Higher Congruences Between Modular Forms
Nicholas M. Katz

The Annals of Mathematics, 2nd Ser., Vol. 101, No. 2. (Mar., 1975), pp. 332-367.

Stable URL:
http:/links.jstor.org/sici ?sici=0003-486X %28197503%292%3A 101%3A 2%3C332%3AHCBM F%3E2.0.CO%3B2-J

The Annals of Mathematicsis currently published by Annals of Mathematics.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal s/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon Oct 15 14:32:19 2007


http://links.jstor.org/sici?sici=0003-486X%28197503%292%3A101%3A2%3C332%3AHCBMF%3E2.0.CO%3B2-J
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/annals.html

Higher congruences between
modular forms

By NicHoLAS M. KATZ

Introduction

The problem of determining all the congruences modulo a prime p that
hold between the. g-expansions of modular forms on SL(2, Z) was solved by
Swinnerton-Dyer [8], and the solution is one of the key ingredients in Serre’s
approach to the Kubota-Leopoldt zeta function via his p-adic modular forms
6], [7].

This paper gives an explicit solution to the problem of finding all
congruences which hold modulo arbitrary powers of ». The key point is the
stmultaneous consideration of all congruences modulo all powers of p, in the
form of the “ring of divided congruences”, whose elements are those finite
sums ), f, of modular forms over Q,, f; of weight 7, such that the sum of
the g-expansions Y, fi(g) has coefficients in Z,. It turns out (cf. 2.1) that the
p-adic completion of this ring is in a natural way the coordinate ring of a
certain “moduli problem”, which we may loosely describe as that of elliptic
curves over p-adic ground-rings together with isomorphisms of their formal
groups with the formal multiplicative group.

The first part of the paper is devoted to working out this isomorphism,
and to giving as a corollary an “abstract” set of generators for the relations
modulo any power of p. In the second part we restrict ourselves to primes
different from 2 and 3, and use the Weierstrass model of elliptic curves to
give explicit generators for the relations modulo all powers of p (cf. 5.5). In
a first appendix, we give the modular interpretation of our construction, and
explain the modular meaning of Serre’s “p-adic modular forms of weight x”.
A second appendix spells out how to “transfer” congruences in g-expansion
to congruences in the neighborhood of any ordinary elliptic curve. In a final
appendix, we give Deligne’s generalization to “false” modular forms of our
interpretation of divided congruences by a moduli problem.

In the course of this work, we realized that the systematic considera-
tion of the above-mentioned moduli problem led to an approach to the
Kubota-Leopoldt zeta function which is a sort of “fibre product” of Serre’s
approach through constant terms of Eisenstein series and of Mazur’s
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approach through his “p-adic measures”. We hope to return to this question
in a later paper.

A word about notation: When we write E,_,, then for p = 5 we mean
the usual Eisenstein series

Ep—l =1- "2_(-%;2 Eng1 q Edln ar=*

pP—1

which is a modular form of weight » — 1 over Q N Z,, whose reduction mod p
is the Hasse invariant. Unfortunately for p = 2 or p = 3 there are no
modular forms over Q N Z, of level one and weight » — 1. In compensation,
when » = 2 or 8, we will always consider modular forms of some fixed level
N = 3 prime to p, and simply denote by E,_, any fixed level N modular
form of weight » — 1 whose reduction modulo p is the Hasse invariant. For
» = 3and N = 8 prime to p, such liftings always exist, while for »p = 2, and
N odd such liftings are only known to exist for 3 < N < 11, and (hence) for
any multiples of these N. (For example, when p = 3, the level two modular
form whose value on (y* = @(x — 1)(x — \), da/y) is —1 — \ provides such a
lifting to all even levels, and for » = 2 the modular form of level-three “p”
on the level-3 curve #* + y® + 1 = 3pxy provides such a lifting to odd levels
divisible by three.)

(1.0) Fix a prime number p, and an integer N = 3 prime to p, and if
p = 2, assume further that N is a multiple of either 3, 5, 7, or 11. Let & be
a perfect field of characteristic p, which contains a chosen primitive N**
root of unity {. For each integer m = 1, write W, for the Witt vectors
W..(k) of length m, and denote W_(k) simply as W. The unique primitive
N® root of unity in W which lifts ¢, the “Teichmiiller representative”, will
also be denoted .

Let M°be the moduli scheme over W which classifies isomorphism classes
of elliptic curves over W-algebras together with a level-N structure of
determinant {, and let M be its canonical compactification. Thus M is a
proper smooth curve over W with geometrically connected fibres, and the
difference M — M"° is a disjoint union of sections, the “cusps”, the completion
along each of which “is” W[[q]]; over the “punctured disc” W((g)) around
each cusp, the universal curve with level-N structure becomes a “Tate curve”
Tate (¢"), with one of its level-N structures. For each integer m = 1, we
put My =M Ry Wy, M,, = M Ky W,. Let S, (resp. S,) denote the open sub-
scheme of M}, (resp. M,) where the Hasse invariant mod p (or equivalently
E,_)) is invertible. The schemes S}, and S,, are affine smooth curves over W,
with geometrically irreducible special fibre. We have
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Sn = Sm+1 Q@W,,,Jr1 Wa s S = S??t+1 Q@W,ML1 W, .

(1.1) Let E— S}, be the inverse image on S of the universal elliptic
curve. Because the Hasse invariant is invertible, it follows that for each
integer n = 1, the kernel of multiplication by »” on E, noted L, is an
extension

(1.1.1) 0 > ol > ol > B >0
where

p,,E' is the kernel of p" in the formal group E of E; it is a finite
(1.1.2) flat group-scheme over SJ which locally for the etale topology

on S, is isomorphic to g,» and where L is the Cartier dual of
p,,E’, locally for the etale topology on S2 isomorphic to Z/p"Z.

Thus the group-scheme ,E*, as a “twisted” version of Z/p"Z, is described
by an element of H}(S;, Aut (Z/p*Z)) = Hom (7,(S2), (Z/p"Z)*), i.e., it is
described by a character y, of 7,(Ss) = m,(S?) with values in (Z/p"Z)*. (For
m variable, the shemes S are deduced one from another by reduction
modulo a nilpotent ideal, hence have canonically isomorphic fundamental
groups.) For variable n, the characters y, fit together to give a character x
of 7,(Sys) = m,(S?) with values in Z, such that y, = x¥ mod p".

(1.2) We now recall the fundamental facts (proven in [3, Ch. 4]) about
the characters %, and the coverings they define.

(1.2.1) The characters ¥,, ¥ on 7,(S;) extend to characters still noted
Yns X o0 T,(S,,), which are trivial on the decomposition groups at the cusps
(which are the points of S,, — S5).

(1.2.2) The characters ,: 7,(S,) — (Z/p"Z)* are surjective (for any non-
void Zariski open set Uc S,, the composite y,: 7, (U)— (Z/p"Z)* remains
surjective simply because 7,(U) — 7,(S,) is surjective!).

(1.2.3) Let T, ,— S, be the etale covering of S, defined by (kernel of
the) character yx,: 7,(S,) — (Z/p"Z)*. The scheme T, , is a smooth affine W,,-
scheme with geometrically connected special fibre. For fixed n, we have

(1.2.3.1) Toiin @Wn =T,

and for fixed m we have

(1.2.3.2) I Aoty Tp,—> S, .

The inverse image of any cusp of S, is the disjoint unit of @(p") =
(» — Vp"* = ¥ ((Z/p"Z)*) W,-sections of T, , called the cusps of T, ,, and
the completion of T, , along any of its cusps is isomorphic to the completion
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of S, along the corresponding cusp (both being isomorphic to W,[[g]]). (This -
last fact is simply because %, is trivial on the decomposition group at each
cusp: In down-to-earth terms, a cusp of S, is represented by a Tate curve
Tate (¢¥) with one of its level-N structures. Now the formal group of the
Tate curve ¢s isomorphic to é,,,, hence the etale quotient of the kernel of p*
on the Tate curve isomorphic to Z/p"Z over W,[[g]]; the #(p") cusps of T,
lying over the chosen cusp of S, are simply the possible choices of this last
isomorphism. For fixed m, the schemes {T,, ,} form a “pro-algebraic” etale
covering of S,, with galois group Z3.)

(1.2.4) There exists on T, , an invertible section w., of the (inverse
image from S,, of thé) invertible sheaf w whose ¢g-expansion at each cusp of
T,,.1s a constant a € (Z/p™Z)* < Wx < W,[[q]]. The constant varies with the
cusp, but when we fix a cusp of S,, the g-expansions of w., at the @(p™)
cusps lying over run exactly once over the elements of (Z/p™Z)*. The set of
possible @, on T, ., is principally homogeneous under (multiplication by)
(Z/p™Z)*. (In fact, according to the main result of [3, Ch. 4] the scheme
T, is defined by “adjoining” to S, such a section ®.,.)

