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Algebraic Solutions of Differential Equations
(p-Curvature and the Hodge Filtration)

Nicholas M. Katz (Bures-sur-Y vette)

Introduction

This paper grew out of an attempt to answer the following question,
first raised by Grothendieck. Consider a linear homogeneous nxn
system of first-order differential equations

d

—()=A(2)Y

dz
in which A(z) is an n x n matrix of rational functions of z. To fix ideas,
suppose that the coefficients of the entries of A(z) all lie in an algebraic .
number field K. Then for almost all primes p of K, it makes sense to
reduce this equation modulo p, obtaining a differential equation over
F,(2).

q

(I) Suppose that for almost all primes p, the reduced equation has a full
set of sclutions (i.e., has n solutions in (F,(z))" which are linearly independent
over F,(z)). Does the original equation admit a full set of solutions in
algebraic functions of z?

For example, the equation

with ae Z may be reduced modulo p for all those primes p not dividing a,
and the reduced equation admits the solution z* for any integer b such
that ab=1 modulo p. The original equation has for its solution the
function z'/%. Of course, (I) may be reformulated in greater apparent
generality. Let R be a subring of C which, as a ring, is finitely generated
over Z. Let S be a smooth R-scheme with geometrically connected fibres,
and consider a differential equation (M, V) on S/R, by which we under-
stand a locally free sheaf M on S of finite rank together with an R-linear
integrable connection V': M — Qfx ® M. (We considered above the case
R=0[1/n], O the ring of integers in an algebraic number field, S an
open set in P, M=03, and V: M — Q. ® M given by

Vm=dm—dzQ@A(z)-m.)
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Any maximal ideal p of R has a finite residue field F, of characteristic
p>0. Reducing modulo p, we obtain from (M, V) a differential equation
on a scheme which is smooth over a (finite) field of characteristic p> 0.
In order for the differential equation (M/p M, V) in characteristic p to
have a full set of solutions, in the sense that M/p M is spanned by its
subsheaf of horizontal sections; it is necessary and sufficient that a certain
p-linear homomorphism, the p-curvature of (M/p M, V), vanish.

(Ibis) Suppose that for every maximal ideal p of R, the p-curvature of
(M/pM, V) vanishes. Does the complex differential equation (M, V)¢ on
the smooth C-scheme S¢ have a full set of algebraic solutions, in the sense
that it becomes trivial on a finite etale covering of S¢?

It is proved in ([24], Theorem 13.0) that the vanishing of the p-
curvature for all maximal ideals p of R implies that the complex differential
equation (M, V)¢ on S¢ has only regular singular points, and that its
local monodromy groups around the “branches at 00”, in any smooth
compactification S¢ of S¢ such that D=S.— S, is a divisor with normal
crossings in S¢, are all finite groups. In view of the fact that differential
equations with regular singular points are determined by their global
monodromy groups, (Ibis) may be reformulated

(Iter) Suppose that for every maximal ideal p of R, the p-curvature of
(M/p M, V) vanishes. Does the differential equation (M, V)¢ on S¢ have a
finite global monodromy group?

An easy argument, via restricting to curves, projecting and specializ-
ing parameters in R shows that if the original question (I) always has an
affirmative answer, then (I bis) and (I ter) always have affirmative answers.
Unfortunately, (I) is far from being resolved.

Consider the special case (M, V')=(0s, V) of a rank one equation. The
connection V is of the form V(f)=df+ fV(1); its integrability implies
that the one-form w=V(1) is necessarily closed. This equation admits a
solution mod p if and only if @ is logarithmic mod p. It admits a solution
on a finite étale covering of S if and only if an integral multiple nw, n> 1
of w is logarithmic on S [for if w= —df/f with f an algebraic function
of degree n, then putting g=Norm(1/f), we have nw=dg/g]. Thus a
special case of (Ibis), which is interesting even (or perhaps especially)
when /R is an open subset of a curve of genus g2 1 (c.. (7.4.4) for g =0) is

(Ilog) If wer(s, ng) is closed, and is logarithmic modulo p for every
maximal ideal p of R, is an integral multiple ncw, n=1 of w logarithmic on
S¢?

In applications, it is sometimes more natural to reverse the point of
view. Given a smooth connected C-scheme S, and a differential equation
(M, V)c on S¢, we can always find an affine open set % Sc, a finitely
generated subring RcC, a smooth R-scheme # with geometrically
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connected fibres and complex fibre %, and a differential equation (M, V)
on % /R which induces (M, V)¢|%c on %c. Suppose there exists an affine
open set ¥” < % such that, for any maximal ideal p of R, the p-curvature of
(M/pM]|V, V) vanishes. If such a ¥ exists for one set of choices (%, R,(M, V'),
then such a ¥~ exists for any set of choices. It’s existence is thus an intrinsic
property of the germ of (M, V) at the generic point of S¢, which we call
“having p-curvature zero for almost all p”.

Because “p-curvature zero” is a property which is local for the étale
topology, it follows that if (M, V)c becomes trivial on a finite étale
covering of S¢, then it has p-curvature zero for almost all p in the above
sense. Grothendieck’s question is whether the converse is true:

(Iquat) If (M, V)c on S¢ has p-curvature zero for almost all p, does it
become trivial on a finite étale covering of S¢?

Our main result is that (Ibis) admits an affirmative answer when the
differential equation involved is a Picard-Fuchs equation, or a suitable
direct factor of one. Recall that if K/C is any function field, and U/K
any smooth K-variety, the finite-dimension K-spaces of algebraic de
Rham cohomology H}(U/K) are each endowed with a canonical inte-
grable connection ¥, that of Gauss-Manin (“differentiation of cohomology
classes with respect to parameters”). The resulting differential equations
(Hpr(U/K), V) are called the Picard-Fuchs equations.

The suitable direct factors are the following. Suppose a finite group G
acts as K-automorphisms of U. Then it acts on the de Rham cohomology

7&r(U/K) in a horizontal way (i.e., it respects V). For any irreducible
C-representation y of G and any automorphism ¢ of C, let y° denote the
representation deduced from y by applying o to its matrix coefficients.
We say that y and x° are Q-conjugate. Let 4, ..., X, be the non-isomorphic
irreducible representation of G which are Q-conjugate to y. Let
P(x;)(Hpr(U/K), V) denote the y-isotypical component of (Hpx (U/K), V),
i.e. the part of Hpg (U/K) which transforms by y;, with its induced Gauss-

Manin connection. Then @ P(x))(Hpr(U/K), V) is what we mean by a
i=1

suitable direct factor of (Hpg(U/K), V).

The proof is based upon the somewhat striking fact that in charac-
teristic p, a suitable associated graded form of the p-curvature of the
Gauss-Manin connection is a “twisted” form of the mapping “cup-
product with the Kodaira-Spencer class”. The proof of this fact is
unfortunately computational, and rather long. It depends essentially
upon the identity of Hochschild, which asserts that for any derivation D
of a commutative F,-algebra, and for any element X of that algebra,
we have D*~!(X?~! DX)+(D(X)y=X?"! D?(X). Indeed, in the case of
an H', this identity is the proof.

1
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The idea of looking at the associated graded mapping defined by the
p-curvature was suggested by Clemens’ attempt to generalize the Picard-
Lefschetz formula.

The proof of the theorem is concluded by a transcendental argument,
based essentially on the Hodge Index Theorem. The argument in the
non-proper case is due to Deligne, and depends upon his theory of
mixed Hodge structures. Our motivation for extending the theorem to
the non-proper case, and to the suitable direct factors defined by the
action of a finite group, was Dwork’s suggestion that our results should
imply an affirmative answer to (Ibis) for the classical hypergeometric
differential equation. Indeed, by studying the one-parameter families of
curves Y"=X4(X-1)2(X -2, Y+0 cover C(4), we show that the
hypergeometric equation with parameters a, b, ce C

2
A(l—l)%+(o—(a+b+l)ﬂ)g—£-—abf=0

has two algebraic solutions if and only if a, b, ceQ and, for almost all
primes p, the reduced equation has two solutions in F,(4) which are
linearly independent over F,(4).

Consider the “general case”, which in the theory of the hypergeo-
metric equation means that none of the exponent differences 1—c,
c—a—b, a—b is an integer. As we learned from Dwork, the existence
of two mod p solutions for almost all p is equivalent to the condition
that 1, {,=exp(2nia), (’=exp(2nib), {,=exp(2mic) be distinct roots
of unity, and that for any automorphism ¢ of C, the counterclockwise
arc on the unit circle leading from 1 to (¢ contains either {7 or {7, but not
both. The problem of when the hypergeometric equation has two alge-
braic solutions is of course a classical one, and was solved completely by
Schwartz, whose solution (Schwartz’s list) is stated with uncommon
clarity by Goursat ([10], p. 40-41). It is by no means evident a priori
that our solution is equivalent to Schwartz’s.

The classical theory of Reimann’s p-scheme shows that any second
order differential equation on an open set of P} which has at most three
singular points, all regular, is isomorphic to (the inverse image, by an
automorphism of P¢, of) a hypergeometric equation. Thus (I bis) has an
affirmative answer for all such equations.

We would like to point out that, by projection, the problem (I log)
on a hyperelliptic curve of genus g1 is equivalent to the problem
(I bis) for certain second-order equations on P¢ having 3g+2 singular
points. In the final section, we explain how (I log) on an elliptic curve over
Q which has a nontrivial rational point of order two, is equivalent to an
intriguing diophantine problem on the elliptic curve, which we view
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as being (if true) an arithmetic analogue of Manin’s “theorem of the Ker-
nel” for abelian varieties over function fields ([29]). For this reason,
problem (I bis) for second order differential equations on P! with five
singular pointsis already of great interest, despite its mundane appearance.

Let us briefly indicate the contents of the various sections.

In the first section, we explain in intrinsic terms the well-known
relation between the Gauss-Manin connection and the cup-product
with the Kodaira-Spencer class ((1.3.2), (1.4.1.6), (1.4.1.7)).

In the second section, we recall the Cartier operation, which com-
pletely analyses the local de Rham cohomology of a smooth morphism
in characteristic p>0 (cf. (2.1.1)). After an interlude of general nonsense
on degeneration of spectral sequences after base change (2.2.1.11), we
return to reality and study the “conjugate” spectral sequence of de Rham
cohomology in characteristic p>0(cf. (2.3.2)). We thenexplain the relation
between this spectral sequence and the classical Hasse-Witt matrix
(cf. (2.3.4.1)), introduce the sometimes-defined “higher” Hasse-Witt
matrices (2.3.4.22) and extend to them the theorem of Igusa-Manin
(2.3.6.3). This divertimento is concluded by a “numerical example”
(2.3.7-8), where we calculate the “Hasse invariant” of a hypersurface
of geometric genus one.

In the third section, we prove the main technical result, relating the
p-curvature and the Kodaira-Spencer class (3.2), (3.3). Before giving the
proof, we recall some of the basic facts about the modular representation
theory of finite groups of order prime to p (3.2.1-3).

The fourth section reviews Deligne’s theory of mixed Hodge structures.
It is independent of the three preceeding sections, and takes place
entirely over C. The principal results are (4.1.2), (4.3.3), (4.3.4), (4.3.5),
4.4.2).

In the fifth section, we put together the results of the two preceeding
sections, to prove our main theorems ((5.1), (5.3), (55), (5.7)) on Picard-
Fuchs equations.

The sixth section is devoted to the proof of (I bis) for the hypergeo-
metric equation (6.2). The first two parts (6.0-1) give a useful elementary
dictionary between “modules with integrable connections” and “n-th
order differential equations”. The rest of the section is devoted to the
proof of (6.2). The essential proposition (6.8.6) is essentially contained in
Messing [32]. The entire section can be read independently of the
preceeding ones — the result (5.7) is only applied in a formal way.

The final section is devoted to the problem (Ilog), especially on
elliptic curves. The focal point is Conjecture (7.5.11), which emerged in
conversations with Tate and Mazur.

The appendix gives a simple (not elementary) proof of a useful case
of Riemann’s Existence Theorem.
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1. Generalities on the Kodaira-Spencer Class
and the Gauss-Manin Connection

1.0. The Geometric Setting
Throughout this Section 1, we will consider the situation

De%' ,xd 5 U=X-D

(1.0.1) S

in which T is an arbitrary base scheme, S is a smooth T-scheme (via g),
which will play the role of a parameter space, X is a smooth S-scheme
(via f), whose fibres over S are « parameterized” by S, and D is (via i)
a union of divisors D; in X, each of which is smooth over S (hence also
over T), and which have normal crossin gs relative to S (hence also relative
to T). This situation persists after arbitrary change of base 7" — T,

In practice, X is usually proper over S, and should be thought of as
a particularly nice compactification of the smooth “open” S-scheme
U=X—D, which is psychologically prior to X. We allow D to be the
empty divisor, corresponding to U being proper over S. We do not
assume X proper over S except when we explicitly so state.

(1.0.2) Let Der,(X/T) (resp. Dery(X /8)) denote the locally free sheaf
on X of germs of T-linear (resp. S-linear) derivations of Oy to Oy which
preserve the ideal sheaf of each branch D; of D. We may now define the
sheaf of germs of relative (to T, resp. to S) Kahler differentials on X with
logarithmic singularities along D, by
(102.1) Qyr(log D)=H omg_ (Dery,(X/T), Oy)

o Qy s(log D)= Hom,, (Derp(X/S), Oy).

For every integer p=>0, we define

%/r(log D)= Ag, @ r(log D)

(1.0.2.2) K .
Qx/s(log D)= Aoy Qx/5(log D).

(1.0.3) In fact, Q3 7(log D) (resp. Q3s(log D)) is a subcomplex of j, Q7
(resp. j, 7,s), where j: U X denotes the inclusion. To fix ideas, let us
explicate these sheaves in terms of local coordinates, We may cover S by



Algebraic Solutions of Differential Equations 7

affine open sets %;, and cover X by affine open sets ¥; such that

each % =, is étale over A% (r depending on i)
via local coordinates sy, ..., S,

(1.03.1) each V=V, is étale over A%, (n depending on i)
via local coordinates x;, ..., X,

the branches of D which meet V; are defined by the equation
x,=0,v=1,...,a (« depending on i).

Then, over, V the sheaf Der,(X/T) is a free Oy-module with basis
0 0 0

— (v=1,... — (= , o hn), — (u=1,...,

(1032) %= =1 s@), 5o mot by o (=)

and Dery(X/S) is a free O,-module with basis

(1033)  x,

0 .
T (=La), 5 (=atl..,m).

J

Thus, over V, Q,r(log D) is free on O, with basis

d
(1.0.3.4) : w=1,.,0), dx; Gi=a+1,...,n), ds, (u=1,...,7)

v

while Qf s(log D) is free on Oy with basis

d
(1.0.3.5) xx“ w=1,...,0), dx; (j=a+1,...,n).

v

(1.0.3.6) Clearly the formation of Qs (log D) commutes with arbitrary
change of base S’ — S.

(1.03.7) Remark. (When S is of characteristic zero, the complex
Qy,s(log D) is quasi-isomorphic to j, Qgs- This is not the case in general,
because j, Qf,s has “too much” cohomology, while Qy s(log D) has only
«“ geometrically meaningful” cohomology, whence our “ preference” for

Q3 s(log D).)

1.1. The Kodaira-Spencer Class

From the definitions, it follows that we have an exact sequence of
locally free sheaves on X

(1.1.1) 0—>f*(Q%7) — 21 (log D) —> Qx;s(log D) -0
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which gives rise to an element

peExty, (4 s(log D), f*(Q%,1))

(1.1.2)
~H'(X, DerD(X/S)®@xf*(Q§/T))‘
This element is called the Kodaira-Spencer class of the situation 1.0. It’s
image in
HO(S, R! £, (Dery(X/8) ®oy f*(25,1)))
(1.1.3) ~H°(S,R'f, (Derp(X/S)) ®o, Q1)

~Homg(Der(S/T)), R' £, (Der, (X /S))

is the Kodaira-Spencer mapping (but still denoted p!), which may be
explicated as follows. Let D be a section of Der(S/T) over an affine open
set % = §. Then p(D) is an element of H'(f ~!(%), Dery(f ~'(«)/%)) which
may be given explicitly as follows. Let {V} be an affine open cover of
f~'(%). By the exactness of the dual of (1.1.1) over each V; (or, more
“directly”, by the explicit description (1.0.3) via local coordinates), we
may choose, for each i, a derivation D,e H° (Vi, Dery(X/T)) which extends
the given derivation De H*(%, Der(S/ T)). Because D; and D; extend the
same derivation D of %, the difference D, — D jliesin HO(V, "\ V;, Dery(X /S)).
Thus {D;— D} defines a 1-cocycle on the covering {V;} with coefficients
in Dery(f = ()/%), whose cohomology class is p(D). In particular,
p(D)=0if and only if there exists a derivation in H °(f =" (@), Derp(X/T))
which extends D.

1.2. The Koszul Filtration, Interior Product, and Cup Product

(1.2.0) This section is devoted to recording some compatibilities among
wellknown constructions from exterior algebra as they occur in homo-
logical algebra. For ease of later reference, we record a few more compat-
ibilities than necessary for our application in Section 3.

(1.2.1) Let X be an arbitrary scheme (for even a ringed topos, if that be
more to the taste of the reader), and let

(1.2.1.1) 09—, 7 t,7 50

be an exact sequence of locally free Ox-modules of finite rank. (In the
application, it will be the exact sequence (1.1.1).) The Koszul filtration
of the exterior algebra A3 #, which we will henceforth denote simply
A is defined by the ideals

(12.1.2) K'(A* #)=image of NG QA H# — A* X
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The associated graded module is given by

(1.2.1.3) gy (A H) = AGRQAN ' F.
Consider the exact sequence |

(1.2.1.4) 0—> grk — K°/K?* —grg =0

whose term of degree v is

(1.2.1.5) 09N ' F — KK (A H)— & F—0.

(1.2.1.6) For each integer v 1, we define in this way a functor A from
the category EXT (&, %) of extensions of & by ¥ to the category

EXTA FYGQA ' F)

of extensions of A" by 4® A'~' Z. Passing to the (groups of) isomor-
phism classes of objects of these categories, we obtain a morphism, still
denoted A°,

(12.1.7) A¥: Exth (F 9) - Exth (A’ 4 QA" F).

Because F is locally free, the sheaf Ext, (%, %) vanishes, and the
local = global spectral sequence of Ext furnishes us with an isomorphism

(1.2.1.8) Exty (%, %)~ H' (X, Hom, (%, 9)).
Similarly, the local freeness of A® % furnishes an isomorphism
(1.2.1.8bis) Exth (A" F 4 QA "' F)~H'(H, Homg, (A" F, 4RQN 1 F)).

Let us make explicit the two identifications (1.2.1.8) and (1.2.1.8 bis),
then use them to make explicit the morphism A* (1.2.1.7).

(12.19) Since Z is locally free of finite rank, the exactness of (1.2.1.1)
assures that there is an open covering V; of X and, over each V;, a mor-
phism ¢;: F|V,— #|V; which is a section of f: # — F (i.e. such that
Bo@;=idgy,). The difference ¢;—¢; defines a morphism from Z|V,nV;
to #|V;n V; whose image is in fact contained in Ker(B)|V;n V; (because
onV,nV, ﬁo((p,——q)j)=lio(pi—Bogoj-——id;—idy:O). Thus we may inter-
pret @;—¢; as defining a morphism from F|V.nV; to g\v.ny;
(5 Ker(B)|V.inV)), whence {@;—¢;} is a one-cocycle for the covering
{V;} with coefficients in Hom,, (% ). The cohomology class in
H'(X, Homy, (#,9)) of this cocycle is the element corresponding to
the extension class of (1.2.11) via the isomorphism 1.2

(1.2.1.10) Let us recall that there is another “standard” isomorphism

(1.2.1.10.1) Ext}, (%, 9)~H'(X, Hom(%, 9))
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which is the negative of the isomorphism (1.2.1.8) explicated in (1.2.1.9),
and which we will not use.

In the setting of (1.2.1.9), we may choose over each V; a morphism
Yi: H|V,— Ker ()| V; ¢-%|V; which is a section of a: G (i.e., such
that y; - a=idgy,,).

(1.2.1.10.2)  Infact, we may simply choose Y;sothataoy,;=id xv,:—PioP,
this being possible because, over ¥, idy—@;oB is a projection onto
ker(f). Then the difference y;, —y ; defines a morphism from |V, V;to
9|V, V; which vanishes on the image of «, thus defining by passage to
quotients a morphism from % |V, Vi to 9|V, V,, still denoted y;—y e
The cohomology class of {Vi—y;} in H'(X, Hom(%, %)) is the element
corresponding to the extension class of (1.2.1.1) via the isomorphism
(1.2.1.10.1). To see that this isomorphism is the negative of (1.2.1.9), it
suffices to recall that

(1.2.1.10.3) ' ao;=idy, — @0 f
whence
(1.2.1.10.4) ao(Wi—y)=—(0;—¢)-p

which gives the equality of the two cocycles {y;,— Y;} and {—(¢;—))}.

(1.2.1.11)  The “second” isomorphism (1.2.1.10) is the dual of the first
(1.2.1.8), in the sense that the diagram

Ext!(#,9) (2280 HY(X, Hom(Z, G))

\2 \4

Ext'(9, #)-42119, g!(X, Hom(&, %))

in which the left vertical map associates to the class of 0— %—> # —F —» ()
the class of the dual extension 0— % — #—Z—0 and in which the
right vertical arrow is deduced by passage to cohomology from the
canonical isomorphism of duality Hom (%, %)= Hom (4, %), is commuta-
tive. To see this let us remark simply that if {p:—@;} isa cocycle represent-
ing the class of 0»%— #— # -0 via (1.2.1.8), which is to say, via
splitting J#— %, then {¢;—¢;} is a cocycle arising from the class of
0% —# —F—0 by splitting & — 4 which is to say, via (1.2.1.10).
Keaping in mind that the isomorphisms (1.2.1.8) and (1.2.1.10) are the
negative of each other, we find:

(1.2.1.12) Proposition. Let £eH! (X, Hom(#,%)) be the class of the
extension 0—%— # — F — 0 via (1.2.1.8), and let Ee H (X, Hom(¥, 9';))
be the class of the dual extension 0— F — # —G—» 0, via (1.2.1.8). Then
via the canonical isomorphism Hom(%¥, %)~ Hom @ ), E=—¢.
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(1.2.2) Interior Product and Cup Product.

Let us now recall the morphism I of interior product for each integer
v=1.

(122.1)  I: Homy (%, %) — Homy (A" F, 4@ A"~ F).
In terms of local sections f;, ..., f, of & and ¢ of Hom(#, %),
(1222) 1@ (A Af)= Y (=1 @@ A= AfiA A S
j=1
(1.2.2.3) Proposition. The diagram
Ext'(Z, 9) -4 Ext'(A* Z, GRA 1 F)

H'(X, Hom(#, 9))—> H'(X, Hom(A* , 9 @ A*~* F))

in which the vertical isomorphisms are (1.2.1.8) and (1.2.1.8 bis), is com-
mutative.

Proof. Just as in (1.2.1.9), let us choose a covering V; of X and sections
@ F|Vi— H|V; of B: # — F. Abusing notation, we denote by 4* ¢; the
composition

(1223.1) A F|V,-20, g0 |V, 2 KO/K2(A H#)\V;

(ie, A @;"E™ A¥(p;) modulo K?). Clearly the A” ¢; give local sections of
A’ B: KO/K*(A* #)— A F, and hence 1-cocycle {A"¢;—A"¢;} with
coefficients in Homg, (A*F# Y ®A*~1' %) has as cohomology class in
H'(X, Homg, (A’ F 4@ A"~ F))~ Ext!(A*F, 4@ A"~ F) the class of

A (0% —H# —F —0). To conclude the proof, it remains only to
notice that

(1.2.232) A=A 9;=1(0;—@)).
To see this, we calculate, for local sections f;, ..., f, of #
(Avq)i_Av(Pj)(fl A Af)=Qi(f)A /\‘Pi(fv)“/’j(fl)/\ ’\(Pj(fv)
=((Pj(f1)+(‘Pi“(Pj)(f1))/\ A(¢j(fv)+((Pi_‘Pj)(fv))
—@;(f)A- /\‘Pj(fv)

- il(_l)a_l(‘Pi“(Pj)(f;)@flA /\/fa\/\ N A
+terms in K*(A* )
=I@i—@)(firn--Af). QED.
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(1.2.2.4) Let us reinterpret the interior product mapping [ as a pairing
(1.2.24.1) I: Hom, (£ 9) QA" F->GRQN" ' F.

From this pairing we deduce a cup-product pairing for all p,q=0
(1.2.2.4.2) HP(X,Hom(Z,9)Q@HY(X, A" F)— HP (X, Y)RQA "1 F).

(12.24.3) Taking p=1, consider the element &eH! (X, Hom(#, %))
which corresponds via (1.2.1.8) to the class of the extension (1.2.1.2),

(1.2.2.4.4) 09> H>F 0.
(1.2.2.4.5) Proposition. The mapping “cup-product with &”
$HUX, A F)->HN (X, 9Q A F)

deduced from (1.2.2.4.2) is equal to the coboundary in the long exact
cohomology sequence arising from the short exact sequence (1.2.1.5)
(1.2246) 094 'F— K°/K*(A* H#)— A" F —0.

Proof. Indeed by definition this map is none other than the cup-
product with the image of e H' (X, Hom(# ; %)) under

I: H'(X, Hom(#, %)) — H'(X, Hom(A* #,4 ® A"~ F)).

According to (1.2.2.3), the image I(¢) is none other than the class of the
extension (1.2.2.4.6) (via the isomorphism (1.2.1.8 bis)).

(1.2.24.7) But it is a general fact that the coboundary mapping
Hi(X, C)— H%*1(X, A) associated to any short exact sequence 0— A4 —»
B— C — 0 of Oy-modules is none other than the cup-product with the
element of Extg, (C, A) (this last operation has a sense, thanks to the
isomorphism of functors H*(X, —)>Ext} (0, —)). Q.E.D.

1.3. Application to Hodge Cohomology

(1.3.1) Proposition. In the geometric situation of 1.0, consider the short
exact sequence (1.1.1)

(13.1.1 0— f*(257) —» Q,r(log D) — QX s(log D)— 0
which gives rise, via the A” construction (1.2.1.6), to a short exact Sequence

0— f*(Qs7)® Q% 5' (log D) — K°/K* (2%, (log D))

(1.3.1.2)
— Q% <(log D)—0.
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The coboundary mapping associated to (1.3.1.2)

(13.1.3) 0: H(X, Q%s(log D)) — HI* (X, f*(Q%,1)® Q%5  (log D))

is the cup-product with the Kodaira-Spencer class (1.1.2)

peExth (Q4s(log D), f*(2%7))
:HI(X, Hom(Q}/s(IOg D),f*(Qé/T))'zHl(X,f*(Qé/T)(@ DerD(X/S))'

Proof. This is just (1.2.2.4.5) applied to the exact sequence (1.3.1.1),
in which case the element & of (1.2.2.4.5) is the Kodaira-Spencer class.

Localizing on S, we have

(1.32) Corollary. Hypotheses as in (1.3.1), the coboundary mapping
0: R%f,(Q%s(log D)) —> R**" £, (f*(Qr) @ Qs (log D))
(1.3.2.1) |
Q4 @R £, (Q%s' (log D))

associated to (1.3.1.1) is given by cup-product with the Kodaira-Spencer
mapping (1.1.3), viewed as an element

peHom,, (Der(S/T)), R' f(Derp(X /9))

(13.22) z

H(S, Q%,r) @R f, (Derp(X/S)).

1.4. Application to the Gauss-Manin Connection
(1.4.0) The construction of the Gauss-Manin connection on

Hpr(X/S (log D)) =R f,(Qxs(log D))

is based on the fact that the Koszul filtration of Q%,r(log D) arising from
the exact sequence (1.1.1)

(140.0) 0 f*(@k) > QYyr(log D)— Ps(log D)0

is a filtration by subcomplexes, and that the associated graded complexes
are given by

(14.0.2) gri (2,1 (log D))=~ f* Q7 ® s’ (log D).
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In fact, it is defined ([35]) as the coboundary map F in the long exact
sequence of the R’ f, and the short exact sequence

0—f*(257)®Q%;s' (log D) — K°/K?(2%,7(log D))
— Q% s(log D)— 0.
This “makes sense”, because the coboundary is a mapping
V: R, (Qs(log D) — R £, (f*(Qh,1)® 235! (log D))
(1.4.0.4) Z

(1.4.0.3)

Qé/T ® qu* (Q;(/S (log D)) .
(The final isomorphism thanks to the local freeness of Q5.

(14.1)  The Hodge Filtration. Let us recall that for any complex L*, the
Hodge filtration of L is the filtration by the subcomplexes F'(L*), where
by definition

(14.1.1) F"(Lf)={° if j=i

U oif j=i.

(14.1.2) Let usdenote by L*[n] the complex L* *" whose term of degree i
is !*" whence

(14.1.3) Fi(L* [n])=(F"*"(L))[n].
Applying F' to the exact sequence (1.4.0.3), we obtain the exact sequence

0= (f* Q5@ F'~*(Qy,s(log D)) [—1]

(1.4.1.4) , ; ,
— F(K°/K?(Q%,7(log D)) F(24,s(log D)) 0.

