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Higher congruences between 
modular forms 

Introduction 

The problem of determining all the congruences modulo a prime p tha t  
hold between the. q-expansions of modular forms on SL(2, Z) was solved by 
Swinnerton-Dyer [8], and the solution is one of the key ingredients in Serre's 
approach to  the Kubota-Leopoldt zeta function via his p-adic modular forms 

161,171. 
This paper gives an explicit solution to  the problem of finding all 

congruences which hold modulo arbitrary powers of p. The key point is the 
simultaneous consideration of a l l  congruences modulo a l l  powers of p ,  in the 
form of the "ring of divided congruences", whose elements are  those finite 
sums ')7fiof modular forms over Q,,  fiof weight i ,  such tha t  the sum of 
the q-expansions C f,(q) has coefficients in Z,. It turns out (cf. 2.1) tha t  the 
p-adic completion of this ring is in a natural way the coordinate ring of a 
certain "moduli problem", which we may loosely describe as  that  of elliptic 
curves over p-adic ground-rings together with isomorphisms of their formal 
groups with the formal multiplicative group. 

The first part  of the paper is devoted to working out this isomorphism, 
and to  giving as  a corollary an "abstract" set of generators for the relations 
modulo any power of p. In  the second part  we restrict ourselves to  primes 
different from 2 and 3, and use the Weierstrass model of elliptic curves to 
give explicit generators for the relations modulo all powers of p (cf. 5.5). In  
a first appendix, we give the modular interpretation of our construction, and 
explain the modular meaning of Serre's "p-adic modular forms of weight x". 
A second appendix spells out how to  "transfer" congruences in q-expansion 
to congruences in the neighborhood of any  ordinary elliptic curve. I n  a final 
appendix, we give Deligne's generalization to "false" modular forms of our 
interpretation of divided congruences by a moduli problem. 

In  the course of this work, we realized tha t  the  systematic considera- 
tion of the above-mentioned moduli problem led to an  approach to the  
Kubota-Leopoldt zeta function which is a sort of "fibre product" of Serre's 
approach through constant terms of Eisenstein series and of Mazur's 
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approach through his "p-adic measures". We hope to return to this question 
in a later paper. 

A word about notation: When we write E,-,, then for p 2 5 we mean 
the usual Eisenstein series 

which is a modular form of weight p - I over Q flZ,, whose reduction mod p 
is the Hasse invariant. Unfortunately for p = 2 or p = 3 there are no 
modular forms over Q n Z, of level one and weight p - 1. In compensation, 
when p = 2 or 3, we will always consider modular forms of some fixed level 
N 2 3 prime to p,  and simply denote by E,-, any fixed level N modular 
form of weight p - 1whose reduction modulo p is the Hasse invariant. For 
p = 3 and N 2 3 prime to p, such liftings always exist, while for p = 2, and 
N odd such liftings are only known to exist for 3 $ N -S 11, and (hence) for 
any multiples of these N. (For example, when p = 3, the level two modular 
form whose value on (y2 = X(X- 1)(x - X), dx/y) is -1 - X provides such a 
lifting to all even levels, and for p = 2 the modular form of level-three "p" 
on the level-3 curve x3 + y3+ 1= 3pxy provides such a lifting to odd levels 
divisible by three.) 

(1.0) Fix a prime number p, and an integer N 2 3 prime to p, and if 
p = 2, assume further that N is a multiple of either 3, 5, 7, or 11. Let k be 
a perfect field of characteristic p,  which contains a chosen primitive Nth 
root of unity C. For each integer m 2 1, write W, for the Witt vectors 
W,(k) of length m, and denote W,(k) simply as W. The unique primitive 
Nthroot of unity in W which lifts C, the "Teichmiiller representative", will 
also be denoted C. 

Let Ma be the moduli scheme over W which classifies isomorphism classes 
of elliptic curves over W-algebras together with a level-N structure of 
determinant C, and let M be its canonical compactification. Thus M is a 
proper smooth curve over W with geometrically connected fibres, and the 
difference M - MO is a disjoint union of sections, the "cusps", the completion 
along each of which "is" W[[q]]; over the "punctured disc" ~ ( ( q ) )  around 
each cusp, the universal curve with level-N structure becomes a "Tate curve" 
Tate (qN), with one of its level-N structures. For each integer m 2 1, we 
put MA = MO@, W,, M, = M@, W,. Let SA (resp. S,) denote the open sub- 
scheme of MA (resp. M,) where the Hasse invariant mod p (or equivalently 
EP-Jis invertible. The schemes SA and S, are afine smooth curves over W,, 
with geometrically irreducible special fibre. We have 
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S m  = S m + ,  OW,+,Wm SA = SA+1OW,,,Wm . 
(1.1) Let E-Si be the inverse image on SA of the universal elliptic 

curve. Because the Hasse invariant is invertible, it follows that for each 
integer n 2 1, the kernel of multiplication by p" on E ,  noted pmE, is an 
extension 

A 

(1.1.1) O-prrE-pltE-pltEet-O 

where 

..E is the kernel of p" in the formal group E of E ;  it is a finite 
flat group-scheme over SA which locally for the etale topology 

(1.1.2) 
on SA is isomorphic to p p n  and where .,Eetis the Cartier dual of 
p . ~ ,  locally for the etale topology on SA isomorphic to Z/pnZ. 

Thus the group-scheme p,Eet, as a "twisted" version of Z/pnZ, is described 
by an element of H,',(SA, Aut (z/~"z))  = Hom (n,(S$), (z/~"Z)"), i.e., it is 
described by a character X, of n,(SA) = n,(SP) with values in (Z/p"Z)". (For 
m variable, the shemes SA are deduced one from another by reduction 
modulo a nilpotent ideal, hence have canonically isomorphic fundamental 
groups.) For variable n,  the characters 2, fit together to give a character x 
of n,(Sk) = n,(S,O) with values in Z;, such that X, = x mod p". 

(1.2) We now recall the fundamental facts (proven in [3, Ch. 41) about 
the characters X, and the coverings they define. 

(1.2.1) The characters x,, x on n,(SA) extend to characters still noted 
x,, x on n,(Sm), which are trivial on the decomposition groups a t  the cusps 
(which are the points of Sm- SA). 

(1.2.2) The characters x,: n,(S,) -(Z/p"Z)" are surjective (for any non- 
void Zariski open set U c Sm, the composite x,: n,(U) -(Z/p"Z)" remains 
surjective simply because n,(U) -n,(S,) is surjective!). 

(1.2.3) Let Tm,, -Smbe the etale covering of Smdefined by (kernel of 
the) character x,: n,(Sm)-(Z/p"Z)". The scheme Tm,, is a smooth affine Wm- 
scheme with geometrically connected special fibre. For fixed lz, we have 

(1.2.3.1) Tm+1,,O Wm Tm,, 

and for fixed m we have 

The inverse image of any cusp of S, is the disjoint unit of 9(pn) = 

(p - 1)~"-I= # ((~1p"Z)") Wm-sections of Tm,, called the cusps of T,,,, and 
the completion of Tm,, along any of its cusps is isomorphic to the completion 
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of S, along the corresponding cusp (both being isomorphic to ~,[[q]]) .  (This 
last fact  is simply because 2, is trivial on the decomposition group a t  each 
cusp: In  down-to-earth terms, a cusp of S, is represented by a Tate curve 
Tate (qN) with one of i ts  level-N structures. Now the formal group of the  

Tate curve is isomorphic to G,, hence the  etale quotient of the kernel of p" 
on the Tate curve isomorphic to Z/pnZ over W,[[q]]; the 9(pn) cusps of T,,, 
lying over the chosen cusp of S, are  simply the possible choices of this last 
isomorphism. For fixed m, the  schemes {T,,,} form a "pro-algebraic" etale 
covering of S, with galois group Z,".) 

(1.2.4) There exists on T,,, an invertible section we,, of the  (inverse 
image from S, of the) invertible sheaf g whose q-expansion a t  each cusp of 
T,,, is a constant a E (Z/pmZ)"c W," c W,[[q]]. The constant varies with the 
cusp, but when we fix a cusp of S,, the q-expansions of wean a t  the p(pm) 
cusps lying over run exactly once over the  elements of (Z/pmZ)". The set of 
possible w,,, on T,,, is principally homogeneous under (multiplication by) 
(Z/pmZ)". (In fact ,  according to the main result of [3, Ch. 41 the scheme 
T,,, is defined by "adjoining" to S, such a section w,,,.) 

The p(pm) various w,,, are obtained "explicitly" as follows: Over T,,, 
the kernel of pmin the formal group E admits p(pm)isomorphisms to 
p,,. We may pull back the  canonical differential dT/(1 + T) on p,, = 
Spec (Z[T]/(l + T)," - 1)by each of these isomorphisms, and obtain ~ ( p " )  
invariant differentials on ,,&. Because we a re  in "characteristic pm", invari- 
ant  differentials on ,,E extend uniquely to invariant differentials on E; these 
in turn  extend uniquely to invariant differentials on E over the  open set 
TAP, = T,,, j SA which when viewed a s  sections of _w over TA,, are  precisely 
the restrictions to TA,, of the sections w,,,. 

