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Introduction to congruences

The fundamental problem in number theory is surely that of solving
equations in integers. Since this problem is still largely inaccessible, we
shall content ourselves with the problem of solving polynomial congruences
modulo p. The idea of looking at congruences comes up naturally in trying
to prove that a given esquation has no solutions in integers. For example, the
equation

yz = x3 -x -1
can have no solutions in integers, because the corresponding congruence mod-
ulo three has no solutions in integers modulo three (the left side is 0 or 1

mod 3, the right side is -1 mod 3).

Now when we look at a congruence modulo p,

IX )

f(xl,... o

0 mod p
it is most natural to look for solutions not only in the prime field IFp but also
in all of its finite extension fields IF ,. If we identify solutions which are
p

conjugate over le, we arrive at the notion of a ''prime divisor" 3 (a2 maxi-
mal ideal of Il’v"p[x1 yoes ,xn]/(f) ). The norm of such a prime divisor, noted

. . . . . . deg}q
N}v, is the cardinality of its residue field. Thus Nf =p , where

degy is the number of conjugate solutions which §% "is, !

The Zeta Function

Mindful of the analogy with the Riemann zeta function, we introduce with

E. Artin [2] the infinite product
T -s -1
H (1 - Ny S) convergent for Re(s) >> 0
Yy

If we make the change of variable T = p-s, we obtain
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TT(I _ Tdeg;()_l
¥

whose logarithm is easily computed to be

where

N = the number of solutions with coordinates in ]Fpn.
n

So for any algebraic variety X over a finite field qu (g some power

of p), we introduce its zeta function

dfn "
Z(X/IFq,T) exp (ZT N ); N = # X(qun)
- ‘—‘—(1 _ Tdegy)-l
¥
ST - Ny 87! T=q°
¥

as a formal series in T with Z-coefficients. It contains all of the diophan-
tine information that X has to offer.

Let's compute an easy example. Let X = /Ar, the r-dimensional affine
space over qu, whose points with values in ]Fqn are simply the r-tuples of

elements of qun. There are qrrl such r-tuples, whence

rn
Nn-q
n
T 1
Z(AT/IF ,T) = exp (0 ——q ) = ———
q n r
l-qgT

In fact, E. Artin (1924) had introduced the zeta function only for the
function fields of curves over finite fields, as an analogue of the Dedekind

zeta function of an arbitrary algebraic number field, in its s-form

g(s) =1 - Ny'sf1 =2 Ny
y A

the last sum extended over all "integral divisors'' of the function field. It

was only seven years later (1931) that F. K. Schmidt [40] showed that the
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Riemann-Roch theorem on the curve itself could be used to establish that for a

curve X/]Fq of genus g, its zeta function is a rational function of T = q_S
which has the precise form
P(") P(T)
gls) = -s 1-s.
(I-q )(l-¢ ) (1-T)(1-qT)

2g
where P(T) = H (1 - aiT) is a polynomial of degree 2g with Z-coefficients,

i=1

whose roots are permuted by o +—>q/o. In terms of the complex variable s,
this is a functional equation under s +——>1 - s. The "Riemann Hypothesis)
first formulated by E. Artin [2], asserts that the zeroes of this zeta function
g(s) all lie on the line Re(s) = 1/2, or equivalently that

o] = /3

If we take the logarithms of both sides of the equality

2g
Ta - om
n _n i=1
e (2 T") = (Tiam
we obtain
2g
N=14q"-2 o
n 1

the expression of the distribution of primes in terms of the zeroes of the zeta
function. The Riemann Hypothesis becomes equivalent to the diophantine
statement

N -1 —qn|§2g/§n,
an equivalence first pointed out by Hasse [23].

The first special case of the Riemann Hypothesis had been done by
Gauss, for the lemniscatic elliptic curve YZ: x4- 1 over any ]Fp. E. Artin
([2]) verified some more special cases, and in 1933 Hasse was able to prove it
for arbitrary elliptic (genus g=1) curves.

Hasse (1933 and 1934) gave two quite different proofs. The first [22]
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was based on the theory of complex multiplication, and consisted in lifting the
elliptic curve with its Frobenius endomorphism to characteristic zero. His
second proof ([24],[25]) was explicitly geometric, based on a direct study of
the endomorphism ring of the elliptic curve. Hasse and Deuring pointed out
([14bis],[26]) the relevance of the theory of correspondences to doing the case
of curves of higher genus.

Weil (1940 and 1941) then sketched two different proofs of the Riemann
Hypothesis for a curve of arbitrary genus g over a finite field. The first
([51]) attacked the problem by using the points of finite order prime to p on
the Jacobian of the curve as a sort of first homology group of the curve. Fol-
lowing Hurwitz, he interpreted a correspondence of the curve with itself as
giving rise to an endomorphism of the Jacobian, which allowed him to attach
an f-adic 2g X 2g matrix to the correspondence, and to interpret its trace in
terms of the number of fixed points of the correspondence. He then deduced
the Riemann Hypothesis from the positivity of the '""Rosatti involution' (cf.,
[38],[61]). The second proof [52], which dispensed with Hurwitz's ''transcen-
dental' theory (i.e., with g-adic matrices and the Jacobian), was based
entirely upon Severi's theory of correspondences of the curve with itself. The
zeta function was easily expressed in terms of intersection-numbers of corre-
spondences. In terms of these intersection numbers, Weil defined a ''trace
function' on the ring of all (suitable equivalence classes of) correspondences.
The Riemann Hypothesis then followed from a positivity property of this trace
(Castelnuovo's inequality, cf., [61],[37]). In the case of a curve of genus one,
this proof reduces essentially to Hasse's geometric proof.

