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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn
We work over an algebraically closed field "^" of characteristic

zero. Let V be a ^-vector space of dimension N ≥ 2. We fix a (not
necessarily connected) Zariski closed subgroup G fi GL(V) which is
reductive (i.e., every finite-dimensional representation of G is
completely reducible). We are interested in criteria which guarantee
that G is one of the standard classical groups, i.e. that either G is
caught between SL(V) and GL(V), or that G is one of SO(V) or O(V) or
(if dim(V) is even) Sp(V).

Larsen's Alternative (cf. [Lar-Char] and [Lar-Normal]) is a
marvelous criterion, in terms of having a sufficiently small "fourth
moment", which guarantees that G is either a standard classical
group oooorrrr is a finite group. We have already made use of this
criterion in [Ka-LFM, page 113]. In that application, we were content
with either alternative.

However, in many applications, especially to the determination
of (Zariski closures of) geometric monodromy groups in explicitly
given families, we want to be able to rule out the possibility that G
be finite. Failing this, we would at least like to have a better
understanding of the cases in which G can in fact be finite.

Part I of this paper represents very modest progress toward
these two goals. Toward the first goal, we give criteria for ruling out
the possibility that G be finite. These criteria rely on the observation
that if G is finite and has a sufficiently small fourth moment, it
must be primitive. This observation in turn allows us to bring to
bear classical results of Blichfeld and of Mitchell, and more recent
results of Wales and Zalesskii. Toward the second goal, we give
examples of finite G with a very low fourth moment.

In Part II, we apply the results proven in Part I to the
monodromy of Lefschetz pencils. Start with a projective smooth
variety X of dimension n+1 ≥ 1, and take the universal family of (or
a sufficiently general Lefschetz pencil of) smooth hypersurface
sections of degree d. By its monodromy group Gd, we mean the
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Zariski closure of the monodromy of the local system Ïd on the

space of all smooth, degree d, hypersurface sections, given by

H ÿ Hn(X€H)/Hn(X).
Let us denote by Nd the rank of this local system.

For n odd, the monodromy group Gd is the full symplectic

group Sp(Nd), cf [De-Weil II, 4.4.1 and 4.4.2a].

For n = 0, X is a curve, X€H is finite, Nd + 1 = Card((X€H)(äk))

= d≠deg(X), and the monodromy group Gd is well known to be the

full symmetric group SNd+1
:= Aut((X€H)(äk)), cf. 2.4.4.

For n ≥ 2 and even, the situation is more involved. Deligne

proved [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9] that the monodromy
group Gd is either the full orthogonal group O(Nd), or it is a finite

reflection group, and that the only finite reflection groups that arise
are the Weyl groups of root systems of type A, D, or E in their
standard representations. Deligne needed this more precise
information for his pgcd theorem [De-Weil II, 4.5.1], where the O(Nd)

case was easy, but the finite case required case by case argument.
Using the criteria developed in Part I, we show that the monodromy
group Gd is in fact the full orthogonal group O(Nd) for all sufficiently

large d (more precisely, for all d with d ≥ 3 and Nd > 8, and also for

all d with d ≥ 7 and Nd > 2, cf. 2.2.4, 2.2.15, and 2.3.6).

I would like to thank CheeWhye Chin for his assistance in using
the computer program GAP [GAP] to compute moments of
exceptional Weyl groups. I would also like to thank the referee, for
suggesting Theorem 2.3.6.

PPPPaaaarrrrtttt IIII:::: GGGGrrrroooouuuupppp TTTThhhheeeeoooorrrryyyy
1111....1111 RRRReeeevvvviiiieeeewwww ooooffff LLLLaaaarrrrsssseeeennnn''''ssss AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee
(1.1.1) Recall that ^ is an algebraically closed field of
characteristic zero, V is a ^-vector space of dimension N ≥ 2, and G
is a Zariski closed, reductive subgroup of GL(V).
(1.1.2) For each pair (a, b) of non-negative integers, we denote
by Ma,b(G, V) the dimension of the space of G-invariant vectors in

Vºa‚(V£)ºb:
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(1.1.2.1) Ma,b(G, V) := dim^ (Vºa‚(V£)ºb)G.

We call Ma,b(G, V) the (a, b)'th moment of (G, V). For each even

integer 2n ≥ 2, we denote by M2n(G, V) the 2n'th absolute moment,

defined by
(1.1.2.2) M2n(G, V) := Mn,n(G, V).

If H is any subgroup of G, we have the a priori inequalities
(1.1.2.3) Ma,b(G, V) ≤ Ma,b(H, V)

for every (a, b).
(1.1.3) The reason for the terminology "moments" is this. If ^ is
the field of complex numbers, and if K fi G(^) is a maximal compact

subgroup of G(^)an, then K is Zariski dense in G (Weyl's unitarian
trick). If we denote by dk the Haar measure on K of total mass one,
and by

ç : G(^) ¨ ^
ç(g) := Trace(g|V),

the character of V as G-module, then we have the formulas

(1.1.3.1) Ma,b(G, V) = —
K
ç(k)aäç(k)bdk,

(1.1.3.2) M2n(G, V) = —
K
|ç(k)|2ndk.

Thus the terminology "moments" and "absolute moments".
(1.1.4) The most computationally straightforward interpretation
of the 2n'th absolute moment M2n(G, V) is this. Decompose the G-

module Vºn as a sum of irreducibles with multiplicities:

(1.1.4.1) Vºn ¶ ·i miWi.

Then by Schur's Lemma we have

(1.1.4.2) M2n(G, V) = ‡i (mi)
2.

More precisely, given any decomposition of Vºn as a sum of (not
necessarily irreducible) G-modules Vi with (strictly positive integer)

multiplicities mi,

(1.1.4.3) Vºn ¶ ·i miVi,

we have the inequality

(1.1.4.4) M2n(G, V) ≥ ‡i (mi)
2,

with equality if and only if the Vi are distinct irreducibles.

(1.1.5) If n is itself even, say n = 2m, there is another
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interpretation of M4m(G, V). Decompose the G-module

Vºm‚(V£)ºm = End(Vºm) as a sum of irreducibles with
multiplicities:

(1.1.5.1) End(Vºm) ¶ ·i niWi.

Then we have, again by Schur's Lemma,

(1.1.5.2) M4m(G, V) = ‡i (ni)
2.

More precisely, given any decomposition of End(Vºm) as a sum of
(not necessarily irreducible) G-modules Vi with (strictly positive

integer) multiplicities ni,

(1.1.5.3) End(Vºm) ¶ ·i niVi,

we have the inequality

(1.1.5.4) M2n(G, V) ≥ ‡i (ni)
2,

with equality if and only if the Vi are distinct irreducibles.

TTTThhhheeeeoooorrrreeeemmmm 1111....1111....6666 ((((LLLLaaaarrrrsssseeeennnn''''ssss AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee, cf [Lar-Char], [Lar-
Normal], [Ka-LFM, page 113])))) Let V be a ^-vector space of dimension
N ≥ 2, G fi GL(V) a (not necessarily connected) Zariski closed
reductive subgroup of GL(V).
0) If M4(G, V) ≤ 5, then V is G-irreducible.

1) If M4(G, V) = 2, then either G fl SL(V), or G/(G€scalars) is finite. If

in addition G€scalars is finite (e.g., if G is semisimple), then either G0

= SL(V), or G is finite.
2) Suppose <,> is a nondegenerate symmetric bilinear form on V, and
suppose G lies in the orthogonal group O(V) := Aut(V, <,>). If M4(G, V)

= 3, then either G = O(V), or G = SO(V), or G is finite. If dim(V) is 2 or
4, then G is not contained in SO(V).
3) Suppose <,> is a nondegenerate alternating bilinear form on V
(such a form exists only if dim(V) is even), suppose G lies in the
symplectic group Sp(V) := Aut(V, <,>), and suppose dim(V) > 2. If
M4(G, V) = 3, then either G = Sp(V), or G is finite.

pppprrrrooooooooffff To prove 0), suppose that V = V1·V2 is the direct sum of two

non-zero G-modules. Then we have a G-isomorphism

Vº2 ¶ (V1)
º2 · (V2)

º2 · 2(V1‚V2),

and this in turn forces M4(G, V) ≥ 1 + 1 + 22 = 6.
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To prove 1), we use the second interpretation (1.1.5) of
M4(G, V). If M4(G, V) = 2, then End(V) is the sum of two distinct

irreducible representations of G. But under the bigger group GL(V),
End(V) is the sum of two representations of GL(V), namely

End(V) = End0(V) · ú = Lie(SL(V)) · ú.
[The two summands are inequivalent irreducible representations of
GL(V), but we will not use this fact.] Because M4(G, V) = 2, this must

be the decomposition of End(V) as the sum of two distinct irreducible
representations of G. In particular, Lie(SL(V)) is G-irreducible.

The derived group Gder lies in SL(V), so Lie(Gder) lies in

Lie(SL(V)). As Gder is a normal subgroup of G, Lie(Gder) is a G-stable
submodule of Lie(SL(V)). So by the G-irreduciblity of Lie(SL(V)),

either Lie(Gder) = Lie(SL(V)), or Lie(Gder) = 0. In the first case,

(Gder)0 = SL(V), and so G fl SL(V). Thus if in addition G€scalars is

finite, G0 is SL(V).

In the second case, Gder is finite. For any fixed element © in

G(^), the morphism from G0 to Gder defined by g ÿ g©g-1©-1 is

therefore the constant map g ÿ e. Therefore G0 lies in Z(G). As G acts

irreducibly on V, its center Z(G) lies in the ´m of scalars. But G0 fi

Z(G), so G0 lies in the ´m of scalars. Therefore G0 fi G€scalars,

whence G/(G€scalars) is finite. So if in addition G€scalars is finite,
then G is finite.

To prove 2), use the first interpretation (1.1.4) of M4(G, V). If

M4(G, V) = 3, then Vº2 is the sum of three distinct irreducible

representations of G. Under GL(V), we first decompose

Vº2 = Sym2(V) · Ú2(V).
As O(V)-modules, we have an isomorphism

Ú2(V) ¶ Lie(SO(V))
and the further decompostion

Sym2(V) = SphHarm2(V) · ú.
Thus as O(V)-module, we have the three term decomposition

Vº2 = SphHarm2(V) · ú · Lie(SO(V)).
[For dim(V) ≥ 2, the three summands are distinct irreducible
representations of O(V). If dim(V) is neither 2 nor 4, they are
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distinct irreducible representations of SO(V). For n = 2 (resp. n = 4),

SphHarm2(V) (resp. Lie(SO(V))) is a reducible representation of SO(V).
We will not use these facts.]

If M4(G, V) = 3, then

Vº2 = SphHarm2(V) · ú · Lie(SO(V))

must be the decomposition of of Vº2 as the sum of three distinct
irreducible representations of G.

We now exploit the fact that Lie(SO(V)) is G-irreducible. Since G

fi O(V), G0 fi SO(V), so Lie(G0) is a G-stable submodule of Lie(SO(V)).

By G-irreducibility, Lie(G0) is either Lie(SO(V)) or is zero. If Lie(G0) =

Lie(SO(V)), then G0 is SO(V) and G, being caught between SO(V) and

O(V), is either SO(V) or O(V). If Lie(G0) is zero, then G is finite.
If dim(V) is 2 or 4, we claim G cannot lie in SO(V). Indeed, for

dim(V) = 2, SO(V) is ´m, Lie(SO(V)) is ú as SO(V)-module, and

SphHarm2(V) is SO(V)-reducible, so if G fi SO(V) then M4(G, V) ≥ 6. If

dim(V) = 4, then SO(4) is (SL(2)≠SL(2))/_(1,1), hence Lie(SO(4)) is
SO(4)-reducible: so if G fi SO(V) then M4(G, V) ≥ 4.

