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The Work of Pierre Deligne 

N. M. Katz 

My purpose here is to convey to you some idea of the scope and the depth of the 
work for which we are today honoring Pierre Deligne with the Fields Medal. 
Deligne's work centers around the remarkable relations, first envisioned by Weil, 
which exist between the cohomological structure of algebraic varieties over the 
complex numbers, and the diophantine structure of algebraic varieties over finite 
fields. 

I. The Weil conjectures. Let us first consider an algebraic variety Y over a finite 
field Fq. For each integer n^l there is a unique field extension Fqil of degree 
n over Fq. We denote by Y(Fqn) the (finite) set of points of Y with coordinates 
in Fqli, and by # Y(Fqn) the cardinality of this set. The zeta function of Y over 
Fg is the formal series defined by 

Z(Y/Fq, D = exp f 2 v * Y (FÀ • 

Knowledge of the zeta function is equivalent to knowledge of the numbers { # Y(Fqn)}. 
After the pioneering work of E. Artin, W. K. Schmid, H. Hasse, M. Deuring and 

A. Weil on the zeta functions of curves and abelian varieties, Weil in 1949 made 
the following conjectures about the zeta function of a projective non-singular 
w-dimensional variety Y over a finite field ¥q. 

(1) The zeta function is a rational function of T, i.e. it lies in Q(T). 
(2) There exists a factorization of the zeta function as an alternating product 

of polynomials P0(T)9..., P2H(T)9 

P1(T)P>(T)...P*-1(T) 
Z(Y/Fq,T)=r 

P0(T)P2(T)...P2tl(T) 
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of the form 

Pi(T)= nV-aijT), 

such that the map oL*^qnloL carries the a u bijectively to the a2n-i,j-
(3) The polynomials Pt(T) lie in Z[T]9 and their reciprocal roots <xitj are 

algebraic integers which, together with all their conjugates, satisfy 

This is the "Riemann Hypothesis" for varieties over finite fields. 
(4) If Y is the "reduction mod/?" of a projective smooth variety F in charac

teristic zero, then the degree bt of Pf is the ith Betti number of Y as complex 
manifold. 

Underlying these conjectures was Weil's belief in the existence of a "cohomology 
theory", with a coefficient field of characteristic zero, for varieties over finite fields. 
In this theory, the polynomial Pi(T) would be the "inverse" characteristic poly
nomial det (1 — TF) of the "Frobenius endomorphism" acting on H\ Conjectures 
(1) and (2) would then follow from a Lefschetz trace formula for F and its iterates, 
and from a suitable form of Poincaré duality. Conjecture (4) would follow if the 
cohomology of the "reduction mod/?" Y ot a projective smooth variety Ï in 
characteristic zero were (essentially) equal to the topological cohomology of Y as 
complex manifold. 

The next years saw the systematic introduction of sheaf-theoretic and cohomolo-
gical methods into algebraic geometry. By the mid-1960s, M. Artin and A. Grothen-
dieck had developed the étale cohomology theory of arbitrary schemes, along the 
lines foreseen in Grothendieck's 1958 Edinburgh address. For each prime number /, 
this gives a cohomology theory, '7-adic cohomology", with coefficients in the field 
Ql of /-adic numbers, which is adequate to give parts (1), (2) and (4) of the Weil 
conjectures for projective smooth varieties over finite fields of characteristic p^l. 
In their theory, the cohomology of the "reduction mod /?" Y of a projective smooth 
Y in characteristic zero is just the singular cohomology, with coefficients in Qh 

of "Y as complex manifold". In the case of curves and abelian varieties, these 
constructions agree with those already given by Weil. 

For a given projective smooth Y/Fq, we now have, for each l^p, a factoriza
tion of the zeta function as an alternating product of /-adic polynomials Pi§l(T). 
There is, however, no assurance that the Pitl have coefficients in Q rather than 
in Ql9 much less that their reciprocal zeros are algebraic integers with the predicted 
absolute values. Of course, if one could prove directly that the reciprocal zeros of 
Pitl were algebraic integers which, together with all their conjugates, had the correct 
absolute value qi/2, then the polynomials Pu could be described intrinsically 
in terms of the zeros and poles of the zeta function itself, and hence would have 
rational coefficients independent of /. But how could one even introduce archi-
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medean considerations into the /-adic theory without first knowing the rationality 
of the cofficients of the Pitl ? 

Let me now try to indicate the brilliant synthesis of ideas involved in Deligne's 
solution of these problems. 