The @(p™) various ®.., are obtained “explicitly” as follows: Over T, .
the kernel of p™ in the formal group £ admits ¢(p™ isomorphisms to
Uomn. We may pull back the canonical differential dT/(1 + T) on fym =
Spec (Z[T1/(1 + T)*™ — 1) by each of these isomorphisms, and obtain ¢(p™)
invariant difI:'erentialsAon me’. Because we are in “characteristic p"‘”,A invari-
ant differentials on & extend uniquely to invariant differentials on £; these
in turn extend uniquely to invariant differentials on E over the open set
TS w = Thm!| Ss which when viewed as sections of w over T, , are precisely
the restrictions to 77, , of the sections w.,,.

(1.3) We fix once and for all a compatible system of choices {®cun()},
of the ®w., on the various T, ,, the compatibility being that under the
diagram

Tomir = Toiiymir @ W =— Tty
Tom
we have
Oeen(m + 1) mod ™ = Pri mis(@esn(m))
Such choices are possible, and the set of all such is principally homogeneous
under (Z,)*. There is a unique isomorphism of ZX with lim, Aut (T,,./S.)
which is independent of m (i.e., compatible with the canon(ic_al isomorphisms
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Aut (Tp11,n/Snys) = Aut (T,,./S,)) and under which
[@](@ean) = X' Dean
(meaning that, V m, [@ mod p™](@en(m)) = (@~ m0d P™) * Wean(m)).
(1.3.1) Notice that if we fix a cusp «a,, of S, there are uniquely deter-
mined cusps «,,, of all T, , (we put T,,=S,) such that «,, ,,, lies over

&, such that «,,, , mod p™ is «,, ,, and such that w.,(m) has g-expansion
1e W,[lql] at the cusp «,, ..

Definition of the fundamental homomorphism

(1.4) For each integer m = 1, let R,, be the graded ring of holomorphic
modular forms defined over W,,, of level N and type ¢, i.e.,
(1.4.1) R, = @®.» H'(M,, ©%¥)
and let R, be the graded ring of holomorphic modular forms defined over
W, of level N and type ¢, i.e.,
(1.4.2) R. = @20 H' (M, ©®*) .

For 3 < N £ 11, we have R../p"R,, =~ R,, but for N = 12 it can happen that
this map fails to be surjective on the graded part of degree one, though it
is always injective, and is always an isomorphism on all the other graded
pieces (cf. [3, 1.7]). For any fixed N, it will be true that R./p"R. >R,
for all but finitely many primes p.

Let V,,, denote the coordinate ring of T, , (with the convention that
T.o=S,). The rings V, , are smooth W,-algebras, and every choice of
cusp on V, , gives us an inclusion

Vm,'n C Wm[[q]] M
LEMMA 1.4.3. The cokernel W,[[q]l] Va.» is flat over W,.

Proof. Modulo p, the inclusion V,, ,— W,[[q]] becomes the inclusion

Vi,n = Kf[[g]]- Q.E.D.
The rings V,,, sit in chains for variable n,
(1.4.4) Vo C Va1 C Vo C o

and for variable m are related by canonical isomorphisms

(1.4.5) Vm+1,ln,/pm Vm+1,n _"N_) Vm,’n .

Let V., .. = Ua.z1 Va,ns then any choice of cusp «,, on S, determines a com-
patible system of cusps on all T, , (cf. (1.3.1)), and hence an inclusion

(1.4.6) Vin,o = Woi[ldl] -
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For variable m, we have canonical isomorphisms

(1.4.7) Vil 2" Vani,00 — Voo «

For each integer m = 1, we will define a homomorphism of (non-graded)
rings

(1.4.8) B B —— Vs © Voo

as follows: Let f; e H'(M,, ®®) be a modular form of weight 7. Then by
restriction, f; determines a section of w® over S,,, and then by inverse image
determines a section of w® over T,,,.. But over T, , we are given an
invertible section @, = We.(m) of ®, and hence the ratio f;/(@We.(m))® is a
well-defined section of the structural sheaf of T, ,. Thus we define

(1.4.9) Bu(22 13) = 22 fil(@can(m))® .

(1.4.9.1) We define 8..: R, — V., ., = lim,, V,, ., by passage to the inverse
limit. -

LEMMA 1.5. Let a,,, be a cusp of S,, and «,,,, the compatible system of
cusps of the T, , defined (1.3.1) by the choice of We.n. For any element f, €
H(M,, ©®), denote by f.(q) its g-expansion in W,[[q]] at the cusp a,, .. Then

g-expansion of Bn(d_ 1) at the cusp Ay p 0f Vi is 2 fila) € W,llgl]-
Proof. The g-expansion of @...(m) at «,,,, is the element 1 ¢ W,[[q]].
Q.E.D.
COROLLARY 1.6. Let)> fie R,, and let m, < m. Ifitis true at one cusp
of M, that Y, fi(g) = 0 mod p™ in W,[[q]], then it is true at every cusp.
Proof. By (1.5), the hypothesis implies that 8,(»™ ™ 3 f;) has g-expan-
sion zero at the cusp «,, ,, of T, . determined by «, ,. But this means that
,6’,,,(1)"“"‘1 > fi) = 0, hence has ¢g-expansion zero at every cusp of T, ., hence
that g8.(3_ fi) has g-expansion = 0 (p™) at every cusp of T, ., hence that
> fi(@) = 0 (p™) at every cusp of M. Q.E.D.
COROLLARY 1.7. If 3 f,e R, and if for some m, < m, Y f; has the
property that >, fi(q) = 0 (p™) at one (or equivalently at every) cusp of M,
then for any a € (Z/p™Z)* the element ), a’f; € R,, enjoys the same property.
Proof. We must show that g,(p™™-3 a’f;) =0in V, .. But
Ba(0™ ™ 35 a¥f,) = p™ ™ 33 0¥ fi[(@can(m))® = 2™ ™[a)(35 fi)(@can(m)®))
= [a]Bn(p™ ™ 22 fi) = [a](0) = 0. Q.E.D.
COROLLARY 1.8. The image of the inclusion V,,, — W,[[q]] determined
by any choice of cusp on T,,, is independent of the choice of cusp.

Proof. First, all cusps of M are conjugate to each other by the action
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of SL(2, Z/NZ) on the level-N structures, so we may assume that our cusp
lies on T, , over the same cusp «,, as the standard chosen cusp (cf. 1.3.1).
Then our cusp will be the transform of the standard one by some automor-
phism [a] € (Z/p"Z)*. Thus all the possible g-expansion homomorphisms
Vin,n = Wo[[g]] are conjugate to each other by automorphisms of V,, ,.

(1.8.1) By passage to the limit, it follows that the image of V. —
W]lg]] is also independent of choice of cusps, and that the cokernel
Wllqll/ V... is flat over W (cf. 1.4.3). Let I, ., (resp. I ) denote the (non-
graded) ideal of R,, (resp. R.,) consisting of those elements ), f; such that at
one (or equivalently, at every) cusp of J, > filg) =0 (p™).

COROLLARY 1.9. I, . is graded modulo p — 1. (If 3 fi € L, m,, then for
each 0 < i, < p — 1, EiEiO(P—l)'fi €l n.)

Proof. Use the action of g,_, (which sits in (Z/p™Z)* as the Teichmiiller
points) to decompose I, ., into the direct sum of its » — 1 eigenspaces for
Hos-

A generalization of the fundamental homomorphism

We wish to define a module-homomorphism

(1.10) B L= Vicn © Vo

as follows: If 3 f; e I, ., then ™ ™g,(3- f,) =0 in V,,,, which implies, be-
cause V,,,, is flat over W, that 8,(3_ f;) = p™h for some element he V, .
This element & is unique modulo p™ ™V, ,, and thus determines a well-defined
element of V,_,. .» C V,_n . Which we denote “(1/p™)8,.” (3_ f;). By passage
to the inverse limit over m, we obtain a homomorphism

({3

(L.11) — B Loy — lim V, S0V, .

PA—

Clearly if ) fie R., “(1/p™)B.” (3_ f:) has g-expansions (1/p™) > fi(q) at
corresponding (via (1.3.1)) cusps, which is to say, we have the formula
(1.1.2) p’”“;lg;ﬁw” = . on L, .
2, The ring D of divided congruences

(2.0) Let us denote by D the W-algebra R+ (I/p)- L.+ @Q/0*) L,5+ -+,
the non-graded subring of R_[1/p] consisting of those elements ), f; € R.[1/p]
which at one (or equivalently at all, by 1.6) cusp(s) of M have integral g-
expansion (i.e., Y, fi(g) € W[[q]]). (Notice that in fact R.c(1/p)-IL..c(1/p%)-
IL..c--c@/p®)-I,,C +-+,s0that D = limp™-I,, as W-module.)
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We define a W-algebra homomorphism

(2.0.1) B:D—V, .,

by the requirement that on p™-I,,, B is “(1/p")B.”-p"*. That g is a ring
homomorphism follows immediately from the fact that if we choose a cusp
of M, then g-expansion at the “corresponding” cusp of V. gives an inclu-
sion V., .. c W[[q]], and the composite D £, V.., © W[[q]] sits in the com-
mutative diagram

DLV, W]

’~ g-expansion

2.0.2) - :
' P N
B[] i WU ]
For each integer m = 1, let 8(m) denote the reduction modulo p™ of A:
(2-0-3) B(m): D/p'mD N Vm,oo )

THEOREM 2.1. For all m = 1, g(m) is an isomorphism.