(1.3) We $x once and for all a compatible system of choices {wcan(m)}, 
of the w,,, on the various T,,,, the compatibility being tha t  under the 
diagram 

we have 

wC,,(m + 1) mod P" = .~r~,m+l(wcan(m)) 

Such choices are  possible, and the  set of all such is principally homogeneous 
under (Z,)". There is a unique isomorphism of Z," with lim, Aut (T,,,/S,) + 
which is independent of m (i.e., compatible with the canonical isomorphisms 



336 NICHOLAS M. KATZ 

Aut (T,+l,,/Sm+l) 2: Aut (T,,,/S,)) and under which 

(meaning that, v m, [a  mod pm](wCan(m)) (a-' mod P") .wcan(m)). = 

(1.3.1) Notice that if we fix a cusp a,,,of S,, there are uniquely deter- 
mined cusps a,,, of all T,,, (we put T,,, = s,) such that a,,,,, lies over 
a,,,, such that a,+,,,mod pmis a,,,, and such that w,,,(m) has q-expansion 
1E W,[[q]] a t  the cusp a,,,. 

Definition of the fundamental homomorphism 

(1.4) For each integer m >= 1, let R, be the graded ring of holomorphic 
modular forms defined over W,, of level N a n d  type 9, i.e., 

and let R, be the graded ring of holomorphic modular forms defined over 
W, of level N a n d  type 9, i.e., 

(1.4.2) Rw= HO(M,gBk). 
For 3 5 N 5 11, we have R,/pmR, 2: R,, but for N 2 12 it  can happen that 
this map fails to be surjective on the graded part of degree one, though it 
is always injective, and is always an isomorphism on all the other graded -
pieces (cf. [3, 1.71). For any fixed N, it will be true that R,/pmR, -R, 
for all but finitely many primes p. 

Let V,,, denote the coordinate ring of T,,, (with the convention that 
T,,, = S,). The rings V,,, are smooth Wm-algebras, and every choice of 
cusp on V,,, gives us an inclusion 

Vm,, cwm[[qII . 
LEMMA1.4.3. The cokernel w,[[~]]/ V,,, is fiat over W,. 

Proof. Modulo p,  the inclusion V,,, -W,[[q]] becomes the inclusion 

x,,--- k[[qll. Q.E.D. 

The rings V,,, sit in chains for variable n ,  

and for variable m are related by canonical isomorphisms 

Let V,,, = U,,, V,,,; then any choice of cusp a,,,on S, determines a com- 
patible system of cusps on all T,,, (cf. (1.3.1)), and hence an inclusion 
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For variable m, we have canonical isomorphisms 
-

(1.4.7) Vrn+l,m/~"Vm+l,m-Vm,m. 

For each integer m 2 1, we will define a homomorphism of (non-graded) 

rings 


(1.4.8) P,: R, -Vm,,C V,,, 

as  follows: Let fiE HO(Mm,_0@3be a modular form of weight i. Then by 

restriction, fidetermines a section of wBi over S,, and then by inverse image 

determines a section of gBiover T,,,. But over T,,, we are given an 

invertible section o,,, = ocan(m) of g ,  and hence the ratio fi/(wc,,(m))@i is a 

well-defined section of the structural sheaf of T,,,. Thus we define 


(1.4.9) P m ( C  fi)= Cfi/(wcan(m))" . 
(1.4.9.1) We define P,: R, -Vm,, = lim, V,,, by passage to the inverse 

+---
limit. 

LEMMA1.5. Let a,,,be a cusp of S,, and a,,, the compatible system of 
cusps of the T,,, dejined (1.3.1) by the choice of a,,,. For any element fiE 

HO(Mm,@), denote by fi(q) its q-expansion i n  W,[[q]] a t  the cusp a,,,. Then 
q-ex~ansion of ~ m ( z f i )a t  the cusp a m , ,  of Vm,m is z f i ( q )  E Wm[[qI]. 

Proof. The q-expansion of wcan(m) a t  a,,, is the element 1E W,[[q]]. 
Q.E.D. 

COROLLARY1.6. Let xfiE R,, and let m, 5 m. If i t  is  true a t  one cusp 
of M, that fi(q) = 0 mod pmli n  W,[[q]], then i t  i s  true a t  every cusp. 

Proof. By (1.5), the hypothesis implies that pm(pm-"1 f,)has q-expan- 
sion zero a t  the cusp a,,, of T,,, determined by a,,,. But this means that 
,Bm(pm-mlEft)= 0, hence has q-expansion zero a t  every cusp of T,,,,hence 
that pm(Cf,)has q-expansion = 0 (pml) a t  every cusp of T,,,, hence that xf,(q) = 0 (pml) a t  every cusp of M. Q.E.D. 

COROLLARY If Cf,E R,, and if for some m, 2 m, Cf, has the 1.7. 
property that Cfi(q) - 0 (pml) a t  one (or equivalently a t  every) cusp of M,, 
then for any a E (Z/P"Z)~ the element C aifi E R, enjoys the same property. 

Proof. We must show that pm(pm-"1.Ca x )  = 0 in V,,,. But 

,~?,(p~-~l)7aYi) = prn-"'Caifi/(wc,,,(m))Ei= ~ ~ - ~ ~ [ a ] ( C f i / ( w c a n ( m ) @ ~ ) )  

= [a]pm(pm-"1Cf,) = [a](O) = 0 . Q.E.D. 

COROLLARY The image of the inclusion V,,, determined1.8. --,W,[[q]] 
by any choice of cusp on T,,, i s  independent of the choice of cusp. 

Proof. First, all cusps of M are conjugate to each other by the action 
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of SL(2, ZINZ) on the level-N structures, so we may assume that  our cusp 
lies on T,,, over the same cusp a,,,as  the standard chosen cusp (cf. 1.3.1). 
Then our cusp will be the transform of the standard one by some automor-
phism [a] E (Z/pnZ)". Thus all  the possible q-expansion homomorphisms 
V,,, c-W,[[q]] are conjugate to each other by automorphisms of V,,,. 

(1.8.1) By passage to the limit, it  follows that  the image of V,,, --. 
W[[q]] is also independent of choice of cusps, and  that  the cokernel 
W[[q]]/ V,,, is $at over W (cf. 1.4.3). Let I,,,, (resp. I,,,,) denote the (non-
graded) ideal of R, (resp. R,) consisting of those elements Cf, such that  a t  
one (or equivalently, a t  every) cusp of M, Cf,(q) = 0 (pml). 

COROLLARY1.9. I,,,, i s  graded modulo p - 1. (IfC f, E I,,,,, then for 
each 0 S i o  < P - 1, C i ~ t o c p - l ~f,E Irn,,,.) 

Proof. Use the action of ,up-, (which sits in (Z/pmZ)"a s  the Teichmiiller 
points) to decompose I,,,, into the direct sum of its p - 1 eigenspaces for 

PP-1. 
A generalization of the fundamental homomorphism 

We wish to define a module-homomorphism 

as  follows: If Cf,E I,,,,, then pm-"~,L?,(Cf,)= 0 in V,,,, which implies, be-
cause V,,, is $at over W,, that  pm(Cf,) = pmlhfor some element h E V,,,. 
This element h is unique modulo pm-"1 V,,, and thus determines a well-defined 
element of Vm-,,,, c Vm-,,,, which we denote "(l/pml)pm"(Cf,). By passage 
to the inverse limit over m, we obtain a homomorphism 

Clearly if Cf,E R,, "(l/pml)p," (Zf,) has q-expansions (l/pml)Cf,(q) a t  
corresponding (via (1.3.1)) cusps, which is to say, we have the formula 

2. The ring D of divided congruences 

(2.0) Let us denote by D the W-algebra R, +(I/p). I,,,+(l/p2).I,,,+..., 
the non-graded subring of R,[l/p] consisting of those elements Cf,E R,[l/p] 
which a t  one (or equivalently a t  all, by 1.6) cusp(s) of M have integral q-
expansion (i.e., f,(q) E W[[q]]). (Notice tha t  in fact  R , c  (lip).I,,,c(l/p2)-
I,,,c ...c (l/pn).I,,,c .., so tha t  D = lim p-". I,,, as  W-module.) 

-4 
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We define a W-algebra homomorphism 

by the requirement tha t  on p-".I,,,, p is "(l/p")p,".plz, That p is a ring 
homomorphism follows immediately from the fact  that  if we choose a cusp 
of M, then q-expansion a t  the "corresponding" cusp of V,,, gives an inclu- 

Bsion V,,, c W[[q]], and the composite D -V,,, c W[[q]] sits in the com- 
mutative diagram 

PD-v-,, --W[[411
q-expansion 

n r )  

Rm[L] q-expansion w[[~]][L] .p -i 
P 

For each integer m 2 1, let p(m) denote the reduction modulo pmof p: 

THEOREM2.1. For  all  m 2 1, p(m) i s  a n  isomorphism. 