Thus the coboundary maps for the R’ /% and the exact sequence (1.4.0.3)
and (1.4.1.4) “fit together” to form a commutative diagram

R*f, (2% s(log D)) —> Q4+ ® RS, (24, s(log D))
(14.1.5)
RS, (F'(Q%s(log D)) — Q4 ® RS, (F'~1(Qy,s(log D))).

Thus we find:

(1.4.1.6) Proposition (Griffith’s Transversality Theorem). The Gauss-
Manin connection respects the Hodge filtration up to a shift of one, i.e.

(1416.1)  P(F'R?f,(235(log D)) =2} r ® (R%f, (235 (log D))).
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As a corollary of (1.3.2) and the definition of the Gauss-Manin con-
nection, we have

(14.1.7) Proposition. Suppose that the Hodge = De Rham spectral
sequence

(14.1.7.1)  EP9=R1f,(Q4s(log D)) = R?*1f, (Q%s(log D))

is degenerate at E,, i.e., that grfRP*f, (Qxs(log D))= R*f, (2%;s). Then
the associated graded mapping induced by the Gauss-Manin connection
is the cup-product with the Kodaira-Spencer mapping (1.3.2.2)

peHO(S, Q4+ ®R' f, (Derp(X/S)));

i.e., the diagram

gre R?+4 £, (Qy s(log D)) —7— Q% r @ grp~ ' R?*4 £, (Q5,5(log D))
(14.1.7.2) Z Z

R4, (2% s(log D)) —* »Q;,T®R““L(Q§‘l(logD))

commutes.

(1.4.1.8) Remark. In case X/S is proper, it follows from Deligne’s mixed
Hodge theory [8] and a slight modification of his argument ([6], Theo-
rem 5.5) that

(1.4.1.8.1) IfS is any scheme of characteristic zero, the spectral sequence
(1.4.1.7.1) is degenerate at E,, all of its terms E{"?, E%;? are locally free,
and its formation commutes with arbitrary change of base §' — S.

(14.1.82) If S is any reduced and irreducible scheme whose generic
point is of characteristic zero, there exists a non-void Zariski open set
% in S over which the assertions of (1.4.1.8.1) are valid. We conclude this
section by stating explicitly a very useful corollary of (1.4.1.7).

(1.4.19) Corollary. Hypotheses as in (1.4.1.7), fix an integer n=0, and
suppose that M SR, (Q%,s(log D)) is an Os-submodule stable under the
Gauss-Manin connection, i.e., that

(1.4.19.1) V(M)c Q@M.

( We then say that M is horizontal.)
Let us define the induced Hodge filtration of M, F {(M), by

(14.19.2) Fi(M)=M n F' R"f, (Q4,5(log D)).
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Then grB (M) = F?(M)/F?* (M) > gr RP*4, (2} s (log D))

(14.19.3) |
RYf, (2% s(log D).

Because M is horizontal, it follows from (1.4.1.7) that we have a commutative
diagram

R/, (235 (log D)) —* *Qé/r®l}"j;(9}/s(log D))

J
FP(M)—"— Q5r @ F~ (M)

(1.4.1.9.4)

h I
gr,’,fr(M) £ >Q§/T®gr}§‘l(M)

!

R, (2% s(log D)) —2~ »Qé/T®Rq“fk(Q,’}/§1(logD))

We deduce from it that the Hodge filtration F ‘(M) of M is horizontal (i.e.,
each F{(M) is horizontal) if and only if the restriction to ®, gri (M) of the
mapping “ cup-product with the Kodaira-Spencer class”

(14.1.9.5) p: @ grf(M)— @ QL ®@gre (M)
14 p
vanishes.

(1.4.1.10) Remark. In practice, the M in (1.4.1.9) will be either all of
R, (2/s(log D)), or the primitive part of R" S+ (€%5) in case D is void
and X/S is projective and smooth, or the part of R f¢(235(log D)) which
transforms according to a prechosen irreducible representation of a
finite group (of order prime to all residue characteristics of S) which acts
as a group of S-automorphisms of X and preserves D. This last case will
arise when we discuss Schwartz’s list (cf. 6.0).

2. The Cartier Operation and the Conjugate Spectral Sequence

2.0. Throughout this section, we will consider the situation of 1.0, with
the additional assumption that S is a scheme of characteristic p (a prime
number), i.e. that p- 15=0 in 0.

(20.1) Recall that for any S-scheme n: Y— S, the S-scheme Y@ is by
definition the fibre product of n: Y— S and the absolute Frobenius



Algebraic Solutions of Differential Equations 17

morphism E,,: S— S (so on the ring level, Fy, is just “raising to the
p-th power ). Thus by construction Y sits in a cartesian diagram

y® _°= n* (Fabs) Y

(2.0.1.1) ln“’):ms(n) ln

S—Fm S

The pair of morphisms
Fps: Y2 ¥

n:Y—>S

defines a morphism F: Y— Y'P), the relative Frobenius, which fits into a
commutative diagram

Yy—E ,y®w_ <o, F_,y®

Y
n Xw”’) ln n(p)
S

S Fabs

in which F-¢ is Epy,: Y? - Y® and ¢ F is Fy: Y— Y. Intuitively, F
raises the “vertical coordinates” to the p-th power, and ¢ raises the
“S coordinates” to the p-th power.

(2.0.2) Consider now the special case Y=X is a smooth S-scheme, say
of relative dimension n. Then:

(20.2.1) F,(0y) is a locally free Uy module of rank p"; indeed if
Xy, ..., X, are local coordinates on an open set V<X (i.e, an étale
morphism V— AY), then a base of F, (0y) as Oy module is given by the
p" monomials x}... x;" having 0Sw;<p—1.

(202.2) F~'(Oxw) is precisely the subsheaf of Oy which is killed by all
of Der(X/S).

(20.2.3) F,(Qys(logD)) is an Oy -linear complex of locally free
coherent sheaves on X,

2.1. The Cartier Operation

The fundamental fact about De Rham cohomology in characteristic p
is the following theorem of Cartier whose statement we recall (cf. [31,
chpt. 2, and [24], 7.2).
(2.1.1) Theorem. There is a unique isomorphism of Ox modules for each
integer i20

2 Inventiones math., Vol. 18
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@LLY) &7 Qi s(log D?) — #(F, (24 s(log D))

which satisfies

(2.1.1.2) € (1)=1,
(2.1.1.3) C Hort)=F"Y(w)AC (1),
(2.1.1.9 %~ '(d(0~"(x)))=the class of x?~! dx.

(2.1.2)  Putting together all the conditions, we see that, in terms of the
local coordinates x,, ..., x, chosen in (1.0.3.1), we have

%~ '(h)=the class of F~'(h) for h a local sections of Ox»
do~'(x,) dx,

@2.12.1) (g‘l(m)=theclassof . for v=1,....0

v

%~'(do~"(x;))=the class of x~tdx; for j=a+1,...,n.

2.2. General Nonsense

We must now give a tautology on functorial spectral sequences,
whose precise formulation is somewhat lengthy.

(22.1) Suppose given f: Y— Z an arbitrary morphism of schemes. For
every Z-scheme Z,, we form the fibre product Y, =Yx,Z,, which sits

in the cartesian diagram
YZ[ E— Y

Sz, Jf

Suppose we are give, for every Z-scheme Z,, a finitely filtered complex
(non-zero only in positive degrees). (Kz,, F) of f7,'(0,,) modules on Y,,
which is functorial in the variable Z-scheme Z, in the following sense:

(22.1.2) For any morphism ¢: Z,—Z, of Z-schemes, denote by
@y: Yz,— Yz, the induced morphism, which sits in the commutative
diagram

Py
YZ; YZ]

N

(2.2.1.3) Y Z,—2 7,

V4
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We are to be given a morphism K(¢) of filtered complexes of f7,'(0z,)-
modules on Yz,

2214) 97 (KzoF) ®  f5'(0)—2>(Kz,, F)

0y Sz, 0z)
which satisfies the natural transitivity condition for a composition of
morphisms of Z-schemes.

Consider now the spectral sequence of ¢z -modules
(215)  EF9Z)=Re*1fy, (@rh(Ky)) = R7V 4 fy,, (Kz),
on the Z-scheme Z,, whose EF'4 term we denote EJ**(Z ). From the given
functoriality of (Kz,, F) in Z,, we deduce, for every morphism ¢: Z,— Z,

of Z-schemes, morphisms of 0 -modules called “change of base mor-
phisms”,

(2.2.1.6) o* (EP*(Z)) - EP4(Z2)
which render commutative all diagrams
o* (E4(Z)) — > EF4(Z,)

(2217) @*(dP ‘1)] de- 9

(p*(EP+r.q+l—r(Zl)) K@) , Ee+r,q+1—-r(zz)'
These morphisms are compatible with the usual isomorphism of E, .,
with the cohomology of (E,, d,), in the sense that the diagram
o* (Ker d>4 in EP9(Z,)) ——2—— Ker d2**in EP*(Z))

(22 1 8) @*(canonical protection) canonical projection

@* (Ef-’l(ql (Z1)) — X9 ErA(Z,)
commutes.

Further, the induced mapping on E,, is the associated graded of the
change of base morphism deduced from (2.2.1.4):

(2.2.19) O* R? fz, (Kz)—2> R f7,,(K7,).

For each integer r, =1, we say that the formation of E,, commutes
with base change if for every Z-scheme ¢: Z,— Z, and all pairs (p, q) of
integers, the morphism (2.2.1.6)

(2.2.1.10) o*(EL9(Z,))— 2> ELY(Z,)

is an isomorphism. We say that the formation of the spectral sequence
from E,, on commutes with base change if for all r27,, the formation of
E, commutes with base change.

2‘
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(22.1.11) Tautology. Hypotheses as above, suppose that Sor an integer
ro21, the formation of E,, commutes with base change, and that the
spectral sequence over Z

(22.1.12) EP9(Z)=Rr"1f, (grB(K,) =RP*f, (K,)

is degenerate at E, . Then after any arbitrary change of base ¢: Z,— Z,
the spectral sequence

(22.1.13)  EPUZ,)=R**f, (erf(K,))=Rr*if, (K,)
is degenerate at E, . Furthermore its formation from E,, on commutes with
arbitrary change of base.

(22.2) Examples. Let’s return to the geometric situation 1.0, so that
our morphism f: Y— Z in (2.2.1) becomes the morphism f: X — S of 1.0.
We take for K the complex Q% s(log D)), and for an arbitrary S-scheme S,
we take Kg =Q5% s (log D'), the symbol ’ denoting fibre product with S’
over S. There are two filtrations in which we shall be interested. The
first is the Hodge filtration (1.4.1), (the “bestial” one in the terminology
of [8]). The second is the one, noted T<,and called “canonical” in [8],

which is defined by
K" if n<p

(2.2.2.1) T<,(K)=1Ker(d) if n=p
0 if n>p.
The spectral sequence defined by this filtration
(2222) <o EPI=RPTIf (grf. [K)=>RP*4f, (K)

is the décalage (cf. [8], 1.3.3) of the “second spectral sequence of hyper-
cohomology”

(2.22.3) uE% *=RPf, (#*(K)) =R *4f, (K),

which by definition means that we have isomorphisms, compatible with
the d, and with the standard isomorphism E, , , ~ H (E,,d,),

(2.2.2.4) esoEP I EILEP 0

for each integer r =1 (cf. [8]).

2.3. The Conjugate Spectral Sequence

(23.0) Recall that the entire “second spectral sequence” of hyper-
cohomology

(230.1) E§?=RPf, (#°(Q},s(log D)) = R7*9, (2} s (log D)
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is endowed with the Gauss-Manin connection (cf. [24], 3.5). For reasons
which will soon become apparent (cf.(2.3.3) below), we call this the
conjugate spectral sequence, and the corresponding filtration of
R"f, (Qy,s(log D)) the conjugate filtration, noted Fi,,. This filtration is
horizontal, and is every bit as interesting as the Hodge filtration.

(2.3.1) Let us explicate the E, term of the conjugate spectral sequence
with the aid of Cartier’s isomorphism (2.1.1).

(2.3.1.1) Lemma. The Cartier isomorphism & defines an isomorphism of
Og-modules for each pair a, b of non-negative integers

Q3.111) o Et=ReS,(#7(Qs(log D)) %, RefO(o*(Qys(log D).

Proof. From the commutativity of the diagram

con

X —E ,x»

(2.32.1.1.1) lf/

S
and the fact that F is a homeomorphism, we have isomorphisms
(23.112) conE4® =R f(#*(23s(log D))~ R® f{P (F,, #*(2%s(log D))
and
(23.1.13)  Fu#"(Qs(log D))~ #"(Fy(2%s(log D))
which combine to give an isomorphism
(2.3.1.1.4) onE& P> RO (7 (F, Qs log D))
Composing (2.3.1.1.4) with Cartier’s isomorphism
23115 #(F,(@ys(log D) —— Lyeys(log D)
and the inverse of the canonical isomorphism
(2.3.1.1.6) o* (2% s(log D)) —— Qo s(log D)
gives the asserted isomorphism 2.3.1.1.1.  Q.E.D.

(2.3.1.2) Corollary. Suppose that either the absolute F robenius Fp,: S— S
is flat (which is the case if S is a regular scheme) or that for all pairs a, b
of non-negative integers, the Hodge cohomology sheaves R* f, (2%s(log D))
are flat Os-modules ( for instance, if they are locally free Os-modules ).
Then via (2.2.1.1) and the inverse of the base-changing isomorphism, we
have an isomorphism.

(23.1.2.1) o ES 5> ROfP(0*(2%5(10g D)) — F, Rfy (@ s(log D)).
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Proof. The only point is that under either of the hypotheses, the
canonical morphism of base change

(23.122)  E3,R°f, (% s(log D)) — R® [ (o* (@45 (log D))
which comes from the cartesian diagram (2.0.1.1)
xXw_ 9o ,x

(23.1.2.3) s® Jf

S Fabs S
is an isomorphism.
(2.3.1.3) Remark. Under the isomorphism (2.3.1.2.1), the Gauss-Manin
connection deduced on F¥, R*f, (% s (log D)) annihilates the image under
E3, of R* £, (€2%5(log D)) (compare [24], 5.1.1).

(2.3.2) Proposition. In the geometric situation 1.0, suppose that X is proper
over S (and that S is a scheme of characteristic P, as it has been throughout
Section 2). Suppose further that

(23.2.1) Each of the Hodge cohomology sheaves R"f, (2%/s(log D)) is a
locally free sheaf of finite rank on S and (hence) that its formation com-
mutes with arbitrary change of base S'— S.

(232.2) The Hodge = De Rham spectral sequence
E{*=R"f,(2s(log D)) =R*** f, (@%,s(log D))

is degenerate at E, .

Then the conjugate spectral sequence, which, thanks to (2.3.1.2.1) and
the hypothesis (2.3.2.1), may be written

(232.3) conBy"=E}, R*f, (%% s(log D)) = R** f, (2%s(log D)),
is degenerate at E, .

Proof. By (2.3.1.4.1), it follows that the conjunction of the hypotheses
(2.3.2.1) and (2.3.2.2) remains true after an arbitrary change of base §'— S,
and implies that the formation of the Hodge = De Rham spectral
sequence commutes with arbitrary change of base S'— S. From (2.2.1.2)
it follows also that the formation of the conE%® commutes with arbitrary
change of base, while by general principles the formation of the entire
conjugate spectral sequence commutes with any flat base change S'— S.

(2.3.24) We may assume that S is affine, because the question is local
on §. We wish to reduce to the case in which S is noetherian. So suppose
S=Spec(4). Clearly there exists a subring A, A which is finitely
generated over Z, a proper and smooth Ap-scheme X,, and smooth



Algebraic Solutions of Differential Equations 23

(over A,) divisors D; o in X, which cross normally relative to So=
Spec(A,), such that the geometric situation (1.0) over S (for the purposes
of 2.3.2, the base scheme T figuring in (1.0) may be taken to be S itself)
comes from the analogous situation over S, by the change of base S— S,
(cf. EGA1V, 89.1, 8.10.5, and 7.7.9). We must show that after replacing
A, by a larger subring A;, A>A; > Ao, which is still finitely generated
over Z, the hypotheses (2.3.2.1.2), that the Hodge = De Rham spectral
sequence degenerate at E, and have E, locally free of finite rank, are
valid over A4,, which is a noetherian ring. (For then, once the theorem is
proved over A,, it remains true over 4 by (2.2.1.11).) In fact, it suffices to
find such an 4, over which (2.3.2.1) holds; then (2.3.2.2) follows. For if
we suppose that over 4, the E, terms noted E®®(A,), are locally free of
finite rank, the differential

(2.3.2.4.1) dy: E¥®(A)— E{T(4))

must vanish, because after extension of scalars to A > A, this differential
becomes zero, because of the commutative diagram (cf. (2.2.1.7))

E&b(A)® 4, A—2 > E{* 1P (A4)® 4,4
(23242) Il |

Efb(4)—"— E{*"(4)
But clearly if a homomorphism between locally free modules becomes
zero after extending scalars by an inclusion A; = A, the homomorphism
is zero. Thus d, =over 4,, and hence E,~E,, whence E; is locally free
of finite rank, and it formation commutes with all change of base.
Repeating the above argument, we get d,=0 over A;, and inductively
d,=0forall r21.

So now let’s prove that we can find an A, over which all the E,; terms
are locally free of finite rank. We'll prove this by descending induction
on the integer b of E#*. Because Ef*(4o)=H"(Xo, x,s,(108 D)) vanishes
unless a and b are in the interval [0, N], N being the relative dimension
of X,/A, it suffices to find, for each integer 0<a<N, an A, which
«works” for all the E¢? with fixed a. By the standard base-changing
theorems (cf. [34], pp. 46-55) we know that, for fixed a,

(2.3.2.4.3) if, for all b>b,, the module E%b(A,) is locally free of finite
rank on A,, then the formation of E%P commutes with arbitrary change
of base.

Since E%?(A,) vanishes for b> N, our descending induction will work
if we can show that, for (a, b) fixed:
(2.3.2.4.4) if the formation of E%? commutes with arbitrary change of
base, then the fact that E}*(4)= E&b(Ao)® 4,4 is a locally free A-module
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of finite rank implies that for a suitable subring 4, of 4, Agc A, c A,
which is finitely generated over Z, the A;-module Ef*(4,) is locally
free of finite rank, or what is the same, flat, since in any case it of finite
type over the noetherian ring A4, .

The truth of this last assertion is a particularly simple case of (EGA IV,
11.2.6.1), in the notation of which B,=A4,, My=E{"*(A,), and the A4,
are all the absolutely finitely generated subrings of 4 with Agc A, A.

(2.3.2.5) Having reduced to the case in which S is the spectrum of a
noetherian ring, we may further assume that S is the spectrum of a
noetherian local ring (again because the question is local on S). We may
next suppose S to be the spectrum of a complete noetherian local ring
(by faithful flatness of the completion), and finally that S is the spectrum
of an artinian local ring. Let us first explain this last reduction step.

Suppose S = Spec(4), 4 a complete noetherian local ring with maximal
ideal m, and suppose that for each integer n>0, the conjugate spectral
sequence over S,=Spec(A4/m"*!) is degenerate at E,. Let’s denote by
(conEr® (), d,(n)) the conjugate spectral over S, (including n= co, putting
S%=S5). Then as remarked above, we have

(2.3.2.6) conE5 *(00) lim ., E3 % (n),
whence "

(2.3.2.7) d,(0)= limd, (n)=0
suppose d, (00)=---=d,(00)=0. Then

(2328)  conEpY1(00) = conE3(00) = M oou B3 (m) = lim ,,, E:2, (n)
whence
(2.3.2.9) d, . (0)= lgn_ d,.(n)=0.

This shows inductively that (;,,E%®(c0), d,(0)) is degenerate at E,, and
completes the proof of validity of the reduction to the case in which § is
the spectrum of an artinian local ring.

(2.3.2.10) Suppose now that S =Spec(A) with A artin local, and denote
by Ing, (M) the length of an A-module M. Then a necessary and sufficient
condition that the conjugate spectral sequence degenerate at E, is that

(23211) Z lngA(conE;, b) = Z lngA (conEﬁ(,)b) .
a, b a,b
The second term in (2.3.2.11) is
23212)  3ingy(wnEs")=Y Ing, (RS, (@35(log D))
a, I
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while the first term is, by (2.3.1.2.1),
(23213) Z lngA (conEg‘ b) = Z lngA ( a*l;s Raf* (Q';r/s (log D))) .
a, b a,b

Now by hypothesis (2.3.2.1), each of the A-modules R fi(@s(log 9)) is
free of finite rank, and hence each of the A-modules Fif, R® f, (QY%s(log D))
is free of the same finite rank. In particular, we have, for each a, b

(232.14) Ing,(EL, R?f,(@%s(log D)) =Ing(R* (%5 (log D).

Putting together (2.3.2.12-14), the criterion (2.3.2.11) for degeneration
at E, may be written

(2.3.2.15) Zb Ing 4 (R® £, (2%, (log D))= Y Ing,(R" £, (%5 (log D))).

This last equality holds, in virtue of the hypothesis (2.3.2.2) that the Hodge
= De Rham spectral sequence is degenerate at E;. This concludes the
proof of degeneration. Q.E.D.

(2.3.2.16) Corollary. Under the hypotheses of proposition (2.3.2), the
formation of the conjugate spectral sequence (2.3.0.1) commutes with
arbitrary change of base §' — S.

Proof. By (2.3.2), the conjugate spectral sequence is degenerate at E,,
and by (2.3.1.2) the formation of its E, term commutes with arbitrary
change of S’ — S. The result follows by (2.2.1.11).

(2.3.3) We are now in a position to explain the terminology “conjugate”
spectral sequence. With the assumptions of proposition (2.3.2), suppose
further that S is the spectrum of a field K of characteristic p, and that the
divisor D is void. The Hodge = De Rham spectral sequence

(233.0) Exrb=HP (X, Q) = HO (X, Q3 0)
being degenerate at E,;, we have
(2332) gt (H (X, Q30) ~H"* (X, Q-

The degeneracy at E, of the conjugate spectral sequence
(2.3.3.3) Ey"=Ef H(X, Q) = (X, Q3 1)

which we prefer to rewrite as

con

(2.3.3.4) conEEP = HA (X, Qb ) = H* (X, Q)
gives an isomorphism
(233.5) ert H(X, Q) = HY(XP, %idyx)-

Putting together (2.3.3.5) and (2.3.3.3) (for X (7)) we find an isomorphism
(2.3.3.6) grr H'(X, Q=g “H" (XP, Qxovx)-



26 N.M. Katz:

In order to explain the transcendental analogue of (2.3.3.6), let Y be
a a proper and smooth C-scheme, and denote by Y*" the “ underlying”
complex manifold. By GAGA ([39, 36]) and Poincaré’s lemma ([14]),
we have isomorphisms

(2.3.3.7) H'(Y,25,0) —> H'(Y*, Q3¢) «*— H"(Y*",C) «>— H"(Y*" Z)® C

by means of which any automorphism of the field C operates on H"(Y, Q3 ()
(by transporting by (2.2.3.6) its action on H"(Y*" Z)® C through the
second factor). In particular, the automorphism “complex conjugation”,
denoted

(2.33.8) E,:C—C,

operates on H"(Y, Qy,c), furnishing a canonical (albeit transcendental)
isomorphism

(2339)  ERH(Y, 05,0 ~H'(Y, 25,0).

The complex conjugate of the Hodge filtration, noted conF’, is by definition
the image under (2.3.3.8) of the filtration EX(F) of EX H"(Y, %0
According to Hodge theory ([42, 5]), we have, for i=1,...,n, a direct
sum decomposition

(233.10)  H'(Y,Q5,0=FH'(Y, Q50 @ Fit '~ H (Y, Q4 ¢)

con

or, what is the same, a bigraduation (Hodge decomposition)
(2.3.3.10 bis) H'(Y, Q},0)= @ (F'n F3 ) (H'(Y, 23,0))-
i=0

This bigraduation gives (transcendental) isomorphisms
(233.11) gt (H™(Y, Qo)) <> F"°NFS > g “(H'(Y, 250))
which we regard as the transcendental analogue of (2.3.3.6).

(23.4) We must however hasten to point out that the analogue over
a field K of characteristic p of the Hodge decomposition (2.3.3.10) pro-
vided by F and F,,, over C is generally false. Indeed, the extent to which
the filtrations F and F,,, fail to be transversal is an interesting arithmetic
invariant. In order to explain this point more fully, it is convenient to

first recall the Hass-Witt “operators” and their relation to the conjugate
spectral sequence.

(234.1) We return to the sheltering hypotheses of proposition (2.3.2).
Fixing an integer n>0, the degeneration of the conjugate spectral se-
quence at E, gives us an inclusion

€1

(23411) A R"f(0) — > ,,E3 "> R"S, (Q3s(log D))
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and the degeneration of the Hodge = De Rham spectral sequence gives
us a surjection

(23.4.1.2) R"f, (Q}s(log D)) -» R"f, (Ox)=E$".

Putting these together, we obtain the diagram which defines the Hasse-

Witt operations: o 0
conEg, g Rnf;k (Q}?/S (log D)) - El'"

(2.3.4.1.3) ﬂ
FX R £, (O) ¥ in R, (O)

The matrix of this operation in a local base of R" f, (Ox) is called the Hasse-
Witt matrix of X/S in dimension n.

The composite p-linear mapping
(23414)  R'£(0x) = EA R (00— R4 (0

is the one induced by the p-th power endomorphism of 0.
From the definition (2.2.4.1.3), it follows that we have:

(2.3.4.1.5) Proposition. Hypotheses as in (2.3.2), the kernel of the Hasse-
Witt operation

(2.3.4.1.6) H-W: EX,R"f,(Ox) = R" £,(O)
is none other than the intersection (F%, " F')(R" f, (Q/s(log D))).

(23.4.1.7) Corollary (Assumptions as in (2.3.2)). In order to have a direct
sum decomposition

(2.3.4.1.8) R"f, (Q%,s(log D)) «— F'®F:,
it is necessary and sufficient that the Hasse-Witt operation
(2.34.1.9) H-W: EX R"f,(Ox) = R" £, (Ox)

be an isomorphism.

Proof. Since the statements whose equivalence is asserted are both
of the form “a certain homomorphism of locally free S-modules of
finite rank is an isomorphism”, and because the formation of these
modules commutes with all changes of base §'— S, we are immediately
reduced to the case in which S is the spectrum of a field K.

The isomorphisms

€
(2.3.4.1.10) E%b = FX Eb°

con
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together with the respective degenerations (2.3.2.2-3) imply, for every
0<i=<n, the formula

(234.111)  dimg H"(X, Q3 « (log D)) =dim F'*! + dim, F"~'.

con

For the homomorphisms (2.3.4.1.8), source and target have the same
dimension, just as for (2.3.4.1.9), and both homomorphisms have the
same kernel, namely F*nF" . Q.E.D.

(2.34.2) We now discuss the sometimes defined “higher” Hasse-Witt
operations (which include the usual one as a special case), still supposing
the hypotheses of (2.3.2). As before, we fix an integer n=>0. For each
integer i, we denote by k(i) the composite mapping

Ein (R, (235 (log D))) — R" £, (2% s(log D))

(2.34.2.1) , 40
R" £, (23 s(log D))/F'+1

(2.3.4.2.2) Proposition. Hypotheses as in (2.3.2), and n=0 fixed as
above, suppose that for an integer i, the mapping h(i) (2.2.4.2.1) is an iso-
morphism. Then there is a unique mapping of locally free Og-modules, the
i+ 1-st Hasse-Witt operation

(23.4.2.3) H-W(i+1): E,R"~"'£,(Qi{ (log D)) — "=~ £, (@i (log D))

which renders commutative the following diagram:

H-W(i+1)

€1 ~
EL (R £ (K (log D)) — B3 =i~ 1bi+1 pi+in-izt ~R"7 £, (Qld (log D))

con

(23424)  Fro-U(Re f*(Q},S(lfg D)) -H+1), R (s (log D))/Fi+?

| J
Far (R, (23108 D))~ R'7, (3 s10g DY+
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(2.3.4.2.5) Furthermore, h(i+1)is anisomorphismif and onlyif H-W(i+1)
is an isomorphism.

Proof. Follows formally from the diagram.
(2.3.4.3) Corollary. Assumptions as in (2.3.2), the canonical map
(2.3.4.3.1) F' i@ F*t - R" £, (235 (log D))
is an isomorphism if and only if the map h(i) (2.3.4.2.1)
(2.343.2) h(i): Fni— R £, (Qys(log D))/Fi*!
is an isomorphism. If this is the case, then the canonical map
(2.343.3) E-i-1@ F'*2 > R"f, (Q,s(log D))

is an isomorphism if and only if the i+ 1’st Hasse-Witt operation (which
is defined, because h(i) is supposed an isomorphism)

(23434) H-W(i+1): &R £, (@i (log D)) > R"~'~' (@} (log D)
is an isomorphism.

Proof. The second equivalence follows from the first (applied to i+ 1),
in virtue of (2.3.4.2.5). Precisely as in the proof of (2.3.4.1.7), the proof of
the first equivalence is immediately reduced to the case in which S is the
spectrum of a field K. Thanks to (2.3.4.1.11), the homomorphism (2.3.4.3.1)
has source and target of the same dimension, as does (2.3.4.3.2), and both
homomorphisms have the same kernel, namely F'*' N F, "-i Q.E.D.

con

(2.3.4.4) Corollary. Assumptions as in (2.3.2), and n=0 fixed, suppose
that the map h(i) figuring in (2.3.4.2.4) is an isomorphism. Then:

(23.4.4.1) The Ogmodule F'*'nEn"'(R"f,(Qys(log D)) is locally
free, and its formation commutes with arbitrary change of base §'— S.