Initially, he tries to prove à priori that the Pul have rational coefficients inde
pendent of /. The idea is to proceed by induction on the dimension of Y. If Y is 
77-dimensional, then Poincaré duality and the fact that the zeta function is itself 
rational and independent of / reduce us to treating the polynomials PUi for 
i<77 —1. Now let Z be a smooth hyperplane section of Y. The "weak" Lefschetz 
theorem assures us that Y and Z have the same Pul for i^n—2, and that the 
Pn-jt1 for Y divides that for Z. This alone is enough to show inductively that the 
reciprocal zeroes of the Pitl are algebraic integers. 

In order to go further, and show that the Pitl actually have rational coefficients 
independent of /, the idea is to show that PH_lfI for Y is a generalized "greatest 
common divisor" of the P„-u of all possible smooth hyperplane sections. Un
fortunately, this "g.c.d." argument, which itself depends on the full strength of the 
monodromy theory of Lefschetz pencils, works only when Y satisfies the "hard" 
Lefschetz theorem (existence of the "primitive decomposition" on its cohomology), 
otherwise the "g.c.d." will be too big at some stage of the induction. But Deligne will 
later prove the hard Lefschetz theorem in arbitrary characteristic as a consequence 
of the Weil conjectures. What is to be done? 

With characteristic daring, Deligne simply ignores the preliminary problem of 
establishing independence of /. Fixing one I^p, he turns to a direct attack on the 
absolute values of the algebraic integers which occur as the reciprocal roots of the Pitl. 

Consider a smooth projective even dimensional Y, and a Lefschetz pencil Zt of 
hyperplane sections, "fibering" Y over the /-line. Factor the P„-lti of each 
Zt as the product of the "g.c.d." of all of them, and of the "variable" part. Deligne 
shows à priori that these "variable" parts are each polynomials with rational 
coefficients whose reciprocal zeroes all satisfy the Riemann Hypothesis 

K - l , variable | = ^ ( " " l ) / 2 . 

Deligne's proof of this is simply spectacular; no other word will do. He first uses 
a theorem of Kazdan-Margoulis, according to which the monodromy group of 
a Lefschetz pencil of odd fibre dimension is "as big as possible", to establish the 
rationality of the coefficients of the "variable" parts. Then he considers the L-function 
over the /-line whose Euler factors are the reciprocals of the "variable" parts. This 
L-function has rational Dirichlet coefficients. Deligne realizes that Rankin's method 
of estimating Ramanujan's function T(W) by "squaring" might be applied in this 
context to estimate the reciprocal poles of the individual Euler factors (i.e. the 
reciprocal zeroes of the "variable" parts!). The problem is to control the poles 
of all the L-functions obtained from this one by passing to even tensor powers 
("squaring"). Deligne gains this control by ingeniously combining Grothendieck's 
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cohomological theory of such L-functions, the Kazdan-Margoulis theorem, and the 
classical invariant theory of the symplectic group! 

Once he has this à priori estimate for the variable parts of the P„-ltl of the 
hyperplane sections Z,, a Leray spectral sequence argument shows that in the 
P„tl for Y itself, all the reciprocal zeroes are algebraic integers which, together 
with all their conjugates, satisfy the apparently too weak estimate 

Kj\ < 0(n+1)/2 (instead of qn% 

But this estimate is valid for Y of any even dimension n. The actual Riemann 
hypothesis for any projective smooth variety X follows by applying this estimate 
to all the even cartesian powers of X. 

II. Consequences for number theory. That there are many spectacular consequences 
for number theory comes as no surprise. Let us indicate a few of them. 

(1) Estimation of # Y(Fq) when Y has a "simple" cohomological structure. 
For example, if Y is a smooth «-dimensional hypersurface of degree d, we get 

i*rW-o+,+...+rti -= f - ^ r « - y , 
(2) Estimates for exponential sums in several variables, e,g 
(a) if / is a polynomial over Fp in n variables of degree d prime to /?, whose 

part of highest degree defines a nonsingular projective hypersurface, then 

2 expßjp/fe,..., xn))\ ^ (rf-l)V/2; 
*iEFp

 v p 

(b) "multiple Kloosterman sums": 

xt£F* V P \ xl~-xn)J\ 

(3) The Ramanujan-Petersson conjecture. Already in 1968 Deligne had combined 
techniques of /-adic cohomology and the arithmetic moduli of elliptic curves with 
earlier ideas of Kuga, Sato, Shimura and Ihara to reduce this conjecture to the Weil 
conjectures. Thus if 2a(n^n *s ^ e ^-expansion of a normalized (a(l) = l) cusp 
form on rx(N) of weight k^2 which is a simultaneous eigenfunction of all Hecke 
operators, then 

\a(p)\ < 2p(ft-l)/2 for all primes p\N. 