To prove 3), we begin with the GL(V)-decomposition

Vº2 = Sym2(V) · Ú2(V).
As Sp(V)-modules, we have an isomorphism

Lie(Sp(V)) ¶ Sym2(V),
and the further (because dim(V) > 2) decomposition

Ú2(V) = (Ú2(V)/ú) · ú.
Thus as Sp(V)-module we have a three term deomposition

Vº2 = Lie(Sp(V)) · (Ú2(V)/ú) · ú.
[The three summands are distinct irreducible representations of
Sp(V), but we will not use this fact.] Exactly as in the SO case above,

we infer that Lie(Sp(V)) is G-irreducible. But G fi Sp(V), so Lie(G0) is

a G-stable submodule of Lie(Sp(V)), and so either Lie(G0) = Lie(Sp(V)),

or Lie(G0) is zero. In the first case, G is Sp(V), and in the second case
G is finite. QED

1111....2222 RRRReeeemmmmaaaarrrrkkkkssss
(1.2.1) We should call attention to a striking result of Beukers,
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Brownawell and Heckmann, [BBH, Theorems A5 and A7 together],
which is similar in spirit to 1.1, though more difficult: if G is a

Zariski closed subgroup of GL(V) which acts irreducibly on Sym2(V),
then either G/(G€scalars) is finite, or G contains SL(V), or dim(V) is
even and Sp(V) fi G fi GSp(V).
(1.2.2) There are connected semisimple subgroups G fi GL(V) with
M4(G, V) = 3 other than SO(V) (for dim(V) ≥ 3, but ± 4) and Sp(V)

(for dim(V) ≥ 4). The simplest examples are these. Take a ^-vector

space W of dimension …+1. Then for V either Sym2(W), if … ≥ 2, or

Ú2(W), if … ≥ 4, the image G of SL(W) in GL(V) has M4(G, V) = 3, but

V is not self-dual as a representation of G (not self dual because we

excluded the case …=3, V = Ú2(W)). Here is a bad proof. In the

Bourbaki notation [Bour-L8, page 188], Sym2(W) is the highest

weight module E(2∑1), and Ú2(W) is the highest weight module

E(∑2). We use the first interpretation (1.1.4) of the fourth absolute

moment. We have

(1.2.2.1) End(E(2∑1)) = E(2∑1)‚E(2∑1)
£ = E(2∑1)‚E(2∑…)

and

(1.2.2.2) End(E(∑2)) = E(∑2)‚(∑2)
£ = E(∑2)‚E(∑…-1).

Now End(any nonntrivial rep'n of SL(W)) contain both the trivial
representation ú of SL(W) and its adjoint representation E(∑1 + ∑…).

From looking at highest weights, we see that End(E(2∑1)) contains

E(2∑1 + 2∑…), and we see that End(E(∑2)) contains E(∑2 + ∑…-1).

Thus we have a priori decompositions
(1.2.2.3) End(E(2∑1)) = ú · E(∑1 + ∑…) · E(2∑1 + 2∑…) · (?),

(1.2.2.4) End(E(∑2)) = ú · E(∑1 + ∑…) · E(∑2 + ∑…-1) · (?).

To see that in both cases there is no (?) term, it suffices to check
that the dimensions add up, an exercise in the Weyl dimension
formula we leave to the reader.
(1.2.3) Other examples are (the image of) E6 in either of its 27-

dimensional irreducible representations, or Spin(10) in either of its
16-dimensional spin representions: according to simpLie [MPR], these
all have fourth absolute moment 3.

1111....3333 TTTThhhheeee ccccaaaasssseeee ooooffff GGGG ffffiiiinnnniiiitttteeee:::: tttthhhheeee pppprrrriiiimmmmiiiittttiiiivvvviiiittttyyyy tttthhhheeeeoooorrrreeeemmmm
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(1.3.1) What about finite groups G fi GL(V) with M4(G, V) = 2, or

finite groups G in O(V) or Sp(V) with M4(G, V) = 3?

PPPPrrrriiiimmmmiiiittttiiiivvvviiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 1111....3333....2222 Let V be a ^-vector space of
dimension N ≥ 2, G fi GL(V) a finite subgroup of GL(V). With the
notations of the previous theorem, suppose that one of the following
conditions 1), 2) or 3) holds.

1) M4(G, V) = 2

2) G lies in O(V), dim(V) ≥ 3, and M4(G, V) = 3.

3) G lies in Sp(V), dim(V) ≥ 4, and M4(G, V) = 3.

Then G is an (irreducible) primitive subgroup of GL(V), i.e., there
exists no proper subgroup H of G such that V is induced from a
representation of H.

(1.3.3) Before giving the proof, we recall the following well-
known lemma.
LLLLeeeemmmmmmmmaaaa 1111....3333....4444 Let G be a group, H a subgroup of G of finite index,
and A and B two finite-dimensional ^-representations of H.

1) Denoting by £ the dual (contragredient) representation, we have
a canonical G-isomorphism

(IndH
G(A))£ ¶ IndH

G(A£).

2) There is a canonical surjective G-morphism ("cup product")

(IndH
G(A))‚^(IndH

G(B)) n IndH
G(A‚^B).

pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa 1111....3333....4444 Assertion 1) is proven in [Ka-TLFM, 3.1.3].
For assertion 2), we view induction as Mackey induction, cf. [Ka-

TLFM, 3.0.1.2]. Thus IndH
G(A) is Homleft H-sets(G, A), with left G-

action defined by (Lgƒ)(x) := ƒ(xg). We define a ^-bilinear map

(IndH
G(A))‚^(IndH

G(B)) ¨ IndH
G(A‚^B)

as follows. Given maps ƒ : G ¨ A and ¥: G ¨ B of left H-sets, we
define their cup product ƒ‚¥ : G ¨ A‚^B by

(ƒ‚¥)(x) := ƒ(x)‚¥(x).
It is immediate that ƒ‚¥ is a map of left H-sets, and so the cup
product construction (ƒ, ¥) ÿ ƒ‚¥ is a ^-linear map

(IndH
G(A))‚^(IndH

G(B)) ¨ IndH
G(A‚^B).

This map is easily checked to be G-equivariant and surjective. QQQQEEEEDDDD



Larsen's Alternative-9

pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 1111....3333....2222 Let H be a subgroup of a finite group G, of
finite index d ≥ 2, and A a finite-dimensional ^-representation of H,
of dimension a ≥ 1. We wish to compute a lower bound for M4(G,

IndH
G(A)). To do this we attempt to decompose

IndH
G(A)‚(IndH

G(A))£ as a sum of G-modules. By the previous

lemma, we have a g-isomorphism

(IndH
G(A))£ ¶ IndH

G(A£),

and a surjective G-map

IndH
G(A)‚IndH

G(A£) ¨ IndH
G(A‚A£).

Its source has dimension d2a2, while its target has lower dimension

da2, so this map has a nonzero kernel "Ker", which is a G-module of

dimension (d2 - d)a2. So we have a G-isomorphism

IndH
G(A)‚(IndH

G(A))£ ¶ Ker · IndH
G(A‚A£).

Now the H-module A‚A£ = End(A) itself has an H-decomposition

End(A) ¶ End0(A) · úH,

as the sum of the endomorphisms of trace zero with the scalars. [Of

course, if A is one-dimensional, then End0(A) vanishes.] Thus we
have a G-decomposition

IndH
G(A‚A£) ¶ IndH

G(End0(A)) · IndH
G(úH),

Now the trivial representation úG occurs once in IndH
G(úH), so we

have a further decomposition

IndH
G(úH) ¶ IndH

G(úH)/úG · úG.

So all in all we have a four term G-decomposition

IndH
G(A)‚(IndH

G(A))£ ¶

Ker · IndH
G(End0(A)) ·IndH

G(úH)/úG · úG,

in which the dimensions of the terms are respectively (d2- d)a2,

d(a2 - 1), d - 1, and 1. So we obtain the a priori estimate

M4(G, IndH
G(A)) ≥ 4 if dim(A) ≥ 2,

M4(G, IndH
G(A)) ≥ 3 if dim(A) = 1.

Thus if M4(G, V) = 2, then G is a primitive subgroup of GL(V).
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Suppose now that M4(G, V) = 3, and that V is induced from a

subgroup H of G of finite index d ≥ 2, from an H-module A. Then

dim(A) = 1, and dim(V) = d. Moreover, IndH
G(A)‚(IndH

G(A))£ is the

sum of three distinct irreducibles, of dimensions d2 - d, d - 1, and 1.
If we further suppose that G lies in either O(V) or Sp(V), then

V ¶ IndH
G(A) is self-dual, so we have a G-isomorphism

IndH
G(A)‚(IndH

G(A))£ ¶ IndH
G(A)‚IndH

G(A). ¶ V‚V.

If G lies in O(V), and dim(V) ≥ 3, then we have the G-
decomposition

V‚V ¶ SphHarm2(V) · Ú2(V) · úG.

In this decomposition, the dimensions of of the terms are
respectively d(d+1)/2 - 1, d(d-1)/2, and 1. Since M4(G, V) = 3, these

three terms must be distinct irreducibles. Thus V‚V ¶ V‚V£ is
simultaneously presented as the sum of three distinct irreducibles of

dimensions d2 - d, d - 1, and 1, and the sum of three distinct
irreducibles of dimensions d(d+1)/2 - 1, d(d-1)/2, and 1. As d ≥ 2, we
have d(d+1)/2 - 1 ≥ d(d-1)/2. Comparing the dimensions of the
largest irreducible constituent in the two presentations, we find

d2 - d = d(d+1)/2 -1,
which forces d = 1 or 2, contradiction.

If G lies in Sp(V), and dim(V) ≥ 4, the argument is similar. We
have the G-decomposition

V‚V ¶ Sym2(V) · Ú2(V)/úG · úG.

into what must be three distinct irreducibles, of dimensions
d(d+1)/2, d(d-1)/2 - 1, and 1. Exactly as above, we compare
dimensions of the largest irreducible constituent in the two
presentations. We find

d2 - d = d(d+1)/2,
which forces d= 3, contradiction. QED

RRRReeeemmmmaaaarrrrkkkk 1111....3333....5555 In the primitivity theorem, when V is either
symplectic or orthogonal, we required dim(V) > 2. This restriction is
necessary, because there exist imprimitive finite groups G in both
O(2) and in Sp(2) = SL(2) whose fourth moment is 3 in their given
representations. Indeed, fix an integer n ≥ 1 which is not a divisor of
4, and denote by Ω a primitive n'th root of unity. The dihedral group
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D2n fi O(2) of order 2n (denoted Dn in [C-R-MRT, page 22]), the

group generated by Diag(Ω, Ω-1) and Antidiag(1, 1), is easily checked
to have fourth moment 3 in its given representation. If we further
require n to be even, the generalized quaternion group Q2n fi SL(2)

of order 2n (denoted Qn/2 in [C-R-MRT, page 23]), the group

generated by Diag(Ω, Ω-1) and Antidiag(1, -1), is easily checked to
have fourth moment 3 in its given representation.

TTTTeeeennnnssssoooorrrr IIIInnnnddddeeeeccccoooommmmppppoooossssaaaabbbbiiiilllliiiittttyyyy LLLLeeeemmmmmmmmaaaa 1111....3333....6666 Let V be a ^-vector
space of dimension N ≥ 2, G fi GL(V) a finite subgroup of GL(V).
Suppose that M4(G, V) ≤ 3. Then V is tensor-indecomposable in the

following (strong) sense. There exists no expression of the ^-vector
space V as a tensor product

V = V1‚V2
of ^-vector spaces V1 and Y in such a way that all three of the

following conditions are satisfied:
dim(V1) ≥ 2,

dim(V2) ≥ 2,

every element g in G, viewed as lying in GL(V) = GL(V1‚V2),

can be written in the form A‚B with A in GL(V1) and with B in

GL(V2).

pppprrrrooooooooffff If not, G lies in the image "GL(V1)‚GL(V2)" of the product

group GL(V1)≠GL(V2) in GL(V1‚V2). So we have the trivial

inequality
M4(G, V) = M4(G, V1‚V2) ≥ M4(GL(V1)‚GL(V2), V1‚V2).

But by definition
M4(GL(V1)‚GL(V2), V1‚V2)

= dim(((V1‚V2)
º2‚((V1‚V2)

£)º2)GL(V1)≠GL(V2))

= dim (((V1
º2‚(V1

£)º2)‚(V2
º2‚(V2

£)º2))GL(V1)≠GL(V2))

≥ dim(((V1
º2‚(V1

£)º2)GL(V1))‚((V2
º2‚(V2

£)º2)GL(V2)))

= M4(GL(V1), V1)≠M4(GL(V2), V2)

= 2≠2 = 4. QED
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NNNNoooorrrrmmmmaaaallll SSSSuuuubbbbggggrrrroooouuuupppp CCCCoooorrrroooollllllllaaaarrrryyyy 1111....3333....7777 [[[[LLLLaaaarrrrsssseeeennnn----CCCChhhhaaaarrrr,,,, 1111....6666]]]] Let V be a
^-vector space of dimension N ≥ 2, G fi GL(V) a finite subgroup of
GL(V). Let H be a proper normal subgroup of G. Suppose that one of
the following conditions 1), 2) or 3) holds.