(2.3.4.4.2) The canonical mapping
Fin 'R, (Qxs(log D) — o ' @ FH n Fg '
is an isomorphism.

Proof. It suffices to prove (2.3.4.4.2), since by hypothesis Ffi; '~/ i
is locally free, and its formation commutes with arbitrary change of
base S'— S. The composite mapping, formed from the bottom half of

the diagram (2.3.4.2.4),
o= (R £, (25 (log D)) 1 R™ £, (55 (log D))/F'**

5y (R £, (s (log D)) 22— R" £, (5,5 (log D))/
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is a section of the inclusion F;¢<F"~i~1 whose kernel is none other
then F'*'nF" =1 This shows that the canonical mapping F'*ln

Fo '™ B! /Fastis an isomorphism, which proves (2.3.4.4.2).

(2.3.5) In this section we wish to explain the differential equations
satisfied by certain of the higher Hasse-Witt matrices introduced in
(2.3.4). These differential equations were first noticed by Igusa [22] in
the case of elliptic curves, then later explained quite generally by Manin

[28].
(2.3.5.1) We place ourselves under the hypotheses of (2.3.2), and assume

further that the divisor D is void, and that the geometric fibres of X/S are
connected, of dimension N. Under these hypotheses, we have

(235.1.1) R*Mf (235 >RV, (Q%s) is locally free of rank 1 and even
canonically isomorphic to the structural sheaf Os, via the trace morphism
(cf. [15] and [42])

(23.5.1.2) tr: R* £ (Q3,5)— O

which carries the Gauss-Manin connection on R2V J+(Q%/s) into the
standard connection on (g (the one given by exterior differentiation
d.‘ @S—’ Qé/'r).

The cup-product pairings
tr
(235.1.3) R"f,(Q%5) @R " f, (Q/5) — R2V £ (23,5)—~ O

are perfect dualities of coherent locally free S modules, for which the
filtrations F and F,,, are both self-dual in the sense that

(23.5.1.9) (Fi R"f, (Q,'(/s))l =FN+1-n RZN""f* (Q5%s)
(2.3.5.1.) (Foon R" £ (Q3s))* = FNF1-nR2N=n . (Q%s)-
The associated graded pairings
gir(R"f, (55) @ g ~(R2V =", (Q35) — grl¥ (R2V£,(Q%5))
(235.1.6) | |

. . . . tr
‘ R™ 14 Q) @ RV =" £, (Q5) — RV, (@) ) 5 0
an '

B (R [1(25 5) @ g " (R2V S, (Q35) — grl (R*V £, (Q3,5))

(235.1.7) | J |

F, : bs(tr)

Ea,l‘;s (Rn_ if*(g.ix’/s))®Fa=l';s(RN+i—nf*(Q¥/—:S’i ) — a’ll;s RNf*(Qz/S) — COS
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are the usual perfect pairings of Serre duality, and the lower row of
(2.3.5.1.7) is simply the inverse image by F,p. of the lower row of (2.3.5.1.6).

(2.3.5.2) Proposition. Hypotheses as in (2.3.5.1), fix integers n=0 and i.
The morphism

(235.2.1) h(i): Fiq'(R" £, (Q%s) — R fu (Qs)/F™

is an isomorphism if and only if the morphism

(2.3.52.2) h(N—i—1): EXH+H=n (RN " £, (Q35) = RV 7", (Q3s)/F™
is an isomorphism.

Proof. Just as in the proof of (2.3.4.1.7), we are immediately reduced
to the case in which S is the spectrum of a field K. By the autoduality of
the Hodge and conjugate filtrations (2.3.5.1.4-5), the dual of (2.3.5.2.1) is
the natural mapping

(2.3.5.2.3) FN_i(RZNf* (Q;(/s)) SRV, (Q;(/s)/Fé:’:Hi—"-

Thus (2.3.5.2.1) and (2.3.5.2.3) are isomorphisms or not together. But
(2.3.5.2.2) and (23.5.2.3) have the same kernel, (FN-iAFN+1=i=m).
(R2N-"f, (%)) Since the source and target of (2.3.5.2.2) have the same
dimension over K, and the same is true of (2.3.5.2.2), it follows that
(2.3.5.2.2) and (2.3.5.2.3) are isomorphisms or not together. Q.E.D.

(2.3.5.2.4) Corollary. Hypotheses as in (2.3.5.1), suppose in addition that
the relative dimension of X/S is 2. If the Hasse-Witt operation

(23.5.2.5) H-W: E}, R*f,(0x)— R* f,(0x)

is an isomorphism, then the higher Hasse-Witt operation
(2.3.5.2.6) H-W(1): EX(R' f,(Q%s)— R fo(Qxs)
is an isomorphism.

Proof. (2.3.5.2) and (2.3.4.2.5).

(23.6) We are now ready to discuss the differential equations promised
in (2.3.5). We recall our situation: T, a scheme of characteristic p, S a
smooth T-scheme, f: X — S a proper and smooth morphism of relative
dimension N with geometrically connected fibres, whose Hodge co-
homology is locally free, and whose Hodge =>De Rham spectral sequence
is degenerate at E,. Fix an integer n20, and denote by a the smallest
integer such that R"~°f, (Q%/s) is not zero. (We also assume n so chosen
that R"f, (Qj/s) is not zero, so that such an a exists.) The a’th Hasse-Witt
operation

(23.6.1) H-W(a): Ex(R"*f(2s)— R f(Qxs)
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is defined (because, in dimension n, all the “lower” ones H-W(i), i<a,
have source and target the zero module, hence are isomorphisms). In
fact, it is none other than the composite (analogous to (2.3.4.1.3)

conE2 " SR [, Q%) —> Ef"°

(2.3.62) 2( '

ER (R £, (@) - - HME o Rr=af, ().

(2.3.6.3) Proposition (Igusa, Manin). Assumptions as in (2.3.6), suppose S
affine and so small that all the Hodge cohomology sheaves are free (g-
modules. Let w,, ..., w, be a base of R"~*° J+(€2%s), and denote by (a; ;) the
matrix in M,(I'(S, Os)) of H-W (a) with respect to this base:

(23.6.4) : H-W(a)(E () ZZ aj; ;.
(2.3.6.5) Consider the dual basis w},...,w} of RN+a—n [ (Q%5%. By
duality and the definition of the integer a, it is also the least integer with

RV*a=n f (Q¥5%) non-zero, so that the degeneration of the Hodge=> De
Rham spectral sequence gives an inclusion

(2.3.6.6) RY*e=n f (Y5 RN 1 (Q35).

(23.6.7) Let 92,,...,9, be T-linear differential operators on S which are
in the algebra generated by Der(S/T), which operate on the De Rham
cohomology sheaves R' f,, (2x,s) via the Gauss-Manin connection V. Suppose
that of, ..., w¥, considered as sections of R2N-n T4 (Q%5), satisfy the
differential equation

(23.6.8) 2V (@)@hH=0 in R¥"f, (Q3,q).

Then each column of the matrix (a; j) satisfies the differential equation
(2.3.6.9) Y. P(a;)=0, for i=1,...,¢.
j
Proof. The proof is based on the fact that the composite p-linear
mapping
(23.69bis) R, (2%5) —=2 F3, (R"~*f, (%5) —M, Rn=a 1 (0

may be factored through the subsheaf R” 1 (Q%s)” of horizontal sections
(cf. (2.3.1.3)), as expressed in the commutative diagram
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H-W(a)

con

Ey 4t —— R, (Q)5) —> 5”‘”f*(9§/s)

s

P

s
//
F2(R"™°f,(Q%5) R"f,(Q xis)
A ///'
Fsbs //
/ a
/

7/
R™f,(Q5)”

Let (, ) denote the cup-product pairing (2.3.5.1.3) of De Rham coho-
mology. We have, for each i,

(2.3.6.10) 0=(a(@), . V(2)(@})

and, because a(w;) is horizontal, we have

(2.3.6.11) 0=3 2;((x(@), ).

Because each w¥ has Hodge filtration 2N —a, the cup-product
(¢(w), w¥) depends only on the class of a(w) modulo F**'R"f, (Q%/s),
by (2.3.5.1.4), which is to say on pr. a(w;)=H-W(a) (F%s (wy). Furthermore
denoting by ¢, the cup-product pairing (2.3.6.1.6) of Hodge cohomology,

we have . . ) )
(2-36.12) (a(wi)a wJ )— <pl’. (x(wi), COJ > = <H-W(a)(ﬂbs (wi)), (01 >
= <Z Axi Wy wT> =aj;. Q.E.D.
k

(2.3.7) A Numerical Example-Certain Hypersurfaces of Geometric
Genus One

(23.7.0) Recall that for any base scheme S, and any hypersurface X in
P2 +! which is smooth over S, the Hodge cohomology sheaves. R*f, (%/s)
(f: X — S the structural morphism) are locally free Os-modules of finite
rank (whose formation consequently commutes with all change of base)
and the Hodge = De Rham spectral sequence degenerates at E, (cf. [5a]).
In terms of a system of homogeneous coordinates Xj,...,X,,, on
P2*!, we can write an equation for X (i.e., an isomorphism between
0Op(— d), d being the degree of X, and the ideal I(X) defining X in Py,

3 Inventiones math., Vol. 18
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at least locally on S. Localizing on S, we may and will assume that X is
defined by a homogeneous form of degree d,

H=H(X;,...,X,,,)el'(S, O [ Xy, ..., X, ,,].
The corresponding short exact sequence on P?%" |
(2.3.7.1) 0—Op(—d)— OGp— 04— 0

gives an isomorphism of cohomology sheaves on S (n: P§*' — S denoting
the projection) via coboundary:

(23.7.2) R, (Ox) — R"™*' 1, (0p(— d).

Using the standard covering of projective space, the (s-module
R**' 7t (Op(—d)) is easily computed: it’s the free Os-module

(2.3.7.3) “forms” of degree —d in the Os-span of those monomials
Os[Xyse X2 X7 %o, X750/ XYW =XP1... XPr52 for which
Y. W;=—d but W,;>0 for some i

which admits as base the monomials
(23.74) mW)=x"=xM"... XVrs2, Z W,=—-d, W.<0 foralli.

We denote by the same symbols m(W) the corresponding basis of
R"f,(Oy) via the inverse of the isomorphism (2.3.7.2).

The “residue” exact sequence in highest degree
0— Q5" > O (log X)— Qs> 0
(2.3.7.5)
L REeIX)!
gives us an isomorphism, the “ Poincaré residue”

(2.3.7.6) T (5 @I(X) ™)~ £, ().

In terms of the local coordinates x;=X i/Xn+2, the global section of
Qpjs' (n+2) given by

d
2.3.7.7) Xy Xyyy 25 e p Bnrs.

1 Xn+1

defines an isomorphism

(2.3.7.8) Op —> Q5 (n+2)
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from which it follows that =, (/5! ®I(X)™") is a free Os-module, with
basis the differentials
XY dx, dXp, 44

(2.3.7.9) H x /\-~-/\—x—n:1—, Y Wi=d, W>0 foralli.

The image of these differentials under the residue isomorphism (2.3.7.6)
are the differentials on X:

w
d
oW B B S W,
Xpo1 oo " W;>0 for all i
a‘X'|+1
(2.3.7.10) Wt Wit
___xll Xy A A d Xy,
oh '
axn+1

The bases m(W) of R"f,(0y) (2.3.7.4) and o(W) of £, (©2%,s) are dual to
each other under Serre Duality:

1 if V=W
(2.3.7.11) <m(—W),w(V)>—{0 it vew.
(23.7.12) Suppose once again that S is of characteristic p. Then from
the commutative diagram of sheaves on P§*!

0—*(%(—(1)—-"—-*(9?-——-—*@,(—*0

(23713) 1 HP =1 Faps l Fabs 1 Fabs

0— Op(—d)—E—> Gp—— 0x—0

it follows that the p-linear endomorphism of R"f, (Ox) induced by the
p-th power mapping Ox — Ox corresponds via the coboundary iso-
morphism (2.3.7.2) to the p-linear endomorphism of R* 7, (Op(—d)
induced by the composite Op(—d)—="E5 Op(— pd) =5 Op(—d).
This permits the calculation of the Hasse-Witt matrix of a hypersurface:
(2.3.7.14)  Algorithm. Assumptions as in (2.3.7.0) and (2.3.7.12), the Hasse-
Witt matrix in dimension n of a smooth hypersurface X cP2*! defined by
an equation H=H (X4, ..., X,,2)€ (S, Os)[X;, w.os Xp4+2] may be com-
puted with respect to the basis {m(—W)|Y, W;=d, W;>0 forall i} of
R"f, (Oy) as follows:

Raise H to p— 1-st power, and write it explicitly as a sum of monomials

(2.3.7.15) HP =Y A, XV.

3%
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Then the Hass-Witt matrix is given by
(2.3.7.16) H-W (B} (m(= W)=Y, A,p_y m(—=V).

(2.3.7.17)  Special Case. Hypotheses as in (2.3.7.14), suppose that X has
degree d=n+2. Then R"f,(0y) is free of rank one on S, with base
m(—1, —1,..., —1) and the Hasse-Witt matrix of X /S in dimension n
(or the Hasse invariant, as we shall call it in this case) with respect to the
basis m(—1, —1,..., —1) is given by the coefficient of (Xp.o. Xyt
in HP—1,

We now apply this to a particularly beautiful family of hypersurfaces.

(2.3.7.18) Corollary. Let d=2 be relatively prime to p, and put S=
Spec(E,[A1[1/1—=A%). Consider the smooth (over S) hypersurface X in

P& of equation
d

(2.3.7.19) 4 Y Xi—diX,.. X,

i=1
It’s Hasse invariant is given by the truncated hypergeometric series
U waesa...a-1ya
(2.3.7.20) @ity = ° o

Py alal...a!

where for a0, we put (a)y=1, @p=a(a+1)...(a+n—1) if n=1. This
may be expressed interms of the “ full” hypergeometric series in Z A1)
by means of Dwork’s congruence (cf. [8a], pp. 36-37)

7]

(237.21) @yt Y (1/d)a(2/d),...(d—1/d),

A *“=G(A)/G(AP)modulo (p)

o alal...a!
where G(A)=(dJ)y! F (1/ 4.2/d,...,d=1/d ,1—") is the element of Z,[[A~']]
given by 1.1

) waon (—Vd\ (=2/d\  (—(@d—1ydy
(23722) G(l)=1 IS “( ) )( : )( ) ),1 a

Proof. By direct calculation, one finds that (2.3.7.20) is the coefficient
of [TX;)P~" in ¥ X?—di[] X,. To apply the congruences of Dwork,

we need only observe that in the sum (2.3.7.20), we could have let a run
from 0 all the way to p—1 (which is the usual first truncation point for
hypergeometric-type series), because, for a<p—1 but ad> p, we have

(23.7.23) (1/d),,(2/d),,...(d—I/d)a=—‘%50 modulo p. Q.ED.
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(2.3.8) The example, continued. According to (2.3.6), the Hasse invariant
of the hypersurface (2.3.7.19) is to satisfy every differential equation
satisfied by the differential w=w(L,...,1) (in the notation (2.3.7.10))
considered as a section of RY~2 £, (2%,s). By Dwork’s congruence (2.3.7.21),
this is equivalent to the formal series G(J) (2.3.7.21) satisfying every
such differential equation. Because the formal series G(4) is universal,
i.e, independent of p, and the formation of the Hodge and De Rham
cohomologies of a smooth hypersurface commutes with arbitrary change
of base, it follows that we have:

(2.3.8.1) Corollary. Consider the hypersurface smooth over the spectrum
S of Z[A][1/d(1—A%] given by the equation (2.3.7.19). For every dif-
ferential equation

d i
(2.38.2) S a,(A) V (H) (@)=0 in RI-24(Q%s)
satisfied by o=o(1, ..., 1) in f (s, a;,(AeZ[A1[1/d(1— %], we have
d \ 1
2383)  Ya) (717) (G)=0 inZ [7] (A1,

where G(J)eZ [711] [[4~1]] is the series
(D= 1/d)a ,_oa

al...a!

(2.3.84) GH=dn'Y,

(2.3.8.5) Remark. In fact, “the” differential equation satisfied by w is
d d—1 d d—1

(23.8.6) v (EI) @)=V (,1 —ﬂ) (o)

as may be deduced from [23a] and an immediate calculation shows that
indeed

(238.7) (%)d—l (G()= (,1 %)‘H (AG(4).

(23.9) We refer to forthcoming works of B.Mazur for the congruence
relations between the higher Hasse-Witt matrices and the zeta function,
which generalize the “ordinary” congruence formula [25].

24. The Question of Quasicoherence of the Conjugate Spectral Sequence

(24.0) We return now to the geometric situation of 1.0, and, to fix
ideas, we suppose that S is affine. The conjugate spectral sequence

(240.1)  E%b=R°f, (#"(Qxs(log D)) = R**? £, (Qy,s(log D))
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is by definition the “second spectral sequence of hypercohomology”
(cf. (2.2.2.2)). In general, we do not know whether or not either the E,
terms or the E, terms of this spectral sequence are quasi-coherent
Os-modules (though of course the R" 1, (2% s(log D)) are quasicoherent).

(24.0.2) Consider a covering {¥;} of X by affine open sets. From it we
construct a Cech bicomplex of quasicoherent Os-modules

C**=C**({V;}, % 5(log D));
C*0=C*({V}, @ s(log D) =11 (f10,), (2% s(log D) 5,)

Ga

(2.4.0.3)

where o, runs over the a-simplices ¥, N --- N V;, of the nerve of the cover-
ing. The homology sheaves of the associated simple complex are the
R"f, (235 (log D)), just because f is quasi-compact and separated, the
various Q% ¢ (log D)are quasi-coherent Ox-modules, and thedin Qg ,s(log D)
is f ~!(Os)-linear (cf. [12], I1I).

(24.04) The “first” spectral sequence of this bicomplex, the one as-
sociated to the “Hodge” filtration

(24.0.5) FiC*= Y C*({V}, % s(log D)),

bzj

gives the usual Hodge = De Rham spectral sequence:
(2.4.0.6) E{*=R"f, (24 s(log D)).

The second spectral sequence of this bicomplex, the one associated to the
“conjugate” filtration

(24.0.7) FiCe=Yy C*({V3}, @3 s(log D))
azk
gives rise to a spectral sequence

T
(24.0.8) E3*=H({V}, #;}eshear (245 (log D))) = R+, (2%s(log D))

of quasi-coherent (x-modules (~ denoting the quasi-coherent sheaf
associated toa I'(S, 0Os)-module), which maps canonically to the conjugate
spectral sequence (2.4.0.1),

(24.09) E3®*=Ref, (o (235 (log D)) = R*** £, (Q3,s(log D)).

Of course, for each affine open covering of X, the spectral sequence
(24.0.8) is a spectral sequence of quasi-coherent (Os-modules, but the
canonical mapping from (2.4.0.9) need not be an isomorphism, even if we
replace (2.4.0.8) by its direct limit over all affine open coverings of X.
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(2.4.1) In the special case when S is a schema of characteristic p, the
conjugate spectral sequence (2.4.0.1) is the second spectral sequence of
hypercohomology for the O (-linear complex F, (Qs(log D)) on X,
and the functors R"f?. Because fP: XP—S§ is quasi-compact and
separated, the various Fy (€% 5(log D)) are quasi-coherent Oy-modules,
and F,(d) is Oy -linear, the second spectral sequence (2.4.0.8) of the
Cech bicomplex does map isomorphically to the conjugate spectral
sequence (2.4.0.9), which is a spectral sequence of quasi-coherent Us-
modules.

The simple interpretation of the conjugate spectral sequence in
characteristic p as the second spectral sequence of the Cech bicomplex
(2.4.0.3) makes possible effective calculations, as we shall see. On the
contrary, the conjugate spectral sequence over C remains in shadow.

3. The Main Technical Result on the p-Curvature
of the Gauss-Manin Connection

30. We return to the geometric situation 1.0, and assume as before that
S, and hence T, is a scheme of characteristic p. Recall that for any 0s-
module with integrable T-connection, (M, V), its p-curvature ¥ is the
p-linear homomorphism of Og-modules (cf. [24], 5.2)

(3.0.1) y: Der(S/T)— Endo (M)
defined by
(3.0.2) ¥ (D)= (V (D))" = V(D").

Equivalently, we may view y as defining by transposition a homomor-
phism of ¢s-modules, also noted V¥,

(3.03) y: M— E3, (@) ®M

(where F,,, denotes the absolute Frobenius endomorphism of S).

The significance of p-curvature (due to Cartier; cf. [24], 5.1) is the
following: (M, V) has p-curvature zero if and only if M is spanned over
05 by the subsheaf M" of horizontal sections; more precisely, denoting
by S the fibre product of g: S— T and the absolute Frobenius Fp:
T— T, if and only if the canonical mapping

(3.04) (M")®g5m Os—M
is an isomorphism.

3.1. Taking for M the De Rham cohomology R” £, (Qys(log D)), and
for V the Gauss-Manin connection, we recall once again (cf. [24], 3.5)
that the entire conjugate spectral sequence

(3.11)  E3b=Ref,(#"(Q4s(log D)) = R***£, (2% s(log D))



40 N.M. Katz:

is endowed with the action of the Gauss-Manin connection, and that
on the E, terms, the p-curvature is zero. This implies that the p-curvature
also vanishes on the E,, terms, and hence that

(12) Y (Eon RS, (245 (log D)) = B, (24 1) @ Fit! R/, (2% s(log D).

Passing to the associated graded, there is an induced mapping, again
denoted v

G13) W gk, (R (%, (l0g D)) — F8, (9 ) @t (R, (@4 s(l0g D))

Our main technical result 3.2 identifies this mapping, under suitable
hypotheses with a twisted form of the Kodaira-Spencer mapping (1.3.2.1).

3.2. Theorem. Under the hypotheses of (2.3.2), the diagram below is
commutative

8tfan (R4 5108 D)) ——— F3, (04 1)@ et (R*1, (4 log D)

con

a, b * 1 a+1,b—1
conan F;bs (‘QS/ T)® conEoo

a, b * 1 a+1,b—1
conEZ F;bs (‘QS/T) ® conEZ

z -1 z i@t

b (RS (%5 (log D)) 22 . (L )@ B (R £, (24 (log D))

F’bs I‘:bs ® F:bs

a

R®f4 (s (log D) —=2""22 0L @ R*+1 £, (@47 (log D))

in which p is the cup-product with the Kodaira-Spencer class (1.1.3),
viewed as a global section over S of Q51 ® R f, (Dery(X /8)).

Before proceeding to the proof, we will recall some basic facts about
the modular representation theory of finite groups of order prime to p,
and then restate 3.2 “with a group of operators”.

(3.2.1) Let G be a finite group of order prime to p, and k a field of

characteristic p. Let V be a finite-dimensional k-space on which G acts

as a group of k-automorphisms, through a homomorphism x: G— GL(V).

Denoting by E,: k— k the absolute Frobenius endomorphism of k, the

representation x of G on EX,(V)=V ®k (where k is a module over
k
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itself by E,,.: k— k) is given by
(32.1.1) (P @ eRa) =" 1(g) (v ®a.

In matricial terms, the matrix coefficients of x” are the p-th powers
of the matrix coefficients of y. The character of x is the p-th power of
the character of y.

(3.2.2) Proposition. Hypotheses as in (3.2.1), if x is an absolutely ir-
reducible representation of G in a finite-dimensional k-space, then its degree
divides the order of G, and in particular is prime to p.

Proof. This will be a simple consequence of the analogous fact for
representation in characteristic zero. In fact, extending scalars if neces-
sary, we may suppose that k is the residue field of a discrete valuation
ring (0, p) whose fraction field K has characteristic zero, and is such that
every irreducible representation of G in a finite-dimensional K-space is
absolutely irreducible. In fact, we will prove

(3.2.2bis) Proposition. Let (0,p) be a discrete valuation ring whose
fraction field K has characteristic zero, and whose residue field k has
characteristic p>0. Let G be a finite group, of order prime to p, such that
every irreducible representation of G in a finite-dimensional K-space is
absolutely irreducible. Then every irreducible representation of G in a
finite-dimensional k-space is the “reduction mod p” of a representation of
G in a free O-module of finite rank, which is irreducible over K, and which
is determined over K up to isomorphism.

Proof. Because G has order prime to p, the group-ring k[G] is semi-
simple, as is K [G], and the isomorphism classes of irreducible representa-
tions of G in finite dimensional k-spaces (resp. K-spaces) are in bijective
correspondence with the indecomposable central idempotents fi, ..., fr
(resp. ey, ..., e;) in k[G] (resp. K [G]), which give the projections onto the
“isotypique” components of any finite dimensional k[G] (resp. K[G])
module. We have

(3.2.2.1) I=) e, ee;=0;e
and for any central function f in K[G],
(3.2.2.2) =Y ae;, ack.

We will first show that the e; give an ¢-base for the central functions with
values in 0. The ¢; are given by the following explicit formulaes, in which
y; denotes the corresponding irreducible representation:

d ;
(3.2.2.3) e,-=—e;g%)— % trace (Xi (g—l)) .g.
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Because G is finite, any representation of G on a finite dimensional
K-space comes by extension of scalars from a representation of G in a
free 0-module of finite rank (take the lattice generated by the G-translates
of any lattice), and hence its character takes values in 0. It follows that
the functions e; take values in 0; i.e., lie in O[G]. Because the X are
absolutely irreducible, we have

(3.2.24) deg(x)l #G, hence pydeg(y,).
Hence the values of the e; at the identity element 1€G are units in 0,
because ( ,
_ deg(x) _ deg(x;))
(3.2.2.5) e;(1)= %G trace (x;(1))= %G
Thus if feO[G] is central, f=) a;e; and
(32.26) C g lae)d) (fe)d)

o) el
Thus the e; give an ¢-base of the center of O [G].

Now let fiek[G] be the indecomposable central idempotent cor-
responding to an irreducible representation y. We can certainly lift f; to
a central function f with values in ¢, which we may write

(3.2.2.7) f=Y ae, ae0.

Because f; - f; = f;, we have

(3.2.2.8) Yaie=f*=f=Y ae; mod(p[G])

and multiplying both sides by e;, we get

(3.2.2.9) al e;=a;e; modp[G].

Evaluating at the identity element 1€ G, we have (by (3.2.2.4))
(3.2.2.10) a}=a; modp,

so that each coefficient g; is congruent to either 0 or 1 mod p. Thus we
may lift f; to a central idempotent

(3.2.2.11) Z 8,’ ei, 81-:0 or 1

in O[G]. Because the ¢; are a basis of the center of O [G], the indecompo-
sability of f; as central idempotent in k[G] implies that ¢; differs from
zero for only one value of i, say i=1. This shows that e; is the unique
central idempotent in ¢ [G] lifting f;. This shows that y is the “reduction
modp” of a unique irreducible representation y, of G in a finite-
dimensional K-space. Q.E.D.
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(3.2.3) Corollary. Hypotheses and notations as in (3.2.2), the indecom-
posable central idempotents in K[G], which all lie in O [G], have reductions
modulo p in k[G] which remain indecomposable.

Proof. The number of e; is equal to the number of f;, both being the
number of conjugacy classes in G. Hence every ¢, lifts an f;. Q.E.D.

In terms of representations, this gives:

(3.23bis) Corollary. Hypotheses as in (3.2.2bis), the reduction mod p of
any K-irreducible representation of G in a free O-module of finite rank is
irreducible (and every irreducible representation of G in a finite-dimen-
sional k-space arises this way ).

(3.2.3.1) Corollary. Hypotheses as in (3.2.2bis), every irreducible repre-
sentation of G in a finite-dimensional k-space is absolutely irreducible.

Proof. This follows from (3.3.0bis), applied to arbitrary finite exten-
sions K’ of K, and arbitrary extensions of the valuation of K to K', by
which we can realize arbitrary finite extensions k' of k as residue field.

(3.2.3.2) Corollary. Hypotheses in (3.2.2bis), the indecomposable central
idempotent (noted P(y)) associated to an irreducible representation y in a
finite-dimensional k-space is given by the formula
de

(3.2.3.3) P(x)=—g(—X) Y trace(x(g™")- g-

#G 5
(3.24) We return to the hypotheses of (2.3.2), and suppose given in
addition:

(3.24.0) a finite group G of order prime to p, which acts as a group of
S-automorphisms of X and preserves the divisor D (though not neces-
sarily the individual D;);

(3.24.1) a subfield k of I'(T, O7), and an absolutely irreducible repre-
sentation y of G in a finite-dimensional k-space.

(3.24.2) By functoriality, the group G acts on the De Rham cohomology
sheaves R"f, (Q%s(log D)) as a group of Us-linear horizontal (for the
Gauss-Manin connection), and respects both the Hodge and the con-
jugate filtrations. (In fact, G acts on both the Hodge = De Rham and the
conjugate spectral sequences.)

(324.3) The functoriality of the diagram (3.2.0) shows immediately
that it is a diagram of G-morphisms (though the lower vertical arrows
EX,, being p-linear, are not k[G]-morphisms).

