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It is now nearly a decade since the theories of perverse sheaves and of the 1- 
adic Fourier transform came into being and gave fundamental new insights into 
the behavior of additive character sums over finite fields. Most of these insights 
were spellings out of the basic fact that the Fourier transform of a perverse 
sheaf is itself a perverse sheaf, a statement that amounts to a succession of 
vanishing statements for various compactly supported cohomology groups. This 
vanishing, applied to input perverse sheaves that are "mixed", is transformed 
by Deligne's fundamental Weil I1 results into archimedean estimates for the 
corresponding sums. 

In this paper, we show that a wide class of I-adic "affine cohomological 
transformsw shares with the Fourier transform the fundamental property of 
carrying perverse sheaves to perverse sheaves. 

To define these transforms, fix a field k of finite characteristic p > 0, a 
prime number 1 # p ,  integers n 2 1 and rn 2 l ,an affine k-scheme V of 
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finite type, a k-morphism f :  V + Am, a quasi-finite k-morphism n:  V +An,  
and a "kernel" K in D,b(kim, D l ) . We denote by Aff ~ a p s ( A " ,  Am)  the affine 
space of affine maps x H AX +b from An to Am . We consider the morphism 

f,,: ~vla~s(A",V x ~ f f  Am)+ 

defined by 
f,,: (v ,  A, b) f ( v )  +An(v) + b  := fA,b(v) .  

We get a transform from D , ~ ( v ,  a/)to D,b(~ff Maps(An , Am),a/)by map- 
ping L on V to R(pr,)!(pr;~@ f ,*,~)[nm] on AR ~ a p s ( A " ,Am) via the 
correspondence diagram 

L on K on 
prl

V - V x Aff Maps(An, Am) Am 

Aff Maps(An ,Am) 

The main technical result is that, if the kernel K is a perverse sheaf on Am 
with the property that HC(Am @ k ,  K) = 0 ,  then the transform 

carries perverse sheaves on V to perverse sheaves on AffMaps. This is the 
main content of 5 1. 

When the field k is finite, the diophantine interpretation of such transforms 
is given by the Lefschetz Trace Formula. For any finite extension E of k ,  
the trace function of the transform of L on E-valued points of AffMaps is 
given in terms of the trace functions K(x ,  E )  and L(v ,  E )  of K and L on 
E-valued points of Am and V respectively by the rule 

(A, b) in AffMaps(E) H (- l )nm L(v , E)K(f (v) + An(v) + b ,E). 
V ( E )  

To the extent that the trace functions of K and L have interpretations as some 
sort of "exponential sumsn, the trace function of the transform is thus a "sum 
of exponential sums". 

Where does the original Fourier transform fit into this picture? Take m = 1 
and K the perverse sheaf T v [ l ]  on A' ,where Tvis the lisse Artin-Schreier 

sheaf of rank one on A' corresponding to a nontrivial additive character y of 
a finite subfield of k . The resulting transform of L is essentially the Fourier 
transform of n, (L @ Zv(n). 

[To be more precise, if we view A') as the product ~ f f ~ a p s ( ~ " ,  of 
~ i n ~ a p s ( A "  with (A, b ) ,  then the A')  A ' ,  corresponding to coordinates 
transform of L is the external tensor product of the Fourier transform 
FT,(n,(L @ Tv(,(n))on Lin ~ a p s ( A "  ,A') with T v [ l ]  on A' .] 

But there are a plethora of perverse sheaves K on A' with the property that 
H,(A'@k, K) = 0 ,  and each of them defines an affine cohomological transform, 
which preserves perversity. 
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Perhaps the most striking examples, after T V [ l ] ,  of perverse sheaves K on 

A' with the property that H,(hl  @ k , K )  = 0 are the perverse sheaves j12x[1],  
where 9 is the lisse rank one Kummer sheaf on 6, defined by a nontrivial 

multiplicative character x of a finite subfield of k , and j :  G, -+ A 1 is the 
inclusion. 

That the theory applies both to [1] and by jlPx[1] may be regarded as 
a "weak unification" of the theory of additive and 'of multiplicative character 
sums. To fix ideas, suppose that k is a finite field, and that V is smooth and 
geometrically irreducible of some dimension d ,  so that the shifted constant 
sheaf ,[dl is perverse on V and, hence, may serve as an L . Let us recall 
the crude diophantine consequences of the fact that the transforms defined by 
P v [ l ]  and by j12.[I]  preserve perversity. 

With K = P i [ 1 ]  and L = Q,,v[d] ,  the trace function of 

R ( P ~ , ) ! ( P ~ ; L€3 f ;,K)[nl 

on E-valued points, where E is any finite extension of k ,  is the additive 
character sum 

(-l)n'd'l C y E ( f ( v )+ A ~ ( v )+ b ) , 
V ( E )  

where yE is the composition of y with the trace from E to k 
With K = j12x[ l ]  and L = a,,,[dl , the trace function of 

on E-valued points, where E is any finite extension of k , is the multiplicative 
character sum 

(-l)nidil  C x E ( f ( v )+ A z ( v )+ b ) .  

where xE on E~ is the composition of x with the norm from E" to k x  , 
extended by zero to all of E . 

In each of these cases, the perversity, together with Deligne's Weil 11, implies 
that for each given nontrivial y or x , say p , there exists a constant Cp and 
a dense open set Up of ( A ,  b )  's over which we have the estimate 

The diophantine consequences of the general theory are worked out in SIV. 
Other perverse sheaves K on A1 with the property that Y ( A '  8 k , K )  = 0 

are the sheaves j * F [ l ] ,  j :  Gm -t A 1 the inclusion, where F is either a 
Kloosterman sheaf IUv(x l , . . . , x,) or more generally a hypergeometric sheaf 
q(!, y , X , , . . . , X ,  ; pI , . . . , p,) , at least one of whose X ,  is trivial. 

Still with rn = 1 , yet another perverse sheaf K on A' with the property that 
Hc(A1@ k , K )  = 0 is Rj*Ql[l] , for j : G, -- A I the inclusion. The fact that 
the corresponding transform preserves perversity implies a quite general form 
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of the weak Lefschetz theorem; this is the subject of $111. Deligne has explained 
to me a simpler, more direct proof of weak Lefschetz. His proof is given in the 
Appendix. 

In addition to preserving perversity, another special property of the Fourier 
transform is to carry perverse irreducibles to perverse irreducibles. Our more 
general transforms lack this property in general; however, if rn = 1 and if the 
map R :  V -t An is a closed immersion, then for a given perverse irreducible L 
on V , its transform R ( p r , ) , ( p r ; ~  63 f : ,~)[n]  will be perverse irreducible on 
Aff Maps provided we take K to j,Px[1] with x a multiplicative character 
of sufficiently high order. By the ~ o h r i e r  transform theory, we also have this 
irreducibility if we take K to be TV[1] . In this sense, too, our theory "unifies" 
results for nontrivial additive y 's and for multiplicative x 's of sufficiently high 
order. 

In the case rn 2 1 and the map R :  V + An a closed immersion, we prove 
irreducibility results of a similar flavor. These include a result conjectured by 
Dwork and the I-adic analogue of a g-module result of [GKZ] over C . We 
also prove under these conditions that over a finite field, if K and L are each 
perverse irreducible and pure, then the "highest weight part" of the transform 
R(pr , ) ! (p r ;~63f l f f ~ ) [ n r n ]is perverse irreducible. These irreducibility results 
are worked out in $11. 

In $V, we compute the monodromy groups attached to (the restriction to 
a dense open set of Aff ~ a ~ s ( A '  , A ' ) ,  where it is the shift of a single lisse 
sheaf) the transforms corresponding to the two-parameter family of multiplica- 
tive character sums in one variable 

A '  

(With x replaced by ty , the monodromy was computed in [Ka3].) For n > 1 
and a polynomial f in n variables, it would be very interesting to compute 
the monodromy groups of the (n  + 1)-parameter families of character sums in 
n variables 

A" 

both for p = ty and for p = x . 
I first learned the idea that character sums involving a polynomial f in n 

variables "get better" if one adds to f a general C a,x, + b term and that one 
can say interesting things about the dependence of these sums on (ai 's, b) , 
from a paper [DL] of Davenport-Lewis, cf. also [Ka2]. The idea of thinking 
systematically about "sums of exponential sums", e.g., taking a kernel K corre-
sponding to Kloosterman sums, was inspired by a question Iwaniec once asked 
me about certain sums of Kloosterman sums. I would like to thank Steve Sper- 
ber for the use of his notes of lectures I gave at the University of Minnesota in 
July 1990 on the material in §§I-IV of this paper. 

1.0. Throughout this section, we work over a field k of characteristic p . We 
fix a prime number 1 # p . On variable separated k-schemes of finite type X 
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we will work systematically with objects of D:(x, 0,) 
1.1. Recall [BBD, Chapter 41 that an object K of D: (X , a)is called semiper- 
verse if its cohomology sheaves z'(K) satisfy 

dim s u p p ( X 1 ( ~ ) )  for every integer i. 5 - i ,  

An object K is called perverse if both K And its Verdier dual 

f :  X -, Spec(k) denoting the structural morphism, are semiperverse. The 
main facts about perversity, semiperversity, and duality that we will use are the 
following [BBD, Chapter 41. 

(1.1.1) If f :  X -, Y is an affine morphism, then K H Rf+K preserves 
semiperversity. 

(1.1.2) If f : X -, Y is a quasi-finite morphism, then K H Rf;K preserves 
semiperversity. 

(1.1.3) If f :  X -, Y is an arbitrary morphism whose geometric fibres all 
have dimension 5 d , then L H f *  ~ [ d ]preserves semiperversity. 

(1.1.4) Duality interchanges Rf; and R f ,  . 
( 1.1.5) Duality interchanges f! and f * . 
(1.1.6) If f :  X -, Y is a smooth morphism everywhere of relative di- 

mension d ,  then f!= f * [2d](d). Consequently f *[d](d/2) is self-dual and 
K H f *  K[d] preserves perversity. 

(1.1.7) If X is smooth over k , purely of dimension d , then for any lisse -
Q,-sheaf 9 on X , F [ d ]  is preverse and D , , ( F [ d ] )  = 9 " [ d ] ( d )  . 

(1.1.8) If X is a local complete intersection over k , purely of dimension d , 
then for any lisse o p h e a f  9-on X , 9 [ d ]  is preverse. 

1.2. For each integer r > 0,  we denote by A;, or just A' if no confusion is 
likely, the r-dimensional affine space over k . 

Fix nonnegative integers 	n , m , and consider the following data: 

V ,  a separated k-scheme of finite type; 

f :  V + Am an arbitrary morphism; 
R :  V + An a quasi-finite morphism; 

K , semiperverse on Am; 

L , semiperverse on V . 


1.3. We denote by ~ f f  	 of dimension Maps(An, Am) the affine space over k 
nm + m consisting of all affine maps from An to A m ,  i.e., the space of all 
maps from An to Am of the form x H AX+ b , with A a linear map from An 
to Am and with b in Am . We will systematically use the coordinates (A, b) 
on Aff to identify it with the product 

Aff Maps(An , A") = A")~ i n M a ~ s ( h " ,  x A". 

1.4. We now consider the morphism 

f,,: Maps(An, Am)+ Am,V x ~ f f  

f,,: ( V  , A, b) H f (v)+ A ~ ( v )+ b := f A , b ( ~ )  
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and the correspondence diagram 

L on K on 
prl

V - V x ~ f f %Maps(hn,A") hm 

1.5 

A f f  Maps(hn , Am). 

1.5. Main Theorem. Notation and hypotheses are as above, i.e., 
k , a field of characteristic p # I ; 

V ,  a separated k-scheme offinite type; 

f :  V -+ A"', an arbitrary morphism; 
R : V -+ A", a quasi-finite morphism; 

K ,  semiperverse on A" ; 

L , semiperverse on V . 


Suppose further that either H , ( A ~8 k , K )  = 0 or Hc(V 8 k , L )  = 0.  Then the 
object M := ~ @ r , ) , ( p r ; L8 f l f f ~ ) [ n m ]  ~ fon f Maps(An, Am) is semiperverse, 
and 

H,(Aff Maps(hn , hm)ek , M )  = 0. 

Before beginning the proof, we give the main application. 

1.6. Perversity Corollary. Hypotheses and notation are as in Theorem 1.5. We 
have: 

( 1 )  The dual DM of M is R ( p r , ) , ( p r ; ~ L  8 f z trDK)[nm](nm).  
( 2 )  Suppose in addition that 


V is afine, 

K is preverse on hm, 

L is perverse on V . 


Then M is perverse on A f f  Maps(hn , A") . 
Proof. ( 1 )  Because duality interchanges R(pr2),  and R(pr2),  , we have 

In the coordinates ( v  , A ,  b )  on V x ~ f f , which identify Maps(An, hm) 

V x A f f  Maps(hn , hm)= V x LinMaps(An, A") x A", 

consider the automorphism a defined by 

a :  (V , A ,  b )  ++ ( u, A ,  b + An(u)+ f ( v ) ) .  

In terms o f  the projections o f  v x in Maps(hn, Am)x A" onto its three factors, 
we have 

pr, = pr, o a ,  pr2 = pr2 0 a ,  f a ff = pr3 0 a. 

Therefore 
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Now D o a* = a!  o D = a* o D ,since a!  = a* for an automorphism a ,  so we 
have, in fact, 

This proves (1). 
For ( 2 )we argue as follows. In view of Theorem 1.5, M is semiperverse, so 

we need show only that its dual DM is semiperverse. Because V is affine, the 
morphism pr, is affine, so it suffices to show that D((pr;L8 f ;,K)[nm]) is 
semiperverse. We will show that it is in fact perverse. In the proof of ( I ) ,  we 
saw that 

is the pullback by an automorphism of the external tensor product of perverse 
sheaves D L  , oI, Maps[nm] on the three factors and so is perverse ,and DK 
[BBD, 4.2.81, as required. Q.E.D. 

1.6bis. (Dual) Perversity Corollary. Notation and hypotheses are as above, i.e., 
k , a field of characteristic p # I ; 
V ,  a separated k-scheme offinite type; 
f :  V +A m ,  an arbitrary morphism; 
n : V + An , a quasi-finite morphism; 

K ,perverse on A" ; 

L ,perverse on V . 


Suppose further that V is afine and that either H(A" 8 k ,  K )  = 0 or 
H ( V  8 k ,  L )  = 0 .  Then the object M 8 f ,',K)[nm](nm) on := ~ ( p r , ) , ( p r ; ~  
~ f f  is perverse, and Map(An,A") 

Proof. This is the previous result, with K , L , and M replaced by their duals 
D K ,  D L ,  and D M .  Q.E.D. 

1.7. Proof of the main theorem, via Fourier Transform. 

1.7.1. Our main technical tool will be the Fourier Transform. Fix a nontrivial 
additive D,-valued character r// of IFp, so that we may speak of the sheaf 

2 on A: . For any %-scheme X and any function f on X ,  viewed as a 

morphism to A' , we may form Pv(,,:= f *Pvon X . For S an arbitrary 
IF, 


%-scheme, E a vector bundle over S of some rank r ,  and E' the dual 
vector bundle, with duality pairing ( e, e v ), the Fourier Transform FTV from 

D , ~ ( E ,$) to D,b(EV,0,)is defined in terms of the two projections of E x EV 
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onto its factors by 

(1.7.1.1) ",(K) 	 @ ~ , , e , e v l ) [ r l .:= R(P~,)! (P~;K 

1.7.1.2. One knows [Br, 9.31 that FTI,, is essentially involutive in the sense that 

and that K t-+ FT,(K) preserves semiperversity (because the natural "forget 
supports" map 

is an isomorphism, cf. [KaLa, 2.4.11). 

1.7.2. 	 So in order to prove the theorem, namely, that 

M := R(P~,)! (P~;L@ f ZfK)[nml 

on Aff Maps(An, A") is semiperverse, it suffices to show that its Fourier Trans- 
form FT,(M) is semiperverse, where we consider Aff Maps(An,A") as a vec- 
tor bundle over S = Spec(k). This is a geometric statement, so we may and 
will suppose henceforth that k is algebraically closed. 

1.7.3. To carry this out, we will need to make explicit the dual of 
Aff Maps(An, A") . For this, use coordinates (A, b) to view 

Aff Maps(An,A") = LinMaps(An,A") x Am 

= L i n ~ a ~ s ( A " ,  x LinMaps(A1, Am). A") 

Its dual is then 

Lin Maps(Am , A") x Lin Maps(Am ,A')  , 

with coordinates (W , z)  and pairing 

(A, b) x ( W ,  z)  I+ Tr(AW + bz) ,  

where Tr is the trace function on ~nd(A")  = {m x m matrices). 

1.7.4. In the calculations to follow, certain subvarieties 93Z039'of the 
space LinMaps(Am ,A") x LinMaps(Am,A')  will play an important role. To 
describe them, it will be convenient to think of the space LinMaps(Am , A") x 
Lin Maps(Am , A')  as being the space Lin Maps(Am , A""), i.e., to think of the 
point (W , z) as being the (n + 1) x m matrix obtained by concatenating z to 
W as bottom row. 

1.7.5. We define 9 to be the closed subvariety of the space Lin Maps(Am ,A") 
x LinMaps(Am,A') consisting of those points ( W ,  z) for which 

rank( W , z)  5 1. 

1.7.6. We define Z0to be the constructible subset of 9 where 

The geometric points of are those ( W ,  z )  such that each row of W is 
proportional to z . 

mailto:@~,,e,evl)[rl
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1.7.7. We define 9' to be the open subvariety of 9 where 

Equivalently, 9' is defined by the conditions 

1.8.1. Lemma. The map 

is an isomorphism. 
Proof. The conditions 

are precisely that some component of z is invertible and that each row of W is 
proportional to z . The point x in An is simply the vector whose components 
are these factors of proportionality. Q.E.D. 

1.8.2. Lemma. For any situation such that 

k is algebraically closed of characteristic p # 1 ; 

V is a separated k-scheme ofJinite type; 

f :  V -,Am is an arbitrary morphism; 
II : V -,An is an arbitrary morphism; 

K is in D;(Am, 0,); 

L is in D:(V ,0,); 


the object M := R(pr,)!(pr;L8 f :,K)[nm] has FT,(M) supported in Z0. 

If; in addition, either H , ( A ~,K )  = 0 or Hc(V ,L )  = 0 ,  then FT,(M) is 

supported in 9*. 

Proof. We first calculate punctually the Fourier Transform of M .  We abbre- 

viate Aff Maps(An, Am) as Aff. The stalk of FT,(M) at ( W ,  z )  is 

which by the derived form of the Leray spectral sequence is 

In terms of the automorphism a introduced above, 

we may rewrite pr; L 8 f , ; ~as a* (pr; L 8 pr; K )  , so our stalk becomes 

= RT,(V + m l )x Lin xAm , o*(pr;L 8 p r ; K )  8 2,(Tr(Aw+bz))[2nm 

= RTc(V x Lin xAm , a*(pr;L 8 p r ; K )  8 ~ ~ , ( r I ( A w + b z r ) [ 2 n m+ m l )  

= RT,(V x Lin x Am ,p r ; ~8 P ~ ; K8 N ) [ 2 n m+ m ], 
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where 

:= a*2y/(Tr(AW+bz)) 

- q ( T r ( AW+bz-An(u)z- f (u )z ) )  
.- (T(A( W-()z))) @ 2 ( T r ( - f ( u ) z ) )  2y/(Tr(bz))' 

By the Kunneth formula [SGA4, XVII, 5.4.31 for RT, , we may rewrite our 
stalk as a tensor product X 8 Y ,  with 

We now show that the X factor vanishes when we are at a point ( W ,  z) , 
which is not in 9 , ,  i.e., one for which W -x z  # 0 for any x in An . We will 
compute 

by using the (derived form of the) Leray spectral sequence for the map 

pr, : V x Lin V. 

By the projection formula, we have 

Because ( W ,  z )  is not in 9 ,  we have W - z(v)z  # 0 for any v in V .  
Therefore for fixed (v , W ,  z)  , A H Tr(A(W- z(v)z))  is a nontrivial linear 
form, and hence, looking fibre by fibre over V ,we see that 

[Indeed, for any nontrivial linear form p on an affine space E ,  one has 
RT,(E, q(r))= 0 ;  by taking p as one of the coordinates in E" and the 

dual basis of E ,one reduces by Kunneth to the case when E is A' and to the 
vanishing of RT,(A' ,P y / )  .] Thus we have proven that FTI(M) is supported 
in 9,. 

The only geometric point of 9,not in 9' is (0,  0 ) .  At this point, X 
becomes 

XI(,,,) = RT,(V x Lin, pr;L)[2nm] 

= RT,(V, L) @ RT,(Lin, 0,)[2nm] 

= RT,(V, L)(-nm) 

and Y becomes 
r,(,,,) = RS(Arn> K[ml). 

