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ON THE INTERSECTION MATRIX
OF A HYPERSURFAGE

BY NICHOLAS M. KATZ.

INTRODUCTION. — Let(R, m) be a complete discrete valuation ring
whose residue field has q elements, and whose fraction field K has charac-
teristic zero. Let X be a projective and smooth hypersurface of dimen-
sion n and degree d over R, in " general position ?? {see section 1 for a
precise definition). Dwork [3] has constructed a finite-dimensional
K-vector spece W^, and an endomorphism a of W8, which determines
the zeta function [10] of the special fibre X as follows :

det/i-^ W8^
(O . i ) W)=——v . q

n^-^
1=0

The verity of the then-conjectural functional equation [10] for Z^,
/ \ n 7.

(0.2) ^[-^)z=±^q2~zx{t)

[here ^ is minus the degree of Z^(() as rational function] is equivalent,

by (O. i ) , to the fact that the eigenvalues of - are mapped bijectively to

themselves by x ^-> ^\x. In order to verify this, Dwork constructed a
non-degenerate bilinear pairing

W^W^K

-^-i
with respect to which q 2 a was an isometry ([4], p. 266 and th. 9.2).

The space W8, together with its pairing, is of a purely algebraic nature,
and may be constructed for every hypersurface X, projective, smooth

74.



584 N. M. KATZ.

and in general position over an arbitrary field K of characteristic zero.
There is an isomorphism, © [7], between W8 and Prim^X/K), the subspace
of H^p(X/K) consisting of primitive (in the sense of Hodge theory)
classes. W. Cassellman conjectured that Dwork's pairing should corres-
pond via @ to the cup-product pairing.

Oun purpose is to prove that this is essentially the case, i. e., that there
exists a non-zero rational number, c, depending only on the dimension, n,
and the degree, d, of the hypersurface X, such that the following diagram
is commutative :

W S ̂  ̂ ys cX(l)work-s pairing) ^ ^

| © X © ) )
Y 4-

Prim^ (X/K) x Prim71 (X/K) ^TE^^ Hgg (X/K)

(The commutativity of this diagram is the only known property of the
constant c.)

The basic idea is this : the two constructions, W8 and Prim7', globalize
to give locally free sheaves on T, the classifying space for nonsingular
hypersurfaces of dimension n and degree d in general position. These
sheaves are both endowed with integrable connections. The isomor-
phism © globalizes to an isomorphism of these sheaves, which is compa-
tible with the connections. The desired theorem is then the commuta-
tivity of the following diagram of sheaves on T :

y/s^ ̂ ys cx (Dwork/s ̂ ""g)

©x©
-0T

Prim" (X/T) x Prim71 (X/T) ̂ p^ H^g (X/T)

Two reductions are now possible. First, it suffices to prove that the
above diagram commutes after the base-change which replaces T by the
formal neighborhood of a point 5GT (i.e. the completion of the local
ring at s). Second, both pairings respect the connection (i. e. the " product
formula " holds) in the formal neighborhood of the point in T which

n 4-2

corresponds to the diagonal hypersurface VXf= o$ because the connec-
i=.l

tion is integrable, both pairings are then determined by their value at
this point.

As explicit formulas for Dwork's pairing at this point are available,
the problem is to compute the intersection matrix of the hypersurface
n -h 2

^X^==o, with respect to a given basis of its De Rham cohomology.2
i=i

The shape of this matrix is dictated by the presence of a large group of
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automorphisms. We succeed in the precise determination only by recourse
to a deformation-theoretic method, which consists in differentiating (with
respect to the parameters) certain relations in the cohomology ring of
the general hypersurface.

1. SOME DE RHAM COHOMOLOGY. — Fix positive integers n and d, and
an ordered set of homogeneous coordinates Xi, . . ., Xn+2 tor the projec-
tive space P^P714-1. Let S be an arbitrary scheme of characteristic
zero (i. e. over Q). Let X be a nonsingular hypersurface of dimension n
and degree d, over S, in general position with respect to the coordinates
axes. This means X is defined by the vanishing of a homogeneous form
F(Xi, . . . , X^) of degree d, and that, denoting by 0g[X] the sheaf
of graded algebras on S given by (9s[Xi, . . ., Xn^] = ® pr^J^p.^/c)),

^€Z

the Koszul complex defined by the X,^
C/-^\.t

(1-0) o<-Os[X]^ ® 0s[X]<- 0 <9s[X]^
i^i^n+2 l^^/^-+-2

is exact.

