CRYSSTALLINE COHOMOLOGY,
DIEUDONNÉ MODULES, AND JACOBI
SUMS

By NICHOLAS M. KATZ

TABLE OF CONTENTS

Introduction

I. Elementary axiomatics, and the Hasse-Davenport theorem

II. Gauss and Jacobi Sums as exponential sums, and as eigenvalues of Frobenius

III. The problem of "explicitly" computing Frobenius

IV. H^1 and abelian varieties: preliminaries

V. Explicit Dieudonné theory à la Honda; generalities
 5.1 Basic constructions
 5.2 Interpretation via $\text{Ext à la Mazur-Messing}$
 5.3 The case of p-divisible formal groups
 5.5 Relation to the classical theory
 5.6 Relation with abelian schemes and with the general theory
 5.7 Relation with cohomology
 5.8 Missing lemmas
 5.9 Applications to the cohomology of curves

VI. Applications to congruences and to Honda's conjecture

VII. Application to Gauss Sums

VIII. Interpretation via the de Rham-Witt complex

References
Introduction. Hasse [20] and Hasse-Davenport [21] were the first to realize the connection between exponential sums over finite fields and the theory of zeta and L-functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven "Riemann Hypothesis" for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf[46]). The basic idea (cf[20]) is that by using the theory of L-functions, one can express the negative of such an exponential sum as the sum of certain of the reciprocal zeroes of the zeta function itself; because the magnitude of these zeroes is given by the "Riemann Hypothesis," one gets an estimate. In a fixed characteristic p, the estimate one gets in this way for all the finite fields \mathbb{F}_p^n is best possible. On the other hand, very little is known about the variation with p of the absolute values, even for Kloosterman sums, though in this case there is a conjecture, of Sato-Tate type, which seems inaccessible at present.

One case in which the problem of unknown variation with p does not arise is when the expression of the exponential sum as a sum of reciprocal roots of zeta reduces to a sum consisting of a single reciprocal root; then the Riemann Hypothesis tells us the exact magnitude of the exponential sum. Conversely, an elementary argument shows that in a certain sense, this is the only case in which such exact knowledge of the magnitude of exponential sums can arise, and it shows further that a theorem of Hasse-Davenport type always results from such exact knowledge. Examples of exponential sums of this sort are Gauss sums and Jacobi sums.

Honda was the first to suggest that the identification of say, Jacobi sums, with reciprocal zeroes of zeta functions could also lead to significant non-archimedean information about Jacobi sums. A few years before his untimely death, Honda conjectured a p-adic limit formula for Jacobi sums in terms of ratios of binomial coefficients ([23]). I gave an over-complicated proof (in a letter to Honda of Nov. 1971) which managed to shed no light whatever on the meaning of the formula. Recently, B.H. Gross and N. Koblitz [14] showed that Honda's limit formula was really an exact p-adic formula for Jacobi sums in terms of products of values of Morita's p-adic Γ-function; as such, it constituted the first improvement in this century over Stickelberger's formula which gave the p-adic valuation and expansion of a Jacobian.

In this paper, I will study the sort discovered by Grothendieck-Mazur-Weil of zeta are the eigenvalue of algebraic cohomology group; if one applies the formal Rham-Witt calculus to $\mathcal{O}_\mathbb{D}$, there is something to be said about my decision to discuss these.

I would like to thank the Grothendieck-Mazur-Weil exotic Ext's, I was told by Spencer Bloch for his Honda's explicit Dieudonné determinant at some extravagant assets.

Finally, I would like to thank...

1. Elementary Axioms. Consider a projective, smooth variety X over the field k of dimension d, over a field k. Let $X(F_p)$ the finite set of points of X over F_p. Write the cardinality of this set as $Z(X,F_p)$, and consider the formal power series in $\mathbb{Z}[[X]]$.

\[Z(X,F_p) = \sum_{n=0}^{\infty} a_n F_p^n \]
CRYSSELLINE COHOMLOGY

[21] were the first to prove the existence of a cohomology theory in characteristic p over finite fields and apply it to the study of the zeta function of algebraic varieties over finite fields. They showed that, in characteristic p, the zeta function of a variety over a finite field is a rational function of a variable t in characteristic p. This was a major step forward in the study of zeta functions, as it allowed for a more algebraic approach to their study.

In this paper, I will discuss the cohomological genesis of formulas of the sort discovered by Honda. The basic idea is that the reciprocal zeroes of the zeta function are the eigenvalues of the Frobenius endomorphism of a suitable cohomology group; if this group, together with the action of Frobenius, can be constructed in a sufficiently explicit manner, one obtains the desired "explicit formulas".

There are two approaches to the question, which differ more in style than in substance. The first one is based on Honda's explicit construction of the Dieudonné module of a formal group in terms of the de Rham-Witt complex. The second, less elementary but more efficient, is grounded in crystalline cohomology, particularly the de Rham-Witt complex. I hope the reader will share my belief that there is something to be gained from each of the approaches, and pardon my decision to discuss both of them.

I would like to thank B. Dwork for many helpful discussions concerning the original proof of Honda's conjecture. Whatever I know of the Grothendieck-Mazur-Messing approach to Dieudonné theory through exotic Ext's, I was taught by Bill Messing. I would also like to thank Spencer Bloch for his encouragement when I was trying to understand Honda's explicit Dieudonné theory, and Luc Illusie for gently correcting some extravagant assertions I made at the Colloquium.

Finally, I would like to dedicate this paper to the memory of T. Honda.

I. Elementary Axiomatics, and the Hasse-Davenport Theorem. Consider a projective, smooth and geometrically connected variety X, of dimension d, over a finite field \(\mathbb{F}_q \). For each integer \(n \geq 1 \), we denote by \(X(\mathbb{F}_{q^n}) \) the finite set of points of \(X \) with values in \(\mathbb{F}_{q^n} \), and by \(\# X(\mathbb{F}_{q^n}) \) the cardinality of this set. The zeta function \(Z(X/\mathbb{F}_q, T) \) of \(X \) over \(\mathbb{F}_q \) is the formal power series in \(T \) with \(\mathbb{Q} \)-coefficients defined as

\[
Z(X/\mathbb{F}_q, T) = \exp \left(\sum_{n \geq 1} \frac{T^n}{n} \# X(\mathbb{F}_{q^n}) \right).
\]
Thanks to Deligne [6], we know that this zeta function has a unique expression as a finite alternating product of polynomials $P_i(T) \in \mathbb{Z}[T]$, $i = 0, \ldots, 2d$:

$$Z(X/F_q, T) = \prod_{i=0}^{2d} P_i(T)^{(-1)^{i+1}} = \frac{P_1 P_3 \cdots P_{2d-1}}{P_0 P_2 \cdots P_{2d}}$$

in which each polynomial $P_i(T) \in \mathbb{Z}[T]$ is of the form

$$P_i(T) = \prod_{j=0}^{\deg P_i} (1 - \alpha_{ij} T)$$

with α_{ij} algebraic integers such that

$$|\alpha_{ij}| = \sqrt{q}^{-1}$$

for any archimedean absolute value $|\cdot|$ on the field \mathbb{Q} of all algebraic numbers. The extreme polynomials P_0, P_{2d} are given explicitly:

$$P_0(T) = (1 - T) \quad P_{2d}(T) = (1 - q^d \cdot T)$$

Despite this apparently "elementary" characterization of the polynomials $P_i(T)$, their true essence is cohomological. Let us recall this briefly.

For each prime number l different from the characteristic p of F_q, let us denote by $H^i_l(X)$ the finitely generated \mathbb{Z}_l-module defined as

$$H^i_l(X) = \lim_{\leftarrow n} H^i_{\text{etale}}(X \otimes \overline{F}_q, Z/l^n Z).$$

Corresponding to the prime p itself, we denote by $W(F_q)$ the ring of p-Witt vectors of F_q, and by $H^i_{\text{cris}}(X)$ the finitely generated $W(F_q)$-module defined as

$$H^i_{\text{cris}}(X) = \lim_{\leftarrow n} H^i_{\text{cris}}(X/W_n(F_q)).$$

The Frobenius endomorphism F of X relative to F_q acts, by functoriality, on these various cohomology groups $H^i_l(X)$ for $l \neq p$, and $H^i_{\text{cris}}(X)$; and F induces automorphisms of the corresponding vector spaces $H^i_l(X) \otimes Q_l, H^i_{\text{cris}}(X) \otimes W(F_q)$ K (with K denoting the fraction field of $W(F_q)$). The polynomial $P_i(T) \in \mathbb{Z}[T]$ which occurs in the factorization of the zeta function is then given cohomologically by the formulas
CRYSSTALINE COHOMOLOGY

\[P_l(T) = \det (1 - TF\mid H^l_\text{fr}(X) \otimes \mathbb{Q}_l) \text{ for } l \neq p \]

\[P_p(T) = \det (1 - TF\mid H^l_\text{cris}(X) \otimes \mathbb{Q}_p) \]

The resulting formula for zeta as the alternating product of characteristic polynomials of F on the \(H^l_j \), in each of the cohomology theories \(H^l_j(X) \otimes \mathbb{Q}_l \) for \(l \neq p \), \(H^l_\text{cris}(X) \otimes \mathbb{K} \), is equivalent, via logarithmic differentiation, to the identities in those theories

\[\# X(F_{\mathbb{Q}_l}) = \sum (-1)^i \text{trace } (F^n|H^1). \text{ for all } n \geq 1. \]

By viewing the set \(X(F_{\mathbb{Q}_l}) \) as the set of fixed points of \(F^n \) acting on \(X(F_{\mathbb{Q}_l}) \), this identity becomes a Lefschetz trace formula

\[\# \text{Fix } (F^n) = \sum (-1)^i \text{trace } (F^n|H^1) \text{ all } n \geq 1 \]

for \(F \) and its iterates in each of our cohomology theories. If we take as given these Lefschetz trace formulas, then the identification of \(P_l \) with \(\det(1 - FT|H^1) \) is equivalent to the assertion:

- On any of the groups \(H^i_j(X) \otimes \mathbb{Q}_l \) with \(l \neq p \), \(H^i_\text{cris}(X) \otimes \mathbb{K} \), the eigenvalues of \(F \) are algebraic integers all of whose archimedean absolute values are \(\sqrt{q} \).

In fact, there is not a great deal more that is known about the action of \(F \) on the \(H^i_j(X) \otimes \mathbb{Q}_l \) for \(l \neq p \), and on \(H^i_\text{cris}(X) \otimes \mathbb{K} \). It is still not known, for example, whether the action of \(F \) on these cohomology groups is always semi-simple when \(i > 1 \). (That it is when \(i = 1 \) results from the theory of abelian varieties).

Suppose that a finite group \(G \) operates on \(X \) by \(\text{F}_q \)-automorphisms. Let us choose a number field \(E \) big enough that all complex representations of \(G \) are realizable over \(E \), and whose residue fields at all \(p \)-adic places contain \(\text{F}_q \). (For example, the field \(\mathbb{Q}(\zeta_{q^{-1}}, \zeta_N) \), where \(N \) is the l.c.m. of the orders of elements of \(G \), is such an \(E \). We denote by \(\lambda \) an \(l \)-adic place of \(E \), \(l \neq p \), and by \(P \) a \(p \)-adic place of \(E \). Thus \(E_{\lambda} \) is a finite extension of \(Q_l \), and \(E_{P} \) is a finite extension of \(K \).

Let \(M \) be a finite dimensional \(E \)-vector space given with an action of \(G \), say \(\rho : G \to \text{Aut}_E(M) \). The associated \(L \)-function \(L(X/\text{F}_q, \rho, T) \) is the formal power series with \(E \)-coefficients defined as
Let us recall the derivation of the characteristic polynomial. We divide \(\det(1 - FT|H^l_i) \) by 2, because \(H^l_i \) is an algebraic integer valued in \(\mathbb{Q}(\sqrt{q}) \). So it remains to compute those characteristic polynomials:

\[L(X/F_q, \rho, T) = \prod_{\rho \in \text{red}} L(X/F_q, \rho, T)^{deg(\rho)} \]

Equivalently, we must compute

\[\frac{1}{\# G} \sum_{g \in G} \text{tr}(\rho(g^{-1})) \]

for each \(\rho \) and each \(g \in G \).

To check this last equality, we use an elementary descent into the base fields, together with an isomorphism of cohomology spaces:

\[H^l_i(X) \otimes_{W(F_q)} K \]

The polynomials \(P_{i, \rho}(T) \) are given by the formulas:

\[P_{i, \rho}(T) = \det(1 - TF|\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i))) \]

for \(l \neq \rho \).

\[P_{i, \rho}(T) = \det(1 - TF|\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i))) \]

for \(l = \rho \).

The homomorphism expression of these \(P_{i, \rho} \) is straightforward (cf.18). Because the action of \(G \) on \(X \) is “defined over \(F_q \),” it commutes with \(F \), and therefore the induced action of \(G \) on the cohomology commutes with the action of \(F \). Therefore \(G \) acting by composition, induces automorphisms of the \(E \)-vector spaces, \(l \neq \rho, \)

\[\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i)) \]

and of the \(E \)-vector spaces

\[\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i)) \]

The polynomials \(P_{i, \rho}(T) \) are given by the formulas:

\[P_{i, \rho}(T) = \det(1 - TF|\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i))) \]

for \(l \neq \rho \).

\[P_{i, \rho}(T) = \det(1 - TF|\text{Hom}_{E^{[G]}_l}(M \otimes E, H^l_i(X \otimes E^l_i))) \]

for \(l = \rho \).
Let us recall the derivation of these formulas. We first observe that the characteristic polynomial of F on $\text{Hom}_Q(M, H^i) \simeq (\tilde{M} \otimes H)^G \subset M \otimes H^i$ divides $\det(1 - FT|H^i)^{\dim(M)}$, and hence the eigenvalues of F on $\text{Hom}_Q(M, H^i)$ are algebraic integers, all of whose archimedean absolute values are \sqrt{q}. So it remains only to verify that the alternating product of those characteristic polynomials is indeed the L-function, i.e. that

$$L(X/F_q, \rho, T) = \prod \det(1 - FT|H^i)^{(-1)^{i+1}}.$$

Equivalently, we must check that

$$\frac{1}{\# G} \sum \text{trace } \rho(g^{-1}) \neq \text{Fix}(F^n g)$$

$$= \sum (-1)^i \text{trace } (1 \otimes F^n | (\tilde{M} \otimes H^i)^G)$$

$$= \sum (-1)^i \frac{1}{\# G} \sum_{g \in G} \text{trace } (g \otimes F^n g|\tilde{M} \otimes H^i)$$

$$= \sum (-1)^i \frac{1}{\# G} \sum_{g \in G} \text{trace } \rho(g) \cdot \text{trace } (F^n g|H^i)$$

$$= \frac{1}{\# G} \sum_{g \in G} \text{trace } \rho(g^{-1}) \sum (-1)^i \text{trace } (F^n g|H^i).$$

To check this last equality, we would like to invoke the Lefschetz trace formula, not for F^n, but for $F^n g$, with g an automorphism of finite order which commutes with F; this amounts to invoking the Lefschetz trace formula for Fg on X and on all its “extensions of scalars” $X \otimes F_q^n$. But a more elementary descent argument shows that given an automorphism g of finite order which commutes with F, there is another variety X'/F_q together with an isomorphism $X \otimes \overline{F}_q \simeq X' \otimes \overline{F}_q$ under which $Fg \otimes 1$ corresponds to $F \otimes 1$. Because this isomorphism also induces isomorphisms of cohomology groups

$$H^i_c(X') \otimes \overline{W} \simeq H^i_c(X \otimes \overline{F}_q, Z_q) \simeq H^i_c(X \otimes \overline{F}_q) \simeq H^i_c(X \otimes \overline{F}_q) \simeq H^i_c(X \otimes \overline{F}_q) \simeq H^i_c(X \otimes \overline{F}_q),$$

171
the truth of the Lefschetz formula for \(F_g \) on \(X \) results from its truth for \(F \) on \(X' \).

Let us now consider in greater detail the case of an irreducible \(\rho \). Then \(P_{i,\rho} \) is a polynomial whose degree is the common multiplicity of \(\rho \) in any of the \(H^i(X) \otimes E_\lambda \), \(l \neq \rho \), or in \(H^i_{\text{cris}}(X) \otimes E_\rho \). Decomposing the regular representation leads to the factorization

\[
P_i(T) = \prod_{\rho \text{irred}} P_{i,\rho}(T)^{\deg(\rho)}
\]

The coarser factorization

\[
P_i(T) = \prod_{\rho \text{irred}} (P_{i,\rho}(T)^{\deg(\rho)})
\]

corresponds to the decomposition of \(H^i_j(X) \otimes E_\lambda \), resp \(H^i_{\text{cris}}(X) \otimes E_\rho \), into \(\rho \)-isotypical components

\[
H^i_j(X) \otimes E_\lambda \simeq \bigoplus_{\rho \text{irred}} (H^i_j(X) \otimes E_\lambda)^\rho
\]

\[
H^i_{\text{cris}}(X) \otimes E_\rho \simeq \bigoplus_{\rho \text{irred}} (H^i_{\text{cris}}(X) \otimes E_\rho)^\rho
\]

Indeed the corresponding identities, for \(\rho \) irreducible, are

\[
P_{i,\rho}(T)^{\deg(\rho)} = \det(1 - TF | (H^i_j(X) \otimes E_\lambda)^\rho)|_{l \neq \rho}
\]

\[
P_{i,\rho}(T)^{\deg(\rho)} = \det(1 - TF | (H^i_{\text{cris}}(X) \otimes E_\rho)^\rho)
\]

Let us denote by \(S(X/F_q, \rho, n) \) the exponential sums used to define the L-function:

\[
S(X/F_q, \rho, n) = \frac{1}{\# G} \sum_{g \in G} \text{tr}(\rho(g)) \# \text{Fix}(F^n g^{-1}).
\]

The following lemma gives the cohomological meaning of theorems of Hasse-Davenport type (cf [20]).

Lemma 1.1. Let \(X/F_q \) be projective and smooth. Let a finite group \(G \) operate on \(X \) by \(F_q \)-automorphisms, and let \(\rho \) be an irreducible complex representation of \(G \). Fix an integer \(i_0 \), and denote by \(H^i \) any one of the cohomology groups \(H^i_0(X) \otimes E_\lambda \) with \(l \neq \rho \), or \(H^i_{\text{cris}}(X) \otimes E_\rho \). Let \(| \cdot \) be any archimedean absolute value on the field \(\overline{Q} \) of all algebraic numbers. The following conditions are equivalent:

1. The multiplicity of \(\rho \) is zero if \(i \neq i_0 \).
2. For all \(n \geq 1 \), we have
 \[
 (-1)^b S(X/F_q, \rho, n)
 \]
 and
3. For all \(n \geq 1 \), we have
 \[
 S(X/F_q, \rho, n)
 \]
4. For all \(n \geq 1 \), we have
 \[
 \sqrt{q}^n S(X/F_q, \rho, n)
 \]
5. The polynomial \(P_{b,\rho}(T) \)
 \[
 P_{b,\rho}(T) = \prod_{\rho \text{irred}} (P_{b,\rho}(T)^{\deg(\rho)})
 \]
 and for \(i \neq i_0 \), we i
6. The \(\rho \)-isotypical component \(S(X/F_q, \rho, n) \)

Proof. This is an exercise.

Suppose, first, that (1) holds, while \(P_{b,\rho} \) is a linear factor. The cohomological expansion

\[
\exp \left(\sum_{n} \frac{T^n}{n} S(X/F_q, \rho, n) \right)^{-1}
\]

in terms of \(E_\rho \)-valued functions.
CRYSSTALINE COHOMOLOGY

(1) The multiplicity of \(\rho \) in \(H^0 \) is one, and the multiplicity of \(\rho \) in \(H^1 \) is zero if \(i \neq i_o \).

(2) For all \(n \geq 1 \), we have \[
(-1)^{i_o} S(X|F_q, \rho, n) = \left((-1)^{i_o} S(X|F_q, \rho, 1) \right)^n,
\]
and \[
|S(X|F_q, \rho, 1)| = \sqrt[\rho]{1^{\rho}}
\]

(3) For all \(n \geq 1 \), we have \[
|S(X|F_q, \rho, n)| = \sqrt[n]{1^{\rho}}
\]

(4) For all \(n \geq 1 \), we have \[
|S(X|F_q, \rho, n)| = |S(X|F_q, \rho, 1)|^n
\]
and \[
\sqrt[n]{1^{\rho}} \leq |S(X|F_q, \rho, l)| < \sqrt[n]{1^{\rho} + l}
\]

(5) The polynomial \(P_{\omega, \rho} (T) \) is given by \[
P_{\omega, \rho} (T) = 1 - (-1)^{i_o} S(X|F_q, \rho, 1) T
\]
and for \(i \neq i_o \), we have \(P_{\omega, \rho} (T) = 1 \).

(6) The \(\rho \)-isotypical component \((H^i)^\rho \) is 0 for \(i \neq i_o \), \((H^0)^\rho \) has dimension \(\deg (\rho) \), and \(F \) operates on \((H^0)^\rho \) as the scalar \((-1)^{i_o} S(X|F_q, \rho, l)\).

Proof. This is an easy exercise, using the basic identities:

\[
\exp \left(\sum \frac{T^n}{n} S(X|F_q, \rho, n) \right) = L(X|F_q, \rho, T) = \prod P_{\omega, \rho} (T)^{(-1)^{i_o} + 1}
\]

\[
P_{\omega, \rho} (T) = \prod (1 - \alpha_{i,\rho} T), \ |\alpha_{i,\rho}| = \sqrt[n]{1}
\]

\[
\deg P_{\omega, \rho} = \text{multiplicity of } \rho \text{ in } H^1 = \frac{1}{\deg(\rho)} \cdot \dim((H^1)^\rho).
\]

Suppose, first, that (1) holds, or equivalently that for \(i \neq i_o \), \(P_{\omega, \rho} (T) = 1 \), while \(P_{\omega, \rho} \) is a linear polynomial \(P_{\omega, \rho} (T) = (1 - AT) \) with \(|A| = \sqrt[\rho]{1} \). The cohomological expression for \(L \) then becomes

\[
\exp \left(\sum \frac{T^n}{n} S(X|F_q, \rho, n) \right) = \left(\frac{1}{1 - AT} \right)^{(-1)^{i_o}}
\]
Taking logarithms and equating coefficients, we find

\[(-1)^b S(X/F_q, \rho, n) = A^n \quad \text{for all } n \geq 1. \]

In particular (2) and (5) hold.

The implications (5) \(\Rightarrow \) (1), (6) \(\Rightarrow \) (1) are obvious. Also (5) \(= \) (6), for if \(P_{\alpha, \rho} \) is linear, then \(\rho \) has multiplicity one in \(H^{0}_0 \), so that \((H^0)^\rho \) is \(G \)-irreducible, and hence \(F \) must operate on \((H^0)^\rho \) as a scalar, which we compute by the formula

\[P_{\alpha, \rho} \left(T^{\deg(\rho)} \right) = \det(1 - TF(H^0)^\rho). \]

Clearly we have (2) \(= \) (3) \(= \) (4). We must show that if (4) holds, then exactly one of the \(P_{\alpha, \rho} \) is \(\neq 1 \), and that one is linear. Logarithmically differentiating the cohomological formula for \(L \), we find

\[S(X/F_q, \rho, n) = \sum_i (-1)^i \sum_{j=1}^{\deg(\rho)} (\alpha_{i,j,\rho})^n, \quad |\alpha_{i,j,\rho}| = \sqrt{q^i}. \]

We must show that if (4) holds, then the double sum has only a single term in it. Separating the \(\alpha_{i,j,\rho} \) according to the parity of \(i \), we get two disjoint sets of non-zero complex numbers (disjoint because their absolute values are disjoint), to which we apply the following lemma.

Lemma 1.2. Let \(N \geq 0 \) and \(M \geq 0 \) be non-negative integers. Let \(\{ A_i \} \) be a family of \(N \) not-necessarily distinct elements of \(C^\ast \), and \(\{ B_j \} \) a family of \(M \) not-necessarily distinct elements of \(C^\ast \). Suppose that for all \(i, j, A_i \neq B_j \). If, for some real number \(R > 0 \), we have

\[|\sum A_i^n - \sum B_j^n| = R^n \quad \text{for all } n \geq 1, \]

then \(N + M = 1 \), i.e. either there is just one \(A \) and no \(B \)'s, or just one \(B \) and no \(A \)'s.

Proof. Suppose first that either \(N = 0 \) or \(M = 0 \), say \(M = 0 \). Then we have

\[|\sum A_i^n| = R^n. \]

Squaring, we get

\[\sum_{i,j} (A_i \overline{A}_j)^n = (R^2)^n \quad \text{for } n \geq 1 \]

whence

\[\prod_{i,j} (1 - R^2T^i) \]

and hence \(N = 1 \).

In case both \(N \geq 1 \) and \(M \geq 1 \),

\[\sum (A_i \overline{A}_i)^n + \sum (B_j \overline{B}_j)^n = \frac{1}{(1 - R^2T)} \]

or equivalently,

\[\sum (A_i \overline{A}_i)^n + \sum (B_j \overline{B}_j)^n = \frac{1}{(1 - R^2T)}. \]

Let \(R_{\max} \) be \(\max(|A_i|, |B_j|) \).

The numerator's factor \((1 - R_{\max}^2) \) is forbidden. In the denominator, \((1 - |B_j|^2T) \) with \(|A_i| > |B_j| \) is forbidden. Therefore we may conclude that \(R_{\max} = R \).

In a similar but lighter proof is left to the reader.

Lemma 1.3. Let \(X \) be a scheme, and \(X \) operate on \(\chi \) by \(F_q \)-algebraic representation of \(G \).

\[H_i(X) \otimes E_j \] with \(l \neq \) equivalent.

(1) For all \(i, \rho \) does not exist.

(2) For all \(n \geq 1, w \) is defined.
CRYSTALLINE COHOMOLOGY

whence

\[\prod_{ij} (1 - A_i \overline{A}_j T) = (1 - R^2 T), \]

and hence \(N = 1 \).

