.2.7) not to be the case. This completes the deduction of Theorem 2 from Theorem 1.

We now turn to the proof of Theorem 1. Because G^0 is a connected irreducible subgroup of SL(n), it is automatically semisimple (cf. [Ka-2], 11.5.3.2). We reduce to the case when the torus T is a maximal torus of G^0 . Let T be any maximal torus of G^0 which contains the given torus T. Then we have obvious inclusions

$$\mathbf{T} \subset Z_G(T) \subset Z_{GL(V)}(T).$$

The hypothesis (3a) of Theorem 1 shows that $Z_{GL(V)}(T)$ is precisely the group of

all diagonal (with respect to a *T*-eigenbasis of *V*) matrices in GL(V). Therefore $(Z_G(T))^0$ is itself a torus, so by maximality of **T** it must be equal to **T** itself. In particular there is a unique maximal torus **T** of G^0 which contains *T*. By unicity, **T** must be Ad(g)-stable if *T* is. Because *T* acts on *V* as the direct sum of *n* distinct characters c_i , **T** respects each c_i -eigenspace. The characters c_i of **T** on these eigenspaces must be *n* distinct characters of **T** which are cyclically permuted by Ad(g), simply because the c_i are determined by their restrictions c_i to *T*, and this holds for the c_i . This completes the reduction to the case when *T* is maximal.

We now state and prove a classification theorem for pseudo-CM representations of semisimple Lie algebras, which, when applied to $\text{Lie}(G^0)$ and its given embedding into End(V), leads immediately to Theorem 1 exactly as in Chapter 3 of [Ka-1].

Let \mathfrak{G} be a nonzero semisimple Lie algebra over k, \mathfrak{T} a cartan subalgebra, and β a Lie algebra automorphism of \mathfrak{G} which maps \mathfrak{T} to itself. We say that a finite-dimensional representation V of \mathfrak{G} is pseudo-CM, or pseudo-CM with respect to β and \mathfrak{T} , if the following conditions hold:

- (1) V is faithful and irreducible.
- (2) As \mathfrak{T} -representation, V is the direct sum of $n = \dim(V)$ distinct weights w_1, \ldots, w_n of \mathfrak{T} .
- (3) V is \mathfrak{G} -isomorphic to its β -transform, i.e., there exists an element B in GL(V) which, acting by conjugation on End(V), normalizes (the images of) \mathfrak{G} and \mathfrak{T} , and induces β on \mathfrak{G} .
- (4) The element B, acting on V, cyclically permutes the n distinct one-dimensional weight spaces of \mathfrak{T} .

(In the application, the element B in GL(V) will be the element g occurring in hypothesis (3) of Theorem 1, and β will be Ad(g).)

THEOREM 3. Notations as above, let V be a pseudo-CM representation of a semisimple (\mathfrak{G}) . Then there exist

- an integer $r \ge 1$,
- a factorization of n as $n = n_1 \dots n_r$ with all $n_i \ge 2$ and the n_i pairwise relatively prime,

Lie algebras $\mathfrak{G}_1, \ldots, \mathfrak{G}_r$, with each \mathfrak{G}_i equal to one of

 $\mathfrak{S}\mathfrak{L}(n_i)$ if n_i is odd or = 2

 $\mathfrak{SL}(n_i)$ or $\mathfrak{Sp}(n_i)$ or $\mathfrak{SD}(n_i)$ if n_i is even ≥ 4 ,

such that (\mathfrak{G}, V) is isomorphic to $(\Pi(\mathfrak{G}_i), \otimes (\operatorname{std}(n_i)))$, where $\operatorname{std}(n_i)$ denotes the standard n_i -dimensional representation of \mathfrak{G}_i .

Proof. First write \mathfrak{G} as a product of simple Lie algebras \mathfrak{G}_i , and then factor V as $\mathfrak{S}(V_i)$, where V_i is an irreducible representation of \mathfrak{G} which factors through \mathfrak{G}_i . Because the set of simple factors of \mathfrak{G} and the corresponding tensor factors of V are unique, the β -invariance of V shows that the β -transform of a given V_i