Although the correspondence formalism and the positivity statements
upon which Weil based his proofs were ''well known'' in Italian algebraic geom-

etry, and their complex analogues rigorously proven by transcendental methods
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(cf., [61], pp.552-5), the lack of adequate foundations for abstract (in the

sense of [61]) algebraic geometry led Weil to write his Foundations of Alge-

braic Geometry [53]. This done, he gave complete accounts of his two proofs,

the second in Sur les courbes algébriques et les variétes qui s'en déduisent

[54] and the first, generalized to arbitrary abelian varieties, in Variétés

abéliennes et courbes algébriques [55].

The Weil conjectures

Then in 1949, Weil conjectured what should be true for higher dimen-
sional varieties [57]. Let X be an n-dimensional projective non-singular
variety over ]Fq. Then

(1) Z(X/]Fq, T) is a rational function of T

P (T) P,(T) ... P, (T}
(2) Moreover, Z(XIF ,T) =
q P,(T) P,(T) ... P, (T)
b,
- —i
where P (T) :jl_\l(l ST el =va

the last equality being the '"Riemann Hypothesis' in this setting.
(3) Under qi-——»qn/a, the o, . are carried bijectively to the

aZn—i,j In terms of the complex variable s, this is a functional
equation for s+——> n - s.

(4) In case X 1is the '"reduction modulo p'" of a non-singular projec-
tive variety X in characteristic zero, then bi is the i'th topo-
logical Betti number of X as complex manifold.

The moral is that the topology of the complex points of X, expressed
through the classical cohomology groups Hi(X, C), determines the form of the
zeta function of X, i.e., determines the diophantine shape of X. There is a
heuristic argument for this, as follows (cf., [61]). Among all elements of the
algebraic closure of ]Fp, the elements of IFq are singled out as the fixed

points of the Frobenius morphism x —x3 More generally, if
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x=(...,X%,...) is a solution of some equations which are defined over IFq,
the F(x) = (,...,x ,...) will also be a solution of the same equations, and
the point x will have its coordinates in ]Fq precisely if F(x) = x. Thus F
is an endomorphism of our variety X over ]Fq, and

N = # Fix (F7) ;
n

n

Z(X/F, T) = exp (T TT # Fix (F"))

Suppose we consider instead a compact complex manifold X, and an
endomorphism ¥ of X with reasonable fixed points. Then the Lefschetz
fixed point formula would give us

# Fix (F") = 2(-1)" trace (F"|H (X, €)),
which is formally equivalent to the identity
2 i+l
exp (2 -'I—‘nn—#Fix ®"))= T—T det (1 - TF|H (X, q:))('l)
n>1 i=0

The search for a '"cohomology theory for varieties over finite fields"
which could justify this heuristic argument has been responsible, directly and
indirectly, for much of the tremendous progress made in algebraic geometry
these past twenty-five years. Weil's proofs of the Riemann Hypothesis for
curves over finite fields had already necessitated his Foundations. Around the
same time, Zariski had also begun emphasizing the need for an abstract alge-

braic geometry; his disenchantment with the lack of rigor in the Italian school

had come after writing his famous monograph Algebraic Surfaces [63], which

gave the ''state of the art'' as of 1934 (cf., [64). The possibility of transposing
to abstract algebraic varieties with their '"Zariski topology' the far-reaching
topological and sheaf-theoretic methods which had been developed by Picard,
Lefschetz, Hodge, Kodaira, Leray, Cartan, ... in dealing with complex vari-

ties was implicit in Weil's 1949 Chicago lecture notes '"Fibre Spaces in Alge-

braic Geometry' [58]. The transposition was carried out by Serre in his
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famous article '"Faisceaux Algébriques Cohéhents" [41]. From the point of view
of the Weil conjectures, however, this theory was still inadequate, for when
applied to varieties in characteristic p it gave cohomology groups which were
vector spaces in characteristic p, so could only give '""mod p'" traces formulas,
i.e., could only give '"mod p' congruences for numbers of rational points.

g-adic cohomology

After some false starts (e.g. Serre's Witt vector cohomology [42],[43])
and Dwork's ''unscheduled'' (because apparently non-cohomological) proof [16]
of the rationality conjecture (1) for any variety over ]Fq, M. Artin and A.
Grothendieck developed a ''good' cohomology theory [3], based on the notion
of étale covering space, and generalizing Weil's g-adic matrices. In fact,
they developed a whole slew of theories, one for each prime number ¢ # p,
whose coefficient field was the field {D)Z of g-adic numbers. Each theory gave

a factorization of zeta

into an alternating product of (Dz—adic polynomials, satisfying conjecture (3).
In the case when X could be lifted to X in characteristic zero, they proved

that Pi was a polynomial of degree bi(X). They did not prove that the Pi .