In case both \(N \geq 1 \) and \(M \geq 1 \), squaring leads to

\[\sum (A_i \overline{A}_j)^n + \sum (B_i \overline{B}_j)^n = (R^2)^n + \sum (A_i B_j)^n + \sum (\overline{A}_i B_j)^n \]
or equivalently,

\[
\frac{1}{(1 - R^2 T)} = \frac{\prod_i (1 - A_i \overline{B}_j T) \prod_j (1 - A_i B_j T)}{\prod_i (1 - A_i \overline{A}_j T) \prod_j (1 - B_i \overline{B}_j T)}
\]

Let \(R_{\text{max}} \) be \(\max(|A_i|, |B_j|) \), and consider the order of pole at \(T = R_{\text{max}}^{-2} \).

The numerator's factors \(1 - A_i \overline{B}_j T, 1 - \overline{A}_i B_j T \) are all non-zero there (for if \(A_i \overline{B}_j = R_{\text{max}}^2 \), by maximality we must have \(A_i = B_j = R_{\text{max}} \), in which case we see, using polar coordinates, that \(A_i = B_j \), which is forbidden). In the denominator, each of the terms \((1 - |A_i|^2 T), (1 - |B_j|^2 T) \) with \(|A_i| = R_{\text{max}} \) and \(|B_j| = R_{\text{max}} \) vanishes at \(T = R_{\text{max}}^{-2} \). Therefore we may conclude that in fact \(R = R_{\text{max}} \), and that precisely one among the \(A_i \) and \(B_j \) has this absolute value. A similar argument shows that \(R_{\text{min}} = R \).

QED

In a similar but lighter vein, we have the following variant, whose proof is left to the reader.

LEMMA 1.3. Let \(X/\mathbb{F}_q \) be projective and smooth. Let a finite group \(G \) operate on \(X \) by \(\mathbb{F}_q \)-automorphisms, and let \(\rho \) be an irreducible complex representation of \(G \). Denote by \(H^l \) any of the cohomology groups \(H^l_c(X) \otimes E^\rho \) for \(l \neq p \), or \(H^l_c(X) \otimes E^\rho \). The following conditions are equivalent.

1. For all \(i \), \(\rho \) does not occur in \(H^l \), i.e. we have \((H^l)^\rho = 0 \).
2. For all \(n \geq 1 \), we have

\[S(X/\mathbb{F}_q, \rho, n) = 0. \]

175
II. Gauss and Jacobi Sums as exponential sums, and as eigenvalues of Frobenius

We begin by discussing Gauss sums. Let us fix an integer \(N \geq 2 \) prime to \(p \), and a number field \(E \) containing the \(Np \)'th roots of unity. Given an additive character \(\psi \) of \(\mathbb{F}_p \), i.e. a homomorphism

\[
\psi: (\mathbb{F}_p, +) \rightarrow E^*,
\]

we define an additive character \(\psi_q \) of each finite extension \(\mathbb{F}_q \) by composing \(\psi \) with the trace map:

\[
\begin{array}{ccc}
\mathbb{F}_q & \xrightarrow{\text{trace}_{\mathbb{F}_q \mathbb{F}_p}} & \mathbb{F}_p \\
& & \uparrow \psi \\
& & E^*
\end{array}
\]

Given a character of \(\mu_N \), i.e. a homomorphism

\[
\chi: \mu_N(E) \rightarrow E^*,
\]

a p-adic place \(\mathcal{P} \) of \(E \), with residue field \(\mathbb{F}_{N(p)} \), and a finite extension \(\mathbb{F}_q \) of this residue field, the map “reduction mod \(\mathcal{P} \)” induces an isomorphism

\[
\mu_N(E) \xrightarrow{\sim} \mu_N(\mathbb{F}_{N(p)}) = \mu_N(\mathbb{F}_q)
\]

Because \(\mathbb{F}_q^* \) is cyclic, we know that \(q \equiv 1 \mod N \), and that the map \(x \rightarrow x^{-N} \) defines a surjection

\[
\begin{array}{ccc}
\mathbb{F}_q^* & \rightarrow & \mu_N(\mathbb{F}_q) = \mu_N(\mathbb{F}_{N(p)}) \\
& & \simeq \mu_N(E)
\end{array}
\]

We define the character \(\chi_q \) of \(\mathbb{F}_q^* \) as the composite

\[
\begin{array}{ccc}
\mathbb{F}_q^* & \rightarrow & \mu_N(\mathbb{F}_q) = \mu_N(\mathbb{F}_{N(p)}) \\
& & \simeq \mu_N(E) \\
& & \xrightarrow{\chi} E^*
\end{array}
\]

The Gauss sum \(g_q(\psi, \chi, \mathcal{P}) \) attached to this situation is defined by the formula

\[
g_q(\psi, \chi, \mathcal{P}) = \sum_{x \in \mathbb{F}_q^*} \psi_q(x) \chi_q(x)
\]

An elementary computation

\[
g_q(\psi, \chi, \mathcal{P})
\]

while

\[
| g_q(\psi, \chi, \mathcal{P}) |
\]

for any archimedean algebra.

Now consider the Arakelov non-singular model of \(\mathcal{O} \) over \(\mathbb{F}_q \) with equation

Set theoretically, \(X \) contains a point at \(\infty \). The group \(\mu_N(E) \)

fixing the point at \(\infty \).

we may view \((\psi, X)\) as

Thus we may speak of

\[
S(X/F_q, (\psi, X), n) = \frac{1}{p}
\]

attached to this situation.

Lemma 2.1. If \(X \) is \(\mathbb{F}_q \)-rational

(2.1.1)
CRystalline Cohomology

An elementary computation shows that

\[g_q(\psi, X, p) = \begin{cases} q - 1 & \text{if } \psi, X \text{ both trivial} \\ 0 & \text{if } \psi \text{ trivial, } X \text{ non-trivial} \\ -1 & \text{if } \psi \text{ non-trivial, } X \text{ trivial} \end{cases} \]

while

\[|g_q(\psi, X, p)| = \sqrt{q} \quad \text{if } \psi, X \text{ both non-trivial} \]

for any archimedean absolute value on \(E \) (cf[47]).

Now consider the Artin-Schreier curve \(X/F_q \), defined to be the complete non-singular model of the affine smooth geometrically connected curve over \(F_q \) with equation

\[T^q - T = X_N. \]

Set theoretically, \(X \) consists of this affine curve plus a single rational point at \(\infty \). The group \(F_q \times \mu_n(F_q) \) operates on \(X/F_q \) curve by the affine formulas

\[(a, \xi) \cdot (T, X) \rightarrow (T + a, \xi X), \]

fixing the point at \(\infty \). Via the “reduction mod \(p \)” isomorphism

\[\mu_n(E) \sim \mu_n(F_{q^n}) = \mu_n(F_q), \]

we may view \((\psi, X) \) as a character of the group \(F_p \times \mu_n(F_q) \):

\[(\psi, X)(a, \xi) = \psi(a) X(\xi). \]

Thus we may speak of the sums

\[S(X/F_q, (\psi, X), n) = \frac{1}{p^N} \sum_{(a, \xi) \in F_p \times \mu_n} \psi(a) X(\xi) \neq \text{Fix}(F^n \cdot (a, \xi)^{-1}) \]

attached to this situation.

Lemma 2.1. If \(X \) is non-trivial and \(\psi \) is arbitrary, then we have

\[S(X/F_q, (\psi, X), n) = g_n(\psi, X, p). \]

(2.1.1)
Nicholas M. Katz

Proof: It suffices to treat the case \(n = 1 \), for we have
\[
S(X/F_q, (\psi, X), 1) = S(X/F, (\psi, X), n).
\]

We can rewrite \(S(X/F_q, (\psi, X), 1) \) as
\[
\sum_{x \in X(F_q)} \psi(x) X(x).
\]

Given any point \(x \in X(F_q) \), the set of \((a, \xi) \in F_p \times \mu_N \) which satisfy\(F(x) = (a, \xi) \) (\(x \) is either empty or principal homogeneous under the inertia subgroup \(I_x \) of \(F_p \times \mu_N \) which fixes \(x \); therefore if the restriction of \((\psi, X) \) to this subgroup is non-trivial, the inner sum above vanishes. Because \(X \) is assumed non-trivial, this vanishing applies to the point at \(\infty \) (for which \(I_x \) is all of \(F_p \times \mu_N \)) and to any finite point \((T, 0) \) whose \(X \)-coordinate is zero (then \(I_{(T, 0)} = \{ 0 \} \times \mu_N \)).

Given a point \((T, X) \) with \(X \neq 0 \), we have
\[
F(T, X) = (T^q, X^q)
\]

and the inertia subgroup \(I_{(T, X)} \) is trivial. If there is an element \((a, \xi) \in F_p \times \mu_N \) satisfying \(F(T, X) = (T + a, \xi X) \), then it is given by the formulas
\[
a = T^q - T, \quad \xi = X^{q - 1}
\]

Since the point \((T, X) \) is subject to the defining equation
\[
T^p - T = X
\]

we see that
\[
(X^q)^{-1} = (X^{q - 1})^N = \xi^N = 1, \text{ hence } X^N \in F_q^*, \xi = (X^N)^{q - 1}
\]

\[
T^p - T = X^N \in F_q^*,
\]

\[
a = T^q - T = \text{trace}_{F_q/F_p} (T^p - T) = \text{trace}_{F_q/F_p} (X^N).
\]

For each \(u \in F_q^* \), the equations \((T^p - T = u, X^N = u) \) have \(pN \) solutions \((T, X) \) over \(\overline{F_q} \), all of which satisfy
\[
F(T, X) = (a, \xi) (T, X)
\]

with the same \((a, \xi) \).

(1) If \(\psi \) and \(X \) are indexed by the \((p - 1) \times (p - 1) \) matrix and \(\mu_N \) is one-dimensional, and

(2) The eigenvalue

(3) The group \(F_q \times \mu_N \).

Proof. That the group law is non-trivial follows from the fact that these are the same as \(1 \) and \(q \) respectively. The morphism of finite ordinals \(q \) on \(H^0 \) and \(H^2 \) respectively becomes

\[
2g = (p - 1) (N - 1).
\]

That the multiplicity is one-dimensional, the fact that these are the same as \(1 \) and \(q \) respectively. The morphism of finite ordinals \(q \) on \(H^0 \) and \(H^2 \) respectively becomes

\[
2g = (p - 1) (N - 1).
\]

To see that no other choice of \(H^1 \) is known to be true, \(2g = (p - 1) (N - 1) \). This leaves to the reader, is it true? (Hint: view \(T^p - T = X^N \).)
have

\((r, n) \).

there is an element

\(\mathbf{F}_p \times \mathbf{\mu}_n \) which satisfy

homogeneous under the

therefore if the restriction

r sum above vanishes.

applies to the point at \(\infty \)

finite point \((T, 0)\) whose

\[F^\ast_q \times \zeta \subset (X^N)^{q-1} \]

\[\mathfrak{r}_{\mathbf{F}_p} (X^N) = u \) have \(pN \) solutions

with the \textit{same} \((a, \zeta)\), namely \((\text{trace}_{\mathfrak{r}_{\mathbf{F}_p}} (u), u^{\frac{q-1}{N}})\), and every point \((T, X)\) which contributes to our sum lies over some \(u \in \mathbf{F}_q^\ast \). Thus our sum becomes

\[\sum_{u \in \mathbf{F}_q^\ast} \psi (\text{trace}_{\mathfrak{r}_{\mathbf{F}_p}} (u)) X (u^{\frac{q-1}{N}}) \mid = g_q (\psi, X, \mathfrak{p}) \cdot \text{QED} \]

Corollary 2.2. Let \(H^l \) denote any of the cohomology groups \(H^l (X) \otimes E \chi \)

with \(l \neq p \), or \(H^l (X) \otimes E \chi \) of the Artin-Schreier curve \(X / \mathbf{F}_q \).

1. If \(\psi \) and \(X \) are both non-trivial, then the eigenspace \((H^1)^{\chi} \)

is one-dimensional, and we have a direct sum decomposition

\[H^1 = \oplus (H^1)^{\chi} \]

indexed by the \((p - 1)(N - 1)\) pairs \((\psi, X)\) of non-trivial characters.

2. The eigenvalue of \(F \) on \((H^1)^{\chi} \)

is \(-g_q (\psi, X, \mathfrak{p}) \), and for each \(n \geq 1 \) we have the Hasse-Davenport formula

\[-g_q (\psi, X, \mathfrak{p}) = (- g_q (\psi, X, \mathfrak{p}))^n. \]

3. The group \(F_q \times \mathbf{\mu}_n \) acts trivially on both \(H^0 \) and \(H^2 \).

\textbf{Proof.} That the group acts trivially on both \(H^0 \) and \(H^2 \) follows from the fact that these are one-dimensional spaces on which \(F \) always acts as \(1 \) and \(q \) respectively. The descent argument shows that for any automorphism of \(\text{finite order} \) \(g \) which commutes with \(F \), \(F \mathfrak{g} \) also acts as \(1 \) and \(q \) on \(H^0 \) and \(H^2 \) respectively, and hence that \(g \) itself acts trivially on \(H^0 \) and \(H^2 \).

That the multiplicity of \((\psi, X)\) in \(H^1 \) is \textit{one} when both \(\psi \) and \(X \) are non-trivial follows from the lemma of the previous section, given the identity (2.1.1) and the known absolute value of gauss sums; and assertion (2) above is just a repetition of part of that lemma in this particular case. To see that no other characters occur in \(H^1 \), we recall that the dimension of \(H^1 \) is known to be \(2g \), \(g = \text{genus of} \ X \), and so it suffices to verify that \(2g = (p - 1)(N - 1) \). This formula, whose elementary verification we leave to the reader, is in fact valid in any characteristic prime to \(N(p - 1) \).

(Hint: view \(T^p - T = X^N \) as an \(N \)-fold covering of the \(T \)-line!)

\textbf{QED}
NICHOLAS. M. KATZ

We now turn to the consideration of Jacobi sums. We fix an integer $N \geq 2$ prime to p, and a number field E containing the Nth roots of unity. Given a p-adic place \mathcal{P} of E, a character χ of μ_n,

$$\chi : \mu_n(E) \longrightarrow E^*$$

and a finite extension F_q of the residue field $F_{n(p)}$ at \mathcal{P}, we obtain the character χ_q,

$$\chi_q : F_q^* \longrightarrow E^*$$

in the manner explained above. Given two characters χ, χ' of μ_n, the Jacobi sum $J_q(\chi, \chi', \mathcal{P})$ is defined by the formula

$$J_q(\chi, \chi', \mathcal{P}) \equiv \sum_{x \neq 0, 1} \chi_q(x) \chi'_q(1-x).$$

An elementary computation (cf [14]) shows that if the product XX' is non-trivial, then for any non-trivial additive character ψ of F_p, we have the formula

$$g_q(\psi, \chi, \mathcal{P})g_q(\psi, \chi', \mathcal{P}) = J_q(\chi, \chi', \mathcal{P})g_q(\psi, XX', \mathcal{P}).$$

In particular, from the known absolute values of Gauss sums we obtain

$$|J_q(\chi, \chi', \mathcal{P})| = \sqrt{q}$$

for all archimedean absolute values of E, provided that χ, χ', and XX' are all non-trivial.

Now consider the Fermat curve Y/F_q, defined by the homogeneous equation

$$X^N + Y^N = Z^N.$$

The group $\mu_n \times \mu_n$ operates on this curve by the formula

$$(\zeta_1, \zeta_2) : (X, Y, Z) \longrightarrow (\zeta_1X, \zeta_2Y, Z).$$

Viewing (X, X') as a character of this group

$$(X, X') (\zeta_1, \zeta_2) \equiv X(\zeta_1)X'(\zeta_2),$$

we may speak of the sums $S(Y/F_q, (X, X'), n)$ attached to this situation.
In complete analogy with the situation for the Artin-Schreier curve, we have the following lemma and corollary, whose analogous proofs are left to the reader.

Lemma 2.3. If X and X' are non-trivial characters of μ_n such that XX' is also non-trivial, then we have, for all $n \geq 1$,

$$S(Y/F_q, (X, X'), n) = J_q (X, X', p).$$

Corollary 2.4. Let H^1 denote any of the cohomology groups $H^1(Y) \otimes F_p$ with $l \neq p$, or $H^1_{\text{ess}}(X) \otimes F_p$ of the Fermat curve Y/F_q.

1. If X, X' and XX' are all non-trivial, then the eigenspace $(H^1)^{(X,X)}$ is one-dimensional, and we have the direct sum decomposition $H^1 = \bigoplus (H^1)^{(X,X)}$ indexed by the $(N - 1) (N - 2)$ pairs (X, X') of non-trivial characters of μ_n whose product XX' is also non-trivial.

2. The eigenvalue of F on $(H^1)^{(X,X)}$ is $-J_q (X, X', p)$, and for each integer $n \geq 1$ we have the Hasse-Davenport formula

$$-J_q (X, X', p) = (-J_q (X, X', p))^{n}.$$

3. The group $\mu_n \times \mu_n$ operates trivially on both H^0 and H^1.

III. The problem of “explicitly” computing Frobenius

We return now to the general setting of a projective, smooth, and geometrically connected variety X/F_q of dimension d. A tantalizing feature of all the cohomology theories that we have been discussing is that when the variety X “lifts” to characteristic zero, then the corresponding cohomology groups $H^i(X)$ have an “elementary” description in terms of standard algebro-geometric and topological invariants of the lifting.

More precisely, suppose we are given a projective smooth scheme X over $W(F_q)$, together with an F_q-isomorphism of its special fibre with X. (This is a rather strong notion of what a “lifting” of X should mean, but it is adequate for our purposes, and it avoids certain technical problems related to ramification.) Then there is a canonical isomorphism

$$H^i_{\text{cris}}(X) \longrightarrow H^i_{\text{DR}}(X/W(F_q)).$$
of H^i_{cris} with the algebraic de Rham cohomology of the lifting (cf. [19], [27]).

To discuss $H^i_t(X)$, we must in addition choose (!) a complex embedding

$$W(F_q) \hookrightarrow \mathbb{C}.$$

By means of such an embedding, we may "extend scalars" to obtain from X/W a projective smooth complex variety X_c, and an associated complex manifold X_c^{an}. For each prime number $l \neq p$, there is a canonical isomorphism

$$H^i_t(X) \longrightarrow H^i_{\text{top}}(X_c^{an}, Z) \otimes \mathbb{Q}_l,$$

where H^i_{top} denotes the usual "topological" cohomology.

To emphasize the similarity between these two sorts of isomorphisms, recall that by GAGA and the holomorphic Poincaré lemma, we have a canonical isomorphism

$$H^i_{\text{DR}}(X/W) \otimes \mathbb{C} \sim \longrightarrow H^i_{\text{DR}}(X/C) \sim \longrightarrow H^i_{\text{top}}(X_c^{an}, C)$$

$$\downarrow \quad \uparrow$$

$$H^i_{\text{top}}(X_c^{an}, Z) \otimes \mathbb{Q}_l \sim \longrightarrow$$

Unfortunately, these rather concrete descriptions of the various cohomology groups $H^i(X)$ shed little light on their functoriality. In the rather unusual case of an F_q-endomorphism $f : X \longrightarrow X$ which happens to admit a lifting to a W-endomorphism

$$f : X \longrightarrow X,$$

we have the simple formulas

$$\begin{cases} f^* \text{ on } H^i_{\text{cris}}(X) = f^* \text{ on } H^i_{\text{DR}}(X/W) \\ f^* \text{ on } H^i_t(X) = (f_c^*)^* \otimes 1 \text{ on } H^i_{\text{top}}(X_c^{an}, Z) \otimes \mathbb{Z}_l, \quad l \neq p \\
\end{cases}$$

But for those f which do not lift, we are left somewhat in the dark as to an explicit description of the map f^* on cohomology.

Suppose for example that a finite group G operates on X by F_q-automorphisms, and that this action can be lifted to an action of G on X by W-automorphisms. Then our canonical isomorphisms

$$\begin{cases} H^i_{\text{cris}} \otimes \mathbb{C} \\ H^i_t(X) \end{cases}$$

are G-equivariant. In particular, the multiplicities of the various components of the cohomology of X, and the representation ρ occurring, are known a priori that $H^i_t(X)$ is isotypical decomposition of the crystalline cohomology

$$H^i_{\text{cris}}(Y) \sim \longrightarrow$$

in a basis of $H^i_{\text{DR}}(Y/F_p)$ for Y is the diagonal matrix

However, it must be noted that it is not susceptible to this sort of analysis. For example, consider an Artin-Schreier variety A/F_q, say of F_q-endomorphisms of A, as W-modules, they are...
CRYSTALLINE COHOMOLOGY

\[
\begin{align*}
H^1_{\text{cris}}(X) & \cong H^1_{\text{DR}}(X/W) \\
H^1_I(X) & \cong H^1_{\text{top}}(X^{an}, \mathbb{Z}) \otimes \mathbb{Z}_l \text{ for } l \neq p
\end{align*}
\]

are G-equivariant. In particular, we can “explicitly compute” the multiplicities of the various complex irreducible representations ρ of G in the cohomology of X, and we can “explicitly compute” the various isotypical components of the cohomology. If it turns out that a given irreducible representation ρ occurs in a given H^1 with multiplicity one, then we know a priori that F must operate on the corresponding isotypical component $(H^1)^\rho$ as a scalar, and we know this even when F itself does not lift.

For example, we could recover the isotypical decomposition of H^1 of the Fermat curve Y under the action of $\mathbb{Z}_l \times \mathbb{Z}_l$ by lifting the curve and the group action (use the “same” equations) and making an explicit algebro-geometric or topological calculation of the corresponding isotypical decomposition in characteristic zero. In terms of, say, the crystalline cohomology, we obtain an F-stable decomposition

\[
H^1_{\text{cris}}(Y) \cong H^1_{\text{DR}}(Y/W) = \bigoplus H^1_{\text{DR}}(Y/W)^{\cong (x \times x)};
\]

in a basis of $H^1_{\text{DR}}(Y/W)$ adapted to this decomposition, the matrix of F is the diagonal matrix

\[
\begin{pmatrix}
O \\
\ldots \\
-1_q(X, X', \rho) \\
O
\end{pmatrix}
\]

However, it must be borne in mind that the Fermat curve is atypically susceptible to this sort of analysis; it is unusual for a group action, even on a curve, to be liftable to characteristic zero. For example, the action of F_p on an Artin-Schreier covering of A^1 doesn’t lift to characteristic zero. To get around this non-liftability, we will be led to consider the Washnitzer-Monsky cohomology as well, in Chapter VII.

IV. H^1 and abelian varieties; preliminaries. Consider an abelian variety A/F_q, say of dimension g. We denote by $\text{End}(A)$ the ring of all F_q-endomorphisms of A, and by $\text{End}(A)^0$ the opposite ring. As \mathbb{Z}-modules, they are free and finitely generated. For each prime $l \neq p$,
the cohomology group $H^1_1(A)$ is a free \mathbb{Z}_l-module of rank $2g$, and is an $\text{End}(A)^0$-module. (It is also the case that $H^1_{\text{cris}}(A)$ is a free W-module of rank $2g$, and is an $\text{End}(A)^0$-module, but we will not make use of this fact for the moment).

Lemma 4.1. If E is a number field, and λ is a place of E lying over a prime $l \neq p$, the natural maps

$$
\begin{array}{ccc}
\text{End}(A)^0 \otimes E & \longrightarrow & \text{End}(A)^0 \otimes E_\lambda \\
\text{End}_{\mathbb{Z}_l}(H^1_1(A), \otimes E_\lambda) & & \text{End}_{\mathbb{Z}_l}(H^1_1(A), \otimes E_\lambda)
\end{array}
$$

are all injective.

Proof. The first map is injective simply because $E \subset E_\lambda$, and because $\text{End}(A)^0$ is flat over \mathbb{Z}. The second map is obtained from the map

$$
\text{End}(A)^0 \otimes \mathbb{Z}_l \longrightarrow \text{End}_{\mathbb{Z}_l}(H^1_1(A))
$$

by tensoring over \mathbb{Z}_l with the flat \mathbb{Z}_l-module E_λ. In fact this flatness is irrelevant, for the above map is injective and has \mathbb{Z}_l-flat cokernel. To see this, recall that (by the Kummer sequence in etale cohomology) we have a canonical isomorphism

$$
H^1_1(A) \cong T_l(Pic^0_1(A))(-1) \cong \text{Hom}(T_l(A), \mathbb{Z}_l),
$$

under which the map considered above is the “opposite” of the map

$$
\text{End}(A) \otimes \mathbb{Z}_l \longrightarrow \text{End}_{\mathbb{Z}_l}(T_l(A))
$$

Our assertion of its injectivity with \mathbb{Z}_l-flat cokernel is equivalent to the injectivity of (any one of) the maps

$$
\text{End}(A)/l^n\text{End}(A) \longrightarrow \text{End}(A)_l^n,
$$

and this injectivity follows from the exactness of the sequence

$$
0 \longrightarrow A_l^n \longrightarrow A \longrightarrow A \longrightarrow 0
$$

in the etale topology.

Now consider a projective, smooth and geometrically connected variety X/\mathbb{F}_q. Its Albanese variety $\text{Alb}(X)$ is an abelian variety over \mathbb{F}_q which for our purposes is the variety $\text{Pic}(X)$, itself. The Kummer sequence

$$
\begin{array}{ccc}
\text{Pic}^0_X & \longrightarrow & \text{Pic}^0_X \otimes \mathbb{Q}/\mathbb{Z} \\
\text{Pic}(X) & \longrightarrow & \text{Pic}(X) \otimes \mathbb{Q}/\mathbb{Z}
\end{array}
$$

which combine to give

$$
\begin{array}{ccc}
\text{Pic}^0_X & \longrightarrow & \text{Pic}^0_X \otimes \mathbb{Q}/\mathbb{Z} \\
\text{Pic}(X) & \longrightarrow & \text{Pic}(X) \otimes \mathbb{Q}/\mathbb{Z}
\end{array}
$$

Suppose now that ρ be an absolute \mathbb{F}_q-linear character, and E be a number field over which ρ is absolutely irreducible.

