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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn

It is now some thirty years since Deligne first proved his
general equidistribution theorem [De-Weil II, Ka-GKM, Ka-Sar-
RMFEM], thus establishing the fundamental result governing the
statistical properties of suitably "pure" algebro-geometric families of
character sums over finite fields (and of their associated L-
functions). Roughly speaking, Deligne showed that any such family
obeys a "generalized Sato-Tate law", and that figuring out which
generalized Sato-Tate law applies to a given family amounts
essentially to computing a certain complex semisimple (not
necessarily connected) algebraic group, the "geometric monodromy
group" attached to that family.

In our earlier books [Ka-GKM], [Ka-ESDE], and [Ka-TLFM],
computations of geometric monodromy groups were carried out
either directly on an open curve as parameter space, or by
restriction to a well-chosen open curve in the parameter space. Once
on an open curve, our main tool was to compute, when possible, the
local monodromy at each of the missing points. This local
monodromy information told us that our sought-after semisimple
group contained specific sorts of elements, or specific sorts of
subgroups. We typically also had a modicum of global information,
e.g., we might have known that the sought-after group was an
irreducible subgroup of GL(N), or of the orthogonal group O(N), or of
the symplectic group Sp(N). It was often then possible either to
decide either exactly which group we had, or to show that our group
was on a very short list of possibilities, and then to distinguish
among those possibilities by some ad hoc argument.

In this book, we introduce new techniques, which are
resolutely global in nature. They are sufficiently powerful that we
can sometimes prove that a geometric monodromy group is, say,
the symplectic group Sp(N), without knowing the value of N; cf.
Theorem 3.1.2 for an instance of this. The price we pay is that these
new techniques apply only to families which depend on very many
parameters, and thus our work here is nearly disjoint from our
earlier "local monodromy" methods of analyzing one-parameter
families. However, it is not entirely disjoint, because the new
techniques will often leave us knowing, say, that our group is either
SO(N) or O(N), but not knowing which. In such cases, we sometimes
prove that the group is in fact O(N) by restricting to a suitable
curve in the parameter space and then proving that the local
monodromy at a particular missing point of this curve is a
reflection: since SO(N) contains no reflections, we must have O(N).

Our work is based on two vital ingredients, neither of which
yet existed at the time of Deligne's original work on equidistribution.
The first of these ingredients is the theory of perverse sheaves,
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pioneered by Goresky and MacPherson in the topological setting, and
then brilliantly transposed to algebraic geometry by Beilinson,
Bernstein, Deligne, and Gabber. The second is Larsen's Alternative,
discovered by Larsen ten odd years ago, which very nearly
characterizes classical groups by their fourth moments.

This book has two goals, one "applied" and one "theoretical". The
applied goal is to calculate the geometric monodromy groups
attached to some quite specific universal families of (L-functions
attached to) character sums over finite fields. The theoretical goal is
to develop general techniques, based on combining a diophantine
analysis of perverse sheaves and their higher moments with
Larsen's Alternative and other group-theoretic results, which can be
used to achieve the applied goal, and which are of interest in their
own right.

Let us begin by describing some of the universal families we
have in mind. Grosso modo, they are of three sorts:

families of additive character sums,
families of multiplicative character sums, and
Weierstrass (and other) families of L-functions of elliptic curves

over function fields in one variable.
In the additive character case, we fix a finite field k and a

nontrivial ^-valued additive character ¥ of k. For any finite
extension E/k, we denote by ¥E the additive character of E defined

by
¥E(x) := ¥(TraceE/k(x)).

Fix a pair of integers n ≥ 1 and e ≥ 3. We denote by ∏(n,e)(E) the
space of polynomials over E in n variables of degree ≤ e. We are
concerned with the families of sums, parameterized by f in
∏(n,e)(E), given by

Sum(E, f, ¥) := ‡x1, ..., xn in E ¥E(f(x1, ..., xn)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say M(n, e, ¥), on ∏(n, e)/k. On some dense open set,
say U(n, e, ¥) of ∏(n, e)/k, this perverse sheaf is a [shift and a Tate
twist of a] single lisse sheaf, say ˜(n, e, ¥), which is pure of weight
zero. [When the degree e is prime to char(k), we can take U(n, e, ¥)
to be the open set Î(n, e) consisting of "Deligne polynomials" of
degree e in n variables, those whose leading forms define smooth,

degree e hypersurfaces in @n-1.] It is the geometric monodromy of
this lisse sheaf ˜(n, e, ¥) on U(n, e, ¥) which we wish to calculate.

In the multiplicative character case, we fix a finite field k and

a nontrivial ^-valued multiplicative character ç of k≠, extended to
all of k by ç(0) := 0. For any finite extension E/k, we denote by çE

the multiplicative character of E≠ defined by
çE(x) := ç(NormE/k(x)),

again extended to all of E by çE(0) := 0. Fix a pair of integers n ≥ 1

and e ≥ 3. We are concerned with the families of sums,
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parameterized by f in ∏(n,e)(E), given by
Sum(E, f, ç) := ‡x1, ..., xn in E çE(f(x1, ..., xn)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say M(n, e, ç), on ∏(n, e)/k. On some dense open set,
say U(n, e, ç) of ∏(n, e)/k, this perverse sheaf is a [shift and a Tate
twist of a] single lisse sheaf, say ˜(n, e, ç). [When the degree e is
prime to char(k), we can take U(n, e, ç) to be the open set ÍÎ(n, e)
consisting of "strong Deligne polynomials" of degree e in n variables,

those which define smooth hypersurfaces in !n and whose leading

forms define smooth, degree e hypersurfaces in @n-1.] When çe is
nontrivial, ˜(n, e, ç) is pure of weight zero, and it is the geometric

monodromy of ˜(n, e, ç) we wish to calculate. When çe is trivial,
˜(n, e, ç) is mixed of weight ≤ 0, and it is the weight zero quotient
of ˜(n, e, ç) whose geometric monodromy we wish to calculate.

In the simplest instance of Weierstrass families of L-functions
of elliptic curves, we fix a finite field k of characteristic p ≥ 5. We

denote by ç2 the quadratic character of k≠. Fix a pair of integers

d2 ≥ 3 and d3 ≥ 3. For each finite extension E/k, we have the

product space (∏(1,d2)≠∏(1,d3))(E) of pairs (g2(t), g3(t)) of one-

variable polynomials over E of degrees at most d2 and d3
respectively. We are concerned with the families of sums,
parameterized by (g2, g3) in (∏(1,d2)≠∏(1,d3))(E),

Sum(E, g2, g3) := ‡x, t in k ç2,E(4x
3 - g2(t)x - g3(t)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say W(d2, d3), on ∏(1,d2)≠∏(1,d3)/k. On the dense

open set U(d2, d3), of ∏(1,d2)≠∏(1,d3)/k, defined by the condition

that (g2)
3 - 27(g3)

2 has Max(3d2, 2d3) distinct zeroes in äk, this

perverse sheaf is a [shift and a Tate twist of a] single lisse sheaf, say
„(d2, d3), which is mixed of weight ≤ 0. The weight zero quotient

Gr0„(d2, d3) of „(d2, d3) is related to L-functions of elliptic curves

over function fields as follows. For (g2, g3) in U(d2, d3)(E), the

Weierstrass equation

y2 = 4x3 - g2(t)x - g3(t)

defines an elliptic curve over the rational function field E(t), and its

(unitarized) L-function is the local L-function of Gr0„(d2, d3) at the

point (g2, g3) in U(d2, d3)(E). It is the geometric monodromy of

Gr0„(d2, d3) we wish to calculate.

This concludes our quick overview of the sorts of universal
families we wish to treat. These families have in common some
essential features.

The first feature is that, in each case, the parameter space is

itself a large linear space of !m-valued functions (m = 1 in the first



4 Introduction

two sorts of families, m = 2 in the third sort) on some fixed variety
V, i.e., in each case our parameter space is a large linear subspace

Ïof the space Homk-scheme(V, !
m). [It happens that V is itself an

affine space in the examples we have given above (!n in the first

two sorts, !1 in the third sort), but this turns out to be a red
herring.]

The second feature is that our family of sums has the following
structure: for each E/k, we are given a function

K(E, ): !m(E) ¨ ^,
x ÿ K(E, x),

on the E-valued points of the target !m, and our family of sums is

f in Ï(E) fi HomE-scheme(V, !
m) ÿ ‡v in V(E) K(E, f(v)).

In the additive character case, we have m=1, and x ÿ K(E, x) is the

function x ÿ ¥E(x) on !1(E) = E. In the multiplicative character

case, we have m=1, and x ÿ K(E, x) is the function x ÿ çE(x) on

!1(E) = E. In the case of L-functions of elliptic curves over function
fields, we have m=2, and the function (a, b) ÿ K(E, a, b) on

!2(E) = E≠E is the function

(a, b) ÿ ‡x in E ç2,E(4x
3 -ax -b).

[In these cases, the function x ÿ K(E, x) on !m(E) also satisfies in
addition the "integral zero" condition

‡x in !m(E) K(E, x) = 0,

as the reader will easily check. This turns out to be an important
condition, but one that can be somewhat relaxed.]

The third feature is that, in each case, the collection of
functions

K(E, ): !m(E) ¨ ^,
x ÿ K(E, x),

is, up to sign, the trace function of a perverse sheaf K on !m.
Although not apparent from these examples, there is also

interest in introducing, in addition to our perverse sheaf K on !m, a
perverse sheaf L on the source variety V, with trace function

L(E, ): V(E) ¨ ^,
v ÿ L(E, v),

and considering the family of sums

f in Ï(E) fi HomE-scheme(V, !
m) ÿ ‡v in V(E) K(E, f(v))L(E, v).

Slightly more generally, one might fix a single function

h in Homk-scheme(V, !
m),

and consider the family of sums "with an offset of h", namely

f in Ï(E) fi HomE-scheme(V, !
m)

ÿ ‡v in V(E) K(E, h(v) + f(v))L(E,v).

Let us now turn to a brief description of the "theoretical"
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aspects of this book, which are mainly concentrated in the first two
chapters.

In the first chapter, we show that, under very mild hypotheses
on K and L, these sums are, for any fixed h, the trace function (up
to sign) of a perverse sheaf Twist(L,K,Ï,h) on the function space Ï.
This general construction is responsible for the perverse sheaves
M(n, e, ¥) and M(n, e, ç) on the space ∏(n, e)/k discussed in the
additive and multiplicative character cases, and it is responsible for
the perverse sheaf W(d2, d3), on ∏(1,d2)≠∏(1,d3)/k discussed in the

Weierstrass family case. We then formulate in diophantine terms a
general orthogonality theorem for pure perverse sheaves, which is
formally analogous to the orthogonality theorem for the characters
of finite-dimensional representations of a compact Lie group.
Proceeding along the same lines, we formulate in diophantine terms
the theory of the Frobenius-Schur indicator for geometrically
irreducible pure lisse sheaves. This theory is formally analogous to
that of the Frobenius-Schur indicator for irreducible representations
of a compact Lie group, which tells us whether a given irreducible
representation is self dual or not, and tells us, in the autodual case,
whether the autoduality is symplectic or orthogonal We then show
that, given these diophantine invariants for suitable input perverse

sheaves K on !m and L on V, there is a simple rule for calculating
them for (a suitable quotient of) the perverse sheaf Twist(L,K,Ï,h)
on the function space Ï.

Up to this point in our theoretical analysis, we require
relatively little of our space of functions Ï, only that it contain the
constant functions and that it separate points. We then formulate
the notion of "higher moments" for pure perverse sheaves. [The
orthogonality theorem is concerned with the "second moment".] To
get results on the higher moments, we must require that the
function space Ï be suitably large, more precisely, that it be "d-
separating" for some d ≥ 4. Here d-separating means that given any
field extension E/k, and any d distinct points v1, ..., vd in V(E), the

E-linear map "simultaneous evaluation" at the points v1, ..., vd",

Ï‚kE ¨ (!m(E))d,

f ÿ (f(v1), f(v2), ..., f(vd))

is surjective. [In the examples, the degrees ("e" in the first two cases,
"d2" and "d3" in the Weierstrass case) are taken to be at least 3 in

order to insure that our function spaces are at least 4-separating.]
We end the first chapter by proving a quite general "Higher

Moment Theorem" . We suppose that the function space Ï is d-
separating for some d ≥ 4. Then we get control of the even moments
M2k, for every positive even integer 2k ≤ d, of (a suitable quotient

of) the perverse sheaf Twist(L,K,Ï,h) on the function space Ï. An
immediate consequence of this control is the fact that the support of
(this suitable quotient of) the perverse sheaf Twist(L,K,Ï,h) is the
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entire space Ï. Its restriction to an open dense set of Ï is a (shift of
a single) lisse sheaf, whose geometric monodromy is what we wish to
calculate, and whose higher moments we now control.

In chapter 2, we bring to bear some very important ideas of
Michael Larsen, about the determination of classical groups through
their higher moments. The idea which we exploit most extensively is
"Larsen's Alternative", in which we are given an integer N ≥ 2 and a
reductive subgroup H of one of the classical groups GL(N, ^) or
O(N, ^), or, when N is even and at least 4, Sp(N, ^), and we are told
that H has the same fourth moment as the ambient group in the
given N-dimensional representation (namely 2, 3, 3 in the three
successive cases). Larsen's Alternative is the marvelous statement
that either H is finite, or that, in the three successive cases, we have

H contains SL(N), in the GL(N) case,
H is either SO(N) or O(N), in the O(N) case,
H is Sp(N), in the Sp(N) case.

This very nearly reduces us to ruling out the possibility that H is
finite. [We say very nearly, because we must still compute
determinants, i.e., we must still distinguish between SO(N) and O(N),
and we must still distinguish among the various groups between
SL(N) and GL(N).] Fortunately, there is a great deal known about the
possible finite groups which could arise in this context. For N ≥ 3,
any such finite group is, because of its low fourth moment,
automatically a primitive subgroup of GL(N). We can then apply the
plethora of known results on finite primitive irreducible subgroups of
GL(N), due (in chronological order) to Blichfeldt, Mitchell, Huffman-
Wales, Zalesskii, and Wales. We can apply all this theory to an H
which is the geometric monodromy group attached to (a suitable
quotient of the restriction to a dense open set of) the perverse sheaf
Twist(L,K,Ï,h), thanks to the control over moments gained in the
first chapter. For such an H, there are further tools we can bring to
bear, both algebro-geometric (the theory of "sheaves of perverse
origin") and diophantine in nature. All of this is explained in the
second chapter.

A further idea of Michael Larsen is his unpublished "Eighth
Moment Conjecture". Suppose N ≥ 8, and suppose we are given a
reductive subgroup H of one of GL(N, ^) or O(N, ^), or, when N is
even, Sp(N, ^). Suppose H has the same eighth moment as the
ambient group in the given N-dimensional representation. Then
Larsen conjectured that, in the successive cases, we have

H contains SL(N), in the GL(N) case,
H is either SO(N) or O(N), in the O(N) case,
H is Sp(N), in the Sp(N) case.

In other words, if we have the correct eighth moment (which
implies that the lower even moments are also "correct"), then the "H
finite" case of Larsen's Alternative cannot arise. Larsen's Eighth
Moment Conjecture has recently been proven by Guralnick and Tiep.
Combining their result and the Higher Moment Theorem, we avoid
the need to rule out the "H finite" case, provided only that our space
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of functions Ï is at least 8-separating. To see what this means in
practice, consider the three examples of universal families we
considered above. To have Ï 8-separating, we need to take the
degree e ≥ 7 in the cases of additive and multiplicative character
sums, and we need to take the degrees d2 and d3 both ≥ 7 in the

Weierstrass case. [But we still face the earlier mentioned problem of
computing the determinant.]

With these tools at hand, we get down to concrete applications.
Chapters 3 and 4 are devoted to additive character sums, first on

!n and then on more general varieties. In chapter 5, we study
multiplicative character sums. The results we obtain in these
chapters are nearly complete, except that in a number of cases we
cannot distinguish whether we have SO(N) or O(N). In chapter 6, we
apply the theory of middle additive convolution on the additive

group ´a = !1 to both additive and multiplicative character sums

on !n. This theory allows us in many cases to compute
determinants, and thus distinguish between the O(N) and SO(N)
cases. It is in this use of middle additive convolution that we are
falling back on the method of restricting to a suitable curve and
then computing local monodromies, in order to show that our group
contains pseudoreflections of specified determinant. In an appendix
to chapter 6, we further develop some technical themes which
appeared in the proof of a key technical result, Theorem 6.2.11,
which was worked out jointly with Eric Rains.

In chapter 7, we work systematically with "pullback to a curve

from !1" situations. A typical example of the situation we study is
this. Take a finite field k of odd characteristic, and consider the
rational function field in one variable k(¬), over which we have the
Legendre curve, defined by the equation

y2 = x(x-1)(x - ¬).
Fix an integer e ≥ 3. For each finite extension E/k, and each each
polynomial f(¬) in E[¬] of degree at most e (i.e., f lies in ∏(1, e)(E)),
we have the pullback equation

y2 = x(x-1)(x - f(¬)).
The sums

Sum(f, E) := ‡x,¬ in E ç2,E(x(x-1)(x - f(¬)))

are, up to sign, the trace function of a perverse sheaf on ∏(1, e). For
f in the dense open set U of ∏(1, e) consisting of those polynomials f
such that f(f-1) has 2e distinct roots in äk, this perverse sheaf is a
(shift and a Tate twist of a) single lisse sheaf, whose rank N is

2e - 2, if e odd,
2e - 3, if e even,

and whose local L-function at f in U(E) is precisely the unitarized L-
function of the elliptic curve over E(¬) defined by the pullback
equation

y2 = x(x-1)(x - f(¬)).
We prove that this lisse sheaf has geometric monodromy group the



8 Introduction

full orthogonal group O(N), provided that N ≥ 9. At the very end of
this chapter, we give some results on degeneration of Leray spectral
sequences, which are certainly well known to the experts, but for
which we know of no convenient reference.

In chapter 8, we indicate how the general theory of
Twist(L,K,Ï,h) developed here allows us to recover some of the
results of [Ka-TLFM].

Chapters 9, 10, and 11 are devoted to a detailed study of
families of L-functions of elliptic curves over function fields in one
variable over finite constant fields. Chapter 9 is devoted to
explaining how various classical families of elliptic curves provide

appropriate input, namely a suitable perverse sheaf K on an !m, to
the general theory. Chapter 10 works out what the general theory
gives for various sorts of Weierstrass families, and Chapter 11 works
it out for other, more neglected, universal families, which we call
FJTwist families.

In chapter 12, we return to theoretical questions, developing
some general if ad hoc methods which allow us to work "over #"
instead of "just" over a finite field. These methods apply nicely to the
case of multiplicative character sums, and to the various
Weierstrass and FJTwist families. What they make possible is
equidistribution statements where we are allowed to work over
bigger and bigger finite fields, whose characteristics are allowed to
vary, e.g., bigger and bigger prime fields, rather than the more
restrictive setting of bigger and bigger finite fields of a fixed
characteristic. Unfortunately, the methods do not apply at all to
additive character sums. Nonetheless, we believe that the
corresponding equidistribution statements, about additive character
sums over bigger and bigger finite fields whose characteristics are
allowed to vary, are in fact true statements. It is just that we are
presently incapable of proving them.

In the final chapter 13, we make explicit the application of our
results to the arithmetic of elliptic curves over function fields. We
first give results on average analytic rank in our families. We then
pass to the large-N limit, e.g., by taking Weierstrass families of type
(d2, d3) as described earlier, and letting Max(3d2, 2d3) tend to

infinity, and give results concerning low-lying zeroes as incarnated
in the eigenvalue location measures of [Ka-Sar, RMFEM].

It is a pleasure to acknowledge the overwhelming influence on
this book of the ideas and work of Deligne, Gabber, and Larsen. In the
course of working on the book, I visited the Institute for Advanced
Study, the University of Tokyo, the University of Minnesota, the
University of Paris at Orsay, I.H.E.S., and the University of Paris VI. I
thank all these institutions for their hospitality and support.



CCCChhhhaaaapppptttteeeerrrr 1111:::: BBBBaaaassssiiiicccc rrrreeeessssuuuullllttttssss oooonnnn

ppppeeeerrrrvvvveeeerrrrssssiiiittttyyyy aaaannnndddd hhhhiiiigggghhhheeeerrrr mmmmoooommmmeeeennnnttttssss

((((1111....1111)))) TTTThhhheeee nnnnoooottttiiiioooonnnn ooooffff aaaa dddd----sssseeeeppppaaaarrrraaaattttiiiinnnngggg ssssppppaaaacccceeee ooooffff ffffuuuunnnnccccttttiiiioooonnnnssss
(1.1.1) Throughout this section, we work over a field k. For each

integer m ≥ 1, we denote by !mk, or just !
m if no confusion is

likely, the m-dimensional affine space over k.
(1.1.2) Let V be a separated k-scheme of finite type. The set

Homk-schemes(V, !
m)

of k-morphisms from V to !m is naturally a k-vector space
(addition and scalar multiplication on the target). Concretely, it is
the k-vector space of m-tuples of regular functions on V. If V is

nonempty, Homk-schemes(V, !
m) contains !m(k) as the subspace

of constant maps.
(1.1.3) For technical reasons, we consider the following
generalization of a finite-dimensional k-subspace of

Homk-schemes(V, !
m): a pair (Ï, †) consisting of a finite-

dimensional k-vector space Ï and a k-linear map

† : Ï ¨ Homk-schemes(V, !
m).

We will, by abuse of language, refer to such a pair (Ï, †) as a space
of functions on V.
(1.1.4) Given such an (Ï, †), for any extension field L/k, and for
any point v in V(L), we denote by eval(v) the L-linear "evaluation at
v" map

eval(v) : Ï‚kL ¨ !m(L),

f ÿ (†(f))(v).
When the map † is clear from the context, as it usually will be, we
write simply f(v) for (†(f))(v):

f(v) := (†(f))(v).
(1.1.5) Given an integer d ≥ 1, we say that (Ï, †), or simply Ï, if
the map † is clear from the context, is d-separating if the following
condition holds: for any extension field L/k, and for any d distinct
points v1, v2,..., vd in V(L), the L-linear map "simultaneous

evaluation"

eval(v1, v2,..., vd) : Ï‚kL ¨ (!m(L))d,

f ÿ (f(v1),..., f(vd)),

is surjective.
(1.1.6) A trivial but useful remark is this. Suppose we are given
a space of functions (Ï, †) on V, and a k-vector subspace Ï1 fi Ï.

Restrict † to Ï1, and view (Ï1, †|Ï1) as a space of functions on V. If
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(Ï1, †|Ï1) is d-separating, then (Ï, †) is d-separating.

(1.1.7) We say that (Ï, †) contains the constants if the subspace

†(Ï) of Homk-schemes(V, !
m) contains the subspace !m(k) of

constant maps.
(1.1.8) For m = 1, the prototypical example of a d-separating Ï
which contains the constants is this. Suppose that V is affine, or
that, more generally, we are given an integer n ≥ 1 and a radiciel
(injective on field-valued points) k-morphism

π : V ¨ !n.
For each integer e ≥ 0, denote by ∏e the k-space of all polynomial

functions P on !n of degree at most e. Thus ∏e contains the

constants, and it is well known that ∏e is d-separating on !n for

every d ≤ e+1, cf. [Ka-LAMM, 2.2.10]. Then the pair (∏e, π
-1):

∏e ¨ Homk-schemes(V, !
1),

P ÿ P«π,
is d-separating for every d ≤ e+1, and it contains the constants.
(1.1.9) Another example to keep in mind, still with m = 1, is this.
Suppose that C/k is a projective, smooth, geometrically connected
curve over k of genus denoted g, S fi C is a finite nonempty reduced
closed subscheme, and V is C - S. Take any effective divisor D on C
whose support lies in S and such that deg(D) ≥ 2g + d-1. Then the
Riemann-Roch space L(D), viewed as a space of functions on C - S,
contains the constants and is d-separating.
(1.1.10) For general m ≥ 1, the prototypical example of a d-
separating Ï which contains the constants is obtained by a product
construction. For each i=1 to m, suppose we have pairs (Ïi, †i),

†i : Ïi ¨ Homk-schemes(V, !
1),

which contain the constants and are d-separating. Then the product
space Ï := °iÏi with the product map † := °i†i,

°i†i : °iÏi ¨ °i Homk-schemes(V, !
1) = Homk-schemes(V, !

m)

is d-separating and contains the constants.
(1.1.11) For example, with V = C - S as above, we might take the
Ïi each to be Riemann-Roch spaces L(Di), where the Di are m

possibly distinct effective divisors, each of degree at least 2g + d - 1,
and each with support contained in S.
(1.1.12) As another example, with V as in (1.1.8), we might be
given various integers ni ≥ 1, i =1 to r, and radiciel k-morphisms

πi : V ¨ !ni.

We might then pick integers ei ≥ d-1, and take

(Ïi, †i) := (∏ei
, πi

-1).

(1.1.13) Let us specialize this last example. If we take all ni to

have a common value n, and all πi to be the same radiciel k-
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morphism

π : V ¨ !n,

and all ei = 1, then the product Ï is the space AffMaps(!n, !m) of

all affine maps from !n to !m, and we are in the situation
considered at length in [Ka-ACT, Chapter 1]. Of course the Ï we get
this way has no reason to be more than 2-separating. If we keep all
πi equal to π, but now take all ei to have some common value

e ≥ d-1, we obtain a situation which is d-separating, and which can
be viewed as an instance of the previous AffMaps situation. Denote

by N(n,e) the number of monomials XW in n variables whose

degrees lie in [1, e], and replace π by the map πe : V ¨ !N(n,e)

defined by all such monomials. The situation (all πi = π, all ei = e) is

just the situation (all πi = πe, all ei = 1).

(1.1.14) If dim(V) ≥ 1, and if (Ï, †) is d-separating, then (Ï, †) is
r-separating for every integer r with 1 ≤ r ≤ d. Indeed, given r
distinct points in some V(L), we must show that the map

eval(v1,..., vr) : Ï‚kL ¨ (!m(L))r

is surjective. This is a linear algebra question, which can be checked
after an arbitrary field extension E/L. After some field extension E/L,
we can find points vr+1,..., vd in V(E) such that v1,..., vd are all

distinct in V(E). Then eval(v1,..., vd) maps Ï‚kE onto (!m(E))d.

Composing this map with the projection "first r factors" of (!m(E))d

onto (!m(E))r, we find that eval(v1,..., vr) maps Ï‚kE onto

(!m(E))r, as required. [We need to assume dim(V) ≥ 1 because if
dim(V) = 0, then for d > Card(V(äk)), there do not exist d distinct
points in any V(L), so any Ï, even {0}, is d-separating for such d.]
(1.1.15) There are two final notions we need to introduce, which
will be used in the next section. We say that (Ï, †) is quasifinitely
2-separating if the following condition holds: for every extension field
L/k, and for every point v in V(L), there are only finitely many
points w in V(L) for which the simultaneous evaluation map

eval(v, w) : Ï‚kL ¨ (!m(L))2,

f ÿ (f(v), f(w)),
fails to be surjective. This notion arises naturally as follows. Suppose
we start with an (Ï, †) which is 2-separating for V. If π : U ¨ V is a

quasifinite k-morphism, then (Ï, π-1«†) is quasifinitely 2-separating
for U. Indeed, given two (not necessarily distinct points) u1 and u2
in U(L), we have

eval(u1, u2) = eval(π(u1), π(u2))

as maps from Ï‚kL to (!m(L))2. But eval(π(u1), π(u2)) is surjective

so long as π(u2) ±π(u1). For fixed u1, there are only finitely many

u2 for which this fails, precisely because π is quasifinite.
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(1.1.16) We say that (Ï, †) is quasifinitely difference-separating if
the following condition holds: for every extension field L/k, and for
every point v in V(L), there are only finitely many points w in V(L)
for which the difference map

eval(v) - eval(w) : Ï‚L ¨ !m(L)
fails to be surjective.
(1.1.17) Notice that if (Ï, †) is quasifinitely 2-separating, then it is
quasifinitely difference-separating. Indeed, for given L and given v in
V(L), there are only finitely many w in V(L) for which

eval(v, w): Ï‚L ¨ (!m(L))2

fails to be surjective. Composing with the surjective subtraction
map

(!m(L))2 ¨ !m(L)
(x, y) ÿ x - y,

we see that, except for finitely many exceptional w, the map

eval(v) - eval(w) : Ï‚L ¨ !m(L)
is itself surjective.

((((1111....2222)))) RRRReeeevvvviiiieeeewwww ooooffff sssseeeemmmmiiiippppeeeerrrrvvvveeeerrrrssssiiiittttyyyy aaaannnndddd ppppeeeerrrrvvvveeeerrrrssssiiiittttyyyy
(1.2.1) We work over a field k. We fix a prime number … which is
invertible in k. On variable separated k-schemes of finite type X, we

work systematically with objects of Dbc(X, ä$…).

(1.2.2) Recall [BBD, 4.0.1] that an object K of Dbc(X, ä$…) is called

semiperverse if its cohomology sheaves Ói(K) satisfy

dim Supp(Ói(K)) ≤ -i, for every integer i.
One way to think of semiperversity is this. Pick a stratification

{Zå}å of X, i.e., write Xred as the disjoint union of finitely many

locally closed subschemes Zå/k. Assume that the stratification is

smooth, in the sense that each Zå/k is connected and smooth.

Assume further that the stratification is adapted to K, in the sense

that for each i and each å, Ói(K)|Zå is lisse on Zå. Then K is

semiperverse if and only if we have, for all (i, å),

Ói(K)|Zå = 0 if dim(Zå) > -i.

LLLLeeeemmmmmmmmaaaa 1111....2222....3333 Let K be an object of Dbc(X, ä$…), and {Zå}å an

arbitrary stratification of X. Then K is semiperverse on X if and only
if, for each å, K|Zå is semiperverse on Zå.

pppprrrrooooooooffff Pick a smooth stratification {Zå,∫}∫ of each Zå which is

adapted to K|Zå. Then {Zå,∫}å,∫ is a smooth stratification of X to

which K is adapted. So both the semiperversity of K and the
semiperversity of K|Zå for each å are equivalent to the conditions

Ói(K)|Zå,∫ = 0 if dim(Zå,∫) > -i

for all (i,å,∫). QED
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(1.2.4) An object K is called perverse if both K and its Verdier

dual DX/kK := RHom(K, f~ä$…), f: X ¨ Spec(k) denoting the

structural morphism, are semiperverse.
((((1111....3333)))) AAAA ttttwwwwiiiissssttttiiiinnnngggg ccccoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn:::: tttthhhheeee oooobbbbjjjjeeeecccctttt TTTTwwwwiiiisssstttt((((LLLL,,,,KKKK,,,,ÏÏÏÏ,,,,hhhh))))
(1.3.1) The general setup is similar to that in [Ka-ACT, Chapter
1]. We give ourselves a separated k-scheme V of finite type, and a
space of functions (Ï, †),

† : Ï ¨ Homk-scheme(V, !
m),

on V. We also give ourselves a k-morphism

h : V ¨ !m.
We view Ï as an affine space over k (i.e., the k-scheme whose
A-valued points, for any k-algebra A, are Ï‚kA). We have a

k-morphism

haff : V≠Ï ¨ !m,

(v, f) ÿ h(v) + f(v).
We also have the two projections

pr1 : V≠Ï ¨ V,

pr2 : V≠Ï ¨ Ï.

(1.3.2) Given objects

K in Dbc(!
m, ä$…),

L in Dbc(V, ä$…),

we have the objects haff
*K[dimÏ - m] and pr1

*L on V≠Ï. We then

form their tensor product pr1
*L‚haff

*K[dimÏ - m] on V≠Ï. We

then form the object

M := Rpr2~(pr1
*L‚haff

*K[dimÏ - m])

on Ï. We view this M as a "twist" of L by K, via Ï and h. When we
wish to emphasize its genesis, we will denote it Twist(L,K,Ï,h):

(1.3.3) M = Twist(L,K,Ï,h) := Rpr2~(pr1
*L‚haff

*K[dimÏ - m]).

((((1111....4444)))) TTTThhhheeee bbbbaaaassssiiiicccc tttthhhheeeeoooorrrreeeemmmm aaaannnndddd iiiittttssss ccccoooonnnnsssseeeeqqqquuuueeeennnncccceeeessss
(1.4.1) We assume henceforth that our ground field k has
positive characteristic p > 0. [We make this assumption because the
proof of the basic theorem below uses the Fourier Transform on the
…-adic derived category, an operation which only makes sense in
positive characteristic.]
SSSSeeeemmmmiiiippppeeeerrrrvvvveeeerrrrssssiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 1111....4444....2222 ((((ccccoooommmmppppaaaarrrreeee [[[[KKKKaaaa----AAAACCCCTTTT,,,, 1111....5555]]]]))))
Hypotheses and notations as in (1.3) and (1.4.1) above, suppose in
addition that the following four conditions hold:
1) (Ï, †) is quasifinitely difference-separating on V, and contains the
constants,

2) K in Dbc(!
m, ä$…) is semiperverse on !m,

3) L in Dbc(V, ä$…) is semiperverse on V,
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4) the graded vector space

H*c(!
m‚äk, K[m])‚H*c(V‚äk, L)

is concentrated in degree ≤ 0, i.e., we have

Hic(!
m‚äk, K[m])‚Hjc(V‚äk, L) = 0 if i + j ≥ 1,

or equivalently, we have

Hic((V≠!
m)‚käk, pr1

*L‚pr2
*K) = 0 if i ≥ m+1.

Then the object

M = Twist(L,K,Ï,h) := Rpr2~(pr1
*L‚haff

*K[dimÏ - m])

on Ï is semiperverse, and

Hc
*(Ï‚käk, M[dimÏ]) = H*c(!

m‚äk, K[m])‚H*c(V‚äk, L)(m -dimÏ).

pppprrrrooooooooffff The proof of the theorem is similar to, but simpler than, the
proof of [Ka-ACT, Theorem 1.5].

Because (Ï, †) contains the constants, we can pick a subspace

!m(k) in Ï which maps by † to the !m(k) of constant maps in

Homk-schemes(V, !
m). Having made this choice, we make the

further choice of a k-subspace Ï0 fi Ï which is a vector space

complement to !m(k). [For example, if V(k) is nonempty, we can
pick a point v in V(k) and take for Ï0 those f in Ï such that f(v) = 0

in !m(k).] Thus we have a direct sum decomposition

Ï = Ï0 · !m(k)

of k-spaces, or, what is the same, a product decomposition

Ï = Ï0≠!
m

of affine spaces over k. [This decomposition is the analogue of the
decomposition

AffMaps(!n, !m) = LinMaps(!n, !m) ≠ !m

of [Ka-ACT, 1.3].]
Exactly as in [Ka-ACT, 1.7.2], it suffices to show that the

Fourier Transform FT¥(M), ¥ a chosen nontrivial ä$…
≠-valued

additive character of the prime subfield Ép of k, is semiperverse on

the linear dual space

Ï£ = Ï0
£ ≠ !m£.

Let us recall how this semiperversity is established.
For L/k any extension field, and for any v in V(L), we denote

by

eval0(v) : Ï0‚kL ¨ !m(L)

the restriction to the subspace Ï0‚kL of the evaluation map

eval(v) : Ï‚kL ¨ !m(L).

For any a£ in !m£(L), the composite

a£«eval0(v)
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is thus an L-valued point of Ï0
£. So we get a k-morphism

® : V≠!m£ ¨ Ï0
£ ≠ !m£,

®(v, ∫£) := (a£«eval0(v), a
£).

On V≠!m£, we have the external tensor product

pr1
*L‚pr2

*FT¥(K),

which is semiperverse, each external factor being semiperverse. We
then tensor this object with the Tate-twisted lisse, rank one Artin-
Schreir sheaf

Ò¥(-∫£(h(v)))(-dimÏ0),

cf. [Ka-ESDE, 7.2.1], placed in degree zero. The resulting object

S := (pr1
*L‚pr2

*FT¥(K))‚Ò¥(-∫£(h(v)))(-dimÏ0)

is still semiperverse on V≠!m£.

The key observation is that on Ï0
£ ≠ !m£, we have

FT¥(M) = R®~S.

To see this, we first calculate FT¥(M) by looking at the diagram

pr1,2

V≠Ï≠Ï£ ¨ V≠Ï
pr2,3 d d pr2

pr1

Ï≠Ï£ ¨ Ï
pr2 d

Ï£

the upper square of which is Cartesian.
Recall that M := Rpr2~N, for N the object on V≠Ï given by

N := pr1
*L‚haff

*K[dimÏ - m].

By definition of Fourier Transform, we have

FT¥(M) = Rpr2~((pr1
*M)‚Ò¥(f£f))[dimÏ].

By proper base change, we obtain

FT¥(M) = Rpr2~Rpr2,3~((pr1,2
*N)‚pr2,3

*(Ò¥(f£f))[dimÏ]

= R(pr3: V≠Ï≠Ï
£ ¨ Ï£)~((pr1,2

*N)‚pr2,3
*(Ò¥(f£f)))[dimÏ]

= R(pr3: V≠Ï≠Ï
£ ¨ Ï£)~P,

for P the object on V≠Ï≠Ï£ given by

P := (pr1,2
*N)‚pr2,3

*(Ò¥(f£f))[dimÏ].

To calculate, expand out

V≠Ï≠Ï£ = V≠Ï0≠!
m≠Ï0

£≠!m£,

and factor the projection of V≠Ï≠Ï£ onto Ï£ as the composite



16 Chapter 1

V≠Ï0≠!
m≠Ï0

£≠!m£

d pr1,2,4,5

V≠Ï0≠Ï0
£≠!m£

d pr1,3,4

V≠Ï0
£≠!m£

d pr2,3

Ï0
£≠!m£.

In "functional" notation, the object P on the space

V≠Ï0≠!
m≠Ï0

£≠!m£, with "coordinates" (v, f0, a, f0
£, a£), is

L(v)‚K(h(v)+f0(v)+a)‚Ò¥(f0
£f0 + a£a)[2dimÏ - m].

To apply Rpr1,2,4,5~ to this object, i.e., to "integrate out" the

variable "a", we may first apply the automorphism ß of

V≠Ï0≠!
m≠Ï0

£≠!m£ as scheme over V≠Ï0≠Ï0
£≠!m£ given by

translation of the "a" variable:

ß(v, f0, a, f0
£, a£) := (v, f0, a - h(v) - f0(v), f0

£, a£).

After this automorphism, the object P becomes

ß*P = L(v)‚K(a)‚Ò¥(f0
£f0 + a£a - a£f0(v) -a

£h(v))[2dimÏ - m]

=K(a)‚Ò¥(a
£a)[m]

‚L(v)‚Ò¥(-a£h(v))‚Ò¥(f0
£f0 - a£f0(v))

[2dimÏ0].

When we apply Rpr1,2,4,5~, we notice that the second factor is a

pullback from the base, while the effect of integrating out the "a" in
the first factor K(a)‚Ò¥(a£a)[m] is just taking the Fourier

Transform of K on !m. So by the projection formula we get

Rpr1,2,4,5~P ¶ Rpr1,2,4,5~(ß
*P)

= FT¥(K)(a
£)‚L(v)‚Ò¥(-a£h(v))‚Ò¥(f0

£f0 - a£f0(v))
[2dimÏ0]

on V≠Ï0≠Ï0
£≠!m£.

The next step is to apply Rpr1,3,4~, i.e., to integrate out the "f0".

Here it is only the factor Ò¥(f0
£f0 - a£f0(v))

[2dimÏ0] which

involves the variable "f0", the rest comes from the base. When we

integrate out the "f0" from Ò¥(f0
£f0 - a£f0(v))

[2dimÏ0], we are

forming the Fourier Transform of the shifted constant sheaf
ä$…,Ï0

[dimÏ0] on Ï0, and evaluating at the point

f0
£ = a£«eval0(v)

in Ï0
£. Since the Fourier Transform of the constant sheaf is the

delta function, i.e., since



Basic results on perversity and higher moments 17

FT¥(ä$…,Ï0
[dimÏ0]) = ∂0(-dimÏ0),

we find that
Rpr1,3,4~(Ò¥(f0

£f0 - a£f0(v))
[2dimÏ0])

= (the constant sheaf ä$…(-dimÏ0) on the locus f0
£ = a£«eval0(v)),

extended by zero to all of V≠Ï0≠Ï0
£≠!m£.

Let us denote by Z the closed subscheme of V≠Ï0
£≠!m£

consisting of those points (v, f0
£, a£) with f0

£= a£«eval0(v). If we

identify this closed subscheme Z with V≠!m£ by the map

i : (v, a£) ¨ (v, f a£«eval0(v), a
£),

we find that Rpr1,3,4~(Rpr1,2,4,5~(ß
*P)) is supported in Z, where it

is given by

L(v)‚Ò¥(-a£h(v))‚FT¥(K)(a
£)(-dimÏ0).

The composite
Z
Ò

V≠Ï0
£≠!m£

d pr2,3

Ï0
£≠!m£

is precisely the morphism ®. Thus we find that
FT¥(M) = R®~S,

for S the object on V≠!m£ given by

S := L(v)‚Ò¥(-a£h(v))‚FT¥(K)(a
£)(-dimÏ0),

as asserted.
If the morphism ® were quasifinite, then we would be done: R®~

preserves semiperversity if ® is quasifinite.
Although ® is not quasifinite, we claim that ® is in fact

quasifinite over the open set

Ï0
£ ≠ !m£ - {0, 0}.

To see this, we argue as follows. Suppose that over some extension

field L/k, we have a point (a£«eval0(v), a
£) ± (0, 0) in the image

®(V(L)≠!m£(L)). Then a£ must itself be nonzero. We must show
that there are at most finitely many points w in V(L) such that

(a£«eval0(v), a
£) = (a£«eval0(w), a

£),

i.e., that there are at most finitely many points w in V(L) such that

a£«(eval0(v) - eval0(w)) = 0 on Ï0‚L.

This last condition is equivalent to the condition

a£«(eval(v) - eval(w)) = 0 on Ï‚L,

simply because Ï = Ï0 · !m(k), and eval(v) - eval(w)

tautologically kills constants. By the hypothesis that (Ï, †) is
quasifinitely difference-separating, we know that except for finitely
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many w in V(L), the map

eval(v) - eval(w) : Ï‚L ¨ !m(L)

is surjective. When this map is surjective, a£«(eval(v) - eval(w)) is

nonzero, because a£ is nonzero. So for given L/k and given v in V(L),
there are only finitely many w in V(L) for which

(a£«eval0(v), a
£) = (a£«eval0(w), a

£).

Thus ® is quasifinite over the open set Ï0
£ ≠ !m£ - {0, 0}.

Therefore the restriction to Ï0
£ ≠ !m£ - {0, 0} of FT¥(M) is

indeed semiperverse. Once we know this, then FT¥(M) is

semiperverse on all of Ï0
£ ≠ !m£ if and only if its restriction to

the single missing point (0, 0) is semiperverse on that point, i.e., is
concentrated in degree ≤ 0. But this restriction is just

FT¥(M)(0,0) = RÆc(!
m‚äk, K[m])‚ RÆc(V‚äk, L)(-dimÏ0).

Thus M is indeed semiperverse on Ï= Ï0 ≠ !m. For any M on Ï, the

value at the origin of FT¥(M) on Ï£ is Hc
*(Ï‚käk, M[dimÏ]), so we

find

Hc
*(Ï‚käk, M[dimÏ]) = H*c(!

m‚äk, K[m])‚H*c(V‚äk, L)(-dimÏ0),

as asserted. QED

((((1111....4444....3333)))) RRRReeeemmmmaaaarrrrkkkk oooonnnn hhhhyyyyppppooootttthhhheeeessssiiiissss 4444)))) iiiinnnn TTTThhhheeeeoooorrrreeeemmmm 1111....4444....2222 For any K

on !m, RÆc(!
m‚äk, K[m]) is the stalk at the origin of FT¥(K). As FT¥

preserves semiperversity, we see that if K is semiperverse on !m,

then RÆc(!
m‚äk, K[m]) is concentrated in degree ≤ 0. So hypothesis

4) of the theorem holds if either
RÆc(V‚äk, L) is concentrated in degree ≤ 0,

or if

RÆc(!
m‚äk, K[m]) = 0.

See the Exactness Corollary 1.4.5 below for a development of this
remark.

PPPPeeeerrrrvvvveeeerrrrssssiiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 1111....4444....4444 ((((ccccoooommmmppppaaaarrrreeee [[[[KKKKaaaa----AAAACCCCTTTT,,,, 1111....6666]]]])))) Hypotheses
and notations as in Theorem 1.4.2 (and in its proof, for the notion of
Ï0), we have the following results.

1) The object A := pr1
*L‚haff

*K[dimÏ0] on V≠Ï is semiperverse,

and its Verdier dual DA := DV≠Ï/k(A) is given by

DA =pr1
*(DL)‚haff

*(DK)[dimÏ0](dimÏ0),

where we have written DL := DV/k(L), DK := D!m/k(K).

2) The Verdier dual DM := DÏ/k(M) of M := Rpr2~(A) is Rpr2*(DA).

3) If K is perverse on !m and L is perverse on V, then A and DA are
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perverse on V≠Ï.

4) Suppose that V is affine, that K is perverse on !m, and that L is
perverse on V. Then M and DM are perverse on Ï.
pppprrrrooooooooffff 1) Exactly as in [Ka-ACT, 1.6], consider the automorphism ß of

V≠Ï = V≠Ï0≠!
m given by

ß(v, f0, a) := (v, f0, h(v) + f0(v) + a).

Then A is the ß* pullback of the external tensor product of L on V,

ä$…[dimÏ0] on Ï0, and K on !m. The external tensor product of

semiperverses is semiperverse. Formation of the dual commutes

with ß* and with external tensor product. The dual of ä$…[dimÏ0] on

Ï0 is ä$…[dimÏ0](dimÏ0).

2) This is an instance of the fact that duality interchanges Rpr2~ and

Rpr2*.

3) If K and L are perverse, then DK and DL are perverse, so are
semiperverse, so by 1), applied not only to K and L but also to DL
and DK, both A and DA are semiperverse. So both A and DA are
perverse.
4) If V is affine, then pr2 is an affine morphism, so preserves

semiperversity. If both K and L are perverse, then, by 3), DA is
semiperverse. So Rpr2*(DA) is semiperverse. As its dual

M := Rpr2~(A) is semiperverse by the theorem, both M and DM are

perverse. QED

EEEExxxxaaaaccccttttnnnneeeessssssss CCCCoooorrrroooollllllllaaaarrrryyyy 1111....4444....5555 Fix an affine k-scheme V of finite type,
an integer m ≥ 1, a space of functions (Ï, †),

† : Ï ¨ Homk-scheme(V, !
m),

on V which is quasifinitely difference-separating and contains the
constants, and a k-morphism

h : V ¨ !m.

1) Suppose K is perverse on !m, and suppose

Hc
i(!m‚äk, K) = 0 for i > m - dim(V).

Then for any perverse sheaf L on V, the object Twist(L,K,Ï,h) on Ï
is perverse, and the functor L ÿ Twist(L,K,Ï,h) from the category of
perverse sheaves on V to the category of perverse sheaves on Ï is
exact.

2) Suppose L is perverse on V, and suppose

Hc
i(V‚äk, L) = 0 for i > 0.

Then for any perverse sheaf K on !m, the object Twist(L,K,Ï,h) on
Ï is perverse, and the functor K ÿ Twist(L,K,Ï,h) from the category

of perverse sheaves on !m to the category of perverse sheaves on Ï
is exact.
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3) Suppose we are given a short exact sequence of perverse sheaves

on !m,
0 ¨ K1 ¨ K2 ¨ K3 ¨ 0,

and suppose that each Kj satisfies

Hc
i(!m‚äk, Kj) = 0 for i > m - dim(V).

Then for any perverse L on V, the objects Twist(L,Kj,Ï,h) on Ï are

perverse, and we have a short exact sequence of perverse sheaves
on Ï,

0 ¨ Twist(L,K1,Ï,h) ¨ Twist(L,K2,Ï,h) ¨ Twist(L,K3,Ï,h) ¨ 0.

4) Suppose we are given a short exact sequence of perverse sheaves
on V,

0 ¨ L1 ¨ L2 ¨ L3 ¨ 0,

and suppose that each Lj satisfies

Hc
i(V‚äk, Lj) = 0 for i > 0.

Then for any perverse K on !m, the objects Twist(Lj,K,Ï,h) on Ï

are perverse, and we have a short exact sequence of perverse
sheaves on Ï,

0 ¨ Twist(L1,K,Ï,h) ¨ Twist(L2,K,Ï,h) ¨ Twist(L3,K,Ï,h) ¨ 0.

pppprrrrooooooooffff There are two key points. The first is that the formation of
Twist(L,K,Ï,h) is a functor

Dbc(V, ä$) ≠ Dbc(!
m, ä$…) ¨ Dbc(Ï, ä$…),

(L, K) ÿ Twist(L,K,Ï,h),
which is triangulated (i.e., carries distinguished triangles to
distinguished triangles) in each variable separately. This is clear
from the fact that R(pr2)~ is triangulated, and the description in the

previous result of pr1
*L‚haff

*K[dimÏ0] on V≠Ï as the pullback by

an automorphism of the external tensor product of L on V,

ä$…[dimÏ0] on Ï0, and K on !m, the formation of which is visibly

bi-triangulated. The second key point is that on any separated
scheme X/k, a short exact sequence of perverse sheaves on X,

0 ¨ N1 ¨ N2 ¨ N3 ¨ 0,

is precisely a distinguished triangle in Dbc(X, ä$…) whose terms

happen to be perverse, cf. [BBD 1.2.3 and 1.3.6].
With these points in mind, the assertions 1) through 4) are

obvious. For instance, to prove 1), we note that for any perverse L
on V, indeed for any semiperverse L on V, we have

Hc
i(V‚äk, L) = 0 for i > dim(V).

This vanishing follows from the dimension inequalities

dim Supp Ói(L) ≤ -i for every integer i
defining semiperversity, and the spectral sequence
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E2
a,b = Hc

a(V‚äk, Ób(L)) à Hc
a+b(V‚äk, L),

cf. the proof of 1.10.5. So under the hypotheses of 1), we get the
vanishing

Hic((V≠!
m)‚käk, pr1

*L‚pr2
*K) = 0 if i ≥ m+1.

So for any perverse L on V, Twist(L,K,Ï,h) is perverse, by the
Perversity Corollary 1.4.4. A short exact sequence of perverse
sheaves on V,

0 ¨ L1 ¨ L2 ¨ L3 ¨ 0,

gives a distinguished triangle in Dbc(V, ä$…), so we get a distinguished

triangle on Ï,
¨ Twist(L1,K,Ï,h) ¨ Twist(L2,K,Ï,h) ¨ Twist(L3,K,Ï,h) ¨,

which, having perverse terms, is a short exact sequence of perverse
sheaves on Ï. The proofs of 2), 3), and 4) are similar, and left to the
reader. QED

((((1111....5555)))) RRRReeeevvvviiiieeeewwww ooooffff wwwweeeeiiiigggghhhhttttssss
(1.5.1) In this section, we work over a finite field k, on a
separated scheme X/k of finite type. We fix a prime number
… ± char(k), and a field embedding

“ : ä$… fi ^.

We denote by |z| the complex absolute value of a complex number z.
For å in ä$…, we will write the complex absolute value of “(å) as

|å|“ := |“(å)|,

or simply as
|å| := |å|“

when no confusion is likely.

(1.5.2) For an object N in Dbc(X, ä$…), its trace function is the

ä$…-valued function on pairs (a finite extension E/k, a point x in

X(E)) defined by

(E, x) ÿ N(E, x) := ‡i (-1)
iTrace(FrobE,x | Ói(N)).

[Here and throughout, FrobE,x is the geometric Frobenius attached

to the E-valued point x in X(E).] We view N(E, x), via the fixed “, as
a ^-valued function, and denote by

(E, x) ÿ äN(E, x)
the complex conjugate ^-valued function.
(1.5.3) Recall [De-Weil II, 1.2.2] that for w a real number, a
constructible ä$…-sheaf Ì is said to be punctually “-pure of weight w

if, for each finite extension E/k, and for each point x in X(E), all the

eigenvalues å of FrobE,x | Ì have |å| = (ùE)w/2. A constructible ä$…-

sheaf Ì is said to be “-mixed of weight ≤ w if it is a successive
extension of finite many constructible ä$…-sheaves, each of which is

punctually “-pure of some weight ≤ w.
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(1.5.4) Let us say that a real number w "occurs via “" if there

exists an …-adic unit å in ä$… with |å| = (char(k))w/2, or

equivalently (take powers or roots, ä$… being algebraically closed), if

for some finite extension E/k, there exists an …-adic unit ∫ in ä$…

with |∫| = (ùE)w/2. Thus any rational number w occurs via “. And if
a nonzero constructible ä$…-sheaf Ì is punctually “-pure of weight

w, then w "occurs in “".

LLLLeeeemmmmmmmmaaaa 1111....5555....5555 Let w be a real number, and Ì a nonzero
constructible ä$…-sheaf on X/k which is “-mixed of weight ≤ w. The

set of real numbers w0 ≤ w such that Ì is “-mixed of weight ≤ w0
has a least element, and that element occurs via “.
pppprrrrooooooooffff Write Ì as a successive extension of finitely many nonzero
constructible ä$…-sheaves Ìi, with Ìi punctually “-pure of some

weight wi ≤ w. As remarked above, each wi "occurs in “". The largest

of the wi is the least w0. QED

(1.5.6) Recall [De-Weil II, 6.2.2] that an object N in Dbc(X, ä$…) is

said to be “-mixed of weight ≤ w if, for each integer i, the

cohomology sheaf Ói(N) is “-mixed of weight ≤ w+i. The object N is
said to be “-pure of weight w if N is “ mixed of weight ≤ w, and if its
Verdier dual DX/kN is “-mixed of weight ≤ -w.

LLLLeeeemmmmmmmmaaaa 1111....5555....7777 Let w be a real number, and N a nonzero object in

Dbc(X, ä$…) which is “-mixed of weight ≤ w. The set of real numbers

w0 ≤ w such that N is “-mixed of weight ≤ w0 has a least element,

and that element occurs via “.

pppprrrrooooooooffff For each i such that Ói(N) is nonzero, apply the previous

lemma to Ói(N), which is mixed of weight ≤ w + i. Denote by w0,i

the least real number such that Ói(N) is “-mixed of weight
≤ w0,i + i. Then each w0,i occurs via “, and the largest of the w0,i is

the least w0. QED

LLLLeeeemmmmmmmmaaaa 1111....5555....8888 Let w be a real number, N a nonzero object in

Dbc(X, ä$…) which is “-pure of weight w. Then w occurs via “.

pppprrrrooooooooffff With no loss of generality, we may assume that the support
of N is X (because for a closed immersion i : Z ¨ X, we have
i*«DZ/k = DX/k«i*). Then there exists a dense open set U of X which

is smooth over k, with N|U nonzero, “-pure of weight w, and with

lisse cohomology sheaves. Then for any i with Ói(N|U) nonzero,

Ói(N|U) is punctually “-pure of weight w+i, and hence w occurs via
“. QED
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(1.5.9) The main theorem of Deligne's Weil II is that for f: X ¨ Y
a k-morphism between separated schemes of finite type, for any N

in Dbc(X, ä$…) which is “-mixed of weight ≤ w, the object Rf~N on Y

is “-mixed of weight ≤ w.
(1.5.10) Here is a simple application, to the object M constructed
in the Semiperversity Theorem.
WWWWeeeeiiiigggghhhhtttt CCCCoooorrrroooollllllllaaaarrrryyyy 1111....5555....11111111 ((((ccccoooommmmppppaaaarrrreeee [[[[KKKKaaaa----AAAACCCCTTTT,,,, 1111....6666]]]])))) Hypotheses
and notations as in the Semiperversity Theorem 1.4.2 (and in its
proof, for the notion of Ï0), fix an embedding “ of ä$… into ^, and

real numbers a and b. Suppose in addition that
1) k is a finite field,
2) L is “-mixed of weight ≤ a,
3) K is “-mixed of weight ≤ b.
Then we have the following results.

1) The object A := pr1
*L‚haff

*K[dimÏ0] on V≠Ï is “-mixed of

weight ≤ a + b + dim(Ï0).

2) The object M := Rpr2~(A) on Ï is “-mixed of weight

≤ a + b + dim(Ï0).

pppprrrrooooooooffff 1) By means of the automorphism ß of V≠Ï = V≠Ï0≠!
m

given by
ß(v, f0, a) := (v, f0, h(v) + f0(v) + a),

A is the ß*-pullback of the external tensor product of L on V,

ä$…[dimÏ0] on Ï0, and K on !m. The object ä$…[dimÏ0] on Ï0 is “-

pure of weight dimÏ0, and weights add for external tensor products.

2) This is a special case of Deligne's main theorem [De-Weil II, 3.3.1]
in Weil II. QED

(1.5.12) We now resume our review of weights. A perverse sheaf
N on X is called “-mixed (resp. “-pure) if it “-mixed (resp. “-pure) as

an object of Dbc(X, ä$…). One knows [BBD, 5.3.1 and 5.3.4] that if a

perverse sheaf N is “-mixed, then every simple constituent of N as
perverse sheaf is “-pure of some weight. More precisely, if a
perverse sheaf N is “-mixed, then for any finite set of real numbers
w1 < w2 ...< wr which includes the weights of all the simple

constituents of N, N admits a unique increasing filtration as a
perverse sheaf

0 fi N≤w1
fi N≤w2

... fi N≤wr
= N

such that for each i, N≤wi
is mixed of weight ≤ wi and the associated

graded object N≤wi
/N≤wi-1

(:= N≤w1
for i=0) is either zero or is “-

pure of weight wi.

LLLLeeeemmmmmmmmaaaa 1111....5555....11113333 Suppose M (resp. N) in Dbc(X, ä$…) is semiperverse

and “-mixed of weight ≤ a (resp. ≤ b). Then for variable finite
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extensions E of k, we have

‡x in X(E) |M(E, x)N(E, x)| = O((ùE)(a+b)/2).

pppprrrrooooooooffff By Lemma 1.5.7 above, we reduce immediately to the case
where the weights a and b both occur via “. Replacing M and N by

suitable constant field twists M‚ådeg and N‚∫deg, we reduce to the
case where a = b = 0. Pick a smooth stratification {Zå} of X to which

both M and N are adapted. On each strat Zå, M|Zå and N |Zå
remain semiperverse, and “-mixed of weight ≤ 0. Break the sum
over X(E) into sums over the individual Zå. So it suffices to treat the

case where X is a Zå. Thus X/k is connected and smooth over k of

some dimension d := dim(X) ≥ 0, and both M and N have all their

cohomology sheaves lisse on X. By semiperversity, Ó-i(M) = 0 for

i < d. So the (at most finitely many) nonvanishing Ó-i(M) all have
i ≥ d, and hence are “-mixed of weight ≤ -d. Thus for any finite
extension E/k, we have the estimate

|M(E, x)| ≤ (‡i rank(Ó
i(M)))(ùE)-d/2.

Similarly for N. Thus we get

|M(E, x)N(E, x)| = O((ùE)-d).
The number of terms in the sum is ùX(E), which is trivially

O((ùE)d). QED

((((1111....6666)))) RRRReeeemmmmaaaarrrrkkkkssss oooonnnn tttthhhheeee vvvvaaaarrrriiiioooouuuussss nnnnoooottttiiiioooonnnnssss ooooffff mmmmiiiixxxxeeeeddddnnnneeeessssssss
(1.6.1) Suppose instead of fixing a single field embedding “ of ä$…
into ^, we fix some nonempty collection È of such field embeddings.
Given a real number w, we say that a constructible ä$…-sheaf Ì is

punctually È-pure of weight w if it is punctually “-pure of weight w
for every “ in È. We say that a constructible ä$…-sheaf Ì is È-mixed

of weight ≤ w if it is a successive extension of finitely many
constructible ä$…-sheaves, each of which is punctually È-pure of

some weight ≤ w. We say that a constructible ä$…-sheaf Ì is È-mixed

of iiiinnnntttteeeeggggeeeerrrr weight ≤ w if it is a successive extension of finitely many
constructible ä$…-sheaves, each of which is punctually È-pure of

some integer weight ≤ w. An object N in Dbc(X, ä$…) is said to be È-

mixed of weight ≤ w [resp. È-mixed of integer weight ≤ w] if, for each

integer i, the cohomology sheaf Ói(N) is È-mixed of weight ≤ w+i
[resp. È-mixed of integer weight ≤ w + i].
(1.6.2) The main theorem [De-Weil II, 3.3.1] of Deligne's Weil II
asserts that for f: X ¨ Y a k-morphism between separated schemes

of finite type, for N in Dbc(X, ä$…) which is È-mixed of weight ≤ w

[resp. È-mixed of integer weight ≤ w], the object Rf~N on Y is È-mixed

of weight ≤ w [resp. È-mixed of integer weight ≤ w]. Strictly
speaking, the theorem is stated there "only" for the hardest case
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when È consists of all embeddings, and when N is È-mixed of integer
weight (i.e., the case when N is "mixed" in the sense of Weil II), but
the proof is done "“ by “" and establishes, for any È, the Rf~-stability

of both È-mixedness of weight ≤ w and of È-mixedness of integer
weight ≤ w.
(1.6.3) The object N is said to be È-pure of weight w if N is È-
mixed of weight ≤ w , and if its Verdier dual DX/kN is È-mixed of

weight ≤ -w. [It is a non-obvious fact that if w is an integer, and if N
is È-pure of weight w, then N is È-mixed of integer weight ≤ w, and
its Verdier dual is È-mixed of integer weight ≤ -w.]
(1.6.4) If a perverse sheaf N is È-mixed, then every simple
constituent of N is È-pure of some weight, and N admits a unique
increasing weight filtration as above. For any finite set of real
numbers w1 < w2...< wr which includes the weights of all the simple

constituents of N, N admits a unique increasing filtration as a
perverse sheaf

0 fi N≤w1
fi N≤w2

... fi N≤wr
= N

such that for each i, N≤wi
is mixed of weight ≤ wi and the associated

graded object N≤wi
/N≤wi-1

(:= N≤w1
for i=0) is either zero or is È-

pure of weight wi. If N is È-mixed of integer weight, then all the

weights wi are integers.

(1.6.5) Although all the objects one encounters "in Nature" are
mixed in the sense of Weil II, i.e., È-mixed of integer weight for È the
collection of all embeddings, we will nonetheless work systematically
with “-mixed objects for our single chosen “. We will not even make
the (altogether reasonable) assumption that our “-mixed objects are
“-mixed of integer weight, although doing so would allow us to
replace, in the following pages, every single œ > 0 (each of which has
its genesis as a positive difference of distinct weights) by œ = 1.
Caveat emptor.

((((1111....7777)))) TTTThhhheeee OOOOrrrrtttthhhhooooggggoooonnnnaaaalllliiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm
(1.7.1) We now prove orthogonality relations for the trace
functions of perverse sheaves.
OOOOrrrrtttthhhhooooggggoooonnnnaaaalllliiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 1111....7777....2222 Let M and N on X/k be perverse,

and “-pure of weight zero. Write the pullbacks Mgeom and Ngeom of
M and N to X‚käk as sums of perverse irreducibles with

multiplicities, say

Mgeom = ‡i miVi, N
geom = ‡i niVi,

with {Vi}i a finite set of pairwise non-isomorphic perverse

irreducibles on X‚käk, and with non-negative integers mi and ni.

[This is possible by [BBD, 5.3.8].]
1) For any integer n ≥ 1, denoting by kn/k the extension field of

degree n, we have
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‡i mini = limsup
E/kn

|‡x in X(E) M(E, x)äN(E, x)|,

the limsup taken over all finite extensions E/kn.

2) If ‡i mini = 0, i.e., if Mgeom and Ngeom have no common

constituent, then for variable finite extensions E/k, we have

|‡x in X(E) M(E, x)äN(E, x)| = O((ùE)-1/2).

3)The following conditions a) and b) are equivalent.
3a) For variable finite extensions E/k, we have

‡x in X(E) |M(E, x)|2 = 1 + O((ùE)-1/2).

3b) M is geometrically irreducible, i.e., its pullback Mgeom to X‚käk

is an irreducible perverse sheaf on X‚käk.

pppprrrrooooooooffff The assertions concern the trace functions of M and N, and

the objects Mgeom and Ngeom. The latter are semisimple on X‚käk,

and the former depend only on the semisimplifications of M and N
on X. So we may replace M and N by their semisimplifications on X,
and reduce to the case where both M and N are sums of perverse
irreducibles on X, each “-pure of weight zero. Let {Zå} be a smooth

stratification of X to which N·M is adapted. Then any direct factor
of N·M, in particular every simple constituent of N·M, is also
adapted to this stratification.
SSSStttteeeepppp 1111. Fix a simple constituent W of N·M, and a strat Zå. Our

first task is to show that either
ccccaaaasssseeee aaaa)))) W|Zå is perverse irreducible and “-pure of weight zero on

Zå, i.e., of the form Ì[dim(Zå)] for an irreducible lisse sheaf Ì on Zå
which is “-pure of weight -dim(Zå), and W is the middle extension

of Ì[dim(Zå)], or

ccccaaaasssseeee bbbb)))) the trace function ofW|Zå satisfies

|W(E, x)| = O((ùE)(-dim(Zå) - 1)/2)
for variable finite extensions E/k, and variable points x in Zå(E).

To see this we argue as follows. Because W is perverse, with
lisse cohomology sheaves on Zå, we have

Ó-i(W)|Zå = 0 for i < dim(Zå).

Because W is “-pure of weight zero,

Ó-i(W)|Zå is mixed of weight ≤ -i.

So the possibly nonvanishing among the Ó-i(W)|Zå have i ≥ dim(Zå),

and those with i ≥ 1+dim(Zå) are all mixed of weight ≤ -1 - dim(Zå).

If Ó-dim(Zå)(W)|Zå vanishes, we are in case b). Thus it suffices to

show that either Ó-dim(Zå)(W)|Zå vanishes, or that we have case

a).
Because W is perverse, its only possibly nonzero cohomology
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sheaves are Ó-i(W) for 0 ≤ i ≤ dim(Supp(W)). Because W is perverse
irreducible, we have the enhanced inequality

dim(Supp(Ó-i(W))) ≤ i-1 for i < dim(Supp(W)).
Consider first the case in which dim(Supp(W)) > dim(Zå). Then

the enhanced inequality shows that Ó-dim(Zå)(W) has support of

dimension at most dim(Zå) - 1. Therefore Ó
-dim(Zå)(W)|Zå

vanishes, and we have case b).
Consider next the case in which dim(Supp(W)) < dim(Zå). As

W|Zå has lisse cohomology sheaves, all its cohomology sheaves

vanish, and we have case b).
Consider now the case in which dim(Supp(W)) = dim(Zå). Then

Supp(W) is an irreducible closed subscheme of X. If Ó-dim(Zå)(W)|Zå
vanishes, we are in case b). If not, then Zå lies in Supp(W). In this

case, as dim(Supp(W)) = dim(Zå), and Zå = Zå€Supp(W) is locally

closed in Supp(W), we see that Zå is a dense open set of Supp(W).

But W has lisse cohomology sheaves on Zå. Since W is perverse

irreducible and “-pure of weight zero, there is an irreducible lisse
sheaf Ì on Zå which is “-pure of weight -dim(Zå), such that W is

the middle extension of Ì[dim(Zå)], and W|Zå = Ì[dim(Zå)] is

perverse irreducible and “-pure of weight zero. This ends Step 1.
SSSStttteeeepppp 2222. For a given simple constituent W of N·M, there is a unique
index å = å(W) such that the pair (W, Zå) is in case a) of Step 1,

namely the unique index å such that Zå contains the generic point

of Supp(W). Indeed, for this å, Ó-dim(Supp(W))(W)|Zå is nonzero

(and lisse). Therefore, Zå lies in Supp(W), so Zå is a dense open set of

Supp(W). Hence dim(Supp(W))) = dim(Zå), so Ó
-dim(Zå)(W)|Zå is

nonzero, and we are in case a). And if Ó-dim(Z∫)(W)|Z∫ is nonzero

for some ∫, the argument of Step 1 shows that Z∫ is a dense open set

of Supp(W), so contains the generic point of W, and hence ∫ = å.
SSSStttteeeepppp 3333 Let W1 and W2 be irreducible constituents of N·M. Fix a

strat Zå. If either (W1, Zå) or (W2, Zå) is case b) of Step 1, we have

|‡x in Zå(E)
W1(E, x)äW2(E, x)| = O((ùE)-1/2).

If both (W1, Zå) and (W2, Zå) are case a) of Step 1, i.e., if

å(W1) = å(W2) = å,

then

Wi|Zå = „i[dim(Zå)] with „i lisse and “-pure of weight -dim(Zå),

for i = 1, 2. Denote by ä„2 the lisse, “-pure of weight -dim(Zå) sheaf

on Zå given by
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ä„2 := („2)
£(dim(Zå)).

Then by the Lefschetz Trace Formula we have
‡x in Zå(E)

W1(E, x)äW2(E, x)

= ‡i=0 to 2dim(Zå)
Trace(FrobE | Hc

i(Zå‚käk, „1‚ä„2)).

The sheaf „1‚ä„2 is lisse, and “-pure of weight -2dim(Zå). By

Deligne's fundamental result [De-Weil II, 3.3.1], all but the

Hc
2dim(Zå) terms are O((ùE)-1/2), and the Hc

2dim(Zå) is “-pure of

weight zero, so we get
‡x in Zå(E)

W1(E, x)äW2(E, x)

= Trace(FrobE | Hc
2dim(Zå)(Zå‚käk, „1‚ä„2)) + O((ùE)

-1/2),

with Hc
2dim(Zå)(Zå‚käk, „1‚ä„2) “-pure of weight zero.

SSSStttteeeepppp 4444 Write M and N as sums of perverse irreducibles Wi with

multiplicities, say
M = ‡i aiWi, N = ‡i biWi,

with non-negative integers ai and bi.Then

‡x in X(E) M(E, x)äN(E, x)

=‡i, j aibj‡å ‡x in Zå(E)
Wi(E, x)äWj(E, x).

The innermost sum is O((ùE)-1/2) unless å(W1) = å(W2) = å.

For each å, denote by ∏(å) the set of those indices i such that
å(Wi) = å. Then we get

‡x in X(E) M(E, x)äN(E, x)

= ‡å ‡i, j in ∏(å) aibjTrace(FrobE | Hc
2dim(Zå)(Zå‚käk, „i‚ä„j))

+ O((ùE)-1/2).

= Trace(FrobE | ·å·i,j in ∏(å) Hc
2dim(Zå)(Zå‚käk, „i‚ä„j)

aibj)

+ O((ùE)-1/2).
The direct sum

T := ·å·i,j in ∏(å) Hc
2dim(Zå)(Zå‚käk, „i‚ä„j)

aibj

is “-pure of weight zero. So replacing Frobk | T by its

semisimplification, we get, via “, a unitary operator

A := (Frobk | T)s.s.

on a finite-dimensional ^-space “T := T‚^ such that for any finite
extension E/k,

“Trace(FrobE | T) = Trace(Adeg(E/k) | “T).

Thus we find

‡x in X(E) M(E, x)äN(E, x) = Trace(Adeg(E/k) | “T) + O((ùE)-1/2).

Because A is unitary, we get the estimate

|Trace(Adeg(E/k) | “T)| ≤ dim(T)
for any finite extension E/k.
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For any n ≥ 1, the subgroup of Aut^(“T) generated by powers

of the unitary operator An has compact closure, so the sequence of

operators {And}d≥1 has the identity operator as a cluster point. So

for every n ≥ 1, we get
limsup

E/kn
|‡x in X(E) M(E, x)äN(E, x)| = dim(T).

SSSStttteeeepppp 5555 We now prove assertions 1) and 2) of the orthogonality
theorem. Recall that we have written

Mgeom = ‡i miVi, N
geom = ‡i niVi,

with {Vi}i a finite set of pairwise non-isomorphic perverse

irreducibles on X‚käk, and with non-negative integers mi and ni. In

view of the results of the previous section, it suffices to prove that
dim(T) = ‡i nimi.

To indicate the dependence on (N, M), we will write this as
dim(T(N, M)) = ‡i ni(N)mi(M).

To see this, we argue as follows. Both sides are bilinear in (N, M) for
direct sum decompositions of the arguments, so it suffices to treat
the case when N is a single perverse irreducible Wi on X, and when

M is a single perverse irreducible Wj on X. Put

åi := å(Wi).

Any irreducible constituent V1 of Wi
geom on X‚käk is the

middle extension of an object ◊1[dim(Zåi
)], for an irreducible lisse

sheaf ◊1 on a connected component of Zåi
‚käk. Similarly, any

irreducible constituent V2 of Wj
geom on X‚käk is the middle

extension of an object ◊2[dim(Zåj
)], for an irreducible lisse sheaf ◊2

on a connected component of Zåj
‚käk.

Suppose first åi ± åj. Then T(Wi, Wj) = 0. So if åi ± åj, V1 and

V2 are certainly non-isomorphic, because open dense sets of their

supports are disjoint. So we find the desired equality in this case:
both sides vanish.

Suppose now åi = åj, say with common value å. Then there

exist lisse sheaves „i and „j on Zå, “-pure of weight zero, such

that Wi is the middle extension of Ìi[-dim(Zå)], and Wj is the

middle extension of Ìj[-dim(Zå)]. Denote by

Zå,1,..., Zå,r
the connected components of Zå‚käk. On each connected component,

the pullbacks of Ìi and Ìj are semisimple (by “-purity), so

decompose
„i|Zå,√ = ·µ ni,√,µ Ô√,µ,

„j|Zå,√ = ·µ mj,√,µ Ô√,µ,

where the Ô√,µ are pairwise non-isomorphic irreducible lisse sheaves
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on Zå,√, and the integers ni,√,µ and mj,√,µ are non-negative. The

irreducible decomposition of Wi
geom is then

Wi
geom = ·√ · ni,√,µ (middle extension of Ô√,µ[-dim(Zå)]),

and similarly for Wj
geom. Thus for the data (Wi, Wj), we have

‡a na(Wi)ma(Wj) = ‡√‡µ ni,√,µmj,√,µ.

On the other hand, the space T(Wi, Wj) is given by

T(Wi, Wj) := Hc
2dim(Zå)(Zå‚käk, „i‚ä„j)

= Hc
2dim(Zå)(Zå‚käk, Hom(„j, „i)(dim(Zå))

= ·√ Hc
2dim(Zå)(Zå,√, Hom(„j, „i)(dim(Zå))

=·√ ·µ,† Hc
2dim(Zå)(Zå,√, Hom(Ô√,†, Ô√,µ)(dim(Zå))

ni,√,µmj,√,†.

Because both Ô√,† and Ô√,µ are π1(Zå,√)-irreducible, we have

Hc
2dim(Zå)(Zå,√, Hom(Ô√,†, Ô√,µ)(dim(Zå)) = Hom(Ô√,†, Ô√,µ),

a space of dimension ∂µ,†. Thus we get

dim T(Wi, Wj) = ‡√ ‡µ ni,√,µmj,√,µ,

as required. This completes the proof of assertions 1) and 2) of the
orthogonality theorem.
SSSStttteeeepppp 6666 We now prove assertion 3). Thus M on X is perverse, and “-
pure of weight zero. Recall that

Mgeom = ‡i miVi,

with {Vi}i a finite set of pairwise non-isomorphic perverse

irreducibles on X‚käk, and with non-negative integers mi. We have

proven that for any integer n ≥ 1, we have

‡i (mi)
2 = limsup

E/kn
‡x in X(E) |M(E, x)|2.

So if condition 3a) holds, i.e., if for variable finite extensions E/k, we
have

‡x in X(E) |M(E, x)|2 = 1 + O((ùE)-1/2),

then ‡i (mi)
2 = 1, i.e., M is geometrically irreducible. Conversely,

suppose M is geometrically irreducible. Then for å = å(M), Zå is

geometrically irreducible, and M|Zå is ˜[dim(Zå)] with ˜ a lisse,

geometrically irreducible lisse sheaf on Zå which is “-pure of weight

-dim(Zå). The space T(M, M) is given by

T(M, M) = Hc
2dim(Zå)(Zå‚käk, End(˜)(dim(Zå))

= Endπ1(Zå‚käk)
(˜).

It is one-dimensional (by the geometric irreducibility of ˜), spanned
by the (π1(Zå)-equivariant) identity endomorphism, so Frobk acts

on it with eigenvalue 1. Thus we find, for every finite extension E/k,
Trace(FrobE | T(M,M)) = 1.
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But we have seen above that for any finite extension E/k, we have

‡x in X(E) |M(E, x)|2 - Trace(FrobE | T(M,M)) = + O((ùE)-1/2).

QED

((((1111....8888)))) FFFFiiiirrrrsssstttt AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ooooffff tttthhhheeee OOOOrrrrtttthhhhooooggggoooonnnnaaaalllliiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm
DDDDuuuuaaaalllliiiittttyyyy LLLLeeeemmmmmmmmaaaa 1111....8888....1111 Suppose M and N on X are both perverse,
geometrically irreducible (i.e., perverse irreducible on X‚käk), and “-

pure of weight zero. Denote by DX/kM the Verdier dual of M. Then

we have the following results.
1) M and its Verdier dual DX/kM have, via “, complex conjugate

trace functions.
2) If N and M are geometrically isomorphic (i.e., pulled back to

X‚käk, they are isomorphic), then there is a unique å in ä$…
≠ for

which there exists an isomorphism N ¶ M‚ådeg on X. This unique
å has |å| = 1.
3) If M is geometrically isomorphic to its Verdier dual DV/kM, there

exists a ∫ in ä$…
≠, such that M‚∫deg on X is isomorphic to its own

Verdier dual. This ∫, unique up to sign, has |∫| = 1.
4) If M has, via “, a real-valued trace function, then M is
isomorphic to DX/kM.

pppprrrrooooooooffff 1) Because M is perverse and geometrically irreducible on X,
it is a middle extension. More precisely, its support is a geometrically
irreducible closed subscheme Z of X, inclusion denoted i: Z ¨ X.
There exists a dense affine open set j: U ¨ Z, such that U/k is
smooth and geometrically connected, of some dimension d ≥ 0, and a
lisse ä$…-sheaf ˜ on U, which is geometrically irreducible and “-pure

of weight -dimU, such that M is i*j~*˜[dimU]. Its Verdier dual

DX/kM is i*j~*˜
£(dimU)[dimU], for ˜£ the linear dual

(contragredient representation of π1(U)). Because ˜ is “-pure of

weight -dimU, ˜£(dimU)[dimU] and ˜[dimU] have complex
conjugate trace functions on U. By a fundamental theorem of Ofer
Gabber [Fuj-Indep, Theorem 3], their middle extensions i*j~*˜[dimU]

and i*j~*˜
£(dimU)[dimU] have complex conjugate trace functions

on X. [Gabber's result is this. Suppose we have two pairs (…1, “1) and

(…2, “2), in which …i is a prime invertible in k, and in which “i is a

field embedding of ä$…i
into ^. Suppose we have objects Ni in

Dbc(U, ä$…i
) which are both perverse, geometrically irreducible, and

“i-pure of weight zero. Suppose that, via “1 and “2, their trace

functions agree, i.e., we have an equality in ^,
“1N1(E, u) = “2N2(E, u),

for every finite extension E/k and every u in U(E). Then via “1 and
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“2, the trace functions of i*j~*N1 and i*j~*N2 agree: we have an

equality in ^
“1i*j~*N1(E, x) = “2 i*j~*N2(E, x)

for every finite extension E/k and every x in X(E). We apply this
with …1 = …2 = …, with “1 = “, and with “2 = C«“, for C the complex

conjugation automorphism of ^, with N1 = ˜[dimU] and with N2 =

˜£(dimU)[dimU].]
2) If M and N are geometrically isomorphic, they have the same
support Z, and we can choose a common affine open U in Z which is
lisse and geometrically connected over k, on which both M and N
are lisse. Then there exist lisse ä$…-sheaves ˜ and ˆ on U, both

geometrically irreducible and “-pure of weight -dimU, such that ˜
is i*j~*˜[dimU], and N is i*j~*ˆ[dimU]. The sheaves ˜ and ˆ are

both geometrically irreducible on U, and they are geometrically
isomorphic, i.e., they are isomorphic irreducible π1(U‚käk)-

representations. Since π1(U‚käk) is a normal subgroup of π1(U),

these representations are obtained one from the other by tensoring
with a linear character of π1(U) which is trivial on π1(U‚käk), and

such characters are precisely those of the form ådeg. So we find

ˆ ¶ ˜‚ådeg on U.
Since ˜ and ˆ are both “-pure of the same weight, we must have
|å| = 1. Taking middle extensions commutes with tensoring with a
lisse sheaf on the ambient space, so we get

N = i*j~*ˆ[dimU] ¶ i*j~*(˜‚ådeg) = M‚ådeg,

as required. To show the uniqueness of an å for which there exists

an isomorphism N ¶ M‚ådeg, suppose we also have an isomorphism

N ¶ M‚©deg. Then we have an isomorphism M ¶ M‚(å/©)deg, and

hence, restricting to U, an isomorphism ˜ ¶ ˜‚(å/©)deg of

geometrically irreducible lisse sheaves on U. Tensoring with ˜£, we
get

End(˜) ¶ End(˜)‚(å/©)deg.
Taking invariants under π1(U‚käk), we find an isomorphism

ä$… ¶ (å/©)deg

of one-dimensional representations of Gal(äk/k), whence å = ©.

3) Applying 2), we get å in ä$…
≠, which via “ has complex absolute

value one, and an isomorphism M‚ådeg ¶ DX/kM. Take for ∫ a

square root of å. Then

DX/k(M‚∫deg) ¶ DX/k(M)‚∫-deg ¶ M‚ådeg‚∫-deg

= M‚(å/∫)deg = M‚∫deg.
To show uniqueness of ∫ up to sign, suppose that for some © in

ä$…
≠, we have
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DX/k(M‚©deg) ¶ M‚©deg.

As DX/k(M‚©deg) ¶ DX/k(M)‚©-deg, we get

DX/k(M) ¶ M‚(©2)deg.

By the unicity in part 2), applied with N = DX/k(M), we get ©2 = ∫2.

4) In view of 1), M and DX/k(M) have the same trace function.

Restricting to U, we find that ˜[dimU] and ˜£(dimU)[dimU] have
the same trace function. As both are irreducible, by Chebotarev
they are isomorphic. Hence their middle extensions M and DX/k(M)

are isomorphic. QED

FFFFiiiirrrrsssstttt CCCCoooorrrroooollllllllaaaarrrryyyy 1111....8888....2222 Let X/k be a separated k-scheme of finite
type with k a finite field, … a prime invertible in k, and “ : ä$… fi ^ a

field embedding. Suppose M and N on X are both perverse,
geometrically irreducible (i.e., perverse irreducible on X‚käk), and “-

pure of weight zero.
1) For variable finite extensions E/k, we have

‡x in X(E) |M(E, x)|2 = 1 + O((ùE)-1/2).

2) If M and N are not geometrically isomorphic, then for variable
finite extensions E of k, we have

|‡x in X(E) M(E, x)äN(E, x)| = O((ùE)-1/2).

3) If M and N are geometrically isomorphic, then for variable finite
extensions E/k, we have

|‡x in X(E) M(E, x)äN(E, x)| = 1 + O((ùE)-1/2).

4) If M is isomorphic to DX/kM, then its trace function takes, via “,

real values, and for variable finite extensions E/k, we have

‡x in X(E) M(E, x)2 = 1 + O((ùE)-1/2).

5) Suppose that there exists real œ with 1 ≥ œ > 0 such that for
variable finite extensions E/k we have

‡x in X(E) M(E, x)2 = 1 + O((ùE)-œ/2).

Then M is isomorphic to DX/kM.

6) If M is geometrically isomorphic to DX/kM, then for variable

finite extensions E/k, we have

|‡x in X(E) M(E, x)2| = 1 + O((ùE)-1/2).

7) If M is not geometrically isomorphic to DX/kM, then for variable

finite extensions E/k, we have

|‡x in X(E) M(E, x)2| = O((ùE)-1/2).

pppprrrrooooooooffff Assertions 1) and 2), special cases of the orthogonality
theorem, are "mise pour mïemoire".
3) use 1), and part 2) of the Duality Lemma 1.8.1.
4) use 1), and part 1) of the Duality Lemma 1.8.1.

5) By part 4) of the Duality Lemma 1.8.1, there exists ∫ in ä$…
≠, such
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that M‚∫deg on X is isomorphic to its own Verdier dual. This ∫,

unique up to sign, has |∫| = 1. So by part 4), applied to M‚∫deg, we
have

∫
2deg(E/k)

‡x in X(E) M(E, x)2 = 1 + O((ùE)-1/2).

By hypothesis, we have

‡x in X(E) M(E, x)2 = 1 + O((ùE)-œ/2).

So we find

∫
2deg(E/k)

= 1 + O((ùE)-œ/2).
Consider the complex power series in one variable T defined by

‡n≥0 ∫2nTn = 1/(1 - ∫2T).

It satisfies

1/(1 - ∫2T) -1/(1 - T) = a series convergent in |T| < (ùk)œ/2.
Therefore the left hand side has no poles on the unit circle, i.e., we

have ∫2 = 1. Thus ∫ is _1. Since ∫ is unique up to sign, we may
choose ∫ = 1, and find that M is already self dual.
6) use 4), and part 4) of the Duality Lemma 1.8.1.
7) use 2), and part 1) of the Duality Lemma 1.8.1. QED

SSSSeeeeccccoooonnnndddd CCCCoooorrrroooollllllllaaaarrrryyyy 1111....8888....3333 Let X/k be a separated k-scheme of finite
type with k a finite field, … a prime invertible in k, and “ : ä$… fi ^ a

field embedding. Suppose M and N on X are perverse, and “-mixed of
weight ≤ 0. So for all sufficiently small real w > 0, we have short
exact sequences of perverse sheaves

0 ¨ M≤ -w ¨ M ¨ Gr0(M) ¨ 0,

0 ¨ N≤ -w ¨ N ¨ Gr0(N) ¨ 0.

Here Gr0(M) and Gr0(N) are both “-pure of weight 0, and M≤ -w and

N≤ -w are both “-mixed of weight ≤ -w. Fix one such w, with

1 ≥ w > 0.

Write the pullbacks Gr0(M)geom and Gr0(N)geom of Gr0(M) and

Gr0(N) to X‚käk as sums of perverse irreducibles with multiplicities,

say

Gr0(M)geom = ‡i miVi, Gr
0(N)geom = ‡i niVi,

with {Vi}i a finite set of pairwise non-isomorphic perverse

irreducibles on X‚käk, and with non-negative integers mi and ni.

[This is possible by [BBD, 5.3.8].]
Then we have the following results.
1) For any integer n ≥ 1, denoting by kn/k the extension field of

degree n, we have
‡i mini = limsup

E/kn
|‡x in X(E) M(E, x)äN(E, x)|,
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‡i (mi)
2 = limsup

E/kn
‡x in X(E) |M(E, x)|2,

the limsup taken over all finite extensions E/kn.

2) If ‡i (mi)
2 = 0, i.e., if Gr0(M) = 0, then there exists real œ > 0 such

that for variable finite extensions E/k, we have

‡x in X(E) |M(E, x)|2 = O((ùE)-œ/2).

3) The following conditions a) and b) are equivalent.
3a) There exists real œ > 0 such that for variable finite extensions
E/k, we have

‡x in X(E) |M(E, x)|2 = 1 + O((ùE)-œ/2).

3b) Gr0(M) is geometrically irreducible.
pppprrrrooooooooffff From the identities

Gr0(M)(E, x) = M(E, x) - M≤ -w(E, x),

Gr0(N)(E, x) = N(E, x) - N≤ -w(E, x),

we get

Gr0(M)(E, x)äGr0(N)(E, x) - M(E, x)äN(E, x)
= -M≤ -w(E, x)äN(E, x) - M(E, x)äN≤ -w(E, x)

+ M≤ -w(E, x)äN≤ -w(E, x).

By Lemma 1.5.13, we have

‡x in X(E) |M≤ -w(E, x)äN≤ -w(E, x)| = O((ùE)-w),

‡x in X(E) |M≤ -w(E, x)äN(E, x)| = O((ùE)-w/2),

‡x in X(E) |M(E, x)äN≤ -w(E, x)| = O((ùE)-w/2).

So we find
‡x in X(E) M(E, x)äN(E, x)

= ‡x in X(E) Gr
0(M)(E, x)äGr0(N)(E, x) + O((ùE)-w/2).

So the corollary is simply the Orthogonality Theorem 1.7.2, applied

to Gr0(M) and to Gr0(N). QED

TTTThhhhiiiirrrrdddd CCCCoooorrrroooollllllllaaaarrrryyyy 1111....8888....4444 Hypotheses and notations as in the Second

Corollary 1.8.3, suppose in addition that Gr0(M) is geometrically
irreducible. Then we have the following results.

1) If Gr0(M) is isomorphic to DX/kGr
0(M), there exists real œ > 0 such

that for variable finite extensions E/k, we have

‡x in X(E) M(E, x)2 = 1 + O((ùE)-œ/2).

2) Suppose there exists real œ > 0 such that for variable finite
extensions E/k, we have

‡x in X(E) M(E, x)2 = 1 + O((ùE)-œ/2).

Then Gr0(M) is isomorphic to DX/kGr
0(M).

3) Suppose that M has, via “, a real-valued trace function. Then

Gr0(M) is isomorphic to DX/kGr
0(M).

4) If Gr0(M) is geometrically isomorphic to DX/kGr
0(M), then there
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exists real œ > 0 such that for variable finite extensions E/k, we have

|‡x in X(E) M(E, x)2| = 1 + O((ùE)-œ/2).

5) If Gr0(M) is not geometrically isomorphic to DX/kGr
0(M), then

there exists real œ > 0 such that for variable finite extensions E/k,
we have

|‡x in X(E) M(E, x)2| = O((ùE)-œ/2).

pppprrrrooooooooffff Just as in the proof of the Second Corollary 1.8.3, we have

‡x in X(E) M(E, x)2 = ‡x in X(E) Gr
0(M)(E, x)2 + O((ùE)-w/2).

So parts 1), 2), 4), and 5) result from the First Corollary 1.8.2,

applied to Gr0(M). For part 3), we notice that if M has a real valued
trace function, we have

‡x in X(E) M(E, x)2 = ‡x in X(E) |M(E, x)|2.

The right hand side is, for some real œ > 0, 1 + O((ùE)-œ/2, thanks to
part 3) of the Second Corollary 1.8.3. Now apply part 2). QED

((((1111....9999)))) QQQQuuuueeeessssttttiiiioooonnnnssss ooooffff aaaauuuuttttoooodddduuuuaaaalllliiiittttyyyy:::: tttthhhheeee FFFFrrrroooobbbbeeeennnniiiiuuuussss----SSSScccchhhhuuuurrrr
iiiinnnnddddiiiiccccaaaattttoooorrrr tttthhhheeeeoooorrrreeeemmmm
(1.9.1) Let K be an algebraically closed field of characteristic zero.
When a group G operates irreducibly on a finite-dimensional K-
vector space V, we have the following trichotomy: either the
representation V of G is not self dual, or it is orthogonally self dual,
or it is symplectically self dual. The Frobenius-Schur indicator of the
G-representation V, denoted FSI(G, V), is defined as

FSI(G, V) := 0, if V is not self dual,
= 1, if V is orthogonally self dual,
=-1, if V is symplectically self dual.

[When K is ^ and G is compact, Frobenius and Schur discovered in
1906 their integral formula for the Frobenius-Schur indicator:

FSI(G, V) = —GTrace(g
2 | V)dg,

for dg the total mass one Haar measure on G.]
(1.9.2) Now let k be a field, … a prime number invertible in k,
and U/k a separated k-scheme of finite type, which is smooth and
connected, of dimension d = dimU ≥ 0. A lisse, irreducible ä$…-sheaf Ì

on U "is" an irreducible ä$…-representation of π1(U), and so we may

speak of its Frobenius-Schur indicator FSI(π1(U), Ì). We will

sometimes write
FSI(U, Ì) := FSI(π1(U), Ì).

If U/k is geometrically connected, and if Ì is geometrically
irreducible, i.e., irreducible as a representation of π1(U‚käk), we may

also speak of its Frobenius-Schur indicator as a representation of
π1(U‚käk), which we call the geometric Frobenius-Schur indicator of

Ì on U:

FSIgeom(U, Ì) := FSI(U‚käk, Ì) := FSI(π1(U‚käk), Ì).
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These indicators are birational invariants, in the sense that for any
dense open set U1 fi U, we have

FSI(U, Ì) = FSI(U1, Ì|U1),

FSIgeom(U, Ì) = FSIgeom(U1, Ì|U1).

These equalities hold simply because π1(U1) maps onto π1(U), and

π1(U1‚käk) maps onto π1(U‚käk).

((((1111....9999....3333)))) FFFFrrrroooobbbbeeeennnniiiiuuuussss----SSSScccchhhhuuuurrrr iiiinnnnddddiiiiccccaaaattttoooorrrr ffffoooorrrr ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaavvvveeeessss Let
X/k be a separated k-scheme of finite type, and let M on X/k be
perverse and geometrically irreducible. Its support is a geometrically
irreducible closed subscheme Z of X, inclusion denoted i: Z ¨ X.
There exists a dense affine open set j: U ¨ Z, such that U/k is
smooth and geometrically connected, of some dimension d ≥ 0, and a
lisse ä$…-sheaf ˜ on U, which is geometrically irreducible, such that

M is i*j~*˜[dimU]. We define

FSI(X, M) := (-1)dFSI(U, ˜),

FSIgeom(X, M) := (-1)dFSIgeom(U, Ì).

((((1111....9999....4444)))) AAAA ddddiiiioooopppphhhhaaaannnnttttiiiinnnneeee vvvveeeerrrrssssiiiioooonnnn ooooffff tttthhhheeee FFFFrrrroooobbbbeeeennnniiiiuuuussss----SSSScccchhhhuuuurrrr
iiiinnnntttteeeeggggrrrraaaallll ((((ccccoooommmmppppaaaarrrreeee [[[[KKKKaaaa----GGGGKKKKMMMM 4444....2222,,,, pppppppp.... 55554444----55555555]]]])))) We now return to
working over a finite field k. As before, X/k is separated of finite

type, and … is invertible in k. Let N be an object in Dbc(X, ä$…). For

each finite extension E/k, denote by E2/E the quadratic extension of

E. For x in X(E), we may view x as lying in X(E2), and speak of

N(E2, x):

N(E2, x) = Trace(FrobE2, x
| N) = Trace((FrobE, x)

2 | N)

= ‡i (-1)
iTrace((FrobE, x)

2 | Ói(N)).

For each finite extension E/k, we define the Frobenius-Schur sum
attached to N to be

FS(X, N, E) := ‡x in X(E) N(E2, x).

LLLLeeeemmmmmmmmaaaa 1111....9999....5555 If N is semiperverse and “-mixed of weight ≤ a, then
for variable finite extensions E/k, we have

FS(X, M, E) = O((ùE)a).
pppprrrrooooooooffff By Lemma 1.5.7 above, we reduce to the case where the
weight a occurs via “. Replacing M by a suitable constant field twist

M‚ådeg, we reduce to the case where a = 0. Pick a smooth
stratification {Zå} of X to which M is adapted. On each strat Zå,

M|Zå remains semiperverse, and “-mixed of weight ≤ 0. Break the

sum over X(E) into sums over the individual Zå. So it suffices to

treat the case where X is a Zå. Thus X/k is connected and smooth

over k of some dimension d := dim(X) ≥ 0, and M has all its

cohomology sheaves lisse on X. By semiperversity, Ó-i(M) = 0 for

i < d. So the (at most finitely many) nonvanishing Ó-i(M) all have
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i ≥ d, and hence are “-mixed of weight ≤ -d. Thus for any finite
extension E/k, and any x in X(E), we have the estimate

|M(E, x)| ≤ (‡i rank(Ó
i(M)))(ùE)-d/2.