KATZ AND PINK

must be one of the V_j . Group together in clumps the factors (\mathfrak{G}_i, V_i) according to β -orbit. This gives us a new, "coarser" factorization of (\mathfrak{G}, V) as a product of situations (\mathfrak{G}_i, V_i) each of which is β -stable by construction. Let us denote by β_i the automorphism of \mathfrak{G}_i induced by β , so that β is the product of the β_i , and choose elements B_i (unique up to scalars) in $GL(V_i)$ inducing β_i , such that B is their tensor product. The cartan subalgebra \mathfrak{T} is the product of its projections \mathfrak{T}_i onto the factors \mathfrak{G}_i , and each of these \mathfrak{T}_i is necessarily normalized by its B_i . It is immediate (compare [Ka-1], 3.1.6) that V is a pseudo-CM representation of \mathfrak{G} with respect to β and \mathfrak{T} if and only if both the following two conditions hold:

- (a) the numbers $n_i = \dim(V_i)$ are pairwise relatively prime,
- (b) for each *i*, V_i is a pseudo-CM representation of \mathfrak{G}_i w.r.t. β_i and \mathfrak{T}_i .

This reduces us to showing that if (\mathfrak{G}, V) is isotypical, i.e., a product of several copies of a single situation (simple Lie algebra \mathfrak{G}_0 , irreducible representation V_0) and if V is a pseudo-CM representation of \mathfrak{G} of dimension $n \ge 2$ with respect to an automorphism β which cyclically permutes the factors, then the only possibilities for \mathfrak{G} are

 $\mathfrak{SL}(n)$ if n = 2 or if n odd $\mathfrak{SL}(n)$ or $\mathfrak{SD}(n)$ or $\mathfrak{Sp}(n)$ if n even ≥ 4 ,

with $V = \operatorname{std}(n)$. To do this, we first show that ither \mathfrak{G} is itself simple, or \mathfrak{G} is $\mathfrak{SO}(4)$, with $V = \operatorname{std}(4)$. Indeed, if there are $k \ge 2$ factors cyclically permuted by β , and if we use β to identify them successively, we may suppose the automorphism B of the kth tensor power $(V_0)^{\otimes k}$ of V_0 to be of the form

$$v_1 \otimes v_2 \otimes \cdots \otimes v_k \mapsto v_2 \otimes v_3 \otimes \cdots \otimes v_k \otimes A(v_1),$$

for some A in $GL(V_0)$ which normalizes both \mathfrak{G}_0 and \mathfrak{T}_0 . The k th iterate of B is the automorphism $A \otimes \cdots \otimes A$, under which any weight of the form (w, w, \ldots, w) of $\mathfrak{T} = \mathfrak{T}_0 \times \cdots \times \mathfrak{T}_0$ has an orbit of cardinality at most $\dim(V_0)$. Therefore the B-orbit of such a weight has cardinality at most $k \cdot \dim(V_0)$. By hypothesis, there is a single B-orbit, and its cardinality is $\dim(V)$. Thus we obtain the inequalities

$$k \cdot \dim(V_0) \ge \dim(V) = (\dim(V_0))^{\kappa}$$
, with $k \ge 2$ and $\dim(V_0) \ge 2$,

which are only satisfied for $k = 2 = \dim(V_0)$, in which case \mathfrak{G}_0 must be $\mathfrak{SL}(2)$, $\mathfrak{SL}(2) \times \mathfrak{SL}(2) = \mathfrak{SL}(4)$, and V is $\operatorname{std}(2) \otimes \operatorname{std}(2) = \operatorname{std}(4)$. We leave to the reader the verification that the standard representation of $\mathfrak{SL}(2k)$ is in fact a pseudo-CM representation for any $k \ge 2$.

It remains only to treat the case in which \mathfrak{G} is simple. If β is inner, then V is a CM-representation, and by ([Ka-1], 3.2.7) we know that \mathfrak{G} is either $\mathfrak{SL}(n)$ or (if n is even) $\mathfrak{Sp}(n)$, with $V = \operatorname{std}(n)$.

Suppose now that β is not inner. Because the weights of V are transitively permuted by an automorphism β of $(\mathfrak{G}, \mathfrak{X})$, they all have the same length with respect to any *W*-invariant scalar product on the **Q**-span of the roots of $(\mathfrak{G}, \mathfrak{X})$. Therefore V is a minuscule representation of \mathfrak{G} , so in terms of any choice of base of the root system of $(\mathfrak{G}, \mathfrak{X})$, V is a fundamental representation ω_{α} . The β -invariance of V (together with Bourbaki Lie Chapter 8, Section 5, No. 2, corollary of Proposition 4 applied to β) shows that α is fixed under the nontrivial automorphism of the diagram induced by β . A glance at the tables (Bourbaki Lie Chapter 8, Section 7, No. 3, and Chapter 6, Planches) shows that the only such minuscule representations are the standard representation of $\mathfrak{SQ}(2k)$ for $k \ge 3$, and the *j*th exterior power of the standard representation of $\mathfrak{SQ}(2j)$ for $j \ge 3$.