Thus at (0 ,  0) , the stalk of our Fourier Transform is 

which visibly vanishes if either RT,(V, L) or R T , ( A ~ ,  K)  vanishes. Q.E.D. 
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1.8.3. Lemma. With the notation of the lemma above, for any situation such 
that 

k is a jield of characteristic p # 1 ; 
V is a separated k-scheme ofjinite type; 
f :  V + Am is an arbitrary morphism; 
R :  V + An is an arbitrary morphism; 

b m -
K is in D, ( A  , Q1); 
L is in D : ( v , $ ) ;  

the restriction of FT,(M) to 9' r; An x ( ~ i n M a ~ s ( A ~ ,  { 0 ) ) ,  with coor- A ' )  -
dinates ( x  , z )  , is given as follows. On the product 

with coordinates ( v  , z )  , consider the object 

pr;L 8p r ; ~ , ( K )@ p y ( T r ( - f ( v ) z ) ) ,  

Consider the morphism 

V x ( ~ i n M a ~ s ( A ~ ,  { 0 ) )A ' )  -
1 ( nx id )  

An x i in Maps(Am, A ' )  - ( 0 ) )  

We have 

T T , ( M ) I ~ * = R ( n  x id)!(pr;L @ P ~ ; F T , ( K )  f ( v ) z ) ) ) ( - n m ) .@TV(,,(-
Proof. By  proper base change and the projection formula, the restriction 
FT,(M)I9* is given in terms o f  the map 

in coordinates ( v  , A , b , x , z , ) H ( x, Z )  as 

R ( P ~ , ) ! ( P ~ ; L  @=q(Tr(,,+bz)))[2nm+ ml-8 f :,K 

Remembering that W = x z  on 9' , and using the automorphism a as we did 
in the punctual case above, we rewrite this as 

R ( P ~ , ) ! ( P ~ ; L  @ N)[2nm+ ml ,@ P ~ ; K  

where N = ~ r ~ - 8 Tn v- z @ T BY factoring pr4 

through the projection onto V x Lin x 9  , which amounts to summing over 
b , we may rewrite this in terms o f  the morphism 

pr3,,: V x in x 9 *  -9* 

in coordinates ( v  , A ,  x , z )  I-+ ( x, z )  as 

R ( p r 3 , 4 ) ! ( p r ;  @ F T y ( K ) ~@ z v ( T r ( A ( x - n ( ~ ~ ) ) z ) )  9 v ( ~ r i - f ( v ) z ) )I[2nm]. 
The next step is to factor pr3,4 through the projection prl , 3 , 4  onto 

V x 9' , i.e., to sum over A . For this, we must calculate 

R(pr l ,3 ,  4 ) ! ( p U / ( T r ( A ( X - n ( a ) ) z ) )) [2nml .  
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By proper base change, this is the pullback by the map 

V x 9'- in" := Lin ~ a ~ s ( A ' ~ ,  A") ,  

('u , X ,  Z )  (x - n(v))z  

of the Fourier Transform of the shifted constant sheaf ?$l[nm] on Lin ; but 
this Fourier Transform is the delta function o l ,o ( -nm)  at the origin of in" . 
So if we denote by 3 the closed subvariety of V x 9'where the function 
(X - R(V))Z vanishes, 

3 := { ( v ,  x ,  z )  in V x SF* where (x- ~ ( v ) ) z= 01, 

we have -
R ( p r 1 , 3  ,4)!(9v(Tr(A(x-n(v))z)) ) [2nmIz (Ql,z(-nm). 

Denote by pr2,  313the map 

p 2 3+9 ,  ( v ,  X ,  z ) in 2 -+ ( x ,  z). 

By the projection formula, we have 

Since z # 0 in 9', the vanishing of the matrix ( x  - n(v) )z  is equivalent 
to the vanishing of the vector x - n(v)  . In other words, the subvariety 3 of 

is none other than the product with the third factor of the graph of the map 
R: v - + A n :  

2 = A')  10)).rnx ( ~ i n M a ~ s ( A ' " ,  -

If we identify the graph with its source V ,  then 2 becomes the product 

V x i in Maps(Am,A ' )  - (0))  , 

becomes 

pr;' @ P ~ ~ F T ~  on V x (Lin Maps(Am , A ' )  - (0))  ,( K )@ 2v(~r ( - f (v )z ) )  

and the map p r 2 , 3 / Z :  Z +2*, (v , X ,  z)  in 2-,(x, z )  becomes the map 

1 ( n x i d )  : ( v ,  z)++(n(?t),z )  

An x i in ~ a ~ s ( A ~ ,- (0)).A ' )  Q.E.D. 

With these lemmas, the proof of Theorem 1.5 is immediate. Under the hy- 
potheses of the theorem, FTv(M)  is supported in 3'by Lemma 1.8.2. Since 
extension by zero preserves semiperversity, it suffices to show that FTv(M)  is 
semiperverse on 9'. On 9'it is 
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Since n is quasi-finite so is n x id ,  and so R ( n  x id)! preserves semiperversity. 
It remains to show that 

is semiperverse. 
Tensoring with a lisse sheaf, here PV(Tr(- preserves semiper- f ( v ) z ) ) ( - n m ) ,  

versity, so we are reduced to the semiperversity of the external tensor product 
p r ; ~@ priFTv(K)  ; but the external tensor product of semiperverse objects 
is semiperverse, so we are reduced to observing that L is semiperverse on 
V by hypothesis, f l , ( K )  is semiperverse on (~inMaps(A",A ' )  - ( 0 ) )  be-
cause K is semiperverse on Am ,and Fourier Transform preserves semiperver- 
sity. Q.E.D. 

2.1. Irreducibility of the highest weight part. 

2.1.1. Theorem. Suppose that: 

k is a jinite jield of characteristic p f I ; 
V is an a@ne k-scheme ofjinite type; 
f :  V +Am is an arbitrary morphism; 

TC : V + An is a closed immersion; 

K is perverse on Am, geometrically nonconstant, geometrically irre- 

ducible, and pure of weight a ; 

L is perverse nonzero on V ,geometrically irreducible, and pure of weight 

P ;  

and either H,(A" @ k ,  K) = 0 or H,(V @ k ,  L )  = 0 .  Then: 

(1) hep perverse sheaf M:=~ ( p r , ) ! ( p r ; ~ @  on ~ f ff i , ~ ) [ n m ]  Maps@: Am) 
is mixed of weight 5 a + p + n m  and is nonzero. 

( 2 )  Its highest weight quotient (of weight = a + j? + n m )  as a perverse sheaf 
[BBD, 5.3.51 is geometrically irreducible. 

(3) M is geometrically irreducible if and only i f  M is pure of weight a + 
P + n m .  

Proof. That M is perverse was proven in the Perversity Corollary 1.6. That 
M is mixed of weight < a + /?+ n m  follows from the main result of Deligne's 
Weil I1 [De, 3.3.1, 6.2.31. 

We will prove ( 2 )and (3) on the Fourier Transform side, where they become 
the statements that the highest weight quotient of F T V ( M )  (of weight = a+P+ 
2nm +m )  is geometrically irreducible as a perverse sheaf on Aff Maps(An, Am) 
and that FT,(M) is geometrically irreducible if and only if it is pure of weight 
a + p + 2 n m + m .  
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We have already proven that FT,(M) is supported in the open subvari- 
ety 9*of the closed subvariety 9 of Aff Maps(An ,A ~ ) .Let us denote by 
J :  9*+9 and i :  9+ Aff Maps(An , Am) the inclusions. In terms of these, 
we have proven that 

FT,(M) = ~ * J ! ~ * ~ * F T , ( M ) .  

Now i, carries perverse irreducibles to perverse irreducibles and preserves the 
filtration by the weight, so J,j*i*FT, ( M )  is perverse on 9 , and it suffices to 
show that the highest weight quotient of J,j ' i* FT,(M) (of weight a + P + 
2nm + m) is geometrically irreducible as a perverse sheaf on 9 . 

We first claim that J*~*FT,(M) on 9*is perverse, geometrically irre- 
ducible, and pure of weight a +P + 2nm +m . To see this, we argue as follows. 
Because the map TC: V -+ An is a closed immersion, Lemma 1.8.3 shows that 
on 9'z An x (Lin Maps(Am ,A ' )  - (0))  , j*~*FT,(M) is the extension by zero 

from V x ( ~ i n ~ a ~ s ( A ~ ,- (0))  ,with coordinates (v, z ) , of the object A ' )  

So it suffices to show that this object on 

is perverse, geometrically irreducible, and pure of weight a + + 2nm + m . 
Since p,(Tr(- f ( v ) z ) )  is lisse of rank one and pure of weight zero, tensoring with 
it does not alter questions of perversity, purity of given weight, or geometric 
irreducibility. So it suffices to treat the object pr;L B ~ ~ ; F T , ( K ) ( - ~ ~ ) .This 
is the external tensor product of L(-nm) ,which is perverse nonzero, geomet- 
rically irreducible, and pure of weight a + 2nm on V ,with FT,(K) ,which is 
perverse nonzero (because K is geometrically nonconstant), geometrically irre- 
ducible, and pure of weight cr + m on i in Maps(Am, A ' )  - (0))  . An external 
tensor product of perverse nonzero, geometrically irreducible, and pure objects 
is itself perverse nonzero, geometrically irreducible, and pure of weight the sum 
of the weights. 

To conclude the proof of the theorem, we apply the following general lemma 
to the situation X := 9,U := 9' and to the object N := j*i*FT,(M) on 
U .  

2.1.2. Lemma. Suppose we are given 

k , a finite field of characteristic p # 1; 

X , a separated k-scheme offinite type; 

j :  U + X ,  an open immersion; 

N in D ; ( U ,  0,).
a perverse sheax which is pure of weight w . and such 
that j , N  is perverse on X .  

Then: 

( 1 )  The weight w quotient of J , N  is the middle extension j , * N ,  which is 
perverse and pure of weight w . oreo over, j,N E j,*N ifand only if j,N is pure 
of weight w . 
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(2) I1 in addition, N is nonzero and geometrically irreducible on U ,  then 
the middle extension j, ,N is perverse nonzero, geometrically irreducible, and 
pure of weight w . Moreover, j , N  is geometrically irreducible ifand only if it is 
pure of weight w . 

Proof. For any open immersion j :  U - X and any perverse N on U , the 
middle extension j, ,N is defined [BBD, 1.4.221 in terms of the perverse coho- 
mology sheaves '2Y0(jl N) and '2Y0(R j*N) ('j, N and 'j*N in the notation 
of [BBD, 1.4.151) as the image of the canonical map 

j,,N := 1mage('2Y0(j!~)- '2Y0(Rj, N)). 
In our situation, j , N  is perverse by hypothesis, so we may rewrite the middle 
extension as 

j,,N := Image(j!N - ' 2Y0(Rj ,~) ) .  
The key point is that this description shows that there is a canonical surjective 
map of perverse sheaves on X 

j , N  - j,,N. 

Now in D , ~ ( x ,  a[),if we denote by Z := X - U , i :  Z - X the inclusion, 
then we have a tautological triangle 

0 - i , i * j , , ~ [ - l ]  - j ,N  + j,,N - 0. 

Since the map j,N - j!,N is a surjection of perverse sheaves, it follows from 
[BBD, 1.2.2, 1.2:3] that i,i* j,,N[- 1] is perverse and that 

0 - i , i * j , , ~ [ - l ]- j ,N  - j,,N - 0 ,  
is a short exact sequence of perverse sheaves on X . 

By [BBD, 5.4.31, j,,N is pure of weight w . Therefore i* j*j,,N is mixed of 
weight 5 w ;hence, ;,i* j,,N[- 1] is mixed of weight 5 w - 1 . This shows that 
j,,N is indeed the weight' w quotient of j,N . Therefore the map j,N - j,,N 
is an isomorphism if and only if j , N  is of weight w . This proves (1). 

To prove (2), suppose now that N is perverse nonzero and geometrically 
irreducible on U . It follows form the explicit description of irreducibles [BBD, 
4.3.11 that j,,N is perverse and geometrically irreducible on X . If j,N is 
pure of weight w , the fact that j,*N is its weight w quotient shows that 
j,N z j,,N and, hence, that j,N is geometrically irreducible. Conversely, since 
N is nonzero, j,*N is nonzero. So if j , N  is geometrically irreducible, 
the map j,N - j,*N must be an isomorphism,' whence j,N is pure of weight 
w . Q.E.D. 

2.1.3. Corollary. Hypotheses and notation are as in Theorem 2.1.1. Suppose 
that there exists a dense open set U of Aff ~ a p s ( A " ,Am) on which M := 
R(pr,),(pr;L @ f , ,~ ) [nm]  is pure of weight a + I j  + nm . Then MlU is geo- 
metrically irreducible as a perverse sheaf on CT . 
Proof. Let us denote w := a + I j  + nm , M(w) the weight w quotient of M .  
Because M ( w )  is the highest weight quotient of M ,  by [BBD, 5.3.51 we have 
a short exact sequence of perverse sheaves 

0 -M ( <  w) -+ M -M ( w )  -+ 0 
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on Aff Maps(An, Am),  with M ( <  w)  mixed of weight < w . Formation of this 
weight-filtration short exact sequence commutes with etale localization. Pulled 
back to U , it gives 

Since MI U is pure of weight w , we have 

By Theorem 2.1.1, M ( w )  is geometrically irreducible. By the known struc- 
ture [BBD, 4.3.11 of perverse irreducibles, M(w)ICT remains geometrically ir- 
reducible. Q.E.D. 

2.1.4. Corollary. Hypotheses and notation are as in Theorem 2.1.1. Suppose 
that there exists a dense open set U of Aff ~ a p s ( ~ " ,  MAm) on which := 
( ~ ( p r ~ ) ! ( p r ; ~  = F [ n m  + m] a lisse @ fakK)[nm] is lisse, i.e., MIU with 9 
sheaf on U ,  mixed of weight 5 a + P - m . Then the highest weight quotient 
F(weight  = a + P - m) of 9 in the sense of [De, 3.4.1 (ii)] is geometrically 
irreducible as a lisse sheaf on U . 
Proof. Just as in the proof of 2.1.3, denote by M ( w )  the highest weight quo- 
tient of M ; M ( w )  is geometrically irreducible by 2.1.1 and so M(w)l U is 
geometrically irreducible on U .  But M(w)I U is the highest weight quotient 
of MIU z F [ n m  + m] , and this highest weight quotient is 

Thus the perverse sheaf F(weight  = a +/?-m)[nm + m] on U is geometrically 
irreducible on U , and hence the lisse sheaf F(weight  = a + 13 - m) on U is 
geometrically irreducible as a lisse sheaf. Q.E.D. 

2.2. An example and a question. Here is the motivating example. Take n = 
m = 1, V = A' , TC the identity map, f :  A' + A1 a polynomial f (x )  in one 
variable of degree d 2 2 ,  x a nontrivial character of k x , L the sheaf o l [ l ]  

on V If weview ~ f f  A')= A ' ,  and K the sheaf j ,TX[ l ]  on A ' .  ~ a ~ s ( A ' ,  as 

the A' with coordinates ( a ,  b) corresponding to x ++ a x  + b and write l,, 
for the polynomial 

f a , b ( ~ ): = f ( x ) + a x + b ,  

then M := R(pr,)!(pr;L @ f : , ~ ) [ l ]  has 

The open set U of ( a ,  b)-space where l,, b  has all distinct zeros is nonempty 
(cf. 3.5). On U ,  the object M has lisse cohomology sheaves [La, 2.1.41 and 

Z ' ( M ) I U = O  for 1 # - 2 ,  

Z - ~ ( M ) Iu has rank d - 1. 

Moreover, if X d  is nontrivial, then ZP2(M)1 U is punctually pure of weight 1. 
This follows from the explicit description above of Z i ( M ) ,  , and [De, 3.2.31, 
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for if we denote by 
1 

J :  A ~ [ ~ I ( ~ ~ , ~ ) I+ 

the inclusion, then for ( a ,  b )  in U ,we have 

So by Corollary 2.1.3, 2 i P 2(M)1 CT as a lisse sheaf on U is geometrically irre- 
ducible, provided that X d  is nontrivial. 

In 52.4, we will show that for all x of sufficiently large order, the perverse 
sheaf M on ~ f f  Does this hold Maps(A1, A ' )  is geometrically irreducible. 
already for any x with X d  nontrivial? 

2.3. Purity is for a reason. The sense of the following proposition is that, under 
fairly mild conditions, one can only achieve purity for the "standard reason" 
that an Rf;maps isomorphically to an Rf* . 
2.3.1. Proposition. Suppose that 

k is a finite field of characteristic p # 1 ; 

V is an afine k-scheme offinite type; 

f :  V - Am is an arbitrary morphism; 
71 : V + An is a finite morphism; 

K is perverse on Am and pure of weight a ; 

L is perverse on V and pure of weight p ; 


and either H,(Am @ k ,  K )  = HC(Am8 k ,  D K )  = 0 or Hc(V 8 k ,  L )  = 
Hc(V @ k ,  D L )  = 0.  Denote by M and M* the perverse sheaves on 
Aff Maps(An, Am) 

The following conditions are equivalent. 
( 1 )  M is pure of weight a + p + n m  and M* is pure of weight -a-p-nm . 
( 2 )  The natural "forget supports" map is an isomorphism 

( 3 )  The natural "forget supports" map is an isomorphism 

( 4 )  The natural pairing makes M and M* Verdier duals of each other. 

Proof. Statements ( 2 )and (3) are equivalent to each other, being duals of each 
other, and by duality and biduality each is equivalent to (4 ) .  

We first show that (4) + ( 1 )  . By [De, 3.3.11, M is mixed of weight 5 
a + p + n m ,  and M* is mixed of weight 5 -a - 13 - n m  . So if M % D ( M * )  
and M* E D M ,  then ( 1 )  holds by definition of purity. 
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It remains to show that (1) + (4 ) .  We will do this by once again making 
use of the Fourier Transform. We make use of the notation of the proof of 
Theorem 2.1.1. On U :=S*we consider the objects 

N := j*i*FTv(M) and N* := j*i*FTy (M*). 

Lemma 1.8.3 shows that on S*= A" A') -x ( ~ i n ~ a p s ( ~ " ,  (0)) we have 
the explicit description of N and N* in terms of the objects M and M* on 
V x ( ~ i n ~ a p s ( A ~ , (0)) , with coordinates (v , z )  ,A') -

:=p r ; ~@ P ~ ; ~ ~ ~ ( ~ )  >@9vcTr(-f(u)z))(-nm) 

N*:=P~;DL@ p r p y  (DK) ~ = q ~ ( ~ ~ ( - ~ ( ~ ) ~ ) ), 
by the formulas 

N = R(TCx id ) ,M,  N* = R(TCx id),M*. 

From the explicit description of the objects M and M*, we see that M is 
perverse and pure of weight a + P + m + 2nm,  that M* is perverse and pure 
of weight -a - P + m , and that D M  rM*(nm + m) . [Recall [KaLa, 2.1.51 
that on an A m ,  duality D interchanges FTy(m/2) and FTy(m/2) and that 
FTy(m/2) o FT,(rn/2) = id .] 

Because the morphism n is finite, the morphism n x id is also finite, so 
R(n x id)! = R(n  x id), is self dual and, consequently, R(n x id)! preserves 
both perversity and purity of given weight. Therefore the object N is pure of 
weight a + P + m + 2nm and D N  N*(nm+ m) . 

We have seen (Lemma 2.1.2) that if M (resp. M*) is pure of weight a +P + 
n m (resp. -a -p -n m) , the canonical map j,N + j!,N (resp. j,N* -+ j,,N*) 
is an isomorphism. So if M and M *  are of these weights, the dual of 
the isomorphism j, N* 2 j,,N* is (the Tate twist of) an isomorphism j!,N 2 
Rj*N ,which combines with j,N E j,,N to give an isomorphism j,N E Rj*N . 

' 

By duality, we may rewrite this as 

j , N  E Dj,DN = + nm))~ ( j , ~ * ( r n  

or, equivalently, as 
j lN(m + nm) E D ~ , N * .  

Taking extension by zero to Aff Maps(An , A"') , this says 

FT,M(m + nm) "DFT,,M* = F T , ( D M * ) ( ~+ nm). 

Applying the Fourier Transform FT,, , we get the required isomorphism M 2 

D(M*) . Q.E.D. 

2.3.2. Question. Suppose that K is perverse on Am, geometrically noncon- 
stant, and pure of some weight a .  Are the conditions 

H c ( A r n @ k , ~ ) = 0 ,  H c ( A m @ k , D K ) = O  

in fact equivalent? Similarly, for L perverse on V and pure of weight P , are 
the two conditions 

H , ( v @ ~ , L ) = o ,  H , ( V O ~ , D L ) = O  
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equivalent? More generally, for L perverse and pure on V , is it true that 

If we drop the purity hypothesis, both of these can be false. For an example, 
denote by j :  G ,  -t A 1 the inclusion and take K := R j * Q , [ l ] .  Then K is 
perverse on A' and HC(A1a k , K) = 0 , but the dual DK is j ,Q , [ l ] ( l ), for 
which 

Y ( A '  a k ,  D K )  = HC(G,,8 k ,  Q l [ l ] ) ( l )  

is nonzero. 

2.4. Theorem of irreducibility with multiplicative characters of sufficiently high 
order. 

2.4.1. Theorem. Suppose we are given: 
k , an algebraically closed field of characteristic p # I ; 

V , an af ine k-scheme offinite type; 

f :  V -+ Am , an arbitrary morphism; 
n : V -t A" , a closed immersion; 

K,-, , perverse irreducible on Am-' ; 

L , perverse irreducible on V . 