This said, we may now “restate” 3.2.
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(3.3)(=3.2bis) Theorem. Under the hypotheses of (3.2.4), the following
subdiagram of (3.2.0) is commutative.

PO oonB%") —— > (18 P () (E, (2%1) ® (con %)

Z ¢! 1®¢ -1

(_1)b+1l:=t

POEP) ER(R £ (@39) =200 (1@ P((2) (Rt (2h,1) @ Ex (R £, (@47 log DY)

Fios Flos ® Fyg

P(y)R*f, (Qg(/s(bg D)) =l N (1 ® P(y)) (Qé/s ®R**H T+ (Q‘,’(/Tsl(log D))).

Proof (Assuming 3.2). Thu upper square is deduced from the upper
square of (3.2.0), which is a diagram of k[G]-modules, by applying the
projector P(x'”). The lower square is deduced from the lower square of
(3.2.0) by applying P(y) to the lower horizontal line, and noting that

d
e (P(D)= Bt (20 X tacertg™) ) o

(4

(3.3.2) Corollary. Hypotheses as in (3.2.4), suppose that the absolute
Frobenius endomorphism of U is injective (which is the case if Tis reduced,
Jor example). If, for a fixed integer n, the p-curvature of the Gauss-Manin
connection on the “part of R"f, (Q,s(log D)) which transforms by 57,
i.e., on the submodule P(y™)(R" f, (Q%,s(log D)) is zero, then the induced
Hodge filtration on P(x)(R"f, (2% s(log D))) is horizontal, i.e., stable by
the Gauss-Manin connection.

(3.3.1)

p
) Y. (trace y(g ")’ go E, = P(;”)FL.. Q.E.D.

3.4. The Proof of 3.2: Reduction Steps

(34.0) The question being local on S, we may and will assume S affine.
As explained in 2.4, the De Rham cohomology sheaves on S are the total
homology of the Cech bicomplex associated to any affine open covering
of X, and the Hodge and conjugate spectral sequences are the “first”
and “second ” spectral sequences of the Cech bicomplex. The proof we
will give is not at all intrinsic, but rather depends on explicit calculations
on the level of the Cech bicomplex itself. It would be of considerable
interest to give an intrinsic proof.

(3.4.1) We choose a finite covering of X by affine open sets V; (as in
(1.0.3.1)), each étale over Aj via “local coordinates” x;(i), ..., x, (i), such
that those branches of D meeting V¥, are defined by the equations

%1 ())=0, ..., x,()=0, o depending on ¥,.
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We next define a (not necessarily integrable) T-connection ¥ on the
simple complex deduced by “totalization” from the Cech bicomplex,
which yields the Gauss-Manin connection upon passage to homology
(cf. [24, 35]).

For any DeDer(S/T), we denote
(34.1.1) D(i)=the unique element of Der,(V;/T) which extends D and
which annihilates the chosen local coordinates x, (i), ..., X,(i), and by
(34.1.2) Lie(D(i)): @y, s(log D)— 3, s(log D)

the “Lie derivative with respect to D;”.
For each pair of integers i < j, we denote by
(34.13)  I(D()—D()): 2,nv,s(log D)— 7y, s(log D)

the operator “interior product with the S -derivation D(i)— D(j) " (cf.(1.2.2)).
The connection ¥ on C*({V;}, Qys(log D)) is given as follows. For a
fixed integer b, a section

(34.14) weY C*({Vy}, s(log D))
and a simplex ig <:-- <ig,

(34.15) (V(D)(@))(ig>» s i,)=Lie(D (ip)) (@ (io> ---» i)
+(= 1P I(D(io) — D(iy)) (@ iy, ---» i)

Thus V(D) is the sum of two terms. The first, of bidegree (0, 0), is the
cup-product with the O-chain {Lie(D())}. The second, of bidegree
(1, —1), is the cup-product with the 1-cocycle I (D(i)—D(j)). This explicit
construction makes clear computationally the truth of (1.4.1.6), (1.4.1.7),
and (2.3.0.1).

In order to prove 3.2, it suffices by linearity to establish the com-

mutativity of the outermost square of (3.2.0), and after “ contraction”
with any DeDer(S/T). Thus we must prove commutative the diagram

R, (" (23,5 (log D)) —L2— R+ £, (41 (s (log D))
(3416) €~ '°Fivs %~ 1oFkps
R°f, (2% 5(log D)) =D, Re+1 £, (Q475' (log D)).

Let us explicate the arrows in this diagram. The vertical ones are
deduced from the morphisms of sheaves

(B4.17) @ s(log D)—=> QLywys(log DP) —€_ 1 #°(Qys(log D)).
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In order to render the vertical arrows still more concrete, we introduce,
for each open set V,, a p-linear endomorphism % of @) s(log D), whose
image lies in the subsheaf of closed forms, and which “lifts” the mapping
3.4.1.7. Indeed, the formulas (2.1.2.1) give such a lifting: we require that

Z(1)=1
,wmw=mm
N x,0) X, (i)
Zi(dx,())=(x,@)) " 'dx,(i) for i=a+1,...,n
Fi(o At)=F(w) A Fi(7)
Fi(w+1)=F(w)+F(1)

Fi(hw)=h" F(w) for hey,.

for i=1,...,x

(34.1.8)

We then have our desired lifting

(3.4.1.9) ,s(log D) —=— closed forms = @, (log D)
canonical projection

A (Ql./,»/s (log D))

(34.1.10) The lower horizontal arrow in (34.1.6) is, as previously
(cf. (1.1.3)) noted, (— 1)*** times the cup-product with 1-cocycle

{I(D(i)—D(j))}.

The upper horizontal arrow in (3.4.1.6) is slightly less straightforward
to explicate. Let « be a section of R, (" (23,5 (log D))). We may represent
a by an a-cochain t of closed forms

(34.1.11) te C*({V}, % s(log D), dr=0

whose image in
C*({Vi}, #° (235 (log D))

is a cocycle representing «. By the degeneration of the conjugate spectral
sequence at E,, we may choose  to be the component of bidegree (a, b)
in a total a+b cocycle ¢ which lies in

(34.1.12) o= Y, C**({V3}, &4 (log D).

i20

The section y(D)(x) of R**!f, (" ~1(Qg/s(log D)) is then represented
by the component of bidegree (a+1, b— 1) in the total cocycle

(3.4.1.13) (V(DY - 7(D?)(0).
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Recall that
G4l (POY—VD")(Fan(C) =R (C™)

(because V(D) (F2.(C**)=F&,(C**), and V(D) on grg_ (C**) is an inte-
grable connection of p-curvature zero, given on V,n---n¥, by D—
Lie (D(io)))-

Since ¢ is congruent to T modulo F&}*(C**), it follows from (3.4.1.13)
that

(34.1.15)  (V(DY—V(D")(0)=(V(D)’—V(D?)(z) mod Fi>.

con

Thus the section Y (D)(x) is represented by the component of bidegree
(a+1,b—1) in (V (DY —V(D?))(x).

(342) Lemma. Let te C*({V;}, %/s(log D)), and iq<iy<---<izyy. For
each integer n=1, the element

(34.2.0) (DY (r)e Y. C**({Vi}, %5 (log D))

iz0

has its components of bidegree (g, b) and (a+1,b—1) given by
(34.2.1) 7 (DY (t)(ig» ---» ia) = Lie(D (i) (t (ig> ---» ia),

V(DY'(t) (o> - la)
(3.4.2.2) _ ,
—(=1 Y Lie(D;)}I(Dlio)— D(iy) Lie(D,) (x(iss -, id))-

k+¢f=n—1

Proof. The proof, by induction, is immediate; the case n=1 is the
definition. Q.E.D.

Putting n=p, we find
(7D~ (D)@ o .. i)
(34.2.3) =[(Lie(D (iy)))? — Lie(D (io)?)] (z (io> - i,))=0,
since (D (io))? = D" (io)
(VDY = V(D) (@) igs ---» 1)
(3424) =(=1P° Y Lie(D;)*I(D(io)—D(iy)Lie(D;, #(t(iys - esiart))

k+f=p+1
—(= 1P I(D(io)” = D(i)P)(t iy .- farn)) -

Thus (3.4.2.4) gives a formula for a cocycle representing Y (D)(e) in
R**1f, (#°~1(Q4,s(log D))), when we take for 7 a particular representing
cochain for a.

(3.4.3) Combining all our explications (3.4.1.9), (3.4.1.10), and (3.4.2.4),
we see that the commutativity of (3.4.1.6), and hence the truth of 3.0, is
implied by the following assertion:
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(3.4.3.0)  Assertion. For any cochain te C*({V}}, 2 s(log D)), the cochain
in C**1({V;}, @s' (log D)) which assigns to (i, ..., iyy1) the b—1 form

D) Lie(D(io))I(D(io)—D(iy)) Lie(D(iy) (F,(t(iss .-y iy 1))

k+¢=p-1
343.1) = (=1PI(D(io) = DY) &, (1(ig, .., igy )
(=11 %O(I(D(io)—D(il)) (c(iy, ..., ia+1)))
is a cocycle of closed forms, and is cohomologous to zero in
CH({V, A (@5 (log D).

(34.3.2) In fact, we will prove that the cochain (34.3.1) is in fact a
cochain of exact forms, and so vanishes in CH (W, A1 (Qy s (log D))).
Notice that the occurence of Z, in the last line of (3.4.3.1) may be re-
placed by %, without modifying the class modulo

d(I(Vyn 0V, . %5 (log D))

la+1°

of the cochain (3.4.3.1), because both Z, and Z restricted to ¥, N V;, are
liftings of ¢~'oo* (3.4.1.7). This change made, the truth of (3.4.3.0),
and hence of 3.2, results from the following proposition (3.5.0), which
may or may not prove to be of any independent interest. In it, Vo -0V,
is renamed V, D(i) and D(i,) are renamed P and Q, t(iy,...,izyy) is
renamed 1, % is renamed %, and the coordinates xi(iy), ..., x,(i;) are
renamed x,, ..., x,.

3.5. Conclusion of the Proof of 3.2

(3.5.0) Proposition. Let S be an affine scheme of characteristic p, and V
a scheme étale over A§, by means of “coordinates” Xi5 ..., X, on V. Fix a
(possibly empty) subset o of {1, ..., n}, and let D,V be the divisor with
normal crossings relative to S defined by []x:=0 (we put Dy =0).
lea

Let DeDer(S/F,) be any derivation of S, PeDer, (V/K,) an arbitrary
extension of D to a derivation of V which preserves the ideals x; Oy, for
iea, and Qe Dery, (V/F,) the unique extension which annihilates Xiyeens Xy

We denote by #: Q) s(logD,)— & s(logD,) the unique p-linear
endomorphism of @ 5(log D,) as O,-module which satisfies

F(1)=1

=1 jeq
X

P ( dx; ) dx;
Xi i

(3.50.1)
Fdx)=xP"dx;, id¢o

F(oAT)=F(0)AF (7).
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Then for any differential form

(3.5.0.2) tel(V, Qb s(log D,)),
we have
3503 ¥ 1Lie(P)" I(P—0Q) Lie(QY (% (1)) —I(P"— Q°)(F (x))

= —Z (I(P—Q)(v)) modulo dI'(V, )5 (log D,)).

Proof. Both sides of the asserted congruence (3.5.0.3) are p-linear in
7, and exterior differentiation is linear over p-th powers, so it suffices to
check the case in which 7 is a product of the one-forms

dx; .
—, e
Xi
(3.5.04)
dx;, i¢go.
We first introduce some auxilary notation:
dx; e
_ if iea
(3.5.0.5) r(i)={ X;
dx;, if id¢a,
dx; e .
—_— if iea
(3.5.0.6) a(i)={ Xi
xP~ldx, if ida,
P it e
(3.5.0.7) f)={ X
xP~1P(x) if ida,
PO i e
(3.5.0.8) gli)=4 X
P(xi), 1f i¢aa
P(x.
Prex) , if iea
(3.5.09) h(i))={ X
Xf_lpp(xi), if ida.

(3.5.1) lLemma. The following relations hold among the “quantities”
(@), o (@), £(i), g (D), (D)

(3.5.1.1) F(c(i))=0(),

(3.5.1.2) Lie(P)(a (i))=df (i),

4 Inventiones math., Vol. 18
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(3.5.1.3) Lie(Q)(o (1)) =0,
(3.5.1.4) I(P-Q)(x())=g(i),
(3.5.1.5) IP-Q)(e )=/,
(3.5.1.6) I(PP— Q") (o (i))=h(i).

Proof. (3.5.1.1) is by definition (3.5.0.1) of &% As for (3.5.0.2), we
simply calculate

if ica, Lie(P)(a(i)):Lie(P) ( d):i ) _ Lie(P)(dx;) _ P(x;) dx;

Xi X X
(3.5.1.7) _dp x(-Xi) B P)(:Ci) d:i
—d (LS")) —df).

(3.5.1.8) if i¢o, we multiply the above calculation (3.5.1.7) by x?.

(3.5.1.3) holds because Q(x;)=0 by definition (3.5.0) of Q. As for (3.5.1.4),
we calculate

(3.5.19) if iea, I(P—Q)(c(i))=I(P—0) (

g(d),

(3.5.1.10) if iga, I(P—Q)(x(i)= (P — Q) (dx)=(P— 0)(x)) = P(x) = g(i)
and (3.5.1.5) follows similarly:

dx, )~ _Pes
Xi

Xi Xi

B5.1.11)  if ieq, I(P—Q)(o(i))=I(P—Q) (i’i)

X;

_ P(x;)

x» =f(i),
(35.1.12) if i¢a, I(P—Q)(0())=I(P—Q)(xI~'dx)=x0~" P(x,)=f(i).

The proof of (3.5.1.6) is identical to that of (3.5.1.5), depending only on the
fact that Q?(x;)=0. Q.E.D.

(3.5.2) We now return to the verification of the congruence (3.5.0.3) for
a product of the 7(i). To begin, we’ll check the case t=1(1). In this case
(b=1), the congruence (3.5.0.3) becomes an assertion of equality:

Y. Lie(P}I(P—Q) Lie(Q) (% (z(1)))~I(P?— Q?) # (< (1))
(3.5.2.0) k+¢=p-1
= —F(I(P-Q)(x(1)).
Substituting via (3.5.1), (3.5.2.0) becomes
@s21y Y Lie(P)"I(P—Q)Lie(Q)‘(a(l))—I(P”—Q”)(a(l))=—ﬁ(g(l))

k+¢=p—1
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and substituting via (3.5.1) and especially via (3.5.1.3), (3.5.2.1) becomes
(3.5.2.2) Lie(PyP~'1(P—Q)(a(1))—h(1)=—g(1)".

A final substitution via (3.5.1) gives the assertion

(3.5.2.3) PP f(1)—h(1)=—g(1).

We now “decode” (3.5.2.3) by returning to the definitions (3.5.0.7-9) of
£, h, g; (3.5.2.3) becomes the assertion

P(xl)) Py _ ( P(xx))",

X1 X1 X1

(3.524) if lea Pp—l(

(3.5.2.5) if 1¢a, PP~H(xP~1P(x))—xE' PP(xy)=—(P(x)).

Both (3.5.2.4) and (3.5.2.5) are in fact true, and follow ((3.5.2.5) directly,
(3.5.2.4) after dividing by xf) from Hochschild’s identity (cf. [20]),
according to which, if P is any derivation of any commutative ring 4 of
characteristic p>0, then for any element xe A4,

(3.5.2.6) PP~} (x?~! P(x))—x?~! PP(x)= —(P()).
This concludes the proof of (3.5.0.3) in case b= 1. In the following, we will

make use of it, through the identity (3.5.2.3).

(3.5.3) Because our proof of (3.5.0.3) in the general case is so unen-
lightening we first present the proof in the case b=2, which is somewhat
more intelligible.

The assertion to be verified is

Y. Lie(P)I(P—Q)Lie(Q) (# (x(1) A1(2)))

k+¢{=p—1
(3.5.3.0) —I(PP—QP)(F (z(1)A 7(2)))
=—F(I(P—Q)(z(1) At(2))) modulo dI'(V, 0,).

Substituting via (3.5.1.1) and noting that by (3.5.1.3) the terms under the

summation sign vanish for £ #0, (3.5.3.0) becomes
(353.1) Lie(P)”“(I(P- Q))(a(l) A a(2))—-I(P”— Q”)(a(l) A 0(2))
o = —F(I(P—Q)(z(1) At(2))) modulo dI'(V, 0,).

Expanding the interior products and substituting via (3.5.1), (3.5.3.1)
becomes

Lie(PY~'(f() e~ fQ) s (1))~ (h(1) 6 () —h(Q2) o (1))

(3.5.3.2)
= — #(g(1)t(2)—g(2) t(1)) modulo dI'(V; ,).

4*
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A final substitution gives
Lie(PY='(f(1) 6 (2~ f(2) o (1))—(h(1) 6 (2)—h(2) o (1))
=—-g(1)’a(2)+g (2 ¢(1) modulo dI'(V, 0,).
Availing ourselves of (3.5.2.3), (3.5.3.3) becomes
Lie(Py~(f () e@2)~f @) o (1)) =P *(f(1)) 6(2)— P*~*(f(2)) o (1)
modulo dI'(V, 0,).

Now the right hand member of (3.5.3.4) is the “first term ” in the expansion
of the left hand member by Leibniz’s rule, so that, expanding, (3.5.3.4)
becomes

(3.5.3.9) k+z=§£1,t¢o

(3.5.3.3)

(3.5.34)

(" . 1) [P*(f (1)) Lie(PY (o (2)

— P¥(f(2)) Lie(PY (o (1)) edI(V, 0,).
By (3.5.1.2), we may substitute
Lie(PY (¢(2)) =Lie(PY~'df(2) =dP’~'(f(2))
Lie(PY (o(1) = Lie(PY " df (1) =P (11(1).

Doing so, and remembering that

(3.5.3.6)

(3:5.3.7) (p;l) =(—1fmodp for 0<k=<p—1

we must show

(= D[P f(1)dP’~! f(2)
—PY(f(Q)dP’~' f(1)]edI(V, 0,)

Re-indexing the summation by k and m=¢—1, (3.5.3.8) becomes (re-
membering that (—1)**! =(—1)" mod p)

2 (=DFPf(1)aPmf(2)

k+m=p—-2
(3.5.3.9) + Y (=1 P¥(f(2))dP™f(1)edl(V, 0,).

(3.5.3.8) k+(=pz—l,t’#0

k+m=p-2
This is the case; in fact, the left member of (3.5.3.9) is
(3.5.3.10) d( Y (=D*P(S(1) P(£(2)).
k+m=p-2

This proves (3.5.0.3) in case b=2, and gives a hint of the combinatorial
rearrangements necessary in the general case.

(3.5.4) We now turn to the general case. We adopt the convention that
a product indexed by a subset of Z is to be taken in increasing order, and
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that, unless otherwise specified, all indexing variables run over the set
{1,...,b}.
We must verify the congruence (3.5.0.3) in the case

(3.54.0) t=t()AT@) A ATb)=]] ().

Using the substitutions (3.5.1) and the identity (3.5.2.3) just as in the case
b=2, we see that the congruence in question is equivalent to the con-
gruence

Lie(Py~ (X (= /() [] o ()

v¥i

=Y. (= 1+ P (f()) [T o (v) modulo dr(v, Qy,s(log D,).

vFi

(3.54.1)

Expanding the left member of (3.5.4.1) bei Leibniz’s rule, and re-
membering (3.5.3.7), (3.5.4.1) becomes

(= 1Y (= DFPPER(1(0)
(3.54.2) i k=1
-Lie(P)(]] o(v))edl (V, 2y s(log D,)).

vFi

Our next task is to expand each of the terms

(3.5.4.3) Lie(PY([To ()

vEi

using Leibniz’s rule. To facilitate this, we introduce the notations

(3.5.44) ¢=(4, ...,{,), ab-tuple of non-negative integers

(3.5.4.5) 11=24
A () I ORA)

(3:545) (ﬁ‘mm‘HW!

(3.5.4.7) S(@)={il/;+0}

(3.5.4.8) for any nonempty subset A<={l,...,b}— {i} we denote by
sgn (4, i) the sign of the permutation
(A, {1, ...,b}—{i}—A)
{1"7b}_{l} .

(We make the convention that subsets of Z are to be enumerated in
increasing order.)
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Returning to the expansion of (3.5.4.3), we find

Lie(PY([To(v)= (ljl) [ ] Lie(Py~(a(v)
Vi ¢ 101=K, i¢s(0) vEi
(3.5.49) = Y s(di) ('; ')
P+A<{1,-, b}~ {i} )=k, S(¢)=4
T Lie(PY*(a (v) 11 o0,

Substituting (3.5.4.9) into (3.5.4.2), we are faced with proving that
dr(v, Qys(log D,)) contains

p—1

LEURE P T iy (V)

(3_5.4,1()) i k=1 O+ Api 42| =k,S(¢)=4
-[1Lie(PY*(a(v)) [T o).

ved veduii)

The key point now is to reindex the expression (3.5.4.10) by the sub-
sets A'= AU {i} having at least two elements; then (3.5.4.10) becomes

Y ¥ (— 1+ sgn(4 —i i):;(— 1 PP ( (i)

4’ ied’

(3.5.4.11) "
o (9) 1 LeereomTom.
4l =k, S(€)=4"—{i}

ved' —{i} vgda’

We now calculate the sign(—1)'*'sgn(4’'—i,i) as a function of the
position of i in 4" and of the position of 4’ in {1,...,b}.

(0 11

_sgn (i, {1,1.’. .l?}b— {i}) sgn (i, A’i,—{ii {1 ;}b_} l— A’)
(3.5.4.12) —sgn ("’A/“{"}I’,{i’;;’b} “A')
) 0
i A’A - {i}) wan (A’, {11,’.‘...-,,1;} —A’) |

=sgn (

=sgn (

Because each o (v) is a closed form, in order to show that (3.54.11) lies in
dr(v, 2y s(log D,)), it suffices to show that, for each subset 4’ {1,...,b}
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of two or more elements, dI'(V, Q,s(log D,)) contains

{1} k pp-1-k )
) Z( y'p (f(l))z I¢1=k S;‘) 4 “‘“( ()
I LIC(P)JV(G )

ved' —{i}

I
(3.54.13) i<

With no loss in generality, we may suppose 4'={l,2, ..., b}, where
b= #(4'); then

(35414) sgn( A {l}) ( 1)l+l

Let us introduce a final notation:
(3.54.15) m=(my,...,m,), a b-triple of integers satisfying m; =1, and
Y m;=p.
A multi-index ¢ occurring in (3.5.4.13) with |/|=k and S({)=4"—{i}
gives rise to such an m by putting

Z, if vi
(3.5.4.16) mv—{p_k if v=i.

In terms of m, the multinomial coefficient (— 1)* (lj:') is easily calculated:

(_l)k(lf|)= p—1! kI (p=D!e=k

“Kp—1=k" ¢4 ml..my!
(3.5.4.17) v A peeT

m; modulo p.

~1
[T(m)!

Using (3.5.4.14) and (3.5.4.17), the congruence (3.5.4.13) may be rewritten

Z F 2 (=D m PH(f()

(3.5.4.18) H ('" "
-T1Lie(Py™(a(v))edl (V, Qy/s(log D,).

vEi

The proof of (3.5.4.18), and hence of (3.5.0), will be concluded the following
calculation.

(3.5.5) Calculation. For any m as in (3.5.4.13),
Z( i+ m P () [1 Lie(P)™ (o (v))

v*i

=d(P™ 1 (f() X (— 1+ m Pt (f(@) [] Lie(Py™(a(v))-

i*1 v¥1,i

(3.5.5.0)
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Proof. According to (3.5.1.2), we have
(3.5.5.1) Lie(P)(a (v))=df (v)
whence for any integer m,> 1, we have
(3.55.2) Lie(P)™(o(v))=Lie(Py™1 @fv)=d(Pm™-1(f ).

Let us expand the second member of (3.5.5.0), remembering that the a(v),
and hence the Lie(P)™ (o (v)), are closed forms.

(P W) X (=) m P (£(0) [T Lie(Py™(o(v)

i*1 vEl,i

(35.53)  =Lie(Py"(a(1) ¥, (— 1)+ m, P"=1(£(i)) [] Lie(Py™ (o (v))

i*1 vEl,i

PN f(D) (=1 m; Lie(PY™(a (i) ] Lie(Py™(a(v).

i¥1 vE1l,i
The first term in (3.5.5.4) is the part of the first member of (3.5.5.0) corre-
sponding to i=1. Thus it remains to see that

my P (£ (1) [] Lie(Py™ (o (v))
(3.5.5.4) L , .
=P (W) ¥ (=) mLie(P(a(0) [ Lie(PY™(o(v)).

i*1 v¥l,i

Rearrainging the final product in the second member, (3.5.5.5) may be

rewritten
m, P'"“‘(f(l)) HlLie (P)"‘V(a(v))

=—P" Y f(1) X m, I Lie(P)™ (o (v)).
i1 v=#1
Because ) m;=p, Y m;=0 (p), and (3.5.5.6) is true. This concludes the

proof of (3.5.5), hence of (3.5.0), and hence of Theorem 3.2 and its Corol-
laries 3.3 and (3.3.1). Q.E.D.

(3.55.5)

4. Review of Deligne’s Mixed Hodge Structures ([8])

4.0. The Weight Filtration

(4.0.1) We return to the geometric situation (1.0). The weight filtration
of the complex Qy s(log D) is by definition the finite increasing filtration
defined by

(4.0.1.0) W(23s(log D))=image of Q5(log D)® Q75 — Q3 s(log D).
Notice that
(40.1.1) WA W, W,

itj
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The “Poincaré residue” (cf. [7, 8]) furnishes isomorphisms (which are
,-canonical” only after choosing an ordering of the finite set which indexes
the smooth divisors D;)

0 if n<0
(40.12) gi¥(Qxs(logD)=] @ 5 "..pys if n21

Qs if n=0.

[We are guilty of an abuse of notation in (4.0.1.2) above, because,
strictly speaking, gr/¥ is isomorphic to the direct sum of the extensions by
zero from D; n---ND; to X of the complexes Q57 p;s)- To avoid
either further abuses or typographical disaster, we will henceforth
adopt the following notation: eat f(i, ..., i,) denote the composite

Dyn---nD; = D—X

(4.0.1.3) Fitsennsin) lf

S
and let us abbreviate, for each integer k=0,

(40.14) Hpg(Dyn--0 D, /S)“E" R* f(iy, .-, in)y (@, -y )

which is a quasicoherent sheaf of Os-modules.

The spectral sequence of the filtration W and the functor Rf, may
be written, via (4.0.1.2), as
4.0.1.5) wE "= @ HY"(D,n--nD,/S)=R"f(Q;s(logD)).

1< <ip

(4.0.2) Proposition. The spectral sequence (4.0.1.5) is (naturally) a
spectral sequence with cup-product in the category of quasi-coherent
Os-modules with integrable connection relative to T. This connection is
the Gauss-Manin connection on the E; terms and on the abutment. In
particular, the W filtration on the R f, (Q2y,s(log D)) is horizontal for the
Gauss-Manin connection.

Proof. The product structure in the spectral sequence results from
(4.0.1.1). The action of the Gauss-Manin connection on the spectral
sequence may be seen directly as follows. The question being local on S,
we may suppose S affine. Choose an affine open covering of X by suf-
ficiently small coordinatized open sets ¥, as in (3.4.1).

The filtration W of Qgs(log D) induces a filtration W on the Cech
bicomplex of quasi-coherent ¢g-modules

(40.20)  W,C*({V}, Qys(log D)) “E" C*({,}, W, Q3s(log D))
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whose assosciated graded is given by

g C*({V,}, Qys(log D))
= @ C({V,nDynnD L Q" p o).

i1<:-<ip

(4.0.2.1)

The spectral sequence (4.0.1.3) is the spectral sequence of the filtered
complex of quasi-coherent Og-modules obtained from the filtered
bicomplex (4.0.2.0) by totalization. The (not necessarily integrable)
T-connection ¥ on the Cech bicomplex C*({¥,}, 4 s(log D)) constructed
in (3.4.1) preserves the filtration W. This provides a T-connection on the
spectral sequence (4.0.1.5), which is that of Gauss-Manin on the abutment.
To see that it is that of Gauss-Manin on the E, term, we simply note that
on the assosciated graded for W,

(4.0.2.2) C({V,nD;n---nD, }, 'Ql.’ilf"“'”bi /s)

it induces the same T-connection which the method of (3.4.1) would
construct, viewing the affine open sets V,n D; n---n D; asacoordinatized
open covering of the smooth S-scheme D; n---n D; (the coordinates
being those on ¥, whose restriction to D; n---n D, do not vanish).
Of course, the truth of (4.0.2) could also be perceived by “pure
thought”, by contemplating the definition of the Gauss-Manin connection
in terms of the Koszul filtration (cf. (1.4)). We leave it to the reader.
Q.ED.

(4.0.3) Corollary. Suppose also that T is (the spectrum of) a field of
characteristic zero, and that f: X — S is proper. Then for every integer
r21, the E, terms of (4.0.1.6) are locally free Os-modules of finite rank,
and their formation commutes with arbitrary change of base S — .
Furthermore (4.0.1.6) is degenerate at E, (and hence by (2.2.1.11) remains
so after an arbitrary base change).