For this, we argue as follows. The square ∂ of β is inner, so corresponds to an element of the symmetric group on 2j letters, while the weights of the V in question correspond to the subsets of these 2j letters having exactly j elements. Because β is supported to permute the weights transitively, ∂ can have at most two orbits acting on the weights. Consider the decomposition of ∂ as a disjoint product of cycles, of lengths d_1, \ldots, d_r , with each $d_i \ge 1$, $d_1 + \cdots + d_r = 2j$. Let S_i be the "support" of the *i*th cycle in ∂ , so that the S_i are just the orbits of ∂ acting on the set $(1, 2, \ldots, 2j)$. For any subset K consisting of j elements, let us define

$$e_i = e_i(K) = \operatorname{card}(K \text{ intersects } S_i).$$

The e_i are clearly constant on ∂ -orbits, and, equally clearly, any set of integers (e_1, \ldots, e_r) satisfying

(*)
$$0 \leq e_i \leq d_i$$
 for $i = 1, \dots, r$, and $e_1 + \dots + e_r = j$,

actually occurs for some K with j elements. Because ∂ has at most two orbits acting on the set of K's, there can be at most two solutions (e_1, \ldots, e_r) of the above equations (*). This implies that either r = 1, or that r = 2 and $d_1 = 1$, $d_2 = 2j - 1$. In either case, ∂ has order at most 2j, so dim $(V) \leq 4j$. But binomial coefficients increase towards the middle, so we have

$$4j \ge \dim(V) = \dim(\Lambda^{j}(\operatorname{std}(2j))) \ge \dim(\Lambda^{2}(\operatorname{std}(2j))) = j(2j-1)$$

a contradiction since $j \ge 3$. This completes the proof of Theorem 3, and concludes Part 1. QED

Part 2. We continue to work over an algebraically closed field k of characteristic zero. Let U be a smooth connected affine curve over k, X its complete nonsingular model, $\infty \in X - U$ a "point at infinity", ω a fiber-functor on

KATZ AND PINK

D.E.(X/k), $n \ge 2$ an integer, V a D.E. on X/k of rank $n, V = \omega(V)$ its fiber at ω , $G_{gal} \subset GL(V)$ its differential galois group with respect to ω , and $(G_{gal})^0$ the identity component of G_{gal} .

THEOREM 4. Notations as above, suppose that

- (1) Det(V) is of finite order, i.e., $(G_{gal})^0$ lies in SL(n) = SL(V). (2) As representation of $(G_{gal})^0$, V is irreducible.
- (3) At ∞ , all the slopes of V have exact denominator n.

Then $(G_{gal})^0$ is either

SL(n) if n = 2 or n odd SL(n) or SO(n) or Sp(n) if n is even and ≥ 4 .

Moreover, in the case $(G_{gal})^0 = SO(n)$, G_{gal} is not contained in $G_m \cdot SO(n)$.

Proof. We apply Theorem 2 not to G_{gal} but rather to the subgroup G of G_{gal} generated by $(G_{gal})^0$ and by the image $\rho(I_{\infty})$ of I_{∞} in G_{gal} . By ([Ka-1], 2.6.3), the image of I_{∞} in the finite group $G_{gal}/(G_{gal})^0$ is cyclic, so $G^0 = (G_{gal})^0$, and $G/(G_{gal})^0$ is cyclic. To apply Theorem 2 we take for the torus T the image of $(I_{\infty})^{(0+)}$, and we take for $g \in G$ the image of any element in I_{∞} which generates its unique cyclic quotient of order n. By ([Ka-1], 2.5.9.3 and 2.6.6), all the conditions (1) through (5) of Theorems 1 and 2 are satisfied. QED

Remark 4.1. In the proof of Theorem 4 above, we could also have taken for Tthe smaller but "more explicit" torus which is the image in G_{gal} of $(I_{\infty})^{(r/n)}$, where r/n is the unique slope at ∞ (cf. [Ka-1], 2.6.6).