Proof. By its very definition, p(m) is injective, for if xf,e p-".I,,, lies 
in its kernel, then f,(q) E pmW[[q]], whence xfi lies in p-"-I,,,+, = 

P"(P-"-" .Ico,,+rn)c pmD. 
It remains to show that  P(m) is surjective. Clearly i t  suffices to show 

tha t  p(1) is surjective, for if a module-homomorphism is surjective modulo 
a nilpotent ideal, i t  is szkrjective. We will establish the surjectivity of p(1) 
in several steps. We begin by noting tha t  in the tower V,,, c V,,,c V,,, c . . . 
the lowest layer V,,,/ V,,, is cyclic of degree p - 1, while all successive layers 
are cyclic of degree p. 

We begin by showing tha t  V,,, lies in the image of p(1): in fact ,  V,,, is 
precisely the image under p(1) of the subring R, of D. 

THEOREM2.2. p,: R, -+ V1,, i s  surjective, with kernel the principal ideal 
(EP-1 - 1). 

Proof. The scheme S, is the open sub-scheme of Ml where Ep-,is inver- 
tible, thus is none other than S p e ~ , ~ ,  ((Symm (w_@(p-"))/(Ep-, - 1)) (because 
both represent the functor on SchlM which to an M-scheme T associates 
those sections 6 of (g-l)@(p-l) over T such that  6Ep-, - 1= 0 in 0,).Because 
o_ has positive degree, it is ample, hence S, is affine, hence its inclusion into 
M is an affine morphism; the Leray spectral sequence shows tha t  V,,,, the 
coordinate ring of S,, is given by HO(Ml, Symm (g5p-1))/(Ep-, - 1). Because 
Ep-,is homogeneous of positive degree, multiplication by Ep-,- 1is "for- 
mally invertible", hence injective on Symm ( ~ @ ( ~ - l ) )  and all its cohomology 
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groups. Thus the long exact cohomology sequence associated to  the short 
exact sequence of sheaves on M, 

(2.2.1) 0-+ Symm (g@p-') -+ Symm (g@p-') -Symm (E@~-')/(E~-, - 1)-0 

shows tha t  

(2.2.2) K , o  2: HO(Ml, Symm (~@(P-~)))/(E,- ,  - 1)
ekHO(M,, w ~ k ( ~ - ' ))/'(Ep-l - 1) .-

The map is explicitly given by C f,(p-l) -+ fi(p-l)/Ej-l and thus coincides 
with the restriction to Rip-" of p,. Similarly, the  scheme TI,, is the etale 
covering of S, which trivializes the  etale quotient of the  kernel of p on the 
universal elliptic curve with invertible Hasse invariant Ep-,. As is well- 
known from the theory of the  Hasse-Witt operation, this etale covering is 
defined by the  extraction of the (p - l ) th  root of the  Hasse invariant, or 
equivalently of i ts  inverse. It follows tha t  

because both represent the functor on SchlM whose value on a scheme TIM 
is the  set of sections E of @@-I over T such tha t  E~-'.E,-,- 1= 0 in (3,. 

Because TI,, is finite and etale over S,, i t  is affine over S,, hence affine over 
MI, so the Leray spectral sequence gives 

The long exact cohomology sequence then gives 

and the map R,/(E,-, - 1)-.V,,, is given explicitly by 

Thus we have the desired commutative diagram 

COROLLARY2.2.8. (Swinnerton-Dyer). The ideal I,,,of R, consisting of 
elements xf,such that C fi(q) = 0 i n  k[[q]] is the principal ideal (Ep-, - 1). 

Remark. For any m 2 1,  we may obtain a partial generalization of 
Swinnerton-Dyer's result: 

PROPOSITION Let R2(pm' denote the subring of R, of al l  modular 2.2.9. 
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forms of weight divisible by q(pm) = pm-l(p- 1). Then I,,, n R$(P") i s  the 
principal ideal of R$(pm' generated by (Evcpm) - I), and p, induces a n  
isomorphism 

m 

(2.2.9.1) Prn:R~(pm) / (E?(pm)1)- = r(Sm,OSm).- Vm,0 

Proof. As before we have S, -= Spec,  (Symm (~_'?(~"))/(E~(prn) I)), and 

Symm (g@ocpm)))/(E,,pm, -V,,, = HO(Mm, - 1) = R$(Pm)I(E?(pm) 1) . 
Furthermore the isomorphism is given explicitly by 

C f i y ( p m )  -C f i ? ( p m ) l E Z ( p m )  . 
Using the fact  tha t  '(oc,,(m))u(pm) = E ? ( p m )  on T,,,, as both have q-expansion 
1mod pm, we may write this 

We now return to the problem of surjectivity. We have shown that  p, maps 
Rl onto V,,,. 

F1COROLLARY The composition R, - V,,, is  also surjective, 2.3. R, -
with kernel (p, Ep-,- 1). 

Proof. Although R, --.R, need not be surjective, the composite will be, 
because p, kills the ideal (Ep-, - I), hence p,(R,) = p,(Ep-,R,) = p,((Ep-,)2R,), 
and for Y 2 2, Ho(M, w'") @ k -+HO(M,,g'") is surjective. This shows that  
V,,, is precisely the image under @(I) of the subring R, of D. 

In order to continue the proof, we will need to make use of Artin- 
Schreier theory, in the following explicit form: 

(2.4) Let A be a ring of characteristic p (i.e., an Fp-algebra), and let 
B I,A be a finite etale A-algebra of rank p, which is Galois with group ZlpZ 

m 

(thus Aut (BIA) -ZlpZ, and A is the subring of invariants). Then there 
exists an element b E B such that  n E Z/pZ acts by sending b -+ b -I- n. The 
element b is unique up to addition of an element of A, bp - b = a E A, and 

m 

the choice of b defines an isomorphism A[X]/(XP - X - a) -B. I n  par- 
ticular, any  element b E B which is  sent to b + 1 by a generator of Z/pZ 
generates B as  a n  A-algebra. We will successively apply this "principle" to 
the situation A = V,,,, B = V,,,,,. 

Let us introduce the action of the group Z," on the ring D by the 
formula 

(2.4.1) [ a l ( C f t )  = C aifi , aEZ,", z f , ~ D .  

(It is a priori an action of Z," on R,[l/p] but thanks to 1.7 the subring D c  
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R,[l/p] is stable under this action.) The meaning of 1.7 is simply the Z,"-
equivariance of the homomorphisms p(m): D/pmD-+ Vm,,. In the tower 
Vm,oc V,,, c Vm,2C,  ..., the ring V,,, c Vm,, is, for n 2 1, precisely the 
subring of invariants of the subgroup 1+ pnZPof Z,", and the Galois group 
of Vm,,+,over V,,, is canonically 1+ pnZP/1+ pmi1ZP,a cyclic group of order 
p generated by the class of 1+ pn. 

KEY LEMMA2.5. For  each integer n 2 1, there exists a n  element d, E D 
such that for all integers k 2 0, the action of 1+ p"+kE Z; on d, satisJies: 

(2.5.1) [ I  + pmik](d,) = d, + pkEp-, modulo pk++'D. 
Admitting this lemma for a moment, let us conclude the surjectivity of 

p(1). By the lemma, p(l)(d,) is invariant by 1+ pX+'Zp,hence p(l)(d,) E 

V1,,+,. Furthermore, 

which implies by Artin-Schreier theory (2.4) tha t  fo r  n 2 1, we have 

V,,,+l = V,,,[P(1)(d,)I , 
and hence V,,, is generated over V,,, by the elements {p(l)(d,)},,,. As we 
have already shown that  V1,,= p(l)(R,), this gives the desired surjectivity 
of P(l), and thus of all the P(m). In fact, the proof shows that  the R,-sub-
module of R,[d,, ..., d,, ..- 1  spanned over R, by the products 

(2.5.2) nizlmai, a, = 0 for all but finitely many i ,  ai d p - 1, 
maps onto V,,,, and hence onto V,,, for any m 2 1. Indeed, the proof shows 
that  the P(l)(di) form a "p-base" for V,,, over K,,. 

Construction-proof of the Key Lemma. We proceed by induction on n.  
For n = 1, we define 

(2.5.3) 1 - E p - ,
dl = (compare Serre [6], Remark 1after  1.3) . 

P 

We immediately calculate 

= dl + pkEp-,+ (P~+~)E,-,  
= d, + pkEp-,mod pk+lD. 

Suppose we have already constructed dl, . ., d, with the desired properties. 
Then Artin-Schreier theory shows that  
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and that  

Also by Artin-Schreier theory, we have 

Thus we may choose an element 

such tha t  

Consider the element 

(2.5.10) d ,  - (d,)" - C, E Ker ~ ( 1 )= pD . 
We define 

(2.5.11) 

It remains to verify the  transformation property. We calculate: 

[ I  + ~"+'+~l(d,+1) 
(2.5.12) 	 -

- [ I  + ~ " + ' + ~ ] ( d , )( [ I  + ~ " + ' + ~ ] ( d , ) ) ~[l+ pn+l+k](Cn) 
P 

Consider successively the  three terms in the numerator. By induction, 

(2.5.13) [ I  + p"+l+k](d,)= d ,  + pk+'Ep-,+ pk+'D . 
In particular, 

(2.5.14) ( [ 1+ p"+'+k](d,))p= (d ,  + p k + ' D ) ~= ( d J p+ pk+'D . 
By the transformational congruences for dl,  ..., dm-,, we see tha t  

(2.5.15) [ I  + p"+l+k](C,)= C, + pk+'D for any C, E R,[d,, . . ., dm-,] . 
Combining all this, we find 

-= dm+,t pkEp- ,  modulo pk+lD . Q.E.D. 