For x any nontrivial multiplicative character of a finite subfield of k , consider 
the Kurnmer sheaf 9. on G,,,and its extension by zero j ,9.  to A' . Denote 
by K ( x )  the external tensor product 

Then: 
( 1 ) K ( x )  is perverse irreducible on Am and HC(Am, K ( x ) )= 0 .  
( 2 )  There exists an integer N o ,  depending on ( k  , V , f ,  7r , K,-, , L )  , such 

that i f  the order of x is > No,  then the perverse sheaf 

on Aff ~ a p s ( A ", Am) is irreducible. 
(3 )  If the order of x is > N o ,  then the "forget supports" map is an isomor- 

phism 

( 4 )  For any single nontrivial x , if the "forget supports" map is an isomor- 
phism 

then the perverse sheaf 

is irreducible. 
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Proof. Statement (1) is "mise pour memoire." The external tensor product of 
perverse irreducibles is perverse irreducible, and the vanishing of H~(A" , K(x))  

results by Kunneth from the well-known vanishing of ( A j )  = 

Hc(Gm,TX).Indeed, if x has order d > 1 , and if we denote by [dl:  Gm -' Gm 
the dth power map, then 

[d]*Ql = QI cq PXCB other terms, 

Hc(Gm, 0 , )  = Hc(Gm [dl*igjl)3 

= Hc(Gm,QI)CB Hc(Gm, TX)63 other terms. 

Comparing dimensions shows that Hc(Gm , Y X )= 0 .  
Having proven ( I ) ,  we know from the Perversity Corollary 1.6 that M(x) is 

indeed perverse. We will prove (2) by working on the Fourier Transform side, 
i.e., by showing that FTyl(M(x))  is perverse irreducible for x of sufficiently 
high order. 

Just as in the proof of Theorem 2.1.1, we know that FT,(M(x)) is supported 

in 9'z An x (Lin Maps(Am , A ' )  - (0))  , where it is the extension by zero from 
V x i in Maps(Am, A')  - (0))  , with coordinates (v, z )  , of the object 

Now consider in greater detail the object FTyl(K(x))  on in Maps(Am, A ' )  . 
In terms of the factorization 

Am = A m '  x A ' ,  coordinates (I,,. . . , x,) 

we get the dual factorization 

Lin M a p s ( ~ " ,  A ' )  = Lin Maps(Am-' , A') x LinMaps(A1, A') ,  

with corresponding coordinates ( z ,  , . . . , z,) . 
The Fourier Transform FT,(K(x)) is itself the external tensor product 

and FT, ( j,pX[ 11) is given geometrically by 

F T y l ( j , ~ X [ l l )= j!p*[ll.  

Therefore FTyl(K(x))  vanishes at any point z with zm = 0 .  
Thus we see that FTy(M(x))  is supported in the open set 9 [ l / z m ]  of 9 

(or equivalently of S*) zm is invertible. On the open set 9 [ l / z m ] ,  where 
FTv(M(x) )  is perverse irreducible, being 

If we view this as living on 



AFFINE COHOMOLOGICAL TRANSFORMS 

with coordinates (v , ( z ,  , . . . , z,-,) , z, # 0) , it is 

prrL @ P~; " , (K~-~ )  @ p r i q [ ' ]  @pv(Tr(-f(7,)z))(-nm) ' 

Now consider the object 

9 [ 1 / z m ] := V x LinMaps(Am-' , A') x (LinMaps(A1, A')  - (0)). 

This object is visibly perverse irreducible on 9 [ 1 / z m ], and it is related to 
FT,(M(x)) by 

FT,(M(x)) = Jtr @ Txczm 

Now denote by Z! the open set AffV[l/z,] of the entire space 

AffV:= Lin Maps(Am , An) x Lin Maps(Am , A ' ) ,  

with coordinates ( W ,  z) , where z, is invertible, and by 

the inclusion, a closed immersion. Then i , N  on Affv[l/zm] is still perverse 
irreducible on AffV[l/z,] , and we still have the relation 

Since we know that FT,(M(x)) on AffV is supported in AffV[l/zm] , if we 
denote by 

k :  AffV[l/zm]-t AffV 

the inclusion, we have 

Since k is affine, both k l ( i * N @ 2 x ( Z m ) )  and Rk* (i*N@2x,Z,)) are perverse, 
and the middle extension k!*(i*N @ qEm))is 

By [KaLa, 6.5.21, applied to the object i * N  on 

Affv[l/zm]= LinMaps(Am. An) x Lin ~ a p s ( A ~ - l ,  ,A ' )  x G, 

with coordinates ( W , ( z ,  , . . . , zm- , ) ,  Z, # 0) , there exists an integer N o ,  
which depends only on i , N ,  such that for any character x of order d > N o ,  
the canonical "forget supports" map is an isomorphism 

k,(i*J @=q(zm,)"R k * ( i * N  @ q ( z m i ) .  

But whenever this map is an isomorphism, we have 

FT,(M(x)) = k! ( i*N@ q ( z m ) )= k!*(i*N@ 2x(zm)) .  

mailto:@q(zmi)
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As i,JY cqlzmlis perverse irreducible on AffV[l / z m ], k,* ( i * N  @ q(zml)is 

perverse irreducible on AffV . Thus FT,(M(x)) is perverse irreducible on AffV 
for all x of order > No. 

To prove (3), we will show that for x of order > No, we have 

By duality, we have 

so it is the same to show that the natural pairing makes 

and 
R ( P ~ , ) ! ( P ~ ; D L@ f ;,DK(x))[nml(nm) 

dual to each other. 
Now we interpret this on the Fourier Transform side, using the compatibility 

of r-dimensional lT with duality [KaLa, 2.1.51: 

We must show that for x of order > No, the two objects 

~ , R ( P ~ ~ ) ! ( P ~ ; L@ f ;,K(x))[nml ! 

~ , R ( P ~ , ) ! ( P ~ ; D L  + m )c&f;~o~(x))[nml(2nm 

are dual. The first we have shown above to be 

k!(j*J @ Tx(zm))! 

with 

Jv :=P ~ ; L@ p r ; l T V ( ~ , - I )  @ pr;Ql[1l @ TV(,r(- f (u)z))(-"m) 

The second is, by the same calculation using FTV, 

k!(j*A@ 1 > 

with 

A :=pr;DL @ p r ; m V  ( D K , - ~ ) @ pr;Q1[ll  @T;(rrt-l(u)z))(nm+ m ) = D N .  

Thus we are reduced to showing that for x of order > No, 

k!(i ,N @Tx(zml)k!(j*DN@Tz(zm))and 

are dual. We may rewrite the dual of the latter term as 

Dk!(i,DN @ h%,(zm,)= !Rk*(i*J @ q(zm)) 
so it is the same to show that for x of order > No, 

k!(j*.V@ Px(^X(i))-- Rk*(j*N@ TxOzm))! 



171 AFFINE COHOMOLOGICAL TRANSFORMS 

which is once again [KaLa, 6.5.21. This proves (3) .Notice that we in fact show 
that for each nontrivial x , the "forget supports" map 

R ( P ~ , ) ! ( P ~ ~ L@ f : , ~ ( x ) ) [ n m l  R ( P ~ , ) * ( P ~ ; L+ @ f : , ~ ( x ) ) [ n m l  

is an isomorphism if and only if the "forget supports" map 

k!(i*J @ q(zm))--+ Rk*( i*J  @ -q(zm)) 
is an isomorphism. In proving ( 2 ) ,we showed that if 

k!(i*J @ -q(,m))Rk*(i*J @ -q(Zm))-) 

is an isomorphism, then R(pr2),(pr;L@ f i f f K ( x ) ) [ n m ]  is perverse irreducible. 
this proves (4 ) .  Q.E.D. 

As a special case of the above result, we obtain the following corollaries. The 
9-module analogue of Corollary 2.4.3 was conjectured by Dwork [Dw, 15.4 via 
11.1.31. 

2.4.2. 	 Corollary. Suppose we are given: 
k , an algebraically closed field of characteristic p # 1 ; 
V , an afine smooth irreducible k-scheme offinite type; 
f :  V -+ 	 A m , an arbitrary morphism; 
n: V +A" , a closed immersion; 
m - 1 multiplicative characters x l  , . . . ,xm-, of a finite subfield of k . 

For x any (possibly trivial) multiplicative character of a finite subfield of k ,  
consider the Kummer sheaf Txon G,,, and its extension by direct image j*Tx 

to A' . For any multiplicative character x,, , denote by K ( x 1  , x l ,  ... , xm) the 
external tensor product 

K ( x )  := pr: j*Tx,  [ 1 ]  on A" = A 
1 

x . . . x A 
1 . 

i=l ,,..,m 

Then: 
( 1 )  K ( x l  , x2 , . .. , xm)  is perverse irreducible on Am ,and H,(A" ,K ( x ) )= 

0 i fsome xi is nontrivial. 
( 2 )  There exists an integer No,  depending only on the data 

( k ,  V > f ,  n , x 1 > x 2 3  ... ' X m - l ) '  

such that if the order of 2 ,  is > No,  then the perverse sheaf 

R ( P T ~ ) ! ( ~  " '  + dim V latffK(x1' X 2 '  , x,))Inm 

on Aff Maps(An , Am) is irreducible. 

Proof. This is the special case when L Is Ql,,[dim V ], which is perverse ir- 
reducible on V because V is smooth and irreducible, and when K,-, is 
K ( X ~ , X ~ , . - . , X , , - ~ ) -Q.E.D. 

2.4.3. 	 Corollary. Suppose we are given: 
k , an algebraically closed field of characteristic p # 1 ; 

http:11.1.31


f :  An + A m ,  an arbitrary morphism; 

n multiplicative characters p, , . . . , pn of a jni te  subfield of k ; and 

m - 1 multiplicative characters X ,  , . . . , xm-, of a finite subjield of k . 


Using the notation of 2.4.2, for any multiplicative character x m ,  denote by 
K ( x 1, x Z ,. . . , x,,) the external tensor product 

and denote by L ( p l  , . . . , pn) the external tensor product 

Then: 

( 1) K ( x l, x2 , . . . , x,) is perverse irreducible on Am , and H ~ ( A ", K ( x ) )= 
0 i f some X ,  is nontrivial. 

( 2 )  L ( p l  , . . . , p,) is perverse irreducible on A n ,  and H,(A" , L ( p ) )= 0 if 
some p, is nontrivial. 

(3) There exists an integer No ,  depending only on the data 

such that if the order of X ,  is > N o ,  then the perverse sheaj 

on Aff ~ a ~ s ( A ", Am) is irreducible. 

Proof. This is the special case o f  2.4.1 when V is An , n is the identity map, 
L is U P , , . . .  Q.E.D., p n ) , a n d  Km-,  is K ( X ~ , X ~ , . . . , X , , - ~ ) .  

2.5. Uniformity for the integer No in Theorem 2.4.1(3). 

2.5.1. 	 Uniformity Theorem. Suppose we are given: 

S = Spec(A), with A c C a subring of C which is normal, andjinitely 
generated over iZ ; 

V an af ine S-scheme ofjinite type; 

f:V -+ 	 (A"'), , an arbitrary S-morphism; 
n : V -+ 	 (An), ,  a closed S-immersion; 

K m - l J  	an object of D,h((Am-I),, ol)such that for each geometric point 
s of S , K,,,-, is perverse irreducible on (Am-' jS; 

L ,  an object of D,h(V,Ql )  such that for each geometric point s of S ,  
Km-,  ( < is perverse irreducible on 5 . 

For each geometric point s of S of characteristic p > 0 ,  apply Theorem 2.4.1 
to the jibre over s of this data and denote by &(s )  > 1 the least integer that 
"works" in conclusion (3).  Then there exists an integer N >_ 1, a dense open set 
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U of S[ l /N] ,  and an integer N, > 1 such that for every geometric point u of 
U ,  N,(u) 5 N, .  

Proof. This is essentially an exercise in applying the uniformity results of [KaLa, 

531, the terminology and results of which we will use freely. Fix a stratification 

Z.' of V to which L is adapted and a stratification d of (Am-'), to which 

Km-, is adapted. 


For each integer d 2 1 ,denote by qd(t) in Z[X] the dth cyclotomic poly- 
nomial and by Z[ l /d ,  id]  the ring Z[ l /d ,  t] /(qd(t)) .  The sheaf T X ,  for x 
of order d , can be constructed universally on (Gm)Z,lld,cdl , and its extension 

by zero jlixto A' lives on (A1),[l/d, id ] .  A key point in what follows is 
that for every d and for every x of order d , j l iXis always adapted to the 

same stratification (6, , (0)) of A1 . 
In terms of the stratifications Z.' and d , and the map faff ,  one constructs 

a stratification Z of V x Aff Mapss((Am), , (An),) such that for any integer 
d 2 1 and any character x of order d ,  after the base change from S to 
S @, Z[ l /d ,  i d ] ,  the object p r ; ~  @ f iffK(x) is adapted to Z . 

We will need to apply [KaLa, 3.3.31 to this stratification 3 and to the mor- 
phism 

viewed as a map of S-schemes. By [KaLa, 3.3.31 there exists an integer N 2 1 , 
a dense open set U in S[ l /N)  and a stratification 26' of 

with the following property: For any integer d 2 1 and any character x of 
order d , after the base change from U to U @,Z[l I d ,  id ] ,  each of the objects 

is adapted to 9,and its formation commutes with arbitrary change of base on 
u @ z z [ l / d ,  i d l a  

At the expense of further shrinking U , we may further assume that for each 
strat Be of B , as U-scheme, say fe: Ba + U ,  all the sheaves Ri(  fa)!(IE'/) on 
U are lisse. 

This is a property of fa ,  which is stable by arbitrary base change on U .  
If it holds, then after any base change U' + U with U' connected, every 
geometric fibre of fa meets every connected component of Ba x ,U' . (Indeed, 
we reduce by base change to treating the case when U is connected. Then 
for each nonempty connected component C of Ba , with structural morphism 

, the cohomology eiR'(fa,  .)!(Z/lZ) is itself lisse, being a direct factor of 
fa,eiRi( fa)!(Z/iZ). Now as C is nonempty, at least one of the geometric fibres 
of fa, is nonempty, so has some dimension d > 0 ,  and, therefore, by proper 

base change R ~ ~ (  is nonzero. isfa, ,)!(z/Iz) Therefore eiR'(fe, c ) ! ( ~ / I ~ )  
both lisse and nonzero. As U is connected, this sheaf is everywhere nonzero, 
so again by proper base change the map must be surjective.) 
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2.5.2. Lemma. Let U be a normal Z[1/1]-scheme of finite type, X / U  a U -
scheme offinite type, and 2 a stratification of X such that each strata Xa as 
U-scheme, say fo : Xo -+ U , has all the sheaves R i (  f,)!(IF,) on U lisse. 

( I )  Let M be an object of D:(x, 0,). which is adapted to the stratification 
F.For every geometric point u in U , we denote by Mu := MIX, the induced 
object of D:(x, , 0,). Then the following conditions are equivalent. 

(a) M = 0 in D:(x,  0 , ) .  
(b) For every geometric point u of U ,  Mu = 0 in D:(x,, 0,). 
(c) In every connected component of U there exists a geometric point u of 

U for which Mu = 0 in D:(x,, 0 , ) .  

( 2 )  Let M and N be two objects in D:(x, 0,).both of which are adapted 
to the stratification 2,and let (p : M + N be a morphism. For every geometric 
point u in U , we denote by (p, : Mu + Nu the induced morphism on fibres. 
Then the following conditions are equivalent. 

(a) (p is an isomorphism in D:(x ,  0,). 
b(b) For every geometric point u of U , (p, is an isomorphism in D, ( X u ,  0,). 

(c) In every connected component of U there exists a geometric point u of 
U for which (p, is an isomorphism in D: (x,, Q,). 

Proof. Making the base change from U to each of its connected components, 
we may reduce to the case when U is connected. For each strat Xo , a lisse sheaf 

on Xa vanishes if and only if it vanishes at some point of each connected 
component of X a ;  but if U is connected, any geometric fibre of Xa + U 
meets every connected component of Xa . Apply this to each cohomology sheaf 

Z ' ( M ) ,  restricted to each Xo . 
( 2 )follows by applying ( 1 )  to the mapping cylinder of yl . Q.E.D. 

Let us return now to an integer d 2 2 and the universal for a character 
x of order d . After the base change from U to U @, Z [ l / d ,id] ,consider 
the "forget supports" map 

R ( P ~ , ) ! ( P ~ ; L@ f :,K(x))[nml R ( P ~ , ) * ( P ~ ; L+ @ f : , ~ ( x ) ) [ n m l .  

Both source and target are of formation compatible with arbitrary base change 
on U@,Z[l I d ,  id]. Because U [ l  /d l  is connected, every connected component 
of U 8, Z [ l  I d ,  id]maps onto U [ l  /d l  . So by Lemma 2.5.2, for each integer 
d 2 2 the following four conditions are equivalent. 

( I d )The "forget supports" maps is an isomorphism 

R ( P ~ , ) ! ( P ~ ; L@ f :,K(x))[nml = R ( P ~ , ) * ( P ~ ~ L@ f :,K(x))[nml 

on Aff Maps@U@, Z [ l / d ,  i d ] .  
(2d)For every geometric point u of U [ l / d ]and every character x of order 

d , the fibre over u of the above "forget supports" map is an isomorphism. 
(3d) There exists a geometric point u of U [ l / d ]and a character x of order 

d , such that the fibre over u of above "forget supports" map is an isomorphism. 
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(4d) Over the geometric generic point " @ " of U , corresponding to the given 
inclusion A c @ , the "forget supports" map is an isomorphism 

R(P~,)!@~;L = R(Pr,)*(Pr;L @ f ,,K(x))lnml@ f ;&(x))[nml 

on Aff Maps, for some character x of order d .  
In view of the equivalence of (2d) with (4d), in order to prove Theorem 2.5.1 

it suffices to show the existence of Nl such that for any character x of order 
d 2 Nl ,condition (4d) holds, i.e., the "forget supports" map is an isomorphism 

R(P~,)! (P~;L @ f ; ,~(x))[nml@ f ; ,~(x))[nml  = R(P~,)*(P~;L 

on Aff Maps,. 
All that we know right now is that for any geometric point u in U whose 

residue characteristic pu is positive, the equivalent condition (3d) holds for all 
integers d 2 No(u),which are prime to p,, . This already shows that (4d) holds 
for an infinity of d 's. We will deduce from the fact that (4d) holds for an 
infinity of d 's that (4d) must hold for all sufficiently large d 's. 

In order to do this, factor the morphism 

pr,: V x Aff Maps -+ Aff Maps 

V x Aff Maps 

Am x Aff Maps 

A' x Aff Maps 

1n 2 ( : = p r 2 )  

Aff Maps. 
We denote the composition of the first two maps simply by 

q : v x ~ f f  a --+ s~ 8'~ x Aff Maps. 

Consider also the composite morphism 

V x Aff Maps 

V x Am-' 
which we denote simply as 

y :  V x Aff Maps - v x Am-' 



- - 

The object pr;L  @ f ~,' ,K(x)on V x Aff Maps is the tensor product 

Y * ( L @ K , ~ - ~ )  @ a $ , . 4 A M a C ) '@ ~ * ( j ! q [ l l  

We define two complexes M, and MI on A'  x Aff Maps as follows: 

These objects are independent of x , and there is a natural "forget supports" 
map M, +M* . 

By the projection formula, we have 

We must show that the natural forget supports map 

R ( ~ , ) ! ( J ! ( ~ * M !@Tx))R(~ .~ , )* ( J ! ( J*M*+ @ 3)) 
is an isomorphism on Aff Maps, for all x of sufficiently high order, given that 
it is an isomorphism for an infinity of x . 

Let us denote by 

j :  6, x Aff Maps - IP' x Aff Maps, 

k : A' x Aff Maps --+ P' x Aff Maps, 

the inclusion, and by 

n, : IF'' x Aff Maps -- Aff Maps, 

the second projection. In terms of j and Z, , we have the tautological formulas 

So we may rewrite the "forget supports" map as 

R ( z ~ ) * ( J ! ( J * ~ ~- @px)).8px)) R ( R ~ ) * R ~ * ( J ! ( J * ~ ~ *  

As proven in [KaLa, 6.51, for any N on G, x Aff Maps, the maps 

j ,(N @TX)Rk*j ! (N@Tx)Rj*!N @Tx) 

are isomorphisms for all x of sufficiently high order. Applying this to each of 
the objects j * ~ ,and j * ~ *, we see that for all x of sufficiently high order, we 
may rewrite the "forget supports" map as 

R ( ~ ~ I * ( ~ ! ( J * M ! )- @ 7 ! q ) ) .@ $qx)) R ( ~ ~ ) * ( ~ ! ( J * M * )  

mailto:@a$,.4AMaC)'
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In terms of the second projection 

p,: G, x Aff Maps + Aff Maps, 

this is the map 

RP~!(J*M!8 P X )  RP,!(J*M* @YX).--+ 

This map is an isomorphism for x if and only if the mapping cylinder 

has the property 
Rp2,(N@ =qX) = 0. 

We know that this holds for an infinity of x , and we have only to apply the 
following lemma, taking X := Aff Maps, . 

2.5.3. Lemma. Let X be a scheme offinite type over an algebraically closed 
field k of characteristic # 1 and N an objtct of D,~(G,,,x X ,  Q,) . Suppose 
for an infinity of multiplicative characters x of jinite order prime to char(k), 
R(p,)!(N 8TX)= 0 .  Then all but finitely many characters x of finite order 
prime to char(k) , R(p,)!(N 8T x )  = 0 .  