In order for the above theorem to be useful, we need a criterion to decide the G⁰-irreducibility of an irreducible representation of G, when G/G^0 is cyclic.

LEMMA 5. Let V be a finite-dimensional k-vector space, $G \subset GL(V)$ a Zariski closed subgroup of GL(V), and $H \subset G$ a Zariski closed normal subgroup of G such that the quotient G/H is a finite cyclic group. Suppose that V is G-irreducible. Then either V is H-irreducible, or V as G-representation is induced from a proper subgroup K of G which contains H.

Proof. Because H is a normal subgroup of G of finite index and V is G-irreducible, either V is induced as in the assertion of the lemma or the restriction of V to H is H-isotypical, say V = rW as H-representation, where W is an irreducible representation of H. By Jordan-Hölder theory, the isomorphism class of W must be invariant by G-conjugation. Because G/H is cyclic, W extends to a representation W of G. We have a natural map of G-representations

$$\mathbf{W} \otimes \operatorname{Hom}_{H}(\mathbf{W}, V) \to V,$$

which, being an isomorphism of *H*-representations, must be a *G*-isomorphism as well. Because V is G-irreducible, its two tensor factors must themselves be

62

G-irreducible. Thus $\text{Hom}_H(\mathbf{W}, V)$ is *G*-irreducible. As it is an *r*-dimensional representation which factors through the cyclic quotient G/H, it can only be *G*-irreducible if r = 1, i.e., if *V* is itself *H*-irreducible. QED

We now turn to some concrete applications of the theory developed so far. We work on the curve $U = G_m$. For every integer $d \ge 1$, we denote by

$$[d]: \mathbf{G}_m \to \mathbf{G}_m$$

the *d*th power mapping. We say that a D.E. V on G_m is "Kummer-induced" if it is of the form $[d]_*(W)$ for some $d \ge 2$ and some D.E. W on G_m (cf. [Ka-1], 1.4.6 and 1.4.7 for the compatibility with the representation-theoretic sense of "induced"). Note that if V is Kummer-induced, then its rank *n* must be divisible by *d*, and the quotient n/d is the rank of W.

COROLLARY 6. Notations as above, let V be an irreducible D.E. on \mathbf{G}_m . Then either V is Kummer-induced, or V is $(G_{gal})^0$ -irreducible.

Proof. By ([Ka-1], 1.2.5 and 1.4.4), the finite quotient $G_{gal}/(G_{gal})^0$, for any D.E. on \mathbf{G}_m , is finite cyclic, being a finite quotient of $\pi_1(\mathbf{G}_m)$ corresponding to some Kummer covering of \mathbf{G}_m by itself. The result now follows from Lemma 5, in virtue of ([Ka-1], 1.4.6). QED

If V is regular singular at zero, there is a simple criterion, in terms of its exponents at zero, to insure that it is not Kummer-induced. Let a_1, \ldots, a_n be these exponents, viewed as lying in the additive quotient group k/\mathbb{Z} . If in fact $V = [d]_*(W)$, then W is itself regular singular at zero, and if $b_1, \ldots, b_{n/d}$ are its exponents at zero, then the *n* exponents a_i of V at zero are simply the *n* quantities

 $(b_i + j)/d \mod \mathbb{Z}$, for i = 1, ..., n/d and j = 1, ..., d.

Let us say that a set of *n* not-necessarily-distinct elements of k/\mathbb{Z} is Kummerinduced if there exist a divisor $d \ge 2$ of *n* and n/d elements b_i of k/\mathbb{Z} such that the a_i are the *n* quantities displayed above. Thus we have:

CRITERION 7. Let V be a D.E. on G_m which is regular singular at zero. If the exponents of V at zero are not Kummer-induced, then V is not Kummer-induced.

Combining the above results, we find

THEOREM 8. Let V be a D.E. on \mathbf{G}_m of rank $n \ge 2$. Suppose that

- (1) Det(V) is of finite order.
- (2) At ∞ , all the slopes of V have exact denominator n.
- (3) At zero, V is regular singular and its exponents are not Kummer-induced.

Then $(G_{gal})^0$ is either

SL(n) if n = 2 or n odd

SL(n) or SO(n) or Sp(n) if n is even and ≥ 4 .

Moreover, in the case $(G_{gal})^0 = SO(n)$, G_{gal} is not contained in $G_m \cdot SO(n)$.