Keeping the same x but replacing E by E2, we have, in particular,

|M(E2, x)| ≤ (‡i rank(Ó
i(M)))(ùE)-d.

The number of terms in the sum for FS(X, M, E) is ùX(E), which is

trivially O((ùE)d). QED

FFFFrrrroooobbbbeeeennnniiiiuuuussss----SSSScccchhhhuuuurrrr IIIInnnnddddiiiiccccaaaattttoooorrrr TTTThhhheeeeoooorrrreeeemmmm 1111....9999....6666 Let M on X/k be
perverse, geometrically irreducible, and “-pure of weight zero.
1) For variable finite extensions E/k, we have

|FS(X, M, E)| = |FSIgeom(X, M)| + O((ùE)-1/2).
2) If there exists an isomorphism M ¶ DX/k(M) on X, then for

variable finite extensions E/k, we have

FS(X, M, E) = FSIgeom(X, M) + O((ùE)-1/2).
3) Let Ω be a square root of 1 in ^, i.e., Ω is _1. Suppose that there
exists a real œ with 1 ≥ œ > 0 such that for variable finite extensions
E/k, we have

FS(X, M, E) = Ω + O((ùE)-œ/2).
Then there exists an isomorphism M ¶ DX/k(M) on X, and Ω is

FSIgeom(X, M).
pppprrrrooooooooffff We reduce immediately to the case that X is Supp(M). We
then take a smooth stratification {Zå} of X to which M is adapted.

Because X = Supp(M) is geometrically irreducible, the unique strat
which contains the generic point of X is a dense open set, say U,
which is smooth and geometrically connected over k, of dimension
d = dimX. We first reduce to the case when X = U. Breaking up the
sum by strats, we have

FS(X, M, E) = FS(U, M, E) + ‡strats Zå ± U FS( Zå, M, E)

On any strat Zå ± U, M on Zå is "case b)" of Step 1 of the proof of

the Orthogonality Theorem 1.7.2, i.e., we have

|M(E, x)| = O((ùE)(-dim(Zå) - 1)/2)
for variable finite extensions E/k, and variable points x in Zå(E). So

a fortiori we have

|M(E2, x)| = O((ùE)-dim(Zå) - 1)

for variable finite extensions E/k, and variable points x in Zå(E). So

on any such strat Zå, we have, for variable finite extensions E/k,

|FS(Zå, M, E)| = O((ùE)-1/2).

Thus we find

FS(X, M, E) = FS(U, M, E) + O((ùE)-1/2).
From the definition of the Frobenius-Schur indicator, we have

FSIgeom(X, M) = FSIgeom(U, M).
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So it suffices to treat the case when X = U is itself smooth and
geometrically connected, of dimension d ≥ 0. Thus M is ˜[d] for ˜ a
lisse, geometrically irreducible ä$…-sheaf on U, “-pure of weight -d.

By definition, we have

FS(U, M, E) = (-1)dFS(U, ˜, E),
and

FSIgeom(U, M) = (-1)dFSIgeom(U, ˜).
Recall the linear algebra identity: for g in GL(V),

Trace(g2|V) = Trace(g|Sym2(V)) - Trace(g|Ú2(V)).
Applying this to g a Frobenius, we find that for E/k a finite
extension, and x in U(E), we have the linear algebra identity

˜(E2, x) = (Sym2˜)(E, x) - (Ú2˜)(E, x).

Thus we have
FS(U, ˜, E)

= ‡x in U(E) (Sym
2˜)(E, x) - ‡x in U(E) (Ú

2˜)˜(E, x)

= ‡i=0 to 2d (-1)iTrace(FrobE | Hc
i(U‚käk, Sym

2˜))

- ‡i=0 to 2d (-1)iTrace(FrobE | Hc
i(U‚käk, Ú

2˜)),

by the Lefschetz trace formula.

Notice that both Sym2˜ and Ú2˜ are “-pure of weight -2d.
By Deligne's fundamental estimate, the summands with i ≤ 2d - 1

are O((ùE)-1/2), so we find

FS(U, ˜, E) = Trace(FrobE | Hc
2d(U‚käk, Sym

2˜))

- Trace(FrobE | Hc
2d(U‚käk, Ú

2˜))

+ O((ùE)-1/2).

The groups Hc
2d(U‚käk, Sym

2˜) and Hc
2d(U‚käk, Ú

2˜) are both “-

pure of weight zero.

The cohomology group Hc
2d(U‚käk, Sym

2˜) is the space of

π1(U‚käk)-equivariant symmetric bilinear forms on ˜ with values

in ä$…(d). Because ˜ is π1(U‚käk)-irreducible, this space is one-

dimensional if ˜ is orthogonally self dual as π1(U‚käk)-

representation, and vanishes otherwise.

Similarly, the cohomology group Hc
2d(U‚käk, Ú

2˜) is the space

of π1(U‚käk)-equivariant alternating bilinear forms on ˜ with

values in ä$…(d). It is one-dimensional if ˜ is symplectically self dual

as π1(U‚käk)-representation, and vanishes otherwise.

We now prove part 1) of the theorem.
Suppose first that ˜ is not geometrically self dual, i.e., that

FSIgeom(U, ˜) = 0. Then both cohomology groups vanish, and we
have

FS(U, ˜, E) = O((ùE)-1/2).
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Suppose next that ˜ is orthogonally self dual as π1(U‚käk)-

representation, i.e., that FSIgeom(U, ˜) = 1. Then

Hc
2d(U‚käk, Sym

2˜) is one-dimensional, pure of weight zero, so of

the form (å+)
deg for some å+ in ä$…

≠ with |å+| = 1, and

Hc
2d(U‚käk, Ú

2˜) vanishes. So in this case we get

FS(U, ˜, E) = (å+)
deg(E/k) + O((ùE)-1/2).

Suppose finally that ˜ is symplectically self dual as π1(U‚käk)-

representation. Then Hc
2d(U‚käk, Ú

2˜) is one-dimensional, pure of

weight zero, so of the form (å-)
deg for some å- in ä$…

≠ with

|å-| = 1, and Hc
2d(U‚käk, Sym

2˜) vanishes. So in this case we get

FS(U, ˜, E) = -(å-)
deg(E/k) + O((ùE)-1/2).

So in all cases, we find that for variable finite extensions E/k,
we have

|FS(U, M, E)| = |FSIgeom(U, M)| + O((ùE)-1/2).
We now prove part 2). Suppose there exists an isomorphism M

¶ DX/k(M) on X = U, i.e., an isomorphism ˜[d] ¶ ˜£(d)[d] on U. This

means exactly that ˜ and ˜£(d) are isomorphic lisse sheaves on U.
Thus ˜ is geometrically self dual. The canonical π1(U)-equivariant

pairing

˜ ≠ ˜£(d) ¨ ä$…(d)

is visibly nonzero (indeed, it is a perfect pairing). Composing with the

given isomorphism from ˜ to ˜£(d), we get a π1(U)-equivariant

perfect pairing
˜ ≠ ˜ ¨ ä$…(d).

This pairing, viewed as an element of Hc
2d(U‚käk, ˜‚˜), is a basis,

fixed by Frobk, of whichever of the one-dimensional spaces

Hc
2d(U‚käk, Sym

2˜) or Hc
2d(U‚käk, Ú

2˜) is nonzero. In other

words, if FSIgeom(U, ˜) = 1, then å+ = 1; if FSIgeom(U, ˜) = -1,

then å- = 1. So we find that for variable finite extensions E/k, we

have

FS(U, M, E) = FSIgeom(U, M) + O((ùE)-1/2).
To prove 3), we argue as follows. We have Ω = _1, and we are

told that for variable finite extensions E/k, we have

FS(U, M, E) = Ω + O((ùE)-1/2).

From part 1), we see that FSIgeom(U, ˜) is _1. In other words, M is
geometrically self dual on U. As proven in part 3) of the Duality
lemma 1.8.1, there exists an å with |å| = 1, unique up to sign, such

that M‚ådeg is self dual on X. So by part 2) applied to M‚ådeg, we
get
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FS(U, M‚ådeg, E) = FSIgeom(U, M‚ådeg) + O((ùE)-1/2).

But M and M‚ådeg are geometrically isomorphic, so we have

FS(U, M‚ådeg, E) = FSIgeom(U, M) + O((ùE)-1/2).
But we have the identity

FS(U, M‚ådeg, E) = å2deg(E/k)FS(U, M, E).
Combine this with the hypothesis, namely that for some real œ with
1 ≥ œ > 0 we have

FS(U, M, E) = Ω + O((ùE)-œ/2).
We get

å2deg(E/k)Ω = FSIgeom(U, M) + O((ùE)-œ/2).
Since Ω is _1, we may rewrite this as

å2deg(E/k) = ΩFSIgeom(U, M) + O((ùE)-œ/2).
Consider the complex power series in one variable T defined by

‡n≥0 å2nTn = 1/(1 - å2T).

It satisfies

1/(1 - å2T) - ΩFSIgeom(U, M)/(1 - T)

= a series convergent in |T| < (ùk)œ/2.
Therefore the left hand side has no poles on the unit circle. This in
turn implies that

å2 = 1, ΩFSIgeom(U, M) = 1.

Thus å is _1, and Ω = FSIgeom(U, M). Since å is unique up to sign,
we may choose å = 1, and find that M is already self dual. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....9999....7777 Let X/k be a separated k-scheme of finite type with
k a finite field, … a prime invertible in k, and “ : ä$… fi ^ a field

embedding. Suppose M on X is perverse, and “-mixed of weight ≤ 0.
So for all sufficiently small real w > 0, we have a short exact
sequence of perverse sheaves

0 ¨ M≤ -w ¨ M ¨ Gr0(M) ¨ 0,

with Gr0(M) “-pure of weight 0, and M≤ -w “-mixed of weight ≤ -w.

Fix one such w, with 1 ≥ w > 0. Suppose that Gr0(M) is geometrically
irreducible. Then we have the following results.
1) For variable finite extensions E/k, we have

|FS(X, M, E)| = |FSIgeom(X, Gr0(M))| + O((ùE)-w/2).

2) If there exists an isomorphism Gr0(M) ¶ DX/k(Gr
0(M)) on X (e.g.,

if M has a real valued trace function, cf. Corollary 1.8.4, part 3)),
then for variable finite extensions E/k, we have

FS(X, M, E) = FSIgeom(X, Gr0(M)) + O((ùE)-w/2).
3) Let Ω be a square root of 1 in ^. Suppose that there exists a real
œ > 0 such that for variable finite extensions E/k, we have

FS(X, M, E) = Ω + O((ùE)-œ/2).

Then there exists an isomorphism Gr0(M) ¶ DX/k(Gr
0(M)) on X, and
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Ω is FSIgeom(X, Gr0(M)).
pppprrrrooooooooffff We have

FS(X, M, E) = FS(X, Gr0(M), E) + FS(X, M≤ -w, E).

By Lemma 1.9.5, we have

FS(X, M≤ -w, E) = O((ùE)-w).

Now apply the previous theorem 1.9.6 to Gr0(M). QED

((((1111....11110000)))) DDDDiiiivvvviiiiddddiiiinnnngggg oooouuuutttt tttthhhheeee """"ccccoooonnnnssssttttaaaannnntttt ppppaaaarrrrtttt"""" ooooffff aaaannnn ““““----ppppuuuurrrreeee
ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaaffff
(1.10.1) In this section, we work on an X/k which is smooth and
geometrically connected, of some dimension d ≥ 0. The object
ä$…[d](d/2) is geometrically irreducible and “-pure of weight zero on

X/k. We will refer to it as the constant perverse sheaf on X/k. We
will refer to its pullback to X‚käk as the constant perverse sheaf on

X‚käk

(1.10.2) A perverse sheaf N on X/k is called geometrically constant

if Ngeom is isomorphic to the direct sum of finitely many copies of
the constant perverse sheaf on X‚käk. Equivalently, N is

geometrically constant if and only if it is of the form Ì[d] for Ì a
lisse ä$…-sheaf on X which is geometrically constant. A perverse

sheaf N on X/k is called geometrically totally nonconstant if Ngeom

is semisimple and if none of its simple constitutents is isomorphic to
the constant perverse sheaf on X‚käk.

LLLLeeeemmmmmmmmaaaa 1111....11110000....3333 Let N be perverse and “-pure of weight zero on X/k.
Then N has a unique direct sum decomposition

N = Ncst · Nncst
with Ncst geometrically constant (i.e., of the form Ì[d] for Ì a lisse

ä$…-sheaf on X which is “-pure of weight -d and geometrically

constant) and with Nncst geometrically totally nonconstant.

pppprrrrooooooooffff Because N is “-pure, Ngeom is semisimple [BBD 5.3.8]. In its
isotypical decomposition, separate out the isotypical component

(Ngeom)cst of the constant perverse sheaf. We get

Ngeom = (Ngeom)cst · (Ngeom)ncst,

with (Ngeom)ncst a sum of nonconstant irreducibles. Each summand

is stable by Frobenius pullback, so the projections of Ngeom onto the
two factors are, by [BBD 5.1.2], endomorphisms of N which are a
pair of orthogonal idempotents of N. This gives the existence.
Uniqueness is clear, again by [BBD 5.1.2], since the pullback to X‚käk

of any such decomposition must be the decomposition of Ngeom we
started with. QED

LLLLeeeemmmmmmmmaaaa 1111....11110000....4444 Let N be perverse and “-pure of weight zero on X/k.
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Then Hc
d(X‚käk, Nncst) = 0.

pppprrrrooooooooffff On X‚käk, (Nncst)
geom is the direct sum of nonconstant

perverse irreducibles. So the lemma results from
SSSSuuuubbbblllleeeemmmmmmmmaaaa 1111....11110000....5555 Let M be perverse on X‚käk.

1) Hc
i(X‚käk, M) vanishes for i outside the closed interval [-d, d].

2) If in addition M is irreducible and nonconstant on X‚käk, then

Hc
d(X‚käk, M) = 0.

pppprrrrooooooooffff ooooffff ssssuuuubbbblllleeeemmmmmmmmaaaa Immediate reduction to the case when M is
perverse irreducible. If d = dim(X) is zero, the first assertion is
obvious and the second is vacuous: X‚käk is a point and every

perverse sheaf on X‚käk is constant. So suppose d ≥ 1, and let M

have dimension of support d(M) ≥ 0. Look at the spectral sequence

E2
p,q = Hc

p(X‚käk, Ó
q(M)) à Hc

p+q(X‚käk, M).

The only possibly nonvanishing Óq(M) have 0 ≥ q ≥ -d(M), and we
have

dimSuppÓ-d(M)(M) = d(M),

dimSuppÓ-i(M) ≤ i, for 0 ≤ i ≤ d(M) - 1.

So we see that Hc
i(X‚käk, M) vanishes for i outside the closed

interval [-d(M), d(M)]. This proves the first assertion. Suppose now
that M is perverse irreducible and nonconstant. If d(M) < d, we are
done. If d(M) = d, the spectral sequence shows that

Hc
d(X‚käk, M) = E‘

2d, -d

is a quotient of

E2
2d, -d = Hc

2d(X‚käk, Ó
-d(M)).

This last group is a birational invariant. But on some dense open set
U of X‚käk, M|U is Ì[d] for a lisse sheaf Ì on U which is irreducible

and nonconstant, and so has Hc
2d(U, Ì) = 0. By the birational

invariance, Hc
2d(X‚käk, Ó

-d(M)) = 0. QED

LLLLeeeemmmmmmmmaaaa 1111....11110000....6666 Let N be perverse and “-pure of weight zero on X/k.

Then Hc
d(X‚käk, N) is “-pure of weight d. View Hc

d(X‚käk, N)(d) as a

geometrically constant lisse sheaf Ì on X which is “-pure of weight
-d. Then Ncst, the constant part of N, is given by Ncst ¶ Ì[d].

pppprrrrooooooooffff Write N as Ncst · Nncst. By the previous lemma,

Hc
d(X‚käk, Nncst) = 0.

Now write Ncst ¶ Ó[d] for some lisse, geometrically constant sheaf Ó

on X which is “-pure of weight -d. Then

Hc
d(X‚käk, N) = Hc

d(X‚käk, Ncst · Nncst)

= Hc
d(X‚käk, Ncst) = Hc

d(X‚käk, Ó[d])
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= Hc
2d(X‚käk, Ó) = Ó(-d),

the last equality because Ó is geometrically constant. Thus

Hc
d(X‚käk, N) = Ó(-d) is “-pure of weight d, and the sheaf Ó is

Hc
d(X‚käk, N)(d), as asserted. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....11110000....7777 Ncst = 0 if and only if Hc
d(X‚käk, N) = 0.

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....11110000....8888 Let N be perverse and “-pure of weight zero on
X/k. Then the trace function of Nncst is related to that of N as

follows. For any finite extension E/k, and for any point x in X(E),

Nncst(E, x) = N(E, x) - (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)).

The trace function of Ncst is given by

Ncst(E, x) = (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)).

((((1111....11111111)))) TTTThhhheeee ssssuuuubbbbsssshhhheeeeaaaaffff NNNNnnnnccccsssstttt0000 iiiinnnn tttthhhheeee mmmmiiiixxxxeeeedddd ccccaaaasssseeee

(1.11.1) We continue to work on an X/k which is smooth and
geometrically connected, of some dimension d ≥ 0. Now suppose we
have a perverse sheaf N on X/k which is “-mixed of weight ≤ 0. So
for some w > 0 we have a short exact sequence

0 ¨ N≤-w ¨ N ¨ Gr0(N) ¨ 0,

with N≤-w perverse and “-mixed of weight ≤ -w, and with Gr0(N)

perverse and “-pure of weight 0. Our ultimate object of interest is

Gr0(N)ncst, the nonconstant part of Gr
0(N), which is a natural

quotient of N. To deal with it, we now define a perverse subsheaf
Nncst0 fi N,

with the property that the inclusion induces an equality

Gr0(Nncst0) = Gr0(N)ncst.

(1.11.2) To define Nncst0, first apply Lemma 1.10.3 to Gr0(N), to

get a decomposition

Gr0(N) = Gr0(N)cst · Gr0(N)ncst.

Then view Gr0(N)cst as a quotient of Gr0(N), and define

Nncst0 ::::= Ker(the composite map N ¨ Gr0(N) ¨ Gr0(N)cst).

(1.11.3) So we have short exact sequences

0 ¨ Nncst0 ¨ N ¨ Gr0(N)cst ¨ 0

and

0 ¨ N≤-w ¨ Nncst0 ¨ Gr0(N)ncst ¨ 0.

In particular, we have the desired property

(1.11.4) Gr0(Nncst0) ¶ Gr0(N)ncst.

LLLLeeeemmmmmmmmaaaa 1111....11111111....5555 Denote by Hc
d(X‚käk, N)wt=d the weight d quotient

of Hc
d(X‚käk, N) (which is a priori “-mixed of weight ≤ d). The
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natural map N ¨ Gr0(N) induces an isomorphism

Hc
d(X‚käk, N)wt=d ¶ Hc

d(X‚käk, Gr
0(N)).

pppprrrrooooooooffff As Hc
d+1(X‚käk, perverse) = 0, the end of the long cohomology

sequence for Hc
*(X‚käk, -) and the short exact sequence

0 ¨ N≤-w ¨ N ¨ Gr0(N) ¨ 0

is a right exact sequence

Hc
d(X‚käk, N≤-w) ¨ Hc

d(X‚käk, N) ¨ Hc
d(X‚käk, Gr

0(N)) ¨ 0,

in which the first term is “-mixed of weight ≤ d - w, and in which
the last term is “-pure of weight -d. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....11111111....6666 N = Nncst0 if and only if Hc
d(X‚käk, N) is “-mixed

of weight ≤ d - œ for some real œ > 0.

pppprrrrooooooooffff Indeed, N = Nncst0 if and only if Gr0(N)cst = 0, if and only if

(by Corollary 1.10.7) Hc
d(X‚käk, Gr

0(N)) = 0, if and only if the weight

d quotient of Hc
d(X‚käk, N) vanishes. QED

LLLLeeeemmmmmmmmaaaa 1111....11111111....7777 Denote by Hc
d(X‚käk, N)wt=d the weight d quotient

of Hc
d(X‚käk, N).

1) The constant object Gr0(N)cst is Ì[d](d), for Ì the constant sheaf

Hc
d(X‚käk, N)wt=d.

2) The trace function of Gr0(N)cst is given in terms of N by

Gr0(N)cst(E, x) = (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)wt=d).

3) The trace function of Nncst0 is related to that of N by

Nncst0(E, x) = N(E, x) - (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)wt=d).

pppprrrrooooooooffff Assertions 1) and 2) result from Lemma 1.10.6 and Corollary

1.10.8, applied to Gr0(N), and Lemma 1.11.5. Assertion 3) is then
immediate from the short exact sequence

0 ¨ Nncst0 ¨ N ¨ Gr0(N)cst ¨ 0. QED

((((1111....11112222)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: aaaabbbbssssttttrrrraaaacccctttt ttttrrrraaaacccceeee ffffuuuunnnnccccttttiiiioooonnnnssss;;;; aaaapppppppprrrrooooxxxxiiiimmmmaaaatttteeee
ttttrrrraaaacccceeee ffffuuuunnnnccccttttiiiioooonnnnssss
(1.12.1) In this section, we work on an X/k which is separated of
finite type, of dimension d = dim(X) ≥ 0. By an aaaabbbbssssttttrrrraaaacccctttt ttttrrrraaaacccceeee
ffffuuuunnnnccccttttiiiioooonnnn F on X/k, we mean a rule which attaches to each pair
(E, x), consisting of a finite extension E/k and a point x in X(E), a
number F(E, x) in ^. In practice, the abstract trace functions we will
encounter usually start life with values in ä$…, which is then viewed

as embedded in ^ via “.
(1.12.2) The abstract trace functions form a ^-algebra, with
pointwise operations:
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(F+G)(E, x) := F(E, x) + G(E, x),
(FG)(E, x) := F(E, x)G(E, x),
(¬F)(E, x) = ¬F(E, x).

(1.12.3) Given an abstract trace function F, we denote by äF its
complex conjugate, and by |F| its absolute value:

äF(E, x) := the complex conjugate of F(E, x),
|F|(E, x) := |F(E, x)|.

(1.12.4) Given an abstract trace function F, we define the
Frobenius-Schur sums

FS(X, F, E) := ‡x in X(E) F(E2, x).

(1.12.5) We adapt the notation
(1.12.6) ‡E F := ‡x in X(E) F(E, x).

Thus for a, b non-negative integers, this notation gives

‡E FaäFb := ‡x in X(E) F(E, x)
aäF(E, x)b,

‡E |F|a := ‡x in X(E) |F(E, x)|
a,

and, given a second abstract trace function G,
‡E FG := ‡x in X(E) F(E, x)G(E, x).

(1.12.7) Now suppose we are given a perverse sheaf N on X/k,
which is “-mixed of weight ≤ 0, and an abstract trace function N'.
We say that N' is an aaaapppppppprrrrooooxxxxiiiimmmmaaaatttteeee ttttrrrraaaacccceeee ffffuuuunnnnccccttttiiiioooonnnn for N if there
exists a real number œ > 0 such that for variable finite extensions
E/k, and for variable points x in X(E), we have

N(E, x) - N'(E, x) = O((ùE)-œ/2 - d/2).
LLLLeeeemmmmmmmmaaaa 1111....11112222....8888 Suppose N and M are perverse on X/k, both “-mixed
of weight ≤ 0. Suppose N' and M' are approximate trace functions for
N and M respectively. Then there exists œ > 0 such that for variable
finite extensions E/k, we have

1) ‡E N'äM' - ‡E NäM = O((ùE)-œ/2),

2) ‡E N'M' - ‡E NM = O((ùE)-œ/2),

3) FS(X, N', E) - FS(X, N, E) = O((ùE)-œ).
pppprrrrooooooooffff Take a stratification {Zå} of X by connected smooth locally

closed subschemes to which both N and M are adapted. On a strat
Zå of dimension då ≤ d = dim(X),

ùZå(E) = O((ùE)då),

and we have the estimates

N(E, x in Zå(E)) = O((ùE)-då/2),

M(E, x in Zå(E)) = O((ùE)-då/2),

simply because N and M are semiperverse, and “-mixed of weight
≤ 0. So we have

‡E |N| = O(‡å‡x in Zå(E)
(ùE)-då/2)

= O(‡å (ùE)då/2) = O((ùE)d/2).
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Expanding out the sum we are to estimate, we get
‡E N'äM' - ‡E NäM

= ‡E (N' - N)M + ‡E N(äM' - äM) + ‡E (N' - N)(äM' - äM)

= O((ùE)-œ/2 - d/2)‡E |M| + O((ùE)-œ/2 - d/2)‡E |N|

+ O((ùE)-œ - d)ùX(E)

= O((ùE)-œ/2).
This proves 1). The proof of 2) is entirely similar. For 3), we use the
tautological estimate

N'(E2, x) - N(E2, x) = O((ùE2)
-œ/2-d/2) = O((ùE)-œ-d),

and the trivial bound ùX(E) = O((ùE)d). QED

((((1111....11113333)))) TTTTwwwwoooo uuuunnnniiiiqqqquuuueeeennnneeeessssssss tttthhhheeeeoooorrrreeeemmmmssss

TTTThhhheeeeoooorrrreeeemmmm 1111....11113333....1111 Let X/k be a separated scheme of finite type, of
dimension d ≥ 0, F an abstract trace function on X/k, and M and N
two perverse sheaves on X. Suppose that both M and N are “-mixed
of weight ≤ 0, and that F is an approximate trace function for both

M and N. Then Gr0(M) and Gr0(N) are geometrically isomorphic, i.e.,

we have Gr0(M) ¶ Gr0(N) as perverse sheaves on X‚käk.

pppprrrrooooooooffff Since F is an approximate trace function for both M and for
N, we have, thanks to the previous lemma, the estimates

‡E |F|2 - ‡E |N|2 = O((ùE)-œ/2),

‡E |F|2 - ‡E |M|2 = O((ùE)-œ/2),

‡E |F|2 - ‡E NäM = O((ùE)-œ/2),

for some œ > 0. Both Gr0(M) and Gr0(N) are geometrically semisimple
(because they are “-pure of weight 0). Write their pullbacks

Gr0(M)geom and Gr0(N)geom to X‚käk as sums of perverse

irreducibles with multiplicities, say

Gr0(M)geom = ‡i miVi, Gr
0(N)geom = ‡i niVi,

with {Vi}i a finite set of pairwise non-isomorphic perverse

irreducibles on X‚käk, and with non-negative integers mi and ni.

Then by Second Corollary 1.8.3, we have

limsupE ‡E |N|2 = ‡i (ni)
2,

limsupE ‡E |M|2 = ‡i (mi)
2,

limsupE |‡E NäM| = ‡i nimi.

In view of the above estimates, these three limsup's are all equal to

limsupE ‡E |F|2. So we find

‡i (ni)
2 = ‡i (mi)

2 = ‡i nimi.

Therefore we get
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‡i (ni - mi)
2 = 0,

so ni = mi for each i, as required. QED

Here is an arithmetic sharpening of this uniqueness result.
TTTThhhheeeeoooorrrreeeemmmm 1111....11113333....2222 Let X/k be a separated scheme of finite type, of
dimension d ≥ 0, F an abstract trace function on X/k, and M and N
two perverse sheaves on X. Suppose that both M and N are “-mixed
of weight ≤ 0, that both are semisimple objects in the category of
perverse sheaves on X, and that F is an approximate trace function

for both M and N. Then Gr0(M) ¶ Gr0(N) as perverse sheaves on X.

pppprrrrooooooooffff Let {Zå} be a smooth stratification of X to which N·M is

adapted. Thus each Zå is a smooth and connected k-scheme, of

dimension denoted då. Any direct factor of N·M, in particular any

simple constituent of N·M, is also adapted to this stratification.
Given a simple constituent W of N·M, there is a unique strat Zå,

å = å(W), which contains the generic point of its support. As N·M
is “-mixed of weight ≤ 0, any simple constituent W is “-pure, of
some weight w(W) ≤ 0. As we have seen in the proof of the
Orthogonality Theorem 1.7.2, for å = å(W), we have
W|Zå = „å[då], for „å a semisimple, lisse, ä$…-sheaf on Zå which is

“-pure of weight
- w(W) - då; moreover, W is the middle extension from Zå of W|Zå.

For ∫ ± å(W), W|Z∫ has a trace function which satisfies

(W|Z∫)(E, x) =O((ùE)
(-då - w(W)- 1)/2).

Let us denote by N(å) the direct factor of N consisting of the
sum (with multiplicity) of those of its simple constituents whose
supports have generic point in Zå. Let us denote by N(å, 0) the

direct factor of N(å) which is the sum (with multiplicity) of those of
its simple constituents which are “-pure of weight 0. In other words,

N(å, 0) is just Gr0(N(å)), viewed as a direct factor of N(å), or

equivalently, N(å, 0) is, in this notation, (Gr0(N))(å). Let us denote
by N(å, < 0) the direct factor of N(å) which is the sum (with
multiplicity) of those of its simple constituents which are “-pure of
weight < 0.

So we have direct sum decompositions

N = ·å N(å), Gr0(N) = ·å N(å, 0), N(å) = N(å, 0) · N(å, < 0).

We have
N(å)|Zå = ˆå[då], ˆå lisse on Zå, “-mixed of weight ≤ -då,

N(å, 0)|Zå = ˆå,0[då], ˆå,0 = Gr
-då(ˆå),

N(å, < 0)|Zå = ˆå, < 0[då], ˆå,0 lisse, “-mixed of weight < -då.

For ∫ ±å, N(∫)|Zå has a trace function which satisfies

(N(∫)|Zå)(E, x) = O((ùE)(-då - 1)/2).
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Moreover, N(å, 0) is the middle extension from Zå of N(å, 0)|Zå.

The key point is that if F is an approximate trace function for
N on X, then F|Zå is an approximate trace function for N(å, 0)|Zå
oooonnnn Zå. [Remember that the dimension of the ambient space figures

in the definition of "approximate trace function".] Indeed, F|Zå

approximates to within O((ùE)(-dim(X) - œ)/2), for some œ > 0, the
trace function of N|Zå. The trace funciton of N|Zå is itself

approximated to within O((ùE)(-då - œ)/2) by the trace function of
N(å, 0)|Zå, because the trace functions of both

N(å, < 0)|Zå
and of each

N(∫)|Zå, for ∫ ± å,

are O((ùE)(-då - œ)/2), for some œ > 0. Since då ≤ dim(X), we indeed

find that F|Zå is an approximate trace function for N(å, 0)|Zå oooonnnn

Zå.

Of course, we could repeat all of this with N replaced by M, and
we would conclude that F|Zå is an approximate trace function for

M(å, 0)|Zå oooonnnn Zå. It now suffices to show that

N(å, 0)|Zå ¶ M(å, 0)|Zå.

For taking middle extensions, we get N(å, 0) ¶ M(å, 0). Summing

over å, we get Gr0(N) ¶ Gr0(M).
So our situation is this. We are given a smooth connected k-

scheme Zå of dimension då ≥ 0, and two semisimple, lisse ä$…-

sheaves Ì and Ó on Zå, each of which is “-pure of weight -då, and

we are told that the perverse sheaves Ì[då] and Ó[då] on Zå admit

a common approximate trace function F on Zå. We must show that

Ì[då] ¶ Ó[då] as perverse sheaves on Zå, or equivalently that

Ì ¶ Ó as lisse sheaves on Zå. Since we are given that Ì and Ó are

both semisimple, it suffices to show that Ì and Ó have the same
trace function.

To do this, we will show that Ì and Ó have the same local L-
function everywhere. Thus let E/k be a finite extension, and x in
Zå(E) an E-valued point. For each integer n ≥ 1, denote by En/E the

extension of degree n inside äk. Consider the complex (via “) power
series

L(E, x, Ì)(T) := exp(‡n≥1 Ì(En, x)T
n/n),

L(E, x, Ó)(T) := exp(‡n≥1 Ó(En, x)T
n/n).

On the one hand, we have the identities
L(E, x, Ì)(T) = 1/det(1 - TFrobE,x|Ì),

L(E, x, Ó)(T) = 1/det(1 - TFrobE,x|Ó).

On the other hand, the fact that Ì[då] and Ó[då] on Zå admit a
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common approximate trace function F on Zå gives us the estimate

Ì(En, x) - Ó(En, x) = O((ùE)-n(då + œ)/2).

Therefore the series

‡n≥1 (Ì(En, x) - Ó(En, x))T
n/n

converges absolutely in |T| < (ùE)(då + œ)/2, and hence its
exponential is invertible in this region, i.e., the ratio

det(1 - TFrobE,x|Ó)/det(1 - TFrobE,x|Ì)

is invertible in the region |T| < (ùE)(då + œ)/2. But both Ì and Ó are
“-pure of weight -då, so both numerator and denominator in this

last ratio are finite products of factors of the form

1 - T©, |©| = (ùE)-då/2,
say

det(1 - TFrobE,x|Ó) = °© (1 - T©)h(©),

det(1 - TFrobE,x|Ì) = °© (1 - T©)g(©),

the product over all © with |©| = (ùE)-då/2, with integer exponents
h(©) and g(©) which are each zero for all but finitely many ©. The

invertibility in the region |T| < (ùE)(då + œ)/2 of the ratio implies

that we have h(©) = g(©) for all © with |©| = (ùE)-då/2, hence that
we have

det(1 - TFrobE,x|Ó) = det(1 - TFrobE,x|Ì),

hence that we have
Ó(En, x) = Ì(En, x)

for all n, in particular that Ó(E, x) = Ì(E, x). Thus Ì and Ó have the
same trace function, as required. QED

((((1111....11114444)))) TTTThhhheeee cccceeeennnnttttrrrraaaallll nnnnoooorrrrmmmmaaaalllliiiizzzzaaaattttiiiioooonnnn FFFF0000 ooooffff aaaa ttttrrrraaaacccceeee ffffuuuunnnnccccttttiiiioooonnnn FFFF

(1.14.1) We first explain the terminology. In probability theory,
one starts with a probability space (X, µ). Given a bounded random
variable f on X, with expectation E(f) := —X fdµ, one forms the

random variable
f0 := f - E(f).

Thus f0 is the unique random variable which differs from f by a

constant and which has E(f0) = 0. The variance of f is defined to be

the expectation of (f0)
2. More generally, the "central moments" of f

are defined as the expectations of the powers of f0, and the "absolute

central moments" are defined as the expectations of the powers of
|f0|. However, there does not seem to be a standard name for the

function f0, nor for the rule which attaches it to f. We propose to

call f0 the central normalization of f.

(1.14.2) Having given the motivation, we now pass to the context
of abstract trace functions. Given an abstract trace function F on
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X/k, we define its central normalization F0 to be the abstract trace

function given by the following rule. For E/k a finite extension, and
for x in X(E), we define

F0(E, x) := F(E, x) - (1/ùX(E))‡x in X(E) F(E, x)

= F(E, x) - (1/ùX(E))‡E F.

Thus for any finite extension E/k, we have
‡E F0 = 0.

[For those E with X(E) nonempty, this vanishing is obvious from the
definition of F0. If X(E) is empty, then ‡E F0 is the empty sum.]

((((1111....11114444....3333)))) AAAA bbbbaaaassssiiiicccc ccccoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy
LLLLeeeemmmmmmmmaaaa 1111....11114444....4444 Let X/k be smooth and geometrically connected, of
dimension d ≥ 0. Let N be a perverse sheaf on X/k which is “-mixed
of weight ≤ 0. Then we have the following results.
1) The central normalization N0 of the trace function of N is an

approximate trace function for Nncst0.

2) N0 is an approximate trace function for N if and only if

Hc
d(X‚käk, N) is “-mixed of weight ≤ d - œ for some œ > 0.

pppprrrrooooooooffff 1) The trace function of Nncst0 is given by Lemma 1.11.7:

Nncst0(E, x) = N(E, x) - (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)wt=d).

The central normalization N0 is given by

N0(E, x) = N(E, x) - (1/ùX(E))‡E N.

So we must show that there exists œ > 0 such that for any finite
extension E/k with X(E) nonempty, we have

(1/ùX(E))‡E N - (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)wt=d)

= O((ùE)-œ/2).
Because X/k is smooth and geometrically connected of dimension d,
it is geometrically irreducible, so by Lang-Weil (cf. [LW], [Ka-Sar-
RMFEM, 9.0.15.1]) we have

ùX(E) = (ùE)d(1 + O((ùE)-1/2).
So for ùE large, we have

1/ùX(E) = (ùE)-d(1 + O((ùE)-1/2).
By the Lefschetz trace formula,

‡E N = ‡i (-1)
iTrace(FrobE | Hc

i(X‚käk, N)).

As noted in the proof of 1.10.5 above, Hc
i(X‚käk, N) vanishes for i

outside the closed interval [-d, d]. And by Deligne [De-Weil II, 3.3.1],

Hc
i(X‚käk, N) is “-mixed of weight ≤ i. So for some œ > 0 we get

‡E N = (-1)dTrace(FrobE |Hc
d(X‚käk, N)wt=d) + O((ùE)

d - œ/2).

Replacing if necessary œ by Min(œ, 1), we get
(1/ùX(E))‡E N

= (-1)d(ùE)-dTrace(FrobE |Hc
d(X‚käk, N)wt=d) + O((ùE)

-œ/2),

as required. This proves 1). For 2), the condition that Hc
d(X‚käk, N)



52 Chapter 1

is “-mixed of weight ≤ d - œ for some œ > 0 is precisely the condition
that N = Nncst0, cf. Corollary 1.11.6. QED

((((1111....11115555)))) FFFFiiiirrrrsssstttt aaaapppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo tttthhhheeee oooobbbbjjjjeeeeccccttttssss TTTTwwwwiiiisssstttt((((LLLL,,,, KKKK,,,, ÏÏÏÏ,,,, hhhh)))):::: tttthhhheeee
nnnnoooottttiiiioooonnnn ooooffff ssssttttaaaannnnddddaaaarrrrdddd iiiinnnnppppuuuutttt
(1.15.1) We continue to work over a finite field k. As earlier, we
fix a prime number … ± char(k), and a field embedding

“ : ä$… fi ^.

We also choose a square root of char(k) in ä$…, so that we can form

Tate twists by half-integers.
(1.15.2) We will have repeated occasion to consider the following
general situation. We fix

an integer m ≥ 1,

a perverse sheaf K on !m/k,
an affine k-scheme V/k of finite type,

a k-morphism h : V ¨ !m,
a perverse sheaf L on V/k,
an integer d ≥ 2,
a space of functions (Ï, †) on V, i.e., a finite-dimensional

k-vector space Ï and a k-linear map

† : Ï ¨ Homk-schemes(V, !
m).

(1.15.3) We make the following hypotheses on these data.

1) K is “-mixed of weight ≤ 0, and Gr0(K), the weight 0 quotient of K,

is geometrically irreducible on !m/k.

2) L is “-mixed of weight ≤ 0, and Gr0(L), the weight 0 quotient of L,
is geometrically irreducible on V/k.
3) (Ï, †) is d-separating, and contains the constants.
4) the #-graded vector space

H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K)

is concentrated in degree ≤ m.
(1.15.4) We will say that data (m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)) as
above, which satisfies hypotheses 1) through 4), is "ssssttttaaaannnnddddaaaarrrrdddd
iiiinnnnppppuuuutttt".

LLLLeeeemmmmmmmmaaaa 1111....11115555....5555 Given standard input
(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)),

consider the object M = Twist(L, K, Ï, h) on the space Ï. We have
the following results.
1) The Tate-twisted object M(dimÏ0/2) is perverse, and “-mixed of

weight ≤ 0.

2) The constant object Gr0(M(dimÏ0/2))cst is Ì[dimÏ], for Ì the

constant sheaf

Hmc((V≠!
m)‚äk, pr1

*L‚pr2
*K)wt=m(-dimÏ0/2).

3) Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst if and only if
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Hc
m((V≠!m)‚äk, pr1

*L‚pr2
*K)

is “-mixed of weight ≤ m - œ, for some œ > 0.

4) Gr0(K) = Gr0(K)ncst if and only if

Hc
m(!m‚käk, K)

is “-mixed of weight ≤ m - œ, for some œ > 0.

5) If Gr0(K) is geometrically constant, i.e., if Gr0(K)ncst = 0, then

Gr0(M(dimÏ0/2)) is geometrically constant, i.e.,

Gr0(M(dimÏ0/2))ncst = 0.

pppprrrrooooooooffff 1) We have already shown, in the Perversity and Weight
Corollaries 1.4.4 and 1.5.11, that M is perverse, and “-mixed of
weight ≤ dimÏ0. So its Tate twist M(dimÏ0/2) is perverse, and

“-mixed of weight ≤ 0.
2) We have also shown in the Semiperversity Theorem 1.4.2 that

Hc
*(Ï‚käk, M[dimÏ]) = H*c(!

m‚äk, K[m])‚H*c(V‚äk, L)(m -dimÏ)

= Hc
*((V≠!m)‚äk, pr1

*L‚pr2
*K[m])(m -dimÏ).

Thus we have

Hc
dimÏ(Ï‚käk, M)

= Hmc((V≠!
m)‚äk, pr1

*L‚pr2
*K)(m -dimÏ),

i.e., we have

Hc
dimÏ(Ï‚käk, M(dimÏ0/2))

= Hmc((V≠!
m)‚äk, pr1

*L‚pr2
*K)(-dimÏ0/2).

By Lemma 1.11.7, Gr0(M(dimÏ0/2))cst is Ì[dimÏ] for Ì the constant

sheaf

Hc
dimÏ(Ï‚käk, M(dimÏ0/2))wt =dimÏ

= Hmc((V≠!
m)‚äk, pr1

*L‚pr2
*K)wt=m(-dimÏ0/2).

3) From 2), we see that Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst if

and only if

Hmc((V≠!
m)‚äk, pr1

*L‚pr2
*K)

is “-mixed of weight ≤ m - œ.
4) This is just 1.11.6, applied to K.

5) Suppose Gr0(K) is geometrically constant. So by an ådeg twist, we

may assume that Gr0(K) is ä$…[m](m/2). Then by Lemma 1.11.7, the

group Hmc(!
m‚äk, K) is certainly nonzero, because already its

weight m quotient is nonzero. By condition 4) of the notion of
standard input,

H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K)

is concentrated in degree ≤ m. From the Kunneth formula, we infer
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that H*c(V‚äk, L) is concentrated in degree ≤ 0. Therefore for any

perverse sheaf K' on !m, we see that

H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K')

is concentrated in degree ≤ m (simply because H*c(!
m‚äk, K') is

concentrated in degree ≤ m, for any perverse K'). So from the

perversity theorem, we see that for any perverse K' on !m, the
derived category object Twist(L, K', Ï, h) is a perverse sheaf on Ï.
Moreover, for our fixed L, the functor

K' ÿ Twist(L, K', Ï, h)

from perverse sheaves on !m to perverse sheaves on Ï is exact. For
if

0 ¨ A ¨ B ¨ C ¨ 0

is a short exact sequence of perverse sheaves on !m, it is also a

distinguished triangle in the derived category on !m, which is
transformed into a distinguished triangle

Twist(L, A, Ï, h) ¨Twist(L, B, Ï, h) ¨ Twist(L, C, Ï, h) ¨
in the derived category on Ï whose terms are perverse, and this is
precisely a short exact sequence of perverse sheaves on Ï.

Now apply this discussion to the short exact sequence

0 ¨ K≤ -w ¨ K ¨ Gr0(K) = ä$…[m](m/2) ¨ 0,

for some w > 0. We get a short exact sequence
0 ¨ Twist(L, K≤ -w , Ï, h) ¨Twist(L, K, Ï, h)

¨ Twist(L, ä$…[m](m/2), Ï, h) ¨ 0.

By 1.5.11, Twist(L, K≤ -w , Ï, h)(dimÏ0/2) is “-mixed of weight

≤ -w, so we have

Gr0(M(dimÏ0/2)) ¶ Gr0(Twist(L, ä$…[m](m/2), Ï, h)(dimÏ0/2)).

Thus we are reduced to treating the case when K is itself equal to

ä$…[m](m/2). But in this case, the pullback haff
*K is itself the

constant sheaf, Tate-twisted and shifted, and M(dimÏ0/2) is the

geometrically constant sheaf on Ï given by Ì[dimÏ](dimÏ/2), for Ì

the geometrically constant sheaf Hc
0(V‚käk, L). QED

SSSSttttaaaannnnddddaaaarrrrdddd IIIInnnnppppuuuutttt TTTThhhheeeeoooorrrreeeemmmm 1111....11115555....6666 Given standard input
(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)),

suppose in addition that Gr0(K) is not geometrically constant, i.e.,
that

Hc
m(!m‚käk, K)

is “-mixed of weight ≤ m - œ, for some œ > 0.
Consider the object M = Twist(L, K, Ï, h) on the space Ï. We have
the following results.
1) The Tate-twisted object M(dimÏ0/2) is perverse, and “-mixed of

weight ≤ 0.

2) The nonconstant part Gr0(M(dimÏ0/2))ncst of the weight zero
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quotient Gr0(M(dimÏ0/2)) is geometrically irreducible.

3) The Frobenius-Schur indicator of Gr0(M(dimÏ0/2))ncst is given by

the product formula

FSIgeom(Ï, Gr0(M(dimÏ0/2))ncst)

= ((-1)dimÏ0)≠FSIgeom(!m, Gr0(K))≠FSIgeom(V, Gr0(L)).

4) If both Gr0(L) on V/k and Gr0(K) on !m/k are self dual, then

Gr0(M(dimÏ0/2))ncst on Ï/k is self dual.

pppprrrrooooooooffff Assertion 1), already proven in Lemma 1.15.5, is simply "mis
pour mïemoire".

The proof of the remaining assertions makes use of
approximate trace functions. Let us denote by K0 and M0 the

central normalizations of the trace functions of K and of M on !m

and on Ï respectively. Then M0(dimÏ0/2) is the central

normalization of the trace function of M(dimÏ0/2). Notice that as

Gr0(K) is both geometrically irreducible and geometrically
nonconstant, we have K = Kncst. The key point is that, by Lemma

1.14.4, K0 is an approximate trace function for K, and M0(dimÏ0/2)

is an approximate trace function for M(dimÏ0/2)ncst0.

So in order to prove 2), the geometric irreducibility of

Gr0(M(dimÏ0/2))ncst = Gr0(M(dimÏ0/2)ncst0),

it suffices, by part 3) of Second Corollary 1.8.3, to show there exists
real œ > 0 such that for variable finite extensions E/k, we have

‡E |M(dimÏ0/2)ncst0|
2 = 1 + O((ùE)-œ/2).

By Lemma 1.12.8, part 1), we know that, for some œ > 0, we have

‡E |M(dimÏ0/2)ncst0|
2 = ‡E |M0(dimÏ0/2)|

2 + O((ùE)-œ/2).

So it suffices to show that

‡E |M0(dimÏ0/2)|
2 = 1 + O((ùE)-œ/2),

i.e.,

((ùE)-dimÏ0)‡E |M0|
2 =1 + O((ùE)-œ/2).

To show this, choose a real œ > 0 such that

‡E|K|
2 =1 + O((ùE)-œ/2),

‡E|L|
2 =1 + O((ùE)-œ/2).

This is possible by hypotheses 1) and 2), and criterion 3) of the
Second Corollary 1.8.3. Again invoking Lemma 1.12.8, part 1), for a
possibly smaller œ > 0 we will have

‡E|K0|
2 =1 + O((ùE)-œ/2).

From the definition of M,

M := Rpr2~(pr1
*L‚haff

*K[dimÏ - m]),

the Lefschetz trace formula, and proper base change, we have

M(E, f) = ((-1)dimÏ0)‡v in V(E) L(E, v)K(E, h(v) + f(v)).
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KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 1111....11115555....7777 The abstract trace function M0 is given in

terms of the trace function of L and the abstract trace function K0
by the formula

M0(E, f) = ((-1)dimÏ0)‡v in V(E) L(E, v)K0(E, h(v) + f(v)).

pppprrrrooooooooffff ooooffff KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 1111....11115555....7777 By definition, we have
M0(E, f) = M(E, f) - (1/ùÏ(E))‡EM.

Our first task is to compute ‡EM. We have

‡EM = ‡f in Ï(E)((-1)
dimÏ0)‡v in V(E) L(E, v)K(E, h(v) + f(v))

= ((-1)dimÏ0)‡v in V(E) L(E, v)‡f in Ï(E)K(E, h(v) + f(v)).

Because (Ï, †) is 2-separating, it is 1-separating, and so for fixed v
in V(E), the E-linear map

eval(v) : Ï(E) ¨ !m(E),
f ÿ f(v),

is surjective. So the inner sum is given by
‡f in Ï(E)K(E, h(v) + f(v))

= ùKer(eval(v))‡a in !m(E) K(E, h(v) + a)

= ùKer(eval(v))‡a in !m(E) K(E, a)

= (ùÏ(E))((ùE)-m)‡EK.

So we find

‡EM = ((-1)dimÏ0)(‡EL)(ùÏ(E))((ùE)
-m)‡EK.

Thus we have

(1/ùÏ(E))‡EM = ((-1)dimÏ0)(‡EL)((ùE)
-m)‡EK.

Therefore we find

M0(E, f) = M(E, f) - ((-1)dimÏ0)(‡EL)((ùE)
-m)‡EK

= ((-1)dimÏ0)‡v in V(E) L(E, v)K(E, h(v) + f(v))

- ((-1)dimÏ0)‡v in V(E) L(E, v)((ùE)
-m)‡EK

= ((-1)dimÏ0)‡v in V(E) L(E, v)K0(E, h(v) + f(v)). QED

We now calculate in closed form the sum ‡E |M0|
2.

LLLLeeeemmmmmmmmaaaa 1111....11115555....8888 We have the identity

‡E |M0|
2 = (‡E|L|

2)≠((ùE)dimÏ0)≠‡E|K0|
2.

pppprrrrooooooooffff We have

|M0(E, f)|
2

= (‡v in V(E) L(E, v)K0(E, h(v) + f(v)))

≠(‡w in V(E) äL(E, w)äK0(E, h(w) + f(w))).

Summing over f in Ï(E), we get

‡E |M0|
2

= ‡v,w in V(E) L(E, v)äL(E, w)

≠‡f in Ï(E)K0(E, h(v) + f(v))äK0(E, h(w) + f(w)).
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We now break up the sum according to whether v=w, or not. We get

‡E |M0|
2

= ‡v in V(E) L(E, v)äL(E, v)

≠‡f in Ï(E)K0(E, h(v) + f(v))äK0(E, h(v) + f(v))

+ ‡v±w in V(E) L(E, v)äL(E, w)

≠‡f in Ï(E)K0(E, h(v) + f(v))äK0(E, h(w) + f(w)).

We will show that the first sum gives the main term, and the
second sum vanishes.

Consider the first sum. Because (Ï, †) is 2-separating, it is
certainly 1-separating, so for fixed v in V(E), the E-linear map

eval(v) : Ï(E) ¨ !m(E),
f ÿ f(v),

is surjective. So the innermost sum in the first sum simplifies to
‡f in Ï(E)K0(E, h(v) + f(v))äK0(E, h(v) + f(v))

= ù(Ker(eval(v)))‡a in !m(E) K0(E, h(v) + a)äK0(E, h(v) + a).

By an additive change of variable a ÿ a + h(v), we rewrite this as
= ù(Ker(eval(v)))‡a in !m(E) K0(E, a)äK0(E, a)

= ù(Ker(eval(v)))‡E|K0|
2

= ((ùE)dimÏ - m)≠‡E|K0|
2

= ((ùE)dimÏ0)≠‡E|K0|
2.

So the first term is the product

(‡E|L|
2)≠((ùE)dimÏ0)≠‡E|K0|

2.
We will now show that the second sum vanishes.
Because (Ï, †) is 2-separating, for a given pair v±w of distinct

points in V(E), the E-linear map

(eval(v), eval(w)) : Ï(E) ¨ !m(E)≠ !m(E),
f ÿ (f(v), f(w)),

is surjective. So the innermost sum in the second sum simplifies to
‡f in Ï(E)K0(E, h(v) + f(v))äK0(E, h(w) + f(w))

= ù(Ker((eval(v), eval(w))))
≠‡a,b in!m(E) K0(E, h(v) + a)äK0(E, h(w) + b)

= ù(Ker((eval(v), eval(w))))‡a,b in!m(E) K0(E, a)äK0(E, b)

= ù(Ker((eval(v), eval(w))))|‡E K0|
2

= 0, cf. 1.14.2. QED for Lemma 1.15.8

From the above Lemma 1.15.8, we get

((ùE)-dimÏ0)‡E |M0|
2 = (‡E|L|

2)(‡E|K0|2)

= (1 + O((ùE)-œ/2))(1 + O((ùE)-œ/2))

= 1 + O((ùE)-œ/2),
which proves part 2) of the Standard Input Theorem.

To prove parts 3) and 4), we calculate the Frobenius-Schur
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sums for M0(dimÏ0/2).

LLLLeeeemmmmmmmmaaaa 1111....11115555....9999 We have the identity

FS(Ï, M0(dimÏ0/2), E) = ((-1)dimÏ0)≠FS(V, L, E)≠FS(!m, K0, E).

pppprrrrooooooooffff By definition, we have

FS(Ï, M0(dimÏ0/2), E) : = ((ùE)-dimÏ0)≠FS(Ï, M0, E)

= ((ùE)-dimÏ0)≠‡f in Ï(E) M0(E2, f)

= ((-ùE)-dimÏ0)≠‡f in Ï(E) ‡v in V(E2)
L(E2, v)K0(E2, h(v) + f(v))

= ((-ùE)-dimÏ0)≠‡v in V(E2)
L(E2, v)‡f in Ï(E) K0(E2, h(v) + f(v)).

We break the sum into two sums, according to whether v in V(E2)

lies in V(E), or not. We will show that the first sum, over v in V(E),
is the main term, and the second sum vanishes.

The first sum is

((-ùE)-dimÏ0)≠‡v in V(E) L(E2, v)‡f in Ï(E) K0(E2, h(v) + f(v)).

Because (Ï, †) is 1-separating, the inner sum is simply
‡f in Ï(E) K0(E2, h(v) + f(v))

= ù(Ker(eval(v)))≠‡a in !m(E) K0(E2, h(v) + a)

= ((ùE)dimÏ0)≠‡a in !m(E) K0(E2, a)

= ((ùE)dimÏ0)≠FS(!m, K0, E).

So the first sum is the product

(((-ùE)-dimÏ0)≠‡v in V(E) L(E2, v))

≠((ùE)dimÏ0)≠FS(!m, K0, E)

= ((-1)dimÏ0)≠FS(V, L, E)≠FS(!m, K0, E).

It remains to show that the second sum vanishes. For v in
V(E2), denote by äv its image under the nontrivial automorphism of

E2/E. Thus we are summing over points v in V(E2) with v ± äv. So

the second sum is

= ((-ùE)-dimÏ0)‡v±äv in V(E2)
L(E2, v)‡f in Ï(E) K0(E2, h(v) + f(v)).

We will show that already its innermost sum vanishes. For this, we
need the following
SSSSuuuubbbblllleeeemmmmmmmmaaaa 1111....11115555....11110000 For a point v ± äv in V(E2), the E-linear

evaluation map eval(v), viewed as a map from Ï(E) to !m(E2),

f ÿ f(v), is surjective.
pppprrrrooooooooffff ooooffff SSSSuuuubbbblllleeeemmmmmmmmaaaa 1111....11115555....11110000 Because (Ï, †) is 2-separating, and
v ± äv, the map

(eval(v), eval(äv)) : Ï(E2) ¨ !m(E2)≠!
m(E2),

ƒ ÿ (ƒ(v), ƒ(äv))

is surjective. Take a point of the form (a, äa) in !m(E2)≠!
m(E2).

Then there exists ƒ in Ï(E2) such that

ƒ(v) = a, ƒ(äv) = äa.
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Pick © in E2 with © ± 0 and ä© ± ©. Then {1, ©} is an E-basis of E2, and

we can write ƒ in Ï(E2) uniquely as f + ©g, with f, g in Ï(E). Thus

we get the identities
f(v) + ©g(v) = a,
f(äv) + ©g(äv) = äa.

Because f, g both lie in Ï(E), they are Gal(E2/E)-equivariant maps

from V(E2) to !
m(E2). So "conjugating" the second identity,

we get
f(v) + ä©g(v) = a.

Subtracting from the first, we find (© - ä©)g(v) = 0, so g(v) = 0, and
f(v) = a. QED for Sublemma 1.15.10.

Thanks to Sublemma 1.15.10, we can evaluate the innermost
sum

‡f in Ï(E) K0(E2, h(v) + f(v))

= (ùKer(eval(v): Ï(E) ¨ !m(E2)))≠‡a in !m(E2)
K0(E2, h(v) + a)

= ((ùE)dimÏ - 2m)≠‡a in !m(E2)
K0(E2, a)

= ((ùE)dimÏ0 - m)≠‡E2
K0

= 0, cf. 1.14.2.
We now make use of Lemma 1.15.9, according to which we

have the identity

FS(Ï, M0(dimÏ0/2), E) = ((-1)dimÏ0)≠FS(V, L, E)≠FS(!m, K0, E).

Suppose first that at least one of Gr0(K) or Gr0(L) is not
geometrically self dual. Applying part 1) of Corollary 1.9.7 to K and L
shows that for some real œ > 0, we have

FS(V, L, E)≠FS(!m, K, E) = O((ùE)-œ/2).
Then applying Lemma 1.12.8, part 3), to K and K0, we get

FS(V, L, E)≠FS(!m, K0, E) = O((ùE)-œ/2).

Therefore we have

FS(V, M0(dimÏ0/2), E) = O((ùE)-œ/2).

Again by Lemma 1.12.8, part 3), now applied to M(dimÏ0/2)ncst0
and to M0(dimÏ0/2), this now gives

FS(V, M(dimÏ0/2)ncst0, E) = O((ùE)-œ/2).

Applying part 1) of Corollary 1.9.7 to M(dimÏ0/2)ncst0 shows now

that Gr0(M(dimÏ0/2))ncst is not geometrically self dual.

If both of Gr0(K) and Gr0(L) are geometrically self dual, then

replacing each of K and L by a suitable unitary ådeg twist of itself,

we reduce to the case when both Gr0(K) and Gr0(L) are self dual.
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Then part 2) of Corollary 1.9.7, applied to both K and L, together
with Lemma 1.12.8, part 3), show that for some real œ > 0 we have

FS(Ï, M0(dimÏ0/2), E)

= (((-1)dimÏ0)≠FSIgeom(V, Gr0(L))≠FSIgeom(!m, Gr0(K))

+ O((ùE)-œ/2).
Applying Lemma 1.12.8, part 3) and part 3) of Corollary 1.9.7 to

M(dimÏ0/2)ncst0, we infer that Gr
0(M(dimÏ0/2))ncst is itself self

dual on Ï/k, and that we have

FSIgeom(Ï, Gr0(M(dimÏ0/2))ncst)

= (((-1)dimÏ0)≠FSIgeom(V, Gr0(L))≠FSIgeom(!m, Gr0(K)). QED

((((1111....11116666)))) RRRReeeevvvviiiieeeewwww ooooffff hhhhiiiigggghhhheeeerrrr mmmmoooommmmeeeennnnttttssss
(1.16.1) Let K be an algebraically closed field of characteristic zero.
Suppose a group G operates completely reducibly (e.g., irreducibly) on
a finite-dimensional K-vector space V. For each pair (a, b) of non-
negative integers, we denote by Ma,b(G, V) the dimension of the

space of G-invariant vectors in Vºa‚(V£)ºb:

Ma,b(G, V) := dimK (Vºa‚(V£)ºb)G.

We call Ma,b(G, V) the (a, b)'th moment of (G, V). For each even

integer 2n ≥ 2, we denote by M2n(G, V) the 2n'th absolute moment,

defined by
M2n(G, V) := Mn,n(G, V).

(1.16.2) The terminology "moments" comes about as follows. When
K is ^ and G is compact, there are integral formulas for Ma,b(G, V)

and for M2n(G, V). Denote by

ç : G ¨ ^
ç(g) := Trace(g|V),

the character of the representation. Then we have

Ma,b(G, V) = —
G
ç(g)aäç(g)bdg,

M2n(G, V) = —
G
|ç(g)|2ndg,

for dg the total mass one Haar measure on G. [Thus the terminology
"moments" and "absolute moments".]
(1.16.3) There is one elementary inequality we will need later.
LLLLeeeemmmmmmmmaaaa 1111....11116666....4444 Let K be an algebraically closed field of
characteristic zero. Suppose a group G operates completely reducibly
on a finite-dimensional K-vector space V. If V ± 0, then M2n(G, V) ≥

1 for all n ≥ 1.
pppprrrrooooooooffff M2n(G, V) is the dimension of the G-invariants in

Vºn‚(V£)ºn = End(Vºn), i.e., M2n(G, V) is the dimension of

EndG(V
ºn), which always contains the scalars. QED
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((((1111....11117777)))) HHHHiiiigggghhhheeeerrrr mmmmoooommmmeeeennnnttttssss ffffoooorrrr ggggeeeeoooommmmeeeettttrrrriiiiccccaaaallllllllyyyy iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee lllliiiisssssssseeee
sssshhhheeeeaaaavvvveeeessss
(1.17.1) We continue to work over a finite field k. As earlier, we
fix a prime number … ± char(k), a field embedding

“ : ä$… fi ^,

and a square root of char(k) in ä$….

(1.17.2) Let U/k be a separated k-scheme of finite type, which is
smooth and geometrically connected, of dimension d = dimU ≥ 0.
Suppose Ì on U is a lisse, geometrically irreducible ä$…-sheaf on U.

Then Ì "is" an irreducible representation of π1(U‚käk), and we may

speak of its higher moments Ma,b((π1(U‚käk), Ì) and

M2n((π1(U‚käk), Ì). We call these the geometric higher moments of

Ì on U, and write

Ma,b
geom(U, Ì) := Ma,b(π1(U‚käk), Ì),

M2n
geom(U, Ì) := M2n(π1(U‚käk), Ì).

These moments are birational invariants, in the sense that for any
dense open set U1 fi U, we have

Ma,b
geom(U, Ì) = Ma,b

geom(U1, Ì|U1),

M2n
geom(U, Ì) = M2n

geom(U1, Ì|U1).

These equalities hold simply because π1(U1‚käk) maps onto

π1(U‚käk).

(1.17.3) When Ì is “-pure of some weight w, there is a
diophantine analogue of the classical integral formulas for higher
moments.

TTTThhhheeeeoooorrrreeeemmmm 1111....11117777....4444 Let U/k be a separated k-scheme of finite type,
which is smooth and geometrically connected, of dimension
d = dimU ≥ 0. Suppose Ì on U is a lisse, geometrically irreducible
ä$…-sheaf on U, which is “-pure of some weight w. Fix a pair (a, b) of

non-negative integers. For each finite extension E/k, consider the

sum ‡E ÌaäÌb Then we have the following results.

1) We have the estimate

|‡E ÌaäÌb|= O((ùE)dimU + (a+b)w/2).

2) We have the limit formula

Ma,b
geom(U, Ì) = limsupE |‡E ÌaäÌb|/(ùE)dimU + (a+b)w/2.

3) We have the limit formula

dimU + (a+b)w/2 = limsupE log(|‡E ÌaäÌb|)/log(ùE).

pppprrrrooooooooffff 1) Each summand is trivially bounded in absolute value by

(rankÌ)a+b(ùE)(a+b)w/2, and there are ùU(E) = O((ùE)dimU) terms.

2) and 3) By an ådeg twist, we reduce immediately to the case

when w = 0. In this case, the contragredient Ì£ of Ì has complex-
conjugate trace function to that of Ì. So by the Lefschetz trace
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formula, we have

‡E ÌaäÌb

= ‡i=0 to 2dimU (-1)iTrace(FrobE| Hc
i(U‚käk, Ì

ºa‚(Ì£)ºb)).

Now Ìºa‚(Ì£)ºb is “-pure of weight zero, so by Deligne's result
[De-Weil II, 3.3.1], we have

‡E ÌaäÌb

= Trace(FrobE| Hc
2d(U‚käk, Ì

ºa‚(Ì£)ºb)) + O((ùE)dimU -1/2).

Moreover, the group Hc
2d(U‚käk, Ì

ºa‚(Ì£)ºb) is “-pure of weight

2dimU, and its dimension is precisely Ma,b
geom(U, Ì). So if we view

this Hc
2d as an Ma,b

geom(U, Ì)-dimensional ^-vector space T via “,

then the semisimplification of Frobk/(ùE)
dimU is a unitary operator

A on T, and

|‡E ÌaäÌb| = ((ùE)dimU)≠(|Trace(Adeg(E/k))| + O((ùE)-1/2)).

Assertions 2) and 3) now follow, by the same compactness argument
already used in the proof of the Orthogonality Theorem 1.7.2. QED

((((1111....11118888)))) HHHHiiiigggghhhheeeerrrr mmmmoooommmmeeeennnnttttssss ffffoooorrrr ggggeeeeoooommmmeeeettttrrrriiiiccccaaaallllllllyyyy iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee
ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaavvvveeeessss
(1.18.1) Let X/k be a separated k-scheme of finite type, and let N
on X/k be perverse and geometrically irreducible. Its support is a
geometrically irreducible closed subscheme Z of X, inclusion denoted
i: Z ¨ X. There exists a dense affine open set j: U ¨ Z, such that U/k
is smooth and geometrically connected, of some dimension d ≥ 0, and
a lisse ä$…-sheaf ˆ on U, which is geometrically irreducible, such

that N is i*j~*ˆ[dimU]. We define

Ma,b
geom(X, N) := Ma,b

geom(U, ˆ),

M2n
geom(X, N) := M2n

geom(U, ˆ).

This definition is independent of the auxiliary choice of smooth,
geometrically connected dense open set U of Supp(M) on which M is
lisse, thanks to the birational invariance of the quantites

Ma,b
geom(U, ˆ) and M2n

geom(U, ˆ).

((((1111....11119999)))) AAAA ffffuuuunnnnddddaaaammmmeeeennnnttttaaaallll iiiinnnneeeeqqqquuuuaaaalllliiiittttyyyy

TTTThhhheeeeoooorrrreeeemmmm 1111....11119999....1111 Let X/k be smooth and geometrically connected, of
non-negative dimension, and let M on X/k be perverse, and “-mixed
of weight ≤ 0. Write its weight filtration

0 ¨ M≤ -œ ¨ M ¨ Gr0(M) ¨ 0,

for some œ > 0. Let ëM be an abstract trace function which is an

approximate trace function for M. Suppose that Gr0(M) is
geometrically irreducible. Suppose that for some real œ > 0, some
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integer n ≥ 2 and some real numbers ¬ and A2n, we have an

inequality

‡E |ëM|2n ≤ A2n(ùE)
(1-n)¬ + O((ùE)(1-n)¬ - œ/2),

for E/k a variable finite extension. Then we have the following
results.

1) dim(Supp(Gr0(M))) ≥ ¬.

2) If dim(Supp(Gr0(M))) = ¬, then M2n
geom(X, Gr0(M)) ≤ A2n.

pppprrrrooooooooffff Let us put

d := dim(Supp(Gr0(M))).
Take a smooth stratification {Zå} of X which is adapted to all three

objects M≤-œ, M, and Gr0(M). There is precisely one strat Zå which

contains the generic point of Supp(Gr0(M)). Exactly as in Step 2 of
the proof of the Orthogonality Theorem 1.7.2 this strat Zå has

dimension d, it is a dense open set of Supp(Gr0(M)), it is

geometrically connected, and Gr0(M)|Zå is of the form Ì[d] for Ì a

lisse, geometrically irreducible lisse ä$…-sheaf on Zå which is “-pure

of weight -d.
The restriction to Zå of M≤-œ has lisse cohomology sheaves, so

by semiperversity of M≤-œ we have Ó
-i(M≤-œ)|Zå = 0 if i ≤ d-1. So

the possibly nonzero Ó-i(M≤-œ)|Zå all have i ≥ d, and so all are “-

mixed of weight ≤ -d - œ. Thus we have the estimate

|M≤-œ(E, x)| =O((ùE)
(-d-œ)/2).

From the identities

M(E, x) = Gr0(M)(E, x) + M≤-œ(E, x),

ëM(E, x) = M(E, x) + O((ùE)-œ - dim(X)/2)
we see that for x in Zå(E), we have

ëM(E, x) = Gr0(M)(E, x) + O((ùE)(-d-œ)/2).
On Zå, we have

Gr0(M)(E, x) = O((ùE)-d/2).
Thus we have

‡E |ëM|Zå|
2n = ‡E |Gr0(M)|Zå|

2n + O(ùZå(E)(ùE)
(-2nd-œ)/2)

= ‡E |Ì|2n + O((ùE)(1-n)d -œ/2).

We now prove 1). By Lemma 1.16.4, we have the inequality

M2n
geom(Zå, Ì) ≥ 1.

So for an infinity of finite extensions E/k, we get

‡E |Ì|2n ≥ (1/2)≠(ùE)(1-n)d.

So for these E, we get

‡E |ëM|Zå|
2n ≥ (1/2)≠(ùE)(1-n)d + O((ùE)(1-n)d - œ/2),
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and, a fortiori,

‡E |ëM|2n ≥ ‡E |ëM|Zå|
2n

≥ (1/2)≠(ùE)(1-n)d + O((ùE)(1-n)d - œ/2).
From the inequality

‡E |ëM|2n ≤ A2n(ùE)
(1-n)¬ + O((ùE)(1-n)¬ - œ/2),

we retain only

‡E |ëM|2n = O((ùE)(1-n)¬).

Then we have

(ùE)(1-n)d = O((ùE)(1-n)¬)
for an infinity of E, whence (as n ≥ 2) we have d ≥ ¬.
2) If d = ¬, we have

A2n(ùE)
(1-n)d + O((ùE)(1-n)d - œ/2)

≥ ‡E |ëM|2n

≥ ‡E |ëM|Zå|
2n = ‡E |Ì|2n + O((ùE)(1-n)d -œ/2).

Divide through by (ùE)(1-n)d and take the limsup over E. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....11119999....2222 Let X/k be smooth and geometrically connected of
dimension dimX ≥ 0. Let M on X/k be perverse, and “-mixed of
weight ≤ 0. Write its weight filtration

0 ¨ M≤-œ ¨ M ¨ Gr0(M) ¨ 0,

for some œ > 0. Let ëM be an abstract trace function which is an

approximate trace function for M. Suppose that Gr0(M) is
geometrically irreducible. Suppose that for some real œ > 0, some
integer n ≥ 2 and some integer A2n, we have an inequality

‡E |ëM|2n ≤ A2n(ùE)
(1-n)dimX + O((ùE)(1-n)dimX - œ/2),

for E/k a variable finite extension. Then the support of Gr0(M) is X

itself, and M2n
geom(X, Gr0(M)) ≤ A2n.

pppprrrrooooooooffff By part 1) of Theorem 1.19.1, dim(Supp(Gr0(M))) ≥ dimX. As X
is geometrically irreducible, we have equality. Then by part 2) of
Theorem 1.19.1, we have the asserted inequality

M2n
geom(X, Gr0(M)) ≤ A2n. QED

((((1111....22220000)))) HHHHiiiigggghhhheeeerrrr mmmmoooommmmeeeennnntttt eeeessssttttiiiimmmmaaaatttteeeessss ffffoooorrrr TTTTwwwwiiiisssstttt((((LLLL,,,,KKKK,,,,ÏÏÏÏ,,,,hhhh))))
(1.20.1) Recall that for an even integer 2n ≥ 2, 2n~~ is the product

2n~~ := (2n-1)(2n-3)...(1)
of the odd integers in the interval [0, 2n].

HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm 1111....22220000....2222 Suppose we are given standard
input

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)).

Suppose in addition that Gr0(K) is not geometrically constant, and
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that the following three additional hypotheses hold:
1) The perverse sheaf L is Ò[dimV] for some constructible ä$…-sheaf

Ò on V.

2) There exists a closed subscheme W fi !m, inclusion i: W ¨ !m,

such that the perverse sheaf K on !m is i*[dimW] for some some

constructible ä$…-sheaf  on W.

3) We have the inequality dimV + dimW ≥ m+1.

Denote by M the perverse sheaf M := Twist(L,K,Ï,h) on Ï. Denote by
M0 the central normalization of its trace function. For each integer

n ≥ 1 with 2n ≤ d, there exists a real œ > 0 such that we have the
following results.

1) If Gr0(M(dimÏ0/2))ncst is not geometrically self dual, then

‡E |M0(dimÏ0/2)|
2n = (n~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)).

2) If Gr0(M(dimÏ0/2))ncst is geometrically self dual, then

‡E |M0(dimÏ0/2)|
2n = (2n~~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)).

Before giving the proof of the theorem, let us give its main
consequence.

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22220000....3333 In the situation of Theorem 1.20.2, suppose in
addition that d ≥ 4. Then we have the following results concerning
the perverse sheaf M := Twist(L,K,Ï,h) on Ï.

1) The support of Gr0(M(dimÏ0/2))ncst is all of Ï.

2) For any dense open set U fi Ï on which M is lisse, M(dimÏ0/2)|U

is of the form ˜(dimÏ/2)[dimÏ], for a lisse ä$…-sheaf ˜ on U which

is “-mixed of weight ≤ 0. The nonconstant part Gr0(˜)ncst of the

highest weight quotient Gr0(˜) of ˜ as lisse sheaf on U is

geometrically irreducible, and Gr0(˜)ncst[dimÏ] on U is the Tate-

twisted restriction (Gr0(M(dimÏ0/2))ncst|U)(-dimÏ/2).

3) The necessary and sufficient condition (cf. Lemma 1.15.5, part 3))
for the equality

Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst
of perverse sheaves on Ï, namely that

Hc
m((V≠!m)‚äk, pr1

*L‚pr2
*K)

is “-mixed of weight ≤ m - œ, for some œ > 0 is also a necessary and
sufficient condition for the equality

Gr0(˜) = Gr0(˜)ncst
of lisse sheaves on U.
4) Fix n ≥ 1 with 2n ≤ d. We have the moment estimates
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M2n
geom(U, Gr0(˜)ncst) ≤ n~, if Gr0(˜)ncst is not

geometrically self dual on U,

M2n
geom(U, Gr0(˜)ncst) ≤ 2n~~ if Gr0(˜)ncst is

geometrically self dual on U.

5) Fix n ≥ 1 with 2n ≤ d. Suppose that rank(Gr0(˜))ncst ≥ n, and

that Gr0(˜) is not geometrically self dual on U. Then we have

M2n
geom(U, Gr0(˜)ncst) = n~.

6) Fix n ≥ 1 with 2n ≤ d. Suppose that rank(Gr0(˜)ncst) ≥ 2n, and

that Gr0(˜)ncst is geometrically self dual on U. Then we have

M2n
geom(U, Gr0(˜)ncst) = 2n~~.

7) The geometric Frobenius-Schur indicator of Gr0(˜)ncst on U is

given by the product formula

FSIgeom(U, Gr0(˜)ncst)

= (-1)mFSIgeom(V, Gr0(L))FSIgeom(!m, Gr0(K)).

pppprrrrooooooooffff ooooffff CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22220000....3333 1) We have d ≥ 4, so we may take n = 2
in Theorem 1.20.1. Now apply Corollary 1.19.3.
2) On any dense open set U fi Ï on which any perverse sheaf N is
lisse, N|U is of the form ˆ(dimÏ/2)[dimÏ] for a lisse ä$…-sheaf ˆ on

U. If N is “-mixed of weight ≤ 0, then ˆ is “-mixed of weight ≤ 0,

and the highest weight quotient Gr0(ˆ) of ˆ as lisse sheaf on U is

related to the highest weight quotient Gr0(N) of N as perverse sheaf

by Gr0(N)|U = (Gr0(ˆ)[dimÏ])(dimÏ/2). Similarly, the nonconstant

part Gr0(ˆ)ncst of Gr
0(ˆ) as lisse sheaf on U is related to the

nonconstant part Gr0(N)ncst of Gr
0(N) as perverse sheaf by

Gr0(N)ncst|U = (Gr0(ˆ)ncst[dimÏ])(dimÏ/2).

If Gr0(N)ncst is geometrically irreducible and its support is all of Ï,

then Gr0(N)ncst|U is still geometrically irreducible, and hence

Gr0(ˆ)ncst is geometrically irreducible as lisse sheaf on U. Take for N

the perverse sheaf M(dimÏ0/2).

3) Indeed, Gr0(M(dimÏ0/2)), being pure of weight zero, is

geometrically (i.e., on Ï‚käk) semisimple [BBD 5.3.8], so the direct

sum of Gr0(M(dimÏ0/2))ncst and of Gr0(M(dimÏ0/2))cst, the latter

geometrically isomorphic to (a constant sheaf Ì)[dimÏ]. Thus on
Ï‚käk we have

Gr0(M(dimÏ0/2)) ¶ Gr0(M(dimÏ0/2))ncst · Ì[dimÏ].

So on any dense open set U on which M is lisse, we have a direct
sum decomposition of lisse sheaves on U‚käk
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Gr0(˜) = Gr0(˜)ncst · Ì.

Thus we have Gr0(˜) = Gr0(˜)ncst if and only if Ì = 0, if and only

if we have

Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst.

4) Simply apply Corollary 1.19.3.
5) We will reverse the inequality. For any finite-dimensional
representation V of any group G, and any non-negative integers a
and b, we have the a priori inequality

Ma,b(G, V) ≥ Ma,b(GL(V), V).

In characteristic zero, we have
Ma,a(GL(V), V) = a~ if dimV ≥ a.

So if rank(Gr0(˜)ncst) ≥ n, we have

M2n
geom(U, Gr0(˜)ncst) ≥ n~.

6) We reverse the inequality. For any finite-dimensional symplectic
(resp. orthogonal) representation V of any group G, and any non-
negative integers a and b, we have the a priori inequality

Ma,b(G, V) ≥ Ma,b(Sp(V), V),

(resp. Ma,b(G, V) ≥ Ma,b(O(V), V)).

In characteristic zero, we have
Ma,a(Sp(V), V) = Ma,a(O(V), V) = 2a~~ if dimV ≥ 2a.

So if rank(Gr0(˜)ncst) ≥ 2n, and Gr0(˜) is geometrically self dual

(and hence either orthogonally or symplectically self dual), we have

M2n
geom(U, Gr0(˜)ncst) ≥ 2n~~.

7) This is just a rewriting of the already established (cf. Theorem
1.15.6, part 3)) multiplicative formula for the Frobenius-Schur
indicator, namely

FSIgeom(Ï, Gr0(M(dimÏ0/2))ncst)

= ((-1)dimÏ0)≠FSIgeom(!m, Gr0(K))≠FSIgeom(V, Gr0(L)).

Since Gr0(M(dimÏ0/2))ncst has support all of Ï, and FSIgeom does

not see Tate twists, we have

FSIgeom(Ï, Gr0(M(dimÏ0/2))ncst)

:= (-1)dimÏFSIgeom(U, Gr0(˜)ncst(dimÏ/2))

= (-1)dimÏFSIgeom(U, Gr0(˜)ncst). QED

((((1111....22221111)))) PPPPrrrrooooooooffff ooooffff tttthhhheeee HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm 1111....22220000....2222::::
ccccoooommmmbbbbiiiinnnnaaaattttoooorrrriiiiaaaallll pppprrrreeeelllliiiimmmmiiiinnnnaaaarrrriiiieeeessss
(1.21.1) We begin by recalling [Stan-ECI, 3.7.1] a version of the
Moebius inversion formula. Suppose we are given a finite, partially
ordered set P. Then there exists a unique assignment of integers
µ(p, q), one for each pair (p, q) of elements of P with p ≥ q, with the
following property:
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for any abelian group A, and any map g : P ¨ A, if we define a map
f : P ¨ A by the rule

f(p) = ‡q≤p g(q),

then we have the inversion formula
g(p) = ‡q≤p µ(p, q)f(q).

We will not need the precise values of the integers µ(p, q), but we
will make constant use of the fact [Stan-ECI, 3.7] that

µ(p, p) = 1, for all p in P.

(1.21.2) In our application, we fix an integer n ≥ 1, and we
consider the set {1, 2,..., 2n}. The partially ordered set P will be the
set of all partitions ∏ of the set {1, 2,..., 2n}, or, what is the same,
the set of all equivalence relations on the set {1, 2,..., 2n}. Given two
partitions ∏ and Œ of the set {1, 2,..., 2n}, we say that ∏ ≥ Œ if Œ is
a coarsening of ∏ in the sense that each set Œå in the partition Œ is

a union of sets ∏∫ in the partition ∏. In terms of equivalence

relations, ∏ ≥ Œ means that ∏-equivalence implies Œ-equivalence.
(1.21.3) Given a partition (i.e., an equivalence relation) ∏, we
denote by ¬ = ¬(∏) the number of subsets (i.e., the number of
equivalence classes) into which {1, 2,..., 2n} is divided by ∏.

¬ = ¬(∏) := ù∏
We label these subsets ∏1,..., ∏¬ by the following convention: ∏1 is

the subset containing 1, and, if ¬ > 1, ∏2 is the subset containing the

least integer not in ∏1, et cetera (i.e., for 1 ≤ i ≤ ¬-1, ∏i+1 is the

subset containing the least integer not in the union of those ∏j with

j ≤ i). We denote by √ = √(∏) the number of singletons in ∏, i.e., √ is
the number of one-element equivalence classes, or the number of
indices i for which ù∏i = 1.

√ := ù{singletons among the ∏i}.

Each subset ∏i has a "type" (ai, bi) in #≥0≠#≥0, defined by

ai := ù(∏i€{1, 2,..., n}),

bi := ù(∏i€{n+1, n+2,..., 2n}).

Thus we have
√ := ù{i such that ai + bi = 1}.

LLLLeeeemmmmmmmmaaaa 1111....22221111....4444 Let ∏ ≥ ∏' be partitions of the set {1, 2,..., 2n}. Put
¬ = ¬(∏), ¬' := ¬(∏'),
√ = √(∏), √'= √(∏').

Then we have the following inequalities.
1) 2n ≥ 2¬ - √, i.e., ¬ - n - √/2 ≤ 0, with equality if and only if
ù∏i ≤ 2 for all i.

2) ¬ ≥ ¬', with equality if and only if ∏ = ∏'.
3) √ ≥ √'.
4) ¬ - √/2 ≥ ¬' - √'/2, i.e., ¬' - ¬ - (√' - √)/2 ≤ 0.
pppprrrrooooooooffff 1) Since ∏ is a partition of {1, 2,..., 2n}, we have
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2n = ‡i=1 to ¬ ù∏i = √ + ‡i with ù∏i ≥ 2 ù∏i.

There are ¬ - √ indices i for which ù∏i ≥ 2, so we have

√ + ‡i with ù∏i ≥ 2 ù∏i ≥ √ + 2(¬ - √) = 2¬ - √.

Thus 2n ≥ 2¬ - √, with equality if and only if every i with ù∏i ≥ 2

has ù∏i = 2.

2), 3), and 4) Since ∏ ≥ ∏', ∏' is obtained from ∏ by collapsing
together various of the ∏i. So either ∏ = ∏', in which case there is

nothing to prove, or we can pass from ∏ to ∏' through a sequence of
intermediate coarsenings where at each step we collapse precisely
two sets into one.

Thus we may reduce to the case where ∏' is obtained from ∏
by collapsing precisely two sets, say ∏i and ∏j. Thus ¬' is ¬ - 1.

If neither ∏i nor ∏j is a singleton, then √ = √'. In this case,

¬' - √'/2 = ¬ - 1 - √/2 < ¬ - √/2.
If exactly one of ∏i or ∏j is a singleton, then √' = √ - 1. In this

case,
¬' - √'/2 = ¬ -1 - (√-1)/2 = ¬ - 1/2 - √/2 < ¬ - √/2.

If both ∏i and ∏j are singletons, then √' = √ - 2. In this case,

¬' - √'/2 = ¬ -1 - (√-2)/2 = ¬ - √/2. QED

(1.21.5) What do these combinatorics have to do with the Higher
Moment Theorem? To see the relation, we first restate that theorem

in terms of the sums ‡E |M0|
2n, rather than ‡E |M0(dimÏ0/2)|

2n.

HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm bbbbiiiissss 1111....22221111....6666 Hypotheses and notations as
in the Higher Moment Theorem 1.20.2, denote by M the perverse
sheaf M := Twist(L,K,Ï,h) on Ï. Denote by M0 its centrally

normalized trace function. For each integer n ≥ 1 with 2n ≤ d, there
exists a real œ > 0 such that we have

1) ‡E |M0|
2n = (n~)((ùE)dimÏ - nm)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,

2) ‡E |M0|
2n = (2n~~)((ùE)dimÏ - nm)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

(1.21.7) How do we calculate ‡E |M0|
2n? By definition, we have

‡E |M0|
2n := ‡f in Ï(E) |M0(E, f)|

2n

= ‡f in Ï(E) |‡v in V(E) L(E, v)K0(h(v) + f(v))|2n

= ‡f in Ï(E) ‡v1, v2,..., v2n in V(E)

(°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi))

≠(°i=1 to n K0(h(vi) + f(vi)))≠(°i=n+1 to 2n äK0(h(vi) + f(vi)))
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=‡v1, v2,..., v2n in V(E) (°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi))

≠‡f in Ï(E) (°i=1 to n K0(h(vi) + f(vi)))

≠(°i=n+1 to 2n äK0(h(vi) + f(vi))).

(1.21.8) Now fix an outer summand, a 2n-tuple (v1, v2,..., v2n) of

points in V(E). Such an n-tuple determines an equivalence relation
∏ on the index set {1, 2,..., 2n}, by decreeing that two indices i and j
are ∏-equivalent if and only if vi = vj. Thus among v1, v2,..., v2n,

precisely ¬ = ¬(∏) are distinct. For each of the ¬ = ¬(∏) sets ∏i into

which {1, 2,..., 2n} is partitioned, let us denote by v∏i
the common

value of vj for those indices j in ∏i. Denote by (ai, bi) the type of ∏i.

The inner summand may be rewritten as

‡f in Ï(E) (°i=1 to n K0(h(vi) + f(vi)))≠(°i=n+1 to 2n äK0(h(vi) + f(vi)))

=‡f in Ï(E) °i=1 to ¬ (°those j =1 to n in ∏i
K0(h(vj) + f(vj)))

≠(°those j =n+1 to 2n in ∏i
äK0(h(vj) + f(vj)))

=‡f in Ï(E) °i=1 to ¬ (K0(h(v∏i
) + f(v∏i

))ai≠äK0(h(vj) + f(vj))
bi).

(1.21.9) Since ¬ ≤ 2n ≤ d, and (Ï, †) is d-separating, the E-linear
map

(eval(v∏1
),..., eval(v∏¬

)) : Ï(E) ¨ !m(E)¬,

f ÿ (f(v∏1
),..., f(v∏¬

)),

is surjective. So we may continue this rewriting

= ((ùE)dimÏ - ¬m)°i=1 to ¬ (‡a in !m(E) K0(E, a)
ai≠äK0(E, a)

bi)

= ((ùE)dimÏ - ¬m)°i=1 to ¬ (‡E K0
ai≠äK0

bi).

(1.21.10) If we put this back into the entire sum for ‡E |M0|
2n, and

we separate outer summands by the partitions ∏ to which they
give rise, we find

‡E |M0|
2n = ‡∏ ((ùE)dimÏ - ¬m)°i=1 to ¬ (‡E K0

ai≠äK0
bi)

≠‡v1, v2,..., v2n in V(E) of type ∏

(°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi)).

The inner sum we can rewrite as

‡v1, v2,..., v2n in V(E) of type ∏

(°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi))
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= ‡v∏1
, v∏2

,..., v∏¬
all distinct in V(E) °i=1 to ¬ (L(E, v∏i

)ai≠äL(E, v∏i
)bi).

(1.21.11) At this point, the combinatorics enter. For fixed E/k,
consider the ^-valued function of partitions ∏ ÿ g(∏) defined by

g(∏) :=‡v1, v2,..., v2n in V(E) of type ∏

(°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi))

= ‡v∏1
, v∏2

,..., v∏¬
all distinct in V(E) °i=1 to ¬ (L(E, v∏i

)ai≠äL(E, v∏i
)bi).

Its Moebius partner function,
f(∏) := ‡∏' ≤ ∏ g(∏'),

is then given by

f(∏) = ‡v∏1
, v∏2

,..., v∏¬
in V(E) °i=1 to ¬ (L(E, v∏i

)ai≠äL(E, v∏i
)bi)

= °i=1 to ¬ (‡E Lai≠äLbi).

(1.21.12) To go further, it will be convenient to introduce the
following notations. For a partition ∏, with sets ∏i of type (ai, bi) for

i = 1 to ¬ = ¬(∏), we define
SE(∏, L) :=‡v1, v2,..., v2n in V(E) of type ∏

(°i=1 to n L(E, vi))≠(°i=n+1 to 2n äL(E, vi))

= ‡v∏1
, v∏2

,..., v∏¬
all distinct in V(E) °i=1 to ¬ (L(E, v∏i

)ai≠äL(E, v∏i
)bi).

We further define

‡E(∏, L) = °i=1 to ¬ (‡E Lai≠äLbi),

‡E(∏, K0) = °i=1 to ¬ (‡E K0
ai≠äK0

bi).

We have the tautologous relation
‡E(∏, L) = ‡∏'≤∏ SE(∏', L).

Moebius inversion gives
SE(∏, L) = ‡∏' ≤ ∏ µ(∏, ∏')‡E(∏', L)

= ‡E(∏, L) + ‡∏' < ∏ µ(∏, ∏')‡E(∏', L).

The sum ‡E |M0|
2n is given by

‡E |M0|
2n = ‡∏ ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡(∏',∏) with ∏' < ∏ µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

(1.21.13) The Higher Moment Theorem bis 1.21.6 asserts that there
exists a real œ > 0 such that we have the estimate

‡E |M0|
2n = A2n(ùE)

dimÏ - nm)(1 + O((ùE)- œ/2)),

with

A2n := n~, if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,
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A2n := 2n~~, if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

In order to prove this, we will examine in turn each of the
summands. A few will be equal to

(ùE)dimÏ - nm)(1 + O((ùE)- œ/2)),
many will vanish, and all the rest will be

O((ùE)dimÏ - nm -œ/2).

LLLLeeeemmmmmmmmaaaa 1111....22221111....11114444 If ∏ contains a singleton, then ‡E(∏, K0) = 0.

pppprrrrooooooooffff By definition, we have

‡E(∏, K0) = °i=1 to ¬ (‡E K0
ai≠äK0

bi).

If ∏ contains a singleton, one of the factors is either ‡EK0 = 0 or

‡EäK0 = 0. QED

LLLLeeeemmmmmmmmaaaa 1111....22221111....11115555 For any pair of non-negative integers (a, b) with
a+b ≥ 2, we have the estimates

|‡E LaäLb| ≤ ‡E |L|a+b = O((ùE)dim(V)(1 - (a+b)/2)),

|‡E K0
aäK0

b| ≤ ‡E |K0|
a+b = O((ùE)dim(W)(1 - (a+b)/2)).

pppprrrrooooooooffff We know that L is “-mixed of weight ≤ 0. By hypothesis, its

only nonvanishing cohomology group is Ó-dim(V)(L), which is
“-mixed of weight ≤ -dim(V). So we have the estimate

|L(E, v)| = O((ùE)-dim(V)/2).
Hence we have

|L(E, v)aäL(E, v)b| = |L(E, v)|a+b = O((ùE)-(a+b)≠dim(V)/2),

and there are ùV(E) = O((ùE)dim(V)) terms in the sum |‡E LaäLb|.

Similarly, the trace function of K is supported in W, and we have

|K(E, x)| = O((ùE)-dim(W)/2), for x in W(E),

= 0, for x in !m(E) - W(E).

Since dim(W) ≤ dim(!m), and K0 is an approximate trace function

for K, we have

|K0(E, x)| = O((ùE)-dim(W)/2), for x in W(E),

|K0(E, x)| = O((ùE)-m/2), for x in !m(E) - W(E).

Summing separately over W(E) and its complement, we find

|‡E K0
aäK0

b|

= O((ùE)dim(W)(1 - (a+b)/2)) + O((ùE)m(1 - (a+b)/2))

= O((ùE)dim(W)(1 - (a+b)/2)). QED

LLLLeeeemmmmmmmmaaaa 1111....22221111....11116666 For any partition ∏ with no singletons, with
¬ = ¬(∏) the number of equivalence classes, we have the estimates

|‡E(∏, L)| = O((ùE)dim(V)(¬ - n)),

|‡E(∏, K0)| = O((ùE)dim(W)(¬ - n)).
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pppprrrrooooooooffff By definition, we have

|‡E(∏, L)| = °i=1 to ¬ |‡E Lai≠äLbi|.

Each of the ¬ ∏i's has type (ai, bi) with ai + bi ≥ 2, so gives a factor

|‡E Lai≠äLbi| = O((ùE)dim(V)(1 - (ai+bi)/2)),

by the previous lemma. So we get

|‡E(∏, L)| = O((ùE)dim(V)(‡∏i
(1 - (ai+bi)/2))

= O((ùE)dim(V)((¬ - n)).
Similarly for ‡E(∏, K0). QED

(1.21.17) With these lemmas established, we can analyze the
individual summands in

‡E |M0|
2n = ‡∏ ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡(∏',∏) with ∏' < ∏ µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

In view of the vanishing (cf. Lemma 1.21.14) of ‡E(∏, K0) whenever

∏ contains a singleton, we have

‡E |M0|
2n

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡∏ with no singleton ‡∏' < ∏

µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

(1.21.18) We first show that all the summands in the second line,
and many in the first, are negligible with respect to the target

magnitude (ùE)dimÏ - nm.
LLLLeeeemmmmmmmmaaaa 1111....22221111....11119999 Suppose ∏ contains no singleton and ∏' ≤ ∏. If
either ¬(∏) < n or if ∏' < ∏, then we have the estimate

|((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L)|

=O((ùE)dimÏ - nm - 1).
pppprrrrooooooooffff Since ∏' ≤ ∏, we have ¬' := ¬(∏') ≤ ¬ := ¬(∏). By the above
lemma, we have

|((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L)|

= O((ùE)dimÏ - ¬m + dim(V)(¬' - n) + dim(W)(¬ - n)).
The exponent of ùE is

dimÏ - ¬m + dim(V)(¬' - n) + dim(W)(¬ - n)
= dimÏ - ¬m + dim(V)(¬ - n) + dim(W)(¬ - n) -dim(V)(¬ - ¬')

= dimÏ -nm + (n-¬)m+ dim(V)(¬ - n) + dim(W)(¬ - n) -dim(V)(¬ - ¬')
= dimÏ -nm - (n-¬)(dim(V) + dim(W) - m) - dim(V)(¬ - ¬').