Proof. By definition of D ~ ( G ,x there exists a finite extension E, ofX ,  a,), 
0,such that N is the extension of scalars of an object N, of D,~(G,x X ,  E,) . 
There are finitely many nonzero cohomology sheaves Z'(N,), each of which, 
being constructible, has all its stalks of dimension bounded by some constant 
C . Inside 0,, there are only finitely many extensions of E, of degree < C , 
so all such extensions are contained in some finite extension F, of E, . The 
group of all roots of unity in F, is finite, say of order D . We claim that for 
any character x of finite order prime to char(k) , whose order does not divide 
D , we have R(p2),(N 82x)= 0 on X .  

By proper base change, we may reduce to the case when X is a point, i.e., 
the spectrum of an algebraically closed field K of characteristic char(k) . Then 

bN in Dc (G,, ,, E,) satisfies 

for an infinity of x . Consider the spectral sequence 

The E, terms vanish except possibly for p = 0 ,  1 , or 2. So the only possibly 
nonvanishing differential is d:O,q: E;,' + E:,'-' ; but E:"-' is 

H ,, ' ( N )  , x of sufficiently high order. 8TX)which vanishes for 

For if U is a dense open set of ,,Om on which 2'-'( N )  is lisse, this H: 

is nonzero if and only if TX1 U is a quotient of A?'-' ( N )1 U . and by Jordan- 
Holder theory there are only finitely many possible irreducible quotients. (In 
fact, this H: vanishes for x of order not dividing D ,  as one sees by looking 
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at the local monodromy at either 0 or m .) Since Hc(G,, ,,N @ Tx)= 0 for 
an infinity of x 's, there exists an infinity of x 's  for which both 

and 
E : ' ~ - '= o for all q. 

For any such x , the spectral sequence degenerates at E, . Consequently, for 
an infinity of x 's we have 

Hc(G,, ,, (N) @ TX)= 0 for all q. 

In other words, each of the cohomology sheaves A?"'(N) is a constructible 
EA-sheaf 9 ,  which itself satisfies the condition 

HC(Gm,,,9@ 3)= 0 for an infinity of x's. 

Fix one such x . The vanishing of H: shows that 9@ Zxhas no punctual 
sections. The vanishing of xc(Grn,,,9@ Z z )  gives, by the Euler-Poincare 
formula on G,, ,, 

= - total d r o p x ( F  8 Tx)- Swan,(F 8 3)- Swanm(F@ Zx). 
x inG,,,  

Because F @ Txhas no punctual sections, all the terms on the right side are 
negative, so they all must vanish. Their vanishing means that 9@Zxis lisse on 

and tame at both 0 and m . Therefore 9 itself is a successive extension G,,
of sheaves ZA, thanks to the known structure of the tame n,  of G, ,., for 
various characters A ,  not necessarily of finite order, of this tame n ,  . Because 
9 has rank bounded by C and is an EA-sheaf, all the characters x of finite 
order such that Zxoccurs in 9 as a Jordan-Holder constituent have order 
dividing D ; therefore, for any character p of finite order prime to char(K) 
whose order does not divide D , 9@ Zpis a successive extension of sheaves 
ZAwith A nontrivial and, hence, has H,(G,,, , 9  @ Zp)= 0 .  Q.E.D. 

This concludes (!) the proof of the Uniformity Theorem 2.5.1. Q.E.D. 

2.5.4. Corollary. Hypotheses and notation are as in the Uniformity Theorem 
2.5.1. 

( I )  For all x ofjnite order > 1 , the objects 

and 
R(Pr,)*(Pr;L @ f ; ,~(x))[nmllAff,  Maps, 

are perverse on Aff Maps, . 
(2) For any x ofjnite order > N, , the object 

is perverse irreducible on Aff Maps,, and the 'Torgets supports" map is an iso- 
morphism. 
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Proof. For any character x of order d > 1 (resp. > N , )  conclusion ( I )  (resp. 
(2))holds at all geometric points of U [ l / d ]of finite characteristic. The passage 
to the geometric generic point cG of U results from [BBD, 6.1.91. Q.E.D. 

2.5.5. Remark. See [GKZ,Theorem 2.1 I ]  for a L8-module analogue of 2.5.4 
over @ .  

111. APPLICATIONSTO BERTINIAND LEFSCHETZ-STYLETHEOREMS 

FOR HYPERSURFACE SECTIONS 

3.0. In this section, we will obtain theorems of Bertini and Lefschetz type as a 
consequence of what the general theory gives in the case when rn = 1 , K is 
the perverse sheaf K on A'  given by 

K := Rj,Q1[ 1 1  for j :G, -+ A
1 

the inclusion, 

and variable data ( V ,  f ,  n ,L )  . The basic observation that we need to get 
started is 

3.0.1. Lemma. Over an algebraically closedfield k of characteristic p # 1 ,  the 
perverse sheaf K on A' , given by 

K := R j * o , [ l ]  f o r j :  G, + A 1  theinclusion. 

has H ~ ( A ~ ,  0K )  = 

Proof. By the inversion x H l / x  on P', H,(hl , K )  becomes the ordinary co- 

homology H(A1 , j ,Q,[ l ] ), so we are reduced to showing that H'(A', j,Ql) = 0 
for i =0, 1, 2 . B y  Grothendieck's Euler-Poincare Formula, we have x(A1, j ! G )  
= 0 .  For cohomological dimension reasons, we have H'(A' , jlQl) = 0 for 

i > 1 . The group H O ( h l ,j , o l )  vanishes because j,Q, has no punctual sec- 
tions and its stalk at one point (the origin) vanishes;'therefore, the remaining 
group H'(A', j ! o l )  vanishes, since x(A' , j lQl) = 0 .  

An alternate proof is to notice that R T ~ ( A '  , K ) [ 1 ]is the stalk at zero of the 
Fourier Transform FT,(K) and then to appeal to the result [Ka4, A21 that 

Applying Main Theorem 1.5 to this case, we get 

3.0.2. Corollary. Suppose we are given: 
k , an algebraically field of characteristic p # I ; 

V ,  a separated k-scheme offinite type; 

f :  V - A' , an arbitrary function; 
n :  V + A" , a quasi-finite morphism. 

Then for any perverse L on V , the object 

on Aff ~ a p s ( A " ,  A')  is semiperverse. 



3.1. What does this mean concretely? The semiperversity on Aff ~ a p s ( A ", A ' )  
of M ( L )  , together with its constructibility, implies that there exists a dense 
open set % of Aff Maps(An , A')  over which 

(1) all the cohomology sheaves 2Yi M ( L )  are lisse on 2Z , 
(2) 2YiM(L) vanishes on % for i > -dimAff M a p s ( ~ " ,A ' )  = -n - 1 . 

3.2. By duality, it follows that over %, the dual 

has lisse cohomology sheaves on % , whose formation commutes with arbitrary 
change of base on % and whose cohomology sheaves vanish for i < -n - 1 . 

3.3. For each point (A , b) in Aff Maps(An , A ' )  corresponding to the affine 
map x r Ax + b , let us denote by f,, ,: V -+ A' the function v ++ f ( u )  + 
An(v) + b ,by j, ,,: V[l/ fA ,,] -+ V the open inclusion, and by 

i,,b: V " ( f 4 , ,  = O )  -- V 

the closed inclusion. Then if (A, b) lies in % , the stalk at (A, b) of 

The ith cohomology group of this complex is 

H ' + " + ~ ( v ,  ( j , , b ) l ( j , , b ) * ~ ~ ) i n  + I ) ,  

and for (A, b) in % , it vanishes for i < -n - 1 . In other words, 

H ' ( v ,  ( j , , b ) l ( j A , , ) * ~ ~ )0 if a < 0 and if (A, b) in %.= 

Now take the long exact cohomology sequence of the short exact sequence 

-- ( J , , ~ ) ! ( J ~ , ~ ) * D '  ( i A , b ) * ( i A , b ) * D L  O.-- DL * 

We find that if (A, b) in 24,  the restriction map 

is an isomorphism for a < -1 and injective for a = -1 . 
Exchanging the roles of L and D L ,  we get 

3.4. Theorem. Suppose we are given: 

k , an algebraically closed field of characteristic p # 1; 

V , a separated k-scheme offinite type; 

f :  V + A '  , an arbitrary function; 

TC:V -+ A",  a quasi-jinite morphism. 
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Then for any perverse L on V ,  there exists a dense open set %of Aff ~ a p s ( A " ,A ' )  
such that if ( A ,  b )  in % then 

H a ( V ,  ( j A , b ) l ( j A , b ) * L )  = O for a < O )  
( 2 )  the restriction map 

is an isomorphism for a < - 1 and injective for a = - 1 . 

3.4.1. 	 Corollary ("Weak Lefschetz"). Suppose we are given: 
k , an algebraically closed field of characteristic p # 1 ; 
V ,  a separated k-scheme offinite type, which is a local complete inter- 
section, purely of dimension d > 0 ; 
f :  V - A' , an arbitrary function; 

rt : V + A n ,  a quasi-jinite morphism. 


Then for any lisse %-sheaf F on 2%' there exists a dense open set V ,  of 
Aff Maps(An, A' )  such that if ( A ,b )  in % then 

( ' 1  H a ( v ?( j A , h ) ! ( j A , h ) * F )O for= a < d ,  
( 2 )  the restriction map 

is an isomorphism for a < d - 1 and injective for a = d - 1 . 

Proof. This is simply Theorem 3.4, applied to the perverse sheaf L = F [ d ]  
on V ( F [ d ]  is perverse on V because V is a local complete intersection, 
everywhere o f  dimension d )  . Q.E.D. 

3.4.2. 	 Corollary ("Weak Bertini") . Suppose we are given: 
k , an algebraically closed field of characteristic p # I ; 
V , a separated k-scheme offinite type, which is a connected local com- 
plete intersection, purely of dimension d > 1 ; 
f :  V - A' , an arbitrary function; 
rt : V -+A n ,  a quasi-jinite morphism. 

Then for any finite etale covering p: E - V with E connected, there exists 
a dense open set 2Y of Aff M ~ P S ( A " ,A ' )  such that if ( A ,  b )  in 2Y then the 
pullback p - l ( ~n ( f A , ,= 0 ) )  of E to V n (f, ,b = 0 )  

is connected. 
Proof. Corollary 3.4.1 applied to the constant sheaf G,on V and a = 0 shows 
that there exists an open dense 2Y in Aff such that for ( A ,  b )  in % ,we have 
H'(v ,  Q,)= HO(Vn ( f , , ,  = 0 ) ,&),i.e., V n ( f , , ,  = 0 )  is connected. Now 
apply this same result to the data ( k  , E ,  f o p , rt o p) . Q.E.D. 



182 	 N. M. KATZ 

3.4.3. 	 Corollary ("Weak Smooth Bertini"). Suppose we are given: 
k , an algebraically closed field of characteristic p # I ; 
V , an irreducible smooth separated k-scheme offinite type of dimension 
d >  I ;  
f:V -+ A' , an arbitrary function; 
n: V -+ A", an unramijied morphism. 

Then: 
( 1 )  There exists a dense open set 2Y of Aff Maps(An, A' )  such that if ( A ,b )  

in 2Y then V n (fA,,= 0 )  is smooth and irreducible. 
( 2 )  For any finite etale covering p : E -+ V with E irreducible, there exists 

a dense open set Z of Aff Maps(An, A ' )  such that if ( A ,  b )  in 2Y then the 
pullback p - ' ( ~n ( f , , ,  = 0 ) )  of E to V n ( f A , b= 0 )  

p - ' ( v n  ( / A , ,  = 0 ) )c E 
1 1 

V n ( f , , , = O )  c v  
is smooth and irreducible. 

Proof. Just as in Corollary 3.4.2, statement ( 2 )  is just statement ( 1 )  for the 
data ( k ,  E ,  f o p ,  n o p) . T o  prove ( I ) ,  it suffices to  show there exists a 
dense open set Zl o f  Aff Maps(An,A ' )  such that i f  ( A ,  b )  in ?%, then 
V n ( f , , ,  = 0 )  is smooth. For we already know there exists a dense open 

set 2Y o f  Aff Maps(An, A' )  such that i f  ( A ,  b )  in 2Y then V n ( fA , ,  = 0) is 
connected; so for ( A ,  b )  in  2Y n Zl , we find that V n ( f,,, = 0 )  is smooth 
and connected, hence, irreducible. Q.E.D. 

The smoothness amounts to the following lemma, which is certainly well 
known but for which I do not know a reference. 

3.5. 	 Lemma. Suppose we are given: 
k , an algebraically closed field; 
V , an irreducible smooth separated k-scheme offinite type of dimension 
d >  1 ;  
f:V -+ A 1 , an arbitrary function; 
n: V -+ A n ,  an unramijied morphism, given explicitly by n functions 

1 x ,  , . . . , xn on V whose diferentials d x ,  span !2,,k at every point of 
v .  


Then there exists a dense open set 2Y of 


~ f fMaps(An, A ' )  = ~ i n M a ~ s ( A " ,A ' )  x A' 

= A' x LinMaps(An, A ' )  

over which the map 

F :  V x in Maps(An, A ' )  -+ A' x in ~ a p s ( A ", A ' ) ,  
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is smooth, of relative dimension d - 1 . In particular, if ( A ,b )  in Z,then 
V n ( f , ,  -,= 0) is smooth of dimension d - 1 . 

Proof. On V ,  consider the rank d vector bundle R:,~, the rank n trivial 

bundle R n  and the surjective homomorphism of vector bundles 8"-
given by the n sections d x ,  , . . . , d x n  . We denote by 3Y the kernel of thls 
map: 

1 
~ - ~ - a ~ - n , , ~ - o .  

Thus 3Y is a vector bundle over V of rank n - d . 
On the product V x in Maps(An, A ' )  , with coordinates (v  , (a,)), consider 

the morphism 

In the product V x Lin Maps(An , A') , consider the subvariety Crit Pt consist- 
ing of the critical points of F , i.e., of the points (v , ( a , ) )where 

Since the d x ,  span Q:,, at every point, we see that the first projection prl : 
Crit Pt -+ V is a smooth map of relative dimension n -d ; indeed, it is a torsor 
under 3?. Therefore Crit Pt is smooth, of dimension n . 

Now consider the restriction of F to CritPt: 

F I Crit Pt: ~ r i t  ~t -+ A' x in ~ a ~ s ( A ", A'). 

This is a morphism of separated schemes of finite type over k and so is a 
separated morphism of finite type. Its source, Crit Pt , is lower dimensional 
than its target A'  in ~ a ~ s ( A " ,  . We apply part (2) of the following x A ' )  
lemma. 

3.6. Lemma. Suppose we are given: 
k , an algebraically closed jield of characteristic # l ; 
S, a normal irreducible separated k-scheme o f jn i t e  type; 
p :  X -+ S, a separated morphism o f jn i t e  type. 

Then: 
( 1 ) If dim(X) 5 dim(S), there exists an open dense set 2Y in S and an 

integer N ,  such that over 2Y the morphism p hasjinitejibres, each with precisely 
N geometric points. 

(2) If dim(X) < dim(S) then N = 0 ,  i.e., there exists an open dense set % 
in S over which Xg is empty. 

Proof. Replacing S by a dense open set 2Y of S does not change dim(S) or 
dim(X) and allows us to assume 

(*I all the sheaves R ' ~ , ( Z / / ; Z )are lisse on S .  
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Further replacing S by a finite etale surjective covering of itself allows us to 
assume that 

(**) all the sheaves R ' ~ , ( z / ~ z )are constant on S. 

We will show that under (**) , the map p has finite fibres. 
If p has empty fibres, i.e., if X is empty, there is nothing to prove. 
If X is nonempty, let us denote by D > 0 the maximum of the dimensions 

of the fibres of p .  By proper base change and the fact that for Y a sepa- 
rated r-dimensional scheme of finite type over an algebraically closed field of 
characteristic # 1 ,  we have 

H ~ ( Y , Z / I Z ) = O  f o r i > 2 r ,  

dimHC2'(y, ZllZ) = number of irreducible components of dimension r ,  

we see that 

2 0  = maximum integer N such that R " ~ , ( z / ~ z )# 0. 

Since R ~ ~ ~ , ( Z / I Z )is constant on S ,  say with value A2D, denoting by d := 
dim(S) the 'Leray spectral sequence for Rp, shows 

Therefore we find that dim(X) = D + d = dim(S) + D .  Since D > 0 and 
dim(X) 5 dim(S) , we conclude that D = 0 and that dim(X) = dim(S) . The 
integer N is the rank of the sheaf p,(Z/lZ)I%. Q.E.D. 

Now let us return to the morphism 

F / Crit Pt :  Crit Pt + A'  x Lin Maps(An , A') .  

By part (2) of Lemma 3.6, there exists a dense open set 22 in 

A '  x Lin Maps(An , A ' )  

over which Crit Pt is empty. This means precisely that over 22 . the morphism 

is smooth, of relative dimension d - 1 . 
Thus if (A,  b) = ( ( a l ) ,  b) lies in 22, the fibre over it of F is smooth over 

k ; b u t t h i s f i b r e i s  V n ( f ,  = b ) ,  i.e., i t i s  V n ( f  ,,-,= O ) .  Q.E.D. 

Here is a relative version of the above lemma. 
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3.7. Lemma. Suppose we are given: 
k , an algebraically closed field; 

T ,  an irreducible smooth separated k-scheme offinite type; 

P :  V -+ T ,  a smooth separated morphism offinite type, everywhere of 

relative dimension d > 0 ; 

f :  V -+ A1 , an arbitrary function; 
n : V -+ A" x T , an unramijied T-morphism, given explicitly by n func- 

1tions x ,  , . . . , x ,  on V whose differentials d x l  span RviT at every point 
of v. 

Then there exists a dense open set 22' of 

Aff Maps(An, A') x T = in Maps(An, A' ) x A'  x T 

= A' x Lin Maps(An , A' ) x T 

over which the morphism 

V x Lin Maps(An , 4') 
l ( u ,  A ) - ( f  ( u ) + A r ( u ) ,  A ,  p ( u ) )  

A' x ~ i n M a ~ s ( A " ,A ' )  x T 

is smooth, everywhere of relative dimension d - 1 . 
Proof. 	The proof proceeds exactly as above, with Lin Maps(An , A') replaced 
systematically by in Maps(An, A') x T . Q.E.D. 

This relative version gives, by an obvious induction on m , the following: 

3.8. 	 Lemma. Suppose we are given: 
an integer m 2 1 ; 
k , an algebraically closed field; 

T ,  an irreducible smooth separated k-scheme offinite type; 

P :  V -+ T ,  a smooth separated morphism offinite type, everywhere of 

relative dimension d > m ; 

f :  V -+ Am,an arbitrary morphism; and 
n : V -+ A" x T , an unramijied T-morphism, given explicitly by n func- 
tions x, , . . . , xn on V whose differentials d x l  span R;,, at every point 
of v .  

Then there exists a dense open set 22' of 

Aff Maps(An, Am)x T = Lin ~ a p s ( A " ,  Am) x Am x T 

= Am x in M a p s ( ~ " ,  Am) x T 

over which the morphism 
V x Lin Maps(An , Am) , 

l ( u  , A ) - ( f ( u ) + A r ( u )  , A 2  P ( u ) )  

Am x Lin Maps(An , Am)x T 

is smooth, everywhere of relative dimension d - m . 
Taking 	T = Spec(k) gives 
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3.8.1. 	 Corollary. Suppose we are given: 
an integer m 2 1 ; 
k , an algebraically closed field; 
V ,  a smooth separated k-scheme of finite type, everywhere of relative 
dimension d 2 m ; 
f :  V + Am , an arbitrary morphism; and 
n :  V + A" , an unramified morphism, given explicitly by n functions 
x, , ... ,x, on V whose differentials d x ,  span C2Ljk at every point of 
v. 


Then there exists a dense open set % of 

~ f f  Am) 	 Am) x Am~ a ~ s ( A " ,  = ~ i n M a ~ s ( A " ,  

= Am x in Maps(An,Am) 

such that if ( A, b )  lies in % then V n( f  ( v )  +A n ( v )  = b )  is smooth, everywhere 
of dimension d - m . 
3.9. Variants for several simultaneous hypersurface sections. Using the above 
result, we can give variants o f  our Bertini and Lefschetz style results. The idea 
now is to apply the main theorem in  the general case to the semiperverse sheaf 
K on Am defined as 

K := Rj,ol[2rn - 11  for j : Am - (0) +A m ,  the inclusion. 

3.9.1. Lemma. Over an algebraically closed field k of characteristic p # 1, the 
object K on A",  rn 2 1 ,  given by 

K := Rj*Ql[2m- 1 1  for j :Am - (0) + Am the inclusion, 

has HC(Am ,K )  = 0 .  

Proof. Notice that R ~ , ( A " ,K ) [ l ]  is the stalk at zero o f  the Fourier Transform 
F T V ( K ),and then appeal to the result [Ka4, A41 

F T , ( ~ j * o , [ 2 r n- I ] )  E j , o l [ l ] .  Q.E.D. 