1) M4(G, V) = 2

2) G lies in O(V), dim(V) ≥ 3, and M4(G, V) = 3.

3) G lies in Sp(V), dim(V) ≥ 4, and M4(G, V) = 3.

Then either H acts on V as scalars and lies in the center Z(G), or V is
H-irreducible.
pppprrrrooooooooffff By the Primitivity Theorem 1.3.2, G is primitive. So the
restriction of V to H must be H-isotypical, as otherwise V is induced.
Say V|H ¶ nV1, for some irreducible representation V1 of H. If

dim(V1) = 1, then H acts on V as scalars. But H fi G fi GL(V), so H

certainly lies in Z(G). If n = 1, then V = V1 is H-irreducible. It

remains to show that the case where dim(V1) ≥ 2 and n ≥ 2 cannot

arise. To see this, write the vector space V as X‚Y with X := V1 and

Y := HomH(V1, V). Then dim(X) and dim(Y) are both at least 2, and,

by [C-R-MRT, 51.7], every element of g is of the form A‚B with A in
GL(X) and B in GL(Y). But this contradicts the Tensor
Indecomposability Lemma 1.3.5. QED
1111....4444 CCCCrrrriiiitttteeeerrrriiiiaaaa ffffoooorrrr GGGG ttttoooo bbbbeeee bbbbiiiigggg
(1.4.1) We next combine these results with some classical results
of Blichfeld and of Mitchell, and with recent results of Wales and
Zalesskii, to give criteria which force G to be big. Recall that an
element A in GL(V) is called a pseudoreflection if Ker(A - 1) has
codimension 1 in V. A pseudoreflection of order 2 is called a
reflection. Given an integer r with 1 ≤ r < dim(V), an element A of
GL(V) is called quadratic of drop r if its minimal polynomial is
(T-1)(T- ¬) for some nonzero ¬, if V/Ker(A - 1) has dimension r, and
if A acts on this space as the scalar ¬. Thus a quadratic element of
drop 1 is precisely a pseudoreflection.

TTTThhhheeeeoooorrrreeeemmmm 1111....4444....2222 Let V be a ^-vector space of dimension N ≥ 2, G in
GL(V) a (not necessarily connected) Zariski closed reductive subgroup
of GL(V) with M4(G, V) = 2. Fix an integer r with 1 ≤ r < dim(V). If

any of the following conditions is satisfied, then G fl SL(V).
0) G contains a unipotent element A ± 1.
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1) G contains a quadratic element A of drop r which has finite order
n ≥ 6.
2) G contains a quadratic element A of drop r which has finite order
4 or 5, and dim(V) > 2r.
3) G contains a quadratic element A of drop r which has finite order
3, and dim(V) > 4r.
4) G contains a reflection A, and dim(V) > 8.

pppprrrrooooooooffff Suppose we have already proven the theorem in the case
when G€scalars is finite. To treat the remaining case, when G
contains the scalars, we make use of the following elementary
lemma.

LLLLeeeemmmmmmmmaaaa 1111....4444....3333 Let V be a ^-vector space of dimension N ≥ 2, G fi
GL(V) a (not necessarily connected) Zariski closed reductive subgroup

of GL(V) which contains the scalars ^≠. For each integer d ≥ 1,
denote by Gd fi G the closed subgroup

Gd := {g in G | det(g)d = 1}.

Then Gd is reductive, and for every integer n ≥ 1, we have

M2n(Gd, V) = M2n(G, V).

pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa 1111....4444....3333 Since G contains the scalars, every element
of G can be written as ¬g1 with ¬ any chosen N'th root of det(g), and

g1 := ¬-1g an element of G1. So we have G = ´mGd for every d ≥ 1.

So for every n ≥ 1, G and Gd acting on Vºn(V£)ºn have the same

image in GL(Vºn(V£)ºn) (simply because the scalars in GL(V) act

trivially on Vºn(V£)ºn). Therefore we have the asserted equality of

moments. Moreover, G being reductive, each Vºn(V£)ºn is a
completely reducible representation of Gd. Each has a finite kernel

(because its kernel in GL(V) is the scalars), so Gd is reductive. QED

pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 1111....4444....2222,,,, ssssuuuuiiiitttteeee Thus if G contains the scalars, each
Gd is reductive, Gd€scalars is finite, and Gd has fourth moment 2. So

we already know the theorem for Gd. In all of the cases 0) through

4), the given element A in G lies in some Gd. So Gd fl SL(V), and we
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are done.
It remains to treat the case in which G€scalars is finite. By

Larsen's theorem together with the primitivity theorem, either G0 =
SL(V), or G is a finite irreducible primitive subgroup of GL(V).
Suppose that G is a finite irreducible primitive subgroup of GL(V). We
will show that each of the conditions 0) through 4) leads to a
contradiction

For assertion 0), the contradiction is obvious: a nontrivial
unipotent element is of infinite order.

Assertion 1) contradicts Blichfeld's "60o theorem" [Blich-FCG,
paragraph 70, Theorem 8, page 96], applied to that power of A whose
only eigenvalues are 1 and exp(2πi/n): in a finite irreducible
primitive subgroup G of GL(N, ^), if an element g in G has an

eigenvalue å such that every other eigenvalue of g is within 60o of
å (on either side, including the endpoints), then g is a scalar.

Assertion 2) in the case n = 5 (resp. n = 4) contradicts a result
of Zalesskii [Zal, 11.2] (resp. Wales [Wales, Thm. 1]), applied to A: if a
finite irreducible primitive subgroup G of GL(N, ^) contains a
quadratic element of drop r and order 5 (resp. order 4), then dim(V)
= 2r.

Assertion 3) contradicts a result of Wales [Wales, section 5],
applied to A: if a finite irreducible primitive subgroup G of GL(N, ^)
contains a quadratic element of drop r and order 3, then dim(V) ≤
4r.

Assertion 4) contradicts the following theorem, the first (and
essential) part of which was proved by Mitchell nearly a century
ago.

TTTThhhheeeeoooorrrreeeemmmm 1111....4444....4444 ((((MMMMiiiittttcccchhhheeeellllllll)))) Let V be a ^-vector space of dimension
N > 8, G fi GL(V) a finite irreducible primitive subgroup of GL(V) ¶
GL(N, ^) which contains a reflection A. Let Æ fi G denote the normal
subgroup of G generated by all the reflections in G. Then we have:
1) Æ is (conjugate in GL(V) to) the group SN+1, viewed as a subgroup

of GL(N, ^) by its "permutation of coordinates" action on the

hyperplane AugN in ^N+1 consisting of those vectors whose

coordinates sum to zero.
2) G is the product of Æ with the group G€(scalars).
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3) M4(G, V) > 3.

pppprrrrooooooooffff By a theorem of Mitchell [Mi], if N > 8, and if G is a finite
irreducible primitive subgroup of GL(V) ¶ GL(AugN) which contains a

reflection, then the image of G in the projective group PGL(AugN) =

GL(AugN)/^
≠ is the image in that group of the symmetric group

SN+1.

We first exhibit an SN+1 inside G. For this, we argue as follows.

We have our reflection A in G. Its image in SN+1, and indeed the

image in SN+1 of any reflection in G, is a transposition.

Renumbering, we may suppose A ÿ (1,2). As all transpositions in
SN+1 are SN+1-conjugate, for each i with 1 ≤ i ≤ N, there is a G-

conjugate Ai of A which maps to the transposition ßi := (i, i+1). Now

Ai is itself a reflection, being a conjugate of the reflection A. We

claim it is the unique reflection in G which maps to ßi. Indeed, any

element in G which maps to ßi is of the form ¬Ai for some invertible

scalar ¬; but ¬Ai has ¬ as eigenvalue with multiplicity N - 1 > 1, so

¬Ai can be a reflection only if ¬ = 1. We next claim that the

subgroup H of G generated by the Ai maps isomorphically to SN+1.

We know H maps onto SN+1 (because SN+1 is generated by the ßi),

so it suffices to show that the order of H divides (N+1)~. For this, it
suffices to show that H is a quotient of SN+1. We know [Bour-L4,

pages 12 and 27] that SN+1 is generated by elements si, 1 ≤ i ≤ N,

subject to the Coxeter relations

(sisj)
m(i,j) = 1,

where
m(i,i) = 1,
m(i,j) = 2 if |i - j| ≥ 2,
m(i,j) = 3 if |i - j| = 1.

[If we map si to ßi, we get the required isomorphism with SN+1.] So

it suffices to show that the Ai satisfy these relations. Each Ai is a

reflection, so of order 2. For any i and j, the subspace
Ker(Ai - 1)€Ker(Aj - 1)
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of V has codimension at most 2, and the product AiAj fixes each

element of this subspace. Therefore its power (AiAj)
m(i,j) also fixes

each element of this subspace. But (AiAj)
m(i,j) maps to (ßißj)

m(i,j)

= 1 in SN+1, and hence (AiAj)
m(i,j) is a scalar ¬. As this scalar ¬

fixes every vector in a subspace of codimension at most 2, we must
have ¬ = 1.

We next observe that H = Æ, i.e., that H contains every
reflection A in G. For the image of A in the projective group is a
transposition, so A = ¬h for some scalar ¬ and some transposition h
in H. But such an h is a reflection in GL(AugN). Thus both h and ¬h

are reflections, which forces ¬ = 1. This proves 1).
Since H = Æ maps isomorphically to the image SN+1 ¶

G/G€(scalars) of G in PGL(AugN), G is generated by Æ and by the

central subgroup G€(scalars), and Æ€(scalars) = {1}. This proves 2).
To prove 3), notice that the scalars in GL(V) act trivially on the

tensor spaces Vºn‚(V£)ºn for every n, in particular for n = 2. So

the action of G = Æ ≠ G€(scalars) on Vn‚(V£)ºn factors through the
action of Æ. Thus we have

M2n(G, V) = M2n(Æ, V) = M2n(SN+1, AugN).

So it remains only to prove the following lemma.

LLLLeeeemmmmmmmmaaaa 1111....4444....5555 For any N ≥ 4, we have M4(SN+1, AugN) > 3 .

RRRReeeemmmmaaaarrrrkkkk 1111....4444....5555....1111 We will see later (2.4.3) that, in fact, we have
M4(SN+1, AugN) = 4 for N ≥ 3, but we do not need this finer result

here.

PPPPrrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa 1111....4444....5555 Aug := AugN is an orthogonal representation

of SN+1, so we have an SN+1-decomposition

(Aug)º2 ¶ ú · Ú2(Aug) · SphHarm2(Aug),
and thus an a priori inequality M4(SN+1, AugN) ≥ 3, with equality if

and only if the following condition (1.4.5.2) holds:

(1.4.5.2) ú, Ú2(Aug), and SphHarm2(Aug) are three inequivalent
irreducible representations of SN+1.
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The dimensions of these three representations are 1, N(N-1)/2,
and N(N+1)/2 - 1 respectively. Because N ≥ 4, none of these
dimensions is N. So if (1.4.5.2) holds, then the irreducible

representation Aug does not occur in (Aug)º2, or equivalently (Aug

being self-dual), ú does not occur in (Aug)º3, or equivalently

—SN+1
Trace(g | Aug)3 = 0.

But in fact we have

—SN+1
Trace(g | Aug)3 > 0,

as the following argument shows. The representation Aug being
irreducible and nontrivial, we have

—SN+1
Trace(g | Aug) = 0.

For g in SN+1, let us denote by Fix(g) the number of fixed points of g,

viewed as a perrmutation of {1, ..., N+1}. Then
Trace(g | Aug) = Fix(g) - 1.

So we get
—SN+1

(Fix(g) - 1) = 0.

Now break up SN+1 as the disjoint union Fix≥2 ‹ Fix=1 ‹ Fix=0,

according to the number of fixed points. Then we may rewrite the
above vanishing as

—Fix≥2(Fix(g) - 1) - —Fix=0(1) = 0.