Let us explicitly write the defining equation VA^X"^ o, the sum
w

taken over the ( + ^~' ̂  monomials Xw of degree d in Xi, ..., X^. The

coefficients A(,, " are ?? a morphism from S to the projective space over Q

°f [ ^ ) — i dimensions. This projective space is thus the classifying

space for (flat) families of hypersurfaces of degree d in the ( < coordina-
tized " projective space P"4-1 over Q. It is easily seen (theory of the
resultant) that the classifying space for those families which are non-
singular and in general position is a non-empty Zariski open-subset T
of p* ^ _ ^ + ^ + I ^ -01 ±^ ^~[ d ) ~ 1 '

Over T we dispose of the universal non-singular hypersurface in general
position, X -> T, its complement PT—X-^T, and the constant projec-
tive space Py-> T.

Recall that for any smooth morphism f: A -> B, the relative De Rham
cohomology sheaves on B, written simply H^(A/B), are, by definition,
the I^/^QA/B), and that [6], when B is (the spectrum of) the complex
numbers C, H^A/B) ~ H^A^, C), the second member being the
" ordinary 9? cohomology groups of the assosciated complex manifold A^.
Recall also that the sheaf H^R (A/B) is said to commute with base change
if, for any morphism g : S -> B, the homomorphism

^HgR(A/B)-^HgR(AxBS/S)
is an isomorphism.
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PROPOSITION 1. — The sheaves H^X/T) and H^PT—X/T) are
locally free, and commute with base change.

Proof. — We introduce the coherent complex ^^(logX) on P^, whose

local sections are the differentials of the form OL) 4-^A ~j^ where co and T
are local sections of Qp^ and f is a local equation for X (we write P/T
for PT/T). Equivalently, ^p/^logX) may be described as the tensor
product

/(X)-^p (kernel of^->^/i).

where ?(X) is the sheaf of ideals defining X on PT. Because the inclu-
sion ^p/i(logX) -> £2p_ is a quasi-isomorphism (i.e., induces an iso-
morphism of cohomology sheaves), the induced map of sheaves on T,
R'/^(^p/T(logX)) -^^/^(^i^x/i) ls an isomorphism. Thus from the exact
sequence of complexes on Py,

(1.1) o -^ ̂ -> I2p^ (logX) -. ̂  -> 0

(the last map, the residue, is defined locally by extracting the coeffi-

cient of —^ and restricting to X) we obtain the long cohomology sequence
«/ /

(1.2) ->Hfe-R (X/T) -^H{,K(P/T) -^HJ,R(P- X/T) -^HL-R (X/T) ->

We will apply the base-changing theorems of ([2], § 7), this being permis-
sible because we are dealing with T-flat coherent complexes, T-linear
differentials, and projective morphisms. Let 5€T be any point, K(^) its
residue field, P,$ and X^ the corresponding fibres, which are varieties
over K(^). We have a corresponding exact sequence of K (^-vector
space (by repeating the above construction over K(^))

-> H -̂R (X,) -> HS,R (P,) -> Hnp (P, - X,) -> HB-R (X,) -^

and by the Lefschetz theorems [8], H^(P,—X,) is zero unless i = o
or i = n + i . Thus ([2], 7.8.3 and 7.8.4) the sheaves H^P—X/T)
are locally free and commute with base change, because these sheaves
vanish save for i==.o and i=n-{-i. Next we remark that each

HS,R (P/T) = IIi,K (PQ x QT) - H{)R (PQ/Q) ®Qt\

is certainly locally free and commutes with base change, and thus the
map HDR(P/T) -> H^P—X/T) is zero for ^i, this being so at
each K(5).

