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Introduction. In recent years, there has been considerable progress in the construc
tions of /7-adic L-functions attached to various sorts of "classical" L-functions. 
Unfortunately, the use of these /?-adic functions to solve preexisting problems in 
number theory has so far met with less success; despite the recent work of Coates-
Wiles [1] and Ferrero-Washington [4], conjectures remain more numerous than 
theorems. It may be hoped that a better understanding of the genesis of various 
p-aâic L-functions will lead to progress in their exploitation. In that hope, we give 
yet another construction of the "two-variable" p-adic L-function attached lo an 
elliptic curve with complex multiplication by a quadratic imaginary field in which 
p splits. This construction is based on the remarkable fact, discovered by Serre-Tate 
some fifteen years ago, that the local p-adic moduli space of such an elliptic curve 
has a canonical structure of one parameter formal group of height one. A rewriting 
of this construction in terms of ratios of local solutions of the associated Picard-
Fuchs equations leads to universal formulas for the "algebraic part" of the classical 
L-values, which may shed light on the still mysterious situation when p is no 
longer assumed to split. 

I. Let KaC be a quadratic imaginary field, with ring of integers &(K). Viewing 
(9{K) as a lattice in C, we may form the elliptic curve E=C/0(K). Because E has 
complex multiplication, it is definable over the ring 0(Q) of all algebraic integers 
in C, with everywhere good reduction. Further, we may choose a nowhere-vanishing 
invariant differential co on E over 0(Q)9 so that the pair (E9 co) has everywhere 
good reduction over 0(Q)9 i.e. for any place & of Q, "co mod &" is nonzero 
on "Is mod ^" . Such an co is unique up to multiplication by a unit in 0(Q). 
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The period lattice of (E9 co) is necessarily of the form Q0(K) for some ß€Cx„ 
For variable co of the sort discussed above, this period Q is well defined in the 
group C*/G(Q)*. 

We will denote by a the area of (a fundamental parallelogram of) the lattice 
<S(K). In terms of the discriminant d of K9 we have 

a=\V\d\-

For integers k^39 rs*0, consider the absolutely convergent series 

A{k9 r) = 2 TI+F-
y£<3(K) Il 

75*0 

According to a fundamental result of Damerell [2] the product 

(-^(fc+r-DlTE-
(̂fc> r) 2ar-Qk+2r ( ' ' 

lies in Q; in fact it lies in the field obtained by adjoining to K the Weierstrass 
invariants g29g3 of (E, co). Further, for any integer 6^1, the product 

bk(b*-l){Y=\d\)rB(k9r) 
is an algebraic integer. 

The arithmetic of these numbers, and of their more sophisticated analogues 
("with conductor", and extended to include k=l or 2) is of interest because of 
their occurrence 

(1) in the Birch-Swinnerton-Dyer conjecture for certain elliptic curves with 
complex multiplication (cf. [1]). 

(2) as periods of cusp forms on congruence subgroups of SL (2, Z) (cf. [8]). 

(3) as special values of holomorphic and nonholomorphic Eisenstein series on 
congruence subgroups of SL (2, Z) (cf. [6], [11]). 

(4) as special values of Hecke L-series attached to grossencharacters of type 
AQ of quadratic imaginary fields (cf. [7], [8]). 

It would be of great interest to understand the link between (2) and (3) "directly"; 
both have been used to get information about occurrences (1) and (4). 

U. At present, we have a reasonable understanding of the p-adic properties of 
the B(k9 r) only for primes p which split K. More precisely, fix a finite extension 
K'/K over which (E, co) is defined and has everywhere good reduction. Let p 
be a prime of K\ K^ the p-adic completion of K'9 and W the ring of integers 
in the completion of the maximal unramified extension of K^. Denote by p the 
rational prime lying under p. 
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THEOREM. If p splits in K, there exists a unit c£W* and, for all rational integers 
b prime to p} a W-valued p-adic measure ii(c9b) on ZpXZp9 whose moments 
are given by the formula, valid for integers fcs>3, rs>0, 

/ xk-*yrdp(c9 b) = 2.ck+2r(bk-l)B(k9 r). 
zp*zp 

In [6] we used the global theory of "p-adic modular functions" to construct 
this measure. Here we will outline a new construction, based on the Serre-Tate 
theory of local moduli of elliptic curves in terms of their /7-divisible groups. This 
construction also leads to a universal computation of the B(k9 r) which may yield 
valuable information when p does not split in K. 

Step I (Interpretation of measures). Over any /radically complete and separated 
ring W9 Cartier duality gives a canonical isomorphism between the convolution 
algebra of Revalued/?-adic measures on (Zp)

n and the coordinate ring W][X1,..., XN]] 
of the «-fold self-product (Gm)n of the formal multiplicative group over W. Let 
xl9 ...9xn denote the standard coordinates on (Zp)"9 and let Dl9 ...9Dn be the 
standard invariant derivations Di=(l+Xi)d/dXl on (Gm)n. Given a function 
f(Xl9..., Xn)€W[[Xl9 ...9X„]]9 the moments of the corresponding measure \is are 
given by 

fxï.-.x\rdtif=DÏ...DHf)\o-
(zPr 

Given a measure \i9 the corresponding function fß(Xl9 ...9Xtl) is given by 

fß(Xl9 ...9Xn) = / ( 1 + X ^ . . . ( l + ^ r » 4 u . 
(zpr 

Thus to construct our measure fi(c9 b)9 we need a function / on a group GmXGm. 