Since ∏ has no singletons, we have ¬ ≤ n. By hypothesis, we
have dim(V) + dim(W) - m ≥ 1. Therefore we have

(n-¬)(dim(V) + dim(W) - m) ≥ n - ¬.
Because dim(V) + dim(W) ≥ m+1, we have dim(V) ≥ 1, hence we
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have
dim(V)(¬ - ¬') ≥ ¬ - ¬'.

So we get the asserted estimate if either ¬ > ¬' or if n > ¬. Since we
are given that ∏ ≤ ∏', we have ∏' < ∏ if and only if ¬' < ¬. QED

(1.21.20) At this point, we have

‡E |M0|
2n

= ‡∏ with no singleton and ¬ = n ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ O((ùE)dimÏ - nm - 1).
(1.21.21) The ∏ with no singletons and with ¬=n are precisely the
partitions of {1, 2,..., 2n} into n sets of pairs. For such a partition ∏ of
{1, 2,..., 2n} into n sets of pairs, say ∏1, ∏2,..., ∏n, each ∏i has a

"type", which is either (2, 0), (1, 1), or (0, 2). We denote by h2,0,

h1,1, h0,2 respectively the number of each type:

h2,0 = h2,0(∏) := ù{i such that ∏i is of type (2, 0)},

h1,1 = h1,1(∏) := ù{i such that ∏i is of type (1, 1)},

h0,2 = h0,2(∏) := ù{i such that ∏i is of type (0, 2)}.

We call these the "hodge numbers" of the partition ∏ of {1, 2,..., 2n}
into n sets of pairs.
HHHHooooddddggggeeee SSSSyyyymmmmmmmmeeeettttrrrryyyy LLLLeeeemmmmmmmmaaaa 1111....22221111....22222222 For a partition ∏ of
{1, 2,..., 2n} into n sets of pairs ∏1, ∏2,..., ∏n, its hodge numbers

satisfy h2,0 = h0,2.
pppprrrrooooooooffff We have

n = ù{1, 2,..., n} = ‡i ù(∏i€{1, 2,..., n}) = 2h2,0 + 1h1,1 + 0h0,2,

and
n = ù{n+1, n+2,..., 2n} = ‡i ù(∏i€{n+1, n+2,..., 2n})

= 0h2,0 + 1h1,1 + 2h0,2.

Thus 2h2,0 = n - h1,1 = 2h0,2. QED

LLLLeeeemmmmmmmmaaaa 1111....22221111....22223333 1) Suppose Gr0(M(dimÏ0/2))ncst is geometrically

self dual. Then there exists a real œ > 0 such that for every partition
∏ of {1, 2,..., 2n} into n sets of pairs, we have

((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏, L)

= ((ùE)dimÏ - nm)(1 + O((ùE)-œ/2)).

2) Suppose Gr0(M(dimÏ0/2))ncst is not geometrically self dual. Then

there exists a real œ > 0 such that for a partition ∏ of {1, 2,..., 2n}
into n sets of pairs, we have the following results.

2a) If ∏ is entirely of type (1, 1), i.e., if h2,0 = h0,2 = 0, then

((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏, L)

= ((ùE)dimÏ - nm)(1 + O((ùE)-œ/2)).
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2b) If ∏ is not entirely of type (1, 1), then

|((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏, L)|

= O((ùE)dimÏ - ¬m - œ/2)

pppprrrrooooooooffff By the Standard Input Theorem 1.15.6, Gr0(M(dimÏ0/2))ncst

is geometrically self dual if and only if both Gr0(L) and Gr0(K) are
geometrically self dual. By Corollary 1.8.4 and Lemma 1.12.8, there
exists a real œ > 0 such that

‡E |L|2 = 1 + O((ùE)-œ/2),

‡E |K0|
2 = 1 + O((ùE)-œ/2),

|‡E L2| = 1 + O((ùE)-œ/2), if Gr0(L) is geometrically self dual,

|‡E L2| = O((ùE)-œ/2), if Gr0(L) is not geometrically self dual,

|‡E K0
2| = 1 + O((ùE)-œ/2), if Gr0(K) is geometrically self dual,

|‡E K0
2| = O((ùE)-œ/2), if Gr0(K) is not geometrically self dual.

Now by the definitions of ‡E(∏, K0) and of ‡E(∏, L), we have

‡E(∏, K0) = (‡E K0
2)h

2,0
≠(‡E |K0|

2)h
1,1

≠(‡E äK0
2)h

0,2
,

‡E(∏, L) = (‡E L2)h
2,0

≠(‡E |L|2)h
1,1

≠(‡E äL2)h
0,2

.

By the Hodge Symmetry Lemma 1.21.22, we have

‡E(∏, K0) = |‡E K0
2|2h

2,0
≠(‡E |K0|

2)h
1,1

,

‡E(∏, L) = |‡E L2|2h
2,0

≠(‡E |L|2)h
1,1

.

If Gr0(M(dimÏ0/2))ncst is geometrically self dual, then every

factor in the above products is 1 + O((ùE)-œ/2), so we have

|‡E(∏, K0)||‡E(∏, L)| = 1 + O((ùE)-œ/2),

and 1) is proven.

If Gr0(M(dimÏ0/2))ncst is not geometrically self dual, the

factors ‡E |K0|
2 and ‡E |L|2 are both 1 + O((ùE)-œ/2), but at least one

of the factors |‡E K0
2| or |‡E L2| is O((ùE)-œ/2) and the other is O(1).

So the product |‡E K0
2|≠|‡E L2| is O((ùE)-œ/2). If ∏ is purely of type

(1, 1), these terms do not occur, and we have

‡E(∏, K0)‡E(∏, L) = (‡E |K0|
2)n(‡E |L|2)n = 1 + O((ùE)-œ/2).

But if h2,0 + h0,2 ≥ 1, we get
‡E(∏, K0)‡E(∏, L)

= (|‡E K0
2||‡E L2|)2h

2,0
≠((‡E |K0|

2)(‡E |L|2))h
1,1

=O((ùE)-œ(2h
2,0)/2) = O((ùE)-œ). QED

(1.21.24) At this point, we can conclude the proof of the Higher



76 Chapter 1

Moment Theorem bis 1.21.6, and so also the proof of the Higher

Moment Theorem 1.20.2. If Gr0(M(dimÏ0/2))ncst is not geometrically

self dual, precisely those partitions ∏ of {1, 2,..., 2n} into n sets of
pairs which are entirely of type (1, 1) contribute, each 1, to the
leading term in the moment estimate. Such ∏ are the same as the
bijections π from the set {1, 2,..., n} with the set {n+1, n+2,..., 2n}, the
∏ corresponding to π having ∏i = {i, π(i)}. There are n~ such

bijections, so n~ such ∏. If Gr0(M(dimÏ0/2))ncst is geometrically self

dual, then every partition of {1, 2,..., 2n} into n sets of pairs
contributes, each 1, to the leading term in the moment estimate.
There are 2n~~ such partitions, cf. [Weyl, Section 5 of Chapter V, pp.
147-149], [Ka-LAMM, 2.3.3]. QED for the Higher Moment Theorem.

((((1111....22222222)))) VVVVaaaarrrriiiiaaaattttiiiioooonnnnssss oooonnnn tttthhhheeee HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm
(1.22.1) In this section, we give some variant formulations of the
theorem. In the first, we drop the hypothesis that L be a single
sheaf, placed in suitable degree, but instead require L to be
geometrically irreducible.
HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm----ffffiiiirrrrsssstttt vvvvaaaarrrriiiiaaaannnntttt 1111....22222222....2222 Suppose we are
given standard input

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)).

Suppose in addition that Gr0(K) is not geometrically constant, and
make the following three additional hypotheses:

1) The perverse sheaf L on V is geometrically irreducible, and its
support is all of V.

2) There exists a closed subscheme W fi !m, inclusion i: W ¨ !m,

such that the perverse sheaf K on !m is i*[dimW] for some

constructible ä$…-sheaf  on W.

3) We have the inequalities
dimW ≥ m-1,
dimV + dimW ≥ m + 1.

Denote by M the perverse sheaf M := Twist(L,K,Ï,h) on Ï. Denote by
M0 the central normalization of its trace function. For each integer

n ≥ 1 with 2n ≤ d, there exists a real œ > 0 such that we have

‡E |M0(dimÏ0/2)|
2n = (n~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2))

if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,

and we have

‡E |M0(dimÏ0/2)|
2n = (2n~~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

pppprrrrooooooooffff Exactly as in the proof of the Higher Moment Theorem 1.20.2,
we have
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‡E |M0|
2n

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡∏ with no singleton ‡∏' < ∏

µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

Those terms

((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),

with ∏ a partition of {1, 2,..., 2n} into n pairs, are analyzed as in the
proof of the Higher Moment Theorem 1.20.2.

We will show that every other term is O((ùE)dimÏ - nm - œ/2)
for some œ > 0. For this, we need some lemmas.

LLLLeeeemmmmmmmmaaaa 1111....22222222....3333 For L perverse, geometrically irreducible, and
“-pure of weight 0 on V, with support all of V, we have the following
estimates. For any integer r ≥ 2, and any approximate trace
function ëL for L, we have

‡E |ëL|r = O((ùE)dim(V)(1 - r/2) + (ùE)-r/2).

pppprrrrooooooooffff ooooffff LLLLeeeemmmmmmmmaaaa 1111....22222222....3333 Any irreducible perverse sheaf is a middle
extension. If its support is all of V, its only possibly nonvanishing

cohomology sheaves Ó-i(L) have i in the interval [1, dim(V)], and for
these we have

dim(Supp(Ó-dim(V)(L))) = dim(V),

dim(Supp(Ó-i(L))) ≤ i-1, for for i < dim(V).
So we have

|L(E, v)| = O((ùE)-dim(V)/2) on a set of dim = dim(V),

|L(E, v)| = O((ùE)(1-dim(V))/2) on a set of dim = dim(V)-2,

|L(E, v)| = O((ùE)(2-dim(V))/2) on a set of dim = dim(V)-3,
...

|L(E, v)| = O((ùE)-1/2) on a set of dim = 0.
Since ëL is an approximate trace function for L, we have

ëL(E, v) = L(E, v) + O((ùE)-œ/2-dim(V)/2).
So we have the same estimates for ëL:

|ëL(E, v)| = O((ùE)-dim(V)/2) on a set of dim = dim(V),

|ëL(E, v)| = O((ùE)(1-dim(V))/2) on a set of dim = dim(V)-2,

|ëL(E, v)| = O((ùE)(2-dim(V))/2) on a set of dim = dim(V)-3,
...

|ëL(E, v)| = O((ùE)-1/2) on a set of dim = 0.
So we have

|ëL(E, v)|r = O((ùE)-dim(V)r/2) on a set of dim = dim(V),

|ëL(E, v)|r = O((ùE)(1-dim(V))r/2) on a set of dim = dim(V)-2,
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|ëL(E, v)|r = O((ùE)(2-dim(V))r/2) on a set of dim = dim(V)-3,
...

|ëL(E, v)|r = O((ùE)-r/2) on a set of dim = 0.

So adding up, we find that ‡E |L|r is "big O" of the sum

(ùE)dim(V)(ùE)-dim(V)r/2

+ (ùE)dim(V)-2(ùE)(1-dim(V))r/2

+ (ùE)dim(V)-3(ùE)(2-dim(V))r/2

+...+ (ùE)-r/2.
In this sum, after the first term, the terms are increasing: the
exponents increase by r/2 - 1 at each step. So the sum is "big O" of
the sum of its first and last terms. QED

RRRReeeeffffiiiinnnneeeedddd LLLLeeeemmmmmmmmaaaa 1111....22222222....4444 Let L be perverse, geometrically
irreducible, and “-pure of weight 0 on V, with support all of V. For a
partition ∏ without singletons, define non-negative integers ci as

follows. Each ∏i has a type (ai, bi) with ai + bi ≥ 2: write

ai + bi = 2 + ci.

Then define, for such a partition, subsets T and R of {1,..., ¬} by
T := {i such that ci = 1},

R := {i such that ci ≥ 2}.

Then for ëL any approximate trace function for L, we have the
following estimates.
1) If dimV = 1, then

|‡E(∏, ëL)| = O((ùE)¬-n).

2) If dimV = 2, then we have

|‡E(∏, ëL)| = O((ùE)¬-n - (1/2)ùT - ùR).

3) If dimV ≥ 3, then we have

|‡E(∏, ëL)| = O((ùE)¬-n - ùT - ùR).

pppprrrrooooooooffff If dimV = 1, then L, being perverse irreducible with support
all of V, must be of the form Ò[1] for a constructible ä$…-sheaf Ò on

V, and we simply apply Lemma 1.21.16.
If dim V ≥ 2, then as before we write out the definition,

‡E(∏, ëL) = °i=1 to ¬ (‡E ëLaiëäLbi).

The factors with ai + bi = 2 are O(1), so we can ignore them. We

then apply Lemma 1.22.3 above to each factor with ci ≥ 1. We get

|‡E(∏, ëL)|

= O(°i in T⁄R ((ùE)-cidim(V)/2 + (ùE)-1-ci/2)).

If dim(V) ≥ 3, then for each ci ≥ 1, we have

(ùE)-cidim(V)/2 ≤ (ùE)-1-ci/2,
so we get

‡E(∏, ëL) = O(°i in T⁄R (ùE)-1-ci/2).
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The exponent is
‡i in R⁄T (-1 - ci/2) = ‡i with ù∏i > 2

(-1 - ci/2)

= ‡i (-1 - ci/2) + ù{i with ù∏i = 2}

= (-1/2)‡i (2 + ci) + ¬ - ùT - ùR

= (-1/2)‡i (ai + bi) + ¬ - ùT - ùR

= -n + ¬ - ùT - ùR.
If dim(V) = 2, there is a slight modification. For ci ≥ 2, we still

have

(ùE)-cidim(V)/2 ≤ (ùE)-1-ci/2,
but for ci = 1, we have rather

(ùE)-1-ci/2 = (ùE)-3/2 < (ùE)-1 = (ùE)-cidim(V)/2

So we get
‡E(∏, ëL)

= O((°i in T (ùE)-cidim(V)/2)≠(°i in R (ùE)-1-ci/2)).

Recall now that dim(V) = 2, and that ci = 1 for i in T. Using the

calcuation just above, namely
‡i in R⁄T (-1 - ci/2) = -n + ¬ - ùT - ùR,

we see that the exponent is

- ‡i in T cidim(V)/2 - ‡i in R (1 + ci/2)

= - ‡i in T ci - ‡i in R (1 + ci/2)

= - ‡i in T 1 - ‡i in R (1 + ci/2)

= ‡i in T 1/2 - ‡i in T (1 + ci/2) - ‡i in R (1 + ci/2)

= (1/2)ùT - ‡i in R⁄T (1 + ci/2)

= (1/2)ùT -n + ¬ - ùT - ùR
= -n + ¬ - (1/2)ùT - ùR. QED

Recall from Lemma 1.21.16 that for K we have
LLLLeeeemmmmmmmmaaaa 1111....22222222....5555 For any partition ∏ without singletons, with
¬ = ¬(∏) the number of equivalence classes, we have the estimate

|‡E(∏, K0)| = O((ùE)dimW(¬ - n)).

(1.22.6) We now turn to the final stage of the proof of the
theorem. If dim(V) = 1, then as noted in the Refined Lemma 1.22.4
above, L is Ò[dimV], and our theorem is a special case of the Higher
Moment Theorem 1.20.2. So we may assume that dim(V) ≥ 2. In this
case, for any ∏ with all ù∏i ≥ 2, we have the uniform estimate

|‡E(∏, L)| = O((ùE)¬-n - (1/2)ùT - ùR),

thanks to the Refined Lemma 1.22.4.

LLLLeeeemmmmmmmmaaaa 1111....22222222....7777 Suppose dim(V) ≥ 2. For ∏ > ∏', and ∏ containing no
singleton, we have the estimate
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|((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L)|

= O((ùE)dimÏ - nm - 1/2).

pppprrrrooooooooffff Multiply through by the inverse of (ùE)dimÏ - ¬(∏)m. Put
¬ : = ¬(∏), ¬' := ¬(∏').

We must show that

|‡E(∏, K0)||‡E(∏', L)| = O((ùE)(¬- n)m - 1/2).

In view of the bound

|‡E(∏, K0)| = O((ùE)dimW(¬ - n)),

it suffices to show that

|‡E(∏', L)| = O((ùE)(¬- n)(m - dimW)- 1/2).

Since ∏ contains no singleton, each of its ∏i has type (ai, bi) with

ai + bi ≥ 2. Now ∏' is obtained from ∏ by a sequence of collapsing

together various of the ∏i. So ∏' contains no singletons, and at least

one of the sets ∏'i will have type (a'i, b'i) with a'i + b'i ≥ 4. Thus ∏'

has T'⁄R' nonempty. By the Refined Lemma 1.22.4, we have

|‡E(∏', L)| = O((ùE)¬-n - (1/2)ùT' - ùR').

So it suffices to show that

(ùE)¬-n - (1/2)ùT' - ùR' ≤ (ùE)(¬- n)(m - dimW)- 1/2,
i.e., to show that

¬-n - (1/2)ùT' - ùR' ≤ (¬- n)(m - dimW) - 1/2,
i.e., to show that

(¬-n)(1 + dimW - m) - (1/2)ùT' - ùR' ≤ - 1/2.
This is clear, since

¬ - n ≤ 0 (as ∏ has all ù∏i ≥ 2),

1 + dimW - m ≥ 0, by hypothesis,
T'⁄R' is nonempty. QED

LLLLeeeemmmmmmmmaaaa 1111....22222222....8888 Suppose dim(V) ≥ 2. For ∏ containing no singleton,
and containing some ∏i with ù∏i ≥ 3, we have

|((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)|

= O((ùE)dimÏ - nm - 1/2).
pppprrrrooooooooffff Repeat the above argument, but with ∏ = ∏'. We must show

|‡E(∏, L)| = O((ùE)(¬- n)(m - dimW)- 1/2).

By the Refined Lemma 1.22.4, we have.

|‡E(∏, L)| = O((ùE)¬-n - (1/2)ùT - ùR).

So we reduce to showing that
¬-n - (1/2)ùT - ùR ≤ (¬- n)(m - dimW) - 1/2,

i.e.,
(¬-n)(1 + dimW - m) - (1/2)ùT - ùR ≤ - 1/2.

which now holds because T⁄R is nonempty. QED

These last two lemmas take care of all terms except those of
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the form ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L), for ∏ a partition of

{1, 2,..., 2n} into n sets of pairs. As already remarked above, their
analysis is exactly the same as that given at the end of the proof of
the Higher Moment Theorem 1.20.2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22222222....9999 Hypotheses as in the Higher Moment Theorem-
first variant 1.22.2, suppose d ≥ 4. Then we have all the conclusions
of Corollary 1.20.3
pppprrrrooooooooffff Simply repeat the proof of Corollary 1.20.3. QED

(1.22.10) In the next variant, we drop the hypothesis that K be a
single sheaf, placed in suitable degree, but instead require K to be
geometrically irreducible and geometrically nonconstant.
HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm----sssseeeeccccoooonnnndddd vvvvaaaarrrriiiiaaaannnntttt 1111....22222222....11111111 Suppose we
are given standard input

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)).
Make the following three additional hypotheses.

1) The perverse sheaf L is Ò[dimV] for some constructible ä$…-sheaf

Ò on V.

2) The perverse sheaf K on !m is geometrically irreducible and
geometrically nonconstant, with support denoted W.
3) We have the inequalities

dimV ≥ m-1,
dimV + dimW ≥ m + 1.

Denote by M the perverse sheaf M := Twist(L,K,Ï,h) on Ï. Denote by
M0 the central normalization of its trace function. For each integer

n ≥ 1 with 2n ≤ d, there exists a real œ > 0 such that we have

‡E |M0(dimÏ0/2)|
2n = (n~)(ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2))

if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,

and we have

‡E |M0(dimÏ0/2)|
2n = (2n~~)(ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

pppprrrrooooooooffff The proof is very similar to that of the first variant 1.22.2,
except that the relevant estimates for K0 and L are interchanged.

If dimW ≤ 1, with inclusion i : W ¨ !m, then K is i*[dimW]

for a constructible ä$…-sheaf  on W which is “-mixed of weight

≤ -dimW. So in this case, as we have assumed
dimV + dimW ≥ m + 1,

we reduce to the original Higher Moment Theorem 1.20.2
Suppose now dimW ≥ 2. Then by the Refined Lemma 1.22.4,

applied to K on W, we have

LLLLeeeemmmmmmmmaaaa 1111....22222222....11112222 For K perverse, geometrically irreducible, and
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“-pure of weight 0 on !m, with support W, we have the following
estimates. For any integer r ≥ 2, and any approximate trace
function ëK for K, we have

‡E |ëK|r = O((ùE)dim(W)(1 - r/2) + (ùE)-r/2).

pppprrrrooooooooffff Since ëK is an approximate trace funtion for K on !m, ëK | W is
certainly an approximate trace funtion for K on W. So by Lemma
1.22.3, applied to K | W, we have

‡E |ëK | W|r = O((ùE)dim(W)(1 - r/2) + (ùE)-r/2).

On !m(E) - W(E), ëK(E, x) is O((ùE)-œ/2 - m/2), so we get

‡E |ëK | !m - W|r = O((ùE)m-rœ/2 - rm/2) = O((ùE)m(1-r/2)).

QED

Exactly as in the proof of the Refined Lemma 1.22.4, this
implies
RRRReeeeffffiiiinnnneeeedddd LLLLeeeemmmmmmmmaaaa bbbbiiiissss 1111....22222222....11113333 Suppose K is perverse, geometrically

irreducible, and “-pure of weight 0 on !m, with support W, with
dimW ≥ 2. For a partition ∏ without singletons, define non-negative
integers ci as follows. Each ∏i has a type (ai, bi) with ai + bi ≥ 2:

write
ai + bi = 2 + ci.

Then define, for such a partition, subsets T and R of {1,..., ¬} by
T := {i such that ci = 1}

R := {i such that ci ≥ 2}.

Then for ëK any approximate trace function for K, we have the
following estimates.
1) If dimW = 2, then we have

|‡E(∏, ëK)| = O((ùE)¬-n - (1/2)ùT - ùR).

2) If dimW ≥ 3, then we have

|‡E(∏, ëK)| = O((ùE)¬-n - ùT - ùR).

(1.22.14) We now turn to the proof of the second variant 1.22.11, in
the remaining case dimW ≥ 2. Exactly as in the proof of the Higher
Moment Theorem 1.20.2, we have

‡E |M0|
2n

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡∏ with no singleton ‡∏' < ∏

µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

Those terms

((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),

with ∏ a partition of {1, 2,..., 2n} into n pairs, are analyzed as in the
proof of the Higher Moment Theorem 1.20.2. We will show that
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every other term is O((ùE)dimÏ - nm - 1/2).
(1.22.15) Suppose ∏' ≤ ∏, and write ¬ = ¬(∏), ¬' = ¬'(∏). Is

((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏', L)

= O((ùE)dimÏ - nm - 1/2),
i.e., is

‡E(∏, K0)‡E(∏', L) = O((ùE)(¬- n)m - 1/2)?

Plug in the estimates

‡E(∏, K0) = O((ùE)¬-n - (1/2)ùT - ùR),

‡E(∏', L) = O((ùE)dimV(¬'-n).

The answer is certainly yes if

((ùE)¬-n - (1/2)ùT - ùR)(ùE)dimV(¬'-n)

= O((ùE)(¬- n)m - 1/2),
i.e., if (since every quantity is either an integer or a half integer)

¬-n - (1/2)ùT - ùR + dimV(¬'-n) < (¬- n)m,
i.e., if

(¬ - n)(1 + dimV - m) + (¬' - ¬)dimV < (1/2)ùT + ùR.
The key point is that both ¬ - n and ¬' - ¬ are ≤ 0, while by
hypothesis we have

1 + dimV - m ≥ 0,
dimV ≥ m+1 - dim(W) ≥ 1.

So in all cases the left hand side is ≤ 0 and the right hand side is ≥ 0.
If ∏' < ∏, then ¬ - ¬' ≥ 1, so the left hand side is ≤ -dimV ≤ -1. If
∏' = ∏ but if ∏, which has no singletons, is not a partition into n
pairs, then T⁄R is nonempty, so the right hand side is strictly
positive. So in both of these cases, we have the desired strict
inequality.
(1.22.16) This takes care of all terms except those of the form

((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),

for ∏ a partition of {1, 2,..., 2n} into n sets of pairs. Their analysis is
exactly the same as that given at the end of the proof of the Higher
Moment Theorem 1.20.2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22222222....11117777 Hypotheses as in the Higher Moment second
variant 1.22.11, suppose d ≥ 4. Then we have all the conclusions of
Corollary 1.20.3
pppprrrrooooooooffff Simply repeat the proof of Corollary 1.20.3. QED

(1.22.18) In the next variant, we drop the hypothesis that L or K
be a single sheaf, placed in suitable degree, but instead require L to
be geometrically irreducible, and require K to be geometrically
irreducible and geometrically nonconstant.
HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm----tttthhhhiiiirrrrdddd vvvvaaaarrrriiiiaaaannnntttt 1111....22222222....11119999 Suppose we are
given standard input

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)).
Make the following three additional hypotheses.
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1) The perverse sheaf L on V is geometrically irreducible, and its
support is all of V.

2) The perverse sheaf K on !m is geometrically irreducible and
geometrically nonconstant, with support denoted W.
3) We have the inequalities

m ≤ 2,
dimW ≥ m-1,
dimV + dimW ≥ m + 1.

Denote by M the perverse sheaf M := Twist(L,K,Ï,h) on Ï. Denote by
M0 the central normalization of its trace function. For each integer

n ≥ 1 with 2n ≤ d, there exists a real œ > 0 such that we have

‡E |M0(dimÏ0/2)|
2n = (n~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2))

if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,

and we have

‡E |M0(dimÏ0/2)|
2n = (2n~~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

pppprrrrooooooooffff If m = 1, then dimW ≤ 1, so K is i*[dimW] for a constructible

ä$…-sheaf  on W which is “-mixed of weight ≤ -dimW. So this case

is a special case of the first variant 1.22.2.
Suppose now that m=2. If dimW ≤ 1, then K is i*[dimW] for a

constructible ä$…-sheaf  on W which is “-mixed of weight ≤ -dimW.

Once again we have a special case of the first variant 1.22.2 We
cannot have dimW = 0, because by hypothesis dimW ≥ m-1.

It remains to treat the case where m=2 and W = !2. From the
inequality dimV + dimW ≥ m + 1, we find dimV ≥ 1. If dimV = 1,
then L is Ò[dimV] for a constructible ä$…-sheaf Ò on V which is “-

mixed of weight ≤ -dimV. The inequality dimV ≥ m-1 trivially holds,
so we have a special case of the second variant 1.22.11.

It remains now to treat the case m = 2 = dimW, and dimV ≥ 2.
In this case, for any ∏with no singletons, we have the inequalities

|‡E(∏, K0)| = O((ùE)¬-n - (1/2)ùT - ùR),

|‡E(∏, L)| = O((ùE)¬-n - (1/2)ùT - ùR),

thanks to the Refined Lemma bis 1.22.13, applied to both K and L.
Exactly as in the proof of the Higher Moment Theorem 1.20.2,

we have

‡E |M0|
2n

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡∏ with no singleton ‡∏' < ∏

µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

Those terms
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((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),

with ∏ a partition of {1, 2,..., 2n} into n pairs, are analyzed as in the
proof of the Higher Moment Theorem 1.20.2. We will show that

every other term is O((ùE)dimÏ - nm - 1/2).
Suppose ∏' ≤ ∏, and write ¬ = ¬(∏), ¬' = ¬'(∏). If ∏' < ∏, then

¬' < ¬. If ∏ = ∏' but ∏ is not a partition into n pairs, then T⁄R is
nonempty. We will show that in both of these cases, we have

((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏', L)

= O((ùE)dimÏ - nm - 1/2),
i.e., we have

‡E(∏, K0)‡E(∏', L) = O((ùE)(¬- n)m - 1/2).

Plug in the estimates

‡E(∏, K0) = O((ùE)¬-n - (1/2)ùT - ùR),

‡E(∏', L) = O((ùE)¬'-n - (1/2)ùT' - ùR').

It suffices to show that
¬-n - (1/2)ùT - ùR + ¬'-n - (1/2)ùT' - ùR' < (¬- n)m,

i.e., that
(¬-n)2 + ¬'-¬ - (1/2)ùT - ùR - (1/2)ùT' - ùR' < (¬- n)2,

i.e., that
-(¬-¬') - (1/2)ùT - ùR - (1/2)ùT' - ùR' < 0,

i.e., that
(¬-¬') + (1/2)ùT + ùR + (1/2)ùT' + ùR' > 0.

This visibly holds if either ¬' < ¬ or if T⁄R is nonempty.
This takes care of all terms except those of the form

((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),
for ∏ a partition of {1, 2,..., 2n} into n sets of pairs. Their analysis is,
as noted above, exactly the same as that given at the end of the
proof of the Higher Moment Theorem 1.20.2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22222222....22220000 Hypotheses as in the Higher Moment Theorem-
third variant 1.22.19, suppose d ≥. 4. Then we have all the
conclusions of Corollary 1.20.3.
pppprrrrooooooooffff Simply repeat the proof of Corollary 1.20.3. QED

(1.22.21) Here is another version, where we allow m=3 in the
previous variant, but where we only get the second and fourth
moments.
HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm----ffffoooouuuurrrrtttthhhh vvvvaaaarrrriiiiaaaannnntttt 1111....22222222....22222222 Suppose we
are given standard input

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †)).
which satisfies the following three additional hypotheses.

1) The perverse sheaf L on V is geometrically irreducible, and its
support is all of V.

2) The perverse sheaf K on !m is geometrically irreducible and
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geometrically nonconstant, with support denoted W.
3) We have the inequalities

d ≥ 4,
m ≤ 3,
dimV + dimW ≥ m + 1,
dim(W) ≥ m - 1,
dim(V) ≥ m - 1.

Denote by M the perverse sheaf M := Twist(L,K,Ï,h) on Ï. Denote by
M0 the central normalization of its trace function. For each integer

n ≥ 1 with 2n ≤ 4, i.e., for n =1 or 2, there exists a real œ > 0 such
that we have

‡E |M0(dimÏ0/2)|
2n = (n~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2))

if Gr0(M(dimÏ0/2))ncst is not geometrically self dual,

and we have

‡E |M0(dimÏ0/2)|
2n = (2n~~)((ùE)(1-n)dimÏ)(1 + O((ùE)- œ/2)),

if Gr0(M(dimÏ0/2))ncst is geometrically self dual.

pppprrrrooooooooffff If m ≤ 2, this is a special case of the third variant 1.22.19.
Suppose now that m = 3. Then dimV ≥ 2 and dimW ≥ 2. In this case,
for any ∏ with no singletons, we have the inequalities

|‡E(∏, K0)| = O((ùE)¬-n - (1/2)ùT - ùR),

|‡E(∏, L)| = O((ùE)¬-n - (1/2)ùT - ùR),

thanks to the Refined Lemma bis 1.22.13, applied to both K and L.
Exactly as in the proof of the Higher Moment Theorem 1.20.2

we have

‡E |M0|
2n

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)SE(∏, L)

= ‡∏ with no singleton ((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L)

+ ‡∏ with no singleton ‡∏' < ∏

µ(∏, ∏')((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏', L).

Those terms

((ùE)dimÏ - ¬(∏)m)‡E(∏, K0)‡E(∏, L),

with ∏ a partition of {1, 2,..., 2n} into n pairs, are analyzed as in the
proof of the Higher Moment Theorem 1.20.2. We will show that

every other term is O((ùE)dimÏ - nm - 1/2). If n=1, there are no
other terms: there is only one partition ∏ of {1, 2} with no
singletons. For n=2, we argue as follows.

Suppose ∏' ≤ ∏, and write ¬ = ¬(∏), ¬' = ¬'(∏). If ∏' < ∏, then
¬' < ¬. If ∏ = ∏' but ∏ is not a partition into n pairs, then T⁄R is
nonempty. We will show that in both of these cases, we have

((ùE)dimÏ - ¬m)‡E(∏, K0)‡E(∏', L)

= O((ùE)dimÏ - nm - 1/2).
Exactly as in the proof of the third variant 1.22.19, it suffices to
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show that
¬-n - (1/2)ùT - ùR + ¬'-n - (1/2)ùT' - ùR' < (¬- n)m,

i.e., that
(¬-n)2 + ¬'-¬ - (1/2)ùT - ùR - (1/2)ùT' - ùR' < (¬- n)3,

i.e., that
n-¬ < (¬-¬') + (1/2)ùT + ùR + (1/2)ùT' + ùR'.

As n=2, then either ¬ = 2 and the inequality holds if either ¬ > ¬' or
if T⁄R is nonempty, or ¬ = 1. In this ¬ = 1 case, ∏ is the one set
partition of {1, 2, 3,4}, which has type (a, b) = (2, 2) and
c (:= a+b-2) =2. Thus T is empty, and R has one element.
Furthermore, ∏' = ∏ in this case, so T' is empty and R' has one
element. So the inequality we need reduces to

1 < 0 + 0 + 1 + 0 + 1,
which indeed holds. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 1111....22222222....22223333 Hypotheses as in the Higher Moment Theorem-
fourth variant 1.22.22, we have all the conclusions of the d=4 case of
Corollary 1.20.3.
pppprrrrooooooooffff Simply repeat the proof of Corollary 1.20.3. QED

((((1111....22223333)))) CCCCoooouuuunnnntttteeeerrrreeeexxxxaaaammmmpppplllleeeessss
(1.23.1) In this section, we give examples to show that the
dimension hypothesis,

dim(V) + dim(W) ≥ m+1,
in the higher moment theorem 1.20.2 and in its variants 1.22.2,
1.22.11, 1.22.19, and 1.22.22, is essential. We fix a nontrivial ä$…-

valued additive character ¥ of k, and form the Artin-Schreier sheaf

Ò¥ on !1. The object Ò¥[1](1/2) on !1 is perverse, geometrically

irreducible, “-pure of weight zero, and Hc
*(!1‚käk,Ò¥[1](1/2)) = 0.

For any finite extension E/k, we denote by ¥E : E ¨ ä$…
≠ the

nontrivial additive character ¥E := ¥«TraceE/k. On any !m, the

object
Ò¥(x1 + x2 + ... + xm)[m](m/2)

is perverse, geometrically irreducible, “-pure of weight zero, and

Hc
*(!m‚käk, Ò¥(x1 + x2 + ... + xm)[m](m/2)) = 0. We denote by ∂0

the perverse sheaf on !m which is the constant sheaf at the origin,
extended by zero.
FFFFiiiirrrrsssstttt eeeexxxxaaaammmmpppplllleeee 1111....22223333....2222 For the first example we take as data

m ≥ 1 arbitrary,

K = ∂0 on !m,

V = !m,

h : V = !m ¨ !m the constant map zero.
L = ä$…[m](m/2) on V,
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d ≥ 4,
(Ï, †) := (all maps f = (f1,..., fm) with each fi an arbitrary

polynomial in m variables of degree ≤ d-1, the inclusion).

In this example, K and L are both perverse, geometrically
irreducible, and “-pure of weight zero. What about cohomology of K

and L? The group Hc
*(!m‚käk, K) = Hc

*(!m‚käk, ∂0) is ä$…, placed

in degree 0, and

Hic((V≠!
m)‚äk, pr1

*L‚pr2
*K) = Hic(V‚käk, L)

= Hic(!
m‚käk, ä$…[m](m/2)) = ä$…(-m/2), for i = m,

= 0, for i ± m.
So we have standard input, but we violate the dimension inequality

dim(V) + dim(W) ≥ m+1.
Let us see what the object M := Twist(L,K,Ï,h) looks like. Consider
the dense open set U of Ï consisting of those f = (f1,..., fm) such that

the equations f1 = f2 = ... = fm = 0 define a closed subscheme Zf of

!m which is finite etale over the base of degree (d-1)m. In !m≠U,
define Z to be the closed subscheme of those points (v, f) where f(v)

= 0, inclusion denoted i : Z ¨ !m≠U. Thus we have a diagram
i pr1

Z ¨ !m≠U ¨ !m

πp d pr2
U.

Then π*ä$… is lisse on U of rank (d-1)m, and M|U is

(π*ä$…)[dimÏ](m/2).

Thus M(dimÏ0/2)|U is “-pure of weight zero. The nonconstant part

(π*ä$…)ncst can be described as either the quotient of π*ä$… by the

constant sheaf it contains by adjunction, or as the kernel of the
trace map for the finite etale morphism π,

Traceπ : π*ä$… ¨ ä$….

By the Standard Input Theorem 1.15.6, (π*ä$…)ncst is geometrically

irreducible, and orthogonally self dual, of rank (d-1)m - 1. Because
d ≥ 4, the family (Ï, †) is 4-separating. So if the conclusions of the
Higher Moment Theorem 1.20.2 and its Corollary 1.20.3 held here,

we would find that, for (d-1)m - 1 ≥ 4, the fourth moment of
(π*ä$…)ncst is 3. But this is false, because π1(U‚käk) acts on

(π*ä$…)ncst through what is a priori a subgroup (though in fact it is

well known to be the entire group) of the symmetric group SN,

N = (d-1)m - 1, acting in the (N-1)-dimensional irreducible
subrepresentation AugN-1 of its tautological N-dimensional

representation. One knows [Ka-LAMM, 2.4.3] that
M4(SN, AugN-1) = 4, for all N ≥ 4.
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Since a smaller group has larger moments, the fourth moment of
(π*ä$…)ncst is at least 4. Thus the dimension hypothesis cannot be

dropped in the Higher Moment Theorem 1.20.2.

SSSSeeeeccccoooonnnndddd eeeexxxxaaaammmmpppplllleeee 1111....22223333....3333 For the second example, we take as input
the data

(m ≥ 1, K, V, h, L, d ≥ 2, (Ï, †))
as follows:

m ≥ 1 arbitrary,

K = ∂0 on !m,

V = !m,

h : V = !m ¨ !m the constant map zero,

L = Ò¥(x1 + x2 + ... + xm)[m](m/2) on V = !m,

d ≥ 5,
(Ï, †) := (all maps f = (f1,..., fm) with each fi an arbitrary

polynomial in m variables of degree ≤ d-1, the inclusion).

This is standard input, because Hc
*(!m‚käk, ∂0) is ä$…, placed

in degree 0, and Hc
*(!m‚käk, L) = 0. From this vanishing, we get

Hc
*((V≠!m)‚äk, pr1

*L‚pr2
*K) = 0,

by Kunneth. So we have M(dimÏ0/2) = M(dimÏ0/2)ncst0, and

hence Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst.

Once again, all the hypotheses of the Higher Moment Theorem
1.20.2 are satisfied eeeexxxxcccceeeepppptttt for the dimension inequality

dim(V) + dim(W) ≥ m+1.
For M := Twist(L,K,Ï,h), its trace function is

M(E, f) = ((-1)dimÏ0)‡v in V(E) L(E, v)K(E, h(v) + f(v))

=((-1)dimÏ0)‡v in V(E) = !m(E) (-1)
m¥E(‡i vi)(ùE)

-m/2∂0(f(v))

= (-1)dimÏ(ùE)-m/2‡v in !m(E) with f(v) = 0 ¥E(‡i vi).

The perverse sheaf M is lisse on the dense open set U fi Ï given in
the previous example. On U, M(dimÏ0/2)|U is ˜(dimÏ/2)[dimÏ], for

˜ the lisse sheaf on U, of rank (d-1)m and “-pure of weight zero,
whose trace function is

˜(E, f) = ‡v in !m(E) with f(v) = 0 ¥E(‡i vi).

So ˜ = ˜ncst is geometrically irreducible, by the Standard Input

Theorem 1.15.6.
The key point is that the lisse sheaf ˜ is monomial, i.e.,

induced as a representation of π1(U‚käk) from a lisse sheaf of rank

one on a finite etale covering of U of degree (d-1)m. Indeed, in

!m≠U, define Z to be the closed subscheme of those points (v, f)
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where f(v) = 0, inclusion denoted i : Z ¨ !m≠U. Thus we have a
diagram

i pr1

Z ¨ !m≠U ¨ !m

πp d pr2
U.

On Z, we have the lisse rank one sheaf

ˆ := i*pr1
*Ò¥(x1 + x2 + ... + xm).

The map π makes Z a finite etale covering of degree (d-1)m, and ˜
is just π*ˆ. Now ˆ, being of finite order char(k) on Z, certainly has

finite geometric monodromy. Therefore ˜ on U has finite geometric
monodromy, and its monodromy is induced, i.e., not primitive. This
is a contradiction, as follows.

Suppose first that char(k) is odd. Then K is geometrically self
dual, but L is not. So ˜ is not geometrically self dual. If the Higher
Moment Theorem 1.20.2 held, then ˜, which has rank

(d-1)m ≥ 4m ≥ 2,

would have M4
geom(U, ˜) = 2. But for a finite-dimensional

representation
® : G ¨ GL(V)

in characteristic zero with finite image, M4(G, V) = 2 forces the

representation to be primitive, cf. [Ka-LAMM, 1.3.2].
Suppose next that char(k) is 2. Then both K and L are

geometrically self dual, so ˜ is geometrically self dual, in fact
orthogonally self dual. If the Higher Moment Theorem 1.20.2 held,

then ˜, whose rank is (d-1)m ≥ 4m ≥ 4, would have

M4
geom(U, ˜) = 3. But for a finite-dimensional representation

® : G ¨ O(V)
in characteristic zero with finite image and dim(V) ≥ 3,
M4(G, V) = 3 forces the representation to be primitive, cf. [Ka-

LAMM, 1.3.2].
TTTThhhhiiiirrrrdddd eeeexxxxaaaammmmpppplllleeee 1111....22223333....4444 In this example, we take as input

m ≥ 2 arbitrary,
K = Ò¥(x1)[1](1/2)‚∂0(x2)‚∂0(x3)‚...‚∂0(xm) on !m,

V = !m-1,

h : V = !m-1 ¨ !m the constant map zero,

L = ä$…[m-1]((m-1)/2) on V = !m-1,

d ≥ 5,
(Ï, †) := (all maps f = (f1,..., fm) with each fi an arbitrary

polynomial in m-1 variables of degree ≤ d-1, the inclusion).

In this example, we have Hc
*(!m‚käk, K) = 0, so we have

standard input, and we have
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Hc
*((V≠!m)‚äk, pr1

*L‚pr2
*K) = 0.

So Gr0(M(dimÏ0/2)) = Gr0(M(dimÏ0/2))ncst. Once again, all the

hypotheses of the Higher Moment Theorem 1.20.2 are satisfied,
eeeexxxxcccceeeepppptttt for the dimension inequality

dim(V) + dim(W) ≥ m+1.
And if we take m=2, then all the hypotheses of all the variants of
the Higher Moment Theorem are satisfied, except for the same
dimension inequality.

Consider the dense open set U fi Ï consisting of those
f = (f1,..., fm) such that the equations f2 = ... = fm = 0 define a closed

subscheme of !m-1 which is finite etale of degree (d-1)m-1. Then
M(dimÏ0/2)|U is ˜(dimÏ/2)[dimÏ], for ˜ the lisse sheaf on U, of

rank (d-1)m-1 and “-pure of weight zero, whose trace function is
˜(E, f) = ‡v in !m-1(E) with f2(v) = f3(v) = ... = fm(v) = 0 ¥E(f1(v)).

Just as in the previous example, the lisse sheaf ˜ is monomial, and
we arrive at the same contradiction concerning the fourth moment.
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CCCChhhhaaaapppptttteeeerrrr 2222:::: HHHHoooowwww ttttoooo aaaappppppppllllyyyy tttthhhheeee rrrreeeessssuuuullllttttssss

ooooffff CCCChhhhaaaapppptttteeeerrrr 1111

((((2222....1111)))) HHHHoooowwww ttttoooo aaaappppppppllllyyyy tttthhhheeee HHHHiiiigggghhhheeeerrrr MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm
(2.1.1) When we apply the Higher Moment Theorem 1.20.2, or
one of its variants, in a situation with d ≥ 4, its output is a perverse
sheaf M on the affine space Ï about which, by Corollary 1.20.3 or
one of its variants, we have the following information:
(2.1.1.1) M(dimÏ0/2) is “-mixed of weight ≤ 0,

(2.1.1.2) The support of Gr0(M(dimÏ0/2))ncst is all of Ï,

(2.1.1.3) For any dense open set U fi Ï on which M is lisse,
M(dimÏ0/2)|U is of the form ˜(dimÏ/2)[dimÏ], for a lisse ä$…-sheaf

˜ on U which is “-mixed of weight ≤ 0.

(2.1.1.4) The nonconstant part Gr0(˜)ncst of the highest weight

quotient Gr0(˜) of ˜ as lisse sheaf on U is geometrically irreducible.
(2.1.1.5) We know a necessary and sufficient condition for the
equality

Gr0(˜) = Gr0(˜)ncst
of lisse sheaves on U, namely that

Hc
m((V≠!m)‚äk, pr1

*L‚pr2
*K)

is “-mixed of weight ≤ m - œ, for some œ > 0. More precisely, we

know that Gr0(˜)cst is the constant sheaf

Hc
m((V≠!m)‚äk, pr1

*L‚pr2
*K)wt=m(m/2).

(2.1.1.6) We know the Frobenius-Schur indicator

FSIgeom(U, Gr0(˜)ncst).

(2.1.1.7) We know that if both Gr0(K) and Gr0(L) are arithmetically

self dual as perverse sheaves on !m and V respectively, then

Gr0(˜)ncst) is arithmetically self dual as a lisse sheaf on U.

(2.1.1.8) We know that if Gr0(˜)ncst is not geometrically self dual,

then for any n ≥ 1 with 2n ≤ d, we have the inequality

M2n
geom(U, Gr0(˜)ncst) ≤ n~,

with equality if rank(Gr0(˜)ncst) ≥ n. In particular, if Gr0(˜)ncst is

not geometrically self dual, and if rank(Gr0(˜)ncst) ≥ 2, then

M4
geom(U, Gr0(˜)ncst) = 2.

(2.1.1.9) We know that if Gr0(˜)ncst is geometrically self dual, then

for any n ≥ 1 with 2n ≤ d, we have the inequality
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M2n
geom(U, Gr0(˜)ncst) ≤ 2n~~,

with equality if rank(Gr0(˜)ncst) ≥ 2n. In particular, if Gr0(˜)ncst

is geometrically self dual, and if rank(Gr0(˜)ncst) ≥ 4, then

M4
geom(U, Gr0(˜)ncst) = 3.

[This equality M4
geom(U, Gr0(˜)ncst) = 3 also holds if Gr0(˜)ncst is

geometrically self dual with an orthogonal autoduality, and

rank(Gr0(˜)ncst) = 2 or 3: one checks by hand that

M4(O(2), std2) = M4(O(3), std3) = 3.]

RRRReeeemmmmaaaarrrrkkkk 2222....1111....1111....9999....1111 Indeed, according to [Rains, 3.4], we have
M2n(O(r), stdr) = 2n~~ if r ≥ n. This result of Rains clarifies a question

raised by Weyl, who notes that this equality holds for r ≥ 2n but
fails for r < n, cf. [Weyl, page 149, lines 8-13].

(2.1.2) What conclusions can we draw about the geometric

monodromy of Gr0(˜)ncst? Let us denote by Ggeom the Zariski

closure of the image of π1(U‚käk) in the ä$…-representation V given

by Gr0(˜)ncst. Because Gr
0(˜)ncst is “-pure of weight zero, we

know [De-Weil II, 1.3.9 and 3.4.1 (iii)] that Ggeom is a semisimple (by

which we mean that its identity component Ggeom
0 is semisimple),

not necessarily connected, subgroup of GL(V).

For Gr0(˜)ncst of very low rank, there are very few

possibilities. For Gr0(˜)ncst of rank one, Ggeom must be finite, as

GL(1) has no nontrivial connected semisimple subgroups. For

Gr0(˜)ncst of rank two, Ggeom must either be finite or contain

SL(2), because SL(2) is the unique nontrivial connected semisimple

subgroup of GL(2). For Gr0(˜)ncst of rank three and, geometrically,

orthogonally self dual, Ggeom must be either finite or SO(3) or O(3),

because these are the only semisimple subgroups of O(3).

((((2222....2222)))) LLLLaaaarrrrsssseeeennnn''''ssss AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee
(2.2.1) To go further, we use the following remarkable result of
Larsen, which we apply, after embedding ä$… into ^ via “, to the

group G = Ggeom acting on V.

TTTThhhheeeeoooorrrreeeemmmm 2222....2222....2222 ((((LLLLaaaarrrrsssseeeennnn''''ssss AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee, cf. [Lar-Char], [Lar-
Normal], [Ka-LFM, page 113], [Ka-LAMM, 1.1.6]) Let V be a ^-vector
space of dimension N ≥ 2, G fi GL(V) a (not necessarily connected)
Zariski closed reductive subgroup of GL(V).
0) If M4(G, V) ≤ 5, then V is G-irreducible.

1) If M4(G, V) = 2, then either G fl SL(V), or G/(G€scalars) is finite. If
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in addition G€scalars is finite (e.g., if G is semisimple), then either

G0 = SL(V), or G is finite.
2) Suppose <,> is a nondegenerate symmetric bilinear form on V, and
suppose G lies in the orthogonal group O(V) := Aut(V, <,>). If
M4(G, V) = 3, then either G = O(V), or G = SO(V), or G is finite. If

dim(V) is 2 or 4, then G is not contained in SO(V).
3) Suppose <,> is a nondegenerate alternating bilinear form on V
(such a form exists only if dim(V) is even), suppose G lies in the
symplectic group Sp(V) := Aut(V, <,>), and suppose dim(V) > 2. If
M4(G, V) = 3, then either G = Sp(V), or G is finite.

(2.2.3) So when we apply the Higher Moment Theorem 1.20.2, or
one of its variants, in a situation with d ≥ 4, we have the following
possibilities for the group Ggeom for the ä$…-representation V of

π1(U‚käk) given by Gr0(˜)ncst.

(2.2.3.1) If Gr0(˜)ncst is not geometrically self dual, and of rank at

least 2, then either Ggeom is finite, or Ggeom contains SL(V). [For

dim(V) = 1, Ggeom is finite, being a semisimple subgroup of GL(1).]

(2.2.3.2) If Gr0(˜)ncst is, geometrically, symplectically self dual of

rank at least 4, then either Ggeom is finite, or Ggeom = Sp(V). [If

dim(V) = 2, it is also true that Ggeom is either finite or Sp(V), just

by the paucity of choice of semisimple subgroups of Sp(V) = SL(2).]

(2.2.3.3) If Gr0(˜)ncst is, geometrically, orthogonally self dual of

rank at least 3, then either Ggeom is finite, or Ggeom = SO(V), or

Ggeom = O(V). [If dim(V) ≤ 2, then Ggeom is finite, because O(1) is

{_1}, and because in O(2) the only semisimple subgroups are finite.]

(2.2.4.) The upshot of this is that whenever in 2.2.3 above we can
also show that Ggeom is not finite, then we have very nearly

determined Ggeom:

(2.2.4.1) If Gr0(˜)ncst is not geometrically self dual, and if Ggeom
is not finite, then Ggeom contain SL(V). We have "only" to compute

the determinant of our representation to know Ggeom exactly.

(2.2.4.2) If Gr0(˜)ncst is, geometrically, symplectically self dual,

and if Ggeom is not finite (for instance because it contains a

unipotent element A ± 1), then Ggeom is Sp(V), cf. [Ka-LAMM, 1.4.7].

(2.2.4.3) If Gr0(˜)ncst is, geometrically, orthogonally self dual, and

if Ggeom is not finite, then Ggeom is SO(V) or O(V), and we have

"only" to compute the determinant of our representation to know
Ggeom exactly.
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((((2222....3333)))) LLLLaaaarrrrsssseeeennnn''''ssss EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee
(2.3.1) How can we analyze the question of whether Ggeom is

finite? There is a remarkable (unpublished~) conjecture of Larsen,
according to which we can detect a finite Ggeom just by knowing its

second, fourth, sixth, and eighth absolute moments.

EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....3333....2222 ((((LLLLaaaarrrrsssseeeennnn)))) Let V be a ^-vector
space of dimension N ≥ 8, G one of the groups GL(V), O(V), or, if N is
even, Sp(V). Let Æ be a finite subgroup of G. Then we have a strict
inequality

‡k=1 to 4 M2k(Æ, V) > ‡k=1 to 4 M2k(G, V).

(2.3.2.1) Since we have the a priori inequality
M2k(Æ, V) ≥ M2k(G, V)

for every k, an equivalent formulation is this.

EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....3333....2222....2222 ((((==== 2222....3333....2222 bbbbiiiissss)))) ((((LLLLaaaarrrrsssseeeennnn)))) Let V
be a ^-vector space of dimension N ≥ 8. If Æ is a finite subgroup of G,
for G one of the groups GL(V), O(V), or, if N is even, Sp(V), then for
some k in {1, 2, 3, 4}, we have M2k(Æ, V) > M2k(G, V).

((((2222....4444)))) RRRReeeemmmmaaaarrrrkkkkssss oooonnnn LLLLaaaarrrrsssseeeennnn''''ssss EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee
(2.4.1) We could "abstract" the substance of Larsen's Conjecture by
saying that a reductive subgroup G of GL(V), V any finite-
dimensional ^-vector space, "has the Larsen Eighth Moment
property", if it is true that for any finite subgroup Æ of G, we have a
strict inequality

‡k=1 to 4 M2k(Æ, V) > ‡k=1 to 4 M2k(G, V).

The conjecture then asserts that if dim(V) ≥ 8, the groups GL(V),
O(V), and, if dim(V) is even, Sp(V), all have the Larsen Eighth
Moment property.
(2.4.2) If the conjecture holds, does it imply that SO(V) also has
the Larsen Eighth Moment property? The answer is yes provided
that dim(V) ≥ 9, simply because for dim(V) ≥ 9, we have

M2k(SO(V), V) = M2k(O(V), V) = 2k~~

for any k in {1, 2, 3, 4}. Indeed, one knows more generally that
M2k(SO(V), V) = M2k(O(V), V) = 2k~~

so long as 2k < dim(V).
(2.4.3) As noted in 2.1.1.9.1 above, the equality

M2k(O(V), V) = 2k~~

remains true so long as dim(V) ≥ k. And for dim(V) odd, we have
M2k(SO(V), V) = M2k(O(V), V)

for every integer k (simply because O(V) =_SO(V) for dim(V) odd).
(2.4.4) But for dim(V) even, and any k with dim(V) ≤ 2k, we
have

M2k(SO(V), V) > M2k(O(V), V).
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Indeed, this inequality is obvious for 2k = dim(V), because the

determinant Údim(V)(V) is a constituent of Vº2k (¶ End(Vºk) as
O(V)-representation) which is invariant under SO(V) but not under
O(V). It follows in the general case from repeated applications of the
following lemma.
LLLLeeeemmmmmmmmaaaa 2222....4444....5555 ([GT, Lemma 2.1]) Let k≥ 1 be an integer, V a finite-
dimensional ^-vector space, H and G subgroups of GL(V) with H fi G.
If M2k(H, V) > M2k(G, V), then M2k+2(H, V) > M2k+2(G, V).

pppprrrrooooooooffff We have

M2k+2(G, V) = dimHomG(ú, End(V)
ºk+1).

Now form the GL(V)-equivariant decomposition

End(V) = ú·End0(V)
of End(V) as the direct sum of scalar endomorphisms and
endomorphisms of trace zero. We get

M2k+2(G, V)

= dimHomG(ú, End(V)
ºk) + dimHomG(ú, End

0(V)‚End(V)ºk)

= M2k(G, V) + dimHomG(ú, End
0(V)‚End(V)ºk).

The same argument applied to H gives

M2k+2(H, V) = M2k(H, V) + dimHomH(ú, End
0(V)‚End(V)ºk).

Since H fi G, we have an a priori inequality

dimHomH(ú, End
0(V)‚End(V)ºk)

≥ dimHomG(ú, End
0(V)‚End(V)ºk).

So the assertion is obvious. QED

(2.4.6) Using Lemma 2.4.5, we can restate Larsen's Eighth
Moment Conjecture as

EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....4444....7777 ((((====2222....3333....2222 tttteeeerrrr)))) ((((LLLLaaaarrrrsssseeeennnn)))) Let V
be a ^-vector space of dimension N ≥ 8. If Æ is a finite subgroup of G,
for G one of the groups GL(V), O(V), or, if N is even, Sp(V), then
M8(Æ, V) > M8(G, V).

(2.4.8) For ease of later reference, we also formulate a twelfth
moment conjecture, which, in view of Lemma 2.4.5, trivially implies
Larsen's Eighth Moment Conjecture.

TTTTwwwweeeellllfffftttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....4444....9999 Let V be a ^-vector space of
dimension N ≥ 8. If Æ is a finite subgroup of G, for G one of the groups
GL(V), O(V), or, if N is even, Sp(V), then we have

M12(Æ, V) > M12(G, V).

((((2222....5555)))) HHHHoooowwww ttttoooo aaaappppppppllllyyyy LLLLaaaarrrrsssseeeennnn''''ssss EEEEiiiigggghhhhtttthhhh MMMMoooommmmeeeennnntttt CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee;;;; iiiittttssss
ccccuuuurrrrrrrreeeennnntttt ssssttttaaaattttuuuussss
(2.5.1) Let us first make explicit the relevance of Larsen's
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conjecture to our situation.
TTTThhhheeeeoooorrrreeeemmmm 2222....5555....2222 Suppose that Larsen's Eighth Moment Conjecture
2.3.2 holds. Take any instance of the Higher Moment Theorem 1.20.2,
or of one of its first three variants, in a situation with d ≥ 8, and
with

N := rank(Gr0(˜)ncst) ≥ 8.

Then we have the following results.

1) Ggeom fl SL(N), if Gr0(˜)ncst is not geometrically self dual.

2) Ggeom = Sp(N), if Gr0(˜)ncst is, geometrically, symplectically self

dual.

3) Ggeom = SO(N) or O(N), if Gr0(˜)ncst is, geometrically,

orthogonally self dual.

pppprrrrooooooooffff In any d ≥ 8 instance of the Higher Moment Theorem, or of
one of its first three variants, the semisimple group Ggeom for

Gr0(˜)ncst has the same absolute moments M2, M4, M6, and M8 as

the relevant ambient group GL(N), or O(N), or Sp(N). So if Larsen's
Eighth Moment Conjecture is true, Ggeom is not finite. Once Ggeom is

not finite, Larsen's Alternative 2.2.2 gives the asserted conclusion.
QED

(2.5.3) Guralnick and Tiep [GT, Theorem 1.4] have recently
proven both the Twelfth Moment Conjecture 2.4.9 and Larsen's
Eighth Moment Conjecture 2.3.2, in the following very strong form.
TTTThhhheeeeoooorrrreeeemmmm 2222....5555....4444 ((((GGGGuuuurrrraaaallllnnnniiiicccckkkk----TTTTiiiieeeepppp)))) Let V be a finite-dimensional ^-
vector space with dim(V) ≥ 5, G one of the groups GL(V), O(V), or, if
dim(V) is even, Sp(V).
1) If Æ is any finite subgroup of G, we have

M12(Æ, V) > M12(G, V).

2) In the case dim(V) = 6, G = Sp(V), the subgroup Æ= 2J2 has

M2k(Æ, V) = M2k(Sp(V), V) for k=1,2,3,4,5.

3) Except for the exceptional case given in 2) above, if Æ is any finite
subgroup of G, we have

M8(Æ, V) > M8(G, V).

((((2222....6666)))) OOOOtttthhhheeeerrrr ttttoooooooollllssss ttttoooo rrrruuuulllleeee oooouuuutttt ffffiiiinnnniiiitttteeeennnneeeessssssss ooooffff GGGGggggeeeeoooommmm
(2.6.1) When we began writing, in January of 2002, Larsen's
Eighth Moment Conjecture was still only a conjecture, so we needed
other tools to rule out the possibility that Ggeom be finite. Even now

that Larsen's Eighth Moment Conjecture is no longer a conjecture,
such tools are still needed to treat instances of the Higher Moment
Theorem, or of one of its variants, where the family of functions Ï
is not 8-separating, but is only d-separating for d with 4 ≤ d ≤ 7.
Indeed, we rely almost entirely on these tools in the rest of this
book. Those results that depend on the truth of Larsen's Eighth
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Moment Conjecture are so labeled.
(2.6.2) We begin by recalling some known group-theoretic tools.

PPPPrrrriiiimmmmiiiittttiiiivvvviiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 2222....6666....3333 ([Ka-LAMM, 1.3.2]) Let V be a ^-
vector space of dimension N ≥ 2, G fi GL(V) a finite subgroup of
GL(V). Suppose that one of the following conditions 1), 2), or 3) holds.

1) M4(G, V) = 2.

2) G lies in O(V), dim(V) ≥ 3, and M4(G, V) = 3.

3) G lies in Sp(V), dim(V) ≥ 4, and M4(G, V) = 3.

Then G is a finite irreducible primitive subgroup of GL(V), i.e., there
exists no proper subgroup H of G such that V is induced from a
representation of H.
TTTTeeeennnnssssoooorrrr----IIIInnnnddddeeeeccccoooommmmppppoooossssaaaabbbbiiiilllliiiittttyyyy LLLLeeeemmmmmmmmaaaa 2222....6666....4444 ([Ka-LAMM, 1.3.6]) Let
V be a ^-vector space of dimension N ≥ 2, G fi GL(V) a finite
subgroup of GL(V). Suppose that M4(G, V) ≤ 3. Then V is tensor-

indecomposable in the following (strong) sense. There exists no
expression of the ^-vector space V as a tensor product

V = V1‚V2
of ^-vector spaces X and Y in such a way that all three of the
following conditions are satisfied:

dim(V1) ≥ 2,

dim(V2) ≥ 2,

every element g in G, viewed as lying in GL(V) = GL(V1‚V2),

can be written in the form A‚B with A in GL(V1) and with B in

GL(V2).

NNNNoooorrrrmmmmaaaallll SSSSuuuubbbbggggrrrroooouuuupppp CCCCoooorrrroooollllllllaaaarrrryyyy 2222....6666....5555 ([Ka-LAMM, 1.3.7], cf. also
[Lar-Char, 1.6]) Let V be a ^-vector space of dimension N ≥ 2,
G fi GL(V) a finite subgroup of GL(V). Let H be a proper normal
subgroup of G. Suppose that one of the following conditions 1), 2), or
3) holds.

1) M4(G, V) = 2.

2) G lies in O(V), dim(V) ≥ 3, and M4(G, V) = 3.

3) G lies in Sp(V), dim(V) ≥ 4, and M4(G, V) = 3.

Then either H acts on V as scalars and lies in the center Z(G), or V is
H-irreducible.

(2.6.6) We next combine these results with some classical results
of Blichfeld [Blich] (cf. [Dorn, 29.8] for a modern exposition of

Blichfeld's 60o theorem), and of Mitchell [Mit], and with recent
results of Wales [Wales] and Zalesskii [Zal], to give criteria which
force G to be big. Recall that an element A in GL(V) is called a
pseudoreflection if Ker(A - 1) has codimension 1 in V. A
pseudoreflection of order 2 is called a reflection. Recall [Ka-TLFM,
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1.0.2] that for a given integer r ≥ 0, an element A in GL(V) is said to
have drop r if Ker(A - 1) has codimension r in V. Thus

drop of A = dim(V/Ker(A-1)).
Given an integer r with 1 ≤ r < dim(V), an element A of GL(V) is
called quadratic of drop r if it has drop r and if it satisfies the
following two conditions: its minimal polynomial is (T-1)(T- ¬) for
some nonzero ¬, and it acts on the r-dimensional space V/Ker(A - 1)
as the scalar ¬. Thus a quadratic element of drop 1 is precisely a
pseudoreflection.

TTTThhhheeeeoooorrrreeeemmmm 2222....6666....7777 ([Ka-LAMM, 1.4.2]) Let V be a ^-vector space of
dimension N ≥ 2, G in GL(V) a (not necessarily connected) Zariski
closed reductive subgroup of GL(V) with M4(G, V) = 2. Fix an integer

r with 1 ≤ r < dim(V). If any of the following conditions is satisfied,
then G fl SL(V).
0) G contains a unipotent element A ± 1.
1) G contains a quadratic element A of drop r which has finite order
n ≥ 6.
2) G contains a quadratic element A of drop r which has finite order
4 or 5, and dim(V) > 2r.
3) G contains a quadratic element A of drop r which has finite order
3, and dim(V) > 4r.
4) G contains a reflection A, and dim(V) > 8.

TTTThhhheeeeoooorrrreeeemmmm 2222....6666....8888 ((((MMMMiiiittttcccchhhheeeellllllll)))) ([Ka-LAMM, 1.4.4]) Let V be a ^-vector
space of dimension N > 8, G fi GL(V) a finite irreducible primitive
subgroup of GL(V) ¶ GL(N, ^) which contains a reflection A. Let
Æ fi G denote the normal subgroup of G generated by all the
reflections in G. Then we have the following results.
1) Æ is (conjugate in GL(V) to) the group SN+1, viewed as a subgroup

of GL(N, ^) by the deleted permutation representation of SN+1 (:= its

"permutation of coordinates" action on the hyperplane AugN in ^N+1

consisting of those vectors whose coordinates sum to zero).
2) G is the product of Æ with the group G€(scalars).
3) M4(G, V) > 3.

TTTThhhheeeeoooorrrreeeemmmm 2222....6666....9999 ([Ka-LAMM, 1.4.6]) Let V be a ^-vector space of
dimension N > 8 equipped with a nondegenerate quadratic form. Let
G fi O(V) be a (not necessarily connected) Zariski closed reductive
subgroup of O(V) with M4(G, V) = 3. If G contains a reflection, then

G = O(V).

(2.6.10) What becomes of the above theorem when N is 7 or 8?
We have the following result.
TTTThhhheeeeoooorrrreeeemmmm 2222....6666....11111111 Let V be a ^-vector space of dimension N = 7 or 8
equipped with a nondegenerate quadratic form. Let G fi O(V) be a
(not necessarily connected) Zariski closed reductive subgroup of O(V).
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with M4(G, V) = 3. If G contains a reflection, then either G = O(V) or

G is the Weyl group W(EN) of the root system EN.

pppprrrrooooooooffff By Larsen's Alternative 2.2.2, G is either O(V) or SO(V) or is a
finite subgroup of O(V). The SO(V) case cannot occur, because G
contains a reflection. If G is finite, it is primitive as a subgroup of
GL(V), has M4(G, V) = 3, and contains a reflection.

When N is 7 or 8, then by results of Blichfeld [Blich] and
Mitchell [Mit], a finite primitive subgroup of GL(N) which contains a
reflection has image in PGL(N) either the image of W(EN) in its

reflection representation, or the image of the symmetric group SN+1
in its deleted permutation representation. Any subgroup of GL(N)
with image SN+1 in PGL(N) has fourth moment 4, cf. [Ka-LAMM,

1.4.5 and 2.4.3]. As our group has fourth moment 3, we conclude
that Ggeom is a subgroup of O(N) which contains a reflection and

which has the same image in PGL(N), and hence the same image in
O(N)/_1, as does W(EN). Since W(EN) contains _1, W(EN) is the

complete inverse image in O(N) of its image in O(N)/_1. Thus Ggeom
is a subgroup Æ of W(EN), which contains a reflection and which

maps onto W(EN)/_1. We wish to conclude that Æ is W(EN). This is

given by the following lemma.
LLLLeeeemmmmmmmmaaaa 2222....6666....11111111....1111 For N = 7 or 8, let Æ be a subgroup of W(EN),

which contains a reflection and which maps onto W(EN)/_1. Then Æ

is W(EN).

pppprrrrooooooooffff Unfortunately, we must resort to ad hoc arguments, treating
the two cases N = 7 and N = 8 separately. In both cases we define

W+(EN) := W(EN)€SO(N).

For N = 7, we argue as follows. Since W(E7) contains -1 and

does not lie in SO(7), we have a product decomposition

W(E7) ¶ (_1)≠W+(E7), g ÿ (det(g), g/det(g)).

It is known that W+(E7) is a simple group (it is the group Sp(6, É2),

or S6(2) in ATLAS notation, cf. [Bbki-Lie VI, ò4, ex. 3, page 229]).

Thus Æ is a subgroup of (_1)≠W+(E7), the product of two non-

isomorphic simple groups, and Æ maps onto each factor. [It maps
onto W(E7)/(_1) by hypothesis, and it maps onto _1 because it

contains a reflection.] So by Goursat's Lemma, Æ is the entire group.
For N = 8, the argument is a bit different. Here _1 lies in SO(8),

and the key fact is that the quotient W+(E8)/(_1) is a simple group

(it isthe group O8(2)
+ in ATLAS notation, cf. [Bbki-Lie VI, ò4, ex. 1,

page 228]). Now consider the group Æ. It is a subgroup of W(E8)

which contains a reflection and which maps onto W(E8)/_1. So by

cardinality we see that either Æ = W(E8), and we are done, or Æ has
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index 2 in W(E8). If Æ has index 2 in W(E8), we reach a contradiction

as follows. Since Æcontains a reflection, Æ cannot be the group

W+(E8). Therefore the group Æ€W+(E8) is normal in W(E8) (being the

intersection of two normal subgroups) of index 4, and it is normal in

W+(E8) of index two. So its image in W+(E8)/(_1) is a normal

subgroup of index at most two. As W+(E8)/(_1) is a simple group of

large order, we conclude that Æ€W+(E8) maps onto W+(E8)/(_1), and

hence, by cardinality, that this map is an isomorphism

Æ€W+(E8) ¶ W+(E8)/(_1). Thus we find that the simple group O8(2)
+

sits in W(E8) as a normal subgroup of index 4. Since the eight-

dimensional reflection representation ® of W(E8) has fourth moment

3, it is primitive, so its restriction to the normal subgroup O8(2)
+

must be isotypical. This restriction cannot be trivial, otherwise ®
itself factors through the abelian quotient group, so cannot be
irreducible. But the lowest-dimensional nontrivial irreducible

representation of O8(2)
+ has dimension 28. QED for Lemma 2.6.11.1

and, with it, Theorem 2.6.11.

(2.6.12) This concludes our review of the relevant group-theoretic
tools of which we are aware.

((((2222....7777)))) SSSSoooommmmeeee ccccoooonnnnjjjjeeeeccccttttuuuurrrreeeessss oooonnnn ddddrrrrooooppppssss

DDDDrrrroooopppp RRRRaaaattttiiiioooo CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....7777....1111 Let V be a ^-vector space of
dimension N ≥ 2, G fi GL(V) a finite subgroup of GL(V). Suppose that
one of the following conditions 1), 2), or 3) holds.

1) M4(G, V) = 2.

2) G lies in O(V), dim(V) ≥ 3, and M4(G, V) = 3.

3) G lies in Sp(V), dim(V) ≥ 4, and M4(G, V) = 3.

Then for any A±1 in G, we have the inequality
drop(A)/dim(V) ≥ 1/8.

Equivalently, for any A ± 1 in G we have the inequality
dim(Ker(A-1))/dim(V) ≤ 7/8.

(2.7.2) What is known in the direction of the Drop Ratio
Conjecture? One key point is that, as noted above, the conjecture
concerns a finite irreducible G which is primitive and strongly
tensor-indecomposable, cf. 2.6.4 above. For dim(V) = n ≥ 3, the group

G cannot be contained in ^≠Sn+1 in its standard n-dimensional

deleted permutation representation, because such a group has
fourth moment at least 4, cf. [Ka-LAMM, 1.4.5, 1.4.5.1, 2.4.5]. The
Drop Ratio Conjecture holds for groups containing an element of
drop 1, i.e., for groups containing a pseudoreflection, by classical
results of Mitchell [Mit]. Indeed, if a primitive finite group G with
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M4(G, V) ≤ 3 contains a reflection, then dim(V) ≤ 8, cf. 2.6.8 above. If

a primitive G contains a pseudoreflection of order 3, then dim(V) ≤ 4,
and if G contains a pseudoreflection of order 4 or more, then
dim(V) ≤ 2, cf. [Mit]. By Wales [Wales], it holds for primitive groups
containing a quadratic element of any drop r, so long as that
element has order at least 3. By Wales [Wales-Inv] and Huffman-
Wales [Huff-Wales-Inv], it holds for primitive, tensor-indecomposable
groups containing an involution of drop 2. By Huffman-Wales [Huff-
Wales-Equal] and Huffman [Huff-Eig], it holds for primitive groups
containing an element of drop 2 and order ≥ 3.

(2.7.3) We now state two more optimistic versions of this
conjecture. For A in GL(V), define its projective drop droppr(A) to be

droppr(A) := Min¬ in ^≠ drop(¬A)

= Min¬ in ^≠ dim(V/Ker(A-¬)).

For A in GL(V) with image in PGL(V) of finite order, define its
projective order orderpr(A) to be

orderpr(A) := order of A in PGL(V).

MMMMoooorrrreeee OOOOppppttttiiiimmmmiiiissssttttiiiicccc DDDDrrrroooopppp RRRRaaaattttiiiioooo CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....7777....4444 Hypotheses and
notations as in the Drop Ratio Conjecture, for any non-scalar A in G,
we have the inequality

droppr(A)/dim(V) ≥ 1/8.

Equivalently, for any non-scalar A in G, and any ¬ in ^≠, we have
dim(Ker(A - ¬))/dim(V) ≤ 7/8.

(2.7.5) In the case of a finite group G fi GL(V) with M4(G, V) = 2,

the More Optimistic Drop Ratio Conjecture for G is equivalent to the
Drop Ratio Conjecture for the slightly larger group

G1 := (roots of unity of order ùG)G,

which also has M4(G1, V) = 2. Indeed, any group Gint between G and

^≠G has the same M4 (indeed, the same M2k for every k) as G:

M4(Gint, V) = M4(G, V).

This is obvious from the description of M4(G, V) as the dimension of

the G-invariants in End(V)º2, a space on which the scalars in GL(V)
operate trivially.
(2.7.6) On the other hand, the More Optimistic Drop Ratio
Conjecture for finite subgroups G of either O(V) or Sp(V) with fourth
moment 3 is apparently stronger than the Drop Ratio Conjecture:
the trick used above of replacing G by G1 cannot be used here,

because G1 will no longer lie in O(V) or Sp(V) respectively, though it

will have M4(G1, V) = 3.

RRRReeeemmmmaaaarrrrkkkk 2222....7777....6666....1111 In late 2004, proofs of the More Optimistic Drop
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Ratio Conjecture 2.7.4 were announced independently by Gluck and
Maagard, working together, and by Tiep.

MMMMoooosssstttt OOOOppppttttiiiimmmmiiiissssttttiiiicccc DDDDrrrroooopppp RRRRaaaattttiiiioooo CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee 2222....7777....7777 Hypotheses and
notations as in the Drop Ratio Conjecture, for any A in G we have
the inequality

droppr(A)/dim(V) ≥ (orderpr(A) - 1)/(orderpr(A) + 6).

Equivalently, for any A in G, and any ¬ in ^≠, we have
dim(Ker(A - ¬))/dim(V) ≤ 7/(orderpr(A) + 6).

(2.7.8) We have essentially no evidence whatever for this most
optimistic conjecture~ The right hand side has been cooked up to be
compatible with what is known for elements of drop 1 or 2, and
with what is known for quadratic elements of any drop which have
order at least 3.

((((2222....8888)))) MMMMoooorrrreeee ttttoooooooollllssss ttttoooo rrrruuuulllleeee oooouuuutttt ffffiiiinnnniiiitttteeeennnneeeessssssss ooooffff GGGGggggeeeeoooommmm:::: sssshhhheeeeaaaavvvveeeessss ooooffff

ppppeeeerrrrvvvveeeerrrrsssseeee oooorrrriiiiggggiiiinnnn aaaannnndddd tttthhhheeeeiiiirrrr mmmmoooonnnnooooddddrrrroooommmmyyyy

(2.8.1) Let us now leave the realm of conjecture. A second
approach to proving Ggeom is not finite is based on the theory of

sheaves of perverse origin, cf. [Ka-SMD]. To motivate this, remember
the genesis of Ggeom as the geometric monodromy group attached to

(the restriction to a dense open set U fi Ï of) the perverse sheaf

Gr0(M(dimÏ0/2))ncst on Ï. Concretely, we pass to a dense open set

U of Ï on which M is lisse. There M(dimÏ0/2)|U is of the form

˜(dimÏ/2)[dimÏ], for a lisse ä$…-sheaf ˜ on U which is “-mixed of

weight ≤ 0. We are concerned with the group Ggeom attached to

Gr0(˜)ncst, the nonconstant part of the highest weight quotient

Gr0(˜) of ˜.
(2.8.2) So as not to obscure the underlying ideas, let us suppose,
for simplicity of exposition, that the lisse sheaf ˜ on U is itself
“-pure of weight zero, and geometrically irreducible. Then

Gr0(˜)ncst is just ˜ itself. [Recall that Gr0(˜)ncst is geometrically

irreducible.]
(2.8.3) So in this case, our situation is that we have a perverse
sheaf N (here M(-m/2)) on Ï, we are told that on an open dense set
U of Ï, N|U = ˆ[dimÏ] for a lisse sheaf ˆ on U which is
geometrically irreducible on U. A key (though apparently trivial)
observation is that, given N, the lisse sheaf ˆ on U has a canonical
prolongation to a constructible ä$…-sheaf ˆ on all of Ï, namely

ˆ := Ó-dimÏ(N).
The constructible ä$…-sheaf ˆ on Ï is what we call a sheaf of

perverse origin.
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(2.8.4) Given a field k in which … is invertible, and a smooth
connected k-scheme T/k of dimension dimT ≥ 0, we say that a
constructible ä$…-sheaf ˆ on T is of perverse origin if there exists a

perverse sheaf N on T and an isomorphism

ˆ ¶ Ó-dimT(N).

It is equivalent to require only the existence of an object N in pD≥0

on T for which we have ˆ ¶ Ó-dimT(N), cf. [Ka-SMD, Prop 4].
(2.8.5) A propos of this notion, there are two standard facts
about perversity that one should keep in mind.

(2.8.5.1) The first is that if an object N on T lies in pD≥0, then for
any connected smooth k-scheme S of dimension dimS ≥ 0, and for

any k-morphism f : S ¨ T, the shifted pullback f*N[dimS - dimT]

lies in pD≥0 on S, cf. [Ka-SMD, proof of Proposition 7]. This has as

consequence that for ˆ of perverse origin on T, f*ˆ is of perverse
origin on S, cf. [Ka-SMD, Proposition 7].
(2.8.5.2) The second fact to keep in mind is that for any separated
k-scheme of finite type X/k, and for any aaaaffffffffiiiinnnneeee morphism

f: X ¨ T,

if an object K on X lies in pD≥0 on X, then the object Rf~K on T lies

in pD≥0 on Y. Consequently, if K on X lies in pD≥0 on X, e.g., if K is
perverse on X, then

Ó-dimT(Rf~K) = R-dimTf~(K)

is a sheaf of perverse origin on T.
(2.8.6) What is the relevance of sheaves of perverse origin to
monodromy? Given a constructible ä$…-sheaf ˆ on our smooth

connected k-scheme T, let Z be a reduced irreducible closed
subscheme of T, and assume that a dense open set V1 fi Z is smooth

over k (a condition which is automatic if k is perfect). The restriction
of ˆ to V1 is constructible, so there exists a dense open set V fi V1
such that ˆ|V is lisse on V. On the other hand, there is a dense open
set U fi T - Z on which ˆ is lisse. Thus we have a lisse sheaf ˆ|U on
U, and a lisse sheaf ˆ|V on V.
(2.8.7) For ˆ of perverse origin on T, the monodromy of ˆ|V is
"smaller" than the monodromy of ˆ|U. To make this precise, let us
pick geometric points u of U and v of V. We have the monodromy
homomorphisms

®U: π1(U, u) ¨ Autä$…
(ˆu)

and
®V: π1(V, v) ¨ Autä$…

(ˆv)

attached to ˆ|U and to ˆ|V respectively. We define compact
subgroups

ÆU := ®U(π1(U, u)) fi Autä$…
(ˆu),

ÆV := ®V(π1(V, v)) fi Autä$…
(ˆv).
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SSSSeeeemmmmiiiiccccoooonnnnttttiiiinnnnuuuuiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 2222....8888....8888 ([Ka-SMD, Theorem 1]) For T/k
smooth and connected of dimension dimT ≥ 1, and for ˆ a
constructible ä$…-sheaf on T of perverse origin, the group ÆV is

isomorphic to a subquotient of the group ÆU. More precisely, there

exists a compact group D, a continuous group homomorphism
D ¨ ÆU,

a closed normal subgroup I fi D, and a ä$…-linear embedding

ˆv fi (ˆu)
I,

with the following property: if we view ˆu as a representation of D

via the given homomorphism D ¨ ÆU, and if we then view (ˆu)
I as

a representation of D/I, then the subspace ˆv is D/I-stable, and

under the induced action of D/I on ˆv, the image of D/I in the group

Autä$…
(ˆv) is the group ÆV.

SSSSeeeemmmmiiiiccccoooonnnnttttiiiinnnnuuuuiiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....9999 ([Ka-SMD, Corollary 10])
Hypotheses and notations as in Theorem 2.8.8, denote by NU (resp.

NV) the rank of the lisse ä$…-sheaf ˆ|U (resp. of the lisse ä$…-sheaf

ˆ|V). Denote by GU (resp. GV) the Zariski closure of ÆU (resp. of ÆV)

in Autä$…
(ˆu) ¶ GL(NU, ä$…) (resp. in Autä$…

(ˆv) ¶ GL(NV, ä$…)).

1) We have the inequality of ranks
NV ≤ NU.

2) The algebraic group GV is a subquotient of GU.

In particular, we have
2a) if GU is finite (or equivalently if ÆU is finite) then GV is finite (or

equivalently ÆV is finite),

2b) dim(GV) ≤ dim(GU),

2c) rank(GV) ≤ rank(GU).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 2222....8888....11110000 ([Ka-SMD, Proposition 12]) Hypotheses and
notations as in the Semicontinuity Theorem 2.8.8, let ˆ be of
perverse origin on T. The integer-valued function on T given by

t ÿ rank(ˆt)

is lower semicontinuous, i.e., for every integer r ≥ 0, there exists a
reduced closed subscheme T≤r fi T such that a geometric point t of T

lies in T≤r if and only if the stalk ˆt has rank ≤ r. If we denote by N

the generic rank of ˆ, then T = T≤N, and T - T≤N-1 is the largest

open set on which ˆ is lisse.

(2.8.11) In order to apply the semicontinuity theorem, we next
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recall the following Twisting Lemma, cf. [Ka-ESDE, 8.14.3 and
8.14.3.1]. In this lemma, we work over a finite field k in which … is
invertible. We are given a smooth, geometrically connected k-
scheme U/k, and a lisse ä$…-sheaf ˆ on U. We fix a geometric point u

in U. We have π1(U, u), which we denote π1
arith(U, u), and its

closed normal subgroup π1
geom(U, u) := π1(U‚käk, u). We view ˆ as

a ä$…-representation

® : π1
arith(U, u) ¨ GL(ˆu),

and define

Garith,ˆ := the Zariski closure of ®(π1
arith(U, u)) in GL(ˆu),

Ggeom.ˆ := the Zariski closure of ®(π1
geom(U, u)) in GL(ˆu).

TTTTwwwwiiiissssttttiiiinnnngggg LLLLeeeemmmmmmmmaaaa 2222....8888....11112222 In the situation 2.8.11 above, consider the
following two conditions.
1) Ggeom,ˆ is finite.

2) There exists a unit å in ä$…
≠ such that for the twisted sheaf

ˆ‚ådeg, Garith,ˆ‚ådeg is finite.

We always have the implication
2) à 1).

If in addition ˆ is geometrically irreducible, i.e., if Ggeom,ˆ is an

irreducible subgroup of GL(ˆu), then 1) and 2) are equivalent.

pppprrrrooooooooffff The implication 2) à 1) is trivial, since Ggeom does not see

twisting, so Ggeom,ˆ = Ggeom,ˆ‚ådeg, which is a subgroup of

Garith,ˆ‚ådeg. To show that 1) à 2) when ˆ is geometrically

irreducible, we argue as follows. For any lisse ä$…-sheaf ˆ on U,

det(ˆ) is geometrically of finite order, cf. [De-Weil II, 1.3.4]. So some

power det(ˆ)‚N of det(ˆ) is geometrically trivial, so of the form

∫deg for some unit ∫ in ä$…
≠. So if we choose an N'th root å of 1/∫,

then ˆ‚ådeg has its determinant arithmetically of finite order. So
the Twisting Lemma 2.8.12 results from the following variant,

applied to ˆ‚ådeg.

TTTTwwwwiiiissssttttiiiinnnngggg LLLLeeeemmmmmmmmaaaa 2222....8888....11112222....1111 ((((==== 2222....8888....11112222 bbbbiiiissss)))) In the situation of the
Twisting Lemma 2.8.12, suppose that ˆ is geometrically irreducible
and that det(ˆ) is arithmetically of finite order. Then the following
conditions are equivalent.
1) Ggeom,ˆ is finite.

2) Garith,ˆ is finite.

pppprrrrooooooooffff Denote by n the rank of the lisse sheaf ˆ. It is trivial that 2)
implies 1), since Ggeom,ˆ is a subgroup of Garith,ˆ. To see that 1)

implies 2), we argue as follows. Because π1
geom(U, u) is a normal



108 Chapter 2

subgroup of π1
arith(U, u), Ggeom is a normal subgroup of Garith. If

Ggeom is finite, then a fixed power of every element g in Garith is a

scalar [g normalizes Ggeom, but as Ggeom is finite, Aut(Ggeom) is

finite, say of order m0, so g
m0 centralizes Ggeom, and hence is

scalar, because Ggeom is irreducible]. On the other hand, det(ˆ) is of

finite order, say of order m1, so any element g in Garith has

det(g)m1 = 1. Thus if g in Garith is a scalar, then gnm1 = 1. So

Garith is a ä$… -algebraic group in which every element satisfies

gm0m1n = 1. So Lie(Garith) is a ä$…-vector space killed by m0m1n,

and so vanishes. Therefore Garith is finite, as required. QED

SSSSccccaaaallllaaaarrrriiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....11113333 Let k be a finite field in which … is
invertible, T/k a smooth, geometrically connected k-scheme, and ˆ
a constructible ä$…-sheaf on T of perverse origin. Suppose that for

some dense open set U fi T, ˆ|U is lisse and geometrically irreducible
on U. Suppose further that Ggeom,ˆ|U is finite. Then we have the

following results.
1) For any irreducible closed subscheme Z fi T, and for any dense
open set V fi Z such that ˆ|V is lisse, of rank denoted NV, the image

of Garith,ˆ|V in PGL(NV, ä$…) is finite.

2) For any finite extension field E/k, and for any E-valued point t in
T(E), a power of FrobE,t | ˆt is a scalar.

pppprrrrooooooooffff To prove 1), we argue as follows. Denote by NU the rank of

ˆ|U. The largest open set of T on which ˆ is lisse is, by 2.6.10 above,
the set

U1 := T - T≤NU-1

of points where the stalk has rank NU. The group Ggeom for ˆ|U1 is

equal to the group Ggeom for ˆ|U, simply because π1
geom(U1) is a

quotient of π1
geom(U), for any dense open set U of U1. So with no

loss of generality, we may assume that U =U1.

By the Twisting Lemma 2.8.12, there is a unit å such that
Garith,ˆ‚ådeg|U1

is finite.

Consider first the case when NV = NU. Then V fi U1. So if we

choose a geometric point u of U1 which lies in V, then the

monodromy representation of ˆ‚ådeg|V is obtained from that of

ˆ‚ådeg|U1 by composition with the map of arithmetic

fundamental groups

π1
arith(V, u) ¨ π1

arith(U1, u)

induced by the inclusion of V into U. So a fortiori, if ˆ‚ådeg|U1 has
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finite arithmetic monodromy, so does ˆ‚ådeg|V.
Consider now the case when NV < NU. Then V fi T≤NV

fi T<NU
,

and hence Z fi T<NU
. Thus U1 is a dense open set of T - Z. By part

(2a) of Corollary 2.8.9, applied to the sheaf ˆ‚ådeg of perverse
origin on T, the finiteness of Garith,ˆ‚ådeg|U1

implies the finiteness

of Garith,ˆ‚ådeg|V. So the image of Garith,ˆ|V in PGL(NV, ä$…) is

finite.
To prove 2), simply apply part 1) to the case Z = {the closed

point underlying the E-valued point t}. QED

PPPPuuuunnnnccccttttuuuuaaaallll PPPPuuuurrrriiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 2222....8888....11114444 Let k be a finite field in which
… is invertible, T/k a smooth, geometrically connected k-scheme, ˆ a
constructible ä$…-sheaf on T of perverse origin, and “ : ä$… fi ^ a field

embedding. Suppose that for some dense open set U fi T, ˆ|U is lisse
and geometrically irreducible on U. Suppose further that Ggeom,ˆ|U
is finite. Then we have the following results.
1) There exists a real number w such that ˆ|U is “-pure of some
weight w.
2) For any irreducible closed subscheme Z fi T, and for any dense
open set V fi Z such that ˆ|V is lisse, ˆ|V is “-pure of weight w.
3) For any finite extension field E/k, and for any E-valued point t in
T(E), all the eigenvalues of FrobE,t | ˆt are “-pure of weight w.

pppprrrrooooooooffff The assertion is invariant under replacing ˆ by an ådeg twist

of itself. By the Twisting Lemma 2.8.12, there exists a unit å in ä$…
≠

such that (ˆ‚ådeg)|U has finite Garith on U. So replacing ˆ by

ˆ‚ådeg, we reduce to the case when ˆ|U has finite Garith. In this

case, ˆ|U is “-pure of weight zero (since a power of every Frobenius
acts as the identity on ˆ|U, and so has roots of unity as eigenvalues).
This proves 1). To prove 2), apply part (2a) of Corollary 2.8.9, to the
sheaf ˆ of perverse origin on T: the finiteness of Garith,ˆ|U implies

the finiteness of Garith,ˆ|V, which in turn implies that ˆ|V is “-

pure of weight zero. To prove 3), simply apply 2) to the case when Z
is the closed point underlying the E-valued point t. QED
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CCCChhhhaaaapppptttteeeerrrr 3333:::: AAAAddddddddiiiittttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr ssssuuuummmmssss

oooonnnn !!!!nnnn

((((3333....1111)))) TTTThhhheeee ÒÒÒÒ¥¥¥¥ tttthhhheeeeoooorrrreeeemmmm

(3.1.1) In this section, we will consider in detail the following
general class of "standard inputs", cf. 1.15.4. We work over a finite
field k of characteristic p, in which the prime … is invertible. We
take

m=1,

a nontrivial ä$…
≠-valued additive character ¥ of k,

K = Ò¥(1/2)[1] on !1,

an integer n ≥ 1,

V = !n,

h : V ¨ !l the function h = 0,
L on V a perverse, geometrically irreducible sheaf which is “-

pure of weight zero, which in a Zariski open neighborhood U0 of the

origin in !n is of the form Ò[n] for Ò a nonzero lisse ä$…-sheaf on U0,

an integer e ≥ 3,
(Ï, †) = (∏e, evaluation), for ∏e the space of all k-polynomial

functions on !n of degree ≤ e.

ÒÒÒÒ¥¥¥¥ TTTThhhheeeeoooorrrreeeemmmm 3333....1111....2222 Take standard input as in 3.1.1 above. Then we

have the following results concerning M = Twist(L, K, Ï, h).
1) The object M(dimÏ0/2) on Ï = ∏e is perverse, geometrically

irreducible and geometrically nonconstant, and “-pure of weight
zero.
2) The Frobenius-Schur indicator of M(dimÏ0/2) is given by

FSIgeom(∏e, M(dimÏ0/2))

= 0, if p is odd,

= ((-1)1+dimÏ0)≠FSIgeom(!n, L), if p = 2.
3) The restriction of M(dimÏ0/2) to some dense open set U of ∏e is

of the form ˜(dimÏ/2)[dimÏ] for ˜ a lisse sheaf on U of rank
N := rank(˜|U), with

N ≥ (e-1)nrank(Ò|U0), if e is prime to p,

N ≥ Max((e-2)n, (1/e)((e-1)n + (-1)n(e-1)))rank(Ò|U0), if p|e.

4) The Frobenius-Schur indicator of ˜|U is given by
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FSIgeom(U, ˜|U)
= 0, if p is odd,

= FSIgeom(!n, L) = (-1)nFSIgeom(U0, Ò), if p = 2.

5) Suppose in addition that one of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom,˜|U.

5A) If FSIgeom(U, ˜|U) = 0, the group Ggeom,˜|U contains SL(N).

5B) If FSIgeom(U, ˜|U) = -1, the group Ggeom,˜|U is Sp(N).

5C) If FSIgeom(U, ˜|U) = 1, the group Ggeom,˜|U is either SO(N) or

O(N).

((((3333....2222)))) PPPPrrrrooooooooffff ooooffff tttthhhheeee ÒÒÒÒ¥¥¥¥ TTTThhhheeeeoooorrrreeeemmmm 3333....1111....2222

(3.2.1) Recall from 1.1.8 that ∏e is d-separating for d=e+1 ≥ 4,

and that

Hc
*(!1‚käk, K) = 0.

Because the lisse, rank one sheaf Ò¥ is of order p = char(k) as a

character of π1(!
1‚käk), it is geometrically self dual if and only if

p =2, in which case it is orthogonally self dual. So the Frobenius-

Schur indicator of K = Ò¥(1/2)[1] on !1 is given by

FSIgeom(!1, K) = 0, if p = char(k) is odd,
= -1, if p = char(k) =2.

(3.2.2) We first prove 1), that M(dimÏ0/2) on Ï = ∏e is

perverse, geometrically irreducible, and “-pure of weight zero. This
depends on the following compatibility.
CCCCoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy LLLLeeeemmmmmmmmaaaa 3333....2222....3333 For any e ≥ 1, the k-morphism

eval : !n ¨ (∏e)
£,

v ÿ eval(v),

is a closed immersion. In terms of the Fourier Transform on the

target space (∏e)
£,

FT¥ : Dbc((∏e)
£, ä$…) ¨ Dbc(∏e, ä$…),

we have
Twist(L, K, Ï, h) = FT¥(eval*(L))(1/2),

i.e.,
Twist(L, K, Ï, h)(dimÏ0/2) = FT¥(eval*(L))(dimÏ/2).

pppprrrrooooooooffff Pick coordinate functions x1,..., xn on !n. Then the map eval

sends a point v in !n with coordinates (v1,..., vn) to the vector of all
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monomials in the vi of degree at most e. Just looking at the

monomials of degree one, the vi themselves, shows that we have a

closed immersion. As K = Ò¥(1/2)[1] on !1, the statement

concerning Fourier Transform is a tautology. QED

(3.2.4) We exploit this compatibility as follows. The object L is
perverse and geometrically irreducible and “-pure of weight zero on

!n, with support all of !n. Since n ≥ 1, L does not have punctual
support. Since eval is a closed immersion, the object eval*L is

perverse and geometrically irreducible and “-pure of weight zero on

(∏e)
£, and does not have punctual support. Therefore, by the

miraculous properties of Fourier Transform FT¥ (cf. [Ka-Lau 2.2.1,

2.3.1] and [Lau-TF, 1.2.2.1, 1.2.3.1, 1.3.2.4]) FT¥(eval*(L)) is perverse

and geometrically irreducible and “-pure of weight dim∏e = dimÏ

on ∏e, and it is not geometrically constant. This proves 1).