3.9.2. 	 Lemma. For 

K := R j * o l [ 2 m- 11  for j :Am - (0) + Am the inclusion, 

its dual DK is given by DK = j ,o , [ l ] (rn). 

Proof. Duality interchanges Rj* and R j ,  and the dual o f  01[2rn - 11  is 

-
Q l [ l l ( m )  
Q.E.D. 

3.9.3. Lemma. The cohornology groups H ' (Am , jlQl) = 0 for all i . 
Proof. This is the (shifted) dual o f  the vanishing o f  H,(Am, K )  . Q.E.D. 

3.9.4. Lemma. Over an algebraically closed field k of characteristic p # I ,  the 
object K on A" ,  rn 2 1 , given by 

K := Rj*QI[2m- 1 1  for j :  Am - (0) -+ Am the inclusion, 

is semiperverse. 
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Proof. It is trivial that K is semiperverse on Am - (0) .  We must show that 
the stalks (X'K),  vanish for i > 0 .  Denoting by i :  (0) + Am the inclusion, 
we have a triangle 

Since H(Am , j,Q1[2m- 11) = 0 ,  the long exact cohomology sequence gives 

but 

H'(Am, K)  = H'(Am , Rj*Ql[2m- I]) = H (Am- {0) ,Ql) , 

so we must show that 

Hi(Am- (0) ,Ql) = 0 for i 2 2m ; 

but Am-(0) is a Zariski-locally-trivial G,bundle over pm-I ,SO this vanishing 
follows from the Leray spectral sequence 

(In fact, this is the standard calculation which shows that Am - (0) has the 
same ~l-cohomology as the standard 2m - 1 sphere). Q.E.D. 

Applying Main Theorem 1.5 gives 

3.9.5. 	 Corollary. Suppose we are given: 
m 2 1, an integer; 
k , an algebraically closed field of characteristic p # 1 ; 

V ,  a separated k-scheme offinite type; 

f :  V 4 Am, an arbitrary morphism; 
n : V 4 An a quasifinite morphism. 

Then for any perverse L on V , the object 

on Aff Maps(An, Am) is semiperverse. Its dual is the object 

For given L there exists a dense open set % of Aff Maps(An, Am) over 
which both M(L) and its dual have lisse cohomology sheaves, whose formation 
commutes with arbitrary change of base on 2Z.By the semiperversity of M(L)  , 
the cohomology sheaves Z ' M ( L ) ~ %  vanish for i > -nm - m . Dually, the 
cohomology sheaves X'DM(L) vanish for i < -nm -m . 

Thus if (A, b )  lies in % , the stalk at (A, b )  of 
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and 
H ' ( v ,  ( j , , , ) ! ( j , , , ) ' ~ ~ ) [ n m  + 11  = 0 for i < -nm - m .  

In other words, for ( A ,  b )  in fZ , we find that 

H ' ( v ,  ( j A , , ) ! ( j i l , , ) * ~ ~ )  for i < 1 m .= 0 -

Exactly as above, we then deduce 

3.9.6. 	 Corollary ("Weak Lefschetz") . Suppose we are given: 
m 2 1 , an integer; 
k , an algebraically closedjield of characteristic p # 1 ; 
V ,  a separated k-scheme ofjinite type, which is a local complete inter- 
section, purely of dimension d > m ; 
f :  V -* A m ,  an arbitrary morphism; and 
n :  V --+ A",  a quasi-finite morphism. 

Then for any lisse 0,-sheaf F on V ,  there exists a dense open set fZ of 
Aff Maps(An, Am) such that, if ( A ,  b )  in %, then 

= ' m ,( I )  H a ( v >( j A , h ) l ( j A , b ) * F )O for a ' + -

(2) the restriction map 

is an isomorphism for a < d - m and injective for a = d - m . 

Exactly as above, this leads immediately to 

3.9.7. 	 Corollary ("Weak Bertini"). Suppose we are given: 
k , an algebraically closed jield of characteristic p # 1 ; 
V ,  a separated k-scheme ofjinite type, which is a connected local com- 
plete intersection, purely of dimension d > m ; 
f :  V -.A m ,  an arbitrary morphism; 
n :  V --+ 	 A", a quasi-jnite morphism. 

Then for any jinite etale covering p: E + V with E connected, there exists 
a dense open set % of Aff Maps(An, Am) such that if ( A ,  b )  in % then the 
pullback p f l ( v  n ( f , , ,  = 0 ) )  of E to V n ( f , , ,  = 0 )  

is connected. 

In view o f  Corollary 3.8.1 we find 

3.9.8. 	 Corollary ("Weak Smooth Bertini"). Suppose we are given: 
k , and algebraically closed field of characteristic p # 1 ; 
V , an irreducible smooth separated k-scheme ofjinite type, of dimension 
d > m ;  
f :  V --t A m ,  an arbitrary morphism; 
n :  V -+ A n ,  an unramified morphism. 
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Then: 
( 1 )  There exists a dense set fZ of Aff ~ a p s ( A " ,Am) such that zf ( A ,  b )  in 

% then V n ( f ,  ,,= 0 )  is smooth and irreducible. 
( 2 )  For any finite &tale covering p: E + V with E irreducible, there e,xist 

a dense open set 2Y of Aff Maps(An, Am) such that if ( A ,  b )  in fZ then the 
pullback p-' (V n ( f ,  ,,= 0 ) )  of E to V n ( f ,  ,,= 0 )  

is smooth and irreducible. 

3.10. Applications to complete intersections in An . In the particular case when 
V is A" itself, we can exploit the fact that H a ( A n  ,aI)= 0 for a # 0 .  

3.10.1. 	 Theorem (complete intersections in A") . Suppose we are given: 
n > m p 1 , integers; 
k , an algebraically closed field of characteristic p # I ; 
m polynomials f, , .. . , fm in k [ x l  , . . . , x , ] ,  viewed as a morphism 
f = ( f , ,  . . . ,  f m ) : A " + A r n .  

Then there exists a dense open set 2Y of Aff Maps(An, Am) such that if 
( A  = (a , ,,) , b = (b , ) )  in %, then the subscheme fA ,  ,= 0 of An defined 
by the m equations 

satisfies 
( 1 )  f,, 	,= 0 is smooth and irreducible of dimension n - m ; 
( 2 )  its cohomology groups H a ( (  f, ,,= 0 ),Q1) vanish for a # 0 ,  n - m , 

and 
HO(( f , , ,  = 0 ),8)= Q :  

( 3 )  its compact cohomology groups HCa((f, ,, = 0 ),0,) vanish for 
a # n - m ,  2 ( n - m ) , a n d  

Proof. Statement ( 1 )  is Weak Smooth Bertini 3.9.8, applied with V = A " ,  n 
the identity. Once we know ( I ) ,  then by the cohomological dimension o f  affines, 
we see that H'(( f, ,, = 0 ),00 vanishes for a > n - m . Then statement ( 2 )  
is Weak Lefschetz 3.9.6, applied with V = A " ,  n the identity, and St = G I .  
Statement ( 3 )  is the Poincare dual o f  (2 ) .  Q.E.D. 

3.10.2. Corollary (numbers o f  points on general complete intersections). 
Hypotheses and notation are as in Theorem 3.10.1 above. Let k, be a finite 
subfield of k ,  and assume that polynomials f,, ..., fm in k [ x l ,  . . ., x,] lie in 
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ko[x,, ... , x,] . Then there exists a constant C and a dense open set Yo, defined 
over ko , of Aff ~ a p s ( A ", Am) such that, if E is afinite extension of ko inside 
k , with Card(E) := qE, and i f  ( A = (a i ,,) , b = (b,)) is an E-valued point of 
Yo, then the subscheme fA, ,  = 0 of A: defined by the m equations 

X(X,,..., x n ) + ~ a i , , x , + b , = O ,  i =  1 , . . . , m ,  
j 

is smooth and irreducible of dimension n -m , and its number of E-valued points 
satisfies the estimate 

Proof. With no loss of generality, we may suppose that k is an algebraic closure 
of the finite field ko . Consider the dense open set % of the theorem. Since 
% is defined over k ,  it descends to a dense open set 2Yl defined over some 
finite extension k, of ko . We take for Yo the intersection of the finitely many 
Gal(kl/ko)-conjugates of 2Yl . Then Yo is a dense open set such hat go8 k 
lies in the open set 22 of the theorem. 

At the expense of shrinking g o ,  we may further assume that the groups 
H:-~(( f A , b  = 0) ,Q,) are the stalks of a lisse sheaf on e 0 ,  and so their di- 
mensions are independent of the particular point ( A , b) in go.We claim this 
common dimension "works" as C . This results from the Lefschetz Trace For- 
mula and the fact [De, 3.3.41 that H:-~(( fA, ,  = 0) , 0 , )  is mixed of weight 
5 n - m .  Q.E.D. 

3.10.3. Remark. One can rechoose the constant C above to depend only on 
the three integers 

n ,m , d := max 

Indeed, consider the universal situation of m polynomials J ; , univ in n vari-
ables, each of degree at most d ,with indeterminate coefficients. Denote by R 
the polynomial ring over Z on these indeterminate coefficients, and by 

funiv A;: A: --+ 

the morphism defined by the j; ,univ . For each prime 1 ,the sheaves R' (f,niv)lq 
on A ~ [ ~ / , ~  or j < 0 .  Let C, are constructibe and vanish for j > 2n be the 

largest dimension of a stalk of R'( fUniv)!$ at any geometric point of A ~ [ , ~ , ~. 
Denote by Cl the sum C jC,, I . Then C, certainly "works" as a C in the 
above corollary as long as we are not in characteristic I ,  since it bounds the 
sum of all the I-adic Betti numbers of any of the varieties f,, = 0 .  So we 
may take for C the max(C,, ,) for any two distinct primes 1, and I,, e.g., 2 

' 2 

and 3. (It is not known that C, itself is independent of 1 .) 

3.11. Application of Bertini to 1-adic sheaves. We can also give a version of 
Bertini adapted to I-adic sheaves. We first make a definition. Suppose we 
are given a connected scheme X ,  a connected scheme Y ,  and a morphism 
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q :  Y -+ X . Let 1 be a prime, El a finite extension of Q,, @A. the ring of 
integers in El , and A or 4./A"@l , @, ,one of the rings E, for some integer 
u 2 1 . Let 9- be a lisse A-sheaf on X ,  corresponding, for each choice of 
geometric point x in X , to a continuous homomorphism 

We say that F on X and q - ' ( F )  on Y have the same monodromy if for 
some (or equivalently for every) geometric point y of Y ,  the composite ho- 
momorphism q* o p,, 

which "is" q-'(S?) , has the same image in A~t , (5$(~))  as p,, . 
3.1 1.1. Theorem (" I-adic Bertini"). Suppose we are given: 

k , an algebraically closed field of characteristic p # 0 ; 
V ,  a separated k-scheme offinite type, which is a connected local com- 
plete intersection, purely of dimension d > m ; 
f :  V -,A"' , an arbitrary morphism; 
n : V -+ A" , a quasi-finite morphism. 

Fix a prime number 1 and a finite extension E, of Q,, and let R be one of the 
rings E, , &, , or 19~/il"@~for some integer u > 1 . Let F be a lisse R-sheaf 
on X . Then there exists a dense open set 2V of Aff ~ a p s ( A " ,  Am) such that if 
( A ,b )  in 2L then the pullback 91V n (fA ,, = 0) has the same monodromy as 
9. 

Proof. Suppose first that R is &,/A"@l for some integer v > 1 . Then ,B has 
finite monodromy. Denote by E V the finite etale connected covering of 3 

V , which trivializes 3.Then the assertion is precisely that the pullback of E 
to V n ( f ,  ,, = 0) remains connected, for (A, b )  in a dense open set Zd of 
Aff ~ a p s ( A " ,  Am),  and this is precisely Weak Bertini. 

The case when R is E, results from the case when A is since any lisse 
El-sheaf has an @"-form. When R is ,we apply Pink's Lemma [Kal, 8.18.31 
to the image of p y ,  to reduce to the case when R is an @,/Iu&,. Q.E.D. 

IV. DIOPHANTINEAPPLICATIONS 

4.0. Disphantine applications to individual exponential sums. In this section, 
we combine our semiperversity results with Deligne's Weil I1 estimate [De, 
3.3.11 to give good estimates for the archimedean absolute values of sufficiently 
general exponential sums in the families we consider and to give moderately 
good estimates for the average archimedean absolute values of all the sums in 
these families. In the following sections, we will give sharper estimates for aver- 
age absolute values, at the expense of imposing hypotheses that are not so easy 
to verify in practice. 

We begin by stating explicitly the diophantine corollary of Main Theorem 
1.5. 

mailto:@"-form
mailto:@,/Iu&,
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4.0.1. Diophantine version of the main theorem. In the notation of Main The- 
orem 1.5, suppose we are given: 

k , a finite field of characteristic p # 1 ; 
V ,  a separated k-scheme offinite type; 
f :  V + Am, an arbitrary morphism; 
n :  V + A" , a quasi-finite morphism; 

K , semiperverse on Lim and mixed of weight 5 ct ; 

L , semiperverse on V and mixed of weight 5 p . 


Suppose further that either H ~ ( A ~8 k , K )  = 0 or Hc(V 8 k , L )  = 0 .  Then the 
object M := ~ ( p r , ) , ( p r ; L8 f l ,K)[nm] on Aff ~ a p s ( ~ ", Lim) is semiperverse, 
mixed of weight 5 n m  + ct + /3 , and 

Proof. The only new statement concerns weights. The object 

( P ~ ; L8 f ; , ~ ) [ n m l  

is mixed of weight 5 n m  + ct + P , and by [De, 3.3.11 this property is preserved 
by the operator R(pr2),. Q.E.D. 

4.1. In order to make explicit the application to sums, we introduce the follow- 
ing notation. Given a separated k-schemes of finite type X ,  an object K of 
D:(x,  0,).a finite extension field E of k , and an E-valued point x of X , 
we denote by K ( x ,  E )  in 0, the number 

For each fixed E ,  we call the 0,-valued function on X ( E )  given by x H 
K ( x  , E )  the "trace function of K ". The interplay between semiperversity and 
mixedness is given by 

4.1.1. Proposition. Let k be a finite field of characteristic + I , X a separated 
k-scheme offinite type and dimension < d . and K an object in D,"(x,  0,), 
which is semiperverse and mixed weight 5 w . Then: 

( 1 )  There exists constants C ,  and C2 such that for all finite extensions E 
of k , we have the L~ estimate 

and the L' estimate 

I K ( ~ ,  
( w + d ) / 2E ) l  

x in X ( E )  

( 2 )  If X is equidimensional of dimension d ,  there exists a dense open set 
U in X and a constant C , such that for any finite extension field E of k , of 
cardinality qE , and any E-valued point u of U ,  we have the estimate 
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Proof. ( I )  Let xred= U4 be a finite partition of xredinto a disjoint union 
of smooth connected subschemes Z 7 ,  dim(Z7) := d, , over each of which all 
the cohomology sheaves X a ( K )  are lisse. Because K is semiperverse. 

Since K is mixed of weight 5 w , 

X'(K) I Z7 # 0 +Za(M)z7mixed of weight g w - d,. 

For each Zy ,denote by Cy the sum (over a )  of the ranks of the lisse sheaves 
Z a ( ~ ) 1 z y .  zThen for any finite extension E of k and any E-valued point 
of Z 7 ,  we have the obvious estimate 

Squaring, we get 

Taking the sum over all the E-valued points of X , we find 

Since Zy  has dimension d, , there exists a constant D, such that for any 

finite extension E of k , Card(Z,,(E)) < ~ , ( q , ) ~ ~. So the above estimate 
becomes 

We take C2 := C, D,C;, which gives the L' estimate. The L'  estimate 
follows from this by Cauchy Schwartz, once we pick a constant C, such that 
for any finite extension E of k , we have 

(2) Let U be a dense open set of X over which all the cohomology sheaves 
Z'(K)~Uare lisse and denote by C the sum (over i) of the ranks of all the 
lisse sheaves Z ' ( K ) I U .  Since K is semiperverse and U is equidimensional 
of dimension d , we see 

Since K is mixed of weight 5 w , each sheaf Z'(K)is mixed of weight < 
i+w . So on U , the only possibly nonvanishing cohomology sheaves z ' ( K )  I u 
are mixed of weight Iw -d , and the sum of their ranks is C . So for the trace 
function of K we have the estimate 

IK(u, Ell I C(qE)
(ul-d)/2 

if u in U(E).  Q.E.D. 

We now return to the situation of Theorem 4.0.1. 
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4.1.2. Corollary. Hypotheses and notations are as in Theorem 4.0.1. We have: 
( 1 )  There exists a dense open set % of A f f  Maps(An , Am) and a constant 

C , such that for any finite extension field E of k , of cardinality qE , and any 
E-valued point ( A ,  b )  of %, the sum 

S ( ( A,.b ), E )  := x L(u  , E )  x K(  f ( u )  + A n ( u )+ b ,E )  
v in V ( E )  

satisfies the estimate 

( 2 )  There exists a constant C2 such that for any finite extension field E of 
k ,  of cardinality qE , the absolute values IS((A.b) ,E)I at the E-valued points 
( A ,  b )  of A f f  Maps(An , Am) satisfy the L2 estimate 

7(1/(qE)""'") C ~ 1 5 1c 2 ( q E )  
a+B-m 

I S ( ( A . ~ ) ,  ~ 
all E-valued ( A,b )  

and the L' estimate 
(a+B-m)/2

( '/(qE)""+") x , 5 C : / ~ ( ~ E E )  

all E -valued ( A,b )  

Proof. This is just the previous proposition, applied to the object M := 
~ ( p r , ) , ( p r ; ~8 f : , ~ ) [ n m ]  on A f f  Maps(An ,Am), which is semiperverse and 
mixed o f  weight 5 w := n m  +a +P . By the Lefschetz Trace Formula, we have 

M ( ( A ,  b )  , E )  = ( - l ) " " ~ ( ( ~ . b ) ,E ) .  

( 2 )  Again the previous proposition, together with the observation that for 
the affine space X := A f f  Maps(An ,A m ) ,  the constant C ,  o f  that proposition 
may be taken = 1 . Q.E.D. 

Let us make this very concrete. 

4.1.3. Corollary. In the notation of Main Theorem 1.5, suppose we are given: 
k , a finite field of characteristic p # I ; 

V ,  a separated k-scheme ofjinite type; 

f: V -t A m ,  an arbitrary morphism; 
n : V + An , a quasi-jinite morphism; 

St , a Q s h e a f  on Am , mixed of weight 5 a ; 

Z? , a Q s h e a f  on V , mixed of weight 5 b . 


Suppose further that either HC(Am @ k ,St)= 0 or H ~ ( V8k ,g )= 0 .  We have: 

( 1 )  There exists a dense open set 2Y Am) and a constant of A f f  ~ a ~ s ( A " ,  
C , such that for any jinite extension jield E of k , of cardinality q, , and any 
E-valued point ( A ,  b )  of Z, the sum 

S( (A .b ), E )  := x g ( u  , E )  x F(f ( u )  + An(u)+ b ,  E )  
I J  in V ( E )  
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satisfies the estimate 

IS((A.b),E)I 5 C(9,) 
(a+b+dim(V))/Z 

(2) There exists a constant C2 such that for any finite extension field E of 
k ,  of cardinality qE , the absolute values IS((A.b) , E)I at the E-valued points 
(A, b) of Aff Maps(An,Am) satisfy the L~ estimate 

( l /(qE)nm+m) C E ) I ~  
w+B+dim(V)

I S ( ( A . ~ ) ,  5 C2(qE) 
all E -valued ( A ,6) 

and the L'-estimate 

(1/(qE)""'") C 
all E -valued ( A ,b) 

Proof. Simply apply the previous result to K :=ST[m],which is semiperverse 
and mixed of weight 5 a + m , and to L :=F[dim(V)],which is semiperverse 
and mixed of weight 5 b + dim(V) . Q.E.D. 

4.4. Examples of sheaves on A' with Hc= 0 .  Let us consider in greater detail 
the special case m = 1 of the above estimates. It is sometimes convenient to 
fix a single sheaf ST on A' , which satisfies H,(A' @ k ,  9 )  = 0 and is mixed 
of weight 5 w , and to regard all the rest of the data ( V ,  u , ,5 )  as variable. 
The following is a short partial list of such sheaves 9's on A' . 
Example 1. ST = Pv, for y any nontrivial additive character y . Here w = 

0 .  

Example 2. 9 = j,Px, for x a nontrivial multiplicative character, and 

j: G, -+ A 1 the inclusion. Here again, w = 0 .  

Example 3. ST = j , q ( ! ,  y ; x's, p's) with j: (6, -+ A1 the inclusion and 
q ( !  , y' ;x's, p's) an irreducible hypergeometric sheaf on (6, (cf. [Ka, 8.41) 
of type ( N ,  M )  with N 2 1, such that at least one of the x ' s  is the trivial 
character 1. [This last condition is equivalent to the condition that 3 :=9'0 
is one-dimensional, and this is in turn equivalent, by [Kal , 8.5.3.11 to the condi- 
tion (A1@ k ,9)= 0 . For any irreducible hypergeometric %(!, y ;x's, p's) , 
however, we have H:(h1 @ k ,9)= 0 for i + 1 ,  so the vanishing of the re- 
maining H,' (A' @ k , 9 )  is equivalent to the vanishing of X(A' @ k , 9 )  .] Here 
w = N + M - 1 .  