>

y/

in fact had @-coefficients, nor a fortiori that the P, were independent of 4.
’

This meant that in the factorization of an individual P,1
s

b
1
BT = le -y o, D

the roots o j were only algebraic over QZ’ but possibly not algebraic over
@, and so they might not even have archimedean absolute values. (Of course,

by a theorem of Fatou, the actual reciprocal zeroes and poles of the rational

function Z(T) are algebraic integers, the problem is that there might be
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cancellation between the various P, in the g-adic factorization of zeta.)

So the question became how to introduce archimedean considerations into
the g-adic theory. Even before the g-adic theory had been developed, Serre
(1960), following a suggestion of Weil ([61],p.556), had formulated and proved
a Kahlerian analogue of the Weil conjectures, by making essential use of the
Hodge Index theorem. In part inspired by this, in part inspired by his own
earlier (1958) realization that the Castelnuovo inequality used by Weil was a
consequence of the Hodge Index theorem on a surface ([20],[37]), Grothendieck
in the early sixties formulated some very difficult positivity and existence
conjectures about algebraic cycles, the so-called ''standard conjectures'

(cf., [15],[31]) whose truth would imply both the independence of ¢ and the
Riemann Hypothesis.

Much to everyone's surprise at the time of Deligne's proof, Deligne
managed to avoid these conjectures altogether, except to deduce one of them,
the "hard" Lefschetz theorem giving the existence of the ''primitive decompo-
sition' of cohomology of a projective non-singular variety, a result previously
known only over €, and there by Hodge's theory of harmonic integrals. The
rest of the ''standard conjectures' remain open. In fact, the generally
accepted dogma that the Riemann Hypothesis could not be proven before these
conjectures had been proven (cf., [15],1, p. 224 for example) probably had the
effect of delaying for a few years the proof of the Riemann Hypothesis.

It is quite striking to note that in Deligne's deduction of the hard Lef -
schetz theorem from the Riemann Hypothesis for varieties over finite fields,
he makes essential use of a famous piece of classical analysis, the Hadamard-
de Vallé Poussin method of proving that the usual Riemann zeta function has
no zeroes on the line Re(s) = 1. He was led to the method in studying

Yoshida's proof [62] of the function field analogue of the Sato-Tate conjecture
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about the distribution of the angles of the eigenvalues of Frobenius in families
of elliptic curves. Yoshida needed to show that a certain L-function had no
zero on the line Re(s) = 1, and did so using some powerful estimates of Sel-
berg. Deligne realized that Selberg's results gave much more than was needed
for the equidistribution question, and checked that the original classical argu-
ment of Hadamard-de Vallée Poussin could be used instead. He went on to
notice that the method could be used to slightly improve the Lang-Weil inequal-
ity for the absolute values of the eigenvalues of Frobenius on H2 of a projec-

3/2
3/2 to |a\<q/ . (The Riemann Hypothesis

tive smooth surface from |cv‘ <q
in this case is \01| =q.)

The new ingredients

So what was it that finally allowed the Riemann Hypothesis for varieties
over finite fields to be proven? There were two principal ingredients.

(1) Monodromy of Lefschetz pencils. In the great work of Lefschetz [35] on

the topology of algebraic varieties, he introduced the technique of system-
atically 'fibering'' a projective variety by its hyperplane sections, and then
expressing the cohomology of that variety in terms of the cohomology of those
fibres. The general Lefschetz theory was successfully transposed into g-adic
cohomology, but it didn't really bear diophantine fruit until Kajdan-Margoulis
[30] proved that the ""monodromy group'' of a Lefschetz pencil of odd fibre
dimension was as 'large as possible.' Deligne realized that if the same result
were true in even fibre dimension as well, then it would be possible to induc-
tively prove the independence of ¢ and the rationality of the Pi p of X, by

recovering them as generalized ''greatest common divisors' of the P, of
the hyperplane sections. But the Kajdan-Margoulis proof was Lie-algebra

theoretic in nature, via the logarithms of the various Picard-Lefschetz trans-

formations in the monodromy group. The restriction to odd fibre dimension
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was necessary because in that case the Picard-Lefschetz transformations were
unipotent, so had interesting logarithms, while in even fibre-dimension they
were of finite order. Soon after, A'Campo [1] found a counterexample to a
conjecture of Brieskorn that the local monodromy of isolated singularities
should always be of finite order. Turning sorrow to joy, Deligne realized that
A'Campo's example could be used to construct (non-Lefschetz) pencils which
would have unipotent local monodromy. These he used to make the Kajdan-
Margoulis proof work in even fibre-dimension as well, and so to establish the
""independence of 4'' and rationality of the Pi,!@ (cf., [50]).

With this result, the importance of monodromy considerations for dio-

phantine questions was firmly established.

(2) Modular forms, Rankin's method, and the cohomological theory of I-series.