(3.2.5) Statements 2), 3), and 4), eeeexxxxcccceeeepppptttt for the rank estimate in
3), result immediately from applying the Higher Moment Theorem-
first variant 1.22.2, with d = e+1 ≥ 4, to the standard input 3.1.1, cf.
2.2.3. In view of Larsen's Alternative 2.2.2, the conclusions 5A), 5B),
and 5C) hold whenever Ggeom,˜|U is not finite. So in order to prove

5), it suffices to show that Ggeom,˜|U is not finite if any of the

conditions 5a) through 5e) holds.
We now explain how to prove the rank estimate in part 3), and

how to show that Ggeom,˜|U is not finite if any one of the

conditions 5a) through 5e) holds. The proof is based upon exploiting a
homothety contraction argument and the Semicontinuity Theorem

2.8.8 to reduce to the special case when the object L on !n is
geometrically constant. We then treat that case separately.

((((3333....3333)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: tttthhhheeee hhhhoooommmmooootttthhhheeeettttyyyy ccccoooonnnnttttrrrraaaaccccttttiiiioooonnnn mmmmeeeetttthhhhoooodddd
(3.3.1) With an eye to later applications, we will give the
homothety contraction method in slightly greater generality than is
required for the Ò¥ theorem.

(3.3.2) We work over an arbitrary field k in which … is invertible.

We fix integers m ≥ 1 and n ≥ 1, and a perverse sheaf K on !m. We
assume that

Hc
i(!m‚äk, K[m]) = 0 for i > -n.

We take

V := !n,

h : V ¨ !m the function h=0.

(3.3.3) We take for (Ï, †) a space of !m-valued functions on !n

which contains the constants and is quasifinitely difference-
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separating on !n. We assume further that (Ï, †) is "stable by
homothety" in the sense that we are given a #-grading of the k-

space Ï, say Ï = ·i Ï
i, which satisfies the following condition. Using

the grading, for every k-algebra R we define an action of the group

R≠ on Ï‚kR as follows: for t in R≠, and for f = ‡f[i] in

Ï‚kR = ·i Ï
i‚kR, we define

ft := ‡i t
if[i] in Ï‚kR.

We require that under the natual homothety action of R≠ on !n(R),

for any point v in !n(R), for any point t in R≠, and for any f in
Ï‚kR, we have

f(tv) =ft(v).

(3.3.4) For example, if m=1, then for any e ≥ 1, we can take for

Ï the space ∏e of all polynomial functions on !n of degree at most

e, with the usual grading by degree. And for general m, if we pick m
integers ei ≥ 1, we can take for Ï the space °i∏ei

of m-tuples of

polynomial functions on !n, the i'th being of degree at most ei. In

this case, an m-tuple (f1,..., fm) of functions is said to be

homogeneous of some given degree d if each fi is homogeneous of

that degree. [Remember that we perform addition and scalar
multiplication of m-tuples of functions componentwise, so that

(‡i f1
[i],..., ‡i fm

[i]) = ‡i (f1
[i],..., fm

[i]).]

(3.3.5) We fix a perverse sheaf L on V := !n. In view of the
hypothesis on K, namely

Hc
i(!m‚äk, K[m]) = 0 for i > -n,

and the fact that Hc
i(!n‚äk, L[n]) = 0 for i > 0, we see that

whatever the perverse sheaf L, the object M = Twist(L,K,Ï,h=0) is
perverse on Ï, cf. 1.4.2 and 1.4.4, part 4).

(3.3.6) Now consider the homothety action of !1 on !n,

hmt: !1≠!n ¨ !n,
(t, v) ÿ tv.

LLLLeeeemmmmmmmmaaaa 3333....3333....7777 For L a perverse sheaf on V := !n, the object

L(tv)[1] := hmt*(L)[1]

on !1≠!n lies in pD≥ 0.
pppprrrrooooooooffff This is an instance of 2.8.5.1. QED

LLLLeeeemmmmmmmmaaaa 3333....3333....8888 For L perverse on V := !n, and for K perverse on !m,
the object

L(tv)‚K(f(v))[1+dimÏ0]

on !1≠!n≠Ï lies in pD≥ 0.
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pppprrrrooooooooffff Write Ï as Ï0≠!
m, with coordinates (f0, a). In coordinates

(t, v, f0, a) on

!1≠!n≠Ï = !1≠!n≠Ï0≠!
m,

L(tv)‚K(f(v))[1+dimÏ0] is

L(tv)‚K(f0(v) + a)[1+dimÏ0].

Under the automorphism ß of !1≠!n≠Ï0≠!
m given by

(t, v, f0, a) ÿ (t, v, f0, a - f0(v)),

the pullback by ß of L(tv)‚K(f(v))[1+dimÏ0] is the object

L(tv)‚K(a)[1+dimÏ0],

which is the external tensor product of

L(tv)[1] on !1≠!n,
ä$…[dimÏ0] on Ï0,

K on !m.

Each external tensoree is in pD≥0, hence their external tensor

product is as well. Since the property of lying in pD≥0 is invariant
under pullback by automorphisms, we find that

L(tv)‚K(f(v))[1+dimÏ0] lies in
pD≥ 0. QED

(3.3.9) Consider the morphism

pr1,3 : !1≠!n≠Ï ¨ !1≠Ï,

(t, v, f) ÿ (t, f),
and the object

L(tv)‚K(f(v))[1+dimÏ0]

in pD≥ 0 on !1≠!n≠Ï. Define the object Mdef = Mdef(t, f) on !1≠Ï

by
Mdef := R(pr1,3)~(L(tv)‚K(f(v))[1+dimÏ0]).

[We view Mdef as a deformation of the object M on Ï, whence the

name.]

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....3333....11110000 The object Mdef on !1≠Ï lies in pD≥0.

pppprrrrooooooooffff This is just the fact that for π an affine morphism, Rπ~

preserves pD≥0. QED

(3.3.11) What is the relation of the object Mdef on !1≠Ï to the

perverse object
M = Twist(L,K,Ï,h=0)

on Ï? If we pull back Mdef to {1}≠Ï, we recover M, up to a shift:

M = Mdef(1, f)[-1].

This is just proper base change. Similarly, if we pull back Mdef to

{0}≠Ï, we recover the Twist object attached to L(0):
Twist(L(0),K,Ï,h=0) = Mdef(0, f)[-1].
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LLLLeeeemmmmmmmmaaaa 3333....3333....11112222 Consider the automorphism ¬ of ´m≠Ï given by

¬ : ´m≠Ï ¨ ´m≠Ï,

(t, f) ÿ (t, ft),

and the projection
pr2 : ´m≠Ï ¨ Ï.

Then we have

¬*(Mdef|´m≠Ï) ¶ pr2
*M[1].

pppprrrrooooooooffff By definition, ¬*(Mdef|´m≠Ï) is the restriction to ´m≠Ï of

R(pr1,3)~(L(tv)‚K(f(tv))[1+dimÏ0]).

By means of the ´m≠Ï-linear scale automorphism of ´m≠!n≠Ï

given by

scale : ´m≠!n≠Ï ¨ ´m≠!n≠Ï,

(t, v, f) ÿ (t, tv, f),
this last object is just

R(pr1,3)~(scale
*(L(v)‚K(f(v))[1+dimÏ0]))

¶ R(pr1,3)~(L(v)‚K(f(v))[1+dimÏ0])

= (pr2 : ´m≠Ï ¨ Ï)*M[1],

the last equality by proper base change. QED

(3.3.12.1) Now let us pass from the objects Mdef, M, and

Twist(L(0),K,Ï,h=0), all of which lie in pD≥0, to the sheaves of
perverse origin

˜def := Ó-1-dimÏ(Mdef)(-m/2), on !1≠Ï,

˜ := Ó-dimÏ(M)(-m/2), on Ï,

˜0 = Ó-dimÏ(Twist(L(0),K,Ï,h=0))(-m/2), on Ï.

The Tate twists (-m/2) are put in the definition so as to be
compatible with the ˜ which occurs throughout the discussion
2.1.1.3 of the Higher Moment Theorem and its Corollary, cf. 2.2.3.
HHHHoooommmmooootttthhhheeeettttyyyy CCCCoooonnnnttttrrrraaaaccccttttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 3333....3333....11113333 Suppose we are in the
setting of the homothety contraction construction. Thus

K on !m is perverse, and satisfies

Hc
i(!m‚äk, K[m]) = 0 for i > -n,

L on !n is perverse,
(Ï, †) is quasifinitely difference-separating and stable by

homothety.
Let U be a dense open set of Ï on which both ˜ and ˜0 are lisse.

Pick a geometric point u of U, and denote by ® and ®0 the

corresponding ä$…-representations of π1(U, u). Denote by

N := rank(˜|U),
N0 := rank(˜0|U),
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Æ := ®(π1(U, u)) fi GL(˜u) ¶ GL(N, ä$…),

Æ0 := ®0(π1(U, u)) fi GL(˜0u) ¶ GL(N0, ä$…),

G := the Zariski closure of Æ in GL(N, ä$…),

G0 := the Zariski closure of Æ0 in GL(N0, ä$…).

Then we have the following results.
1) We have the inequality of ranks

N
0
≤ N.

2) The group Æ0 is isomorphic to a subquotient of Æ.

3) The algebraic group G0 is a subquotient of G.

In particular, we have
3a) if G is finite (or equivalently if Æ is finite) then G0 is finite (or

equivalently Æ0 is finite),

3b) dim(G0) ≤ dim(G),

3c) rank(G0) ≤ rank(G).

pppprrrrooooooooffff Consider the sheaf ˜def of perverse origin on !1≠Ï. It is

related to the sheaves ˜ and ˜0 of perverse origin on Ï as follows.

We have
˜ = ˜def(1, f),

˜0 = ˜def(0, f),

¬*(˜def|´m≠Ï) ¶ pr2
*˜.

Since a sheaf of perverse origin is lisse precisely where it has

maximum rank, we see that ¬*(˜def|´m≠Ï) ¶ pr2
*˜|´m≠Ï is lisse

precisely at those points (t±0, f) in ´m≠Ï such that ˜ has maximal

rank N at f. Therefore ˜def|´m≠Ï is lisse precisely at those points

(t±0, f) such that ˜ has maximum rank N at ft. In particular, both

¬*(˜def|´m≠Ï) ¶ pr2
*˜|´m≠Ï and ˜def|´m≠Ï are lisse at every

point of {1}≠U. So both are lisse at the geometric point (1,u). Pick a
dense open set Udef of ´m≠Ï which contains (1, u), on which both

˜def|´m≠Ï and ¬*(˜def|´m≠Ï) ¶ pr2
*˜|´m≠Ï are lisse.

Denote by ®def the ä$…-representations of π1(Udef, (1, u))

corresponding to ˜def, and define

Ædef := ®def(π1(Udef, (1, u))) fi GL(˜def, (1,u)) ¶ GL(N, ä$…),

Gdef := the Zariski closure of Ædef in GL(N, ä$…).

Similarly denote by ®def,¬ the ä$…-representations of π1(Udef, (1, u))

corresponding to ¬*(˜def|´m≠Ï) ¶ pr2
*˜|´m≠Ï. Notice that

¬*(˜def|´m≠Ï) and ˜def have the same stalk at (1, u). Define

Ædef,¬ := ®def,¬(π1(Udef, (1, u))) fi GL(˜def, (1,u)) ¶ GL(N, ä$…),

Gdef,¬ := the Zariski closure of Ædef,¬ in GL(N, ä$…).
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Now Ædef (resp. Ædef,¬) is independent of the particular choice of

dense open set Udef on which ˜def|´m≠Ï (resp. ¬*(˜def|´m≠Ï)) is

lisse. If we use Udef for ˜def|´m≠Ï and ¬-1Udef for ¬
*(˜def|´m≠Ï),

we see that we have an equality of image groups
Ædef = Ædef,¬.

On the other hand, the map
pr2 : ´m≠U ¨ U

induces a surjection on fundamental groups, so we have
Æ = Ædef,¬.

So we have corresponding equalities of Zariski closures:
Gdef = Gdef,¬ = G.

We apply the Semicontinuity Theorem 2.8.8 to the sheaf ˜def

of perverse origin on !1≠Ï. We take for Z fi !1≠Ï the irreducible
closed set {0}≠Ï. The sheaf ˜def is lisse of rank N on the dense open

set Udef in !1≠Ï - Z, and ˜def|Z = ˜0 is lisse of rank N0 on U. The

Semicontinuity Theorem tells us that N0 ≤ N, and that G0 is a

subquotient of Gdef = Gdef,¬ = G. QED

RRRReeeemmmmaaaarrrrkkkk 3333....3333....11114444 The sheaf ˜0 vanishes unless Ó-n(L(0)) = Ó-n(L)0,

the stalk at 0 of Ó-n(L), is nonzero. Indeed, the object L(0) is a
successive extension of the objects

(the constant sheaf on !n with value Ó-i(L)0)[i],

for i running from n down to 0. If Ó-n(L(0)) = 0, then L(0) lies in
pD≥1. This implies that the entire object L(0)‚K(f(v))[dimÏ0] lies in

pD≥1 on !n≠Ï, which in turn implies that
Twist(L(0), K, Ï, h=0) := Rpr2~(L(0)‚K(f(v))[dimÏ0])

lies in pD≥1 on Ï. This in turn implies that

˜0 := Ó-dimÏ(Twist(L(0), K, Ï, h=0))(-m/2)

= Ó-dimÏ(an object in pD≥1 on Ï)
= 0.

RRRReeeemmmmaaaarrrrkkkk 3333....3333....11115555 Suppose on the contrary that in an open

neighborhood U0 of the origin in !n, L|U0 is Ò[n] for some nonzero

lisse sheaf Ò on U0. Then L(0) is perverse. Indeed, L(0) is the

geometrically constant perverse sheaf
(the constant sheaf of value Ò0)[n].

FFFFiiiirrrrsssstttt HHHHoooommmmooootttthhhheeeettttyyyy CCCCoooonnnnttttrrrraaaaccccttttiiiioooonnnn CCCCoooorrrroooollllllllaaaarrrryyyy 3333....3333....11116666 Hypotheses and
notations as in the Homothety Contraction Theorem 3.3.13, suppose
iiiinnnn aaaaddddddddiiiittttiiiioooonnnn that, in an open neighborhood U0 of the origin, L|U0 is

Ò[n] for some nonzero lisse sheaf Ò on U0. Consider the following
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perverse sheaves on Ï:
M := Twist(L, K, Ï, h=0),
M0 := Twist(L(0), K, Ï, h=0),

M00 := Twist(ä$…[n](n/2), K, Ï, h=0),

and the sheaves of perverse origin on Ï to which they give rise:

˜ := Ó-dimÏ(M)(-m/2),

˜0 := Ó-dimÏ(M0)(-m/2),

˜00 := Ó-dimÏ(M00)(-m/2).

Then we have the following results.
1) The perverse sheaves M0 and M00 on Ï are related by

M0 = M00‚(the geometrically constant sheaf Ò0(-n/2)).

2) The sheaves of perverse origin ˜0 and ˜00 on Ï are related by

˜0 = ˜00‚(the geometrically constant sheaf Ò0(-n/2)).

3) Let U be a dense open set of Ï on which ˜, ˜0 and ˜00 are all

lisse. Denote by
N := rank(˜|U),
N0 := rank(˜0|U),

N00 := rank(˜00|U).

Then we have equality
N0 = N00≠dim(Ò0),

and the inequality
N ≥ N0.

pppprrrrooooooooffff Assertions 1) and 2) are trivial, since L(0) is the geometrically

constant perverse sheaf Ò0[n] on !n, so is isomorphic to the tensor

product of the constant perverse sheaf ä$…[n](n/2) with the

geometrically constant lisse sheaf Ò0(-n/2). Thanks to the

hypotheses made on K, the functor
L ÿ Twist(L, K, Ï, h=0)

is an exact functor from perverse sheaves on !n to perverse
sheaves on Ï (cf. Exactness Corollary 1.4.5), which visibly commutes
with tensoring with geometrically constant (i.e., pulled back from
Spec(k)) lisse sheaves. This proves 1), and 2) follows by applying the

functor Ó-dimÏ(?)(-m/2), which also commutes with tensoring with
geometrically constant lisse sheaves.

The equality asserted in 3) is immediate from 2). The
inequality N ≥ N0, "mise pour memoire", was already proven in part

1) of the Homothety Contraction Theorem 3.3.13. QED

SSSSeeeeccccoooonnnndddd HHHHoooommmmooootttthhhheeeettttyyyy CCCCoooonnnnttttrrrraaaaccccttttiiiioooonnnn CCCCoooorrrroooollllllllaaaarrrryyyy 3333....3333....11117777 Hypotheses
and notations as in the First Homothety Contraction Corollary 3.3.16,
suppose iiiinnnn aaaaddddddddiiiittttiiiioooonnnn that

k is a finite field
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K on !m is perverse, geometrically irreducible, geometrically
nonconstant, “-pure of weight zero, and satisfies

n + dimSupp(K) ≥ m+1.

L on !n is perverse, geometrically irreducible, “-pure of weight
zero, and in an open neighborhood U0 of the origin, L|U0 is Ò[n] for

some nonzero lisse sheaf Ò on U0,

(Ï, †) is d-separating for some d ≥ 4.
Consider the following perverse sheaves on Ï:

M := Twist(L, K, Ï, h=0),
M0 := Twist(L(0), K, Ï, h=0),

M00 := Twist(ä$…[n](n/2), K, Ï, h=0),

and the sheaves of perverse origin on Ï to which they give rise:

˜ := Ó-dimÏ(M)(-m/2),

˜0 := Ó-dimÏ(M0)(-m/2),

˜00 := Ó-dimÏ(M00)(-m/2).

Then we have the following results.
1) The perverse sheaves M0 and M00 on Ï are related by

M0 = M00‚(the geometrically constant sheaf Ò0(-n/2)).

2) The sheaves of perverse origin ˜0 and ˜00 on Ï are related by

˜0 = ˜00‚(the geometrically constant sheaf Ò0(-n/2)).

3) Let U be a dense open set of Ï on which ˜, ˜0, and ˜00 are all

lisse. Denote by
N := rank(˜|U),

Npure := rank(Gr0(˜|U)),

Npure,ncst := rank(Gr0(˜|U)ncst),

N0 := rank(˜0|U),

N0,pure,ncst := rank(Gr0(˜0|U)ncst),

N00 := rank(˜00|U),

N00,pure,ncst := rank(Gr0(˜00|U)ncst).

Then we have the equalities
N0 = N00≠dim(Ò0),

N0,pure,ncst = N00,pure,ncst≠dim(Ò0),

and the inequality
N ≥ N0.

4) Suppose that Ggeom for Gr0(˜00|U)ncst is not finite, and that we

have the inequality
(N00,pure,ncst -1)/2 ≥ N - Npure.

Then Ggeom for Gr0(˜|U)ncst is not finite.

pppprrrrooooooooffff Assertions 1), 2), and 3) are proven exactly as in the proof of
the First Homothety Contraction Corollary 3.3.16.
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For 4), we argue as follows. By 2), ˜0|U is geometrically

isomorphic to the direct sum of dim(Ò0) copies of ˜00|U. So the

group Ggeom for Gr0(˜0|U)ncst is isomorphic (diagonal embedding)

to the group Ggeom for the geometrically irreducible (by the Higher

Moment Theorem-second variant 1.22.11, applied to

Twist(ä$…[n](n/2), K, Ï, h=0)]) lisse sheaf Gr
0(˜00|U)ncst. If this last

group is not finite, we claim that its rank (dimension of a maximal
torus) satisfies the inequality

rank(Ggeom for Gr0(˜00|U)ncst) ≥ (N00,pure,ncst -1)/2.

To see this, we argue as follows. If this Ggeom is not finite, then,

being semisimple, it has rank at least one. So the asserted inequality
holds trivially if N00,pure,ncst ≤ 3. When N00,pure,ncst ≥ 4, then by

the Higher Moment Theorem-second variant 1.22.11 and Larsen's
Alternative 2.2.2, it either contains SL(N00,pure,ncst), or is one of

SO(N00,pure,ncst), O(N00,pure,ncst), or Sp(N00,pure,ncst). So looking

case by case, we see that in each case the rank (dimension of a
maximal torus) of this group satisfies the asserted inequality

rank(Ggeom for Gr0(˜00|U)ncst) ≥ (N00,pure,ncst -1)/2.

On the other hand, Gr0(˜00|U)ncst is a quotient of ˜00|U, so

its Ggeom is a quotient of the group Ggeom for ˜00|U. Thus

rank(Ggeom for ˜00|U) ≥ rank(Ggeom for Gr0(˜00|U)ncst).

So we have the inequality
rank(Ggeom for ˜00|U) ≥ (N00,pure,ncst -1)/2.

On the other hand, we have already proven in part 3c) of the
Homothety Contraction Theorem 3.3.13 the inequality

rank(Ggeom for ˜|U) ≥ rank(Ggeom for ˜00|U).

So we have the inequality
rank(Ggeom for ˜|U) ≥ (N00,pure,ncst -1)/2.

But we have assumed that we have
(N00,pure,ncst -1)/2 ≥ N - Npure.

So we have the inequality
rank(Ggeom for ˜|U) ≥ N - Npure.

Suppose that Ggeom for Gr0(˜|U)ncst is finite. We derive a

contradiction to this last inequality as follows. The sheaf

Gr0(˜|U)ncst is a quotient of ˜|U. We have a short exact sequence

0 ¨ (˜|U)wt < 0 ¨ ˜|U ¨ Gr0(˜|U) ¨ 0,

and a direct sum decomposition

Gr0(˜|U) = Gr0(˜|U)cst · Gr0(˜|U)ncst,

cf. Lemma 1.10.3. So the action of Ggeom for ˜|U, in a basis adapted

to this filtration, has the block upper triangular shape
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A * *
0 Id *
0 0 C,

where the A block is the action of Ggeom on (˜|U)wt < 0, the Id

block is the trivial action of Ggeom on Gr0(˜|U)cst, and the C block is

the action of Ggeom on Gr0(˜|U)ncst. So if Ggeom for Gr0(˜|U)ncst is

finite, then the identity component (Ggeom)0 has block shape

A * *
0 Id *
0 0 Id,

in which case we have the obvious equality
rank(Ggeom for ˜|U) = rank(Ggeom for (˜|U)wt < 0)).

The group Ggeom for (˜|U)wt < 0 has determinant of finite order,

because (˜|U)wt < 0 is a lisse sheaf on the lisse k-scheme U, so its

determinant is geometrically of finite order, cf. [De-Weil II, 1.3.4].
Therefore we have the inclusion

(Ggeom for (˜|U)wt < 0)
0

fi SL(rank((˜|U)wt < 0)) = SL(N - Npure).

So we have the inequality
rank(Ggeom for (˜|U)wt < 0) < N - Npure,

which is the desired contradiction. QED

((((3333....4444)))) RRRReeeettttuuuurrrrnnnn ttttoooo tttthhhheeee pppprrrrooooooooffff ooooffff tttthhhheeee ÒÒÒÒ¥¥¥¥ tttthhhheeeeoooorrrreeeemmmm

(3.4.1) We now apply the Second Homothety Contraction

Corollary 3.3.17 with m=1, K = Ò¥[1](1/2) on !1, and with the given

L on !n. Consider the perverse sheaf M on Ï given by
M = Twist(L, Ò¥[1](1/2),∏e ,h=0).

As before, we define the sheaf ˜ of perverse origin on Ï

˜ := Ó-dimÏ(M)(-m/2).
Now consider the perverse sheaf on Ï given by

M00 := Twist(ä$…[n](n/2), Ò¥[1](1/2),∏e ,h=0),

and the sheaf of perverse origin on Ï defined by

˜00 := Ó-dimÏ(M00)(-m/2).

(3.4.2) We know, by the Higher Moment Theorem-second variant
1.22.11, that on any dense open set U of Ï on which both ˜ and
˜00 are lisse, both are geometrically irreducible (and hence

nonzero), geometrically nonconstant, and “-pure of weight zero. So
in the notations

N := rank(˜|U),

Npure := rank(Gr0(˜|U)),

Npure,ncst := rank(Gr0(˜|U)ncst),

N00 := rank(˜00|U),
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N00,pure,ncst := rank(Gr0(˜00|U)ncst),

we have
N = Npure = Npure,ncst ≥ 1,

N00 = N00,pure,ncst ≥ 1.

In particular, we have the inequality
(N00,pure,ncst -1)/2 ≥ N - Npure.

So if we knew that Ggeom for Gr0(˜00|U)ncst = ˜00|U were not

finite, we would conclude, from part 4) of the Second Homothety

Contraction Corollary 3.3.17 that Ggeom for Gr0(˜|U)ncst = ˜|U is

not finite.
(3.4.3) We also know that

N ≥ N0 = rank(Ò0)N00.

So it remains to prove two things.
(3.4.4) First, we must prove that Ggeom for ˜00|U is not finite,

provided that any one of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
(3.4.5) Second, we must prove that we have the rank estimates

rank(˜00|U) = (e-1)n, if e is prime to p,

rank(˜00|U) ≥ Max((e-2)n, (1/e)((e-1)n + (-1)n(e-1))), if p|e.

(3.4.6) We will prove both of these statements in Theorem 3.8.2.

((((3333....5555)))) MMMMoooonnnnooooddddrrrroooommmmyyyy ooooffff eeeexxxxppppoooonnnneeeennnnttttiiiiaaaallll ssssuuuummmmssss ooooffff DDDDeeeelllliiiiggggnnnneeee ttttyyyyppppeeee oooonnnn !!!!nnnn

(3.5.1) In the previous section, we reduced the proof of the Ò¥
theorem to the proof of certain results on the perverse sheaf M00 on

Ï = ∏e given by

M00 := Twist(ä$…[n](n/2), Ò¥[1](1/2),∏e, h=0),

and the sheaf of perverse origin on ∏e defined by

˜00 := Ó-dimÏ(M00)(-1/2).

(3.5.2) In the discussion which is to follow, we will need to pay
attention to the parameters n, e, ¥, which had previously been fixed
and which did not figure explicitly in the notation. So what we were
calling M00 and ˜00 we now rename

M(n,e,¥) := Twist(ä$…[n](n/2), Ò¥[1](1/2),∏e, h=0),

˜(n,e,¥) := Ó-dimÏ(M(n,e,¥))(-1/2).
And what we previously denoted ∏e we now denote

∏(n,e) := the space of polynomials in n variables of degree ≤ e,
to make explicit "n".
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DDDDeeeeppppeeeennnnddddeeeennnncccceeee oooonnnn ¥¥¥¥ LLLLeeeemmmmmmmmaaaa 3333....5555....3333 Given å in k≠, denote by ¥å the

additive character x ÿ ¥(åx), and denote by f ÿ åf the homothety
"å" on ∏(n,e). We have

M(n,e,¥å) = [f ÿ åf]*M(n,e,¥),

˜(n,e,¥å) = [f ÿ åf]*˜(n,e,¥).

pppprrrrooooooooffff This is a trivial instance of proper base change, reflecting the
identity ¥å(f(v)) = ¥(åf(v)). QED

(3.5.4) Before proceeding, let us relate the objects to the
exponential sums they were built to incarnate. Given a finite
extension E/k, and an additive character ¥ of k, we denote by ¥E
the additive character of E defined by

¥E(x) := ¥(TraceE/k(x)).

Recall that we have also fixed a square root of p := char(k), allowing
us to form Tate twists by half integers, and allowing us to give
unambiguous meaning to half-integral powers of ùE.

(3.5.5) In down to earth terms, on the space !n≠∏(n,e), with
coordinates (v, f), we have the lisse sheaf Ò¥(f(v)). Under the second

projection pr2 : !n≠∏(n,e) ¨ ∏(n,e), we form Rpr2~Ò¥(f(v)). For E/k

a finite extension, and for f in ∏e(E), the stalk of Rpr2~Ò¥(f(v)) at f

is the object RÆc(!
n‚käE, Ò¥(f)), whose cohomology objects are the

groups

Ói(RÆc(!
n‚käE, Ò¥(f))) = Hc

i(!n‚käE, Ò¥(f)).

The perverse sheaf M00 is just a Tate twist and a shift of

Rpr2~Ò¥(f(v)); we have

Rpr2~Ò¥(f(v)) = M(n,e,¥)[-n - dim∏(n,e)]((-n-1)/2).

In particular, we have

˜(n,e,¥) = Rnpr2~Ò¥(f(v))(n/2).

LLLLeeeemmmmmmmmaaaa 3333....5555....6666 For E/k a finite extension, and for f in
Ï(E) = ∏(n,e)(E), i.e., for f an E-polynomial in n variables of degree
at most e, we have the identity

Trace(FrobE,f | M(n,e,¥))

= (-1)n+dimÏ(ùE)-(n+1)/2‡v in !n(E) ¥E(f(v)).

pppprrrrooooooooffff Immediate from the Lefschetz Trace Formula, proper base
change, and the definition of M00. QED

LLLLeeeemmmmmmmmaaaa 3333....5555....7777 For U fi ∏(n,e) an open dense set on which M(n,e,¥)
has lisse cohomology sheaves, M(n,e,¥)|U is the lisse sheaf
˜(n,e,¥)(1/2)|U, placed in degree -dimÏ:

M(n,e,¥)|U = (˜(n,e,¥)(1/2)|U)[dimÏ].
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For E/k a finite extension, and for f in U(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

pppprrrrooooooooffff A perverse sheaf L on a smooth connected k-scheme U with
lisse cohomology sheaves is of the form Ò[dimU] for Ò a lisse sheaf

on U, which can be recovered from L as Ó-dimU(L). Applied to
M00|U, we find the first assertion. The second assertion is then

immediate from the previous lemma. QED

(3.5.8) At this point, we must recall a key result of Deligne [De-

Weil I 8.4, Ka-SE 5.1.1] concerning exponential sums on !n. Let us
say that an n-variable polynomial f in ∏(n,e)(äk) is a Deligne
polynomial if it satisfies the following two conditions:
D1) When we write f = ‡i≤e Fi as a sum of homogeneous forms, Fe is

nonzero, and, in the case n ≥ 2, the closed subscheme of @n-1

defined by the vanishing of Fe is smooth of codimension one.

D2) The integer e is prime to p.

(3.5.9) For a fixed integer e which is prime to p, the Deligne
polynomials, those where the discriminant »(Fe) is invertible, form

a dense open set Î(n,e) of ∏(n,e). [And for any e, the polynomials in
∏(n,e) satisfying D1, i.e., those where »(Fe) is invertible, form a

dense open set, but we will not have occasion to use that set.]

TTTThhhheeeeoooorrrreeeemmmm 3333....5555....11110000 ([De-Weil I, 8.4], [Ka-SE 5.1.1]) Fix an integer e ≥ 1
prime to p. For any finite extension E/k, and any Deligne polynomial
f in Î(n,e)(E), we have the following results.
1) The "forget supports" maps

Hc
i(!n‚käE, Ò¥(f)) ¨ Hi(!n‚käE, Ò¥(f))

are all isomorphisms.

2) The groups Hc
i(!n‚käE, Ò¥(f)) vanish for i±n.

3) The group Hc
n(!n‚käE, Ò¥(f)) is pure of weight n, and has

dimension (e-1)n.

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....5555....11111111 Suppose e ≥ 1 is prime to p. Then M(n,e,¥) has
lisse cohomology sheaves on the dense open set Î(n,e) fi ∏(n,e)
consisting of Deligne polynomials. We have

M(n,e,¥)|Î(n,e) = ˜(n,e,¥)(1/2)[dim∏(n,e)]|Î(n,e),

˜(n,e,¥) = Rnpr2~Ò¥(f(v))(n/2).

In particular, ˜(n,e,¥) = Rnpr2~Ò¥(f(v))(n/2) is lisse on Î(n,e) of

rank (e-1)n, and the other Ripr2~Ò¥(f(v)) vanish on Î(n,e).

pppprrrrooooooooffff Looking fibre by fibre, we see that Ripr2~Ò¥(f(v))|Î(n,e)

vanishes for i ± n. Therefore Ó-i(M(n,e,¥))|Î(n,e) vanishes for
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i ± dimÏ. The remaining cohomology sheaf

Ó-dimÏ(M(n,e,¥)) = Rnpr2~Ò¥(f(v))((n+1)/2)

is of perverse origin on ∏(n,e). As it has constant rank (e-1)n on
Î(n,e), it is lisse on Î(n,e). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....5555....11112222 For e ≥ 2 prime to p, E/k any finite extension, and
f in Î(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,¥))

= (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt LLLLeeeemmmmmmmmaaaa 3333....5555....11113333 Suppose e ≥ 2 is prime to p. Then we
have the following results.
1) For any finite extension E/k, and for any f in Î(n,e)(E), we have

det(-FrobE| Hc
n(!n‚käE, Ò¥(f)))

= (a root of unity)≠(ùE)(n/2)(e-1)
n
.

2) The determinant of the lisse sheaf ˜(n,e,¥)|Î(n,e) is
arithmetically of finite order.
pppprrrrooooooooffff Any lisse ä$…-sheaf on a geometrically connected smooth k-

scheme has its determinant geometrically of finite order, cf. [De-Weil
II, 1.3.4]. So to show that the determinant of ˜(n,e,¥)|Î(n,e) is
arithmetically of finite order, it suffices to show, for a single finite
extension E/k and for a single f in Î(n,e)(E), that
det(FrobE,f|˜(n,e,¥)) is a root of unity. For any such f, we have

˜(n,e,¥)f = Hc
n(!n‚käE, Ò¥(f))(n/2),

and Hc
n(!n‚käE, Ò¥(f)) has dimension (e-1)n. So we have

det(FrobE,f|˜(n,e,¥))

= det(FrobE| Hc
n(!n‚käE, Ò¥(f)))/(ùE)

(n/2)(e-1)n.

So it suffices to prove 1). For this, we argue as follows. Since we are
claiming an equality up to roots of unity, we may replace E by its
quadratic extension, which has the effect of "squaring both sides".
This reduces us to the case where ùE is a square, and so where

(ùE)(n/2)(e-1)
n

lies in #. Think of ¥ as having values in the cyclotomic field $(Ωp).

Then for every … not p, and for every embedding of $(Ωp) into ä$…,

the L-function of !n with coefficients in Ò¥(f), a rational function in

$(Ωp)(T) which is either a polynomial or a reciprocal polynomial, is

given, in ä$…(T), by

(L(!n/E, Ò¥(f))(T))
(-1)n+1 = det(1-TFrobE |Hc

n(!n‚käE, Ò¥(f))),

where, via the given embedding, we view ¥ as having values in ä$….

So we see that

A := det(-FrobE| Hc
n(!n‚käE, Ò¥(f)))
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lies in $(Ωp), because it is the highest degree coefficient in the

$(Ωp)-polynomial

(L(!n/E, Ò¥(f))(T))
(-1)n+1.

On the one hand, the …-adic interpretation of A shows that for every
finite place ¬ of $(Ωp) of residue characteristic not p, A is a ¬-adic

unit. And Deligne's theorem 3.5.10 that Hc
n(!n‚käE, Ò¥(f)) is pure of

weight n and of dimension (e-1)n shows that A has absolute value

(ùE)(n/2)(e-1)
n
at every archimedean place. So the ratio

A/(ùE)(n/2)(e-1)
n

is a nonzero element in $(Ωp) which is a unit at every place, finite

or infinite, except possibly at places lying over p. But in $(Ωp), there

is a unique place lying over p. By the product formula, the ratio
must be also be a unit at the unique place over p. Being a unit
everywhere, the ratio is (Kronecker's theorem~) a root of unity. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....5555....11114444 Suppose e ≥ 2 is prime to p. Given a finite
extension E/k, and f in Î(n,e)(E), suppose some power of

FrobE| Hc
n(!n‚käE, Ò¥(f))

has all equal eigenvalues. Then we have the following results.
1) Every eigenvalue of

FrobE| Hc
n(!n‚käE, Ò¥(f))

is of the form

(a root of unity)≠(ùE)n/2.
2) The sum ‡v in !n(E) ¥E(f(v)) is of the form

(ùE)n/2≠(an algebraic integer).

pppprrrrooooooooffff 1) Indeed, if some power (FrobE)
r has equal eigenvalues, say

all equal to wr, then

wr(e-1)
n
= det((FrobE)

r| Hc
n(!n‚käE, Ò¥(f)))

= (ùE)(rn/2)(e-1)
n
.

But all the eigenvalues of FrobE are of the form (a root of unity)≠w.

Since _‡v in !n(E) ¥E(f(v)) is the sum of the eigenvalues of

FrobE| Hc
n(!n‚käE, Ò¥(f)),

assertion 2) is obvious from 1). QED

Given an integer e ≥ 1, whether or not prime to p, let us denote
by

U(n,e,¥) fi ∏(n,e)
a dense open set on which M(n,e,¥) has lisse cohomology sheaves. For
e prime to p, we may take U(n,e,¥) = Î(n,e). For e divisible by p, we
know much less. If n=1, then the open set
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U(1,e) := {‡i≤e aix
i | ae-1 is invertible} fi ∏(1,e)

is such a U(1,e,¥) for every ¥, and
rank(˜(1,e,¥)|U(1,e,¥)) = e-2.

But for e divisible by p and n ≥ 2, we do not know an explicit
description of any U(n,e,¥). Nor do we know if we can choose a single
U(n,e) which, after arbitrary extension of scalars from k to a finite
extension E/k, serves as a U(n,e,¥) for every nontrivial ¥ on E. Nor
do we know the rank of ˜(n,e ¥)|U(n,e,¥). See [Ka-Lau, Remark
5.5.2] for similar conundra.
(3.5.15) We now consider the effect of varying e, keeping n fixed.
LLLLeeeemmmmmmmmaaaa 3333....5555....11116666 Let e ≥ 2, and consider the natural inclusion

∏(n,e-1) fi ∏(n,e).
We have

M(n,e,¥)[dim∏(n,e-1) - dim∏(n,e)]|∏(n,e-1) = M(n,e-1,¥),
˜(n,e,¥)|∏(n,e-1) = ˜(n,e-1,¥).

pppprrrrooooooooffff. An instance of proper base change. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....5555....11117777 For e ≥ 2 divisible by p,

rank(˜(n,e,¥)|U(n,e,¥)) ≥ (e-2)n.
pppprrrrooooooooffff Since ˜(n,e,¥) on ∏(n,e) is of perverse origin, its generic rank
is at least the generic rank of any pullback. Its pullback to ∏(n,e-1)

has generic rank (e-2)n, by Corollary 3.5.11, since e-1 is prime to p.
QED

(3.5.18) For n ≥ 2, and e ≥ 1, denote by
Homog(n,e) fi ∏(n,e)

the linear space of homogeneous forms of degree e in n variables,
and by

NSHomog(n,e) fi Homog(n,e)
the dense open set consisting of nonsingular (NS) forms, i.e., those

forms F of degree e such that the closed subscheme of @n-1 defined
by the vanishing of F is smooth of codimension one.

LLLLeeeemmmmmmmmaaaa 3333....5555....11119999 For n ≥ 2 and e ≥ 1, the pullback
M(n,e,¥)[dimHomog(n,e) - dim∏(n,e)]|Homog(n,e)

is perverse on Homog(n,e).
pppprrrrooooooooffff Indeed, evaluation of homogeneous forms of any given degree
defines a finite map

eval : !n ¨ Homog(n,e)£.

So for any perverse L on !n, eval*L is perverse on Homog(n,e)£. The

object
M(n,e,¥)[dimHomog(n,e) - dim∏(n,e)]|Homog(n,e)

is none other than FT¥(eval*ä$…[n]((n+1)/2)), cf. the proof of

Compatibility Lemma 3.2.3, and hence is itself perverse. QED
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((((3333....6666)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: aaaannnn eeeexxxxppppoooonnnneeeennnnttttiiiiaaaallll ssssuuuummmm ccccaaaallllccccuuuullllaaaattttiiiioooonnnn
(3.6.1) The following calculation grew out of a discussion with
Steve Sperber. We fix e ≥ 2, n ≥ 2. We denote by e0 the "prime to p

part" of e, i.e., write e as

e = e0p
a,

with e0 prime to p, and a ≥ 0. For a nontrivial ä$…
≠-valued

multiplicative character ç of k≠, we extend ç by zero to k. For any
finite extension E/k, we denote by çE the multiplicative character

of E≠ defined by
çE(x) := ç(NE/k(x)).

We recall that the gauss sum g(¥, ç) is defined by
g(¥, ç) = ‡x in k≠ ¥(x)ç(x),

and satisfies the Hasse-Davenport relation: for a finite extension E/k,

-g(¥E, çE) = (-g(¥, ç))deg(E/k).

(3.6.2) For a homogeneous form F of degree e, a nontrivial
multiplicative character ç of order dividing e (i.e., of order dividing

e0), and a point v ± 0 in !n(k), the value ç(F(v)) depends only on

the image of v in @n-1(k) (because if we replace v by ¬v, ¬ in k≠,

F(¬v) = ¬eF(v), and çe = ú). So we may view ç(F(v)) as a function

on @n-1(k). More precisely, denote by

XF fi @n-1

the hypersurface defined by the vanishing of F, and by @n-1[1/F] its
complement. As explained in [Ka-ENSMCS, section 8, page 11], we

can speak of the lisse, rank one Kummer sheaf Òç(F) on @n-1[1/F].

(3.6.3) Suppose now that F in NSHomog(n,e)(k) is a nonsingular

form. Denote by L in H2(XF‚käk, ä$…)(1) the cohomology class of a

hyperplane section, and define

Primn-2(XF‚käk, ä$…)

:= Hn-2(XF‚käk, ä$…), if n is odd,

:= orthogonal complement of La in Hn-2(XF‚käk, ä$…), if

n-2 = 2a.
One knows that

dimPrimn-2(XF‚käk, ä$…) = ((e-1)n + (-1)n(e-1))/e.

It is well known [Ka-Sar-RMFEM, 11.4.2] that the cohomology of XF,

as a graded Frobk-module, is given by

H*(XF‚käk, ä$…) ¶ Primn-2(XF‚käk, ä$…) · H*(@n-2‚käk, ä$…).

We also recall [Ka-ENSMCS, section 8, pages 11-12] that for any

nontrivial multiplicative ç with çe = ú, and for any F in
NSHomog(n,e)(k), we have
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Hc
i(@n-1[1/F]‚käk, Òç(F)) = 0 for i ± n-1,

Hc
n-1(@n-1[1/F]‚käk, Òç(F)) is pure of weight n-1,

dimHc
n-1(@n-1[1/F]‚käk, Òç(F)) = ((e-1)n + (-1)n+1)/e.

TTTThhhheeeeoooorrrreeeemmmm 3333....6666....4444 Let e ≥ 2, n ≥ 2. Suppose that E/k is a finite
extension which contains the e0'th roots of unity. Let F in

NSHomog(n,e)(E) be a nonsingular form of degree e in n variables.
For any finite extension L/E, we have the identity

(-1)n‡v in !n(L) ¥L(F(v))

= Trace(FrobL, Prim
n-2(XF‚EäE, ä$…)(-1))

+‡ç ± ú, çe0 = ú (-g(¥E, äçE))Trace(FrobL,Hc
n-1(@n-1[1/F]‚EäE, Òç(F))).

pppprrrrooooooooffff Extending scalars, it suffices to treat universally the case
where L = E = k, and k contains the e0'th roots of unity. In view of

the Frobk-module isomorphism

H*(XF‚käk, ä$…) ¶ Primn-2(XF‚käk, ä$…) · H*(@n-2‚käk, ä$…)

and the Lefschetz Trace formula, applied to both XF and @n-2, we

have

ùXF(k) = (-1)n-2Trace(Frobk, Prim
n-2(XF‚käk, ä$…)) +ù@

n-2(k).

We rewrite this as

Trace(Frobk, Prim
n-2(XF‚käk, ä$…)(-1))

= (-1)n-2(ùk)(ùXF(k) - ù@
n-2(k)).

Similarly, the vanishing of Hc
i(@n-1[1/F]‚käk, Òç(F)) for i±n-1 gives

Trace(Frobk, Hc
n-1(@n-1[1/F]‚käk, Òç(F))

=(-1)n-1‡x in @n-1(k) ç(F(x)).

With these preparations , we calculate directly. For each point

x in @n-1(k), choose a lift ëx in !n(k). Then each nonzero point v in

!n(k) can be written uniquely as ¬ëx, with ¬ in k≠ and x in @n-1(k).
Now F(0) = 0 because F is homogeneous, so

‡v in !n(k) ¥(F(v))

= 1 + ‡v in !n(k) ¥(F(v))

= 1 + ‡¬±0 in k ‡x in @n-1(k) ¥(F(¬ëx))

= 1 + ‡¬±0 in k ‡x in @n-1(k) ¥(¬
eF(ëx))

= 1 + ‡x in @n-1(k) ‡¬±0 in k ¥(¬eF(ëx))

= 1 + ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))(ù{e'th roots of ® in k≠})

= 1 + ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))(ù{e0'th roots of ® in k≠})

= 1 + ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))(1 + ‡ç ± ú, çe0 = ú ç(®))



Additive character sums on !n 131

= 1 + ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))

+ ‡ç ± ú, çe0 = ú ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))ç(®)

= 1 - (‡x in @n-1(k) 1) + ‡x in @n-1(k) ‡® in k ¥(®F(ëx))

+ ‡ç ± ú, çe0 = ú ‡x in @n-1(k) ‡®±0 in k ¥(®F(ëx))ç(®).

The innermost sums are standard:
‡® in k ¥(®F(ëx)) = ùk, if F(ëx) = 0, i.e., if x lies in XF,

= 0, if not.

‡®±0 in k ¥(®F(ëx))ç(®) = äç(F(ëx))g(¥, ç).

So we find
‡v in !n(k) ¥(F(v))

= 1 - ù@n-1(k) + (ùk)ùXF(k)

+ ‡ç ± ú, çe0 = ú g(¥, äç)‡x in @n-1(k) ç(F(ëx)).

Notice that

1 - ù@n-1(k) = - (ùk)ù@n-2(k).
So we find

‡v in !n(k) ¥(F(v))

= (ùk)(ùXF(k) - ù@
n-2(k))

+ ‡ç ± ú, çe0 = ú g(¥, äç)‡x in @n-1(k) ç(F(ëx)).

Now using our preparatory identities, valid when F is nonsingular,
we find

(-1)n‡v in !n(k) ¥(F(v))

= Trace(Frobk, Prim
n-2(XF‚käk, ä$…)(-1))

+‡ç ± ú, çe0 = ú (-g(¥E, äçE))Trace(Frobk,Hc
n-1(@n-1[1/F]‚käk,Òç(F))),

as required. QED

TTTThhhheeeeoooorrrreeeemmmm 3333....6666....5555 Let e ≥ 2, n ≥ 2. Let
UH(n,e,¥) fi Homog(n,e)

be a dense open set on which
M(n,e,¥)[dimHomog(n,e) - dim∏(n,e)]|Homog(n,e)

has lisse cohomology sheaves. Then we have the following results.
1) ˜(n,e,¥)|UH(n,e,¥) is lisse of rank

(1/e)((e-1)n + (-1)n(e-1)) + ((e0 - 1)/e)((e-1)n + (-1)n+1),

and pure of weight zero.
2) For any finite extension E/k containing the e0'th roots of unity,

and for any homogeneous form F in UH(n,e,¥)(E) which also lies in
NSHomog(n,e), we have the following explicit formula:
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det(1 - (ùE)n/2TFrobE,F | ˜(n,e,¥))

= det(1 - (ùE)TFrobE |Primn-2(XF‚EäE, ä$…))

≠°ç±ú, çe0 = ú

det(1 - (-g(¥E, çE))TFrobE | Hc
n-1(@n-1[1/F]‚käk, Òç(F))).

pppprrrrooooooooffff We know that ˜(n,e,¥)|UH(n,e,¥) is lisse and mixed, and that
it is (a Tate twist of) the only nonzero cohomology sheaf of

M(n,e,¥)[dimHomog(n,e) - dim∏(n,e)]|UH(n,e).
For any finite extension E/k, and any F in UH(n,e,¥)(E), we have

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)),

cf. 3.5.7. So for F in UH(n,e,¥)(E) which also lies in NSHomog(n,e), we
get the explicit formula asserted in 2). From this formula, we
compute that the stalk ˜(n,e,¥)F has rank equal to

dim Primn-2(XF‚EäE, ä$…)

+ ‡ç±ú, çe0 = ú dimHc
n-1(@n-1[1/F]‚käk, Òç(F)),

which gives the asserted value for the rank.
The explicit formula 2) also shows that on the smaller open set

UH(n,e,¥)€NSHomog(n,e), ˜(n,e,¥) is indeed pure of weight zero. As
˜(n,e,¥) is lisse on UH(n,e,¥), it is pure of weight zero on all of
UH(n,e,¥). [On UH(n,e,¥), ˜(n,e,¥) is both lisse and mixed, so has a
weight filtration by lisse subsheaves which are each pure of some
weight, and that weight can be read on the smaller open set.] QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....6666....6666 For e ≥ 2 divisible by p, and n ≥ 2, we have the
estimate

rank(˜(n,e,¥)|U(n,e,¥))

≥ (1/e)((e-1)n + (-1)n(e-1)) + ((e0 - 1)/e)((e-1)n + (-1)n+1)

≥ (1/e)((e-1)n + (-1)n(e-1)).
pppprrrrooooooooffff Since ˜(n,e,¥) on ∏(n,e) is of perverse origin, its generic rank
exceeds the generic rank of any pullback. Its pullback to Homog(n,e)
has generic rank

(1/e)((e-1)n + (-1)n(e-1)) + ((e0 - 1)/e)((e-1)n + (-1)n+1)

by the above Corollary. QED

TTTThhhheeeeoooorrrreeeemmmm 3333....6666....7777 In Theorem 3.6.5, we may take for
UH(n,e,¥) fi Homog(n,e)

the set NSHomog(n,e).
pppprrrrooooooooffff For brevity, we will write NS for NSHomog(n,e). Consider the

product space !n≠NS with coordinates (x, F), and the lisse sheaf

Ò¥(F(x)). We must show that all the sheaves Ri(pr2)~Ò¥(F(x)) on NS

are lisse. To see this, we first perform three preliminary reductions.
First reduction: The restriction of Ò¥(F(x)).to {0}≠NS is the

constant sheaf ä$…, simply because F is homogeneous of strictly
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positive degree. Consider the excision sequence for

(!n - {0})≠NS fi !n≠NS fl {0}≠NS

and the sheaf Ò¥(F(x)).on !n≠NS. Denote by

ƒ : (!n - {0})≠NS ¨ NS
and

id : {0}≠NS ¨ NS
the projections onto their second factors. We have

R0(id)~ä$… = ä$…, all other R
i(id)~ä$… = 0.

In particular, all the sheaves Ri(id)~ä$… on NS are lisse. By the long

exact excision sequence

Ri-1(id)~ä$… ¨ Riƒ~Ò¥(F(x)) ¨ Ri(pr2)~Ò¥(F(x)) ¨ Ri(id)~ä$… ¨ ,

to show that all the sheaves Ri(pr2)~Ò¥(F(x)) on NS are lisse, it

suffices to show that all the Riƒ~Ò¥(F(x)) are lisse on NS.

Second reduction: Denote by Blow the blow up of the origin in

!n. Explicitly, Blow is the closed subscheme of !n≠@n-1 defined by
the equations xiZj = xjZi for all i < j, where the Zi are the

homogeneous coordinates in @n-1. The two projections give maps

bl : Blow ¨ !n

and

π : Blow ¨ @n-1.
The first map has

bl-1({0}) = @n-1,
and induces

Blow - @n-1 ¶ !n - {0}.
The second map is the tautological line bundle Ø(1). Take the product
of this "constant" siutation with NS. We get maps

bl≠id : Blow≠NS ¨ !n≠NS,
and

π≠id: Blow≠NS ¨ @n-1≠NS.

The pullback (bl≠id)*Ò¥(F(x)) on Blow≠NS is a lisse sheaf of

rank one, whose restriction to

(bl≠id)-1({0}≠NS) = @n-1≠NS
is the constant sheaf ä$… on that space. So we have an excision

situation with the schemes

(Blow - @n-1)≠NS fi Blow≠NS fl @n-1≠NS,

and the sheaf (bl≠id)*Ò¥(F(x)) on Blow≠NS.

On the open set

(Blow - @n-1)≠NS ¶ (!n - {0})≠NS,

the sheaf (bl≠id)*Ò¥(F(x)) is just the restriction of Ò¥(F(x)). Denote

by
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® : Blow≠NS ¨ NS,

p2 : @n-1≠NS ¨ NS,

the second projections. Then we have a long exact excision sequence

... ¨Riƒ~Ò¥(F(x)) ¨ Ri(π≠id)~((bl≠id)
*Ò¥(F(x))) ¨ Ri(p2)~ä$… ¨....

Now p2 is a proper smooth map, so the sheaves Ri(p2)~ä$… on NS are

all lisse. So in order to show that all the sheaves Riƒ~Ò¥(F(x)) on NS

are lisse, it suffices to show that all the sheaves

Ri®~((bl≠id)
*Ò¥(F(x))) on NS are lisse.

Third reduction: Recall the canonical morphism

π : Blow ¨ @n-1,
and its product with NS:

π≠id : Blow≠NS ¨ @n-1≠NS.
We have a Leray spectral sequence of sheaves on NS

E2
a,b = Ra(p2)~R

b(π≠id)~((bl≠id)
*Ò¥(F(x)))

à Ra+b®~((bl≠id)
*Ò¥(F(x))).

So it suffices to show that every term E2
a,b is lisse on NS. For this,

we may and will extend scalars to a finite extension E/Ép which

contains the e0'th roots of unity.

We need some basic understanding of the sheaves

Rb(π≠id)~((bl≠id)
*Ò¥(F(x))) on @n-1≠NS. Cover @n-1 with the Zariski

open sets Ui := Pn-1[1/Zi] where Zi is invertible. To fix ideas, take

i=1. Write points as (1, z), with z in !n-1. Over this open set U1,

Blow is the product !1≠U1, π is the projection, and the restriction

to !1≠U1≠NS, with coordinates (¬, z, F), of the lisse sheaf

(bl≠id)*Ò¥(F(x)) is the lisse sheaf Ò¥(F(¬(1, z))) = Ò¥(¬eF(1, z)).

Over every point in the open set Ë of @n-1≠NS where F(Z) is

invertible, the lisse sheaf Ò¥(¬eF(1, z)) on the !1 fibre has constant

Swan‘ = e0 {:= the prime to p part of e). By Deligne's

semicontinuity theorem [Lau-SC, 2.1.2], it follows that all the

sheaves Rb(π≠id)~((bl≠id)
*Ò¥(F(x))) are lisse on Ë. Looking fibre by

fibre, we see that, on Ë, only R1(π≠id)~((bl≠id)
*Ò¥(F(x))) is possibly

nonzero. Invoking the Euler Poincarïe formula fibre by fibre, we see

that, on Ë, the sheaf R1(π≠id)~((bl≠id)
*Ò¥(F(x))) is lisse of rank e0 -

1. Decomposing it under the action of µe0
on the !1 variable ¬, we

see further a direct sum decomposition into µe0
-eigenspaces. Looking

fibre by fibre, we see that the trivial eigenspace vanishes, and that
each of the others has rank one. Moreover, by Chebotarev, we see
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that the eigenspace attached to a nontrivial character äç of µe0
is

the lisse sheaf

(-g(¥E, äçE))
deg‚Òç(F(Z))

on Ë. Thus we obtain

R1(π≠id)~((bl≠id)
*Ò¥(F(x))) | Ë

¶ ·ç ± ú, çe0 = ú (-g(¥E, äçE))
deg‚Òç(F(Z)) on Ë.

Over the closed set Ù in @n-1≠NS where F(Z) = 0, the lisse

sheaf Ò¥(¬eF(1, z)) on the !1 fibre is the constant sheaf ä$…. So again

by (a trivial instance of) Deligne's semicontinuity theorem [Lau-SC,

2.1.2], it follows that all the sheaves Rb(π≠id)~((bl≠id)
*Ò¥(F(x))) are

lisse on Ù. Looking fibre by fibre, we see that, on Ù, only

R2(π≠id)~((bl≠id)
*Ò¥(F(x))) is nonzero, and that it is lisse of rank

one. By Chebotarev, we see that

R2(π≠id)~((bl≠id)
*Ò¥(F(x))) | Ù ¶ ä$…(-1) on Ù.

So the upshot of this analysis is that we have

R1(π≠id)~((bl≠id)
*Ò¥(F(x)))

¶ ·ç ± ú, çe0 = ú (-g(¥E, äçE))
deg‚Òç(F(Z)) on Ë, extended by 0

and

R2(π≠id)~((bl≠id)
*Ò¥(F(x))) ¶ ä$…(-1) on Ù, extended by 0;

all other Ri vanish.
The projection of Ù onto NS, say

† : Ù ¨ NS
is proper and smooth (indeed this map † is the universal family of

smooth hypersurfaces in @n-1 of degree e). So all the terms E2
a,2 in

our spectral sequence are lisse on NS, because they are given
concretely by

E2
a,2 ¶ Ra†~ä$…(-1).

Denote by
ß : Ë ¨ NS

the projection. Over a point Ë in NS, the fibre is @n-1[1/F]. Looking
fibre by fibre, we see from [Ka-ENSMCS, section 8, pages 11-12] that

E2
a,1 = 0 for a ± n-1,

and that

E2
n-1,1 ¶ ·ç ± ú, çe0 = ú (-g(¥E, äçE))

deg‚Rn-1ß~Òç(F).

It remains only to explain why the sheaves Rn-1ß~Òç(F).on NS are

lisse. We know from [Ka-ENSMCS, section 8, pages 11-12] that each
of these sheaves has constant fibre dimension. But the morphism ß
is affine and lisse of relative dimension n-1, and Òç(F) is lisse on Ë.

By {Ka-SMD, Cor. 6], Rn-1ß~Òç(F) is a sheaf of perverse origin on
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NS. As it has constant fibre dimension, it is lisse, by [Ka-SMD, Prop.
11]. QED

((((3333....7777)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: sssseeeeppppaaaarrrraaaattttiiiioooonnnn ooooffff vvvvaaaarrrriiiiaaaabbbblllleeeessss
(3.7.1) We first give the motivation. Suppose we are looking at an
exponential sum

‡v in !n(E) ¥E(f(v))

in n ≥ 2 variables. Suppose that f in ∏(n,e)(E) is the sum of two
polynomials f1 and f2 in disjoint sets of variables, i.e., we have

n = a + b, with a, b both ≥ 1,
and polynomials

f1 in ∏(a,e)(E), f2 in ∏(b,e)(E)

such that in coordinates
(y1, y2,..., ya, z1, z2,..., zb)

for !n, we have
f(y, z) = f1(y) + f2(z).

Then the exponential sum factors:
‡v in !n(E) ¥E(f(v))

= (‡y in !a(E) ¥E(f1(y)))≠(‡z in !b(E) ¥E(f2(z))).

(3.7.2) The cohomological explanation is that on

!n = !a≠!b,
the sheaf Ò¥(f) is the external tensor product

Ò¥(f) = pr1
*Ò¥(f1)

‚pr2
*Ò¥(f2)

.

So the Kunneth formula [SGA 4, Expose XVII, 5.4.3] gives

RÆc(!
n‚käE, Ò¥(f))

= RÆc(!
a‚käE, Ò¥(f1)

)‚RÆc(!
b‚käE, Ò¥(f2)

),

so in particular

Hc
*(!n‚käE, Ò¥(f))

= Hc
*(!a‚käE, Ò¥(f1)

)‚Hc
*(!b‚käE, Ò¥(f2)

).

So we get the following lemma.
LLLLeeeemmmmmmmmaaaa 3333....7777....3333 Suppose f(y, z) = f1(y) + f2(z) as above. Then we have

RÆc(!
n‚käE, Ò¥(f))

= RÆc(!
a‚käE, Ò¥(f1)

)‚RÆc(!
b‚käE, Ò¥(f2)

).

Suppose in addition that

Hc
i(!a‚käE, Ò¥(f1)

) = 0 for i ± a,

Hc
i(!b‚käE, Ò¥(f2)

) = 0 for i ± b.

Then

Hc
i(!n‚käE, Ò¥(f)) = 0 for i ± n,

and
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Hc
n(!n‚käE, Ò¥(f))

= Hc
a(!a‚käE, Ò¥(f

1
))‚Hc

b(!b‚käE, Ò¥(f
2
)).

(3.7.4) We can carry out the same analysis in the universal
situation.
LLLLeeeemmmmmmmmaaaa 3333....7777....5555 For a ≥ 1, b ≥ 1, and e ≥ 1, we have a closed
immersion

∏(a,e) ≠ ∏(b,e) ¨ ∏(a+b,e),
(f1, f2) ÿ f1(y) + f2(z).

Put
∂ := dim∏(a,e) + dim∏(b,e) -dim∏(a+b,e).

The (shifted) pullback of M(a+b,e,¥)(-1/2) to ∏(a,e) ≠ ∏(b,e) is the
external tensor product

M(a+b,e,¥)(-1/2)|(∏(a,e) ≠ ∏(b,e))[∂]

= pr1
*M(a,e,¥)(-1/2)‚pr2

*M(b,e,¥)(-1/2).

pppprrrrooooooooffff This is just the Kunneth formula [SGA 4, Expose XVII, 5.4.3].
QED

LLLLeeeemmmmmmmmaaaa 3333....7777....6666 For a ≥ 1, b ≥ 1, and e ≥ 1, we have a direct sum
decomposition of constructible ä$…- sheaves on ∏(a,e) ≠ ∏(b,e),

˜(a+b,e,¥)|(∏(a,e) ≠ ∏(b,e))

¶ pr1
*˜(a,e,¥)‚pr2

*˜(b,e,¥) · (other terms).

The induced map

pr1
*˜(a,e,¥)‚pr2

*˜(b,e,¥) ¨ ˜(a+b,e,¥)|(∏(a,e) ≠ ∏(b,e))

is the inclusion of a direct factor. This inclusion is an isomorphism at
any point (f1, f2) in ∏(a,e)(E) ≠ ∏(b,e)(E) at which both

Hc
i(!a‚käE, Ò¥(f1)

) = 0 for i ± a,

and

Hc
i(!b‚käE, Ò¥(f2)

) = 0 for i ± b.

pppprrrrooooooooffff The first statement is just spelling out what the Kunneth
formula gives on cohomology sheaves. The second is, by proper base
change, just a restatement of Lemma 3.7.3. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....7777....7777 Let a ≥ 1, b ≥ 1. If e ≥ 2 is prime to p, then on the
space

Î(a,e)≠Î(b,e)
of pairs (f1, f2) of Deligne polynomials, we have an isomorphism of

lisse sheaves,
˜(a+b,e,¥)|(Î(a,e) ≠ Î(b,e))

¶ pr1
*(˜(a,e,¥)|Î(a,e))‚pr2

*(˜(b,e,¥)|Î(b,e)).

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....7777....8888 Let a ≥ 2, b ≥ 1. Suppose e ≥ 3 is divisible by p. Let
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UH(a,e,¥) fi NSHomog(a,e) fi Homog(a,e)
be a dense open set of nonsingular homogeneous forms on which

M(a,e,¥)[dimHomog(a,e) - dim∏(a,e)]|Homog(a,e)
has lisse cohomology sheaves. Then on the space

UH(a,e,¥) ≠ Î(b,e-1),
we have an isomorphism of lisse sheaves,

˜(a+b,e,¥)|(UH(a,e,¥) ≠ Î(b,e-1))

¶ pr1
*(˜(a,e,¥)|UH(a,e,¥))‚pr2

*(˜(b,e,¥)|Î(b,e-1)).

((((3333....8888)))) RRRReeeettttuuuurrrrnnnn ttttoooo tttthhhheeee mmmmoooonnnnooooddddrrrroooommmmyyyy ooooffff eeeexxxxppppoooonnnneeeennnnttttiiiiaaaallll ssssuuuummmmssss ooooffff

DDDDeeeelllliiiiggggnnnneeee ttttyyyyppppeeee oooonnnn !!!!nnnn

(3.8.1) With all these preliminaries out of the way, we can now
prove the target theorem of this section.
TTTThhhheeeeoooorrrreeeemmmm 3333....8888....2222 Let n ≥ 1, e ≥ 3. Denote by U(n,e,¥) a dense open set
of ∏(n,e) on which M(n,e,¥) has lisse cohomology sheaves. If e is
prime to p, take U(n,e,¥) to be Î(n,e), the space of Deligne
polynomials.

1) If e is prime to p, then ˜(n,e,¥)|U(n,e,¥) has rank (e-1)n.
2) Is e is divisible by p, then ˜(n,e,¥)|U(n,e,¥) has rank at least

rank(˜(n,e,¥)|U(n,e,¥))

≥ Max((e-2)n, (1/e)((e-1)n + (-1)n(e-1))).
3) Suppose that any of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then Ggeom for ˜(n,e,¥)|U(n,e,¥) is not finite.

pppprrrrooooooooffff Assertion 1) was proven in 3.5.11. Assertion 2) was proven in
3.5.17 and 3.6.6. [The attentive reader will notice that while 3.6.6
only covers the case n ≥ 2, that is the only case where there is

something to prove, as the quantity (1/e)((e-1)n + (-1)n(e-1))
vanishes for n=1.]

To prove 5), we proceed case by case.
Case a) Here p ≥ 7. Because ˜(n,e,¥) is a sheaf of perverse origin on
∏(n,e), and e ≥ 3, if the group Ggeom for ˜(n,e,¥)|U(n,e,¥) is finite,

then the group Ggeom for ˜(n,e,¥)|U(n,3,¥) = ˜(n,3,¥)|U(n,3,¥) is

finite. So it suffices to show that Ggeom for ˜(n,3,¥)|U(n,3,¥) is not

finite. Since p ≥ 7 > 3, U(n,3,¥) = Î(n,3) is the space of cubic Deligne
polynomials. Now restrict to the subspace where the variables
separate completely:

˜(n,3,¥)|Î(1,3)n ¶ ‚i=1 to n pri
*(˜(1,3,¥)|Î(1,3)).

So we have the n-fold external product with itself of the lisse, rank
two sheaf ˜(1,3,¥)|Î(1,3) on Î(1,3). Restrict further to the diagonal

Î(1,3) inside Î(1,3)n. There we find
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˜(n,3,¥)|(diagonal Î(1,3) in Î(1,3)n) = ˜(1,3,¥)‚n|Î(1,3).

So it suffices to show that ˜(1,3,¥)‚n|Î(1,3) does not have have
finite Ggeom. For this, it suffices to show that ˜(1,3,¥) does not have

finite Ggeom. Restrict ˜(1,3,¥) further, to the !1 in Î(1,3) given by

the one pararameter family

t ÿ x3 + tx.

There ˜(1,3,¥)|!1 is [a shift and Tate twist of] FT¥(Ò¥(x3)), so is lisse

of rank two and geometrically irreducible on !1, cf. [Ka-MG,

Theorem 17]. It suffices to prove that ˜(1,3,¥)|!1 does not have
finite Ggeom. As proven in [Ka-MG, Prop. 5], any lisse, geometrically

irreducible sheaf of rank r on !1 over an algebraically closed field of
characteristic p > 2r+1 is Lie-irreducible, i.e., the identity component

(Ggeom)0 acts irreducibly. In our case, namely ˜(1,3,¥)|!1, we have

r=2 and p ≥ 7 > 2≠2 + 1, so we can only have (Ggeom)0 = SL(2).

Case b) Here n ≥ 3. Just as in case a), it suffices to show that Ggeom
for ˜(n,3,¥)|U(n,3,¥) is not finite. For this, it suffices to find a single
finite extension E/k, and a single f in ∏(n,3), such that FrobE,f acting

on ˜(n,3,¥)f has no power a scalar, cf. Scalarity Corollary 2.8.13.

If n=3, pick a dense open set
UH(3,3,¥) fi NSHomog(3,3)

of nonsingular cubics over which
M(3,3,¥)|UH(3,3,¥)[dimUH(3,3,¥) -dim∏(3,3)]

has lisse cohomology sheaves. Recall that for a nonsingular cubic
form F(x1,x2,x3) in three variables over a field of characteristic p,

the locus XF fi @2 defined by its vanishing is a curve of genus one.

That curve is ordinary precisely when its Hasse invariant, which is
itself a form of degree p-1 in the coefficients of F, namely

Hasse(XF) = coefficient of (x1x2x3)
p-1 in F(x1,x2,x3)

p-1,

is nonzero, a condition which visibly holds on a dense open set of
cubic forms. Now take an F which is an E-valued point of the dense
open set

UH(3,3,¥)[1/Hasse],
for some finite extension E/k. Then FrobE acting on

H1(XF‚EäE, ä$…) = Prim1(XF‚EäE, ä$…)

has no power a scalar, indeed its two eigenvalues have different p-
adic valuations (for any extension to ä$… of the p-adic valuation on

$). But we have seen, in Theorem 3.6.4 with e=n=3, that
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det(1 - (ùE)3/2TFrobE,F | ˜(3,3,¥))

= det(1 - (ùE)TFrobE |Prim1(XF‚EäE, ä$…))

≠°ç±ú, çe0 = ú

det(1 - (-g(¥E, çE))TFrobE | Hc
2(@2[1/F]‚käk, Òç(F))).

Therefore the two eigenvalues of FrobE |Prim1(XF‚EäE, ä$…) occur,

after division by (ùE)1/2, as eigenvalues of FrobE,F | ˜(3,3,¥). So

FrobE,F | ˜(3,3,¥) has two eigenvalues with different p-adic

valuations, and hence no power of FrobE,F | ˜(3,3,¥) is scalar.

If n ≥ 4, say n = 3 + b, keep the F(x1,x2,x3) used above, and

take for f the polynomial in n variables (x1,x2,x3, y1,..., yb) given by

f := F(x1,x2,x3) + g(y),

with

g(y) = ‡i=1 to b (yi)
3, if p±3,

= ‡i=1 to b (yi)
2, if p=3.

We get
˜(n,3,¥)f = ˜(3,3,¥)F‚˜(b,3,¥)g, if p ± 3,

˜(n,3,¥)f = ˜(3,3,¥)F‚˜(b,2,¥)g, if p = 3,

with FrobE,f acting as the tensor product FrobE,f = FrobE,F‚FrobE,g.

In both cases, FrobE,F on ˜(3,3,¥)F has two eigenvalues with

different p-adic valuations, and the second factor FrobE,g has a

nonzero eigenvalue (because FrobE,g acts invertibly, and the space is

nonzero: dim˜(b,3,¥)g = 2b if p ± 3, dim˜(b,2,¥)g = 1, if p = 3).

Therefore FrobE,f|˜(n,3)f has two eigenvalues with different p-adic

valuations, and hence no power of it is scalar.
Case c) Here p=5, and e ≥ 4. We first use the Dependence on ¥
Lemma 3.5.3 to reduce to the case where ¥ is (the composition with
Tracek/Ép

of) a nontrivial additive character of Ép, and so reduce to

the case when k is Ép = É5. Exactly as in case a), we reduce to

showing that ˜(1,4,¥)|Î(1,4) does not have finite Ggeom. For this, it

suffices to exhibit a single finite extension E/É5, and a single f in

Î(1,4,¥)(E) such that no power of FrobE,f | ˜(1,4,¥) is scalar. Recall

from 3.5.11 that for any f in Î(1,4)(E), we have

˜(1,4,¥)(-1/2)f = Hc
1(!1‚EäE, Ò¥(f)).

So we must exhibit an f such that no power of

FrobE|Hc
1(!1‚EäE, Ò¥(f))

is scalar. In view of Corollary 3.5.14, if some power is scalar, then we
have

‡v in E ¥E(f(v)) = (ùE)1/2(an algebraic integer).
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Take E = Ép = É5, and f = x4. Since ¥ is a nontrivial additive

character of É5, ¥(1) is a primitive fifth root of unity Ω5. For v

nonzero in É5, v
4 = 1. Meanwhile ¥(0) = 1. Thus

‡v in É5
¥(v4) = 4¥(1) + 1 = 4Ω5 + 1 = 5Ω5 + (1-Ω5).

But 1-Ω5 is a uniformizer for the unique 5-adic place of $(Ω5), and

ord5(1-Ω5) = 1/4. Therefore we have

ord5(‡v in É5
¥(v4)) = 1/4,

and hence ‡v in É5
¥(v4) is not divisible by Sqrt(5) as an algebraic

integer.
Case d) Here p=3, and e ≥ 7. Exactly as in the case above, we reduce
to the case when k = É3, ¥ is a nontrivial additive character of É3,

and to showing that ˜(1,7,¥)|Î(1,7) does not have finite Ggeom. For

this, it suffices to find a finite extension E/É3 and an f in Î(1,7)(E)

such that ‡v in E ¥E(f(v)) is not divisible by (ùE)1/2 as an algebraic

integer. Here we take E = É27, viewed as É3(å), for å a root of

X3 - X - 1,

and we take f = å2x7 + x5. We calculate
‡v in E ¥E(f(v))

as follows. Quite generally, for any prime, any finite field E/Ép, and

any polynomial f(x) in E[x], consider the affine Artin-Schreier curve

Cf : y
p - y = f(x).

Over a point v in !1(E) = E, there are p points in Cf(E) if

TraceE/Ép
(f(v)) =0, and none otherwise. By definition, we have

¥E(f(v)) = ¥(TraceE/Ép
(f(v))).

By the orthogonality relations for characters, we thus find
‡¬ in Ép

¥E(¬f(v)) = p, if TraceE/Ép
(f(v)) =0,

= 0, if not.
So we have

ùCf(E) = ‡v in E ‡¬ in Ép
¥E(¬f(v))

= ùE + ‡¬±0 in Ép
‡v in E ¥E(¬f(v)).

Now return to characteristic p=3. The only ¬ ± 0 in É3 are _1, so we

get
ùCf(E) = ùE +‡v in E ¥E(f(v)) + ‡v in E ¥E(-f(v)).

As our f = å2x7 + x5 is an odd function, we have
‡v in E ¥E(f(v)) = ‡v in E ¥E(-f(v)),

so we find
ùCf(E) = ùE + 2‡v in E ¥E(f(v)).
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In our case, direct calculation shows that
ùCf(É27) = 21.

Thus we conclude that for f = å2x7 + x5 as above, we have
‡v in É27

¥É27
(f(v)) = -3,

which is not divisible by Sqrt(27) as an algebraic integer.

Case e) Here p=2, and e ≥ 7. As above, we reduce to the case when
k= É2, ¥ is the nontrivial character of É2, and to showing that

˜(1,7,¥)|Î(1,7) does not have finite Ggeom. For this, it suffices to

find a finite extension E/É2 and an f in Î(1,7)(E) such that

‡v in E ¥E(f(v))

is not divisible by (ùE)1/2 as an algebraic integer. We take E = É8,

and f = x7. For v ± 0 in É8, v
7 = 1, and

¥É8
(v7) = ¥(TraceÉ8/É2

(1)) = ¥(3) = ¥(1) = -1.

Thus

‡v in É8
¥É8

(v7) =7(-1)+ 1 = -6 = 2≠3,

which is not divisible by Sqrt(8) as an algebraic integer. QED

RRRReeeemmmmaaaarrrrkkkk 3333....8888....3333 How sharp are the exclusions we have imposed for
low n = 1 or 2 in low characteristic p = 2, 3, or 5? We do not know
how sharp our exclusions are for n = 2. For n=1, we can do no
better.
SSSSuuuuppppeeeerrrrssssiiiinnnngggguuuullllaaaarrrriiiittttyyyy LLLLeeeemmmmmmmmaaaa 3333....8888....4444
1) In characteristic p = 2, any Artin-Schreier curve

yp - y = f(x), f a polynomial in x of degree 3 or 5,
is supersingular.
2) In characteristic p = 3, any Artin-Schreier curve

yp - y = f(x), f a polynomial in x of degree 4 or 5,
is supersingular.
3) In characteristic p = 5, any Artin-Schreier curve

yp - y = f(x), f a polynomial in x of degree 3,
is supersingular.
pppprrrrooooooooffff This is a consequence of the following result of van der Geer
and van der Vlugt.
TTTThhhheeeeoooorrrreeeemmmm 3333....8888....5555 ([vdG-vdV-RM, 5.4 and 13.4]) Fix a prime p, an
integer h ≥ 0, and an additive polynomial

A(x) = ‡i=0 to h aix
pi,

with coefficients in äÉp and ah ± 0. Then the Artin-Schreier curve of

genus g = (1/2)(p-1)ph given by the equation

yp - y = xA(x)
is supersingular.



Additive character sums on !n 143

CCCCoooorrrroooollllllllaaaarrrryyyy 3333....8888....6666 Fix a prime p, an integer h ≥ 1, and an additive
polynomial

A(x) = ‡i=0 to h aix
pi,

with coefficients in äÉp and ah ± 0. For any a-1 in äÉp, the Artin-

Schreier curve of equation

yp - y =a-1x + xA(x)

is supersingular.

pppprrrrooooooooffff The isomorphism class of an Artin-Schreier curve yp - y = f
depends only on f up to Artin-Schreier equivalence (i.e., additive

equivalence modulo gp - g's). We will show that the äÉp-isomorphism

class of the curve in question is independent of a-1. To see this, begin

with the curve

yp - y =xA(x).
For any b in äÉp, this curve is isomorphic to the curve

yp - y =(x+b)A(x+b).
Because A is an additive polynomial, we have

(x+b)A(x+b) = (x+b)(A(x) + A(b))
= xA(x) + bA(x) + A(b)x + ∫A(b).

Now write

b = ∫p
h
,

and

ai =åi
pi for i = 0 to h.

The term bA(x) = ∫p
h
A(x) is easily reduced modulo Artin-Schreier

equivalence:

∫p
h
A(x) = ∫p

h
‡i=0 to h aix

pi

= ∫p
h
‡i=0 to h (åix)

pi

= ‡i=0 to h (∫p
h-i

åix)
pi

§ ‡i=0 to h (∫p
h-i

åi)x.

Here the coefficient of x is a polynomial in ∫ of degree at most ph.
The coefficient of x in the term A(b)x is equal to

A(b) = A(∫p
h
) = ‡i=0 to h (åi∫

ph)p
i

and is thus a polynomial in ∫ of degree p2h. Thus (x+b)A(x+b) is
Artin-Schreier equivalent to

xA(x) + (polynomial in ∫ of degree p2h)x.
So we can choose ∫ to achieve any desired a-1 as the coefficient of x.

QED
pppprrrrooooooooffff ooooffff SSSSuuuuppppeeeerrrrssssiiiinnnngggguuuullllaaaarrrriiiittttyyyy LLLLeeeemmmmmmmmaaaa 3333....8888....4444 If p = 2, we are looking
at curves which, after Artin-Schreier reduction, are of the form
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y2 - y = ax + bx3 + cx5,
where either c or b is nonzero. These are supersingular, by the
above Corollary 3.8.6.

If p = 3, we are looking at curves which, after Artin-Schreier
reduction, are of the form

y3 - y = ax + bx2 + cx4 + dx5,
with either d or c nonzero. If d is nonzero, then by an additive

translation of x we eliminate the x4 term, after which an Artin-
Schreier reduction gives us a curve of the form

y3 - y = ax + bx2 + dx5.
This curve is supersingular, because it is covered by the curve

y3 - y = ax2 + bx4 + dx10,
which is supersingular by the van der Geer van der Vlugt Theorem
3.8.5. If d = 0, then c ± 0, and we have

y3 - y = ax + bx2 + cx4,
which is itself supersingular by the van der Geer van der Vlugt
Theorem 3.8.5.

If p = 5, then we are looking at curves which, after Artin-
Schreier reduction, are of the form

y5 - y = ax + bx2 + cx3,
with c ± 0. By an additive translation of x, followed by an Artin-
Schreier reduction, we get a curve of the form

y5 - y = ax + cx3.
This curve is supersingular, because it is covered by the curve

y5 - y = ax2 + cx6,
which is itself supersingular by the van der Geer van der Vlugt
Theorem 3.8.5. QED for the Supersingularity Lemma 3.8.4.

((((3333....9999)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo DDDDeeeelllliiiiggggnnnneeee ppppoooollllyyyynnnnoooommmmiiiiaaaallllssss
(3.9.1) With this last theorem 3.8.2, we have now completed the
proof of the Ò¥ Theorem 3.1.2. We first state explicitly its application

to universal families of Deligne polynomials.

TTTThhhheeeeoooorrrreeeemmmm 3333....9999....2222 Let k be a finite field, p := char(k), … ± p, and ¥ a

nontrivial additive ä$…
≠-valued of k. Fix n ≥ 1, e ≥ 3, with e prime to

p. Denote by Î(n,e) the space of Deligne polynomials, and denote by
˜(n,e,¥)|Î(n,e) the lisse, geometrically irreducible, and pure of

weight zero ä$…-sheaf of rank (e-1)n on Î(n,e) whose trace function

is given by

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

Suppose that any of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
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e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥)|Î(n,e).

1) If p ± 2, Ggeom contains SL((e-1)n).

2) If p = 2 and n is odd, Ggeom = Sp((e-1)n).

3) If p = 2 and n is even, Ggeom is either SO((e-1)n) or O((e-1)n).

RRRReeeemmmmaaaarrrrkkkk 3333....9999....3333 In Theorem 6.8.34, we will show that if in addition
e(e-1) is prime to p (which forces p ± 2) and ne is even, then Ggeom
is the group

GL2p((d-1)
n) := {A in GL((d-1)n) with (detA)2p = 1}.

(3.9.4) We now explain how to apply the Ò¥ theorem to the

construction of "small" families of Deligne polynomials with big
monodromy. The idea is quite simple. In any number n ≥ 1 of
variables, if we take an integer d prime to p, and a Deligne
polynomial

F in Î(n,d)(k)
of degree d, then for any integer e < d, and for any polynomial

f in ∏(n,e)(k)
of degree at most e, the sum F + f is again a Deligne polynomial of
degree d (simply because being a Deligne polynomial depends only on
the highest degree term). So we have a closed immersion

∏(n,e) ¨ Î(n,d),
f ÿ F+f.

When we restrict the lisse sheaf ˜(n,d,¥)|Î(n,d) to ∏(n,e) by this
closed immersion f ÿ F+f, we get a lisse sheaf

˜(n,e,¥,F) on ∏(n,e)

of rank (d-1)n, whose trace function is given by
Trace(FrobE,f | ˜(n,e,¥,F))

= (-1)n(ùE)-n/2‡v in !n(E) ¥E(F(v) + f(v)).

The key observation is that ˜(n,e,¥,F) is an instance of the kind of
object addressed in the Ò¥ Theorem 3.1.2, where we take for L on

!n the object Ò¥(F)[n](n/2). The precise result is

LLLLeeeemmmmmmmmaaaa 3333....9999....5555 The perverse sheaf
M := Twist(Ò¥(F)[n](n/2), Ò¥[1](1/2),∏e ,h=0)

on ∏e = ∏(n,e) is related to the lisse sheaf ˜(n,e,¥,F) on ∏(n,e) by

M(-1/2) = ˜(n,e,¥,F)[dim∏(n,e)].
pppprrrrooooooooffff This is just proper base change for the closed immersion of
∏(n,e) into Î(n,d) given by f ÿ F+f, together with the identity

Ò¥(F)‚Ò¥(f) ¶ Ò¥(F+f).

QED
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TTTThhhheeeeoooorrrreeeemmmm 3333....9999....6666 Let k be a finite field, p := char(k), … ± p, and ¥ a

nontrivial additive ä$…
≠-valued of k. Fix integers

n ≥ 1, d > e ≥ 3
with d prime to p. Fix a k-rational Deligne polynomial F in n
variables of degree d,

F in Î(n,d)(k).
Suppose that any one of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥,F) on ∏(n,e).

1) If p ± 2, Ggeom contains SL((d-1)n).

2) If p = 2 and n is odd, Ggeom = Sp((d-1)n).

3) If p = 2 and n is even, Ggeom is either SO((d-1)n) or O((d-1)n).

pppprrrrooooooooffff This is just a special case of the Ò¥ theorem. QED

RRRReeeemmmmaaaarrrrkkkk 3333....9999....7777 We will show in Theorem 6.8.15 that if in addition
d(d-1) is prime to p, then Ggeom is the group

GLp((d-1)
n) := {A in GL((d-1)n) with (detA)p = 1}.

((((3333....11110000)))) SSSSeeeellllffff dddduuuuaaaallll ffffaaaammmmiiiilllliiiieeeessss ooooffff DDDDeeeelllliiiiggggnnnneeee ppppoooollllyyyynnnnoooommmmiiiiaaaallllssss
(3.10.1) In the above discussion of the monodromy of families of
Deligne polynomials, we only encountered self dual geometric
monodromy in characteristic two, for the simple reason that Ò¥,

being of order p, is geometrically self dual precisely for p=2.
(3.10.2) However, in any characteristic, if we take an integer e
prime to p and f in Î(n,e)(k) a Deligne polynomial which is odd, i.e.,
an f which satisfies

f(-x) = -f(x),
then the cohomology group

Hc
n(!n‚käk, Ò¥(f))(n/2)

carries an autoduality

Hc
n(!n‚käk, Ò¥(f))(n/2)≠Hc

n(!n‚käk, Ò¥(f))(n/2) ¨ ä$…
which is symplectic for n odd, and orthogonal for n even. The pairing
is defined as follows. By Poincarïe duality, for any polynomial f, the
cup product is a perfect pairing

Hc
n(!n‚käk, Ò¥(f))(n/2)≠H

n(!n‚käk, Òä¥(f))(n/2)¨ ä$….

By Theorem 3.5.10, for any Deligne polynomial f the natural "forget
supports" map is an isomorphism

Hc
n(!n‚käk, Òä¥(f))(n/2) ¶ Hn(!n‚käk, Òä¥(f))(n/2).

So for f a Deligne polynomial, the cup product is a perfect pairing of
compact cohomology groups
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Hc
n(!n‚käk, Ò¥(f))(n/2)≠Hc

n(!n‚käk, Òä¥(f))(n/2) ¨ ä$…,

(å, ∫) ÿ å⁄∫.

For f an odd polynomial, under the involution [-1] of !n,
[-1] : x ÿ -x,

we have

[-1]*Ò¥(f) = Òä¥(f),

i.e.,

[-1]*Ò¥(f(x)) := Ò¥(f(-x)) = Ò¥(-f(x)) = Òä¥(f(x)).

So we get an isomorphism

Hc
n(!n‚käk, Ò¥(f))(n/2) ¶ Hc

n(!n‚käk, Òä¥(f))(n/2),

å ÿ [-1]*å.

The desired autoduality on Hc
n(!n‚käk, Ò¥(f))(n/2) is given in terms

of the cup product by the pairing

(å, ∫) := å⁄[-1]*∫.
(3.10.3) To see that this pairing has the asserted symmetry
property, we resort to a global argument. Consider the Artin-
Schreier covering

AS(f) := {(x, y) in !n≠!1with y - yùk = f(x)}
pr1d

!n,
with structural group the additive group of k, with ¬ in k acting as

(x, y) ÿ (x, y + ¬).
If we push out this (k, +) torsor by the character ¥, we get Ò¥(f).

When we decompose Hc
*(AS(f)‚käk, ä$…) under the action of (k, +)

into ¥-isotypical components, we get

Hc
*(AS(f)‚käk, ä$…)

¥ = Hc
*(!n‚käk, Ò¥(f)).

Because f is odd, we can form the automorphism [-1] of AS(f) given
b

[-1](x, y) := (-x, -y).
This automorphism carries the ¥-eigenspace to the ä¥-eigenspace. We
can view the pairing

Hc
n(!n‚käk, Ò¥(f))(n/2) ≠ Hc

n(!n‚käk, Ò¥(f))(n/2) ¨ ä$…
as being the restriction to the ¥-eigenspace of the pairing

Hc
n(AS(f)‚käk, ä$…)(n/2) ≠ Hc

n(AS(f)‚käk, ä$…)(n/2) ¨ ä$…
given in terms of the cup product pairing on AS(f) by

(å, ∫) := å⁄[-1]*∫.
The advantage is that the cup product pairing on

Hc
n(AS(f)‚käk, ä$…)(n/2)

has known symmetry; it is symplectic if n is odd, and orthogonal if
n is even. Remembering that [-1] is an involution, we readily
calculate
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(∫, å) := ∫⁄[-1]*å = [-1]*∫⁄[-1]*[-1]*å

= [-1]*∫⁄å = (-1)nå⁄[-1]*∫

= (-1)n(å, ∫).
(3.10.4) In characteristic two, every polynomial, in particular
every Deligne polynomial, is odd. It is sometimes convenient to
impose the stronger condition that f be "strongly odd", by which we
mean that when we write f = ‡i≤e Fi as a sum of homogeneous

forms, then only those Fi with i odd are possibly nonzero. In any odd

characteristic, a polynomial is odd if and only if it is strongly odd.
But in characteristic two, being strongly odd is more restrictive.
(3.10.5) If we construct the above pairing in the universal family,
the same arguments give the following result.
TTTThhhheeeeoooorrrreeeemmmm 3333....11110000....6666 Let k be a finite field of characteristic p, … a prime

… ± p, and ¥ a nontrivial additive ä$…
≠-valued of k. Fix integers

n ≥ 1, e ≥ 3,
with e prime to p and odd. Denote by

Î(n,e,odd) fi Î(n,e)
the linear subspace of those Deligne polynomials which are strongly
odd. Then the restriction ˜(n,e,¥)|Î(n,e,odd) of the lisse sheaf
˜(n,e,¥)|Î(n,e) carries an autoduality

˜(n,e,¥)|Î(n,e,odd) ≠ ˜(n,e,¥)|Î(n,e,odd) ¨ ä$…
which is symplectic if n is odd, and orthogonal if n is even.

We now wish to establish the following two theorems, which
are the analogues for the self dual case of Theorems 3.9.2 and 3.9.6
above.
TTTThhhheeeeoooorrrreeeemmmm 3333....11110000....7777 Let k be a finite field of characteristic p, … a prime

with … ± p, and ¥ a nontrivial additive ä$…
≠-valued of k. Fix integers

n ≥ 1, e ≥ 3,
with e prime to p and odd. Suppose that one of the following five
conditions holds:
a) p ≥ 7,
b) p ± 3 and n ≥ 3,
c) p = 5 and e ≥ 7,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥)|Î(n,e,odd).

1) If n is odd, Ggeom = Sp((e-1)n).

2) If n is even, Ggeom is either SO((e-1)n) or O((e-1)n).

RRRReeeemmmmaaaarrrrkkkk 3333....11110000....8888 We will show later, in Theorem 6.8.35, that when n

is even, we in fact have Ggeom = O((e-1)n).

TTTThhhheeeeoooorrrreeeemmmm 3333....11110000....9999 Let k be a finite field of characteristic p, … a prime
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with … ± p, and ¥ a nontrivial additive ä$…
≠-valued of k. Fix integers

n ≥ 1, d > e ≥ 3
with both d and e prime to p and odd. Fix a k-rational Deligne
polynomial F in n variables of degree d which is strongly odd,

F in Î(n,d,odd)(k).
Denote by

∏(n,e,odd) fi ∏(n,e)
the linear subspace of strongly odd polynomials of degree at most e.
Suppose that one of the following five conditions holds:
a) p ≥ 7,
b) p ± 3 and n ≥ 3,
c) p = 5 and e ≥ 7,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥,F)|∏(n,e,odd).

1) If n is odd, Ggeom = Sp((e-1)n).

2) If n is even and p is odd, Ggeom = SO((e-1)n).

3) If n is even and p = 2, Ggeom is either SO((e-1)n) or O((e-1)n).

((((3333....11111111)))) PPPPrrrrooooooooffffssss ooooffff tttthhhheeee tttthhhheeeeoooorrrreeeemmmmssss oooonnnn sssseeeellllffff dddduuuuaaaallll ffffaaaammmmiiiilllliiiieeeessss
(3.11.1) For any odd e ≥ 1, evaluation on strongly odd polynomials
defines a closed immersion

eval : !n ¨ (∏(n,e,odd))£.
[Indeed, already evaluation on linear forms does so.] So for any

perverse L on !n, eval*L is perverse on (∏(n,e,odd))£, and

FT¥(eval*L) is perverse on ∏(n,e,odd). If in addition L is

geometrically irreducible and pure of weight zero on !n, then
eval*L is geometrically irreducible and pure of weight zero on

(∏(n,e,odd))£, and FT¥(eval*L) is geometrically irreducible and pure

of weight dim∏(n,e,odd) on ∏(n,e,odd). The object
M(n,e,¥,odd)

on ∏(n,e,odd) defined by
M(n,e,¥,odd) := M(n,e,¥)[dim∏(n,e,odd) - dim∏(n,e)]|∏(n,e,odd)

is none other than FT¥(eval*ä$…[n]((n+1)/2)), cf. 3.2.3. Therefore

M(n,e,¥,odd)(-1/2) is perverse, geometrically irreducible, and pure of
weight dim∏(n,e,odd). On the dense open set

Î(n,e,odd) fi ∏(n,e,odd),
we have

M(n,e,¥,odd)(-1/2)|Î(n,e,odd) = ˜(n,e,¥)|Î(n,e,odd).
And for any odd e0 with 1 ≤ e0 ≤ e, we have

M(n,e0,¥,odd)

= M(n,e,¥,odd)[dim∏(n,e0,odd) - dim∏(n,e,odd)]|∏(n,e0,odd),
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and
˜(n,e0,¥,odd) = ˜(n,e,¥,odd)|∏(n,e0,odd).

FFFFoooouuuurrrrtttthhhh MMMMoooommmmeeeennnntttt TTTThhhheeeeoooorrrreeeemmmm 3333....11111111....2222 Let e ≥ 3 be an odd integer
which is prime to p. If p = 3, assume also that e ≥ 7.
1) We have

M4
geom(Î(n,e,odd), ˜(n,e,¥)|Î(n,e,odd)) ≤ 3.

2) For any d > e with d prime to p, and any F in Î(n,d,odd)(k),we
have

M4
geom(∏(n,e), ˜(n,e,¥,F)) ≤ 3.

pppprrrrooooooooffff Fix a finite extension E/k. For f in Î(n,e,odd)(E), we have

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

And for f in Î(n,e,odd)(E), we have
Trace(FrobE,f | ˜(n,e,¥,F))

= (-1)n(ùE)-n/2‡v in !n(E) ¥E(F(v) + f(v)).

Thanks to Theorem 1.17.4, it suffices to establish that for variable
E/k, we have the two inequalities

‡f in Î(n,e,odd)(E) |Trace(FrobE,f | ˜(n,e,¥))|4

≤ 3(ùE)dim∏(n,e,odd)(1 + O(ùE)-1/2),

‡f in ∏(n,e,odd)(E) |Trace(FrobE,f | ˜(n,e,¥,F))|4

≤ 3(ùE)dim∏(n,e,odd)(1 + O(ùE)-1/2).
We get both of these if we show that for aaaannnnyyyy F in ∏(n,d,odd)(k), we
have

‡f in ∏(n,e,odd)(E) |(ùE)
-n/2‡v in !n(E) ¥E(F(v) + f(v))|4

≤ 3(ùE)dim∏(n,e,odd)(1 + O(ùE)-1/2),
simply take F=0 to get a strengthened form of the first inequality.

With E fixed and the domains of summation understood, we
rewrite what we must show as

‡f |‡v ¥E(F(v) + f(v))|
4

≤ 3(ùE)2n+ dim∏(n,e,odd)(1 + O(ùE)-1/2).
We expand out the left hand side, letting x, y, z, and w each run

over !n(E):

‡f |‡v ¥E(F(v) + f(v))|
4

= ‡f ‡x,y,z,w ¥E(F(x)+F(y)-F(z)-F(w)+f(x)+f(y)-f(z)-f(w))

= ‡x,y,z,w ¥E(F(x)+F(y)-F(z)-F(w)) ‡f ¥E(f(x)+f(y)-f(z)-f(w)).