Proof. Because f: X — S is proper, (4.0.1.6) is a spectral sequence of
coherent Us-modules with integrable connection relative to 7. Because
T is the spectrum of a field of characteristic zero, any coherent ¢)5-module
with integrable connection is a locally free Os-module of finite rank.
Thus in particular the E, terms of (4.0.1.6) are locally free for each r<1.
To prove that their formation commutes with arbitrary base change,
we first remark that it’s true for r=1, by the usual base-changing theo-
rems. Suppose inductively that it’s true for all r<r,. We may universally
identify EF;%, with the first cohomology of the complex of locally free
Os-modules of finite rank with integrable T-connection

(4.0.3.0) Ep-roa+ro=1 _fro, ppa o, priroa+i-n
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Because the d,, are horizontal, all the cohomology groups of this
complex are coherent Us-modules with integrable T-connection, hence
are locally free, hence their formation commutes with arbitrary change
of base.

To prove degeneration at E,, it suffices, by the above, to prove it
after an arbitrary change of base §'— S where §’ is the spectrum of a
field (because S is reduced). But when S is the spectrum of a field of
characteristic zero, the degeneration is proved by Delignein [8]. Q.E.D.

4.1. Topological Interpretation

Suppose, in addition to the hypotheses of (4.0.3), that T=Spec(C).
By the regularity theorem (cf. [7, 11, 24]), the Gauss-Manin connection
on the terms of the spectral sequence (4.0.1.6) has “regular singular
points”. By the fundamental comparison theorem of [7], the functor
“germs of analytic local horizontal sections” from the category of
coherent sheaves on S with integrable connections relative to C, with
regular singular points, to the category of local coefficient systems of
finite-dimensional complex vector spaces on the “underlying” analytic
space S*"

(4.10) (M, 7) s (M ® Ogun) ™,

is an equivalence of categories. This means that we “know” the spectral
sequence (4.0.1.6) once we know the assosciated spectral sequence of
local coefficient systems on $°" to which it gives rise via the functor 4.1.0.

(4.1.1) Proposition. The spectral sequence in local systems on S*" cor-
responding to (4.0.1.6) is the décalage (cf.(2.2.2.4)) of the Leray spectral
sequence (relative to the base S**) of the open immersion of S*"-schemes

U?r= X2 _pon jer xe@n
(4.1.1.0) yon

San
in complex cohomology:

(4.1.1.1) EZ4=R? f2"(R1j3"(C)) = R?*4"(C)

(which consequently degenerates at E ).

Proof. We will first reduce the problem to an analytic one. Notice
that the entirity of Section 4.0 may be repeated word for word in the
category of analytic spaces, by considering the filtration W on

(2x,s(log D))*".
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The corresponding spectral sequence in locally free Osan-modules of

finite rank nk e n{ Tan an roa
wEian "= @ Hpg"(Di....D/S™)
(4.1.1.2) ”<k'"<"‘
= R f;:n((g;(/s(log D))an)

is of formation compatible with arbitrary change of base S’ — $* in the
category of analytic spaces, thanks to (4.0.3).

The canonical morphism of spectral sequences

(4.1.1.3) (4.0.1.6) > (4.1.1.2)
induces horizontal (for the Gauss-Manin connections (4.0.2)) morphisms
4.1.14) E, ® Ogan — E,(an).

Os

In fact, the morphisms (4.1.1.4) are all isomorphisms, because source
and target are locally free Og..-modules of finite rank of formation com-
patible with arbitrary change of base, and because (by GAGA) the
morphism (4.1.1.3) of spectral sequences is an isomorphism when
S =Spec(C).

Thus the analytic spectral sequence (4.1.1.2) gives rise, via the functor
“germs of local horizontal sections ” (which is an equivalence of categories
between coherent sheaves on (.. with integrable connection and local
systems of finite-dimensional C-spaces on $°") to the same spectral
sequence in local systems on $*" as does (4.0.1). It will be convenient to
think of this spectral sequence in local systems as a sub-spectral sequence
of (4.1.1.2).

(4.1.1.5) Consider the “absolute” log complex (2%,c(log D)™, together
with its weight filtration W, defined as in (4.0.1.0). The spectral sequence
of the filtration W and the functors R f",

WEF b= ® RS, ) i(O)
(4.1.1.6) i< <

=R"f, . ((QX/C (log D))an)

is a spectral sequence of sheaves of C-vector spaces on S**. [We have
used Poincaré’s lemma on the D; n---n D, to identify the E, term.]

The natural mapping of absolute to relative log complexes
4.1.1.7) (2%/c(log D)) — (Qy,s(log D)™

is compatible with the W-filtration, and thus induces a morphism of
spectral sequences

(4.1.1.8) 4.1.1.6) > (4.1.1.2).
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(4.1.1.9) Lemma. The morphism (4.1.1.8) of spectral sequences induces an
isomorphism between (4.1.1.6) and the sub-spectral sequence in local systems
of (4.1.1.2) obtained by taking germs of local horizontal sections.

Proof. Let’s denote by E,(an) the terms of (4.1.1.2) by E,(an)” their
sheaves of germs of horizontal sections, and by E,(abs) the terms of
(4.1.1.6). It follows from the definition of the Gauss-Manin connection in
terms of the Koszul filtration (cf. (1.4)) that the canonical morphisms
E,(abs)— E, (an) factor through E,(an)’. It remains only to prove induc-
tively that the mappings

E,(abs)— E,(an)”
are isomorphisms.

For r=1, this is proven in [6]. Below we will indicate another con-
ceptual proof (cf. (4.1.2)). Suppose the result for all r<r,. Because the
functor “germs of horizontal sections” is exact, E, +1(an)’ is the first
cohomology sheaf of the complex

(4.1.1.10) E, (an) —®, E, (an)’ —~“", E, (any’.

By induction, this complex receives isomorphically the complex

d,.o(abs) d,-o(abs)

(4.1.1.11) E, (abs) E, (abs) E, (abs),

whose first cohomology sheaf is E, , ,(abs). This implies that

E, .. (abs)—>E, ,,(any,

r0+1
and proves the lemma.

We may now conclude the proof of (4.1.1) by noting the filtered quasi-
isomorphisms (cf. (2.2.2.1) and [8], (3.1.7.1) and Prop. (3.1.8))

(R5/c(log D)™™, W) «—— (2% /c(log D))", 7<)

(4.1.1.12)

(@8, t<). Q.E.D.

In the course of the above, we made use of the following fact, applied to
X" and the intersections D" N --- N D" over §*", in order to prove that
(4.1.1.9) was an isomorphism for r=1.

(4.1.2) Proposition. Let f: & — & be a proper and smooth morphism of
complex manifolds. The canonical morphism of sheaves on &

(4.1.2.0) Rf, (C)—> R [, (Q%)0) — R [, (Qq,5)
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is an isomorphism between its source and the subsheaf R?f, (Q%,5) of
germs of horizontal sections (for the Gauss-Manin connection) of

R/, (Q35).

Proof. The proof is an exercise in the definition of the Gauss-Manin
connection (cf. (1.4) and [35]). We consider the Koszul filtration K
(cf. (1.4)) of the complex Q%)c, and the corresponding spectral sequence
for the functors Rf,

(4.12.1) Ept=Rr*4f, (grf Qp1c) = RP*f, (Q%0).

By (the analytic version of) (1.4.0.2), we have

4.1.2.2) EPi=0% 0@3 R, (Q%)5).

By definition of the Gauss-Manin connection (cf. [35]), the differential
4.123) ' dpa; Ep9—s Eptia

is the mapping

(4.1.2.4) A1+ (-1 1V

deduced from the Gauss-Manin connection V=dq

Because the R?f, (2%,s) are coherent sheaves on the complex manifold
&, they are locally free of finite rank, and the canonical mapping

(4.1.2.5) Uy ®cRf4(Q%,5) — RS, (2%,5)
is an isomorphism. Thus we have an isomorphism
(4.1.2.6) EPi~Q8 cQcRf, (Q35)
in terms of which

4.1.2.7) dti=d®]l.

AsRYf, (Qy,,) is a sheaf of C-spaces, it is automatically flat over C, and
hence we have

(4.1.2.8) EY i~ P (QEP/C) ®Dc qu* (Q?r/y’)v'
By the Poincaré lemma,

C if p=0

P(OQ° )=
4.1.2.9) HP(2%c) {O it p+0.
Thus we have
R (23, if p=0

4.1.2. pa={ AT
(4.1.2.10) E% {0 if p#0.
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Consequently, the spectral sequence (4.1.2.1) is degenerate at E,, and
the canonical mappings

(4.1.2.11) RS, (Q%,c)— E%*— ES*

are isomorphisms. Q.E.D.

4.2. Families of Mixed Hodge Structures

(4.2.0) We recall that a pure Hodge structure over Z of weight n, H, is
by definition, a Z-module of finite type H, together with a (Hodge)
filtration F of the complex vector space H¢ ‘L" H, ®,C, which satisfies
the condition
(4.2.0.0) Hc= ® FPAFY(He)

ppT;s_Z"
(F? denotes the complex conjugate of F?. Complex conjugation, and
indeed all of Aut(C), acts on Ho=H,®,C through the second factor!).
For all pairs (p, q) of integers with p+q=n, we put

(4.2.0.1) HP4=F?F4(H),

the “subspace of H¢ of type (p, q)”. The bigraduation

(4.20.2) H.= @ H?e H*?P=HPY
p+q=n

allows us to define an action s of C* as real group on H¢ by putting
(4.2.0.3) s(z)=multiplication by z?z¢ on H™1.

Following Weil, we put C=s(i). For each ze C*, the endomorphism s5(z)
of H. commutes with complex conjugation, and hence comes from an
endomorphism still noted s(z) of Hg=H;® 2R, R denoting the field of
real numbers.

(4.2.04) A morphism ¢ between pure Hodge structures H and H' is a
group homomorphism ¢z: H,— H; whose C-linear extension ¢c:
Hc— H¢ commutes with the action s of C* (4.2.0.3). (Thus between pure
Hodge structure of different weights there is only the zero morphism.)

(4.2.0.5) The category of pure Hodge structures has an internal Hom
and a tensor product ®, defined in the expected way (cf. [8]).

(4.2.0.6) Tate’s Hodge structure Z(n) is the rank one Hodge structure of
weight —2n which is purely of type (—n, —n), and whose integral lattice
H, is the subgroup

(4.20.7) Qniy*Z<C.
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A polarization of a pure Hodge structure H of weight n is 4 homo-
morphism of Hodge structures

(4.2.0.8) (, )JH®H—Z(—n)
such that the real bilinear form on Hg
(4.2.0.9) 2ri)'(x, Cy)

is symmetric and positive definite.
The positive-definiteness means that

(4.2.0.10) if he HP9, h+0, then 0?~9(2x i) (h, h)> 0.

(4.2.0.11) The category of pure Hodge structures up to isogeny is the
category whose objects are pure Hodge structures, but whose morphisms
are defined by

(4.20.12) Honi(up to isogeny)(H, H')=Hom (H, H)®,Q.

(42.0.13) The full subcategory of the category of pure Hodge structures
up to isogeny consisting of the polarizable objects (i.e., those which admit
at least one polarization) is a semi-simple. It is closed under the formation
of internal hom, tensor products, finite direct sums of objects of the same
weight, subobjects and quotient objects. Any objects isogenous to a
polarizable one is polarizable.

(4.2.0.14) Proposition. Let (H,(, )) be a polarized pure Hodge structure.
Then its group of automorphisms is finite.

Proof. Any automorphism ¢ determines an element @ in the group
(4.2.0.15) Aut(HZ/torsion)mAut(HR, @riy'(x, Cy)

which, being the intersection-of a discrete and a compact subgroup of
Aut(Hy), is finite. As ¢ — @ is clearly a group homomorphism, it remains
to prove its kernel is finite. But ¢ — @ is injective, unless Hj, =torsion.
In the latter case, Aut(H,) is a finite group. Q.E.D.

(4.2.1) Let & be a topological space. A family of pure Hodge structures
of weight n on & is by defintion a local system H of Z-modules of finite
type, together with a continuously warying filtration F}! of (Hg),, the
complexification of the stalk of H, at s, which point by point is a pure
Hodge structure of weight n.

(4.2.1.1) A polarization of a family of pure Hodge structures of weight n
is by definition a morphism of local systems on &

4.2.12) (,): H,®H,—Z(—n),
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which-point by point is a polarization (4.2.0.8). A family of pure Hodge
structure is called polarizable if it admits at least one polarization. The
considerations of (4.2.0.11-13) apply mutatis mutandis, in this context.

(4.2.1.3) Proposition. Let & be a connected, locally arcwise connected,
locally arcwise simply connected topological space (so that & “has” a
universal covering). Let (Hy, F) be a polarizable family of pure Hodge
structures. Suppose that the filtration F is locally constant, in the sense that
it comes from a filtration by sub-local systems of the complexified local
system Hc. Then there exists a finite étale covering m: &' — & such that
the inverse image n*(Hy, F) of (Hg, F) on &' is a constant family of pure
Hodge structures.

Proof. Fix a point s, € &, The (topological) fundamental group (S So)
acts on the stalk (Hy),,, and by hypothesis it preserves the filtration F, of
(He)s,- A polarization (, ) on the family (H,, F) induces a polarization
(5 )so ON (Hz)s,, and m; (& o) acting on (Hy),, preserves this polarization.
Thus 7,(%, so) acts on (Hg),, through the automorphism group of the
polarized Hodge structure ((Hz)s,, Fs,» (5 )s, Which is a finite group
(4.2.0.14). Thus there exists a finite etale covering n: &' — & such that
n*(Hy) is a constant local system. Hence n*(Hc) is constant, and so
necessarily are its sub-local systems n* F i(Hy). Q.E.D.

(4.2.2) Let ¥ be a topological space. A family of mixed Hodge structures
on & is by definition a finitely filtered object in the category of local
systems of Z-modules of finite type

(4.2.2.0) (Hz, W); W, Hpc W, Hy

together with a continuously varying Hodge filtration F' on the com-
plexifications (He),, of the stalks of Hz, such that, for each integer n, the
filtration induced by the F/ makes gr,’ Hy =W, Hz/W,_; Hz into a family
of pure Hodge structures of weight n.

(4.22.1) A morphism of families of mixed Hodge structures is a mor-
phism of local systems which respects W and whose complexification
respects the filtration F/ point by point.

(42.2.2) An essential fact (cf. [8]) about the category of families of
mixed Hodge structures on a topological space # is that it is an abelian
category, and in particular that any morphism ¢ is automatically strictly
compatible with the filtration W (and also F, for that matter). This means
that W, nimage (¢)= ¢ (W), for every integer i.

(4.2.2.3) Proposition. Let & be a topological space as in (4.2.1.3). Let
(Hg, F, W) be a family of mixed Hodge structures on &, such that each of
the assosciated graded families (gt Hz, F) of pure Hodge structures is
polarizable. Suppose that the Hodge filtration F is locally constant, in the

5 Inventiones math., Vol. 18
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sense that it comes from a filtration by sub-local systems of the complexified
local system Hc. Then there exists a Jfinite étale covering n: &' — & such
that the inverse image n*(Hy, W, F) of (Hy, W,F) on &" is a constant
Jamily of mixed Hodge structures.

Proof. Applying (4.2.1.3) to each of the finitely many non-zero gr”,
we find a finite étale covering n: &’ — % on which the gry become
constant families of Hodge structures. So replacing & by &, it suffices
to show that if the gr,” are all constant, then H z 1s constant. The constancy
of the gr)” signifies that under the action of 7y (S 50) on (Hy),,, for any
YEM (S So);

(4.2.2.3.0) (=)W, (Hp)so) = W, _ (Hp),,.

By hypothesis y preserves the filtrations W and F, hence y and 1—7y
are endomorphisms of the mixed Hodge structure ((Hg)sy, W, F). Thus
(42.2.2), 1—y is strictly compatible with W, Combining (4.2.2.3.0) and
strictness, we find

(42231)  (A-p(W)=W,_nimage (1—y)=(1—7)(W,_,).

Since W,=0 for n<0, and W,=all for n>0, this implies 1—y=0, and
hence H, is a constant local system. Q.E.D.

(4.22.4) Remark. Let us agree to call polarizable a family of mixed Hodge
structures whose assosciated graded families gty are all polarizable.
Because gr!” is exact, finite direct sums, sub-objects and quotient objects
of polarizable families of mixed Hodge structures are polarizable.
Clearly, any object isogenous to a polarizable one is polarizable.

4.3. Geometric Interpretation

(4.3.0) Let T=Spec(C), S a connected smooth C-scheme, f: X > S a
projective and smooth S-scheme, and D = (J D; a union of divisors in X
which are smooth over S and which cross normally relative to S

D X d > U=X-D
S n

J
(4.3.0.0) S
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(4.3.0.1) For each integer n=0, the sheaf R"n}'(Z) on S is a local
system of Z-modules of finite type. As we have seen (4.1.1), the corre-
sponding rational local system

(4.3.0.2) R"nM(Q)=R"n(Z)®zQ

is the abutment of the Leray spectral sequence in local systems on S*".
(4.3.0.3) E%*=RPf"(Rj31(Q) = R 73 (Q),

which is degenerate at E, (because by (4.1.1) its complexification is).

(4.3.04) As a temporary notational device, let us denote by N the
decreasing filtration of R"73"(Q) defined by the spectral sequence
(4.3.0.3). We define the weight filtration W of the local system R"n3’(Z)
by:

(4.3.0.5) W,R""(Z)=the inverse image of N*>"~'R"ny"(Q) under the
canonical mapping R" 7" (Z) — R" n3’(Q)

(thus W;=0if i<n, and W,=all if i=2n).
The locally free coherent sheaf on $*"
R" 73" (C) ®c Usen =R" £2°((Q4 s (l0g D))*")
~R"f, (2%/s(10g D)) ® g5 Osan
is the abutment of the Hodge = De Rham spectral sequence
Ep4=Rif2((Q%s(log D))*") = RP+4£2%((2,s(log D))*")

4.3.0.6)

(4.3.0.7)

R, (Q%/5(10g D)) ®¢sUsan  RP*If (2%s(1og D)) ® ¢ Osan

which has E, locally free, and which degenerates at E; (cf. (1.4.1.8) and
[5]). The corresponding filtration F of R" 7y (C)®c¢Usan defines point
by point a filtration F; of the stalk

(R"m3 (C))s =R"£2* (235 (10g D))*") R gan (Usan/My),
where m, denotes the ideal defining the point s $*".

(4.3.1) Proposition (Deligne-Hodge). The triple (R" ny(Z), W, F ) defined
above is a polarizable family of mixed Hodge structures on S*".
Proof. That it is a family of mixed Hodge structures follows from the

Deligne’s theory, point by point. It remains to see that it is polarizable.
Consider the Leray spectral sequence

(4_31_1) E5,2=Rpﬂin(qu1n Z) = RP+4 ﬂ:‘“(Z),
5‘
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When tensored with Q, it degenerates at E, and defines (a renumbering
of) the filtration W on R"z2"(Q). Thus the assosciated graded families
of Hodge structures gr” of our family of mixed Hodge structures are
isogenous to various of the E, terms of the Leray spectral sequence
(4.3.1.0) over Z.
As these latter are sub-quotients (i.e., quotients of sub-objects) of
the E, terms of (4.3.1.0), it remains to polarize the E, terms.
In the notation of (4.0.1.4), we have ((—g) denoting ®zZ(—q),
cf. (4.2.0)).
® Ry, i) (Z)(—g)  if g0
(4.3.1.2) E‘Z”“={”<“‘<‘ﬂ
RPf2"Z) if q=0.

Because finite direct sums of polarizable families are polarizable,
and Tate twists H(— q) of polarizable families H are polarizable, we need
only remark the’ following proposition, applied to X and to all inter-
sections D, N---N D, .

(4.3.1.3) Proposition (Hodge’s Index Theorem). Let f: X —S be a
projective and smooth morphism of C-schemes. Then Jor any integer
nz0, R"f2"Z is polarizable.

Proof. We may assume that X/S has geometrically connected fibres,
and is of constant relative dimension N. Let LeH? (X*,Z) be the
cohomology class of a hyperplane section, i.e. the inverse image under
the composite pr, o i

Xt SxP—22, P,
(4.3.1.4) s pn
S

of the class of a hyperplane in H?(P2", Z).

By the “hard Lefschetz theorem” ([1]), the iterated cup-product
with L

(4.3.1.5) L: RN=ifan(Z)(—i)— RV+ifa(Z)
is an isogeny (i.e., becomes an isomorphism when tensored with Q).
Thus it suffices to show that R"f2"(Z) is polarizable for n< N.
For n< N, the primitive part of R"f*"(Z) is defined by
Prim"f*(Z)=Kernel of LN-"+!: R"f2"(Z)

4.3.1.6)
— RAN=n+2 fan(Zy(N _p 4 1),
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According to the “primitive decomposition” ([43], pp. 77-79), for n=N
the mapping
4.3.1.7) @ Prim" 2 f2(Z)(—i) — L, Rfan(Z)

0<i<[n/2)

is an isogeny. Thus it remains to polarize Prim"f2"(Z) for n<N. Ac-
cording to the Hodge Index Theorem (cf. [43]), the pairing

43 Prim" f2"(Z) x Prim" £3"(Z) — R*N f2"(Z)~Z(~ N)
o (x,y))—=>xuI¥ "y, U=cup-product

is a polarization. This concludes the proof of (4.3.1.6) and of (4.3.1).

(43.2) Interpretation. When S=Spec(C), the mixed Hodge structure
(4.3.1) on H"(U*", Z) depends only on U, and not on the compactification
U< X chosen to represent U as the complement in a proper smooth
variety X/C of a divisor with normal crossings. This mixed Hodge
structure is functorial in U, in the sense that if h: U—Visa morphism
of smooth C-schemes, the induced morphisms h*: H*(V*", Z) — H"(U*, Z)
are morphisms of mixed Hodge structures. (4.3.2.1) By Hironaka [18],
any quasi-projective smooth C-scheme U may be compactified as above,
and thus its integral conomology H*(U®", Z) carries a functorial mixed
Hodge structures. The family (4.3.1) of mixed Hodge structures is just
the “interpolation” of these mixed Hodge structures on the fibres of
n:U=X—-D—S.

(4.3.3) Proposition. Hypotheses as in (4.3.0), the following conditions are
equivalent, for any integer n20.

(4.3.3.0) The Hodge filtration F on the locally free sheafR" f, (2%s(log D))
on S is horizontal for the Gauss-Manin connection V.

(4.3.3.1) The Hodge filtration F of the family of mixed Hodge structures on
s* (R"n’(Z), W, F ), is locally constant, i.e., it comes from a filtration of
R" 73 (C) by sub-local systems.

(43.3.2) There exists a finite étale covering @: S'—S such that
(@*"*(R"n3(Z), W, F) is a constant family of mixed-Hodge structures
on (S')*".

(4.3.3.3) There exists a finite étale covering ¢: S'— S such that
@*(R"£, (2% s(log D)), V)

is isomorphic to ((Os)™,d) as a coherent Og-module with connection
(b,=rank of R"f, (2xs(log D))).

Proof. By (4.3.0.6), we have (4.3.3.0) = (4.3.3.1).
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By (4.2.2.3), (4.3.1), and “Riemann’s existence theorem ” (cf. [36] and
the appendix) we have (4.3.3.1) = (4.3.3.2).

Tosee that (4.3.3.2) = (4.3.3.3), notice that (4.3.3.2) implies in particular
that the local system (@*"*(R" %" (C)) is constant on (S, i.e., iso-
morphic to (C*)san.

Thus, both ¢*(R"f, (Qys(logD)), V) and ((0s)", d) are coherent
Os-modules with integrable connections having regular singular points
(cf. 4.1) and they both give rise via (4.1.0) to isomorphic local systems on
(S')*". Hence they are isomorphic.

In order to prove that (4.3.3.3) = (4.3.3.0), we first remark that it
suffices to prove that (4.3.3.0) holds after any base change ¢: S’ > Sbya
finite étale morphism, because (4.3.3.0) is of a differential nature, hence
local on S for the étale topology. The hypothesis (4.3.3.3) implies that the
local system R" 73" (C) becomes constant on a finite étale covering, hence
also R" 73 (Q) and R" n3"(Z)/torsion become constant. As the torsion in
R"ny(Z) is a local system of finite groups, it follows that R" i (Z)
becomes constant on a finite étale covering ¢': S” — S. After making
the change of base by such a finite étale ¢’: S” — S, we are reduced to
showing that if R"n3"(Z) is a constant local system, then (4.3.3.0) (or
equivalently (4.3.3.1)) holds. This is achieved by the following more
general proposition.

(4.3.4) Proposition. Hypotheses as in (4.3.0), the largest constant sub-
local system of R" n"(Z) is a constant sub- -family of mixed Hodge structures.

Proof. In down-to-earth terms, this means the following:

(4.3.4.0) For any point seS, any element he(R" 73" (C)), which is inva-
riant under 7, ($*", 5), and any homotopy class of paths y, , from s to a
second point teS, if he F/(R" 7y (C)),, then y, ,(h)e F(R" n3" (C)),, where
Vs.i(h) denotes the element of (R"72"(C)), deduced by transporting h
along the path y, ,.

In order to establish (4.3.4.0), it suffices to do so far all pairs (s, t) of
nearby points (“nearby” in $°"), and for a single path ¥s,: (because S,
being a complex manifold, is locally simply connected). We can always
find a connected nonsingular affine curve C =S which contains a given
pair (s, t) of nearby points. When we take the inverseimage of oursituation
on C, our chosen element he(R" 13"(C)), remains invariant under 7, (C*, 5)
because the action of this group factors through 7, (S*, s). Thus it suffices
to prove (4.3.4) when S is a connected smooth affine curve, in which case
it follows from the more precise

(4.3.5) Proposition. Hypotheses as in (4.3.0), suppose that S is a smooth
connected affine curve. Then the canonical mapping of families of
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mixed Hodge structures on $*"
(4.3.5.0) (H" (U, Z))gon— R" 72°(Z)

has as image a constant sub-family of mixed Hodge structures. Its image is
the largest constant sub-local system of R" ' (Z).

Proof. The first assertion results from the fact that the category of
families of mixed Hodge structures is an abelian subcategory of the cate-
gory of local systems, and that the formation of images (as well as of
kernels and cokernels) commutes with the inclusion of the category of
families of mixed Hodge structures into that of local systems. The second
assertion will result from the equality E%"=E%" in the usual Leray
spectral sequence in integral cohomology of #*": U*"— 5%, which itself
follows from the following proposition.

(4.3.6) Proposition. Hypotheses as in (4.3.5), the Leray spectral sequence
4.3.6.0) E54=HP(S*™, Rn%"(Z)) = H?* (U™, Z)

is degenerate at E, .

Proof. It suffices to show that E5?=0 unless p=0 or p=1. This is
true, because the R? 7}’ (Z) are local systems on S$#" and because S*" is
an Eilenberg-Maclane space K (n, 1) with 7=m,(5*", 5) a free group. This
concludes the proof of (4.3.5), hence of (4.3.4) and (4.3.3) as well. Q.E.D.

4.4. We now Wish to Restate 4.3.3 “ with a Group of Operators”

(4.4.0) Let G be a finite group. The indecomposable central idempotents
in the rational group-ring Q[G] are obtained in the following way. For
every irreducible representation y of G in a finite-dimensional C-space, let

_ deg(®)

(4.4.0.0) PU)=—¢ %trace(x(g_l))‘g

denote the corresponding indecomposable central idempotent in C[G].

(44.0.1) As o runs over the group Aut(C), the irreducible representation
¥ runs over a finite number of isomorphism classes of irreducible
C-representations of G, and the projectors P(¥'”) (=0 - P(x), viewed as a
function on G with values in C) run over a finite number of distinct
indecomposable central idempotents in C[G]. We shall call the x'® (resp.
the P(x'”))) the Q-conjugates of x (resp. of P(y)).
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For each Q-conjugacy class 4 of irreducible C-representations of G,
the element

(4.4.0.2) P(A)*E" Y P(y)
xe€d
of C[G] lies in fact in Q[G], and is an indecomposable central idempotent

in Q[G]. Every indecomposable central idempotent in Q[G] is of this

form. We have
(4.4.0.3) P(4) P(4')= {P(A) if d=a

0 if not.

(44.04) Let H, be a local system of Z-modules of finite type on which
G acts. We define the G-sub-local system

(4.4.0.5) P(4) H, "=" the inverse image in Hy of P(4)(Hg)= H.
The canonical mapping of local systems

(4.4.0.6) ®P(4)H;— H,
a4

is a G-morphism and an isogeny, i.e., it becomes an isomorphism when
tensored with Q.

(44.1) If G acts on a family of mixed Hodge structures (H,, W, F)
(meaning that its action on the local system Hj, respects W and F), then
each P(4) Hy is a sub-family of mixed Hodge structures. If (H,, W, F) is
a polarizable (4.2.2.4) family of mixed Hodge structures, so is each sub-
family P(4) H,.

(4.4.2) Proposition. Hypotheses as in (4.3.0), suppose G is a finite group of
S-automorphisms of X which respects the divisor D. Let n=20 be an integer
4 a Q-conjugacy class (4.4.0.1) irreducible representation of G in complex
vector spaces, and P(4)e Q[G] the corresponding projector (4.4.0.2).

The following conditions are equivalent.