Example 4. Let r 2 1 be an integer and f a polynomial in r variables, viewed 
as a map f :  A' + AI . According to [Ka4, 8.31, for L := C a i x i  a suffi- 
ciently general linear form on A', the sheaf 9 := ~'-'&5$(,) on A'  has 

HC(A1@ k ,ST) = 0 ; for j :  U + A1 , the inclusion of any dense open set on 
which 3 is lisse, j * 3  is pure of weight r - 1 and 3 j, j * 3. So here 
w = - r - 1 .  
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4.5. Diophantine estimates for perverse irreducibles. Given a finite field k of 
characteristic p # I ,  a separated k-scheme X of finite type, and an object K 
in D,"(x, 0,), which is perverse, we say that K is geometrically irreducible if 
on X 8 k it is a simple object in the abelian category of perverse sheaves on 
X @ k .  

4.5.1. Proposition ( L 2  estimate). Suppose we are given afinitefield k of char- 
acteristic p + I ,  a separated k-scheme X offinite type, and an object K in 
D,"(x, 0,), which is perverse. geometrically irreducible, and pure of weight zero. 
Then there exists a constant C such that for any finite extension E of k , we 
have 

Proof. Denote by Z c X the closure in X of the support of @ , Z i ( K ) .  
We may replace X by Z in the statement and thus reduce to the case when 
Z = X . We will assume henceforth that Z = X .  By the structure theorem 
[BBD, 4.3.11 for perverse irreducibles, there exists an affine open set U in X ,  
which is smooth over k and geometrically connected of some dimension d ,  
such that KI U is of the form F [ d ]  for some lisse, geometrically irreducible 
sheaf 9on U ,which is pure of weight -d . Moreover, denoting by j : U -+ X 
the inclusion, we have K Z j!? j* K . 

Since U is affine and Z is separated, the map j is affine; therefore, the 
objects j, j*K and ~ j *  on are both perverse. By definition, j,* j* K isj* K Z 
the image, in the abelian category of perverse sheaves, of the canonical "forget 
supports" map j! j * ~  + Rj* j*K . In particular, the map j, j * ~  + j!,K E K is 
surjective in the abelian category of perverse sheaves. So if we denote by 

Y : = Z - U ,  i : Y - + Z ,  theinclusion, 

we have a short exact sequence of perverse sheaves 

i.e., a short exact sequence 

Since K is pure of weight 0 ,  i*K is mixed of weight 5 0 ,  and hence i *K[ - 1 ]  
is both perverse and mixed of weight 5 -1 . 

Since i*i*K [ - 1 ]  and j, j * ~  have disjoint supports, namely, Y and U re-

spectively, the sum Exin X ( E )  I K ( x ,  E)I 
2 

breaks up as the sum of the two sums 

Because i *K[ - 1 ]  on Y is perverse and mixed of weight 5 - 1  , the first of 
these sums is part of the error term, thanks to the L2  estimate of Proposition 
4.1.1. Thus we are reduced to treating the second sum, over U . 

mailto:@,Zi(K)
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On U , K is F [ d ]  for some lisse, geometrically irreducible sheaf F on U , 
which is pure of weight -d . Because .F is pure of weight -d , its "complex 
conjugate" is 9 " ( d )  ; so for u in U(E) we have 

IK(u, E)12 = =F ( u ,  E ) I ~E n d ( F ) ( d ) ( u ,  E) .  
By the Lefschetz Trace Formula, we have 

Because 9 is pure of some weight, End(S) (d)  is pure of weight -2d,  so 
all the cohomology in dimension < 2d is mixed of weight 5 -1 and so 
contributes to the error term. It remains to examine the dominant term 
H ~ ( U  U is4 k , End(S) (d) ). Because 9 is geometrically irreducible and 
geometrically irreducible and smooth of dimension d , we have 

H ~ ( U8 k ,  End(S) ) (d )  

r coinvariants of n l (X 8 k) on E n d ( 9 )  E 0,.Q.E.D. 

4.5.2. Proposition (L' estimate). Suppose we are given afinitefield k of char- 
acteristic p # 1, a geometrically irreducible separated k-scheme X ofjnite type, 
d := dim(X) . and an object K in D:(x, $) , which is perverse, geometrically 
irreducible, and pure of weight zero. There exists a constant C such that for any 
jnite extension E of k , we have 

Proof. Since X is geometrically irreducible of dimension d ,  there exists a 
constant D such that for every finite extension E of k ,we have 

'Card(X(E)) - (qEld1 5 D(qE) 
d-112 

The result now follows from the L2 estimate by Cauchy Schwartz. Q.E.D. 

4.6. The situation over Z . 
4.6.1. Let S be a normal connected scheme of finite type over Z[l/l] and 
XIS a smooth S-scheme of relative dimension d ,with geometrically connected 
fibres. For each finite field k and each k-valued point s of S ,  we denote by 
Xs the fibre of X/S at s .  Thus Xs is a smooth, geometrically connected 
k-scheme of dimension d . 
4.6.2. Fix a real number w . Let K be an object of D:(x, 0,) such that for 
each finite field k and each k-valued point s of S , the object Ks := KIXs 
on Xs is perverse and mixed of weight 5 w , and there exists a dense open 
set Ws of Xs on which Ks is geometrically irreducible and pure of weight 
w . Then for any dense open set Us of Xs on which Ks has lisse cohomology 
sheaves, Z"(K,)~ Us vanishes for i # -d (because Ks is perverse), and the lisse 
sheaf (K,) 1 us is both geometrically irreducible (because it is geometrically 
irreducible on the dense open set W,n Us) and pure of weight w -d , (because 
it is lisse geometrically irreducible and mixed on Us ,hence pure on Us of some 
weight, which we can read on Ws n Us). 
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4.6.3. Let U c X be a dense affine open set over which all of the cohomology 
sheaves Z"(K) are lisse. At the expense of replacing S by a dense open set 
of itself, we may assume that U / S  is surjective. So each fibre Us of U / S  
is open dense in the corresponding fibre Xs of X I S .  UsAs above, X ' ( K ~ ) ~  
vanishes for i # - d .  Therefore Z ' ( K ) I U  vanishes for i # - d ,  and hence 
KI U E F [ d ]  for 9 := Z-d(K)I u . This lisse sheaf 9 on U is punctually 
pure of weight w - d , and its restriction to each finite-field fibre Us of U I S  
is geometrically irreducible. We call the rank of 9 the "generic rank of K ". 

4.6.4. Theorem. Let S be a normal connected scheme offinite type over Z[1 /1] ,  
whose generic point has characteristic zero, and X / S  a smooth S-scheme of 
relative dimension d , with geometrically connected fibres. Let K be an object 
of D:(x, a,)and w a real number, such that for each finite field k and each 
k-valued point s of S ,  the object Ks := KIXs on Xs is perverse and mixed 
of weight 5 w and there exists a dense open set Us of Xs on which Ks is 
geometrically irreducible and pure of weight w . Suppose that the generic rank 
r of K is > 2 .  Define a real number a ( r )  < 1 by 

Then there exists a dense open set V of S ,  a constant C ,  and a finite etale 
galois covering V' -+ V with the following property: If k is afinitefield F, and 
v is a k-valued point of V , which splits completely in the covering V' + V ,  
then we have the estimate 

Proof. Let j :  U -+ X be the inclusion of a dense affine open set over which 
all of the cohomology sheaves Z'(K)are lisse. Shrinking S ,  we may assume 
that U / S  is surjective. Then KIU 2 F [ d ], for 9 a lisse sheaf on U of 
rank r 2 2 ,  which is punctually pure of weight w -d , and whose restriction to 
each finite-field fibre Us of U / S  is geometrically irreducible. We first reduce 
to the case when X is U and K is S t [ d ] .  

Denote by Y := X - U the closed complement and by i :  Y -+ X the 
inclusion. In the tautological triangle 

the object i , i * ~is supported in Y .  Looking fibre by fibre, we see trivially 
that i*Ks is semiperverse and mixed of weight 5 w , on each finite-field fibre 
Ys . At the expense of shrinking S ,  we can [Ka4, 1.4.41 find a stratification 
yred -- U, Y? of yredas a finite disjoint union of subschemes Y, ,each of which 

is smooth and surjective over S with all geometric fibres equidimensional of 
some common dimension d ,  , to which i*K is adapted in the sense that all its 
cohomology sheaves are lisse on each Yy . Applying [Ka4, 3.11, (essentially a 

uniform version of the L' estimate of Proposition 4.5.2), there exists a constant 
C such that for any finite field k , q := Card(k) , and any k-valued point s of 
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S ,we have 

Since XIS has smooth, geometrically connected fibres of dimension d , and 
Y/S has all fibres of dimension < d , there exists a constant D such that that 
for any finite field k , q := Card(k) , and any k-valued point s of S ,  we have 

I ~ a r d ~ , ( k )qdl 5 Dq 
d-112 

- , 

I Card U$(k) - qdI 5 Dq 
d-112 

, 

1 Card X$(k) - Card U,(k) = Card(Y3(k))< ~ q ~ - l .  

Thus the entire contribution of i,i*K is absorbed in the error term, and we are 
reduced to treating the case when X is U and K is F [ d ]  . 

Denote by f :  U -+ S the structural morphism. Further shrinking S ,  we 
may assume that all the sheaves 

Ri&End(F)(d)  R i ( E n d ( F 2 ) ( d )  for 0 < i < 2d 

are lisse on S . 
Having made all of these reductions, we are reduced to showing that there 

exists a constant C and a finite etale galois covering S' -+ S with the following 
property: If k is a finite field IF, and s is a k-valued point of S ,  which splits 
completely in the covering S' + S ,  then we have the estimate 

(lICard(X,(k)) C I F ( x .  k)l 5 a(r)q
(w-412 + Cqiw-d-l)/2 

x in X,(k) 

It will be convenient to rewrite this estimate as 

(l/Card(Xs(k)) C 9
id-w)/2 I F ( X, k )  < n(r) + cq-Ii2 

x in X,(k) 

and view it as a bound for the L' norm of the function 

x in Xs(k) H f ( x )  := qid-w)/2 
IY(x 7 k)l7 

with X,(k) endowed with "counting measure," normalized to give total mass 
one. One basis for such estimates is the following elementary lemma, whose 
statement we recall: 

4.6.5. Lemma [Ka4, 5.11. Let (X , p)  be a measure space, with p a positive 
measure of total mass 1 .  Let f be a measurable C-valued function on X ,  
E 2 0, E 2 0 ,  and -I42 0 real numbers. Suppose that 

Then J I f  1 d p  5 1 + 2~ - E/2(1 + M ) ~ .  

We now explain how to calculate the second and fourth moments of the 
particular function at hand. We will show that we can take M = r and that, 
with E of the form (an explicitable constant) q-112, we can take E = 1 . 



-Because St is lisse of rank r and is pure of weight w d , we have the 
trivial estimate 

q'd-w)/2 I-." c( x ,  k)l I r. 
Because 9 is pure of weight w d ,  the "complex conjugate" of ,F is-

S t v ( d  - w )  , and so for any finite field k , q := Card(k) , and any k-valued 
point x of X ,  we have 

qdPw l ~ ( x ,  k)12 = E n d ( F ) ( x ,  k )  , 

qZd-"" I F ( X ,  k)14 = ( E n d ( ~ @ ~ ) ( x ,k).  

On the other hand, the number of points in Xs(k) is qd , up to an error bounded 

by D ~ ~ - ~ ~ ~ .  Thus the square of the L2 norm is approximately 

qPd x qd-w19(x ,  k ) '  = E n d ( S ) ( d ) ( x ,  k ) ,  
x in X,(k) x ~n X,(k) 

and similarly the fourth power of the L4 norm is approximately 

Because St is pure of some weight, both End(St) and ~ n d ( 3 @ ~ )  are pure 
of weight zero. By Weil 11, the lisse sheaves R1J;End(9)(d)  and 

R ' j ; ( E n d ( ~ @ ~ ) ( d )  1 So up to an er- are mixed of weights for i < 2 d .  

ror which is uniformly ~ ( q - ' I 2 ) ,  the Lefschetz Trace Formula shows that the 
square of the L2 norm and the fourth power of the L4 norm are approximately 

respectively. 
Because 9 is lisse and geometrically irreducible on each fibre X, , the lisse 

sheaf RZdf; (End(9)(d))  has all its stalks canonically a[,so the square of the 

L2 norm is always approximately = 1 . 
It remains to analyse Trace(~ ,R~~f ; (End(S t@' ) (d ) ). Because 9 is lisse and 

geometrically irreducible on each fibre ' X, , the argument of [Ka4, 5.8 and 5.8.11 

shows that the lisse sheaf ~ ~ ~ f ; ( E n d ( ~ @ ~ ) ( d ) )  when viewed as a representation 
of n,(S) , factors through a finite quotient, i.e., becomes trivial on a finite etale 
galois covering S' -+ S . If we show that this representation has rank > 2 ,  then 
for any finite field k and any k-valued point s of S ,  which splits completely 
in S' -,S ,  the trace 

and as explained above, this will conclude the proof, with E = 1 and E = (some 
explicitable constant) q-'I2 . 

The stalk of ~ ' ~ f ; ( E n d ( ~ @ ~ ) ( d ) )  at a geometric point s of S is the coin- 
variants (or equivalently the invariants, since 5 is irreducible) of n,(X,)in 
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(End(%@')). In other words, the stalk is the endomorphism ring of TB2as 

a n, (Xs)-representation. Concretely, this means that when we write TB2as 
the direct sum of distinct irreducible representations I:of n ,  (Xs) with mul- 

tiplicities, say <@2 E C nl , then the dimension of the stalk is ~ ( n , ) '  . In 

particular, this dimension is 2 2 so long as $@'is not irreducible. But since 
5 has rank 2 2 ,  the decomposition 

has both summands nonzero and so shows that $@'is reducible. Q.E.D. 

4.7. Remarks on the theorem. One knows (cf. [Kal, 8.18.21) that after shrink- 
ing on S , for any geometric point s in S , the conjugacy class in GL(r ,a,)of 
the image T(s) of n l  (Us , any base point) in the monodromy representation of 
F ( U s  is independent of the point s . We denote by G the Zariski closure in 
GL(r ,o l )  of any of the groups T(s) . Thus G is a semisimple (not necessarily 
connected) irreducible subgroup of GL(r ,ol). A sufficient condition for the 

lisse sheaf R ~ ~ A ( E ~ ~ ( F @ ~ ) ( ~ ) )  on Sto be trivial (as a representation of n,(S)) 
is that for each'finite field k and each k-valued point s of S , the image (by 
the monodromy representation of q)of n ,(Us) in GL(r) lies inside the sub- 
group G,G (cf. the proof of [Ka4, 5.81). Notice that in any case the image 
of n,(Us) in GL(r) normalizes the group T(s) and so normalizes its Zariski 
closure G . Thus if the quotient group 

(Normalizer of G in GL(r))/G,G 

vanishes, then the lisse sheaf ~ ~ ~ f ; ( ~ n d ( ~ ' ~ ) ( d ) )  on S is trivial, and so in 
the theorem the covering V' to V is completely decomposed. In this case, one 
gets the estimate 

for all finite fields k and all k-valued points v of V . 
For any irreducible semisimple subgroup G of GL(r), the quotient group 

(Normalizer of G in GL(r))/G,G is finite. [For it is an algebraic group in 
which, by [De, 1.3.1 11, every element is of finite order.] Some examples of 
irreducible semisimple G inside GL(r) for which this quotient is trivial are 
those for which GO is SL(r) ,or if r is even, Sp(r) , or if r is odd, SO(r) . 

5.0. In this section, we will calculate the geometric monodromy groups for the 
one-variable examples discussed in 2.2. Thus we work over a finite field k , we 
take n = m = 1 , V = A1 , n the identity map, f :A'  + A '  a polynomial f (x) 
in one variable of degree d 2 2 ,  x a nontrivial character of k x  , L the sheaf 
-

Ql[l] on V = A ' ,  and K the sheaf j , 2 x [ l ]  on A ' .  A ' ) 
View Aff ~ a ~ s ( A ' ,  

as the AL with coordinates ( a ,  b) corresponding to x H a x  + b , and' write 

mailto:(End(%@'))
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f a ,  for the polynomial 

Then M :=R(pr,)!(pr;L 8 f &K)[l] has 

Over the (nonempty by 3.5) open set U of ( a ,  b)-space where f a ,  has all 
distinct zeros, M has lisse cohomology sheaves [La, 2.1.41, and 

A?"(M)/u = O  for 1 # -2,  

x-~(M) / u has rank d - 1. 

By the Lefschetz Trace Formula, the trace function of the lisse sheaf 
2 T 2 ( M ) /u is given by the following recipe: For E a finite extension of k , 
xE the character x o NormEjk of E~ , and ( a ,  b) in U(E) ,we have 

5.2. Determinant Lemma. Notation is as in 5.1. 
(1) If char(k) # 2 ,  denote by x2 the quadratic character and by N the 

exact order of the character XX, . Then (det(Z'-'(M)l u ) @ ~is geometrically 
trivial. 

(2) If char(k) = 2 ,  denote by No the (odd) order of x and by N := 2No. 
Then ( d e t ( ~ - ~ ( M ) / U ) @ ~  is geometrically trivial. 

Proof. It suffices to treat the case when f is rnonic, for at the expense of passing 
to a finite extension of k ,we may suppose that the leading coefficient of f is a 
dth power, say ad.  Then pullback by the automorphism x H x l a  , a H a a  , 
b H b brings us to the monic case. 

It suffices now to treat the universal family &(d) of monic polynomials 
of degree d with all distinct roots. Concretely, &(d) is the spectrum of the 
k-algebra 

k[AO, A , ,  ... Ad-lI[lIAl9 

where A is the discriminant of the universal polynomial 

For any prime 1 # char(k) and x any nontrivial 0,-valued character of 
k x  , there exists a lisse 0,-sheaf F ( d ,  x , I) on &(d) whose trace function is 
given by the following recipe: For E a finite extension of k , xE the character 
x oNormf ,, of E~ ,and f in &(d)(E)  a monic polynomial of degree d over 
E with distinct roots, we have 
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To construct F ( d  , y , 1) ,consider the sheaf 9x(,r/on (A' x A ( d ) ) [ l /  fun,,], 
'I"," 

and the projection pr2 onto M ( d )  . The sheaves ~ ' ( p r , ) ~ 9 ~ ( ~ ~ ~ ,  are all lisse 
[La, 2.1.41, and they vanish for i # 1,as one sees fibre by fibre. We take 

5.2bis. Determinant Lemma. (1) If char(k) # 2 ,  denote by x2 the quadratic 
character and by N the exact order of the character x x 2 .  Then 

(de t (F(d,x , I))
@N u. geometrically trivial. 

(2) If char(k) = 2 ,  denote by No the (odd) order of x and by N := 2No. 
Then (det (F(d ,x , I ) ) @ ~is geometrically trivial. 
Proof. For a lisse sheaf of rank one 9 on a lisse, geometrically connected k- 
scheme A ,  the short exact sequence ( q  any geometric point of A) relating 
n r m  and n1 , 

shows that 9is geometrically constant, i.e., trivial on n, ( A  ~3k ,  4) , if and 
only if it factors through the degree map 

deg: n , ( M ,  4) +g ,  

i.e., if and only if it is of the form adeg. By Chebataroff, 9is of the form 
adegif and only if for any finite extension E of k and any points x ,  y in 
A ( E )  , we have 

Trace(Fx, 19)= Trace(Fy, 1 9 ) .  

By [De, 1.3.4(i)] some tensor power of 9 is geometrically trivial. So for 
any finite extension E of k , and any points x , y in A(E), we have 

Trace(Fx, 12)/Trace(Fy, 19)is a root of unity. 

We now apply these general considerations to the situation at hand 

2 := d e t ( F ( d ,  y , 1 ) )  on A :=A ( d ) .  

The lisse sheaf F ( d ,  y , 1) has all its traces in the field Q(x) .  So its deter- 
minant (or indeed any sheaf obtained from F ( d ,  x , I) by composing with a 
representation of GL(d - 1)) has all its traces in the same field Q(x) .  There- 
fore for any finite extension E of k and any points x , y in A ( d ) ( E )  , the 
ratio 

det(F, ,.IF(d X , l))ldet(F, ,.IF(d, X , 1))5 

is a root of unity, which lies in Q(x) . 
Let us denote by No the exact order of x . Thus Q(x) is the cyclotomic 

field Q(lN0) . So the number of roots of unity in Q()I) is 

if No is even, 
C a r d ( ~ ( Q ( ~ ) )= { r$oif No is odd. 
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Therefore the "mere" fact that F ( d ,  x , I) has all its traces in the field Q(x) 
gives: 

(*) d e t ( F ( d, x , is geometrically trivial if No is even, 

(**) d e t ( F ( d ,  x , is geometrically trivial if No is odd. 

We first treat case (2). If char(k) = 2 ,  then x ,being a character of k x  ,has 
odd order, and the assertion is precisely (**) . 

We next turn to case (1). There are two trivial cases, and one nontrivial case. 
If the exact order No of x is odd, then xx2 has exact order 2No, and 

the assertion amounts to (**) . If the exact order No of x is divisible by 4, 
then xx2 has the same exact order, i.e., N = No in this case, and the assertion 
amounts to (*) . 