At the same time, we have

—SN+1
Trace(g | Aug)3 = —Fix≥2(Fix(g) - 1)3 - —Fix=0(1).

At every point of Fix≥2, we have

(Fix(g) - 1)3 ≥ Fix(g) - 1,
with strict inequality on the nonempty set Fix≥3. Thus we have

—SN+1
Trace(g | Aug)3 > —SN+1

Trace(g | Aug) = 0.

Therefore (1.4.5.2) does not hold, i.e., we have M4(SN+1, AugN) > 3.

QED for both Lemma 1.4.5 and Theorem 1.4.4

Using Theorem 1.4.4, we also get a result in the orthogonal case.

TTTThhhheeeeoooorrrreeeemmmm 1111....4444....6666 Let V be a ^-vector space of dimension N > 8
equipped with a nondegenerate quadratic form. Let G fi O(V) be a
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(not necessarily connected) Zariski closed reductive subgroup of O(V)
with M4(G, V) = 3. If G contains a reflection, then G = O(V).

pppprrrrooooooooffff Theorem 1.4.4 rules out the possibility that G is a finite
irreducible primitive subgroup of GL(V). So G is either SO(V) or O(V).
But SO(V) does not contain a reflection. QED

For the sake of completeness, let us also record the immediate
consequence of Larsen's theorem (1.1.6) in the symplectic case.
TTTThhhheeeeoooorrrreeeemmmm 1111....4444....7777 Let V be a ^-vector space of dimension N ≥ 2
equipped with a nondegenerate alternating form. Suppose that G fi
Sp(V) is a (not necessarily connected) Zariski closed reductive
subgroup of Sp(V) with M4(G, V) = 3. If G contains a unipotent

element A ± 1, then G = Sp(V).
pppprrrrooooooooffff By Theorem 1.1.6, G is either Sp(V) or it is finite. Since A has
infinite order, G is not finite. QED

1111....5555 EEEExxxxaaaammmmpppplllleeeessss ooooffff ffffiiiinnnniiiitttteeee GGGG:::: tttthhhheeee WWWWeeeeiiiillll----SSSShhhhaaaalllleeee ccccaaaasssseeee
(1.5.1) We begin with some examples of finite groups G fi GL(V)
with M4(G, V) = 2, pointed out to me by Deligne. Let q be a power of

an odd prime p, i.e., q is the cardinality of a finite field Éq of odd

characteristic p. Fix an integer n ≥ 1, and a 2n-dimensional Éq-

vector space F, endowed with a nondegenerate symplectic form <,>.
The Heisenberg group Heis2n(Éq) is the central extension of F by Éq
defined as the set of pairs (¬ in Éq, f in F), with group operation

(¬, f)(µ, g) := (¬ + µ + <f, g>, f+g).
The symplectic group Sp(F) acts on Heis2n(Éq), © in Sp(F) acting by

©(¬, f) := (¬, ©(f)).
The irreducible ^-representations of the group Heis2n(Éq) are well-

known. There are q2n one-dimensional representations, those trivial

on the center. For each of the q-1 nontrivial ^≠-valued characters ¥
of the center, there is precisely one irreducible representation with

central character ¥, say V¥, which has dimension qn. Because the

action of Sp(F) on Heis2n(Éq) is trivial on the center, the action of

Heis2n(Éq) on V¥ extends to a projective representation of the

semidirect product group Heis2n(Éq)©Sp(F) on V¥. Because we are
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over a finite field, this projective representation in turn extends to a
linear representation of Heis2n(Éq)©Sp(F) on V¥, the Weil-Shale

representation.
(1.5.2) We claim that for any nontrivial character ¥ of the
center, we have
(1.5.2.1) M4(Heis2n(Éq)©Sp(F), V¥) = 2.

To see this, it suffices to work over the complex numbers. We fix a
choice of the nontrivial character ¥, and denote by

ç : Heis2n(Éq)©Sp(F) ¨ ^

the character of V¥:

ç((¬,f,©)) := Trace((¬,f,©)|V¥).

According to Howe [Howe, Prop. 2, (i), page 290], ç is supported on
those conjugacy classes which meet (the center Z of
Heis2n(Éq))©Sp(F), where it is given by

(1.5.2.2) |ç((¬,0,©))|2 = qdim(Ker(©-1) in F).
Moreover, an element (¬, f ,©) in Heis2n(Éq)©Sp(F) is conjugate to an

element of Z©Sp(F) if and only if it is conjugate to (¬, 0 ,©), and this
happens if and only if f lies in Image(©-1), cf. [Howe, page 294, first
paragraph]. Thus we have

(1.5.2.3) |ç((¬, f, ©))|2 = qdim(Ker(©-1)), if f Ÿ Image(©-1),

|ç((¬, f, ©))|2 = 0, if not.
(1.5.3) Using this explicit formula, we find a striking relation
between the absolute moments of Heis2n(Éq)©Sp(F) on V¥ and the

absolute moments of its subgroup Sp(F) on V¥. For any integer k ≥ 1,

we have
(1.5.3.1) M2k+2(Heis2n(Éq)©Sp(F), V¥).= M2k(Sp(F), V¥).

To see this, we use the fact that dim(Ker(©-1)) + dim(Im(©-1)) =
dim(F), and simply compute:

ù(Heis2n(Éq)©Sp(F))≠M2k+2(Heis2n(Éq)©Sp(F), V¥)

:= ‡(¬, f, ©) |ç((¬, f, ©))|
2k+2

= ‡(¬, 0, ©) ‡f in Im(©-1) |ç((¬, f, ©))|
2k+2

= ‡(¬, 0, ©) q
dim(Im(©-1))≠|qdim(Ker(©-1))|k+1

= ‡© in Sp(F) q
1+dim(F)≠|qdim(Ker(©-1)|k
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= ‡© in Sp(F) q
1+dim(F)≠|ç((0, 0, ©))|2k

= q1+dim(F)≠ù(Sp(F))≠M2k(Sp(F), V¥)

= ù(Heis2n(Éq)©Sp(F))≠M2k(Sp(F), V¥).

So in particular we have
(1.5.3.2) M4(Heis2n(Éq)©Sp(F), V¥).= M2(Sp(F), V¥).

(1.54.) The formula (1.5.2.2)

|ç((0, 0, ©))|2 = qdim(Ker(©-1)) = ù(fixed points of © on F)
means precisely that End(V¥) as Sp(F)-module is isomorphic to the

natural permutation representation of Sp(F) on the space of ^-
valued functions on F. So
(1.54.1) M2(Sp(F), V¥) = M1,0(Sp(F), Fct(F, ^))

is the dimension of the space of Sp(F)-invariant functions on F,
which is in turn equal to the number of Sp(F)-orbits in F, cf. [Ger,
proof of Cor. 4.4, first paragraph, page 85]. But Sp(F) acts transitively
on F - {0}, so there are just two orbits. Thus
(1.54.2) M4(Heis2n(Éq)©Sp(F), V¥) = M2(Sp(F), V¥) =

= M1,0(Sp(F), Fct(F, ^)) = 2,

as asserted.

1111....6666 EEEExxxxaaaammmmpppplllleeeessss ooooffff ffffiiiinnnniiiitttteeee GGGG ffffrrrroooommmm tttthhhheeee AAAAttttllllaaaassss
(1.6.1) A perusal of the Atlas [CCNPW-Atlas] gives some finite
simple groups G with a low dimensional irreducible representation V
for which we have M4(G, V) = 2. Here are some of them. In the table

below, we give (in Atlas notation) the simple group G, the character
ç of the lowest dimensional such V, the dimension of V, and the

expression of |ç|2 as the sum of two distinct irreducible characters.

G character ç of V dim(V) |ç|2

L3(2) = L2(7) ç2, ç3 3 ú + ç6
U4(2) =S4(3) ç2, ç3 5 ú + ç10
U5(2) ç3, ç4 11 ú + ç16
2F4(2)' ç2, ç3 26 ú + ç15
M23 ç3, ç4 45 ú + ç17
M24 ç3, ç4 45 ú + ç19
J4 ç2, ç3 1333 ú + ç11
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(1.6.2) What about finite subgroups of O(V) with M4(G, V) = 3?

Again the Atlas gives some examples of finite simple groups G with a
low dimensional irreducible orthogonal representation V for which
we have M4(G, V) = 3. Here are some of them.

G character ç of V dim(V) ç2

U4(2) ç4 6 ú + ç7 + ç9
S6(2) ç2 7 ú + ç4 + ç6
S4(5) ç2 13 ú + ç7 + ç9

ç3 13 ú + ç8 + ç9
G2(3) ç2 14 ú + ç6 + ç7

McL ç2 22 ú + ç3 + ç4

U6(2)
ç2 22 ú + ç3 + ç4

CO2 ç2 23 ú + ç3 + ç4
Fi22 ç2 78 ú + ç6 + ç7
HN = F5+ ç2 133 ú + ç6 + ç8

ç3 133 ú + ç7 + ç8
Th ç2 248 ú + ç6 + ç7

(1.6.3) What about finite subgroups of Sp(V) with M4(G, V) = 3?

The Atlas gives a few cases of finite simple groups G with a low
dimensional irreducible symplectic representation V for which we
have M4(G, V) = 3. [As Deligne and Ramakrishnan explained to me,

"most" simple groups have no symplectic representations, cf. the
article [Pra] of Prasad.] Here are two lonely examples.

G character of V dim(V) ç2

U3(2) ç2 6 ú + ç6 + ç7
U5(2) ç2 10 ú + ç5 + ç6

1111....7777 QQQQuuuueeeessssttttiiiioooonnnnssss
(1.7.1) Given a connected algebraic group G over ^ with Lie(G)
simple, what if any are the finite subgroups of G which act
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irreducibly on Lie(G)?
(1.7.2) Given a finite set of irreducible representations {Vi}i of

such a G, what if any are the finite subgroups Æ of G which act
irreducibly on every Vi? From the data (G, {Vi}i), how can one tell if

any such Æ will exist? For example, if G is simple and simply
connected, can we find such a Æ if we take for {Vi}i all the

fundamental representations of G. [For SL(N), pick any even m ≥ 4:
then the subgroup Æm fi SL(N) consisting of all permutation-shaped

matrices of determinant one with entries in µm is such a subgroup.]

If we take for {Vi}i all the irreducible representations whose highest

weight is the sum of at most two fundamental weights? [[For SL(N),

the groups Æm above fail here, already for Sym2(stdN) = E(2∑1).

Indeed, the ^-span of the squares (e1)
2 of the standard basis

e]ements ei of ^
N is a Æm-stable subspace of Sym2(stdN).]

(1.7.3) Given a reductive, Zariski closed subgroup G of GL(V), can
one classify the finite subgroups Æ fi G for which M4(Æ, V) = M4(G,

V)?
(1.7.4) Given G as in 3) above, and an integer k ≥ 1, let us say
that a finite subgroup Æ fi G "spoofs" G to order k if we have
(1.7.4.1) M2…(Æ, V) = M2…(G, V) for all 1 ≤ … ≤ k?

For a given G, what can we say about the set Spoof(G) of integers k ≥
1 for which there exists a finite subgroup Æ fi G which spoofs G to
order k? This set may consist of all k ≥ 1. Take for G the diagonal
subgroup of GL(N), and, for each integer m ≥ 2, take Æm the finite

subgroup of G consisting of diagonal matrices with entries in µm.

Then Æm spoofs G to order m-1 . Or take G itself to be finite, then Æ

= G spoofs G to any order. Is it true that if G0 is semisimple and
nontrivial, then the set Spoof(G) is finite.?

PPPPaaaarrrrtttt IIIIIIII:::: AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo tttthhhheeee MMMMoooonnnnooooddddrrrroooommmmyyyy ooooffff LLLLeeeeffffsssscccchhhheeeettttzzzz PPPPeeeennnncccciiiillllssss

2222....1111 DDDDiiiioooopppphhhhaaaannnnttttiiiinnnneeee pppprrrreeeelllliiiimmmmiiiinnnnaaaarrrriiiieeeessss
(2.1.1) Let k be a finite field of cardinality q and characteristic p,
… a prime number other than p, w a real number, “ an embedding
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of ä$… into ^, S/k a smooth, geometrically connected k-scheme of

dimension D ≥ 1, and Ï a lisse ä$…-sheaf on S of rank r ≥ 1 which is

“-pure of integer weight w. Pick a geometric point s in S, and define
V := Ïs. Denote by

(2.1.1.1) ®Ï : π1(S, s) ¨ GL(V) =GL(Ïs) ¶ GL(r, ä$…)

the …-adic representation that Ï "is". Denote by G fi GL(V) the Zariski

closure of the image of π1
geom(S, s) := π1(Sºkäk, s) under ®Ï.