For fixed x,y,z,w, f ÿ ¥E(f(x)+f(y)-f(z)-f(w)) is a ä$…
≠-valued

character of the additive group ∏(n,e,odd)(E), which is trivial if and
only if

f(x) + f(y) = f(z) + f(w) for all f in ∏(n,e,odd)(E).
So by orthogonality for finite abelian groups, the innermost sum is
given by
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‡f ¥E(f(x)+f(y)-f(z)-f(w))

= (ùE)dim∏(n,e,odd),
if f(x) + f(y) = f(z) + f(w) for all f in ∏(n,e,odd)(E),

= 0, if not.
LLLLeeeemmmmmmmmaaaa 3333....11111111....3333 ((((pppp ±±±± 3333 ccccaaaasssseeee)))) Let E be a field in which 3 is

invertible, e ≥ 3 an integer. Four points x, y, z, w in !n(E) satisfy
the condition (*E) below,
(*E) f(x) + f(y) = f(z) + f(w) for all f in ∏(n,e,odd)(E),
if and only if one of the following conditions holds:

x = z and y = w,
or

x = w and y = z,
or

x = -y and z = -w.
pppprrrrooooooooffff The "if" assertion is trivial. To prove the "only if", we first
consider the key case n=1.
SSSSuuuubbbblllleeeemmmmmmmmaaaa 3333....11111111....4444 ((((pppp ±±±± 3333 ccccaaaasssseeee))))(compare [Ka-LFM, page 118]) Let E
be a field in which 3 is invertible, a,b,c,d elements of E which satisfy
the two equations

a + b=c + d,

a3 + b3 = c3 + d3.
Then either

a=c and b=d,
or

a=d and b=c,
or

a = -b and c=-d.
pppprrrrooooooooffff If the common value of a+b=c+d is 0, we are in the third case.
If not, then both a+b and c+d are nonzero, so we can divide, and get

(a3 + b3)/(a+b) = (c3 + d3)/(c+d),
i.e.,

a2 - ab + b2 = c2 - cd + d2.
But squaring the relation a + b=c + d gives

a2 + 2ab + b2 = c2 + 2cd + d2.
Subtracting, we find

3ab = 3cd.
Since 3 is invertible, we get ab=cd, which, together with a + b=c + d,
tells us that

(X-a)(X-b) = (X-c)(X-d),
and hence we are in one of the first two cases. QED

We now turn to proving the "only if" in the general case in

3.11.3. If four points x, y, z, w in !n(E) satisfy (*E), then for any
extension field F/E, these points satisfy (*F), simply because
∏(n,e,odd)(F) is the F-span of ∏(n,e,odd)(E). So we may reduce to the
case when E is infinite.

Pick a linear form L in ∏(n,1,odd)(E). Then both L and L3 are in
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∏(n,e,odd)(E), so we have
L(x) + L(y) = L(z) + L(w),

L3(x) + L3(y) = L3(z) + L3(w).
By the sublemma, we have either

L(x) = L(z) and L(y) = L(w),
or

L(x) = L(w) and L(y) = L(z),
or

L(x) = -L(y) and L(z) = -L(w).
So we have

L(x-z)L(x-w)L(x+y) = 0
for all L.

We must show that at least one of x-z, x-w, and x+y is zero. If
not, each of

L ÿ L(x-z),
L ÿ L(x-w),
L ÿ L(x+y)

is a nonzero linear polynomial function on ∏(n,1,odd), whose
product, a cubic polymonial function, vanishes on all the E-valued
points of ∏(n,1,odd). Since E is infinite and ∏(n,1odd) is an affine
space, ∏(n,1,odd)(E) is Zariski dense in ∏(n,1,odd). So this product is
the zero function. But the coordinate ring of ∏(n,1,odd) is an integral
domain, contradiction. QED for 3.11.3.

LLLLeeeemmmmmmmmaaaa 3333....11111111....5555 ((((pppp ==== 3333 ccccaaaasssseeee)))) Let E be a field of characteristic 3,

e ≥ 7 an integer. Four points x, y, z, w in !n(E) satisfy the condition
(*E) below,
(*E) f(x) + f(y) = f(z) + f(w) for all f in ∏(n,e,odd)(E),
if and only if one of the following conditions holds:

x = z and y = w,
or

x = w and y = z,
or

x = -y and z = -w
or

x = y = -z and w = 0,
or

x = y = -w and z = 0,
or

x = 0 and -y = z = w,
or

y = 0 and -x = z = w.
pppprrrrooooooooffff The "if" assertion is trivial, the last four cases working because
of the characteristic three identity 1 + 1 = -1 + 0. To prove the "only
if", we first consider the key case n=1.
SSSSuuuubbbblllleeeemmmmmmmmaaaa 3333....11111111....6666AAAA ((((pppp ==== 3333 ccccaaaasssseeee)))) Let E be a field of characteristic
3, a,b,c,d elements of E which satisfy the three equations

a + b = c + d,
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a5 + b5 = c5 + d5,

a7 + b7 = c7 + d7.

Then either
a=c and b=d,

or
a=d and b=c,

or
a = -b and c=-d,

or
a = b = -c and d = 0,

or
a = b= -d and c = 0,

or
a = 0 and -b = c = d,

or
b = 0 and -a = c = d.

pppprrrrooooooooffff Denote by 2¬ the common value of a+b = c+d. In the new
variables A, C, ¬ defined by

a = ¬ + A, c = ¬ + C,
we readily solve for b = ¬ - A and d = ¬ - C. The equations become

(¬+A)5 + (¬-A)5 = (¬+C)5 + (¬-C)5,

(¬+A)7 + (¬-A)7 = (¬+C)7 + (¬-C)7,
i.e.,

20¬3A2 + 10¬A4 = 20¬3C2 + 10¬C4,

42¬5A2 + 70¬3A4 + 14¬A6 = 42¬5C2 + 70¬3C4 + 14¬C6.
Because we are in characteristic 3, we may rewrite these as

2¬3A2 + ¬A4 = 2¬3C2 + ¬C4,

¬3A4 + 2¬A6 = ¬3C4 + 2¬C6,
i.e.,

2¬3(A2 - C2) + ¬(A4 - C4) = 0,

¬3(A4 - C4) + 2¬(A6 - C6) = 0,
i.e.,

2¬(A2 - C2)(2¬2 + A2 + C2) = 0,

¬(A2 - C2)(¬2(A2 + C2) + 2A4 + 2A2C2 + 2C4) = 0.

If ¬ = 0, we have the case a= -b, c = -d. If A2 = C2, we have either
A = C (which gives the case a = c and b = d) or A = - C (which gives

the case a = d and b = c). Suppose, then, that ¬(A2 - C2) ± 0. Then
A, C, and ¬ satisfy the equations

2¬2 + A2 + C2 = 0,

¬2(A2 + C2) + 2A4 + 2A2C2 + 2C4 = 0,
i.e. (remember we are in characteristic 3),

A2 + C2 = ¬2,
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¬2(A2 + C2) + 2(A2 + C2)2 - 2A2C2 = 0,
i.e.,

A2 + C2 = ¬2,

A2C2 = 0.

Thus A2 and C2 are the roots of the quadratic equation

X2 - ¬2X = 0.
So either A = 0 and C = _¬ (these are the cases a=b=-c, d=0, and
a=b=-d, c=0), or A = _¬ and C = 0 (these are the cases b=0,
-a = c=d, and a=0, -b = c = d). QED

SSSSuuuubbbblllleeeemmmmmmmmaaaa 3333....11111111....6666BBBB ((((pppp ==== 3333 ccccaaaasssseeee)))) Let E be a field of characteristic
3, a,b,c elements of E which satisfy the three equations

a + b = c,

a5 + b5 = c5,

a7 + b7 = c7.
Then either

a = 0,
or

b = 0,
or

c = 0,
or

a = b.
pppprrrrooooooooffff Simply take d=0 in the previous sublemma. QED

We now turn to proving the "only if" in the general case of
3.11.5. As in the p ±3 case, we reduce to the case when E is infinite.

Pick a linear form L in ∏(n,1,odd)(E). Then L, L5, and L7 are in
∏(n,e,odd)(E), so we have

L(x) + L(y) = L(z) + L(w),

L5(x) + L5(y) = L5(z) + L5(w),

L7(x) + L7(y) = L7(z) + L7(w).
By Sublemma 3.11.6A, we have either

L(x) = L(z) and L(y) = L(w),
or

L(x) = L(w) and L(y) = L(z),
or

L(x) = -L(y) and L(z) = -L(w),
or

L(x) = L(y) = -L(z) and L(w) = 0,
or

L(x) = L(y) = -L(w) and L(z) = 0,
or

L(x) = 0 and -L(y) = L(z) = L(w),
or

L(y) = 0 and -L(x) = L(z) = L(w).
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So we have
L(x-z)L(x-w)L(x+y)L(x)L(y)L(z)L(w) = 0

for all L. Exactly as in the proof of Lemma 3.11.3, we first infer that
one of x-z, x-w, x+y, x, y, z, w is zero.

If any of x-z, x-w, x+y is zero, we are in one of the first three
asserted cases.

If, say, w = 0, then we apply the second sublemma 3.11.6B to
conclude now that

L(x-y)L(x)L(y)L(z) = 0
for all L, and hence that one of x-y, x, y, or z vanishes. If x=y, then
from the condition (*E) we infer that z = -x, an asserted case. If x
vanishes, then x=w, an asserted case. If y vanishes, then y=w, an
asserted case. If z vanishes, then (*E) gives x + y = 0, an asserted
case. QED for 3.11.5.

(3.11.7) We now return to the calculation of

‡f |‡v ¥E(F(v) + f(v))|
4

= ‡x,y,z,w ¥E(F(x)+F(y)-F(z)-F(w)) ‡f ¥E(f(x)+f(y)-f(z)-f(w)).

Suppose first p ± 3. By the lemma, the inner sum vanishes unless
x = z and y = w,

or
x = w and y = z,

or
x = -y and z = -w.

In each of these cases, the inner sum is ù∏(n,e,odd)(E), and its
coefficient in our sum is

¥E(F(x)+F(y)-F(z)-F(w)) = ¥E(0) = 1.

So our sum is simply the product of ù∏(n,e,odd)(E) with the number

of four-tuples x, y, z, w of points in !n(E) which satisfy
x = z and y = w,

or
x = w and y = z,

or
x = -y and z = -w.

The number of such four-tuples is readily computed by inclusion-
exclusion to be

3(ùE)2n - 3(ùE)n + 1.
So we end up with the closed formula

‡f |‡v ¥E(F(v) + f(v))|
4

= (ùE)dim∏(n,e,odd)(3(ùE)2n - 3(ùE)n + 1)

= 3(ùE)2n+ dim∏(n,e,odd)(1 + O(ùE)-1/2).
Suppose now p=3. Then there are four additional cases in which

the inner sum does not vanish, namely
x = y = -z, w = 0,
x = y = -w, z = 0,
x = 0, -y = z = w,
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y = 0, -x = z = w.
In each of these cases as well, the inner sum is ù∏(n,e,odd)(E), and
its coefficient in our sum is 1. So the sum is the product of
ù∏(n,e,odd)(E) and

3(ùE)2n - 3(ùE)n + 1 + (the number of cases special to p=3)

= 3(ùE)2n - 3(ùE)n + 1 + 4(ùE - 1)n.
So we end up in characteristic p=3 with the closed formula

‡f |‡v ¥E(F(v) + f(v))|
4

= (ùE)dim∏(n,e,odd)(3(ùE)2n - 3(ùE)n + 1 + 4(ùE - 1)n)

= 3(ùE)2n+ dim∏(n,e,odd)(1 + O(ùE)-n).
This concludes the proof of the Fourth Moment Theorem 3.11.2. QED

FFFFoooouuuurrrrtttthhhh MMMMoooommmmeeeennnntttt CCCCoooorrrroooollllllllaaaarrrryyyy 3333....11111111....8888 ((((pppp ±±±± 3333 ccccaaaasssseeee)))) Suppose p ± 3.
1) For any odd e ≥ 3 prime to p, we have

M4
geom(Î(n,e,odd), ˜(n,e,¥)|Î(n,e,odd)) = 3,

unless n=1 and e=3.
2) For any d > e ≥ 3 with both d and e odd and prime to p, and any
F in Î(n,d,odd)(k),we have

M4
geom(∏(n,e), ˜(n,e,¥,F)) = 3.

pppprrrrooooooooffff Any completely reducible orthogonal or symplectic ä$…-

representation of dimension at least 3 has fourth moment at least 3.

The rank of ˜(n,e,¥)|Î(n,e,odd) is (e-1)n, and the rank of ˜(n,e,¥,F)

is (d-1)n, both of which are at least 3 unless n=1 and e=3. QED

FFFFoooouuuurrrrtttthhhh MMMMoooommmmeeeennnntttt CCCCoooorrrroooollllllllaaaarrrryyyy 3333....11111111....9999 ((((pppp ==== 3333 ccccaaaasssseeee)))) Suppose p = 3.
1) For any odd e ≥ 7 prime to p, we have

M4
geom(Î(n,e,odd), ˜(n,e,¥)|Î(n,e,odd)) = 3.

2) For any d > e ≥ 7 with both d and e odd and prime to p, and any
F in Î(n,d,odd)(k),we have

M4
geom(∏(n,e), ˜(n,e,¥,F)) = 3.

((((3333....11112222)))) PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 3333....11110000....7777
Consider first the case n=1 and e = 3. This case is only

permitted in characteristic p ≥ 7. In any such characteristic,

already the one-parameter family of sums t ÿ ‡¥(x3 + tx) is a rank

two lisse sheaf on !1 which is Lie-irreducible and symplectically self
dual, so must have Ggeom = SL(2).

In the remaining cases, our self dual (by 3.10.6) lisse sheaves
have fourth moment 3, thanks to the Corollaries 3.11.8 and 3.11.9
above. So by Larsen's Alternative 2.2.2, we have only to show that
Ggeom for ˜(n,e,¥)|Î(n,e,odd) is not finite.

We do this as follows. Since ˜(n,e,¥) on ∏(n,e) is of perverse
origin, its restriction
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˜(n,e,¥,odd) := ˜(n,e,¥)|∏(n,e,odd)
is of perverse origin on ∏(n,e,odd). And by further restriction we
obtain

˜(n,e,¥,odd)|∏(n,e0,odd) = ˜(n,e0,¥,odd).

So it suffices to show that Ggeom for

˜(n,e0,¥,odd)|Î(n,e0,odd)

is not finite, for e0 the lowest value allowed in the theorem.

If p ≥ 7, we need to show that Ggeom for

˜(n,3,¥,odd)|Î(n,3,odd)
is not finite. But we already know this. The n-parameter family

‡i (xi)
3 + ‡i tixi

of cubic Deligne polynomials we used to show that Ggeom for

˜(n,3,¥)|Î(n,3)
is infinite is a family of strongly odd cubic Deligne polynomials.

If n ≥ 3 and p ± 3, we also need to show that Ggeom for

˜(n,3,¥,odd)|Î(n,3,odd)
is not finite. But we already know this as well, because we proved
that Ggeom for

˜(n,3,¥)|Î(n,3)
with n ≥ 3 was infinite by exhibiting a cleverly chosen homogeneous
cubic Deligne polynomial (remember p±3), namely

(nonsingular ternary cubic which is ordinary)
+ (sum of cubes of remaining variables, if any),

whose Frobenius has no power a scalar.
We now treat the last three cases (p = 5, 3, 2) by noting that

the lowest value of e allowed is 7. We must show that Ggeom for

˜(n,7,¥,odd)|Î(n,7,odd)
is not finite. We reduce to the case when the additive character ¥ is
a nontrivial character of Ép, and then to the case n=1. For each of

p = 2, 3, 5, it suffices to exhibit a strongly odd polynomial of degree
7 over E := Ép3, such that

‡x in E ¥E(f(x))

is not divisible by Sqrt(ùE) = Sqrt(p3) as an algebraic integer. Then
no power of its Frobenius is a scalar, cf. 3.5.14.

For p = 2, we have already seen, in the proof of case e) of

Theorem 3.8.2, that x7 is such an f. For p = 3, we have already seen,

in the proof of case d) of Theorem 3.8.2, that å2x7 + x5 is such an f,

for å in É27 satisfying å3 - å = 1. For p = 5, we claim that x7 + x3

is such an f. To see this, consider, for any prime p, any finite
extension E/Ép, and any f in E[x], the affine Artin-Schreier curve

Cf : y
p - y = f(x).

As explained inside case d) in the proof of Theorem 3.8.2, we have
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ùCf(E) = ‡v in E ‡¬ in Ép
¥E(¬f(v))

= ùE + ‡¬±0 in Ép
‡v in E ¥E(¬f(v))

= ùE + Trace#[Ωp]/#
(‡v in E ¥E(f(v))).

If ‡v in E ¥E(f(v)) were divisible by Sqrt(ùE) as an algebraic integer,

then its trace to # would be divisible by Sqrt(ùE) as an algebraic
integer, and so ùCf(E) would be divisible by Sqrt(ùE) as an algebraic

integer. But for E = É125, and f(x) = x7 + x3, direct calculation

shows that
ùCf(É125) = 305 = 5≠61,

so ùCf(É125) is not divisible by Sqrt(125). QED

((((3333....11113333)))) PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 3333....11110000....9999
This follows from Theorem 3.10.7 by a homothety contraction

argument. By the fourth moment corollaries 3.11.8 and 3.11.9, our
self dual pure sheaf ˜(n,e,¥,F) has rank at least 3, and it has fourth
moment three. So by Larsen's Alternative 2.2.2, it suffices to prove
that Ggeom is not finite. For then Ggeom is the full symplectic group

Sp for n odd, and it is either SO or O for n even. If p ± 2, the O case
cannot occur, because the determinant would be a character of

order two of π1
geom of an affine space ∏(n,e,odd) in odd

characteristic p. But

Hom(π1
geom(∏(n,e,odd)), É2)

= H1(∏(n,e,odd)‚käk, É2) = 0, for p±2.

It remains to show that Ggeom is not finite. We introduce a

parameter t. On the product space

!n≠!1≠∏(n,e,odd)
we have the lisse, rank one ä$…-sheaf

(x, t, f) ÿ Ò¥(F(tx) + f(x)).

The projection

pr2,3 : !n≠!1≠∏(n,e,odd) ¨ !1≠∏(n,e,odd)

is affine and smooth, of relative dimension n, so the ä$…-sheaf

˜def := Rn(pr2,3)~Ò¥(F(tx) + f(x))

on !1≠∏(n,e,odd) is of perverse origin, cf. [Ka-SMD, Corollary 6].
Exactly as in the proof of the Homothety Contraction Theorem
3.3.13, we see that the restriction of ˜def to ´m≠∏(n,e,odd) has the

same Ggeom as ˜(n,e,¥,F), while its restriction to {0}≠∏(n,e,odd) is

˜(e,n,¥)|∏(n,e,odd). Since this last sheaf, restricted to the dense open
set Î(n,e,odd), has its Ggeom infinite by the first theorem, we infer

from the Semicontinuity Corollary 2.8.9 that Ggeom for
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˜def|(´m≠∏(n,e,odd)) is infinite, and this last Ggeom is the same as

the Ggeom for ˜(n,e,¥,F). QED



160 Chapter 3



CCCChhhhaaaapppptttteeeerrrr 4444:::: AAAAddddddddiiiittttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr ssssuuuummmmssss

oooonnnn mmmmoooorrrreeee ggggeeeennnneeeerrrraaaallll XXXX

((((4444....1111)))) TTTThhhheeee ggggeeeennnneeeerrrraaaallll sssseeeettttttttiiiinnnngggg
(4.1.1) In the previous chapter, we considered in some detail the
monodromy groups attached to exponential sums of Deligne type on

affine space !n. In this chapter, we consider the analogous question
for sums of Deligne type on more general varieties.
(4.1.2) Fix a finite field k of characteristic p. Fix also a projective,
smooth, geometrically connected k-scheme X/k, of dimension n ≥ 1,
given with a projective embedding

X fi @N := @.
We fix an integer r ≥ 1, an r-tuple (d1,..., dr) of strictly positive

integers, and an r-tuple (Z1,..., Zr) of nonzero global sections

Zi in H0(@, Ø@(di)).

When no ambiguity is likely, the hypersurface in @ defined by the
vanishing of Zi will itself be denoted Zi.

(4.1.3) We make the following transversality hypothesis (TrZ, X)
concerning the Zi with respect to X:

(TrZ, X): for every nonvoid subset È of {1,..., r}, the closed subscheme
X€(€i in È Zi)

of X is smooth of codimension ùÈ in X. [For ùÈ ≥ n+1, this means
only that X €(€i in È Zi) is empty.]

(4.1.4) We denote by
V : = X - X€(⁄i Zi) = X[1/(°iZi)]

the affine open set of X where all the Zi are invertible.

(4.1.5) For an r-tuple (e1, e2,..., er) of integers ei ≥ 0, and an

element

H in H0(@, Ø@(‡ieidi)),

the ratio

h := H/°i Zi
ei

makes sense as a function on @[1/(°iZi)], and then, by restriction, as

a function on V, i.e., as a morphism

h : V ¨ !1.
We denote

∏(e1,..., er)
:= H0(@, Ø@(‡ieidi)),
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and we denote by

† : ∏(e1,..., er)
¨ Homk-schemes(V, !

1)

the linear map

H ÿ h := H/°i Zi
ei | V.

Thus
(∏(e1,..., er)

, †)

is a linear space of !1-valued functions on V.

LLLLeeeemmmmmmmmaaaa 4444....1111....6666 Notations as in 4.1.5 above, the space (∏(e1,..., er)
, †)

is (1 + ‡ieidi)-separating as a linear space of functions on V.

pppprrrrooooooooffff We must show that for any extension field L/k, and any
d := 1 + ‡ieidi

distinct points Pi in V(E), the simultaneous evaluation map

eval(P1,... Pd) : ∏(e1,..., er)
‚kE ¨ !d(E)

is surjective, or equivalently, that in H0(@, Ø@(‡ieidi))‚kL, the

subspace of those sections H which vanish at all the Pi has

codimension d. Extending the field L if necessary, we may find a

linear form Lin in H0(@, Ø@(1))‚kL which is nonzero at all the Pi.

Then it is equivalent to show that among the functions H/Lind-1 on
@[1/Lin], those which vanish at our d distinct points form a
subspace of codimension d. This is in turn equivalent to showing the
surjectivity of the simultaneous evaluation map

eval(P1,... Pd) : {H/Lin
d-1}H in H0(@, Ø@(‡ieidi))‚kL

¨ !d(L).

But this last surjectivity is just the fact (cf. 1.1.8) that on the affine

space @[1/Lin] ¶ !N, the space of polynomial functions of degree
≤ d-1 is d-separating. QED

LLLLeeeemmmmmmmmaaaa 4444....1111....7777 Notations as above, suppose that ei ≥ 1 for all i. Then

we have the following results.
1) The tautological morphism

V ¨ @(H0(@, Ø@(‡ieidi)))[1/(°iZi)]

= @(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)]

is a closed immersion.

2) The space @(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)] is an affine space !M, on

which the polynomial functions of degree ≤ 1 are precisely the

functions H/°i Zi
ei, for H in H0(@, Ø@(‡ieidi)).

3) The natural map

eval : V ¨∏(e1,..., er)
£,

v ÿ (H ÿ (†H)(v))
is a closed immersion.
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pppprrrrooooooooffff 1) Let us denote by

å : V ¨ @(H0(@, Ø@(‡ieidi)))[1/(°iZi)]

the morphism in question. Starting with the given projective
embedding X fi @, we compose with the Segre embedding by
hypersurface sections of degree ‡ieidi to get a closed immersion

i‡eidi
: X ¨ @(H0(@, Ø@(‡ieidi))).

In the target space, we have the affine open set

@(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)] fi @(H0(@, Ø@(‡ieidi))),

whose inverse image in X is the affine open set V. Thus we have a
cartesian diagram

V fi @(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)]

€ €

X fi @(H0(@, Ø@(‡ieidi)))

where the bottom horizontal inclusion is the closed immersion i‡eidi
and the top horizontal inclusion is the map å, which is therefore
itself a closed immersion.
2) The description of

@(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)]

as an affine space !M, on which the polynomial functions of degree

≤ 1 are precisely the functions H/°i Zi
ei, is a tautology.

3) This follows from 1), since we have a canonical isomorphism

@(H0(@, Ø@(‡ieidi)))[1/(°iZi
ei)] ¶

the closed subscheme of ∏(e1,..., er)
£ consisting of linear

forms which take the value 1 on °iZi
ei. QED

(4.1.8) Let us say that an element H in H0(@, Ø@(‡ieidi))‚käk is of

strong Deligne type, with respect to X and (Z1,..., Zr), and that the

function

h := H/°i Zi
ei on V

is a strong Deligne polynomial on V, if the following conditions D0),
D1), and D2) are satisfied.
D0) X€H is smooth of codimension one in X.
D1) For every nonvoid subset È of {1,..., r}, the closed subscheme

X€H€(€i in È Zi)

of X is smooth of codimension 1 + ùÈ in X. [For ùÈ ≥ n, this means
only that X€H€(€i in È Zi) is empty.]

D2) Every ei is strictly positive and prime to p.

(4.1.9) We say say that H is of weak Deligne type, and that h is a
weak Deligne polynomial, if the conditions D1) and D2) (but not
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necessarily D0)) are satisfied.
(4.1.10) For a fixed r-tuple (e1,..., er) of strictly positive and

prime-to-p integers, the forms of strong (resp. weak) Deligne type
with respect to X and (Z1,..., Zr) form a dense open set of

H0(@, Ø@(‡ieidi)). We denote by

Î(X, Z1,..., Zr, e1,..., er) fi ∏(e1,..., er)
:= H0(@, Ø@(‡ieidi))

the dense open set consisting of forms of weak Deligne type with
respect to X and (Z1,..., Zr).

(4.1.11) Recall the following theorem [Ka-SE, 5.4.1, and assertion
(0) on page 169, lines 5-7].

TTTThhhheeeeoooorrrreeeemmmm 4444....1111....11112222 Hypotheses and notations as above, suppose all the
ei are strictly positive and prime to p. Let E/k be a finite extension.

Suppose H in H0(@, Ø@(‡ieidi))‚kE is of weak Deligne type with

respect to X and (Z1,..., Zr). Put h := H/°i Zi
ei. For any prime …

invertible in k, and any nontrivial ä$…
≠-valued additive character ¥

of k, form the lisse, rank one ä$…-sheaf Ò¥(h) on V‚kE. Then we

have the following results for the weak Deligne polynomial h on V.
1) The "forget supports" maps

Hic(V‚käE, Ò¥(h)) ¨ Hi(V‚käE, Ò¥(h))

are all isomorphisms.

2) The groups Hic(V‚käE, Ò¥(h)) vanish for i ± n.

3) The group Hnc(V‚käE, Ò¥(h)) is pure of weight n.

4) If H - ¬°iZi
ei is of strong Deligne type for some ¬ in äk (a condition

which is always satisfied, see Adolphson's result just below), then

the dimension of Hnc(V‚käE, Ò¥(h)) is equal to the Chern class

expression

(-1)n—X c(X)/((1+(‡eidi)L)°i=1 to r(1+diL)).

(4.1.13) I am indebted to Alan Adolphson for the statement and
proof of the following result, which shows that the dimension
formula in part 4) of the above theorem holds for every H of weak
Deligne type, cf. [Ka-SE, Remark on page 172], where this question
was raised but left open.

LLLLeeeemmmmmmmmaaaa 4444....1111....11114444 (AAAAddddoooollllpppphhhhssssoooonnnn) Hypotheses and notations as in the
theorem above, if H is of weak Deligne type, then for all but finitely

many ¬ in äk, H - ¬°iZi
ei is of strong Deligne type.

pppprrrrooooooooffff The question is geometric, so we may extend scalars to äk. Let

us write H¬ for H - ¬°iZi
ei. We must show that for almost all ¬,
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X€H¬ is smooth of codimension one in X. As H is of weak Deligne

type, we know that, for each i, X€H€Zi is smooth of codimension

one in X€Zi. For every ¬, H and H¬ have the same intersection with

Zi. So X€H¬€Zi is smooth of codimension one in X€Zi (and hence

X€H¬ is everywhere of codimension one in X, because otherwise

X€H¬ = X, impossible if X€H¬€Zi has codimension one in X€Zi). Now

X€H¬€Zi is defined in X€H¬ by one equation. So at every point of

X€H¬€Zi, X€H¬ is itself regular, and hence smooth. This shows two

things:
a) for every ¬, Sing(X€H¬) has dimension ≤ 0 [because otherwise it

would have a nonempty intersection with the projective
hypersurface Zi];

b) for every ¬, every point of Sing(X€H¬) lies in V : = X - X€(⁄i Zi).

So it suffices to show that for almost all ¬,
V€H¬ = V€(h = ¬)

is smooth. For this, it suffices to show that the closed subscheme
CritPt(h, V) of V defined by the vanishing of dh as a section of

¿1V/k has dimension ≤ 0. For this, it suffices to show that its closure

äCritPt(h, V) in X is disjoint from X€Z1.

We argue by contradiction. Suppose x is a äk-valued point of
X€Z1 which lies in äCritPt(h, V). Renumbering the remaining Zi, we

may assume that this point x lies on Zi for i=1 to s, and does not lie

on Zj for j > s. So we can find local coordinates z1, z2,..., zn on X at x

such that, near x, the function h = H/°iZi
ei is of the form

h = f/(°i=1 to s zi
ei),

with f in the local ring ØX,x, and such that, for i = 1 to s, the divisor

Zi is defined near x by the vanishing of zi, and such that, for i > s,

zi(s) ± 0. [Concretely, if we pick a linear form L which is invertible

at x, we may take zi := Zi/L
di for i = 1 to s, and then f is

(H/L‡eidi)/(°i>s (Zi/L
di)ei).] We rewrite this as

f = h(°i=1 to s zi
ei).

We readily calculate (in ¿1äk(X)/äk)

df = dh(°i=1 to s zi
ei) + h(°i=1 to s zi

ei)‡i=1 to s eidzi/zi

= dh(°i=1 to s zi
ei) + f‡i=1 to s eidzi/zi.

Postmultiplying by z1(°i=2 to s dzi), we get

z1df(°i=2 to s dzi)

= z1(°i=1 to s zi
ei)dh(°i=2 to s dzi) + e1f(°i=1 to s dzi).

We rewrite this relation as
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z1(°i=1 to s zi
ei)dh(°i=2 to s dzi)

= z1df(°i=2 to s dzi) - e1f(°i=1 to s dzi).

This shows that the product of dh by z1(°i=1 to s zi
ei)(°i=2 to s dzi) is

a holomorphic s-form on an open neighborhood U of x. This product

vanishes as a section of ¿sU/k on äCrit(h, V)€U, because, being

divisible by dh on U€V, it vanishes on Crit(h, V)€U. But x lies in
äCrit(h, V). So we conclude that the holomorphic s-form

z1df(°i=2 to s dzi) - e1f(°i=1 to s dzi)

vanishes at x. But z1 vanishes at x, so we find that the holomorphic

s-form e1f(°i=1 to s dzi) vanishes at x. But e1 is prime to p, and

z1,..., zs are part of a system of coordinates at x, so we infer that f

vanishes at x. This in turn means that H(x) = 0. By the
transversality of H to X€Z1€...€Zs, {f, z1,..., zs} are part of a system

of coordinates at x. Now premultiply the relation

z1(°i=1 to s zi
ei)dh(°i=2 to s dzi)

= z1df(°i=2 to s dzi) - e1f(°i=1 to s dzi)

by dz1/z1.We find

- (°i=1 to s zi
ei))dh(°i=1 to s dzi)

= - df(°i=1 to s dzi).

Again the left hand side vanishes on äCrit(h, V)€U, so it vanishes at
x. But the right hand side is nonzero at x, because {f, z1,..., zs} are

part of a system of coordinates at x. Contradiction. QED

((((4444....2222)))) TTTThhhheeee ppppeeeerrrrvvvveeeerrrrsssseeee sssshhhheeeeaaaaffff MMMM((((XXXX,,,, rrrr,,,, ZZZZiiii''''ssss,,,, eeeeiiii''''ssss,,,, ¥¥¥¥)))) oooonnnn ∏∏∏∏((((eeee1111,,,,............,,,, eeeerrrr))))

(4.2.1) We continue with the general setup of 4.1. Thus k is a
finite field k of characteristic p, in which the prime … is invertible,
and X/k is a projective, smooth, geometrically connected k-scheme,
of dimension n ≥ 1, given with a projective embedding

X fi @N := @.
We are given an r-tuple (d1,..., dr) of strictly positive integers, and

an r-tuple (Z1,..., Zr) of nonzero global sections

Zi in H0(@, Ø@(di))

which satisfy the transversality hypothesis (TrZ, X) of 4.1.3. We
denote

V : = X - X€(⁄i Zi) = X[1/(°iZi)].

For an r-tuple (e1, e2,..., er) of integers ei ≥ 0, we get a linear space

(∏(e1,..., er)
, †) of !1-valued functions on V by taking

∏(e1,..., er)
:= H0(@, Ø@(‡ieidi)),

† : ∏(e1,..., er)
¨ Homk-schemes(V, !

1)

the linear map
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H ÿ h := H/°i Zi
ei | V.

Recall from Lemma 4.1.6 that (∏(e1,..., er)
, †) is (1 + ‡ieidi)-

separating as a space of functions on V.
(4.2.2) We now consider the following "standard input", cf. 1.15.4:

m=1,

a nontrivial ä$…
≠-valued additive character ¥ of k,

K = Ò¥(1/2)[1] on !1,

V := X[1/(°iZi)] as above, of dimension n ≥ 1,

h: V ¨ !l the function h = 0,
L = ä$…[n](n/2) on V,

(Ï, †) = (∏(e1,..., er)
, †), with ‡eidi ≥ 1.

(4.2.3) Attached to this input data is the perverse sheaf
Twist(L, K, Ï, h)

on ∏(e1,..., er)
, which we call M(X, r, Zi's, ei's, ¥):

M(X, r, Zi's, ei's, ¥) := Twist(L, K, Ï, h).

(4.2.4) We define the sheaf ˜(X, r, Zi's, ei's, ¥) of perverse origin

on ∏(e1,..., er)
by

˜(X, r, Zi's, ei's, ¥) := Ó-dimÏ(M(X, r, Zi's, ei's, ¥))(-1/2).

(4.2.5) Exactly as in 3.5.5, the down to earth description of these
objects is this. On the space V≠∏(e1,..., er)

, with coordinates v, H, we

have the function (†H)(v) := (H/°Zi
ei)(v), and we have the lisse

sheaf Ò¥((†H)(v)). Under the second projection

pr2 : V≠∏(e1,..., er)
¨ ∏(e1,..., er)

,

we form Rpr2~Ò¥((†H)(v)). For E/k a finite extension, and for H in

∏(e1,..., er)
(E), the stalk of Rpr2~Ò¥((†H)(v)) at H is the object

RÆc(!
n‚käE, Ò¥((†H)(v))), whose cohomology objects are the groups

Ói(RÆc(!
n‚käE, Ò¥((†H)(v)))) = Hc

i(!n‚käE, Ò¥((†H)(v))).

The perverse sheaf M(X, r, Zi's, ei's, ¥) is just a Tate twist and a

shift of Rpr2~Ò¥((†H)(v)). We have

Rpr2~Ò¥((†H)(v))
= M(X, r, Zi's, ei's, ¥)[-n - dim∏(e1,..., er)

]((-n-1)/2),

and

˜(X, r, Zi's, ei's, ¥) = Rnpr2~Ò¥((†H)(v))(n/2).

(4.2.6) We have the following two lemmas, analogues of Lemmas
3.5.6 and 3.5.7.
LLLLeeeemmmmmmmmaaaa 4444....2222....7777 For E/k a finite extension, and H in
Ï(E) = ∏(e1,..., er)

(E), we have the identity
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Trace(FrobE,H | M(X, r, Zi's, ei's, ¥)))

= (-1)n+dimÏ(ùE)-(n+1)/2‡v in V(E) ¥E((†H)(v)).

LLLLeeeemmmmmmmmaaaa 4444....2222....8888 For U fi ∏(e1,..., er)
an open dense set on which

M(X, r, Zi's, ei's, ¥) has lisse cohomology sheaves,

M(X, r, Zi's, ei's, ¥)|U is the lisse sheaf ˜(X, r, Zi's, ei's, ¥)(1/2)|U,

placed in degree -dimÏ. For E/k a finite extension, and for H in U(E),
we have

Trace(FrobE,H | ˜(X, r, Zi's, ei's, ¥))

= (-1)n(ùE)-n/2‡v in V(E) ¥E((†H)(v)).

TTTThhhheeeeoooorrrreeeemmmm 4444....2222....9999 Take standard input as in 4.2.2 above. Suppose in
addition that ei ≥ 1 for all i = 1 to r. Then we have the following

results concerning the perverse sheaf
M := M(X, r, Zi's, ei's, ¥)

and the sheaf of perverse origin

˜ := Ó-dimÏ(M)(-1/2)
on Ï = ∏(e1,..., er)

.

1) The object M(dimÏ0/2) is perverse, geometrically irreducible and

geometrically nonconstant, and “-pure of weight zero.
2) The Frobenius-Schur indicator of M(dimÏ0/2) is given by

FSIgeom(∏(e1,..., er)
, M(dimÏ0/2))

= 0, if p is odd,

= ((-1)1+dimÏ0)≠(-1)n = (-1)n+dimÏ, if p= 2.
3) On any dense open set U of ∏(e1,..., er)

on which M is lisse, we

have M(-1/2)|U = (˜|U)[dimÏ], and ˜|U is a lisse sheaf on U. If ˜|U
is nonzero, then it is geometrically irreducible, geometrically
nonconstant, and “-pure of weight zero.
4) If all the ei are prime to p, then M is lisse on the dense open set

Î := Î(X, Z1,..., Zr, e1,..., er) fi ∏(e1,..., er)
:= H0(@, Ø@(‡ieidi))

consisting of all forms of weak Deligne type with respect to X and
(Z1,..., Zr), cf. 4.1.10, and ˜|Î has rank given by

rank(˜|U) = (-1)n—X c(X)/((1+(‡eidi)L)°i=1 to r(1+diL)).

5) If ‡eidi ≥ 3, then ˜|U is nonzero, and its Frobenius-Schur

indicator is given by

FSIgeom(U, ˜|U)
= 0, if p is odd,

= (-1)n, if p = 2.
6) If ‡eidi ≥ 3, then we have the following bound for the fourth
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moment:

M4
geom(U, ˜) ≤ 2, if p ± 2,

M4
geom(U, ˜) ≤ 3, if p = 2.

And for any n ≥ 3 with 1 + ‡eidi ≥ 2n, we have the following bound

for the 2n'th moment:

M2n
geom(U, ˜) ≤ n~, if p ± 2,

M2n
geom(U, ˜) ≤ (2n)~~ := (2n-1)(2n-3)...5.3.1, if p = 2.

7) If ˜|U is nonzero, then det(˜|U) is arithmetically of finite order.

pppprrrrooooooooffff 1) We have the closed immersion of Lemma 4.1.7,

eval : V ¨∏(e1,..., er)
£,

v ÿ (H ÿ (†H)(v)).

In terms of the Fourier Transform on the target space ∏(e1,..., er)
£,

we have, for any L on V,
Twist(L, K, Ï, h) = FT¥(eval*(L))(1/2),

cf. the proof of the Compatibility Lemma 3.2.3. The rest of the proof
of 1) is the same as the proof of part 1) of the Ò¥ Theorem 3.1.2.

Statement 2) is just a spelling out of part 3) of the Standard Input
Theorem 1.15.6. Statement 3) is a tautology, given Statement 1).
Statement 4) results from Theorem 4.1.12, according to which on

Î := Î(X, Z1,..., Zr, e1,..., er),

the only nonvanishing cohomology sheaf of M|Î is Ó-dimÏ(M),
which has constant rank equal to the asserted rank on Î. As

Ó-dimÏ(M) is a sheaf of perverse origin, it is lisse on any open set
where its rank is constant, cf. 2.8.10. In Statement 5), the non-
vanishing of ˜|U results from part 1) of the Corollary 1.20.3 to the
Higher Moment Theorem 1.20.2, applied with d = ‡eidi + 1 ≥ 4. The

statement about the Frobenius-Schur indicator is then equivalent to
that given in Statement 2). Statement 6) is just part 4) of Corollary
1.20.3. The proof of Statement 7) is entirely analogous to that of the
Determinant Lemma 3.5.13. QED

TTTThhhheeeeoooorrrreeeemmmm 4444....2222....11110000 Hypotheses and notations as in Theorem 4.2.9
above, suppose further that we are in one of the following three
situations:
a) r ≥ 4,
b) r = 3 and ‡eidi ≥ 4,

c) r = 2 and ‡eidi ≥ 5.

Denote by N the rank of ˜|U. Then N ≥ 2, and we have the following
results for the group Ggeom := Ggeom, ˜|U.

1) If p ± 2, then Ggeom contains SL(N).

2) If p = 2 and n = dimX is even, then Ggeom is Sp(N).



170 Chapter 4

3) If p = 2 and n = dimX is odd, then N ≥ 3, and Ggeom is either

SO(N) or O(N).

pppprrrrooooooooffff In all the cases considered, we certainly have ‡eidi ≥ 3. By

Statement 5) of the previous theorem we know that ˜|U is nonzero.
So by Statement 3) of the previous theorem, ˜|U is geometrically
irreducible, geometrically nonconstant, and “-pure of weight zero.
Moreover, by Statement 6) of the previous theorem, ˜|U has very
low fourth moment. So by Larsen's Alternative 2.2.2, to complete the
proof of the theorem, it suffices to show that Ggeom is not finite

(which already forces N ≥ 2, and forces N ≥ 3 in case 3)), cf. the
discussion in 2.1.2.

To show that Ggeom is not finite, we use a degeneration

argument, based on the Punctual Purity Corollary 2.8.14, combined
with information on archimedean absolute values of eigenvalues of
Frobenius.

We have, on the space Ï = ∏(e1,..., er)
, the sheaf of perverse

origin ˜, given explicitly by

˜ = Rnpr2~Ò¥((†H)(v))(n/2),

cf. 4.2.5. We are trying to prove that ˜|U does not have a finite
Ggeom. We argue by contradiction. Thus suppose ˜|U has a finite

Ggeom. Since ˜|U is geometrically irreducible,we know by the

Scalarity Corollary 2.8.13 that for any finite extension field E/k, and
for any E-valued point t in Ï(E), some power of FrobE,t | ˜t is a

scalar. Therefore the eigenvalues of FrobE,t | ˜t differ

multiplicatively from each other by roots of unity, and hence all the
eigenvalues of FrobE,t | ˜t must have the same (via “) archimedean

absolute values as each other. So to prove that Ggeom is not finite, it

suffices to exhibit a single finite extension field E/k, and a single E-
valued point t in Ï(E), such that all the eigenvalues of FrobE,t | ˜t
do not have the same (via “) archimedean absolute values as each
other.

To do this, we proceed as follows. After possibly renumbering
the Zi, we may assume that

e1d1 ≥ e2d2 ≥ ... ≥ erdr.

Then under any of the hypotheses a), b), c), we have the inequality
‡i=1 to r-1 eidi ≥ 3.

Indeed, if r ≥ 4, this is trivial, since each ei ≥ 1 and each di ≥ 1. If

r=3, we must have e1d1 ≥ 2 (otherwise we have all eidi = 1, which

is not allowed), and hence e1d1 + e2d2 ≥ 3. Similarly, if r = 2, we

must have e1d1 ≥ 3.

The idea is to take as our special point t in Ï(E) a point H in
Ï(E) = ∏(e1,..., er)

(E) such that †H has no pole along Zr, but which is



Additive character sums on more general X 171

otherwise as general as possible. Recall that

†H := H/°i=1 to r Zi
ei.

So we want to take H of the form

H = H1≠Zr
er,

for some

H1 in Ï1 := ∏(e1,..., er-1, 0)
= H0(@, Ø@(‡i=1 to r-1 eidi)).

There are three ways we can think of the space

Ï1 := ∏(e1,..., er-1, 0)
= H0(@, Ø@(‡i=1 to r-1 eidi)).

We can think of it as a space of functions on
V1 := V = X[1/°i=1 to r Zi],

by means of the map

†1 : ∏(e1,..., er-1, 0)
¨ Homk-schemes(V1, !

1),

†1H1 := H1/°i=1 to r-1 Zi
ei | V1.

Or we can think of it as a space of functions on
V2 := X[1/°i=1 to r-1 Zi],

by means of the map

†2 : ∏(e1,..., er-1, 0)
¨ Homk-schemes(V2, !

1),

†2H1 := H1/°i=1 to r-1 Zi
ei | V2.

Or we can think of it as a space of functions on
V3 := (X€Zr)[1/°i=1 to r-1 Zi],

by means of the map

†3 : ∏(e1,..., er-1, 0)
¨ Homk-schemes(V3, !

1),

†3H1 := H1/°i=1 to r-1 Zi
ei | V3.

The space ∏(e1,..., er-1, 0)
thus carries three perverse sheaves,

one from each of its above incarnations:
M1 := M(X, r, Z1,..., Zr, e1,..., er-1, 0, ¥),

M2 := M(X, r-1, Z1,..., Zr-1, e1,..., er-1, ¥),

M3 := M(X€Zr, r-1, Z1,..., Zr-1, e1,..., er-1, ¥).

It also carries the three corresponding sheaves of perverse origin

˜i := Ó-dimÏ1(Mi)(-1/2).

Pick a dense open set U123 in ∏(e1,..., er-1, 0)
on which all

three of the Mi are lisse. Let E/k be a finite extension, large enough

that U123(E) is nonempty. Pick a point H1 in U123(E). So on U123,

we have
Mi(-1/2) | U123 = (˜i | U123)[dimÏ1],

for i = 1, 2, 3. By the down to earth description of these objects, cf.
4.2.6, and proper base change at H1 in U123(E), we have

Hc
i(V1‚käk, Ò¥(†1H1)

) = 0 for i ± n,
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Hc
n(V1‚käk, Ò¥(†1H1)

)(n/2) = ˜1,H1
,

Hc
i(V2‚käk, Ò¥(†2H1)

) = 0 for i ± n,

Hc
n(V2‚käk, Ò¥(†2H1)

)(n/2) = ˜2,H1
,

Hc
i(V3‚käk, Ò¥(†3H1)

) = 0 for i ± n-1,

Hc
n-1(V3‚käk, Ò¥(†3H1)

)((n-1)/2) = ˜3,H1
.

Now
V1 := V = X[1/°i=1 to r Zi]

is open in
V2 := X[1/°i=1 to r-1 Zi],

with closed complement
V3 := (X€Zr)[1/°i=1 to r-1 Zi].

And the lisse sheaf Ò¥(†2H1)
on V2 restricts to the lisse sheaf

Ò¥(†1H1)
on V1, and to the lisse sheaf Ò¥(†3H1)

on V3. So the

excision long exact sequence of cohomology gives a short exact
sequence

0 ¨ Hc
n-1(V3‚käk, Ò¥(†3H1)

)¨ Hc
n(V1‚käk, Ò¥(†1H1)

)

¨ Hc
n(V2‚käk, Ò¥(†2H1)

) ¨0.

Tate-twisting by ä$…(n/2), we get a short exact sequence

0 ¨ ˜3,H1
(1/2) ¨ ˜1,H1

¨ ˜2,H1
¨ 0.

[Indeed, this sequence is the stalk at H1 of a short exact sequence of

lisse sheaves on U123.] By the previous theorem, applied to both V2
and V3, we know that both ˜2|U123 and ˜3|U123 are nonzero lisse

sheaves, both “-pure of weight zero. Therefore FrobE,H1
| ˜1,H1

has

eigenvalues that are “-pure of weight zero, and it has eigenvalues
that are “-pure of weight -1.

On the other hand, for the form

H := H1≠Zr
er in ∏(e1,..., er)

,

it is tautologous that the lisse sheaf Ò¥(†H) on V = V1 is just the

sheaf Ò¥(†1H1)
on V1. Therefore we have

Hc
i(V‚käk, Ò¥(†H)) = 0 for i ± n,

Hc
n(V‚käk, Ò¥(†H))(n/2) = ˜H = ˜1,H1

.

Thus FrobE,H | ˜H has eigenvalues that are “-pure of weight zero,

and it has eigenvalues that are “-pure of weight -1. This is the
desired contradiction. QED

(4.2.11) We now turn to the more difficult case when r = 1. We
first consider the subcase when n ≥ 3.
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TTTThhhheeeeoooorrrreeeemmmm 4444....2222....11112222 Let X/k be projective, smooth, and geometrically
connected, of dimension n ≥ 3. Fix a projective embedding X fi @, an

integer d ≥ 1, and a section Z of H0(@, Ø@(d)) such that X€Z is

smooth of codimension one in X. Fix an integer e ≥ 3. If char(k) = 3,
suppose in addition e ≥ 4. Form the perverse sheaf

M = M(X, r=1, Z, e)

on Ï = ∏(e) := H0(@, Ø@(ed)), and form the sheaf of perverse origin

˜ := Ó-dimÏ(M)(-1/2). Let U fi Ï be a dense open set on which M is
lisse. If e is prime to p, take for U the dense open set Î := Î(X, Z, e)
fi Ï consisting of all forms H of weak Deligne type with respect to X
and Z (i.e., such that X€Z€H is smooth of codimension one in X€Z).
Denote by N ≥ 1 the rank of ˜|U. Then we have the following results
concerning the group Ggeom for ˜|U.

1) If p ± 2, then Ggeom contains SL(N).

2) If p = 2 and n = dimX is odd, then Ggeom is Sp(N).

3) If p = 2 and n = dimX is even, then Ggeom is either SO(N) or O(N).

pppprrrrooooooooffff Exactly as in the proof of Theorem 4.2.9, it suffices to show
that Ggeom is not finite. By the Semicontinuity Corollary 2.8.9, it

suffices to prove that Ggeom is not finite for the lowest allowed

value e0 of e, namely e0 = 3 if char(k) ± 3, and e0 = 4 if char(k) = 3.

Thus e0 satisfies both

e0 ≥ 3,

e0 is prime to p := char(k).

So it certainly suffices to prove that Ggeom is not finite for any e ≥ 3

which is prime to p, and this is what we now proceed to do.
Because e is prime to p, we may choose the open set U fi Ï to

be Î(X, Z, e), consisting of all forms H of degree de of weak Deligne
type with respect to X and Z (i.e., such that X€Z€H is smooth of
codimension one in X€Z). A key property of the open set
Î(X, Z, e) = U is that it is stable by homothety in the ambient Ï. [It
is (only~) to be sure of the stability of U by homothety that we
require that e be prime to p.]

Recall from 4.2.8 that for E/k a finite extension, and for H in
U(E), Trace(FrobE,H | ˜) is the exponential sum over the affine

variety V := X - X€Z given by
Trace(FrobE,H | ˜)

= (-1)n(ùE)-n/2‡v in V(E) ¥E((H/Z
e)(v)).

We know that det(˜|U) is arithmetically of finite order, cf. Theorem
4.2.9, part 7).

Suppose now that Ggeom is finite. Then by Twisting Lemma

2.8.12.1 (= 2.8.12 bis), Garith is finite. So for E/k any finite extension,

and for any H in U(E), a power of FrobE,H acts trivially on ˜. Hence



174 Chapter 4

the eigenvalues of FrobE,H | ˜ are roots of unity, and so

Trace(FrobE,H | ˜) is an algebraic integer. Therefore we find the

following divisibility result: for E/k any finite extension, and for any
H in U(E),

‡v in V(E) ¥E((H/Z
e)(v)) = (-1)n(ùE)n/2Trace(FrobE,H | ˜)

= (ùE)n/2≠(an algebraic integer).

For any ¬ in E≠, ¬H lies in U(E) as well, so we get the same

divisibility for ¬H. Summing over ¬ in E≠, we get the following
divisbility: for E/k any finite extension, and for any H in U(E),

‡¬ in E≠ ‡v in V(E) ¥E(¬(H/Z
e)(v))

= (ùE)n/2≠(an algebraic integer).
This divisibility will be particularly powerful when H is a strong

Deligne form with respect to X and Z, i.e., one such that X€H is
smooth of condimension one in X, and such that X€Z€H is smooth of
codimension one in X€Z. [Recall that X€Z is smooth of codimension
one in X by hypothesis on (X, Z).] The strong Deligne forms are a
dense open set in the space of weak Deligne forms:

Ustr := Îstrong(X, Z, e) fi U := Î(X, Z, e).

The open set Ustr is (visibly) stable by homothety in the ambient Ï.

In order to proceed, we need an exponential sum identity.

((((4444....3333)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: AAAAnnnn eeeexxxxppppoooonnnneeeennnnttttiiiiaaaallll ssssuuuummmm iiiiddddeeeennnnttttiiiittttyyyy

LLLLeeeemmmmmmmmaaaa 4444....3333....1111 Let k be a finite field, ùk := q, in which … is

invertible, and let ¥ be a nontrivial ä$…
≠-valued additive character

of k. Let X/k be projective, smooth, and geometrically connected, of
dimension n ≥ 1. Fix a projective embedding X fi @, an integer d ≥ 1,

and a section Z of H0(@, Ø@(d)) such that X€Z is smooth of

codimension one in X. Denote by V the smooth affine open set of X
given by

V := X[1/Z] := X - X€Z.
Fix an integer e ≥ 1. Let E/k be a finite extension inside äk. Let H be a

section of H0(@, Ø@(de))‚kE such that X€H is smooth of codimension

one in X, and such that X€Z€H is smooth of codimension one in

X€Z. Denote by L in Hn(X‚käk, ä$…)(1) the cohomology class of a

hyperplane section. Consider the cohomology groups

Primi(X) := Hi(X‚käk, ä$…)/LH
i-2(X‚käk, ä$…)(-1),

any i ≤ n,

Primi(X€Z) := Hi((X€Z)‚käk, ä$…)/LH
i-2((X€Z)‚käk, ä$…)(-1),

any i ≤ n-1,

Evn-1(X€Z) := Hn-1((X€Z)‚Eäk, ä$…)/H
n-1(X‚käk, ä$…),

Evn-1(X€H) := Hn-1((X€H)‚Eäk, ä$…)/H
n-1(X‚käk, ä$…),
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Evn-2(X€Z€H) := Hn-2((X€Z€H)‚Eäk, ä$…)/H
n-2(X‚käk, ä$…).

Then for any finite extension F/E, we have the identity

(-1)n-1‡¬ in F≠ ‡v in V(F) ¥F(¬(H/Z
e)(v))

= Trace(FrobF | Primn(X))

+ Trace(FrobF | Evn-1(X€Z))

+ Trace(FrobF | Evn-1(X€H)(-1))

+ Trace(FrobF | Evn-2(X€Z€H)(-1)).

pppprrrrooooooooffff Extending scalars, it suffices to treat universally the case
when F = E = k. We first "complete" the sum by adding on the ¬=0
term, and using orthogonality of characters. We get

‡¬ in k≠ ‡v in V(k) ¥(¬(H/Z
e)(v))

= ‡¬ in k ‡v in V(k) ¥(¬(H/Z
e)(v)) - ùV(k)

=qù{ v in V(F) with (H/Ze)(v) = 0} - ùV(k)
= q(ù(V€H)(k)) - ùV(k)
= q(ù(X€H)(k) - ù(X€Z€H)(k)) - (ùX(k) - ù(X€Z)(k))
= [qù(X€H)(k) - ùX(k)] - [qù(X€Z€H)(k) - ù(X€Z)(k)].

We now rewrite the first grouped term. Use the Lefschetz
Trace Formula on X€H to write qù(X€H)(k) as a sum of three terms:

qù(X€H)(k) = ‡i ≤ n-2 (-1)
iTrace(Frobk | Hi((X€H)‚käk, ä$…)(-1))

+ (-1)n-1Trace(Frobk | Hn-1((X€H)‚käk, ä$…)(-1))

+ ‡i ≥ n (-1)
iTrace(Frobk | Hi((X€H)‚käk, ä$…)(-1)).

Use the same formula to write ùX(k) as the sum of three terms:

ùX(k) = ‡i ≤ n (-1)
iTrace(Frobk | Hi(X‚käk, ä$…))

+ (-1)n+1Trace(Frobk | Hn+1(X‚käk, ä$…))

+ ‡i ≥ n+2 (-1)
iTrace(Frobk | Hi(X‚kk, ä$…)).

By the Poincarïe dual of the weak Lefschetz theorem, the third
terms in the two expressions are equal. To compute the difference of
the second terms, use the strong Lefschetz theorem to write

Hn-1(X‚käk, ä$…)(-1) ¶ Hn+1(X‚käk, ä$…).

Then the difference of the second terms is precisely

(-1)n-1Trace(Frobk | Evn-1(X€H)(-1)).

The difference of the first terms is, by weak Lefschetz,

‡i ≤ n-2 (-1)
iTrace(Frobk | Hi(X‚käk, ä$…)(-1))

- ‡i ≤ n (-1)
iTrace(Frobk | Hi(X‚kk, ä$…)).

= - ‡i ≤ n (-1)
iTrace(Frobk | Primi(X)).

For the last equality, use strong Lefschetz to get the injectivity of

L : Hi(X‚käk, ä$…)(-1) fi Hi+2(X‚käk, ä$…)
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for i ≤ n-2.
Thus we obtain

qù(X€H)(k) - ùX(k)

= (-1)n-1Trace(Frobk | Evn-1(X€H)(-1))

- ‡i ≤ n (-1)
iTrace(Frobk | Primi(X)).

The same argument applied to the second grouped term gives

qù(X€Z€H)(k) - ù(X€Z)(k)

= (-1)n-2Trace(Frobk | Evn-2(X€Z€H)(-1))

- ‡i ≤ n-1 (-1)
iTrace(Frobk | Primi(X€Z)).

By weak Lefschetz, and the snake lemma applied for i ≤ n-1 to

L

0 ¨ Hi-2(X‚käk, ä$…)(-1) ¨ Hi(X‚käk, ä$…) ¨ Primi(X) ¨ 0

d L d d

0¨ Hi-2((X€Z)‚käk, ä$…)(-1) ¨ Hi((X€Z)‚käk, ä$…) ¨ Primi(X€Z) ¨0,

we see that

Primi(X) ¶ Primi(X€Z) for i ≤ n-2,

Primn-1(X) fi Primn-1(X€Z),
and

Evn-1(X€Z) ¶ Primn-1(X€Z)/Primn-1(X).
Thus we find

= [qù(X€H)(k) - ùX(k)] - [qù(X€Z€H)(k) - ù(X€Z)(k)].

= (-1)n-1Trace(Frobk | Evn-1(X€H)(-1))

+ (-1)n-1Trace(Frobk | Evn-2(X€Z€H)(-1))

+ (-1)n-1Trace(Frobk | Primn(X))

+ (-1)n-1Trace(Frobk | Evn-1(X€Z)). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 4444....3333....2222 Hypotheses and notations as in Lemma 4.3.1 above,

suppose that for every finite extension F/E, and for every ¬ in F≠,
the sum

‡v in V(F) ¥F(¬(H/Z
e)(v))

is divisible by (ùF)n/2 as an algebraic integer. Then we have the
following results.

1) Evn-1(X€Z) = 0.

2) Every eigenvalue of FrobE on Evn-1(X€H) is divisible, as an

algebraic integer, by (ùE)(n-2)/2.
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3) Primn(X) is supersingular, in the sense that every eigenvalue of

Frobk on Primn(X) is of the form (ùk)n/2≠(a root of unity).

4) Evn-2(X€Z€H) is supersingular, in the sense that every

eigenvalue of FrobE on Evn-2(X€Z€H) is of the form

(ùE)(n-2)/2≠(a root of unity).
pppprrrrooooooooffff Consider the ä$…-finite-dimensional ä$…[Gal(äk/E)]-module M

defined as

M := Primn(X)·Evn-1(X€Z)·Evn-1(X€H)(-1)·Evn-2(X€Z€H)(-1).
The previous lemma asserts that for F/E any finite extension, we
have

Trace(FrobF | M) = (-1)n-1‡¬ in F≠ ‡v in V(F) ¥F(¬(H/Z
e)(v)).

So the hypothesized divisibility of each inner sum by (ùF)n/2 as an
algebraic integer tells us that for F/E any finite extension, we have

Trace(FrobF | M) = (ùF)n/2≠(an algebraic integer).

In other words, the trace on M of every power of (ùE)-/2FrobE is an

algebraic integer. It is standard (cf. [Ax, top of page 256]) to infer
that every eigenvalue of FrobE on M is of the form

(ùE)n/2≠(an algebraic integer).
Since M is given as a direct sum of FrobE-stable subspaces, we

have the same information about each eigenvalue of FrobE on each

summand. Thanks to Deligne, we know that these eigenvalues are
algebraic integers which are units at all finite places outside p, we
know their archimedean absolute values, and we know that each
lies in a CM field. We consider these summands one by one.

1) The summand Evn-1(X€Z) is pure of weight n-1. If Evn-1(X€Z) is
nonzero, let å be an eigenvalue of FrobE on it. By purity, we have

åäå = (ùE)n-1. But if we write å as (ùE)n/2≠∫ with ∫ an algebraic

integer, we get åäå = (ùE)n∫ä∫. Thus we find ∫ä∫ = 1/ùE, which is
impossible, because ∫ä∫ is an algebraic integer, while 1/ùE is not.

2) For å an eigenvalue of FrobE on Evn-1(X€H), (ùE)å is an

eigenvalue of FrobE on the summand Evn-1(X€H)(-1), hence (ùE)å

is divisible by (ùE)n/2 as an algebraic integer.

3) Let å be an eigenvalue of FrobE on Primn(X), and write å as

(ùE)n/2≠∫ with ∫ an algebraic integer. Because Primn(X) is pure of

weight n, we get åäå = (ùE)n, so we have ∫ä∫ = 1. Thus ∫ is a unit in
the ring of all algebraic integers, and all its complex absolute values
are 1. Hence (Kronecker's theorem) ∫ is a root of unity. So every

eigenvalue of FrobE on Primn(X) is of the form (ùE)n/2≠(a root of

unity). Since FrobE = (Frobk)
deg(E/k) on Primn(X), every eigenvalue

of Frobk on Primn(X) is of the asserted form (ùk)n/2≠(a root of
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unity).

4) Let å be an eigenvalue of FrobE on Evn-2(X€Z€H). Then (ùE)å is

an eigenvalue of FrobE on Evn-2(X€Z€H)(-1), and this space is pure

of weight n. So the argument of 3) above shows that (ùE)å is of the

form (ùE)n/2≠(a root of unity), as required. QED

((((4444....4444)))) RRRReeeettttuuuurrrrnnnn ttttoooo tttthhhheeee pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 4444....2222....11112222
(4.4.1) Recall that e ≥ 3 is prime to p. Suppose that ˜|U has
finite Ggeom. Then by part 4) of the above corollary, for any finite

extension E/k, and for H in Ustr(E) any strong Deligne form with

respect to X and Z, Evn-2(X€Z€H) is supersingular. This leads to a
contradiction as follows.
(4.4.2) Consider the universal family of smooth hypersurface
sections of X€Z of degree de. Its parameter space is the open set U of
all weak Deligne forms H with respect to X and Z. Over U, we have
the lisse sheaf Ó given by

H ÿ Evn-2(X€Z€H).
Its rank satisfies the inequality [Ka-Pan, Theorem 1]

rank(Ó) ≥ deg(X€Z)((de-1)/de)((de-1)n-1 - (-1)n-1).
Because d ≥ 1, e ≥ 3, and n ≥ 3, this inequality implies

rank(Ó) ≥ 2.
Thus Ó is nonzero. One knows that Ó is pure of weight n-2, and
geometrically irreducible. One knows further [Ka-LAMM, 2.2.4] that
its geometric monodromy group Ggeom,Ó is given by

Ggeom,Ó = Sp(rank(Ó)), if n is odd,

= O(rank(Ó)), if n is even and rank(Ó) > 8.
Since Ustr is a dense open set in U, Ó|Ustr remains geometrically

irreducible, with the same geometric monodromy group.

(4.4.3) On the other hand, the supersingularity of Evn-2(X€Z€H)
for every H in Ustr implies [Ka-ESDE, 8.14.3] that Ggeom,Ó|Ustr

is

finite. This finiteness contradicts the above determination of
Ggeom,Ó unless n ≥ 3 is even, and we have

deg(X€Z)((de-1)/de)((de-1)n-1 - (-1)n-1) ≤ 8.
So except in this case, our sheaf ˜|U cannot have finite Ggeom.

(4.4.4) It remains to treat the exceptional case. One easily checks
that for n ≥ 4 even, d ≥ 1, and e ≥ 3, the above inequality

deg(X€Z)((de-1)/de)((de-1)n-1 - (-1)n-1) ≤ 8

can hold only if we have
deg(X€Z) = 1, d = 1, e = 3, n = 4.

In this case, as d = 1, Z is a hyperplane section of X, and hence
deg(X) = 1.

Thus X is @4, linearly embedded in @, V = X[1/L] is !4, char(k) ± 3,
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and H/Z3 is a cubic Deligne polynomial on !4. In this case, the fact
that Ggeom for ˜|U is not finite is the special case n=3, e=3, of

Theorem 3.8.2. QED

((((4444....5555)))) TTTThhhheeee ssssuuuubbbbccccaaaasssseeeessss nnnn====1111 aaaannnndddd nnnn====2222
TTTThhhheeeeoooorrrreeeemmmm 4444....5555....1111 Let X/k be projective, smooth, and geometrically
connected, of dimension n = 1. Fix a projective embedding X fi @, an

integer d ≥ 1, and a section Z of H0(@, Ø@(d)) such that X€Z is

smooth of codimension one in X. Fix an integer e ≥ 3. If char(k) = 3,
suppose in addition e ≥ 4. Form the perverse sheaf

M = M(X, r=1, Z, e)

on Ï = ∏(e) := H0(@, Ø@(ed)), and form the sheaf of perverse origin

˜ := Ó-dimÏ(M)(-1/2). Let U fi Ï be a dense open set on which M is
lisse. If e is prime to p, take for U the dense open set Î := Î(X, Z, e)
fi Ï consisting of all forms H of weak Deligne type with respect to X
and Z (i.e., such that X€Z€H is empty). Denote by N ≥ 1 the rank of
˜|U. Suppose that any of the following five conditions holds:
a) d≠deg(X) > 1,
b) p := char(k) ≥ 7,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

˜|U.
1) If p ± 2, then Ggeom contains SL(N).

2) If p = 2, then Ggeom is Sp(N).

pppprrrrooooooooffff Exactly as in the proof of the n ≥ 3 case Theorem 4.2.12, it
suffices to show that Ggeom is not finite. If it is finite, then by

Corollary 4.3.2, part 1), we infer that Ev0(X€Z) = 0. But

Ev0(X€Z) := H0((X€Z)‚käk, ä$…)/H
0(X‚käk, ä$…)

has dimension ù((X€Z)(äk)) = d≠deg(X) - 1. So if d≠deg(X) > 1, Ggeom

cannot be finite. If d≠deg(X) = 1, then X is @1, embedded linearly, Z

is a single point, V = X[1/L] is !1, and H/Ze is simply a polynomial of
degree e in one variable. In this case, the fact that Ggeom for ˜|U is

not finite if any of b), c), d), or e) holds is the special case n=1 of
Theorem 3.8.2. QED

(4.5.2) We next turn to the n=2 case of this theorem. The result
is quite similar to that in the n=1 case, but the proof is quite
different.
TTTThhhheeeeoooorrrreeeemmmm 4444....5555....3333 Let X/k be projective, smooth, and geometrically
connected, of dimension n = 2. Fix a projective embedding X fi @, an

integer d ≥ 1, and a section Z of H0(@, Ø@(d)) such that X€Z is

smooth of codimension one in X. Fix an integer e ≥ 3. Form the
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perverse sheaf
M = M(X, r=1, Z, e)

on Ï = ∏(e) := H0(@, Ø@(ed)), and form the sheaf of perverse origin

˜ := Ó-dimÏ(M)(-1/2). Let U fi Ï be a dense open set on which M is
lisse. If e is prime to p, take for U the dense open set Î := Î(X, Z, e)
fi Ï consisting of all forms H of weak Deligne type with respect to X
and Z (i.e., such that X€Z€H is smooth of codimension one in X€Z).
Denote by N ≥ 1 the rank of ˜|U. Suppose that any of the following
five conditions holds:
a) d≠deg(X) > 1,
b) p := char(k) ≥ 7,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p = 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

˜|U.
1) If p ± 2, then Ggeom contains SL(N).

2) If p = 2, then Ggeom is either SO(N) or O(N).

pppprrrrooooooooffff Exactly as in the proof of the n ≥ 3 case, Theorem 4.2.12, it
suffices to show that Ggeom is not finite. Consider first the case in

which a) does not hold, i.e., the case when d≠deg(X) = 1. Then d = 1

and deg(X) = 1. So X is @2, embedded linearly in @, V = X[1/Z] is !2,

and {H/Ze}H runs over polynomials of degree ≤ e on !2. That Ggeom
is not finite if any of b), c), d), or e) holds is the special case n=2 of
Theorem 3.8.2.

We now treat the case when a) holds, i.e., the case in which
d≠deg(X) > 1. In this case, we have

d2≠deg(X) > 1,
and it is this inequality which will be crucial below. We will use the
Homothety Contraction Theorem 3.3.13 and a consideration of
weights to show that Ggeom is not finite. We argue by contradiction.

Thus we suppose that Ggeom is finite for ˜|U.

Recall that V := X[1/Z]. Over the space

∏(e) := H0(@, Ø@(ed)),

we have the product space V≠∏(e), which carries the lisse sheaf

(v, H) ÿ Ò¥((H/Ze)(v)).

The sheaf ˜ of perverse origin on ∏(e) is

˜ := R2pr2~Ò¥((H/Ze)(v))(1),

cf. 4.2.5. On any dense open set U of ∏(e) over which

Rpr2~Ò¥((H/Ze)(v)) is lisse, ˜|U is nonzero, geometrically irreducible,

and det(˜|U) is arithmetically of finite order, cf. Theorem 4.2.9,
parts 3), 5), and 7). We have assumed that Ggeom for ˜|U is finite.

It then follows from Twisting Lemma 2.8.12.1 (= 2.8.12 bis) that
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Garith for˜|U is finite.

After possibly replacing the finite field k by a finite extension,
we may choose a degree d form

G in H0(@, Ø@(d))(k)

such that X€G is lisse of codimension one in X, and such that X€Z€G
is lisse of codimension one in X€Z. Thus X€Z€G is finite etale over k,

of degree d2≠deg(X).
Having ffffiiiixxxxeeeedddd such a choice of a form G of degree d, we restrict

˜ to the linear subspace Poly≤e of H
0(@, Ø@(ed)) consisting of those

forms H such that H/Ze is a polynomial of degree at most e in G/Z.

Concretely, Poly≤e is the image in H0(@, Ø@(ed)) of the vector space

Poly≤e of polynomials in one variable of degree ≤ e, under the

injective linear map

f(x) := ‡i≤e aix
i ÿ ‡i≤e aiG

iZe-i.

Now we consider the restriction ˜ | Poly≤e. For any dense open

set Upoly fi Poly≤e such that ˜|Upoly is lisse, Garith for ˜|Upoly is

finite, cf. Semicontinuity Corollary 2.8.9, which applies because
Garith for ˜|U is finite.

By proper base change, ˜ | Poly≤e can be described as follows.

On V ≠ Poly≤e, we have the lisse sheaf

(v, f) ÿ Ò¥(f(G/Z)(v)),

and

˜ | Poly≤e = R2pr2~Ò¥(f(G/Z)(v))(1).

The next step is to exploit the fact that the function inside Ò¥
is the composition of f with G/Z.

Denote by g the function on V defined by G/Z:

g := G/Z : V ¨ !1.
We factor the map

pr2 : V ≠ Poly≤e ¨ Poly≤e
as the composite of

g ≠ id : V ≠ Poly≤e ¨ !1 ≠Poly≤e,

(v, f) ÿ (g(v), f),
followed by the map

pr2,! : !1 ≠Poly≤e ¨Poly≤e.

The point now is that on the middle space !1 ≠Poly≤e, we have the

lisse sheaf
(x, f) ÿ Ò¥(f(x)),

whose pullback by g ≠ id to V ≠ Poly≤e is the sheaf Ò¥(f(G/Z)(v)). So

we have a diagram of morphisms and sheaves
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V ≠ Poly≤e, Ò¥(f(G/Z)(v)) = (g ≠ id)*(Ò¥(f(x)))

d g ≠ id

!1 ≠ Poly≤e, Ò¥(f(x))
d pr2,!
Poly≤e.

We next examine the Leray spectral sequence attached to this
diagram, using the projection formula to identify the E2 terms:

E2
a,b := Rapr2,!~R

b(g ≠ id)~((g ≠ id)*Ò¥(f(x)))

= Rapr2,!~(Ò¥(f(x))‚Rb(g ≠ id)~ä$…)

= Rapr2,!~(pr1
*(Rbg~ä$… on !1)‚Ò¥(f(x)))

à Ra+b(pr2)~Ò¥(f(G/Z)(v)).

Both the morphisms g ≠ id and pr2,! have all their fibres of

dimension one, so certainly we have

E2
a,b = 0 unless both a, b lie in [0, 2].

So we have

E2
1,1 = E‘

1,1.

Thus

ˆ : = R1pr2,!~(pr1
*(R1g~ä$… on !1)‚Ò¥(f(x)))(1)

is a subquotient of

˜ | Poly≤e = R2(pr2)~Ò¥(f(G/Z)(v))(1).

So on any dense open set Upoly fi Poly≤e on which both ˜ and

all the E2 terms are lisse, we find that

ˆ | Upoly
has finite Garith.

We next bring to bear the Homothety Contraction Theorem
3.3.13.

Since V is affine and smooth of dimension 2, the sheaf R1g~ä$…

on !1 is of perverse origin [Ka-SMD, Corollary 6]. From the known
structure of perverse sheaves on a smooth curve [namely that a
derived category object K on a smooth curve is perverse if and only

if Ói(K) vanishes for i not in [-1, 0], Ó-1(K) has no nonzero punctual

sections, and Ó0(K) has at most punctual support], we see that a
constructible ä$…-sheaf Ì is of perverse origin if and only if Ì[1] is a

perverse sheaf.
Thus

L := R1g~ä$…[1](1)

is a perverse sheaf on !1. And (Ï, †) := (Poly≤e, evaluation) is a

space of !1-valued functions on !1 which is stable by homothety,
contains the constants, and is quasifinitely difference-separating
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(indeed, is at least 4-separating, because e ≥ 3). Take K := Ò¥[1](1/2),

also a perverse sheaf on !1. Because Hc
*(!1‚äk, K[1]) = 0, the

Homothety Contraction Theorem 3.3.13 applies to this situation.
The perverse object

N = Twist(L, K, Ï, h=0)
on Ï := Poly≤e gives rise to the sheaf of perverse origin

ˆ := Ó-dimÏ(N)(-1/2),
which is, by construction, none other than

ˆ : = R1pr2,!~(pr1
*(R1g~ä$… on !1)‚Ò¥(f(x)))(1).

Because L is a single sheaf, placed in degree -1, the object L(0) is
itself perverse, equal to the object

(const. sheaf on !1 with value Hc
1((V€(g=0))‚käk, ä$…)[1](1).

The perverse object
N0 = Twist(L(0), K, Ï, h=0)

on Ï := Poly≤e gives rise to the sheaf of perverse origin

ˆ0 := Ó-dimÏ(N0)(-1/2).

The sheaf ˆ0 is given explicitly by

ˆ0 : = R1pr2,!~(Ò¥(f(x)))‚Hc
1((V€(g=0))‚käk, ä$…)(1).

Since ˆ | Upoly has finite Garith for Upoly any dense open set of

Poly≤e on which ˆ is lisse, it follows from the Homothety

Contraction Theorem 3.3.13 that ˆ0 | Upoly has finite Garith for

Upoly any dense open set on which ˆ0 is lisse. In particular,

ˆ0 | Upoly is pure of weight zero.

But on any open set on which it is lisse, R1pr2,!~(Ò¥(f(x))) is

nonzero (its rank is e-1 if e is prime to p, and e-2 otherwise) and it
is pure of weight one, as is standard from the classical theory of
exponential sums in one variable. Therefore the cohomology group

Hc
1((V€(g=0))‚käk, ä$…)(1)

must itself be pure of weight -1. In other words, the cohomology
group

Hc
1((V€(g=0))‚käk, ä$…)

must be pure of weight one. But this is ffffaaaallllsssseeee. The variety V€(g=0) is
the variety (X[1/Z])€G = X€G - X€Z€G, which is thus a projective

smooth geometrically connected curve X€G from which d2≠deg(X)
points have been deleted. As

d2≠deg(X) > 1,

Hc
1((V€(g=0))‚käk, ä$…) has a weight zero part of dimension

d2≠deg(X) - 1 > 0.
This contradiction concludes the proof. QED
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CCCChhhhaaaapppptttteeeerrrr 5555:::: MMMMuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr

ssssuuuummmmssss oooonnnn !!!!nnnn

((((5555....1111)))) TTTThhhheeee ggggeeeennnneeeerrrraaaallll sssseeeettttttttiiiinnnngggg
(5.1.1) In this chapter, we consider the monodromy groups

attached to families of multiplicative character sums on !n which
are (the multiplicative character sum analogue of additive

character sums) of Deligne type on !n.
(5.1.2) Let k be a finite field of characteristic p, … a prime

number invertible in k, and ç : k≠ ¨ ä$…
≠ a nontrivial

multiplicative character of k≠, extended by zero to all of k. On ´m,

we have the corresponding Kummer sheaf Òç. Using the inclusion

j : ´m ¨ !1, we form its middle extension

j~Òç ¶ j*Òç ¶ Rj*Òç

on !1.

(5.1.3) For any scheme X/k, and for any function f in H0(X, ØX),

we view f as a morphism f: X ¨ !1, and we form the ä$…-sheaf on X

Òç(f) := f*(j~Òç).

Thus Òç(f) is lisse of rank one on the open set X[1/f], and it vanishes

outside this open set.

(5.1.4) One knows that j~Òç[1](1/2) on !1 is perverse and

geometrically irreducible, pure of weight zero, and

Hc
i(!1‚käk, j~Òç[1](1/2)) = 0 for all i.

(5.1.5) Consider the following general class of "standard inputs",
cf. 1.15.4. We take

m=1,

ç : k≠ ¨ ä$…
≠ a nontrivial multiplicative character of k≠,

K = j~Òç[1](1/2) on !1,

an integer n ≥ 1,

V = !n,

h : V ¨ !l the function h = 0,

L := ä$…[n](n/2) on V = !n,

an integer e ≥ 3,
(Ï, †) = (∏(n,e), evaluation), for ∏(n,e) the space of all k-

polynomial functions on !n of degree ≤ e.
(5.1.6) From this input data, we construct on ∏(n,e) the
perverse sheaf
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M(n,e,ç) := Twist(ä$…[n](n/2), j~Òç[1](1/2),∏(n,e), h=0),

and the sheaf of perverse origin

˜(n,e,ç) := Ó-dimÏ(M(n,e,ç))(-1/2).
(5.1.7) Before proceeding, let us relate the objects to the
exponential sums they were built to incarnate. Given a finite

extension E/k, and a nontrivial multiplicative character ç of k≠,
extended by zero to all of k, we denote by çE the nontrivial

multiplicative character of E defined by
çE(x) := ç(NormE/k(x)).

Recall that we have also fixed a square root of p := char(k), allowing
us to form Tate twists by half-integers, and allowing us to give
unambiguous meaning to half-integral powers of ùE.

(5.1.8) In down to earth terms, on the space !n≠∏(n,e), with
coordinates (v, f), we have the sheaf

Òç(f(v)) := f(v)*(j~Òç),

which is lisse on the open set (!n≠∏(n,e))[1/f(v)], and vanishes

outside. Under the second projection pr2 : !n≠∏(n,e) ¨ ∏(n,e), we

form Rpr2~Òç(f(v)). For E/k a finite extension, and for f in ∏e(E),

the stalk of Rpr2~Òç(f(v)) at f is the object RÆc(!
n‚käE, Òç(f)),

whose cohomology objects are the groups

Ói(RÆc(!
n‚käE, Òç(f))) = Hc

i(!n‚käE, Òç(f)).

The perverse sheaf M(n,e,ç) is just a Tate twist and a shift of
Rpr2~Òç(f(v)); we have

Rpr2~Òç(f(v)) = M(n,e,ç)[-n - dim∏(n,e)]((-n-1)/2).

In particular, we have

˜(n,e,ç) = Rnpr2~Òç(f(v))(n/2).

LLLLeeeemmmmmmmmaaaa 5555....1111....9999 For E/k a finite extension, and for f in
Ï(E) = ∏(n,e)(E), i.e., for f an E-polynomial in n variables of degree
at most e, we have the identity

Trace(FrobE,f | M(n,e,ç))

= (-1)n+dimÏ(ùE)-(n+1)/2‡v in !n(E) çE(f(v)).

pppprrrrooooooooffff Immediate from the Lefschetz Trace Formula, proper base
change, and the definition of M(n,e,ç). QED

(5.1.10) At this point, we must recall a key result concerning

exponential sums on !n. Let us say that an n-variable polynomial f
in ∏(n,e)(äk) is a strong Deligne polynomial if it satisfies the following
three conditions D0), D1), and D2).

D0) The closed subscheme f=0 in !n is smooth of codimension one.
D1) When we write f = ‡i≤e Fi as a sum of homogeneous forms, Fe is
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nonzero, and, in the case n ≥ 2, the closed subscheme of @n-1

defined by the vanishing of Fe is smooth of codimension one.

D2) The integer e is prime to p.

(5.1.11) For a fixed integer e which is prime to p, the strong
Deligne polynomials form a dense open set ÍÎ(n,e) of ∏(n,e).

TTTThhhheeeeoooorrrreeeemmmm 5555....1111....11112222 ([Ka-ENSMCS, 5.1]) Fix an integer e ≥ 1 prime to p,

and a nontrivial multiplicative character ç of k≠. Suppose that

çe ± ú. For any finite extension E/k, and any strong Deligne
polynomial f in Î(n,e)(E), we have the following results.
1) The "forget supports" maps

Hc
i((!n‚käE)[1/f], Òç(f)) ¨ Hi((!n‚käE)[1/f], Òç(f))

are all isomorphisms.

2) The groups Hc
i((!n‚käE)[1/f], Òç(f)) = Hc

i(!n‚käE, Òç(f)) vanish

for i±n.

3) The group Hc
n(!n‚käE, Òç(f)) is pure of weight n, and has

dimension (e-1)n.

TTTThhhheeeeoooorrrreeeemmmm 5555....1111....11113333 ([Ka-ENSMCS, 2.2, 6.2]) Fix an integer e ≥ 1 prime

to p, and a nontrivial multiplicative character ç of k≠. Suppose that

çe = ú. For any finite extension E/k, and any strong Deligne
polynomial f in Î(n,e)(E), we have the following results.

1) The groups Hc
i((!n‚käE)[1/f], Òç(f)) = Hc

i(!n‚käE, Òç(f)) vanish

for i±n.

2) The group Hc
n(!n‚käE, Òç(f)) is mixed of weights n and n-1, and

has dimension (e-1)n. It has

(1/e)((e-1)n+1 - (-1)n+1)
eigenvalues which are pure of weight n, and it has

(1/e)((e-1)n - (-1)n)
eigenvalues which are pure of weight n-1.

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....1111....11114444 Suppose e ≥ 1 is prime to p. Then M(n,e,ç) has
lisse cohomology sheaves on the dense open set ÍÎ(n,e) fi ∏(n,e)
consisting of strong Deligne polynomials. We have

M(n,e,ç)|ÍÎ(n,e) = ˜(n,e,ç)(1/2)[dim∏(n,e)]|ÍÎ(n,e),

˜(n,e,ç) = Rnpr2~Òç(f(v))(n/2).

The sheaf ˜(n,e,ç) = Rnpr2~Òç(f(v))(n/2) is lisse on ÍÎ(n,e) of rank

(e-1)n, and the other Ripr2~Òç(f(v)) vanish on ÍÎ(n,e). If in

addition çe ± ú, then ˜(n,e,ç)|ÍÎ(n,e) is pure of weight zero. On

the other hand, if çe = ú, then ˜(n,e,ç)|ÍÎ(n,e) is mixed of weights
0 and -1, and sits in a short exact sequence of lisse sheaves
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0 ¨ Gr-1(˜(n,e,ç)|ÍÎ(n,e)) ¨ ˜(n,e,ç)|ÍÎ(n,e)

¨ Gr0(˜(n,e,ç)|ÍÎ(n,e)) ¨ 0,

with Gr-1 pure of weight -1 and lisse of rank (1/e)((e-1)n - (-1)n),

and with Gr0 pure of weight 0 and lisse of rank

(1/e)((e-1)n+1 - (-1)n+1).

pppprrrrooooooooffff Looking fibre by fibre, we see from the above two theorems

that Ripr2~Òç(f(v))|ÍÎ(n,e) vanishes for i ± n.

Therefore Ó-i(M(n,e,ç))|ÍÎ(n,e) vanishes for i ± dimÏ. The
remaining cohomology sheaf

Ó-dimÏ(M(n,e,ç)) = Rnpr2~Òç(f(v))((n+1)/2)

= ˜(n,e,ç)(1/2)

is of perverse origin on ∏(n,e). As it has constant rank (e-1)n on
ÍÎ(n,e), it is lisse on ÍÎ(n,e).

Looking fibre by fibre, we see that if çe ± ú, then

Rnpr2~Òç(f(v))|ÍÎ(n,e) is punctually pure of weight n, while if

çe = ú, then Rnpr2~Òç(f(v))|ÍÎ(n,e) is mixed of weights n and n-1,

with associated gradeds of the asserted ranks. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 5555....1111....11115555 For e ≥ 2 prime to p, E/k any finite extension, and
f in ÍÎ(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,ç))

= (-1)n(ùE)-n/2‡v in !n(E) çE(f(v)).

((((5555....2222)))) FFFFiiiirrrrsssstttt mmmmaaaaiiiinnnn tttthhhheeeeoooorrrreeeemmmm:::: tttthhhheeee ccccaaaasssseeee wwwwhhhheeeennnn ççççeeee iiiissss nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll
(5.2.1) With all these preliminaries out of the way, we can now
state and prove the first main theorem of this chapter.

TTTThhhheeeeoooorrrreeeemmmm 5555....2222....2222 Suppose k is a finite field of characteristic p. Let
n ≥ 1 and e ≥ 3 be integers, and let ç be a nontrivial multiplicative

character of k≠. Suppose further that e is prime to p, and that

çe ± ú. Then we have the following results.

1) If ç does not have order two, then Ggeom for ˜(n,e,ç)|ÍÎ(n,e)

contains SL((e-1)n), except in the following cases.
n = 1, ç has order 4, e = 3, and p ≥ 5,
n = 1, ç has order 6, e = 3, and p ≥ 5,
n = 1, ç has order 6, e = 4, and p ≥ 5,
n = 1, ç has order 6, e = 5, and p ≥ 7,
n = 1, ç has order 10, e = 3, and p ≥ 7.

In each of the exceptional cases, Ggeom is finite.
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2) If ç has order two, and n is odd, then Ggeom for ˜(n,e,ç)|ÍÎ(n,e)

is Sp((e-1)n).

3) If ç has order two, and n is even, then Ggeom for

˜(n,e,ç)|ÍÎ(n,e) is either SO((e-1)n) or O((e-1)n), except in the case
(n = 2, e = 3, p ≥ 5), in which case Ggeom is finite.

RRRReeeemmmmaaaarrrrkkkk 5555....2222....3333 We will show later, in Theorem 6.7.19, part 3), that
if ç has order 2 and n is even, then Ggeom always contains a

reflection, and hence that Ggeom is O((e-1)n), except in the case

(n = 2, e = 3, p ≥ 5), in which case it is a finite primitive subgroup of
O(4) which contains a reflection. We will also give, in Theorem 6.7.21,
quite precise results about Ggeom in the case when ç does not have

order 2.

pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 5555....2222....2222 On the space ∏(n,e) of polynomials of
degree ≤ e in n variables, we have the perverse sheaf

M(n,e,ç) := Twist(ä$…[n](n/2), j~Òç[1](1/2),∏(n,e), h=0),

and the sheaf of perverse origin

˜(n,e,ç) := Ó-dimÏ(M(n,e,ç))(-1/2).
Combining 1.15.5, part 3), the vanishing

Hc
*(!1‚käk, j~Òç) = 0,

and 1.20.3, part 3), we see that we have an equality of perverse
sheaves on ∏(n,e),

Gr0(M(n,e,ç))ncst = Gr0(M(n,e,ç)),

and an equality of pure of weight zero lisse sheaves on ÍÎ(n,e),

Gr0(˜(n,e,ç)|ÍÎ(n,e))ncst = Gr0(˜(n,e,ç)|ÍÎ(n,e)).

Because e ≥ 3, ∏(n,e) is 4-separating; 1.20.3, part 2) then tells us

that Gr0(˜(n,e,ç)|ÍÎ(n,e)) is geometrically irreducible. Because çe

is nontrivial, we know by 5.1.14 that ˜(n,e,ç)|ÍÎ(n,e) is pure of
weight zero, so we have the further equality

˜(n,e,ç)|ÍÎ(n,e) = Gr0(˜(n,e,ç)|ÍÎ(n,e)).
Applying 1.20.3, part 7), we see that the geometric Frobenius-Schur
indicator of ˜(n,e,ç)|ÍÎ(n,e) is given by

FSIgeom(ÍÎ(n,e), ˜(n,e,ç)) = 0, if order(ç) ± 2,

= (-1)n, if order(ç) = 2.

Since ˜(n,e,ç)|ÍÎ(n,e) has rank (e-1)n, we then see from 1.20.3,
parts 4) and 5) that ˜(n,e,ç)|ÍÎ(n,e) has fourth moment given by

M4
geom(ÍÎ(n,e), ˜(n,e,ç)) = 2, if order(ç) ± 2,

M4
geom(ÍÎ(n,e), ˜(n,e,ç)) ≤ 3, if order(ç) = 2,

M4
geom(ÍÎ(n,e), ˜(n,e,ç)) = 3, if order(ç) = 2 and (e-1)n ≥ 4.

We now bring to bear Larsen's Alternative 2.2.2, which gives us the
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following results.
If order(ç) ± 2, then either Ggeom for ˜(n,e,ç)|ÍÎ(n,e)

contains SL((e-1)n), or Ggeom is a finite primitive irreducible

subgroup of GL((e-1)n). If order(ç) = 2 and n is odd and (e - 1)n ≥ 4,

then either Ggeom is Sp((e-1)n), or Ggeom is a finite primitive

irreducible subgroup of Sp((e-1)n). If order(ç) = 2, n=1, and e=3,
(the only case in our pantheon with order(ç) = 2, n odd, and with

(e-1)n < 4) then Ggeom is a semisimple subgroup of Sp(2) = SL(2), so

is either Sp(2) or is finite. If order(ç) = 2 and n is even, then Ggeom

is either SO((e-1)n), or O((e-1)n), or Ggeom is a finite primitive

irreducible subgroup of O((e-1)n).
There is one final general principle we can bring to bear, that

of degeneration. For any integer e0 with 2 ≤ e0 < e which is prime to

p, the space ÍÎ(n, e0) is a dense open set in ∏(n, e0), and ∏(n, e0) is

an irreducible closed subscheme of ∏(n, e). Moreover, we have
˜(n,e,ç)|∏(n, e0) = ˜(n, e0, ç),

an equality of sheaves of perverse origin on ∏(n, e0). And we have

seen above in 5.1.14 that ˜(n, e0, ç)|ÍÎ(n, e0) is lisse of rank

(e0 - 1)n. It now follows from 2.8.9, part 2a), 2.8.13, and 2.8.14 that

if Ggeom for ˜(n,e,ç)|ÍÎ(n,e) is finite, then the following three

statements hold:
1) Ggeom for ˜(n, e0, ç)|ÍÎ(n, e0) is finite,

2) on ˜(n, e0, ç)|ÍÎ(n, e0), a power of every Frobenius is scalar,

and
3) ˜(n, e0, ç)|ÍÎ(n, e0) is punctually pure of weight n.

Let us now apply these principles. Consider first the case
order(ç) = 2, n odd.

This case occurs only in odd characteristic p. We must show that for

any e ≥ 3 prime to p, Ggeom for ˜(n,e,ç)|ÍÎ(n,e) is Sp((e-1)n). If

not, we take e0 = 2 (which is prime to p) in the degeneration

discussion just above, and infer that
˜(n, 2, ç)|ÍÎ(n, 2)

is punctually pure of weight n. But according to 5.1.13, part 2), for n
odd and order(ç) = 2, ˜(n, 2, ç)|ÍÎ(n, 2) is a rank one lisse sheaf,
which is pure of weight n-1. This contradiction shows that Ggeom for

˜(n,e,ç)|ÍÎ(n,e) is Sp((e-1)n), as asserted.
Let us also consider the case

order(ç) = 3.
This case occurs only in characteristic p ± 3. We must show that for
any e ≥ 4 prime to p, Ggeom for ˜(n,e,ç)|ÍÎ(n,e) is not finite. If
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Ggeom is finite, we take e0 = 3 (which is prime to p) in the

degeneration discussion above, and infer that
˜(n, 3, ç)|ÍÎ(n, 3)

is punctually pure of weight n. But according to 5.1.13, part 2), for
order(ç) = 3, ˜(n, 3, ç)|ÍÎ(n, 3) is punctually mixed, with both
weights n and n-1 occurring. This contradiction shows that Ggeom
for ˜(n,e,ç)|ÍÎ(n,e) is not finite, as asserted.

((((5555....3333)))) CCCCoooonnnnttttiiiinnnnuuuuaaaattttiiiioooonnnn ooooffff tttthhhheeee pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 5555....2222....2222 ffffoooorrrr nnnn====1111
(5.3.1) We now turn to a detailed discussion of the hardest case

n = 1, order(ç) ≥ 3, e ≥ 3 prime to p, çe ± ú.
We know that either Ggeom contains SL(e-1), or Ggeom is a

primitive irreducible finite subgroup of GL(e-1). The key is to observe
that Ggeom contains pseudoreflections of a quite specific type. Here is

the precise result.

PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 5555....3333....2222 (cf. [Ka-ACT, 5.7, 5)] and [Ka-
TLFM, 4.2.2, proof of 5.6.1]) Suppose we are in the case

n = 1, order(ç) ≥ 3, e ≥ 3 prime to p, çe ± ú.
Then we have the following results.
1) If p ± 2, denote by ç2 the quadratic character. Then Ggeom for

˜(1, e, ç)|ÍÎ(1, e) contains pseudoreflections of order = order(çç2).