The nontrivial case is when x is of the form px2 ,with p a (possibly trivial) 
character of odd order No. Then XX, = p has odd order No. The trivial 
estimate (**) is that d e t ( S ( d ,  px,, 1)) '~~0 is geometrically trivial. We claim 
that d e t ( F ( d  , px2, 1))'"o is geometrically trivial. In other words, we know 
from (**) that d e t ( F ( d ,  px,, is geometrically of order dividing two, 
and we must show that it is trivial. Concretely, this means the following: for 
any finite extension E of k and any points f ,  g in A ( d ) ( E ) ,  we know that 

and we wish to prove that 

det(F, , , IF(d > PX, , 1)lN0= det(F,,,IF(d, PX, ,l))". 

We will prove this by a congruence argument, itself based on the possibility 
of varying I .  View x (:= px,) as having values in the ring of integers @ 
of the abstract cyclotomic field Q(x) .  For every prime 1 # char(k) and every 
I-adic place A of Q(x) ,we can construct a lisse @'-sheaf -E3,( , ,which yields 

""1" 

9 ) after extension of scalars from @' to Q I .  Denote by FA the residue 
~(f"","

field of @A. 
If the character x is nontrivial mod A , then the lisse [La, 2.1.41 cohomology 

sheaves ~ ' ( p r ~ ) ! ( q ( ~  , 8 FA) vanish for i # 1 (as one sees fibre by fibre) 
""1" 

and ~ ( p r ~ ) ( ~  ,8 FA) has rank d - 1 . A standard "universal coefficient" 
""1" 

argument then shows that the cohomology sheaves ~ ' ( p r ~ ) ! 3 ~ (  fun,vr vanish for 
i # 1 , and the remaining 

F ( d  5 X 5 2) := ~ ~ ( p r ~ ) ! q ~ " , " ,  

is a lisse @'-sheaf, @'-free of rank d - 1 , which yields F ( d ,  x , I) after ex- 
tension of scalars from @' to a,. Moreover, we have 

Thus once we fix a nontrivial character x of k x  with values in the ring of 
integers @ of some cyclotomic field, for every prime number I # char(k) and 
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every I-adic place A of B such that x is nontrivial mod A, we obtain a lisse 
dA-sheaf F ( d  , x ,A) on d ( d )  , @"-free of rank d - 1 , whose trace function 
is given by the usual recipe: For E a finite extension of k , X, the character 
x norm,^, of E' ,and f in d ( d ) ( E )  a monic polynomial of degree d over 
E with district roots, we have 

Trace(Ff,ElF(d, X 5 2)) = - C x,(f (x)), 
x in E 

an equality in @i . The key point is that the right-hand side lies in B , indepen-
dent of A .  Therefore the determinant sheaf d e t ( F ( d ,  x , A)), or indeed any 
sheaf deduced from F ( d  ,x ,A) by a "construction of linear algebra", has all 
its traces in @ , independent of A .  

We now return to the problem of proving that for p a character of odd order 
No, for any finite extension E of k , and any points f ,  g in d ( d ) ( E )  ,we 
have 

d e t ( f / , , l ~ ( d ,  PX,, 1)lN0 = det(F,,,IF(d, PX,, INN0. 

For any I # char(k) and any I-adic place A of d such that px2 is nontrivial 
mod2 (e.g., any I-adic place A of odd residue characteristic will have px2 
nontrivial mod2 , thanks to the presence of x 2 ,  since already (pX2)N0 = x2 is 
nontrivial mod such a A )  we may rewrite this as 

We proceed by induction on the number of distinct primes which divide the 
order No of p .  

To get started, we must do the crucial case when p is trivial-we must 
show that d e t ( F ( d ,  x 2 ,  I)) is geometrically trivial. Over d ( d )  , consider the 
proper smooth family of hyperelliptic curves y, :  iF --+ d ( d )  whose fibre over 
the monic polynomial f of degree d with all distinct roots, viewed as a point 
of X ( d )  ,is the complete nonsingular model of the affine curve gf : y2 = f (x) . 

is the disjoint union of this affine curve and of a single section 
" co ". The sheaf d e t ( F ( d  , x 2 ,  I)) is none other than det(R1 y,,Ql) . [To see 
this, we argue as follows. Both F ( d ,  x,, I) and R1y,,Q1 are lisse sheaves on 
A ( d )  with the same trace function, namely, 

So by Chebataroff, both have isomorphic semisimplifications as lisse sheaves on 
A ( d )  ; therefore, they have isomorphic determinants.] But R' y,,o,(1 /2) carries . . 

a symplectic autoduality, the cup-product pairing on R1y,,Q1 (1 12) . Therefore 
d e t ( ~ 'y , , ~ , ( l  1) c Sl(d- 1),/2)) is trivial, corresponding to the fact that Sp(d -
whence d e t ( F ( d ,  x,, I)) t;d e t ( R ' y , , ~ ~ )is geometrically trivial for d odd. 

If d is even, we again consider the same proper smooth family of hyperel- 
liptic curves. But this time the curve iF is the disjoint union of the affine curve 
and of two disjoint sections "a+" and " co- ", corresponding to whether the 

%' If d is odd, 
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function xd121y takes the value 1 or -1 . In this case, the Chebataroff argu- 
ment shows that F ( d  , x2, 1) has the same semisimplification as ola R ' ~ , Q. 
So once again for d even, is geometrically d e t ( F ( d ,  x,, 1)) = d e t ( ~ ' y l , Q ~ )  
trivial. 

We now explain how to reduce the general case = p ~ ,  to this one. We 
proceed by induction on the number, say r ,of distinct primes which divide the 
odd order No of p .  We will show that for any integer N such that pN = I 
and any 1 # char(k), there exists a geometrical isomorphism 

Since d e t ( F ( d  , x 2 ,  1)) is geometrically trivial, taking N := No will conclude 
the proof. Now (* * *) holds if and only if for any finite extension E of k and 
any points f ,  g in A ( d ) ( E )  , we have 

But this condition is independent of 1 ,  because each determinant involved lies 
in 8 ,  independent of 1. So it suffices to prove (* * *) for a single choice of 
prime number 1 # char(k) . 

If r 2 1,we can factor p = a z  with a and 7 characters whose odd orders 
are relatively prime to each other and such that a has odd prime power order, 
say le . Choose an 1-adic place A of 8 .  Because a is trivial mod A, we have 
an equality of IF,-sheaves 

F ( d ,  a7x2,  A) @ IF, = F ( d ,  7x2, A) @IF,. 

Taking determinants, we find a congruence mod2 

d e t ( F ( d, azX2, A)) = d e t ( F ( d, z ~ ,,A)) mod A. 

Raising both sides to the No th power, we conclude that 

as characters of z1  := n l ( d ( d ) ,  q ) . NOW restrict this to n y m . Since both 
d e t ( F ( d,as%,,A))@N0 and d e t ( F ( d  , z ~ ,, are kl-valued characters 
of z r m  and A has odd residue characteristic, this congruence mod2 implies 
an equality 

as characters of n y m  , i.e., a geometrical isomorphism 

to o l ,  we get a geometrical isomorphism @, Passing from 



207 AFFINE COHOMOLOGICAL TRANSFORMS 

Since zNO= 1 and the exact order of 7 is divisible by fewer primes than is 
No, by induction we have a geometric isomorphism 

Thus we have proven 5.2bis. Q.E.D. 

5.3. If Xd is nontrivial, then x - ~ ( M )u is punctually pure of weight 1. This 
follows from the explicit description of X ' ( M ) , , ~  and [De, 3.2.31, for if we 
denote by 

1 
J :  A ' [ ~ I ( ~ ~ , ~ ) I+ P 

the inclusion, then for ( a ,  b) in U ,we have 

(This holds at all points of A' simply in virtue of the fact that x is nontrivial 
and f a ,  has all distinct roots. That it holds at cc is equivalent to the hypoth- 
esis that Xd is nontrivial.) So by the corollary, X - ~ ( M ) J Uas a lisse sheaf on 
U is geometrically irreducible, provided that Xd is nontrivial. 

Recall (5.1) that by the Lefschetz Trace Formula, the trace function of the 
lisse sheaf x-~(M) I U is given by the following recipe: For E a finite extension 
of k , xE the character x o Norm,,, of E' , an ( a ,  b) in U(E) ,we have 

Trace(F(, , , ) ,  IZ-'(M)) = - x,(f (x)  + a x  + b). 
x in E 

Since X-2(M)I u is irreducible, it is determined up to isomorphism (as lisse 
sheaf on U) by its trace function. 

5.4. Theorem. Notation is as in 5.1. Suppose that d is prime to p , that f " ( x )  
is not identically zero (whence char(k) # 2) ,  and that Xd # I .  Denote by 
Ggeom the geometric monodromy group of the (geometrically irreducible) lisse 

sheaf 2 T 2 ( M )  U . Denote by X, the unique character of order two of k x  , and 
denote by N the (exact) order of the character XX, of k X. Then: 

(1) If x = x2 is the quadratic character, then d is odd and GgeOm is 
Sp(d - 1) .  

(2) If x # x2 ,suppose that either 
(a) d > 5 or 

(b) d > 3 and (XX2)3 # I .  
0Then (Ggeom) = SL(d - 1) and Ggeom {A in GL(d - = 1 ) .= l ) J d e t ( ~ ) ~  

To prove this, we need some preliminaries. 
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5.5. Interlude: weakly supermorse polynomials (compare [Ka 1, 7.10.2]), convo- 
lution, and monodromy. 

5.5.1. We will deduce Theorem 5.4 from a theorem about certain one-parameter 
families of sums. The idea is to freeze the parameter " a ", consider the polyno- 
mial f,(x) := f (x) + a x ,  and look at the one-parameter (namely, " b ") family 
of sums 

b S(b) := z x ( f a ( x )  + b). 
X 

It is slightly more suggestive to define 

ga(x) := -fa@) 
and to write our family of sums in the form 

S(b) = - ga(x))= zx(b - t)Card{xlga(x)= I).  
X 	 t 

Because ~ ( bt) =- 0 ,  x being nontrivial, we may rewrite our family as 

This last expression shows that b H S(b)  is the additive convolution of the 
function t H ~ ( t )and the function t H Card{xlga(x)= t )  - 1 . The function 
t H ~ ( t )is the trace function of j ,Tx and the function 

is the trace function of the sheaf := Kernel of Trace - (ga)*Ql- Q,.<a 
ga ' 

By using this convolutional point of view, we will show that already such a 
one-parameter family has a large G,,,, provided that the polynomial f,, or 
equivalently ga , is "weakly supermorse." 

5.5.2. Given a field k and a nonconstant polynomial f (x)  in k[x] of degree 
d 2 2 ,  we say that f is "weakly supermorse" (compare [Kal, 7.10.21) if the 
following conditions hold. 

(WSM1) d is invertible in k. 

(WSM2) f (x)  has d - 1 instinct zeros in k. 

(WSM3) f separates the d - 1 distinct zeros o f f  in k,  i.e., if f(a)= f ( P )  

and f ( a )  = f(P) = 0 then a = p. 
5.5.3. 	 Suppose that f is weakly supermorse, and define (compare [Kal, 7.10.21) 

F:= Kernel of Tracef: Lol -'Q,, 

a direct factor of LQ,  of generic rank d - 1.. Because f has degree d prime 
to p and f as a map of IP1 to IP1 is fully ramified over a ,  as I(a)-
representation is tame-indeed it is the direct sum 

and hence F as I(co)-representation is tame, given by 
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(5.5.5) 9as I(%)-representation = @ 3. 
~ ~ = n ,~ # n  

Exactly as in [Kal, 7.10.2.1 and 7.10.31, one shows that .F is Fourier and that 
Sb is a geometrically irreducible tame reflection sheaf. Moreover, just as in 
[Kal, 7.10.41, we have 

FTYI(F[11)= m 1 1 ,  

with 8 := NFTv(.B) a geometrically irreducible Fourier sheaf on A '  , which 
is lisse on G, . Laumon's theory of the local Fourier Transform shows that 

For any finite extension E of k and any E-valued point t in A1(E) = E ,  
the trace function of 9 at t is given by 

(5.5.8) Trace(F, , 19)= Card{x in E 1 f (x)= t ) - 1. 

So the function 
b H S(b)  := &(t - f ( x ) )  

X 

is the convolution of the trace functions of 9 and of jlTX 

5.6. Lemma. If f is weakly supermorse of degree d , and if X d  # 1, then 
J ojlTxis a geometrically irreducible Fourier sheaf; which is tame a t  zero and 
whose I(m)-representation is given by 

J @ jI2"as I(m)-representation = @ 2X,xrx(xi @ 9YI(.,in,)x). 
fl(a)=O 

Proof. Since 27 is lisse and geometrically irreducible on G, so is 27 €3 j!T* . 
Because Xd # 1,while the local monodromy of J at 0 involves only characters 
of order dividing d , J o jlTXhas no inertial invariants at 0 and, hence, is 
the direct image of its restriction to G, . Because J 8 jl;i"x vanishes at 0, it is 
not TYI(ax) irreduciblefor any n . This shows that JojlTzis 
Fourier. Because J is tame at zero so is 27 @ j , T X .  The I(co)-representation 
of J o j,TXis 

(the I ( m )  -representation of J)oTX= [ @ ( ) @ 2 ] 8 T'(x) . 
f1(a)=0 

Q.E.D. 

5.7. Key Lemma. If f is weakly supermorse of degree d and If X d  = I ,  then: 
(1) The object (9*!+ j !Tx)[l]  is a geometrically irreducible Fourier sheaJ 

say M ,  of generic rank d - 1 . 
(2) The trace function of M is t H -EX~ ( t- f (x)). 
(3 )  The geometrically irreducible Fourier sheaf NFT,(M) is geometrically 

isomorphic to J @ (j,Tz). 
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( 4 )  M is tame at m . 
( 5 )  M is lisse on A' outside the d - 1 critical values of f ,  i.e., outside 

the points f (a )  for a a zero of f(x) . At each critical value f ( a ) ,  the local 
monodromy of M is a tame pseudoreflection whose determinant, as character of 
'(f(a))9 is -E;xx,)(x-j - (&))  . 
Proof. We exploit the fact that Fourier Transform (essentially) interchanges 
tensor product and ! additive convolution *!+: the precise statement (cf. [Br, 
9.61, but " [+rgE]" should be " [ -rgE]  " there) is 

FT,(K) @ FT,(L) = fl,(K*!+L)[ll. 

Taking K to be 9-and L to be j,Tx,and using the fact that for x nontrivial 
we have 

deg
FT, ( j ,Tx)  = ( j ! q )8 a , a := - c w(x)x(x), 

x in k 

we find 
F @ ( j ! ~ ~ )adeg = fl,(F *!+ j!Tx)[ll.~3 


Applying FTv(l )  to this and using Fourier inversion, we find 

Since F8j,Pzis geometrically irreducible Fourier, its FT is itself geometrically 
irreducible, i.e., (9*!+j !Px)[l]  is geometrically irreducible Fourier. Its generic 
rank is the dimension, for general values of t , of the cohomology group on the 
x-line 

H;(A' @ W / ( f ( x )  - 01,q ( t - f ( x ) ) )7 

and this group is visibly of dimension d - 1 if f ( x )  - t has d distinct zeros. 
This proves (1). 

Statement (2) is just the Lefschetz Trace Formula and the definition of ! 
additive convolution, and (3) follows from (1) by Fourier inversion. 

That M is tame at m holds because F@ (j,Tz)is lisse on Gm, tame at 
0, and has all m-slopes 5 1 (using Laurnon's iesults, cf. [Kal, 7.5.41). The 
finite local monodromy of M is as asserted by [Kal, 7.4.61 and the previous 
lemma. Q.E.D. 

5.8. Lemma. Over an algebraically closed field k ,  let S be a finite nonempty 
subset of A' (k), 1 a prime number invertible in k , and M a lisse Ql-sheaf on 
A' - S . Suppose that 

(1) 	M is irreducible; 
( 2 )  M is tame at m ; 
(3) 	at each point s in S ,  the local monodromy of M is a tame pseudore- 

flection y,, which is not a reflection. 
Then M is not induced. 
Proof. We argue by contradiction. Suppose that there exists a smooth connected 
curve U over k , a lisse Q,-sheaf N on X , a finite etale map n: U -+ A1 

- S 
of degree d 2 2 ,  and an isomorphism M E n*N . Denote by X the complete 
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nonsingular model of U and by tt : X + P I  the induced finite flat covering of 
PI . We will show that the covering it is tame over m and finite Ctale over A' . 
Since A' has no nontrivial finite &ale connected coverings, which are tame at 
cc , this gives a contradiction. 

We first show that if n, N is everywhere tame, then both N and n are tame. 
For this, we consider the virtual sheaf of rank zero 

N - rank(N)o, on U. 

The Euler-Poincare formula on U gives 

x in X - U  

But by trivial Leray and the Euler-Poincare formula on A' - S 

(since n, N is tame) = rank(N) z Swant(n,Ql). 
t in { w , S )  

But Swan conductors are nonnegative, so the equality 

- z Swanx(N)= rank(N) z Swant(n,Ql) 
x in X - U  t in {m , S )  

implies that all the terms Swanx(N) and Swant(n,Q1) vanish. 
Once we know that n is tame and that N is tame, we argue as follows. Pick 

a point s in S . Let the points in X lying over s be the x i ,  with local degree 
d, over s . Then the I(s)  representation M(s) is the direct sum of the d,-fold 
Kummer inductions [d,], N(xi) (compare [Ka 11, proof of 3.5.2) 

i 

Since M(s)  is a tame pseudoreflection but not a reflection, all but one of the 
terms [d,], N(x,) must be the trivial representation, and the remaining one, say 
[dl], N(xl)  ,must itself be a tame pseudoreflection but not a reflection. 

If [d,], N(x,) is trivial, then N(xi) must be trivial (since it is a direct factor 
of [di]*[di], ~ ( x ~ ) )  ,whence di = 1. . 

If [dl], N(x l )  is a tame pseudoreflection but not a reflection, then by the same 
direct factor argument N(x l )  is either trivial or is itself a tame pseudoreflection. 
If N(xl)  is trivial and [dl],N(xl) is a tame pseudoreflection, then N(x l )  has 
rank one and dl  = 2 ;but then [dl], N(x l )  is a reflection, and so this case does 
not occur. 

If N(x l )  and [dl],N(xl) are both tame pseudoreflections, we claim 
dl  = 1 . If N(x l )  is a unipotent pseudoreflection, then rank(N(xl)) 2 2 and 
the semisimplification of [dl],N(xl) is rank(N(x,)) copies of [dl],Ql, which 
contains at least two nontrivial characters (counting multiplicity) if d l  2 2 . Fi-
nally, if N(xl)  is a nonunipotent pseudoreflection, say, of determinant p # 1 , 
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then N(xl)  is semisimple and [dl],N(xl) contains all the d,th roots of p ,  
each of which is a fortiori nontrivial. So in this case we must have dl = 1 if 
[dl], N(x l )  is to be a pseudoreflection. 

Therefore each d,  is 1, which is to say that n :  X -+ lP1 is &ale over A' , as 
required. Q.E.D. 

5.9. Lemma. Over an algebraically closed field k , let S be a finite nonempty 
subset of A1(k), 1 a prime number invertible in k , and M a lisse 0,-sheaf on 
A' - S .  Suppose that 

( 1) M is irreducible; 
(2) M is tame at m ; 
(3) 	at each point s in S ,  the local monodromy of M is a tame pseudore- 

flection y, , which is not a reflection and whose determinant det(y,) has 
finite order n, (as a character of the inertia group I(s)). 

Then 
(1) det(M) hasfinite order, equal to the 1.c.m. of the integers n, , 
( 2 )  	either M is Lie-irreducible or M has finite monodromy. 

Proof. Since M is tame on A' - S ,  det(M) is tame on A' - S ,  so its mon- 
odromy group is the subgroup of GL(1) generated by the local monodromies 
at all the points s in S . This proves ( 1). 

By [Ka3, Proposition 11, our irreducible M is either Lie-irreducible, or in- 
duced, or is the tensor product N @ L of a Lie-irreducible L of lower rank with 
an N having finite monodromy. Suppose M is not Lie-irreducible. We have 
already eliminated the induced case. Therefore M is the tensor product N @ L 
of a Lie-irreducible L of lower rank with an N having finite monodromy. Since 
a pseudoreflection is not nontrivially a tensor product (compare [Kal, proof of 
3.5.7]), L must have rank one, and as det(M) is of finite order, it follows that 
L itself is of finite order, whence N 8 L has finite monodromy. Q.E.D. 

5.10. (Mitchell [Mi]) Theorem. Over an algebraically closed field k , let S be 
a finite nonempty subset of A' (k), 1 a prime number invertible in k , and M 
a lisse 0,-sheaf on A' - S .  Suppose that 

( 1) 	M is irreducible; 
(2) M is tame at m ; 
(3) 	at each point s in S ,  the local monodromy of M is a tame pseudore- 

flection y, , which is not a reflection and whose determinant det(y,) has 
finite order n, (as a character of the inertia group I (s) ); 

(4) M has finite monodromy. 
Then 

( I )  	rank(M) 5 4 ,  
(2) 	if rank(M) = 3 or 4 then every n, = 3 .  