Referring to the exact sequence (1.2), we then see that
H^X/T^^HDR^P/T) for i^n.
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Hence, by ([2], 7.8.3), Hj^X/T) is also locally free, and commutes with
base change.

Q. E. D.

Recall now that a local section of H^X/T) is called primitive [8] if
its cup-product with the cohomology class of a hyperplane section is zero.

COROLLARY. — T h e residue mapping H^1 (P — X/T) -^ Hm,(X/T)
establishes an isomorphism between H^1 (P—X/T) and Prim72 (X/T), the
sheaf of primitive cohomology classes in Hj^(X/T). In particular,
Prim" (X/T) is locally free and commutes with base change.

Proof. — From the exact sequence, we have

o -^ H£$1 (P - X/T) -^ HSR (X/T) -> HSS2 (P/T) -> o.

Since the restriction mapping H^R^P/T) -> H^p^X/T) is an isomorphism,
we may rewrite the above sequence

o-.Hiip1 (P-X/T) -^HOR(X/T) ->HSr- (X/T) -^o,

where the last map is given by cup-product with the " class of a hyper-
plane section ", whence the corollary, by definition of primitive.

Q. E. D.

We conclude this section by recalling that all the De Rham sheaves
are equipped with an integrable connection, that of Gauss-Manin [9],
with which all the maps in (1.2) are compatible. The compatibility is
most easily seen as follows. For any smooth g : Y -> T, the Gauss-Manin
connection is obtained as the differential di in the spectral sequence of
the filtered object ^2y/Q with respect to the functor R'g^, the filtration
being defined by

F^/Q) =image(^7Q(g)^(^)^^/Q).

These considerations apply mutatis mutantis to the complex ^pxT/Q(l°gX),
and provide the R^ (^p/i^gX)) with an integrable connection. The
only point to be checked is that, under the filtration

^(^pxT/Q(^X))=imageap-^,/Q(logX)0^(^/Q)^^PxT/Q(lo^

the associated graded objects are given by

^(^PxT/Q(logX))=FyF^==^(logX) (g)^(^/a).

As the quasi-isomorphism ^^(logX) -> ^p_x/i ls ^le g110 °f ^e map
^PxT/Q^°gX) ->- ^pxT-x/Q? t^le connection on B9/^ (^p/i^gX)) corres-
ponds, via the isomorphism R7/^ (I2p^(logX)) ->• H^(P — X/T), to the
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Gauss-Manin connection on H^(P—X/T). Finally, the exact se-
quence (l . i) is the gr° of the exact sequence of filtered (as above)
complexes

0 -> ^p^T/Q— ^PXT/Q O0^) -> ̂ x7Q-^ °^

whence the compatibility of the maps in (l.a) with the connections.

2. THE CONSTRUCTIONS OF DWORK. — We begin by introducing certain
modules over T.

£ the free module with base those monomials X^. . . X^"2, or simply X"',
n 4- 2 /i-t-2

with all Wi^o, and ^.Wi divisible by rf. One defines Wo=-^,Wi.
i = 1 i = l

J?8, the sub module with base those of the above monomials which in
addition have all Wi^i.

/.4-2 N

W^J^/J^m 2°^ )» ^here D. is the T-linear mapping
v=i /

^FD,: ^-^ D,(X-)=^X-+X^X-.

PROPOSITION 2. — The module W® 15 locally free, and commutes with
base change.

Proof, — By the exactness of the Koszul complex for X and its inter-
sections with coordinate hyperplanes, we have

j^n^D^^D^-s

where ^s~i is the span of those X"" having Wj> o, VJ'T^^. Thus W8

as the cokernel of a map between free modules, commutes with base
change. By ([3]. lemma 3.19), for each point $eT, the corresponding
vectorspace W^ over the residue field K(^) of s has constant dimension
^[(rf-^+^i)7^-!)], whence W is locally free.

Q. E. D.

We recall that Ws is provided with an integrable connection [9], deduced
by passage to quotients from an integrable connection on J?. It is defined
by having De Dery(0T, 0r) act through o^ : Q. -> £ by

o-]) (tX^) •==. D (t) X^+ l^X^

where (€0T? and F" denotes the result of applying D to the coeffi-
cients of F.