Let us denote by $P_{\lambda, \rho}(T) = \text{Proj}(\rho, \text{Pic}(X))$ the reversed character

$$
\begin{array}{ccc}
\text{Hom}_\mathbb{Q}(\rho, \text{Pic}(X)) & \longrightarrow & \text{Proj}(\rho, \text{Pic}(X))
\end{array}
$$

By functoriality, G and we may view $\text{Proj}(\rho)$ as the association of the ring of G, as defining

Proposition 4.2.

$$(F + a_i a_j)_{i, j = 1}^n$$

in $\text{End}_{\mathbb{F}_q}\text{Alb}(X)$, we have

Proof. Since

$$
\text{End}(\text{Alb}(X)) \otimes \mathbb{Q},
$$

which
which for our purposes is best viewed as the dual of the Picard variety $\text{Pic}(X)$, itself defined in terms of the Picard scheme $\text{Pic}_{X/\mathbb{Q}}$ as $(\text{Pic}^0_{X/\mathbb{Q}})^{\text{red}}$. The Kummer sequence in etale cohomology together with the duality of abelian varieties gives isomorphisms for each $l \neq p$

\begin{align*}
(4.1.1) & \quad H^1_l(X) \xrightarrow{\sim} \mathcal{T}_l(\text{Pic}(X)) \quad (1) \quad \text{for } l \neq p \\
(4.1.2) & \quad H^1(\text{Alb}(X)) \sim \mathcal{T}_l(\text{Pic}(\text{Alb}(X)) \quad (1) = \mathcal{T}_l(\text{Pic}(X)) \quad (1) \quad \text{for } l \neq p
\end{align*}

which combine to give a canonical isomorphism

\begin{equation}
(4.1.3) \quad H^1_l(X) \simeq H^1_l(\text{Alb}(X)) \quad \text{for } l \neq p
\end{equation}

Suppose now that a finite group G operates on X by F-automorphisms. Let ρ be an absolutely irreducible representation of G defined over a number field E, which occurs in $H^1(X)$ with multiplicity r. Denote by

$$P_{1,\rho}(T) = 1 + a_1(\rho)T + \ldots + a_r(\rho)T^r \in \mathcal{O}_E[T]$$

the reversed characteristic polynomial of ρ acting on the space $\text{Hom}_G(\rho, H^1(X))$ of occurrences of ρ in H^1;

$$P_{1,\rho}(T) = \det(1 - TF|\text{Hom}_G(\rho, H^1(X))).$$

Let us denote by $\text{Proj}(\rho) \in \mathcal{O}_E[1/\# G][G]$ the projector

$$\text{Proj}(\rho) = \frac{\deg(\rho)}{\# G} \sum_{g \in G} \text{tr}(\rho(g^{-1})) \cdot [g].$$

By functoriality, G also operates on $\text{Alb}(X)$ by F-automorphisms, so we may view $\text{Proj}(\rho)$, or indeed any element of the $\mathcal{O}_E[1/\# G]$-group ring of G, as defining an element of $\text{End}(\text{Alb}(X)) \otimes \mathcal{O}_E[1/\# G]$.

Proposition 4.2. In the above situation, we have the formula

$$(F^r + a_1(\rho)F^{r-1} + \ldots + a_r(\rho)) \cdot \text{Proj}(\rho) = 0$$

$$(\text{Proj}(\rho)) \cdot (F^r + a_1(\rho)F^{r-1} + \ldots + a_r(\rho)) = 0$$

in $\text{End}(\text{Alb}(X)) \otimes \mathcal{O}_E[1/\# G]$. (N.B. since F and G commute, these formulas are equivalent).

Proof. Since $\text{End}(\text{Alb}(X)) \otimes \mathcal{O}_E[1/\# G]$ is contained in $\text{End}(\text{Alb}(X)) \otimes E$, which is in turn contained in $\text{End}(H^1(\text{Alb}(X)) \otimes E)$, we have

\[\text{Proj}(\rho) = \frac{\deg(\rho)}{\# G} \sum_{g \in G} \text{tr}(\rho(g^{-1})) \cdot [g]. \]
for any \(l \neq p \), it suffices to verify that \(F^l + a_1(p)F^{l-1} + \ldots + a_r(p) \) annihilates \((H^1(\text{Alb}(X))\)^p\). But this space is isomorphic to \((H^1(X))\)^p, which is in turn isomorphic to \(p \otimes \text{Hom}_G(p, H^1(X)) \), with \(F \) acting through the second factor, so we need the above polynomial in \(F \) to annihilate \(\text{Hom}_G(p, H^1(X)) \). This follows from the Cayley-Hamilton theorem. QED

Corollary 4.3. Let \(D \) be any contravariant additive functor from the category of abelian varieties over \(F \), to the category of \(\mathcal{O}_E \{ 1/\not= G \} \)-modules. For any element \(m \in (D(\text{Alb}(X)))^p \), we have

\[
F^l(m) + a_1(p)F^{l-1}(m) + \ldots + a_r(p) \cdot m = 0
\]

in \(D(\text{Alb}(X)) \).

We will apply this to the functor “Dieudonné module of the formal group of \(A \),” constructed a la Honda.

V. Explicit Dieudonné Theory a la Honda; generalities

5.1. Basic constructions. We begin by recalling the notions of formal Lie variety and formal Lie groups. Over any ring \(R \), an \(n \)-dimensional formal Lie variety \(V \) is a set-valued functor on the category of adic \(R \)-algebras which is isomorphic to the functor.

\[R' \longrightarrow \text{n-tuples of topologically nilpotent elements of } R'. \]

A system of coordinates \(X_1, \ldots, X_n \) for \(V \) is the choice of such an isomorphism. The coordinate ring \(\Lambda(V) \) is the \(R \)-algebra of all maps of set-functors from \(V \) to the “identical functor” \(R' \longrightarrow R' \); in coordinates, \(\Lambda(V) \) is just the power series ring \(R[[X_1, \ldots, X_n]] \). Although the ideal \((X_1, \ldots, X_n) \) in \(\Lambda(V) \) is not intrinsic, the adic topology it defines on \(\Lambda(V) \) is intrinsic, and \(\Lambda(V) \), viewed as an adic \(R \)-algebra, represents the functor \(V \).

The de Rham cohomology groups \(H^i_{\text{DR}}(V/R) \) are the \(R \)-modules obtained by taking the cohomology groups of the formal de Rham complex \(\Omega^*_V \) (the separated completion of the “literal” de Rham complex of \(\Lambda(V) \) as \(R \)-algebra); in terms of coordinates \(X_1, \ldots, X_n \) for \(V \), \(\Omega^*_V \) is the exterior algebra over \(\Lambda(V) \) on \(dX_1,\ldots,dX_n \), with exterior differentiation \(d: \Omega^i \longrightarrow \Omega^{i+1} \) given by the customary formulas.
CRISTALLINE COHOMOLOGY

A pointed formal Lie variety \((V, 0)\) over \(R\) is a formal Lie variety \(V\) over \(R\) together with a marked point "0" \(\in V(R)\). A formal Lie group \(G\) over \(R\) is a "group-object" in the category of formal Lie varieties over \(R\).

We denote by \(\text{CFG}(R)\) the additive category of commutative formal Lie groups over \(R\). The "sum" map

\[
\text{sum} : G \times G \longrightarrow G
\]

as well as the two projections

\[
\text{pr}_1, \text{pr}_2 : G \times G \longrightarrow G
\]

are morphisms in this category. For \(G \in \text{CFG}(R)\), we define \(D(G/R)\) to be the \(R\)-submodule of \(H^1_{\text{dR}}(G/R)\) consisting of the primitive elements, i.e. the elements \(a \in H^1_{\text{dR}}(G/R)\) such that

\[
\text{sum}^* (a) = \text{pr}_1^* (a) + \text{pr}_2^* (a) \text{ in } H^1_{\text{dR}}((G \times G)/R).
\]

Lemma 5.1.1. Over any ring \(R\), the construction \(G \longrightarrow D(G/R)\) defines a (contravariant) additive functor from \(\text{CFG}(R)\) to \(R\)-modules.

Proof. This is a completely "categorical" result. To begin, let \(G, G' \in \text{CFG}(R)\), and let \(f : G' \longrightarrow G\) be a homomorphism. Then the diagram

\[
\begin{array}{ccc}
G' \times G' & \xrightarrow{\text{sum}} & G' \\
\downarrow f \times f & & \downarrow f \\
G \times G & \xrightarrow{\text{sum}} & G
\end{array}
\]

commutes, as do the analogous diagrams with "sum" replaced by \(\text{pr}_1\) or \(\text{pr}_2\). Therefore given any element \(a \in H^1_{\text{dR}}(G/R)\), we have

\[
\text{sum}^* (f^* (a)) - \text{pr}_1^* (f^* (a)) - \text{pr}_2^* (f^* (a)) = (f \times f)^* (\text{sum}^* (a) - \text{pr}_1^* (a) - \text{pr}_2^* (a)).
\]

In particular, if \(a \in D(G/R)\) then \(f^* (a) \in D(G'/R)\).

Given \(f_1, f_2\) homomorphisms \(G' \longrightarrow G\), let \(f_3\) be their sum. Then we have a commutative diagram
NICHOLAS M. KATZ

\[
\begin{array}{c}
G' \xrightarrow{f_1 \times f_2} G \times G \xrightarrow{\text{sum}} G \\
\downarrow f_3 \\
G
\end{array}
\]

as well as a commutative diagram

\[
\begin{array}{c}
G' \xrightarrow{f_1 \times f_2} G \times G \xrightarrow{\text{pr}_1} G \\
\downarrow \text{pr}_2 \\
G
\end{array}
\]

\[
f_1
\]

Therefore for any \(a \in H^1_{\text{DR}}(G/R) \), we have

\[
f_3^*(a) - f_1^*(a) - f_2^*(a) = (f_1 \times f_2)^*(\text{sum}^*(a) - \text{pr}_1^*(a) - \text{pr}_2^*(a)).
\]

In particular, if \(a \in D(G/R) \), then \(f_3^*(a) = f_1^*(a) + f_2^*(a) \). \(\Box \)

For the remainder of this section, we will consider a ring \(R \) which is flat over \(\mathbb{Z} \), and an ideal \(I \subset R \) which has divided powers. The flatness means that if we denote by \(K \) the \(\mathbb{Q} \)-algebra \(R \otimes \mathbb{Q} \), then \(R \subset K \). That the ideal \(I \subset R \) has divided powers means that for any integer \(n \geq 1 \), and any element \(i \in I \), the element \(i^n/n! \) of \(K \) actually lies in \(I \).

Given a formal Lie variety \(V \) over \(R \), we denote by \(V \otimes K \) the formal Lie variety over \(K \) obtained by extension of scalars. In terms of coordinates \(X_1, \ldots, X_n \) for \(V \), \(A(V \otimes K) \) is the power-series ring \(K[[X_1, \ldots, X_n]] \). We say that an element of \(A(V \otimes K) \) is integral if it lies in the subring \(A(V) \); similarly, an element of the de Rham complex \(\Omega_{V \otimes K/K} \) is said to be integral if it lies in the subcomplex \(\Omega_{V/R} \).

Lemma 5.1.2. Let \((V,0) \) be a pointed Lie variety over a \(\mathbb{Z} \)-flat ring \(R \). Then exterior differentiation induces an isomorphism of \(R \)-modules

\[
\frac{\{ f \in A(V \otimes K) \mid f(0) = 0, df \text{ integral} \}}{\{ f \in A(V) \mid f(0) = 0 \}} \xrightarrow{\text{sim}} H^1_{\text{DR}}(V/R)
\]

which is compatible with morphisms of pointed Lie varieties.

Proof. Because \(K \)

\[
H^0_{\text{DR}}(V \otimes K/K) = K,
\]

closed one-form on \(V/\text{f} \) is unique up to a cor, we get the asserted iso.

Key Lemma 5.1.3.

over a \(\mathbb{Z} \)-flat ring \(R \), and are two pointed morphism-induced maps

\[
f_1^*, f_2^*
\]

are equal.

Proof. Let \(\phi_1, \phi_2 \) denote morphisms corresponding to \(f_1, f_2 \) so that for every element \(\phi_1(f) - \phi_2(f) \) is integral with a constant term zero.

In terms of pointed \(V \), the maps \(\phi_1 \) and \(\phi_2 \) are

\[
\phi_1(f) - \phi_2(f) = \sum_i \frac{\partial \phi_1}{\partial X_i} f_i(0) - \sum_i \frac{\partial \phi_2}{\partial X_i} f_i(0),
\]

where \(\phi_1(X), \phi_2(X) \) are the \(i \)-th component.

We now compute using

\[
\phi_1(f) - \phi_2(f)
\]
Proof. Because K is a Q-algebra, the formal Poincare lemma gives $H^0_{\text{dr}} (V \otimes K/K) = K$, $H^i_{\text{dr}} (V \otimes K/K) = 0$ for $i \geq 1$. Therefore any closed one-form on V/R can be written as df with $f \in A(V \otimes K)$, and this f is unique up to a constant. If we normalize f by the condition $f(0) = 0$, we get the asserted isomorphism.

QED

Key Lemma 5.1.3. Let $(V, 0)$ and $(V', 0)$ be pointed formal Lie varieties over a Z-flat ring R, and let $I \subseteq R$ be an ideal with divided powers. If f_1, f_2 are two pointed morphisms $V' \to V$ such that $f_1 = f_2 \mod I$, then the induced maps

$$f_1^*, f_2^*: H^1_{\text{dr}} (V/R) \to H^1_{\text{dr}} (V'/R)$$

are equal.

Proof. Let φ_1, φ_2 denote the algebra homomorphisms $A(V) \to A(V')$ corresponding to f_1 and f_2. By the previous lemma, we must show that for every element $f \in A(V \otimes K)$ with $f(0) = 0$ and df integral, the difference $\varphi_1(f) - \varphi_2(f)$ lies in $A(V')$, i.e. is itself integral. (Because f_1 and f_2 were assumed pointed, this difference automatically has constant term zero).

In terms of pointed coordinates X_1, \ldots, X_n for V' and Y_1, \ldots, Y_m for V, the maps φ_1 and φ_2 are given by substitutions

$$\varphi_1(f(Y)) = f(\varphi_1(X))$$
$$\varphi_2(f(Y)) = f(\varphi_2(X))$$

where $\varphi_1(X), \varphi_2(X)$ are m-tuples of series in $X = (X_1, \ldots, X_n)$ without constant term. The hypothesis $f_1 = f_2 \mod I$ means that the component-by-component difference $\Delta = \varphi_2(X) - \varphi_1(X)$ satisfies

$$\Delta(0) = 0, \Delta \text{ has all coefficients in } I.$$

We now compute using Taylor’s formula, and usual multi-index notation:

$$\varphi_2(f) - \varphi_1(f) = f(\varphi_2(X)) - f(\varphi_1(X))$$
$$= f(\varphi_1(X) + \Delta) - f(\varphi_1(X))$$
$$= \sum_{|\alpha| \geq 1} \frac{\Delta^\alpha}{(\alpha)!} \frac{\partial^n}{\partial Y^\alpha} f(\varphi_1(X)).$$
This last sum is \mathbb{X}-adically convergent (because Δ has no constant term), and its individual terms are integral (because Δ has coefficients in the divided power ideal I, the terms $\Delta^n/\gamma!$ all have coefficients in I, and hence in R; because df is integral, all the first partials $\partial f/\partial Y_i$ are integral, and a fortiori all the higher partials are integral).

Theorem 5.1.4. Let R be a \mathbb{Z}-flat ring, and $I \subset R$ a divided power ideal. Let G, G' be commutative formal Lie groups over R, and denote by G_0, G'_0 the commutative formal Lie groups over $R_0 = R/I$ obtained by reduction mod I.

1) If $f: G' \to G$ is any morphism of pointed formal Lie varieties whose reduction mod I, $f_0: G'_0 \to G_0$, is a group homomorphism, then the induced map $f^*: H^1_{\text{DR}}(G_0/R) \to H^1_{\text{DR}}(G'_0/R)$ maps $D(G_0/R)$ to $D(G'_0/R)$.

2) If f_1, f_2, f_3 are three maps $G' \to G$ of pointed formal Lie varieties whose reductions mod I are group homomorphisms which satisfy $(f_3) = (f_1) + (f_2)$ in $\text{Hom}(G'_0, G_0)$, then for any element $a \in D(G_0/R)$ we have

$$f_1^*(a) + f_2^*(a) = f_3^*(a).$$

Proof. If $f: G' \to G$ is a pointed map which reduces mod I to a group homomorphism, the diagram

$$\begin{array}{ccc}
G' \times G' & \xrightarrow{\text{sum}} & G' \\
\downarrow f \times f & & \downarrow f \\
G \times G & \xrightarrow{\text{sum}} & G
\end{array}$$

commutes mod I, i.e.

$$\text{sum} \cdot (f \times f) \equiv f \cdot \text{sum} \quad \text{mod } I.$$

and hence for any $a \in H^1_{\text{DR}}(G/R)$ we have, by the previous lemma,

$$(f \times f)^*(\text{sum}^*(a)) = \text{sum}^*(f^*(a))$$

The analogous diagrams with "sum" replaced by pr_1 or pr_2 commute, hence
CRYSTALLINE COHOMOLOGY

\[(f \times f)^* (pr_1^*(a)) = pr_1^*(f^*(a)) \text{ for } i = 1, 2.\]

Combining these, we find

\[(f \times f)^* (\sum^*(a) - pr_1^*(a) - pr_2^*(a)) = \sum^*(f^*(a)) - pr_1^*(f^*(a)) - pr_2^*(f^*(a)).\]

In particular, if \(a \in D(G/R) \) then \(f^*(a) \in D(G'/R) \).

Similarly, if \(f_1, f_2 \) and \(f_3 \) are as in the assertion of the theorem, the diagram

\[
\begin{array}{ccc}
G' & \xrightarrow{f_1} & G \\
\downarrow{f_3} & & \downarrow{\text{sum}} \\
G & & G
\end{array}
\]

commutes mod I, and the diagram

\[
\begin{array}{ccc}
G' & \xrightarrow{f_1 \times f_2} & G \times G \\
\downarrow{f_2} & & \downarrow{pr_1} \\
G & & G
\end{array}
\]

commutes. So again using the preceding lemma, we see that for any \(a \in H^1_{DR} (G/R) \), we have

\[f_3^* (a) - f_1^* (a) - f_2^* (a) = (f_1 \times f_2)^* (\sum^* a) - pr_1^* (a) - pr_2^* (a)).\]

In particular, for \(a \in D(G/R) \), we obtain the asserted formula

\[f_3^* (a) = f_1^* (a) + f_2^* (a).\]

QED

Let \(CFG(R; R_0) \) denote the additive category whose objects are the commutative formal Lie groups over \(R \), but in which the morphisms are the homomorphisms between their reductions mod \(I \):

\[\text{Hom}_{CFG(R; R_0)} (G', G) = \text{Hom}(G'_0, G_0).\]

Given a homomorphism \(f_0 : G'_0 \rightarrow G_0 \), it always lifts to a pointed
morphism \(f : G' \rightarrow G \) of formal Lie varieties (just lift its power-series coefficients one-by-one, and keep the constant terms zero).

According to the theorem, the induced map

\[
f^\ast : D(G/R) \rightarrow D(G'/R)
\]

is independent of the choice of pointed lifting \(f \) of \(f_0 \). So it makes sense to denote the induced map

\[
(f_0)^\ast : D(G/R) \rightarrow D(G'/R).
\]

Theorem 5.1.5. Let \(R \) be a \(Z \)-flat ring, and \(I \subset R \) a divided power ideal. Then the construction \(G \rightarrow D(G/R), f_0 \rightarrow (f_0)^\ast = \) (any pointed lifting)\(^\ast \) defines a contravariant additive functor from the category \(CFG(R; R_0) \) to the category of \(R \)-modules.

Proof. This is just a restatement of the previous theorem. QED

Remarks

(1) Thanks to Lazard [33], we know that every commutative formal Lie group \(G_0 \) over \(R_0 \) lifts to a commutative formal Lie group \(G \) over \(R \). If \(G' \) is another lifting of \(G_0 \), then the identity endomorphism of \(G_0 \) is an isomorphism of \(G' \) with \(G \) in the category \(CFG(R; R_0) \). Formulation of the induced isomorphism \(D(G/R) \rightarrow D(G'/R) \) provides a transitive system of identifications between the \(D \)'s of all possible liftings. In this way, it is possible to view the construction

\[
G_0 \rightarrow D(G/R), \text{ where } G \text{ is some lifting of } G_0
\]

as providing a contravariant additive functor from \(CFG(R_0) \) to the category of \(R \)-modules. We will not pursue the point of view here.

(2) Even without appealing to Lazard, one can proceed in an elementary fashion by observing that any commutative formal Lie group \(G_0 \) over \(R_0 \) can certainly be lifted to a formal Lie "monoid with unit" \(M \) over \(R \) (simply lift the individual coefficients of the group law, and always lift 0 to 0). For a monoid, one can still define \(D(M/R) \) as the primitive elements of \(H^1_{\text{dr}}(M/R) \), and one can still show exactly as before that the construction

\[
G_0 \rightarrow D(M/R), \quad M \text{ any monoid lifting of } G_0
\]

defines a contravariant additive functor.

A variant. The natural nature of most of our construction of \(H^1_{\text{dr}}(V/R) \) is that it is a contravariant functor from \(R \)-modules for which \(V \) will denote \(H^1_{\text{dr}}(V/R) \), the Rham complex of \(V/R \), where

\[
"IA(V)"
\]

is the \(R \)-module of cycles in the range of \(V=R \).

\[
"IA(V)"
\]

where \("IA(V)" \) denotes

\[
\{ f \in A(V) \mid f(0) = 0 \}
\]

In terms of coordinate series all of whose coefficients are 0, this becomes

\[
\{ f \in A(V) \mid f(0) = 0 \}
\]

This much makes sense; indeed, it is the proof of the key technical work here, because the technical computations work.

The corresponding construction is denoted \(D_1(G/R) \). It becomes, if we have the explicit construction

\[
D_1(G/R) = \{ f \in K[[X]] \mid f(0) = 0 \}
\]

as compared with that

\[
D(G/R) = \{ f \in K[[X]] \mid f(0) = 0 \}
\]
CRYS\textsc{talline Cohomology}

defines a contravariant additive functor from $\text{CFG}(R_0)$ to R-modules.

\textit{A variant.} The reader cannot have failed to notice the purely formal nature of most of our arguments. We might as well have begun with \textit{any} contravariant functor H from formal Lie varieties over a \mathbb{Z}-flat ring R to R-modules for which the key lemma (5.1.3) holds. One such H, which we will denote $H_{\text{DR}}^i(V/R; I)$, is defined as H^i of the subcomplex of the de Rham complex of V/R

\begin{align*}
\text{"IA(V"} & \longrightarrow \quad \Omega_{v/R}^1 \longrightarrow \quad \Omega_{v/R}^2 \longrightarrow \cdots
\end{align*}

where “IA(V)” denotes the kernel of reduction mod I:

\begin{align*}
\text{“IA(V\"} & = \text{Ker}(A(V) \longrightarrow A(V_0)).
\end{align*}

In terms of coordinates for V, “IA(V)” is the ideal consisting of those series all of whose coefficients lie in I. The analogue of lemma (5.1.2) becomes

\begin{align*}
\begin{cases}
\{ f \in A(Y \otimes K) \mid f(0) = 0, \text{df integral} \} \\
\{ f \in \text{"IA(V\"} \mid f(0) = 0 \}
\end{cases}
\xrightarrow{\mathcal{D}} H_{\text{DR}}^1(V/R; I).
\end{align*}

This much makes sense for \textit{any} ideal $I \subseteq R$. If I has divided powers, then the proof of the key lemma (5.1.3) is almost word-for-word the same. (It works because the terms $\Delta^n(y)/y!$ all have coefficients in I.)

The corresponding theory, “primitive elements in $H_{\text{DR}}^i(G/R; I)$,” is denoted $D_1(G/R)$. In terms of coordinates $X = (X_1, \ldots, X_n)$ for G, we have the explicit description

\begin{align*}
D_1(G/R) = \quad & \{ f \in K[[X]] \mid f(0) = 0, \text{df integral}, f(X + Y) - f(X) - f(Y) \in I[[X, Y]] \} \\
\xrightarrow{\mathcal{D}} & \{ f \in I[[X]] \mid f(0) = 0 \}
\end{align*}

as compared with the explicit description

\begin{align*}
D(G/R) = \quad & \{ f \in K[[X]] \mid f(0) = 0, \text{df integral}, f(X + Y) - f(X) - f(Y) \text{ integral} \} \\
\xrightarrow{\mathcal{D}} & \{ f \in R[[X]] \mid f(0) = 0 \}
\end{align*}

\textbf{193}
NICHOLAS M. KATZ

For ease of later reference we summarize the above discussion in a theorem.

THEOREM 5.1.6. Let R be a \mathbb{Z}-flat ring, and $I \subset R$ a divided power ideal. The key lemma (5.1.3) holds for $\text{H}_{\text{DR}}^1(V/R; I)$, and theorems (5.1.4) and (5.1.5) hold for $D_1(G/R)$.

The natural map $D_1 \to D$ is not an isomorphism, but its kernel and cokernel are visibly killed by I. In the work of Honda and Fontaine, it is D_1 rather than D which occurs; in the work of Grothendieck and Mazur-Messing ([17], [35]), it is D which arises more naturally.

Let us denote by $\omega_{G/R}$ the R-module of translation-invariant, or what is the same, primitive, one-forms on G/R. Because G is commutative, every element $w \in \omega_{G/R}$ is a closed form, so we have natural maps

$$\omega_{G/R} \to D_1(G/R) \to D(G/R)$$

(Notice that in the extreme case $I = (0)$, the map $\omega \to D_1$ is an isomorphism !)

LEMMA 5.1.7. Suppose R flat over \mathbb{Z}, and $I \subset R$ an ideal. We have exact sequences

$$0 \to \text{Hom}_{\text{R-groups}}(G, G_s) \to \omega_{G/R} \to D(G/R)$$

$$0 \to \text{Hom}_{\text{R-groups}}(G \otimes_k (R/I), (G_s)_{R/I}) \to D_1(G/R) \to D(G/R)$$

Proof. The first is the special case $I = 0$ of the second; the second is clear from the explicit description of D_1 and D given above. QED

COROLLARY 5.1.8. If $\text{Hom}_{\text{R-groups}}(G, G_s) = 0$, then the natural maps

$$\omega_G \to D_1(G/R) \quad \text{and} \quad \omega_G \to D(G/R)$$

are injective.