Proof. By its very definition, 8(m) is injective, forif ), fie p™ I, , lies
in its kernel, then ) fi(q) e p™W][q]], whence }_ f; lies in p™ I, ,\n =
(@™ " Ly nim)  ™D.

It remains to show that g(m) is surjective. Clearly it suffices to show
that g(1) is surjective, for if a module-homomorphism is surjective modulo
a nilpotent ideal, it is surjective. We will establish the surjectivity of g(1)
in several steps. We begin by noting that in the tower V,,c V,,Cc V,,C ---
the lowest layer V,,/V,,is cyclic of degree »p — 1, while all successive layers
are cyclic of degree p.

We begin by showing that V,, lies in the image of B(1): in fact, V,, is
precisely the image under 8(1) of the subring R, of D.

THEOREM 2.2. B,: R, — V., ts surjective, with kernel the principal ideal
(EP—1 - 1)-

Proof. The scheme S, is the open sub-scheme of M, where E,_, is inver-
tible, thus is none other than Spec,, ((Symm (@®*~))/(E,-, — 1)) (because
both represent the functor on Sch/M which to an M-scheme T associates
those sections 6 of (@ )2~ over T such that 6E, , — 1 = 0in O;). Because
o has positive degree, it is ample, hence S, is affine, hence its inclusion into
M is an affine morphism; the Leray spectral sequence shows that V,,, the
coordinate ring of S,, is given by H(M,, Symm (@®77Y))[(E»-, — 1). Because
E,_, is homogeneous of positive degree, multiplication by E,_, — 1 is “for-
mally invertible”, hence injective on Symm (0®?~") and all its cohomology
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groups. Thus the long exact cohomology sequence associated to the short
exact sequence of sheaves on M,
(2.2.1) 00— Symm (@® ') — Symm (@®*~*) — Symm (0®*")/(E,-, — 1) —0
shows that
Vi = H(M,, Symm (@**7))/(E,-, — 1)

=~ @, H'(M,, o) [(E,_, — 1) .
The map is explicitly given by Y fip_n — D fiw_n/E}, and thus coincides
with the restriction to R{"™® of 8,. Similarly, the scheme T, is the etale
covering of S, which trivializes the etale quotient of the kernel of p» on the
universal elliptic curve with invertible Hasse invariant E,_,. As is well-
known from the theory of the Hasse-Witt operation, this etale covering is
defined by the extraction of the (» — 1)™ root of the Hasse invariant, or
equivalently of its inverse. It follows that
(2.2.3) T, = Specy, (Symm (@)/(Es-, — 1))

because both represent the functor on Sch/M whose value on a scheme T/M
is the set of sections ¢ of @w®* over T such that ¢»*-E,_, —1=0in O,.
Because T, is finite and etale over S,, it is affine over S,, hence affine over
M,, so the Leray spectral sequence gives

(2.2.4) V.. = H'(M, Symm @)/(E,-, — 1))

The long exact cohomology sequence then gives

2.2.5) Via = H(M, Symm @)/(By-, — 1) = Rf(Ep, — 1) ,
and the map R,/(F,_, — 1) — V., is given explicitly by

(2.2.6) Y fi—— T = T flow)® = (I F) -

Thus we have the desired commutative diagram

(2.2.2)

R1/(Ep—1 - 1) ":" va .

R
(2.2.7) N //{

R,

COROLLARY 2.2.8. (Swinnerton-Dyer). The ideal I, , of R, consisting of
elements Y, fi such that Y, fi(q) = 0in k[[q]] is the principal ideal (E,_, — 1).

Remark. For any m = 1, we may obtain a partial generalization of
Swinnerton-Dyer’s result:

PRrROPOSITION 2.2.9. Let R;?*™ denote the subring of R, of all modular
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Sforms of weight divisible by p(p™) = p™*(p — 1). Then I, ., N Rf*™ 1is the
principal ideal of R;¥*™ generated by (Eoom, — 1), and B, induces an
isomorphism

(2.2.9.1) Bt REP™ [(Bpom) — 1) — Vo = I(Sp, Os,,) -
Proof. As before we have S,, = Spec, (Symm (@®*™)/(Eypm, — 1)), and
Voo = H'(M,, Symm (@®*™))[(Eypm — 1) = BZ*™(Bpem — 1) .
Furthermore the isomorphism is given explicitly by

Efwwm) h— Efw(pm/Esgwm) .
Using the fact that (@e..(m))**™ = E,pm) on T, ., as both have g-expansion
1 mod p™, we may write this

Efw(pm _— Efw(pm/(wcan(m))iwpm) = Bm(Efwwm) .
We now return to the problem of surjectivity. We have shown that g, maps
R, onto V, .

COROLLARY 2.3. The composition R.,— R, ——/s—l—-» V.. s also surjective,
with kernel (p, E,_, — 1).

Proof. Although R, — R, need not be surjective, the composite wtll be,
because B, kills the ideal (E,_, — 1), hence 8,(R,) = B.(E»_.R) = Bi((E>-.)°R.),
and for v = 2, H'(M, w®) Q k — H(M,, ©»®) is surjective. This shows that
V... is precisely the image under @(1) of the subring R, of D.

In order to continue the proof, we will need to make use of Artin-
Schreier theory, in the following explicit form:

(2.4) Let A be a ring of characteristic p (i.e., an F,-algebra), and let
B D A be a finite etale A-algebra of rank p, which is Galois with group Z/pZ
(thus Aut (B/A) -~ Z/pZ, and A is the subring of invariants). Then there
exists an element b € B such that » € Z/pZ acts by sending b — b + n. The
element b is unique up to addition of an element of A, b* —b =ac A, and
the choice of b defines an isomorphism A[X]/(X? — X — a) —» B. In par-
ticular, any element be B which is sent to b + 1 by a generator of Z/pZ
generates B as an A-algebra. We will successively apply this “principle” to
the situation A = V,,, B=V, ...

Let us introduce the action of the group Z; on the ring D by the
formula

(2.4.1) I f) = o a¥fi, aeZ;, 3 fieD.
(It is a priori an action of Z} on R.[1/p] but thanks to 1.7 the subring Dc
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R_[1/p] is stable under this action.) The meaning of 1.7 is simply the Z}-
equivariance of the homomorphisms g(m): D/p™D—V,, .. In the tower
Van VoV, ., +-+, the ring V,,,cV,. is, for n = 1, precisely the
subring of tnvariants of the subgroup 1 + p"Z, of Z, and the Galois group
of V, ... over V, . is canonically 1 + p"Z,/1 + p"*'Z,, a cyclic group of order
p generated by the class of 1 + p~.

KEY LEMMA 2.5. For each integer n = 1, there exists an element d, € D
such that for all integers k = 0, the action of 1 + p*** e Z¥ on d, satisfies:

(2.5.1) 1+ »"™*(d,) = d, + p*E,_, modulo p**D .

Admitting this lemma for a moment, let us conclude the surjectivity of
B(1). By the lemma, B(1)(d,) is invariant by 1 + p"*'Z,, hence B(1)(d,) €
Vi nt1e Furthermore,

1+ 2’1(8(1)(d.) = B, + Ep_)) = BA)(d,) + 1
which implies by Artin-Schreier theory (2.4) that for » = 1, we have

Vx,n+1 = l,n[B(l)(dn)] ’

and hence V|, is generated over V, by the elements {8(1)(d,)}.=;- As we
have already shown that V,, = B(1)(R.), this gives the desired surjectivity
of B(1), and thus of all the g(m). In fact, the proof shows that the R -sub-
module of R,[d,, ---, d,, ---] spanned over R_ by the products

(2.5.2) II,., (@), a; = 0 for all but finitely many ¢, a, <p — 1,

maps onto V, ., and hence onto V,, ., for any m = 1. Indeed, the proof shows
that the B(1)(d;) form a “p-base” for V, . over V,,.

Construction-proof of the Key Lemma. We proceed by induction on #.
For n = 1, we define

2.5.3) d, = 1——1)1;"—”‘—‘— (compare Serre [6], Remark 1 after 1.3).
We immediately calculate
[1 + pH.k](dl) — 1 — (1 + pH'k)P—l.Ep_l
D

1= E, ., — (- Dpt*E,_, + (p2k+2)Ep—1
2.5.4) .

=d, + p*E,_, + (") E,_,
=d, + p*E,_, mod p**'D .

Suppose we have already constructed d,, - - -, d, with the desired properties.
Then Artin-Schreier theory shows that
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(2.5.5) I’l,n+1 = 1,1:[:8(1)(dn)]
and that
(2.5.6) (BM)(@.) — (BA)) € Vi -

Also by Artin-Schreier theory, we have
(2.5.7) Vi = VoulB@), -+, BA)(d.-)] = BQ)(R.Id,, - -+, dui]) -

Thus we may choose an element

(2.5.8) CoeR.[d, -+, dus]l s Co=20gt o Finomin, II" did
m
E,

such that

(2.5.9) (B)(d.) — (B)(E.))? = BA)(C,) -

Consider the element

(2.5.10) d, — (d.)? — C,eKer p(1) = pD .