More precisely, for any weakly supermorse polynomial f(X) (cf. [Ka-
ACT, 5.5.2]) of degree e, the pullback of ˜(1, e, ç) to the one-
parameter family

t ÿ t - f(X),

parameterized by t in !1 - {critical values of f}, is lisse, and its local
monodromy at each critical value f(å) of f is a pseudoreflection of
determinant çç2, viewed as a tame character of the inertia group

I(f(å)).
2) If p = 2, then Ggeom for ˜(1, e, ç)|ÍÎ(1, e) contains

pseudoreflections of order = 2≠order(ç). More precisely, there is a
dense open set U in ÍÎ(1, e) such that for any f in U, f has (e-1)/2
critical points, (e-1)/2 critical values, and over each critical value of
f, the local monodromy of the sheaf f*ä$…/ä$… is a reflection of Swan

conductor 1. Fix any such f. Over ‘, the local monodromy of
f*ä$…/ä$… is tame; it is the direct sum of the e-1 nontrivial

characters of I(‘) of order dividing e. The sheaf f*ä$…/ä$… is a

geometrically irreducible middle extension on !1, with geometric
monodromy group the full symmetric group Se, in its deleted

permutation representation. The pullback of ˜(1, e, ç) to the one-
parameter family

t ÿ t - f(X),

parameterized by t in !1 - {critical values of f}, is lisse and
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geometrically irreducible, and is geometrically isomorphic to the

restriction to !1 - {critical values of f} of the middle convolution
MCç((f*ä$…/ä$…)[1])

on !1. For any critical value f(å) of f, there exists a character ç2 of

order 2 and Swan conductor 1 of the inertia group I(f(å)), such that
the local monodromy of MCç((f*ä$…/ä$…)[1]) at the critical value f(å)

of f is a pseudoreflection of determinant çç2, viewed as a character

of the inertia group I(f(å)).
pppprrrrooooooooffff Assertion 1) is proven in [Ka-ACT, 5.7].

To prove assertion 2), we argue as follows. We first use [Ka-
TLFM, 2.7.1 and 2.7.2] to get U and f with the asserted local
monodromies at finite distance of f*ä$…/ä$…. Fix one such f.

The local monodromy of f*ä$…/ä$… at ‘ is as asserted because f

is a polynomial of degree e, and e is prime to p.
Notice that f*ä$… is a geometrically semisimple middle

extension, and hence that f*ä$…/ä$… is a geometrically semisimple

middle extension. We now show that f*ä$… has geometric

monodromy group Æf equal to the full symmetric group Se. Because

f viewed as a finite etale map

f : !1 - {critical points of f} ¨ !1 - {crtical values of f}
has geometrically connected source space, Æf is a transitive subgroup

of Se. Because !
1‚käk is tamely simply connected, and f*ä$… is

tamely ramified over ‘, Æf is generated by all conjugates of all local

monodromies at finite distance. As these local monodromies at finite
distance are all reflections, Æf must be all of Se (because it is a

transitive subgroup of Se which is generated by reflections).

Thus f*ä$…/ä$… is an irreducible (because Se acts irreducibly in

its "deleted permutation representation") middle extension on !1, of
generic rank e-1. Since e-1 ≥ 2, (f*ä$…/ä$…)[1] as irreducible perverse

sheaf on !1 has ∏, and is of type 2d) in the sense of [Ka-RLS, 3.3.3].
Therefore the middle convolution MCç((f*ä$…/ä$…)[1]) is itself

irreducible and of type 2d) by [Ka-RLS, 3.3.3]. Comparing trace
functions, we see that the middle convolution MCç((f*ä$…/ä$…)[1]) is

geometrically isomorphic to the pullback of ˜(1, e, ç) to the one-
parameter family t ÿ t - f(X). We now use [Ka-TLFM, 4.1.10, 1) and
4.2.2] to compute the local monodromies of the middle convolution
MCç((f*ä$…/ä$…)[1]). QED

(5.3.3) In order to apply this result, we must recall some
classical group-theoretic results of Mitchell.
TTTThhhheeeeoooorrrreeeemmmm 5555....3333....4444 [Mit] Let Æ be a primitive irreducible finite subgroup
of GL(r, ^), for some r ≥ 2, and let © in Æ be a pseudoreflection. Then
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we have
order(©) ≤ 5, if r = 2,
order(©) ≤ 3, if r = 3 or 4,
order(©) ≤ 2, if r ≥ 5.

pppprrrrooooooooffff Recall that for any primitive irreducible finite subgroup Æ of
GL(2, ^), its image äÆ in PGL(2, ^) is isomorphic to one of the three
groups A4, S4, or A5. In these groups, no element has order

exceeding 5. On the other hand, the order of a pseudoreflection in
GL(2, ^) is equal to the order of its image in PGL(2, ^). Thus for any
primitive irreducible finite subgroup Æof GL(2, ^), any
pseudoreflection © in Æ has order at most 5.

In more variables, the (much deeper) result is due to Mitchell
[Mit]. Let Æ be a primitive irreducible finite subgroup of GL(r, ^), for
some r ≥ 3, and let © in Æ be a pseudoreflection. Then we have

order(©) ≤ 3, if r = 3 or 4,
order(©) ≤ 2, if r ≥ 5.

For a generalization of Michell's result, see [Wales]. QED

(5.3.5) We now return to the case

n = 1, order(ç) ≥ 3, e ≥ 3 prime to p, çe ± ú.
(5.3.6) If p = 2, then Ggeom contains a pseudoreflection of order

2≠order(ç) ≥ 6. By the previous theorem 5.3.4, Ggeom cannot be a

primitive irreducible finite subgroup of GL(e-1) for any e ≥ 3.
(5.3.7) Suppose now that p is odd. As ç has order(ç) ≥ 3, çç2 is

never trivial, and never of order 2. We have
order(çç2) = 3 if and only if order(ç) = 6,

order(çç2) = 4 if and only if order(ç) = 4,

order(çç2) = 5 if and only if order(ç) = 10.

By the previous theorem 5.3.4, Ggeom for ˜(1, e, ç)|ÍÎ(1, e) cannot

be a primitive irreducible finite subgroup of GL(e-1) except possibly
in the following cases:

order(ç) = 4, e = 3, p ≥ 5,
order(ç) = 6, e = 3, p ≥ 5,
order(ç) = 6, e = 4, p ≥ 5,
order(ç) = 6, e = 5, p ≥ 7,
order(ç) = 10, e = 3, p ≥ 7.

(5.3.8) To complete our discussion of the n=1 case, we must show
that in each of the cases listed above, Ggeom for ˜(1, e, ç)|ÍÎ(1, e)

is in fact finite. In anticipation of later applications, we also state a

result for the highest weight part Gr0(˜(1, e, ç)), in case çe is
trivial.

TTTThhhheeeeoooorrrreeeemmmm 5555....3333....9999 The group Ggeom for ˜(1, e, ç)|ÍÎ(1, e) is finite in

each of the following cases:
order(ç) = 4, e = 3, p ≥ 5,
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order(ç) = 6, e = 3, p ≥ 5,
order(ç) = 6, e = 4, p ≥ 5,
order(ç) = 6, e = 5, p ≥ 7,
order(ç) = 10, e = 3, p ≥ 7.

The group Ggeom for Gr0(˜(1, e, ç))|ÍÎ(1, e) is finite in each of the

following cases:
order(ç) = 4, e = 4, p ≥ 3,
order(ç) = 6, e = 6, p ≥ 5.

pppprrrrooooooooffff We will show this finiteness by a transcendental argument.
Let us first consider a more general situation. Fix an integer e ≥ 3, a
prime …, and an integer r ≥ 3 (which will be the order of ç).

Denote by ”r(X) in #[X] the r'th cyclotomic polynomial, and

put
#[Ωr] := #[X]/”r(X).

Thus #[Ωr] is the ring of integers in the field of r'th roots of unity.

Let us denote by R the ring
R := #[Ωr][1/…er],

and by S its spectrum:
S := Spec(R).

Over S, we may form the affine space ∏(1, e)S of polynomials of

degree ≤ e in one variable. In ∏(1, e)S, we have the open set

ÍÎ(1, e)S, consisting of those polynomials ‡i ≤ e aiX
i whose leading

coefficient ae is invertible, and whose discriminant »(f) is invertible.

This open set is smooth over S with geometrically connected fibres of
dimension e+1. Its fibres over finite-field valued points of S are
precisely the spaces ÍÎ(1, e) on which we have been working.

Over the space ÍÎ(1, e)S, we have the affine curve

Ç
d π
ÍÎ(1, e)S
d
S.

whose fibre over a point "f" in ÍÎ(1, e)S is the curve of equation

Yr = f(X).
We compactify Ç/ÍÎ(1, e)S to a proper smooth curve

äÇ
d äπ
ÍÎ(1, e)S
d
S,

by adding to Ç/ÍÎ(1, e)S a divisor at ‘, D‘, which is finite etale

over ÍÎ(1, e)S of degree gcd(e, r). The group µr(R) acts on the affine

curve Ç/ÍÎ(1, e)S, through its action on Y alone:
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Ω : (X, Y) ÿ (X, ΩY).
This action extends to an action of µr(R) on äÇ/ÍÎ(1, e)S. The group

µr(R) acts transitively on each geometric fibre of D‘/ÍÎ(1, e)S.

On the space ÍÎ(1, e)S, we have the lisse sheaves

R1π~ä$…, R
1äπ*$… = R1äπ~ä$…, R

0(äπ|D‘)~ä$…, R
0äπ~ä$… = ä$…,

which fall into an excision short exact sequence

0 ¨ R0äπ~ä$… = ä$…¨ R0(äπ|D‘)~ä$… ¨ R1π~ä$… ¨ R1äπ*ä$… ¨ 0,

which is equivariant for the action of the group µr(R). Using the

action of this group, we can decompose each of our sheaves into

isotypical components, for the various ä$…
≠-valued characters ç of

µr(R). We put, for any ä$…-sheaf Ì on which µr(R) operates,

Ì(ç) := (Ì‚ç)µr(R).

Thus Ì(ç) is the ç-1-isotypical component of Ì.

Fix a ä$…
≠-valued character ç of µr(R) which has order(ç) = r.

Because Gal($(Ωr)/$) acts transitively on the primitive r'th roots of

unity, there is a unique embedding R fi ä$… which carries any Ω in

µr(R) to ç(Ω). The group µr(R) operates transitively on each

geometric fibre of D‘/ÍÎ(1, e)S, and each geometric fibre has

cardinality gcd(e, r). So if r does not divide e, then we have

(R0(äπ|D‘)~ä$…)(ç) = 0,

and hence an isomorphism of lisse sheaves on ÍÎ(1, e)S,

(R1π~ä$…)(ç) ¶ (R1äπ*ä$…)(ç).

However, if r divides e, then

(R0(äπ|D‘)~ä$…)(ç) has rank one,

and we have a short exact sequence of lisse sheaves on ÍÎ(1, e)S,

0 ¨ (R0(äπ|D‘)~ä$…)(ç) ¨ (R1π~ä$…)(ç) ¨ (R1äπ*ä$…)(ç) ¨ 0.

For each finite field k and each ring homomorphism ƒ : R ¨ k, the
induced map of r'th roots of unity is an isomorphism µr(R) ¶ µr(k).

We have a canonical surjective homomorphism

k≠ ¨ µr(k),

t ÿ t(ùk - 1)/r.
So for each finite field k and each ring homomorphism ƒ : R ¨ k, we

obtain from ç a character çk of k≠, defined as the composite

k≠ ¨ µr(k) ¶ µr(R) ¨ ä$…
≠.

For each finite field k and each ring homomorphism ƒ : R ¨ k,

the restriction of (R1π~ä$…)(ç) to the fibre ÍÎ(1, e)k of ÍÎ(1, e)S/S

at ƒ is the sheaf ˜(1, e, çk)(-1/2)|ÍÎ(1, e)k:
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(R1π*ä$…)(ç)|ÍÎ(1, e)k ¶ ˜(1, e, çk)(-1/2)|ÍÎ(1, e)k,

and we have

(R1äπ*ä$…)(ç)|ÍÎ(1, e)k ¶ Gr0(˜(1, e, çk))(-1/2)|ÍÎ(1, e)k.

Let us pick an embedding of the ring R into ^. We now apply to

the lisse sheaf (R1äπ~ä$…)(ç) on ÍÎ(1, e)S the general specialization

theorem [Ka-ESDE, 8.18.2], according to which the image of

π1
geom(ÍÎ(1, e)k) in the …-adic representation given by

(R1äπ*ä$…)(ç)|ÍÎ(1, e)k
is (conjugate in GL(e-1, ä$…) to) a subgroup of the image of

π1
geom(ÍÎ(1, e)^) in the …-adic representation given by

(R1äπ*ä$…)(ç)|ÍÎ(1, e)^
The upshot of all this is that, in order to prove that the lisse

sheaf

(R1äπ*ä$…)(ç)|ÍÎ(1, e)k ¶ Gr0(˜(1, e, çk))(-1/2)|ÍÎ(1, e)k
has finite geometric monodromy on ÍÎ(1, e)k for every finite field

k, and for every ring homomorphism ƒ : R ¨ k, it suffices to show
that

(R1äπ*ä$…)(ç)|ÍÎ(1, e)^
has finite geometric monodromy on ÍÎ(1, e)^.

By the fundamental comparison theorem relating …-adic and
topological cohomology for complex varieties [SGA 4, XVI, 4.1], we
know that

(R1äπ*ä$…)(ç)|(ÍÎ(1, e)^)
an ¶ ((R1äπan*R)(ç))‚Rä$…,

where ä$… is an R-algebra by the embedding R fi ä$… corresponding

to the character ç of order r.
So to show that

(R1äπ*ä$…)(ç)|ÍÎ(1, e)^
has finite geometric monodromy on ÍÎ(1, e)^, it suffices to show

that (R1äπan*R)(ç) has finite monodromy on (ÍÎ(1, e)^)
an, or,

equivalently, to show that (R1äπan*^)(ç) has finite monodromy on

(ÍÎ(1, e)^)
an.

Because äπ is a proper smooth curve, the local system R1äπan*#

on (ÍÎ(1, e)^)
an underlies a polarized family of Hodge structures.

The finite cyclic group µr(R) acts on this polarized family. Notice

that the ^≠-valued characters of µr(R) of order r are all Aut(^)-

conjugate. According to [Ka-ASDE, 4.4.2], the following two conditions
are equivalent.

1) For every ^≠-valued character of µr(R) which has order r (all of
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which are Aut(^)-conjugate), (R1äπan*^)(ç) has finite monodromy

on (ÍÎ(1, e)^)
an.

2) For every ^≠-valued character of µr(R) which has order r, the

Hodge filtration F induced on HDR
1(äÇ^/ÍÎ(1, e)^)(ç) is horizontal

for the Gauss-Manin connection.

In the case at hand, a proper smooth family of curves, the

Hodge filtration has Fil2 = 0, Fil0 = all, so we can restate 2) as

2bis) For every ^≠-valued character of µr(R) which has order r, the

intersection

HDR
1(äÇ^/ÍÎ(1, e)^)(ç) € Fil1HDR

1(äÇ^/ÍÎ(1, e)^)

(taken inside HDR
1(äÇ^/ÍÎ(1, e)^)) is stable under the Gauss-Manin

connection on HDR
1(äÇ^/ÍÎ(1, e)^).

This stability can be checked over the generic point of the base,
so we may reformulate 2bis) as

2ter) Denote by K the function field of ÍÎ(1, e)^, and by äÇK/K the

generic fibre of äÇ^/ÍÎ(1, e)^. For every ^≠-valued character of

µr(R) which has order r, the intersection

HDR
1(äÇK/K)(ç) € H0(äÇK, ¿

1
äÇK/K

)

(taken inside HDR
1(äÇK/K)) is stable under the Gauss-Manin

connection on HDR
1(äÇK/K).

By functoriality, each subspace HDR
1(äÇK/K)(ç) is stable under

the Gauss-Manin connection on HDR
1(äÇK/K). So a sufficient condition

for 2ter) to hold is the following rather draconian "all or nothing"
condition:

((((aaaallllllll oooorrrr nnnnooootttthhhhiiiinnnngggg ccccoooonnnnddddiiiittttiiiioooonnnn)))) For every ^≠-valued character of
µr(R) which has order r, the intersection

HDR
1(äÇK/K)(ç) € H0(äÇK, ¿

1
äÇK/K

)

(taken inside HDR
1(äÇK/K)) is either zero, or it is the whole space

HDR
1(äÇK/K)(ç).

Since Gr0(˜(1, e, ç)) has rank

e-1, if çe ± ú,

e-2 if çe = ú,
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the K-space HDR
1(äÇK/K)(ç) has dimension

e-1, if çe ± ú,

e-2 if çe = ú.
So the all or nothing condition can be rephrased in terms of
dimensions of intersections:

((((aaaallllllll oooorrrr nnnnooootttthhhhiiiinnnngggg ccccoooonnnnddddiiiittttiiiioooonnnn bbbbiiiissss)))) For every ^≠-valued character of
µr(R) which has order r, the dimension intersection

dimK( HDR
1(äÇK/K)(ç) € H0(äÇK, ¿

1
äÇK/K

))

is

if çe ± ú, either 0 or e-1.

if çe = ú, either 0 or e-2.

We will now check explicitly that this dimensional version of
the all or nothing condition is satisfied in each of the listed cases:

r = order(ç) = 4, e = 3,
r = order(ç) = 6, e = 3,
r = order(ç) = 6, e = 4,
r = order(ç) = 6, e = 5,
r = order(ç) = 10, e = 3,
r = order(ç) = 4, e = 4,
r = order(ç) = 6, e = 6.

CCCCaaaasssseeee ((((rrrr====4444,,,, eeee ==== 3333)))) We are looking at the complete nonsingular

model of the curve y4 = f3(x), f3 a complex cubic with no repeated

roots. The genus is 3, and a basis of the space of differentials of the
first kind is given by

dx/y3, xdx/y3, dx/y2.
The first two transform by the same character of order 4, the last
by a character of order 2. So for the two characters of order 4, one
intersection has dimension 2, the other has dimension 0.
CCCCaaaasssseeee ((((rrrr====6666,,,, eeee ==== 3333)))) We are looking at the complete nonsingular

model of the curve y6 = f3(x), f3 a complex cubic with no repeated

roots. The genus is 4, and a basis of the space of differentials of the
first kind is given by

dx/y5, xdx/y5, dx/y4, dx/y3.
The first two transform by the same character of order 6, the third
by a character of order 3, the last by a character of order 2. So for
the two characters of order 6, one intersection has dimension 2, the
other has dimension 0.
CCCCaaaasssseeee ((((rrrr====6666,,,, eeee ==== 4444)))) We are looking at the complete nonsingular

model of the curve y6 = f4(x), f4 a complex quartic with no

repeated roots. The genus is 7, and a basis of the space of
differentials of the first kind is given by

dx/y5, xdx/y5, x2dx/y5, xdx/y4, dx/y4, dx/y3, dx/y2.
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The first three transform by the same character of order 6, the
fourth and fifth by the same character of order 3, the sixth by a
character of order 2, and the last by the other character of order 3.
So for the two characters of order 6, one intersection has dimension
3, the other has dimension 0.
CCCCaaaasssseeee ((((rrrr====6666,,,, eeee ==== 5555)))) We are looking at the complete nonsingular

model of the curve y6 = f5(x), f5 a complex quintic with no repeated

roots. The genus is 10, and a basis of the space of differentials of the
first kind is given by

dx/y5, xdx/y5, x2dx/y5, x3dx/y5, dx/y4, xdx/y4, x2dx/y4,

dx/y3, xdx/y3, dx/y2.
The first four transform by the same character of order 6, the fifth,
sixth, and seventh by the same character of order 3, the eighth and
ninth by a character of order 2, and the last by the other character
of order 3. So for the two characters of order 6, one intersection has
dimension 4, the other has dimension 0.
CCCCaaaasssseeee ((((rrrr====11110000,,,, eeee ==== 3333)))) We are looking at the complete nonsingular

model of the curve y10 = f3(x), f3 a complex cubic with no repeated

roots. The genus is 9, and a basis of the space of differentials of the
first kind is given by

dx/y9, xdx/y9, dx/y8, xdx/y8, dx/y7, xdx/y7, dx/y6,

xdx/y5, xdx/y4.
The first two transform by the same character of order 10, the next
two by a character of order 5, the next two by second character of
order 10, the remaining three by characters of order 5, 2, and 5
respectively. So for the four characters of order 10, two intersections
have dimension 2, and the other two have dimension 0.

CCCCaaaasssseeee ((((rrrr====6666,,,, eeee ==== 5555)))) We are looking at the complete nonsingular

model of the curve y6 = f5(x), f5 a complex quintic with no repeated

roots. The genus is 10, and a basis of the space of differentials of the
first kind is given by

dx/y5, xdx/y5, x2dx/y5, x3dx/y5, dx/y4, xdx/y4, x2dx/y4,

dx/y3, xdx/y3, dx/y2.
The first four transform by the same character of order 6, the fifth,
sixth, and seventh by the same character of order 3, the eighth and
ninth by the character of order 2, and the last by the other
character of order 3. So for the two characters of order 6, one
intersection has dimension 4, the other has dimension 0.
CCCCaaaasssseeee ((((rrrr====4444,,,, eeee ==== 4444)))) We are looking at the complete nonsingular

model of the curve y4 = f4(x), f4 a complex quartic with no

repeated roots. The genus is 3, and a basis of the space of
differentials of the first kind is given by

dx/y3, xdx/y3, dx/y2.
The first two transform by the same character of order 4, the last
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by a character of order 2. So for the two characters of order 4, one
intersection has dimension 2, the other has dimension 0.
CCCCaaaasssseeee ((((rrrr====6666,,,, eeee ==== 6666)))) We are looking at the complete nonsingular

model of the curve y6 = f6(x), f6 a complex sextic with no repeated

roots. The genus is 10, and a basis of the space of differentials of the
first kind is given by

dx/y5, xdx/y5, x2dx/y5, x3dx/y5, dx/y4, xdx/y4, x2dx/y4,

dx/y3, xdx/y3, dx/y2.
The first four transform by the same character of order 6, the fifth,
sixth, and seventh by the same character of order 3, the eighth and
ninth by the character of order 2, and the last by the other
character of order 3. So for the two characters of order 6, one
intersection has dimension 4, the other has dimension 0. QED

((((5555....4444)))) CCCCoooonnnnttttiiiinnnnuuuuaaaattttiiiioooonnnn ooooffff tttthhhheeee pppprrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 5555....2222....2222 ffffoooorrrr ggggeeeennnneeeerrrraaaallll
nnnn
(5.4.1) We now pass from the n=1 case to the general case, by an
induction on n. The induction is based on the observation that, for
any integer e ≥ 1, if k is a field in which e is invertible, and if an n-
variable polynomial

f(x1,..., xn)

lies in ÍÎ(n, e)(k), then the polynomial in n+1 variables

f(x1,..., xn) - y
n

lies in ÍÎ(n+1, e)(k). Let us denote by
AddedVar : ÍÎ(n, e) ¨ ÍÎ(n+1, e)

f(x1,..., xn) ÿ f(x1,..., xn) - y
e

this closed immersion.

TTTThhhheeeeoooorrrreeeemmmm 5555....4444....2222 Let n ≥1 and e ≥ 3 be integers. Let k be a finite field
of characteristic p, in which e is invertible, and which contains the
e'th roots of unity. Let … be a prime with … ±p, and let

ç : k≠ ¨ ä$…
≠

be a nontrivial multiplicative character. Suppose that çe ± ú. For

each nontrivial multiplicative character ® of k≠ with ®e = ú,
consider the Jacobi sum

J(ç, ®) := ‡u in k≠ ç(1-u)®(u).

1) We have an isomorphism of lisse sheaves on ÍÎ(n, e)k

AddedVar*˜(n+1, e, ç)

¶ ·®±ú, ®e=ú ˜(n, e, ç®)(1/2)‚(-J(ç,®))deg.

2) We have an isomorphism of lisse sheaves on ÍÎ(n, e)äk

AddedVar*˜(n+1, e, ç) ¶ ·®±ú, ®e=ú ˜(n, e, ç®).

pppprrrrooooooooffff The second assertion is immediate from the first, since the
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constant field twists (1/2) and (-J(ç,®))deg are geometrically trivial.
To prove the first assertion, the idea is to use the action of µe(k) on

the pullback sheaf AddedVar*˜(n+1, e, ç) to break it into the
named pieces.

The sheaf AddedVar*˜(n+1, e, ç)(-(n+1)/2) can be described as
follows. On the product space

!n+1≠ÍÎ(n, e) = !n≠!1≠ÍÎ(n, e)
with coordinates (x = (x1,..., xn), y, f), we have the sheaf

Òç(f(x) - ye),

which is lisse of rank one on the open set where f(x) - ye is
invertible, and which vanishes outside this open set. From the
definition of ˜(n+1, e, ç) and proper base change, we see that

AddedVar*˜(n+1, e, ç)(-(n+1)/2) = Rn+1pr2~Òç(f(v) - ye),

and

Ripr2~Òç(f(v) - ye) = 0 for i ± n+1.

The coefficient sheaf Òç(f(x) - ye) is itself the pullback of the sheaf

Òç(f(x) - y)

on the space !n≠!1≠ÍÎ(n, e) by the finite flat endomorphism

[e]: !n≠!1≠ÍÎ(n, e) ¨ !n≠!1≠ÍÎ(n, e)
given by

(x, y, f) ÿ (x, ye, f).
Thus we have

AddedVar*˜(n+1, e, ç)(-(n+1)/2)

= Rn+1pr2~Òç(f(v) - ye)

= Rn+1pr2~[e]
*Òç(f(v) - y).

Now use the fact that
pr2 = pr2«[e]

and the projection formula for [e] to rewrite

Rn+1pr2~[e]
*Òç(f(v) - y)

= Rn+1pr2~[e]*[e]
*Òç(f(v) - y)

= Rn+1pr2~(Òç(f(v) - y)‚[e]*ä$…)

= Rn+1pr2~(Òç(f(v) - y)‚·®e=ú Ò®(y))

= ·®e=ú R
n+1pr2~(Òç(f(v) - y)‚Ò®(y)).

This direct sum decomposition shows that each term

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

is lisse on ÍÎ(n, e), being a direct factor of a lisse sheaf.
The same calculation, applied with i ±n+1, gives

·®e=ú R
ipr2~(Òç(f(v) - y)‚Ò®(y)) = 0, for i ± n+1.
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This vanishing allows us to compute the trace function of each
individual sheaf

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

as a character sum. It is this calculation that will be essential for
the rest of the argument.

What we claim is that, for ® = ú, we have

Rn+1pr2~(Òç(f(v) - y)) = 0,

while for ® ± ú, but ®e = ú, we have

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

¶ ˜(n, e, ç®)(-n/2)‚(-J(ç,®))deg.
If this claim is correct, then we get

AddedVar*˜(n+1, e, ç)(-(n+1)/2)

= ·®e=ú R
n+1pr2~(Òç(f(v) - y)‚Ò®(y))

¶ ·®±ú, ®e=ú ˜(n, e, ç®)(-n/2)‚(-J(ç,®))deg,

which after untwisting gives the asserted isomorphism

AddedVar*˜(n+1, e, ç)

¶ ·®±ú, ®e=ú ˜(n, e, ç®)(1/2)‚(-J(ç,®))deg.

It remains to show that for ® = ú, we have

Rn+1pr2~(Òç(f(v) - y)) = 0,

while for ® ± ú, but ®e = ú, we have

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

¶ ˜(n, e, ç®)(-n/2)‚(-J(ç,®))deg.
To prove this, we argue as follows. For each ®, we are given two lisse
sheaves on a smooth, geometrically connected scheme over a finite
field, the second of which is either 0 (when ® is trivial) or is
geometrically (and hence a fortiori arithmetically) irreducible (when
® is nontrivial). It suffices, in such a situation, to show that the two
sheaves in question have the same trace function. For then by
Chebotarev, the two sheaves will have isomorphic

semisimplifications (as representations of π1
arith). But the second of

them is either zero or arithmetically irreducible. By Chebotarev, the
first has semisimplification either 0 or arithmetically irreducible,
and hence the first is its own semisimplification, so Chebotarev
provides the desired isomorphism.

It remains to show that the trace functions match. Take a
finite extension E/k, and an E-valued point f in ÍÎ(n, e)(E). From

the vanishing of the Ri with i ± n+1 and the Lefschetz trace
formula, we get
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(-1)n+1Trace(FrobE,f | R
n+1pr2~(Òç(f(v) - y)‚Ò®(y)))

= ‡(x, y) in !n+1(E) çE(f(x) - y)®E(y).

Suppose first ® = ú. Then we make the change of variable
(x, y) ÿ (x, y + f(x))

to see that the sum vanishes:
‡(x, y) in !n+1(E) çE(f(x) - y) = ‡(x, y) in !n+1(E) çE(-y)

= (ùE)n‡y in E çE(-y) = 0.

Suppose next that ® ± ú. Because ®e ± ú, while çe = ú, we
know that ç® is nontrivial. By the Hasse-Davenport relations [Dav-
Has], we know that the Jacobi sums over k and over E are related
by

-J(çE, ®E) = (-J(ç, ®))deg(E/k).

The trace identity we need is
‡(x, y) in !n+1(E) çE(f(x) - y)®E(y)

= J(çE, ®E)‡x in !n(E) (ç®)E(f(x)).

In the first sum, it suffices to sum over those (x, y) with f(x) ± 0.
For if f(x0) = 0, the sum over all (x0, y) vanishes:

‡y in E çE(-y)®E(y) = çE(-1)‡y in E (ç®)E(y) = 0,

simply because ç® is nontrivial. So the first sum is
‡(x, y) in !n+1(E) with f(x) ± 0 çE(f(x) - y)®E(y).

For each fixed x with f(x) ± 0, make the change of variable
y ÿ f(x)y.

Then the first sum becomes
‡(x, y) in !n+1(E) with f(x) ± 0 çE(f(x) - f(x)y)®E(f(x)y)

= ‡(x, y) in !n+1(E) with f(x) ± 0 (ç®)E(f(x))çE(1 - y)®E(y)

= J(çE, ®E)‡x in !n(E) (ç®)E(f(x)). QED

(5.4.3) With this result available, we can easily pass from the
n=1 case to the general case

n ≥ 2, e ≥ 3 prime to p, çe ± ú.
The idea is extremely simple. Suppose ˜(n+1, e, ç) has finite Ggeom

on ÍÎ(n+1, e). Then certainly AddedVar*˜(n+1, e, ç) has finite
Ggeom on ÍÎ(n, e). By the previous theorem, ˜(n, e, ç®) has finite

Ggeom on ÍÎ(n, e), for eeeevvvveeeerrrryyyy nontrivial ® of order dividing e. If we

already know that there is ssssoooommmmeeee nontrivial ® of order dividing e
such that ˜(n, e, ç®) does not have finite Ggeom on ÍÎ(n, e), we

have a contradiction: we find that in fact ˜(n+1, e, ç) does not
have finite Ggeom on ÍÎ(n+1, e), which, thanks to Larsen's

Alternative, is all we need prove.
(5.4.4) Let us first treat the case n = 2, since here we will find
one last exceptional case. Fix a value of e ≥ 3 prime to p, and ç with
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çe ± ú. We have already proven that ˜(1, e, Ú) has infinite Ggeom
on ÍÎ(1, e) except in five exceptional cases:

order(Ú) = 4, e = 3, p ≥ 5,
order(Ú) = 6, e = 3, p ≥ 5,
order(Ú) = 6, e = 4, p ≥ 5,
order(Ú) = 6, e = 5, p ≥ 7,
order(Ú) = 10, e = 3, p ≥ 7.

(5.4.5) If e ≥ 6, then ˜(1, e, ç®) has infinite Ggeom, because all

the n=1 exceptional cases have e ≤ 5. So ˜(2, e, ç) has infinite
Ggeom in the case e ≥ 6.

(5.4.6) If e = 5, then ˜(1, 5, ç®) has infinite monodromy unless
ç® has order 6. But remember ® is nontrivial of order e = 5. So if

ç® has order 6, then ç®2 has order 30, and so ˜(1, 5, ç®2) has
infinite Ggeom. So one of the two sheaves ˜(1, 5, ç®) or

˜(1, 5, ç®2) has infinite Ggeom, and hence ˜(2, 5, ç) has infinite

Ggeom.

(5.4.7) If e = 4, then ˜(1, 4, ç®) has infinite monodromy unless

ç® has order 6. If ç® has order 6, and ® has order 4, then ç®3 has

order 3, and so ˜(1, 4, ç®3) has infinite Ggeom. If ç® has order 6

and ® has order 2, then ç has order 3, and çÚ will have order 12
for either Ú of order 4, in which case ˜(1, 4, çÚ) will have infinite
Ggeom. So we conclude that ˜(2, 4, ç) has infinite Ggeom.

(5.4.8) If e = 3, then ˜(1, 3, ç®) has infinite monodromy unless
ç® has order 4, 6, or 10. Remember ® has order 3. If ç® has order

4, then ç®2 has order 12, ˜(1, 3, ç®2) has infinite Ggeom, and

hence ˜(2, 3, ç) has infinite Ggeom. If ç® has order 10, then ç®2

has order 30, ˜(1, 3, ç®2) has infinite Ggeom, and hence ˜(2, 3, ç)

has infinite Ggeom. So the only possible exceptional case is when ç®

has order 6. This happens precisely when ç has order 2, and gives
us the remaining exceptional case.

TTTThhhheeeeoooorrrreeeemmmm 5555....4444....9999 In characteristic p ≥ 5, with ç2 denoting the

quadratic character, ˜(2, 3, ç2) has finite Ggeom on ÍÎ(2, 3).

pppprrrrooooooooffff Because we are dealing with the quadratic character, for any
n ≥ 1, any odd e ≥ 3 prime to p, and for any f(x's) in ÍÎ(n, e)(k), the
stalk of ˜(n, e, ç2)(-n/2) is

Hc
n(!n‚käk, Òç2(f(x's))

)

= Hc
n((the affine hypersurface Xf : z

2 = f(x's))‚käk, ä$…),

and this cohomology group is pure of weight n.
Since both 2 and e are prime to p, the affine hypersurface

Xf is the quotient of the affine hypersurface
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Yf : (w
e)2 = f((y1)

2,..., (yn)
2)

by the finite group Æ := µe≠µ2≠...≠µ2, acting by

(Ω, œ1,..., œn) : (w, y1,..., yn) ÿ (ΩW, œ1y1,..., œnyn).

The affine hypersurface Yf is the finite part of a projective smooth

hypersurface Zf in @n+1 of degree 2e (simply homogenize the

equation of Yf) whose hyperplane section at infinity, Df, is itself

smooth. Explicitly, let

F(X0,..., Xn) := (X0)
ef(X1/X0,..., Xn/X0)

be the homogeneous form of degree e in n+1 homogeneous variables
corresponding to f. Then Zf has homogeneous equation

(We)2 = F((Y0)
2, (Y1)

2,..., (Yn)
2),

and Df is the hyperplane section Y0 = 0.

The group Æ acts on Zf, extending its action on Yf and

respecting Df. The excision sequence for

Yf fi Zf fl Df,

...Hn-1(Df‚käk, ä$…) ¨ Hc
n(Yf‚käk, ä$…) ¨ Hn(Zf‚käk, ä$…)

¨ Hn(Df‚käk, ä$…)...

shows that, for the weight filtration, we have

GrW
n(Hc

n(Yf‚käk, ä$…)) ¶ Primn(Zf‚käk, ä$…).

Taking invariants under Æ, we find

GrW
n(Hc

n(Xf‚käk, ä$…)) ¶ (Primn(Zf‚käk, ä$…))
Æ.

But we know that Hc
n(Xf‚käk, ä$…) is pure of weight n, so we find

Hc
n(Xf‚käk, ä$…) ¶ (Primn(Zf‚käk, ä$…))

Æ.

Now work over the ground ring R : = #[Ωe][1/2e…], with the

parameter space ÍÎ(n, e)R. As f varies over ÍÎ(n, e)R, we get a

projective smooth hypersurface Zuniv/ÍÎ(n, e)R in

@n+1≠ÍÎ(n, e)R, with an action of the finite group Æ, and an

isomorphism of lisse sheaves on ÍÎ(n, e)R

˜(n, e, ç2)(-n/2) ¶ (Primn(Zuniv/ÍÎ(n, e)))
Æ.

Exactly as in the proof of Theorem 5.3.9 to show that ˜(n, e, ç2)

has finite Ggeom over some finite field k in which 2e… is invertible

and which contains the e'th roots of unity, it suffices to choose an

embedding R fi ^, and to show (Primn(Zuniv,^/ÍÎ(n, e)^))
Æ has

finite Ggeom.

Now Primn(Zuniv,^/ÍÎ(n, e)^) underlies a polarized variation

of Hodge structure on ÍÎ(n, e)^, and so does its direct summand

(Primn(Zuniv,^/ÍÎ(n, e)^))
Æ. So a sufficient condition for
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(Primn(Zuniv,^/ÍÎ(n, e)^))
Æ to have finite Ggeom is for n to be

even and for (Primn(Zuniv,^/ÍÎ(n, e)^))
Æ to be entirely of Hodge

type (n/2, n/2).
We will now check that for n = 2 and e = 3,

(Prim2(Zuniv,^/ÍÎ(2, 3)^)))
Æ is entirely of type (1, 1). The Hodge

numbers are constant in a variation of Hodge structure over a
connected base, so it suffices to check at a single point. So we select
the point

f(x1, x2) = (x1)
3 + (x2)

3 + 1.

Then our affine surface Xf is

z2 = (x1)
3 + (x2)

3 + 1,

our affine covering surface Y is

w6 = (y1)
6 + (y2)

6 + 1,

and our projective surface Z is the degree six Fermat surface

Fermat6 : W6 = (Y1)
6 + (Y2)

6 + (Y0)
6,

with Æ the group µ3≠µ2 ≠µ2, acting in the obvious way:

(Ω3, œ1, œ2) : (W, Y1, Y2, Y0) ÿ (Ω3W, œ1Y1, œ2Y2, Y0).

What must be checked is that the Æ-invariants in

Prim2(Fermat6) are entirely of type (1, 1). Since the Æ-invariants

form a sub-Hodge structure, it suffices to check that

H2,0(Fermat6)€(Prim
2(Fermat6))

Æ = 0.

But one readily computes the holomorphic 2-forms on Fermat6.

They are, in affine coordinates (w, y1, y2),

{polynomials in (w, y1, y2) of degree ≤ 2}dy1dy2/w
5.

Under the action of the subgroup µ3≠{1}≠{1}, the only invariants are

the ^-multiples of the class

dy1dy2/w
3,

and this class is not invariant under the subgroup {1}≠µ2 ≠{1]. QED

(5.4.10) We now return to the proof of Theorem 5.2.2, in the
remaining cases

n ≥ 3, e ≥ 3 prime to p, çe ± ú.
We have just seen that for n=2, Ggeom is never finite, except in the

one case ˜(2, 3, ç2) in characteristic p ≥ 5.

Let us next treat separately the case n=3, because it is the first
case of Theorem 5.2.2 where Ggeom is never finite. As explained in

5.4.3 above, in order to show that ˜(3, e, ç) has infinite Ggeom, it

suffices to find some nontrivial character ® of order dividing e such
that ˜(2, e, ç®) has infinite Ggeom. This last condition is automatic

if e ≥ 4. If e = 3, then ˜(2, 3, ç®) has infinite Ggeom unless p ≥ 5
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and ç® is the quadratic character ç2. But then ç®2 has order 6

(remember, ® is nontrivial of order 3), in which case ˜(2, 3, ç®2)
has infinite Ggeom.

(5.4.11) Now that there are no exceptions for n=3, the general
fact that ˜(n+1, e, ç) has infinite Ggeom if ˜(n, e, ç®) has infinite

Ggeom for some nontrivial ® of order dividing e shows, inductively,

that there are no exceptions for any n ≥ 3. This concludes the proof
of Theorem 5.2.2. QED

((((5555....5555)))) AAAAnnnnaaaallllyyyyssssiiiissss ooooffff GGGGrrrr0000((((˜̃̃̃((((nnnn,,,, eeee,,,, çççç)))))))),,,, ffffoooorrrr eeee pppprrrriiiimmmmeeee ttttoooo pppp bbbbuuuutttt

ççççeeee ==== úúúú
(5.5.1) Suppose k is a finite field of characteristic p. Let n ≥ 1 and
e ≥ 3 be integers, and let ç be a nontrivial multiplicative character

of k≠. Suppose further that e is prime to p, and that çe = ú. We
have seen that, under these conditions, ˜(n, e, ç)|ÍÎ(n,e) is mixed
of weights -1 and 0, and its highest weight quotient

Gr0(˜(n, e, ç)|ÍÎ(n,e)) is lisse of rank (1/e)((e-1)n+1 - (-1)n+1). For
brevity in what follows, let us define

N(n, e) := (1/e)((e-1)n+1 - (-1)n+1).

TTTThhhheeeeoooorrrreeeemmmm 5555....5555....2222 Suppose k is a finite field of characteristic p. Let
n ≥ 1 and e ≥ 3 be integers, and let ç be a nontrivial multiplicative

character of k≠. Suppose that e is prime to p, that çe = ú. Suppose
further that N(n, e) ≥ 2 (or, what is the same, suppose that e ≥ 4 if
n = 1). Then we have the following results concerning the group

Ggeom for the highest weight quotient Gr0(˜(n, e, ç)|ÍÎ(n,e)).

1) If ç does not have order 2, Ggeom contains SL(N(n, e)), except in

the following cases.
n = 1, ç has order 4, e = 4, and p ≥ 3,
n = 1, ç has order 6, e = 6, and p ≥ 5,
n = 2, ç has order 3, e = 3, and p ≥ 5.

In each of the exceptional cases, Ggeom is finite.

2) If ç has order 2, and n is odd, then Ggeom is Sp(N(n, e)).

3) If ç has order 2 and n is even, then Ggeom is either SO(N(n, e)) or

O(N(n, e)), except in the case (n = 2, e = 4, p ≥ 3), in which case
Ggeom is finite.

RRRReeeemmmmaaaarrrrkkkk 5555....5555....3333 We will show later, in Theorem 6.7.19, part 3), that
if ç has order 2 and n is even, then Ggeom always contains a

reflection, and hence that Ggeom is O(N(n, e)) except in the case

(n = 2, e = 4, p ≥ 3). We will also show later, in Theorem 5.6.14 and
again, by a different argument, in Theorem 6.7.17, part 2), that in
the case (n = 2, e = 4, p ≥ 3), Ggeom is the Weyl group of E7 in its
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reflection representation. We will also give, in Theorem 6.7.21, quite
precise results about Ggeom in the case when ç does not have order

2.

pppprrrrooooooooffff Exactly as in the first paragraph of the proof of Theorem

5.2.2, we see that Gr0(˜(n, e, ç)|ÍÎ(n,e)) is geometrically
irreducible, and that its Frobenius-Schur indicator is given by

FSIgeom(ÍÎ(n,e), Gr0(˜(n,e,ç))) = 0, if order(ç) ± 2,

= (-1)n, if order(ç) = 2,
cf. Corollary 1.20.3, part 7).

Since Gr0(˜(n, e, ç)|ÍÎ(n,e)) has rank N(n, e), we see from

Corollary 1.20.3, parts 4) and 5), that Gr0(˜(n,e,ç)|ÍÎ(n,e)) has
fourth moment given by

M4
geom(ÍÎ(n,e), Gr0(˜(n,e,ç))) = 2, if order(ç) ± 2,

≤ 3, if order(ç) = 2,
= 3, if order(ç) = 2 and N(n, e) ≥ 4.

We now bring to bear Larsen's Alternative 2.2.2, which gives us the
following results concerning the group Ggeom for the highest weight

quotient Gr0(˜(n, e, ç)|ÍÎ(n,e)).
If order(ç) ± 2, then either Ggeom contains SL(N(n, e)), or

Ggeom is a finite primitive irreducible subgroup of GL(N(n, e)). If

order(ç) = 2 and n is odd and N(n, e) ≥ 4, then either Ggeom is

Sp(N(n, e)), or Ggeom is a finite primitive irreducible subgroup of

Sp(N(n, e)). If order(ç) = 2 and n is even and N(n, e) ≥ 4, then
Ggeom is either SO(N(n, e)), or O(N(n, e)), or a finite primitive

irreducible subgroup of O(N(n, e)).
If order(ç) = 2 but N(n, e) ≤ 3, we claim that n=1 and e=4.

Indeed, recall that by assumption çe = ú, so e is even, and hence we
have e ≥ 4. Clearly for fixed n, N(n, e) is monotone increasing in e. So
if N(n, e) ≤ 3, then N(n, 4) ≤ 3, i.e.,

(1/4)(3n+1 - (-1)n+1) ≤ 3,
i.e.,

3n+1 - (-1)n+1 ≤ 12,
i.e.,

3n+1 ≤ 12 + (-1)n+1 ≤ 13,
and this holds only for n=1. For n=1, N(1, e) = e - 2, so N(1, e) ≤ 3
holds precisely when e ≤ 5. As e is even and e ≥ 3, we must have
e=4.

Let us now treat the case n = 1. If order(ç) = 2, then e is even
and e ≥ 4, and the characteristic p is not 2. It is proven in [Ka-ACT,
5.17], that, in this case, Ggeom is Sp(e-2). Let us now treat the case

n = 1, order(ç) ≥ 3, e ≥ 4 is prime to p, çe = ú.
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In this case, we know that either Ggeom contains SL(e-2), or Ggeom
is a primitive irreducible finite subgroup of GL(e-2). The key once
again is to observe that Ggeom contains pseudoreflections of a quite

specific type. Here is the precise result.
PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 5555....5555....4444 (cf. [Ka-ACT, 5.7, 5)], [Ka-TLFM,
4.2.2, proof of 5.6.1]) Suppose we are in the case

n = 1, order(ç) ≥ 3, e ≥ 4 prime to p, çe = ú.
1) If p ± 2, denote by ç2 the quadratic character. Then Ggeom for

Gr0(˜(1, e, ç)|ÍÎ(1, e)) contains pseudoreflections of order equal to
order(çç2). More precisely, for any weakly supermorse polynomial

f(X) of degree e, the pullback of Gr0(˜(1, e, ç)|ÍÎ(1, e)) to the one-
parameter family

t ÿ t - f(X),

parameterized by t in !1 - {critical values of f}, is lisse, and its local
monodromy at each critical value f(å) of f is a pseudoreflection of
determinant çç2, viewed as a tame character of the inertia group

I(f(å)).

2) If p = 2, then Ggeom for Gr0(˜(1, e, ç)|ÍÎ(1, e)) contains

pseudoreflections of order = 2≠order(ç). More precisely, there is a
dense open set U in ÍÎ(1, e) such that for any f in U, f has (e-1)/2
critical points, (e-1)/2 critical values, and over each critical value of
f, the local monodromy of the sheaf f*ä$…/ä$… is a reflection of Swan

conductor 1. Fix any such f. Over ‘, the local monodromy of
f*ä$…/ä$… is tame; it is the direct sum of the e-1 nontrivial

characters of I(‘) of order dividing e. The sheaf f*ä$…/ä$… is a

geometrically irreducible middle extension on !1, with geometric
monodromy group the full symmetric group Se, in its deleted

permutation representation. The pullback of Gr0(˜(1, e, ç)|ÍÎ(1, e))
to the one-parameter family

t ÿ t - f(X),

parameterized by t in !1 - {critical values of f}, is lisse and
geometrically irreducible, and is geometrically isomorphic to the

restriction to !1 - {critical values of f} of the middle convolution
MCç((f*ä$…/ä$…)[1])

on !1. For any critical value f(å) of f, there exists a character ç2 of

order 2 and Swan conductor 1 of the inertia group I(f(å)), such that
the local monodromy of MCç((f*ä$…/ä$…)[1]) at the critical value f(å)

of f is a pseudoreflection of determinant çç2, viewed as a character

of the inertia group I(f(å)).
pppprrrrooooooooffff Assertion 1) is proven in [Ka-ACT, 5.18].

To prove assertion 2), most of the argument is the same as in
the proof of Theorem 5.3.2. We first use [Ka-TLFM, 2.7.1 and 2.7.2] to
get U and f with the asserted local monodromies at finite distance of
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f*ä$…/ä$…. Fix one such f. Exactly as in the proof of Theorem 5.3.2, we

show that f*ä$… has geometric monodromy group Æf equal to the full

symmetric group Se, and hence that f*ä$…/ä$… is an irreducible

middle extension on !1, with generic rank e-1 ≥ 3. Thus

(f*ä$…/ä$…)[1] as irreducible perverse sheaf on !1 has ∏, and is of

type 2d) in the sense of [Ka-RLS, 3.3.3]. Therefore the middle
convolution MCç((f*ä$…/ä$…)[1]) is itself irreducible and of type 2d) by

[Ka-RLS, 3.3.3]. Comparing trace functions, we see that the middle
convolution MCç((f*ä$…/ä$…)[1]) is geometrically isomorphic to the

pullback of Gr0(˜(1, e, ç)|ÍÎ(1, e)) to the one-parameter family
t ÿ t - f(X). We now use [Ka-TLFM, 4.1.10, 1) and 4.2.2] to compute
the local monodromies of the middle convolution MCç((f*ä$…/ä$…)[1]).

QED

Armed with this result, we return to the case

n = 1, order(ç) ≥ 3, e ≥ 4 prime to p, çe = ú.
If p = 2, then Ggeom contains a pseudoreflection of order

2≠order(ç) ≥ 6. By Mitchell's Theorem 5.3.4, Ggeom is not a

primitive irreducible finite subgroup of GL(e-2) for any e ≥ 4.
Suppose now that p is odd. We once again apply Mitchell's

Theorem 5.3.4. As ç has order(ç) ≥ 3, çç2 is never trivial, and

never of order 2. We have
order(çç2) = 3 if and only if order(ç) = 6,

order(çç2) = 4 if and only if order(ç) = 4,

order(çç2) = 5 if and only if order(ç) = 10.

By Mitchell's Theorem 5.3.4, Ggeom cannot be a primitive irreducible

finite subgroup of GL(e-2) except possibly when ç has order 6, 4, or

10, and, at the same time, we have e -2 ≤ 4. Since çe = ú by
hypothesis, the only cases in which Ggeom could be finite are

order(ç) = 4, e = 4, p ≥ 3,
order(ç) = 6, e = 6, p ≥ 5.

We have seen in Theorem 5.3.9 that Ggeom is in fact finite in these

cases. This concludes the proof of the n = 1 case.

((((5555....6666)))) PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 5555....5555....2222 iiiinnnn tttthhhheeee ccccaaaasssseeee nnnn ≥≥≥≥ 2222
(5.6.1) Exactly as in the proof of Theorem 5.2.2, we now pass
from the n=1 case to the general case, by an induction on n, based
on the "added variable trick", i.e., the observation that, for any
integer e ≥ 1, if k is a field in which e is invertible, and if an n-
variable polynomial

f(x1,..., xn)

lies in ÍÎ(n, e)(k), then the polynomial in n+1 variables

f(x1,..., xn) - y
n
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lies in ÍÎ(n+1, e)(k). We denote by
AddedVar : ÍÎ(n, e) ¨ ÍÎ(n+1, e)

f(x1,..., xn) ÿ f(x1,..., xn) - y
e

this closed immersion.

(5.6.2) What is different in the case where çe = ú, is the

decomposition of the lisse sheaf AddedVar*˜(n+1, e, ç) on ÍÎ(n, e).
The problem is that now äç is among the nontrivial characters ® of
order dividing e, which indexed the previous decomposition, cf.
Theorem 5.4.2. Not surprisingly, the nature of the component
indexed by äç is quite special.
(5.6.3) To explain it, we make a brief digression. Over ÍÎ(n, e),

we have the product !n≠ÍÎ(n, e), with coordinates (v, f). This
product space contains the corresponding "universal" hypersurface

AffHyp(n, e) : f(v) = 0 in !n≠ÍÎ(n, e).
Let us denote by

π(n,e) : AffHyp(n, e) ¨ ÍÎ(n, e)
the projection in this family, whose fibre over a point f0 in ÍÎ(n, e)

is just the affine hypersurface in !n defined by the vanishing of f0

Of interest to us below will be the sheaf Rn-1π(n,e)~ä$… on ÍÎ(n, e).

By the definition of ÍÎ(n, e), the universal affine hypersurface over
it is the complement of the smooth hyperplane section X0 = 0 in the

smooth hypersurface in @n of equation F(X0, X1,..., Xn) = 0, where

F(X0, X1,..., Xn) := (X0)
ef(X1/X0,..., Xn/X0)

is the homogenization of f. Let us denote by
äπ(n,e) : ProjHyp(n, e) ¨ ÍÎ(n, e)

the corresponding universal family of smooth, degree e

hypersurfaces in @n which are transverse to the hyperplane X0 = 0.

Let us also denote by
äπ(n-1,e) : ProjHyp(n-1, e) ¨ ÍÎ(n, e)

the family of smooth, degree e hypersurfaces in @n-1 given by
intersecting with the hyperplane section X0 = 0. So the fibre over a

point f0 in ÍÎ(n, e) is the projective hypersurface defined by the

vanishing of the part of f0 which is homogeneous of highest degree e.

[If n = 1, these fibres are empty.] The sheaves

Riäπ(n,e)~ä$… = Riäπ(n,e)*ä$… and Riäπ(n-1,e)~ä$… = Riäπ(n-1,e)*ä$… are

lisse on
ÍÎ(n, e), and pure of weight i. We have natural restriction maps

Riäπ(n,e)~ä$… ¨ Riäπ(n-1,e)~ä$….

(5.6.4) For n ≥ 2, we define

Primn-1äπ(n,e)~ä$…

:= Kernel of Rn-1äπ(n,e)~ä$… ¨ Rn-1äπ(n-1,e)~ä$…,
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and

Primn-2äπ(n-1,e)~ä$…

:= Coker of Rn-2äπ(n,e)~ä$… ¨ Rn-2äπ(n-1,e)~ä$….

These are the usual sheaves of middle-dimensional primitive
cohomology of the smooth hypersurface fibres.
LLLLeeeemmmmmmmmaaaa 5555....6666....5555 For n ≥ 2, e ≥ 3, any field k in which e is invertible,
and any prime … invertible in k, we have the following results

concerning the sheaves Riπ(n,e)~ä$… on ÍÎ(n, e).

1) Riπ(n,e)~ä$… = 0 unless i = n-1 or i = 2n-2.

2) R2n-2π(n,e)~ä$… = ä$…(1-n).

3) Rn-1π(n,e)~ä$… sits in a short exact sequence

0 ¨ Primn-2äπ(n-1,e)~ä$… ¨ Rn-1π(n,e)~ä$…

¨ Primn-1äπ(n,e)~ä$… ¨ 0.

4) Rn-1π(n,e)~ä$… is lisse on ÍÎ(n, e), mixed of weights n-1 and n-2,

and we have

Grn-1(Rn-1π(n,e)~ä$… ) ¶ Primn-1äπ(n,e)~ä$….

pppprrrrooooooooffff Assertion 4) results from Assertion 3) and the fact [De-Weil I,

1.6] that Riäπ(n,e)~ä$… and Riäπ(n-1,e)~ä$… are both pure of weight i.

Assertions 1), 2), and 3) are standard, and result from the excision
sequence attached to

AffHyp(n, e) fi ProjHyp(n, e) fl ProjHyp(n-1, e),
and the known cohomological structure of smooth projective
hypersurfaces. QED

TTTThhhheeeeoooorrrreeeemmmm 5555....6666....6666 Let n ≥ 2 and e ≥ 3 be integers. Let k be a finite field
of characteristic p, in which e is invertible, and which contains the
e'th roots of unity. Let … be a prime with … ±p, and let

ç : k≠ ¨ ä$…
≠

be a nontrivial multiplicative character. Suppose that çe = ú. For

each nontrivial multiplicative character ® of k≠ with ®e = ú but
with ® ± ú, consider the Jacobi sum

J(ç, ®) := ‡u in k≠ ç(1-u)®(u).

[Thus -J(ç, äç) = ç(-1), while the others are pure of weight 1.]

For a lisse sheaf Ì on a reasonable scheme X, denote by Ìss its
semisimplification as a representation of π1(X).

1) We have an isomorphism of lisse sheaves on ÍÎ(n, e)k

(AddedVar*˜(n+1, e, ç))ss

¶ (Rn-1π~ä$…((n-1)/2)‚(ç(-1))deg

·®±ú, äç, ®e=ú ˜(n, e, ç®)(1/2)‚(-J(ç,®))deg)ss.
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2) We have an isomorphism of lisse sheaves on ÍÎ(n, e)äk

(AddedVar*˜(n+1, e, ç))ss

¶ (Rn-1π~ä$… ·®±ú, äç, ®e=ú ˜(n, e, ç®))ss.

3) We have an isomorphism of lisse sheaves on ÍÎ(n, e)äk

AddedVar*(Gr0˜(n+1, e, ç))

¶ Primn-1äπn~ä$… ·®±ú, äç, ®e=ú Gr
0˜(n, e, ç®).

pppprrrrooooooooffff The proof is quite similar to that of Theorem 5.4.2. Exactly as
there, we show that we have a direct sum decomposition

AddedVar*˜(n+1, e, ç)(-(n+1)/2)

= ·®e=ú R
n+1pr2~(Òç(f(v) - y)‚Ò®(y)),

we infer that each term

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

is lisse on ÍÎ(n, e), and we infer that for i ± n+1, we have

·®e=ú R
ipr2~(Òç(f(v) - y)‚Ò®(y)) = 0, for i ± n+1.

Exactly as there, this vanishing allows us to compute the trace
function of each summand in terms of character sums. For ® = ú,
the trace function vanishes, so we have

Rn+1pr2~(Òç(f(v) - y)) = 0.

For ®e = ú, but ® ± ú, äç, we find that the two lisse sheaves on
ÍÎ(n, e)

Rn+1pr2~(Òç(f(v) - y)‚Ò®(y))

and

˜(n, e, ç®)(-n/2)‚(-J(ç,®))deg

have the same trace function, and hence by Chebotarev have

isomorphic semisimplications as representations of π1
arith(ÍÎ(n e)).

For ® = äç, the trace function of Rn+1pr2~(Òç(f(v) - y)‚Òäç(y))

is given as follows. Take E/k a finite extension and f in ÍÎ(n, e)(E).
The trace of FrobE,f is

(-1)n+1‡(x, y) in !n+1(E) çE(f(x) - y)äçE(y).

The trace function of FrobE,f on Rn-1π~ä$…(-1) is readily calculated,

using the above lemma, to be

(ùE)(-1)n-1(ù{f = 0 in !n(E)} - (ùE)n-1).
So the fact that

Rn+1pr2~(Òç(f(v) - y)‚Òäç(y))

and

Rn-1π~ä$…(-1)‚(ç(-1))deg

have the same trace function comes down to the following
elementary lemma.
LLLLeeeemmmmmmmmaaaa 5555....6666....7777 For any nontrivial multiplicative character ç of any
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finite field E, any integer n ≥ 1, and for any n-variable polynomial f
with coefficients in E, we have the identity

‡(x, y) in !n+1(E) ç(f(x) - y)äç(y)

= ç(-1)(ùE)ù{f = 0 in !n(E)} - ç(-1)(ùE)n.

pppprrrrooooooooffff Consider the first sum. First fix a point x in !n(E) where f(x)
± 0, say f(x) = å, with å ± 0. Then the sum over y is

‡y in E ç(å - y)äç(y) = ‡y in E - {0, å} ç(å - y)äç(y)

= ‡y in E - {0, å} ç((å - y)/y)

= ‡u in @1(E) - {0, -1, ‘} ç(u)

= -ç(-1).

Now fix a point x in !n(E) where f(x) = 0. Then the sum over y is
‡y in E ç(-y)äç(y) = ‡y in E - {0} ç(-y)äç(y)

= ç(-1)(ùE - 1).
So the first sum is

-ç(-1)ù{f ± 0 in !n(E)} + ç(-1)(ùE - 1)ù{f = 0 in !n(E)}

= -ç(-1)ù!n(E) + ç(-1)(ùE)ù{f = 0 in !n(E)}. QED

With this lemma, we see that Assertion 1) holds. Assertion 2)

results trivially, since π1
geom is a normal subgroup of π1

arith. To

prove Assertion 3), apply Gr0 to the isomorphism in Assertion 1).
This shows that both sides in 3) have the same geometric
semisimpification. But each summand separately is known to be
geometrically irreducible, cf. [De-Weil II, 4.4.1 and 4.4.9] for the

geometric irreducibility of Primn-1äπ(n,e)~ä$…. Now recall that both

sides of 3) are pure, hence are geometrically semisimple. QED for
Theorem 5.6.6

(5.6.8) For n=1, the situation is a bit different. In this case, we
have

AffHyp(1, e) = ProjHyp(1, e).
The maps

π(1,e) : AffHyp(n, e) ¨ ÍÎ(n, e),
äπ(1,e) : ProjHyp(1, e) ¨ ÍÎ(1, e),

coincide, and are finite etale of degree e. We have a surjective Trace
morphism

Trace: R0äπ(n,e)~ä$… ¨ ä$….

We define

Prim0äπ(n,e)~ä$…

:= Kernel of Trace: R0äπ(n,e)~ä$… ¨ ä$….

For ease of later reference, we summarize this discussion in the
following lemma.
LLLLeeeemmmmmmmmaaaa 5555....6666....9999 For n = 1, e ≥ 3, any field k in which e is invertible,
and any prime … invertible in k, we have the following results
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concerning the sheaves Riπ(1,e)~ä$… = Riäπ(1,e)~ä$… on ÍÎ(1, e).

1) Riπ(1,e)~ä$… = 0 unless i =0.

2) R0π(n,e)~ä$… is lisse of rank e and pure of weight 0.

3) R0π(1,e)~ä$… sits in a short exact sequence

0 ¨ Prim0äπ(1,e)~ä$… ¨ R0π(1,e)~ä$… ¨ ä$… ¨ 0.

In the case n=1, the previous Theorem 5.6.6 becomes the
following.
TTTThhhheeeeoooorrrreeeemmmm 5555....6666....11110000 Let n = 1 and e ≥ 3 be integers. Let k be a finite
field of characteristic p, in which e is invertible, and which contains
the e'th roots of unity. Let … be a prime with … ±p, and let

ç : k≠ ¨ ä$…
≠

be a nontrivial multiplicative character. Suppose that çe = ú. For

each nontrivial multiplicative character ® of k≠ with ®e = ú but
with ® ± ú, consider the Jacobi sum

J(ç, ®) := ‡u in k≠ ç(1-u)®(u).

[Thus -J(ç, äç) = ç(-1), while the others are pure of weight 1.]

For a lisse sheaf Ì on a reasonable scheme X, denote by Ìss its
semisimplification as a representation of π1(X).

1) We have an isomorphism of lisse sheaves on ÍÎ(n, e)k

(AddedVar*˜(2, e, ç))ss

¶ (Prim0äπ(1,e)~ä$…‚(ç(-1))deg

·®±ú, äç, ®e=ú ˜(1, e, ç®)(1/2)‚(-J(ç,®))deg)ss.

2) We have an isomorphism of lisse sheaves on ÍÎ(n, e)äk

(AddedVar*˜(n+1, e, ç))ss

¶ (Prim0äπ(1,e)~ä$… ·®±ú, äç, ®e=ú ˜(1, e, ç®))ss.

3) We have an isomorphism of lisse sheaves on ÍÎ(n, e)äk

AddedVar*(Gr0˜(n+1, e, ç))

¶ Prim0äπ(1,e)~ä$… ·®±ú, äç, ®e=ú Gr
0˜(1, e, ç®).

pppprrrrooooooooffff The proof is identical to that of Theorem 5.6.6 up through the

computation of the trace function of Rn+1pr2~(Òç(f(v) - y)‚Òäç(y))

in the discussion of the case when ® = äç. At that point, we continue
as follows.

The trace function of FrobE,f on Prim0äπ(1,e)~ä$…(-1) is readily

calculated, using the above Lemma 5.6.9, to be

(ùE)(ù{f = 0 in !n(E)} - 1).
The fact that

R2pr2~(Òç(f(v) - y)‚Òäç(y))

and

Prim0äπ(1,e)~ä$…(-1)‚(ç(-1))deg
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have the same trace function comes down to the n=1 case of
Lemma 5.6.7. QED

(5.6.11) With Theorem 5.6.10 established, we can proceed by
induction to treat the case n ≥ 1.
(5.6.12) Let us first treat the case n = 2, since here we will find
two last exceptional cases. Fix a value of e ≥ 3 prime to p, and a

nontrivial ç with çe = ú. If e = 3, then ç has order 3, and, as we

will see below, Gr0˜(2, 3, ç3) has finite Ggeom. If e = 4 and ç has

order 2, we will see below that Gr0˜(2, 4, ç2) has finite Ggeom. If e

= 4 and ç has order 4, then one of the summands in

AddedVar*Gr0˜(2, 4, ç4) is Gr
0˜(1, 4, (ç4)

2 = ç2), which we have

seen has infinite Ggeom. If e=5, then ç has order 5, and one of the

summands of AddedVar*Gr0˜(2, 5, ç5) is Gr
0˜(1, 5, (ç5)

4 = äç5),

which has infinite Ggeom. If e = 6, and ç has order 2, then one of

the summands is Gr0˜(1, 6, (ç2)(ç6) = ç3), which has infinite

Ggeom. If e = 6, and ç has order 3, then one of the summands is

Gr0˜(1, 6, (ç3)(ç6) = ç2), which has infinite Ggeom. If e = 6, and ç

has order 6, one of the summands is

Gr0˜(1, 6, (ç6)(ç2äç6) = ç2),

which has infinite Ggeom. Suppose now e ≥ 7. Then one of the

summands is Gr0˜(1, e, ç(some ® ± äç, ú of order dividing e)). This
has infinite Ggeom, because the only exceptions in the n=1 case had

e ≤ 6.
(5.6.13) To complete the discussion of the n=2 case, we prove that
the two possibly exceptional cases we found do in fact have finite
Ggeom.

TTTThhhheeeeoooorrrreeeemmmm 5555....6666....11114444

1) Gr0˜(2, 3, ç3) has finite Ggeom in characteristic p ± 3.

2) Gr0˜(2, 4, ç2) have finite Ggeom in characteristic p ± 2, with

Ggeom the Weyl group W(E7) in its 7-dimensional reflection

representation.
pppprrrrooooooooffff 1) For a finite field k in which 3 is invertible and which
contains the cube roots of unity, ç3 a cubic multiplicative character

of k, f(x, y) in ÍÎ(2, 3)(k), the stalk of ˜(2, 3, ç3)(-1) is

Hc
2(!2‚käk, Òç3(f(x, y))

)

= the ç3-isotypical component of

Hc
2((the affine cubic surface Xf : w

3 = f(x, y))‚käk, ä$…),

for the action of µ3(k) which moves w alone. This affine surface Xf
has a natural compactification to a projective smooth cubic surface
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Zf in @3, with homogeneous equation

W3 = F(X, Y, Z) := Z3f(X/Z, Y/Z).

The stalk of Gr0˜(2, 3, ç3)(-1) at f is the ç3-isotypical component

of

(Prim2(Zf‚käk, ä$…)).

So by Chebotarev the ç3-isotypical component of the lisse sheaf

Prim2(Zuniv/ÍÎ(2, 3)) on ÍÎ(2, 3) is Gr0˜(2, 3, ç3)(-1), and we

have a direct sum decomposition

Prim2(Zuniv/ÍÎ(2, 3)) on ÍÎ(2, 3)

¶ Gr0˜(2, 3, ç3)(-1) · Gr0˜(2, 3, äç3)(-1).

So it suffices to show that the lisse sheaf Prim2(Zuniv/ÍÎ(2, 3)) has

finite Ggeom. But the Prim2 for the universal family of all smooth

cubic hypersurfaces in @3, of which our family Zuniv/ÍÎ(2, 3) is a

subfamily, is well known to have finite Ggeom, corresponding to the

fact that H2 of a smooth cubic surface is entirely algebraic, cf. [Ka-
Sar-RMFEM, 11.4.9]. [Alternate end of proof: reduce to the complex

case, as in Theorem 5.4.9, and use the fact that Prim2 of a smooth
cubic surface is entirely of type (1, 1).]

2) We now turn to the case of Gr0˜(2, 4, ç2). At a point f(x, y) in

ÍÎ(2, 4)(k), the stalk of ˜(2, 4, ç2)(-1) is

Hc
2(!2‚käk, Òç2(f(x, y))

)

= Hc
2((the affine surface Xf : t

2 = f(x, y))‚käk, ä$…),

which is itself the part of

Hc
2((the affine surface Yf : w

4 = f(x, y))‚käk, ä$…)

which is invariant under the action of the group Æ := _1 on w alone.

Then the stalk of Gr0˜(2, 4, ç2)(-1) at f is the part of Prim
2 of the

smooth quartic hypersurface Zf in @3

Zf : W
4 = F(X, Y, Z) := Z4f(X/Z, Y/Z)

which is invariant under the action of Æ on W. The quotient surface
Sf := Zf/Æ

is itself smooth, and has the a priori description as the double cover

of @2 ramified along the smooth quartic curve Cf given by

Cf: F(X, Y, Z) = 0 in @2.

Thus the stalk of Gr0˜(2, 4, ç2)(-1) at f is Prim
2(Sf) = Prim2(Zf)

Æ.

Such a double cover Sf is precisely a "Del Pezzo surface of degree 2",

cf. [Manin, page 119]. Over äk, Sf is the blow up of @2 at seven points,
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no three of which are colinear and no six of which lie on a conic.

[The degree two map to @2 which exhibits it as the double cover

ramified along the smooth quartic curve Cf is given by the @2 of

cubics passing through the seven points.] Because Sf is a blow up of

@2 at seven points, its Prim2 is entirely algebraic. Therefore a power

of every Frobk,f on Prim2(Sf)(1) = Gr0˜(2, 4, ç2)f is the identity.

Therefore [Ka-ESDE 8.14.3.1] the group Garith for Gr0˜(2, 4, ç2) is

finite, and hence its subgroup Ggeom is finite.

Here is an alternate proof of the finiteness of Ggeom. We must

show that in the universal family of the quartic surfaces Zf
constructed above, say Zuniv/ÍÎ(2, 4), the Æ invariants in the lisse

sheaf Prim2(Zuniv/ÍÎ(2, 4)) have finite Ggeom. To prove this, we

first reduce to the complex case, and use the Hodge theoretic
criterion [Ka-ASDE, 4.4.2]. It suffices to show that on any complex K3
surface of the shape

W4 = F(X, Y, Z),

with F a homogeneous quartic which defines a smooth curve in @2,

the Æ-invariant part of its Prim2 is entirely of type (1, 1). To see
this, note that the Æ-invariants form a sub-Hodge structure of

Prim2. So it suffices to show that there are no nonzero Æ-invariants

in H2,0. But H2,0 is the one-dimensional space spanned by the

holomorphic 2-form ∑ :=dxdy/w3 (in affine coordinates w, x, y on

w4 = f(x, y)), and ∑ is visibly anti-invariant under the _1 action.
It remains to show that, in any characteristic p ± 2, Ggeom for

Gr0˜(2, 4, ç2) is the Weyl group of E7 in its 7-dimensional

reflection representation. For this, we return to the Del Pezzo point
of view. For the universal family Suniv/ÍÎ(2, 4) of Sf's, we have

Gr0˜(2, 4, ç2) ¶ Prim2(Suniv/ÍÎ(2, 4))(1).

Consider a Del Pezzo surface X of degree 2 over an algebraically

closed field, i.e., @2 blown up at seven points, no three of which are
colinear and no six of which lie on a conic. Consider its Neron-Severi
group NS(X). One knows [Manin, 23.9] that NS(X) is #-free of rank 8,
and that for any prime … invertible on X we have

NS(X)‚ä$… = H2(X,ä$…)(1).

Moreover, in the orthogonal complement (for the intersection

pairing) of the canonical class in NS(X), call it NS(X)–, the elements
of self-intersection -2 form a root system of type E7, and we have

NS(X)–‚ä$… = Prim2(X,ä$…)(1).

In any characteristic p ± 2, Suniv/ÍÎ(2, 4) is a family of Del
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Pezzo surfaces of degree 2, so the group Ggeom, and indeed Garith, is

a priori a subgroup of the Weyl group W(E7), in its 7-dimensional

reflection representation.
Since W(E7) is finite, the normal subgroup Ggeom fi Garith is of

finite index, and the quotient is a finite cyclic group. If over k,
Ggeom has index n in Garith/k, then over the extension kn/k of

degree n, Ggeom is equal to Garith/kn
. So at the expense of replacing

k by a finite extension, we reduce to the case when Ggeom = Garith.

Thus Ggeom is a subgroup of W(E7) with fourth moment 3, cf.

the first paragraph of the proof of 5.5.2, hence (by 2.6.3) is primitive
(thought of as a subgroup of GL(7) := GL(7, ä$…)). If we knew that

Ggeom contained a reflection, we could conclude, by invoking

Theorem 2.6.9, that Ggeom is W(E7).

To show that Ggeom contains a reflection, it suffices to show

that, over any sufficiently large field k of odd characteristic, Garith
contains a reflection. So it suffices to exhibit a single Del Pezzo
surface X/k of degree 2, such that Frobenius Frobk acts on NS(X) by

a reflection, and then to write X/k as Sf for some f in ÍÎ(2, 4)(k).

Then Frobk,f in Garith is the desired reflection. [Since Frobenius

preserves the canonical class, if it acts on NS(X) as a reflection, it

also acts on NS(X)– as a reflection.] To get such an X/k, simply blow

up @2 over k in
5 k-points and one closed point of degree 2.

This trick for getting a reflection in Ggeom is inspired by [Erne,

section 3]. [The reader should be warned that this otherwise

delightful paper contains an error on page 21: if one blows up @2

over k in
3 k-points and one closed point of degree 4,

one gets a Frobenius whose projection mod _1 to Sp(6, É2) lies in the

conjugacy class 4C in ATLAS notation, not in the class 4A as
asserted.] QED

(5.6.15) We now turn to the remaining cases. We must show that

Ggeom for Gr0˜(n+1, e, ç) is never finite, for

n+1 ≥ 3, e ≥ 3 prime to p, ç nontrivial, çe = ú.

We have already shown that AddedVar*Gr0˜(n+1, e, ç) contains as

a direct factor Primn-1äπ(n,e)~ä$…, the Prim
n-1 along the fibres for

the universal family of projective smooth hypersurfaces of degree e

in @n which are transverse to the hyperplane X0 = 0. This family is

the restriction to a dense open set of the parameter space of the
universal family of projective smooth hypersurfaces of degree e in
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@n (with no imposed transversality to the hyperplane X0 = 0), so its

Primn-1 has the same Ggeom as for the entire universal family. As

explained in [Ka-Sar-RMFEM, 11.4.9], Primn-1äπ(n,e)~ä$… for n ≥ 2

and e ≥ 3 has infinite (indeed, as large as possible, but that does not
concern us here) Ggeom except in one single case, namely

(n = 3, e = 3), the case of cubic surfaces. Thus we find that for

n+1 ≥ 3, e ≥ 3 prime to p, ç nontrivial, çe = ú,

Ggeom for Gr0˜(n+1, e, ç) is infinite except possibly for the single

case Gr0˜(4, 3, ç). To treat this last case, we use the fact that

AddedVar*Gr0˜(4, 3, ç) contains as a direct factor Gr0˜(3, 3, ç2),
which we have already shown to have infinite Ggeom. QED



CCCChhhhaaaapppptttteeeerrrr 6666:::: MMMMiiiiddddddddlllleeee aaaaddddddddiiiittttiiiivvvveeee

ccccoooonnnnvvvvoooo llll uuuutttt iiii oooonnnn

((((6666....1111)))) MMMMiiiiddddddddlllleeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn aaaannnndddd iiiittttssss eeeeffffffffeeeecccctttt oooonnnn llllooooccccaaaallll mmmmoooonnnnooooddddrrrroooommmmyyyy
(6.1.1) Let k be an algebraically closed field, … a prime invertible

in k, and K and L objects in Dbc(!
1, ä$…). Recall [Ka-RLS, 2.5] that

the ~ convolution K*~L and the * convolution K**L are defined as

objects in Dbc(!
1, ä$…) as follows. On !2 with its two projections to

!1, one forms the external tensor product K$L := (pr1
*K)‚(pr2

*L).

Then one uses the sum map

sum: !2 ¨ !1,
to define

K*~L := Rsum~(K$L),

K**L := Rsum*(K$L).

(6.1.2) Suppose now that K and L are both perverse. There is no
reason for either K*~L or K**L to be perverse. We say that the

perverse object K has ∏ if, for every perverse object L, both K*~L

and K**L are perverse. If K has ∏, we define the middle additive

convolution K*midL to be the image, in the abelian category of

perverse sheaves on !1, of the canonical "forget supports" map:
K*midL := Image(Rsum~(K$L) ¨ Rsum*(K$L)).

One knows [Ka-RSL, 2.6.17] that if both K and L have ∏, then their
middle convolution K*midL has ∏. On the other hand, if K has ∏ but

L is constant (e.g., if L is ä$…[1]), then all three of K*~L, K**L, and

K*midL are constant, and one knows that no nonzero constant

perverse sheaf has ∏.
(6.1.3) Suppose henceforth that k has positive characteristic p,
and fix a nontrivial additive character ¥ of the prime field Ép. Then

Fourier Transform is an autoequivalence K ÿ FT¥(K) of the abelian

category of perserve sheaves on !1. One knows [Ka-RLS, 2.10.3] that

a perverse object K on !1 has ∏ if and only if FT¥(K) is a middle

extension, i.e., of the form (j*ˆ)[1] for j : U fi !1 the inclusion of a

dense open set and for ˆ a lisse ä$…-sheaf on U. Moreover, for K and

L both perverse objects with ∏, if we pick a common dense open set

j : U fi !1 such that FT¥(K) = (j*ˆ)[1] and FT¥(L) = (j*˜)[1], with

ˆ and ˜ lisse ä$…-sheaves on U, then we have [Ka-RLS, 2.10.8]

FT¥(K*midL) = (j*(ˆ‚˜))[1],
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and [Ka-RLS, 2.10.1]
FT¥(K*~L) = ((j*ˆ)‚(j*˜))[1],

(6.1.4) There is a simple classification of perverse irreducibles on

!1. If K is perverse irreducible, then K is either itself an irreducible
middle extension (a middle extension (j*ˆ)[1] as above, with ˆ

irreducible as a lisse sheaf on U), or is punctual, ∂å for some å in k.

Applying this classification to the perverse irreducible object FT¥(K),

and using the result of the previous paragraph, we see that a
perverse irreducible K has ∏ unless K is Ò¥(åx)[1] for some å in k

(i.e., unless FT¥(K) is a ∂å).

(6.1.5) Consider now a perverse object K which is semisimple, i.e.,
a direct sum of perverse irreducibles. Clearly such a K has ∏ if and
only if each of its irreducible constituents has ∏, i.e., if and only if
none of its irreducible constituents is Ò¥(åx)[1] for some å in k.

LLLLeeeemmmmmmmmaaaa 6666....1111....6666 Suppose K and L are each perverse, semisimple, and
have ∏. Then their middle convolution K*midL is perverse,

semisimple, and has ∏.
pppprrrrooooooooffff On the Fourier Transform side, this is the assertion that given
lisse sheaves ˆ and ˜ on U which are both completely reducible as
ä$…-representations of π1(U), ˆ‚˜ is also completely reducible as a

ä$…-representation of π1(U). But one knows that over a field of

characteristic zero, the tensor product of completely reducible
finite-dimensional representations of any group G is again
completely reducible, cf. [Chev, page 88]. QED

(6.1.7) Let us say that a perverse semisimple K is non-punctual
if none of its irreducible constituents is punctual, i.e., if it is a direct
sum of irreducible middle extensions. It has ∏ if and only if none of
the summands is Ò¥(åx)[1] for any å in k. Thus the class of

perverse semisimple K which are non-punctual and which have ∏ is
stable by Fourier Transform. Any perverse semisimple K which is
non-punctual is a middle extension, K = (j*)[1]. If in addition K has

∏, then  is a "Fourier sheaf" in the sense of [Ka-ESDE, 7.3.5], indeed
 is a direct sum of irreducible Fourier sheaves.
(6.1.8) It is nnnnooootttt ttttrrrruuuueeee in general that if K and L are each
perverse, semisimple, have ∏, and are non-punctual, then their
middle convolution K*midL (which by the above lemma is perverse

semisimple and has ∏) is also non-punctual. For instance, take K
and L to be inverse Kummer sheaves Òç[1] and Òäç[1], for ç a

nontrivial multiplicative character of a finite subfield of k. Then up
to a Tate twist K*midL is ∂0.

LLLLeeeemmmmmmmmaaaa 6666....1111....9999 Suppose K and L are both perverse, irreducible, non-
punctual, and have ∏. Then K*midL (which by the above lemma is

perverse semisimple and has ∏) is non-punctual if and only if there
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exists no isomorphism

L ¶ [x ÿ x+å]*[-1]*DK

for any å in !1.
pppprrrrooooooooffff Write FT¥(K) as (j*ˆ)[1] and write FT¥(L) as (j*˜)[1], for

some irreducibles ˆ and ˜ on a common dense open set U fi !1. We
know that

FT¥(K*midL) = (j*(ˆ‚˜))[1].

Suppose that K*midL fails to be non-punctual. This means that

(j*(ˆ‚˜))[1] has some Ò¥(åx)[1] as a constituent, i.e., that for some

å in k, Ò¥(åx)‚ˆ‚˜ has ä$… as a constituent. Since ˜ and ˆ are

irreducible, ˜ and Ò¥(åx)‚ˆ are both irreducible. If Ò¥(åx)‚ˆ‚˜

has ä$… as a constituent, then projection onto that constituent is a

nonzero pairing of irreducible lisse sheaves on U,
Ò¥(åx)‚ˆ ≠ ˜ ¨ ä$…,

i.e., it is a nonzero map of sheaves

˜ ¨ (Ò¥(åx)‚ˆ)£.

Since source and target are irreducible, such a nonzero map is an

isomorphism. Conversely, if ˜ ¶ (Ò¥(åx)‚ˆ)£, then Ò¥(åx)‚ˆ‚˜

= End(˜¬) visibly has ä$… as a constituent. Thus K*midL fails to be

non-punctual if and only if there exists an isomorphism

˜ ¶ (Ò¥(åx)‚ˆ)£,

i.e., an isomorphism

(j*˜)[1] ¶ Ò¥(-åx)‚(j*ˆ
£)[1],

i.e., an isomorphism

FT¥(L) ¶ Ò¥(-åx)‚(FT¥([-1]
*DK)),

i.e., an isomorphism

FT¥(L) ¶ FT¥([x ÿ x+å]*[-1]*DK),

i.e., an isomorphism

L ¶ [x ÿ x+å]*[-1]*DK. QED

(6.1.10) In order to apply the above result, we need criteria for
showing that L is not isomorphic to any additive translate of

[-1]*DK. We will give two such criteria, both based on the local
monodromies at finite distance of K and L. The first criterion is based
entirely on the number and locations of the finite singularities.

TTTThhhheeeeoooorrrreeeemmmm 6666....1111....11111111 Suppose K is perverse, semisimple, and has ∏.
Suppose L is perverse irreducible and non-punctual, i.e., suppose L is
an irreducible middle extension, say L = (j*Ò)[1] for some irreducible

Ò on U. Denote by s the number of finite singularities of L, i.e., the

number of points in !1 at which the sheaf j*Ò on !1 fails to be
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lisse. For each ¬ in k≠, consider the automorphism x ÿ ¬x of !1,
and define

MultTrans¬(L) := [x ÿ ¬x]*L = [x ÿ ¬-1x]*L.

Then we have the following results.

1) Suppose s ≥ 1. For each ¬ in k≠, MultTrans¬(L) is perverse

irreducible, non-punctual, and has ∏.
2) Suppose s ≥ 2. Denote by m(K) the number of distinct
isomorphism classes which occur among those non-punctual
irreducible constituents of K which have precisely s finite

singularities. For all but at most s(s-1)m(K) values of ¬ in k≠, the
middle convolution K*midMultTrans¬(L) is (perverse, semisimple,

has ∏, and is) non-punctual.
pppprrrrooooooooffff Suppose s ≥ 1. To prove 1), we argue as follows. Since x ÿ ¬x

is an automorphism of !1, and L is perverse irreducible and non-
punctual, so is MultTrans¬(L). Since MultTrans¬(L) has finite

singularities, it is not Ò¥(åx)[1] for any å, and so MultTrans¬(L) has

∏. This proves 1). By Lemma 6.1.7 we know that, for every ¬ in k≠,
K*midMultTrans¬(L) is perverse, semisimple, and has ∏.

Suppose now s ≥ 2. To prove 2), we argue as follows. We must

show that for all but at most s(s-1)m(K) ¬ in k≠,
K*midMultTrans¬(L) is non-punctual. Since K is semisimple, we

reduce immediately to the case when K is perverse irreducible and
has ∏.

If K is punctual, say ∂å, K*midMultTrans¬(L) is non-punctual

for every ¬ in k≠, since (any flavor of) convolution with ∂å is just

additive translation by å, and L and all its multiplicative translates
MultTrans¬(L) are non-punctual. Thus there are no exceptional ¬, as

asserted.
Suppose now that K is an irreducible middle extension that has

∏, say K = (j*)[1] with  irreducible on U. By the previous result,

K*midMultTrans¬(L) fails to be non-punctual if and only if there

exists an isomorphism

MultTrans¬(L) ¶ [x ÿ x+å]*[-1]*DK

for some å in !1.

We must show that there are at most s(s-1) values of ¬ in k≠

such that for some å in k we have such an isomorphism. For this,
we argue as follows. By assumption, K is an irreducible middle
extension (j*)[1]. Then DK is, up to a Tate twist, the irreducible

middle extension (j*
£)[1].

Suppose first that K is lisse on all of !1. Then for every å in k,

[x ÿ x+å]*[-1]*DK is lisse on !1. But MultTrans¬(L) has at least two

finite singularities, so such an isomorphism exists for no ¬ in k≠.
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Suppose next that K has r ≥ 1 finite singularities, say ∫1,..., ∫r.

Then DK has ∫1,..., ∫r as its finite singularities, and

[x ÿ x+å]*[-1]*DK
has as its finite singularities the r points

-å - ∫1, -å - ∫2,..., -å - ∫r.

On the other hand, L had s ≥ 2 finite singularities, say
©1,..., ©s.

Then MultTrans¬(L) has s finite singularities

¬©1,..., ¬©s.

If r ± s, then there can be no isomorphism

MultTrans¬(L) ¶ [x ÿ x+å]*[-1]*DK,

simply because the two sides have different numbers of finite
singularities.

If r= s, and if such an isomorphism exists, then for some
permutation ß of {1,..., s}, we have

¬©i = -å - ∫ß(i) for i =1 to s.

Subtracting the first two such equations (remember s ≥ 2), we get
¬(©1 - ©2) = ∫ß(2) - ∫ß(1).

So we may solve for ¬:
¬ = (∫ß(2) - ∫ß(1))/(©1 - ©2).

Thus for each of the s(s-1) possible values of (ß(1), ß(2)), we get a

possible ¬. For any other ¬ in k≠, there can exist no such
isomorphism. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....11112222 Suppose K is perverse, semisimple, non-punctual,
and has ∏. Denote by r ≥ 0 the number of finite singularities of K; if
r ≥ 1, denote them ∫1,..., ∫r. Suppose L is perverse irreducible and

non-punctual, i.e.,suppose L is an irreducible middle extension, say L
= (j*Ò)[1] for some irreducible Ò on U. Suppose L has s ≥ 2 finite

singularities ©1,..., ©s.

1) If r < s, then for every ¬ in k≠, K*midMultTrans¬(L) is (perverse,

semisimple, has ∏, and is) non-punctual.
2) If r ≥ s, then K*midMultTrans¬(L) is (perverse, semisimple, has ∏,

and is) non-punctual, provided that ¬ in k≠ is not any of the
r(r-1) ratios

(∫i0
- ∫i1

)/(©1 - ©2), with i0 ± i1.

pppprrrrooooooooffff In case 1), m(K) = 0. In case 2, any irreducible constituent of
K with s finite singularities has its finite singularities among the ∫i,

so the excluded ¬ for that irreducible constituent are among the
named ratios. QED

(6.1.13) For ease of later reference, we state the following
elementary lemma, whose proof is left to the reader.
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LLLLeeeemmmmmmmmaaaa 6666....1111....11114444 Let r ≥ 1 and s ≥ 1 be integers, and k a field. Let ¬

be an element of k≠. Let ∫1,..., ∫r be r distinct elements of k. Let

©1,..., ©s be s distinct elements of k.

1) If r = 1 or if s = 1, the rs numbers ∫i + ¬©j, i =1 to r, j = 1 to s,

are all distinct in k.
2) If r ≥ 2 and s ≥ 2, the rs numbers ∫i + ¬©j, i =1 to r, j = 1 to s,

are all distinct in k, provided that ¬ in k≠ is not any of the
r(r-1)(s)(s-1) ratios

(∫i0
- ∫i1

)/(©j0
- ©j1

), with i0 ± i1 and j0 ± j1.

(6.1.15) We now give a criterion for the non-punctuality of
K*midL based on the local monodromy at the finite singularities. It

has the advantage of sometimes applying when L has only one finite
singularity. In the ensuing discussion, we will "compare" the local

monodromy of one lisse sheaf, say , on an open dense set of !1 at
one finite singularity, say ∫, with the local monodromy of another

lisse sheaf, say Ò, on an open dense set of !1 at another finite
singularity, say ©. We use additive translation by ©, resp. ∫, to view
I(©)-representations, resp. I(∫)-representations as I(0)-
representations. Then we view both the local monodromy of  at ∫
and the local monodromy of Ò at © as I(0)-representations, and it is
as such that we compare them.

TTTThhhheeeeoooorrrreeeemmmm 6666....1111....11116666 Suppose K is perverse, semisimple, non-punctual,
and has ∏. Thus K is (j*)[1] for some semisimple  on U. Suppose L

is perverse irreducible and non-punctual, i.e., suppose L is an
irreducible middle extension, say L = (j*Ò)[1] for some irreducible Ò

on U. Suppose there exists a finite singularity © of Ò such that the
local monodromy of Ò at © is not a direct factor of the local

monodromy of £ at any finite singularity ∫ of . Then K*midL is

(perverse, semisimple, has ∏, and is) non-punctual. Moreover, for

every ¬ in k≠, K*midMultTrans¬(L) is (perverse, semisimple, has ∏,

and is) non-punctual.
pppprrrrooooooooffff Since L has a finite singularity and is perverse irreducible, it
has ∏. We know that K*midL is non-punctual unless there exists an

irreducible constituent Ki of K, an å in !1, and an isomorphism

L ¶ [x ÿ x+å]*[-1]*DKi.

If such an isomorphism exists, then the local monodromy of Ò at ©

is isomorphic to the local monodromy of i
£ at ∫ := -© - å, which is

a direct summand of the local monodromy of £ at -© - å,
contradiction. Therefore K*midL is (perverse, semisimple, has ∏, and

is) non-punctual. For any ¬ in k≠, MultTrans¬(L) has the same local
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monodromy at ¬© as L did at ©, so satisfies the same hypotheses. QED

(6.1.17) We now recall some relations between the local
monodromies at finite distance of K, L, and K*midMultTrans¬(L), for

sufficiently general ¬. The key point is that, for sufficiently general
¬, each of these three is perverse, semisimple, non-punctual, and
has ∏. In particular, each is a middle extension, and the Fourier
Transform of each is a middle extension. This allows us to use the
fundamental results of Laumon, which relate the local monodromies
at finite distance of a middle extension to the I(‘)-representation of
its Fourier Transform, cf. [Ka-ESDE, 7.4.2].

TTTThhhheeeeoooorrrreeeemmmm 6666....1111....11118888 Suppose K is perverse, semisimple, non-punctual,
and has ∏. Write K = (j*)[1]. Denote by r ≥ 0 the number of finite

singularities of ; if r ≥ 1, denote them ∫1,..., ∫r. Suppose L is

perverse irreducible and non-punctual, L = (j*Ò)[1]. Suppose Ò has

s ≥ 1 finite singularities ©1,..., ©s. Suppose that either

a) s = 1, and Theorem 6.1.11 applies,
or

b) s ≥ 2.
Suppose further that either K or L has all ‘-slopes ≤ 1 (e.g., this
holds if either K or L is tame at ‘). Then we have the following
results.

1) If s=1, take any ¬ in k≠. If s ≥ 2, take any ¬ in k≠ which is not
any of the r(r-1)(s)(s-1) ratios

(∫i0
- ∫i1

)/(©j0
- ©j1

), with i0 ± i1 and j0 ± j1.

Then K*midMultTrans¬(L) (which is perverse, semisimple has ∏,

and is non-punctual, by the results above) has precisely rs finite
singularities, at the points ∫i + ¬©j, i =1 to r, j = 1 to s.

2) Fix any ¬ in k≠ not excluded in 1) above. Write
MultTrans¬(L) = (j*Ò¬)[1],

K*midMultTrans¬(L) = (j*Œ¬)[1].

Denote by (∫i) the I(∫i)-representation given by , by Ò(©j) the

I(©j)-representation given by Ò, and by Œ¬(∫i + ¬©j) the I(∫i +¬©j)-

representation given by Œ¬. Denote by FT¥loc(s, ‘) Laumon's local

Fourier Transform functors, cf. [Lau-TF, 2.4.2.3], [Ka-ESDE, 7.4.1].
Then we have an isomorphism of I(‘)-representations

FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)) ¶

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

3) Suppose in addition that  is tamely ramified at the finite
singularity ∫i, and that Ò is tamely ramified at the finite singularity

©j. Use additive translation by ∫i +¬©j, ∫i, and ©j respectively to view
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I(∫i +¬©j)-representations, I(∫i)-representations, and I(©j)-

representations respectively all as I(0)-representations. Then we
have an isomorphism of of I(0)-representations

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0

¶ ((∫i)/(∫i)
I(∫i))‚(Ò(©j)/Ò(©j)

I(©j)) moved to 0.

pppprrrrooooooooffff This is a simple consequence of Laumon's determination of the
monodromy of a Fourier Transform, cf. [Ka-ESDE, 7.4.1 and 7.4.2],
[Lau-TF, 2.3.3.1 (iii) and 2.4.2.3], and [Ka-RLS, proof of 3.0.4, 3.3.5,
and 3.3.6]. Let us write

FT¥(K) = (j*ˆ)[1],

MultTrans¬(L) = (j*Ò¬)[1],

FT¥(L) = (j*˜)[1],

FT¥(MultTrans¬(L)) = MultTrans1/¬FT¥(L) = (j*˜¬)[1],

FT¥(K*midMultTrans¬(L)) = (j*Â¬)[1].

Then as I(‘)-representations, we have
ˆ(‘)

¶ FT¥loc(‘, ‘)((‘)) · ·i Ò¥(∫it)
‚FT¥loc(∫i, ‘)((∫i)/(∫i)

I(∫i)),

and
˜¬(‘)

¶ FT¥loc(‘, ‘)(Ò¬(‘)) ·
·j Ò¥(¬©jt)

‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j)).

By the fundamental relation [Ka-RLS, 2.10.8], we have
Â¬(‘) ¶ ˆ(‘)‚˜¬(‘).

Recall that each FT¥loc(s, ‘) for s in !1 takes values in I(‘)-

representations of slope < 1, and is an equivalence
I(s)-representations ¶ I(‘)-representations with all slopes < 1.