3. THE COMPARISON THEOREM. — There is a (T-linear) map
<^\ J^-^HgR^P—X/T)
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given by
„: x^(-:ro-^_,)i^ ^(xyx^) ̂ ^ ^(x /x^)^

r Ai/A,;+2 A/^i/X,;+2

It is quickly verified that, because all w^i, the above differential form
is regular on all of P — X, and thus defines a section of H^1 (P — X/T).

The map © : ^-> Prim71 (X/T) is defined to be the composition
£^-> H^r (P - X/T) -^ Prim^X/T).

THEOREM 3. — The maps (R and © induce, by passage to quotients, iso-
morphisms

^ : WS-^>HSK1(P-X/T),
© : WS—^Prm^(X/T),

which are compatible with the connections,

Proof. — We first show that J^n^D.X? lies in the kernel of

©r^^Prim^X/T). As Prim^X/T) is locally free and commutes with
base change, it suffices to show that for every 5GT, the corresponding

map ©, : ̂ -^Prim^X,) of K{s) vector spaces annihilates ^n^D^.
BY ([7]? th. 1.17), the composition

. ^^p^^x^'^^HSKCx?)

(here X' is the open subset of X.y where all coordinates X^ are invertible)

annihilates ^n^D.J?. By ([7], cor. l . i i) , temporarily writing X^

for the open subset of X, where the first coordinate Xi is invertible, the
restriction map

H^X^-^H^X^)

is injective. And

H^ (X,) = Prim^ (X,) © Kernel of (H7^ (X,) -> H^ (X, 1 ) ) ) ,

whence Prim"(X,) -> H^X0) is injective.
To show that © : W8^ Prim71 (X/T) is an isomorphism, it suffices,

since both W8 and Prim" (X/T) are locally free, to show it over the residue
field of each s€T. This is so in virtue of ([7], th. 1.17). That (% (and
hence ©) transforms o- into the Gauss-Manin connection is seen directly

^(^(X^))^^(P>X-)=:(-Iro^!Fgg dWX^ ^_^ ^(X /X^,)
r o A-i/A^4-2 A.^4_i/A-,,4_2

while
D^X^)) =^[ ( — l ^ o - l / W o — l ) 1 ^ d(xl/xn+^ A A ^(^+i/X^) )

) • ' F^o Y / Y / \ ' * * / \ Y /Y (\. r 0 A-i/A^+a A^_i-i/A^+2 )
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and, as D annihilates all X^/X^+s, i =i, ..., n +1? ^is ^
F>X^(X,/X^) ^(X^/X^)

^ I) ^-F^ X,/X,^ ^'^ X^/X,^
Q. E. D.

4. THE INTERSECTION MATRIX. — Any T-bilinear pairing

Prim" (X/T) x Prim71 (X/T) -> H;̂  (X/T) ̂  0^

may be thought of as a global section of the locally free sheaf

Hom^ (Prim" (X/T) (g)^ Prim" (X/T), <V).

Because T is (reduced and) irreducible, for any non-void open subsets
UcV of T, and any locally free sheaf F on T, the restriction mapping on
sections r(V, F) -> r(U, F) is injective. Fixing a point 5€T, we have
F(V, F)Climr(U, F) = F,, the stalk at s. Since the local ring 0^

U€=^

at s is noetherian, it follows by KrulPs Intersection Theorem that 0^
is a subring of its completion (9^; F.̂  being free over (?^,., we have
F,CF,= F,(g)^(9^. Denote by X, the fibre product XXiA,., which
may be thought of as a tubular neighborhood of the special fibre
X.=XXrK(5) .

PROPOSITION 4. — Let s€T be a closed point which is (^-rational. Then
the 0T, s -module Prim^X.y/OT,^) admits a basis of horizontal {for the Gauss-
Manin connection) elements.

Proof. — The hypersurface X^ is given by an equation

Xf+^^+A^X^o,
w

where the sum is over all monomials X^ of degree d other than X^, and
the A,p are independent variables, with ^,s= 0[[A-n']]. The hyper-
surface X, is given by Xd~{-^,a^XW= o.