In the years after the Weil conjectures, experts in the theory of modular
forms began to suspect a strong relation between the Weil conjectures and the
Ramanujan conjecture on the order of magnitude of r(n). Recall that the 7(n)
are the g-expansion coefficients of the unique cusp form A of weight twelve

on SLZ(Z):

. L 24
AMa)=q{ |] (l—q)> = D1(n)+q

n

As an arithmetic function, 7(n) occurs essentially as the error term in the
formula for the number of representations of n as a sum of 24 squares. The
Ramanujan conjecture is that

| 7)) <n'V2.a

(n), d(n) = # divisors of n.
According to the Hecke theory (which had been ''prediscovered' by Mordell for

A) the Dirichlet series corresponding to A admits an Euler product:

- -— 1
T rn)en = T ( — “_Zs)
n> 1 p l-7(p)p +p
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The truth of the Ramanujan conjecture for all r(n) is then a formal con-
sequence of its truth for all 7(p) with p prime:

11/2
|r(p)| < 2p /

This last inequality may be interpreted as follows. Consider the polynomial
11_2 .
Il -7(p)T +p T and factor it:
11_2
L-re)T+p T =(1-app)T)( -B(p) T).

Then the Ramanujan conjecture for r(p) is equivalent to the equality

11/2
latp)] = [B)] = p Y

If there were a projective smooth variety X over IE;) such that the polynomial
1 -7(p)TH+ pllTZ divided PII(X/]Fp’T)’ then the Riemann Hypothesis for

X would imply the Ramanujan conjecture for 7(p) The search for this X
was carried out by Eichles, Shimura, Kuga, and lhara (cf., [29],[32]). They

constructed an X which ''should have worked, ' but because their X was not

compact and had no obvious smooth compactification, its polynomial P11 did

not necessarily have all its roots of the correct absolute value. Deligne then
showed how to compactify their X and how to see that the Hecke polynomial
112 ... . :

1 -7(p)T+p T divided a certain factor of Pll’ the roots of which factor
would have the '"correct' absolute values if the Weil conjectures were true.
Thus the truth of the Ramanujan conjecture became a consequence of the uni-
versal truth of the Riemann Hypothesis for varieties over finite fields.

In 1939, Rankin [39] had obtained the then-best estimate for 71(n)

2
n 9/5) ) by studying the poles of the Dirichlet series

(namely 7(n) = O(
Z(r(n)) *n

Langlands [34] pointed out that the idea of Rankin's proof could easily be used

to prove the Ramanujan conjecture, provided one knew enough about the loca-

tion of the poles of an infinite collection of Dirichlet series formed from A

by forming even tensor powers: for each even integer 2n one needed to know
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the poles of the function represented by the Euler product
Zn

it ¢ L)
\ 2n-i -s

p i=0 " 1-a(p) 8p) " ' p

Deligne studied Rankin's original paper in an effort to understand the
remarks of Langlands. He realized that for L-series over curves over finite
fields (instead of over Spec.(Z)), Grothendieck's cohomological theory [19] of

such L-series together with the Kajdan-Margoulis monodromy result gave an

apriori hold on the poles: Rankin's methods could therefore be combined with
Lefschetz pencil-monodromy techniques to yield the Riemann Hypothesis for
varieties over finite fields, and with it the Ramanujan-Peterson conjecture as

a corollary.

Deligne's proof in a special case

Formulation of the problem

I would now like to explain the idea of Deligne's proof by treating the
special case of odd-dimensional non-singular hypersurfaces (so including the
case of non-singular plane curves!). This special case, which was in fact the
first case that Deligne treated, illustrates the main ideas without overwhelm-
ing the cohomological novice. In the general case, the ideas explained here
occur as the "Main Lemma. "

. . Z2n
Let's consider a non-singular hypersurface XOC P of degree d, over

the field ]Fq. Its zeta function is of the form

P(XO/]Fq,T)
Z(XO/IF‘q,T) T . :
] (1 -qT)
i=0

where P(XO/IFq,T) is a polynomial with integral coefficients and constant
term one, whose degree b=degP is the middle Betti number of any smooth
degree d complex hypersurface of dimension 2n-1. Explicitly,

(d-1)*"-1)@-1)

b = d
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Over €, we may factor it

b
P(XO/IFq,T) = El(l -a,T)

2n-1
According to the functional equation, o —>q n /o permutes the «.. The
i

Riemann Hypothesis for X _ is the assertion that the complex absolute values

0

of the o, are all given by
2n-1 .
‘oz.ll = Ja i=1,...,b

2n-1
In view of the fact that ¢ +—>q n /o permutes the «., these equalities are
i

equivalent to the inequalities

\a.\sﬁzn_l i=l,...,b.

1

If we equate the cohomological and diophantine expressions for the zeta func-

tion, we get

. HlaT
Z(X,/F, ,T) = exp [ D lN Voizl

r>l r/ 2n-1
H (1-a'T)

Equating coefficients of the logarithms, we get

2n-1 iy b .
1

2 q =-2 a.,

i=0 i=1 !

so that the Riemann Hypothesis for X _ is equivalent to the diophantine esti-

0

mates
-1

Z2n-1
IN, -Z) " <b . fq" , r=1,2,. ..