3. Determination of the ideals I,,, cR, 

(3.0) Henceforth, let us  agree to  denote I,,, simply as  I,, the ideal of 
relations mod pnbetween the  q-expansions of modular forms over W. In  the  
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course of the proof of the last Lemma 2.5, we discovered a large number of 
"divided congruences" dm,which give rise to "true" congruences as  follows. 

LEMMA3.1. For n 11, the elements rn  = p(fl-"'(p-".dn of D lie in R,, 
hence in I ( p n - l ) / ( p - l ) .  

Proof. We proceed by induction on n, the case n = 1 being trivial: r ,  = 
1 - Ep-,. Supposing the result proven already for r,, . . ., r,, we use the 
formula (2.5.1): 

(3.1.1) ~ d n + l= dn - (dm)"- Cn(d1, . . ., dn-1) 

where CnE R,[dl, . . ., d,-,] has degree a t  most p - 1 in each variable di 
separately. We readily calculate: 

Q.E.D. 

COROLLARY3.2. For each integer n 2 1,  


rn+l + (rrn)' PJP(P"-~)I(P-~)-~
. 
Proof. Obvious from the formula (3.1.3) above. 

THEOREM3.3. For each integer n 2 1,  the ideal In = I,,, of R, i s  
generated by the monomials  

paOryl . . . rjnj 

such that  

In particular, for n 5 p, In  = (I,)" = (P ,  Ep-,- 1)". 

For later applications, we give a more abstract formulation of the result 
(a version which by virtue of (3.1), (3.2), and (2.5.2) clearly implies (3.3) 
above). 

THEOREM3.3 bis. Let r,, r,, . .. be a sequence of elements of R, such that  

(3.3.2) rn+l+ (rn)' E P . I ~ ( ( P ~ - I ) / ( P - ~ ) ) - I. 
(3.3.3) I f  we let dn = , the images p ( l ) (d l ) ,  p(l)(d,),  .. . of the rn /p(pn- l ) / !p- l )  
di in V,,,fo rm  a sequence of successive Artin-Schreier generators of V,,,over 
V,,,(hence fo rm  a p-base of V1,,over VIz1). 
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(3.3.4) r, = 1- A, where A is  a modular form of weight p - 1which lifts 
the Hasse invariant. 

Then for each integer n 2 1,  the ideal I, = I,,, of R, i s  generated bg 
those monomials 

paor;" .. rjej 

such that 

Proof. Let us  denote by I; the ideal generated by the above monomials; 
clearly we have I;c I,. In order to reverse this inclusion, we introduce the 
ideal I:' generated by those monomials 

paOryl .. . r?i 

which satisfy 

[if i z 1 ,  then O s a , S p - 1 .  

LEMMA3.4. For  every n 2 1, we have I;' = I,. 

Proof. We clearly have I;' c I,. To reverse the inclusion, we proceed 
by induction on n. For n = 1, the ideal I, is generated by p and r,, hence 
I,c I:'. Now suppose the result proven through n ,  and suppose we are  given 
an  element of I,+,.It certainly lies in I,, hence in I;' by the induction 
hypothesis, hence may be written 

(3.4.1) C fao ,...,ajpaor:l . . ryj , fao,...,aj Rco7 

the sum extended over finitely many tuples (a,, ..., aj)  which all satisfy 

! 0 6 a , d p - l  for i z1 .  
Any of these monomials for which a, + C a,((pi - l)/(p - 1)) 2 n + 1already 
lies in I,':,. Subtracting, we may assume tha t  only monomials satisfying 

~ o s ~ ~ s ~ - Ii f i z l  

occur in the expression (3.4.1). 
Now to  say tha t  the  sum (3.4.1) lies in I,+,is exactly to  say tha t  af ter  

we divide i t  by p", we obtain an element of D which lies in the kernel of @(I). 
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Using the identity 

we thus conclude tha t  

(3.4.5) C fao,...,aj(dl)al... ( d j ) a jE kernel of P(1)  ; 

i.e., 

(3.4.6) Z P(l)(fao,. . . ,aj)II:=,( ~ ( l ) ( d J ) ~ ~= 0 in V I , ~. 
Because the  elements ,8(l)(d,) form a p-base of Vl,,over V,,,and the  expo-
nents a ,  satisfy 0 5 ai  5 p - 1, we have 

(3.4.7) P ( l ) ( f a,,...,aj) E ker P(1) ; 

the coefficients all lie in I, = ( p ,  r,). Thus we must show tha t  if a ,  + 
e:=,a,((pi - l ) / ( p  - 1))= n, 0 5 a ,  5 p - 1 for i 2 1, then 

ip pa, ][IrSi E I,';, 
r1pao r:, E I,':l . 

The first of these inclusions is obvious. The second is obvious in case 
either a ,  > 0, in which case rlpaO rfi E p .  I, = PI;' c IT,':,, o r  in case a ,  2 
p - 2 ,  in which case r,paO ][Irfi is one of the standard monomials in I,';,. 
Thus we must show tha t  

pi - 1rprtz .. rgj E I,';, if p + CiZ2a,(-) = n + 1 . 
P - 1  

In  fact, let us show tha t  if n = C:=,a,((pi - l ) / ( p  - 1 ) )and 0 5 ai  g p - 1 ,  
then for a n y  integer 1 5 k 5 j, 

We proceed by descending induction on k. 
For k = j ,  we notice tha t  rj+,e I,':,, and tha t  by (3.3.2) 

(the inclusion Ip, ,p~-, , l ,p-,,,-,c I, because 

For k < j,we have, again by (3.3.2), 
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(3.4.12) ?,+I + (rk)l' P IP((P~-I)/(P-I),-~CPI~-C:=~+,~ ~ ( ( P ~ - I ) I ( P - I ) ). 
Hence, 

If a,+,5 p - 2, then the first term in the sum (3.4.13) is a standard monomial 
of I:,':,, and if a,+, = p - 1,  then by the descending induction hypothesis for 
k + 1 we know tha t  the first term in the sum (3.4.13) lies in I,':,. This 
concludes the proof of (3.4.8), and hence of (3.4). To conclude the proof of 
the theorem, i t  remains to  prove: 

LEMMA3.5. F o r  every n 2 1,  I; = I;'. 

Proof. Because 1;c I, = I;', i t  suffices to prove tha t  I: c I;. Consider 
one of the standard monomial generators of I;', say paOr:j...rp. If xi2,a i 2  
2, we may write this monomial non-trivially a s  a product of monomials, a s  
an  element of for some integers a ,  b 2 1,  a + b = n. By induction on 
n ,  we may suppose I, = I,', I, = I,', and clearly I:.I;c I,',,= I;. Thus i t  
remains to treat  the case of the element p if n = 1(i.e., to show tha t  I: = I,, 
which is obvious) and the  case of r j if (pj- l)/(p- 1) 2 n .  If (pj- l)/(p- 1)= n ,  
then r je I:. If (pj - l)/(p - 1) > n ,  then by (3.3.2) we have 

and by the first case treated above, (rj-JP e I;. This concludes the  proof of 
the lemma, and hence of Theorem 3.3 as  well. 

4. Application to congruences between modular forms of levels 
1 and 2: p 2 5 

(4.0) Suppose first p 2 5, and choose N = p - 1,  k = F, W = Zp. Let 
us write 

iG = SL,(Z/(p - 1)Z) 
G, = the subgroup of G of elements - 1modulo 2. 

The group G acts on all of our objects: R,, D, V,,,, . . and commutes with 
the action of Z:. The ring R2 (resp. R21)of G-invariants (resp. of GI-inva-
riants) in R, is none other than the ring of holomorphic modular forms over 
Z, of level one (resp. 2), and the ideal I,G= I, n R2 (resp. I,Ol= I, n R21) is 
the ideal of relations mod p" between the q-expansions of such modular 
forms. 

LEMMA4.1. If p 2 5, then the order of the group G is prime to p. 
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Proof. 

is clearly a p-adic unit because p - 1< p, 1 - 1< p, 1 < p, and 1 + 1< p 
if p + 3. 

LEMMA4.2. Hypotheses a s  above (p 2 5, N = p - I) ,  the elements dl, 
d,, ... may be chosen to be G-invariant. 