Because Ï is “-pure of some weight, we know [De-Weil II, 1.3.8 and
3.4.3 (iii)] that G is a (not necessarily connected) semisimple
subgroup of GL(V).

(2.1.2) Denote by Ï£ the linear dual (contragredient

representation) of Ï, and by äÏ := Ï£(-w) the "complex conjugate" of
Ï; the sheaves Ï and äÏ have, via “, complex conjugate local trace
functions.
(2.1.3) Our first task is to give a diophantine calculation of the
absolute moments M2n(G, V), n ≥ 1, in terms of moments S2n of the

local trace function of Ï. For each finite extension field E/k, define
the real number S2n(E, Ï) by

(2.1.3.1) S2n(E, Ï) :=

(ùE)-dim(S)-nw ‡x in S(E) |“(Trace(FrobE,x | Ï))|2n.

LLLLeeeemmmmmmmmaaaa 2222....1111....4444 Hypotheses and notations as in 2.1.1-3 above, for each
n ≥ 1 we have the limit formula

M2n(G, V) =limsupE/k finite S2n(E, Ï).

pppprrrrooooooooffff The moment M2n(G, V) is the dimension of the space of G-

invariants, or equivalently of π1
geom(S, s)-invariants, in

(V‚V£)ºn, i.e., it is the dimension of H0(Sºkäk, (Ï‚äÏ)ºn). So, by

Poincare duality, we have

M2n(G, V) = dim Hc
2dim(S)(Sºkäk, (Ï‚äÏ)ºn).

Because Ï is pure or weight w, (Ï‚äÏ)ºn is “-pure of weight 2nw,
so this last cohomology group is “-pure of weight 2nw + 2dim(S). So

the endomorphism A := Frobk/q
wn+dim(S) acting on it has, via “, all

its eigenvalues on the unit circle. By a standard compactness
argument (cf. [Ka-SE, 2.2.2.1]), we recover the dimension of the
cohomology group by the limsup formula
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dim Hc
2dim(S)(Sºkäk, (Ï‚äÏ)ºn)

= limsupm |“(Trace(Am | Hc
2dim(S)(Sºkäk, (Ï‚äÏ)ºn)))|

= limsupE/k finite

(ùE)-dim(S)-nw |“(Trace(FrobE | Hc
2dim(S)(Sºkäk, (Ï‚äÏ)ºn)))|.

By [De-Weil II, 3.3.4], the lower cohomology groups Hc
j, j <

2dim(S), are “-mixed of strictly lower weight, so we get M2n(G, V)

as the limsup, over E/k finite, of the quantities

(ùE)-dim(S)-nw ‡j |“( ‡j (-1)
jTrace(FrobE | Hc

j(Sºkäk, (Ï‚äÏ)ºn)))|.

By the Lefschetz Trace Formula, this last quantity is precisely
S2n(E, Ï). QED

FFFFiiiirrrrsssstttt VVVVaaaarrrriiiiaaaannnntttt LLLLeeeemmmmmmmmaaaa 2222....1111....5555 Hypotheses and notations as in
Lemma 2.1.4, suppose we are given in addition a ä$…-valued function

ƒ(E, x) on the set of pairs
(a finite extension field E/k, a point x in S(E))

such that there exists a positive real constant C for which we have
the estimate

|“(ƒ(E, x))| ≤ C(ùE)w - 1/2.
For each finite extension E/k, define the approximate moment
ëS2n(E, Ï) by

ëS2n(E, Ï) :=

(ùE)-dim(S)-nw ‡x in S(E) |“(Trace(FrobE,x | Ï) + ƒ(E, x))|2n.

Then we have the limit formula
M2n(G, V) =limsupE/k finite ëS2n(E, Ï).

pppprrrrooooooooffff One checks easily that ëS2n(E, Ï) - S2n(E, Ï) ¨ 0 as ùE grows.

QED

SSSSeeeeccccoooonnnndddd VVVVaaaarrrriiiiaaaannnntttt LLLLeeeemmmmmmmmaaaa 2222....1111....6666 Hypotheses and notations as in
Lemma 2.1.5, suppose that S is an open subscheme of a smooth,
geometrically connected k-scheme T/k (necessarily of the same
dimension D). Suppose that we are given a ä$…-valued function
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†(E, x) on the set of pairs
(a finite extension field E/k, a point x in T(E)),

such that whenever x lies in S(E), we have
†(E, x) = Trace(FrobE,x | Ï) + ƒ(E, x).

For each finite extension E/k, define the mock moment T2n(E, Ï) by

T2n(E, Ï) := (ùE)-dim(S)-nw ‡x in T(E) |“(†(E, x))|
2n.

Then we have the inequality
M2n(G, V) ≤ limsupE/k finite T2n(E, Ï).

pppprrrrooooooooffff Obvious from the previous result and the observation that for
each E/k we have

ëS2n(E, Ï) ≤ T2n(E, Ï)

simply because we obtain T2n(E, Ï) by adding postive quantities to

ëS2n(E, Ï). QED

2222....2222 UUUUnnnniiiivvvveeeerrrrssssaaaallll ffffaaaammmmiiiilllliiiieeeessss ooooffff hhhhyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeee sssseeeeccccttttiiiioooonnnnssss
(2.2.1) Recall that k is a finite field, and X/k is a projective,
smooth, geometrically variety of dimension n + 1 ≥ 1, given with a
projective embedding X fi @. We denote by PHypd/k the projective

space of degree d hypersurfaces in @, and by
(2.2.1.1) GoodXPHypd fi PHypd
the dense open set consisting of those degree d hypersurfaces H
which are transverse to X, i.e., such that the scheme-theoretic
intersection X€H is smooth and of codimension one in X. Over
GoodXPHypd we have the universal family of all smooth, degree d

hypersurface sections of X, say
(2.2.1.2) π : Univd ¨ GoodXPHypd,

whose fibre over a degree d hypersurface H in @ is X€H.
(2.2.2) For any finite extension E/k, and any point H in
GoodXPHypd(E), the weak Lefschetz theorem tells us that the

restriction map

Hi(Xºkäk, ä$…) ¨ Hi((Xºkäk)€H, ä$…)

is an isomorphism for i < n, and injective for i = n. By Poincare
duality, the Gysin map

Hi((Xºkäk)€H, ä$…) ¨ Hi+2(Xºkäk, ä$…)(1)

is an isomorphism for i > n, and surjective for i = n. Thanks to the
hard Lefschetz theorem, we know that, for i = n, the kernel of the
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Gysin map is a subspace

Evn((Xºkäk)€H, ä$…) fi Hn((Xºkäk)€H, ä$…)

on which the cup-product remains non-degenerate, and which maps

isomorphically to the quotient Hn((Xºkäk)€H, ä$…)/H
n(Xºkäk, ä$…).

(2.2.3) Over the space GoodXPHypd, there is a lisse ä$…-sheaf Ïd,

such that for any finite extension E/k, and any E-valued point H of

GoodXPHypd, the stalk of Ïd at H is Evn((Xºkäk)€H, ä$…). The sheaf

Ïd is pure of weight n, and carries a cup-product autoduality

toward ä$…(-n). The autoduality is symplectic if n is odd, and

orthogonal if n is even. For fixed X but variable d, the rank Nd of Ïd

is a polynomial in d of degree n+1, of the form deg(X)dn+1 + lower
terms.

TTTThhhheeeeoooorrrreeeemmmm 2222....2222....4444 Suppose that n ≥ 2 is even, that d ≥ 3, and that Nd
> 8. Then the geometric monodromy group Gd of the lisse sheaf Ïd is

the full orthogonal group O(Nd).

pppprrrrooooooooffff The group Gd is a priori a Zariski closed subgroup of O(Nd). We

first recall that Gd, indeed its subgroup ®Ïd
(π1

geom(GoodXPHypd)),

contains a reflection.
Take a sufficiently general line L in PHypd. Over its intersection

L - » with GoodXPHypd, we get a Lefschetz pencil of smooth

hypersurface sections of degree d of X. Denote by
i : L - » ¨ GoodXPHypd

the inclusion. We have the inequality
ù»(äk) ≥ 1 if Nd ± 0,

because Evn((Xºkäk)€H, ä$…) is spanned by the images, using all

possible "chemins", of the vanishing cycles, one at each point of »(äk),
cf. [De-Weil II, 4.2.4 and 4.3.9]. [So long as char(k) is not 2, we can
choose a single chemin for each vanishing cycle, and we have the
inequality ù»(äk) ≥ Nd, cf. [SGA 7, Expose XVIII, 6.6 and 6.6.1]]

By the Picard-Lefschetz formula [SGA 7, Exposïe XV, 3.4], each
of the ù»(äk) local monodromies in a Lefschetz pencil is a reflection.
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Thus π1
geom(L - ») contains elements which act on i*Ïd as

reflections, and their images in π1
geom(GoodXPHypd) act as

reflections on Ïd.

In view of Theorem 1.4.6, it suffices to show that, denoting by
Vd the representation of Gd given by Ïd, we have M4(Gd, Vd) = 3.

Since Gd lies in O(Nd) and Nd > 1, we have the a priori inequality

M4(Gd, Vd) ≥ M4(O(Nd), std) = 3.

So the desired conclusion results from the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 2222....2222....5555 Suppose that n ≥ 1 and d ≥ 3. Then M4(Gd, Vd) ≤ 3.

If n = 0 and d ≥ 3, we have M4(Gd, Vd) ≤ 4.

pppprrrrooooooooffff Denote by Hypd/k the affine space over k which is the affine

cone of the projective space PHypd/k. For any k-algebra A, the A-

valued points of Hypd are the elements of H0(@, Ø(d))‚kA. The

natural projection map
äπ : Hypd - {0} ¨ PHypd

is a (Zariski locally trivial) ´m-bundle. We denote by

GoodXHypd fi Hypd - {0}

the dense open set which is the inverse image of GoodXPHypd, and

by
π : GoodXHypd ¨ GoodXPHypd

its projection. Thus we have a cartesian diagram
GoodXHypd fi Hypd - {0}

äπd πd
GoodXPHypd fi PHypd

We form the lisse sheaf π*Ïd on GoodXHypd. By [Ka-La-FGCFT,

Lemma 2, part (2)], for any geometric point ≈ of GoodXHypd, the

map

π* : π1
geom(GoodXHypd, ≈) ¨ π1

geom(GoodXPHypd, π(≈))

is surjective. So we recover Gd as the Zariski closure of the image of

π1
geom(GoodXHypd) acting on π*Ïd.

The advantage is that the base space is now a dense open set of
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an affine space, namely Hypd. We will now apply the diophantine

method explained above, to the sheaf π*Ïd on the dense open set

GoodXHypd of Hypd.
Let E/k be a finite extension field, and H an E-valued point of

GoodXHypd. Then the stalk of π*Ïd at H is Evn((Xºkäk)€(H = 0), ä$…).

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 2222....2222....6666 Given X/k as above, denote by ‡(Xºkäk, ä$…) the

sum of the ä$…-Betti numbers. Then for any finite extension field

E/k, and for any E-valued point H of GoodXHypd, putting Y := X€(H

= 0), we have the estimate

|Trace(FrobE,H | π*Ïd) - (-1)
n(ùY(E) - ùX(E)/ùE)|

≤‡(Xºkäk, ä$…)(ùE)
(n-1)/2.

pppprrrrooooooooffff Use the Lefschetz Trace Formula on Y to write ùY(E) as a
sum of three terms:

ùY(E) = ‡i ≤ n-1 (-1)
iTrace(FrobE | Hi(Y‚Eäk, ä$…))

+ (-1)nTrace(FrobE | Hn(Y‚Eäk, ä$…))

+ ‡i ≥ n+1 (-1)
iTrace(FrobE | Hi(Y‚Eäk, ä$…)).

Use the same formula to write ùX(E)/ùE as the sum of three terms:

ùX(E)/ùE = ‡i ≤ n+1 (-1)
iTrace(FrobE | Hi(X‚käk, ä$…)(1))

+ (-1)n+2Trace(FrobE | Hn+2(X‚käk, ä$…)(1))

+ + ‡i ≥ n+3 (-1)
iTrace(FrobE | Hi(X‚kk, ä$…)(1)).