Proof. Let us denote n := rank(M) . Since M is not induced, G,,,, is a finite 
irreducible subgroup of GL(n) , which is "primitive" (i.e., the given represen- 
tation is not induced) and which is generated by pseudoreflections. According 
to Mitchell [Mi, Theorem 11, if n > 4 then the only pseudoreflections in such 
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a group are reflections, so each n, = 2 (this case does not occur for us). If n 
is 3 or 4, then classification (cf. [Mi]) shows that any pseudoreflection in such a 
group has order 2 or 3. So each n, is 2 or 3, and n, # 2 by hypothesis. Q.E.D. 

5.1 1. Theorem. Over an algebraically closedfield k , let S be a finite nonempty 
subset of A' (k) , 1 a prime number invertible in k , and M a lisse Q-sheaf on 
A' -S .  Suppose that 

(1) M is irreducible; 
(2) 	M is tame at cc ; 
(3) At each point s in S, the local monodromy of M is a tame pseudore- 

flection y, , which is not a reflection and whose determinant det(y,) has finite 
order n, (as a character of the inertia group I(s))  . 

Suppose that either 

(a) n := rank(M) > 4 ,  or 
(b) n := rank(M) > 2 and some n, # 3 .  

Then 
(1) M is Lie-irreducible; 
(2) (G,,,)' = SL(n) ifsome n, # 1 or if n is odd, 

(3) ifall n, = 1 and n is even, then (G,,,,) 0 .rs either SL(n) or Sp(n) ; 

(4) 	If (Ggeom)O= SL(n),put N :=1.c.m. of the n, :=order of det(M) . 
Then G,,, is { A  in ~ ~ ( n ) l d e t ( ~ ) ~  = I ) .  

Proof. That M is Lie-irreducible follows from the previous two results. Since 
det(M) is of finite order, (Ggeom)O is semisimple (being an irreducible con- 
nected subgroup of SL(n)). Conclusions (2) and (3) then follow from the 
Pseudoreflection Theorem [Kal, 1.51 applied to Lie(G,,,,) in its given repre- 
sentation and to any of the pseudoreflections y, . Conclusion (4) is trivial, since 
det(M) has order N . Q.E.D. 

5.12. Application to weakly supermorse functions. Let k be finite field, f (x) 
in k[x] weakly supermorse of degree d ,and x a character of k x  with Xd # 1 . 
In Key Lemma 5.7, we have proven: 

(1) the object (9-*!+ j!2Zx)[1] is a geometrically irreducible Fourier sheaf, 
say M ,  of generic rank d - 1; 

(2) 	the trace function of M is t I+ -CX~ ( t- f (x)) ; 
(3) the geometrically irreducible Fourier sheaf NFT,(M) is geometrically 

isomorphic to F @ (j,2Zz); 
(4) M is tame at cc ; 
(5) M is lisse on A' outside the d - 1 critical values of f ,  i.e., outside 

the points f (a )  for a a zero of f ( x )  . At each critical value f (a ), the local 
monodromy of M is a tame pseudoreflection whose determinant, as character 
of I ( f  ( a ) ) ,  is 9 ( x x , ) ( x  - f (a))  

Denote by S c A' the set of critical values of f .  Denote by N the exact 
order of the character XX,. We may apply Theorem 5.1 1 to A' -S and the 
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sheaf M .  All the finite local monodromies y, are pseudoreflections, whose 
determinants have the same finite order N .  So we find 

5.13. Theorem. Notations are as in 5.12 above. Let k be afinitefield of charac- 
teristic p # 2 ,  f (x)  in k[x] weakly supermorse of degree d , and x a character 
of k X  with Xd # I .  Denote by N the order of the character XX,. Let 1 be a 
prime number invertible in k . Then G,,, for the lisse 0,-sheaf M on A' -S 
of rank d - 1 ,  whose trace function is 

is given as follows. 
(1) If x = x2 is the quadratic character, then d is odd and Ggeom is 

Sp(d - 1 ) .  
(2) If x # x2,suppose the either 

(a) d > 5 ,  or 
(b) d > 3 and # I .  

0Then (Ggeom)= SL(d - 1) and G,,, =is {A in GL(d - l ) l d e t ( ~ ) ~I}. 

Proof. Parts (2a) and (2b) are immediate from Theorem 5.1 1. For part ( I ) ,  
we must explain why if x = x2 then d is odd and why we have an a priori 
inclusion Ggeomc Sp(d - 1 ) .  The nontriviality of (X2)d implies that d is 

odd. Over A' - S ,  consider the proper smooth family of hyperelliptic curves 
p:  + A' - S whose fibre over t is the complete nonsingular model of the 
affine curve of equation 

q : y2 = t - f ( x ) .  

Because d is odd, %' is the disjoint union of this affine curve and of a single 
section " co ". The sheaf M is none other than R' p,Q, . [To see this, we argue 
as follows. Both are lisse sheaves on A' - S,  and both have the same trace 
function, namely, 

X 

So by Chebataroff, both have isomorphic semisimplifications as lisse sheaves 
on A' -S ; but M is irreducible (because it is geometrically irreducible), and 
hence R' p,, must itself be irreducible (since its semisimplification - M is ir- 
reducible); therefore, there exists an isomorphism M = R' q,Q, as lisse sheaves 
on A' - S.] This description of M shows the existence of a symplectic au- 
toduality on M ,  corresponding to the cup-product pairing on R1q ,0 , ( l /2 ) .  
Therefore we have an a priori inclusion GgeOm c Sp(d - 1) if x = x2. Q.E.D. 

5.14. Return to the proof of Theorem 5.4. 

Proof. First of all, if x = x2, d is odd and GgeOm c Sp(d - 1), by the same 
argument as used in the proof of 5.1 3. Moreover, if x # x 2 .  Determinant 
Lemma 5.2 shows that every element A in G,, has d e t ( ~ ) ~  1 .= So in 
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order to prove Theorem 5.4, it suffices to show that in case ( 1 )  (resp. case 
(2)) Ggeomcontains Sp(d - 1 )  (resp. {A in GL(d  l ) l d e t ( ~ ) ~- = 1)). 

Now Ggeom for Z - ' ( M ) l U  contains the Ggeom for the pullback of 

z - ~ ( M ) IU to any geometrically connected X by any map X + U @ k . We 
will show that for all but finitely many values of " a " in k , the polynomial 
g a ( x ):= -f ( x )  -a x  is weakly supermorse. For such a good "a. ",we will take 
X := { ( a ,  b )  in U with a = a o )  (so X is the complement in the A' of b 's of 
the critical values of g,) and apply the previous result to the weakly supermorse 
function &,  whose sheaf "M" is precisely the pullback of X of X - ~ ( M ) ~ U .  
Since this pullback already has a big enough Ggeom, we are done. Q.E.D. 

It remains only to prove the following lemma. 

5.15. Lemma. Let k be a field, d 2 2 an integer such that d is invertible in 
k ,  and f ( x )  in k [ x ]  a polynomial in one variable over k of degree d whose 
second derivative f " ( x )  is not identically zero. Then there exists a nonzero 
polynomial R ( t )  in k [ t ]  such that for any overfield K of k and any element 
a in K with R ( a )  # 0 ,  thepolynomial f a ( x )  := f ( x )  + a x  in K [ x ]  is weakly 
supermorse. 
Proof. The derivative f;: of fa is the polynomial f ( x )+a ,which has degree 
d - 1 . Its discriminant, given by some universal formula, is a polynomial A(a)  
in k [ a ]. We first show that the polynomial A is nonzero, i.e., that f;: has all 
distinct roots for general values of "a ". Since f " (x )  is nonzero, f" has only 
finitely many zeros, say yi 's, in k . Since f" is the derivative of fn' , fa' has 
all its zeros simple provided that none of the y,  's is a zero of 6,i.e., provided 
that a # - f ' ( y i )  for each root yi of f" . Thus A is nonzero. 

For any quantity a with A(a)# 0 ,  the polynomial fa is weakly supermorse 
if and only if fa separates the zeros of f ( x )  +a . Consider the product, over all 
pairs ( a , p )  of distinct roots of fn' = f'( x )  +a ,of the difference f a (a )- fa (P), 
say 

D(a) := (fa(a- f ,(P)).  
(a,p)  dist. roots of fd 

This, too, is given by some universal formula: it is an element of the ring 
k [ a, l / A ( a ) ], say D(a)  = P ( a ) / ( apower of A(a) ). We must show that it is 
nonzero. For in this case, the product P( t )A( t ) will function as the required 
R ( t ) .

To understand D(a)  as a function of a ,  we work over the ring k [ a ] [ l / A ( a ) ]  
and pass to the finite etale Yd-,-torsor over it, which represents the functor 

" d - 1 distinct roots of f ' ( x )  +a  ". Concretely, if we write f ( x )= c x  d +lower 
terms, this is the ring 

where Y is the ideal defined by the equation 
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and by the d relations obtained by equating like powers of x in 

ncx z ~ )= + a.- / ( X I  

I 

Then D(a) makes sense as the element of 9 given by 

Because this element is visibly invariant under the permutation action of Yd-, 
on the zl , it in fact lies in the ground-ring k[a][l/A(a)] , justifying the D(a) 
notation. 

To show that this element is nonzero, we argue by contradiction. If D(a) is 
identically zero, then viewed as an element of 9 it vanishes identically on each 
connected component of S p e c ( 9 ) .  But 9 is finite etale over the normal ring 
k[a][l/A(a)] and so is itself normal, and hence each connected component, say 
Spec(9"),  has 9 "  an integral domain, which is finite etale over k[a][l/A(a)] . 
Because 9 "  is an integral domain in which D(a) vanishes, there exists a pair 
of indices i # j such that 

Because 9 "  is etale over k[a][l /A(a)] , the derivation d Ida  of k[a][ 1 /A(a)] 
extends uniquely to a k-linear derivation, say 6 ,  of 9 " ,  satisfying 6(a) = 1 . 
We compute 

the last equality because fl(zi)  + a  = 0 .  Similarly, S(&(zj)) = z, . So applying 
6 to the equality 

fa(z i )-&(zj)  = 0 in S " ,  
we find that zi - zj  = 0 in 9 "  , a contradiction since zi - z j  is invertible in 
9'and, hence, in 9 "  . Q.E.D. 

5.16. Remark. What becomes of Theorem 5.4 if we allow for ,y a nontrivial 
character with ,yd = 1? First of all, if ,y is nontrivial but ,y 

d is trivial, then 
x - ~ ( M ) IU has a lisse rank 1 subsheaf, which is pure of weight 0 and geomet- 
rically constant. The quotient of X P 2 ( M ) l  u by this lisse rank 1 subsheaf, say 
9,is lisse of rank d - 2 and pure of weight 1. By the Irreducibility Theorem 
2.1.1 (and Corollary 2.1.4) this quotient 	9 is geometrically irreducible. 

To see this structure when ,yd is trivial, suppose to fix ideas that f is monic. 
Write d = ep" with e prime to p . Since ,y has order prime to p , ,y d 

= 1 3 

,ye = 1; but any monic f ( x )  of degree d is an eth power in k ( ( l / x ) )  , so 
q ( f (x ) ) lSpec(k( ( l /x ) ) )is trivial. So for ( a ,  b) in U ,  we have a short exact 

sequence of sheaves on P' 

The long exact cohomology sequence on lP1 gives, for ( a ,  b) in U , 
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and the last term is pure of weight 1 by [De, 3.2.31. 
Concretely, then, for f monic of degree d ,  the trace function of .B is 

given by the following recipe: For E a finite extension of k , X ,  the character 
,y o NormEjk of E' , and ( a ,  b )  in U ( E ), we have 

If we drop the requirement that f be monic and write 

f ( x )  = c x  
d + lower terms, 

then the trace function is 

5.17. Theorem. Notation is as in 5.1. Suppose that d 2 3 is prime to p , that 
f " ( x )  is not identically zero (whence char(k) # 2 ) ,  that x is non!rivial, and that 
x d 

= I . Denote by Ggeom the geometric monodromy group of the (~eometrically 
irreducible) lisse sheaf 3 (dejined abovey of rank d - 2 .  Denote by x2 the 
unique character of order two of k X  , and denote by N the (exact) order of the 
character X X ,  of k x  . Then: 

( 1 )  If x = x2 is the quadratic character, then d is even and G,,,, is 
Sp(d - 2 ) .  

( 2 )  If x # x 2 ,  suppose that either 
(a) d > 6 ,  or 
(b) d > 4 and ( X X 2 ) 3  # I .  

Then (G,,) 0 
= SL(d - 2 ) .  and GSom = { A  in G L ( d  - = 1} .2 ) l d e t ( ~ ) ~  

Proof. The idea is the same, to prove the theorem already for the restriction of 
F to the line in U where " a " is frozen to a value for which f ( x )  + a x  is 
weakly supermorse. 

For an f ,  which is weakly supermorse of degree d , and a nontrivial x of 
order dividing d ,  the sheaf M has a rank 1 geometrically constant subsheaf 
of weight zero and the quotient, say %, is a lisse sheaf of rank d - 2 ,  which 
is pure of weight 1 .  The extension by direct image to A'  of % is the Fourier 
Transform not of 2? @ j ,PX  but rather of its middle extension j* j * ( F  @ j I P X ). 
In this way, we prove the following variant of Key Lemma 5.7. 

5.18. Variant Key Lemma. If f = cxd  +.. . is weakly superrnorse of degree d , 
if x is nontrivial, and if x d 

= 1, then: 
( 1  ) the highest weight quotient of the object (.F*!+ is a geometrically J , ~ ~ ) [ I ]  

irreducible Fourier sheaJ say M , of generic rank d - 2 ; 
( 2 )  the trace function of 32 is t +-+ - x ( c )  - Ex~ ( tf ( x ) );-

( 3 )  the geometrically irreducible Fourier sheaf N F T ~ ( % )is geometrically 
isomorphic to j* J *  (2? @ ( j , -E",)); 

( 4 )  is tame at m ; 
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( 5 )  is lisse on A' outside the d - 1 critical values of f ,  i.e., outside 
the points f ( a )  for a a zero of f( x ). At each critical value f ( a ) ,  the local 
monodromy of M is a tame pseudoreflection whose determinant, as character of 
I ( /  ( a ) ) ,  is qx;,,) )) .,,-,,, 

From this point on, the proof is exactly the same. Q.E.D. 

In this appendix, we work over an algebraically closed field k and fix a prime 
1 # char(k) . We fix an integer n 2 1 , and denote by P the n-dimensional 
projective space Pn over k . We denote by 9 (sic) the dual projective space 
over k , i.e., 9 is the space of hyperplanes in P . We denote by Z c P x 9 
the universal hyperplane: in terms of projective coordinates (Xo , . . . , X,) for 
P and (Yo, . . . , Y,) for 9 ,  Z is defined by the equation C Y,Xi = 0 .  

A. 1. Lemma. Consider the inclusion P : P x 9-X + P x 9 as a morphism 
of P-schemes. Zariski locally on P ,  this morphism /3 is P-isomorphic to the 
product of P with the inclusion j :  d + 9 of the afine open set d in 9 
where Yo is invertible. 

Proof. For each integer 0 5 i 5 n ,  denote by U, c P the affine open set 
where Xi is invertible and denote by Zi c 9 the affine open set where Yi is 
invertible. We claim that over Ui , the morphism in question is Ui-isomorphic 
to U, x (2Yi + 9).This will prove the lemma, since by renumbering the 
coordinates in 9,q.+ 9 becomes isomorphic to Zo+ 9 .  To prove the 
claim, it suffices, again by renumbering the coordinates, to treat the case i = 0 .  
In this case, Uo is the An with coordinates to xi := Xi/Xo for i = 1 ,  . . . , n , 
and inside Uo x 9 , 2'is defined by the vanishing of Yo + xi,,xl5 . After 
the Uo-automorphism of Uo x P defined by 

Z is defined inside Uo x 9 by the vanishing of Yo. Q.E.D. 

A.2. Lemma. Let f :  X + P be a separated morphism offinite type and K an 
object of D:(x, Q,). On the product X x 9,consider the object pr;K and the 
Cartesian diagram 

X x 9 - ( f  x i d ) - ' ( x )  

On P x 9,the natural map of adjunction 

is an isomorphism. 
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Proof. The question is Zariski local on P x 9 , so in particular it is Zariski local 
on P .  By the previous lemma, Zariski locally on P the situation is isomorphic 
to the product of the two situations 

i.e., Zariski locally on P our Cartesian diagram is 

X x d  

l d x J  ,/' \ f x i d  


X x 9  P x d  

f x i d  \ ,/' i d x J  


P x 9  


and the object a * p r T ~on X x 9-(fx id)- '  ( Z )becomes the external tensor 
product K @ Q I , ,  on X x d . By the Kunneth formulas for both ordinary 
and ! direct images ([SGA4, XVII, 5.4.31 for ! direct images, combined with 
biduality, [SGA44, Theoremes de Finitude, 4.31 to deduce * direct images) we 
have 

and, similarly, 

= ( R f * K ) @ ( R j @ , , , ) .  Q.E.D. 

A.3. Lemma. Let f :  X + P be a separated morphism offinite type and K an 
object of D:(x, Q,) . For H c P a hyperplane, denote by p H :  P -H - P the 
inclusion, and consider the Cartesian diagram 

X P - H  

7' 
P 

J4, 

There exists a dense open set 2Y in the space 9 of all hyperplanes in P such 
that if H lies in 2Y then the natural morphism of adjunction 

is an isomorphism on P . 

mailto:=(Rf*K)@(Rj@,,,)
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Proof. In the universal situation considered in Lemma A.2, we have an isomor- 
phism 

By [ S G A ~ ~ ,  = to the two situ- Theorems de Finitude, 1.91, applied with S 9 
ations 

both viewed as morphisms of 9-schemes, together with the proper base change 
theorem to handle a,  and P! , there exists a dense open set 2Y in 9 over which 
formation of both sides of the "universal" isomorphism (*) above commutes 
with passages to fibres over 9.Taking the fibre over a point in ZY correspond-
ing to a hyperplane H in P gives the required isomorphism 

(P,)!R(gH),(aH)*K 2 R f * ( a H ) ! ( a H ) * K .Q.E.D. 

Applying the functor R T ( P ,  ) ,we find 

A.4. Corollary. Hypotheses and notation are as in Lemma A3. There exists 
a dense open ZY in 9 such that i f  H lies in Z Y ,  we have an isomorphism 
RT,(P -H , R(g,),(a,)*K) R T ( X  , (a,)!(a,)*K) and a consequent isomor- 
phism of cohomology groups 

for every i 

A.5. Corollary. (Weak Lefschetz Theorem). Hypotheses and notation are as in 
Lemma A3. Suppose in addition that the morphism f :  X - P is quasi-finite 
and the object K on X is perverse. Then there exists a dense open ZY in 9 
such that i f  H lies in ZY , the cohomology groups H i ( x ,  (a,),(a,)*K) vanish 
for i < 0 and (equivalently) for which the restriction maps 

are isomorphisms for i < - 1 , and injective for i = - 1 

Proof. If we denote by i,: f - ' H  - X the inclusion, the short exact sequence 
(more precisely, the triangle) on X 

leads to a long exact cohomology sequence, which shows the asserted equiva- 
lence. To show that H ' ( x ,  (a,)!(a,)*K) = 0 for i < 0 ,  it suffices by Corollary 
A.4 to show that H ~ ( P-H ,  R(g,)*(a,)*K) = 0 for i < 0 .  By duality, this is 
equivalent to showing that 

Hi(P- H ,  R ( ~ , ) ! ( ~ , ) * D K )= 0 for i > 0. 
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Because f is quasi-finite so is gH , and hence R(gH), = (g,)! preserves semi- 
perversity. Since K is perverse, (~Y,)*DK is perverse, and hence 
R(gH)!(a,)*DK is semiperverse. Because P - H is affine, the cohomology 
groups H'(P - H ,  semiperverse) = 0 for i > 0 ,  by the cohomological dimen- 
sion of affines (or, more fancily, by the fact that because the structural map 
n : P -H + Spec(k) is affine, Rn* (semiperverse on P -H )  is semiperverse on 
Spec(k)). Q.E.D. 

In order to state the next corollary, we-recall the notion of relative coho- 
mology modulo a closed set. If Z is closed in X ,  U := X - Z the open 
complement, j: U + X the open immersion, and i :  Z + X the closed im- 
mersion, then for K on X one defines 

From the triangle 
0 + j , j*K +K + i , i * ~- 0 ,  

one gets the long exact cohomology sequence 

A.6. Corollary (Generic duality formula for relative cohomology). Hypotheses 
and notation are as in Lemma A.3. Suppose in addition that the map f :  X + P 
factors as the composite 

xLx-LIF 
with j an open immersion and i a closed immersion. In other words, 7 is a 
closed subscheme of B and X is open in X.We denote by Y in 7 the closed 
complement of X .  X = 7- Y . Then for any object K of D ~ ( x ,Qi).there 
exists a dense open set 2Y in 9 of hyperplanes such that if H lies in 72, the 
relative cohomology groups 

~ ' ( X r n o d X n H , ~ )  H - ' ( x - x ~ H ~ ~ ~ Y - Y ~ H , D K )and 

are canonically dual for every integer i . 

Proof. This is just the spelling out of Lemma A.4 in this case, together with 

duality. Q.E.D. 
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