[We have used the fact that all the monomials Xf necessarily occur in
the equation of an X in general position.] Let { r ] ; } be a basis of

Prim^X,/^,). Each ^- acts; say ̂  ̂ ^B^w)-^. If it possible to
/

find a basis of horizontal sections T,, which agree with the Y], over the
residue field of s, they will necessarily be linear combinations of the YJ,,

^•==^^7^ ^7€Q[[A^]],
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where the matrix U = (uij) satisfies the equation

^ ̂ - = — UB ( w ) for each A«.; here B (w ) = (B,, y ( w ) ) ,
( w U ( o ) = I .

That this system has a unique solution results from the formal version
of the Frobenius theorem on " complete integrability ", applicable preci-
sely because the Gauss-Manin connection is integrable ([I], p. 3o4).

Q. E. D.

Remark. — The inverse P of the matrix U, by means of which the T];
may be expressed in terms of the horizontal basis, is nothing other than
the classical period matrix. Let us explain why this is so. Consider a
proper and smooth (holomorphic) map f: Y -> A, where A is the unit
d i s c [ ( [ < i . Replacing A if necessary by a smaller disc around o, we
may suppose that f : Y -^ A is a differentiably trivial fibre bundle. Choose
a C00 trivialization 7 : Y - ^ Y o X A [here Y'o •-= />-1 (o)]. Let {r\i(t)} be a
basis of H^^Y/A). The horizontal basis { ^ i ( t ) } is obtained as follows;
for each (€A, y induces Y,:Y,-^Yo, and we take T,(() = ̂  ("^(o)).
Let a,(o) be the basis of H.(Yo, C) dual to the '^(o), and define a basis a,(^)
of H.(Y,,G) by a,(^) = ̂ 1 (a,(o)). Clearly we have

f ^iW=f T^(o))=f ^(o)=f ^(o)=:3^..
^a;^) ^a;^) ^((a;^)) ^(o)

Hence ^(t)=y^( f ^i{t)}^j(t) in H.(Y,, C), as both sides have the
^ \^(xj(t) /

same integral over each cycle vy(^). Thus the " variable " sections r^,{t)
are expressed in terms of the horizontal sections Ty(() by means of the

matrix of periods f ^i^).
••Axy^)

PROPOSITION 5. — Assumptions as in Proposition 4, under the cup-
product pairing

Prim^X,/^,,) X Prim-(X,/e)T,,) -> H^X,/^) - (̂ .

the cup-product of two horizontal classes, ^A^'? ls a rational number.

Proof. — Each ..- acts, through the Gauss-Manin connection, as

a derivation of the cohomology algebra [9], and the connection
on Hi£(xy(9T,,)~<9^, is just ordinary differentiation. Thus ^A^
" is " an element T,y of Q[[A^]], and

^/^^^^A^-^A^+^A^^o+o.

Q. E. D.
Ann. Sc. Norm., (4), II. — FASC. 4. 75
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COROLLARY. — Let {r\i} be a basis of Primn{Xs/0^^\ and { r , } the
basis of horizontal sections such that for each i, T,-Y], induces o in
Prim^X./K^)). Let P = (P^-) be the period matrix

^•=]^P^/.

The intersection matrix M = (M;y), M^== YJ,/\ Y]y, 15 given by

( ^ . i ) M^rPJP^

where J ^5 tAe value of M a( 5, i. e. (Ae matrix of rational numbers
^iJ"==r\i{s)f\r\j{s) ("^(^ePrim^X./Q) &emg ^e c;a5s induced by T],).

5. THE PAIRING OF DWORK. — The pairing was constructed in a boot-
strap way (historically). Near the point s€T which corresponding to

n -+- 2

the diagonal hypersurface of equation V Xf = o, a basis of W8 is given
;' •== 1

by the monomials

X"' satisfying

fi-^-i
\Wi, Wo^dwQ=^\ Wi, Wo€Z ,

;=:!

[ i^Wi^d — i for i == i , . .., n 4- 2.