By the Poincare dual of the weak Lefschetz theorem, the third
terms in the two expressions are equal. The difference of the second

terms is precisely (-1)nTrace(FrobE | Evn((Xºkäk)€(H = 0), ä$…)), i.e.,

it is (-1)nTrace(FrobE,H | π*Ïd). The difference of the first terms is

‡i ≤ n-1 (-1)
iTrace(FrobE | Hi(Y‚Eäk, ä$…))

- ‡i ≤ n+1 (-1)
iTrace(FrobE | Hi(X‚käk, ä$…)(1)).

By Deligne's Weil I, each cohomology group occurring here is pure of
some weight ≤ n - 1, so we get the asserted estimate with the
constant

‡i ≤ n-1 h
i(Y‚Eäk, ä$…) + ‡i ≤ n+1h

i(X‚käk, ä$…).
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Using weak Lefschetz, this is equal to

= ‡i ≤ n-1 h
i(X‚käk, ä$…) + ‡i ≤ n+1h

i(X‚käk, ä$…).

Using Poincare duality on X, this in turn is equal to

= ‡i ≥ n+3 h
i(X‚käk, ä$…) + ‡i ≤ n+1h

i(X‚käk, ä$…)

≤ ‡i h
i(X‚käk, ä$…) := ‡(Xºkäk, ä$…). QED

For any finite extension field E/k, and for any E-valued point H
of Hypd, we define

†(E, H) := (-1)n((-1)n(ù(X€(H=0))(E) - ùX(E)/ùE).
Notice that † takes values in $.

We then define the mock moment T4(E, π
*Ïd) by

T4(E, π
*Ïd) := (ùE)-dim(Hypd)-2n ‡H in Hypd(E)

|†(E, H)|4

= (ùE)-dim(Hypd)-2n ‡H in Hypd(E)
(ù(X€(H=0))(E) - ùX(E)/ùE)4.

[Because † takes values in $, there is no need for the “ which
figured in the general definition, where † was allowed to be ä$…-

valued.]
In view of the Second Variant Lemma 2.1.6, Theorem 2.2.5 now

results from the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 2222....2222....7777 Let X/k be as above, of dimension n + 1 ≥ 1. If n ≥ 1,
then for any d ≥ 3, we have the estimate

|T4(E, π
*Ïd) - 3| = O((ùE)-1/2).

If n = 0, then for any d ≥ 3, we have the estimate

|T4(E, π
*Ïd) - 4| = O((ùE)-1/2).

pppprrrrooooooooffff Fix a finite field extension E/k with ùE ≥ 6. We will use an

exponential sum method to calculate T4(E, π
*Ïd) in closed form. Fix

a nontrivial ^≠-valued additive character ¥ of E. View the ambient

@ = @m as the space of lines in !m+1. For each point x in @m(E),

choose a point ëx in !m+1(E) - {0} which lifts it. For any fixed H in
Hypd(E), the value H(ëx) depends upon the choice of ëx lifting x, but

only up to an E≠-multiple. So the sum
‡¬ in E≠ ¥(¬H(ëx))

depends only on the original point x in @(E). By the orthogonality
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relations for characters, we have
‡¬ in E≠ ¥(¬H(ëx)) = -1 + ‡¬ in E ¥(¬H(ëx))

= ùE -1, if H(x) = 0,
= -1, if not.

So we get the identity
‡x in X(E) ‡¬ in E≠ ¥(¬H(ëx)) = (ùE)(ù(X€(H=0))(E)) - ùX(E)

= (-1)n(ùE)†(E, H).
This in turn gives the identity

(ùE)dim(Hypd)+2n+4 T4(E, π
*Ïd)

= ‡H in Hypd(E)
(‡x in X(E) ‡¬ in E≠ ¥(¬H(ëx)))4.

We next open the inner sum and interchange orders of summation,
to get

= ‡(xi) in X(E)4 ‡(¬i) in (E≠)4 ‡H in Hypd(E)
¥(‡i=1 to 4 ¬iH(ëxi)).

The key observation is given by the following lemma.
SSSSiiiinnnngggglllleeeettttoooonnnn LLLLeeeemmmmmmmmaaaa 2222....2222....8888 Suppose ùE ≥ 4. Given four (not
necessarily distinct) points x1, x2, x3, x4 in @(E), suppose among

them there is a singleton, i.e., a point which is not equal to any of

the others. Then for any (¬i) in (E≠)4, we have the vanishing

‡H in Hypd(E)
¥(‡i=1 to 4 ¬iH(ëxi)) = 0.

Before proving this lemma, it will be convenient to give two other
lemmas.
LLLLeeeemmmmmmmmaaaa 2222....2222....9999 If ùE ≥ 4, then given four (not necessarily distinct)
points x1, x2, x3, x4 in @(E), there exists an E-rational hyperplane L

in @, i.e., a point L in PHyp1(E), such that all four points xi lie in the

affine open set @m[1/L].

pppprrrrooooooooffff Say @ is @m. In the dual projective space, the set of

hyperplanes through a given point xi in @m(E) form a @m-1, so

there are precisely

((ùE)m - 1)/(ùE - 1)
E-rational hyperplanes through xi. So there are at least

((ùE)m+1 - 1)/(ùE - 1) - 4((ùE)m - 1)/(ùE - 1)
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E-rational hyperplanes which pass through none of the xi. As ùE is

at least 4, this difference is strictly positive. QED

EEEEvvvvaaaalllluuuuaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 2222....2222....11110000 Let E be a field, m ≥ 1 and d ≥ 1
integers. Denote by Poly≤d(E) the E-vector space of E-rational

polynomial functions on !m. For any integer r ≤ d + 1, and for any

r distinct points xi, i = 1 to r, in !m(E), the E-linear multi-

evaluation map

Poly≤d(E) ¨ Er

f ÿ (f(x1), ..., f(xr))

is surjective.
pppprrrrooooooooffff The map being E-linear, its surjectivity map be checked over
any extension field. Passing to a large enough such extension, we
may add additional distinct points, so that our xi are the first r of

d+1 distinct points. It suffices to prove the lemma in the hardest
case r = d+1 (then project onto the first r coordinates in the target).
To do this hardest case, we first treat the case m=1. In this case,
source and target have the same dimension, d+1, so it suffices that
the map be injective. But its kernel consists of those polynomials in
one variable of degree at most d, which have d+1 distinct zeroes. To

do the general case, it suffices to find a linear form T from !m to

!1 under which the d+1 points xi have d+1 distinct images. For then

already polynomials of degree at most d in T will be a subspace of

the source Poly≤d(E) which will map onto Er. We can do this as soon

as ùE ≥ Binom(d+1, 2). Indeed, we are looking for a linear form T
with the property that for each of the Binom(d+1, 2) pairs (xi, xj)

with i < j, we have T(xi) - T(xj) ± 0. For each such pair, the set of T

for which T(xi) - T(xj) = 0 is a hyperplane in the dual space. So we

need T to not lie in the union of Binom(d+1, 2) linear subspaces of
codimension one. Since they all intersect in zero, their union has

cardinality strictly less that Binom(d+1, 2)(ùE)m-1. So as soon as ùE
≥ Binom(d+1, 2), the desired T exists. QED

With these preliminaries out of the way, we can prove the
Singleton Lemma 2.2.8. Because ùE ≥ 4, we can find a non-zero
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linear form L in Hyp1(E) such that our four points xi all lie in @]1/L]

¶ !m. By means of the map H ÿ H/Ld, we get an E-linear
isomorphism

Hypd(E) ¶ Poly≤d(E)

of Hypd(E) with the E-rational polynomial functions on @]1/L] ¶ !m

of degree at most d.

Moreover, for any x in @[1/L](E), and any lifting ëx in !m+1(E),
the two E-linear forms on Hypd(E),

H ÿ H(ëx)
and

H ¨ (H/Ld)(x),
are proportional. So whatever the four points (xi) in @[1/L](E) ¶

!m(E), we can rewite the sum
‡H in Hypd(E)

¥(‡i=1 to 4 ¬iH(ëxi))

= ‡h in Poly≤d(E)
¥(‡i=1 to 4 ¬ih(xi)).

Renumbering, we may suppose that x1 is a singleton. We

consider separately various cases (which, up to renumbering, cover
all the cases when x1 is a singleton).

If the four points are all distinct, then as h runs over

Poly≤d(E), the vector (h(xi)) runs over E
4, and our sum becomes

ù(Ker of eval at (xi)) times

‡(ti) in E4 ¥(‡i=1 to 4 ¬iti).

Since the vector (¬i) is nonzero, (ti) ÿ ¥(‡i=1 to 4 ¬iti) is a nontrivial

additive character of E4, so the inner sum vanishes.
If the three remaining points are all equal, then as h runs over

Poly≤d(E), the vector (h(x1), h(x2)) runs over E
2, and our sum

becomes ù(Ker of eval at (x1, x2)) times

‡(t1, t2) in E2 ¥(¬1t1 + (¬2 + ¬3 + ¬4)t2).

Since the vector (¬1, ¬2 + ¬3 + ¬4) is nonzero, the sum again

vanishes.
If the first three points are distinct, but x4 = x3, then our sum

becomes ù(Ker of eval at (x1, x2, x3)) times
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‡(t1, t2, t3) in E3 ¥(¬1t1 + ¬2t2 + (¬3 + ¬4)t3).

Since the vector (¬1, ¬2, ¬3 + ¬4) is nonzero, the sum again

vanishes. QED

In exactly the same way, we prove the following two
elementary lemmas.
TTTTwwwwiiiinnnnnnnniiiinnnngggg LLLLeeeemmmmmmmmaaaa 2222....2222....11111111 Suppose ùE ≥ 2. Given two distinct points

x1, x2 in @(E), put x3 = x1, and put x4 = x2. Then for (¬i) in (E≠)4,

we have
‡H in Hypd(E)

¥(‡i=1 to 4 ¬iH(ëxi))

= ùHypd(E), if ¬1 + ¬2 = ¬3 + ¬4 = 0,

= 0, otherwise.

QQQQuuuuaaaaddddrrrruuuupppplllleeeessss LLLLeeeemmmmmmmmaaaa 2222....2222....11112222 Given a point x in @(E), put xi = x for i

=1 to 4. Then for (¬i) in (E≠)4, we have

‡H in Hypd(E)
¥(‡i=1 to 4 ¬iH(ëxi))

= ùHypd(E), if ¬1 + ¬2 + ¬3 + ¬4 = 0,

= 0, otherwise.

pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 2222....2222....7777 ssssuuuuiiiitttteeee Recall that we have the identity

(ùE)dim(Hypd)+2n+4 T4(E, π
*Ïd)

= ‡(xi) in X(E)4 ‡(¬i) in (E≠)4 ‡H in Hypd(E)
¥(‡i=1 to 4 ¬iH(ëxi)).

We now break up this sum by the coincidence pattern of the four-
tuple (x1, x2, x3, x4).

If there is any singleton, the entire inner sum vanishes.
If all the xi coincide, the inner sum is

ùHypd(E)≠ù{(¬i) in (E≠)4 with ¬1 + ¬2 + ¬3 + ¬4 = 0}.

This case occurs ùX(E) times, one for each of the possible common
values of the xi.

If there are no singletons and exactly two among the xi are

distinct, put x := x1, and take for y the other. Then the pattern is

either (x, x, y, y) or (x, y, x, y) or (x, y, y, x). In each case, the
inner sum is
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ùHypd(E)≠ù{(¬i) in (E≠)4 with ¬1 + ¬2 = ¬3 + ¬4 = 0}

= ùHypd(E)≠(ùE - 1)2.

This case occurs 3(ùX(E))(ùX(E) - 1) times, 3 for the possible repeat
pattern, ùX(E) for the choice of x1, ùX(E) - 1 for the choice of y ±

x1.

So all in all, we get a closed formula

(ùE)dim(Hypd)+2n+4 T4(E, π
*Ïd)

= 3(ùX(E))(ùX(E) - 1)(ùHypd(E))(ùE - 1)2

+(ùX(E))(ùHypd(E))(ù{(¬i) in (E≠)4 with ¬1 + ¬2 + ¬3 + ¬4 = 0}).