We define

(2.5.11) dyr = dy — (dn)? — C,

vy
It remains to verify the transformation property. We calculate:

1+ p"](ds)

(2.5.12) _ 1+ ptd,) — ([ + p77(dn)” — [1 + p""*¥(C,)
= . )

Consider successively the three terms in the numerator. By induction,

(2.5.13) [1 + p"**|(d,) = d, + p**'Ep_, + p***D .

In particular,

(2.5.19) ([1 + p"**¥(d.))y = (d, + p**' D) = (d,)? + p***D .

By the transformational congruences for d,, ---, d,_,, we see that
(2.5.15) [1 + p****](C,) = C, + »***D for any C,c R.[d,, ---, d,_] .
Combining all this, we find

nitl . d,,, + pk+1E - (d )p _— C + pk+2D
1+ +1+k d” — p—1 n. n
(2.5.16) [ b 1@ass) p
=d,., + p"E,_, modulo p**'D . Q.E.D.

3. Determination of the ideals I, C K.,

(3.0) Henceforth, let us agree to denote I, simply as I,, the ideal of
relations mod p™ between the g-expansions of modular forms over W. In the
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course of the proof of the last Lemma 2.5, we discovered a large number of
“divided congruences” d,, which give rise to “true” congruences as follows.

LEMMA 3.1. For n = 1, the elements r, = p®" vI*=v.qd, of D lie in R,
hence in I pn_yjp_1)-

Proof. We proceed by induction on 7, the case n = 1 being trivial: r, =
1 — E,_,. Supposing the result proven already for r, ---, r,, we use the
formula (2.5.1):
(3.1.1) pd”+1 = d,,, - (dn)p - Cn(dl, Tty dn—l)
where C,e R_[d, -+, d,_,] has degree at most p — 1 in each variable d,
separately. We readily calculate:
L= plettitvie-v.g = ptpiteatp™ s
(3.1.2) Topr =P =P , ”p +
= pp+p RN [dn - (dn)p - Cn(du R d'n—l)] ’
r'n+1 = pp"—lr” - (,r”)p

— ptertp?=""t azpi-n [(p—1) n—1 a;
Eoé(al,---,a,,,__l)sp—lfal:“‘:"n—-lp i=t ! Hr[:l (ri) b

Q.E.D.

3.1.3)

COROLLARY 3.2. For each integer n = 1,
Toir T (Tn)p € plyonnpo-1-1 -
Proof. Obvious from the formula (8.1.3) above.

THEOREM 3.3. For each integer m =1, the ideal I, =1,, of R, 1is
generated by the monomials
R SR
such that

@, + Ele ai(p — 1) =n.

p—1
In particular, for n < p, I, = (I)" = (p, E,_, — 1)
For later applications, we give a more abstract formulation of the result

(a version which by virtue of (3.1), (3.2), and (2.5.2) clearly implies (3.3)
above).

THEOREM 3.3 bis. Let r, 7, --- be a sequence of elements of R,, such that
(3.3.1) Y€ Lipn_syjio-) »
(3.3.2) Tosr + ()P €D Lpon_iyjo—in—1 »

(8.8.3) If we let d, = r,/p®" V"™V, the images B(1)(d,), BA)(d,), -+ of the
d;in V.. form a sequence of successive Artin-Schreier generators of V, ., over
V.1 (hence form a p-base of V, ., over V).
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(3.3.4) r,=1— A, where A is a modular form of weight p — 1 which lifts
the Hasse invariant.
Then for each integer m = 1, the ideal I, = I, , of R, is generated by
those monomials
p“ﬂfr:i cee 'r;]'
such that
(3.3.5) a + 30 1a£<p - 1) —n.

p—1

Proof. Let us denote by I, the ideal generated by the above monomials;
clearly we have I, c I,. In order to reverse this inclusion, we introduce the
ideal I, generated by those monomials

p“OTl‘zl cee r“;:i

which satisfy

(3.3.6) 1

i
{ao+EaiQ%—1)gn
ifi=1,then0=<a, <p—1.

LEMMA 3.4. For every n = 1, we have I,) = I,.

Proof. We clearly have I c I,. To reverse the inclusion, we proceed
by induction on ». For n = 1, the ideal I, is generated by p» and r,, hence
I,c I'. Now suppose the result proven through =, and suppose we are given
an element of I,,,. It certainly lies in I,, hence in I,’ by the induction
hypothesis, hence may be written

(3‘4‘1) Efao,'--,ajpaorgl et /r‘llj ’ fao,---.aj € Roo ’
the sum extended over finitely many tuples (a,, ---, @;) which all satisfy

a + ) ai< — ) =>n
0<ag,=p—1forit=1.

Any of these monomials for which a, + >, a,((»* — 1)/(»p — 1)) = n + 1 already
lies in I/%,. Subtracting, we may assume that only monomials satisfying

{a0+2a W= _y

(3.4.2) {

— 1
0, =p—1ifi1=1

(3.4.3)

occur in the expression (3.4.1).
Now to say that the sum (8.4.1) lies in I, is exactly to say that after
we divide it by p", we obtain an element of D which lies in the kernel of 3(1).
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Using the identity

0p01 .. Pl . i
@G.ad) BT TE gy (d) i a, + Eai(i - 11) —n
we thus conclude that
(3.4.5) 2 fagna (@) -+ (d5)* € kernel of B(1) ;
i.e.,
(3.4.6) 2 B (faye) TI, (BQ@))% = 0 in V...

Because the elements B(1)(d;) form a p-base of V,, over V,, and the expo-
nents a, satisfy 0 < a; < p — 1, we have

(3.4.7) BL)(Sap,---,e;) € ker B(1) ;

the coeflicients f,,.....; all lie in I, = (p, 7). Thus we must show that if a, +
P a(@ —-1)/®—1))=n,0=a,<p—1fori=1, then

ppe [ riie L,
rip® [] rite I, .

The first of these inclusions is obvious. The second is obvious in case
either a, > 0, in which case rp* [[ r¢é e p-I, = pI,) c I]},, or in case a, =
’

p — 2, in which case r,p® [] 7% is one of the standard monomials in I.},.
Thus we must show that

(3.4.8) {

(3.4.9) v e rie I, if p+ Y., a,-(f);——%) —n+1.

In fact, let us show thatif n = Y7_ a,((®* — 1)/(» — 1))and 0 < a, <p — 1,
then for any integer 1 < k =< 7,

(3.4.10) (rrrifit - riie Ll .

We proceed by descending induction on k.
For k& = 7, we notice that »;,, € I},, and that by (3.3.2)

(3.4.11) ) + rin€p - Lpi—np-nCp-I, = ol c I\,

(the inclusion I, pi_nw_1n-1 < I, because

n= Sl s B e -0 = -5 wa(f=))
= -1ea(B).

For k& < j, we have, again by (3.3.2),
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(3.4.12) T + ()? € D+ Lpwk—pypp—1n—1 C DL, —5i_ 1 e @i-DI (1)) -
Hence,
(3.4.13) Popi(Prg)FHt o oo vH 4 (r)Pritt oo r%iepl, = pI) C I, .

If a;., = p — 2, then the first term in the sum (3.4.13) is a standard monomial
of I}, and if a,,, = » — 1, then by the descending induction hypothesis for
k + 1 we know that the first term in the sum (3.4.13) lies in I},. This
concludes the proof of (3.4.8), and hence of (3.4). To conclude the proof of
the theorem, it remains to prove:

LEMMA 3.5. Foreveryn =1, I, = I).

Proof. Because I,c I, = I, it suffices to prove that I, < I,. Consider
one of the standard monomial generators of I,’, say p®r{i«--r3. If 35 . a,=
2, we may write this monomial non-trivially as a product of monomials, as
an element of I,-I, for some integers a, b = 1, @ + b = n. By induction on
n, we may suppose I, = I, I, = I, and clearly I,-I;c I,., = I,. Thus it
remains to treat the case of the element p if » = 1 (i.e., to show that I/ = I,
which is obvious) and the case of »; if (»'—1)/(p—1) =n. If (p'—1)/(p—1)=mn,
then r;e I. If (»* — 1)/(p — 1) > n, then by (3.3.2) we have

r; + (7'1'—1)? € pIp(p:"—l—l)/(p—U—l c pIu—l = pI'-—1 c L’z

and by the first case treated above, (r;_,)? € I,. This concludes the proof of
the lemma, and hence of Theorem 3.3 as well.

4. Application to congruences between modular forms of levels
land 2: p =5

(4.0) Suppose first p = 5, and choose N=p —1, bk =F,W =1Z,. Let
us write

G, = the subgroup of G of elements = 1 modulo 2.

The group G acts on all of our objects: R, D, V, ., -+ and commutes with
the action of Z%. The ring RS (resp. RSY) of G-invariants (resp. of G,-inva-
riants) in R, is none other than the ring of holomorphic modular forms over
Z, of level one (resp. 2), and the ideal If = I, N RE (resp. L7 = I, N RS is
the ideal of relations mod p* between the g-expansions of such modular
forms.

LEMMA 4.1. If p = 5, then the order of the group G is prime to p.
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Proof.
I — 1) +1
4G = @ - I, =00+
is clearly a p-adic unit because p — 1< p,l -1 <p,l<p,and Il +1<p
if p # 3.