Such an exponent system w = (wi, . . ., ^4-2) is called admissible. For
each admissible exponent system w={w^ ..., Wn+s), define the dual
system by w= ( c ? — W i , . . . , d—Wn^i). Clearly w^->~w is an involution
of admissible exponent systems.

The pairing ([4], p. 248-251) on the Q-vector space W^) is defined by

(x^)^-1)"0 î -'
( o it not.

It is extended < ( locally " ([4], p. 266-267), i. e. to W^^,, by requi-
^ /\

ring (f^ , bilinearity and that, for any two horizontal elements ^i and ^3,
the product (T j , ^2) is the rational number defined above by (^(^), ^2 (<?)).
This does define a pairing, since, just as in Proposition 4, W8^^,.

y\

admits an (?T,s base of horizontal elements. Let T«, be the horizontal
section whose specialization at s is X"'.

By transport of structure by ©, the expression of the elements X"' in
terms of the horizontal elements T^ is given by a matrix P = (P(^) :

X"-=^P,,,,T, in W^ST,..
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P is the period matrix, expressing

0(X-)=^P^©(T,)

u

in Prim"(X,/0T,,).
Thus Dwork's local intersection matrix M'== M^ == (X^ X") is

given by
(5. i ) M^PJ'PS

where
j/ ^( (-1)'° if ^=^

\ o if not.

Dwork then constructs an (S^-bilinear pairing

W^W8-^

which extends the one described above ([4], p. 267-282, esp. th. 6.2).
As explained in section 4, such an extension is necessarily unique. Since
we will make use only of local properties, we will not describe the extension.

6. THE INTERSECTION MATRIX OF A DIAGONAL HYPERSURFACE. — This
section is devoted to proving

THEOREM 6. — DworVs pairing corresponds to [a constant multiple of}
the cup-product^ i. e, the following diagram is commutative for some non-
zero constant c€Q, which depends only on the dimension^ n, and the degree^ d,

W^x W8 c><(Dwork?spainns) > ^
| © x © > ht ^

Prim71 (X/T) x Prim^ (X/T) ̂ 2^ H,^ (X/T)

Proof. — As explained in section 4, it suffices to show this is so after
the base extension Spec(0^,) — T, i. e., that it is so in the formal neigh-
borhood of the point 5€T corresponding to the hypersurface X(n, d)

n-h2

of equation VXf=o . Comparing (4 . i ) and (5 . i ) , the pairings are
z=l

given by PJP^ and PJ'P^ respectively. Thus we must show that there
is a constant c such that J'= cj, i. e., that under the cup-product pairing

Prim" (X (n, d ) ) x Prim" (X (n, d))-^Q

we have
©(X^A^X-):^-!)^^,

for each pair u, v of admissible exponent systems.
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LEMMA 7. — Let u and v be admissible, and uj^v. Then
©(X^A^X^O.

Proof. — Extending the ground field from Q to K == Q(exp(2iu/rf)),
we introduce the action of the group G == ([J^)^2, which acts on P^,
X(n, d), P714-1— X(n,rf), etc., via

g (Xi, . . . , X^+2 ) == ( ̂ i Xi, . . . , tn+1 X,,+2 ) •

Here g = (^, . . ., ^4-2)6 (p^2, and (Xi, ..., X^) are the homo-
geneous coordinates.

To each admissible exponent system w we assosciate the character %^
of G defined by

^(^•)==^...%t2 ^ ^=(Si, ..., ^+2).

For each admissible system w, we claim
^(©(X-))=^(^)0(X-) .

This is so because :
i° ©(X^) = residue (^(X"'));

,. ^x^(-^.-.(.,.-.)l-^ ĵ̂  A . . .A T"^-
/ V ^ v ^ V 1 ' (^L-l/x/^+2) (^/z+i/^+a)

^xi/
a differential which obviously transforms under G by %^, and 3° the
residue map H" (P^ — X (n, d)) 0 K -^ H'-1 (X (n, ^)) 0 K commutes
with the action of G.