Proof. Clearly dl = (l/p)(l - E,-,) is G-invariant, because Ep-,is  a 
modular form of level one, defined over Z,. Suppose tha t  dl, ., d, have 
been chosen to be G-invariant. Then (dm),- d, is G-invariant, and i ts  image 
under ,8(1) in Vl,, is thus a G-invariant. Let G,(d,, ., dm-,)be a polynomial 
in dl, ., dn-, with coefficients in R,, and degree 5 p - 1 in each d,, such 

tha t  ,8(1)(Cn)= ~(l) ( (d , )"- d,). Writing C, = zfa1,...,a,-, d:l ... d27' with 
coefficients f E R,, we see that  if we replace each f = fal,...,a,-l by i ts  integral 
over G (= (l/#G) EoEGa(f)) then we replace C, by i t s  integral over G. But 

because p(l)(C,) is G-invariant, we have p(l)(C,) = ,8(l)(\ C .  Thus we 
G 

may suppose tha t  C, is G-invariant; then the definition of d,,, a s  

shows tha t  d,+, is also G-invariant. 

COROLLARY4.3. The relations r,, r,, .. may be chosen G-invariant. 

THEOREM4.4. The ideal I$ of R2, and  the ideal I,G1of R.3, are generated 
by those monomials 

paOry1 ... rgj 

which satisfy 

Proof. By (3.3), any element of I,G(resp. Ifl) may be written as  an R,-
linear combination of the above monomials: 

fa,, . . . ,a j  .paOr:l . rp . 
As this expression is G (resp. GI) invariant, i t  is equal to i ts  integral over G 
(resp. G,), hence (as the r, are  G-invariant), it is equal to 

E(5  fa, ,...,aj)paor:l ... rgj . Q.E.D. 

3-adic congruences in level 2 

(4.5) The problem of 3-adic congruences between modular forms of level-
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two defined over Z, may be handled by a similar integration argument, a s  
follows. Choose N= 4, Ic = F, = F,[i], W = Z,[i], and view the corresponding 
modular scheme M a s  a scheme over Z,. So viewed, the subgroup G, of GL,(Z) 
of matrices congruent to the identity modulo 2 acts on M (the subgroup 
G, n SL, acting "geometrically", the quotient k1 acting as  Gal (Z,[i]/Z,)), 
and the quotient is the projective X-line over Z,, denoted simply P1. The 
invertible sheaf g does not descend to  P1,but i ts  square gE2descends ca- 
nonically to the sheaf @(I) = i l k1  (log {0, I})of differentials with first-order 
poles a t  0, 1 ,  thanks to  the Kodaira-Spencer isomorphism (cf. [3], A. 3.17). 
(Under this isomorphism, the square of the differential dxly on the almost- 
universal level-2 curve y2 = x(x - l)(x - X) corresponds to the differential 
2dX/X(1 - x).) The ring of modular forms of level-2 defined over Z, is just 
the subring ( R , ) O l  2: @,,, HO(pl, O(k)) = Symm (H"(P', il;~(Iog {0, 1, m}))). 

Because the Hasse invariant lifts to a level-2 modular form over Z, (for 
instance the section (- 1- X)dX/BX(l- X) of log (0, 1, m}), we may choose 
the relation r, to be GI-invariant. Because the group G, has order 16 (prime 
to 3), the integration technique used above (cf. 4.4) allows us to  select the 
successive relations r,, r,, . . . , in a GI-invariant way. We obtain, for any such 
selection, the  following 

THEOREM4.6. The ideal I,G1 of R.5 i s  generated by those monomials 

which satisfy 

5. Explicit generators for the ideals I, via Weierstrass (p 2 5 )  

(5.0) The Weierstrass curve and  i t s  differential ([3], 8.1,  [9] and [38]). 
We begin by recalling the  "Weierstrass normal form" of an elliptic curve. 
Let B be any ring in which 6 = 2.3 is invertible, and let (E, w) be a pair 
consisting of an elliptic curve E over B and a nowhere-vanishing differential 
o or E. Let us denote by a,(- m) the invertible sheaf on E which is the 
inverse of the ideal sheaf of the identity section of E /B,  and by a,(-nm) its 
n th  tensor power. Then there exist unique meromorphic functions on E 

and unique "constants" g,, g, E B 
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such that the pair (E, w) is the pair 

We denote by T = T(E, w) the uniformizing parameter X / Y ,  by means of 
which the formal completion of E along the identity section is identified with 
(the formal spectrum of) B[[T]]. By uniqueness, we have the following 
transformation formulas, for any unit X e Bx. 

(Formulas (5.0.6) and (5.0.7) express the fact that g, and g, are modular 
forms of weights 4 and 6 respectively.) Consider now the expansion along 
the identity section of the differential w: 

(5.0.9) = Cnzla. Tit-ld T 

where the coefficients a, = a,(E, w) lie in B, and are expressed by universal 
polynomials with Z-coefficients in terms of g, and g,. Let us compare the 
developments of w and kw, for a unit X E Bx: 

(5.0.10) w = Ca,(E, w) ( T(E, w))"-'d T(E, w) , 

(5.0.11) Xw = Ca,(E, x ~ ) ( T ( E ,XU))"-'dT(E, Xw) 

by (5.0.8) = C a,(E, Xw) .X". ( T(E, w))"-'d T(E, w) . 
Thus we have the transformation formulas, for n 2 1: 

which say precisely that a, is a modular form (over Z[1/6])of weight ?z - 1. 
I t  follows by reduction to the universal case that the universal expression 
of a,-, as a Z-polynomial in g,, g, is isobaric of weight n - 1, when we attri-
bute to the g, and g, their weights 4 and 6 respectively. The a,, are all zero, 
and the first few are given by 
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q-expansions; the Weierstrass differential on the Tate curve 

(5.1) Recall that the q-expansions of g2 and g, are given by 

which is an oblique way of recalling that the Tate curve with its canonical 
differential (Tate (q), w,,,) is given over Z[1/6]((q)) by 

(o... = dX/Y . 
We must also recall the existence of a uniformizing parameter Z along the 
identity section 

(5.1.4) Z = -2 T  mod T2Z[1/6][[q]][[T]] 

in terms of which the expansions of X and Y along the identity section are 
given by 

so that, on the Tate curve, we have the expansion identity 

(5.1.7) w,,, = dX/Y = dZl(1 + Z) = d log (1 + Z)  . 
Let us denote by a,(q) E Z[l/G][[q]] the q-expansions of the modular forms a,; 
comparing the expansions (5.0.9) and (5.1.6), we obtain the formal identity 

The key point here is that, thanks to (5.1.4), we know that 


FACT(5.2). The series exp (Ca,(q)( TN/n)) actually lies i n  Z[1/6][[ql][[ TI]. 
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Definition of the divided congruences b,, c,, d ,  

(5.3) We return to the universal Weierstrass curve and i ts  differential, 
expanded in terms of T :  

(5.3.1) w = C  n21 a , T m - ' d T ,  a ,  Z[gz, g3I 

We define the sequences bo = 1, b,, b,, . and c,, c,, . of elements of Q[g,, g3] 
by the formulas 

Thanks to FACT(5.2), we have the remarkable 

PROPOSITION5.3.3. The  elements bo = 1, b,, b,, .. a n d  c,, c,, .., o f  
Q[g,, g3]a l l  have q-expansions which  l ie  in Z[1 /6][[q]] .  

Applications to congruences 

(5.4) Fix a prime number p 2 5. We define a sequence do, dl, d,, ... of 
divided congruences by setting 

dfn
d ,  =C p n  . 

Taking the logarithmic derivative of both sides of (5.3.2), we obtain the 
following formulas expressing the d ,  in terms of the api:  

LEMMA5.4.4. F o r  each n >= 1, the element 

dfn  
r,  =p(pn-l)icp-lld ,  l ies in Z[g,, g,] . 

Proof .  This follows immediately from the formula (5.4.2) above by 
induction on n. 

THEOREM5.5. F o r  a n y  integer N 2 1 pr ime  t o  p, a n d  a n y  perfect field 
k of  characteristic p containing a pr imi t i ve  Nthroot of  u n i t y  9, denote by 
R, the r i n g  of  holomorphic modular  f o r m s  of  level N a n d  t y p e  9 over W = 

W,(k). T h e  ideal I, c R, of a l l  q-expansion congruences modulo pa i s  gener-
ated by those monomia ls  in the r,  (cf. 5.4.4) 
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paOrFl . . . 
which sat is fy  

Proof. The cases N = 1, 2 follow from the case N = p - 1 over Z ,  by 
the "integration" argument of (4.4), which is valid because the r, are of 
level-one and defined over Z,. To do the case N 2 3 ,  i t  suffices to check tha t  
these r i  satisfy the four conditions of Theorem 3.3 bis. 