However, the most fruitful equivalent formulation of the Riemann Hypothesis

for X0 turns out to be the following form * of the inequality Iail < A/E en-1 :

1

The power series W

e RQ[[T]] converges

(in the archimedean sense) for lTl < l/ﬁ Zn—l‘
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A geometric construction

The first step in proving the Riemann Hypothesis for X0 is to consider

not only X _ itself, but an entire one parameter family (in fact, a Lefschetz

0
pencil) Xt of hypersurfaces in the same ambient projective space. The idea
of simultaneously proving the Riemann Hypothesis for all varieties in a suitable
family containing the one of initial interest was suggested to Deligne by Bom-
bieri's relating to him that Swinnerton-Dyer had obtained weak estimates in the
case of elliptic curves by considering certain L-series attached to ''the" uni-
versal family of elliptic curves, and relating them to modular forms (!).

Suppose that X0 is defined by the vanishing of a homogeneous form F of
degree d. Choose any other form G of the same degree also defined over
]Fq, and consider the one parameter family of forms F +tG. Denote by Xt
the corresponding hypersurface.

It is not difficult to see that, possibly after replacing ]Fq by a finite
extension, we can choose G in such a way that

a) the hypersurface of equation G is smooth, and

intersects X0 transversely.

b) for all but finitely many values of t in the algebraic

closure of ]Fq, the hypersurface X  is smooth, while

for the remaining values it has one and only one singular

point, which is an ""ordinary double point. "

1 1
Let us denote by A~ the affine t-line over ]Fq, and by Sc< A the finite set
of exceptional parameter values. We will simultaneously prove the Weil con-
1

jectures for all the Xt’ te A - S, by making use of the g-adic '"glue' which
holds them together. This glue is a certain g-adic representation of a certain

arithmetic fundamental group.

The role of monodromy

The classical setting. Suppose first that the ground field is € rather

1
than IF‘q. Then the various Xt , te A - S, fit together to form a fibration over
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1 1
/A" -S which is locally (on A - S) trivial in the C” sense. The middle-dimen-

Z2n-1
sional cohomology groups H n (Xt’D) therefore form a local coefficient

1 1
t - hat is th ick -point t_e -
system on /A" - S, or, what is the same once we pick a base-poin 0 A -S,

1 2n-
they give a representation of 171(/A -S) on H n l(XtO,D). This representation

. R . 2n-1 .
respects the alternating intersection-form ¢(,) on H (XtO,Q), so gives a

1 2n-1
homomorphism of wl([A. -S) to the symplectic group Sp =Aut(H n (XtO,Q),(,)).

The Kajdan-Margoulis theorem asserts that the image of ™ in Sp is Zariski-

dense: any polynomial function on Sp which vanishes on the image of ™ is

identically zero.

The g-adic setting. Over the ground field IF‘q, if we fix a prime number
¢4 prime to q, Grothendieck's theory of g-adic cohomology provides us with a

similar but even richer structure.

rith

1
Recall that the arithmetic fundamental group e of A" -S is a com-

1

pact totally disconnected group, defined as the quotient of the galois group of

the algebraic closure ]Fq(t) over qu(t) by the closed subgroup generated by

the inertial subgroups attached to all places of ]Fq(t) lying over points of

geom arith

1
/A - S. The subgroup ™ cm is the corresponding quotient of the

galois group of qu(t) over E(t). It is this '"geometric fundamental group"

which is the analogue of the fundamental group in the classical case. It sits

ith . ~ A
in "al.r1t as a closed normal subgroup, with quotient group gal(llg/Ib:q)——Z ,

the canonical generator being the Frobenius automorphism a —>a9 of Fq

L8eom ﬂarith ''degree' ZA

0—>m )

Just as in algebraic number theory, there is associated to each closed

1 —
point xe /A - S and to each place x of ]Fq(t) lying over it, a well-defined

arith A
! whose degree in Z is the integer

Frobenius element ?;6 TTl

df —
deg(x) == degree (qu(x)/IFq). If we change x but keep x fixed, the element
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"m’i changes by conjugation. Unfortunately, we will need to consider not the

df -
?§ but their inverses, which we christen F§ == (9:§) 1. We denote by F
—_— x

arith
1

the conjugacy class in = of all F_ for points X lying over a fixed x;
X

A
the degree of FX in Z is the integer - deg(x).

The g-adic theory provides us with the following data:

1) a b-dimensional Dz-space V with a continuous representation
arith . . 1
of ™ in Aut(V), such that for every closed point xe A - S,

we recover the numerator of the zeta function of XX/IFq(x) by the
formula

det(1-TF,_|V) = P(X /I (x),T)eQ[T]

2) an alternating auto-duality intersection form ¢(,) on V with
values in Qz(l—Zn) which is respected by Tral.rlthmetlc. This
arith

means that (,) is a Qz—valued autoduality such that for g em ,

v,weV, we have

(1-2n)deg(g

{gv,gw)=g¢g )<v,w><

Thus

geom

(yv,yw)= (v,w) for ye ™

(2n-1)deg x

<F§V,F§W> =q (v,w) for each F§

The g-adic version of the Kajdan-Margoulis theorem is that the image of

geom

1 in Aut (V) 1is Zariski dense (in fact, g-adically open) in the symplectic

group Sp(V, (,)).