LEMMA 4.2. Hypotheses as above (p = 5, N = p — 1), the elements d,,
d,, * -+ may be chosen to be G-invariant.

Proof. Clearly d, = (1/p)(1 — E,_,) is G-invariant, because E,_, is a
modular form of level one, defined over Z,. Suppose that d,, ---, d, have
been chosen to be G-invariant. Then (d,)? — d, is G-invariant, and its image
under B(1) in V;, is thus a G-invariant. Let G,(d,, ---, d,_,) be a polynomial
ind,, ---, d,_, with coefficients in R,, and degree < p — 1 in each d,, such
that g1)(C,) = B(1)((d.)* — d,). Writing C, = 3 fi,,....a,_, 4% + -+ di7* with
coefficients f'e R, we see that if we replace each f = f, .....q,_, by its integral
over G (= (1/4G) X_, ., 9(f)) then we replace C, by its integral over G. But
because B(1)(C,) is G-invariant, we have B(1)(C,) = ,3(1)(S C,,). Thus we

G
may suppose that C, is G-invariant; then the definition of d,,, as
dn+1 — (d")p _ d‘n _ Cn
D

shows that d,,, is also G-invariant.
COROLLARY 4.3. The relations r, r, -+ may be chosen G-invariant.

THEOREM 4.4. The ideal IS of RS, and the ideal ISt of RS, are generated
by those monomials
PP .. r}'.i
which satisfy

|
@+ ., ai(p > =n.

p—1
Proof. By (3.3), any element of If (resp. If) may be written as an R.-
linear combination of the above monomials:

Efao,u-,aj’p“"?‘i’l e,
As this expression is G (resp. G,) invariant, it is equal to its integral over G
(resp. G,), hence (as the r; are G-invariant), it is equal to

> <Safao ,,,,, .,,.)p“ri‘l oo Q.E.D.

3-adic congruences in level 2

(4.5) The problem of 3-adic congruences between modular forms of level-




HIGHER CONGRUENCES 349

two defined over Z, may be handled by a similar integration argument, as
follows. Choose N =4, k =F, = Fy[i], W = Z,[7], and view the corresponding
modular scheme M as a scheme over Z,. So viewed, the subgroup G, of GL,(Z)
of matrices congruent to the identity modulo 2 acts on M (the subgroup
G, N SL, acting “geometrically”, the quotient +1 acting as Gal (Z[:]/Z;)),
and the quotient is the projective A-line over Z,, denoted simply P'. The
invertible sheaf @ does not descend to P, but its square @w®* descends ca-
nonically to the sheaf O(1) = Q41 (log {0, 1}) of differentials with first-order
poles at 0, 1, thanks to the Kodaira-Spencer isomorphism (cf. [3], A. 3.17).
(Under this isomorphism, the square of the differential dx/y on the almost-
universal level-2 curve y* = x(x — 1)(x — \) corresponds to the differential
2dM/M1 — \).) The ring of modular forms of level-2 defined over Z, is just
the subring (R..)% =~ @z, H(P', O(k)) = Symm (H°(P*, Qm(log {0, 1, «o}))).

Because the Hasse invariant lifts to a level-2 modular form over Z, (for
instance the section (—1 — A)dN/2M(1 — \) of Qb(log {0, 1, }), we may choose
the relation r, to be G,-invariant. Because the group G, has order 16 (prime
to 3), the integration technique used above (cf. 4.4) allows us to select the
~ successive relations r,, 75, - - -, in a G,-invariant way. We obtain, for any such
selection, the following

THEOREM 4.6. The ideal If: of RE: 1s generated by those monomials
p“Ofr‘lzl cee T;j

which satisfy

j 3% — 1\ _
ay+ i @y 5 =n.

5. Explicit generators for the ideals I, via Weierstrass (p = 5)

(5.0) The Weierstrass curve and its differential ([3], A.1, [9] and [38]).
We begin by recalling the “Weierstrass normal form” of an elliptic curve.
Let B be any ring in which 6 = 2-3 is invertible, and let (¥, w) be a pair
consisting of an elliptic curve E over B and a nowhere-vanishing differential
® or E. Let us denote by Ogz(— ) the invertible sheaf on E which is the
inverse of the ideal sheaf of the identity section of E/B, and by Ox(—mnc) its
n'® tensor power. Then there exist unique meromorphic functions on £

X = X(E, 0) € H'(E, O(—2))

(5.0.1) Y = Y(E, ®) € H(E, O(—3))

and unique “constants” g,, g;€ B
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{gz = gy(E, w)

¢.0.2) 9 = 94(E, )

such that the pair (E, w) is the pair

{Y2=4X3—92X—ga

(5.0.3) o XY

We denote by T = T(E, ®) the uniformizing parameter X/Y, by means of
which the formal completion of E along the identity section is identified with
(the formal spectrum of) B[[T]]. By uniqueness, we have the following
transformation formulas, for any unit » € B*.

(5.0.4) X(E, v) = V:X(E, ) ,
(5.0.5) Y(E, »0) = VP Y(E, o),
(5.0.6) 0:(E, M0) = N"'g(E, w) ,
(5.0.7) 9(E, M) = N"°gy(E, @) ,
(5.0.8) T(E, »0) = \T(E, o) .

(Formulas (5.0.6) and (5.0.7) express the fact that g, and g, are modular
forms of weights 4 and 6 respectively.) Consider now the expansion along
the identity section of the differential w:

(5.0.9) =3 aT"dT

where the coefficients a, = a,(E, ) lie in B, and are expressed by universal
polynomials with Z-coefficients in terms of g, and g;. Let us compare the
developments of w and Mw, for a unit » € B*:

(5.0.10) o =Y a (B, 0)-(T(E, o) dTE, o),
(5.0.11) o = Y a. (B, o) T(E, o))" d T(E, M)
by (5.0.8) =Y a.(E, o)\ (T(E, o)) dT(E, o) .

Thus we have the transformation formulas, for » = 1:
(5.0.12) a,.(E, v\0) = M "a,(E, o)

which say precisely that a, is a modular form (over Z[1/6]) of weight n — 1.
It follows by reduction to the universal case that the universal expression
of @,_, as a Z-polynomial in g,, g, is isobaric of weight » — 1, when we attri-
bute to the g, and g, their weights 4 and 6 respectively. The a,, are all zero,
and the first few a,,,, are given by
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a, = —2

a;, =0

ay, = 169,

a, = 969,

a, = — 192(g.)

@, = —5120.9; .
g-expansions; the Weierstrass differential on the Tate curve

(5.1) Recall that the g-expansions of g, and g, are given by

Gl ole) = —Bfe) = —(1+ 240 T, ox(n)a”)

e Z[1/6][[¢]]
(612 0d0) = —-Ele) = —(1 - 504 T, oi(u)q’)

which is an oblique way of recalling that the Tate curve with its canonical
differential (Tate (q), ®...) is given over Z[1/6]((g)) by
EX E

Y2 = 4X3 — 4 + ]

(56.1.3) 12 216
Wen = AX/Y .

We must also recall the existence of a uniformizing parameter Z along the
identity section

(5.1.4) = —2T mod T*Z[1/6][[q1][[ T1]

in terms of which the expansions of X and Y along the identity section are
given by

_ "t + Z) 1 - _q
(5.1.5) X=3 .z (=003 2] -2 7
_ d
(5.1.6) Y=(+2)7-(X)

so that, on the Tate curve, we have the expansion identity
(5.1.7) On = dX|Y =dZ|/1l + Z)=dlog(1 + Z) .

Let us denote by a,(q) € Z[1/6][[q]] the g-expansions of the modular forms a,;
comparing the expansions (5.0.9) and (5.1.6), we obtain the formal identity

1+ Z =exp (Engl a.(q) %) .

The key point here is that, thanks to (5.1.4), we know that
FAcCT (5.2). The series exp(D_ a.(q)(T*/n)) actually lies in Z[1/6][[q]][[ T1].
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Definition of the divided congruences b,, c,, d,

(5.3) We return to the universal Weierstrass curve and its differential,
expanded in terms of T':

(5-301) w = En;l a’nT”_ldT b a’n € Z[g2y ga] .

We define the sequences b, = 1, b,, b,, -+ and ¢, ¢,, --- of elements of Q[g,, g:]
by the formulas

(5.3.2) Hng1 @ —ecT)" = Enzo b, T" = exp <En;1 a”%) )

Thanks to FACT (5.2), we have the remarkable
PROPOSITION 5.3.3. The elements b,=1,b,b, --- and ¢, ¢, -+, of
Qlg., gs] all have g-expansions which lie in Z[1/6][[q]]-.
Applications to congruences
(5.4) Fix a prime number p = 5. We define a sequence d,, d,, d,, - -+ of

divided congruences by setting

(5.4.1) q, 2

Taking the logarithmic derivative of both sides of (5.3.2), we obtain the
following formulas expressing the d, in terms of the a,::

Cpn

(5.4.2) p*d, + D" N(du)? + P"Hdd)” + 0+ (A" = apn
dy=c¢ =1
4, = %= 1
P
(5.4-3) ’{d:apz_l__l_<a’p__lp
: p* p\ D
do— @m—1_ 1 .<a,,—1>"2_ 1[0,,,2—1 _ 1(a,—1>”]
3 — _ -_ R .
° * P P »’ P P

LEMMA 5.4.4. For each n = 1, the element

dfn n AP
- prtTvIeh g lies in Z[gz, gs] .