The first condition, that  r ,  E I , ,n- l~l ,p- l , ,is satisfied in virtue of (5.4.4). 
The second condition, that  

is easily deduced from the fundamental formula (5.4.2): 

(5.5.2) pn+'d,+, + pn(d,), + ~ ~ - l ( d , - ~ ) ~ ~  = apn+l.+ . . . (do)pn+l 

~ ~ l t i ~ l ~ i ~ ~, we have the formula by p ( ~ n + l - l ) ~ ( ~ - l ~ - ~ - l  

(5.5.3) 0 3=1 p~i=l(p'-l)  -= rn f l+ ( r , ) ~+ xn (rn-3 , ) P ~ + I  p ~ ~ = l ( ~ i - l )  • 

Let us denote by r,-,,, the element of Z[g2,g,] given by 

dfn
(5.5.4) rn-l,2=( Y , - ~ ) P ~+ En3 =2 pzi=2! p i - 1 )  (rn-2, ) p i + '  - p ~ ~ = 2 ( ~ ' - l ~ a p n + l. 
Then (5.5.3) says that  

(5.5.5) rn f l+ ( rJp+ pP-1r,-2,2= 0 . 
By (5.4.4), we know tha t  

(5.5.6) + ( r J pE Ip(pn-l)~(p-l)+ - l ~ p - l  , . 
Hence 

(5.5.7) ~ ~ - ' r , - ~ , ~e Ip(pn-l~/(p-l~1 

which is to say 

(5.5.8) r , - ~ , ~  .e ~ p ~ p ~ - l l ~ ~ p - l l - ~ p - l ~  

Thus the second condition of (3.3 bis) is verified: 

(5.5.9) rmf l+ ( rJp= pp-lrn-1,2 e ~ * I p c p ~ - l 1 / c p - 1 1 - 1. 
Let us delay verification of the third condition for a moment. The fourth 

condition is satisfied, because r ,  = 1- a,, and i t  is well-known that  a ,  reduces 
mod p to the Hasse invariant. 

To verify the third condition, we will compute the action of Z," on the 
elements b,, c,, and d ,  e D (cf. 2.4). 
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LEMMA5.6. Le t  

(5.6.1) f ( T )  = exp (c,,,a,:) = En,,b.Tn = 11:. (1 - c,T?-' . 
F o r  a n y  a E Z,", let Ia] denote the  canonical galois act ion of  a o n  the r i n g  D ,  
a n d  deJine 

(5.6.2) [ a i ( f ( ~ ) )dfhc,,~[ai(b,) T~ = n,,.( 1  - [ai(c,) ~ ~ 1 - l .  

T h e n  we  have the f o r m u l a  

(5.6.3) [ a l ( f ( T ) )= ( f ( a  . 
Proof .  Recall that the action of Z",n D c  R,[ l /p]  is simply given by 

[a]f ,  = a k f ,  whenever f ,  is a modular form of weight k .  Recalling that a ,  
is modular of weight n - 1 ,  we readily compute 

[ a l ( f ( T ) )= [ a l ( e x ~(Can-T"-))n 

= exp (C [ a ~ ( a . ) x )n 

( T "  = exp C an-'a,--) 
n 

= exp a-' C a ,( n 

= ( f ( aT))"-' . Q.E.D. 

COROLLARY5.7. F o r  each integer k 2 1 ,  we have the following congru-
ences modulo pD. 

b, i f  n < pk+ pkl(bn) -- { modulo  p D  ,
b, - 1 i f  n = pk 

[ I  + pk](c,) - if < " modulo p D  , 
c, - 1 i f  n = pk 

I d ,  i f n < k  
11 + pkl(d*) -- I d ,  - if = modulo pD . 

Proof.  It suffices to demonstrate the first batch (on the b,), in view of 
the identities 

c, = b, + Z-polynomial in b,, b,, . ., b,-, ,
(5.7.4) 

d ,  = C p n  . 
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Now by (5.6), we have the formula 

(5.7.5) ([I + P ~ ] ( ~ ( T ) ) ) ' + P ~  modulo pD[[TI] .= f ( (1  + pk)T)= f (T)  

Recalling that  f (T)  = 1+ T + (T2), we have the congruence 

(5.7.6) ([I + pk] ~ ( T ) ) P ~  1+ T~~mod (p, T ~ ~ ~ ) . D [ [ T ] ]  = , 

which together with (5.7.5) gives the congruence 

Comparing coefficients of T" for n = 0, 1, . . ., pk gives the desired result. 
It now follows directly from (2.4) that  the elements B(l)(d,) are successive 
Artin-Schreier generators of V,,, over V,,,, hence that  the third condition of 
(3.3) is satisfied by the r,. This concludes the proof of (5.5). 

APPENDIX I 

AIodular interpretation, and relation to Serre's 
"p-adic modular forms of weight X" 

(Al) Modular interpretation of the ring V,,,. The ring V,,, is the Wm- 
algebra of all "rules" f which assign to any situation 

a ~ ,9 )  

(A1 . l )  I 
Spec B 

consisting of an elliptic curve E over a Wm-algebra B together with a level- 

N structure of type 5 and an isomorphism ?: E: ((?,),, an element 

which depends only on the isomorphism class of (EIB, a,v, 9 )  and whose 
formation commutes with arbitrary extension of scalars of W,-algebras, and 
which satisfies the following "holomorphy a t  m" condition: 

for every choice of level-N structure a , of type l: and for every choice of 9. 

The ring V,,, = lim, V,,, may similarly be described as  the rule of all 
C 

such rules, where we allow B to be an arbitrary W-algebra in which p is 
nilpotent, and where in the holomorphy condition we check all Wm. Still 
equivalently, we may allow B to vary over all p-adically complete W-alge- 
bras, and check holomorphy on the Tate curves over the p-adic completion 
of W((9)). 

In this optic, the homomorphism p:R,--.V,,, may be described modularly 
a s  follows: For a modular form f of weight k, @(f)E V,,, is the rule 
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where by abuse of notation we denote ~ * ( d  T)) the unique invariant T/(1 + 
differential on E / B  whose restriction to E is q*(dT/(l  + T)). 

The action of a E Z; on V,,, is deduced from its  action on Isom (E, em) 
by the formula 

(A1.5) ([alf)(E/B, a,, 9 )  = f(E/B, a,, a34 • 
Application to modular forms of weight 

Let x E Hom,,,,,,(Z,", Z,") be a rational p-adic character of Z,", and let VZ,, 
denote the submodule of V,,, consisting of elements f e V,,, such tha t  
[a](f) = ~ ( a ) f  for all a E Z,". 

PROPOSITION Let x be a s  above, and  if p 2 suppose i n  addition A1.6. = 

that x lies i n  the closure of Z i n  End (Z,") (this i s  automatically satisfied for 
p # 2). Then a p-adic modular form of weight x and  level-N, type i: i s  
precisely a n  element of VZ,,. 

Proof. We will give a direct, "computationa1" proof. Suppose first tha t  
f is a p-adic modular form of weight X. This means tha t  there is a sequence 
of true modular forms fi, each homogeneous of some weight k,, defined over 
W, whose q-expansions have a uniform p-adic limit q-expansion a t  each cusp 
of M, and this collection of limit q-expansions "is" f. 

But the condition on the  q-expansions of the f, means precisely that ,  in 
the ring D, the elements fi are p-adically convergent, and their limit in D = 
lim D/pmD i s  f. In particular the sequence of elements P(f,) E Vm,mis p-adi- 
C 

cally convergent, with limit @(f). We must show tha t  

(A1.7) P ( f  )(E, a,, a- '9) = X(a).B(f ME, a,, 9 )  

whenever (E/B, a,, 9 )  is a s  in (Al.l),  and a E Z,". But P(f) = limp(f,) in 
hence for any fixed (E/B, a,, T), we have 

P(f)(E/B, a,, a- '9)  = lim P(ft)(E/B, a,v, a-'9) 

E/B, a,, a-'9* 

,,,, V 




357 HIGHER CONGRUENCES 

Suppose now that g E V:,,. Let {k,} be a sequence of integers such that 

(A1.9) ~ ( a )- ak.mod p" V a E Z," . 
We will use g to define a sequence f, of "p-adic modular forms modulo p"" 
of weight k,, whose q-expansions tend p-adically to those of g. For each f, 
there exists a true modular form g, over W, of weight kb such that 

k, = k; modulo p"-'(p - 1) , 
g,(q) r f,(q) mod p" a t  each cusp 

and we may choose kb >> 0, in particular kb 2 2. Then the g, may be lifted 
to true modular forms 5, over W of weight kb, whose q-expansions tend to 
those of g. So it  remains only to define the f,. 

Let B be a W,-algebra, and (E/B, a,, w) an elliptic curve over B with 
level-N structure and nowhere-vanishing invariant differential o ,  such that 
E @ B/pB has invertible Hasse invariant. We must define an element 

(Al.l l)  f,(E/B, a,, o )  E B 

which is homogeneous of degree k, in the choice of o ,  which depends only 
on the isomorphism class of (E/B, a,, o ) ,  which commutes with extension of 
scalars of W,-algebras, and which is holomorphic a t  infinity. 