The proof: a heuristic

We have set out to prove the Riemann Hypothesis for all of the XX/]:E;.](X),
1
xe/A -S. As we have already noted, this is equivalent to proving that for each

1
closed point xe /A - S, the series
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1
— e Q[[T]]
P(X_/IF (x),T)
x q
TZn—l
is convergent archimedeanly for |T| < I/Jq gx , or equivalently, (if we
d
replace T by T egx) that the series
1 1
deg x - deg x e[(T]]
det(l - T F V) PX /F (x),T )
x X q

is convergent archimedeanly for |T\ < l/ﬁ Zn-l.

To clarify the basic idea, let us begin by explaining how we could directly
deduce this last estimate if two apparently false suppositions were simultane-
ously true (cf., the Remark at the end of the proof). The first supposition is

that each of the series 1/det(l - Td‘ng

FX\V) e Q[[T]] has positive coefficients.
The second is that the infinite product

1
deg x

Lv,T) EB T
X

eQ[[T]]

det(l1-T F_|V)
xX

is archimedeanly convergent for \T\ < 1/ﬁ2n—1 when viewed as a power
series. Granting these suppositions, we would simply remark that as each of

the factors 1 /det(l - Tdeg X

FXIV) is a series with constant term one, the sup-
position that its coefficients are positive means that the power series for
L(V,T) also has positive coefficients which are term-by-term greater than or
equal to the coefficients of any of the factors. Therefore, the supposed archi-
medean convergence of L(V,T) for lT| < l/JEZH_1 would imply that each

of the factors 1/det (1 - TOeEX

'Tl < l/A/an-l.

The actual proof: ''squaring"

FXIV) is itself archimedeanly convergent for

We must now explain how to get around the fact that our suppositions are

not simultaneously true. The non-positivity of the coefficients of the individual

deg x

factor 1/det(l-T FXIV) is eliminated by replacing V by any of its even
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2 2
tensor powers V® k. (Replacing V by V® is analogous to Rankin's

®2k

- d
s eg Xp \V )
x

- 2
replacing 2 7(n)+n s by 2 (r(n) *n ~.) To see thatl/det(1-T
has positive coefficients, we argue as follows. For any integer m> 1, we

have the formula

n
d m n m
Vdet (1-T98 X |Vv®™) - exp (I trace (F |vET)Y
x \ n x /
n>1
n
/ n m
=exp ! 2 L (trace (F \V)) >
n x
n> 1

For m=1, this formula, together with the fact that the series

deg x

1/det (1-T FXlV) has rational coefficients shows that all of the numbers

trace (F:IV) are rational. This rationality, together with the above formula

d 2
pdegx ® k)

for m =2k, shows that 1/det (1- FX‘V is the exponential of a series
with positive coefficients, and therefore has positive coefficients itself.

Review of L-series

Thus in order to apply the argument, we need information on the radius

of convergence of the power series

® 2k dfn ~‘— 1

d 2k
eg xe'V® k

x det(l-T )

Happily, this information is provided by Grothendieck's cohomological expres-

sion for the L-function L(M,T) associated to any continuous finite-dimen-

arith

sional Dﬂl—adic representation of -nl Grothendieck gives a formula for

L(M,T) which shows it to be a rational function of T and which, more impor-

tant for us, gives an a priori hold on its poles, as follows.

geom

Let M denote the largest quotient space of M on which ™

"lgeom
acts trivially:
Mﬁgeom= M/ b (1- yyM

1 yeTrlgeorn
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arith geom

This factor space is a representation of 'rr1 /'rr1 Z , so the unique

q

A
element F € Z of degree -1 (the inverse of the automorphism a —>a~ of

IFq) acts on it. Grothendieck's formula for L-series asserts that the product

det (1-qTF lM_IT geom)*L(M, T)
1

is a polynomial.

The end of the proof

® 2k

We now apply this to M =V . The ke oint is to compute
pply yp p
® 2k . . .
(V ),n,geom and the action of F wupon it, for then we will know the poles of
1
® 2k geom

L(V ,T). Because the image of w in Sp = Aut (V, {,)) is Zariski-

1

dense (by the Kajdan-Margoulis theorem), their covariants are the same:

®2k ~ ® 2k
(v )_nlgeom a% )Sp

The tensor covariants of the symplectic group, or rather their dual, are

well known from classical invariant theory. By the definition of covariants,

linear forms on (V® Zk)

Sp

are the same thing as Sp-invariant 2k-linear forms
on V, and these are all sums of '"complete contractions'': for each partition

of the set {1, .,2k} into two ordered sets {al,. bl""’b the

")ak: k}’

corresponding complete contraction is the 2k-linear form on V

k

) —> —T <Va.’ vb.>

i=1 i i

(Vl"”’VZk

. arith . .
If we remember the action of ' , then the intersection form ¢(,) on

: _k
V takes values in Dz(l—Zn), and we see that the product |l (va Yy Y lies
i=1 i i

in Qt(k(l-Zn)). So if we pick a maximal linearly independent set of complete
contractions, we get an isomorphism