Proof. This follows immediately from the formula (5.4.2) above by
induction on n.

THEOREM 5.5. For any integer N = 1 prime to p, and any perfect field
k of characteristic p containing a primitive N root of unity {, denote by
R, the ring of holomorphic modular forms of level N and type { over W =
W.(k). The ideal I, C R, of all g-expansion congruences modulo p* is gener-
ated by those monomsials in the r; (cf. 5.4.4)
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p“Or‘l"l ceon /r:u
which satisfy

ao+Ea,~<p‘_1>='n.

p—1

Proof. The cases N = 1, 2 follow from the case N = p — 1 over Z, by
the “integration” argument of (4.4), which is valid because the r, are of
level-one and defined over Z,. To do the case N = 3, it suffices to check that
these r; satisfy the four conditions of Theorem 3.3 bis.

The first condition, that 7, € Ipn_,)»_y, is satisfied in virtue of (5.4.4).
The second condition, that
(6.5.1) Tois + 0)? € DL on_pyjio—1n-1
is easily deduced from the fundamental formula (5.4.2):
(5.5.2) Py + DM(A)? + DV HAa)? e ()P = Qg
Multiplying by p?"*'-v/t*=0-2"1 e have the formula
(5.5.3) 0 = s () + X0, PP 0, ) PP,
Let us denote by 7,_, . the element of Z[g,, g;] given by

dfn ; ) . ,
(B5.4)  Tass == (ra)” + D, P () = pE T g

Then (5.5.3) says that

(5.5.5) Pagr T (10)” + PP 770y =0

By (5.4.4), we know that

(5.5.6) Tut1 € Lpnt1_pyjooy » (r)? € Lpnyyjo-n -
Hence

(56.5.7) PP u12€ Lnwn_nyjio-v »

which is to say

(5.5.8) Pu-1,2 € Lpononjo—n—-1 +

Thus the second condition of (3.3 bis) is verified:
(5.5.9) Ppi1 + (’r,,)p = pp_lrn—Lzep’IP(z’”—l)/(fJ——l)—1 .

Let us delay verification of the third condition for a moment. The fourth
condition is satisfied, because r, =1 — a,, and it is well-known that a, reduces
mod p to the Hasse invariant.

To verify the third condition, we will compute the action of Zj on the
elements b;, ¢;, and d; € D (cf. 2.4).
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LEMMA 5.6. Let
(5.6.1)  AT) = ex ( T”)_ . _ T
o - p EnZl a""_n_ - Engo b‘nT - n=1 (1 - ch ) .

For any a € Z;, let [a] denote the canonical galois action of a on the ring D,
and define

dfn

(5.6.2) [@l(A(T) =X, [al®)T" = I1,,, (1 — [@l(c.)T")" .

Then we have the formula
(5.6.3) [](A(T)) = (flaT))<".

Proof. Recall that the action of Z% on Dc R.,[1/p] is simply given by
[alf. = a*f, whenever f, is a modular form of weight k. Recalling that a,
is modular of weight n — 1, we readily compute

[@)(AD) = le](exp (S0, L))
= exp (T lal(en L)
= exp(Tare, L)
— exp (a“ )D aL%L)

- (s (Z o 20"
= (flaT)). Q.E.D.

COROLLARY 5.7. For each integer k = 1, we have the following congru-
ences modulo pD.

(5.6.4)

b, ) k
(.7.1) [1+ p4(.) = | dn<P edulo pD,
b, — 1 if n=p*
Cn if m < p*
¢, —1 if n=19p*
d, ifn<k
5.7.3 1 1(d,) = 1 dulo pD .
( ) 1 + »*1(d.) b —1if n=k modulo P
Proof. It suffices to demonstrate the first batch (on the b,), in view of
the identities

(5.7.2) [1 + p*|(c,) = 1 modulo pD ,

(.7.4) ;n = b, + Z-polynomial in b, b,, +-+, b,_, ,
n — c,,n .
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Now by (5.6), we have the formula

6.7.5) (1 + p*I(F(D)))*** = F(L + »*)T) = A(T) modulo pD[[T]] .
Recalling that f(T) =1 + T + (T?), we have the congruence

(5.7.6) ([L + #Y1A(D))** =1 + T** mod (p, T*")-D[[T]],
which together with (5.7.5) gives the congruence
(5.7.7) 1+ 2*1(A(T))-Q + Tp*) = f(T) mod (p, T“’")D[[T]] .

Comparing coefficients of T" for n =0, 1, ---, p* gives the desired result.
It now follows directly from (2.4) that the elements g(1)(d,) are successive
Artin-Schreier generators of V, , over V,,, hence that the third condition of
(3.3) is satisfied by the r;,. This concludes the proof of (5.5).

APPENDIX I
Modular interpretation, and relation to Serre’s
“p-adic modular forms of weight )*’
(A1) Modular interpretation of the ring V, .. Thering V, . is the W,-
algebra of all “rules” f which assign to any situation
(B, ay, P)
(AL.1) l
Spec B
consisting of an elliptic curve E over a W,-algebra B together with a level-
N structure of type { and an isomorphism : E-= (GA,,,)B, an element

(A1.2) S(E|B, ay, )¢ B

which depends only on the isomorphism class of (E/B, ay, ) and whose
formation commutes with arbitrary extension of scalars of W,-algebras, and
which satisfies the following “holomorphy at «” condition:

(A1.3) f(Tate (¢V)/ W.((9), @y, P) € Wallal]

for every choice of level-N structure a, of type { and for every choice of @.

The ring V. = lim,, V,, . may similarly be described as the rule of all
such rules, where Weegllow B to be an arbitrary W-algebra in which p is
nilpotent, and where in the holomorphy condition we check all W,. Still
equivalently, we may allow B to vary over all p-adically complete W-alge-
bras, and check holomorphy on the Tate curves over the p-adic completion
of W((q)).

In this optic, the homomorphism 8: RB.— V., ., may be described modularly
as follows: For a modular form f of weight k, 8(f) € V..... is the rule
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(Al.4) B )NE|B, ay, 9) = f <E/B» Ay, P* (I%T—T»

where by abuse of notation we denote »*(dT/(1 + T')) the unique invariant
differential on E/B whose restriction to £ is @*(dT/(1 + T)).

The action of @ € Z; on V, ., is deduced from its action on Isom (E', G.)
by the formula

(A1.5) ([alf)E/B, ay, 9) = f(E[B, ay, a”'p) .
Application to modular forms of weight )

Let ¥ € Homeonin(Z3, ZY) be a rational p-adic character of Z}, and let V%,
denote the submodule of V. consisting of elements fe V, . such that
[@](f) = y(a)f for all @ e Z.

ProPoOSITION Al.6. Let ¥ be as above, and if p = 2 suppose in addition
that x lies in the closure of Z in End (Zy) (this is automatically satisfied for
p # 2). Then a p-adic modular form of weight ¥ and level-N, type { s
precisely an element of VZ ..

Proof. We will give a direct, “computational” proof. Suppose first that
fis a p-adic modular form of weight . This means that there is a sequence
of true modular forms f;, each homogeneous of some weight k,, defined over
W, whose g-expansions have a uniform p-adic limit g-expansion at each cusp
of M, and this collection of limit g-expansions “is” f.

But the condition on the g-expansions of the f; means precisely that, in
the ring D, the elements f; are p-adically convergent, and their limit in D =
lim D/p™D is f. In particular the sequence of elements B(f;) € V... is p-adi-
::;ly convergent, with limit g(f). We must show that

(AL.7) B )E, ey, a™'p) = y(a)- B(/)E, ay, P)
whenever (E/B, ay, ®) is as in (Al.1l), and a € Z;. But g(f) = lim g(f}) in
V...; hence for any fixed (E/B, ay, ), we have

BUNE/B, ay, a™'p) = lim B(f)(E/B, ay, a™'p)

= limfi<E/Br Qy, “_1¢*< 1 (i-TT )

o aT
= kg . B *
lim a f1<E/ ay, @ (1 i >

= (@) lim £,( E/B, ay, 9*( 1 ‘i TT))
= 1(@) lim B(f)(E/B, ey, ?)

= x(@)-f(E[B, ax, ?) .

(A1.8)
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Suppose now that ge V.. Let {k,} be a sequence of integers such that
(A1.9) y(@) = a*»mod p* VacZ;.

We will use g to define a sequence f,, of “p-adic modular forms modulo p™”
of weight k,, whose g-expansions tend p-adically to those of g. For each f,
there exists a true modular form g, over W, of weight k&, such that

k, =k}, modulo p*'(p — 1),

A.10
(A-10) 9.(9) = fu(g) mod p" at each cusp

and we may choose k, > 0, in particular %, = 2. Then the g, may be lifted
to true modular forms §, over W of weight k,, whose g-expansions tend to
those of g. So it remains only to define the f,.