Over the ring B, = B @vn,o V,,, (B  is a V,,o-algebra by the homomor- 
phism V,,, --.B which "classifies" (E, a,)), there exists an isomorphism g,: 
E: em.Let us write w = Xg,*(dT/(l + T)), with X E (B,)"; we ''define" 

which is a priori an element of B,. I t  does not depend on the choice of 
isomorphism g,;if g,,is another, then g,, = ag, for some a E Z,", 

and we could also "define" 

(A1.13) f,(E/B, a,, w) = (a-'X)-kV(E/B, ax, 91) . 
But indeed we readily calculate 

(a-l~)-kng(E/B,%-,9,) = ak,X-k,g(E/B, a',., ag,) 
(A1.14) = X-'(a). ak,~-k,g(E/B, aN,  g,) 

= x-~.~(E/B,a,, g,) 

because by choice of k, we have 

(A1.15) ~ ( a )= ak,mod p" . 
Further, this very independence of f,(E/B, a,, w) of the auxiliary choice of 
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y implies immediately tha t  the value f,(E/B, a,v, o )  lies in B, because B is 
the subring of invariants of a E Z," acting as  id @ [a]  on B @V,,O V,,m = Bm. 
It is clear tha t  the remaining conditions for f, to  be a p-adic modular form 
modulo p" are verified. Finally, the q-expansions of f, are  precisely the 
reductions mod p* of those of g, because for the Tate curve the differential 
o,,, used for q-expansions is itself 9*(d  T/(1 + T)), i.e., X = 1. 

A r e m a r k  for t he  specialist .  Let 8 be the ring of integers in any com- 
plete algebraically closed over-field of W @ Q,, and let 

(A1.16) 2: Z," -13" 

be a n y  continuous,character. Then we may define a p-adic modular form of 
weight to be an  element of (V,,, @,13)X, where 

A 

V,,, @, 13 = lim, lim, V,,, BwmClef" lim, V,,, gwm (3 
C C --+ 

is the ring of all ru les . .  .as  in (Al.1) but where we now restrict B to vary 
only over &algebras which are killed by some power of p (or, if we prefer, 
which are  p-adically complete). 

In  down to earth terms, a p-adic modular form f of weight E 

Horn (Z,", 13") is thus a rule which assigns to each situation 

(E, a,, 9) 

(A1.17) I 
Spec (B) 

where 

I B is an 0-algebra in which p is nilpotent 

(A1.18) (E, a,) is an elliptic curve with level-N structure over B 
p is an  isomorphism y: & -12, 

an  element 

(A1.19) f (El& ax,  F) B 
such tha t  
(A1.20) for any ff E Z,",f (EIB, a,, a- '9) = (E/B, f f ~ ,  ~ ( f f ) f  9 )  ; 

f (E/B, a,, 9 )  depends only on the isomorphism class of 
(A1.21) (E/B, a,, T), and its formation commutes with arbitrary 

extension of &algebras B -+B'. 

f (Tate (qN), a',., 9)e O[[q]] for every level-N structure a, 

and every 9 on the Tate curve. (More precisely, the condition 
(A1.22) 

is tha t  whenever we consider Tate (qLv) over O/p"tl((q)), any n, 

with any choice of a, and 9,the value o f f  lies in O/p"O[[q]].) 
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By "pure thought", i t  may be checked tha t  this definition of a p-adic 
modular form of weight x is equivalent to  tha t  of a compatible system of 

0 ,  where 
we denote by @"he invertible coherent sheaf on S, @ (3 associated to the 
p-adic etale sheaf T,X over S, @ 0 deduced from the p-adic etale sheaf T,by 
"extension of the structural  group" from Z," to  (3" via the character X: Z,"--. 
(3". This description shows tha t  there is a plethora of p-adic modular forms 
of weight X, for 

(V,,, @6)" l i m , ( V , , , @ O ) ~  Iim, HO(S,@ O,o@x). 
C t 

Because the S, are all affine we know tha t  each individual HO(S, @ 6, g@" is 
an  invertible module of rank one over the coordinate ring V,,, @ (3 of S, @ (3, 

and tha t  the transition maps HO(S,+, @ 0, @I) -,HO(S,@ (3, @) are a11 
surjective. Thus there are "just a s  many" p-adic modular forms of weight 
x as  there are  p-adic modular functions defined over (3. 

This shows in particular that  i t  is hopeless to t r y  to  decompose the ring 
V,,,as  a Z; module according to  the p-adic characters of Z,", because every 
time we make an  extension of scalars to an 0 as  above, new characters of Z," 

occur in V,,, 80. (Indeed for p # 2, we have canonical isomorphisms 

Horn (Z,", Ox) = Hom ( ~ / ( p  - 1)Z, p,-,(6)) x Hom (1 + pZ,, Ox) 

and via "evaluation a t  1+ p" we have an isomorphism 
-

Hom (1 + pZ,, Ox) -1 + Max (8) 

where Max (0) denotes the maximal ideal of (3.) 

APPENDIX I1 

Congruences a t  a (finite) ordinary point 
on the  moduli scheme (cf. [2]) 

Suppose k algebraically closed. Let Eobe an  ordinary elliptic curve 
(with level-N structure of type 5) over I c ,  viewed as a closed point of the 
moduli scheme M/ W. Let us denote by 0 the completion of the local ring of 
M a t  this point. (Thus 0 is non-canonically isomorphic to W [ [ X ] ] ,where 
1+ X is some choice of Serre-Tate parameter "q".) Let 

be the inverse image of the universal curve over Spec (0)--. M. Then the 
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formal group E over 0 is non-canonically isomorphic to G,, the  formal 
multiplicative group, and the  set of isomorphisms between them is principal 

homogeneous under A U ~ ~ ( G , )  = Z,". Each isomorphism 9:E G, deter-
mines an  invariant differential w,dfng,*(dT/(l + T)) on E (where T is the 
usual parameter on the formal multiplicative group: A(T) = T @ 1+ 1@ 
T + T @ T),  hence a nowhere-vanishing differential o, on E itself. 

Each such choice of g, allows us to define a sort of "q-expansion homo-
morphism" 

and, by reduction modulo pa, homomorphisms 

- A 

PROPOSITION E- and(A2.4). F o r  any  choice of isomorphism 9: G,, 
for a n y  n 2 1, we have 

In= kernel of p,(n): R,-(3/pn(3. 
Proof. The isomorphism 9:E G, induces an isomorphism p , ~-

p,., and by reduction modulo pa gives an isomorphism p ~, @ (3/pn0+p,. 
over (3/pn(3. But the scheme T,,, over M, is the etale covering of S, c M, 
defined by "adjoining" all isomorphisms of ,,E 1 Snwith ,up., and the differ- 
entials o,.. are  the (unique invariant differentials on ET,,,whose restrictions 
to  (,,@),,,, a re  the) inverse images by these isomorphisms of the standard 
differential dT/( l  + T) on p,,. If we recall tha t  (3/pn(3is "simply connected", 
i t  follows tha t  in the  diagram 

"' ,.,' 0-
Spec ((3/pn(3) t--.S, 

there are precisely pa-'(p - 1) sections over Spec ((3/pn(3), and tha t  the  
inverse images by these sections of any o,,, on T,,, are precisely the 
pa-'(p - 1)distinct (mod p") differentials o,. Thus the homomorphism p,(n) 
is obtained by composing the homomorphism 

Rm-V",, 
with the inclusion Vn,,c (3/pn(3defined by one of the sections of (A2.5). 

Q.E.D. 



HIGHER CONGRUENCES 361 

APPENDIX I11 

Deligne's Generalization of Theorem 2.1 to "false" Modular Forms 

This appendix is devoted to formulating and proving a generalization of 
Theorem 2.1, without recourse to Artin-Schreier theory. Both the formula- 
tion and the proof are Deligne's. I have let my original proof stand in the 
text because its construction of successive Artin-Schreier generators is still 
needed for the actual determination of the higher congruences between 
modular forms. 

A. The affine case 

Let W be a mixed characteristic complete discrete valuation ring of 
residue characteristic p. Let n be a uniformizing parameter, and for each 
integer m 2 1, let W, = W/nm W. Let S, be a sequence of flat affine W,- -
schemes, given with isomorphisms S,,, Ow,+,W, -S,. Let P be a rank 
one p-adic etale sheaf on the S, (i.e., P on S,,, is the unique p-adic etale 
sheaf on S,+, which induces P on S,). Thus P "is" an inverse system 
P, = P/pn8of etale sheaves which are twisted forms of the constant etale 
sheaves Z/pnZ. Let g, be the invertible (coherent) sheaf P@z, Os, on S,, 
which for variable m are compatible via the isomorphisms S, -- S,,, @ W,. 

We define graded rings 

RA = $,,o H0(S,, oBk) , 
RL = $,,, lim, HO(S,, gWk) . 

f-

Notice that because each S, is afine, and S, = S,,, mod nm, we have 

Let us define 

T,,,= Isom,, P,) = spec (V,,,))( Z ~ P ~ Z ,  ( 

a finite etale S,-scheme which represents the functor on Sch/S,, 

-1n +-+ isomorphisms +,: (Z/P%Z)~-s*(P,) . 