<V®2k)sp = & @, (k(1-2n);

+(2n-1
a space on which F acts as multiplication by qk (én ).
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Referring back to Grothendieck's theorem, the denominator of L(V® Zk,T)

is at worst given by

1+k(2n-1
det (l-qTFleaDz(k(l-Zn))) - a power of (l-q' | (@n-1) ).
. ® 2k .
Therefore the series L(V , T) converges archimedeanly for
1+k(2n-1
|T| <1/q (-1,
Th itivit t th h that h fact !
e positivity argumen en shows that each factor
2
det(1-T4%8 *F [v® 2K,
X

l1+k(2n-
converges archimedeanly for IT‘ <1/q +k(2n 1).

Now suppose that «(x) is an eigenvalue of Fx on V. We must prove

deg x n-1 2k
that [a(x)lsl/k/q g . But o(x) will be an eigenvalue of FX on

V® 2k deg x

, and therefore 1/det(1-T Fxl V® Zk) will have a pole at

1+k(2n-1)

Zk/degx. But as this series converges for |T| <1l/q , we

T = 1/a(x)

must have the inequality

Zk/degxI 1+k(2n-1)

[1/o(x) >1/q

or equivalently

‘a(x)l 2k/degx < ql+k(2n-l)

or equivalently

Letting k tend to +«, we obtain

2n-1
la(x)| < Jgdeex Q.E.D.

2k+1
Remark The cohomological expression for L(V® It ,T) together

with the fact that the symplectic group has no covariants in any odd tensor

power of its standard representation shows that in fact each of the L series

2
V® k+1

L( ,T) is a polynomial, so has infinite radius of convergence. But itis

2
only for the even tensor powers V® k that we can be sure that each local

deg x

2
factor 1/det(l-T FXIV® k) has positive coefficients.
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Applications

The most striking arithmetic consequence is the generalized Ramanujan-
Peterson conjecture on the order of magnitude of the coefficients of cusp forms
of weight two or more on congruence subgroups of SLZ(Z). (Deligne and Serre
have also proven the conjecture for forms of weight one (unpublished), but the
proof is logically independent of the Riemann Hypothesis. )

Another arithmetic application is the estimation of exponential sums in
several variables. Though technically difficult, the idea goes back to Weil
[56], who showed how the Riemann Hypothesis for curves over finite fields gave
the ''good' estimate for exponential sums in gn_e_ variable.

As for geometric applications, we have already mentioned the hard Lef-
schetz theorem. There is also a whole chain of ideas built around the ''yoga
of weights," Grothendieck's catch-phrase for deducing results on the cohomol-
ogy of arbitrary varieties by assuming the Riemann Hypothesis for projective
non-singular varieties over finite fields (cf.,[7]). The whole of Deligne's
""mixed Hodge theory'' for complex varieties ([8],[9]), developed before his
proof of the Riemann Hypothesis, is intended to prove results about the co-
homology of these varieties which follow from the Riemann Hypothesis and
from the systematic application of Hironaka's resolution of singularities. The
recent work of Deligne, Griffiths, Morgan and Sullivan on the rational homo-
topy type of complex varieties is also considerably clarified by the use of the
Riemann Hypothesis.

Some open questions

1. Independence of /

Let X be an arbitrary variety over an algebraically closed field k.
For each prime number { distinct from the characteristic of k, the g-adic

cohomology groups Hl(X,QL) and the g-adic groups ''with compact support"
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! (X,R ) are known ([10]) to be finite-dimensional @ -vector spaces.
comp 2 L

Let us denote by b;:o;np (X) their dimensions. It is unknown whether these

numbers are independent of {, except in some special cases, as follows.
When the field k is of characteristic zero, the '"comparison theorem'

[2] asserts that if we '"choose' an embedding of k into the complex number

field €, and denote by X(C€) the corresponding analytic space over € with

its usual topology, then we have isomorphisms

Hi(X,Dl) ~ oyt (X(C),R)® D

sing 4
i ~ i
comp(X’D/l) Hcornp, sing(X((I:)’(D)® D/z
where Hl, (resp. H . ) denotes classical singular cohomology
sing comp, sing

(resp. with compact support) of usual topological spaces.

When the field k 1is of characteristic p, an easy specialization argu-
ment reduces us to considering only the case when k is the algebraic closure
of a finite field IFq, and X/k comes by extension of scalars from a variety
X /IF .

0/

q

In case X/k is proper and smooth, then b, (X) = pOMP

e ) (X), just

because X is already '"compact," and we can use the Riemann Hypothesis for
XO/IFq (extended by Deligne to the proper (not necessarily projective) and
smooth case in [6]) to interpret bi, JZ(X) as the number of complex zeroes (if
i is odd) or poles (if i is even) of the zeta function Z(XO/IFq,T) which lie on
the circle |T| = q-i/z. Because the zeta function itself is independent of 4,
this shows that the integer bi’z(X) is independent of £, and that the (a priorj}
f-adic) polynomial det (1-TF|Hi(X,QI/)) has D-coefficients which are inde-

pendent of §.