Moreover, for variable s in !1, the various FT¥loc(s, ‘) are carried

into each other by additive translation.
Recall that FT¥loc(‘, ‘) takes values in I(‘)-representations

with all slopes > 1, and vanishes precisely on those I(‘)-
representations with all slopes ≤ 1. Thus for K perverse semisimple
with ∏ and non-punctual, we recover the finite singularities of K as
those ∫ such that ˆ(‘)‚Ò¥(-∫t) has a nonzero "slope < 1" part, we

recover
FT¥loc(‘, ‘)((‘))

as the "slope > 1" part of ˆ(‘), and we recover

·i Ò¥(∫it)
‚FT¥loc(∫i, ‘)((∫i)/(∫i)

I(∫i))

as the "slope ≤ 1" part of ˆ(‘).
The hypothesis that either K or L has all ‘-slopes ≤ 1 means

that either FT¥loc(‘, ‘)((‘)) or FT¥loc(‘, ‘)(Ò¬(‘)) vanishes, i.e.,
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that
FT¥loc(‘, ‘)((‘))‚FT¥loc(‘, ‘)(Ò¬(‘)) = 0.

Recall also [Ka-GKM,1.3] the crude behaviour of ‘-slopes under
tensor product:

(all slopes > 1)‚(all slopes ≤ 1) = (all slopes > 1),
(all slopes ≤ 1)‚(all slopes ≤ 1) = (all slopes ≤ 1),
(all slopes < 1)‚(all slopes < 1) = (all slopes < 1).

So when we compute Â¬(‘) ¶ ˆ(‘)‚˜¬(‘) by expanding out both

tensorees, the one term whose slopes were in doubt, namely
FT¥loc(‘, ‘)((‘))‚FT¥loc(‘, ‘)(Ò¬(‘)),

conveniently vanishes. We find

Â¬(‘) ¶ (all slopes > 1) · ·i,j Ò¥((∫i + ¬©j)t)
‚Vi,j,

with Vi,j the I(‘)-representation with all slopes < 1 given by

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

We have already seen that the rs points ∫i + ¬©j are all distinct. This

decomposition shows that the finite singularities are precisely these
rs points. Moreover, at each of the rs points ∫i + ¬©j we have the

relation

FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)) ¶

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

Furthermore, if, for some i and j,  is tame at ∫i and Ò is tame at

∫j, then the explicit description of FT¥loc(s, ‘) on tame I(s)-

representations, namely

FT¥loc(s, ‘)(M(s)) = [x-s ÿ 1/(x - s)]*M(s)

when M(s) is tame, shows that

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0

¶ ((∫i)/(∫i)
I(∫i))‚(Ò(©j)/Ò(©j)

I(©j)) moved to 0,

as required. QED

UUUUnnnniiiippppooootttteeeennnntttt PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn IIIInnnnppppuuuutttt CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....11119999 Hypotheses
as in Theorem 6.1.18, suppose in addition that the local monodromy
of  at the finite singularity ∫i is a unipotent pseudoreflection. Fix

any ¬ in k≠. If s ≥ 2, suppose ¬ is not any of the r(r-1)(s)(s-1) ratios
(∫i0

- ∫i1
)/(©j0

- ©j1
), with i0 ± i1 and j0 ± j1,

and write
K*midMultTrans¬(L) = (j*Œ¬)[1].

Use additive translation by ∫i +¬©j, ∫i and ©j respectively to view

I(∫i +¬©j)-representations, I(∫i)-representations, and I(©j)-



230 Chapter 6

representations respectively all as I(0)-representations. Then for any
j, the local monodromy of Œ¬ at ∫i + ¬©j is related to the local

monodromy of Ò at ©j by an isomorphism of I(0)-representations

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0

¶ Ò(©j)/Ò(©j)
I(©j) moved to 0.

pppprrrrooooooooffff This is a special case of part 2) of the theorem, according to
which for every i and j we have an isomorphism of I(‘)-
representations

FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)) ¶

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

If the local monodromy of  at the finite singularity ∫i is a

unipotent pseudoreflection, then

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i)) = FT¥loc(∫i, ‘)(ä$…) = ä$…,

so we find an isomorphism of I(‘)-representations

FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)) ¶

FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j)).

By means of the translation convention to view

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)

and

Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j)

as I(0)-representations, we can rewrite this

FT¥loc(0, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0) ¶

FT¥loc(0, ‘)(Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j) moved to 0).

But FT¥loc(0, ‘) is an equivalence of categories

I(0)-representations ¶ I(‘)-representations with all slopes < 1,
so we infer the existence of an I(0)-isomorphism

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0

¶ Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j) moved to 0.

Meanwhile, multiplicative translation by ¬ carries

Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j) to Ò(©j)/Ò(©j)

I(©j), so we have

Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j) moved to 0 ¶ Ò(©j)/Ò(©j)

I(©j) moved to 0.

QED

UUUUnnnniiiippppooootttteeeennnntttt PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn IIIInnnnppppuuuutttt CCCCoooorrrroooollllllllaaaarrrryyyy bbbbiiiissss 6666....1111....22220000
Hypotheses as in Theorem 6.1.18, suppose in addition that the local
monodromy of Ò at the finite singularity ©j is a unipotent

pseudoreflection. Fix any ¬ in k≠. If s ≥ 2, suppose ¬ is not any of the
r(r-1)(s)(s-1) ratios
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(∫i0
- ∫i1

)/(©j0
- ©j1

), with i0 ± i1 and j0 ± j1,

and write
K*midMultTrans¬(L) = (j*Œ¬)[1].

Use additive translation by ∫i +¬©j, ∫i, and ©j respectively to view

I(∫i +¬©j)-representations, I(∫i)-representations, and I(©j)-

representations respectively all as I(0)-representations. Then for any
j, the local monodromy of Œ¬ at ∫i + ¬©j is related to the local

monodromy of Ò at ©j by an isomorphism of I(0)-representations

Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) moved to 0

¶ (∫i)/(∫i)
I(∫i) moved to 0.

pppprrrrooooooooffff This is again a special case of part 2) of the theorem.... Its proof
is essentially identical to that of the previous version, with  and Ò
interchanged. QED

PPPPsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn OOOOuuuuttttppppuuuutttt CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....22221111 Hypotheses as in
Theorem 6.1.18, suppose in addition that the local monodromy of 
at the finite singularity ∫i is a tame pseudoreflection of determinant

çi, and that the local monodromy of Ò at the finite singularity ©j is

a tame pseudoreflection of determinant ®j. Fix any ¬ in k≠. If s ≥ 2,

suppose ¬ is not any of the r(r-1)(s)(s-1) ratios
(∫i0

- ∫i1
)/(©j0

- ©j1
), with i0 ± i1 and j0 ± j1.

Write
K*midMultTrans¬(L) = (j*Œ¬)[1].

Then the local monodromy of Œ¬ at ∫i + ¬©j is a tame

pseudoreflection of determinant çi®j.

pppprrrrooooooooffff This is a special case of part 3) of the theorem. QED

NNNNoooonnnn----sssseeeemmmmiiiissssiiiimmmmpppplllliiiicccciiiittttyyyy CCCCoooorrrroooollllllllaaaarrrryyyy 6666....1111....22222222 Hypotheses as in Theorem
6.1.18, fix a finite singularity ∫i of , and a finite singularity ©j of Ò.

Suppose that either a) or b) holds.

a) (∫i)/(∫i)
I(∫i) is a non-semisimple representation of I(∫i).

b) Ò(©j)/Ò(©j)
I(©j) is a non-semisimple representation of I(©j).

Fix any ¬ in k≠. If s ≥ 2, suppose ¬ is not any of the r(r-1)(s)(s-1)
ratios

(∫i0
- ∫i1

)/(©j0
- ©j1

), with i0 ± i1 and j0 ± j1.

Write
K*midMultTrans¬(L) = (j*Œ¬)[1].

Then Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) is a non-semisimple

representation of I(∫i + ¬©j).

pppprrrrooooooooffff by Theorem 6.1.18, part 2), we have an isomorphism of I(‘)-
representations
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FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j)) ¶

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

To make use of this, recall that for each s in !1, FT¥loc(s, ‘) is an

equivalence of the categories of finite-dimensional, continuous ä$…-

representations
I(s)-representations ¶ I(‘)-representations with all slopes < 1.

As such, it carries direct sums to direct sums, irreducibles to
irreducibles, semisimple objects to semisimple objects, and non-
semisimple objects to non-semisimple objects. So in order to show

that Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j) is non-semisimple, it suffices

to show that

FT¥loc(∫i + ¬©j, ‘)(Œ¬(∫i + ¬©j)/Œ¬(∫i + ¬©j)
I(∫i + ¬©j))

is non-semisimple. Since at least one of (∫i)/(∫i)
I(∫i) or

Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j) is non-semisimple, at least one of the tensorees

in

FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i))‚FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)

I(¬©j)).

is non-semisimple. So it suffices to show the following well known

lemma, applied to Æ = I(‘), V = FT¥loc(∫i, ‘)((∫i)/(∫i)
I(∫i)) and W

= FT¥loc(¬©j, ‘)(Ò¬(¬©j)/Ò¬(¬©j)
I(¬©j)). We include its proof for ease

of reference.
LLLLeeeemmmmmmmmaaaa 6666....1111....22223333 Let Æ be a topological group, V and W two nonzero
finite-dimensional continuous ä$…-representations of Æ. Denote by

Ædiscr the discrete group underlying Æ. Then we have the following

results.
1) A finite-dimensional continuous ä$…-representation M of Æ is

semisimple as a continuous ä$…-representation of Æ if and only if it is

semisimple as a ä$…-representations of Ædiscr.

2) V‚W is semisimple if and only if both V and W are semisimple.
pppprrrrooooooooffff 1) If M is semisimple as a continuous ä$…-representation of Æ,

it is the direct sum of irreducible ä$…-representation of Æ, which

happen to be continuous, so it is semisimple as a ä$…-representation

of Ædiscr. Conversely, if M is semisimple as a ä$…-representations of

Ædiscr, then M admits a basis in which Ædiscr acts block-diagonally,

with each block irreducible. But the fact that M is a continuous
representation of Æ is independent of a particular choice of basis, so
each of the irreducible diagonal blocks is itself a continuous
representation of Æ.
2) By part 1), applied to V, W, and V‚W, we can forget the topology,
i.e., it suffices to treat the case when Æ is a discrete group. In this
case, we may replace Æ by its Zariski closure, call it G, in GL(V·W).

If both V and W are semisimple, so is V·W, and hence G is
reductive (because we are in characteristic zero, and G has a
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faithful completely reducible representation, namely V·W). And in
characteristic zero, any finite-dimensional representation of a
reductive group, e.g., V‚W, is completely reducible.

Suppose that at least one of V or W is not semisimple. Then
V·W is not semisimple, and hence G is not reductive. Therefore its
unipotent radical Âu(G) is nonzero. To show that V‚W is not

semisimple, it suffices to show that Âu(G) acts nontrivially on V‚W.

For this, we argue as follows. Since V·W is a faithful representation
of G, it is a faithful representation of Âu(G). Therefore Âu(G) acts

nontrivially at least one of V or W (otherwise it would act trivially
on V·W, hence would be the trivial subgroup of G). Since every
element of Âu(G) acts unipotently, we can pick an element © in

Âu(G) which acts nontrivially on at least one of V or W, and

unipotently on both V and W. This element © acts on V‚W as the
tensor product

(©|V)‚(©|W)
of two unipotent automorphisms. Such a tensor product is the
identity if and only if each tensoree is the identity. Therefore © acts
nontrivially on V‚W, and hence Âu(G) acts nontrivially on V‚W.

QED

((((6666....2222)))) IIIInnnntttteeeerrrrlllluuuuddddeeee:::: ssssoooommmmeeee ggggaaaallllooooiiiissss tttthhhheeeeoooorrrryyyy iiiinnnn oooonnnneeee vvvvaaaarrrriiiiaaaabbbblllleeee
(6.2.1) We continue to work over an algebraically closed field k in
which the prime … is invertible. Let C/k be a proper, smooth,
connected curve of genus g, and let D = ‡i aiPi be an effective

divisor on C, of degree d := ‡i ai. We suppose that

d := deg(D) ≥ 2g + 3.
Denote by L(D) the Riemann-Roch space

L(D) = H0(C, I-1(D)).
We view L(D) as the k-points of an affine space of dimension d+1-g
over k, and we view functions f in L(D) as morphisms from C-D to

!1. Let us recall from [Ka-TLFM] the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 6666....2222....2222 ([Ka-TLFM, 2.2.6 and 2.4.2]) Let k be an algebraically
closed field, and let C/k be a projective, smooth connected curve, of
genus denoted g. Fix an effective divisor D on C of degree d ≥ 2g+3.
Fix a finite subset S of C - D. Then in L(D) viewed as the k-points of
an affine space of dimension d+1-g, there is a dense open set U such
that any f in U has the following properties:
1) the divisor of poles of f is D, and f is Lefschetz on C-D, i.e., if we

view f as a finite flat map of degree d from C - D to !1, then all but

finitely many of the fibres of f over !1 consist of d distinct points,
and the remaining fibres consist of d-1 distinct points, d-2 of which
occur with multiplicity 1, and one which occurs with multiplicity 2.
2) f separates the points of S, i.e., f(s1) = f(s2) if and only if s1 = s2,
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and f is finite etale in a neighborhood of each fibre f-1f(s). Put

another way, there are ùS fibres over !1 which each have d points
and which each contain a single point of S.

(6.2.3) Any f in L(D) with divisor of poles D defines a finite flat

map of degree d from C - D to !1. If f is Lefschetz on C-D, f has at
most finitely many cricital points (zeroes of the differential df) in
C - D, whose images under f are the finitely many critical values of

f in !1. Thus f by restriction defines a finite etale map of degree d

C - D - f-1(CritValues(f))
f d

!1 - CritValues(f).

TTTThhhheeeeoooorrrreeeemmmm 6666....2222....4444 Let k be an algebraically closed field, and let C/k be
a projective, smooth connected curve, of genus denoted g. Fix an
effective divisor D = ‡i aiPi on C of degree d ≥ 2g+3. Suppose in

addition that each ai invertible in k. Fix any f in L(D) whose divisor

of poles is D, and which is Lefschetz on C-D. Then we have the
following results.
1) For any … invertible in k, the middle extension sheaf f*ä$…/ä$… on

!1 is irreducible.

2) The restriction to !1 - CritValues(f) of f*ä$… is a lisse sheaf, whose

geometric monodromy group Ggeom is the full symmetric group Sd,

in its standard d-dimensional permutation representation. Local
monodromy at each finite singularity (i.e., at each critical value of f

in !1) is a reflection, the action of a transposition in Sd.

3) The restriction to !1 - CritValues(f) of f*ä$…/ä$… is a lisse sheaf,

whose geometric monodromy group Ggeom is the full symmetric

group Sd, in its (d-1)-dimensional "deleted permutation

representation". Local monodromy at each finite singularity (i.e., at

each critical value of f in !1) is a reflection, the action of a
transposition in Sd.

4) The sheaf f*ä$… has at least one finite singularity. If 2 is invertible

in k, f*ä$… has at least two finite singularities.

pppprrrrooooooooffff The sheaf f*ä$… is a middle extension, cf. [Ka-TLFM, proof of

3.3.1], which contains ä$… as subsheaf. Consider the trace morphism

Trace : f*ä$… ¨ ä$….

The map (1/d)Trace splits the inclusion of ä$… into f*ä$…. So we have

a direct sum decomposition
f*ä$… = ä$… · Ker(Trace) ¶ ä$… · f*ä$…/ä$…

Thus f*ä$…/ä$… is a middle extension, being a direct factor of a middle

extension.
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The restriction to !1 - CritValues(f) of f*ä$… (respectively of

f*ä$…/ä$…) is lisse, and its Ggeom is a transitive subgroup, say Æ, of Sd
in its standard d-dimensional permutation representation (resp. in
its (d-1)-dimensional "deleted permutation representation"), simply
because f is finite etale of degree d over CritValues(f) with connected
source space C - D - {zeroes of df in C-D}. If we show that Æ = Sd,

then f*ä$…/ä$… is an irreducible middle extension on !1, simply

because the deleted permutation representation of Sd is irreducible.

To show that Æ = Sd, it suffices to show that Æ is generated by

transpositions. The assumption that each ai is invertible in k means

that all poles of f are of order invertible in k, and this in turn
guarantees that f*ä$… is tamely ramified at ‘. Therefore Æ is

generated by all the local monodromies at all the finite singularities
of f*ä$…. Because f is Lefschetz on C-D, at each finite singularity ©,

the fibre consists of d-2 points of multiplicity 1, and one point of
multiplicity 2. Thus each element of the inertia group I(©) has at
least d-2 fixed points, so is either the identity or is a transposition.
[Since the rank of f*ä$… drops by one at ©, and f*ä$… is a middle

extension, the local monodromy at © cannot be trivial. But we don't
know yet that there exist any finite singularities ©.] Thus Æ is a
transitive subgroup of Sd, generated by a possibly empty collection

of transpositions. Therefore Æ = Sd. This in turn shows that f*ä$… has

at least one finite singularity ©, otherwise Æ would be the trivial
group.

The finite singularities of f*ä$…, i.e., the critical values of f in

!1, are the images under f of the zeroes of the differential df in C-D.
Because f has divisor of poles D and all the ai are prime to p, df has

poles at each point of D. So the zeroes of df all lie in C-D. Because f is
Lefschetz on C-D, f maps the zeroes of df bijectively to the finite
singularities of f*ä$…. Hence the number of finite singularities of f*ä$…
is the number of distinct zeroes of df. When 2 is invertible in k, the
fact that f is Lefschetz on C - D means precisely that df has only
simple zeroes in C - D, and that f separates these zeroes. So when 2
is invertible, the number of finite singularities of f*ä$… is the degree

of the divisor of zeroes of df. The divisor of df has degree 2g-2, so
deg(divisor of zeroes of df) = 2g - 2 + deg(divisor of poles of df).

Now f has polar divisor D = ‡i aiPi with all ai invertible in k, so the

divisor of poles of df is ‡i (ai + 1)Pi, whose degree is

deg(D) + deg(Dred) ≥ deg(D) + 1 ≥ 2g + 4.
Thus we find

deg(divisor of zeroes of df) ≥ 4g + 2.
So when 2 is invertible in k, the number of finite singularities of
f*ä$… is at least two.

Here is an alternate proof of this last result. If 2 is invertible in
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k, then local monodromy at each finite singularity, being of order 2,
is tame, and so f*ä$…/ä$…, which has rank d-1 ≥ 2g + 2 ≥ 2, is an

irreducible representation of dimension d-1 > 1 of the group

π1
tame( !1 - finite singularites of f*ä$…/ä$…).

Therefore this group cannot be abelian. But π1
tame(´m) is abelian.

So there are at least two finite singularites of f*ä$…/ä$… if 2 is

invertible in k. QED

RRRReeeemmmmaaaarrrrkkkk 6666....2222....5555 Here is an example to show that in conclusion 4), we
must exclude characteristic 2 if we want to insure that f*ä$… has at

least two finite singularities, cf. [Ka-TLFM, 2.5.4]. Take an integer

n ≥ 1, take C to be @1, and take D to be (2n+1)‘. In characteristic 2,

the function f = x2 + x2n+1 on !1 is Lefschetz: its unique singular

fibre as a finite flat degree 2n+1 map of !1 to itself is the fibre over
the origin, which consists of 2n points. Thus f is finite etale over ´m,

and so f*ä$… is lisse on ´m.

(6.2.6) What happens to the above corollary if we drop the
hypothesis that in the divisor D = ‡i aiPi, each ai invertible in k?

The first "problem" we have to deal with is that, for any f in L(D), if
the characteristic p of k divides ai, then the differential df has a pole

of order at most ai at Pi.

LLLLeeeemmmmmmmmaaaa 6666....2222....7777 Let k be an algebraically closed field of characteristic
p > 0, and let C/k be a projective, smooth connected curve, of genus
denoted g. Fix an effective divisor D = ‡i aiPi on C of degree d ≥ 2g+2.

Define integers bi by

bi := ai, if p divides ai,

bi := ai + 1, if p does not divide ai.

The set V consisting of those functions f in L(D) such that the divisor
of poles of f is D, and such that the divisor of poles of df is ‡ibiPi,

form a dense open set in L(D).

pppprrrrooooooooffff Fix a uniformizing parameter zi at Pi, for each Pi which

occurs in D. The formal expansion of f at Pi has the form

f = ‡1 ≤ n ≤ ai
C(n,i,f)/(zi)

n + (holomorphic at Pi)

with coefficients C(n,i,f) in k. For each point Pi and for each integer

n with 1 ≤ n ≤ ai, the map f ÿ C(n,i,f) is a linear form on L(D). A

function f in L(D) has divisor of poles D if and only if, for each Pi, we

have nonvanishing of the most polar term:
C(ai, i, f) ± 0.
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The divisor of poles of df is ‡i biPi if and only if, in addition, for each

Pi whose ai is divisible by p, we have nonvanishing of the next most

polar term:
C(ai -1, i, f) ± 0.

Thus the functions f in L(D) which lie in V are precisely the
functions on which all of the linear forms

f ÿ C(ai, i, f), for each i,

f ÿ C(ai -1, i, f), for those i with ai divisible by p,

are nonzero. So it suffices to see that each of these linear forms is
not identically zero on L(D), for then V is the complement in L(D) of
a finite union of hyperplanes.

The kernel in L(D) of f ÿ C(ai, i, f) is L(D - Pi). As d ≥ 2g +2, we

have deg(D - Pi) = d - 1 ≥ 2g + 1, so by Riemann-Roch, we get

…(D - Pi) = deg(D - Pi) + 1 - g = …(D) - 1.

Thus the kernel in L(D) of f ÿ C(ai, i, f) is a proper subspace, and

hence the linear form f ÿ C(ai, i, f) on L(D) is nonzero.

For i with ai divisible by p, we have ai ≥ 2, and the kernel in

L(D - Pi) of f ÿ C(ai - 1, i, f) is L(D - 2Pi). Again by Riemann-Roch,

we have
…(D - 2Pi) = deg(D - 2Pi) + 1 - g = …(D - Pi) - 1.

Thus the kernel in L(D - Pi) of f ÿ C(ai - 1, i, f) is a proper subspace,

and so the linear form f ÿ C(ai - 1, i, f) is nonzero on L(D - Pi), and

hence it is nonzero on the larger space L(D). QED

(6.2.8) The following lemma, of a similar flavor, will be useful
later.
LLLLeeeemmmmmmmmaaaa 6666....2222....9999 Hypotheses and notations as in Lemma 6.2.7, let

T fi !1(k) be a finite set of points. Inside the dense open set V fi L(D)
of the previous lemma, the subset Vetale/T fi V consisting of those

functions f in V such that f as a finite flat map of C - D to !1 of
degree deg(D) is finite etale over each t in T (i.e., such that for each t

in T, f-1(t) consists of deg(D) distinct points in C - D) is an open dense
set of V.
pppprrrrooooooooffff We first show that Vetale/T is nonempty. Take any function f

in V. Then df is nonzero (because its polar divisor is nonzero), so f
has finitely many critical points in C - D. Then f lies in Vetale/T if

and only the finite set CritValues(f) := f({CritPoints(f)}) is disjoint
from T. Additively translating f by a constant ¬ does not alter the
set of critical points, but translates the set of critical values by that
same constant ¬. Therefore f + ¬ lies in Vetale/T for all but the

finitely many ¬ of the form t - c with t in T and with c in
CritValues(f).

To see that Vetale/T is open in V, we first reduce to the case
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when T is a single point t (since Vetale/T = €t in T Vetale/t). Over

!1≠V, we have a finite flat map of degree deg(D)

π : (C - D)≠V ¨ !1≠V,
(x, f) ÿ (f(x), f).

Pulling back to the closed subspace t≠V of the base, we get a
Cartesian diagram

Z fi (C - D)≠V
dπt dπ

V fi !1≠V.
Zariski locally on V, V is Spec(A) and Z is Spec(B) for B some A-
algebra which is a free A-module of rank deg(D), say with A-basis
{ei}i, and Vetale/T is the open set of Spec(A) where the discriminant

det(TraceB/A(eiej)) of B as A-algebra is invertible. QED

(6.2.10) The following theorem is joint work with E. Rains.
TTTThhhheeeeoooorrrreeeemmmm 6666....2222....11111111 ((((jjjjooooiiiinnnntttt wwwwiiiitttthhhh RRRRaaaaiiiinnnnssss)))) Let k be an algebraically
closed field of positive characteristic p, and let C/k be a projective,
smooth connected curve, of genus denoted g. Fix an effective divisor
D = ‡iaiPi on C of degree d ≥ 2g+3. Define integers bi by

bi := ai, if p divides ai,

bi := ai + 1, if p does not divide ai.

Let f be a function in L(D) such that the divisor of poles of f is D, the
divisor of poles of df is ‡ibiPi, and such that f is Lefschetz on C - D.

Suppose we are not in the following exceptional case:

p = 2, D = ‡i2Pi, there exists a function g in L(‡iPi) and there exist

scalars å, ∫ in k≠ and © in k such that f = åg2 + ∫g + ©.
Then we have the following results.
1) For any … invertible in k, the middle extension sheaf f*ä$…/ä$… on

!1 is irreducible.

2) The restriction to !1 - CritValues(f) of f*ä$… is a lisse sheaf, whose

geometric monodromy group Ggeom is the full symmetric group Sd,

in its standard d-dimensional permutation representation. Local
monodromy at each finite singularity (i.e., at each critical value of f

in !1) is a reflection, the action of a transposition in Sd.

3) The restriction to !1 - CritValues(f) of f*ä$…/ä$… is a lisse sheaf,

whose geometric monodromy group Ggeom is the full symmetric

group Sd, in its (d-1)-dimensional "deleted permutation

representation". Local monodromy at each finite singularity (i.e., at

each critical value of f in !1) is a reflection, the action of a
transposition in Sd.

4) The sheaf f*ä$… has at least one finite singularity. If 2 is invertible

in k, and we are not in the case
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p = 3, g = 0, D = 3P,
then the sheaf f*ä$… has at least two finite singularities.

(6.2.12) Before beginning the proof of the theorem, let us clarify
the exceptional case, and give two "genericity" corollaries of the
theorem.

LLLLeeeemmmmmmmmaaaa 6666....2222....11113333 Let k be an algebraically closed field of
characteristic 2, and let C/k be a projective, smooth connected
curve, of genus denoted g. Fix an effective divisor D of the form
D = ‡i2Pi of degree d ≥ 2g+3. For each Pi, pick a uniformizing

parameter zi at Pi. Given f in L(D), write its formal expansion at Pi
in the form

f = C(2,i,f)/(zi)
2 + C(1,i,f)/zi + (holomorphic at Pi)

with coefficients C(2,i,f) and C(1,i,f) in k. Denote by Z the closed
subset of L(D) defined by the equations

C(2,i,f)C(1,j,f)2 = C(2,j,f)C(1,i,f)2 for all i±j,

i.e., Z is the locus where the two vectors {C(2,i,f)}i and {C(1,i,f)2}i are

linearly dependent. Then Z is a proper closed subset of L(D). For any
g in L(‡iPi), and for any scalars å, ∫, © in k, the function

åg2 + ∫g + © lies in Z.

pppprrrrooooooooffff Given g in L(‡iPi), write its formal expansion at Pi in the form

g = C(1,i,g)/zi + (holomorphic at Pi).

Since we are in characteristic 2, the expansion of g2 at Pi is

g2 = C(1,i,g)2/(zi)
2 + (holomorphic at Pi).

Thus the expansion of åg2 + ∫g + © at Pi is

åg2 + ∫g + © = åC(1,i,g)2/(zi)
2 + ∫C(1,i,g)/zi + (holomorphic at Pi).

Thus for the function f := åg2 + ∫g + ©, we have

C(2,i,f) = åC(1,i,g)2,
C(1,i,f) = ∫C(1,i,g).

So the two vectors {C(2,i,f)}i and {C(1,i,f)2}i are both scalar multiples

of the vector {C(1,i,g)2}i, hence are linearly dependent. Thus the

function f := g2 + åg + ∫ lies in the closed set Z.
To see that Z is a proper closed subset, pick two indices i ± j.

This is possible because deg(‡i 2Pi) ≥ 2g + 3 ≥ 3, so there are at least

two distinct points Pi. Pick a function f in L(D - Pj) whose polar

divisor is D - Pj. This is possible by Riemann-Roch, because D - Pj
has degree ≥ 2g+2 ≥ 2g. Such an f has a double pole at Pi and a
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simple pole at Pj, so it has

C(2,i,f) ± 0, C(1,j,f) ± 0, C(2,j,f) = 0,
and hence does not satisfy the equation

C(2,i,f)C(1,j,f)2 = C(2,j,f)C(1,i,f)2

for the chosen i and j. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....2222....11114444 Let k be an algebraically closed field of
characteristic 2, and let C/k be a projective, smooth connected
curve, of genus denoted g. Fix an effective divisor D of the form
D = ‡i2Pi of degree d ≥ 2g+3. Let f be a function in L(D) such that the

divisor of poles of f is D, the divisor of poles of df is ‡ibiPi, f is

Lefschetz on C - D, and f does not lie in the proper closed set Z. Then
all the conclusions of Theorem 6.2.11 hold.

pppprrrrooooooooffff Immediate from Theorem 6.2.11 and Lemma 6.2.13 above.
QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....2222....11115555 Let k be an algebraically closed field of positive
characteristic p, and let C/k be a projective, smooth connected
curve, of genus denoted g. Fix an effective divisor D = ‡iaiPi on C of

degree d ≥ 2g+3. There exists a dense open set in L(D) such that for
any f in this dense open set, all the conclusions of Theorem 6.2.11
hold.
pppprrrrooooooooffff For f and df to have imposed divisors of poles, and for f to be
Lefschetz on C-D, are conditions which all hold on a dense open set U
of L(D). If p = 2 and D = ‡i2Pi, intersect this U with the complement

of Z. QED

((((6666....3333)))) PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 6666....2222....11111111
(6.3.1) In the case when all the ai were prime to p, the proof

relied on the group theoretic fact that a transitive subgroup Æ of the
symmetric group Sd generated by transpositions is all of Sd. In the

general case, the proof relies on the fact that a primitive (in the
sense of permuation groups) subgroup of Sd, d ≥ 3, which contains a

transposition, is all of Sd. Recall that a subgroup Æ of Sd, d ≥ 3, is

said to be primitive if the only partitions of the set {1, 2,..., d} into
disjoint nonempty subsets ∏å which are permuted among

themselves by Æ are the one set partition and the d set partition.
The following lemma is well known, cf. [Serre-TGT, page 40, proof of
part 2 of Lemma 4.4.4].

LLLLeeeemmmmmmmmaaaa 6666....3333....2222 A primitive subgroup Æ of Sd, d ≥ 3, which contains a

transposition, is all of Sd.

pppprrrrooooooooffff Here is a simple proof, which I learned from Eric Rains.
Because d ≥ 3, the trivial group is not primitive. If Æ is primitive, it
is transitive (otherwise its orbits form a partition which violates the
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primitivity of Æ). Denote by H the subgroup of Æ generated by all the
transpositions in Æ. Then H is a normal subgroup of Æ which is non-
trivial. H acts transitively (otherwise its orbits form a partition
which violates the primitivity of Æ). Thus H is a transitive subgroup
of Sd generated by transpositions, hence is all of Sd. So a fortiori Æ is

Sd. QED

(6.3.3) The following criterion for primitivity is standard.
LLLLeeeemmmmmmmmaaaa 6666....3333....4444 A transitive subgroup Æ of Sd, d ≥ 3, is primitive if

and only if the stablizer in Æ of a point in {1, 2,..., d} is a maximal
subgroup of Æ.
pppprrrrooooooooffff Suppose first Stab(1) is a maximal subgroup of Æ. Let {∏å} be

any partition of {1, 2,..., d} into r > 1 disjoint nonempty subsets ∏å
which are permuted among themselves by Æ. We must show r = d.
To see this, let ∏1 contain the element 1. Let Stab(∏1) denote the

stabilizer in Æ of ∏1. Then we have inclusions

Stab(1) fi Stab(∏1) fi Æ.

Because Æ is transitive, Æ transitively permutes the ∏å. So the

index of Stab(∏1) fi Æ is r, the number of partition sets. As r > 1,

Stab(∏1) is a proper subgroup of Æ. As Stab(1) is a maximal

subgroup of Æ, Stab(1) = Stab(∏1). But Stab(1) has index d in Æ

(because Æ is transitive), so r = d.
If Stab(1) is not a maximal subgroup of Æ, let H be a strictly

intermediate subgroup. View {1, 2,..., d} as the homogeneous space
Æ/Stab(1). Then the fibres of the natural map of Æ-spaces

Æ/Stab(1) ¨ Æ/H
are a partition of {1, 2,..., d} which violates primitivity. QED

(6.3.5) Now let us turn to the proof of Theorem 6.2.11. Thus k is
an algebraically closed field of positive characteristic p, C/k is a
projective, smooth connected curve, of genus denoted g, and D is an
effective divisor D = ‡iaiPi on C of degree d ≥ 2g+3. The integers bi
are defined by

bi := ai, if p divides ai,

bi := ai + 1, if p does not divide ai.

Finally, f is a function in L(D) whose divisor of poles of f is D, which
is Lefschetz on C - D, and such that the divisor of poles of df is ‡ibiPi.

(6.3.6) Exactly as in the proof of the prime-to-p version,
Theorem 6.2.4, we see that f*ä$… is a middle extension, and that we

have a direct sum decomposition f*ä$… ¶ ä$… · f*ä$…/ä$…. We further

see that the restriction to !1 - CritValues(f) of f*ä$… (resp. of

f*ä$…/ä$…) is lisse, and its Ggeom is a transitive subgroup, say Æ, of Sd
in its standard d-dimensional permutation representation (resp. in
its (d-1)-dimensional "deleted permutation representation").
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(6.3.7) Still as in the proof of Theorem 6.2.4, we see that at each
finite singularity ©, the fibre consists of d-2 points of multiplicity 1,
and one point of multiplicity 2. Thus each element of the inertia
group I(©) has at least d-2 fixed points, so is either the identity or is
the transposition which interchanges the two roots which have
coalesced at ©. Since the rank of f*ä$… drops by one at ©, and f*ä$… is

a middle extension, the local monodromy at © cannot be trivial, so
there are elements of I(©) which act as transpositions.
(6.3.8) We next estimate from below the number of finite
singularities of f*ä$…, i.e., the number of critical values of f. The

critical values of f in !1 are the images under f of the zeroes of the
differential df in C-D. Because df has divisor of poles ‡ibiPi, df has

poles at each point of D. So the zeroes of df all lie in C-D. Because f is
Lefschetz on C-D, f maps the zeroes of df bijectively to the finite
singularities of f*ä$…. Hence the number of finite singularities of f*ä$…
is the number of distinct zeroes of df. The total number of zeroes of
df, counting multiplicity, is readily calculated, just using the fact
that the divisor of df has degree 2g-2, while the polar divisor of df is
‡ibiPi. So we get

(6.3.8.1) deg(divisor of zeroes of df)
= 2g - 2 + deg(divisor of poles of df)
= 2g - 2 + ‡ibi ≥ 2g - 2 + ‡iai
= 2g - 2 + deg(D) ≥ 2g - 2 + 2g + 3
≥ 4g + 1 ≥ 1.

So in any characteristic, df has zeroes: f*ä$… has finite singularities

Since the local monodromy at each finite singularity is a
transposition, the group Æ contains transpositions.
(6.3.9) When 2 is invertible in k, and f is Lefschetz on C - D, df
has only simple zeroes in C - D, so df has precisely 2g - 2 + ‡ibi
distinct zeroes, and there are 2g - 2 + ‡ibi finite singularities. We

now show that in odd characteristic p, we have 2g - 2 + ‡ibi ≥ 2,

except in the case when p = 3, g = 0, and D = 3P. Indeed, we can
have the equality

2g - 2 + ‡ibi = 1

if and only if in the above chain of inequalities 6.3.8.1, every
inequality is an equality, i.e., if and only if

g = 0, deg(D) = 2g + 3, ai = bi for all i,

i.e.,
g = 0, deg(D) = 3, p divides ai for all i.

Since each ai is divisible by the odd characteristic p, we have ai ≥ 3

for all i. But deg(D) = 3, so D = 3P, and p = 3.
(6.3.10) It remains only to show that the transitive group Æ is
primitive. For this, we think of the function f first as a finite flat

degree d, generically etale, map from C to @1, then as an inclusion of

function fields k(@1) fi k(C) which makes k(C)/k(@1) a finite



Middle additive convolution 243

separable extension of degree d. Let us denote by K/k(@1) the galois

closure of k(C)/k(@1). Then Æ, the monodromy group Ggeom of f*ä$…

on !1 - CritValues(f), is just the galois group of K/k(@1), in its
standard d-dimensional permutation representation. The

intermediate field k(C)/k(@1) inside K/k(@1) corresponds to the
subgroup of Æ which, viewing Æ inside Sd, is the stabilizer of one

point. Now Æ is primitive if and only if this subgroup of Æ is
maximal, i.e., if and only if there exist no intermediate fields L,

k(@1) fi L fi k(C),

with k(@1) ± L ± k(C).
(6.3.11) We argue by contradiction. Suppose there exists such an
intermediate field. Let us define

d1 := deg(L/k(@1)), d2 := deg(k(C)/L).

Thus d1 and d2 are both at least 2, and d1d2 = d. The field L is the

function field of some proper smooth connected curve C1/k, whose

genus we denote g1. The inclusions of function fields above gives us

finite flat k-morphisms
g : C ¨ C1 of degree d2,

h : C1 ¨ @1 of degree d1

whose composite is f : C ¨ @1. Denote by D1 fi C1 the effective

divisor of degree d1 which is the scheme-theoretic inverse image of

‘ under the morphism h. In other words, view h as a rational
function on C1, and denote by D1 the polar divisor of h. Write

D1 : = ‡j ejQj.

(6.3.12) We first claim that the map h : C1 ¨ @1 is finite etale

over !1. Since g is finite and flat of degree d1, it suffices to show

that the fibre of h over every k-valued point å of !1 contains d1
points. To see this, we argue as follows. Since f is h«g,

D := f-1(‘) = g-1(h-1(‘)) = g-1(D1), so g and h induce finite flat

maps
g : C - D ¨ C1 - D1,

h: C1 - D1 ¨ !1,

whose composite is

f: C - D ¨ !1.

Because f is Lefschetz on C - D, the fibre f-1(å) contains at least d-1
points. Because g is finite and flat of degree d2, for every k-valued

point ∫ of C1 - D1, g
-1(∫) contains at most d2 points. So if h-1(å)

contains at most d1 -1 points, then g-1(h-1(å)) contains at most

(d1 - 1)d2



244 Chapter 6

points. But g-1(h-1(å)) is f-1(å), which contains at least d - 1 points.
Therefore we have the inequalities

(d1 - 1)d2 ≥ ùf-1(å) ≥ d - 1.

But d1d2 = d, so we get

d - d2 ≥ d - 1,

which is impossible, because d2 ≥ 2 by hypothesis.

(6.3.13) In terms of the polar divisor D1 : = ‡j ejQj of h, we define

integers fj by

fj := ej, if p divides ej,

fj := ej + 1, if p does not divide ej.

(6.3.14) We claim that the divisor of poles of the differential dh is
‡jfjQj. Let us temporarily admit this claim, and use it to complete

the proof of the theorem. Because h is finite etale over !1, dh has
neither zero nor pole in C1 - D1. So the divisor of dh is - ‡jfjQj. The

divisor of dh has degree 2g1 - 2. Thus we have the equality

2g1 - 2 = - ‡jfj.

This can only happen if g1 = 0 and ‡jfj = 2. So we have

2 = ‡jfj ≥ ‡jej = deg(D1) = d1.

Since d1 ≥ 2, we have ‡jfj = ‡jej, i.e., every ej is divisible by p. But

‡jej = 2, so there is only one ej, and p = 2. Thus C1 is @1, and D1 is

2Q, for some point Q in @1. Applying an automorphism of @1, we

may assume that Q is the point ‘ in @1. Then C1 - D1 is !1, and h

is a quadratic polynomial åx2 + ∫x + ©, which makes !1 finite etale
over itself of degree two. Therefore å ± 0 (because h has degree two)
and ∫ ± 0 (otherwise dh vanishes). In this case, f = h«g is

åg2 + ∫g + ©. Denote by D2 fi C the divisor of poles of g. Since f = h«g,

and h has divisor of poles 2‘, we see that D, the divisor of poles of f,
is related to D2 by

D = 2D2.

Since p = 2, the divisor of poles of the differential df is D. This in
turn implies that g has only simple poles, i.e., that D = ‡i 2Pi. Indeed,

if at some point P g has a pole of order n ≥ 1, then in terms of a
uniformizing parameter z at P we have

g = 1/zn + (1/zn-1)(holomorphic at P).

Because p = 2, f = åg2 + ∫g + © has
df = ∫dg,

and hence df has a pole of order at most n+1 at P. But f has a pole of
order 2n at P, so by hypothesis (remember p = 2) df also has a pole
of order 2n at P. Therefore 2n ≤ n + 1, possible only when n =1.
(6.3.15) This shows that Æ is indeed primitive, except in the
excluded exceptional case:
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p = 2, D = ‡i2Pi, there exists a function g in L(‡iPi) and there exist

scalars å, ∫ in k≠ and © in k such that f = åg2 + ∫g + ©.

(6.3.16) It remains to prove that the divisor of poles of the
differential dh is ‡jfjQj. At a point Qj in D1 with multiplicity ej
prime to p, h has a pole of order ej, and dh has a pole of order

fj : = 1 + ej. At a point Q in D1 with multiplicity e divisible by p, we

must show that dh has a pole of the same order e. Pick a point P in
D2 lying over Q. Let z be a uniformizing parameter at P, and let w

be a uniformizing parameter at Q. Denote by m ≥ 1 the order of zero
of g - g(P) at the point P. Then f = h«g has a pole of order em at P.
(6.3.17) Rescaling the uniformizing parameter z if necessary, the
formal expansion of g at P has the form

g - g(P) = zm(1 + az1 + ...).
Rescaling w if necessary, the formal expansion of h at Q is

h = 1/we - b/we-1 + ... = (1/we)(1 -bw + ...).
Equivalently, the formal expansion of 1/h at P is

1/h = we(1 + bw + ...).
We must show that b ± 0.
(6.3.18) The formal expansion of 1/f = 1/(h«g) = (1/h)«g at P is

1/f = zme(1 + az + ...)e(1 + bzm +...).
Since p divides e, we have

(1 + az + ...)e = 1 + (zp) = 1 + (z2).
Thus

1/f = zme(1 + bzm +...)(1 + (z2)).
So the expansion of f at P is

f = z-me(1 - bzm +...)(1 + (z2)).
But by hypothesis on f, its expansion at P is

f = å/zem + ∫/zem-1 + ...,
with å∫ ±0. Comparing these two expansions, we infer that m = 1,

otherwise f has no 1/zem-1 term, and we infer that b = -∫ ± 0. QED

((((6666....4444)))) IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn iiiinnnn tttteeeerrrrmmmmssss ooooffff SSSSwwwwaaaannnn ccccoooonnnndddduuuuccccttttoooorrrrssss
(6.4.1) In Theorem 6.2.11, an essential hypothesis on the function
f is that at any point P where f has a pole whose order e is not
prime to p, the differential df has a pole of the same order e at P, or,
equivalently, ordP(df/f) = 0. In this section, we give the

interpretation of this condition in terms of Swan conductors.
(6.4.2) Let k be an algebraically closed field, C/k a projective,
smooth connected curve, D = ‡i aiPi an effective divisor on X, and f

in L(D) a function with divisor of poles D. View f as a finite flat map

f : C ¨ @1

of degree d. Suppose that f is finite etale over a dense open set
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U = @1 - T of @1. Put V := C - f-1(T).
(6.4.3) For any … invertible in k, and for any lisse ä$…-sheaf Ì on

U, the Euler Poincarïe formula [Ray] asserts that
(6.4.3.1) çc(U, Ì) = çc(U, ä$…)rank(Ì) - ‡t in T Swant(Ì).

If we begin with a lisse ä$…-sheaf Ó on V, and take for Ì the direct

image f*Ó, then

(6.4.3.2) çc(V, Ó) = çc(U, f*Ó),

and the Euler Poincarïe formula becomes
(6.4.3.3) çc(V, Ó) = çc(U, ä$…)≠d≠rank(Ó) - ‡t in T Swant(f*Ó).

Fix one point t in T, and denote by x1,..., xn the points of C lying

over t. As representation of I(t), Ì(t) is (f*Ó)(t), which is the direct

sum

(6.4.3.4) (f*Ó)(t) = ·i IndI(xi)
I(t) Ó(xi).

Denote by K the function field of @1 over k, and by L the function
field of C over k. Denote by Kt and Lxi

their completions at the

indicated points, and by
fxi

: Spec(Lxi
) ¨ Spec(Kt)

the map induced on (the spectra of) these completions.
Geometrically, we have

(f*Ó)(t) = ·i (fxi
)*Ó(xi).

Thus we have
(6.4.3.5) Swant(f*Ó) = ‡x ÿ t Swant((fx)*Ó(x)).

So we have
(6.4.3.6) çc(V, Ó)

= çc(U, ä$…)≠d≠rank(Ó) - ‡t in T ‡x ÿ t Swant((fx)*Ó(x)).

Take for Ó the constant sheaf ä$… on V. We get the Hurwitz formula

(6.4.3.7) çc(V, ä$…) = çc(U, ä$…)d - ‡t in T ‡x ÿ t Swant((fx)*ä$…).

LLLLeeeemmmmmmmmaaaa 6666....4444....4444 If x ÿ t and t is 0 or ‘, we have the formula
Swant((fx)*ä$…) - 1 = ordx(df/f).

For x ÿ t with t in ´m, we have

Swant((fx)*ä$…) - 1 = ordx(df/(f - t)).

pppprrrrooooooooffff It suffices to treat the case when t = 0. [By additive

translation, we reduced the case of t in !1 to this case. By replacing
f by 1/f, we reduce the case t = ‘ to this case.] In this case, f has a
zero of order e ≥ 1 at x, and Lx/Kt is a finite separable extension of

degree e. In terms of a uniformizing parameter ° in Lx, the

expansion of f at x is

f = ‡n ≥ e ån°
n, åe ± 0,

and Kt is the subfield k((f)) of k((°)), with uniformizing parameter f.

We next apply to Lx/Kt the following general facts. Let F be a

nonarchimedean local field with algebraically closed residue field. For
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E/F any finite separable extension, of degree denoted e, let M/F be a
finite galois extension of F which contains E. Denote by G the galois
group of M/F, and by H fi G the subgroup which fixes H. Let W be a
ä$…-finite-dimensional G-module. If we view W as a lisse ä$…-sheaf on

Spec(F), we may speak of its Swan conductor Swan(W), which is
related to the Artin conductor ArtinG(W) of W as G-module by

ArtinG(W) = dim(W/WG) + Swan(W).

For W := IndH
G(ä$…), dim(WG) = <IndH

G(ä$…), ä$…>G = 1, by Frobenius

reciprocity, so

ArtinG(IndH
G(ä$…)) = e - 1 + Swan(IndH

G(ä$…)).

On the other hand, one knows [Serre-CL, VI, ò2, Corollaire on page
109, applied to ¥ := the trivial character of H] that, denoting by
»E/F the discriminant of E/F, one has

ArtinG(IndH
G(ä$…)) = ordF(»E/F).

Denote by ÎE/F the different of E/F. Since E/F is fully ramified

(remember that F has algebraically closed residue field), and
»E/F = NormE/F(ÎE/F), we have

ArtinG(IndH
G(ä$…)) = ordE(ÎE/F).

So we have

Swan(IndH
G(ä$…)) - 1 = ordE(ÎE/F) - e.

The different ÎE/F is the annihilator in ØE of ¿1ØE/ØF
. So in equal

characteristic, if we fix uniformizing parameters π of F and ° of E,
ÎE/F is the ideal generated by dπ/d° in ØE. Thus ordE(ÎE/F) - e is

the order of zero or pole of dπ/π as as section of ¿1ØE/k
.= (ØE)d°:

Swan(IndH
G(ä$…)) - 1 = ordE(dπ/π).

Applying this in the situation Lx/Kt with the uniformizer π

taken to be f, we find the asserted formula. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....4444....5555 Suppose f has a zero or pole at x, say
ordx(f) = e ± 0.

Then we have the following results.
1) If e is invertible in k, then Swanf(x)((fx)*ä$…) = 0.

2) If k has positive characteristic p and p divides e, pick a
uniformizing parameter ° at x, and write the formal expansion of f
at x,

f = °e‡n ≥ 0 ån°
n,

with å0 ± 0. Then we have

Swanf(x)((fx)*ä$…)

= the least prime-to-p integer m with åm ± 0.

In particular, when p divides e, we have
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Swanf(x)((fx)*ä$…) = 1 if and only if å1 ± 0.

(6.4.6) So the hypothesis of Theorem 6.2.11 concerning the poles
of df could be restated as saying that at each pole x of f, we have
the inequality

Swan‘((fx)*ä$…) ≤ 1.

Let us say that an f satisfying this condition has Swan-minimal
poles. To end the proof of Theorem 6.2.11, we showed by a power
series computation that if f has Swan-minimal poles and f is a
composition h«g, then h has Swan-minimal poles. This can also be
seen as a special case of a general fact about the behaviour of Swan
conductors under finite direct image. Suppose we have a proper

smooth curve Y/k, together with maps g : X ¨ Y and h: Y ¨ @1

such that f = h«g. For any pole y of h, and any ä$…-representation

Ì(y) of the inertia group I(y), we have the direct image formula
(6.4.6.1) Swan‘((hy)*Ì(y))

= Swany(Ì(y)) + rank(Ì(y))Swan‘((hy)*ä$…),

cf. [Ka-TLFM, 1.6.4.1]. Now take a pole x of f, with image y = g(x) in
Y, and take for Ì(y) the direct image (gx)*ä$…. Then

(hy)*Ì(y) = (hy)*(gx)*ä$… = (fx)*ä$…,

so the formula gives
(6.4.6.2) Swan‘((fx)*ä$…)

= Swany((gx)*ä$…) + rank((gx)*ä$…)Swan‘((hy)*ä$…).

Since Swan conductors are non-negative integers, and rank((gx)*ä$…)

is at least one, we have an a priori inequality
(6.4.6.3) Swan‘((fx)*ä$…) ≥ Swan‘((hy)*ä$…).

In particular, if f has Swan-minimal poles, so does h.
(6.4.7) As a consequence of the above discussion, we extract the
following simple corollary.
CCCCoooorrrroooollllllllaaaarrrryyyy 6666....4444....8888 If f has Swan-minimal poles, then the middle

extension sheaves f*ä$…/ä$… and f*ä$… on !1 both have all I(‘)-

breaks ≤ 1.
pppprrrrooooooooffff Indeed, f*ä$…/ä$… is a direct summand of f*ä$…, so it suffices to

treat f*ä$…. The I(‘)-representation f*ä$… is the direct sum, over the

poles x of f, of the I(‘)-representations (fx)*ä$…. As we have seen

above, each of these has Swan‘((fx)*ä$…) ≤ 1. But the Swan

conductor of an I(‘)-representation is the sum of its I(‘)-breaks,
each of which is a non-negative rational number. Therefore each
(fx)*ä$… has all its I(‘)-breaks ≤ 1, and hence their direct sum,

(fx)*ä$… as I(‘)-representation, has all its I(‘)-breaks ≤ 1. QED

((((6666....5555)))) MMMMiiiiddddddddlllleeee ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn aaaannnndddd ppppuuuurrrriiiittttyyyy

(6.5.1) In this section, we work on !1 over a finite field k, of
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characteristic p. We fix a prime … ± p, and an embedding “ of ä$…
into ^. For ease of later reference, we begin by stating a basic
consequence for ~ convolution of Deligne's Weil II results.

LLLLeeeemmmmmmmmaaaa 6666....5555....2222 Let K (resp. L) be an object in Dbc(!
1, ä$…) which is

“-mixed of weight ≤ a (resp. ≤ b). Then their ~ convolution K*~L is

“-mixed of weight ≤ a + b.

pppprrrrooooooooffff The external tensor product K$L := (pr1
*K)‚(pr2

*L) on !2 is

“-mixed of weight ≤ a + b, so by Deligne's Weil II result [De-Weil II,
3.3.1], K*~L := Rsum~(K$L) is “-mixed of weight ≤ a + b. QED.

(6.5.3) We now turn to our main target.

TTTThhhheeeeoooorrrreeeemmmm 6666....5555....4444 Let K and L be perverse sheaves on !1/k. Suppose
that K and L are both “-pure of weight zero. Suppose that K has ∏
geometrically (i.e., after extension of scalars to äk). Then we have the
following results.
1) The ~ convolution K*~L is “-mixed of weight ≤ 0.

2) The middle convolution K*midL is “-pure of weight zero.

3) The canonical surjective map of perverse sheaves
K*~L ¨ K*midL

has a kernel which is “-mixed of weight ≤ -1, and induces an

isomorphism of perverse sheaves on !1/k

GrW
0(K*~L) ¶ K*midL.

pppprrrrooooooooffff Assertion 1) results from Lemma 6.5.2 above
To prove 2), note that, as K and L are “-pure of weight 0, their

Verdier duals DK and DL are “-mixed of weight ≤ 0. The Verdier dual
of K**L is DK*~DL, which by 1) is “-mixed of weight ≤ 0. Therefore

K**L is “-mixed of weight ≥ 0. Because K has ∏, both K*~L and K**L

are perverse, and K*midL is, as a perverse sheaf, both a quotient of

K*~L, so “-mixed of weight ≤ 0, and a subobject of K**L, so “-mixed

of weight ≥ 0. Thus K*midL is “-pure of weight 0.

To prove 3), we first reduce to the case where, in addition, L is
geometrically isotypical. For this, we exploit the fact that L, being
perverse and “-pure of weight 0, is geometrically semisimple.
Consider its isotypical decomposition over äk. The finitely many
nonzero isotypical components are permuted by Gal(äk/k), so, at the
expense of replacing k by a finite extension, we may assume that
each isotypical component is Gal(äk/k)-stable, and hence that the
isomorphism class of the geometric irreducible underlying each
isotypical component is Gal(äk/k)-stable. Then over k, L is a direct
sum of pieces, each of which is perverse, “-pure of weight 0, and
geometrically isotypical. Since 3) is compatible with direct sums, it
suffices to prove 3) in the case when L is perverse, “-pure of weight
0, and geometrically isotypical.

If the geometric irreducible underlying L has ∏, then L has ∏
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geometrically, and we argue as follows. Fix a nontrivial ä$…
≠-valued

additive character ¥ of the prime field Ép. We will exploit the fact

that Fourier Transform FT¥ is an autoequivalence of the category of

perverse sheaves on !1/k, which increases weights by one.
Since K and L both have ∏, we can write FT¥(K) as (j*ˆ)[1]

and write FT¥(L) as (j*˜)[1], for some lisse ä$…-sheaves ˆ and ˜ on

a common dense open set U fi !1/k, inclusion denoted j: U ¨ !1, cf.
[Ka-RLS, 2.10.3]. We know [Ka-RLS, 2.10.8 and 2.10.1] that

FT¥(K*midL) = (j*(ˆ‚˜))[1],

FT¥(K*~L) = ((j*ˆ)‚(j*˜))[1].

Because K and L are both “-pure of weight zero, FT¥(K) and FT¥(L)

are both “-pure of weight one, or equivalently, ˆ and ˜ are both “-
pure of weight zero. Thus ˆ‚˜ is also “-pure of weight zero, and
hence j*(ˆ‚˜) is “-mixed of weight ≤ 0. Similarly (j*ˆ)‚(j*˜) is

“-mixed of weight ≤ 0. We have a natural injective map of usual

sheaves on !1/k
(j*ˆ)‚(j*˜) ¨ j*(ˆ‚˜)

which sits in a short exact sequence of usual sheaves on !1/k,

0 ¨ (j*ˆ)‚(j*˜) ¨ j*(ˆ‚˜) ¨ j*(ˆ‚˜)/((j*ˆ)‚(j*˜)) ¨ 0.

The cokernel sheaf j*(ˆ‚˜)/((j*ˆ)‚(j*˜)) is punctual, and it is “-

mixed of weight ≤ 0, being a quotient of j*(ˆ‚˜). This exact

sequence of usual sheaves gives a short exact sequence of perverse

sheaves on !1/k,
0 ¨ j*(ˆ‚˜)/((j*ˆ)‚(j*˜))

¨ ((j*ˆ)‚(j*˜))[1] ¨ (j*(ˆ‚˜))[1] ¨ 0.

In this short exact sequence the first term is “-mixed of weight ≤ 0.
Applying FTä¥(1), which is the inverse to FT¥ and which decreases

weights by one, we get a short exact sequence
0 ¨ (“-mixed of weight ≤ -1) ¨ K*~L ¨ K*midL ¨0,

in which the map K*~L ¨ K*midL is the natural one. We already

know that K*midL is “-pure of weight 0. So applying the exact

functor GrW
0 concludes the proof of 3) in the case when the

geometric irreducible underlying L has ∏.
If the geometric irreducible underlying L does not have ∏, that

irreducible must be Ò¥(åx)[1] for some å in k. Indeed, the only

perverse irreducibles over äk which do not have ∏ are the Ò¥(åx)[1],

for å in äk; the requirement that its isomorphism class be Gal(äk/k)-
stable forces å to lie in k. Then L is

L ¶ Ò¥(åx)[1]‚Å(1/2)
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for Å some geometrically constant sheaf on !1/k which is “-pure of
weight 0. So it suffices to treat the case when L is Ò¥(åx)(1/2)[1]. In

this case, using Ò¥(å(x+y)) ¶ Ò¥(åx)‚Ò¥(åy), we find

K*~Ò¥(åx)(1/2)[1] = Ò¥(åx)(1/2)[1]‚RÆc(!
1‚käk, K‚Ò¥(-åx)),

K**Ò¥(åx)(1/2)[1] = Ò¥(åx)(1/2)[1]‚RÆ(!1‚käk, K‚Ò¥(-åx)).

The "forget supports" map
K*~Ò¥(åx)(1/2)[1] ¨ K**Ò¥(åx)(1/2)[1]

is (the tensor product with Ò¥(åx)(1/2)[1] of) the "forget supports"

map

RÆc(!
1‚käk, K‚Ò¥(-åx)) ¨ RÆ(!1‚käk, K‚Ò¥(-åx)).

Notice that K‚Ò¥(-åx) is perverse, “-pure of weight zero, and

geometrically has ∏. So assertion 3) now results from the following
lemma, applied to K‚Ò¥(-åx).

LLLLeeeemmmmmmmmaaaa 6666....5555....5555. Suppose K on !1/k is perverse, “-pure of weight 0,
and geometrically has ∏. Then we have the following results.

1) Hc
i(!1‚käk, K) = 0 for i ±0,

2) Hc
0(!1‚käk, K) is “-mixed of weight ≤ 0,

3) Hi(!1‚käk, K) = 0 for i ±0,

4) H0(!1‚käk, K) is “-mixed of weight ≥ 0,

5) the kernel of the natural "forget supports" map

Hc
0(!1‚käk, K) ¨ H0(!1‚käk, K)

is “-mixed of weight ≤ -1, and this map induces an isomorphism

GrW
0(Hc

0(!1‚käk, K)) ¶ Image(Hc
0(!1‚käk, K) ¨ H0(!1‚käk, K)).

pppprrrrooooooooffff Assertion 1) is the perversity (remember K has ∏
geometrically) of

K*~ä$…[1] = ä$…[1]‚RÆc(!
1‚käk, K).

Assertion 2) results from [De-Weil II, 3.3.1]. Assertions 3) and 4) for K
are the Poincarïe duals of assertions 1) and 2) respectively for DK.

To prove 5), we break K geometrically (i.e., over äk) into
isotypical components (remember that K, being “-pure, is
geometrically semisimple, cf. [BBD, 5.3.8]). Each isotypical component
is either a middle extension, or is punctual. Lumping together the
isotypical components of each type, we get an arithmetic (i.e., over
k) decomposition of K as a direct sum

K = Kpct · Kmidext
of a punctual perverse sheaf Kpct and of a middle extension

perverse sheaf on !1/k, both of which are “-pure of weight 0.
If K is punctual, then the "forget supports" map

Hc
0(!1‚käk, K) ¨ H0(!1‚käk, K)

is an isomorphism, and both its source and target are “-pure of
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weight 0.
If K is a middle extension, say K = Ì[1] for some middle

extension sheaf on !1, we argue as follows. Denote by

j : !1 fi @1

the inclusion. On @1 we have the three perverse sheaves j~K = j~Ì[1],

Rj*K = Rj*Ì[1], and j~*K = j*Ì[1]. The object j~*K = j*Ì[1] is “-pure

of weight 0 on @1.

The short exact sequence of usual sheaves on @1

0 ¨ j~Ì ¨ j*Ì ¨ j*Ì/j~Ì ¶ ÌI(‘) as pct. sheaf at ‘ ¨ 0

gives a short exact sequence of perverse sheaves on @1

0 ¨ j*Ì/j~Ì ¨ j~Ì[1] ¨ j*Ì[1] ¨ 0.

Since the middle extension Ì[1] is “-pure of weight 0 on !1, Ì is the

extension from a dense open set U fi !1 of a lisse sheaf Ì|U which is
“-pure of weight -1 on U. Then j*Ì is “-mixed of weight ≤ -1, cf.

[De-Weil II, 1.8.1], as is its quotient j*Ì/j~Ì ¶ ÌI(‘). The long exact

cohomology sequence on @1‚käk gives a right exact sequence

(weight ≤ -1) ¨ H0c(!
1‚käk, K) ¨ H0(@1‚käk, j~*K) ¨ 0.

The third term H0(@1‚käk, j~*K) is “-pure of weight zero. Thus we

have

GrW
0(H0c(!

1‚käk, K)) = H0(@1‚käk, j~*K).

We also have a short exact sequence of perverse sheaves on @1

0¨ j*Ì[1] ¨ Rj*Ì[1] ¨ H1(I(‘), Ì(‘)) as pct. sheaf at ‘ ¨ 0,

which gives a left exact sequence

0 ¨ H0(@1‚käk, j~*K) ¨ H0(!1‚käk, K) ¨ H1(I(‘), Ì(‘)).

Thus we have

GrW
0(H0c(!

1‚käk, K)) = H0(@1‚käk, j~*K)

= Image(H0c(!
1‚käk, K) ¨ H0(!1‚käk, K)),

as required. QED
This concludes the proof of Theorem 6.5.4.

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....5555....6666 Fix an integer r ≥ 2. Let K1, K2,...,Kr be perverse

sheaves on !1/k. Suppose that each Ki is “-pure of weight zero, and

has ∏ geometrically. Then we have the following results.
1) The ~ convolution K1*~K2*~...*~Kr is “-mixed of weight ≤ 0.

2) The middle convolution K1*midK2*mid...*midKr has ∏, and is “-

pure of weight zero.
3) The canonical surjective map of perverse sheaves

K1*~K2*~...*~Kr ¨K1*midK2*mid...*midKr
has a kernel which is “-mixed of weight ≤ -1, and induces an

isomorphism of perverse sheaves on !1/k
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GrW
0(K1*~K2*~...*~Kr) ¶ K1*midK2*mid...*midKr.

pppprrrrooooooooffff The external tensor product K1$K2$ ...$Kr:=

(pr1
*K1)‚(pr2

*K2)‚...‚(prr
*Kr) on !r is “-mixed of weight ≤ 0, so

by Deligne's Weil II result [De-Weil II, 3.3.1],
K1*~K2*~...*~Kr:= Rsum~(K1$K2$ ...$Kr)

is “-mixed of weight ≤ 0. This proves assertion 1). From [Ka-RLS,
2.6.5 and 2.6.17], we know that *mid is an associative product

(perverse sheaves with ∏)≠(perverse sheaves with ∏)
¨ (perverse sheaves with ∏).

So assertion 2) results from the previous Theorem 6.5.4 by an
obvious induction. For assertion 3), we argue as follows. If r = 2, we
invoke the previous Theorem 6.5.4. If r ≥ 3, we may assume by
induction that the canonical surjective map of perverse sheaves

K1*~K2*~...*~Kr-1 ¨ K1*midK2*mid...*midKr-1
sits in a short exact sequence of perverse sheaves

0 ¨ (weight ≤ -1) ¨ K1*~K2*~...*~Kr-1
¨ K1*midK2*mid...*midKr-1 ¨ 0.

Because Kr has ∏, the distinguished triangle we get from this by

forming the ~ convolution with Kr has all its terms perverse, so we

get a short exact sequence
0 ¨ (weight ≤ -1)*~Kr ¨ K1*~K2*~...*~Kr

¨ (K1*midK2*mid...*midKr-1)*~Kr ¨ 0

of perverse sheaves. The first term
Ker1 := (weight ≤ -1)*~Kr

is mixed of weight ≤ -1, by Lemma 6.5.2.
By the previous Theorem 6.5.4 applied to the two objects

K1*midK2*mid...*midKr-1 and Kr, the canonical surjective map of

perverse sheaves
(K1*midK2*mid...*midKr-1)*~Kr ¨ K1*midK2*mid...*midKr

sits in a short exact sequence of perverse sheaves
0 ¨ (weight ≤ -1) := Ker2 ¨ (K1*midK2*mid...*midKr-1)*~Kr

¨ K1*midK2*mid...*midKr ¨ 0.

Combining these two short exact sequences, we get a short exact
sequence

0 ¨ Ker3 ¨ K1*~K2*~...*~Kr ¨ K1*midK2*mid...*midKr ¨ 0,

in which Ker3 is “-mixed of weight ≤ -1, being an extension of Ker2

by Ker1. Applying the exact functor GrW
0, we get

GrW
0(K1*~K2*~...*~Kr) ¶ K1*midK2*mid...*midKr. QED

((((6666....6666)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo tttthhhheeee mmmmoooonnnnooooddddrrrroooommmmyyyy ooooffff mmmmuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee
cccchhhhaaaarrrraaaacccctttteeeerrrr ssssuuuummmmssss iiiinnnn sssseeeevvvveeeerrrraaaallll vvvvaaaarrrriiiiaaaabbbblllleeeessss
(6.6.1) Let us recall the general context. We have a finite field k
of characteristic p, a prime number … invertible in k, and a
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nontrivial multiplicative character ç : k≠ ¨ ä$…
≠ of k≠, extended by

zero to all of k. We fix integers e ≥ 3 and n ≥ 1. We denote by ∏(n, e)

the space of polynomial functions on !n of degree ≤ e. Recall from
5.1.10 that an n-variable polynomial f in ∏(n,e)(äk) is a strong
Deligne polynomial if it satisfies the following three conditions D0),
D1), and D2).

D0) The closed subscheme f=0 in !n is smooth of codimension one.
D1) When we write f = ‡i≤e Fi as a sum of homogeneous forms, Fe is

nonzero, and, in the case n ≥ 2, the closed subscheme of @n-1

defined by the vanishing of Fe is smooth of codimension one.

D2) The integer e is prime to p.
(6.6.2) For a fixed integer e which is prime to p, the strong
Deligne polynomials form a dense open set ÍÎ(n,e) of ∏(n,e).
(6.6.3) Recall further from Corollary 5.1.14 that if e is prime to
p, there is a lisse ä$…-sheaf ˜(n,e,ç)|ÍÎ(n,e) on ÍÎ(n, e), whose

trace function is given as follows, cf. 5.1.15:::: for E/k any finite
extension, and for any f in ÍÎ(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,ç))

= (-1)n(ùE)-n/2‡v in !n(E) çE(f(v)).

The sheaf ˜(n,e,ç)|ÍÎ(n,e) has rank (e - 1)n. If çe is nontrivial, this

sheaf is pure of weight 0. If çe is trivial, this sheaf is mixed of

weights 0 and -1; its Gr-1 is lisse of rank (1/e)((e-1)n - (-1)n), and

its Gr0 is lisse of rank N(n, e) := (1/e)((e-1)n+1 - (-1)n+1).
(6.6.4) In the previous chapter, we proved general theorems
concerning the geometric monodromy group Ggeom for the sheaf

˜(n,e,ç)|ÍÎ(n,e) when çe is nontrivial, and for the sheaf

Gr0(˜(n,e,ç)|ÍÎ(n,e)) when çe is trivial. When ç has order 2 (i.e., k
has odd characteristic, and ç is the quadratic character ç2) and n

is even, we showed that Ggeom is either SO or O, except in two

exceptional cases, namely (n=2, e=3, p ≥ 5) and (n=2, e=4, p ≥ 3),
when Ggeom is finite. We will now show that the SO case does not

occur, by showing that Ggeom contains a reflection, whenever ç is

the quadratic character ç2 and n is even. This result is a special

case of the following one, which tells us that, in any odd
characteristic, Ggeom always contains a specific sort of

pseudoreflection.

TTTThhhheeeeoooorrrreeeemmmm 6666....6666....5555 Suppose k is a finite field of odd characteristic p. Let
n ≥ 1 and e ≥ 3 be integers, and let ç be a nontrivial multiplicative

character of k≠. Suppose that e is prime to p. Then Ggeom for the

sheaf Gr0(˜(n,e,ç)|ÍÎ(n,e)) contains a (necessarily tame)
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pseudoreflection of determinant ç(ç2)
n. [Recall (5.1.14) that if çe is

nontrivial, then Gr0(˜(n,e,ç)|ÍÎ(n,e)) is just ˜(n,e,ç)|ÍÎ(n,e)
itself.]

((((6666....7777)))) PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 6666....6666....5555,,,, aaaannnndddd aaaapppppppplllliiiiccccaaaattttiiiioooonnnnssss
(6.7.1) The result is geometric, so we may freely replace the
finite field k by any finite extension of itself. Over such an extension,
we will exhibit a one-parameter family of strong Deligne
polynomials such that after pullback of the sheaf in question to this
one-parameter family, one of its local monodromies is a
pseudoreflection of the asserted type.
(6.7.2) Replacing k by a finite extension if necessary, we can find
a one-variable monic polynomial f(x) over k of degree e which is

Lefschetz on !1, i.e., such that its derivative f'(x) has e-1 distinct
zeroes, say å1,..., åe-1, and which has e-1 distinct critical values

∫i : = f(åi). At the expense of further enlarging k, we may assume

that all the critical points åi and, a fortiori, all the critical values

∫i : = f(åi), lie in k. Now pick a sequence of finite extensions

k = k1 fi k2 fi ... fi kn
such that ki ± kj for i ± j, and pick scalars ¬i Ÿ ki i =1 to n, so that

¬1 ± 0, and so that, for i ≥ 2, ¬i îŸ ki-1. We claim that the one-

parameter family (with parameter t) of polynomials in n variables
given by

t ÿ t - ‡j=1 to n ¬jf(xj)

is a family of strong Deligne polynomials, over the parameter space

!1 - S,
for

S : = {the (e-1)n distinct sums ‡j ¬j∫j}.

The critical points of ‡j=1 to n ¬jf(xj) are the (e-1)
n points in !n

each of whose coordinates is one of the e-1 critical points åi of f. Its

critical values are the points ‡j ¬j∫j, where each ∫j is one of the e-1

critical values of f. There are (e-1)n distinct such sums ‡j ¬j∫j,

simply because the critical values ∫i of f all lie in k, while the

numbers ¬i are linearly independent over k. Thus for t0 not in S, the

hypersurface
t0 - ‡j=1 to n ¬jf(xj) = 0

in !n is smooth of codimension one. Moreover, it is a strong Deligne

polynomial, as its leading form is ‡i ¬i(xi)
e, and e is prime to p.

(6.7.3) We now take kn as our new ground field. Let us denote by

˜1par the ("one-parameter") pullback of ˜(n, e, ç) to !1 - S. Thus

˜1par is a lisse sheaf on !1 - S whose trace function is given as
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follows: for any finite extension of kn, and for any t in !1(E) - S, we

have
Trace(FrobE,t| ˜1par)

= (-1)n(ùE)-n/2‡v in !n(E) çE(t - ‡ ¬if(vi)).

We further expand the inner sum:
‡v in !n(E) çE(t - ‡ ¬if(vi))

= ‡w in !n(E) çE(t - ‡ wi)°i=1 to nù{vi in E with ¬if(vi) = wi}.

(6.7.4) If we fix E and view this sum as a function of t in E, we
recognize it as the multiple additive convolution on E of the n+1 ä$…-

valued functions on E given by
x ÿçE(x)

and the n functions
t ÿ ù(y in E with ¬if(y) = x}.

The first function is the trace function of j~Òç, the remain ones are

the trace functions of the sheaves (¬if)*ä$…, for i=1 to n.

(6.7.5) Taking account of the factor (-1)n(ùE)-n/2, we find

KKKKeeeeyyyy IIIIddddeeeennnnttttiiiittttyyyy 6666....7777....6666 The restriction to !1 - S of the multiple ~
convolution

(j*Òç[1](1/2))*~((¬1f)*ä$…[1](1/2))*~...*~((¬nf)*ä$…[1](1/2))

has the same trace function as ˜1par[1](1/2).

(6.7.7) Up to this point, the multiple ~ convolution only makes
sense as a derived category object. We will now see that it is in fact
perverse. Denote by L the perverse sheaf

L := (f*ä$…/ä$…)[1](1/2)

on !1. Thanks to Theorem 6.2.4, L is perverse and geometrically

irreducible, lisse of rank e-1 on !1 - CritValues(f), with local
monodromy a tame reflection at each of its e-1 finite singularities,
and with Ggeom the full symmetric group Se. We note for later use

that L is tame at ‘ (because e is prime to p). Also, L has ∏, since it
is geometrically irreducible and has finite singularities. For each ¬i,

we have
Mult¬i

(L) = ((¬if*)ä$…/ä$…)[1](1/2),

(¬1f)*ä$…[1](1/2) = Mult¬i
(L) · ä$…[1](1/2).

LLLLeeeemmmmmmmmaaaa 6666....7777....8888 The multiple ~ convolution
(j*Òç[1](1/2))*~((¬1f)*ä$…[1](1/2))*~...*~((¬nf)*ä$…[1](1/2))

is perverse. It is equal to the perverse sheaf
(j*Òç[1](1/2))*~Mult¬1

(L)*~...*~Mult¬n
(L).

pppprrrrooooooooffff The perverse sheaf (j*Òç[1](1/2)) has ∏ geometrically [Ka-

RLS, 2.9.1], and one knows that

Hc(!
1‚käk, j~Òç) = 0.
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So we have
(j*Òç[1](1/2))*~$…[1](1/2) = 0.

For any perverse M, the object (j*Òç[1](1/2))*~M is perverse, and

(commutativity of ~ convolution) satisfies
((j*Òç[1](1/2))*~M)*~($…[1](1/2)) = 0.

Thus we find that
(j*Òç[1](1/2))*~((¬1f)*ä$…[1](1/2))

= (j*Òç[1](1/2))*~(Mult¬1
(L) · ä$…[1](1/2))

= (j*Òç[1](1/2))*~Mult¬1
(L)

is perverse. We now proceed by induction on n. Because each
Mult¬i

(L) has ∏, we can take for M successively the perverse

sheaves Mult¬1
(L), Mult¬1

(L)*~Mult¬2
(L), et cetera, and we find the

asserted equality. QED

Combining this lemma with the Key Identity 6.7.6 we find

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....7777....9999 The restriction to !1 - S of the perverse sheaf
(j*Òç[1](1/2))*~Mult¬1

(L)*~...*~Mult¬n
(L).

has the same trace function as ˜1par[1](1/2).

(6.7.10) There exists a dense open set U fi !1 - S on which the
perverse sheaf (j*Òç[1](1/2))*~Mult¬1

(L)*~...*~Mult¬n
(L) is of the

form ˆ(1/2)[1], for some lisse sheaf ˆ on U. Because the perverse
sheaf in question is “-mixed of weight ≤ 0, ˆ is “-mixed of weight
≤ 0. The lisse sheaves ˆ and ˜1par|U have the same trace function.

Both ˆ and ˜1par|U are “-mixed, of weight ≤ 0. Since both are lisse

on U, we know a priori [De-Weil II, 3.4.1 (ii)] that their weight

filtrations are by lisse subsheaves on U. This being the case, Gr0(ˆ)

and of Gr0(˜1par|U) are both lisse sheaves on U, whose trace

functions we can recover point by point, by just keeping those
Frobenius eigenvalues of ˆ and of ˜1par respectively which, via “,

lie on the unit circle. Therefore Gr0(ˆ) and Gr0(˜1par|U) have the

same trace function. By Chebotarev, Gr0(ˆ) and Gr0(˜1par|U) have

isomorphic semisimplification as representations of π1
arith(U), so a

fortiori they have isomorphic semisimplification as representations

of π1
geom(U). But by a fundamental result of Deligne [De-Weil

II,3.4.1 (iii)], any lisse sheaf which is “-pure on U is semisimple as a

representation of π1
geom(U). Thus Gr0(ˆ) and Gr0(˜1par|U) are

geometrically isomorphic on U.
(6.7.11) Recall that ˜1par|U is the pullback of ˜(n, e, ç)|ÍÎ(n, e)

to U. So in order to show that Ggeom for Gr0(˜(n, e, ç)|ÍÎ(n, e))
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contains a pseudoreflection of determinant ç(ç2)
n, it suffices to

show that Ggeom for its pullback Gr0(˜1par|U) contains such a

pseudoreflection. Since Gr0(ˆ) and Gr0(˜1par|U) are geometrically

isomorphic on U, it suffices to show that Ggeom for Gr0(ˆ) contains

such a pseudoreflection. Now Gr0(ˆ)(1/2)[1] is the restriction to U of
the perverse sheaf

Gr0((j*Òç[1](1/2))*~Mult¬1
(L)*~...*~Mult¬n

(L))

= (j*Òç[1](1/2))*midMult¬1
(L)*mid...*midMult¬n

(L).

We will show that this perverse sheaf is a middle extension which is

lisse on !1 - S, and at each point of S has local monodromy a

(necessarily tame) pseudoreflection of determinant ç(ç2)
n.

(6.7.12) To do this, we apply Corollary 6.1.12, Theorem 6.1.18, and
Pseudoreflection Output Corollary 6.1.21 to analyze the perverse
sheaf

(j*Òç[1](1/2))*midMult¬1
(L)*mid...*midMult¬n

(L)

and its local monodromy at finite distance on !1 over äk. In applying
those results, we take the "L" in those results to be our L. Recall that
L is perverse and geometrically irreducible, lisse of rank e-1 on

!1 - CritValues(f), with local monodromy a tame reflection at each
of its e-1 finite singularities. Recall that L has ∏ (because it is
geometrically irreducible and has finite singularities). Recall also
from Corollary 6.4.5 that L has all its I(‘)-slopes ≤ 1. In fact, since e
is prime to p, L is tame at ‘. We successively take the "K" in those
results to be

j*Òç[1](1/2),

(j*Òç[1](1/2))*midMult¬1
(L),

.

.

.
(j*Òç[1](1/2))*midMult¬1

(L)*mid...*midMult¬n-1
(L).

The initial K, namely j*Òç[1](1/2), is perverse and geometrically

irreducible (and hence geometrically semisimple), non-punctual, and
has ∏. It is lisse on ´m, and its local monodromy at 0 is a tame

pseudoreflection of determinant ç.
(6.7.13) By our successive choice of the ¬i, we see by induction on

n that
(j*Òç[1](1/2))*midMult¬1

(L)*mid...*midMult¬n
(L)

is geometrically semisimple, non-punctual, has ∏, is lisse outside the

(e-1)n points of S, and at each point of S has local monodromy a

tame pseudoreflection of determinant ç(ç2)
n. This concludes the
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proof of Theorem 6.6.5. QED

(6.7.14) In the special case when ç is ç2 and n is even, we get

the existence of a reflection in Ggeom.

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....7777....11115555 Suppose k is a finite field of odd characteristic p.
Let n ≥ 1 and e ≥ 3 be integers, and let ç2 be the quadratic

character of k≠. Suppose that e is prime to p, and that n is even.
Then Ggeom for the sheaf

˜(n,e,ç2)|ÍÎ(n,e), if e is odd,

Gr0(˜(n,e,ç2)|ÍÎ(n,e)), if e is even,

contains a reflection.

(6.7.16) Once we have a reflection, we can sharpen Theorems 5.2.2
and 5.5.2 in the case ç = ç2, n even.

TTTThhhheeeeoooorrrreeeemmmm 6666....7777....11117777 Suppose k is a finite field of characteristic odd p.
Let n ≥ 1 and e ≥ 3 be integers, and let ç2 be the quadratic

character of k≠. Suppose further that e is prime to p, and that n is
even. Then we have the following results.

1) If e is odd (i.e., if (ç2)
e ± ú), then Ggeom for ˜(n,e,ç)|ÍÎ(n,e) is

O((e-1)n), except in the case (n = 2, e = 3, p ≥ 5), in which case
Ggeom is a finite primitive subgroup of O(4) with fourth moment 3,

which contains a reflection.

2) If e is even (i.e., if (ç2)
e = ú), then Ggeom is O(N(n, e)), except in

the case (n = 2, e = 4, p ≥ 3), in which case Ggeom is the Weyl group

of E7 in its reflection representation.

RRRReeeemmmmaaaarrrrkkkk 6666....7777....11118888 We can also use the full strength of Theorem 6.6.5,
combined with the fundamental results from group theory recalled
in Chapter 2, to give a very short proof of most of Theorems 5.2.2
and 5.5.2. We say "most of" because we omit characteristic 2, and we
omit, in n ≤ 2 variables, some low degrees. Here is the precise
statement of what we get this "soft" way.

TTTThhhheeeeoooorrrreeeemmmm 6666....7777....11119999 Suppose k is a finite field of odd characteristic p.
Let n ≥ 1 and e ≥ 3 be integers, and let ç be a nontrivial

multiplicative character of k≠. Suppose that e is prime to p. Consider
the lisse sheaf

˜(n,e,ç)|ÍÎ(n,e) = Gr0(˜(n,e,ç)|ÍÎ(n,e)), if çe is nontrivial,

Gr0(˜(n,e,ç)|ÍÎ(n,e)), if çe is trivial,
and denote by N its rank. Thus

N = (e-1)n, if çe ± ú,

N = (1/e)((e-1)n+1 - (-1)n+1), if çe = ú.



260 Chapter 6

Then we have the following results for the group Ggeom attached to

this sheaf.
1) If ç does not have order 2, and if any of the following conditions
a), b), or c) holds, then Ggeom contains SL(N):

a) N > 4,

b) N > 2, and ç(ç2)
n has order > 3,

c) ç(ç2)
n has order ≥ 6.

2) If ç has order 2, and if n is odd, then Ggeom = Sp(N).

3) If ç has order 2, if n is even, and if N > 8, then Ggeom = O(N).

pppprrrrooooooooffff Repeating verbatim the first page of the proofs of Theorems
5.2.2 and 5.5.2, we reduce to a small number of possibilities for
Ggeom.

If ç does not have order 2, then Ggeom either contains SL(N),

or is a finite primitive subgroup of GL(N) which, thanks to Theorem

6.6.5, contains a pseudoreflection of determinant ç(ç2)
n. As ç does

not have order 2, the order of ç(ç2)
n is at least 3. For N ≥ 2, there

are no such finite primitive groups if any of conditions a), b), or c)
hold. This is immediate from the r=1 case of Theorem 2.6.7. And if

N = 1, a case which can only arise if n=1, e=3, and çe = ú, there is
nothing to prove.

If ç has order 2 and n is odd, then Ggeom is either Sp(N) or is

finite. But it cannot be finite, as it contains a unipotent
pseudoreflection.

If ç has order 2 and n is even, then Ggeom is either SO(N) or

O(N) or is a finite primitive subgroup of O(N) with fourth moment
M4 ≤ 3 which, thanks to Theorem 6.6.5, contains a reflection. So the

SO(N) case does not arise. For N > 8, the finite case cannot arise
either. Indeed, by Mitchell's Theorem 2.6.8, a finite primitive
subgroup of GL(N) which contains a reflection has image in PGL(N)
the symmetric group SN+1 in its deleted permutation

representation, and any such group has fourth moment M4 > 3 (in

fact, equal to 4, but we do not need this extra precision). QED

(6.7.20) When ç does not have order 2, we can also determine
Ggeom exactly, so long as it is not finite. For any integer a ≥ 1, let us

denote by GLa(N) the Zariski-closed subgroup of GL(N) defined as

GLa(N) := {A in GL(N) with det(A)a = 1}.

TTTThhhheeeeoooorrrreeeemmmm 6666....7777....22221111 Suppose k is a finite field of odd characteristic p.
Let n ≥ 1 and e ≥ 3 be integers, and let ç be a nontrivial

multiplicative character of k≠, whose order is not 2. Suppose that e
is prime to p. Consider the lisse sheaf

˜(n,e,ç)|ÍÎ(n,e) = Gr0(˜(n,e,ç)|ÍÎ(n,e)), if çe is nontrivial,
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Gr0(˜(n,e,ç)|ÍÎ(n,e)), if çe is trivial,
and denote by N its rank. Thus

N = (e-1)n, if çe ± ú,

N = (1/e)((e-1)n+1 - (-1)n+1), if çe = ú.
Suppose that the group Ggeom attached to this sheaf contains SL(N),

e.g., suppose that any of the following conditions a), b), or c) holds:
a) N > 4,

b) N > 2, and ç(ç2)
n has order > 3,

c) ç(ç2)
n has order ≥ 6,

cf. Theorem 6.7.19.
Define integers a and b as follows:

a := the order of the character ç(ç2)
n,

b := the number of roots of unity in $(ç) = $(ç(ç2)
n).

[Thus b = a if a is even, and b = 2a if a is odd.]
Then we have the following results.
1) We have the inclusions

GLa(N) fi Ggeom fi GLb(N).

2) If b = a, then Ggeom = GLa(N).

3) Suppose that n is odd, b = 2a, and çe = ú. Then Ggeom = GLa(N).

4) Suppose that n is odd, b = 2a, çe ± ú, and e is odd. Then
Ggeom = GLa(N).

5) Suppose that n is odd, b = 2a, çe ± ú, and e is even. Then
Ggeom = GLb(N).

6) Suppose that n is even, b = 2a, and çe = ú. Then Ggeom = GLa(N).

7) Suppose that n is even, b = 2a, and çe ± ú. Then Ggeom = GLb(N).

pppprrrrooooooooffff 1) The key point is that the characteristic polynomials of all
Frobenii on the lisse sheaves

˜(n,e,ç)(-n/2)|ÍÎ(n,e), for any nontrivial ç,

(Gr0(˜(n,e,ç))(-n/2)|ÍÎ(n,e)), if çe is trivial,
have coefficients in the ring of integers Ø(ç) of the subfield $(ç) of
ä$…. Moreover, as we vary the prime … ± char(k) and the embedding

of the abstract field $(ç) into ä$…, we obtain a compatible system of

lisse sheaves on the space ÍÎ(n, e). [By a compatible system, we
mean the following. Let k be a finite field of characteristic p, X/k a
lisse, geometrically connected k-scheme, and let K be a number field.
We denote by Ú the set of all pairs

(a prime number … ± p, a field embedding ¬ : K fi ä$…).

Suppose we are given for each ¬ in Ú a lisse ä$…-sheaf Ì¬ on X. We

say the collection {Ì¬}¬ forms a compatible system if for every finite

extension E/k, and for every E-valued point f in X(E), the
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characteristic polynomials, for variable ¬ in Ú,
det(1 - TFrobE,f | Ì¬)

all lie in K[T] and are all equal in K[T]. If this is the case, then all the
coefficients lie in ØK[1/p], and the highest degree coefficient,

det(FrobE,f | Ì¬), is a unit in ØK[1/p].]

This is obvious for the lisse sheaf ˜(n,e,ç)(-n/2)|ÍÎ(n,e), since
by Corollary 5.1.15, for any finite extension E/k, and any f in
ÍÎ(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,ç)(-n/2)) = (-1)n‡v in !n(E) çE(f(v)),

and the groups Hc
i((!n‚käE)[1/f], Òç(f)) = Hc

i(!n‚käE, Òç(f)) vanish

for i±n, cf. [Ka-ENSMCS, 5.1]. Thus we have
det(1 - TFrobE,f |˜(n,e,ç)(-n/2))

= det(1 - TFrobE | Hc
n((!n[1/f])‚äE, Òç(f))),

and we have the vanishing

Hc
i((!n[1/F])‚äE, Òç(f)) = 0 for i ±n.

Thus the characteristic polynomial of Frobe,f on ˜(n,e,ç)(-n/2) is

equal to the L-function of !n[1/f]/E with coefficients in Òç(f): we

have the formula

L(!n[1/f]/E, Òç(f))(T)
(-1)n+1 = det(1 - TFrobE,f |˜(n,e,ç)(-n/2)).

When çe = ú, we need the explicit cohomological description of

the characteristic polynomials of FrobE,f on Gr0(˜(n,e,ç))(-n/2) as

follows, cf. [Ka-ENSMCS, Theorem 18]. Attached to the strong Deligne
polynomial f in n variables over E of degree e, we have the
homogeneous form F in n+1 variables over E of the same degree e,
obtained by homogenizing f, say

F(X0,..., Xn) := (X0)
ef(X1/X0,..., Xn/X0).

In the projective space @n with homogeneous coordinates the Xi, we

have the affine open set @n[1/F]. Because çe = ú, we may form the

lisse sheaf Òç(F) on @n[1/F]. We have

det(1 - TFrobE,f | Gr
0(˜(n,e,ç))(-n/2))

= det(1 - TFrobE | Hc
n((@n[1/F])‚äE, Òç(F))),

and we have the vanishing

Hc
i((@n[1/F])‚äE, Òç(F)) = 0 for i ±n.

Thus the characteristic polynomial of Frobe,f on Gr0(˜(n,e,ç))(-n/2)

is equal to the L-function of @n[1/F]/E with coefficients in Òç(F): we

have the formula
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L(@n[1/F]/E, Òç(F))(T)
(-1)n+1

= det(1 - TFrobE,f | Gr
0(˜(n,e,ç))(-n/2)).

We next apply to these sheaves the following general lemmas.

LLLLeeeemmmmmmmmaaaa 6666....7777....22222222 Let k be a finite field in which … is invertible, X/k a
lisse, geometrically connected k-scheme, and Ì a lisse ä$…-sheaf on X.

Let K fi ä$… be a subfield which contains all traces Trace(FrobE,x | Ì),

for all finite extensions E/k and all points x in X(E). If the group µ(K)

of all roots of unity in K is finite, say of order b, then det(Ì)‚b is
geometrically constant, i.e., Ggeom for Ì lies in GLb(rank(Ì)).

pppprrrrooooooooffff This is proven, but not stated (~) in the argument of [Ka-ACT,
first half of proof of 5.2bis]. QED

LLLLeeeemmmmmmmmaaaa 6666....7777....22223333 Let k be a finite field in which … is invertible, X/k a
lisse, geometrically connected k-scheme, and K a number field. Let
{Ì¬}¬ be a compatible system of lisse sheaves of rank one on X. Fix

an element © in π1
geom(X). Then ©|Ì¬ is a root of unity in K,

independent of ¬.
pppprrrrooooooooffff The assertion is geometric, so we may replace k by a finite
extension of itself if need be and assume that X(k) is nonempty. Pick
a rational point f in X(k), define

å := Frobk,f | Ì¬.

Thus å is a unit in ØK[1/p], independent of ¬. Replacing each Ì¬ by

Ì¬‚(1/å)deg, we reduce to the case where, in addition,

Frobk,f | Ì¬ = 1.

That ©|Ì¬ is a root of unity results from the fact that each Ì¬
separately is geometrically of finite order, cf. [De-Weil II, 1.3.4]. Thus
each Ì¬ is arithmetrically of finite order. Comparing two different ¬,

there is a finite quotient Æ of π1
arith(X) through which both factor.

But in any such finite quotient, every element is, by Chebotarev,
the image of a Frobenius class. So for any element © in Æ, ©|Ì¬ lies in

K, independent of ¬. QED
CCCCoooorrrroooollllllllaaaarrrryyyy 6666....7777....22224444 Hypotheses as in the lemma above, for any

element ∫ in the Weil group W(X) := {elements in π1
arith(X) with

integral degree}, ∫|Ì¬ lies in K, and is independent of ¬.

pppprrrrooooooooffff Denote by kn/k the extension of degree n. For n large, both

X(kn) and X(kn+1) are nonempty. Pick f in X(kn), g in X(kn+1). Pick

any choice of Frobenius elements A = Frobkn,f
and B = Frobkn+1,g

in

π1
arith(X). Then if ∫ in W(X) has degree d, either d=0 and ∫ lies in
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π1
geom(X), a case covered by the lemma, or © := ∫(BA-1)d lies in

π1
geom(X). Thus

∫|Ì¬= (©|Ì¬)(B|Ì¬)
-d(A|Ì¬)

d. QED

LLLLeeeemmmmmmmmaaaa 6666....7777....22225555 Let k be a finite field in which … is invertible, X/k a
lisse, geometrically connected k-scheme, and K a number field. Let
{Ì¬}¬ and {Ó¬}¬ be two compatible systems of lisse sheaves on X. Let

a be a strictly positive integer. Suppose we know that, for each ¬,

det(Ì¬)
‚a and det(Ó¬)

‚a each have order dividing 2 as characters

of π1
geom(X). Suppose that for some ¬0 with …0 odd, we have a

congruence
det(FrobE,f | Ì¬0

) • det(FrobE,f | Ó¬0
) mod ¬0,

for every finite extension E/k, and for every E-valued point f in

X(E). Then for every © in π1
geom(X), and every pair ¬1 and ¬2 of

¬'s, we have

det(© | Ì¬1
)a = det(© | Ó¬2

)a.

pppprrrrooooooooffff By the previous lemma, applied separately to {det(Ì¬)
‚a}¬

and to {det(Ó¬)
‚a}¬, it suffices to prove that for every © in

π1
geom(X), we have

det(© | Ì¬0
)a = det(© | Ó¬0

)a.

Since both sides are _1, it suffices to prove the congruence

det(© | Ì¬0
)a • det(© | Ó¬0

)a mod ¬0.

In fact, this congruence holds for every © in π1
arith(X). Indeed, both

det(Ì¬0
)
‚a

and det(Ó¬0
)‚a mod ¬0 are characters with values in

the finite field É¬0
, so they factor through a common finite quotient

Æ of π1
arith(X). In any such finite quotient, every element is, by

Chebotarev, the image of a Frobenius class. QED

With these preliminaries out of the way, we now return to the
proof of part 1) of Theorem 6.7.21. We now have an a priori inclusion

Ggeom fi GLb(N).

On the other hand, Ggeom contains SL(N), by hypothesis, and by

Theorem 6.6.5, Ggeom contains a pseudoreflection of determinant

ç(ç2)
n. Thus we have an a priori inclusion

GLa(N) fi Ggeom.

This concludes the proof of 1).
Assertion 2), "mise pour memoire", results trivially from 1).
In assertions 3), 4), and 5), n is odd and b=2a. This means that
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çç2 is nontrivial of odd order a. Thus ç = çaç2, with ça
nontrivial of odd order a.

To prove 3), we argue as follows. Because çe = ú here, we are

dealing with the Gr0 sheaves. For any finite extension E/k, and any f
in ÍÎ(n,e)(E), we have

L(@n[1/F]/E, Òç(F))(T)
(-1)n+1

= det(1 - TFrobE,f | Gr
0(˜(n,e,ç))(-n/2)).