Step II (Construction of GmXGm out of E and its local moduli). Returning 
to (£", co) over (D(K')9 we extend scalars to W. Because p splits in K9 E has 
ordinary reduction at p, and hence, the formal group Ê of E is non-canonically 
isomorphic to Gm over W. Fix one such isomorphism 

cp:Ê^Gm (over W). 

The inverse image of the "standard" invariant differential .dX/(l+X) on Gm is 
necessarily of the form c^co for some unit c£W* ; this is the "c" occurring 
in the statement of the theorem. 

Now consider the universal formal ^-deformation 2iuniv of E9 over the formal 
moduli space Jt. The chosen isomorphism cp extends uniquely to an isomorphism 

jguniv X Gm over M9 i.e. £univ ^ JxGm. 

The Serre-Tate theory [9] gives an explicit isomorphism of the space M with 
the formal group Gm over W\ the origin of this Gm is the FF-valued point of 
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Ê»*"2!JlXGM5îGmXGmv 

Here are three equivalent descriptions of this isomorphism M ^ Gm. 
(a) Because E has complex multiplication by 0(K)9 and has ordinary reduction 

at p, its /7-divisible is necessarily a product 

E(JT) - ÊXE(p~)«*l° -^-+ GmxQp/Zp. 

Let W be a /radically complete and separated augmented W-algebra, with nilpotent 
augmentation ideal, and let EjW be a deformation of EjW. Then the /^-divisible 
group of E sits in an extension 

0-+Gm-+E(p~)-»Qp/Zp^09 

and so determines an element of ExtjV(QpfZp9Gm)^ôm(fV). (Explicitly, let Pt be 
the point of order pl in E(W) corresponding to "1/p'" in the Qp/Zp-factor of 
J?0°°). Let Pt be ûHJ; point in E(W) lifting Pf; then pîPi lies in jßflF) J ^ Gm(FF), 
and as i-+°° these points tend to a /JIWIY in Gm(W)). The resulting morphism 
Jt-+Gm is an isomorphism. 

(b) Consider once again the universal formal deformation £umv over Ji. Via 
the Kodaira-Spencer isomorphism 

K- iv M ? )® 2 = &JììW 

the square of <p*(dX/(l -{-X)) corresponds to a basis Ç of ß^/^ . The isomorphism 
e/#-^<jm is the unique morphism of pointed functors under which dX/(l-\-X) 
pulls back to £. 

(c) There is a unique basis u9 v of HQR(E/W) such that 

(1) u=c~1co9 

(2) (w, p) = 1 (de Rham cup product), 

(3) for y€0(K) acting, as [y]*9 on HlR(E/W)9 we have 

[y?(u) = yu9 [y]*(v) = yv. 

Now consider H^R(Euniw/^)9 with its Gauss-Manin connection. Let Div(o#) 
denote the ring of all "divided" power series centered at the marked W-point "E[W" 
of Jt. In terms of a parameter T for Jt centered at "E/W"; this is the ring 

W((T))=\2am£\amZw\i 
l n aO W! I J 

intrinsically, it is the topological "divided power envelope" of the marked point 
"EfW" in JÏ. On HlR(E*™IÂ)®T)iv (J£)9 the connection necessarily becomes 
trivial, so we can find a horizontal basis J7, K which extends the given basis u9 v 
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of H^R(E/W). In terms of this basis, the invariant differential q>*(dX/(l+XJ) 
on Emiv

9 viewed as a de Rham cohomology class is expressed as 

cp(dX/(l+X)) = U+LV with LeDivO^). 

The isomorphism J(^Gm is the unique morphism of pointed functors under which 
L becomes the logarithm on Gm: 

L(Z) = log(H-X) i.e. dL = dX/(l+X) = Ç. 

That these descriptions are in fact equivalent may be seen as follows. By "general 
principles", the function L must be a (divided-power) isomorphism from Gm 

to Ga9 i.e. we must have L{X) = w log (1+X) for some w£W*. To see that 
w = 1, it suffices to compute L mod (X2)9 and this amounts to explicitly computing 
the description (a) for deformations of E over the dual numbers W[e]/(e2). This 
last computation becomes routine if we exploit the autoduality of elliptic curves 
by systematically interpreting points on elliptic curves as (isomorphism classes of) 
line bundles. 

A more sophisticated proof of this and more general equivalences has been an
nounced by Messing [10]. 