The product ©(X^A^X^) is thus an element of H^(X(^, d)) which
transforms under G by %^%p- But G acts trivially on Hj^(X(n, d)) (^) K,
and thus either

©(X^A^X^o, or ^=Z^

in which case u = ̂ .
Q. E. D.

Thus it remains to show that for each admissible exponent system u,

0(X-)A^(x")=c(- i )^
where c is independent of u. We first do this in some special cases :

I. d = i, any n; then Prim^X^, i)) == o;
II. d = 2, any n\ Prim/^(X(7^, 2)) is zero if n is odd, and is one-dimen-

/n+2 \

sional, spanned by ©( TTX; ), is n if even;
\ i=l /

III. d -==• 3, n === 2. The six admissible exponent systems

W= (Wi , Wa, Ws, ^4)
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are
(l, I , 2, 2) , (2, 2, I , I), ( l , 2, I , 2 ) , (2, I , 2; l), (l , 2, 2, l ) , (2, I , I , 2) ;

with dual pairs written together.
Let the symmetric group '814 act on J?8, P% X(2, 3), ... by permuting

the homogeneous coordinates :

(7(Xi, Xg, X3, X/,.) r= (X(7(l) , Xo-(2)? Xo-(3), X(y (4 ) ) .

By functoriality, the mapping residue : H3 (P3 — X(s, 3)) ->• Prim2 (X(2, 3))
commutes with the action of o-, and by direct computation

^: WS-^^P(P3-X(2, 3))

commutes " up to the signature 59, i. e.
^ (o- (X^)) =z sgn (o-) (^ (X^).

Thus ©(cr(X")) == sgn((7) ©(X""), and, as the involution w -> w commutes
with the action of 1514, we have

©^(X^A^^x^^^x^A^x7^

As '£'4 acts transitively on the six admissible systems for X(2, 3), this
completes case III.

The proof of Theorem 6 will be completed by the next proposition,
in which we return to the universal X -> T.

PROPOSITION 8. — Suppose M^I, rf^3, and either n^i or dy-^3.
For each admissible exponent system w, the element X"^^8 determines a
global section^ ©(X"'), of Prim"(X/T). For any two admissible systems u
and y, one has

0(X") A^X^)^: (—1)^0-^0 (X")-A©(X1 7 ) in^.

Proof. — It suffices to demonstrate the equality over the local ring of
the generic point of T, i. e. to consider the hypersurface X of equation

Xf+^AwX"' (where the sum is over all monomials X^ of degree d
w

other than X'f, and the A«, are independent variables) over the field
K=Q(A.) .

The spectral sequence assosciated to the filtration of 0^ by the sub-
complexes

F (%/.K) =o^^>__^->^-> ̂ /k-^ . • ,
i zeroes

has E^= H^(X, ^)->H^(X/K).
By Hodge theory, this spectral sequence degenerates at Ei foram/projec-

tive nonsingular X over a field K of characteristic zero. This means



59^ N. M. KATZ.

that the assosciated graded objects gr^ H^R^X/K) are given by H^(X, I^/p)-
In particular, because 7z==dimX/K, gr^Hpi^X/K) vanishes for p^n.
Thus F^ H^K (X/K) = o for p > n.

Because the filtration P of ^x/R is " multiplicative ",

F^x/K A F^x/KCF^.Q-x/K,

it follows that
F<HLK(X/K) A F/HLK(X/K) CF^HLK(X/K) .

Thus if ^e P H^(X/K), TIG F^ H^(X/K) and i +j > n, then ^A ^ = o.
Now consider any monomial X^e ̂ s. We have © (X^) == residue ((^(X^)).

The class ^(X^) is represented by a form holomorphic on P^1— X,
which has a pole of order (at most) Wo along X. It follows ([5], § 8] that
its residue lies in F^1-^ H^X/K).

Thus if u and v are admissible exponent systems with ^o+ ^o^ n -\- i,
one has ©(X^) A @W= o.

Let us say that two admissible exponent systems u and ^ are connected
if either u^^ (meaning ui^^i for all i) or ^^u.

As a first step towards Proposition 8, we prove

LEMMA 9. — When u and v are admissible exponent systems which are
connected, the conclusion of Proposition 8 is valid.