Let B be a W,-algebra, and (E/B, ay, w) an elliptic curve over B with
level-N structure and nowhere-vanishing invariant differential w, such that
E ® B/pB has invertible Hasse invariant. We must define an element

(A1.11) f.(E/B, ay, w)ec B

which is homogeneous of degree k, in the choice of w, which depends only
on the isomorphism class of (E/B, ay, ®), which commutes with extension of
scalars of W,-algebras, and which is holomorphic at infinity.

Over the ring B, = B®y, , Va,o (B is a V,-algebra by the homomor-
phism V, ,— B which “classifies” (E, ay)), there exists an isomorphism @:
E-——5@G,. Letus write ® = x@*(dT/(L + T)), with M e (B..)"; we “define”

(A1'12) fn(E/Bv aN, (1)) = )\,“kn.g(E/B’ aNy (;D)

which is a priori an element of B.. It does not depend on the choice of
isomorphism @; if @, is another, then ¢, = a® for some a € Z7,

= (a*‘-x)(«;vl)*(l—df—T),

and we could also “define”
(A1.13) fu(E[B, ay, ®) = (@7\)"*g(E[B, ay, ¢,) .
But indeed we readily calculate
(a™*\)"*ng(E|B, ay, p,) = a*"\"*g(E[B, ay, ap)
(Al1.14) = X (@)-a**\"*g(E|B, ay, )
= N""g(E/B, ay, 9)
because by choice of %, we have
(Al.15) x(@) = a*»mod p" .

Further, this very independence of f,(E/B, ay, ®) of the auxiliary choice of
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@ implies immediately that the value f,(E/B, ay, o) lies in B, because B is
the subring of invariants of a ¢ Zj acting as id ® [a] on B®)y, , V... = B.-
It is clear that the remaining conditions for f, to be a p-adic modular form
modulo p* are verified. Finally, the g-expansions of f, are precisely the
reductions mod p™ of those of g, because for the Tate curve the differential
®... used for g-expansions is itself @*(dT/(1 + T)), i.e., » = 1.

A remark for the specialist. Let O be the ring of integers in any com-
plete algebraically closed over-field of W& Q,, and let
(Al.16) 12— 0%
be any continuous character. Then we may define a p-adic modular form of
weight ¥ to be an element of (V.. ®W 0)%, where

Voo Qu 04 lim,, V... @y, © = lim,, lim, V,, , ®y, O
— —"

is the ring of all rules.. . as in (Al.1) but where we now restrict B to vary
only over O-algebras which are killed by some power of p (or, if we prefer,
which are p-adically complete).

In down to earth terms, a p-adic modular form f of weight ye
Hom (Z}, ©%) is thus a rule which assigns to each situation

(B, ay, 9)
(A1.17) l
Spec (B)
where
B is an O-algebra in which p is nilpotent
(A1.18) (E, ay) is an elliptic curve with level-N structure over B
@ is an isomorphism ¢: £ —— G,

an element
(A1.19) f(E/B, ay, )€ B
such that .
(A1.20) for any aeZ}, f(E/B, ay, a'9) = y(a)f(E/B, ay, ?);

: f(E/B, ay, ) depends only on the isomorphism class of
(A1.21) (E/B, ay, ), and its formation commutes with arbitrary

extension of O-algebras B — B'.
F(Tate (g"), aty, #) € O[lq]] for every level-N structure @,
and every @ on the Tate curve. (More precisely, the condition
is that whenever we consider Tate (¢”) over O/p"9((¢)), any =,
with any choice of ay and @, the value of f lies in @/p”@[[q]].)

(A1.22)
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By “pure thought”, it may be checked that this definition of a p-adic
modular form of weight x is equivalent to that of a compatible system of
sections of the invertible sheaf @®* on the various schemes S,, @, O, where
we denote by @w®* the invertible cokherent sheaf on S, Q O associated to the
p-adic etale sheaf T? over S, ® O deduced from the p-adic etale sheaf T, by
“extension of the structural group” from Z; to O* via the character y: Z; —
O*. This description shows that there is a plethora of p-adic modular forms
of weight %, for

(Voo ® O)t = lim,, (V... ® O)* = lim,, H'(S, ® O, @) .
e —

Because the S, are all affine we know that each individual H°(S, ® O, ©®) is
an invertible module of rank one over the coordinate ring V,,, @ O of S, ® O,
and that the transition maps H°(S, .. ® O, ©®) — H' (S, ® O, w®*) are all
surjective. Thus there are “just as many” p-adic modular forms of weight
% as there are p-adic modular functions defined over O.

This shows in particular that it is hopeless to try to decompose the ring
Ve, a8 a Z2 module according to the p-adic characters of ZX, because every
time we make an extension of scalars to an O as above, new characters of Z;

occur in V., ® O. (Indeed for p + 2, we have canonical isomorphisms
Hom (Z}, ©%) = Hom (Z/(p — 1)Z, £,-,(9)) x Hom (1 + pZ,, 0%)
and via “evaluation at 1 + p” we have an isomorphism

Hom (1 + pZ,, ©%) — 1 + Max (0)
where Max (0) denotes the maximal ideal of O.)
APPENDIX II

Congruences at a (finite) ordinary point
on the moduli scheme (cf. [2])

Suppose k algebraically closed. Let E, be an ordinary elliptic curve
(with level-N structure of type ) over k&, viewed as a closed point of the
moduli scheme M/W. Let us denote by O the completion of the local ring of
M at this point. (Thus O is non-canonically isomorphic to W[[X]], where
1 + X is some choice of Serre-Tate parameter “q”.) Let

E
(A2.1) 1
Spec (0)

be the inverse image of the universal curve over Spec (O) — M. Then the
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formal group E over O is non-canonically isomorphic to G,, the formal
multiplicative group, and the set of isomorphisms between them is principal
homogeneous under Aute(ém) = Z}. Each isomorphism o: = (:‘r,,, deter-
mines an invariant differential 0,'“p*(dT/(1 + T)) on E (where T is the
usual parameter on the formal multiplicative group: A(T) = T®1+1®
T+ TQ® T), hence a nowhere-vanishing differential w, on E itself.

Each such choice of @ allows us to define a sort of “g-expansion homo-
morphism”
Be: B, — O,

Efi — Efi(Ey wso) = Efi/(a’w)@i ’

and, by reduction modulo »”, homomorphisms
By(n): K., — O[p"0

Bo(n) = By, mod p" .

(A2.2)

(A2.3)

PROPOSITION (A2.4). For any choice of isomorphism @: E= (i,,,, and
for any n = 1, we have

I, = kernel of B.(n): R, — O/p"0 .

Proof. The isomorphism ¢: £ —— G,, induces an isomorphism an’ -
Uon, and by reduction modulo p” gives an isomorphism an' X O/p™O SEAER Hon
over O/pO. But the scheme T, , over M, is the etale covering of S,c M,
defined by “adjoining” all isomorphisms of P,,E'l S™ with ,», and the differ-
entials .., are the (unique invariant differentials on E\’Tmm whose restrictions
to (p,,E‘)TM are the) inverse images by these isomorphisms of the standard
differential dT/(1 + T) on f,». If we recall that O/p"0 is “simply connected”,
it follows that in the diagram

T..
(A2.5) o l
Spec (O/p*0) = S,

there are precisely p"'(p — 1) sections over Spec (O/p"0O), and that the
inverse images by these sections of any w.,, on T,, are precisely the
2" (p — 1) distinet (mod p”) differentials @,. Thus the homomorphism g,(n)
is obtained by composing the homomorphism

gn): R,—>V,,

with the inclusion V, , < O/p"O defined by one of the sections of (A2.5).
Q.E.D.
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APPENDIX III
Deligne’s Generalization of Theorem 2.1 to “‘false’® Modular Forms

This appendix is devoted to formulating and proving a generalization of
Theorem 2.1, without recourse to Artin-Schreier theory. Both the formula-
tion and the proof are Deligne’s. I have let my original proof stand in the
text because its construction of successive Artin-Schreier generators is still
needed for the actual determination of the higher congruences between
modular forms.

A. The affine case

Let W be a mixed characteristic complete discrete valuation ring of
residue characteristic p. Let @ be a uniformizing parameter, and for each
integer m = 1, let W,, = W/z™W. Let S, be a sequence of flat affine W,-
schemes, given with isomorphisms S,.; Qw,, ., Wa -5 8,. Let Pbe a rank
one p-adic etale sheaf on the S, (i.e., P on S,,, is the unique p-adic etale
sheaf on S,., which induces P on S;). Thus P “is” an inverse system
P, = P/p"» of etale sheaves which are twisted forms of the constant etale
sheaves Z/p"Z. Let @, be the invertible (coherent) sheaf P ®z, Os,, on S,,
which for variable m are compatible via the isomorphisms S,, ~ S,.,, ® W...

We define graded rings

R?:l = $k20 Ho(sm’ Q(Z’k) ’
R, = @iz lim, H(S,, ©®*) .
PR

Notice that because each S, is affine, and S,, = S,.,, mod 7™, we have

R./z"R.—> R, .