(44.20) The induced Hodge filtration F on the locally free sheaf
P(0)(R"f,(2%s(log D)) on S is horizontal Jfor the Gauss-Manin connec-
tion, for every irreducible representation X in the given Q-conjugacy class A.

(4.4.2.1) The Hodge filtration F of the family of mixed Hodge structures
on §*, (P(4)R" ' (Z), W, F), is locally constant, i. e., comes from a
Jiltration of P(4) R" n2"(C) by sub-local systems.

(44.22) There exists a finite étale covering ¢: S'—S such that
(@*")*(P(4) R" n%(Z), W, F) is a constant famil y of mixed Hodge structures
on (S')*".
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(4.4.2.3) There exists a finite étale covering ¢:S'— S such that, for every
irreducible y on the Q-conjugary class A, ¢*(P(x) R" £, (Q%/s(log D)), V)
is isomorphic to ((0s)®,d) as a coherent Og-module with connection
(bux)=rank of P(x)(R",(2%,s(log D))

Proof. The proof of (4.3.3) applies almost verbatim. The implications
(4.4.2.0)<>(4.4.2.1) = (4.4.2.2) are proved as in (4.3.3), remembering that
(P(4) R" % (Z), W, F) is polarizable (by (4.4.1) and (4.3.1)). The implica-
tion (4.4.2.2) =(4.4.2.3) is proved as in (4.3.3), remembering that each
(P(x) R" £, (Q3,s(log D)), V) has regular singular points, being a sub-object
of (R"f, (Qxs(log D)), V). This final implication (4.4.2.3) = (4.4.2.1) may
be reduced, as in (4.3.3), to the case in which the local system P(4) R" i (Z)
is constant. But in that case, we have (P(4) being idempotent).

(44.2.4) P(4) R"n™(Z)=P(4)- 1 where I =the largest constant sub-local
system of R" 73} (Z).

By (4.3.4), I is a constant sub-family of mixed Hodge structures,
hence (4.4.1) so is P(4)I=P(4)R"n{(Z), and in particular (4.4.2.1)
holds. Q.E.D.

5. Applications to the Question of Grothendieck

5.0. A Global Situation

(5.0.0) Let A be a subring of C which is finitely generated over Z, and
put T=Spec(A). Let g: S— T be a smooth morphism with geometrically
connected fibres, and f: X — S a projective and smooth morphism. Let
D= U D; be a union of divisors in X, each smooth over S, which have
normal crossings relative to S.

D

\

X

(5.0.0.0)

~

T

(5.0.1) Let % S be an affine open neighborhood of the generic point of
S over which each of the Hodge cohomology sheaves R”f, (Q%s) is a
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locally free module of finite rank. (Such a # always exists.) Then, over %,
the Hodge = De Rham spectral sequence

(50.1.0)  Ep?=R4f,(Q%;(log D)) =R?*4f, (23, (log D))

is degenerate at E,. Let us recall why this is so. By Deligne’s mixed Hodge
theory ([8], 3.2.13), this spectral sequence degenerates at E, over the
generic point of %. Because E, is locally free over %, the vanishing of d,
at the generic point implies its vanishing on all of %. Then E,=E, is
locally free on %, so d,=0 on % because d,=0 at the generic point
of %... this proves inductively that all d,=0over %.

By (2.2.1.11), after any change of base §'— § which factors through %,
the spectral sequence (5.0.1.0) will continue to have E, locally free of
finite rank, and to degenerate at E,.

(5.1) Theorem. Hypotheses as in (5.0.0), let n=0 be an integer. Suppose
that there is some non-void affine open set U =S satisfying (5.0.1), and an
infinite set X of prime numbers P, such that the following condition (5.1.0)
holds

(5.1.0)  For every point of Twith values in (the spectrum of ) a finite field
K, of characteristic pe X, after the base change Spec(F,)— T,

Dy®F,——Dy——D

| |

Xa®F, —— X, —— X

5100 | [

UQF,—— U §

|

Spec(F)) —— T

the p-curvature of the free On ® 4 F, module with integrable connection
relative to F,

(5.1.0.1) (R"f, (2%,s(log D))| %, V) ®F,

is zero, in other words, that the inverse image of R"f, (Q%s(log D)) on
U @K, is spanned by its horizontal sections.
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(5.1.1)  Then after the change of base Spec(C)— T,

De— D

Xc — X
(5.1.1.0)
Se— S

| |

Spec(C)—— T

the coherent sheaf with integrable connection on S¢
(5.1.1.1) (R"f¢,(Qxgsc(log D)), V

becomes trivial on a finite étale covering ¢: S'— S¢, i.e., becomes isomorphic
to (O ), d), where b,=the rank of R"f,(Q%s(log D)) over the generic
point of S.

Proof. By (4.3.3), it suffices to prove that the Hodge filtration F on
R" f¢, (2% sc(log Do) is horizontal for the Gauss-Manin connection. For
this it suffices to prove that the Hodge filtration is horizontal over %,
since the obstruction to the horizontality is the Os -linear Kodaira-
Spencer mapping between locally free Os.-modules (cf. (1.4.1.8))

S) quc,(gic/sc(l()g Dc))
(5.120) T
_‘2‘_’1’+(‘? "Q.lsc/c®Rq+1fc, (Qﬁz/lsc (log Dc))
which cannot vanish over the open set % without vanishing on
Sc. We will in fact prove that the Hodge filtration is horizontal on
R"f, (Q%s(log D))|%, or equivalently that for any section D of Der(#/T),
the 0,-linear Kodaira-Spencer mapping between free ¢-modules

(5121) ® R, (Q%slogD)l%—L2> & R+ (QYs' (log D)%
pt+gq=n p+q=n
vanishes.

Let % =Spec(B). By (3.3.1), the hypothesis (5.1.0) implies that for
every point of T with values in (the spectrum of) a finite field F, of
characteristic pe 2, the inverse image on B® 4, F, of the mapping p(D) is
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zero. This implies that for every maximal ideal m of B such that B/mB
has characteristic pe X, the inverse image on B/m B of the mapping p(D)
vanishes, i.e., all the matrix coefficients of p(D) lie in m. Because B is a
finitely generated integral domain whose fraction field is of characteristic
zero, it follows immediately from Noether’s normalization theorem that
for any infinite set ~ of prime numbers, the intersection of all maximal
ideals of B with residue characteristic in X is reduced to zero. Thus the
Kodaira-Spencer mapping (5.1.2.1) vanishes. This concludes the proof.

5.2. A Global Situation with a Group of Operators

(5.2.0) Hypotheses as in (5.0.0), let G be a finite group, which acts as a
group of S-automorphisms of X which are stable on D. Let g be the least
common multiple of the orders of the elements of G, and let Ay=
Z[1/g, ¢,], where &, is a primitive g-th root of unity. We suppose 45 4,,.

(5.2.1) Asis well-known (cf. [38]), every irreducible representation of G
in a finite dimensional complex vector space may be obtained by extend-
ing scalars from a representation of G in a locally free A,-module of
finite rank.

(5.2.2) By (3.2.2bis), if y is any representation of G in a locally free
Ao-module which is irreducible over C, its “reduction” modulo any
maximal m of Ao, x(m), is absolutely irreducible over Ap/m. Letting o
denote any automorphism of C which extends the Frobenius automor-
phism corresponding to m of 4,, we have X7 (m)=x(m)® (cf. (3.2.1)). In
particular, y (m) and x (m)® are obtained from irreducible representations
in the same Q-conjugacy class (cf. (4.4.0.1)). Replacing the reference
(4.3.3) by (4.4.2), the proof of yields:

(5.3) Theorem. Hypotheses as in (5.2.0), let n=0 be an integer, and let A
be a Q-conjugacy class of irreducible C-representations of G. For each
X€4, let P(y) denote the corresponding projector in A,[G] (¢f. (4.4.0),
(4.4.0.1)). Suppose that there is a non-void affine open set U =S satisfying
(5.0.1), and an infinite set X of prime numbers, such that the following con-
dition holds.

(5.3.0)  For every point of T with values in ( the spectrum of ) a finite field
F, of characteristic peZ, after the base change Spec(F,)—T (¢f. the
diagram (5.1.0.0)), the p-curvature of each of the free 0, ® , F, modules
with integrable connection

(5.3.0.1) (PG)R"f, (2s(log D))\ %, V)®F,, ye4

is zero.
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Then after the change of base Spec(C)— T (cf. the diagram (5.1.1.0))
each of the coherent sheaves with integrable connection on S¢

(P()R"fe.(Qosclog D) V),  xe4

becomes trivial on a finite étale covering ¢: S'— Sc, i. e., becomes isomorphic
to ((0s)™™, d), where b,(y) is the rank of P(x)R"f, (Q%,s(log D)) over the
generic point of S.

5.4. The Birational Point of View

(54.0) Let S¢ be a connected smooth C-scheme, and (Mc, V) a locally
free sheaf of finite rank with integrable connection on Sc.

(54.1) Remark. In order that there exist a finite étale covering of S¢ on
which (Mc, V) becomes trivial (as locally free sheaf with integrable
connection), it is necessary and sufficient that there exist a finite exten-
sion K of the function field L of S¢ such that (M, Vo) ® K is trivial (i.e.,
so that M. ® K is spanned over K by horizontal sections).

(54.2) Proof. The necessity is obvious. For sufficiency, notice that by
hypotheses (M, V) becomes trivial on a finite étale covering % of some
nonvoid affine open set % < S¢. Thus (M, V) on % has regular singular
points, hence on %, hence on S¢ (cf. [7], 4.1). So it suffices to prove that
the associated monodromy representation of 7, (S, 5) on the C-space M;
of germs of holomorphic horizontal sections at s factors through a finite
group. Taking se %, we have by hypothesis that the composite

7y (U, 5)— 1 (Sc, ) — Aut(M,)

factors through a finite group. As m, (%, s)— m,(Sc, s) is surjective, it
follows that the monodromy representation of m, (S¢, s) factors through
a finite group. Q.E.D.

(54.2.1) When either of the equivalent conditions of (5.4.1) holds, we
say that (Mc, V¢) has a full set of algebraic solutions.

(54.3) Fix an infinite set X of prime numbers. Let 4 be a finitely gene-
rated (over Z) subring of C, T=Spec(A), %— T an affine smooth mor-
phism with geometrically connected fibres whose “complex fibre™ %
“is” an affine open subset of S¢, and (M, V) a free 04-module of finite
rank with integrable connection relative to T, whose inverse image on
U “i8” (M, Vo)l Uc .

Consider the following property:

(54.3.1) There is an affine open set ¥” <4 such that for every point of T
with values in (the spectrum of) a finite field F, of characteristic peZ,
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after the base change Spec(F)— T

VOF,—— ¥ cu

|

Spec(F)) —— T
the p-curvature of the free Oy ® F;-module with integrable connection

v

is zero. (M, 7)]7)SF,
(5.4.3.2) A standard “passage to the limit” shows that if the property
(5.4.3.1) holds for one set of choices

(A, %, (M, 7))

then it holds for every choice. It is thus an intrinsic property of the germ
of (Mc, V) at the generic point of S, which we call having p-curvature
zero for almost all primes peX.

Thus, given a function field K/C (i.e., a finitely generated field exten-
sion of C), a differential equation (N, V') over K (i.e., a finite dimensional
K-space N together with an integrable connection V: N— Qk/c®kN),
and an infinite set  of prime numbers, it makes sense to say that (N, V)
has or has not p-curvature zero for almost all primes peX.

(54.3.3) Because p-curvature is a differential invariant, its vanishing is
of a local nature for the étale topology. It follows that (N, V) has p-
curvature zero for almost all pe X if and only if there exists a finite alge-
braic extension L/K such that (N, ¥)® L has p-curvature zero for almost
all peX. K :

Putting together (5.4.1) and (5.4.3.3), we have the obvious

(5.4.4) Proposition. Let (N, V) be a differential equation over a function
field K/C (5.4.3.2). If (N, V) has a full set of algebraic solutions, then it has
p-curvature zero for almost all primes p.

(54.5) Let K/C be a function field, and let Uy be a smooth quasi-projec-
tive K-variety. By Hironaka ([18]), we can find a projective and smooth
K-variety Xy which contains Uy as an open set, such that the complement
Dy = Xy — Uy is a union of smooth divisors D; x in Xy which have normal
crossings. By “general nonsense”, we can find a finitely generated sub-
ring A of C, a smooth Spec(A)-scheme S with geometrically connected
fibres such that K is the function field of its complex fibre S¢, a projective
and smooth S-scheme f: X— S and divisors D, in X which are smooth
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over S and cross normally relative to S, such that the fibre of X (respec-
tively of D;) over the generic point of S€ is Xy (resp. D; ).

(5.4.5.1) The stalk over the generic point of S¢ of the coherent Og-
module with integrable connection relative to T

(54.5.2) (R"f,(Q%,5(log D)), V)
is the differential equation over K
(54.5.3) (Hpr(Ug/K), V).

Combining (5.4.1),(5.4.3.2),(5.4.4) and (5.4.5.1), we may restate Theorem 5.5
birationally:

(5.5) Theorem (=5.1bis). Let K be a function field over C, U a smooth
quasi-projective K-variety, and n=0 an integer. Then the following condi-
tions are equivalent.

(5.5.1) (Hpr(U/K), V) has a full set of algebraic solutions

(5.5.2) There exists an infinite set X of prime numbers such that
(Hpr(U/K), V) has p-curvature zero for almost all pe X.

(5.5.3) (Hpr(U/K), V) has p-curvature zero for almost all primes p.

5.6. In the situation of (5.4.5), suppose that a finite group G acts as a
group of K-automorphisms of Ug. By Hironaka ([18, 19, 41]) we can
find a compactification Xy of Uy as in (5.4.5) on which G acts as a group
of K-automorphisms, so that Ug— Xy is a G-morphism. By “general
nonsense”, we can find A4, S, X, D; as in (5.4.5) such that G acts as S-auto-
morphisms of X preserving D=| ) D;, in a way which “gives back”
the action of G on X by passage to the generic point of S¢. Thus we may
restate 5.3 with a group of operators in a birational way.

5.7. Theorem (=5.3bis). Let K be a function field over C, U a smooth
quasi-projective K-variety, G a finite group which acts as a group of
K-automorphisms of U, n=0 and integer, and A a Q-conjugacy class
(4.4.0.1) of irreducible complex representations of G. Then the following
conditions are equivalent :

(5.7.1) For each irreducible representation y€d, the yx-parts of the de
Rham cohomology (P (x) Hpr(U/K),V) has a full set of algebraic solutions.

(5.7.2) There exists an infinite set X of prime numbers such that for every
x€4, (P(x) Hyr(U/K), V) has p-curvature zero for almost all primes pe X.

(5.7.3) For every yed, (P(x) Hyr(U/K),V) has p-curvature zero for
almost all primes p.
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6. Applications to the Hypergeometric Equation

6.0. Relations with Ordinary Differential Equations

(6.0.0) Let T a scheme, S a smooth T-scheme, and (M, V) a locally free
Os-module of finite rank with an integrable T-connection. Recall that
the dual of (M, V), noted (M, V), is defined by

(6.0.0.1) M = Hom,_ (M, 05)

with the connection V defined by requiring that for local section m of M,
m of M, and D of Der(S/T), we have

(6.0.0.2) KV (D)(m), iy + <{m, V(D) (i) = D ({m, m)).
Iteration of (6.0.0.2) gives, for every integer n>1,
(6.0.0.3) D"({m, my)= -i ( :l) V(D)= (m), (V(D)) ().

Taking n=p in characteristic p, we find

(6.0.1) Remark. Hypotheses as in (6'0'0)L if Tis a scheme of characteristic
p, then the p-curvature (cf. [24], 5.2) of (M, V) is the negative of the trans-
pose of the p-curvature of (M, V):

(6.0.1.0) Yy (D) (m), iy + m, Yz (D) ()> =0.

(6.0.2) Proposition. Hypotheses as in (6.0.0), suppose T is a reduced and
irreducible scheme of characteristic p. Let k denote its function field.
Suppose S is a smooth T-scheme which is irreducible, and denote by K its
Junction field. The following condition on (M, V) are equivalent.

(6.0.2.0) (M, V) has p-curvature zero.
(6.0.2.1) (M, V) has p-curvature zero.
(6.0.2.2)  The dimension over k - K? of (M @ K is the rank of M.

(6.0.2.3)  The dimension over k - K? of (M @K)’ is the rank of M.

Proof. By (6.0.1), (6.0.2.0)<>(6.0.2.1), so it suffices to show that
(6.0.2.0) <> (6.0.2.2). For this, we form the cartesian diagram

sP_a ¢

(6.0.2.4) ls‘?’ lg

T Fabs T
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and “decorate” it with the relative Frobenius F: § — S

§s—Ff ,ep»_o ,g F ,q0P

(6.0.2.5) \ lgm 13 /

T Fabs T

The corresponding diagram of function fields is

K Dk KP X=X K« > k- KP

(6.0.2.6) J L

kXte=xk

By Cartier’s theorem (cf. [24], 5.1), (M, V) has p-curvature zero if and
only if the canonical morphism

(6.0.2.7) F*(F,(M"))—> M

is an isomorphism. On the other hand, since the p-curvature may be
interpreted as an Os-homomorphism

(6.0.2.8) ¥ M — FA (1) ®os M

between locally free modules, it vanishes if and only if it vanishes over the
generic point of S. Using Cartier’s theorem over the generic point, the
p-curvature vanishes there if and only if the canonical map of K-vector
spaces
(6.0.2.9) MKV R®K—->M

kKP
is an isomorphism. Thus it remains to prove only that (6.0.2.9) is an
isomorphism if and only if its source and target have the same dimension.
This is indeed the case, because (6.0.2.9) is always injective; in fact we
have the apparently more general

(6.0.3) Proposition. Let T be a scheme of characteristic p, S a smooth
T-scheme, and (M, V) a quasi-coherent Os-module with integrable T-
connection. The canonical mapping ( cf. the diagram (6.0.2.7))

(6.0.3.0) F,(M")®qgm Os=F*(F, (M")) > M
is always injective.

Proof. The question is local on S, so we may assume § is étale over
A% via X, ..., X,. Then Oy is a free F~!(Ogw»)-module with basis the
monomials X% <" X1, .. X" having 0< W, < p— 1. Thus we must show

6 Inventiones math., Vol. 18
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that whenever horizontal sections my,, one for each exponent-system W
as above verify

(6.0.3.1) Y X¥"my=0 in M
w
then all my, =0. o W
(7x)

Let |W|=) W,eZ, and put DW:HT

because all W;<p—1. For any two exponent V, W as above, we have

; this has a meaning

DY(X")=0 unless W2V, for all i
(6.032) D'(X")=1

DV(XW)=(H (

wW.
V’))XW“V if W,2V;, forall i.

Suppose that (6.0.3.1) holds, but that not all my =0. Among exponent
systems W having my, +0, let V have a maximal weight |V|. Let’s apply
V(DY) to (6.0.3.1):

(6.0.3.3) Y P(DV)(X¥ my)=0.

Because all the my, are horizontal, V(D¥)(X¥ my)=D (X*) - m,,, whence
(6.0.3.3) becomes

(6.0.3.4) Y DY (X¥)-my,=0.
w

By construction, |W|>|V| implies my =0, while |W|<|V| implies
D¥(X")=0, and |V|=|W|, V+ W implies D" (X")=0, as follows from
(6.0.3.2). Thus (6.0.3.4) reduces to

DV(XV) mV=0

whence my, =0, a contradiction. Q.E.D.

(6.04) Let T be any scheme, and S a scheme étale over Al via a section
X of Os. Let (M, V) be a free OUs-module of rank n with integrable T-
connection, such that there exists a basis ey, ...,e,_, of M in terms of
which the connection takes the form

d .
4 (—K)(e")=ei+l for 0Zig<n-2
(6.0.4.0)

d n—1
4 ( ax ) (en—1)=i=Zoa.~ e ael(S,0y).
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Let &, ..., é,_, denote the dual basis of the dual module M. A section
n—1
(6.0.4.1) Y fié&, f: local sections of O
i=0

is horizontal for the dual connection ¥ on M if and only if its coefficients
satisfy

%=f,~+l for 0Sisn-2
(6.0.4.2)
dfn—1 "2l
dX =. aifi‘
Thus i=0

(6.0.43) The projection M — 05 defined by ) f;&— fo induces an
isomorphism between (M Y, the sheaf of germs of horizontal sections of
M, and the sheaf of germs of sections of g which are annihilated by

d \" n—1 d i
(dX) ",.go“"(dx)‘
If T has characteristic p, this isomorphism is F ~* (Os»)-linear. Combining
(6.0.4.3) and (6.0.2), we find

(6.0.5) Proposition. Let T be a reduced and irreducible scheme of charac-
teristic p, S an irreducible scheme which is étale over At by means of a
section X of Og. Let k (resp. K) denote the function field of T (resp.S).
Let (M, V) be as in (6.0.4). Then (M, V) has p-curvature zero if and only
if the field K contains n=rank M solutions of the ordinary differential
equation

n—1

605.1) (T =T a (o)

which are linearly independent over the subfield k - KP.

(6.0.6) Suppose further that k is a perfect field (then k K?=K?). For
any discrete valuation v of K, let v, denote the induced valuation of KP.
Clearly the ramification index e(v/v,) (= the index of the value groups) is
p. As K is a p-dimensional vector space over KP, it follows that if ¢ is a
uniformizing parameter in K vor v, the elements 1,¢, ..., t?~! form a
basis of K over KP, and thus provide an isomorphism of KP-vector
spaces

(6.0.6.0) K~K’® - @KP.
e
ptimes

In terms of this isomorphism, the v-adic topology on K is just the p-fold
product of the vy-adic topology on K?;
6‘
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ord, (pilfip ti) =min,(ord, (f* 1)
i=0
=min, (i +p Ordvo (flp)) :

Let K, (resp. (K*),,) denote the completion of K (resp. KP) with
respect to the valuation v (resp. v,). Then (6.0.6.0) gives

(6.0.6.1)

(6.0.6.2) K,~(K?),,®- - ®(K"),,~K® (KP),,.
Kp

ptimes

Since (K?),,=K?, we have
(6.0.6.3) K,=K®K?.
KP
Let Soln(K) (resp. Soln(K,)) denote the K” (resp. K?2) vector space of

solutions of the differential equation (6.0.5.1) which lie in K (resp. in
K,). Then

(6.0.6.4) Soln(K,) <~ Soln(K)® K?.
Kp
This is because the differential operator
d \" n-1 d i
is KP-linear, and the differential operator
d n n-1 d i
(6.0.6.6) (—(17) -1 (71?) K,>K,

is deduced from (6.0.6.5) by the (flat!) extension of scalars K< Kz

(6.0.6.7) Because we can “clear denominators” by multiplying by
p-th powers, the spaces Soln(K) and Soln(K,) are in fact spanned by
those solutions which lies in the valuation rings of K and K, respectively,
or indeed by solutions which lie in any subring of K (resp. of K,) whose
fraction field is all of K (resp. K,).

Putting this together with (6.0.5), we find

(6.0.7) Corollary. Hypotheses as in (6.0.5), suppose k perfect, and let v be
any discrete valuation of K. Then (M, V) has p-curvature zero if and only if
the complete field K,,, or its valuation ring 0,, contains n=rank M solutions
of (6.0.5.1) linearly independent over K?.

(6.0.8) Remark. The assumption that k be perfect is used to insure that
for any discrete valuation v of K, noting vy its restriction to kKP, we
have ramification e(v/v,)=p. When k is not perfect, it can happen that
e(v/ve)=1 (cf. Bourbaki, XXX-Algebra Commutative, chpt. 6, excercise
3b)to § 8, p.187).
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6.1. The Hypergeometric Equation-Definition

(6.1.0) For any scheme T, we will denote by A the standard coordinate
on AL, and by S; the open subset of A} where the section A(1—A)e
(A}, 0 Ay) is invertible.

For any sections a, b,cel(T,07), we define the hypergeometric
module E (a, b, ¢) on Sy to be the free U5, -module of rank two with base e,
e;, and integrable T-connection

d
. 7 (37) o=
610 V(d) __(e—(a+b+1)2) ab
dl (el)— A(l_x) €, A(I—A) €g.

As explained in (6.0.4.3), the horizontal sections of the dual of E(a, b, c)
over an open set % of Sy “are” the sections fe I'(%, U) which satisfy the
hypergeometric equation with parameters a, b, ¢

2
6.12)  A(l—2) (%)(f)+(c—(a+b+1)/1)j—£—abf=o.

6.2. Theorem. Let T=Spec(A), with A a finitely generated subring of C,
and let a, b, ce A. The following conditions are equivalent:

(6.2.1) The hypergeometric module E(a, b, c) on S¢ becomes trivial on a
finite étale covering of Sc.

(6.2.2) There exists a finite extension of the field C(A) over which E(a, b,c)
becomes trivial.

(6.2.3) The hypergeometric equation (6.1.2) with parameters a, b, c has a
full set of algebraic solutions (cf. (5.4.2.1)).

(6.2.4) 'The hypergeometric equation (6.1.2) with parameters a, b, ¢, has a
finite monodromy group.

(6.2.5) The inverse image of E(a, b, ¢) on C(A)/C has p-curvature zero for
almost all primes p (cf. (5.4.3.2)).

(6.2.6) The parameters a, b, c are all rational numbers, and for almost all
primes p, the reduction modulo p of the hypergeometric equation (6.1.2)
with parameters a, b, ¢ has two solutions in ¥, [1] (resp. F,(4), resp. F,[[4]],
resp. F,((A))) which are linearly independent over F,(A?) (resp. F(4P),
resp. F, (A7), resp. F,((A7)).
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Proof. By (5.4.1), (6.2.1)<>(6.2.2), and by (6.0.4.3), (6.2.2)<>(6.2.3). Be-
cause the hypergeometric equation has regular singular points, (6.2.3)<>
(6.2.4). By (5.4.4), we have (6.2.2)=(6.2.5). By ([24], Theorem 1.3.0), (6.2.5)
implies that E(a, b, ¢) has regular singular points on S¢, and that its
local monodromy around each singular point 0, 1, oo is of finite order. In
particular, (6.2.5) implies that E(a, b, ¢) on Sc has rational exponents at
each of 0, 1, co, or, what is the same, that the hypergeometric equa-
tion (6.1.2) with parameters a, b, ¢ has rational exponents at 0, 1, co. As
the exponents are 0 and 1—c at 0,0 and c—a—b at 1,and a and b at oo,
(6.2.5) implies that a, b, ce Q. The rest of the implication (6.2.5) = (6.2.6)
results from the fact that E(a, b, ¢) “comes from” T=an open subset of
Spec(Z), so that we may test for “p-curvature zero for almost all p” by
seeing if the reduction mod p on E(a,b,c) on S, has p-curvature zero
for almost all p (and perform this latter test prime by prime availing
ourselves of (6.0.6.7) and (6.0.7)).

The implication (6.2.6)=(6.2.5) follows by (6.0.6.7) and (6.0.7).

To conclude the proof, we must show that (6.2.6) implies one of the
equivalent conditions (6.2.4) or (6.2.2). This will occupy the rest of this
chapter.

6.3. Conclusion of the Proof of 6.2 in a Special Case
(6.3.0) Proposition. Suppose that one of the “ exponent differences”

(6.3.0.0) l-c, c¢—a—=b, a-—b

lies in Z. Then (6.2.6) implies (6.2.4).

Proof. By ([24], Theorem 1.3.0), the hypothesis (6.2.6) implies that the
local monodromy of the hypergeometric equation with parameters a, b, ¢
around each singular point 0, 1, oo is of finite order. The (topological)
fundamental group of P! — {0, 1, co} is (the free group) generated by any
two of the elements y,,7y,,y, (where y,=* turning once around s”,
s=0, 1, 00). Thus the monodromy group of the hypergeometric equation
is generated by the local monodromy around any two of the three singular
points 0, 1, c0. As each of local monodromy transformation is of finite
order, it suffices to show that any one of them commutes with any other
of them (then the monodromy group is an abelian group, generated by
two elements of finite order, hence is finite n.

The integrality of one of the exponent differences means that one of
the local monodromy transformations has both eigenvalues equal. As it
is of finite order, hence semisimple, this local monodromy transformation
is necessarily scalar, and hence commutes with either of the other two
local monodromy transformations.
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6.4. Solutions of the Hypergeometric Equation in Characteristic p

(6.4.0) Proposition (compare [23]). Let a,b,c be integers contained in
{0, 1, ..., p— 1}. In order that the hypergeometric equation with parameters
—a, —b, —c admit two “mod p” solutions in F,[A] which are linearly
independent over F,(A), it is necessary and sufficient that either b>c=a or
a>cz=b.

Proof. Let £ =¢(—a, —b, —c) denote the hypergeometric differential
operator with parameters —a, —b, —c;

f=t(—a, —b, —)=A(1—2) (_‘%—)2
(64.0.1) )
+[-c—(1—a=b) 2] -—ab.

¢ isan F,[47]-linear endomorphism of F,[4], which maps the F,-module N
of polynomials of degree at most p—1 to itself (in an F,-linear manner).
Because the canonical map

(6.4.0.2) F,[1] «<—F,[A]®§,N

is an isomorphism of F, [A¥]-modules, we have (F, [A7] being flat over E,!)
an isomorphism of F,[4”]-module

(6.4.0.3) Ker/ in F,[A] <—F,[A"]®g,(Ker ¢ in N).
Similarly, we obtain isomorphisms

(6404) Ker/ in F,(}) —F,(A")®g,(Ker ¢ in N),
(6405 Ker¢ in F,[[A]]<—F,[[A"]]®g, (Ker ¢ in N),
(6.40.6) Ker/ in FE,((A)——E,(4")®F,(Ker/inN).