Proof. — Say u^^$ since we may clearly interpolate a sequence of
admissible systems

U=U^^U^^. . .^U^=V

with u^ = i-{-u^, it is enough to check the case ^0=14-^0.
Let us write u = v + w; then ~v = u + w (because v + ^ = u + u).

Recall the connection a" on W8, induced by o^^D+F0- In par-

ticular, taking the derivation , . — 5 defined by ^A-(Ay) == S^,y, and
writing a^ for 0-^5 we have

0 -x»aw==^^x

whence

and so

( ^,(X-)=X^
i^,(x")=x17

(^0(X^6(X^

(^e(x-)^e(x^
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Because po+ ^o = u^ — i + u^= n-{-1, one has
©(X1-) A^x^^o.

Differentiating with respect to A^,

0 =" ̂  (0 (x(l)) A 0 (x77) + ° (x ( >) A ̂ - Wx77))
whence

o == © (X'Q A ©(X") + © (X") A ^(X17).

Q. E. D.

LEMMA 10. — Let a be the least integer with ad^n-\- 2. Every admis-
sible exponent system u is connected to an admissible v having ^o = a.

Proof. — It follows from the definition of admissible that Uo^a.
Consider all n + 2-tuples t = (t^ . . . , ^) of integers satisfying

o ̂  t-i^ Ui — i for i =z i, . . ., n 4- 2.
/I-I- 2

As < varies over such systems, the function ^^ assumes all integral
z'=:l

7^+2

values from o to ^(u ,—i) . Because
z=l

n-\- 2

^ (^— i) == ^/.u— (/z + 2) ^df/o— ad,
z=i

^ + 2

there exists a t as above having ^t,== d(u, — a). The desired ^ is u — (.
1=1

Q. E. D.

LEMMA 11. — If n^i and d^ 3, (Aeyi either n+i^ia or n = 2
6mrf d == 3.

Proof. — Suppose n + i < 2 a . As M^I, we have 0^2. As
72 + 2 > (a — i ) r f by definition of a, we have 2 a^n + 2 > (a — i) d,
so 2 a/a — i > d ̂  3, or a/a — i > 3/2, possible only if 0 = 2 . Then
rf < 2a/a — i gives d = 3. Finally, 20 ̂  ^ + 2 > (a — i)d gives ^ = 2.

Q. E. D.

LEMMA 12. — Suppose n 4-1^20. Then any two admissible exponent
systems u and v having Uo = ̂ o = a are connected to a common admissible
exponent system w.

Proof. — For i^^^4-2, put r,==max(^, ^). We have i^n^d— i.
n+2 —— ——

If ^r, is divisible by d, take w = (r,, . . ., r,^); if not, there are positive
i=i

integers e and f with
rt-+-2

^r,.==rfe-/, i^/^rf-i.
1



598 N. M. KAT2.

We can take
w =z (ri + ti, r^ 4- ^2, . • . , ^+2 -+- ^+2),

^•4-

if we can find (ti, . . . , ^+2) satisfying o^^^c?—i— r ^ and V ti= f\

As (^i, ..., ^+2) varies over all n + 2-tuples satisfying only o^ti^d — i — r;,
71+2

the function ^^ assumes all integral values between o and
i=l

/^ 4- 2 ^ + 2

^ ( ^ — i — r , ) = = ( ^ + 2 ) ( ^ — i ) — ^ r , .
i-=l i=i

Because u^^i and ^^i, ri= max(u^ v!)^Ui-\- Vi—i.
n + 2 ^

Thus Vr^^Uo+^o—(n+2):::= 2a6^ — (^+2)? ^d so
1=1

71+2

(^ -4- 2) (d—i) —Vr^ (^+2) (d—i) — 20^ 4- (^+2)
z-l

=== (n -\- i) d— ^ad= (^4-1 — 20) ̂ d- d^-d.

Hence there exists (ti, . .., ^+2) with
71+2

o ̂  ̂ ^ d — i — /^ and ^. ̂ ==/.
z==i

Q. E. D.
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