Let us define
T, = Isomg  (Z/p"Z, P,) (= Spec (Vo))
a finite etale S,-scheme which represents the functor on Sch/S,,,
X
1 T — isomorphisms r,: (Z/p"Z)y — T*(P,) .
Sn

The group (Z/p"Z)* acts freely on T, .([a]¥, = a™'y,) with quotient S,.
For variable %, the schemes T,,,, form a projective system (T, 41— Tm,n)
whose inverse limit T,, ., = Spec (V,,.. = lim, V,,,) represents the functor
—_
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X
l T ——> isomorphisms y: Z, —— n*(P) .
S
The group Z; acts freely on T,... ([@]y = a~'y), with quotient S,,.
The homomorphism g(m)
Bm): Ry, — Vo = T (Thmy O) = V50

may be defined as follows. Over T,,,., we have the universal isomorphism
from Z/p™Z to P,, under which the element 1 € Z/p™Z gives rise to a section
of P, and then to an invertible section of @ = P, ® O, , over T,,,, denoted

Weon(m). So we define

Bm) (2 f1) = 30 fil(@can(m))®*
In the spirit of Appendix I, we may view V,, . as the ring of all “func-

tions”

X
f| | = e 20z P

Sn
with values in I'(X, Of), for variable X and variable v, whose formation is
compatible with arbitrary change of base X’'— X. Then gQ(m) identifies
H'(S,,, ©®") with those functions which transform under (Z/»™Z)* (the inde-
terminacy in the choice of v,) by a+— a*. This shows that H*(S,, ©**) and
H(S,, w®+»-b2""") have identical images in V,,,, and shows how far B(m)
is from being injective on all of R. Passing to the inverse limit in each
degree, we obtain a homomorphism

B(s0): Rl — Vi lim,, V.. .

Exactly as in Appendix I, we can view V as the ring of all “functions”
X
f l v/ = w*(P)
Sy

with values in I'(X, O,) for variable X and variable m whose formation is
compatible with all changes of base X’ — X. This ring V is p-adically com-
plete, flat over W (because V/z™V = V,, , = lim, V,, , is etale over S,,, hence
flat over W,), and Z2 acts on it, by the rule

([al )X, ¥) = f(X, a™p) .
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The reasoning of Appendix I shows that g(c) identifies the homogeneous
components lim,, H(S,, w®*) of Rl with the subspaces V* c V consisting of
the functions7 € Vwhich satisfy [a]f = a*f for all @ € Z%. Because Vis flat
over W, the usual “independence of characters” argument shows that the
map B(ec) is injective:

R.cCV.

Since V and (hence) R, are flat over W, we may tensor this inclusion
with the fraction field of W, and obtain a diagram of inclusions

R =———7V

\ \
R[] 2]
We define D’ to be the intersection

D' =Vn R;[—;—].

. . (o0) . . .
THEOREM. The inclusion D’ ﬁ—> V induces tsomorphisms

D'[z"D' 5 V|z™V;
equivalently, V is the p-adic completion of D’.

Proof. It follows from the definition of D’ that the cokernel V/D’ is
W-flat, so the exact sequence 0 — D’ — V— V/D’ — 0 remains exact when
reduced modulo z™; D’/x™D’ = V/z™V. It remains to check that the map
is onto, and for this it suffices to show that D’'/zD’ - V/zV = V. Sotake
fe V.., say fe V.. To make clear the idea of the proof, suppose first that
P, = P/p™P is trivial, where m is so large that

™ ile W if 0<i<p".
Now let Felim, V, ,c Vlift fe V,,. It suffices to show that z™'F¢

—

B(e=)R, + ™V, for then F e g()D’ + nV as required. Notice that, as
R./m™R[, =~ R,,, this statement is equivalent to the statement (where F,, =
the image of FFin V,,,)

™ 'F, e B(m)R, .
As we supposed that P, is trivial, we have
Tpm = Auts, (Z/p™Z) = S, X (Z/p™Z)*
so that V,, , is thering of all V,, , = H*(S,, O)-valued functions on the group
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(Z/p™Z)*. The sheaf w on S,, becomes the structure sheaf Oy , because
® = P®z,0s,, = Pp®zpmz Os, = Os,, ,
and R, becomes the polynomial ring H°(S,, Os,)[X]. The mapping
B(m): Ry, — V,, ..
becomes the map
H*(S,, 05,)[X]— H"(S,, Os,)-valued functions on (Z/p™Z)*

obtained by viewing polynomials as functions (well-defined because p™ = 0
in H*(S,, Os,))-

The function 7#™'F,en™ 'V, ,C V, . becomes a #™*H’(S,, O)-valued
function on (Z/p™Z)* which factors through (Z/p"Z)*. If we recall that
™ H°(S,, Os,) is an F,-vector space, then the fact (“Mahler’s theorem”)
that the F,-vector space Maps (Z/p"Z, F,) has as basis the “binomial coeffi-
cient functions” x— f , 0 =17 =< p"—1 shows that any n" 'V, ,-valued

function on (Z/p"Z)* C Z/p"Z may be written as a sum

i=0

o). oS, 0.
1
But m was so chosen that
x
n”“(,)eW[X], for0i1p"—1
1

and therefore the function n™ 'F, indeed lies in the image of R},.
Now let us turn to the general case where we no longer suppose P,
trivial. Arguing as above, we must show that, in the above notations,
Vam 2 BmM)RBR, O™ 'V,

a statement which “involves” only a flat affine W,-scheme S,, a “twisted”
form P, of Z/p™Z on S,, and an integer n € m such that z™'¢ (p* — 1)!- W.

Now suppose that A is any faithfully flat over-ring of H(S,, Os,). If
we consider the inverse image of our problem over A, its statement remains
the same, save that V,, ., Rn, and V, , have become V,,Q A4, R, Q 4,
Viun @ A. The original problem was to show that, in V,, ., we have

T Von C B(M)R,,
or equivalently that the composite map

Vn s Vil B(m) R

is the zero map. For this, it suffices that the map
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Vi @ ATV, . ® AlBm)R, ® A

be zero, or, what is the same, that our problem have an affirmative solution
over A, which we know ¢s the case if P, becomes trivial on A. So we simply
take V,, . itself for A. Q.E.D.

B. The proper case

We retain the preceding notations, but now begin with a proper and
smooth W-scheme M, whose fibres are geometrically connected curves. We
put M, = My M,. Let HC M, be a finite set of closed points, and let
S.. < M, be the affine open set M,, — H. We are given a rank one p-adic etale
sheaf Pon the S,,, and we give ourselves further an invertible sheaf @ on M
which induces P ®z, Os,, on S,.

Notice that w® ! is trivial on S,, because

PE7 Rz, 05, = (PQ Z[DZ)*" ™ ®z/52 05, and (PR Z/pZ)*" " = Z/pZ

canonically. This trivialization determines a section A e H'(S, w), corre-
sponding to 1€ Z/pZ.

THEOREM. Suppose that A e H(S, w) extends to a (necessarily unique)
section A € H'(M,, ) which vanishes at each point of H. Then if we define
R, = @iz H'(M, ©%*), we have R, < R, C V, and if we put D = R_[1/p]N V,
then the inclusions

DcDcV
induce 1somorphisms modulo any power of w:
Djz™D ~ D'[z™D’ =~ V[z"V .

Proof. Because M, is smooth over W, and is irreducible, the restriction
map H(M,,, w®*) — H'(S,, ©®*) is injective. As

H(M, ©®*) — lim,, H'(M,,, ©®*) ,

we certainly have R, C R., and then Dc D’. By definition of D, D’, the
maps D/x™D— Viz™V and D’/z™D’ — V/z™V are both injective, therefore
the map D/z™D — D’/z™D’ is injective. To show surjectivity, it suffices to
show D/nD— D’/xD’ is surjective.

For this, we argue as follows. The sheaf @ on M has positive degree,
because a power of it on M, has a non-zero section which has zeros (namely
A). Pick any integer v > 0 such that @®**~" has degree >2g—2, g = genus of
M,. Then the section A* € H(M,, ©®*~") lifts to a section E € H(M, o®*~").
Notice that
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(1) The image of E*"in Vliesin 1 4+ z"** V. This follows by induction
on n once we know that the image of E lies in 1 + # V. This in turn follows
from the fact that the image of 4 in V, ,, viewed as a “function” of situa-
tions (an S-scheme X, an isomorphism +,: Z/pZ — P, on X) with values in
['(X, Ox) which is homogeneous of degree p — 1 in the choice of v, (indeter-
minacy: (Z/pZ)") is tautologically the constant function “17;

X
A l,q;»,:Z/pz:—»Pl on X|=1el(X, 0,) .
S,

(2) Because the open-subscheme S, < M, is the open set where F is an
inwvertible section of w®*~, we have
w®k+nu(p—1))

E‘n

H(S,, ©®) = lim, L,

Now let Y f; € R. lie in z™ V. We must approximate it modulo z™*'V by an
element of R.. For this, it suffices to approximate each homogeneous f; €
lim H(S,, ©®) modulo #z™*'V by an element of R.. Now

—

— Gitnvpmp—_1) +1pr
fi= “W—m(’d TR,

for some g, ypm,p_1) € H(M, @®+¥*™*2=0) where N > 0 depends upon f;, by
(2) above. By (1) above, f; and g,,ypm,n_y differ multiplicatively in V' by an
element of 1 + 7™V, so that

Ji— Girnomyp-n €TV L Q.E.D.
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