We next calculate the matrix of £/(—a, —b, —c) acting on N, in the basis
1,2,...,AP~ of N: for any integer n, we have

(6.4.0.7) {(—a, —b, —c)(A")=n(n—1—c) A"t —(n—a)(n—b) A".
Define polynomials P, Q by

P(X)=—(X —a)(X —b)

(6.4.0.8) 000 =(X + DX —0).
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Then the matrix of £(—a, —b, —c)on N is

P(0) Q(0)
P(1) 2(1)

(6.4.0.9) P@)

0(p—2)
CP(p—1)

It’s proper values are thus its diagonal terms. If a=b, then all but one of
these diagonal terms is non-zero, and hence zero is a proper value of
multiplicity one, which implies that the kernel of £ (—a, —b, —c)in N is
one dimensional. Thus we may assume a+b, and that a<b, since the
problem is symmetric in a and b.

As a#b, the matrix (6.4.0.9) has precisely two diagonal terms which
vanish, namely P(a) and P(v). The subspace N(<b) of N consisting of
polynomials of degree <b is stable under Z, and ¢ is invertible on
N/N(<b). Since the formation of the maximal nilpotent subspace is an
left exact functor, it follows that the inclusion of N (£b) in N induces an
isomorphism

(6.4.0.10) Ker/ in N(gb)—>Ker/ in N.

Furthermore, the subspace N (Sa—1)of N(Zb) consisting of polyno-
mials of degree <a— 1 is stable under ¢, and ¢ is invertible on it. It follows
that the projection of N(<b) onto N (Sb)/N(=a—1) induces an isomor-
phism

(64.0.11) Ker/ in N(Zb)—>Ker/ in N(=b)/N(=a-1).
The matrix of #/(—a, —b, —c) on N(Zb)/N(Za—1)is
Pl@) Q(a)
Pa+1) Qa+1)

(6.4.0.12) Plat2) ~\

e 0b-1)
P(b)
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which has the shape

0 Q(a)
* Qa+1)
(6.4.0.13) x
% Q(b-1)

0

the #’s indicating non-zero diagonal terms. If none of the off-diagonal
terms vanishes, this matrix obviously has as image the subspace
N(£b—1)/N(Za—1) of N(£b)/N(La—1), and hence has one-dimen-
sional kernel. Conversely, if one of the off-diagonal terms vanishes, then
the matrix (6.4.0.13) is in block form

0
» (O

*?
*?
*7

O
*(0
*7
2 O

*7?
*7

ON
0

and clearly has two-dimensional kernel. But the off-diagonal terms are
Q(a), Q(a+1),...,Q(b—1). As the only possible zero of Q(X) in
{0, ..., p—2}is ¢, it follows that an off-diagonal term of (6.3.0.13) vanishes
if and only if ce{a,a+1,...,b—1}. Q.E.D.

(6.4.0.14)

6.5. The Calculus of Fractional Parts ([44])

(6.5.0) For any real number X, its fractional part {(x) is the unique real
number satisfying



90 N.M. Katz:

0=<{xy<1

6.5.0.1
( ) x=<{x)modulo Z.

As real valued function, it satisfies
{x>=0<«xeZ

GO+ D) =<x+y>
{x)=(y><>x=ymod Z
{xP+{—x>=1 if xeZ.

(6.5.0.2)

(6.5.1) For any prime number p, and any x€QnZ, (i.e, any rational
number with denominator prime to p), we define R, () to be the unique
integer such that

0<R, ()<p—1
(6.5.1.0) =R,@=p

a=R,(x) modulo PQNZ,).
As function from Q N Z,t0{0,1,...,p—1}cZ, it satisfies
(6.5.1.1) R,(®)=R,(f)<>a=p mod pPQnZ).

(6.5.2) Lemma. Let aeZ, NeZ, and suppose pXN. Choose integers B
and A such that pA=1+ NB. Then

1 —a ad o
(6.52.0) R, ()= <<_N_> —W>'
—a —aB aB aB
proof &y (7) =R (7g) =R, (“1—727)=RP‘“B)=”<7>
_ <1(PA—1)>_ <14_ :
—P p N P\~ PN
ad a
—P<<‘N—>—W> Q.E.D.
(6.52.1) Corollary. If o, NeZ, %¢z, and py N, then if p>|a|, we have
1 —o ad o
(6.5.2.1.0) ?R,,( . )=< N >—pN.

a4
Proof. As ]%—é Z, and 4 is invertible modulo N, —a]-v—qé Z, and hence

ad 1,2 N-1
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o 1
As p>|al, W{<ﬁ, and hence
ad o
5.2.1.2 <(— ) ——
(6.5.2.1.2) 0__<N> pN<1
whence

ad o ad o

(6.5.3) Corollary. Let aeZ, N€Z with N %0. For each invertible element
A in Z/N Z, we have the limit formula

ad oo
<T> i ye¢z

o1 —a . a o
_— —_—) = —_ <
(6.5.3.1) 1;111;} RP( N ) 0 if NeZ, N_O
p4=1(N)

1 if Xez 2so.

Proof. If a/N ¢Z, this follows immediately from (6.5.2.1). If «/N€Z,
then for all primes p>|al,

—a o
_ if —<
LR (—oc)_<—a>_ Np if N=0
p "\ N/ \Np/ @« ..o
1 Np if N>0.

6.6.0. Proposition. Let a, b, ce Q, and suppose that none of the “exponent
differences” 1—c, c—a—b, a—b lies in Z. In order that (6.2.6) be verified,
it is necessary and sufficient that both of the following conditions be verified.

(6.6.0.1) None of the numbers a, b, c—a, c—b lies in Z.

(6.6.0.2) Let N be a common denominator for a,b,c. For every AeZ
invertible in Z/N Z, we have

either 1>{ad)>{c4)><b4>>0
or 1><{bA4>>{cd)><ad>>0.

Proof. Let’s first prove sufficiency. Fix a4 invertible in Z/N Z, and
suppose, to fix ideas, that 1><{b4)><{cd4)><ad)>0. Our limit
formula (6.5.3.1) then implies that for all sufficiently large primes p such
that p4=1(N), we have

(6.6.0.3) 1>%R,,(——b)>%R,,(—c)>%Rp(—a)>0.
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By (6.4.0), this implies that the hypergeometric equation with para-
meters a, b, ¢ has “two” mod p solutions for all sufficiently large primes
p satisfying pA=1(N). As there are only a finite number of 4’s to consider
(Z/N Z being finite), (6.2.6) follows. Now for the necessity. Choose a 4
invertible in Z/NZ. By hypothesis, for every sufficiently large prime p
with p4=1(N), we have either

1 1 1
6.6.0.4 —R,(=b)>—R,(—c)=—R,(—
( ) » p( )>p p( C)_p p(—a)
or
(6.6.0.5) iR,,(»a)>iRp(—c)g—1~R,,(~b).
P p p

As there are infinitely many primes with p4=1(N), either (6.6.0.4) or
(6.6.0.5) must hold for infinitely many such primes. As the roles of a and
b are symmetric, we may suppose (6.6.0.4) holds infinitely often for such
primes. We may then apply the limit formula (6.5.3.1) to (6.6.0.4), to
obtain one of the following inequalities

(6.60.6)  1><bA>2(cAy2<ady>0 if a¢Z, beZ,
(6.60.7)  1><bA>2{cAy>0 if b¢Z, aeZ and a<0,
(660.8)  1><cA>=<ad)>0 if a¢Z, beZ and b>0,
(6609)  1><c4>>0 if a,beZ, b>0 and a<0.

We now use the hypothesis that none of the exponent differences”
l—c, c—a—b, a—b lie in Z to eliminate the last three cases. Since
a—b¢Z,(6.6.0.9) is impossible, i.e., not both a and b are integers.

IfbeZ, b>0, then % R, (b)~1for all p sufficiently large, so for every 4

which is invertible modulo N, the limit formula gives
(6.6.0.10) 1><{cd)=<ad>>0.

In particular, replacing 4 by — 4,

(6.6.0.11) - 1>{—=4c)=z{(—4a)>0.

But (—Adcy)=1-{dc), (—4ad)=1-{4a), so that (6.6.0.11) is the
opposite inequality to (6.6.0.10), and we conclude {cA)y=<ad) forall 4
invertible mod N. Hence {c)=<{a), whence c—a lies in Z, whence (as
beZ), c—a—b lies in Z, contrary to hypothesis. Thus (6.6.0.8) does not
occur.
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IfaeZ,a<0, then % R,(—a)~1 for all p sufficiently large. Then for
any A invertible mod N, the limit formula gives
(6.6.0.12) 1><bA4)={c4>>0.

Just as above, replacing 4 by — A shows (b4 = {c4) for all invertible 4
modulo N. Hence c—b lies in Z, hence (as aeZ), c—b—a lies in Z,
another contradiction, so (6.6.0.7) does not occur.

Thus we have shown that a¢Z, b¢ Z, and that for every 4 invertible
mod N, we have either

(6.6.0.13) 1><bA>2{cA>=(ady>0
or
(6.6.0.14) 1><ad>={cA>=(bA>>0.

We next show that c—a¢Z and c—b¢Z. As by hypothesis a—b¢Z, we
cannot have both c—aeZ and c—beZ. Suppose that c—aeZ. Then
c—b¢Z, hence for all 4 invertible mod N, A4c—Ab¢Z, whence we have
either

(6.6.0.15) 1>¢bA>>{cAd>=(ad)>0
or
(6.6.0.16) 1><ad>={cA>><bA>>0.

But (6.6.0.15) cannot hold for both 4 and — A. Hence there exists a 4
invertible modulo N for which (6.6.0.16) holds. Rewriting (6.6.0.1) for
this A via the limit formula (6.5.3.1), we get

.1 .1 .
(6.6.0.17) 1> lim — R, (—a)= lim —R,(—c)> lim —I—Rp(—b)>0.
pZ;TiJ} pj’;lafN)p p:;’l(N)p

Thus for all p sufficiently large with pA=1(N), we have
(6.6.0.18) —;—RP(—C)>~:TRP(—b)>0.

This is incompatible with the first of the two following inequalities, one
or the other of which holds for any sufficiently large prime in virtue
of (6.4.0)

1 1 1
(6.6.0.19) ?R,,(—b)>?Rp(—c)z; R,(—a),

1 1 1
(6.6.0.20) — Ro(=@)>—-Ry(= )2 R(~b).
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Hence (6.6.0.20) holds, and for all sufficiently large p with pA=1(N),
we have

1 1 1
(6.6.0.21) ;RP(—a)>?Rp(——c)>?Rp(—b).

Substituting via (6.5.2.1), (6.6.0.21) may be rewritten

(6.6.0.22) ady =25 ¢cay—Sspay—L.
b P p

Because c—a€Z, (ady={cA4), and hence

(6.6.0.23) 4. zc
14 14

Because (6.6.0.16) holds for 4, (6.6.0.15) must hold for — 4. Using the
limit formula, (6.6.0.15) may be rewritten

. 1 . 1
1> lim —R,(—b)> Ilim —R,(—0¢)
pP— © p pP— ©
pAd=—1(N) pAd=—1(N)

(6.6.0.24)

= lim iR,,(—a)>o.
P ©

pd=—-1(N)
In particular, for all sufficiently large p with p4= — 1 mod (N), we have

(6.6.0.25) 1 R,(— by>—L R,(—0).
p p

As this is incompatible with (6.6.0.20), (6.6.0.19) holds for such p, and in
particular, (6.6.0) gives

1 1
(6.6.0.26) ?R,(—c)g;R,,(—a).

Substituting via (6.5.2.1), this gives

(6.6.0.27) (—cdy—S2(—aa>-2.
p p
As c—a€Z,{—cA4)={—ad), hence
(6.6.0.28) —C> T4
14 14

which contradicts (6.6.0.23), and concludes the proof that c—a¢Z. By
symmetry we conclude that c—b¢ Z.
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To conclude, we simply observe that as c—a¢Z, c—b¢Z, the
inequalities in (6.6.0.15) and (6.6.0.16), already established, are neces-
sarily strict. This concludes the proof of (6.6.0).

(6.6.1) Combining 6.3 and 6.6.0, we are “reduced” to proving the
implication (6.2.6) = (6.2.4) under the additional hypothesis that the
rational numbers a, b, ¢ satisfy

(6.6.1.0) a¢Z, b¢Z, c¢Z, c—a¢Z, c—b¢Z, a—b¢Z, c—a—b¢Z.

(6.6.2) Corollary. In order that rational numbers a, b, c satisfy (6.2.6) and
(6.6.1.0), it is necessary and sufficient that for any A€Z which is invertible
modulo N for a common denominator N of a, b, c, the rational numbers
Aa, Ab, Ac satisfy (6.2.6) and (6.6.1.0).

Proof. The sufficiency is clear; take 4=1. For the necessity, (6.6.1.0)
will still hold because 4 is invertible mod N, and the condition (6.6.0.2)
is obviously invariant under (a,b,c)—(da,4b,4c) for such 4. By
(6.6.0), (6.6.0.2) and (6.6.1.0) imply (6.2.6).

(6.6.3) Corollary. In order that rational numbers a, b, ¢ satisfy (6.2.6) and
(6.6.1.0), it is necessary and sufficient that for any integers r,s,t, the
rational numbers a+r, b+s, ¢+t satisfy (6.2.6) and (6.6.1.0).

Proof. Sufficiency is clear, necessity follows from (6.6.0).

6.7. In view of (6.6.3), we must show that if a, b, c satisfy (6.6.1.0), then
if (6.2.4) holds for a, b, ¢, it holds for a+r, b+s, c+t whenever r, s, te Z.
In fact, we have the more precise

(6.7.1) Proposition. Let a,b,c be complex numbers satisfying (6.6.1.0).
The monodromy group of the hypergeometric equation with parameters
a, b, ¢ depends only on the classes of a, b, and ¢ modulo Z. More precisely,
the equivalence class of the two-dimensional complex representation of
n, (PL—{0, 1, 00}, 3) on the space of solutions at ; of the hypergeometric
equation with parameters a, b, ¢ does not change of we replace a, b, c by
a+r, b+s, c+t, wherer, s, t are arbitrary integers.

Proof. The proof is by means of the explicit formulas given in Bateman
([1], pp.93-94). Given complex numbers a, b, c satisfying (6.6.1.0), a
basis of the space of germs of solutions at % is provided by the functions

u,=F(a,b,c; Z)

(6.7.1.0) u,=Z'"*Fla—c+1,b—c+1,2—c; Z)

Let y, (resp. ;) denote the class in ,(PE—{0,1,00}; 3) of the loop
“turning once counterclockwise aroung O (resp. 1)”.
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(6.7.1.1)

W=

Yo 7

Let Cy(a, b, c) (resp. C,(a, b, c)) be the matrix of “analytic continuation
along y, (resp.y,)” of the space of germs of solutions at 1 in terms of
the basis (6.7.1.0). Then (cf. [1], p. 93-94),

1 0
6.7.1.2 b, c)=
( ) Cola,c) (0 exp(—2nic))
Bl,l(a’bic) BZ,I(a’bsc))
Bl,Z(a’bac) B2,2(a$b>c)

where the coefficients B; j(a, b, c) are given by

(6.7.1.3) Ci(a,b,c)= (

sin(z a) sin(n b)
sin (7 ¢)
sin(n(c—a)) sin(n(c—b))
sin(rx c)
I'c)r(c—-1)
I'c—a)I'(c—b)I(b)I(a)’

(6.7.1.4) B, ,(a,b,c)=1 —2iexp(ni(c—a—b))

>

(6.7.1.5) B, ,(a,b,c)=1+2iexp(n i(c—a—b))

>

(6.7.1.6) B, ,(a,b,c)=—2miexp(ni(c—a—b))

BZ, 1 (a’ b’ C)
(6.7.1.7) r2—c)r(1—c

= 2mierplmie =) i b= i+ a—o T 153"

Clearly, the matrix Cq(a, b, c) depends only on the classes of a, b, and ¢
modulo Z. Because the functions exp (i 7 X), sin (mX), and I'(X)- I'(1 - X)
all satisfy the function equation

(6.7.1.8) S(X+n)=(-1"f(X), for neZ
it follows immediately that each of

B, y(a, b, c)
(6.7.1.9) B, (a,b,¢)

B1,2 (a,b,c) Bz,l(a, b, c)

depends only on the classes of a, b, and ¢ modulo Z.

From this invariance, together with the fact that neither B, ;(a,b,¢)
nor B, ,(a, b, ¢) vanishes (because a, b, ¢ satisfy (6.6.0.1)!), it follows that
for any integers r, s, t, the matrices Ci(a,b,c) and Ci(a+r,b+s,c+t)
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are conjugate (by a diagonal matrix) in GL(2, C). As already noted,
Cola, b, c)=Cola+r,b+s,c+t), and as m, (P¢—{0, 1, 0};3) is the free
group on y, and y,, the representations in question are indeed conjugate.
Q.ED.

6.8.0. In this section, we study the relation between the hypergeometric
equation and curves of the form y"=x“(x—1)’(x— A)°. This relation was
known to Euler, in the form of his integral representation (cf. [1], p. 115,
(6), or [45], p. 293)

Floo fyy; )= )__[

— [ x* Y (x =17 (x— A)*dx.
FBIG—h) &=

It was reconsidere recently by Messing ([32]), from the conception of
whose manuscript we have borrowed heavily.

(6.8.1) Letn, a, b, c be strictly positive integers. We denote by X(n;a, b,c)
the spectrum of the smooth C(A)-algebra

(6.8.1.0) A(n;a,b,c)=C(A)[x,y, 1/yI/(y"—x*(x—1)" (x—A)C(A) [x,,1/y],

which is finite and étale over

(6.8.1.1) B=C(A)[x][1/x(x—1)(x—=4)],
with basis
(6.8.1.2) 1,1y, 1/y%, ..., 1y L.

To any n-th root of unity £ep,, we assosciate the C(4)-automorphism of
X(n;a, b, c) given by

(6.8.1.3)

XX
y—Ey.

This defines an action of u, on X(n;a, b, ¢). Let x denote the “identical”
character of m,, i.e., x(6)=¢, and for any integer /, let x(£) denote the
character of pu, given by

(6.8.1.4) 1) (E)=¢&.

This basis (6.8.1.2) of A(n;a,b,c) over B is just its “isotypique”
decomposition according to the characters of u,:

(6.8.1.5)  P(x(—¢)) A(n;a,b,c)=y~/B=lim y=/~"" C(4)[x].

The de Rham cohomology group Hpg(X(n;a, b, ¢)/C(4)) is the co-
kernel of the exterior differention map

(6.8.1.6) A(n;a,b,c) —d Q;(n;a,b,C)/CU-)

because X (n;a, b, c) is affine and smooth of relative dimension one over
C(A). The module Q.05 cycn) is free over A(n;a, b, c) with basis dx.

7 Inventiones math., Vol. 18
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The isotypique decomposition of the complex (6.8.1.6) with respect to
M, is given by

P(x(=?))(A(n; a, b, c) —4— P(x(—=2))(A(n; a, b, ¢))- dx
(6.8.1.7)

y ‘B—4 5y ’B. dx=lim y=*="". C(3)[x]-dx.
Thus =

(6.8.1.8) P(x(—2)) Hpr(X(n;a,b,c)/C(4))=cokernel of y=¢ B—4> y=* B.dx.

The gauss-Manin connection V(d/d4) on Hpr(X(n;a, b, c)/C(2)) is
deduced from the endomorphism of the complex (6.8.1.6) given by
Lie(0/04), where 9/04 denotes the unique derivation of A(n;a,b,c)
which kills x and extends the derivation d/dA of C(A4). Because 9/04
commutes with ‘the action of m, on A(n;a,b, c), Lie(0/04) induces an
endomorphism of each of the complexes

y? B—45y~’B.dx
which induces the Gauss-Manin connection on the cokernel.

(6.8.2) Proposition. Let n,a,b,c be strictly positive integers. Then for
every integer £ 21, there is a horizontal morphism of C(A)-modules with
connection (cf. (6.1.0))

E (_{;f_’ {’a+fb+fc_1’ /a+/c) C)
n n n
(6.8.2.0) .
— P(x(—¢)) Hpp(X (n; a, b, c)/C (%))
defined by dx
o — the class of —
(6.8.2.1) Y

d dx
e~V (7[) (the class of 7) .

Proof. In concrete terms, the assertion is that the operator

u1—1)V(é%)f+[fa:fc_(/a+/:+2/c)A]V(;%)
(68.2.2)

_/c ({’a+/b+fc_1>

n n

annihilates the class of dx/y’ in Hjg(X (n; a, b, c)/C(4). In fact, direct
calculation (cf. [1], p. 60, (11)) shows that in QY n: a,b. oyc(zy WE have
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()

(6.8.2.3) ={/1(1—,1) (Lie (%)): [K“:”’ —(f“”:”“) ).]

T

(6.8.3) Proposition. Hypotheses as in (6.8.2), if n does not divide a+b+c,
then for every integer £ 21 which is invertible modulo n, we have
xdx

dx
+d (c A[x _) .
7 (A[x] ¥
Proof. For every integer m=2, we readity calculate

d ( x"“l(x—ll)(x—/l)) _ d(x"“l(x—fl)(x—ﬂ.))

y y
X" (x=D(x—=4) dy
- % y
d(x™ ! —(14+4) x™+Ax""})
. Y
£x" 2 x(x—1)(x—4) {a/m b/nm c/n
¥ {—x—+x—-/—f+x—i}

/a+{b+(c)x"‘£y§—+P(x)%

(6.8.3.00 C(A)[x] —‘i—ch(i) i—f+C(A)

(6.8.3.1) =

=(m+1——

where P(x)e C(4)[x] is a polynomial of degree at most m— 1. Because n
does not divide a+b+c, and ¢ is invertible modulo n, n does not divide

{
{a+{b+¢c, whence m+1#(—m—+(—:—)—t—c). Q.E.D.

(6.8.4) Proposition. Hypotheses as in (6.8.2), if n does not divide a+b+c,
then for every integer £ 21 which is invertible modulo n, the image of the
mapping (6.8.2.0) contains the classes of dx/y’ and x dx/y’.

Proof. Direct calculation shows that in QY,., 5 i) We have
x(x—1) fa+¢b+£c) xdx
(%5 [ ]
y n Y
fa+{c { {c ,l) dx.

(6.8.4.0) + ( %

+A(1—7)Lie (%) (iiy’,‘—) :

n n

7*
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As n does not divide a+b+c, and ¢ is invertible modulo n, n does not

/
divide £a+¢b+¢c, whence 2+ (/“L;“—c) . QED.

(6.8.5) Proposition. Hypotheses as in (6.8.2), suppose that n does not
divide a+b+c. For each integer 1 <¢ <n—1 which is invertible modulo n,
consider the sequence of integers £,{+n,{+2n, .... For all r sufficiently
large, the mapping (6.8.2.0) for £ +rn

E(+rm) -2, (¢+rn) (“—”L:i)

-—1,({’+rn)(a+c)

(6.8.5.0) n

= P(x(=2)) Hpr (X (n; a, b, ¢)/C ()
is surjective.

Proof. By (6.8.1.8), any finite number of elements in
P(x(=2) Hyr(X (n; a, b, ¢)/C(4)
may be represented by differentials lying in

dx
W

for a suitably large r. By (6.8.3), these elements are linearly dependent
upon the classes of

(6.8.5.1)

CA[x]

dx xdx
yl+rn ’ y€+rn °

Thus any finite number of elements in P(x(=¢)) Hpr(X (n; a, b, ¢)/C (1))
span a subspace having dimension at most two. Hence the space
P(x(—2)) Hpr(X (n; a, b, ¢)/C(4)) has dimension at most two, and for all
sufficiently large integers r, the two classes (6.8.5.1) span. The result now
follows from (6.8.4).

(6.8.6) Proposition. Hypotheses as in (6.8.2), suppose that n does not
divide a,b,c or a+b+c. Then for any integer £ =1 which is invertible
modulo n, the mapping (6.8.2.0) is an isomorphism :

E({’c /a+fb+fc_
(6.8.6.0) n’ n

—= P(x(—4)) Hya(X (1 a, b, 0/C(3).

1, /a+t’c)
n

C(4)

Proof. By (6.8.5), the target of (6.8.6.0) has dimension at most two,
while its source has dimension two. If we can exhibit two linearly in-
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dependent elements of the image, it will follows that the target has
dimension precisely two, and that (6.8.6.0) is surjective, and hence an
isomorphism (source and target having the same dimension). By (6.8.4),
the image contains the classes

d
(6.8.6.1) dx  xdx

whence it suffices to prove that they are linearly independent in
P(x(—¢)) Hpr(X (n; a, b, ¢)/C(4)). Suppose the contrary. Then there
exist (by (6.8.1.8))

a, feC(A), not both zero

(6.8.6.2)
R(x)eB=C(A)[x][1/x(x—1)(x—24)]
such that

R(x dx .
(6.8.6.3) d( ;5))=(oc+lfx)-yT N Qyua b ocm

This implies that on the open set where R(x) is invertible, we have

dR(x) _/ﬂ= (x+pBx)

Ro 'y R

(6.8.6.4)

or, equivalently

dR(x) _/(a/n+ b/n + c/n )d _ (e+Bx)

(6.8.6.5 R(x) x T x=1 x-2) T R® o

: 1
in - Q¢ xjcwm-

We first remark that R(x) is necessarily a polynomial in x. If not, it
has a pole at one of the three points x=0, 1 or 4 (because R(x)€B), in
which case

(a+px)
.8.6. ——d
(6.8.6.6) R() x

would be holomorphic at one of the points x=0, 1, or 4 and in particular,
would have zero residue at one of the points x=0, 1, 4. But

dR(x) a/n  b/n c/n
R() _/( x +x—1+x-,1)dx

(6.8.6.7)

necessarily has residues at x=0, 1, A which are congruent modulo Z to
—¢an, —¢b/n, —£c/n, which by hypothesis are not integers. Hence
(6.8.6.7) has non-zero (even non-integral) residues at each point x=0, 1, 4.
Thus R(x) is a polynomial. We further claim that the polynomial R(x)
has zeroes at x=0, 1, and 4. For if not, R(x) would be a unit at one of
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the points x=0, 1, 4, and hence
(x+Bx)dx  dR(x)
R(x) R(x)
would be holomorphic at one of the points x=0, 1, A. In view of (6.8.6.5),
this is absurd, hence R(x) is a polynomial of degree at least three.
Because R(x) is a polynomial of degree at least three, it follows that
(x+pBx)dx
R(x)

is holomorphic at x = oo, hence has zero residue there. Clearly, the residue
at x=o0 of

(6.8.6.8)

(6.8.6.9)

b _
¢ (“—/"+—/"—+ ¢/n ) dx=tan- 2 4 ppm. 4X=1)
X x—1 x-=A x x—1
(6.8.6.10) A e
x —_—
£
+Zc/n )
18 just —Za/n—¢b/n—¢c/n, while the residue at x = oo of
(6.8.6.11) 4R(x)
R(x)
is —degree (R(x)). By (6.8.6.5), we must have
(6.8.6.12) —degree R(x)+Za/n+£b/n+¢c/n=0

which is absurd, as ¢ ( is not an integer. Q.E.D.

a+b+c)
6.9. Conclusion of the Proof of 6.2

(6.9.0) Let a,b,c,n be integers, n>1, and suppose that the hyper-
geometric equation with parameters a/n, b/n, ¢/n has two “modp”
solutions for almost all p (i.e., suppose a/n, b/n, c/n verify (6.2.6)). We
must prove that E(a/n, b/n, c/n) has a full set of algebraic solutions
(cf. (5.4.2.1)), in order to conclude the proof of 6.2.

(6.9.1) As we saw in 6.3, this is the case if any of the exponent differences
(6.9.1.1) l—c/n, c/n—a/n—bjn, a/n—b/n
is an integer.

(6.9.2) We thus assume that none of the exponent differences is an
integer; then 6.6.0 implies that none of the numbers

(6.9.2.1) a/n, b/n, c/n—a/n, c/n—b/n
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is an integer, and that for every integer £ 2 1 which is invertible modulo
n, the numbers £ a/n, £ b/n, £ ¢/n also satisfy (6.9.0) (cf. (6.6.2)).