Dividing through by ùHypd(E) = (ùE)dim(Hypd), we get

(ùE)2n+4 T4(E, π
*Ïd)

= 3(ùX(E))(ùX(E) - 1)(ùE - 1)2

+(ùX(E))(ù{(¬i) in (E≠)4 with ¬1 + ¬2 = ¬3 + ¬4 = 0}).

LLLLeeeemmmmmmmmaaaa 2222....2222....11113333 We have the identity

ù{(¬i) in (E≠)4 with ¬1 + ¬2 + ¬3 + ¬4 = 0}

= (ùE - 1)3 - ((ùE - 1)2 - (ùE - 1)).
pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa 2222....2222....11113333 View the set in question as the subset of

(E≠)3 where ¬1 + ¬2 + ¬3 ± 0 (solve for ¬4). Its complement in (E≠)3

is the subset of (E≠)2 where ¬1 + ¬2 ± 0 (solve for ¬3). The

complement in (E≠)2 of this last set is the set of pairs (¬, -¬). QED

So now we have the identity

(ùE)2n+4 T4(E, π
*Ïd)

= 3(ùX(E))(ùX(E) - 1)(ùE - 1)2

+(ùX(E))((ùE - 1)3 - ((ùE - 1)2 - (ùE - 1))).
Dividing through, we get

T4(E, π
*Ïd)

= 3(ùX(E)/(ùE)n+1)(ùX(E)/(ùE)n+1 - 1/(ùE)n+1)(1 - 1/ùE)2

+(ùX(E)/(ùE)n+1)((ùE - 1)3 - ((ùE - 1)2 - (ùE - 1)))//(ùE)n+3.
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By Lang-Weil, we have

|(ùX(E)/(ùE)n+1 - 1| = O((ùE)-1/2).

So the first term is 3 + O((ùE)-1/2). If n = 0, the second term is 1 +

O((ùE)-1/2), while if n ≥ 1 the second term is O((ùE)-1). This
concludes the proof of Theorem 2.2.7, and, with it, the proofs of
Theorems 2.2.5 and 2.2.4. QED

(2.2.14) We now give a supplement to Theorem 2.2.4, by

combining our results with those of Deligne [De-Weil II, 4.4.1, 4.4.2s,
and 4.4.9]. This supplement will itself be supplemented in 2.3.6.

TTTThhhheeeeoooorrrreeeemmmm 2222....2222....11115555 ((((ssssuuuupppppppplllleeeemmmmeeeennnntttt ttttoooo TTTThhhheeeeoooorrrreeeemmmm 2222....2222....4444)))) Suppose that n
≥ 2 is even, and that d ≥ 3.
1) If Nd is 1, 3, 4, or 5, or if Nd ≥ 9, then the geometric monodromy

group Gd of the lisse sheaf Ïd is the full orthogonal group O(Nd).

2) If Nd is 6, 7, or 8, then Gd is either the full orthogonal group

O(Nd), or Gd is the Weyl group of the root system Eå, å := Nd, in its

standard Nd-dimensional representation as a Weyl group.

3) If Nd = 2, then Gd is the symmetric group S3 in the

representation Aug2.

pppprrrrooooooooffff According to [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9], if Nd ≥ 1, Gd is

either the full orthogonal group O(Nd), or it is a finite reflection

group. Moreover, the only finite reflection groups that arise are the
Weyl groups of root systems of type Aå for å ≥ 1, Då for å ≥ 4, or

Eå for å = 6, 7, or 8, in their standard å-dimensional

representations.
We have shown (Theorem 2.2.5) that for any d ≥ 3, we have

M4(Gd, Vd) ≤ 3. Suppose first that Gd is finite, and that Nd ≥ 3.

We cannot have the Weyl group of Aå for any å ≥ 3, in its

standard representation, i.e., we cannnot have he group Så+1 in the

representation Augå, because M4(Så+1, Augå) > 3 for å ≥ 3. Indeed,

for å ≥ 4 this is proven in Lemma 1.4.5, and for å = 3 it is an
elementary calculation we leave to the reader (or the reader can
observe that A3 = D3, and see the discussion of Då just below).
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We can rule out having the Weyl group of Då for any å ≥ 3, in

its standard representation, as follows. By Theorem 1.3.2, Gd is

primitive. But the standard representation of the Weyl group of Då
is induced (in the Bourbaki notations [Bour-L6, Planche IV, page
257], the lines spanned by the œi are permuted among themselves).

So the only surviving finite group cases with Nd ≥ 3 are the

Weyl groups of E6, E7, and E8 in their standard representations.

If Nd = 2, then Gd must be finite, because it is a semisimple

subgroup of O(2). The only possibility is the Weyl group of A2, i.e., S3
in the representation Aug2.

If Nd = 1, then O(1) = {_1} = S2 in Aug1, so there is only one

possibility. QED

RRRReeeemmmmaaaarrrrkkkk 2222....2222....11116666 The Weyl groups of type E in their standard Weyl
group representations all have fourth moment 3. The Weyl group of
E6 occurs as the monodromy group attached to the universal family

of smooth cubic surfaces in @3. [Since a smooth cubic surface has
middle Betti number 7, and all its cohomology is algebraic, we have
a case with d = 3, Nd = 6, and Gd finite, so necessarily the Weyl

group of E6, cf. also [Beau].] We do not know if the Weyl groups of E7
or of E8 can occur as the monodromy group of the universal family

of smooth hypersurface sections of degree d ≥ 3 of some projective
smooth X. [These groups certainly occur as the monodromy of
suitable families of del Pezzo surfaces, but those families are not of
the required form.]

RRRReeeemmmmaaaarrrrkkkk 2222....2222....11117777 In Theorems 2.2.4 and 2.2.15, the hypothesis that d
be at least 3 is absolutely essential. Indeed, fix an even integer n ≥ 0,

take for X a smooth quadric hypersurface in @n+2, and consider the
universal family of smooth, degree d=2 hypersurface sections of X.
Each member of this family is a smooth complete intersection of

multi-degree (2, 2) in @n+2, so has middle betti number n+4, and all
cohomology algebraic. This family has Nd = n+3, and its finite Gd is

the Weyl group of Dn+3. [Indeed, if n = 0 the two possibilities

coincide. If n ≥ 2, the only other possibility is Sn+4 in Augn+3, or, if n
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= 4, the Weyl group of E7 in its standard Weyl group representation,

both of which are primitive. But by [Reid], cf. [Beau, page 16], the
monodromy for the universal family of smooth complete

intersections of multi-degree (2, 2) in @n+2 is the Weyl group of
Dn+3. So our Gd is a subgroup of the Weyl group of Dn+3. In

particular, our Gd is imprimitive.]

2222....3333 HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnnttttssss
(2.3.1) The same ideas used in proving Theorem 2.2.5 allow one to

prove the following estimate for higher moments.

TTTThhhheeeeoooorrrreeeemmmm 2222....3333....2222 Suppose that n ≥ 1 and d ≥ 3. For any integer b ≥ 1
with 2b ≤ d + 1, we have the estimate

M2b(Gd, Vd) ≤ (2b)~~ := °j = 1 to b(2j - 1).

pppprrrrooooooooffff We proceed as in the proof of Theorem 2.2.7. We define the

mock moment T2b(E, π
*Ïd) by

T2b(E, π
*Ïd) := (ùE)-dim(Hypd)-bn ‡H in Hypd(E)

|†(E, H)|2b

= (ùE)-dim(Hypd)-bn ‡H in Hypd(E)
(ù(X€(H=0))(E) - ùX(E)/ùE)2b.

It suffices to show that

|T2b(E, π
*Ïd) - (2b)~~| = O((ùE)-1/2).

Exactly as in the discussion of T4, we find for T2b the identity

(ùE)dim(Hypd)+bn+2b T2b(E, π
*Ïd)

= ‡H in Hypd(E)
(‡x in X(E) ‡¬ in E≠ ¥(¬H(ëx)))2b.

We next open the inner sum and interchange orders of summation,
to get

= ‡(xi) in X(E)2b ‡(¬i) in (E≠)2b ‡H in Hypd(E)
¥(‡i=1 to 2b ¬iH(ëxi)).

We next break up this sum according to the coincidence pattern of
the 2b not necessarily distinct points x1, ..., x2b in X(E).

The coincidence pattern among the xi gives a partition ∏ of the

set {1, 2, ..., 2b} into ù∏ disjoint nonempty subsets Så: xi = xj if and

only if i and j lie in the same Så.

Fix a point (xi) in X(E)2b with partition ∏. Exaactly as in the

proof of Theorem 2.2.7, the innermost sum vanishes unless, for each
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Så in ∏, we have ‡i in Så
¬i = 0, in which case the innermost sum is

equal to (ùE)dim(Hypd). So the inner double sum is equal to

(ùE)dim(Hypd)°å in ∏ ù{(¬i)i in Så
with ¬i in E≠ and ‡i in Så

¬i = 0}.

This visibly vanishes if some Så is a singleton. More

generally,consider the sequence of integer polynomials Pr(X), r ≥ 1,

defined inductively by
P1(X) = 0,

Pr(X) = Xr-1 - Pr-1(X),

i.e.,

Pr(X) = Xr-1 - Xr-2 + Xr-3 ... + (-1)r-2X.

We have the elementary identity

ù{(¬i)i in Så
with ¬i in E≠ and ‡i in Så

¬i = 0} = PùSå
(ùE).

So the innermost double sum is

(ùE)dim(Hypd)°å in ∏ PùSå
(ùE).

This vanishes if any Så is a singleton, otherwise it is given by a

polynomial in ùE of the form

(ùE)dim(Hypd)°å in ∏ (ùE)ùSå - 1 + lower terms

= (ùE)dim(Hypd) + 2b - ù∏ + lower terms.

The number of points (xi) in X(E)2b with given partition ∏ is

°j = 0 to ù∏ -1 (ùX(E) - j) = ùX(E)ù∏ + lower terms

= (ùE)(n+1)ù∏ + O((ùE)(n+1)ù∏ - 1/2).
As we have seen above, partitions with a singleton do not contribute.

For each partition ∏ without singletons, the total contribution
of all points with that coincidence pattern is thus the product

((ùE)dim(Hypd) + 2b - ù∏ + lower terms)

≠((ùE)(n+1)ù∏ + O((ùE)(n+1)ù∏ - 1/2))

= (ùE)dim(Hypd) + 2b + nù∏(1 + + O(ùE)-1/2).

So the terms of biggest size (ùE)dim(Hypd) + 2b + nb come from
those ∏ without singletons having exact b members, and there are
exactly (2b)~~ such partitions. QED

(2.3.3) The relevance of Theorem 2.3.2 is this. Recall (cf. [Weyl,
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Theorem (2.9.A), page 53 and Theorem (6.1.A), page 167], [ABP,
Appendix I, pages 322-326]) that for O(V) or Sp(V), the invariants in

the dual of any even tensor power Vº2b, b ≥ 1, are the ^-span of

the "complete contractions", i.e., the linear forms on Vº2b obtained
by choosing a partition ∏ of the index set {1, 2, ..., 2b} into b disjoint
sets Så of pairs, say Så = {iå, jå} with iå < jå, and mapping

v1ºv2º...ºv2b ÿ °å in ∏<viå
, vjå

>

There are (2b)~~ such complete contractions. If dim(V) ≥ 2b, they are
linearly independent (cf. [Weyl, section 5 of Chapter V, pages 147-
149]). So for any N ≥ 2b, we have

M2b(O(N), std) = (2b)~~,

and for any even N ≥ 2b, we have
M2b(Sp(N), std) = (2b)~~,

(cf. [Larsen-Normal], [Dia-Sha]).
CCCCoooorrrroooollllllllaaaarrrryyyy 2222....3333....4444 Suppose n ≥ 1, and d ≥ 3. For each b ≥ 1 with

2b ≤ Max(Nd, d+1),

we have the equality
M2b(Gd, Vd) = (2b)~~.

pppprrrrooooooooffff Suppose n is odd. Since Gd is a subgroup of Sp(Nd) = Sp(Vd),

we have the a priori inequality
M2b(Gd, Vd) ≥ M2b(Sp(Nd), std).

If 2b ≤ Nd, we have

M2b(Sp(N), std) = (2b)~~,

as explained in (2.3.3) above. So we find
M2b(Gd, Vd) ≥ (2b)~~.