S7e/? J/J (Construction of a function / on Êuniv=*GmXGm). Given an integer 
Z?s>l prime to p9 the function / on £univ to be taken is, in "transcendental" 
notation, 

f(z) = b*p'(bz)-p'(z)= 2 *>'(* + £)• 
C€Ker[6] 

This has purely algebraic meaning, as follows. Given any (E9 co) over any ring R9 

pick any parameter Z for Ê so that co=(l + ...)dZ. The functions on E with 
at worst double poles along the 0-section (i.e. H\E9 J(O)""2)) which begin Z~2 +. . . 
all differ from each other by additive constants. If we apply to any of them the 
invariant derivation dual to co9 we get a well-defined p'. If è is invertible in R9 

then all nontrivial points of order b are disjoint from Ê, so the ^-expression for 
/ shows that it's well-defined on Ê. We apply this universal construction to 
(Euniv, <p*(dX/(l +X))) over the coordinate ring of JT. 

Step IV (Universal computation of the moments). We now return to the original 
(E9co) over <9(K')9 with complex multiplication by 0(K). Let W be any over-
ring of ®{K') in which the discriminant d of K is invertible, and let c£W* 
be any unit of W. It still makes sense to take a basis w, v for H^R(E/W) as in 
Step 11(c) and then to find the horizontal basis U9 V of i7^(Euniv/.#)<g)Div (Â) 
which extends w, v. There is no longer a preferred invariant differential on £univ, 
but we may simply choose one which extends co/c. Its expression in terms of U9 V 
will be 

OLU+ ßV9 öi9ße Div (JT), a(0) = 1 , 0(0) = 0. 
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Because a(0) = 1, it is invertible in Div (Jt). Therefore there is a unique invariant 
differential co on Euviw®T)iv(Jt) whose expression in U9 V is 

(L = ßla£T>ivC4); 
" = t / + L F l L ( 0 ) = 0. 

This function L£Div(^) is simply the direction (i.e. the Plücker coordinate) 
of the subspace Hlt0(zH^R9 measured with respect to the horizontal basis U9 V. 
It is a "divided-power uniformizing parameter", in the sense that the natural map 

J^«L»-*Div(.#) 
is an isomorphism. 

Let b be any integer invertible in W9 and apply the construction of Step III 
to (£univ®Div (Jt)9 co), to produce a function / on £univ®Div {Jt). It follows 
easily from the cohomological analysis of ([7], 2.4.8) that we may compute the 
B(k9 r)'s as follows. 

ALGORITHM. Let D± be the invariant derivation of JÊuniv<g>Div(c//Ô over 
Div(o#) which is dual to co. For all integers /cs>3, r^09 we have 

2ck+*(bk-\)B{k9 r) = (d/dL)"(J)ì-3(/)|0)|0. 

i n . When p splits in K9 and W and c are as in Step II, the theorem follows 
immediately from this algorithm and Steps I, II, III. When p stays prime in K9 

this algorithm gives the known integrality results, and focuses attention on the 
very special role played by the divided power parameter L on the moduli space Jt. 
Arithmetic information about L should yield arithmetic information about the 
numbers B(k9 r). Is it conceivable that L is always the logarithm of a formal 
group structure on the pointed (by EjW) functor Jtl 

IV. In this final section, we give an "elementary" description of L, valid over 
any ring containing 1/2, as the ratio of two particular local solutions of the Gauss 
hypergeometric equation with parameters (1/2, 1/2, 1). From this point of view, 
the function L has been studied extensively by Dwork, at least in the case when 
p splits in K9 under the name "T" ([3], [5]). 

Consider the Legendre family of elliptic curves y2=x(x — l)(x—X) over 
«/#=Spec(Z[A][l/(2A(A — 1))]). Let A0 be any value of X at which this curve 
acquires complex multiplication by the ring of integers 6{K) in a quadratic imaginary 
field. The formal moduli space Jt is simply the formal completion of Jt at X=XQ. 

Let D denote the derivation 2XCk—\)d\dX of M. The H\R for the Legendre 
family is free over Jt with basis 

co = dx/2y9 D(co) = (x—X) dxjly 
with 

(co, D{co)) = 1 (de Rham cup-product), 

D2(co) =—X{X—\)co (Gauss—Manin connection). 
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At /l0, a basis w, v of HQR which is adapted to the action of 0(K) is given by 

M = n]XBXo9 v = (D(co)-eco)Uf=Ao 

for some unique constant e in (l/|/--|tf|)-0C8r')[V2]. Let oc(X)9ß(X) be the local 
solutions near A=A0 of the hypergeometric equation 

D*f = -k(k-\)f9 

normalized by the initial conditions 

a (/L0) = 1, (Da) OU = e, 

/*(A0) = 0, (Z)/?)(A0) = 1. 

The horizontal basis U9 V passing through u9v at A = A0 is given by 

U = D(ß)co~ßD(co)9 V = -D(ot)-co + (xD(co). 
Thus we find 

a) = <*U+ßV9 

whence 
L = j8/a, co = co/oc9 d/dL = oc2-2X(k-l)d/dk9 

A = a • 2y<//d*, / = 2a3(&3[Z>]*G>)-J')-
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