By (6.6.3) and (6.7.1), the hypothesis and conclusion of the alleged
implication (6.2.6) = (6.2.4) depend only on the classes modulo Z of
a/n, b/n, ¢/n. Thus we may and will suppose in addition that

(6.9.2.2) .0, £-%50, 1+b/n—c/n>0.
n n o n
We define strictly positive integers A4, B, C by
A —a B b—c C
(6.9.2.3) L6789 2 c L@
n n 'n n’'n n
. . c—a c—b a b L
The non-integrality of e (cf. (6.9.1.1),(6.9.2.1)) implies

that n does not divide any of the integers 4, B, C, A+ B+ C. Then we
may apply (6.8.6):

(6.9.3) For any integer /=1 which is invertible modulo n,

(6.9.3.0) E(Za/n,¢b/n, ¢ c/n)|C(A)— P(x(—?)) Hpr(X(n; A, B, C)/C(A)).
Thus, for every integer 1 <£<n—1 which is invertible modulo n,
(6.9.3.1) P(x(—¢)) Hpr(X (n; A, B, C)/C(4)

with its Gauss-Manin connection has p-curvature zero for almost all
prime p (cf.(54.3.3)). As ¢ varies over the integers 1<¢/<n—1, the
characters y(—¢) run over a Q-conjugacy class of irreducible repre-
sentations of p, (namely, the faithful ones). Thus we may apply Theorem 5.7
to deduce that for every integer £ =1 invertible modulo n,

(69.3.2) P(x(—?)) Hpr(X (n; 4, B, Q)

with the Gauss-Manin connection has a full set of algebraic solutions.
By (6.9.3.0), it follows that for every integer ¢=1 which is invertible
modulo n, in particular for =1, the hypergeometric module

(6.9.3.3) E(¢a/n,¢b/n, ¢ c/n)| C(4)
has a full set of algebraic solutions. Q.E.D.

(6.9.4) Corollary. Let a,b,c, n be integers, n=1, and suppose none of the
exponent difference

(6.9.4.0) l—c/n, c¢/n—a/n—bn, a/n—>b/n

is an integer. Then the hypergeometric equation with parameters a/n, b/n,
¢/n has two algebraic solutions if and onlyif, for every integer 1<£<n—1
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which is invertible modulo n, we have either
I>{tay>{Lcy>{Lb)>0
I1>{by>{lcy>{ta)>0.

Proof. This follows from 6.2 and 6.6.0.

(6.9.5) Remark. (Interpretation of (6.9.4)). Given three distinct roots
of unity &,,&,, &, in C all distinct from 1, we say that &, and &, separate
¢3 and 1 if, in marching counterclockwise around the unit circle, starting
at 1, we encounter either &, or ¢, but not both before we encounter &s.
Let

(694.1) or

. a
En=6Xp (an 7)

b
(6.9.5.0) Eym="CXP ( 2mi 7)

¢
= 2mi—).
Eem exp( i n)
The condition (6.9.4.1) is “simply” that these three roots of unity
are distinct from each other and from 1, and that for every automorphism
o of C,

(6951) () and (¢, separate (&) and 1.

7. p-Curvature and the Cartier Operation;
a Problem on Elliptic Curves

7.0. Let T be a scheme, and $ a smooth T-scheme. A connection on (g
relative to T is necessarily of the form

V: 05— Ql )y
Vif)=df+fow

where w=V(1)eI (S, Q4,7). Denoting this connection by V,, we have
(s, V) ® (05, V,,)=(Us, V,,, ) and the mapping w — V,, establishes an
isomorphism between the group I'(S, Qs,7) and the group of connection
on 0Os. The subgroup of closed one-forms corresponds to the subgroup
of integrable connections: indeed, the curvature K, of ¥, is the mapping

(7.0.1)

Ka): @s "‘)QSZ/T
K,(f)=fdo.

7.1. Suppose further that T is a scheme of characteristic p. Then if
wel'(S, Qg 7) is a closed one-form, the p-curvature, noted ¥, of the

(7.0.2)
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integrable T-connection ¥, on (s is a p-linear mapping
(7.1.0) Vo Der(S/T)— Endy (O5)~ O
which is additive in the variable closed one-form w.

(7.1.1) Recall from (6.0.2.5) the commutative diagram (in whichg: S — T
is the structural morphism)

S—F ,sp»_o ,g F ,q0

(7.1.1.0) \ng /

g
T Fabs T

the middle square of which is cartesian.
(7.1.2) Proposition. The p-curvature Y, of V,, is given by the formula
(7.1.2.0) Yo (D)= F*({o* () —€(w), a* (D))

where € is Cartier’s isomorphism (2.2.1) #(F, Q3,7) —— Qw7 (applied
to the class of the closed form w), 6* (D) is the T-derivation of S’ defined by

(7.1.2.1)  o*(D)(o*(f))=0*(D(f)), f alocal section of Us,
and {, is the canonical pairing of Os-modules
(7.1.2.1) Qw1 @ Der(8P/T) — Usr -

Proof. The proof depends “only” on Hochschild’s identity (3.5.2.6),
and the definitions.

The question is local on S, which we may suppose étale over A7 via
coordinates s,, ..., s,. We first calculate y,, (D).

(7.1.2.2) y,(D)=(V,(D))"—V,(D?)=(D+<{w, D))’ —D?—{w, D7}
By Jacobson’s formula, we have

(7.1.2.3) (D +<{w, DY)P=D?+D?~'({w, D))+ ({w, DD)".

As

(7.1.2.4) (w, DY) =F* 6*({w, D))=F*({a* w, a* D)),

we have finally the formula

(7.1.2.5) 4, (D)=D""'({w, D))+ F*({c* w, 6* D))—{w, D).

Comparing (7.1.2.5) with the asserted formula (7.1.2.0), we see that it
remains to show that

(7.1.2.6) F*({% o, 6* DY)={w, D?> — D?~({w, D).
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As w is closed, it may be written (cf. (2.2.1))
(7127) w=) F*(a)sP~'ds;+dg; a,...,a,,8€l(S,0y).

As both sides of the asserted equality (7.1.2.6), regarded as function of
the closed one-form w, are F~!(Ugw)-linear and annihilate exact one-
forms, we are reduced to the case

(7.1.2.8) w=s"1ds,.
Then (cf. (2.2.1))
(7.1.2.9) % () =d(0*(s),

and (7.1.2.6) becomes

(7.1.2.10) F*({do*(s), *(D)y)=<{sP~'ds;, D?) —D?~'({sP~1 ds;, D)),
or equivalently

(7.1.2.11) (D(s))P=sP=1DP(s;)—D?~ ' (sP~' D(s;))

which is none other than Hochschild’s identity (3.5.2.6). Q.E.D.

(7.1.3) Corollary. Hypotheses as in 7.1, the following conditions on a
closed one-form weI'(S, Q§,r) are equivalent.

(7.1.3.1) The connection V,, on Og has p-curvature zero
(7.1.3.2) € (w)=0*(w)

(7.1.3.3) w is locally logarithmic, i.e., locally on S there exists an in-
vertible function g with o =dg/g.

Proof. (7.1.3.1) = (7.1.3.2) by (7.1.2.0). To see that (7.1.3.1) < (7.1.3.3),
recall that by Cartier’s theorem (cf. (6.0.3) and [24], Theorem 5.1),
(0, V,,) has p-curvature zero if and only if () is spanned as ¢s-module by
the subsheaf of germs of horizontal functions. Thus (7.1.3.1) is true if
and only if there exists locally on S an invertible section of U, f', with
0=V,(f)=df + fw, or equivalently (taking g=f "), if and only if w is
locally logarithmic. Q.E.D.

(7.1.4) Remark. In Cartier’s original “operator” (cf. [2]), the absolute
Frobenius F,,,: T— T was an isomorphism; T was, in fact, the spectrum
of a perfect field. Then ¢: S® — S was also an isomorphism, and the
original Cartier operation %, Was defined as an additive isomor-
phism

(7.1.4.0) Coriginar: H i(QE/T)—~’QiS/T

which satisfied

(7141) (goriginal (fp w)=f3 %original(w)'
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In our notation, the relation between %,,;4ina and € is just
(7.14.2) (goriginal =(0~ l)* °¥.

7.2. Let T be an arbitrary scheme, S a smooth T-scheme. Let & be an
invertible sheaf on S, given by transition function f;; with respect to an
open covering %; of S. Then giving a T-connection ¥ on & is equivalent
to giving, for each %;, a one form w;eI'(%;, Q§,7) subject to the compati-
bility

(7.2.0.0) w;—w;=df;/f;;

The connection is integrable if and only if each w; is closed. If (&, V)
and (&', V') are two invertible sheaves with connection, both given with
respect to the same open covering %; of S by data (w,, f;;) and (i}, f3)
as above, an isomorphism between (%, V) and (%, V') is just the giving
of invertible functions g;e I'(%;, OF) subject to the conditions
(7.2.0.1) f§j=fi}(gi/gj) on %in%j

w;—w;=dg;/g; on %.
Thus we have:

(7.2.1) Proposition. The group of isomorphism classes of invertible sheaves
on S with T-connections (£, V) (under tensor product) is

H' (S, o —dloe, Qé/T)-

The group of isomorphism classes of invertible sheaves on S with integrable
T-connection is H' (S, Q¥ 1) where Q¥ denotes the multiplicative de Rham
complex

(7.2.1.0) OF —418 QL 1 —45 QL —4 -
As a corollary of (7.1.2), we have

(7.2.2) Proposition. If T has characteristic p, and (¥, V) is an invertible
(g-module with integrable T-connection, given by the data (w;, f;;) on an
open covering U; of S, its p-curvature

(7.2.2.0) y: Der(S/T)— Endy (£)~ 0

is the p-linear mapping given locally by

(7.2.2.1) Y (D)=F*({c*(w)—¥€(w;), 6*(D))) over %.
[This formula has a global meaning, because, by (7.1.3.3),
o*(w;) —€(w;) —0* (w;) + € (w))

(1.2.2.2)
= o* (dfy lf;) — € (df; ;) =0].
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(7.2.3) Remark. y depends additively upon the invertible sheaf with
integrable connection (&, V).

7.3. When T is (the spectrum of) a field k of characteristic zero, the
group H'(S, Q%) has a classical interpretation. Recall that a mero-
morphic closed one-form w on S is said to be a differential of the third
kind if there exists an open covering {%;} of S, and on each %, a closed
holomorphic one form w;el (%, Q47) and a non-zero meromorphic
function g; on %;, such that

(7.3.0.1) w=w;+dg/g; onU;, dw,=0.

Now define f;;=g;/g;, a meromorphic function on U NU. In fact,
Ju€T (WU, OF), because on %, "%,

(7302) df;] U=dgj/g_,_'dg1/g1:wl_wj

so that df;/f;; is holomorphic on %, N ;. Because we are in characteristic
zero, this implies that f;; and 1/f;; are holomorphic on %, U;.

Thus we have assosciated to a differential of the third kind  on §
a Cech 1-cocycle (w;, f;;) for the complex Q% . If, on the same covering %;,
we choose different closed holomorphic one forms w; on %; and different
meromorphic functions g; on %;, such that

(7.3.0.3) w=w;+dg;/dg;=w;+dg}/g; on U,

then h;=gi/g; lies in I'(%;, OF), because ®;—w;=dh;/h; is holomorphic
on %;, and hence (w;, f;;) and (), Jij) differ by the coboundary (dh,/h,,
hi/h;).

Thus we have a well-defined mapping from the group of differentials
of the third kind on S to the group H!(S, Q7).

(7.3.1) Proposition. Let S be a smooth connected scheme over a field k
of characteristic zero, and let K denote the Sunction field of S. Then the
above constructed mapping sits in the exact sequence, in which d.t.k. (S)
denotes the group of differentials of the third kind on S:

(73.1L0) 00— k*— K* —4ls, 4 t k. (S)— H!(S, Q%,) 0.

Proof. To prove exactness at H!(S, Q%) let (w;, f;j) be a Cech 1-
cocycle for some covering %, of S, and consider the meromorphic dif-
ferential = w,. By the cocycle condition, dw=0, and

(7.3.11) w=wi+df1i/f1i on %i’

so w is a d.t.k., and from the data 7.3.1.0, the procedure of (7.3.0) just
reconstructs the cocycle (w;, f;)).

To prove exactness at d.t.k.(S), notice first that if w=dg/g, in the
construction (7.3.0) we may take all w;=0, all g:= g, whence we construct
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the zero cocycle (0, 1). If a d.t.k. w dies in H'(S, Q¥,), there exists an
open covering %; of S, and on each %; there exists

a closed w;e I'(%;, Q1)
(7.3.1.2) a meromorphic function g;e K*

an invertible function h;eI'(%;, OF)
such that

w=w;+dg;/g; on U
(7.313) (1),-=dh,~/hi on %i

gj/gl=hl/h_] on %10%1

Then w=d(g; h;)/g: h;, and g;h;=g;h; is a global meromorphic function,
so w is logarithmic. Q.E.D.

7.4. The Case of Curves

(7.4.0) Let T be affine, say T=Spec(A4), and S a projective and smooth
curve over T with geometrically connected fibres. Then Qg7 is just the
two-term complex
(7.4.0.0) OF —418 QF 1.
Passing to hypercohomology, we have a long exact sequence

0— I'(S, Q%,7) > H'(S, Q¥ 1)
(7.4.0.1) o 5 e

— H'(S, 03) —*%-> H'(S, Qé/r)

(the left hand zero because I'(S, OF)=I(T, 0F) is annihilated by d log).
The trace morphism (cf. [ 15, 42]) defines a functorial isomorphism

(14.0.2) H'(S, Q1) —— A=T(T, Oy).

(7.4.0.3) If P is a section of S/T, its image |P| is a divisor in § which is
smooth over T. The inverse of its sheaf of ideals is an invertible sheaf on
S, noted classically O5([P]). If P,..., P, are sections, and ny,...,n,
integers, we define the invertible sheaf

(7.4.0.4) 05 (2, [P])=05([A)®"® - ®Us ([R)®™.

The composite mapping
trace

(7.4.0.5) H'(S, 0F)—4% H'(S, Q3)7)—> A

allows us to attach to the class in H'(S, OF) of Os(Z n;[P,]) an element
of A, which is none other than the image in A of the integer X n;. Thus
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(7.4.0.6) the necessary and sufficient condition for the invertible sheaf
Os(2 n;[F]) to admit an integrable T-connection is that X n;=0 in A.

(7.4.1.0) Suppose further that A4 is a principal ideal domain, with fraction
field k, and that S admits a section over A. Because S/A is projective, and
A is principal, any k-valued point of S, extends to a unique section of §
over 4, so it is the same to assume that S, has a rational point.

(7.4.1.1) Then the Picard scheme Picg,, exists, is an extension of Z,
by the abelian subscheme Picy ,, and its formation commutes with
arbitrary change of base 4 — A'. Because Picd , is projective, and A is
principal, any k-valued point of Pic§, = the Jacobian of S, extends to
a unique section of Picy,, over A.

(7.4.1.2) Because A is principal and S/A4 has a section, we have
(7.4.1.3) H'(S, 03) — Pics;4(A).

We define H'(S, %), to be the inverse image of Picg ,(A) under
the canonical mapping

(7.4.1.4) H(S, Q% 1) — H'(S, 0F)~ Picg, 4(A).
The long cohomology sequence (7.4.0.1) gives a short exact sequence

(7415 0TI, QL) — H(S, QF 1), — Picl,,(4) — 0
/ / /

which the specialist will recognize as the exact sequence of T-valued
points of the “universal extension of the abelian scheme Picg,, by a
vector group”(cf. [33, 33 a, 40]). We will make no use of this interpretation.

(7.4.2) Remark. If the fraction field k of 4 has characteristic zero, it
follows from (7.4.0.5) that

(7.4.2.1) H'(S, Q7)o =H'(S, Q¢ 7).

If A=k is a field of characteristic zero, we can combine (7.4.2.1) with
(7.3.1.0), and (7.4.1.5) becomes the classical exact sequence (K denoting
the function field of S)
d.t.k.(S)
1 —_—
(74.2.2) 0—-TI(S, Q) — dlog(K")
in which a d.t.k. w on S is mapped to the class of its residue-divisor
residue p(w)[P] (compare [33a]). [Remember that on a curve,  is a
d.t.k.<>w has at worst first order poles, and integer residues.]

(7.4.3)  The Birational Point of View: Again

(7.4.3.0) Let K/k be a function field in one variable, k a field of charac-
teristic zero and let we Qg be a (necessarily closed) one-form. We recall
the following facts:

— Pic‘s)/k (k)y—0,
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(7.4.3.1) In order for the rank-one differential equation (K, V) on K to
become trivial on a finite extension of K, it is necessary and sufficient
that there exist an integer n> 1 and a function ge K* such that nw=dg/g.
(If nw=dg/g, then f=g~'/"is a non-zero algebraic solution of the equa-
tion ¥,,(f)=0. Conversely, if f is a non-zero algebraic solution, let n be
the degree of K(f)/K. Then nw= —trace(df/f)=dg/g, g=Norm(1/f).)

(7.4.32) If (K,V,) has p-curvature zero for almost all primes p (in the
sense of (5.4.3.2)) (i.e., if o is “locally logarithmic mod p” for almost all
primes p in the same sense (cf. (7.1.3.3)), then w has at worst first order
poles, and rational residues (i.e., there is an integer n21 such that nw
is a differential of the third kind on the complete non-singular model of
K/k).

(For by ([24], Theorem 13.0), the differential equation (K, V,) has
regular singular points, and rational exponents.)

(7.4.4) Proposition. Assumptions as in (7.4.3.0), suppose K=k(x) is the
rational function field in one variable. If weQyy, then the following
conditions are equivalent.

(7.44.0) The differential equation of rank one (K,V,) on K becomes
trivial on a finite extension L of K.

(7.4.4.1) The differential equation (K, V,) has p-curvature zero for almost
all primes p (cf. (5.4.3.2)).

Proof. (1.4.40)=(7.4.4.1) by (5.4.4). By (7.4.3.2), (7.4.4.1) implies that
an integral multiple nw (n21) is a differential of the third kind on B,
hence (cf. (7.4.2.2)) is logarithmic. By (7.4.3.1), this implies (7.4.4.0).
Alternate proof if k=C: again by ([24], 13.0), the differential equation
(K, V,) has all of its local monodromy transformations of finite order.
Because the rank is one, the global monodromy group of the equation is
abelian. Because we are working on an open set in B}, the global mono-
dromy group is generated by the (finitely many non-trivial) local ones.
Hence the equation has a finite monodromy group. By ([24], 13.0), it
has regular singular points, so by the fundamental comparison theorem
([7], Theorem 5.9), it becomes trivial on a finite extension L of K. Q.E.D.

7.5. The Case of Elliptic Curves

(7.5.0) We do not know whether or not the analogue of (7.4.4) is true for
elliptic function fields. We would like to explain how this analogue is
equivalent, in certain special cases, to a rather striking diophantine
statement, which we view as an (unproved!) arithmetic version of Manin’s
“theorem of the Kernel” (cf. [29]).

(7.5.1) Let E be an elliptic curve (=abelian scheme of relative dimension
one) over T=Spec(Z[1/n]). We suppose that the generic fibre Eq has a
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non-trivial rational point of order two, for reasons which will become
clear.

For each prime p which does not divide n, we put E,=E x (SpecF,)),
the elliptic curve over F, obtained by reduction modulo p.

The fact that Z[1/n] is a principal ideal domain, and the projectivity
of E over it, gives

(7.5.1.0) E(T)— Eq(Q)

and permits the definition of the homomorphism of “reduction modulo p”
for each p not dividing n

(7.5.1.1) Eq(Q)— E(T)— E,(F)).

This homomorphism is injective on the subgroup of E4(Q) consisting
of torsion elements of order prime to p. If p#2 and p is prime to n, the
finite group E,(F,) contains a non-trivial element of order two (this
being true of E¢(Q) by hypothesis), hence has an even number of elements.

(7.5.2) Lemma. Hypotheses as in (7.5.1), for all primes p=7 prime to n,
the finite group E,(F,) has order prime to p.

Proof 1f not, it has even order divisible by p, hence has =2 p elements.
For p27, this contradicts the Reimann hypothesis

|#E,(F)-p—1/s2)/p. QE.D.

(7.5.3) Lemma. Hypotheses as in (7.5.1), let p=7, ptn, and suppose w
is a non-zero differential of the first kind on E,,, i.e., we I'(E,, Q}:"p/l'"p)’ and
@=0. Then w is not locally logarithmic on E,.

Proof. If w is locally logarithmic, ¢ (w)=w, and by duality the p-th
power mapping induces 1 on H'(E,,, Og,); 1.e., the Hass invariant HeF,
of E, is 1. But (cf. [25]),

(7.5.3.1) 4 E,(F,)=1—H modulo p

which contradicts 7.52 if H=1. Q.E.D.

(7.54) Let K denote the function field of Eg, and let weQk,q be a dif-
ferential such that (K, V,) has p-curvature zero for almost all primes p.
We hope that for some integer n> 1, n w will be logarithmic; we will make
some “reductions” which are permissible with respect to this hope.

(7.5.5) According to (7.4.3.2), we may, replacing w by an integral mul-
tiple nw, n=1, suppose that w is a differential of the third on Eq. By
(7.2.1.0), (7.3.1), and (7.4.2.1), a differential of the third kind w on Eq,
taken modulo logarithmic differentials, is an isomorphism class of
invertible sheaves on Eq of degree zero with connection (£, Fy). Because
Picg, is projective (it’s just E, in fact!) and Z[1/n] is principal, the inver-
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tible sheaf Z on Eq extends uniquely (up to isomorphism) to an inver-
tible sheaf £ on E which fibre by fibre has degree zero (in fact, £o~
(OEQ([R,]—[OJ), for a unique RyeEqy(Q), and, denoting by P its unique
prolongation to a section of E over T, we have £ =0 ([P]-[0]) (cf.
(7.4.0.3)).

(7.5.6) At the expense of enlarging the integer n, i.e. localizing on
Spec(Z [1/n]), we may suppose that the conncetion Vo on Zq extends to
a T-connection ¥ on Z. The hypothesis that the original d.t.k. w on Eq
was locally logarithmic mod p for almost all p is equivalent to the hypo-
thesis that, for almost all p, the inverse image of (£, V) on E, has p-
curvature zero.

(7.5.7) Suppose we view (£, V) as an element in H'(E, Q% 1), which
sits in the short exact sequence (7.4.1.5)

(7.5.7.1) 0— I'(E, @L,7)— H(E, Q% 7)o — E(T) > 0.

Reducing modulo p, we find an element (£, V}) in H'(E,, Q% /¥,)o
which sits in the short exact sequence

(1572)  0—TI(E,, Q% 5,) — H'(E,, QF, 50— E,(F,)—0.

For p>7 prime to n, the sequence (7.5.7.2) is an extension of a group of
order prime to p (namely E, (F,), cf. (7.5.3)) by a group killed by p (namely
the one-dimensional F,-space I'(E,, Q} ), hence has a unique section

K\
(1.573)  O0—T(E,, @k p)—H'(E,, QF,5,)0— E,(E)—0.

(7.5.74) Lemma. Let £, be an invertible sheaf of degree zero on E,,
and let (£,, V (p-can)) be its image under the section (7.5..3). The connec-
tion V (p-can) on £, is the unique connection on &, which has p-curvature
zero.

Proof. Let m be an integer prime to p such that (Z,)®"~0g,. Then
(Z,, V (p-can))®™~(0g,, d), the zero element of H'(E,, Q% ), because
&, (%,, V(p-can)) is a homomorphism. Thus (£, V (p-can))®™ has
p-curvature zero, but its p-curvature is just m times the p-curvature of
(&,, V (p-can)) (viewing both as p-linear mappings from Der(E,/F,) to
Og,), and, as m is invertible mod p, it follows that (Z,, V' (p-can)) has
p-curvature zero. As the difference between two connections of p-curva-
ture zero on %, is a connection of p-curvature zero on Og,, it follows
from (7.5.3) and (7.1.3) that £, admits at most one connection of p-
curvature zero. Q.E.D.

(7.5.8) Construction. Given (&, V)eH!(E, Q¥ 1), for each prime p=7
prime to n, consider the difference

(Z,,V,)—(Z,, V(p-can))el(E,, Q,/x,)-

8 Inventiones math., Vol. 18
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Taking this difference simultaneously for all primes =7, pAn, we get a
group homomorphism

(7.58.1) H'(E, Q7)o — [1 T(E,, Ok, v,)-
>7
gx
(7.5.8.2) Proposition. The kernel of this homomorphism consists precisely
of those (£, V) which have p-curvature zero for all p=7, pAn. The inverse
image of the torsion subgroup of the target (those “ tuples” having almost

all components zero) consists precisely of those (<&, V) which have p-
curvature zero for almost all primes p.

Proof. This follows from (7.5.7.4) and the definition of (7.5.8.1). Q.E.D.

(7.5.9) The restriction of the homomorphism (7.5.8.1) to the subgroup
I'(E, Q,r) of T-connections on the structural sheaf Ok 1s just the diagonal
embedding via simultaneous reduction mod p:

(7.5.9.0) I'(E, Q) — [1 T(E,, 2 /).
p27

pin
Passing to the quotient, (7.5.8.1) induces a homomorphism

n F(Ep’ Qi‘:p/Fp)
7.59.1) Eq(Q)=E(T)— 22T-pin
( o(@)=E( I, 05,7)
(7.5.9.2) Proposition. A point RyeEG(Q) lies in the kernel of (1.59.1) if
and only if there exists on the invertible sheaf £ =0y([P]—[0]) on E a
T-connection V which has p-curvature zero for all p27, pin. If such a
connection exists, it is unique.

Proof. This follows formally from (7.5.8.2).

(7.5.9.3) Proposition. A point RyeEy(Q) lies in the inverse image of the
torsion subgroup if and only if there exists a non-void open set Y =
Spec(Z[1/nm]) in T=Spec(Z[1/n]) over which Lau=0g, ([P1-[0])
admits a connection which has p-curvature zero for all primes p27 not
dividing nm.

Proof. If m R, lies in the kernel, #®™ admits a unique connection V of
p-curvature zero for all p=7 not dividing n. Let % be the open subset of
T where m is invertible. Because m is invertible on %, I'(Eq, Q}gql,,,,,) is
uniquely divisible by m, hence there is a unique connection ' on &Ly xuch
that (L, V')®™ ~(£®™, V) on E, . For all primes p27 not dividing nm,
(Zw, V') has p-curvature zero, because its m-th power does, and pin
(compare the proof of (7.5.7.4)). Conversely, if &, admits such a connec-
tion V', let’s show that for M a high power of m, (£,,, 7')®™ extends to all



Algebraic Solutions of Differential Equations 115

of E. Since £, extends to %, take a finite covering of E by affine open
sets ¥; which trivialize %, and suppose & is given by transition func-
tions f;;. Then V' is given by 1-forms w; holomorphic on ¥, Eg = V;[1/m].
By the quasicoherence of Qfr, there is an power M of m such that M w;
is holomorphic on all of V;. As there are only finitely many ¥;, a common
M works for all. Now (%, V')®M is given by transition functions
(M w;, f;}), which do extend. Q.E.D.

Combining (7.5.9.3) with the reduction steps (7.5.4)7.5.6), we find
(7.5.10) Tautology. Let E be an elliptic curve over T=7Z[1/n], with a
(non-trivial) rational point of order two. Then the truth of the analogue

of (7.4.4) for the function field K/Q of Egq is equivalent to the following
conjecture:

(7.5.11) Conjecture. The kernei of the homomorphism (7.5.9.1)

[l TE, 2,

E =E(T)— p27,pkn
0o(Q)=E(T) IE, 2%7)

is contained in the torsion subgroup of E¢(Q).

Appendix
Riemann’s Existence Theorem

An extremely useful form of the theorem is an easy consequence of
GAGA, resolution, and the theory of differential equations with regular
singular points (cf. [39, 18, 7, 36]).

Theorem. Let S be a smooth connected C-scheme, and let S*" denote the
corresponding complex manifold. Denote by Etale(S) (resp. Etale (5*")) the
category of finite étale coverings of S (resp. $*"). Then the natural functor
Etale(S)— Etale(S*") is an equivalence of categories.

Proof. We will explicitly construct an inverse functor. Let f: ' — §*"
be finite and étale, and put & = f, Uy Because f is finite and flat, # is a
locally free sheaf of algebras. Because f is étale, it is endowed with a canoni-
cal integrable connection V, the direct image of the standard connection
«exterior differentiation” on @, for which the algebra structure is
horizontal. By resolution, there is a proper and smooth C-scheme S con-
taining S as an open set, such that complement of § in S is a divisor D
with normal crossings. By the theory of differential equations with
regular singular points, there exists for any locally free sheaf with
integrable connection (%, V) on $*" a unique pair (%ean, V.an) cODsisting
of a locally free sheaf %,,, on $** which prolongs ¢, and a “ connection
with logarithmic singularities along D7,

Vcan : gcan - Qé‘" (lOg D)® gcan

8*
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which extends ¥, whose exponents along each local irreducible branch
D; of D lie in the strip 0XRe(z)<1. The pair (Fean> Vean) is called the
quasi-canonical extension of (%, V).

Although functorial in (%, V), the formation of the quasi-canonical
extension does not commute with tensor product. However, given
(%, V) and (57, V') there is a unique horizontal morphism

Gean® Hian— (GQ H)

can

which prolongs the identity. Applying this with # =% =3 we find a
horizontal morphism

‘gjcan ® ‘g'-can - ('g’- ® y-)can M

By functoriality, the algebra structure on % prolongs to a horizontal
morphism
('g’- ® 'g;)can - ycan *
Composing these last two maps, we obtain a horizontal multiplication
on Z,, which extends the given algebra structure on %
The locally free sheaf of algebras %, on §* corresponds to a finite
flat morphism of analytic spaces

1% — 8

which prolongs f: & — $*". By GAGA, the morphism f comes from a
unique finite flat morphism of proper C-schemes X — S, and X |S—S
is a finite étale covering of S.

This construction is the desired inverse functor Etale (8°") — Etale (S).
Q.E.D.
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