The reader interested in obtaining the limit formula for Jacobi sums

may be tempted.

5.2. **INTERPRETATION**

$\text{Ext}(G, G_s)$ the group consisting of short exact sequences

$$0 \to$$

of abelian f.p.p.f. sheaves, the group of isomorphisms consisting of an extension corresponding to

$$0 \to R = \text{Lie}(G)$$

Because $\text{Lie}(G)$ is a free R-module by G_s admits such element of $\text{Hom}(\text{Lie}(G), G_s)$ classes and remembering G by G_s is itself principal a four-term exact sequence

$$\text{Hom}(G, G_s) \to \omega_G$$

THEOREM 5.2.1. If G is an algebraic groups in terms of which the natural maps

$$0 \to \text{Hom}(G, G_s)$$

$$D(G/R) \to \text{Ext}(G, G_s)$$

is the concatenation of maps f
conjectured by Honda may skip the rest of this chapter! Others may also be tempted.

5.2. INTERPRETATION VIA EXT A LA MAZUR-MESSING. We denote by $\text{Ext}(G, G_s)$ the group of isomorphism classes of extensions of G by G_s, i.e. of short exact sequences

$$0 \longrightarrow G_s \longrightarrow E \longrightarrow G \longrightarrow 0$$

of abelian f.p.p.f. sheaves on $(\text{Schemes}/R)$. We denote by $\text{Ext}_{\text{rigid}}(G, G_s)$ the group of isomorphism classes of "rigidified extensions," i.e. pairs consisting of an extension of G by G_s together with a splitting of the corresponding extension of Lie algebras:

$$0 \longrightarrow R = \text{Lie}(G_s) \longrightarrow \text{Lie}(E) \longrightarrow \text{Lie}(G) \longrightarrow 0$$

Because $\text{Lie}(G)$ is a free R-module of rank $n = \dim(G)$, any extension of G by G_s admits such a rigidification, which is indeterminate up to an element of $\text{Hom}(\text{Lie}(G), \text{Lie}(G_s)) = \omega_{G/R}$. Passing to isomorphism classes and remembering that the set of splittings of a trivial extension of G by G_s is itself principal homogeneous under $\text{Hom}(G, G_s)$, we obtain a four-term exact sequence (valid over any ring R)

$$\text{Hom}(G, G_s) \overset{d}{\longrightarrow} \omega_{G/s} \longrightarrow \text{Ext}_{\text{rigid}}(G, G_s) \longrightarrow \text{Ext}(G, G_s) \longrightarrow 0$$

THEOREM 5.2.1. If R is flat over \mathbb{Z}, there is a natural isomorphism

$$D(G/R) \overset{\sim}{\longrightarrow} \text{Ext}_{\text{rigid}}(G, G_s)$$

in terms of which the resulting four term exact sequence

$$0 \longrightarrow \text{Hom}(G, G_s) \overset{\omega_{G/s}}{\longrightarrow} D(G/R) \longrightarrow \text{Ext}(G, G_s) \longrightarrow 0$$

is the concatenation of the three-term sequence of (5.1.3) and the map

$$D(G/R) \longrightarrow \text{Ext}(G, G_s)$$

defined by

$$f \longrightarrow \text{the class of the symmetric 2-cocycle}$$

$$\delta f = f(X + Y) - f(X) - f(Y)$$

195
Proof. We begin by constructing the isomorphism. Given a rigidified extension

\[0 \to G_s \to E \to G \to 0 \]

\[0 \to \text{Lie}(G_s) \to \text{Lie}(E) \to \text{Lie}(G) \to 0, \]

extend scalars from \(R \) to \(K = R \otimes Q \). Because \(K \) is a \(Q \)-algebra, the Lie functor defines an equivalence of categories between commutative formal Lie groups over \(K \) and free finitely generated \(K \)-modules.

Therefore there is a unique splitting as \(K \)-groups

\[0 \to G_s \otimes K \to E \otimes K \to G \otimes K \to 0 \]

whose differential is the given splitting \(S \) on Lie algebras.

At the same time, we may choose a cross section \(S \) in the category of pointed f.p.p.f. sheaves over \(R \)

\[0 \to G_s \to E \to G \to 0. \]

The difference \(f = S - \exp(s) \) is a pointed map from \(G \otimes K \) to \((G_s) \otimes K \), i.e. an element \(f \in \mathbb{A}(G \otimes K) \), and it satisfies \(f(0) = 0 \). We have \(df = dS - s \), so \(df \) is integral, and the formula

\[f(X + Y) - f(X) - f(Y) = S(X + Y) - S(X) - s(Y), \]

valid because \(\exp(s) \) is a homomorphism, shows that \(f(X + Y) - f(X) - f(Y) \) is integral.

Because the initial choice of \(S \) is indeterminate up to addition of a pointed map from \(G \) to \(G_s \), the class of \(f = S - \exp(s) \) in \(\mathcal{D}(G/R) \) is well-defined independently of the choice of \(S \), and it vanishes if and only if \(\exp(s) \) is itself integral, i.e. if and only if the original rigidified extension is trivial as a rigidified extension. Thus we obtain an injective map

\[\text{Ext}_{\text{rigid}}^0(G, G_s) \to \mathcal{D}(G/R). \]

To see that it is a monomorphism, consider the exact sequence

\[0 \to \text{Hom}(G, G_s) \to \mathcal{D}(G/R) \to 0, \]

which receives the \(\text{Ext}^0 \). The result is now verified.

Given an ideal \(I \subset \mathcal{O} \), the isomorphism classes of principal \(I \)-sheaves \(\mathcal{F} \) on \(S \) are in bijection with the group of isomorphism classes of pointed \(p \)-adic extensions of \(\mathcal{O}/I \) and a splitting of \(\mathcal{F} \) over \(\mathcal{O}

Analogously to the previous result,

Theorem 5.2.2. If \(\mathcal{F} \) is a principal \(p \)-adic sheaf on \(S \) and \(\mathcal{G} \) is a \(\mathcal{O}\)-module with a splitting of its \(\mathcal{O}\)-module structure, then the group of isomorphism classes of \(\mathcal{F} \)-sheaves with a splitting of its \(\mathcal{O}\)-module structure is isomorphic to the group of isomorphism classes of \(\mathcal{G} \)-sheaves with a splitting of its \(\mathcal{O}\)-module structure.

Corollary. The group of isomorphism classes of principal \(p \)-adic sheaves on \(S \) is isomorphic to the group of isomorphism classes of \(\mathcal{O}\)-modules with a splitting of its \(\mathcal{O}\)-module structure.

5.3 The case of \(\mathcal{O} \) being a \(p \)-adic ring is that of a topological ring with \(p \)-adic topology, i.e., if \(I \subset \mathcal{O} \) is an ideal.
CRYSTALLINE COHOMOLOGY

To see that it is an isomorphism, note that in any case the map
\[D(G/R) \longrightarrow \text{Ext}(G, G_\omega) \]
defined by \(f \longrightarrow \text{the class of } \vartheta f \text{ sits in an exact sequence} \)
\[0 \longrightarrow \text{Hom}(G, G_\omega) \longrightarrow \omega_G \longrightarrow D(G/R) \longrightarrow \text{Ext}(G, G_\omega), \]
which receives the \(\text{Ext}^{\text{rigid}} \) exact sequence:
\[0 \longrightarrow \text{Hom}(G, G_\omega) \longrightarrow \omega_G \longrightarrow D(G/R) \longrightarrow \text{Ext}(G, G_\omega) \]
\[\text{Ext}^{\text{rigid}}(G, G_\omega) \longrightarrow \text{Ext}(G, G_\omega) \longrightarrow 0 \]
The result is now visible. QED

Given an ideal \(I \subseteq R \), we denote by \(\text{Ext}(G, G_\omega ; I) \) the group of isomorphism classes of pairs consisting of an extension of \(G \) by \(G_\omega \) together with a splitting of its reduction modulo \(I \). We denote by \(\text{Ext}^{\text{rigid}}(G, G_\omega ; I) \) the group of isomorphism classes of pairs consisting of a rigidified extension and a splitting of the reduction mod \(I \) of the underlying extension. Analogously to the previous theorem, we have

Theorem 5.2.2. If \(R \) is flat over \(Z \), and \(I \subseteq R \) an ideal, there is a natural isomorphism

\[\text{Ext}^{\text{rigid}}(G, G_\omega ; I) \longrightarrow D_1(G/R) \]

and a four-term exact sequence

\[0 \longrightarrow \text{Hom}(G, G_\omega) \longrightarrow \omega_G \longrightarrow D_1(G/R) \overset{\vartheta}{\longrightarrow} \text{Ext}(G, G_\omega ; I) \longrightarrow 0 \]
in which the map \(\vartheta \), given by

\[f \longrightarrow \text{the class of the symmetric 2-cocycle} \]

\[\vartheta f = f(X + Y) - f(X) - f(Y), \]
corresponds to the map “forget the rigidification” on \(\text{Ext}^1 \).

5.3 The Case of p-Divisible Formal Groups. Let \(p \) be a prime number. A ring \(R \) is said to be \(p \)-adic if it is complete and separated in its \(p \)-adic topology, i.e., if

\[R \longrightarrow \lim \frac{R}{p^n R}. \]
A commutative formal Lie group G over a p-adic ring R is said to be p-divisible of height h if the map "multiplication by p" makes $A(G)$ into a finite locally free module over itself of rank p^h.

If we denote by G' the dual of G in the sense of p-divisible groups, it makes sense to speak of the tangent space of G' at the origin, noted $t_{G'}$. It is known that $t_{G'}$ is a locally free R-module of rank $h - \dim (G)$, and that there is a canonical isomorphism

$$\text{Ext} (G, G_a) \xrightarrow{\sim} t_{G'}.$$

Because G is p-divisible and R is p-adic, $\text{Hom}(G, G_a) = 0$, and the four-term exact sequence becomes a Hodge-like exact sequence

$$0 \longrightarrow \omega_G \longrightarrow D(G/R) \longrightarrow t_{G'} \longrightarrow 0.$$

Thus we find

Theorem 5.3.3. 1) If R is a p-adic ring which is flat over \mathbb{Z}, then for a p-divisible commutative formal Lie group G over R, the R-module $D(G/R)$ is locally free of rank $h = \text{height} (G)$, and its formation commutes with arbitrary extension of scalars of \mathbb{Z}-flat p-adic rings.

If in addition $I \subset R$ is an ideal which is closed in the p-adic topology, then R/I is again a p-adic ring, $G \otimes (R/I)$ is still p-divisible, and therefore admits no non-trivial homomorphisms to G_a over R/I. It follows that

$$\left\{ \begin{array}{c}
D_{\text{r}}(G/R) \subset D(G/R) \\
\text{Ext}(G, G_a; I) \xrightarrow{\sim} I \cdot \text{Ext}(G, G_a) \xrightarrow{\sim} I \cdot t_{G'}
\end{array} \right.$$

and we have a short exact sequence

$$0 \longrightarrow \omega_G \longrightarrow D_{\text{r}}(G/R) \longrightarrow I \cdot t_{G'} \longrightarrow 0.$$

5.5 Relation to the classical theory. Let k be a perfect field of characteristic $p > 0$, and take $R = W(k)$, $I = (p)$. Let CW denote the k-group-functor "Witt covectors" (in the notations of Fontaine ([13]), with its structure of $W(k)$-module. According to Fontaine, for any formal Lie variety V over $W(k)$, we obtain a $W(k)$-linear isomorphism

$$w : \text{CW}(A(V \otimes k)) \xrightarrow{\sim} H_{\text{DR}}^1 (V/W(k); (p))$$

by defining

$$\text{CW}.$$

where \sim_a denotes an isomorphism. Similarly, we can define $\text{M}(G_a)$ by the formula

$$\text{M}(G_a).$$

These isomorphisms show

$$\text{CW}(G_a) \xrightarrow{\sim} \text{M}(G_a).$$

When G is a commutative, p-divisible, the "classic"

$$\text{M}(G_a).$$

Combining this definition, we have a commutative diagram

$$\text{M}(G_a) \xrightarrow{\sim} \text{M}(G_a).$$

198
by defining

\[w(\ldots, \tilde{a}_{-n}, \ldots, a_0) = d \left(\sum_{n \geq 0} \left(\frac{\tilde{a}_{-n}}{p^n} \right) \right) \]

where \(\tilde{a}_{-n} \) denotes an arbitrary lifting to \(A(V) \) of \(a_{-n} \in A(V \otimes k) \).

Similarly, we can define, following Grothendieck, Mazur-Messing ([35]), a \(\sigma \)-linear isomorphism

\[\psi : CW(A(V \otimes k)) \xrightarrow{\sim} H^1_{\text{DR}}(V/W(k)) \]

by the formula

\[\psi(\ldots, a_{-n}, \ldots, a_0) = d \left(\sum_{n \geq 0} \frac{(\tilde{a}_{-n})^{p^n+1}}{p^{n+1}} \right) . \]

These isomorphisms sit in a commutative diagram

\[\begin{array}{ccc}
 CW(A(V \otimes k)) & \xrightarrow{\psi} & H^1_{\text{DR}}(V/W(k)) \\
 \downarrow^w & & \downarrow^{1/F} \\
 H^1_{\text{DR}}(V/W(k); (p)) & & \\
\end{array} \]

When \(G \) is a commutative formal Lie group over \(W(k) \) which is \(p \)-divisible, the "classical" Dieudonné module of \(G_0 = G \otimes k \) is defined as

\[M(G_0) \xrightarrow{\text{dfn}} \text{Hom}_{k-\text{rep}}(G_0, CW) \]

the primitive elements in \(CW(A(G_0)) \).

Combining this definition with the previous isomorphisms, we find a commutative diagram of isomorphisms

\[\begin{array}{ccc}
 M(G_0) & \xrightarrow{w} & D_p(G/W(k)) \\
 \downarrow^\psi & & \downarrow^{1/F} \\
 D(G/W(k)) & & \\
\end{array} \]
5.6. RELATION WITH ABELIAN SCHEMES AND WITH THE GENERAL THEORY. In this section, we recall without proofs some of the main results and compatibilities of the general \(D \)-theory of Grothendieck and Mazur-Messing.

Given an abelian scheme \(A \) over an arbitrary ring \(R \), there are canonical isomorphisms
\[
\begin{align*}
\text{Ext}^\text{rigid}(A, G_a) & \xrightarrow{\sim} H^1_{\text{DR}}(A/R) \\
\text{Ext}(A, G_a) & \xrightarrow{\sim} H^1(A, O_A) = \text{Lie}(A')
\end{align*}
\]

in terms of which the \(\text{Ext}^\text{rigid} \)-exact sequence "becomes" the Hodge exact sequence:
\[
\begin{align*}
0 & \to \omega_A \xrightarrow{\sim} \text{Ext}^\text{rigid}(A, G_a) \xrightarrow{\sim} \text{Ext}(A, G_a) \to 0 \\
0 & \to \omega_A \xrightarrow{\sim} H^1_\text{DR}(A/R) \xrightarrow{\sim} H^1(A, O_A) \to 0 \\
& \xrightarrow{\sim} \text{Lie}(A')
\end{align*}
\]

Given a \(p \)-divisible (Barsotti-Tate) group \(G = \lim G_n \) over a ring \(R \) in which \(p \) is nilpotent, the exact sequence
\[
\begin{align*}
0 & \to G_n \xrightarrow{p^n} G \xrightarrow{p^n} G \to 0
\end{align*}
\]

for any \(n \) sufficiently large that \(p^n = 0 \) in \(R \), leads to a canonical isomorphism
\[
\text{Lie}(G') = \text{Lie}(G'_n) = \text{Hom}(G_n, G_a) \xrightarrow{\sim} \text{Ext}(G, G_a).
\]

The \(\text{Ext}^\text{rigid} \)-exact sequence can thus be written
\[
\begin{align*}
0 & \to \omega_G \xrightarrow{\sim} \text{Ext}^\text{rigid}(G, G_a) \xrightarrow{\sim} \text{Lie}(G') \to 0,
\end{align*}
\]

where \(\omega_G \) is the \(R \)-linear dual of \(\text{Lie}(G) \).

Given an abelian scheme \(A \) over a ring \(R \) in which \(p \) is nilpotent, the exact sequence
\[
\begin{align*}
0 & \to A_{p^n} \xrightarrow{p^n} A \xrightarrow{p^n} A \to 0
\end{align*}
\]
CRYSTALLINE COHOMOLOGY

for any n sufficiently large that $p^n = 0$ in R leads to a canonical isomorphism

\[(5.6.7) \quad \text{Lie}(A^\flat) = \text{Lie}(A^{\flat}_p) = \text{Hom}(A_p, G_a) \xrightarrow{\sim} \text{Ext}(A, G_a).\]

Therefore the inclusion $A_p \hookrightarrow A$ induces an isomorphism

\[(5.6.8) \quad \text{Ext}(A, G_a) \xrightarrow{\sim} \text{Ext}(A_p, G_a)\]

(the identity on $\text{Hom}(A_p, G_a)$!), and consequently we obtain a commutative diagram of isomorphisms

\[(5.6.9) \quad \begin{array}{ccccccc}
0 & \longrightarrow & \omega_A & \longrightarrow & \text{Ext} \text{ rigid}(A, G_a) & \longrightarrow & \text{Ext}(A, G_a) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \omega_{A_p} & \longrightarrow & \text{Ext} \text{ rigid}(A_p, G_a) & \longrightarrow & \text{Ext}(A_p, G_a) & \longrightarrow & 0,
\end{array}\]

i.e., an isomorphism

\[(5.6.10) \quad H^1_{DR} (A/R) \xrightarrow{\sim} D(A_p/R)\]

compatible with the Hodge filtration.

For variable $B - T$ groups G over a fixed ring R in which p is nilpotent, the functors ω_G, $\text{Lie}(G^\flat)$, and consequently $\text{Ext} \text{ rigid} (G, G_a)$, are exact functors whose values are locally free R-modules of finite rank; their formation commutes with arbitrary extension of scalars of rings in which p is nilpotent.

Following Grothendieck and Mazur-Messing we define

\[(5.6.11) \quad D(G/R) \xrightarrow{\text{dfn}} \text{Ext} \text{ rigid} (G, G_a)\]

when G is a $B - T$ group over a ring R in which p is nilpotent.

When R is a p-adic ring, and G is a $B - T$ group over R, we define

\[(5.6.12) \quad \begin{cases}
D(G/R) = \lim_{\rightarrow \infty} D(G \otimes (R/p^n R)/(R/p^n R)) \\
\text{Lie}(G) = \lim_{\rightarrow \infty} \text{Lie}(G \otimes (R/p^n R)) \\
\omega_G = \lim_{\rightarrow \infty} \omega_G \otimes (R/p^n R)
\end{cases}\]

201
Thus for variable B - G groups G over a \mathbb{P}-adic ring R, the factors $\varphi_0, \varphi_1, \ldots, \varphi_{n-1}$ of φ, $\varphi_0(G)$ and $D(G)$ are all exact functors in locally free \mathbb{R}-modules.
CRYSTALLINE COHOMOLOGY

Y \hookrightarrow Y_n consisting an $A \otimes k$ scheme Y and a divided-power thickening of Y to a W_n-scheme Y_n a G_a-torsor on Y_n in a way which is compatible with inverse image whenever we have a morphism $(Y, Y_n) \rightarrow (Y', Y'_n)$ of such test situations (cf. [35] for more details).

Given a Z/p^nZ-torsor T on $A \otimes k$, we must define for every test situation $Y \hookrightarrow Y_n$, a G_a-torsor $\alpha_n(T)_{(Y, Y_n)}$ on Y_n. Because Y is given as an $A \otimes k$ scheme, we can pull back T to obtain a Z/p^nZ-torsor T_Y on Y. Because Y_n is a W_n-scheme which is a divided-power thickening, its ideal of definition is necessarily a nil-ideal; therefore the etale Y-scheme T_Y extends uniquely to an etale Y_n-scheme $T_{(Y, Y_n)}$, and its structure of Z/p^nZ-torsor extends uniquely as well. Because Y_n is a W_n-scheme, the natural map

$$Z/p^nZ \rightarrow W_n$$

gives rise to a morphism of algebraic groups on Y_n

$$(Z/p^nZ)_{Y_n} \xrightarrow{\alpha_n} (G_a)_{Y_n};$$

the required G_a-torsor $\alpha_n(T)_{(Y, Y_n)}$ is obtained by “extension of structural group via $\alpha_n$$” from the Z/p^nZ-torsor $T_{(Y, Y_n)}$.

To define β_n, we begin with an element Z of $H^1_{cris} (A \otimes k/W_n)$. We must define an element $\beta_n(Z)$ in $\text{Ext}^{rigid} (\hat{A} \otimes W_n, (G_a) \otimes W_n) \simeq D(\hat{A} \otimes W_n/W_n)$. Its value on the test object $A \otimes k \hookrightarrow A \otimes W_n$ is a G_a-torsor on $A \otimes W_n$ which is endowed with an integrable connection (cf. [2], [3]), i.e., it is an element of $H^1_{DR} (A \otimes W_n/W_n)$. [This interpretation provides the canonical isomorphism]

$$H^1_{cris} (A \otimes k/W_n) \rightarrow H^1_{DR} (A \otimes W_n/W_n).$$

Composing with the isomorphism

$$H^1_{DR} (A \otimes W_n/W_n) \rightarrow \text{Ext}^{rigid} (A \otimes W_n, G_a \otimes W_n),$$

we obtain an element of $\text{Ext}^{rigid} (A \otimes W_n, G_a \otimes W_n)$, whose restriction to the formal group $\hat{A} \otimes W_n$ is the required element $\beta_n(Z)$.

To see that the map β obtained from these β_n by passage to the limit

203
is in fact functorial in $A \otimes k$, we first note that it sits in the commutative diagram

\[
\begin{array}{cccccc}
H^1_{\text{cris}}(A \otimes k/W) & \rightarrow & B & \rightarrow & D(\hat{A}/W) \\
\downarrow \text{canonical isom} & & \downarrow \text{inclusion of primitive elements} & & \\
H^1_{\text{DR}}(A/W) & \rightarrow & \text{natural map} & \rightarrow & H^1_{\text{DR}}(\hat{A}/W). \\
\end{array}
\]

(5.7.3)

What must be shown is that if we are given a second abelian scheme B over W, and a homomorphism

\[f_0 : B \otimes k \rightarrow A \otimes k\]

then the diagram

\[
\begin{array}{cccccc}
H^1_{\text{cris}}(A \otimes k/W) & \rightarrow & B & \rightarrow & D(\hat{A}/W) \\
\downarrow (f_0)^* & & \downarrow \text{(any pointed lifting of f_0)}^* & & \\
H^1_{\text{cris}}(B \otimes k/W) & \rightarrow & B & \rightarrow & D(\hat{B}/W) \\
\end{array}
\]

(5.7.)

is commutative.

But in virtue of the commutativity of the previous diagram (5.7.3), it is enough to show the commutativity of the diagram

5.7.5

\[
\begin{array}{cccccc}
H^1_{\text{cris}}(A \otimes k/W) & \simeq & H^1_{\text{DR}}(A/W) & \rightarrow & H^1_{\text{DR}}(\hat{A}/W) \\
\downarrow (f_0)^* & & \downarrow \text{(any pointed lifting of f_0)}^* & & \\
H^1_{\text{cris}}(B \otimes k/W) & \simeq & H^1_{\text{DR}}(B/W) & \rightarrow & H^1_{\text{DR}}(\hat{B}/W). \\
\end{array}
\]
This last commutativity has nothing to do with abelian schemes, nor does it require pointed liftings. It is an instance of the following general fact, whose proof we defer for a moment.

General Fact 5.7.6. For any two pointed W-schemes A, B which are both proper and smooth, any pointed map $f_0 : B \otimes k \to A \otimes k$, and any integer $i \geq 0$, we have a commutative diagram

\[
\begin{array}{ccc}
H^i_{\text{cris}}(A \otimes k/W) & \simeq & H^i_{\text{DR}}(A/W) \\
(f_0)^* & \downarrow & (\text{any lifting of } f_0)^* \\
H^i_{\text{cris}}(B \otimes k/W) & \simeq & H^i_{\text{DR}}(B/W) \\
\end{array}
\]

To conclude the proof of the theorem (!), it remains to see that our marvelously functorial maps α, β really do form an exact sequence. To do this, we will use the abelian scheme A over W. Its formal group \hat{A} is p-divisible, and sits in an exact sequence of p-divisible groups over W,

\[
0 \to \hat{A}_{p^n} \to \Lambda_{p^n} \to E \to 0,
\]

in which $E = \lim E_n$ denote the etale quotient of A_{p^n}. Because k is algebraically closed, E is a constant p-divisible group, namely the abstract p-divisible group $\hat{\lim} A_{p^n}(k)$ of all p-power torsion points of $A(k)$.

We will identify the exact sequence of the proposition with the exact sequence

\[
0 \to D(E/W) \xrightarrow{\alpha'} D(A_{p^n}/W) \xrightarrow{\beta'} D(\hat{A}/W) \to 0,
\]

and we will identify the (α_n, β_n)-sequence with the exact sequence

\[
0 \to D(E \otimes W_n/W_n) \xrightarrow{\alpha'} D(A_{p^n} \otimes W_n/W_n) \xrightarrow{\beta'} D(\hat{A} \otimes W_n/W_n) \to 0.
\]
It is clear from the construction of β_n that we have a commutative diagram

\[
\begin{array}{c}
\text{D}(A_p \otimes W_n/W_n) & \xrightarrow{R_n'} & \text{D}(\hat{A} \otimes W_n/W_n) \\
\text{Ext}^1_{\text{id}}(A_n \otimes W_n, G_n) & \xrightarrow{\text{restriction}} & \text{Ext}^1_{\text{id}}(\hat{A} \otimes W_n, G_n) \\
\text{Ext}^1_{\text{DR}}(A \otimes W_n/W_n) & \xrightarrow{\text{restriction}} & \text{Ext}^1_{\text{DR}}(\hat{A} \otimes W_n/W_n) \\
H^1_{\text{cris}}(A \otimes k/W_n) & \xrightarrow{\phi_n} & \text{dfn} \\
\end{array}
\]

To relate the map α_n to the D-maps, use the exact sequence

\[
0 \rightarrow E_n \otimes W_n \rightarrow E \otimes W_n \xrightarrow{p^n} E \otimes W_n \rightarrow 0
\]

to compute

\[
\text{D}(E \otimes W_n/W_n) \rightarrow \text{Ext}(E \otimes W_n, G_n) \simeq \text{Hom}(E_n \otimes W_n, G_n)
\]

Next use the sequence

\[
0 \rightarrow A_p \otimes W_n \rightarrow A \otimes W_n \xrightarrow{p^n} A \otimes W_n \rightarrow 0
\]

in which the arrow is $Z/p^n Z$.

