CORRECTION TO "ON THE MONODROMY GROUPS ATTACHED TO CERTAIN FAMILIES OF EXPONENTIAL SUMS"

NICHOLAS KATZ

In the proof of Proposition 1 on p. 42 of [1], replace lines -15 to -11 on that page (beginning "Consider the *d*-dimensional...") by the following text.

Therefore $d\tau|K \simeq (\rho|K) \otimes \chi$. Taking determinants, we see that the character $\alpha := \det(\rho)/\det(d\tau_2)$ of π_1 has $\alpha|K = \chi^{-\deg(\rho)}$. Again by the vanishing of H^2 , any $\overline{\mathbf{Q}}_{\ell}^{\times}$ -valued character of π_1 has a $\deg(\rho)$ 'th root. Twisting τ_2 by a $\deg(\rho)$ 'th root of α , we obtain a representation τ of π_1 , whose restriction to K differs from τ_0 by a character of order $\deg(\rho)$. Shrinking...

REFERENCES

[1] N. Katz, On the monodromy groups attached to certain families of exponential sums, Duke Math. J. 54 (1987), 41-56.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540, USA