The group (Z/pnZ)" acts freely on T,,,([a]+, = a-I+,) with quotient S,. 
For variable n ,  the schemes T,,, form a projective system (T,,,,,-w T,,,) 

whose inverse limit T,,,= Spec (V,,, = lim, V,,,) represents the functor 
+ 
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1 a cisomorphisms +: Z, a*(P)  . 
s, 

The group Z," acts freely on T,,, ([a]+= a-I+), with quotient S,. 
The homomorphism P(m) 

P(m): Rk -V,,, = r ( T,,,, (3) -V,,, 

may be defined as follows. Over T,,,, we have the universal isomorphism 
from Z/pmZto P,, under which the element 1E Z/pmZgives rise to a section 
of P, and then to an invertible section of g = P, @ 13,,,, over T,,,, denoted 

o,,,(m). So we define 

P(m)(Cfi) = C fi/(wc.n(m))gi 

In the spirit of Appendix I,  we may view V,,, as the ring of all "func-
tions" 

with values in r(X,  a,), for variable X and variable +, whose formation is 
compatible with arbitrary change of base X ' -+X.  Then P(m) identifies 
HO(S,, ggk)with those functions which transform under (Z/pmZ)"(the inde-
terminacy in the choice of +,) by a t+ ak.This shows that HO(S,, ggk)and 
HO(S,, W ~ k + ~ ~ - l ) ~ m - l) have identical images in V,,,, and shows how far ~ ( m )  

is from being injective on all of Rk. Passing to the inverse limit in each 
degree, we obtain a homomorphism 

P(w): RL -V Z  lim, V,,, . 
C 

Exactly as in Appendix I, we can view Vas  the ring of all "functions" 

with values in r(X, (3,) for variable X and variable m whose formation is 
compatible with all changes of base X '  -+ X. This ring V is p-adically com-
plete, flat over W (because V/rmV = V,,, = lim, V,,, is etale over S,, hence 

--* 

flat over W,), and Z; acts on it, by the rule 
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The reasoning of Appendix I shows that P ( w )  identifies the homogeneous 
components lim, HO(S,, oBk) of RI, with the subspaces VIk) c Vconsisting of 

C 

the functions f e Vwhich satisfy [a] f = akffor all a e Z;. Because V is $at 
over W, the usual "independence of characters" argument shows that the 
map P(w) is injective: 

Since Vand (hence) RL are $at over W, we may tensor this inclusion 
with the fraction field of W, and obtain a diagram of inclusions 

We define D' to be the intersection 

B(")
THEOREM.The inclusion D' c-.Vinduces isomorphisms 

D'/nmD' -1V/nm V ; 

equivalently, V is the p-adic completion of D'. 

Proof. I t  follows from the definition of D' that the cokernel V/Dt is 
W-flat, so the exact sequence 0 -+D' --. V--. V/Dt --.0 remains exact when 
reduced modulo nm; D'/xmD' c-,V/xm V. I t  remains to check that the map 
is onto, and for this it suffices to show that D'/nDt -++ V j  V = Vl,,. So take 
f e Vl,,, say f E Vl,,. To make clear the idea of the proof, suppose first that 
P, = P/pmP is trivial, where m is so large that 

Now let F e  lim, V,,, c V lift f E V,,,. I t  suffices to show that nm-'F E 
C 

p(w)RL + nm V, for then FEP(w)Dt + T V as required. Notice that, as 
Rb/nmRbrr Rk, this statement is equivalent to the statement (where F, = 
the image of F in V,,,) 

nm-'F, E P(m)Rk . 
As we supposed that P, js trivial, we have 

T,,, = Aut,, (Z/pmZ)= S, x (Z/pmZ)" 

so that V,,, is the ring of all V,,, = HO(S,, (3)-valued functions on the group 
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(Z/pmZ)". The sheaf g on Smbecomes the structure sheaf OSm, because 

g = P Ozpas, = p, OZ,P,ZOs, = Os,,,, 
and RL becomes the polynomial ring HO(Sm, OSm)[X]. The mapping 

p(m): Rk -Vm,m 

becomes the map 

HO(Sm,OSm)[X]-HO(Sm,a,m)-valued functions on (Z/pmZ)" 

obtained by viewing polynomials as f u n c t i o n s  (well-defined because pm = 0 

in HO(Sm, Osm)). 
The function nm-'Fm E nm-' Vm,, c Vm,, becomes a nm-'HO(Sm,(3)-valued 

function on (Z/pmZ)* which factors through (Z/p"Z)". If we recall that 
nm-'Ho(Sm, asm) is an Fp-vector space, then the fact ("Mahler's theorem") 
that the Fp-vector space Maps (Z/pmZ, F,) has as basis the "binomial coeffi- 
cient functions" x -4 (3, 0 5 i $ p" - 1 shows that any nm-' Vm,,-valued 
function on (Z/pmZ)" cZ/pmZ may be written as a sum 

But m was so chosen that 

and therefore the function nm-IFm indeed lies in the image of R:. 
Now let us turn to the general case where we no longer suppose Pm 

trivial. Arguing as above, we must show that, in the above notations, 

VmVm2 p(m)Rk 2 nm-' Vm,m 9 

a statement which "involves" only a flat affine Wm-scheme Sm, a "twisted" 
form Pmof Z/pmZ on Sm, and an integer n << m such that xm-' E (p* - I)!.W. 

Now suppose that A is any faithfully flat over-ring of HO(Sm, OSm). If 
we consider the inverse image of our problem over A, its statement remains 
the same, save that V,,,, R:, and Vm,, have become Vm,,@ A, Rk @ A, 
Vm,,8A. The original problem was to show that, in V,,,, we have 

nm-' V,,, cp(m)R: , 

or equivalently that the composite map 
zm-t 

v m , m  -Vm,m/p(m)Rk 

is the zero map. For this, it suffices that the map 



HIGHER CONGRUENCES 365 

be zero, or, what is the same, that our problem have an affirmative solution 
over A, which we know is the case if P, becomes trivial on A. So we simply 
take V,,, itself for A. Q.E.D. 

B. The proper case 

We retain the preceding notations, but now begin with a proper and 
smooth W-scheme M, whose fibres are geometrically connected curves. We 
put M, = M@, M,. Let H c  M1 be a finite set of closed points, and let 
S, c M, be the affine open set M, - H. We are given a rank one p-adic etale 
sheaf P o n  the S,, and we give ourselves further an invertible sheaf 9 on M 
which induces P@z, Ox, on S,. 

Notice that ~ _ @ p - '  is trivial on S1, because 

P B P - ~  @z, Ox, = @zlPzOsl ( P  @ Z/PZ)@~-'- Z/pZ( P@ Z/PZ)@~-~ and 

canonically. This trivialization determines a section A E Ho(S1,g),corre-
sponding to 1E Z/pZ. 

THEOREM. Suppose that A E HO(Sl, 9 )  extends to a (necessarily unique) 
section A e HO(Ml, 9 )  which vanishes at  each point of H. Then if we define 
R, = ekZOHO(M, ggk), we have R, c RL c V, and if we put D = R,[l/p] fl V, 
then the inclusions 

D c  D ' c  V 

induce isomorphisms modulo any power of n: 

Proof. Because M, is smooth over W, and is irreducible, the restriction 
map HO(M,, gPk) -+ HO(S,, gBk) is injective. As 

-
HO(M, gBk) -lim, HO(M,, g@", 

C 

we certainly have R, c RL, and then D c  D'. By definition of D, D', the 
maps D/nWD-+ V/nm V and D'/nmD' -+ V/nm V are both injective, therefore 
the map D/nmD- D'/nmD' is injective. To show surjectivity, it suffices to 
show D/nD D'/nD1 is surjective. -+ 

For this, we argue as follows. The sheaf g on M has positive degree, 
because a power of it on M1 has a non-zero section which has zeros (namely 
A). Pick any integer v > 0 such that g@u(p-l) g genus of has degree>Zg-2, = 
MI. Then the section A"E HO(Ml, g@"p-l)) lifts to a section E E HO(M, g@u(p-l)). 
Notice that 

mailto:g@u(p-l))
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( 1) The image of EPnin V lies in 1+ nn+' V. This follows by induction 
on n once we know that the image of E lies in 1+ nV. This in turn follows 
from the fact that the image of A in V,,,,viewed as a "function" of situa- -
tions (an S,-scheme X, an isomorphism +,: Z/pZ -P, on X )  with values in 

(3,) r ( X ,  which is homogeneous of degree p - 1in the choice of 3, (indeter-
minacy: (ZJpZ)") is tautologically the constant function "1"; 

X -
, +,: Z/pZ --+ P, on X (3,) r(X,E1= . 


( 2 ) Because the open-subscheme S, c M,. is the open set where E is an 
invert ible  section of w_@"(p-'), we have 

HO(M,, g@k+"u(p-l) 
HO(S,, gBk) = lim,

+ E "  

Now let CfiE RL lie in nmV. We must approximate it modulo nm+' V by an 
element of R,. For this, it suffices to approximate each homogeneous f, E 

lim HO(S,, gai) modulo nm+' V by an element of R,. Now 
C 

f ,  = gi+NuPm(~-l) 
z - E N P "  mod j~"+'Rk 

for some gi+NPmu(P-I, 	 where N >> 0 depends upon f,, by E HO(M, g@i+Npmy(p-')) 
(2) above. By (1) above, f, and gi+Npm,,p-,) differ multiplicatively in V by an 
element of 1+ nm+'V, so that 

fi - gi+xpm,(p-1)E nmf 'V.  	 Q.E.D. 
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