Corollary 5.7.7.

W(k) of a perfect field k, the exact sequence of $W(k)$

\[
0 \rightarrow \left(H^1_{\text{cris}}(A \otimes W_n, G_n) \right) \rightarrow H^1_{\text{cris}}(A \otimes k/W_n)
\]

in which k denotes an algebraic closure of k. Gal(\bar{k}/k) acts simultaneously on part of structure.
CRYSTALLINE COHOMOLOGY

to compute
\[\text{Ext}(A \otimes W_n, \mathbb{Z}/p^n \mathbb{Z}) \simeq \text{Hom}(A_{p^n} \otimes W_n, \mathbb{Z}/p^n \mathbb{Z}) \]

\[\xymatrix{ \text{Hom}(E_n \otimes W_n, \mathbb{Z}/p^n \mathbb{Z}) \ar[r]^-{s} & \text{Hom}(E_n(k), \mathbb{Z}/p^n \mathbb{Z}) } \]

\[H^1_{\text{et}}(A \otimes k, \mathbb{Z}/p^n \mathbb{Z}) \cong \text{Hom}(E_n(k), \mathbb{Z}/p^n \mathbb{Z}). \]

Combining these isomorphisms, and remembering that \(\text{Ext} = \text{Ext}^{\text{rigid}} \) when either of the arguments is etale, we find a commutative diagram

\[\xymatrix{ \mathcal{D}(E \otimes W_n/W_n) \ar[r]^\alpha \ar[d]^s & \mathcal{D}(A_{p^n} \otimes W_n/W_n) \ar[d]^s \\
\text{Hom}(E_n(k), \mathbb{Z}/p^n \mathbb{Z}) \otimes W_n \ar[r] & \mathcal{D}(A \otimes W_n/W_n) } \]

\[\xymatrix{ \text{Ext}^{\text{rigid}}(A \otimes W_n, \mathbb{Z}/p^n \mathbb{Z}) \otimes W_n \ar[r] \ar[d]^s & \text{Ext}^{\text{rigid}}(A \otimes W_n, G_a) \ar[d]^s \\
H^1_{\text{et}}(A \otimes k, \mathbb{Z}/p^n \mathbb{Z}) \otimes W_n \ar[r]^\alpha & H^1_{\text{cris}}(A \otimes k/W_n) } \]

in which the arrow*** is "push-out" along the homomorphism

\[\mathbb{Z}/p^n \mathbb{Z} \longrightarrow W_n \longrightarrow (G_a)_{W_n}. \]

QED

Corollary 5.7.7. Let \(A \) be an abelian scheme over the Witt vectors \(W(k) \) of a perfect field \(k \) of characteristic \(p > 0 \). Then we have a short exact sequence of \(W(k) \)-modules

\[0 \longrightarrow \left(H^1_{\text{et}}(A \otimes \bar{k}, \mathbb{Z}_p) \otimes W(\bar{k}) \right)^{\text{Gal}(\bar{k}/k)} \longrightarrow H^1_{\text{cris}}(A \otimes k/W(k)) \longrightarrow \mathcal{D}(\hat{A}/W(k)) \longrightarrow 0, \]

in which \(\bar{k} \) denotes an algebraic closure of \(k \), and in which the galois group \(\text{Gal}(\bar{k}/k) \) acts simultaneously on \(H^1_{\text{et}}(A \otimes \bar{k}, \mathbb{Z}_p) \) and on \(W(\bar{k}) \) by "transport of structure."

207
Proof. One can obtain this sequence either by passing to \(\text{Gal}(\overline{k}/k) \)-
-invariants in the already-established analogous sequence for \(A \otimes W(\overline{k}) \),
-or by repeating the proof given for the proposition. In the latter case, one
-finds, in the notations of the proof,
\[
D(E \otimes W_n(k)/W_n(k)) \simeq \text{Hom}(E_n \otimes W_n(k), (G_n)_{W_n(k)})
\simeq \text{Hom}(E_n(\overline{k}), W_n(\overline{k}))^{\text{Gal}(\overline{k}/k)}
\simeq \text{Hom}(\Lambda_{\text{pn}}(\overline{k}), W_n(\overline{k}))^{\text{Gal}(\overline{k}/k)}
= \left(H^1_n(A \otimes \overline{k}, Z_p^* Z) \otimes W_n(\overline{k}) \right)^{\text{Gal}(\overline{k}/k)}
\]
and the rest of the proof remains unchanged.
\[\text{QED}\]

Corollary 5.7.8. Let \(A \) be an abelian scheme over the Witt vectors of a
perfect field \(k \) of characteristic \(p \) \(> 0 \). The above exact sequence is the
Newton-Hodge filtration
\[
0 \to (\text{slope } 0) \to H^1_{\text{cris}}(A \otimes k/W) \to (\text{slope } > 0) \to 0
\]
of \(H^1_{\text{cris}}(A \otimes k/W) \) as an \(F \)-crystal.

Proof. Since \(F \) induces a \(\sigma \)-linear automorphism of
\[
H^1_n(A \otimes \overline{k}, Z_p^* Z)(\overline{k})^{\text{Gal}(\overline{k}/k)}
\simeq \left(\text{Hom}(T_p(A \otimes \overline{k}), W(\overline{k}))^{\text{Gal}(\overline{k}/k)} \right),
\]
it remains only to see that \(F \) is topologically nilpotent on \(D(\hat{A}/W(k)) \), for
its \(p \)-adic topology. Because \(D(\hat{A}/W(k)) \) is a finitely generated \(W(k) \) sub-module of \(H^1_{\text{DR}}(\hat{A}/W(k)) \), the topology induced on \(D(\hat{A}/W(k)) \) by the
inverse limit topology on \(H^1_{\text{DR}} \) through the isomorphism (cf. lemma 5.8.1. ahead)
\[
(5.7.9) \quad H^1_{\text{DR}}(\hat{A}/W(k)) \to \bigoplus \lim \downarrow H^1_{\text{DR}}(\hat{A} \otimes W_n(k)/W_n(k))
\]
must be equivalent to the \(p \)-adic topology in \(D(\hat{A}/W(k)) \). So it suffices toremark that \(F^p \) annihilates \(H^1_{\text{DR}}(\hat{A} \otimes W_n(k)/W_n(k)) \) (indeed \(F^p \) annihilates \(\Omega^1_{\hat{A} \otimes W_n(k)/W_n(k)} \) for \(i \geq 1 \), since for any pointed lifting of \(X \to X^p \), \(F(\text{d}X) = \text{d}(F(X)) = \text{d}(X^p + pY) = p\Omega^1 \) to establish the required topological nilpotence of \(F \) on \(D(\hat{A}/W) \).
\[\text{QED}\]

5.8. The missing fact (5.7.7), and to address the questions are intimate

Lemma 5.8.1. Let \(V \) be any formal Lie variety
\[
H^1_{\text{DR}}(V)(\overline{k}) \neq 0.
\]

Proof. Pick coordinates and define a \(Z_p^* \)-grading on \(V \) attributing the weight
\[
(\text{II}x_i^{*i})(\overline{k})
\]
Exterior differentiation of \(V \) produces the product complex

Because both cohomology terms are killed by \(F \), we are reduced to proving homogeneous components.

The individual component is not killed except when all \(a_i \geq 1 \) is.

If some \(a_i \geq 1 \), and a product complex

What is important for us is that this is a complex of free finitely generated \(\mathbb{Z}_p \)-modules to \(R \).

Thus let \(K \) denote the\(K \)-torsion group. We must show that for
\[
H^1_{\text{DR}}(V)(\overline{k}) \to K
\]
5.8. The Missing Lemmas. It remains for us to establish the "general fact" (5.7.7), and to establish the isomorphism (5.7.9). In fact, the two questions are intimately related. We begin with the second.

Lemma 5.8.1. Let R be a \mathbb{Z}-flat p-adic ring, and let $R_n = R/p^n R$. For any formal Lie variety V over R, we have isomorphisms

$$H^i_{\text{DR}}(V/R) \xrightarrow{\sim} \lim_{\leftarrow} H^i_{\text{DR}}(V \otimes R_n/R_n).$$

Proof. Pick coordinates X_1, \ldots, X_N for V. Over any ring R, we can define a \mathbb{Z}^N-grading of the de Rham complex of $R[[X_1, \ldots, X_N]]/R$, by attributing the weight $(a_1, \ldots, a_N) \in \mathbb{Z}^N$ to each "monomial"

$$(\Pi X_i^{a_i})(\prod_{j \in S} \frac{dX_j}{X_j})$$

for any subset of $\{1, \ldots, N\}$.

Exterior differentiation is homogeneous of degree zero, and the de Rham complex is the product of all its homogeneous graded pieces

$$\Omega^* = \Pi \Omega^*(a_1, \ldots, a_N).$$

Because both cohomology and inverse limits commute with products, we are reduced to proving the lemma homogeneous component by homogeneous component.

The individual complexes $\Omega^*(a_1, \ldots, a_N)$ are quite simple. They vanish except when all $a_i \geq 0$. The complex $\Omega^*(0, \ldots, 0)$ is

$$R \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

If some $a_i \geq 1$, and all $a_i \geq 0$, the complex $\Omega^*(a_1, \ldots, a_N)$ is the tensor product complex

$$\otimes_{i \text{ with } a_i \geq 1} (R \longrightarrow R).$$

What is important for us is that each of these complexes is obtained from a complex of free finitely generated \mathbb{Z}-modules (!) by extension of scalars to R.

Thus let K denote any complex of free finitely-generated \mathbb{Z}_p-modules. We must show that for a \mathbb{Z}-flat p-adic ring R we have

$$H^i(K^* \otimes R) \xrightarrow{\sim} \lim_{\leftarrow} H^i(K^* \otimes R_n).$$
The exact sequence of complexes

\[0 \rightarrow \mathbf{K}^\bullet \otimes R \xrightarrow{p} \mathbf{K}^\bullet \otimes R \rightarrow \mathbf{K}^\bullet \otimes R_n \rightarrow 0 \]

gives a "universal coefficients" exact sequence

\[0 \rightarrow H^i (\mathbf{K}^\bullet \otimes R) \otimes R_n \rightarrow H^i (\mathbf{K}^\bullet \otimes R) \rightarrow p^n \text{-} \text{Torsion}(H^{i+1} (\mathbf{K}^\bullet \otimes R)) \rightarrow 0. \]

Passing to the inverse limit over \(n \) leads to an exact sequence

\[0 \rightarrow \lim_{\leftarrow} H^i (\mathbf{K}^\bullet \otimes R) \otimes R_n \rightarrow \lim_{\leftarrow} H^i (\mathbf{K}^\bullet \otimes R^n) \rightarrow T_p (H^{i+1} (\mathbf{K}^\bullet \otimes R)) \rightarrow 0. \]

To see that \(T_p (H^{i+1} (\mathbf{K}^\bullet \otimes R)) \) vanishes, notice that an element of this \(T_p \) is represented by a system of elements \(a_n \in \mathbf{K}^{i+1} \otimes R \) with \(d(a_n) = 0 \), \(p \sum_{a_n+1} = a_n - d(b_n) \), \(a_0 = 0 \); because both \(\mathbf{K}^\bullet \otimes R \) and \(\mathbf{K}^{i+1} \otimes R \) are \(p \)-adically complete and separated, we may infer

\[a_n = p a_{n+1} + d(b_n) \]
\[= p \left(p a_{n+2} + d(b_{n+1}) \right) + d(b_n) \]
\[= \ldots \]
\[= d(\sum_{i=0} p^i b_{n+1}). \]

To see that the natural map

\[H^i (\mathbf{K}^\bullet \otimes R) \rightarrow \lim_{\leftarrow} H^i (\mathbf{K}^\bullet \otimes R) \otimes R_n \]

is an isomorphism, use the \(\mathbb{Z} \)-flatness of \(R \) and the \(\mathbb{Z} \)-finite generation of the \(\mathbf{K}^i \) to write

\[H^i (\mathbf{K}^\bullet \otimes R) \rightarrow H^i (\mathbf{K}^\bullet) \otimes R = \text{(fin. gen. } \mathbb{Z} \text{-module)} \otimes R \]
\[= (\mathbb{Z}^\bullet \otimes (\oplus \mathbb{Z}/p^i) \otimes \text{prime-torsion}) \otimes R \]
\[= R^n \otimes (\oplus R_{n}). \]

QED

Lemma 5.8.2. Let \(k \) be a perfect field of characteristic \(p > 0 \), \(A \) and \(B \) two proper, smooth pointed \(W(k) \)-schemes, \(f_0 : B \otimes k \rightarrow A \otimes k \) a pointed \(k \)-morphism and \(\hat{f} : \hat{B} \rightarrow \hat{A} \) a \(W \)-lifting of \(f_0 \) to the formal completions viewed as

\[H^i_{\text{cris}} (A \otimes k) \rightarrow (f_0)_* \]
\[H^i_{\text{cris}} (B \otimes k) \]

is commutative.

Proof. If \(f_0 \) lifted, it is enough for us. More specifically, neighborhoods of the points \(f_0 \) maps \(V \otimes k \) over \(W \), we may successively apply \(\hat{f}_n : V \otimes W_n \rightarrow U_n \) compatible maps \(\hat{f}_n \) but these \(\hat{f}_n \) need not.

We denote by \(\hat{f}_n : V \otimes W_n \rightarrow U_n \)

For each \(n \), we have

\[H^i_{\text{cris}} (A \otimes W_n/k) = H^i_{\text{cris}} (A \otimes k) \]
\[H^i_{\text{cris}} (B \otimes W_n/k) = H^i_{\text{cris}} (B \otimes k) \]

Passing to the inverse limit, we identify the right-hand side of the diagram
completions viewed as functors only on p-adic W-algebras. Then the diagram

\[
\begin{array}{ccc}
H^{i}_{\text{cris}}(A \otimes k/W) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(A/W) \\
\downarrow (f_0)^* & & \downarrow (f)^* \\
H^{i}_{\text{cris}}(B \otimes k/W) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(B/W)
\end{array}
\]

is commutative.

Proof. If \(f_0 \) lifted, this would be obvious. But it does lift locally, which is enough for us. More precisely, let \(U \subset A \) and \(V \subset B \) be affine open neighborhoods of the marked \(W \)-valued points of \(A \) and \(B \) respectively such that \(f_0 \) maps \(V \otimes k \) to \(U \otimes k \). Because \(V \) is affine and \(U \) is smooth over \(W \), we may successively construct a compatible system of \(W \)-maps \(f_n : V \otimes W_n \rightarrow U \otimes W_n \) with \(f_{n+1} \equiv f_n \mod p^n \). The \(f_n \) induce compatible maps \(\hat{f}_n : \hat{B} \otimes W_n \rightarrow \hat{A} \otimes W_n \) of formal completions, but these \(\hat{f}_n \) need not be pointed morphisms.

We denote by \(\hat{f}_\infty : \hat{B} \rightarrow \hat{A} \) the limit of these \(\hat{f}_n \). (Strictly speaking, \(\hat{f}_\infty \) only makes sense as a map of functors when we restrict \(\hat{B} \) and \(\hat{A} \) to the category of p-adic \(W \)-algebras.)

For each \(n \), we have a commutative diagram

\[
\begin{array}{ccc}
H^{i}_{\text{cris}}(A \otimes W_n/W_n) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(U \otimes W_n/W_n) \\
\downarrow & & \downarrow \\
H^{i}_{\text{cris}}(B \otimes W_n/W_n) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(V \otimes W_n/W_n)
\end{array}
\]

Passing to the inverse limit over \(n \), and using the previous lemma to identify the right-hand inverse limits, we obtain a commutative diagram

\[
\begin{array}{ccc}
H^{i}_{\text{cris}}(A \otimes k/W) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(A/W) \\
\downarrow (f_0)^* & & \downarrow (f)^* \\
H^{i}_{\text{cris}}(B \otimes k/W) & \xrightarrow{\sim} & H^{i}_{\text{DR}}(B/W)
\end{array}
\]
NICHOLAS. M. KATZ

To conclude the proof, we need to know that the induced map

\[(\hat{f}_\ast)^* : H^i_{DR}(\hat{A}/W) \rightarrow H^i_{DR}(\hat{B}/W)\]

depends only on the underlying map \(\hat{f}_0 : \hat{B} \otimes k \rightarrow \hat{A} \otimes k\), and not on the particular choice of lifting. In fact this is true for the individual \(\hat{f}_n\) as well!

Lemma 5.8.3. Let \(R\) be a \(p\)-adic ring. Let \(V\) and \(V'\) be formal Lie varieties over \(R\), and let \(f_1\) and \(f_2\) be morphisms of functors \(V' \rightarrow V\) of the restrictions of \(V'\), \(V\) to the category of \(p\)-adic \(R\)-algebras. If \(f_1 \equiv f_2 \mod p\), then for each \(i\), the induced maps

\[f_1^* f_2^* : H^i_{DR}(V/R) \rightarrow H^i_{DR}(V'/R)\]

are equal.

Proof. (compare Monsky [39]). In terms of coordinates \(X_1, \ldots, X_n\) for \(V\), \(Y_1, \ldots, Y_m\) for \(V\), the corresponding \(R\)-algebra homomorphisms

\[\varphi_1, \varphi_2 : R[[Y_1, \ldots, Y_m]] \rightarrow R[[X_1, \ldots, X_n]]\]

are related by

\[\varphi_2(Y) = \varphi_1(Y) + p \Delta(Y)\]

Introduce a new variable \(T\), and consider the map

\[\varphi : R[[Y_1, \ldots, Y_m]] \rightarrow R[[X_1, \ldots, X_n, T]]\]

\[\varphi(Y) = \varphi_1(Y) + T \cdot \Delta(Y)\]

We have a commutative diagram of algebraic homomorphisms

\[
\begin{array}{ccc}
R[[Y]] & \xrightarrow{\varphi} & R[[X]] \\
\downarrow & & \downarrow \\
R[[T]] & \xrightarrow{T \rightarrow 0} & R[[X]] \\
\downarrow & & \downarrow \\
& T \rightarrow p & \\
\end{array}
\]

So it suffices to consider

and show that these two

A form \(\omega\) on \(R[[X]]\)

\[\omega\]

with \(a_n, b_n\)'s forms on \(V\)

\[d(a_n) = 0 \quad f_n\]

Its image

\[a_n\]

respectively. Their \(d_{ij}\)

\[\omega\mid_{T = 0} = 0\]

It seems worthwhile strengthened.

Lemma 5.8.4. Let \(V\) and \(V'\) two formal Lie \(V' \rightarrow V\) of the restrictions of \(V'\), \(V\) to the category of \(p\)-adic \(R\)-algebras. If \(f_1 \equiv f_2 \mod I\), then \(f_1^* f_2^* : H^i_{DR}(V/R) \rightarrow H^i_{DR}(V'/R)\)

are equal.

Proof. If we had then we could repeat the

212
CRystalline COhomology

So it suffices to consider the situation

\[
\begin{array}{c}
\begin{align*}
T & \rightarrow 0 \\
R[[X,T]] & \longrightarrow R[[X]] \\
T & \rightarrow p
\end{align*}
\end{array}
\]

and show that these two maps have the same effect on \(H_{\text{DR}} \).

A form \(\omega \) on \(R[[X,T]] \) may be written uniquely

\[
\omega = \sum_{n \geq 0} a_n \cdot T^n + \sum_{n \geq 1} b_n \cdot T^n \frac{dT}{T}
\]

with \(a_n, b_n \)'s forms on \(R[[X]] \). This form is closed if and only if

\[
d(a_n) = 0 \quad \text{for } n \geq 0, \quad n \cdot a_n + d(b_n) = 0 \quad \text{for } n \geq 1.
\]

Its images under \(T \rightarrow 0 \) and \(T \rightarrow p \) are

\[
a_0, \sum_{n \geq 0} a_n \cdot p^n
\]

respectively. Their difference, if \(\omega \) is closed, is exact, namely

\[
\omega \big|_{T=0} - \omega \big|_{T=p} = \sum_{n \geq 1} a_n \cdot p^n \sim d\left(\sum_{n \geq 1} \frac{p^n}{n} \cdot b_n \right).
\]

QED

It seems worthwhile to point out that this last lemma can be considerably strengthened.

Lemma 5.8.4. Let \(R \) be a \(p \)-adic ring, \(I \subseteq R \) a divided power ideal, \(V \) and \(V' \) two formal Lie varieties over \(R \), and \(f_1, f_2 \) two morphisms of functors \(V' \longrightarrow V \) of the restrictions of \(V, V' \) to the category of \(p \)-adic \(R \)-algebras. If \(f_1 \equiv f_2 \) mod \(I \), then for all \(i \) the induced maps

\[
f_i^*: H^i_{\text{DR}}(V|R) \longrightarrow H^i_{\text{DR}}(V'|R)
\]

are equal.

Proof. If we had \(f_1 \equiv f_2 \) mod \(I' \) with \(I' \subseteq I \) a finitely generated ideal, then we could repeat the proof of the previous lemma, introducing several

213
new variables T_j, one for each generator of I'. In particular, the lemma is true if f_1 and f_2 are polynomial maps in some coordinate system. But we easily reduce to this situation, for in terms of coordinates X_1, \ldots, X_n for V', we have a \mathbb{Z}^n-gradation of its de Rham complex and a corresponding product decomposition

$$H^i_{\text{DR}}(V'/R) = \prod_{(a_1, \ldots, a_n)} H^i_{\text{DR}}(V'/R)(a_1, \ldots, a_n).$$

Therefore it suffices to show that the composite maps

$$f_1^* \quad \xrightarrow{\text{projection}} \quad f_2^*$$

agree, for every $(a_1, \ldots, a_n) \in \mathbb{Z}^n$. But for fixed (a_1, \ldots, a_n), these composites depend only on the terms of total degree $\leq \sum a_i$ in the power series formulas for the maps f_1, f_2. Thus we are reduced to the case when f_1 and f_2 are each polynomial maps. QED

REMARK 5.8.5. If the ideal I is closed, the proof gives the same invariance property for the groups $H^i_{\text{DR}}(V/R; I)$ defined as the cohomology of

$$\Omega^{i-1}_{V/R} \underset{d}{\longrightarrow} \Omega^i_{V/R} \overset{d}{\longrightarrow} \Omega^{i+1}_{V/R}.$$

5.9. APPLICATION TO THE COHOMOLOGY OF CURVES. Throughout this section we work over a mixed-characteristic valuation ring R of residue characteristic p, which is complete for a rank-one (i.e., real-valued) valuation. Let C be a projective smooth curve over R, with geometrically connected fibres of genus g. Its Jacobian $J = \text{Pic}^0(C/R)$ is a g-dimensional autodal abelian scheme over R. For each rational point $x \in C(R)$, we denote by φ_x the corresponding Albanese mapping

$$\varphi_x : C \longrightarrow J$$

given on S-valued points, S any R-scheme, by

$$\varphi_x(y) = \text{the class of the invertible sheaf } I(y)^{-1} \otimes I(x),$$

where $I(y)$ denotes the invertible ideal sheaf of $y \in C(S)$ viewed as a Cartier divisor in $C \times_S \text{Spec} \mathcal{O}_S$. The map I induces isomorphisms

$$\left\{ \begin{array}{c}
H^0(J, E) \\
H^1(J, E) \end{array} \right\}$$

which are independent of the choice of E.

Let \hat{C}_x denote the formal completion of C at x. The Lie variety of dimension g of \hat{C}_x is a map of pointed formal schemes

$$\hat{D}(\hat{J}/R)$$

whence an induced map

$$\hat{D}(\hat{J}/R)$$

which is injective.

THEOREM 5.9.2. Theorem

is injective.

COROLLARY 5.9.3. Corollary

is injective, i.e., a non-exact.

Proof. Because \hat{J} is injective.

The corollary then follows from commutativity of the diagram

$$\text{D}(\text{D}(\hat{J}/R))$$

5.9.4
Cartier divisor in $C \times S$. As is well-known (cf. [44], [45]), this morphism induces isomorphisms

\[
\begin{align*}
H^1(J, O_J) & \xrightarrow{\sim} H^1(C, O_C) \\
H^0(J, \Omega^1_{J/R}) = \omega_J & \xrightarrow{\sim} H^0(C, \Omega^1_{C/R}) \\
H^1_{\text{DR}}(J/R) & \xrightarrow{\sim} H^1_{\text{DR}}(C/R)
\end{align*}
\]
which are independent of the choice of the rational point x.

Let \hat{C}_x denote the formal completion of C along x; it is a pointed formal Lie variety of dimension one over R. Because $\varphi_x(0) = 0$, φ_x induces a map of pointed formal Lie varieties

\[
\hat{\varphi}_x : \hat{C}_x \longrightarrow \hat{J},
\]
whence an induced map on cohomology

\[
D(\hat{J}/R) \subset H^1_{\text{DR}}(\hat{J}/R) (\hat{\varphi}_x)^* \longrightarrow H^1_{\text{DR}}(\hat{C}_x/R).
\]

Theorem 5.9.2. The composite map

\[
D(\hat{J}/R) (\hat{\varphi}_x)^* \longrightarrow H^1_{\text{DR}}(\hat{C}_x/R)
\]
is injective.

Corollary 5.9.3. The natural map

\[
H^0(C, \Omega^1_{C/R}) \longrightarrow H^1_{\text{DR}}(\hat{C}_x/R)
\]
is injective, i.e., a non-zero differential of the first kind cannot be formally exact.

Proof. Because \hat{J} is p-divisible, the natural map $\omega_J \longrightarrow D(\hat{J}/R)$ is injective.