Example 9. Let $n \ge 2$, a_1, \ldots, a_n a set of *n* elements in *k* whose image in k/\mathbb{Z} is not Kummer-induced, and whose sum lies in \mathbb{Q} . Denote by *D* the invariant derivation zd/dz on \mathbb{G}_m . Let $m \ge 1$ be an integer prime to *n*, and $Q_m(z)$ a polynomial of degree *m* with $Q_m(0) = 0$. Then the D.E. on \mathbb{G}_m corresponding to the *n*'th order operator

$$\Pi(D-a_i)-Q_m(z)$$

satisfies all the hypotheses of Theorem 8 (its exponents at zero are the $a_i \mod \mathbb{Z}$, its determinant is the first order operator $D - \sum a_i$, and its slopes at ∞ are all equal to m/n), and hence its conclusion as well. In the particular case m = 1, we find the general Kloosterman equation, of which a very special case was treated in [Ka-1].

Algorithm 10. Here is a simple algorithm in terms of exponents to determine, when n is even and ≥ 4 and the exponents are not Kummer-induced, which of the three possibilities SL, Sp, or SO for $(G_{gal})^0$ one has in the Kloosterman case m = 1. One first looks for a number c in k such that for the quantities b_i defined as $a_i - c$, the two sets of exponents (b_1, \ldots, b_n) and $(-b_1, \ldots, -b_n)$ coincide (mod Z). If no such c exists, then we are in the SL case. If such a c exists, then Σb_i is either an integer or a half-integer, and we are in the Sp or SO cases accordingly.

To see that this algorithm is correct, suppose first that such a quantity c exists. Then c is necessarily a rational number (because $\sum a_i$ is assumed rational), so the first-order operator D - c is of finite order. Therefore tensoring our given D.E. by D - c, which exactly has the effect of replacing the a_i by the b_i , does not change the identity component of G_{gal} , and reduces us to the case where our Kloosterman equation is self-dual (cf. [Ka-1], 4.5.2 and 1.5.3). If the autoduality, unique up to a scalar, is alternating, then G_{gal} lies in the corresponding symplectic group Sp; since Sp lies in SL, the determinant $D - \sum b_i$ is trivial, which means exactly that $\sum b_i$ is an integer. If the autoduality is symmetric, then G_{gal} lies in the corresponding orthogonal group O, but by Theorem 8 it does not lie in SO; thus the determinant has order two but is nontrivial, which means exactly that $\sum b_i$ is a half-integer but not an integer.

Conversely, suppose that $(G_{gal})^0$ is equal to Sp or to SO. Then G_{gal} lies in the normalizer, inside GL, of either Sp or SO, so G_{gal} is itself contained in either $\mathbf{G}_m \cdot \mathbf{Sp}$ or $\mathbf{G}_m \cdot \mathbf{0}$. In either case, forming the square of the \mathbf{G}_m -factor is a well-defined character χ of G_{gal} , which corresponds to a rank one D.E. on \mathbf{G}_m which is regular singular at both zero (because the original Kloosterman D.E. is)

and at ∞ (because its slope at ∞ is an integer which is $\leq 1/n$, the largest [and only] slope at ∞ of the original Kloosterman D.E., cf. [Ka-1], 2.5.8). Such a rank one D.E. must be of the form D - d, for some element d in k. Now define c to be -d/2. The D - c is an inverse square root of D - d, so tensoring with D - c turns our original Kloosterman D.E. into a self-dual one (i.e., into one whose G_{gal} is contained in either Sp or 0), whose exponents at zero, the b_i , are consequently stable mod Z by negation. This means exactly that we are in the situation of the previous paragraph. Hence the algorithm is correct in all cases.

References

[Bbk-1] N. BOURBAKI, Groupes et algebres de Lie, Chapitres 4, 5, et 6, Paris, Masson, 1981.

- [Bbk-2] _____, Groupes et Algebres de Lie, Chapitres 7 et 8, Paris, Diffusion CCLS, 1975.
- [Ka-1] N. KATZ, On the calculation of some differential galois groups, Inv. Math., 87 (1987) 13-61.
- [Ka-2] _____, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Math. Study 113, to appear.

KATZ: DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544 PINK: MATHEMATISCHES INSTITUT DER UNIVERSITÄT BONN, BERINGSTRASSE 1, D-5300 BONN 1, FEDERAL REPUBLIC OF GERMANY