If in addition d ≥ 3 and d + 1 ≥ 2b, we have the reverse inequality
from Theorem 2.3.2. For the proof in the case of even n, simply
replace Sp(Nd) byO(Nd) in the above argument. QED

(2.3.5) We now use these estimates for higher moments to
eliminate more possibilities of finite monodromy in our universal
families.

TTTThhhheeeeoooorrrreeeemmmm 2222....3333....6666 ((((ssssuuuupppppppplllleeeemmmmeeeennnntttt ttttoooo TTTThhhheeeeoooorrrreeeemmmm 2222....2222....11115555))))
Suppose that n ≥ 2 is even, that d ≥ 5, and that Nd ≥ 3. If Nd ± 8, or
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if d ≥ 7, then the geometric monodromy group Gd of the lisse sheaf

Ïd is the full orthogonal group O(Nd).

pppprrrrooooooooffff Unless Nd is 6, 7, or 8, the desired conclusion is given by

2.2.15.
If Nd is 6, then Gd is either O(6) or it is W(E6), the Weyl group

of E6, in its standard reflection representation std6. According to the

the computer program GAP [GAP], the sixth moment of W(E6) in

std6 is given by

M6(W(E6), std6) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6~~ = 15. So we

cannot have W(E6) if d ≥ 5.

If Nd is 7, then Gd is either O(7) or it is W(E7), the Weyl group

of E7, in its standard reflection representation std7. According to

GAP [GAP], the sixth moment of W(E7) in std7 is given by

M6(W(E7), std7) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6~~ = 15. So we

cannot have W(E7) if d ≥ 5.

If Nd = 8, then Gd is either O(8) or it is W(E8), the Weyl group

of E8, in its standard reflection representation std8. According to

GAP [GAP], the eighth moment of W(E8) in std8 is given by

M8(W(E8), std8) = 106.

But if d ≥ 7, then by 2.3.2 we have M8(Gd, Vd) ≤ 8 ~~ = 105. So we

cannot have W(E8) if d ≥ 7. QED

2222....4444 RRRReeeemmmmaaaarrrrkkkkssss oooonnnn TTTThhhheeeeoooorrrreeeemmmm 2222....2222....4444
(2.4.1) We have stated Theorem 2.2.4 in terms of the universal
family of smooth hypersurface sections of degree d. It results from
Bertini's theorem [Ka-ACT, 3.11.1] that we also get the same Gd for

any sufficiently general Lefschetz pencil of hypersurface sections of
degree d.
(2.4.2) We have given a diophantine proof of Theorem 2.2.4,
based on having a finite ground field. It follows, by standard
spreading out techniques, that the same theorem is valid, for either
the universal family of smooth hypersurface sections of degree d, or
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for a sufficiently general Lefschetz pencil thereof, over any field k in
which … is invertible. When k is ^, we have integral cohomology
theory

X ÿ H*(X(^)an, #),
so Ïd has a natural #-form, and we can speak of the integral

monodromy group. In some cases, this finer invariant is known, cf.
[Beau].

(2.4.3) In the case n = 0, if we take X to be @1, then Gd is a

subgroup of the symmetric group Sd, and Vd is just the

representation Augd-1. [Of course, Gd is equal to Sd, thanks to Abel,

but we will not use this fact here, cf. 2.4.4 just below.] Since we
have proven that

M4(Gd, Vd = Augd-1) ≤ 4,

it follows that for the larger group Sd we have

M4(Sd, Augd-1) ≤ 4.

On the other hand, we have already proven (1.4.5) that
M4(Sd, Augd-1) > 3 for d ≥ 5.

Since in any case the moments are integers, we have
M4(Sd, Augd-1) = 4 for d ≥ 5.

[One can check by hand that
M4(S4, Aug3) = 4, but that M4(S3, Aug2) = 3.]

(2.4.4) In the case n = 0, X fi @ any smooth, geometrically
connected, projective curve, we can see that Gd, the geometric

monodromy group of Ïd, is the full symmetric group SNd+1
as

follows. Since Gd is a priori a subgroup of SNd+1
, it suffices to exhibit

a pullback of Ïd whose geometric monodromy group is SNd+1
. Any

Lefschetz pencil of degree d hypersurface sections on X will do this.

Indeed, such a pencil gives a finite flat map f: X ¨ @1 which is finite
etale of degree

deg(f) = deg(ØX(d)) = d≠deg(X) = 1 + Nd

over a dense open set @1 - S, inclusion denoted

j : @1 - S ¨ @1,

such that for each geometric point s in S, the geometric fibre f-1(s)
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consists of deg(f) - 1 distinct points. The pullback to @1 - S of the

sheaf Ïd is j*(f*ä$…/ä$…). We must show that j*(f*ä$…) has geometric

monodromy group Sdeg(f). From the commutative diagram

k

X - f-1(S) fi X
ëf d d f

@1 - S fi @1

j

we see that f*ä$… = f*k*ä$… = j*ëf*ä$… = j*j
*f*ä$…. From the equality

f*ä$… = j*j
*f*ä$…, we see that the local monodromy of j*(f*ä$…) at

each point of S has a fixed space of codimension one, so is a

reflection. The monodromy group of j*(f*ä$…) is a subgroup of Sdeg(f)

which is transitive (the total space X - f-1(S) is geometrically
connected) and generated by reflections (all the conjugates of the
local monodromies at all the points of S), hence is the whole group
Sdeg(f).

2222....5555 AAAA pppp----aaaaddddiiiicccc aaaapppppppprrrrooooaaaacccchhhh ttttoooo rrrruuuulllliiiinnnngggg oooouuuutttt ffffiiiinnnniiiitttteeee mmmmoooonnnnooooddddrrrroooommmmyyyy ffffoooorrrr
uuuunnnniiiivvvveeeerrrrssssaaaallll ffffaaaammmmiiiilllliiiieeeessss ooooffff hhhhyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeee sssseeeeccccttttiiiioooonnnnssss
(2.5.1) In the case of odd fibre dimension n, we know [De-Weil II,
4.4.1] that any Lefschetz pencil has monodromy group which is
Zariski dense in the full symplectic group. The moment technique
gives a variant proof, valid for the universal family (and then by
Bertini for any sufficiently general Lefschtz pencil) of hypersurface
sections of degree d ≥ 3 such that Nd ≥ 4. Indeed, the fourth moment

is 3, so Gd is either Sp(Nd) or it is finite. But Gd cannot be finite,

because in odd fibre dimension the local monodromies in a Lefschetz
pencil are unipotent pseudoreflections (and so of infinite order).
(2.5.2) In our discussion so far, we have made essential use of
the Picard-Lefschetz formula [SGA 7, Exposïe XV, 3.4], to know that
Gd contains a reflection in the case of even fibre dimension n, and, a

unipotent pseudoreflection in the case of odd fibre dimension.
(2.5.3) Suppose we did not know the Picard-Lefschetz formula,
but did know all the results of [De-Weil II], an admittedly unlikely
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but nonetheless logically possible situation. In that case, a result of
Koblitz [Kob, Lemma 4, page 132, and Theorem 1, page 139] leads to
a p-adic proof that, given X/k as above of dimension n + 1 ≥ 2, then
for all d sufficiently large, the group Gd is not finite. Once Gd is not

finite for a given d ≥ 3 with Nd ≥ 3, we know from Larsen's

Alternative that Gd is Sp(Nd) if n is odd, and that Gd is either SO(Nd)

or O(Nd) if n is even. We do not know how to prove, in the case of

even fibre dimension, that the SO case cannot occur, without
appealing to the Picard-Lefschetz formula~
(2.5.4) We now explain the p-adic proof that if X/k as above has
dimension n + 1 ≥ 2, then for d sufficiently large, the group Gd is not

finite.
(2.5.4.1) We know that Gd is an irreducible subgroup of GL(Vd). If

Gd is finite, then any element A of the ambient GL(Vd) which

normalizes Gd has some power a scalar. For the group Aut(Gd) is

itself finite, so a power of A, acting by conjugation on Gd, will act

trivially, i.e., a power of A will commute with Gd, which, Gd being

irreducible, makes that power a scalar. This applies to the image in
GL(Vd) of any Frobenius element in π1(GoodXPHypd). So if Gd is

finite, then for any finite extension field E/k, and any H in
GoodXPHypd(E), we find that a power of FrobE acting on

Evn((Xºkäk)€H, ä$…) is a scalar. Moreover, we know that

FrobE/(ùE)
n/2 lies in either Sp or O, so has determinant _1. Since

FrobE/(ùE)
n/2 has a power which is a scalar, that scalar must be a

root of unity. Thus every eigenvalue of FrobE acting on

Evn((Xºkäk)€H, ä$…) is of the form (a root of unity)≠(ùE)n/2, so in

particular of the form p≠(an algebraic integer).
(2.5.4.2) On the other hand, we know that the characteristic

polynomial of FrobE on Hi((Xºkäk)€H, ä$…) or on Hi(Xºkäk, ä$…) has #-

coefficients. By the hard Lefschetz theorem on X, for i > n, all

eigenvalues of FrobE on Hi(Xºkäk)€H, ä$…) are also of the form p≠(an

algebraic integer). So we get a congruence mod p for the zeta
function of X€H/E, viewed as an element of 1 + T#[[T]]:
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Zeta(X€H/E, T)

• °i=0 to ndet(1 - TFrobE |Hi((Xºkäk)€H, ä$…)
(-1)i+1.

Using the weak Lefschetz theorem, this last product is equal to the
product

(°i=0 to ndet(1 - TFrobE |Hi(Xºkäk, ä$…)
(-1)i+1)

≠det(1 - TFrobE |Evn((Xºkäk)€H, ä$…)
(-1)n+1.

If Gd is finite, then the second term is 1 mod p. So we get a

congruence formula for Zeta(X€H/E, T) which shows that its
reduction mod p is a rational function whose degree as a rational
function depends only on X. Indeed, if we denote by ßi the degree of

the reduction mod p of the integer polynomial

det(1 - TFrobk |Hi(Xºkäk, ä$…),

then Zeta(X€H/E, T) mod p has degree ß(X) := ‡i=0 to n(-1)
i+1ßi, for

every finite extension E/k, and every point H in GoodXPHypd(E).

(2.5.4.3) We now explains how this last conclusion leads to a
contradiction for large d. By the congruence formula [SGA 7, Part II,
Exposïe XXII, 3.1] for the zeta function, we have the mod p
congruence

Zeta(X€H/E, T)

• °i=0 to ndet(1 - TFrobE |Hi(X€H,ØX€H))
(-1)i+1.

For d sufficiently large, the restriction map

Hi((X,ØX) ¨ Hi(X€H,ØX€H)

is an isomorphism for i < n, and is injective for i = n (i.e., for large d

we have vanishing of Hi(X, ØX(-d)) for i ≤ n). So we can factor this

mod p product as

(°i=0 to ndet(1 - TFrobE |Hi(X,ØX))
(-1)i+1)

≠det(1 - TFrobE | Hn(X€H,ØX€H)/H
n(X,ØX))

(-1)n+1.

The degree of the first factor depends only on X. Indeed, if we denote
by †i the degree of the mod p polynomial

det(1 - TFrobk |Hi(X,ØX)),
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this degree is †(X) := ‡i=0 to n(-1)
i+1†i. So if Gd is finite, then we

conclude that the mod p polynomial

det(1 - TFrobE | Hn(X€H,ØX€H)/H
n(X,ØX))

has degree (-1)n(ß(X) - †(X)), for every finite extension E/k, and
every point H in GoodXPHypd(E).

(2.5.4.4) Thanks to Koblitz [Kob, Lemma 4, page 132, and Theorem
1, page 139], for d sufficiently large, there is a dense open set of
GoodXPHypd on which the degree of the mod p polynomial

det(1 - TFrobE | Hn(X€H,ØX€H)/H
n((X,ØX))

is constant, say F(d), and F(d) goes to infinity with d. More precisely,
Koblitz shows that there is a $-polynomial PX(T) of degree n+1, of

the form deg(X)Tn+1/(n+1)~ + lower terms, such that F(d) ≥ PX(d). So

for d large enough that the following three conditions hold:
d ≥ 3,

Hi(X, ØX(-d)) = 0 for i ≤ n,

F(d) > (-1)n(ß(X) - †(X)),
Gd is not finite.
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