The corollary then follows immediately from the theorem and the commutativity of the diagram

\[
\begin{align*}
D(\hat{J}/R) & \subset (\hat{\varphi}_x)^* \\
\omega_J & \xrightarrow{\sim} H^0(C, \Omega^1_{C/R})
\end{align*}
\]

215
NICHOLAS M. KATZ

To prove the theorem, we choose an integer \(n \geq 2g - 1 \), and consider the mapping

\[
\varphi_x^{(n)} : C^n \rightarrow J
\]

defined by

\[
\varphi_x^{(n)} (y_1, \ldots, y_n) = \sum_{i=1}^n \varphi_x (y_i),
\]

the summation taking place in \(J \). Passing to formal completions, we obtain

\[
\hat{\varphi}_x^{(n)} : (\hat{C}_x)^n \rightarrow \hat{J}
\]

defined by

\[
\hat{\varphi}_x^{(n)} (y_1, \ldots, y_n) = \sum \varphi_x (y_i).
\]

In terms of the projections

\[
\hat{\pi}_i : (\hat{C}_x)^n \rightarrow \hat{C}_x
\]

onto the various factors, we can rewrite this as

\[
\hat{\varphi}_x^{(n)} = \sum_{i=1}^n \hat{\pi}_i \circ \hat{\varphi}_x,
\]

the summation taking place in the abelian group of pointed maps to \(\hat{J} \).

Because \(D(\hat{J}/R) \) is defined to consist precisely of the primitive elements in \(H^1_{DR} (\hat{J}/R) \), we have, for any \(\epsilon D(\hat{J}/R) \),

\[
(\hat{\varphi}_x^{(n)})^* (a) = \sum_{i=1}^n (\hat{\pi}_i \circ \hat{\varphi}_x)^* (a) = \sum_{i=1}^n (\hat{\pi}_i)^* (\hat{\varphi}_x)^* (a).
\]

Therefore the theorem would follow from the injectivity of the map

\[
(\hat{\varphi}_x^{(n)})^* : D(\hat{J}/R) \rightarrow H^1_{DR} (\hat{C}_x)^n / R.
\]

Because \(D(\hat{J}/R) \) is a flat \(R \)-module contained in \(H^1_{DR} (\hat{J}/R) \), it suffices to show that the kernel of the map

\[
(\hat{\varphi}_x^{(n)})^* : H^1_{DR} (\hat{J}/R) \rightarrow H^1_{DR} (\hat{C}_x)^n / R
\]

consists entirely of torsion elements. In fact, we will show that this kernel is annihilated by \(n! \). To do this, we observe that the map

\[
\hat{\varphi}_x^{(n)} : C^n \rightarrow \hat{J}
\]

is obviously invariant under the action of the symmetric group \(\mathfrak{S}_n \) on \(C^n \)

by permutation of the factors.

We will first show that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \) as defined in Section 5.9.5.

Because \(n \geq 2g - 1 \), the original results show that \((\hat{C}_x)^n \) is locally trivial. It is naturally isomorphic to \((\hat{J}/R)^n \).

It remains only to show that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \).

We note that \(\hat{\varphi}_x^{(n)} \) is annihilated by \(n! \). When pulled back to \((\hat{C}_x)^n \), this fact is exact on \(\text{Sym}^n (\hat{C}_x) \).

Remark. The fact that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \) as defined in Section 5.9.5.

J have isomorphic \(H^1_{DR} (\hat{J}/R) \) and \(H^1_{DR} (\hat{C}_x)^n / R \). We may use De Rham, etale, crystalline cohomology.

Theorem 5.9.5. Let \(C \) be a projective curve over the algebraic closure, \(C \) and \(J \) be \(\text{geom} \) connected. Then

\[
C^n \rightarrow \hat{J}
\]

by permutation of the factors.

Passing to formal completions:

\[
(\hat{C}_x)^n \rightarrow \hat{J}
\]

We will first show that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \) as defined in Section 5.9.5.

Because \(n \geq 2g - 1 \), the original results show that \((\hat{C}_x)^n \) is locally trivial. It is naturally isomorphic to \((\hat{J}/R)^n \).

It remains only to show that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \).

We note that \(\hat{\varphi}_x^{(n)} \) is annihilated by \(n! \). When pulled back to \((\hat{C}_x)^n \), this fact is exact on \(\text{Sym}^n (\hat{C}_x) \).

Remark. The fact that \(\hat{\varphi}_x^{(n)} \) is a cross-section of \(\psi \) as defined in Section 5.9.5.

J have isomorphic \(H^1_{DR} (\hat{J}/R) \) and \(H^1_{DR} (\hat{C}_x)^n / R \). We may use De Rham, etale, crystalline cohomology.
CRYSTALLINE COHOMOLOGY

by permutation of the factors. Therefore we can factor it

\[\pi : C^n \rightarrow \text{Symm}^n(C) \rightarrow \psi \rightarrow J. \]

Passing to formal completions, we obtain

\[(\hat{C}_\alpha)^n \rightarrow \hat{\text{Symm}}^n(\hat{C}_\alpha) \rightarrow \hat{\psi} \rightarrow \hat{J}. \]

We will first show that \((\hat{\psi})^*\) is injective on \(H^1_{\text{DR}}\), by showing that the map \(\hat{\psi}\) has a cross-section. This in turn follows from the global fact that \(\psi\) is a \(\mathbb{P}^{n-1}\)-bundle over \(J\) which is locally trivial on \(J\) for the Zariski topology. To see this last point, take a Poincare line bundle \(\mathcal{L}\) on \(C \times J\). Because \(n \geq 2g-1\), the Riemann-Roch theorem and standard base-changing results show that the sheaf on \(J\) given by \((\text{pr}_2)_*(\mathcal{O}_C \otimes \text{pr}_1^*(\mathcal{L}^{-1}(x)^n))\) is locally free of rank \(n+1-g\). The associated projective bundle is naturally isomorphic to \(J\).

It remains only to show that the kernel of the map

\[\hat{\pi}^* : H^1_{\text{DR}}(\hat{\text{Symm}}^n(\hat{C}_\alpha)/R) \rightarrow H^1_{\text{DR}}((\hat{C}_\alpha)^n/R) \]

is annihilated by \(n!\). But if a one-form \(\omega\) on \(\text{Symm}^n(\hat{C}_\alpha)\) becomes exact when pulled back to \((\hat{C}_\alpha)^n\), say \(\omega = df\) with \(f \in \Lambda((\hat{C}_\alpha)^n)\), then

\[n! \omega = \sum_{\sigma \in S_n} \sigma(\omega) = n! \sum_{\sigma \in S_n} \sigma(f) \]

is exact on \(\text{Symm}^n(\hat{C}_\alpha)\).

QED

REMARK. The fact that for \(n\) large the symmetric product \(\text{Symm}^n(C)\) is a projective bundle over \(J\) may be used to give a direct proof that \(C\) and \(J\) have isomorphic \(H^1\)'s in any of the usual theories (e.g., coherent, Hodge, De Rham, etale, crystalline...).

THEOREM 5.9.5. Let \(k\) be a perfect field of characteristic \(p > 0\), \(\overline{k}\) its algebraic closure, \(C\) a projective smooth curve over \(W(k)\) with geometrically connected fibre, \(J = \text{Pic}^0(C/W(k))\) its Jacobian, \(x \in C(W(k))\) a
rational point of C, and $\varphi_\times: C \to J$ the corresponding Albanese mapping. There is an exact sequence of W-modules

$$0 \to (H^1_{et}(C \otimes \bar{k}, Z_p) \otimes W(\bar{k}))^{\text{Gal}(\bar{k}/k)} \xrightarrow{\alpha}$$

$$\xrightarrow{\beta} H^1_{\text{cris}}(C \otimes k/W(k)) \to H^1_{\text{DR}}(\hat{C}_x/W(k)),$$

the maps in which are functorial in $(C, x) \otimes k$ as pointed k-scheme.

Proof. The map α is defined exactly as was its abelian variety analogue (cf. 5.7.1); the map β is defined as the composite

$$H^1_{\text{cris}}(C \otimes k/W(k)) \xrightarrow{\sim} H^1_{\text{DR}}(C/W(k)) \xrightarrow{\text{restr.}} H^1_{\text{DR}}(\hat{C}_x/W(k)).$$

By construction, α is functorial in $(C, x) \otimes k$. By lemma (5.8.2), β is similarly functorial. To see that the sequence is exact, use the fact that the Albanese map induces isomorphisms on both crystalline (or de Rham!) and etale H^1s, (cf. SGA1, Exp XI, last page, for the etale case), i.e., we have a commutative diagram

$$0 \to (H^1_{\text{et}}(C \otimes k/W(k)))^\text{Gal(\bar{k}/k)} \xrightarrow{\alpha} H^1_{\text{cris}}(C \otimes k/W(k)) \xrightarrow{\text{D}(\hat{J}/W(k)))} 0$$

for $n=1$, $\varphi \otimes k)$, and

$$H^1_{\text{et}}(C \otimes \bar{k}, Z_p) \otimes W(\bar{k})) \xrightarrow{\alpha} H^1_{\text{cris}}(C \otimes k/W(k)) \xrightarrow{\beta} H^1_{\text{DR}}(\hat{C}_x/W(k)).$$

Corollary 5.9.6. (1) The kernel of the “formal expansion at a point” map

$$H^1_{\text{DR}}(C/W(k)) \to H^1_{\text{DR}}(\hat{C}_x/W(k))$$

in $H^1_{\text{DR}}(C/W(k)) \simeq H^1_{\text{cris}}(C \otimes k/W(k))$ is the “slope-zero” part of the F-crystal $H^1_{\text{cris}}(C \otimes k/W(k))$, i.e., we have a commutative diagram

$$0 \to H^1_{\text{et}}(C \otimes \bar{k}, Z_p) \otimes W(\bar{k})) \xrightarrow{\sim} H^1_{\text{cris}}(C \otimes k/W(k)) \xrightarrow{\text{image of } H^1_{\text{et}}(C/W(k)) \text{ in } H^1_{\text{cris}}(C \otimes k/W(k)))} 0$$

(2) The image of the “formal expansion at a point” map is the “slope > 0” quotient of $H^1_{\text{cris}}(C \otimes k/W(k))$; this quotient is isomorphic, via the Albanese map φ_\times, to $D(\hat{J}/W(k))$.

VI. Applications to φ_\times. Let G be a projective smooth affine variety over k, ρ be a finite irreducible complex representation of G. Fix a finite group \mathbb{Q}/\mathbb{Z}-isotypical representation ρ of G. Let \mathbb{P}_ρ be the set of the points of G corresponding to the one-dimensional irreducible representations of ρ. Consider the formal expansion

$$\omega = \sum_{\mathbb{P}_\rho} \omega.$$
VI. Applications to congruences and to Honda’s conjecture. Let C be a projective smooth curve over $W(F_q)$ with geometrically connected fibres. Let G be a finite group of order prime to p, all of whose absolutely irreducible complex representations are realizable over $W(F_q)$ (e.g., if the exponent of G divides $q - 1$, this is automatic). Suppose that G operates on C by $W(F_q)$-automorphisms. Then G operates also on $C \otimes F_q$ by F_q-automorphisms. For each absolutely irreducible representation ρ of G, let $P_{1,\rho}(T) \in W(F_q)[T]$ be the numerator of the associated L-function $L(C \otimes F_q/F_q, G, \rho; T)$:

$$P_{1,\rho}(T) = 1 + a_1(\rho)T + \ldots + a_s(\rho)T^s.$$

Let $\omega \in \mathfrak{h}^0(C, \Omega_{C/W}^1)^\rho$ be a differential of the first kind on C which lies in the ρ-isotypical component of $\mathfrak{h}^0(C, \Omega_{C/W}^1)$. Let $x \in C(W(F_q))$ be a rational point on C, and let X be a parameter at x (i.e., X is a coordinate for the one-dimensional pointed formal Lie variety \hat{C}_x over $W(F_q)$). Consider the formal expansion of ω around x:

$$\omega = \sum_{n \geq 1} b(n) \cdot X^n \frac{dX}{X} \quad b(n) \in W(F_q).$$

We extend the definition of $b(n)$ to rational numbers $n > 0$ by decreeing that $b(n) = 0$ unless n is an integer.

Theorem 6.1. In the above situation, the coefficients $b(n)$ satisfy the congruences

$$\frac{b(n)}{n} + a_1(\rho) \cdot \frac{b(nq)}{nq} + \ldots + a_s(\rho) \cdot \frac{b(nq^s)}{nq^s} \in pW(F_q)$$

for every rational $n > 0$.

Proof. Let J denote the Jacobian of $C/W(F_q)$, and denote by $\tilde{\omega} \in \omega_J$ the unique invariant one-form on J which pulls back to give ω under the Albanese mapping φ_x. The group G operates, by functoriality, on J and on ω_J, and the isomorphism $\omega_J \xrightarrow{\sim} \mathfrak{h}^0(C, \Omega_{C/W}^1)$ is G-equivariant. Therefore $\tilde{\omega}$ lies in $(\omega_J)^\rho$. Via the G-equivariant inclusion

$$\omega_J \subset D_{(\rho)} \hat{J}[W]$$

219
we have

\[\tilde{\omega} \in (D_{(\hat{\mathbf{f}})}(\hat{\mathbf{J}}/W))^\rho. \]

Now let F denote the Frobenius endomorphism of \(J \otimes F_q \) relative to \(F_q \). Then both F and the group G act on \(J \otimes F_q \). By (4.2), we know that

\[(F^r + a_1(\rho)F^{r-1} + \ldots + a_r(\rho)) \cdot \text{Proj}(\rho) = 0 \]

in \(\text{End}(J \otimes F_q) \otimes W(F_q) \). Because \(D(\hat{\mathbf{J}}/W) \) is an additive functor of \(J \otimes F_q \) with values in \(W(F_q) \)-modules, and \(\tilde{\omega} \) lies in its \(\rho \)-isotypical component, it follows that

6.1.1

\[F^r(\tilde{\omega}) + a_1(\rho)F^{r-1}(\tilde{\omega}) + \ldots + a_r(\rho) \cdot \tilde{\omega} = 0 \]

in \(D_{(\rho)}(\hat{\mathbf{J}}/W) \).

The Albanese map \(\varphi : C \rightarrow J \) induces a map

\[\hat{\varphi}_* : \hat{C}_* \rightarrow \hat{J}, \]

whence a map

\[D_{(\rho)}(\hat{\mathbf{J}}/W) \subset H^1_{\text{DR}}(\hat{\mathbf{J}}/W;(p)) \xrightarrow{\hat{\varphi}_*} H^1_{\text{DR}}(\hat{C}_*/(p)) \]

which is functorial in the pointed schemes \((\hat{\mathbf{J}}, 0) \otimes F_q \) and \((\hat{C}_*/(p)) \otimes F_q \). So if we denote also by F the q-th power Frobenius endomorphism of \(\hat{C}_* \otimes F_q \), we have

\[(\hat{\varphi}_*)^* \circ F = F \circ (\hat{\varphi}_*)^*, \]

whence a relation

6.1.2

\[F^r(\omega) + a_1(\rho)F^{r-1}(\omega) + \ldots + a_r(\rho) \cdot \omega = 0 \]

in \(H^1_{\text{DR}}(\hat{C}_*/W;(p)). \)

The asserted congruences on the b(n)’s are simply the spelling out of this relation. Explicitly, in terms of the chosen coordinate X for \(\hat{C}_* \), a particularly convenient pointed lifting of F on \(\hat{C}_* \otimes F_q \) is provided by

\[F : X \rightarrow X^q. \]
In terms of the isomorphism

$$\mathcal{H}^1_{\text{DR}}(\hat{C}_s/W; (p)) \xrightarrow{\sim} \{ f \in K[[X]] \mid f(0) = 0, df \text{ integral} \} / \{ f \in pW[[X]] \mid f(0) = 0 \},$$

the cohomology class of ω is represented by the series

$$f(X) = \sum_{n \geq 0} \frac{b(n)}{n} X^n,$$

and the cohomology class of $F^i(\omega)$ is represented by

$$f(X^{eq^i}) = \sum \frac{b(n)}{n} X^{eq^i}.$$

The relation (6.1.3) thus asserts that

$$f(X^{eq^r} + a_1(p)f(X^{eq^{r-1}}) + \ldots + a_r(p)f(X))$$

is a series whose coefficients all lie in $pW(F_q)$. The congruence asserted in the statement of the theorem is precisely that the coefficient of X^{eq^r} in this series lies in $pW(F_q)$.

Remark. In the special case $G = \{ e \}$, p trivial, the polynomial $P_{1,p}(T)$ is the numerator of the zeta function of $C \otimes F_q$, and every differential of the first kind $\omega \in H^1(C, \Omega^1_{C/W})$ is p-isotypical. The resulting congruences on the coefficients of differentials of the first kind were discovered independently by Cartier and by Honda in the case of elliptic curves, and seem by now to be "well-known" for curves of any genus. [1],[5],[8],[22]).

Theorem 6.2. Hypothesis and notation as above, suppose that the polynomial $P_{1,p}(T)$ is linear

$$P_{1,p}(T) = 1 + a_1(p)T,$$

i.e., that p occurs in H^1 with multiplicity one. Then

(1) $a_1(p)$ is equal to the exponential sum $S(C \otimes F_q/F_q, p, 1)$ and for every $n \geq 1$ we have

$$(-a_1(p))^n = -S(C \otimes F_q/F_q, p, n).$$

221
(2) If \(\rho \) occurs in \(H^0(C, \Omega_{C/W}^1) \), then \(\text{ord}_p(a_1(\rho)) > 0 \), i.e. \(a_1(\rho) \) is not a unit in \(W(F_q) \).

(3) If \(\rho \) occurs in \(H^0(C, \Omega_{C/W}^1) \), choose \(\omega \in H^0(C, \Omega_{C/W}^1) \) to be non-zero, and such that at least one of coefficients \(b(n) \) is a unit in \(W(F_q) \).

For any \(n \) such that \(b(n) \) is a unit, the coefficients \(b(nq), b(nq^2), \ldots \) are all non-zero, and we have the limit formulas (in which \(\overline{\rho} \) denotes the contragradient representation)

\[
-S(C \otimes F_q/F_q, \rho, 1) = -a_1(\rho) = \lim_{N \to \infty} \frac{q \cdot b(nq^N)}{b(nq^{N+1})}
\]

\[
-S(C \otimes F_q/F_q, \overline{\rho}, 1) = -a_1(\overline{\rho}) = \lim_{N \to \infty} \frac{b(nq^{N+1})}{b(nq^N)}.
\]

Proof. If \(\rho \) occurs in \(H^1 \) with multiplicity one, then \(\rho \) must be a non-trivial representation of \(G \) (for if \(\rho \) were the trivial representation, \(G \) would have a one-dimensional space of invariants in \(H^1 \); but the space of invariants is \(H^1 \) of the quotient curve \(C \otimes F_q \) modulo \(G \), so is even-dimensional!). Therefore \(\rho \) does not occur in \(H^0 \) or \(H^2 \), as both of these are the trivial representation of \(G \). The first assertion now results from (1.1).

If \(\rho \) also occurs in \(H^0(C, \Omega_{C/W}^1) \), pick any non-zero \(\omega \) in \(H^0(C, \Omega_{C/W}^1) \) and look at its formal expansion around \(x \):

\[
\omega = \sum b(n) x^n \frac{dX}{X}.
\]

An elementary "q-expansion principle" argument (cf. [28]) shows that if all \(b(n) \) are divisible by \(p \), then \(\omega \) is itself divisible by \(p \) in \(H^0(C, \Omega_{C/W}^1) \). So after dividing \(\omega \) by the highest power of \(p \) which divides all \(b(n) \), we obtain an element \(\omega \in H^0(C, \Omega_{C/W}^1) \) which has some coefficient a unit.

Consider the congruences satisfied by the \(b(n) \):

\[
\frac{b(n)}{n} + a_1(\rho) \frac{b(nq)}{nq} \in pW(F_q).
\]

From the congruences

\[
\frac{b(n)}{n} \equiv \frac{b(nq)}{nq} \pmod{p}
\]

and the fact that \(\text{ord}(a_1(\rho)) = 1 \),

\[
\frac{b(nq)}{nq} + a_1(\rho) \frac{b(nq^{N+1})}{b(nq^N)} \in pW(F_q)
\]

Therefore we may divide

\[
\text{ord} \left(\frac{b(nq)}{b(nq^{N+1})} + a_1(\rho) \frac{b(nq^N)}{b(nq^{N+1})} \right)
\]

by applying (any) com

If \(a_1(\rho) \) were a unit, we would have \(p \) dividing \(n \) that

\[
\text{ord} \left(\frac{b(nq)}{b(nq^{N+1})} + a_1(\rho) \frac{b(nq^N)}{b(nq^{N+1})} \right)
\]

In particular, we would have \((5.9.3) \) is impossible.

Given that \(a_1(\rho) \) is a unit,

Therefore we may divide

\[
\text{ord} \left(\frac{b(nq)}{b(nq^{N+1})} + a_1(\rho) \frac{b(nq^N)}{b(nq^{N+1})} \right)
\]

by applying (any) com
If \(a_i(\rho) \) were a unit, we could infer (by induction on the precise power of \(p \) dividing \(n \)) that

\[
\text{for all } n \geq 1, \frac{q}{p} \cdot \frac{b(n)}{n} \in W(F_q).
\]

In particular, we would find that \(\frac{q}{p} \omega \) is formally exact at \(x \), which by (5.9.3) is impossible.

Given that \(a_i(\rho) \) is a non-unit, choose \(n \) such that \(b(n) \) is a unit. Then

\[
\text{ord } (b(n)/n) \leq 0.
\]

From the congruences

\[
\frac{b(n)}{n} \equiv -a_i(\rho) \frac{b(nq)}{nq} \mod pW
\]

and the fact that \(\text{ord } a_i(\rho) > 0 \), it follows easily by induction on \(N \) that

\[
\text{ord } \left(\frac{b(nq^N)}{nq^N} \right) = \text{ord } (b(n)/n) - N \text{ ord } a_i(\rho).
\]

Therefore we may divide the congruences, and obtain

\[
\text{ord } \left(\frac{qb(nq)}{b(nq^{N+1})} + a_i(\rho) \right) \geq 1 + (N + 1) \text{ ord } a_i(\rho) - \text{ord } (b(n)/n)
\]

\[
\text{ord } \left(\frac{b(nq^{N+1})}{b(nq^N)} + \frac{q}{a_i(\rho)} \right) \geq 1 + \text{ord } \left(\frac{q}{a_i(\rho)} \right) + N \text{ ord } a_i(\rho) - \text{ord } (b(n)/n).
\]

Letting \(N \to \infty \), we get the asserted limit formulas for \(-a_i(\rho) \) and for \(-q/a_i(\rho) \). By the Riemann Hypothesis for curves over finite fields, we know that \(-q/a_i(\rho) \) is the complex conjugate \(\overline{a_i(\rho)} \). Let \(\overline{\rho} \) denote the contragradient representation of \(\rho \); because the definition of the L-series \(L(C \otimes F_q/G, \rho; T) \) is purely algebraic, the L-series for \(\overline{\rho} \) is obtained by applying (any) complex conjugation to the coefficients of the L-series.
for \(\rho \). Therefore \(a_1(\rho) = a_1(\bar{\rho}) \), and \(\bar{\rho} \) also occurs in \(H^1 \) with multiplicity one.

Example 6.3. Consider the Fermat curve of degree \(N \) over \(\mathbb{F}_q \), with \(q \equiv 1 \mod N \). For each integer \(0 \leq r \leq N-1 \), denote by \(\chi_r \) the character of \(\mu_N \) given by

\[
\chi_r(\zeta) = \zeta^r.
\]

We know that under the action of \(\mu_N \times \mu_N \) (acting as \((x,y) \mapsto (\zeta x, \zeta^r y) \) in the affine model \(x^N + y^N = 1 \)), the characters which occur in \(H^0(\Omega^1) \) are precisely

\[
\chi_r \times \chi_s, \quad 1 \leq r, s \leq N-1, \ r + s \neq N,
\]

each with multiplicity one. Those which occur in \(H^0(\Omega^1) \) are precisely the

\[
\chi_r \times \chi_s, \quad 1 \leq r, s \leq N-1, \ r + s < N,
\]

the corresponding eigen-differential \(\omega_{r,s} \) is given by

\[
\omega_{r,s} = x^r y^s \frac{dx}{xy^N}.
\]

If we expand \(\omega_{r,s} \) at the point \((x = 0, y = 1) \), in the parameter \(x \), we obtain

\[
\omega_{r,s} = x^r (1-x) \frac{s}{N} \left(1 - \frac{1}{N} \right) \frac{dx}{x} = \sum_{n \geq 1} b(n) x^n \frac{dx}{x}.
\]

Conveniently, the first non-vanishing coefficient \(b(r) \) is 1. The successive coefficients \(b(rq^n) \) are given by

\[
b(rq^n) = (-1)^n \frac{q^n - 1}{q^n - 1} \cdot \frac{s}{N} - 1 \cdot \left(\frac{r}{N} (q^n - 1) \right).
\]
CRYSTALLINE COHOMOLOGY

The eigenvalue of F on the $X_r \times X_s$-isotypical component of H^1 is the negative of the Jacobi sum $J_q(X_r, X_s)$. There we obtain the limit formulas

$$(-1)^N \frac{r^{(q-1)q^n}}{N^{(r^n-1)}} \cdot \frac{\binom{s-1}{N}}{\binom{r (q^n-1)}{N}}$$

$$-J_q(X_r, X_s) = \lim_{n \to \infty} \frac{\binom{s-1}{N}}{\binom{r (q^n+1)-1}{N}}$$

valid for $1 \leq r, s \leq N-1$, $r + s \neq N$. These formulas are the ones originally conjectured by Honda, and recently interpreted by Gross-Koblitz [1.1] in terms of Morita's p-adic gamma function.

VII. Application to Gauss sums. In this chapter we will analyze the cohomology of certain Artin-Schreier curves, and then obtain a limit formula for Gauss sums in the style of the preceding section.

We fix a prime p, an integer $N \geq 2$ prime to p, and consider the smooth affine curve U over $\mathbb{Z}[1/N(p-1)]$ defined by the equation

$$T^p - T = X^n.$$

It may be compactified to a projective smooth curve C over $\mathbb{Z}[1/N(p-1)]$ with geometrically connected fibres by adding a single "point at infinity", along which $T^{-1/N}$ is a uniformizing parameter.