However, when X/k fails to be proper and smooth, this argument
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breaks down. For arbitrary X/k, Deligne has proven (cf.,[6]) that for each

L # p, the polynomial det (I_TF‘chomp(X’Dl,“’ whose degree is bic,oznp(X),
has algebraic numbers as coefficients, and that each of its reciprocal zeroes

(the eigenvalues of ¥ on H' (X,0Q )) 1is an algebraic number ¢ for which
g c ) g

omp
there exists an integer j<i (j depending upon «) such that « and all of its
2 .
conjugates over @ have lal = qJ/ But it is unknown if det(l-TF|H1 (X,D))
comp y)
has Q-coefficients, and a fortiori if it is independent of 4. It is the mixing of
eigenvalues between the various H' omp that prevents us from expressing the
c

polynomials det (l-TF,HlCO (X,Dz)) in terms of Z(XO/[E‘q,T), as we could

mp
do in the proper and smooth case. [A sufficiently strong form of Hironaka's
resolution of singularities [27] (at present established only in characteristic
zero) would allow the recovery of these characteristic polynomials intrin-
sically in terms of the zeta functions of the various proper and smooth varieties
which would enter into a compactification and resolution of X. But perhaps

one can get by without resolution. ]

2. An elementary proof (cf.,[4])

Now that we know the Riemann Hypothesis for varieties over finite fields,
can we give an elementary proof by directly counting rational points? For
curves, this has been done recently by Bombieri-Stepanov. An added difficulty
in the higher dimensional case is that for the ''typical' variety of dimension
d > 1, the Riemann Hypothesis does not seem to be equivalent to any diophan-
tine statement: the highest cohomology group HZd gives the dominant con-
tribution to the number of rational points, and all the rest of the cohomology
is an error term:

1
N = qdn N O(qn(d )

).

This estimate, however, was established in 1953 by Lang-Weil [33] as a con-

sequence of the Riemann Hypothesis for curves. There are, of course, many
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special classes of varieties (e.g. curves, complete intersections, simply con-
nected surfaces) for which the Riemann Hypothesis is equivalent to a diophan-
tine estimate, and a direct proof valid for these would certainly be of great
interest.

3. The Hasse-Weil zeta function (cf., [59],[61])

With the proof of all the Weil conjectures, we may regard the question of
number of solutions of equations in finite fields as being fairly well understood.
What is not at all understood is the question of solutions of equations in rational
numbers. It is expected that the Hasse-Weil zeta function will play an impor-
tant role in this question. To fix ideas, suppose that X is a projective smooth
scheme over Z[1/N] (i.e., X is a projective non-singular variety over @
which has '"good reduction' at all primes p which are prime.to some ''con-
ductor' N). Then for each prime p which is prime to N, the '"'reduction mod
p'" of X, noted X(p), is a projective smooth variety over ]Fp. For each inte-
ger 0 <i <dim (X/Z[1/N]), we consider the i'th polynomial Pi(X(p)/]Fp,T)
occurring in the zeta function of X(p) /]Fp. The i'th Hasse-Weil L-function is
defined to be the Dirichlet series with Euler product (over primes not dividing
N)

L(i; X, s) = |_ 1

.

l =
P Pi(X(p)/le,p )

It is convergent for Re(s) > 1 + i/2 by the Riemann Hypothesis for the X(p)'s.
The Hasse-Weil zeta function is by definition the alternating product of these
L-functions.

It is generally conjectured that each of the L functions L(i, X, s) admits

a meromorphic extension to the entire s-plane, satisfies a functional equation

. 41
under s —>i+1-s, and has all of its zeroes in the half-plane Re(s)< Hé A

with all the zeroes which are not introduced by I'-factors in the functional
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equation lying on the line Re(s) =E-Z—l. The last conjecture is the ''generalized
Riemann Hypothesis."

From the point of view of arithmetic algebraic geometry, a variety X
over Z[1/N] is the analogue of a family of varieties parameterized by a curve
over a finite field. For such families, the analogues of the Hasse-Weil L-
functions are the L-functions associated to the various g-adic representations

of warlth which the g-adic cohomology provides; the meromorphy (in fact,

1
rationality as a function of p_s) of these latter L functions, and their functional
equations, are provided by Grothendieck's theory of such L-functions. The
location of their zeroes is a generalized form of the Riemann Hypothesis for
varieties over finite fields (which has also been proven by Deligne, but is still
unpublished).

What has been proven about the Hasse-Weil L-functions? The meromor-
phic continuation and functional equation have been established only for very
special X (e.g., elliptic curves with complex multiplication [13],[14], diag-
onal hypersurfaces [60], curves uniformized by modular functions [48], and X
of dimension zero). There is not a single known case of the Riemann Hypoth-
esis. In the simplest case, when the variety X over Z 1is "a point" (i.e.,

X = Spec (Z)), the Hasse-Weil zeta function ¢ (X,s) becomes the Riemann

zeta function!
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