III. Cohomological consequences; weights. As Grothendieck foresaw in the 1960s 
with his "yoga of weights", the truth of the Weil conjectures for varieties over 
finite fields would have important consequences for the cohomological structure of 
varieties over the complex numbers. The idea is that any reasonable algebro-geo-
metric situation over C is actually defined over a subring of C which, as a ring, 
is finitely generated over Z. Reducing modulo a maximal ideal m of this ring, 
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we find a situation over a finite field, and the corresponding Frobenius endomorphism 
F(m) operating on this situation. This Frobenius operates by functoriality on the 
/-adic cohomology, which is none other than the singular cohomology, with Qr 

coefficients, of our original situation over C. This natural operation of Frobenius 
imposes a previously unsuspected structure on the cohomology of complex algebraic 
varieties, the so-called "weight filtration", or filtration by the magnitude of the 
eigenvalues of Frobenius. 

In a remarkable tour de force in the late 1960's and early 1970's, Deligne developed, 
independently of the Weil conjectures, a complete theory of the weight filtration 
of complex algebraic varieties, by making systematic use of Hironaka's resolution of 
singularities, of the notion of differential forms with "logarithmic poles" (i.e. pro
ducts of fi?///'s), and of his own earlier work on cohomological descent. The result
ing theory, which Deligne named "mixed Hodge theory", should be seen as a far-
reaching generalization of the classical theory of "differentials of the second kind" 
on algebraic varieties, as well as of "usual" Hodge theory. 

Consider, for example, a smooth affine variety U over C. By one of Hironaka's 
fundamental results, we can find a projective smooth variety X and a collection of 
smooth divisors Dj in X which cross tran sver sally, suchthat U^X—UDi. Deligne 
shows that the Leray spectral sequence, in rational cohomology, of the inclusion 
map Ua+X9 degenerates at £3, and that the filtration it defines on the cohomology 
of U is independent of the choice of the compactification. This is the desired weight 
filtration; its smallest filtrant is the image of Hm(X) in H*(U)9 i.e. the space of 
"differentials of the second kind on £/". 

One of the many applications of this theory is to the global monodromy of families 
of projective smooth varieties. Given a projective smooth map X-+ S of smooth 
complex varieties, and a point s£S9 the fundamental group n^S, s) acts on each 
of the cohomology groups Hl(XS9 C) of the fibre Xs. Deligne shows that these 
representations are all completely reducible, and that each of their isotypical com
ponents, especially the space of invariants, is stable under the Hodge decomposition 
into (p9 ̂ -components. 

By means of an extremely ingenious and difficult argument drawing upon Grothen-
dieck's cohomological theory of L-functions and the ideas of the Hadamard-de la 
Vallée Poussin proof of the prime number theorem, Deligne later established an 
/-adic analogue of this theorem of complete reducibility for /-adic "local systems" 
in characteristic /; over open subsets of the projective /-line P1, provided that all 
of the "fibres" of the local system satisfy the Riemann Hypothesis (with a fixed 
power of |/#). Once he had proven the Riemann Hypothesis for varieties over 
finite fields, he could apply this theorem to the local system coming from a Lefschetz 
pencil on a projective smooth variety over a finite field. The resulting complete 
reducibility is easily seen to imply the hard Lefschetz theorem. This theorem, pre
viously known only over C, and there by Hodge's theory of harmonic integrals, 
is thus established, in all characteristics as a consequence of the Weil conjectures. 
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Other outgrowths of Deligne's work on weights include his theory of differential 
equations with regular singular points on smooth complex varieties of arbitrary 
dimension, which yields a new solution of Hubert's 21st problem, and his affirmative 
solution of the "local invariant cycle problem" in the local monodromy theory of 
families of projective smooth varieties. 

Still another application of "weights" is to homotopy theory. Deligne, Griffiths, 
Morgan and Sullivan jointly apply mixed Hodge theory to prove that the homotopy 
theory ((g)Q) of a projective smooth complex variety is a "formal consequence" 
of its cohomology, 

IV. Other work. We have passed over in silence a considerable body of Deligne's 
work, which alone would be sufficient to mark him as a truly exceptional mathe
matician; duality in coherent cohomology, moduli of curves (jointly with Mumford), 
arithmetic moduli (jointly with Rapoport), the Ramanujan-Petersson conjecture 
for forms of weight one (jointly with Serre), the Macdonald conjecture (jointly with 
Lusztig), local "roots numbers", /?-adic L-functions (jointly with Ribet), motivic 
L-functions, "Hodge cycles" on abelian varieties, and much more. 

I hope that I have conveyed to you some sense, not only of Deligne's accomplish
ments, but also of the combination of incredible technical power, brilliant clarity, 
and sheer mathematical daring which so characterizes his work. 
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