The group-scheme $\mu_{N(p-1)}$ operates on U, by

$$\xi : (T, X) \mapsto (\xi n T, \xi X).$$
This action extends to \(C \), and fixes the point at infinity.

A straightforward computation gives the following lemma.

Lemma 7.1. 1) The genus of \(C \) is \(\frac{1}{2}(N-1)(p-1) \), and a basis of everywhere holomorphic differentials on \(C \) is given by the forms

\[
x^a T^b \frac{dT}{X^{N-1}}
\]

with \(0 \leq a \leq N-2, 0 \leq b \leq p-2 \), and \(pa + Nb < (p-1)(N-1) - 1 \).

2) The space \(H^1_{\text{DR}}(C \otimes \mathbb{Q}/\mathbb{Q}) \overset{\sim}{\longrightarrow} H^1_{\text{DR}}(U \otimes \mathbb{Q}/\mathbb{Q}) \) has dimension \((N-1)(p-1) \), any \(d \)-basis is given by the cohomology classes of the forms

\[
x^a T^b \frac{dT}{X^{N-1}}, \quad 0 \leq a \leq N-2, \quad 0 \leq b \leq p-2.
\]

3) The characters of \(\mu_{N(p-1)} \) which occur in \(H^1_{\text{DR}}(C \otimes \mathbb{Q}/\mathbb{Q}) \) are precisely those whose restrictions to \(\mu_N \) is non-trivial, and each of these occurs with multiplicity one.

In characteristic \(p \), there are new automorphisms. The additive group \(F_p \) operates on \(C \otimes F_p \) by

\[
a : (T, X) \longrightarrow (T + a, X).
\]

This action does not commute with the action of \(\mu_{N(p-1)} \). However, the two together define an action of the semi-direct product

\[
F_p \rtimes \mu_{N(p-1)}
\]

formed via the homomorphism

\[
\mu_{N(p-1)} \to \mu_{p-1} \simeq F_p^* = \text{Aut}(F_p)
\]

Explicitly, the multiplication is

\[
(a, \zeta)(b, \zeta_1) = (a + \zeta^{-N}b, \zeta \zeta_1),
\]

and the action is

\[
(a, \zeta) : (T, X) \longrightarrow (\zeta^N T + \zeta^N a, \zeta X).
\]

If \(a_1(\rho) \) were a unit, we have that \(\rho \), for any \(p \) dividing \(n \) that

\[
\text{ord} \left(\frac{b(nq^N)}{nq^N} \right) = \text{ord} \left(\frac{b(nq^N)}{nq^N} \right).
\]

In particular, we know that the congruence (5.9.3) is impossible.

Given that \(a_1(\rho) \) is a unit, from the congruences

\[
\frac{b(nq^N)}{nq^N} = \frac{b(nq^N)}{nq^N}
\]

and the fact that \(\text{ord} \left(\frac{b(nq^N)}{nq^N} \right) = \text{ord} \left(\frac{b(nq^N)}{nq^N} \right) \),

Therefore we may divide

\[
\text{ord} \left(\frac{q b(nq^N)}{b(nq^N+1)} + a_1 \right) = \text{ord} \left(\frac{b(nq^N+1)}{b(nq^N)} + \frac{c}{a_1} \right).
\]

Letting \(N \to \infty \), we have

\[-q/a_1(\rho). \]

By the Riemann hypothesis, we know that \(-q/a_1(\rho) \) is the contragradient representation of \(L(C \otimes F_q / F_q, G, \rho; T) \) by applying (any) condition
CRystalline COHOMOLOGY

The group $F_p \times \mu_{N(p-1)}$ contains $F_p \times \mu_N$ as a normal subgroup, acting on $C \otimes F_p$ in the usual manner.

REMARK. This action of a group of order $p(p-1)N$ on a curve of genus $g = \frac{1}{2}(p-1)(N-1)$ provides a nice example of how “wrong” the characteristic zero estimate $84(g-1)$ can become in the presence of wild ramification!

Let E be a number field containing the $N(p-1)$th roots of unity, P a p-adic place of E, F_q a finite extension of the residue field $F_{N(p)}$, of P, G the abstract group $F_p \times \mu_{N(p-1)}(F_q)$. Let H^1 denote any of the vector spaces $H^1_l(C \otimes F_q) \otimes E_\lambda$ for $l \neq p$, or $H^1_{tris}(C \otimes F_q/W(F_q)) \otimes K$.

By functoriality, the group G operates on H^1. Because the center of G is $\mu_N(F_q)$, the decomposition

$$H^1 = \bigotimes (H^1)^x$$

of H^1 according to the characters of μ_N is G-stable.

PROPOSITION 7.2. For each of the $N-1$ non-trivial E-valued characters χ of $\mu_N(E) \twoheadrightarrow \mu_N(F_{N(p-1)})$, the corresponding eigenspace $(H^1)^x$ is a $p-1$ dimensional absolutely irreducible representation of G; the restriction to F_p of $(H^1)^x$ is the augmentation representation of F_p; the restriction to $\mu_{N(p-1)}(F_q)$ of $(H^1)^x$ is the induction, from μ_N to $\mu_{N(p-1)}$, of χ.

Proof. All assertions except for the G-irreducibility of $(H^1)^x$ follow immediately from the preceding lemma, giving the action of $\mu_{N(p-1)}$, and from Corollary (2.2), giving the action of $F_p \times \mu_N$. The irreducibility follows from these facts together with the fact that in any complex representation of G, the set of characters of F_p which occur is stable under the action of $\mu_{N(p-1)}$ in F_p by conjugation; because this action has only the two orbits F_p^x and 0, as soon as any one non-trivial character of F_p occurs, all non-trivial characters must also occur.

COROLLARY 7.3. 1) Over any finite extension F_q of F_p which contains all the $N(p-1)$th roots of unity (i.e., $q \equiv 1 \mod N(p-1)$, the Frobenius F relative to F_q operates as a scalar on each of the spaces $(H^1)^x$, χ a non-trivial character of μ_N. This scalar is the common value

$$-g_q(\psi, \chi; p)$$

227
of the Gauss sums attached to any of the non-trivial additive characters ψ of F_p.

Proof. Over such an F_q, Frobenius commutes with the action of G on H^1, so it acts on each $(H^1)^x$ as a G-morphism. Because $(H^1)^x$ is G-irreducible, this G-morphism must be a scalar, and this scalar is equal to any eigenvalue of F on $(H^1)^x$. As we have already seen (2.1), these eigenvalues are precisely the asserted Gauss sums, corresponding to the decomposition of $(H^1)^x$ under F_p.

The common value of these Gauss sums over a sufficiently large F_q is itself a Jacobi sum, in consequence of the fact that universally, i.e., over $\mathbb{Z}[1/N(p-1)]$, the curve C is the quotient of the Fermat curve $\text{Fermat}(N(p-1))$ of degree $N(p-1)$ by the subgroup H of $\mu_{N(p-1)} \times \mu_{N(p-1)}$ consisting of all (ζ_1, ζ_2) satisfying

$$\zeta_1^{p-1} = \zeta_2^p$$

Explicitly, the map is given rationally by the formulas

$$(W, V) \text{ on } W^{N(p-1)} + V^{N(p-1)} = 1$$

$$(T, X) \text{ on } T^p - T = X^N$$

$$T = 1/V^N, X = W^{p-1}/V^p.$$

Lemma 7.4. Let X_1 be a character of $\mu_{N(p-1)}$ whose restriction to μ_N is non-trivial. Under the map

$$H^1_{\text{DR}} (C \otimes \mathbb{Q}/\mathbb{Q}) \sim H^1 (\text{Fermat}(N(p-1)) \otimes \mathbb{Q}/\mathbb{Q})^H$$

we have

$$H^1_{\text{DR}} (C \otimes \mathbb{Q}/\mathbb{Q})^{X_1} \sim H^1_{\text{DR}} (\text{Fermat}(N(p-1)) \otimes \mathbb{Q}/\mathbb{Q})^{X_1^{p-1} \times X_1^{-p}}$$

Proof. That $H^1(C) \sim H^1(\text{Fermat})^H$ in rational cohomology results from the Hochschild-Serre spectral sequence. Since the characters of $\mu_{N(p-1)}$ (resp of $\mu_{N(p-1)} \times \mu_{N(p-1)}$) occur, if at all, with multiplicity one in $H^1(C)$ (resp $H^1(\text{Fermat})$), it suffices to check that the X_1-eigenspace of $H^1(C)$ is mapped to the (X_1^{p-1}, X_1^{-p})-eigenspace of $H^1(\text{Fermat})$. This
we do by inspection:

\[
X^a T^b \frac{dT}{X^{N-1}} = X^{a+1-N} T^{b+1} \frac{dT}{T} \longrightarrow \left(\frac{W^{p-1}}{V^p} \right)^{a+1-N} \left(Z^{-N} \right)^{b+1} \left(-\frac{NdZ}{Z} \right).
\]

QED

Corollary 7.5. If \(F_q \) contains the \(N(p-1) \)'st roots of unity, then for any non-trivial character \(\chi \) of \(\mu_N \), any extension \(\chi_1 \) of \(\chi \) to \(\mu_{N(p-1)} \) and any non-trivial additive character \(\psi \) of \(F_p \), the scalar by which \(F \) acts on \(H^1(C \otimes F_q)^x \) is given by

\[
\begin{cases}
F[H^1(C \otimes F_q)^x] = F[H^1(C \otimes F_q)^{\chi \times \chi}] = -g_q(\psi, \chi; P) \\
F[H^1(C \otimes F_q)^{\chi_1}] = F[H^1(Fermat \otimes F_q)^{\chi_1^{-1} \times \chi_1}] = -J_q(X_1^{p-1}, X_1^{-p}; P)
\end{cases}
\]

We now turn to the "determination" of the Gauss sum \(-g_q(\psi, \chi; P)\) over an \(F_q \) which is merely required to contain the \(N'\)th roots of unity. Unless \(p-1 \) and \(N \) are relatively prime, such an \(F_q \) need not contain the \(N(p-1)' \)st roots of unity! Moreover, the Gauss sum does not in general lie in the Witt vectors \(W(F_q) \), as it does when \(F_q \) contains the \(N(p-1)' \)st roots of unity!

Let \(\pi \) denote any solution of

\[
\pi^{p-1} = -p.
\]

We recall without proof the following standard lemma (cf. [31] or [32]).

Lemma 7.6. The fields \(Q_p(\zeta_p) \) and \(Q_p(\pi) \) coincide. There is a bijective correspondence

\[
\text{primitive } p'\text{th roots of } 1 \longleftrightarrow \text{solutions } \pi \text{ of } \pi^{p-1} = -p
\]

under which \(\zeta \longleftrightarrow \pi \) if and only if

\[
\zeta \equiv 1 + \pi \mod \pi^2.
\]

For each solution \(\pi \) of \(\pi^{p-1} = -p \), we denote by

\[
\psi_\pi : F_p \longrightarrow Q_p(\zeta_p)^x
\]

229
the unique non-trivial additive character which satisfies
\[\psi_\pi(1) \equiv 1 + \pi \mod \pi^2. \]

If we fix a \(W(F_q) \)-valued point \(x \) on \(C \), we have the map "formal expansion at \(x \)"

\[
\begin{array}{c}
H^1_{\text{cris}}(C \otimes F_q / W(F_q)) \\
\downarrow \quad \downarrow
\end{array}
\rightarrow
\begin{array}{c}
H^1_{\text{DR}}(\widehat{\mathcal{C}}_x \otimes W(F_q) / W(F_q))
\end{array}.
\]

If we denote by \(R \) the ring
\[
R = W(F_q)[\pi]
\]

which is a free \(W \)-module of finite rank \((p-1) \), we may tensor with \(R \) to obtain

\[
\begin{array}{c}
H^1_{\text{cris}}(C \otimes F_q / W(F_q)) \otimes R \\
\downarrow \quad \downarrow
\end{array}
\rightarrow
\begin{array}{c}
H^1_{\text{DR}}(\widehat{\mathcal{C}}_x \otimes R / R)
\end{array}.
\]

Theorem 7.7. (1) For any \(W(F_q) \)-valued point \(x \) on \(C \), the "formal expansion" map is injective:

\[
H^1_{\text{cris}}(C \otimes F_q / W(F_q)) \hookrightarrow H^1_{\text{DR}}(\widehat{\mathcal{C}}_x \otimes W(F_q) / W(F_q))
\]

(2) Let \(\pi \) be any solution of \(\pi^{p-1} = -p \), \(\psi_\pi \) the corresponding additive character, \(a \) an integer \(1 \leq a \leq N-1 \) and \(\chi_a \) the corresponding nontrivial character of \(\mu_N \) \((\chi_a(\zeta) = \zeta^a) \). If we take for \(x \) the point \((T=0, X=0) \) on \(C \), with parameter \(X \), then the image of

\[
(H^1_{\text{cris}}(C \otimes F_q / W(F_q)) \otimes Q_p(\pi)) \psi_\pi \times \chi_a \rightarrow H^1_{\text{DR}}(\widehat{\mathcal{C}}_x \otimes R / R) \otimes Q_p(\pi)
\]

is the one-dimensional \(Q_p(\pi) \)-space spanned by the cohomology class of

\[
\exp(-\pi X^N) X^a \frac{dX}{X} = \sum b(n) X^n \frac{dX}{X}.
\]

Corollary 7.8. Notations as above, let \(f(X) \) denote the power series

\[
f(X) = \sum_{n \geq 1} b(n) \frac{X^n}{n} = \sum_{n \geq 0} \frac{(-\pi)^n}{n!} \frac{X^{nN+a}}{nN+a}.
\]

230
Then the series

\[f(X^q) + g_q(\psi_*, \chi_*; p) \cdot f(X) \]

has coefficients with bounded denominators, and we have a limit formula

\[-g_q(\psi_*, \chi_*; p) = \lim_{r \to \infty} \frac{q \cdot b(aq^r)}{b(aq^{r+1})} \]

7.8.1 \quad \left\{ \begin{array}{l}
- g_q(\psi_*, \chi_*; p) = \frac{(-\pi)^{(q-1)^2}}{(q^r - 1)^{\frac{a}{8}}} \\
\text{with } b(aq^r) = \frac{(-\pi)^{(q-1)^2}}{(q^r - 1)^{\frac{a}{8}}} \end{array} \right.

We first deduce the corollary from the theorem. We know that \(F \) has eigenvalue \(- g_q(\psi_*, \chi_*; p)\) on the \(\psi_* \times \chi_* \)-eigenspace of \(H^1_{\text{cris}} \otimes \mathbb{Q}_p(\pi) \), hence \(F \) has the same eigenvalue on the image of this one-dimensional eigenspace in \(H^1_{\text{DR}} (\hat{\mathbb{C}_\mathbb{S}} \otimes \mathbb{Q}_p(\pi)) \). This image is spanned by the cohomology class of \(df \); therefore \(F + g_q(\psi_*, \chi_*; p) \) annihilates the class of \(df \) mod torsion, whence

\[f(X^q) + g_q(\psi_*, \chi_*; p) \cdot f(X) \]

has bounded denominators. The final limit formula comes from looking successively at the coefficients of \(X^{aq^{r+1}} \) in the above expression; one has

\[\text{ord} \left(\frac{b(aq^r)}{aq^r} + g_q(\psi_*, \chi_*; p) \cdot \frac{b(aq^{r+1})}{aq^{r+1}} \right) \geq -A \]

for some constant \(A \) independent of \(r \). An explicit elementary calculation shows that

\[\text{ord} \left(\frac{b(aq^r)}{aq^r} \right) \longrightarrow -\infty \quad \text{as } r \longrightarrow +\infty , \]

and this allows us to "divide" the additive congruence and obtain the asserted limit formula.

It remains to prove the theorem. In view of the exact sequence of (5.9.5), the injectivity of

\[H^1_{\text{cris}}(C \otimes F_q/W(F_q)) \longrightarrow H^1_{\text{DR}}(\hat{\mathbb{C}_\mathbb{S}} \otimes W/W) \]

231
is equivalent to the absence of any p-adic unit eigenvalues of F in H^1_{cris}. But these eigenvalues are the Gauss sums

$$-g_q(\psi, \chi) \equiv -\sum \psi_q(x) \chi_q(x).$$

Because $\psi_q(x) \equiv 1(\pi)$ for all x, while χ_q is a non-trivial character of F_q^\times, we have

$$-g(\psi, \chi) \equiv -\sum \chi_q(x) \equiv 0 \mod \pi.$$

(Alternately, one could observe that each non-trivial character χ of μ_n has at least one extension χ_1 to $\mu_{n(p-1)}$ which occurs in $H^\ell(C \otimes \bar{Q}, \Omega^1_{C \otimes \bar{Q}})$; the eigenvalue of $F^{\ell-1}$ on this eigenspace is then a non-unit by (6.2.2); as $F^{\ell-1}$ is a scalar on $(H^1)^\chi$, this scalar is non-unit.)

It remains to verify that the image of the $\psi \cdot \chi$-eigenspace is indeed spanned by

$$\exp(-\pi X^n)X^a \frac{dX}{X}.$$

This seems to require the full strength of the Washnitzer-Monsky "dagger" cohomology, as follows. Let A' denote the "weak completion" of the coordinate ring $R[T, X]/(T^p - T - X^n)$ of $U \otimes R$. Because $U \otimes F_q$ is a "special affine variety" with coordinate X, there are unique liftings to A' of the actions of F and of the group $F_p \otimes \mu_n$ whose effect on X is given by

$$\begin{cases} F(X) = X^q \\ (a, \zeta)(X) = \zeta X. \end{cases}$$

Thanks to Dwork, we know that the power series in T

$$\exp(\pi T - \pi T^p)$$

actually lies in $R[T]'$, and hence in A', for any π satisfying $\pi^{p-1} = -p$. As Monsky pointed out, under the action of F_p on A', this series transforms by the character ψ. It follows that for $1 \leq a \leq N - 1$ the differential form

$$\exp(\pi T - \pi T^p)X^a \frac{dX}{X}$$

232
transforms by \(\psi \times X \) under the action of \(F_p \times \mu \). Therefore its cohomology class in

\[
H^1_{w-m}(U \otimes F_q ; R) \otimes \mathbb{Q} \xrightarrow{\text{dfn}} H^1(\Omega^1_{U \otimes R/R} \otimes A^1) \otimes \mathbb{Q}
\]

lies in the \(\psi \times X \) eigenspace of \(H^1_{w-m} \). A direct computation ([31], [32]) shows that each of these eigenspaces is one-dimensional, and is spanned by the above-specified form.

Furthermore, there is a natural "formal expansion map" attached to any \(R \)-valued point \(x \) of \(U \);

\[
H^1_{w-m}(U \otimes F_q ; R) \xrightarrow{\text{exp}} H^1_{\text{DR}}(\hat{U}_x \otimes R/R).
\]

For the particular choice of point \((T = 0, X = 0) \), the formal expansion map carries

\[
\exp(\pi T - \pi T^p)X^1 \frac{dX}{X} \xrightarrow{\text{exp}} \exp(-\pi X^N)X^3 \frac{dX}{X}.
\]

To conclude the proof, we need to identify \(H^1_{w-m}(U \otimes F_q ; R) \otimes \mathbb{Q} \) with \(H^1_{\text{cris}}(C \otimes F_q / R) \otimes \mathbb{Q} \) in a way compatible with the formal expansion map and with the action of \(F \) and of \(F_p \times \mu_n \). We will do this with a somewhat ad hoc argument.

Because \(U \) is the complement of a single point in \(C \), it follows from the theory of residues for both \(H_{\text{DR}} \) and \(H_{w-m} \) that we have isomorphisms

\[
H^1_{\text{DR}}(C \otimes R/R) \otimes \mathbb{Q} \cong H^1_{\text{DR}}(U \otimes R/R) \otimes \mathbb{Q} \cong H^1_{w-m}(U \otimes F_q ; R) \otimes \mathbb{Q}.
\]

These sit in a commutative diagram
NICHOLAS M. KATZ

In this diagram, the maps \(\overline{2}, \overline{5} \) and \(\overline{6} \) are each compatible with the actions of \(F \) and of \(F_p \times \mu_N \) imposed by crystalline and by W-M theory (simply because these actions lift to the \(U \otimes W_n \)). Therefore the compatibility of the isomorphism \(\overline{8} \) with the actions of \(F \) and of \(F_p \times \mu_N \) would follow from the injectivity of arrows \(\overline{2} \) and \(\overline{6} \). The injectivity of these arrows follows from the commutativity of the diagram and the already noted injectivity of arrow \(\overline{1} \) (which is injective exactly because \(F \) has no \(p \)-adic unit eigenvalues in \(H^1_{\text{cris}} \) of our particular \(C \)). Q.E.D.

A QUESTION (7.8.2). Let \(U \) be a smooth affine \(W \)-scheme which is the complement of a divisor with normal crossings in a proper and smooth \(W \)-scheme.

Are the maps
\[
H^1_{\text{DR}}(U/W) \otimes \mathbb{Q} \longrightarrow \limleftarrow H^1_{\text{DR}}(U \otimes W_n/W_n) \otimes \mathbb{Q}
\]
always injective?

7.9 THE GROSS-KOBLITZ FORMULA. In this section we will derive the Gross-Kooblitz formula from our limit formulas.

Morita's \(p \)-adic gamma function is the unique continuous function
\[
\Gamma_p : \mathbb{Z}_p \longrightarrow \mathbb{Z}_p^*
\]
whose values on the strictly positive integers are given by the formula
\[
7.91 \quad \Gamma_p(1 + n) = (-1)^{n+1} \cdot \prod_{1 \leq i \leq n} \frac{i}{(n/p)!^{[n/p]} \cdot \pi^{[n/p]}},
\]
where \([\]\) denotes "integral part."

LEMMA 7.9.2. For any integer \(n \geq 0 \), and any \(\pi \) satisfying \(\pi^{n-1} = -p \), we have the identity
\[
(7.9.3) \quad \frac{(-\pi)^n/n!}{(-\pi)^{[n/p]}/n!/p^{[n/p]}} = (-1)^{n-p^{[n/p]}} \frac{(\pi)^{n-p^{[n/p]}}}{\Gamma_p(1 + n)}.
\]

PROOF. This is just a rearrangement of (7.9.1). Q.E.D.
Corollary 7.9.4. Let \(q = p^f \) with \(f \geq 1 \), \(\pi \) any solution of \(\pi^{p-1} = -p \) and \(n \geq 0 \) any integer. Let

\[
n = n_0 + n_1 p + \ldots \quad 0 \leq n_i \leq p-1
\]

be the \(p \)-adic expansion of \(n \). Then we have

\[
\frac{(-\pi)^n/n!}{(-\pi)^{[n/q]}/[n!]} = \frac{(-1)^f \cdot (\pi)^{n_0 + n_1 + \ldots + n_{f-1}}}{\prod_{i=0}^{f-1} \Gamma_p(1 + [n/p^i])}
\]

Proof. Simply apply (7.9.3) successively to \(n, [n/p], \ldots [n/p^{f-1}] \). Q.E.D.

For a fixed integer \(i \geq 0 \), the map on positive integers

\[
n \mapsto [n/p^i]
\]

extends to a continuous function \(\mathbb{Z}_p \rightarrow \mathbb{Z}_p \) which we denote

\[
n \mapsto [n/p^i]_p.
\]

In terms of the \(p \)-adic "digits" of \(n \), this map is just the \(i \)-fold shift:

\[
n = \sum n_j p^j \mapsto \sum_{j \geq i} n_{j+i} p^j = [n/p^i]
\]

Lemma 7.9.7. Let \(0 < \alpha < 1 \) be a rational number with a prime-to-\(p \) denominator. If \(p^f = 1 \) mod denom \((\alpha) \) for some \(f \geq 1 \), then we have the identity

\[
- \left< p^{f-1} \alpha \right> = [-\alpha/p^f] \text{ in } \mathbb{Z}
\]

for \(i = 0, 1, \ldots, f-1 \) (where \(< > \) denotes the "fractional part" of a rational number).

Proof. Write \((p^f - 1) \alpha = A \). Then \(A \) is an integer, \(0 < A < p^f - 1 \), so we may write its \(p \)-adic expansion as

\[
A = a_0 + a_1 p + \ldots + a_{p-1} p^{f-1}; \quad 0 \leq a_i \leq p-1
\]

\(a_i < p-1 \) for some \(i \).
We now extend the definition of \(a_n \) to all \(n \in \mathbb{Z} \) by requiring

\[\forall n \in \mathbb{Z}. \]

Then

\[
p^{-i} \alpha = p^{-i} \frac{A}{p^i - 1} = \frac{\sum_{j=0}^{r-1} a_j p^{r-j-i}}{p^i - 1} = \frac{\sum_{j=0}^{r-1} a_{r-j} p^j}{p^i - 1} \mod \mathbb{Z}
\]

whence

\[
-<p^{-i} \alpha> = \frac{\sum_{j=0}^{r-1} a_{r-j} p^j}{1 - p^i} = \sum_{j \geq 0} a_{r-j} p^j = \left[\frac{\sum_{j \geq 0} a_j p^j}{p^i} \right]_p
\]

But we readily calculate

\[
-\alpha = \frac{A}{1 - p^i} = \sum_{j \geq 0} a_j p^j.
\]

QED

Corollary 7.9.9. Let \(q = p^f \) with \(f \geq 1 \), \(\pi \) any solution of \(\pi^p - 1 = -p \), and \(\alpha \) any rational number satisfying

\[
\begin{cases}
0 \leq \alpha \leq 1 \\
(q-1) \alpha \in \mathbb{Z}.
\end{cases}
\]

Let

\[A = (q-1) \alpha = a_0 + a_1 p + \ldots + a_{r-1} p^{r-1}, \quad 0 \leq a_i \leq p - 1 \]

be the \(p \)-adic expansion of \(S(q) \), the sum of the \(p \)-adic roots of \(\pi^p - 1 = -p \).

In which the limit is taken \(p \)-adically.

Proof. Simply continuity of both \(\Gamma_p \) and \(\hat{\psi}_* \).

Combining this last fact we can obtain the Gross-Koblitz formulas, in \(E_p \),

Theorem 7.10. (Gross-Koblitz) For any \(\mathbb{F}_p \)-manifold containing the \(Np \)'th root of \(\pi^p - 1 = -p \), \(\psi \) the \(\mathbb{F}_p \)-valued \(\mathbb{F}_p \)-valued \(X = p^f \), a finite extension of \(\mathbb{F}_p \),

\[
\begin{align*}
\langle q \rangle & = -g_q(\hat{\psi}_*), \\
\langle q \rangle & = -g_q(\hat{\psi}_*).
\end{align*}
\]

Proof. The sequence \(\left\lceil n/q \right\rceil \) is periodic with period \(N \) and satisfies \(\left\lceil n/q \right\rceil = a \), with \(a = \pi^p - 1 \). The sequence is periodic with period \(N \) and satisfies \(\langle q \rangle = -g_q(\psi) \).
be the p-adic expansion of \((q-1)\alpha\), and let
\[
S((q-1)\alpha) = a_0 + a_1 + \ldots + a_{r-1}
\]
be the sum of the p-adic digits of \((q-1)\alpha\). Then we have the formula

\[
\lim_{n \to -\alpha} \frac{(-\pi)^n}{n!} \frac{|n/q|!}{[n/q]!} = \frac{(-1)^f \cdot (\pi)^S((q-1)\alpha)}{\prod_{i=0}^{r-1} \Gamma_p(1-<p^i\alpha>)}
\]

in which the limit is taken over positive integers \(n\) which approach \(-\alpha\) p-adically.

Proof. Simply combine (7.9.5) and (7.9.8), and use the p-adic continuity of both \(\Gamma_p\) and of \(n \mapsto \lceil n/p^i \rceil\) QED

Combining this last formula with our limit formula for Gauss sums, we obtain the Gross-Koblitz formulas.

Theorem 7.10. (Gross-Koblitz) Let \(N \geq 2\) prime to \(p\), \(E\) a number field containing the \(Np\)'th roots of unity, \(P\) a p-adic place of \(E\), \(\pi \in \mathfrak{V}_P\) a solution of \(\pi^{p-1} = -p\), \(\psi_p\) the corresponding additive character of \(L_p\), an integer \(1 \leq q \leq N-1\), \(X_p\) the corresponding character \(\zeta \mapsto \zeta^a\) of \(\mu_N\), and \(F_q\), \(q = p^i\), a finite extension of the residue field \(F_{N(p)}\) of \(E\) at \(P\). We have the formulas, in \(E_p\),

\[
(7.10.1) \quad -g_q(\psi_p, X_p; P) = \frac{(-1)^f \cdot q \cdot \prod_{i \mod f} \Gamma_p(1-<p^i\alpha/N>)}{(\pi)^{S((q-1)\alpha)}}
\]

\[
(7.10.2) \quad -g_q(\psi_p, \overline{X}_p; P) = (\pi)^{S((q-1)\alpha)} \prod_{i \mod f} \Gamma_p(1-<p^i\alpha/N>)
\]

Proof. The sequence \(n_r = (q^r - 1)(a/N)\) tends to \(-a/N\) as \(r\) grows, and satisfies \(n_r/q = n_{r-1}\) for \(r \geq 1\). Therefore the first formula follows from the limit formula (7.8.1) and from the preceding formula (7.9.10) with \(\alpha = a/N\). The second formula is obtained from the first by replacing \(a\) by \(N-a\).

QED
NICHOLAS M. KATZ

VIII. Interpretation via the De Rham-Witt Complex. Throughout this chapter, we fix an algebraically closed field k of characteristic p, and a proper smooth connected scheme X over its Witt vectors $W = W(k)$. For each $n \geq 1$, we denote by X_n the W_n-scheme $X \otimes W_n$.

The "second spectral sequence" of de Rham cohomology of X_n/W_n

$$E_2^{p,q}(n) = H^p(X_n, \mathfrak{m}^q_{DR}(X_n/W_n)) \Rightarrow H^{p+q}(X_n/W_n)$$

has an intrinsic interpretation in terms of $X \otimes k$ as the Leray spectral sequence for the "forget the thickening" map

$$(X \otimes k/W_n)_{\text{crit}} \to (X \otimes k)_{\text{Zar}}.$$

As such, it may be rewritten

$$E_2^{p,q}(n) = H^p(X \otimes k, \mathfrak{m}^q_{\text{crit}}(X \otimes k/W_n)) \Rightarrow H^{p+q}(X \otimes k/W_n).$$

An explicit construction of this spectral sequence may be given in terms of the De Rham-Witt pro-complex on $X \otimes k$

$$\{W_n \Omega^*_n\}_n$$

of Deligne and Illusie; it is simply the second spectral sequence of this complex:

$$E_2^{p,q}(n) = H^p(X \otimes k, \mathfrak{m}^q(W_n \Omega^*)) \Rightarrow H^{p+q}(X \otimes k, W_n \Omega^*).$$

It is known that the E_2 terms of this spectral sequence are finitely generated $W_n(k)$-modules. Therefore we may pass to the inverse limit and obtain a spectral sequence

$$E_2^{p,q} = \lim_{\to n} E_2^{p,q}(n) \Rightarrow H^{p+q}(X \otimes k/W).$$

Let x be a W-valued point of X, and assume X connected. The formal expansion map we have exploited

$$H_{\text{crit}}^i(X \otimes k/W) \to H_{DR}^i(X/W) \to H_{DR}^i(\hat{X}/W)$$

is the composition of the edge-homomorphism

$$H_{\text{crit}}^i(X/W) \to E_2^{0,i} \to E_2^{i,0}$$

with the natural map

$$E_2^{0,0} = \lim_{\to n} H^0(X_n, \mathfrak{m}^n)$$

Lemma 8.1. This

$$H^p(X_n, \mathfrak{m}^n)$$

are injective.

Proof. Because X_n is proper, reduced, and pure-dimensional over S, there holds

(*) for any closed point z, $H^p(z, \mathfrak{m}^n) \to H^p(X_n, \mathfrak{m}^n)$ is injective.

For once (*), establish injectivity for H^p of X_n over X, of \mathfrak{m}^n of X_n which is killed at a closed point z in X_n.

Let U be an affine open subset of an open neighborhood of z. Let y be a point of U is non-empty. Let y be

Then (*) for $U \ni x$ should imply (*) for U. Applying (*) to U.

We now prove (**). Let y be a point of X not in Σ.

We denote the absolute Frobenius (endomorphism) uniquely to a σ-linear endomorphism.

Because all iterated Frobenius endomorphisms, the functor F^n is defined:

$$\begin{cases} H^q(V, \mathfrak{m}^i_{DR}) \\ (F^n)_* \mathfrak{m}^i_{DR} \end{cases}$$

But the complex F^n is defined:
Crisattine Cohomology

\[E_{2}^{0,1} = \lim\limits_{\longrightarrow} H^{0}(X_{s}, \mathcal{X}_{DR}^{1}(X_{n}/W_{n})) \longrightarrow \lim\limits_{\longrightarrow} H^{1}_{DR}(\hat{X}_{s} \otimes W_{n}/W_{n}). \]

Lemma 8.1. This map is in fact injective; indeed, the induced maps

\[H^{0}(X_{n}, \mathcal{X}_{DR}^{1}(X_{n}/W_{n})) \longrightarrow H^{1}_{DR}(\hat{X}_{s} \otimes W_{n}/W_{n}) \]

are injective.

Proof. Because \(X_{n} \) is irreducible, it suffices to show

(*) for any closed point \(y \) of \(X_{n} \), and any affine open \(V \ni y \) which is étale over standard affine space \(A = \text{Spec}(W_{n}[T_{1}, \ldots, T_{u}]) \), the natural map

\[H^{0}(V, \mathcal{X}_{DR}^{1}(X_{n}/W_{n})) \longrightarrow \mathcal{X}_{DR}^{1}(\hat{V}_{s}/W_{n}). \]

is injective.

For once (*) is established we argue as follows. Let \(\xi \) be a global section over \(X_{n} \) of \(\mathcal{X}_{DR}^{1} \) which dies formally at \(x \). We must show that for any closed point \(z \) in \(X_{n} \), there is an open set \(V \ni z \) such that \(\xi \) dies on \(V \). Let \(U \) be an affine open neighborhood of \(x \) étale over \(A \), and \(V \) an affine open neighborhood of \(z \) étale over \(A \). Because \(X_{n} \) is irreducible, \(U \cap V \) is non-empty. Let \(y \) be a closed point of \(X_{n} \) contained in \(U \cap V \).

![Diagram](image)

Then (*) for \(U \ni x \) shows that \(\xi \) dies on \(U \). Therefore \(\xi \) dies formally on \(V \). Applying (*) to \(V \ni y \), we find that \(\xi \) dies on \(V \), as required.

We now prove (*). Let \(F: A \longrightarrow A^{(n)} \) be any \(\sigma \)-linear map lifting absolute Frobenius (e.g. \(T_{1} \longrightarrow T_{1}^{p} \)). Because \(V \) is étale over \(A \), \(F \) extends uniquely to a \(\sigma \)-linear map \(F: V \longrightarrow V^{(n)} \) which lifts absolute Frobenius.

Because all iterates of \(F \), especially \(F^{n}: V \longrightarrow V^{(n)} \), are homeomorphisms, the functor \((F_{n})_{*} \) is exact. Therefore we have

\[
\begin{align*}
H^{0}(V, \mathcal{X}_{DR}^{1}(V/W_{n})) & = H^{0}(V^{(n)}, (F_{n})_{*}(\mathcal{X}_{DR}^{1}(V/W_{n}))) \\
(F_{n})_{*} \mathcal{X}_{DR}^{1}(V/W_{n}) & = \mathcal{X}_{DR}^{1}((F_{n})_{*}(\Omega^{1}_{V/W_{n}}))
\end{align*}
\]

But the complex \((F_{n})_{*}(\Omega^{1}_{V/W_{n}}) \) on \(V^{(n)} \) is a complex of locally free
sheaves of finite rank on $V^{(e^n)}$, with \mathcal{O}-linear differential. For any closed point $y \in V$, the formal stalk at $y^{(e^n)}$ is

$$(F^n)_*\Omega^*_{V/W_n} \underset{\mathcal{O}_{V^{(e^n)}}}{\otimes} \widehat{\mathcal{O}}_{V^{(e^n)}, y^{(e^n)}} \cong (F^n)_*\Omega^*_{y^{(e^n)}, W_n}.$$

Therefore the sheaves on $V^{(e^n)}$

$$\mathcal{F}^i = \mathcal{F}^i_{V/W_n} \overset{\text{def}}{=} (F^n)_*(\mathcal{F}^i_{\text{DR}}(V/W_n)) = \mathcal{F}^i((F^n)_*\Omega^*_{V/W_n})$$

are coherent, and (by flatness of the completion) their formal stalks are given by

$$(\widehat{\mathcal{F}}^i)_y^{(e^n)} = H^i_{\text{DR}}(\widehat{V}/W_n)$$

We must show that

$$H^i(V^{(e^n)}, \mathcal{F}^i) \hookrightarrow (\mathcal{F}^i)_y^{(e^n)}.$$

For this, it suffices to explicit a finite filtration

$$\mathcal{F}^i \supset \text{Fil}^1 \mathcal{F}^i \supset \ldots$$

whose associated graded sheaves are \textit{locally free sheaves} on $V^{(e^n)} \otimes k$.

We claim that the filtration induced by the p-adic filtration on $\Omega^* V/W_n$ has this property.

To see this, we first reduce to the case $V = A$, as follows. The diagram

\[
\begin{array}{ccc}
V & \xrightarrow{F^n} & V^{(e^n)} \\
\downarrow & & \downarrow \\
A & \xrightarrow{F^n} & A^{(e^n)}
\end{array}
\]

is cartesian (because V is étale over A). Therefore we have an isomorphism

$$(F^n)_*\Omega^*_{V/W_n} \overset{\sim}{\rightarrow} ((F^n)_*\Omega^*_{A/W_n}) \otimes_{\mathcal{O}_{A^{(e^n)}}} \mathcal{O}_{V^{(e^n)}}.$$

Because $\mathcal{O}_{V^{(e^n)}}$ is flat over $\mathcal{O}_{A^{(e^n)}}$, this isomorphism is a filtered isomorphism (for the p-adic filtrations of Ω^*_{V/W_n} and of Ω^*_{A/W_n}).

By flatness again, this gives

$$\text{gr}_F^{\mathcal{F}^i}(\mathcal{F}^i_{V/W_n}) \cong \text{gr}^{\mathcal{F}^i}_{\mathcal{O}_{V^{(e^n)}}}(\mathcal{F}^i_{V/W_n})$$

It remains to show this.

It is certainly a coherent sheaf on $A^{(e^n)} \otimes k$. Indeed, if V' is an open set, if we knew that

$$\mathcal{O}_{A^{(e^n)} \otimes k}(V')$$

is locally free every-where, it is locally free everywhere.

As a sheaf of abelian groups, $\mathcal{O}_{A^{(e^n)} \otimes k}$ -module structure over the sheaf \mathcal{F}^0 with the σ^n-linear isomorphism

where \tilde{f} denotes any lift of f.

To conclude the proof, let ξ be $\mathcal{O}_{A^{(e^n)}}$ -module structure over the sheaf \mathcal{F}^0 with the σ^n-linear isomorphism ξ.

For this independence of the particular choice of ξ, use the fact that

$\mathcal{O}_{A^{(e^n)}}$ is provided by

where again $\tilde{f} \in \mathcal{O}_{A^{(e^n)}}$.

Lemma 8.2. The $E_2^{1,0}$ term

$$E_2^{1,0} \cong \text{Fil}^1_{\mathcal{F}^0}(\mathcal{F}^0_{V/W_n})$$

Proof. For each integer

W_n.
CRYSTALLINE COHOMOLOGY

By flatness again, this filtered isomorphism induces isomorphisms
\[\text{gr}_{F}^{i} (\mathcal{F}^{i}_{V/W_n}) \simeq (\text{gr}_{F}^{i} \mathcal{F}^{i}_{A/W_n}) \circ \Omega^{(s)}_{A}(\mathcal{O}_{V}) \]

It remains to show that \(\text{gr}_{F}^{i} (\mathcal{F}^{i}_{A/W_n}) \) is a locally free sheaf on \(A^{(s)} \otimes k \). It is certainly a coherent sheaf on \(A^{(s)} \) (because the \(p \)-adic filtration on \((F^{n})^{*} \Omega^{(s)}_{A/W_n} \) is \(\mathcal{O}_{A}(\mathcal{O}_{V}) \)-linear), and it is killed by \(p \); therefore it is a coherent sheaf on \(A^{(s)} \otimes k \). Because it is coherent, it is locally free on a non-void open set; if we knew that it were translation-invariant, i.e., isomorphic to all it translates by \(k \)-valued points of \(A^{(s)} \otimes k \), we would conclude that it is locally free everywhere.

As a sheaf of abelian groups, it is visibly translation-invariant. It's \(\mathcal{O}_{A}(\mathcal{O}_{V}) \)-module structure is the composite of its natural module structure over the sheaf of rings
\[\text{gr}_{F}^{i} \mathcal{O}_{V/W_n} \]
with the \(\sigma^{n} \)-linear isomorphism
\[\mathcal{O}_{A}(\mathcal{O}_{V}) \longrightarrow \text{gr}_{F}^{i} \mathcal{O}_{V/W_n} \]

where \(\tilde{f} \) denotes any local section of \(\mathcal{O}_{A} \) lifting \(f \).

To conclude the proof, we must verify that this isomorphism is translation-invariant. For this, it suffices to show that it is independent of the particular choice of \(F \) lifting Frobenius which figures in its definition. For this independence, we simply notice that an "intrinsic" description of the same \(\sigma^{n} \)-linear isomorphism
\[\mathcal{O}_{A}(\mathcal{O}_{V}) \longrightarrow \text{gr}_{F}^{i} \mathcal{O}_{V/W_n} \]
is provided by
\[f \longmapsto (\tilde{f})^{n} \]
where again \(\tilde{f} \in \mathcal{O}_{A} \) denotes any lifting of \(f \).

Lemma 8.2. The \(E_{1,0}^{1} \) terms of the spectral sequence are given by
\[E_{1,0}^{1} \simeq H_{c}^{1}(X \otimes k, \mathbb{Z}_{p}) \otimes W(k) \]

Proof. For each integer \(n \geq 1 \), there is an isomorphism (cf. [24], [25])
\[W_{n}(\mathcal{O}_{X}) \longrightarrow \mathcal{O}_{V/W_n} \]

241
NICHOLAS, M. KATZ

defined by

\[(g_0, \ldots, g_{n-1}) \mapsto \sum_{i=0}^{n-1} p^i (\tilde{g}_i)^{p^i} \]

where \(\tilde{g}_i \) is a local lifting of \(g_i \in O_{X \otimes k} \) to \(O_{X_n} \) (Compare (5.52)).

For variable \(n \), these isomorphisms sit in a commutative diagram

\[
\begin{array}{ccc}
W_{n+1}(O_{X \otimes k}) & \lr{\text{usual projection}} & \mathcal{M}_{\text{DR}}^0(X_{n+1}/W_{n+1}) \\
W_n(O_{X \otimes k}) & \downarrow \text{reduction mod } p^n & \\
W_n(O_{X \otimes k}) & \rightarrow & \mathcal{M}_{\text{DR}}^0(X_n/W_n). \\
\end{array}
\]

Therefore we may calculate

\[
E_{2,0}^{1,0} = \lim_{n} H^1(X \otimes k, \mathcal{M}_{\text{DR}}^0(X_n/W_n)) = \lim_{n} \left(\bigcap \text{image of } F^i \text{ on } H^1(X \otimes k, W_n(O_{X \otimes k})) \right) \\
\simeq \lim_{n} \left(\text{fixed points of } F \text{ in } H^1(X \otimes k, W_n(O_{X \otimes k})) \otimes_{\mathbb{Z}/p^n} \mathbb{Z} \right) W_n(k) \\
\simeq \lim_{n} H^1_{\text{cris}}(X \otimes k, \mathbb{Z}/p^n \mathbb{Z}) \otimes W_n(k), \tag{QED}
\]

Consider now the exact sequence of terms of low degree

\[
0 \rightarrow E_2^{1,0} \rightarrow H^1_{\text{cris}}(X \otimes k/W) \rightarrow E_2^{0,1} \rightarrow d_2 \rightarrow E_2^{2,0}
\]

Lemma 8.3. The map \(d_{2,0}^{0,1} : E_2^{0,1} \rightarrow E_2^{2,0} \) vanishes.

Proof. Because both \(H^1_{\text{cris}}(X \otimes k/W) \) and \(E_2^{2,0} \) are finitely generated \(W \)-modules, we see that \(E_2^{0,1} \) is a finitely generated \(W \)-module. Therefore its inverse limit topology (as \(\lim \) \(\infty \)) is equivalent to its \(p \)-adic topology. Because \(F \) annihilates the sheaf \(\mathcal{M}_{\text{cris}}^1(X \otimes k/W_n) \), it annihilates its global sections \(E_2^{1,0}(n) \), and hence \(F \) is topologically nilpotent on \(E_2^{0,1}(n) \). But \(F \) is an automorphism of the finitely generated \(W \)-module \(E_2^{2,0} \), as \(d_2 \) commutes with \(F \), this forces \(d_{2,0}^{0,1} \) to vanish. \(\tag{QED} \)

Thus we obtain the following theorem.

Theorem 8.4. The sequence

\[
0 \rightarrow H^1_{\text{cris}}(X \otimes k/W) \rightarrow \text{(slope 0)} \rightarrow \text{kernel of } H^1_{\text{cris}}(X \otimes k/W)
\]

defines the Newton-Hodge filtration on \(H^1_{\text{cris}}(X \otimes k/W) \) with the exact sequence

\[
\begin{array}{cccccc}
\text{II illnesses and Raynaud, the} & H^i_{\text{cris}}(X \otimes k/W), & \text{for all } i. & \text{This}
\end{array}
\]

Theorem 8.5. (Illusie and Raynaud, this is an algebraically closed sequence of the De Rham complex)

\[
E_2^{p,n} = \lim_{n} H^i_{\text{cris}}(X \otimes k/W_n) \otimes W_n(k) \\
\text{degenerates at } E_2^{p,n} \otimes W_n(k)
\]

and defines the Newton-Hodge filtration on \(H^1_{\text{cris}}(X \otimes k/W) \).

Corollary 8.6. If \(\mathcal{F} \) is a coherent sheaf on \(X \), and any integer

\[
H^i_{\text{cris}}(X \otimes k/W) \otimes \mathcal{F}
\]

is precisely the quotient sheaf.
THEOREM 8.4. The exact sequence of terms of low degree
\[0 \rightarrow H^1_{\text{cris}}(X \otimes k, Z_p) \otimes W \rightarrow H^1_{\text{cris}}(X \otimes k/W) \rightarrow E^{0,1}_2 \rightarrow 0 \]
\[H^1_{\text{DR}}(X/W) \xrightarrow{\text{formal expansion}} H^1_{\text{DR}}(\hat{X}/W) \]
defines the Newton-Hodge filtration on \(H^1_{\text{cris}} \)
\[0 \rightarrow (\text{slope } 0) \rightarrow H^1_{\text{cris}}(X \otimes k/W) \rightarrow (\text{slope } > 0) \rightarrow 0. \]

[When \(X/W \) is a curve, or an abelian scheme, this exact sequence coincides with the exact sequence (5.7.2) or (5.9.5).]

Illusie and Raynaud have recently been able to generalize these results to \(H^i_{\text{cris}} \) for all \(i \). Their remarkable result is the following.

THEOREM 8.5. (Illusie-Raynaud). Let \(X_0 \) be proper and smooth over an algebraically closed field of characteristic \(p > 0 \). The second spectral sequence of the De Rham-Witt complex
\[E^{p,q}_2 = \lim_{0} H^p(X_0, \Omega^q(W_0, \Omega^\bullet)) \Rightarrow H^{p+q}_{\text{cris}}(X_0/W) \]
degenerates at \(E_2 \) after tensoring with \(\mathbb{Q} \):
\[E^{p,q}_1 \otimes \mathbb{Q} \simeq E^{p,q}_\infty \otimes \mathbb{Q}, d_r \otimes \mathbb{Q} = 0 \text{ for } r \geq 2, \]
and defines the Newton-Hodge filtration on \(H_{\text{cris}}(X_0/W) \otimes \mathbb{Q} \):
\[\text{q} - 1 < \text{slopes of } E^{p,q}_2 \otimes \mathbb{Q} \leq q. \]

COROLLARY 8.6. If \(X_0/k \) lifts to \(X/W \), then for any \(W \)-valued point \(x \) of \(X \), and any integer \(i \), the image of the formal expansion map
\[H^i_{\text{cris}}(X \otimes k/W) \otimes \mathbb{Q} \simeq H^i_{\text{DR}}(X/W) \otimes \mathbb{Q} \rightarrow H^i_{\text{DR}}(\hat{X}/W) \otimes \mathbb{Q} \]
is precisely the quotient "slopes \(> i - 1 \)" of \(H^i_{\text{cris}} \otimes \mathbb{Q} \).
NICHOLAS M. KATZ

REFERENCES

244
CRYSSTALLINE COHOMOLOGY

32. LANG, S. : *Cyclotomic Fields II*. Springer Verlag.
NICHOLAS. M. KATZ

ESTIMATIONS MODULAIRES

We shall be concerned, from the arithmetic point of view, with the estimation of the Fourier coefficients of modular forms, while the relations (which may appear to provide an integral basis for the image of one variable), represent a beautiful blend of

§ Modular forms of degree

Let $r_m(t)$ denote the order of the determinant of the matrix

with $\sigma_m(t)$ denoting the mth degree of the Ramanujan theta function

$\sigma_m(t) = \frac{\pi^m}{m!} \cdot \frac{t}{\sin^m(t)}$.

More generally, let $\theta_{G S G = T}$ denote the theta function

$\theta_{G S G = T} = \sum_{\gamma \in \Gamma \backslash \Gamma_0(N)} e^{2\pi i \langle \gamma \cdot \tau, \gamma \cdot \tau \rangle}$,

where $\Gamma_0(N)$ is the subgroup of Γ consisting of elements γ with $\gamma \cdot \tau = \tau$ for all $\tau \in \mathbb{H}$.

In this context, the theta series

$\theta_{G S G = T} = \sum_{\gamma \in \Gamma \backslash \Gamma_0(N)} e^{2\pi i \langle \gamma \cdot \tau, \gamma \cdot \tau \rangle}$

is a modular form of degree m. The Fourier expansion of $\theta_{G S G = T}$ can be written as

$\theta_{G S G = T}(q) = \sum_{n=1}^{\infty} a_n \cdot q^n$,

where a_n are the Fourier coefficients of $\theta_{G S G = T}$.
AUTOMORPHIC FORMS,
REPRESENTATION THEORY
AND ARITHMETIC

Papers presented at the Bombay Colloquium 1979, by

GELBART HARDER IWASAWA
JACQUET KATZ PIATETSKI—SHAPIRO
RAGHAVAN SHINTANI STARK ZAGIER

FINE HALL LIBRARY
PRINCETON UNIVERSITY

Published for the
TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY

SPRINGER—VERLAG
Berlin Heidelberg New York
1981
AN INTERNATIONAL COLLOQUIUM ON AUTOMORPHIC FORMS AND ARITHMETIC was held at the Tata Institute of Fundamental Research, Bombay, from 1 to 11 December 1979.

The Colloquium was to discuss automorphic forms of one and several variables, with special reference to the cases where the group is GL_2 or GL_n in general. Examples include arithmetic automorphic forms and p-adic L-functions.

The Colloquium was jointly organized by the International Mathematical Union and the Tata Institute of Fundamental Research, Bombay, and financially supported by the National Science Foundation.

An Organizing Committee chosen from the participants included M. Kneser, M.S. Narasimhan, C.S. Seshadri, and H. Stark. The scientific committee included: P. Deligne, M. Kneser, J.-P. Serre, J. Tate, and D. Zagier.

Professor R. Howe was unable to attend the Colloquium.

Professors A. Borel and E. Hecke sent a paper for publication.

Printed by Spads Phototype (P.) Ltd. 101 A, Poonam Chambers, Dr. Annie Besant Road, Worli, Bombay 400018, and Published by H. Goette Springer-Verlag, Heidelberg, West Germany

PRINTED IN INDIA