We wish to show that det(Gr0(˜(n,e,ç))(-n/2))‚a, which a priori as

a character of π1
geom has order dividing 2, is in fact geometrically

trivial. We will show this by using the fact that we can distinguish 1
from -1 by reducing modulo any odd prime. We use the "change of
ç, change of …" congruence argument of [Ka-ACT, pages 206-207],
i.e., we successively apply Lemma 6.7.25, to show that we have a
geometric isomorphism

det(Gr0(˜(n,e,çaç2))(-n/2))
‚a

¶ det(Gr0(˜(n,e,ç2))(-n/2))
‚a.

Since n is odd,Gr0(˜(n,e,ç2)) is symplectically self dual, so it has

trivial determinant.
To prove 4), we use a similar argument. We again use the

"change of ça, change of …" congruence argument of [Ka-ACT, pages

206-207] to show that we have a geometric isomorphism

det(˜(n,e,çaç2)(-n/2))
‚a

¶ det(˜(n,e,ç2)(-n/2))
‚a.

Since ne is odd,˜(n,e,ç2) is symplectically self dual, so it has trivial

determinant.
To prove 5), there are two ways we can proceed. The first is

the more geometric argument, but it requires n ≥ 3. We again use
the "change of ça, change of …" congruence argument of [Ka-ACT,

pages 206-207] to show that we have a geometric isomorphism

det(˜(n,e,çaç2)(-n/2))
‚a

¶ det((˜(n,e,ç2)(-n/2))
‚a.

However, this time e is even, hence (ç2)
e = ú, and ˜(n,e,ç2)(-n/2)

is no longer pure of weight n, but is rather mixed of weights n and
n-1. Recall that we denoted by F the homogenization of f. Let us
denote by fe the leading form of f. Then [Ka-ENSMCS, Theorem 18]

we have a short exact sequence

0 ¨ Hc
n-1((@n-1[1/fe])‚äE, Òç2(fe)

) ¨ Hc
n((!n[1/f])‚äE, Òç2(f)

)

¨ Hc
n((@n[1/F])‚äE, Òç2(F)

) ¨ 0,

and we have the vanishings
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Hc
i((@n-1[1/fe])‚äE, Òç2(fe)

) = 0 for i ± n-1,

Hc
i((!n[1/f])‚äE, Òç2(f)

) = 0 for i ± n,

Hc
i((@n[1/F])‚äE, Òç2(F)

) = 0 for i ± n.

There exists a lisse sheaf Ì(n, ç2) on ÍÎ(n,e) with

det(1 - TFrobE,f | Ì(n, ç2))

= det(1 - TFrobE | Hc
n-1((@n-1[1/fe])‚äE, Òç2(fe)

)),

which sits in a short exact sequence of lisse sheaves on ÍÎ(n,e),

0 ¨ Ì(n, ç2) ¨ ˜(n,e,ç2)(-n/2) ¨ Gr0(˜(n,e,ç2))(-n/2) ¨ 0.

Thus we have an isomorphism

det(˜(n,e,ç2)(-n/2))
‚a

¶ (det(Ì(n, ç2))
‚a)‚det(Gr0(˜(n,e,ç2))(-n/2))

‚a.

Since n is odd, Gr0(˜(n,e,ç2)) is symplectically self dual, so it has

trivial determinant. Thus we have a geometric isomorphism

det(˜(n,e,ç2)(-n/2))
‚a ¶ det(Ì(n, ç2))

‚a.

We must show that det(Ì(n, ç2))
‚a is not geometrically trivial.

To do this, we will exhibit a pullback of det(Ì(n, ç2))
‚a which

is not geometrically trivial. Consider the map
incl : ÍÎ(n-1, e) ¨ ÍÎ(n,e),

g ÿ 1 + G,
where G is the homogenization of g. [The reader will easily verify
that if g lies in ÍÎ(n-1, e) and if e is prime to p, then 1 + G lies in
ÍÎ(n, e).] The two lisse sheaves

incl*(Ì(n, ç2)) and Gr0(˜(n-1, e, ç2)((1-n)/2))

on ÍÎ(n-1, e) have the same characteristic polynomials of Frobenius
everywhere, so they have isomorphic arithmetic semisimplifications.

As Gr0(˜(n-1, e, ç2)) is geometrically and hence arithmetrically

irreducible, we in fact have an isomorphism

incl*(Ì(n, ç2)) ¶ Gr0(˜(n-1, e, ç2)((1-n)/2)),

and hence a geometric isomorphism

incl*(Ì(n, ç2)) ¶ Gr0(˜(n-1, e, ç2)).

So it suffices to show that det(Gr0(˜(n-1, e, ç2)))
‚a is not

geometrically trivial.
Because n is odd and n ≥ 3, n-1 is even, and n-1 ≥ 2. We know

that Gr0(˜(n-1, e, ç2)) is orthogonally self dual. By Theorem 6.6.5,

its Ggeom contains reflections. Thus

det(Gr0(˜(n-1, e, ç2)))
‚a

is not geometrically trivial, as required. This concludes the first proof
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of 5), valid when n ≥ 3.

Here is a second proof of 5), valid always. Since çe ± ú, we are
dealing with the lisse sheaf ˜(n,e,ç)|ÍÎ(n,e), whose trace function is
given by

Trace(FrobE,f | ˜(n,e,ç)(-n/2)) = (-1)n‡v in !n(E) çE(f(v)).

If we multiply f by a nonzero scalar ¬ in E≠, we get

Trace(FrobE,¬f | ˜(n,e,ç)(-n/2)) = (-1)n‡v in !n(E) çE(¬f(v))

=çE(¬)Trace(FrobE,f | ˜(n,e,ç)(-n/2)).

Indeed, we have an isomorphism of Gal(äE/E)-representations

Hc
n(!n‚äE, Òç(¬f)) ¶ (çE(¬))

deg‚Hc
n(!n‚äE, Òç(f)).

Thus for N := rank(˜(n,e,ç)) = (e - 1)n, we have

det(FrobE,¬f | ˜(n,e,ç)) = (çE(¬))
Ndet(FrobE,f | ˜(n,e,ç)).

So we obtain (çE(¬))
N as a ratio of determinants of Frobenii on

˜(n,e,ç) at two E-valued points, f and ¬f, of ÍÎ(n,e). Therefore

(çE(¬))
N is a value taken by the character det(˜(n,e,ç)) on the

geometric fundamental group π1
geom(ÍÎ(n,e)). Namely, it is the

value taken at any element of π1
geom(ÍÎ(n,e)) of the form AB-1

for any element A in the conjugacy class FrobE,¬f and any element

B in the conjugacy class FrobE,f. [Although A and B each lie in

π1
arith(ÍÎ(n,e)), they have the same degree, namely deg(E/k), so

their "ratio" AB-1 has degree 0, and hence lies in π1
geom(ÍÎ(n,e)).]

Because e is even, the quantity N = (e - 1)n is odd. Since ç had

even order b = 2a, çN has even order. Thus for any finite extension

E/k, the set of all values {(çE(¬))
N}, as ¬ runs over E≠, forms a

group of even order. Thus det(˜(n,e,ç)) as a character of

π1
geom(ÍÎ(n,e)) has even order. So we cannot have Ggeom =

GLa(N). The only remaining possibility is the asserted one, namely

that Ggeom = GLb(N). This concludes the second proof of 5).

In assertions 6) and 7), n is even, and b = 2a. This means that
ç = ça is a character of odd order a.

To prove 6), we argue as follows. Because çe = ú, we have

L(@n[1/F]/E, Òça(F)
)(T)(-1)

n+1

= det(1 - TFrobE,f | Gr
0(˜(n,e,ça))(-n/2)).

We wish in this case to prove that det(Gr0(˜(n, e, ç)))‚a

is geometrically trivial, knowing a priori that geometrically it has
order dividing 2. We again use the "change of ça, change of …"

congruence argument of [Ka-ACT, pages 206-207], but this time we
stop when we have stripped away all but one odd prime power from



268 Chapter 6

the order of ç (remember ç has odd order). Thus we have a
geometric isomorphism

det(Gr0(˜(n,e,ç))(-n/2))‚a

¶ det(Gr0(˜(n,e,®))(-n/2))‚a,

for some nontrivial character ® whose prime power order …√ divides
a. The key point observation is that modulo any prime ¬ of Ø(ç)
which lies over …, ® becomes trivial. Thus for every finite extension
E/k, and for every f in ÍÎ(n, e), we get a mod ¬ congruence

1/Zeta(@n[1/F]/E)(T)

• det(1 - TFrobE,f | Gr
0(˜(n,e,®))(-n/2)) mod ¬.

Because F defines a smooth hypersurface in @n, its cohomological
structure is particularly simple, and we readily calculate

1/Zeta(@n[1/F]/E)(T) = Zeta((F=0 in @n)/E)(T)/Zeta(@n/E)(T)

= det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…))(1 - T(ùE)n).

Thus we have the mod ¬ congruence

det(1 - TFrobE,f | Gr
0(˜(n,e,®))(-n/2))

• det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…))(1 - T(ùE)n).

The cohomology groups Primn-1((F=0 in @n)‚äE, ä$…) fit together to

form a lisse sheaf Prim(n-1, d) on ÍÎ(n, e) with
det(1 - TFrobE,f | Prim(n-1, d))

= det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…)).

Thus we have a congruence

det(Prim(n-1, d))‚((ùk)n)deg • det(Gr0(˜(n,e,®))(-n/2)) mod ¬.

Since k contains the a'th and hence the …√'th roots of unity, we
have ùk • 1 mod ¬, so we have

det(Prim(n-1, d)) • det(Gr0(˜(n,e,®))) mod ¬.
As n is even, n-1 is odd, so Prim(n-1, d)((n-1)/2) is symplectically
self dual, and hence has trivial determinant. Therefore

det(Gr0(˜(n,e,®))) mod ¬ is geometrically trivial. So a fortiori

det(Gr0(˜(n, e, ç)))‚a mod ¬ is geometrically trivial. But as

det(Gr0(˜(n, e, ç)))‚a geometrically has order 1 or 2, and ¬ lies

over an odd prime …, we see that det(Gr0(˜(n, e, ç)))‚a is
geometrically trivial, as required.

The proof of 7) proceeds along similar lines. This time, çe ± ú,
and we are dealing with ˜(n, e, ç). We have

L(@n[1/F]/E, Òç(F))(T)
(-1)n+1

= det(1 - TFrobE,f | ˜(n,e,ç)(-n/2)).

We wish in this case to prove that det(Gr0(˜(n, e, ç)))‚a

is geometrically nontrivial, knowing a priori that geometrically it
has order dividing 2. Exactly as in the proof of 6), we get a geometric
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isomorphism

det(˜(n,e,ç)(-n/2))‚a

¶ det(˜(n,e,®)(-n/2))‚a,

for some nontrivial character ® whose prime power order …√ divides
a. Again as in 6) above, we fix a prime ¬ of Ø(ç) lying over …. For
every finite extension E/k, and for every f in ÍÎ(n, e), we get a mod
¬ congruence

1/Zeta(!n[1/f]/E)(T)
• det(1 - TFrobE,f | ˜(n,e,®)(-n/2)) mod ¬.

In terms of the homogenization F and the leading form fe of f, we

have

!n[1/f] = @n[1/F] - @n-1[1/fe].

Thus we have

1/Zeta(!n[1/f]/E)(T)

= Zeta(@n-1[1/fe]/E)(T)/Zeta(@
n[1/F]/E)(T)

= det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…))(1 - T(ùE)n)

≠(det(1 - TFrobE | Primn-2((fe=0 in @n-1)‚äE, ä$…))(1 - T(ùE)n-1))-1.

Thus we obtain a congruence mod ¬
det(1 - TFrobE,f | ˜(n,e,®)(-n/2))

• det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…))(1 - T(ùE)n)

≠(det(1 - TFrobE | Primn-2((fe=0 in @n-1)‚äE, ä$…))(1 - T(ùE)n-1))-1.

Now ùE • 1 mod …, so we may rewrite this as the congruence
det(1 - TFrobE,f | ˜(n,e,®))

≠det(1 - TFrobE | Primn-2((fe=0 in @n-1)‚äE, ä$…))

• det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…)) mod ¬.

The cohomology groups Primn-2((fe=0 in @n-1)‚äE, ä$…) fit

together to form a lissse sheaf Prim(n-2,e) on ÍÎ(n, e) with
det(1 - TFrobE,f | Prim(n-2, d))

= det(1 - TFrobE | Primn-2((fe=0 in @n-1)‚äE, ä$…)).

Just as in the proof of 6) above, the cohomology groups

Primn-1((F=0 in @n)‚äE, ä$…)

fit together to form a lisse sheaf Prim(n-1,e) on ÍÎ(n, e) with
det(1 - TFrobE,f | Prim(n-1, d))

= det(1 - TFrobE | Primn-1((F=0 in @n)‚äE, ä$…)).

Thus we have a congruence
det(˜(n,e,®))‚det(Prim(n-2,e)) • det(Prim(n-1,e)) mod ¬,

and hence a congruence

(det(˜(n,e,®))‚a)‚det(Prim(n-2,e))‚a

• (det(Prim(n-1,e)))‚a mod ¬.
As n is even, n-1 is odd, so Prim(n-1,e)((n-1)/2) is symplectically self
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dual, and hence has trivial determinant. By the same token,
Prim(n-2,e)((n-1)/2) is orthogonally self dual, so has determinant of

order 1 or 2. We already know that det(˜(n,e,®))‚a is geometrically
of order 1 or 2. Therefore from the above congruence we get a
geometric isomorphism

det(˜(n,e,®))‚a ¶ det(Prim(n-2,e))‚a = det(Prim(n-2,e)),
the last equality because a is odd. So it remains to show that the
determinant of the lisse sheaf Prim(n-2,e) is geometrically
nontrivial. For this, it suffices to show that after some pullback, the
determinant is geometrically nontrivial.

We first pull back from ÍÎ(n, e) to the space Ón,e of forms of

degree e in n variables which define smooth hypersurfaces in @n-1,
by the map

Ón,e ¨ ÍÎ(n, e),

G ÿ 1 + G.
In the case n=2, Abel's theorem tells us that Ggeom for this pullback

of Prim(0, e) is the symmetric group Se in its deleted permutation

representation, cf. [Ka-LAMM, 2.4.3]. For n ≥ 4 even, and e ≥ 3, we
further pull back Prim(n-2,e) to a Lefschetz pencil of degree e

hypersurface sections of @n-1. Then the Picard-Lefschetz formula
shows that Ggeom for this pullback of Prim(n-2,e) contains a

reflection. Hence det(Prim(n-2,e)) is geometrically nontrivial, as
required. QED

RRRReeeemmmmaaaarrrrkkkk 6666....7777....22226666 It is instructive to compare part 5) of the above
theorem, in the case n=1, with [Ka-ACT, 5.4, 2)]. Thus ç is ç2ça
with ça nontrivial of ddd order a, the degree e is even and prime to

p, and çe ± ú. Above, we computed Ggeom for the sums ‡x ç(f(x))

as f varies over all degree e polynomials with nonzero discriminant,
and showed it to be GL2a(e-1). In [Ka-ACT, 5.4, 2)], we computed

Ggeom for the two-parameter subfamily with parameters (å, ∫)

obtained by choosing an f0 of degree e whose second derivative f0'' is

not identically zero, and looking only at f's of the form f(x) + åx + ∫.
We showed that this smaller family had Ggeom the smaller group

GLa(e-1). If we instead look at the three-parameter family

¬f0(x) + åx + ∫, with parameters (¬, å, ∫), the argument given in

the second proof of 5) above shows that for this family Ggeom is

once again the larger group GL2a(e-1).

((((6666....8888)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo tttthhhheeee mmmmoooonnnnooooddddrrrroooommmmyyyy ooooffff aaaaddddddddiiiittttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr
ssssuuuummmmssss iiiinnnn sssseeeevvvveeeerrrraaaallll vvvvaaaarrrriiiiaaaabbbblllleeeessss
(6.8.1) Let us recall the general context. We have a finite field k
of characteristic p, a prime number … invertible in k, and a
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nontrivial additive character ç : k ¨ ä$…
≠ of k. We fix integers e ≥ 3

and n ≥ 1. We denote by ∏(n, e) the space of polynomial functions

on !n of degree ≤ e. Recall from 3.5.8 that an n-variable polynomial
f in ∏(n,e)(äk) is a Deligne polynomial if it satisfies the following two
conditions D1), and D2).
D1) When we write f = ‡i≤e Fi as a sum of homogeneous forms, Fe is

nonzero, and, in the case n ≥ 2, the closed subscheme of @n-1

defined by the vanishing of Fe is smooth of codimension one.

D2) The integer e is prime to p.
(6.8.2) For a fixed integer e which is prime to p, the Deligne
polynomials form a dense open set Î(n,e) of ∏(n,e).
(6.8.3) Recall further from Corollaries 3.5.11-12 that if e is prime
to p, there is a lisse ä$…-sheaf ˜(n,e,¥)|Î(n,e) on Î(n, e), whose trace

function is given as follows:::: for E/k any finite extension, and for any
f in Î(n,e)(E), we have

Trace(FrobE,f | ˜(n,e,¥))

= (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

The sheaf ˜(n,e,¥)|Î(n,e) has rank (e - 1)n, and is pure of weight 0.
(6.8.4) In Theorem 3.9.2, we proved the following general
theorem concerning the geometric monodromy group Ggeom for the

sheaf ˜(n,e,¥)|Î(n,e).

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....5555 ((((==== 3333....9999....2222 rrrreeeessssttttaaaatttteeeedddd)))) Let k be a finite field,

p := char(k), … ± p and ¥ a nontrivial additive ä$…
≠-valued of k. Fix n

≥ 1, e ≥ 3, with e prime to p. Denote by Î(n,e) the space of Deligne
polynomials, and denote by ˜(n,e,¥)|Î(n,e) the lisse, geometrically

irreducible, and pure of weight zero ä$…-sheaf of rank (e-1)n on

Î(n,e) whose trace function is given by

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

Suppose that any of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p= 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥)|Î(n,e).

1) If p ± 2, Ggeom contains SL((e-1)n)

2) If p = 2 and n is odd, Ggeom = Sp((e-1)n).

3) If p = 2 and n is even, Ggeom is either SO((e-1)n) or O((e-1)n).

(6.8.6) We then considered "small" families of Deligne
polynomials, as follows. We fixed an integer d prime to p, a Deligne
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polynomial
F in Î(n,d)(k),

and an integer e < d. For any finite extension E/k, and for any f in
∏(n,e)(E), the sum F + f is again a Deligne polynomial of degree d. So
we have a closed immersion

∏(n,e) ¨ Î(n,d),
f ÿ F+f.

The restriction of the lisse sheaf ˜(n,d)|Î(n,d) to ∏(n,e) by means of
this closed immersion gives a lisse sheaf

˜(n,e,¥,F) on ∏(n,e)

of rank (d-1)n, whose trace function is given by
Trace(FrobE,f | ˜(n,e,¥,F))

= (-1)n(ùE)-n/2‡v in !n(E) ¥E(F(v) + f(v)).

Concerning these sheaves, we proved the following theorem.
TTTThhhheeeeoooorrrreeeemmmm 6666....8888....7777 ((((==== 3333....9999....6666 rrrreeeessssttttaaaatttteeeedddd)))) Let k be a finite field,

p := char(k), … ± p and ¥ a nontrivial additive ä$…
≠-valued of k. Fix

integers
n ≥ 1, d > e ≥ 3

with d prime to p. Fix a k-rational Deligne polynomial F in n
variables of degree d,

F in Î(n,d)(k).
Suppose that any of the following five conditions holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,
e) p= 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥,F) on ∏(n,e).

1) If p ± 2, Ggeom contains SL((d-1)n)

2) If p = 2 and n is odd, Ggeom = Sp((d-1)n).

3) If p = 2 and n is even, Ggeom is either SO((d-1)n) or O((d-1)n).

(6.8.8) We then turned to the case of strongly odd Deligne
polynomials, those in which every monomial which occurs has odd
degree. For each odd e prime to p, the strongly odd Deligne
polynomials of degree e form a closed subspace

Î(n,e,odd) fi Î(n,e)
of all Deligne polynomials of the given degree e. The restriction of
˜(n,e,¥) to Î(n,e,odd) is self dual, symplectically if n is odd and
orthogonally if n is even, cf. Theorem 3.10.6. Concerning these
sheaves, we proved the following theorem.
TTTThhhheeeeoooorrrreeeemmmm 6666....8888....9999 ((((==== 3333....11110000....7777 rrrreeeessssttttaaaatttteeeedddd)))) Let k be a finite field of
characteristic p, … a prime with … ± p, and ¥ a nontrivial additive

ä$…
≠-valued of k. Fix integers
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n ≥ 1, e ≥ 3,
with e prime to p and odd. Suppose that any of the following five
conditions holds:
a) p ≥ 7,
b) p ± 3 and n ≥ 3,
c) p = 5 and e ≥ 7,
d p = 3 and e ≥ 7,
e) p= 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥)|Î(n,e,odd).

1) If n is odd, Ggeom = Sp((e-1)n).

2) If n is even, Ggeom is either SO((e-1)n) or O((e-1)n).

(6.8.10) We will now explain how to sharpen, in many cases, these
results on the monodromy of additive character sums and
determine Ggeom exactly.

(6.8.11) We begin with the sheaves ˜(n,e,¥) on Î(n, e), and the
sheaves ˜(n, e, ¥, F) on ∏(n, e). Recall that for any integer a ≥ 1,
we denote by GLa(N) fi GL(N) the subgroup

GLa(N) = {A in GL(N) such that det(A)a = 1}.

LLLLeeeemmmmmmmmaaaa 6666....8888....11112222 For e ≥ 3 prime to p, and n ≥ 1, the group Ggeom for

˜(n,e,¥) on Î(n, e) lies in

GL2p((e-1)
n), if p is odd,

GL2((e-1)
n), if p = 2.

pppprrrrooooooooffff The Tate-twisted sheaf ˜(n, e, ¥)(-n/2) has all its traces in
the field $(Ωp) of p'th roots of unity, cf. Corollary 3.5.12. As the

sheaves ˜(n, e, ¥) and ˜(n, e, ¥)(-n/2) have the same Ggeom, the

result is now a special case of Lemma 6.7.22. QED

LLLLeeeemmmmmmmmaaaa 6666....8888....11113333 Suppose e ≥ 3 is prime to p. If in addition e-1 is
prime to p,then for any n ≥ 1, the group Ggeom for ˜(n,e,¥) on

Î(n, e) contains an element whose determinant is a primitive p'th
root of unity in ä$….

pppprrrrooooooooffff Take any Deligne polynomial f in Î(n, e)(k), and take any
element å in k such that ¥(å) ± 1. As Frobk modules, we have

Hc
n(!n‚äk, Ò¥(f+å)) ¶ Hc

n(!n‚äk, Ò¥(f))‚ (¥(å))deg.

Comparing determinants of Frobenius, we find
det(Frobk, f+å | ˜(n, e, ¥))

= det(Frobk, f | ˜(n, e, ¥))≠(¥(å))(e-1)
n
.

Because e-1 is prime to p, (¥(å))(e-1)
n
is again a primitive p'th root

of unity, and the above equation shows it is the determinant of all
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elements in π1
geom of the form

(any choice of Frobk, f+å)(any choice of Frobk, f)
-1. QED

LLLLeeeemmmmmmmmaaaa 6666....8888....11114444 Suppose d > e ≥ 3, with d prime to p. Let n ≥ 1. Let F
in Î(n, d) be a Deligne polynomial of degree d.

1) The group Ggeom for ˜(n,e,¥,F) on ∏(n, e) lies in GLp((d-1)
n).

2) If in addition d-1 is prime to p, then Ggeom contains an element

whose determinant is a primitive p'th root of unity in ä$….

pppprrrrooooooooffff For the first assertion, note that ˜(n,e,¥,F)|∏(n, e) is a
pullback of ˜(n,d,¥)|Î(n,d), whose larger Ggeom lies in

GL2p((d-1)
n), if p is odd,

GL2((d-1)
n), if p = 2

(by Lemma 6.8.12, applied with e := d). So for p=2, there is nothing

more to prove. If p is odd, then det(˜(n,e,¥,F))‚p | ∏(n, e)‚äk is a
lisse sheaf of rank one on the affine space ∏(n, e)‚äk of order
dividing 2, i.e., an element of the cohomology group

H1(∏(n, e)‚äk, #/2#) = 0.
The second assertion is proven exactly as the previous lemma, using
F and F+å. QED

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....11115555 Suppose d > e ≥ 3, with d prime to p. Let n ≥ 1. Let
F in Î(n, d) be a Deligne polynomial of degree d. Suppose that d-1 is
prime to p, and suppose that any of the following four conditions
holds:
a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,

Then Ggeom for the lisse sheaf ˜(n,e,¥,F)|∏(n,e) is GLp((d-1)
n).

pppprrrrooooooooffff Since d and d-1 are prime to p, p must be odd. From Theorem

6.8.7, we know Ggeom contains SL((d-1)n). The previous lemma

shows that Ggeom lies in GLp((d-1)
n), and contains elements whose

determinants have order p. QED

(6.8.16) To go further, we now make use of the results of the
previous section giving the monodromy of multiplicative character
sums.
(6.8.17) For n ≥ 2, and e ≥ 1, denote by

Homog(n,e) fi ∏(n,e)
the linear space of homogeneous forms of degree d in n variables,
and by

NSHomog(n,e) fi Homog(n,e)
the dense open set consisting of nonsingular (NS) forms, i.e., those
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forms F of degree e such that the closed subscheme XF of @n-1

defined by the vanishing of F is smooth of codimension one.
(6.8.18) Over NSHomog(n,e), we have the universal family of

smooth degree e hypersurfaces in @n-1, say
π : Ù ¨ NSHomog(n,e),

π-1(F) = XF.

Here Ù is the closed subscheme of @n-1≠NSHomog(n,e) with
coordinates (x, F) where F(x) = 0, and π is the second projection.
(6.8.19) On NSHomog(n,e), we have the lisse sheaf

Rn-2π*ä$….

For even n, Rn-2π*ä$… contains as a direct factor the geometrically

constant sheaf Hn-2(@n-1‚äk, ä$…) ¶ ä$…((2-n)/2), spanned by the

(n-2)/2 power of the class L of a hyperplane. We define the lisse

sheaf Primn-2(e) on NSHomog(n,e) as follows:

Primn-2(e)

:= Rn-2π*ä$…, for n odd,

:= the orthogonal, for cup product, of the constant sheaf

Hn-2(@n-1‚äk, ä$…) in Rn-2π*ä$…, for n even.

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....11119999 The cup product pairing

Primn-2(e) ≠ Primn-2(e) ¨ ä$…(2-n)

is a perfect pairing. It is symplectic for n odd, and orthogonal for n

even. For n ≥ 2 even, the group Ggeom for Primn-2(e) contains a

reflection.

pppprrrrooooooooffff For n odd, Primn-2(e) is just Rn-2π*ä$…, and the assertion is

an instance of Poincarïe duality. For n even, the nondegeneracy of

the pairing results from the fact that L(n-2)/2 has nonzero self-
intersection on any XF. That Ggeom contains a reflection for n ≥ 4

even results by pulling back to a Lefschetz pencil and using the
Picard-Lefschetz formula. If n = 2, it results from Abel's theorem,

i.e., that Ggeom for Prim0(e) is the symmetric group Se in its deleted

permutation representation. QED

(6.8.20) We also have the universal family of complements
® : Ë ¨ NSHomog(n,e),

®-1(F) = @n-1 - XF := @n-1[1/F].

Here Ë is the complement in @n-1≠NSHomog(n,e), and ® is the
second projection. For ç a nontrivial multiplicative character with

çe = ú, we have the lisse sheaf Òç(F(x)) on Ë = {(x, F) | F(x) ± 0}.

According to [Ka-ENSMCS, Theorem 18, applied fibre by fibre], we
have
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Ri®~Òç(F(x)) = 0 for i ± n-1,

and each stalk of Rn-1®~Òç(F(x)) is pure of weight n-1 and has

dimension (1/e)((e-1)n - (-1)n).
LLLLeeeemmmmmmmmaaaa 6666....8888....22221111 For ç a nontrivial multiplicative character with

çe = ú, the sheaf Rn-1®~Òç(F(x)) on NSHomog(n,e) is lisse of rank

(1/e)((e-1)n - (-1)n),
and pure of weight 0.

pppprrrrooooooooffff Since the morphism ® is affine and smooth of relative

dimension n-1, Rn-1®~Òç(F(x)) is a sheaf "of perverse origin", and

the constancy of its rank means precisely that it is lisse, cf. [Ka----
SMD, Proposition 11]. QED

LLLLeeeemmmmmmmmaaaa 6666....8888....22222222 For ç a nontrivial multiplicative character with çe

= ú, and äç the conjugate character 1/ç, the cup product pairing

Rn-1®~Òç(F(x)) ≠ Rn-1®~Òäç(F(x)) ¨ R2n-2®~ää$… ¶ ä$…(1-n)

is a perfect pairing. If e is even and ç is ç2, the quadratic

character, this pairing is symplectic if n is odd, and orthogonal if n is
even.
pppprrrrooooooooffff To see that this pairing of lisse sheaves is a perfect pairing, it
suffices to check at a single point F, where it follows from usual
Poincarïe duality and the fact that the natural "forget supports" map
induces an isomorphism

Hc
n-1(@n-1[1/F]‚äk, Òç(F)) ¶ Hn-1(@n-1[1/F]‚äk, Òç(F)).

That this pairing has the asserted symmetry property when e is
even and ç is ç2 results from standard sign properties of cup

product. QED

(6.8.23) The sheaves Rn-1®~Òç(F(x)) on NSHomog(n,e) are closely

related to the sheaves Gr0(˜(n-1, e, ç))((1-n)/2) on ÍÎ(n-1, e).

LLLLeeeemmmmmmmmaaaa 6666....8888....22224444 Under the morphism
i : ÍÎ(n-1, e) ¨ NSHomog(n,e)

defined by homogenization,

f(x1,..., xn-1) ÿ F(x0,..., xn-1) := (x0)
ef(..., xi/x0,...),

we have

i*Rn-1®~Òç(F(x)) ¶ Gr0(˜(n-1, e, ç))((1-n)/2).

pppprrrrooooooooffff That the two have the same characteristic polynomials of
Frobenius is given by [Ka-ENSMCS, Theorem 18 and preceding
paragraph]. Therefore the two have isomorphic semisimplifications.
The target is geometrically irreducible, cf. 5.1.5 and 1.15.6, hence is
arithmetically irreducible. Therefore the two sides are both
arithmetically irreducible, and isomorphic. QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 6666....8888....22225555 Suppose e ≥ 3 is even, and ç = ç2. If n ≥ 3 is odd,

then Ggeom for Rn-1®~Òç2(F(x))
contains a reflection.

pppprrrrooooooooffff Since e is prime to p, p ± 2. After pullback, the group Ggeom
only gets smaller. After pullback by i, we get the sheaf

Gr0(˜(n-1, e, ç))((1-n)/2), whose Ggeom contains a reflection,

thanks to Theorem 6.6.5. QED
(6.8.26) Now we recall from Chapter 3 the following result.
TTTThhhheeeeoooorrrreeeemmmm 6666....8888....22227777 ((((==== 3333....6666....4444 rrrreeeessssttttaaaatttteeeedddd)))) Suppose e ≥ 3 is prime to p.
Suppose that E/k is a finite extension which contains the e'th roots
of unity. Suppose n ≥ 2. Let F in NSHomog(n,e)(E) be a nonsingular
form of degree e in n variables. For any finite extension L/E, we
have the identity

(-1)n‡v in !n(L) ¥L(F(v))

= Trace(FrobL, Prim
n-2(XF‚EäE, ä$…)(-1))

+ ‡ç ± ú, çe = ú(-g(¥E, äçE))Trace(FrobL, Hc
n-1(@n-1[1/F]‚EäE, Òç(F))).

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....8888....22228888 Suppose that e ≥ 3 is prime to p, and that n ≥ 2.
Then we have a geometric isomorphism of lisse sheaves on
NSHomog(n, e)

˜(n, e, ¥)|NSHomog(n, e)

¶ Primn-2(e) · ·çe= ú, ç ± ú R
n-1®~Òç(F(x)).

pppprrrrooooooooffff The assertion is geometric, so we may extend scalars, and
reduce to the case when k contains the e'th roots of unity. Then the
lisse sheaves on NSHomog(n, e)

˜(n, e, ¥)(-n/2)|NSHomog(n, e)
and

Primn-2(e)(-1) · ·çe= ú, ç ± ú R
n-1®~Òç(F(x))‚(-g(¥, äç))deg

have the same trace function on all Frobenii FrobE,F. By Chebotarev,

their arithmetic semisimplifications are isomorphic, and hence their
geometric semisimplifications are isomorphic. But these lisse sheaves
are all pure of weight n, so are already geometrically semisimple.
QED

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....22229999 Suppose that e ≥ 3 is prime to p, and that n ≥ 2. If
ne is even, then Ggeom for ˜(n, e, ¥)|NSHomog(n, e) contains an

element of determinant -1.
pppprrrrooooooooffff Suppose first that n ≥ 2 is even. Consider the geometric
isomorphism

˜(n, e, ¥)|NSHomog(n, e)

¶ Primn-2(e) · ·çe= ú, ç ± ú R
n-1®~Òç(F(x)).

If e is odd, the characters ç which occur fall into pairs of
conjugates, and for each such pair the corresponding summand



278 Chapter 6

Rn-1®~Òç(F(x)) · Rn-1®~Òäç(F(x))
is the direct sum of a lisse sheaf and its dual. Such a direct sum has
trivial determinant. If e is even, there is one leftover term after the
pairing up of conjugates, namely

Rn-1®~Òç2(F(x))
.

But as n is even, n-1 is odd, and hence this leftover term is
symplectically self dual, and hence has trivial determinant. Thus
when n is even, we have a geometric isomorphism

˜(n, e, ¥)|NSHomog(n, e)

¶ Primn-2(e) · (a lisse sheaf with trivial determinant).

There exist elements © in π1
geom(NSHomog(n, e)) which act on

Primn-2(e) with determinant -1. [Indeed, as n is even, Primn-2(e) is
orthogonally self dual, and its Ggeom contains a reflection. Hence its

determinant, which a priori has geometric order dividing 2, is
geometrically nontrivial.] Any such element © then acts on

˜(n, e, ¥)|NSHomog(n, e)

¶ Primn-2(e) · (a lisse sheaf with trivial determinant)
with determinant -1.

Suppose next that n ≥ 3 is odd, but that e is even. Then p ± 2,
since e is prime to p. Consider the geometric isomorphism

˜(n, e, ¥)|NSHomog(n, e)

¶ Primn-2(e) · ·çe= ú, ç ± ú R
n-1®~Òç(F(x)).

Now Primn-2(e) is symplectically self dual, so has trivial
determinant, as does the direct sum

Rn-1®~Òç(F(x)) · Rn-1®~Òäç(F(x))
corresponding to a pair of conjugate characters. Thus we have a
geometric isomorphism

˜(n, e, ¥)|NSHomog(n, e)

¶ Rn-1®~Òç2(F(x))
· (a lisse sheaf with trivial determinant).

But now there exist elements © in π1
geom(NSHomog(n, e)) which act

on Rn-1®~Òç2(F(x))
with determinant -1, because this is an

orthogonally self dual sheaf whose Ggeom contains a reflection. Any

such element © then acts on ˜(n, e, ¥)|NSHomog(n, e) with
determinant -1. QED

(6.8.30) We now record two corollaries, based on the inclusions
NSHomog(n, e) fi Î(n,e),

and, if e is odd,
NSHomog(n, e)fi Î(n,e,odd).

CCCCoooorrrroooollllllllaaaarrrryyyy 6666....8888....33331111 Suppose that e ≥ 3 is prime to p, and that n ≥ 2. If
ne is even, then Ggeom for ˜(n, e, ¥) contains an element of

determinant -1.
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CCCCoooorrrroooollllllllaaaarrrryyyy 6666....8888....33332222 Suppose that n ≥ 2 is even, and that e ≥ 3 is
prime to p and odd. Then Ggeom for the lisse sheaf

˜(n,e,¥)|Î(n,e,odd) contains an element of determinant -1.

(6.8.33) We now put together the information we have assembled.

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....33334444 Let e ≥ 3 and n ≥ 1. Suppose that e(e-1) is prime to
p and that ne is even. If any of the following four conditions holds:

a) p ≥ 7,
b) n ≥ 3,
c) p = 5 and e ≥ 4,
d) p = 3 and e ≥ 7,

then Ggeom for ˜(n, e, ¥)|Î(n, e) is GL2p((e-1)
n).

pppprrrrooooooooffff. Since e(e-1) is prime to p, we have p ± 2. By Theorem 6.8.5,

Ggeom contains SL((e-1)n). By Lemma 6.8.12, Ggeom fi GL2p((e-1)
n).

Thus we have

SL((e-1)n) fi Ggeom fi GL2p((e-1)
n).

So it suffices to show that Ggeom contains an element whose

determinant is a primitive 2p'th root of unity. By Lemma 6.8.13,
Ggeom contains an element å whose determinant is a primitive p'th

root of unity Ωp. If n ≥ 2, then by Corollary 6.8.31, Ggeom contains

an element ∫ whose determinant is -1, and å∫ is the desired
element.

Suppose now n=1. Then we need another mechanism to
produce an element ∫ in Ggeom whose determinant is -1. We once

again restrict to the n=1 analogue of NSHomog(n, e), which by abuse
of notation we call NSHomog(1, e), namely the one-parameter

family a ÿ axe, parameterized by a in ´m. Over any field

containing the e'th roots of unity, we have

-‡x ¥(axe) = ‡y ¥(ay) ‡ç with çe = ú ç(y)

= -‡ç±ú with çe = ú ‡y ¥(ay)ç(y)

= ‡ç±ú with çe = ú äç(a)(-‡y ¥(y)ç(y)).

In other words, the lisse sheaves on NSHomog(1, e) = ´m, both pure

of weight 1,
˜(1,e,¥)(-1/2)|NSHomog(1, e)

and

·ç±ú with çe = ú
Òç‚(-g(¥, äç))deg,

have the same trace function. Hence we have a geometric
isomorphism
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˜(1,e,¥) | NSHomog(1, e) ¶ ·ç±ú with çe = ú
Òç,

whose determinant, e being even, is Òç2
. Thus already Ggeom for

˜(1,e,¥)|NSHomog(1, e) contains an element ∫ of determinant -1, so
a fortiori the larger group Ggeom for ˜(1,e,¥)|Î(1,e) contains such

an element ∫. QED

TTTThhhheeeeoooorrrreeeemmmm 6666....8888....33335555 Let e ≥ 3 and n ≥ 2. Suppose that e is odd and
prime to p, and suppose that n ≥ 2 is even. Suppose that any of the
following five conditions holds:
a) p ≥ 7,
b) p ± 3 and n ≥ 3,
c) p = 5 and e ≥ 7,
d) p = 3 and e ≥ 7,
e) p= 2 and e ≥ 7.

Then Ggeom for ˜(n, e, ¥)|Î(n, e, odd) is O((e-1)n).

pppprrrrooooooooffff By Theorem 6.8.9, Ggeom is either SO((e-1)n) or O((e-1)n). But

by Corollary 6.8.32, Ggeom contains an element of determinant -1,

which rules out the SO possibility. QED



AAAAppppppppeeeennnnddddiiiixxxx AAAA6666:::: SSSSwwwwaaaannnn----mmmmiiiinnnniiiimmmmaaaallll ppppoooolllleeeessss

((((AAAA6666....1111)))) SSSSwwwwaaaannnn ccccoooonnnndddduuuuccccttttoooorrrrssss ooooffff ddddiiiirrrreeeecccctttt iiiimmmmaaaaggggeeeessss
(A6.1.1) Let L be a complete, discretely valued field of positive
characteristic p, whose residue field k is algebraically closed. In
terms of any choice of uniformizing parameter z, L is the Laurent

series field k((z)). Let f in L≠ have a Swan-minimal pole (cf. 6.4.6),
i.e., ordL(f) = -e, for some e > 0, and ordL(df/f) ≤ 0. Then L is a

separable, degree e extension of the subfield K := k((1/x)), via x := f.
We view K as the ‘-adic completion of the function field k(´m) of

´m:= Spec(k[x,1/x]). We view f as a finite etale map from Spec(L) to

Spec(K), and form the lisse sheaf f*ä$… of rank e on Spec(K). In down

to earth galois-theoretic terms, f*ä$… is the e-dimensional

representation ®f of

I(‘) := Gal(äK/K)
given as follows. Pick any finite galois extension M/K which contains
L, with

G := Gal(M/K), H := Gal(M/L).
Then ®f factors through the quotient G of I(‘), and as a ä$…-

representation of G we have

®f = IndH
G(ú).

(A6.1.2) We wish to compute the I(‘)-breaks of f*ä$…, i.e., the

upper numbering breaks of ®f = IndH
G(ú). We already know by

Lemma 6.4.4 that the sum of the I(‘)-breaks, Swan‘(f*ä$…), is

given by
Swan‘(f*ä$…) = 1 + ordL(df/f).

(A6.1.3) If e is prime to p, then ordL(df/f) = -1, so

Swan‘(f*ä$…) = 0, and hence all the I(‘)-breaks of f*ä$… are zero. In

this case, 1/f is the e'th power of a uniformizing parameter of L, and
L/K is the tame extension of K of degree e. So L/K is cyclic of degree
e, and we have the more precise information that f*ä$… is the direct

sum of all the characters of I(‘) of order dividing e.
(A6.1.4) In the case when p divides e, then by assumption we
have ordL(df/f) = 0, and hence Swan‘(f*ä$…) = 1. Now f*ä$… is a

semisimple I(‘)-representation (because it factors through a finite
quotient). Since it has Swan‘ = 1, it must [Ka-GKM, 1.11] be of the

form
(rank r, all breaks 1/r)

· (· of tame characters of finite order).
How do we compute r, and how do we determine which tame
characters occur?
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TTTThhhheeeeoooorrrreeeemmmm AAAA6666....1111....5555 Suppose f in L≠ has a Swan-minimal pole of order

e = e0q, with e0 prime to p and with q = pn for some n ≥ 1. Then

f*ä$… as I(‘)-representation is the direct sum

(rank r= e0(q-1), all breaks 1/r)

· (· all characters of order dividing e0).

pppprrrrooooooooffff Pick a uniformizing parameter z of L, and expand f. We get

f = åz-e(1 + a1z + higher terms),

for some nonzero scalar å in k. By Swan-minimality, a1 is nonzero

in k. By rescaling the parameter, i.e., using (a1/e0)z as parameter,

we may assume that a1 = e0:

f = åz-e(1 + e0z + higher terms).

Because e is divisible by e0, and e0 is prime to p, f/å has a unique

e0'th root f0 in L of the form

f0 = z-q(1 + z + higher terms).

Then f = å(f0)
e0 is the composition of f0 followed by the e0'th power

endomorphism [e0] of ´m given by x ÿ xe0, followed by the

multiplicative translation automorphism MultTranså : x ÿ åx of

´m:

f = [MultTranså][e0]«f0.

Thus
f*ä$… = [MultTranså]*[e0]*(f0*ä$…).

In terms of fields, we have

L fl k((1/f0)) fl k (((1/f0)
e0)) = k((å/f)) = k((1/f)) = K.

It suffices to prove that
f0*ä$… ¶ (rank r= (q-1), all breaks 1/r) · ú,

because for any e0 prime to p, and for any r, we have I(‘)-

isomorphisms
[e0]*(rank r, all breaks 1/r) = (rank e0r, all breaks 1/e0r),

[e0]*(ú) = · all characters of order dividing e0,

[MultTranså]*(rank r, all breaks 1/r) = (rank r, all breaks 1/r),

[MultTranså]*(Òç) = Òç, for any tame character ç of I(‘).

Thus we are reduced to the case when f has a Swan-minimal
pole of p-power order q, and has a1 = -1:

f = z-q(1 + z + higher terms)

= z-q(1 + z + z2Æ),
with Æ in k[[z]].

We claim that there exists a parameter Z of L of the form
Z = z + higher terms = z(1 + z»),

for some » in k[[z]], such that
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f = Z-q(1 + Z).
We want to find » in k[[z]] such that

z-q(1 + z + z2Æ) = z-q(1 + z»)-q(1 + z + z2»),
i.e.,

(1 + z»)q(1 + z + z2Æ) = 1 + z + z2»,
i.e.,

(1 + z
q
»q)(1 + z + z2Æ) = 1 + z + z2»,

i.e.,

1 + z + z2Æ + zq(1 + z +z2Æ)»q = 1 + z + z2»,
i.e.,

z2Æ + zq(1 + z + z2Æ)»q = z2»,
i.e.,

Æ - » + zq-2(1 + z + z2Æ)»q = 0.
In other words, the desired » is a root in k[[z]] of a polynomial
equation with coefficients in k[[z]], of the form

F(X) := AXq - X + Æ = 0.
We have dF/dX = 1 identically. If q > 2, then X = Æ is a solution mod
z, so by Hensel's lemma there is a unique solution » which has the
same constant term as Æ. If q = 2, then we must first choose in k a

solution, call it ©, of the equation X2 - X + Æ(0). Then by Hensel's
lemma there is a unique solution » with constant term ©. So in all
cases we have constructed the desired ».

In terms of the parameter Z, our f is

f = Z-q + Z1-q.
We now deal with this explicit f by means of a global argument. We

work on !1 := Spec(k[X]), and consider the polynomial

ƒ(X) := Xq-1(X + 1) = Xq + Xq-1.

We view ƒ as a finite flat map of !1 - {0, -1} to ´m. It extends to a

finite flat map äƒ of @1 to itself, which is fully ramified over ‘. In
terms of the uniformizing parameter Z := 1/X at ‘ on the source,

the map ƒ becomes our f, namely Z-q + Z1-q. Thus f*ä$… as I(‘)-

representation is obtained globally as follows. We consider the map

ƒ : !1 - {0, -1} ¨ ´m, X ÿ Xq-1(X + 1).

Then f*ä$… is the I(‘)-representation attached to the sheaf ƒ*ä$… on

´m.

It remains to analyze the sheaf ƒ*ä$… on ´m. Because we are

in characteristic p, the map ƒ makes !1 - {0, -1} a finite etale

covering of ´m. So the sheaf ƒ*ä$… on !1 is lisse on ´m. Over 0,

there are two points in the fibre, 0 with ramification index q-1, and
-1 with ramification index 1. Thus as I(0)-representation, ƒ*ä$… is

tame, isomorphic to
ú · (· all characters of order dividing q-1).

As already noted in A6.1.4 above, ƒ*ä$… as I(‘)-representation,
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or equivalently f*ä$…, is of the form

(rank r, all breaks 1/r)
· (· of tame characters of finite order).

We now analyze which tame characters can occur here. By

Frobenius reciprocity, f*ä$… = IndH
G(ú) contains the trivial

representation once. So we have only to show that no nontrivial
tame character ç of finite order of I(‘) occurs in ƒ*ä$….

We will prove this as follows. Any nontrivial tame character of
finite order of I(‘) is the restriction to I(‘) of a Kummer sheaf Òç
attached to a nontrivial tame character ç of π1(´m). So what we

must show is that for any nontrivial tame character ç of π1(´m),

if we denote by j : ´m ¨ @1 the inclusion, then the sheaf

Ì(ç) := j*(Òç‚ƒ*ä$…)

on @1 has vanishing stalk at ‘.
To analyze the dimensions of the stalks of Ì(ç) at 0 and ‘, we

use the Euler Poincarïe formula, which gives

ç(@1, Ì(ç))

= dim(Ì(ç)0) + dim(Ì(ç)‘) + ç(´m, j*Ì(ç))
= dim(Ì(ç)0) + dim(Ì(ç)‘) - 1,

the last equality because j*Ì(ç) = Òç‚j*ƒ*ä$… is lisse on ´m, tame

at 0, and has Swan conductor 1 at ‘.
We now express this Euler characteristic "upstairs". Thus we

consider the diagram
k

!1 - {0, -1} ¨ @1

ƒ d d äƒ

´m ¨ @1

j

By the projection formula, Òç‚ƒ*ä$… = ƒ*Òç(ƒ)
, and hence

Ì(ç) := j*ƒ*Òç(ƒ) = äƒ*k*Òç(ƒ).

Thus we have

ç(@1, Ì(ç)) = ç(@1, äƒ*k*Òç(ƒ))

= ç(@1, k*Òç(ƒ)).

The lisse sheaf Òç(ƒ) = Òçq-1(x)‚Òç(x+1) on !1 - {0, -1} is

lisse of rank one, and nontrivially ramified at both x = -1, because

ç is nontrivial by assumption, and at x=‘ (because çq is nontrivial

if ç is). It is ramified at x=0 if and only if çq-1 ± ú. It is
everywhere tame.

We first consider the case when çq-1 ± ú. Then we have



Swan-minimal poles 285

ç(@1, k*Òç(ƒ)) = çc(!
1 - {0, -1}, Òç(ƒ))

= çc(!
1 - {0, -1}, ä$…) = 1 - 2 = -1.

Comparing with our earlier formula
dim(Ì(ç)0) + dim(Ì(ç)‘) - 1

for this same Euler characteristic, we see that Ì(ç)‘ = 0 in this

case.

Now we consider the case when ç ± ú, but çq-1 = ú. In this
case, k*Òç(ƒ) is lisse at x=0, so we have

ç(@1, k*Òç(ƒ)) = çc(!
1 - {-1}, Òç(ƒ)) = 0.

Comparing with the earlier formula, we see that
dim(Ì(ç)0) + dim(Ì(ç)‘) = 1.

But we have dim(Ì(ç)0) = 1 when çq-1 = ú, and hence Ì(ç)‘ = 0

in this case as well. QED

((((AAAA6666....2222)))) AAAAnnnn aaaapppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo SSSSwwwwaaaannnn ccccoooonnnndddduuuuccccttttoooorrrrssss ooooffff ppppuuuullllllllbbbbaaaacccckkkkssss
(A6.2.1) In the setup of the previous section, suppose we are given
a two-dimensional ä$…-representation M of I(‘) := Gal(äK/K), both of

whose I(‘)-breaks are 1/2. The pullback f*M is the restriction of M
to the open subgroup IL(‘) : = Gal(äK/L). We wish to calculate the

Swan conductor of f*M.

LLLLeeeemmmmmmmmaaaa AAAA6666....2222....2222 Suppose f in L≠ has a Swan-minimal pole of order e.
Let M be a two-dimensional ä$…-representation M of I(‘) := Gal(äK/K),

both of whose I(‘)-breaks are 1/2.

1) If e is prime to p, then f*M has both IL(‘)-breaks e/2, and

Swan(f*M) = e.

2) If e = e0q with q = pn, n ≥ 1, and e0 prime to p, then we have

the following results.
2a) If e0(q-1) ≥ 3, then

Swan(f*M) = e - 2.
2b) If e = p = 3, we have the inequality

Swan(f*M) ≤ e - 2,

and for all but precisely one value of µ in k≠, we have

Swan((µf)*M) = e - 2 = 1.
For the unique exceptional µ, call it µ0, we have

Swan((µ0f)
*M) = e - 3 = 0.

2c) If e = p = 2, then we have the equality

Swan(f*M) = 1.
pppprrrrooooooooffff In case 1), L/K is the tame extension of degree e, and the
effect of pullback is to multiply each break, and the Swan
conductor, by the degree e, cf. [Ka-GKM, 1.13 and 1.13.1].
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In case 2), we argue as follows. For virtual representations of
virtual dimension zero, the Swan conductor is invariant under
induction, cf. [De-Const, 5.5.2 and 5.6.1], [Ka-TLFM, proof of 1.6.4.1].
So we have

Swan(f*M) = Swan(f*M - 2ä$…) = Swan(f*(f
*M - 2ä$…))

= Swan(M‚f*ä$…) - 2Swan(f*ä$…)

= Swan(M‚f*ä$…) - 2,

the last equality because f has a Swan-minimal pole of order
divisible by p, cf. Corollary 6.4.5. We have seen in Theorem A6.1.5
that f*ä$… as I(‘)-representation has the shape

(rank r= e0(q-1), all breaks 1/r)

· (· all characters of order dividing e0).

In case 2a), when e0(q-1) ≥ 3, all the breaks of f*ä$… are < 1/2.

As both breaks of M are 1/2, all the 2e breaks of M‚f*ä$… are 1/2.

So in case 2a),we have Swan(M‚f*ä$…) = e, as required.

If we are not in case 2a), then e0(q-1) ≤ 2. This happens only in

two cases, (q = p = 3, e0 = 1) and (q = p = 2, e0 = 1).

In case 2b), e = p = 3, and f*ä$… has the shape

ä$… · (rank 2, both breaks 1/2).

In this case f*ä$… has all its breaks ≤ 1/2, so M‚f*ä$… has all its 2e

breaks ≤ 1/2. Thus we certainly have Swan(M‚f*ä$…) ≤ e, and so we

have the asserted inequality.
To go further in case 2b), we use the fact that we are not in

characteristic 2. Then every tame ä$…
≠-valued character of I(‘) has

a tame square root. Since det(M) is tame (its unique break is ≤ 1/2,
so 0), we can replace M by M‚Òç for some tame character ç of

I(‘) and reduce to the case where det(M) is Òç2
, for ç2 the unique

character of I(‘) of order 2. In this case, denoting by [2] : ´m ¨ ´m
the squaring map on ´m, we have

M ¶ [2]*Ò¥(åx),

for ¥ a nontrivial additive character of the prime field Ép, and some

å in k≠. Indeed, to see this recall first [Ka-GKM, 5.6.1] that
[2]*Ò¥(2x) is the I(‘)-representation attached to the Kloosterman

sheaf Kl(¥;ú, ç2), and hence that

det([2]*Ò¥(2x)) = Òç2.
.

Then apply [Ka-ESDE, 8.6.3] to conclude that M is a multiplicative
translate of [2]*Ò¥(2x). A similar analysis of f*ä$…/ä$… shows that for

some tame character ® of I(‘), and for some ∫ in k≠, we have
f*ä$…/ä$… ¶ [2]*(Ò®‚Ò¥(∫x)).

For ¬ in k≠, we have
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(¬-2f)*ä$…/ä$… ¶ [x ÿ ¬-2x]*(f*ä$…/ä$…)

¶ [x ÿ ¬-2x]*[2]*(Ò®‚Ò¥(∫x))

¶ [2]*[x ÿ ¬-1x]*(Ò®‚Ò¥(∫x))

¶ [2]*(Ò®‚Ò¥(¬∫x)).

[We use the translation invariance of the sheaves ä$… and Ò®, in the

first and fourth isomorphisms respectively.] Taking pullback by the
squaring map, we find

[2]*M ¶ Ò¥(åx) · Ò¥(-åx),

[2]*((¬-2f)*ä$…/ä$…) ¶ Ò®‚Ò¥(¬∫x) · Ò®‚Ò¥(-¬∫x).
So we have

[2]*(M‚((¬-2f)*ä$…/ä$…))

¶ Ò®‚(Ò¥((å+¬∫)x) · Ò¥((-å+¬∫)x) · Ò¥((å-¬∫)x) · Ò¥((-å-¬∫)x),

which has all four breaks 1 unless ¬ is _å/∫, i.e., unless

¬-2 = (∫/å)2, in which case there are two breaks 1 and two breaks

0. So except for this single excluded value of ¬-2, M‚((¬-2f)*ä$…/ä$…)

itself has all four breaks 1/2, and we have

Swan(M‚(¬-2f)*ä$…) = Swan(M) + Swan(M‚(((¬-2f)*ä$…)/ä$…))

= 1 + 2 = 3 = e,

as required. For the single exceptional value ¬0
-2 of ¬-2, we get

Swan(M‚(¬0
-2f)*ä$…) = 1 + 1 = 2,

in which case we have the rather remarkable fact that (¬0
-2f)*(M)

is tame. Then µ0 := ¬0
-2 is the unique excluded value of å in 2b).

We now turn to case 2c), when e = p = 2. In this case, we have
f*ä$… ¶ ä$… · Ò¥(x),

with slopes 0 and 1. So in this case, M‚f*ä$… has two slopes 1/2 and

two slopes 1, so we get
Swan(M‚f*ä$…) = 3,

and hence

Swan(f*M) = Swan(M‚f*ä$…) - 2 = 1. QED

((((AAAA6666....3333)))) IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn iiiinnnn tttteeeerrrrmmmmssss ooooffff ccccaaaannnnoooonnnniiiiccccaaaallll eeeexxxxtttteeeennnnssssiiiioooonnnnssss
(A6.3.1) We continue to view K as the ‘-adic completion of the
function field k(´m). Then the separable extension L/K, viewed as a

finite etale connected covering of Spec(K), has a "canonical extension"
[Ka-LG] to a finite etale connected covering π : E ¨ ´m This

canonical extension is characterized by two properties. The first is
that it extends L/K in the sense that Spec(L)/Spec(K) is obtained
from E/´m by base change via the natural map Spec(K) ¨ ´m
corresponding to the inclusion of rings k[x, 1/x] fi K = k((1/x)). The
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second is that E/´m is a "special" finite etale covering; this means

that the geometric monodromy group Ggeom for the lisse sheaf

π*ä$… on ´m has a unique p-Sylow subgroup, or equivalently that

some p-Sylow subgroup is a normal subgroup. By the first
requirement, we recover f*ä$… as the I(‘)-representation attached

to π*ä$….

TTTThhhheeeeoooorrrreeeemmmm AAAA6666....3333....2222 Suppose f in L≠ has a Swan-minimal pole of order

e = e0q, with e0 prime to p and with q = pn for some n ≥ 1. Then

the canonical extension of L/K is the pullback, by a multiplicative
translate on the base ´m, of the finite etale covering

πe : !
1 - {0, -1} ¨ ´m,

X ÿ (Xq-1(1+X))e0.
For any nontrivial additive character ¥ of Éq, we have an

isomorphism of lisse sheaves on ´m,

πe*ä$… ¶ [e0]*(ú) · [e0(q-1)]*Ò¥.

pppprrrrooooooooffff We have seen in the proof of Theorem A6.1.5 that the
pullback by some multiplicative translate on the base ´m of the

finite etale covering πe is an extension of L/K. It remains to see that

πe is a special covering, and that πe*ä$… is as asserted. It suffices to

show this last statement, that
πe*ä$… ¶ [e0]*(ú) · [e0(q-1)]*Ò¥.

For if this holds, then the covering is indeed special. Indeed, after

pullback by [e0(q-1)]
*, i.e., after restriction to a normal subgroup of

π1(´m) of prime-to-p index e0(q-1), we obtain a lisse sheaf whose

geometric monodromy group is visibly a p-group, namely

[e0(q-1)]
*(πe*ä$…)

¶ [e0(q-1)]
*( [e0]*(ú)) · [e0(q-1)]

*[e0(q-1)]*Ò¥
¶ (e0 copies of ú) · (·Ω in µe0(q-1)

(k) Ò¥Ω
),

where we denote by ¥Ω the additive character x ÿ ¥(Ωx).

To show that
πe*ä$… ¶ [e0]*(ú) · [e0(q-1)]*Ò¥,

we rewrite it as
πe*ä$… ¶ [e0]*(ú· [q-1]*Ò¥).

We then use the tautological fact that
πe = [e0]«πq,

to reduce to showing that
πq*ä$… ¶ ú· [q-1]*Ò¥.

For this, we argue as follows. We have a direct sum
decomposition

πq*ä$… ¶ ä$… · (πq*ä$…)/ä$….
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On the other hand, we have seen in the proof of Theorem A6.1.5
that we have

πq*ä$… | I(0) ¶ ä$… · [q-1]*ä$…
¶ ä$… · (· all characters of order dividing q-1),

and we have
πq*ä$… | I(‘) ¶ ä$… ·(rank r = q-1, all breaks 1/r).

Therefore (πq*ä$…)/ä$… is a lisse sheaf on ´m whose I(0)-

representation is
· all characters of order dividing q-1,

and whose I(‘)-representation is totally wild, of Swan conductor
one. Since the covering πq already exists over the prime field Ép, it

exists over Éq, and hence (πq*ä$…)/ä$… exists as a lisse sheaf on

´m/Éq. We now apply [Ka-GKM, 8.7.1], according to which our lisse

sheaf on ´m/Éq is geometrically isomorphic to a multiplicative

translate, by an Éq-point of ´m, of the Kloosterman sheaf

Kl(¥, ç1,..., çq-1),

with the çi all the q-1 multiplicative characters of Éq
≠. By [Ka-

GKM, 5.6.1 or 5.6.2], we have a geometric isomorphism
[q-1]*Òä¥ ¶ Kl(¥, ç1,..., çq-1).

On the other hand, all the sheaves Ò¥ for ¥ a nontrivial additive

character of Éq, are transitively permuted by the translation action

of ´m(Éq) = µq-1(k), which is the galois group of the Kummer

covering [q-1]. Therefore the isomorphism class of the direct image
[q-1]*Ò¥ is independent of the choice of nontrivial additive

character ¥ of Éq. So we have

[q-1]*Ò¥ ¶ Kl(¥, ç1,..., çq-1).

So we now have a geometric isomorphism between the sheaf
(πq*ä$…)/ä$… on ´m/Éq and some ´m(Éq)-translate of [q-1]*Ò¥. Both

these sheaves are geometrically irreducible (because they are I(‘)-
irreducible), and have finite arithmetic monodromy. So there exists

a root of unity å in ä$…
≠, a choice of b in Éq

≠, and an isomorphism

of lisse sheaves on ´m/Éq,

[x ÿ bx]*((πq*ä$…)/ä$…) ¶ ådeg‚[q-1]*Ò¥.

We must show that b = 1 in Éq, and that å = 1 in ä$…
≠. We do

this by comparing the trace functions of both sides of the
isomorphism above at Éq-valued points of ´m. At a point t in

´m(Éq), the trace of å
deg‚[q-1]*Ò¥ is given by

Trace(FrobÉq,t
| ådeg‚[q-1]*Ò¥)

= å‡x in Éq
≠ with xq-1 = t ¥(x).

But for x in Éq
≠, xq-1 = 1. Therefore we have
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Trace(FrobÉq,t
| ådeg‚[q-1]*Ò¥) = 0, if t ± 1.

If t = 1, then we have

Trace(FrobÉq,1
| ådeg‚[q-1]*Ò¥)

= å‡x in Éq
≠ ¥(x)

= - å.
In other words, we have

Trace(FrobÉq,t
| ådeg‚[q-1]*Ò¥) = -å∂1,t.

Therefore the trace function of [x ÿ bx]*(πq*ä$…)/ä$…) at Éq-valued

points of ´m is supported at t=1, where it takes the value -å. In

other words, the trace function of (πq*ä$…)/ä$… at Éq-valued points

of ´m is supported at t=b, where it takes the value -å. So we need

only show that
Trace(FrobÉq,1

| (πq*ä$…)/ä$…) = -1.

Then by comparing supports we see that b = 1, and comparing
values we see that å = 1.

To show this, we simply compute. We have
Trace(FrobÉq,1

| (πq*ä$…)/ä$…)

= -1 + Trace(FrobÉq,1
| πq*ä$…)

= -1 + ù{x in Éq - {0, -1} with πq(x) = 1}

= -1 + ù{x in Éq - {0, -1} with xq-1(x+1) = 1}

= -1 + ù{x in Éq - {0, -1} with x + 1 = 1}

= -1,

the next to last inequality because for x in Éq
≠, xq-1 =1. [This same

calculation shows that for t in Éq
≠, t ± 1, we have

Trace(FrobÉq,t
| (πq*ä$…)/ä$…)

= -1 + ù{x in Éq - {0, -1} with x + 1 = t} = 0,

giving an a priori proof that the trace function of (πq*ä$…)/ä$… at

Éq-valued points of ´m is supported at t=1, where it takes the value

-1.] QED
(A6.3.3) For the purposes of the next section, it is convenient to
restate the above theorem in slightly different form.

TTTThhhheeeeoooorrrreeeemmmm AAAA6666....3333....4444 ((((==== 6666....3333....2222 bbbbiiiissss) Suppose f in L≠ has a Swan-minimal

pole of order e = e0q, with e0 prime to p and with q = pn for some n

≥ 1. Then the canonical extension of L/K is the pullback, by a
multiplicative translate on the base ´m, of the finite etale covering

πe : !
1 - {0, 1} ¨ ´m,

X ÿ (Xq-1(1 - X))e0.
For any nontrivial additive character ¥ of Éq, we have an
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isomorphism of lisse sheaves on ´m,

πe*ä$… ¶ [e0]*(ú) · [e0(q-1)]*Ò¥.

pppprrrrooooooooffff This is simply the previous theorem, after the automorphism

X ÿ -X of the source !1. QED

((((AAAA6666....4444)))) BBBBeeeellllyyyyiiii ppppoooollllyyyynnnnoooommmmiiiiaaaallllssss,,,, nnnnoooonnnn----ccccaaaannnnoooonnnniiiiccccaaaallll eeeexxxxtttteeeennnnssssiiiioooonnnnssss,,,, aaaannnndddd
hhhhyyyyppppeeeerrrrggggeeeeoooommmmeeeettttrrrriiiicccc sssshhhheeeeaaaavvvveeeessss
(A6.4.1) We continue to work over an algebraically closed field k of

positive characteristic p. The polynomial (Xq-1(1 - X))e0 which
describes the canonical extension in Theorem A6.3.4 above is a

special case of a Belyi polynomial Xa(1 - X)b.

LLLLeeeemmmmmmmmaaaa AAAA6666....4444....2222 Let k be an algebraically closed field of positive
characteristic p. Let a and b be positive integers, both prime to p,
whose sum is divisible by p, say

a + b = e = e0q

with e0 prime to p, and with q = pn for some n ≥ 1. Consider the

Belyi polynomial

Ba,b(X) := Xa(1 - X)b.

Then Ba,b makes !1 - {0, 1} a finite etale covering of ´m of degree e.

pppprrrrooooooooffff The map Ba,b makes !1 a finite flat covering of itself of

degree e. We readily compute

(d/dX)(Ba,b(X)) = (a -(a+b)X)Xa-1(1 - X)b-1

= aXa-1(1 - X)b-1.

Thus the only possible critical points of Ba,b in !1 are X=0 and X=1,

both of which map to 0 under Ba,b. QED

LLLLeeeemmmmmmmmaaaa AAAA6666....4444....3333 Hypotheses as in the lemma above, the finite etale
covering

Ba,b
: !1 - {0, 1} ¨ ´m

is a canonical extension if and only if (a, b) is either (e0, e0(q-1)) or

(e0(q-1), e0)).

pppprrrrooooooooffff Indeed, Ba,b(X) has a Swan-minimal pole of order e at ‘ on

the source, and so, by Theorem A6.3.4 above, its canonical extension
from ‘ is (a multiplicative translate on the target of) the covering
Be0(q-1),e0

, whose local monodromy at 0 is the direct sum of all

characters of order dividing e0, together with all characters of order

dividing e0(q-1). We recover e0 as the number of distinct characters

which occur twice at 0, and we recover e0(q-1) as the largest order

of a character on the list. But the covering Ba,b has local

monodromy at 0 the direct sum of all the characters of order
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dividing a, together with all the characters of order dividing b. On
that list, there are precisely gcd(a, b) characters which occur twice,
and the highest order of a character on the list is max(a, b). Thus if
the Ba,b covering is canonical, then gcd(a b) = e0, and max(a, b) =

e0(q-1). This in turn implies that (a, b) is either (e0, e0(q-1)) or

(e0(q-1), e0)). Both of these are canonical, the second by Theorem

A6.3.4, and the first by applying the automorphism X ÿ 1 - X of the

source !1. QED

(A6.4.4) We now turn to the question of identifying the lisse sheaf
Ba,b*ä$… on ´m provided by a Belyi polynomial. The answer involves

the hypergeometric sheaves of [Ka-ESDE, 8.4].
TTTThhhheeeeoooorrrreeeemmmm AAAA6666....4444....5555 Hypotheses and notations as in Lemma A6.4.2
above, suppose in addition that a and b are relatively prime. Fix a
finite subfield k0 of k which contains the roots of unity of order

abe0, and fix a nontrivial additive character ¥ of k0. Denote

NTChar(a) := {nontrivial characters ç of k0
≠ with ça = ú},

and similarly for NTChar(b) and NTChar(e0). Then there exists a

unique ¬ in k≠ such that there exists a geometric isomorphism of
lisse sheaves on ´m

Ba,b*ä$… ¶ ä$… · Ó¬(~, ¥; ú, NTChar(a), NTChar(b); NTChar(e0)).

pppprrrrooooooooffff The sheaf Ba,b*ä$… is lisse on ´m, and visibly has finite

monodromy, so is completely reducible. It is tamely ramified at 0.
Its I(0)-representation is the direct sum

ú · (·ç in NTChar(a) Òç) · ú · (·® in NTChar(b) Ò®).

The function Ba,b has a Swan-minimal pole of order e at ‘, so by

Theorem A6.1.5, the I(‘)-representation attached to Ba,b*ä$… is

(rank r= e0(q-1), all breaks 1/r)

· ú · ·Ú in NTChar(e0)
ÒÚ .

In particular, Ba,b*ä$… is tame at 0, and its Swan‘ is one.

Now use the fact that Ba,b*ä$… is completely reducible as a lisse

sheaf on ´m to write it as a direct sum

·i Ìi
of geometrically irreducible lisse sheaves on ´m. From the equations

0 = Swan0(Ba,b*ä$…) = ‡i Swan0(Ìi),

1 = Swan‘(Ba,b*ä$…) = ‡i Swan‘(Ìi),

we see that all the Ìi are tame at 0, and that all but one is tame at

‘, with the exceptional one, say Ì1, having Swan‘(Ì1) = 1. Now

any Ìi with i ≥ 2 is a geometrically irreducible lisse sheaf on ´m
which is everywhere tame and with finite monodromy, so is a
Kummer sheaf Òß for some multiplicative character ß of some
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finite subfield of k. But if Òß is direct summand of Ba,b*ä$…, then

Òß is a direct summand of both the I(0) and the I(‘)-

representations attached to Ba,b*ä$…. Since we have assumed that a

and b are relatively prime, the three numbers (a, b, a+b = e0q) are

pairwise relatively prime, and hence the only possible ß is ú, and it
can only occur once.

Therefore we have
Ba,b*ä$… ¶ Ì1 · ä$….

In this decomposition, Ì1 is a geometrically irreducible lisse sheaf on

´m whose I(0)-representation is

ú · (·ç in NTChar(a) Òç) · (·® in NTChar(b) Ò®)

and whose I(‘)-representation is
(rank r= e0(q-1), all breaks 1/r) · (·Ú in NTChar(e0)

ÒÚ).

According to [Ka-ESDE, 8.5.3.1] applied to Ì1, there is a unique ¬ in

k≠ and a geometric isomorphism
Ì1 ¶ Ó¬(~, ¥; ú, NTChar(a), NTChar(b); NTChar(e0)). QED

CCCCoooorrrroooollllllllaaaarrrryyyy AAAA6666....4444....6666 Hypotheses and notations as in the theorem
above, suppose in addition that e0 = 1, i.e., that a+b = q. Then

Ba,b*ä$…/ä$… is geometrically isomorphic to a unique multiplicative

translation of the Kloosterman sheaf Kl(¥, ú, NTChar(a), NTChar(b)).
pppprrrrooooooooffff This is the special case e0 = 1 of the theorem: a

hypergeometric sheaf with no tame characters at ‘ is a
Kloosterman sheaf. QED

(A6.4.7) To analyze a Belyi polynomial BA,B with A and B prime

to p but not necessarily relatively prime, and with A+B divisible by
p, we apply the following corollary, with d := gcd(A, B), a := A/d, b :=
B/d.
CCCCoooorrrroooollllllllaaaarrrryyyy AAAA6666....4444....8888 Hypotheses and notations as in the theorem
above, let d be a positive integer which is prime to p. Consider the

Belyi polynomial Bda,db(X) = (Ba,b(X))
d. Then there exists an

isomorphism of lisse sheaves on ´m
Bda,db*ä$… ¶ [d]*(ä$…) · [d]*(Ba,b*ä$…/ä$…).

pppprrrrooooooooffff Since Bda,db = [d]«Ba,b, this is immediate from the theorem.

QED

RRRReeeemmmmaaaarrrrkkkk AAAA6666....4444....9999 For any hypergeometric sheaf Ó(~, ¥; ç's; ®'s) and
for any prime-to-p integer d, [d]*Ó is, geometrically, another

hypergeometric sheaf, whose characters at 0 are all the d'th roots of
the ç's, and whose characters at ‘ are all the d'th roots of the ®'s,
cf. [Ka-ESDE, 8.9.1]. Since Ba,b*ä$…/ä$… is itself an explicit

hypergeometric sheaf, the second term [d]*(Ba,b*ä$…/ä$…) is an
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equally explicit hypergeometric sheaf.



CCCChhhhaaaapppptttteeeerrrr 7777:::: PPPPuuuullllllllbbbbaaaacccckkkkssss ttttoooo ccccuuuurrrrvvvveeeessss

ffffrrrroooommmm !!!!1111

((((7777....1111)))) TTTThhhheeee ggggeeeennnneeeerrrraaaallll ppppuuuullllllllbbbbaaaacccckkkk sssseeeettttttttiiiinnnngggg
(7.1.1) In this chapter, we will consider the following general
"pullback to a curve" situation. We work over a finite field k. We fix
a prime number … invertible in k, and a field embedding ä$… fi ^. On

!1/k, we are given a geometrically irreducible, geometrically
nonconstant perverse sheaf K, which is “-pure of weight 0. We
assume that K is non-punctual, and that, geometrically, K has ∏.
Thus K is of the form Ì[1], for Ì a geometrically irreducible middle

extension sheaf on !1 which is not geometrically of the form Ò¥(åx)

for any å in k. We denote by S fi !1 the set of finite singularities of

Ì, and we denote by j : !1 - S ¨ !1 the inclusion. Then Ì ¶ j*j
*Ì,

and j*Ì is lisse, geometrically irreducible “-pure of weight -1 on !1

- S. Because Ì is geometrically nonconstant, we have Hc
i(!1‚käk, Ì)

= 0 for i ± 1, i.e., we have

Hc
i(!1‚käk, K) = 0 for i ± 0.

(7.1.2) We now consider a proper, smooth, geometrically
connected curve C/k, of genus denoted g, together with an effective
divisor D on C with

deg(D) ≥ 2g + 3.

We view the Riemann Roch space L(D) as a space of !1-valued
functions on the open curve C-D, with

† : L(D) ¨ Homk-schemes(C-D, !
1)

the natural evaluation map. As we have noted in 1.1.9, this space of
functions is 4-separating. Indeed, it is d-separating, for
d:= deg(D) - (2g-1).
(7.1.3) We take as "standard input" (cf. 1.15.4) the following data:

the integer m = 1,

the perverse sheaf K on !1/k,
the affine k-scheme V := C-D,

the k-morphism h : V ¨ !1 given by h = 0,
the perverse sheaf L := ä$…(1/2)[1] on C-D,

the integer d:= deg(D) - (2g-1),
the space of functions (L(D), †) on C-D.

[This is indeed standard input: the condition that

H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K)

be concentrated in degree ≤ m is trivially satisfied.]
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(7.1.4) We then form the perverse sheaf
M = Twist(L = ä$…(1/2)[1], K, Ï = L(D), h = 0)

on the space L(D). Let us make this perverse sheaf explicit.
(7.1.5) For each finite extension field E/k inside äk, and for each f

in L(D)‚kE, we form the pullback sheaf f*Ì on (C-D)E, and compute

its compact cohomology

Hc
*((C - D)E‚Eäk, f

*Ì).

By definition, we have

Ói-…(D)(M)(E, f) := Hc
i+1((C - D)E‚Eäk, f

*Ì)(1/2).

Since the sheaf f*Ì has no nonzero punctual sections we have

Hc
0((C - D)E‚Eäk, f

*Ì) = 0, for every f.

Since C - D is a curve, we have

Hc
i≥3((C - D)E‚Eäk, f

*Ì) = 0, for every f.

Thus the only possibly nonvanishing cohomology sheaves of M are

Ó-…(D)(M) and Ó1-…(D)(M). Since M is perverse on L(D), Ó1-…(D)(M) is
generically zero. So on any dense open set U fi L(D) on which M is

lisse (:= has lisse cohomology sheaves), we have Ó1-…(D)(M)|U = 0.
(7.1.6) In favorable cases, we can make explicit a dense open set
on which M is lisse. Recall that S is the set of finite singularities of Ì.
Denote by

UD,S fi L(D)

the dense open set whose äk-valued points are those f in L(D)(äk) with
the following two properties:

the divisor of poles of f is D,
f is finite etale over over S.

LLLLeeeemmmmmmmmaaaa 7777....1111....7777 Suppose that either Ì is tamely ramified at ‘, or
that the divisor D is "prime to p", in the sense that when we write D
over äk as ‡i aiPi, each ai is prime to p. Then the perverse sheaf M is

lisse on UD,S.

pppprrrrooooooooffff Over the space U := UD,S, we have the constant curve CU,

with coordinates (x, f), which contains the constant relative divisor

DredU, (those points (x, f) where x is some Pi) and also the relative

divisor f-1(S) (those points (x, f) where f(x) lies in S). These divisors
are disjoint, and each is finite etale over UD,S, the first of degree

deg(Dred), the second of degree deg(D)ùS(äk). On the open relative

curve (C - Dred)U, we have the sheaf f
*Ì. Denote by

å : (C - Dred)U - f-1(S) ¨ (C - Dred)U
and

∫ : f-1(S) ¨ (C - Dred)U
the inclusions. Denote the various structural morphisms by
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π : (C - Dred)U ¨ U,

π0 : (C - Dred)U - f-1(S) ¨ U,

and

® : f-1(S) ¨ U.

It is tautological that Rπ~(f
*Ì) is essentially M|U, up to a shift

and a Tate twist. For each i, we have

Ói-…(D)(M)|U = Riπ~(f
*Ì)(1/2).

We wish to show that all the Riπ~(f
*Ì) are lisse on U. Consider the

excision sequence for å and ∫:

...¨ Riπ0~(å
*f*Ì) ¨ Riπ~(f

*Ì) ¨ Ri®~(∫
*f*Ì) ¨ ... .

The sheaf ∫*f*Ì is lisse on f-1(S), and ® is finite etale, so the terms

Ri®~(∫
*f*Ì) are all lisse on U (and vanish for i ± 0). So it suffices to

show that all the Riπ0~(å
*f*Ì) are lisse on U. The sheaf å*f*Ì is

lisse on the open relative curve (C - Dred)U - f-1(S), and this open

curve is the complement in a proper smooth curve CU of a divisor

which is finite etale over U. By Deligne's semicontinuity theorem
[Lau-SC, 2.1.1 and 2.1.2], it suffices to show that for variable f in

U(äk), the sum of the Swan conductors of f*Ì at all the äk-valued

points of D‹f-1(S) is constant. To see this, we argue as follows.
Since f is finite etale of degree deg(D) over S, we have

‡x in f-1(S)(äk) Swanx(f
*Ì) = deg(D)‡s in S(äk) Swans(Ì),

which is independent of f in U. It is to insure that

‡Pi in D(äk) SwanPi
(f*Ì)

is independent of f in U that we made the hypothesis that either Ì
is tame at ‘, or D is prime to p. Suppose first that Ì is tame at ‘.

Then f*Ì is tame at each point of D, and this sum vanishes. If D is

prime to p, then at Pi, f
*Ì as representation of the inertia group

I(Pi) is the pullback of Ì as I(‘)-representation by a degree ai

Kummer covering, and SwanPi
(f*Ì) = aiSwan‘(Ì). So we get

‡Pi in D(äk) SwanPi
(f*Ì) = deg(D)Swan‘(Ì),

a formula which is also valid in the case when Ì is tame at ‘,
which shows that this sum is also independent of f in U. QED

(7.1.8) In the general case, we do not know a simple, explicit
description of a dense open set U on which M is lisse. What we can

describe explicitly are dense open sets U for which Ó1-…(D)(M)|U = 0,
i.e., explicit dense open U such that for f in U(äk), we have

Hc
2((C - D)‚käk, f

*Ì) = 0.
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(7.1.9) Write D over äk as ‡i aiPi. Define integers bi by

bi := ai, if p divides ai,

bi := ai + 1, if p does not divide ai.

Recall (from Theorem 6.2.2, Lemma 6.2.7, and Corollary 6.2.15) that
there is a dense open set U1 fi L(D) such that for f in U1(äk), f has

divisor of poles D, df has divisor of poles ‡biPi, f is Lefschetz on C - D,

f*ä$…/ä$… is an irreducible middle extension sheaf on !1 with Ggeom
the full symmetric group Sdeg(D) in its deleted permutation

representation, f*ä$…/ä$… has at least one finite singularity, and its

local monodromy at each finite singularity is a reflection.
(7.1.10) Denote by U2 fi L(D) the dense open set consisting of those

f in U1 which are finite etale over the set S of finite singularities of

Ì, i.e., U2 is U1€UD,S
LLLLeeeemmmmmmmmaaaa 7777....1111....11111111 Suppose that any of the following four conditions
holds:
a) rank(Ì) ± deg(D) -1,
b) Ì is not, geometrically, orthogonally self dual,

c) Ì is lisse on !1,
d) At some finite singularity s of Ì, local monodromy is not a
reflection (i.e., there exists an element in the inertia group I(s) which
acts nontrivially, but not as a reflection).
Then for any f in U1(äk), we have

Hc
2((C - D)‚käk, f

*Ì) = 0.

pppprrrrooooooooffff 1) This results from the projection formula, and the

interpretation of Hc
2 on a curve in terms of coinvariants under π1.

For f in L(D)(äk) nonconstant, the Leray spectral sequence for f gives

Hc
2((C - D)‚käk, f

*Ì) = Hc
2(!1‚käk, f*f

*Ì)

= Hc
2(!1‚käk, Ì‚f*ä$…)

= Hc
2(!1‚käk, Ì‚(f*ä$…/ä$…)) · Hc

2(!1‚käk, Ì).

The second summand vanishes because Ì is a geometrically
irreducible middle extension which is geometrically nonconstant. For
f in U1(äk), (f*ä$…/ä$…) is geometrically irreducible and self dual, so, Ì

being itself geometrically irreducible, the first summand vanishes
unless there exists a geometric isomorphism

Ì ¶ (f*ä$…/ä$…)

on (C - D)äk. There can be no such isomorphism if the two sides have

different ranks, or different duality types, or different sets of finite
singularities, or different local monodromies at some common
singularity. QED

LLLLeeeemmmmmmmmaaaa 7777....1111....11112222

1)For any f in U2(äk), we have Hc
2((C - D)‚käk, f

*Ì) = 0.
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2) If Ì is geometrically Lie-irreducible on !1 - S and rank(Ì) ≥ 2,

then for any nonconstant f in L(D)(äk), we have Hc
2((C - D)‚käk, f

*Ì)

= 0.
pppprrrrooooooooffff 1) Either S is empty, and we apply case c) of the previous
Lemma 7.1.11, or S is nonempty, in which case (f*ä$…/ä$…) but not Ì

is lisse at points of S.

2) The pullback f*Ì, restricted to C - D - f-1(S), is geometrically

irreducible of rank ≥ 2. By the birational invariance of Hc
2, we have

the asserted vanishing. QED

(7.1.13) Now we have, in the general case, a dense open set U2

with Ó1-…(D)(M)|U = 0. Notice that U2 lies in the dense open set UD,S
which "works" under the special hypotheses of Lemma 7.1.7 above.

On the other hand, Ó-…(D)(M) is a sheaf of perverse origin on L(D), so
it is lisse precisely on the dense open set Umax consisting of those

points where it has maximal rank [Ka-SMD, Proposition 12]. So we
can assert that M is lisse on the dense open set U2€Umax, but the

fact is that in the general case we do not know an explicit
description of Umax, nor even an explicit description of a dense open

set which lies in Umax.

(7.1.14) Let U fi UD,S be a dense open set on which M is lisse. Then

M|U is ˜(1/2)[…(D)], for ˜ the lisse sheaf R1π~(f
*Ì)|U. The sheaf ˜ is

“-mixed of weight ≤ 0. Our next task is to understand concretely the

sheaf Gr0(˜) and its direct sum decomposition

Gr0(˜) = Gr0(˜)ncst · Gr0(˜)cst,

and to estimate from below the rank of Gr0(˜)ncst.

(7.1.15) To begin with, let us factor the morphism

π : (C - Dred)U ¨ U,

through the tautological map

f : (C - Dred)U ¨ !1U,

(x, f) ÿ (f(x), f).
Denote by

pr2 : !1U ¨ U

the structural map. Using the Leray spectral sequence for the finite
map f, we have, for every i,

Riπ~(f
*Ì)|U = Ripr2~(f*f

*Ì)|U = Ripr2~(Ì‚f*ä$…)|U

= Ripr2~(Ì‚(f*ä$…/ä$…))|U · Ripr2~(Ì)|U

= Ripr2~(Ì‚(f*ä$…/ä$…))|U

· (the constant sheaf Hc
i(!1‚käk, Ì) on U).
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Since R1π~(f
*Ì)|U is lisse and the other Riπ~(f

*Ì)|U vanish, we see

that R1pr2~(Ì‚(f*ä$…/ä$…))|U is lisse, and the other

Ripr2~(Ì‚(f*ä$…/ä$…))|U vanish. Similarly Hc
i(!1‚käk, Ì) vanishes for

i ± 1.
(7.1.16) Let us define a lisse sheaf ˜ncst on U by

˜ncst := R1pr2~(Ì‚(f*ä$…/ä$…))|U.

Thus we have a direct sum decomposition of ˜,

˜ = ˜ncst · (the constant sheaf Hc
1(!1‚käk, Ì)).

Passing to Gr0, we find a direct sum decomposition

Gr0(˜) = Gr0(˜ncst) · (the constant sheaf Hc
1(!1‚käk, Ì)wt=0).

LLLLeeeemmmmmmmmaaaa 7777....1111....11117777 We have an isomorphism Gr0(˜)ncst ¶ Gr0(˜ncst)

of lisse sheaves on U.
pppprrrrooooooooffff We also have the decomposition

Gr0(˜) = Gr0(˜)ncst · Gr0(˜)cst.

In this decomposition, we know from 2.1.1.5 that Gr0(˜)cst is the

constant sheaf Hc
1(!1‚käk, Ì)wt=0. Comparing the two

decompositions, we find that Gr0(˜ncst) and Gr0(˜)ncst have the

same trace function. By Chebotarev, it follows that Gr0(˜ncst) and

Gr0(˜)ncst have isomorphic π1(U)-semisimplifications. But from the

general theory, we know that Gr0(˜)ncst is π1
geom(U)-irreducible,

and hence π1(U)-irreducible. Therefore Gr
0(˜ncst) and Gr0(˜)ncst

are isomorphic as π1(U)-representations. QED

LLLLeeeemmmmmmmmaaaa 7777....1111....11118888 Denoting by g the genus of C, we have the
inequality

rank(Gr0(˜)ncst)

≥ (2g - 1)rank(Ì) + (deg(D) - 1)ùS(äk) - Swan‘(Ì).

If either Ì is tame at ‘ or D is prime to p, then we have the
stronger inequality

rank(Gr0(˜)ncst)

≥ (2g - 1)rank(Ì) + (deg(D) - 1)ùS(äk) + (deg(D) - 1)Swan‘(Ì).

pppprrrrooooooooffff Take an f in UD,S(äk) at which M is lisse and at which the

analogous object Twist(L = ä$…(1/2)[1], DK, Ï = L(D), h = 0) made

with the dual DK of K is also lisse. The stalk at f of Gr0(˜)ncst is the

quotient vector space

Hc
1((C - D)‚käk, f

*Ì)wt=0/Hc
1(!1‚käk, Ì)wt=0.
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Because Ì is a middle extension on !1 which is “-pure of weight -1,

and f is finite etale over the finite singularities S of Ì, the sheaf f*Ì
on C - D is again a middle extension, still pure of weight -1. So we
can rewrite the pure parts in terms of "parabolic cohomology" as
follows. Denote by

jD : C - D ¨ C

and

j‘ : !1 ¨ @1

the inclusions. Then we have [De-Weil II, 1.8.1 and 3.2.3]

Hc
1((C - D)‚käk, f

*Ì)wt=0 = H1(C‚käk, jD*f
*Ì),

Hc
1(!1‚käk, Ì)wt=0 = H1(@1‚käk, j‘*Ì).

By the birational invariance of Hc
2, we have

0 = Hc
2((C - D)‚käk, f

*Ì) = H2(C‚käk, jD*f
*Ì),

0 = Hc
2(!1‚käk, Ì) = H2(@1‚käk, j‘*Ì).

Applying this last vanishing to the dual middle extension, we find by
Poincarïe duality that

0 = H0((C - D)‚käk, f
*Ì) = H0(C‚käk, jD*f

*Ì),

0 = H0(!1‚käk, Ì) = H0(@1‚käk, j‘*Ì).

So we have the dimension formulas

dim(Hc
1((C - D)‚käk, f

*Ì)wt=0) = -ç(C‚käk, jD*f
*Ì),

dim(Hc
1(!1‚käk, Ì)wt=0) = -ç(@1‚käk, j‘*Ì).

Thus we find the rank formula

rank(Gr0(˜)ncst) = -ç(C‚käk, jD*f
*Ì) + ç(@1‚käk, j‘*Ì).

To make use of this, let us recall a convenient form of the Euler
Poincarïe formula. For a constructible sheaf Ó on C‚käk, of generic

rank denoted rank(Ó), and lisse outside the finite set Sing(Ó), we
have

ç(C‚käk, Ó) = ç(C‚käk)rank(Ó) - ‡x in Sing(Ó) TotalDropx(Ó),

where
TotalDropx(Ó) : = Swanx(Ó) + rank(Ó) - dim(Óx).

We apply this both to jD*f
*Ì on C‚käk, and to j‘*Ì on

(@1‚käk). Because f is finite etale of degree deg(D) over S, we have

-ç(C‚käk, jD*f
*Ì)

= (2g - 2)rank(Ì) + ‡x in f-1(S) TotalDropx(jD*f
*Ì)

+ ‡P in D(äk) TotalDropP(jD*f
*Ì)

= (2g - 2)rank(Ì) + deg(D)‡s in S(äk) TotalDrops(Ì)

+ ‡P in D(äk) TotalDropP(jD*f
*Ì)
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≥ (2g - 2)rank(Ì) + deg(D)‡s in S(äk) TotalDrops(Ì)

+ ‡P in D(äk) SwanP(f
*Ì).

We also have

ç(@1‚käk, j‘*Ì) = 2rank(Ì) - ‡s in S(äk) TotalDrops(Ì)

- TotalDrop‘(j‘*Ì)

≥ 2rank(Ì) - ‡s in S(äk) TotalDrops(Ì) - rank(Ì) - Swan‘(Ì)

= rank(Ì) - ‡s in S(äk) TotalDrops(Ì) - Swan‘(Ì).

Adding these up, we get

-ç(C‚käk, jD*f
*Ì) + ç(@1‚käk, j‘*Ì)

≥ (2g - 1)rank(Ì) + (deg(D) - 1)‡s in S(äk) TotalDrops(Ì)

+ ‡P in D(äk) SwanP(f
*Ì) - Swan‘(Ì).

For each s in S(äk), Ì is a middle extension which is not lisse at s, so
we have the trivial inequality

TotalDrops(Ì) ≥ 1.

So we have

-ç(C‚käk, jD*f
*Ì) + ç(@1‚käk, j‘*Ì)

≥ (2g - 1)rank(Ì) + (deg(D) - 1)ùS(äk)

+ ‡P in D(äk) SwanP(f
*Ì) - Swan‘(Ì).

To get the first asserted inequality, simply throw away the terms

‡P in D(äk) SwanP(f
*Ì).

If either Ì is tame at ‘ or D is prime to p, we have

‡P in D(äk) SwanP(f
*Ì) = deg(D)Swan‘(Ì),

which gives the second asserted inequality. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....1111....11119999 If either Ì is tame at ‘ or D is prime to p, then
we have the inequality

rank(Gr0(˜)ncst) ≥ (deg(D) + 2g - 2)rank(Ì).

pppprrrrooooooooffff From the middle of the proof of the last lemma, we extract
the inequality

rank(Gr0(˜)ncst)≥ (2g - 1)rank(Ì)

+ (deg(D) - 1)‡s in S(äk) TotalDrops(Ì)

+ ‡P in D(äk) SwanP(f
*Ì) - Swan‘(Ì)

= (2g - 1)rank(Ì)
+ (deg(D) - 1)(‡s in S(äk) TotalDrops(Ì) + Swan‘(Ì)).

From the Euler Poincarïe formula for Ì on !1, we see that
‡s in S(äk) TotalDrops(Ì) + Swan‘(Ì)

= rank(Ì) - ç(!1‚käk, Ì)

= rank(Ì) + hc
1(!1‚käk, Ì)

≥ rank(Ì).
So we get
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rank(Gr0(˜)ncst)

≥ (2g - 1)rank(Ì) + (deg(D) - 1)rank(Ì)
≥ (deg(D) + 2g - 2 )rank(Ì). QED

((((7777....2222)))) GGGGeeeennnneeeerrrraaaallll rrrreeeessssuuuullllttttssss oooonnnn GGGGggggeeeeoooommmm ffffoooorrrr ppppuuuullllllllbbbbaaaacccckkkkssss

TTTThhhheeeeoooorrrreeeemmmm 7777....2222....1111 (uses the truth of the Larsen Eighth Moment
Conjecture) Suppose that deg(D) ≥ 2g + 7. Denote

N := rank(Gr0(˜)ncst).

Then we have the following results concerning the group Ggeom for

(Gr0(˜)ncst.

1) If Ì|!1 - S is not geometrically self dual, and if N ≥ 8, then Ggeom
fl SL(N).

2) If Ì|!1 - S is, geometrically, orthogonally self dual, and if N ≥ 8,
then Ggeom = Sp(N).

3) If Ì|!1 - S is, geometrically, symplectically self dual, and if N ≥ 8,
then Ggeom is either SO(N) or O(N).

pppprrrrooooooooffff This is a special case of Theorem 2.5.2. QED

RRRReeeemmmmaaaarrrrkkkk 7777....2222....2222 In the above theorem, suppose in addition that
either Ì is tame at ‘ or D is prime to p. Then the hypotheses on the
size of N are nearly always satisfied. Indeed, by Corollary 7.1.19, we
have the inequality

N ≥(deg(D) + 2g - 2 )rank(Ì) ≥ (4g + 5)rank(Ì).

So we always have N ≥ 4. If Ì|!1 - S is, geometrically,
symplectically self dual, then rank(Ì) is even, so we have N ≥ 10. If

Ì|!1 - S is, geometrically, orthogonally self dual, we have N ≥ 8
except, possibly, in the case (rank(Ì) = 1, g = 0, and deg(D) ≤ 9).

TTTThhhheeeeoooorrrreeeemmmm 7777....2222....3333 Suppose that
1) deg(D) ≥ 2g+3,

2) Ì|!1 - S is, geometrically, symplectically self dual, and the local
monodromy at some point s in S(äk) is a unipotent pseudoreflection.

Then Ggeom for Gr0(˜)ncst contains a reflection. If in addition

N := rank(Gr0(˜)ncst) ≥ 9,

then Ggeom is O(N). If N is 7 or 8, then Ggeom is either O(N) or it is

the Weyl group of EN in its reflection representation.

pppprrrrooooooooffff Once we prove that Ggeom contains a reflection, we argue as

follows. Since deg(D) ≥ 2g + 3, L(D) is 4-separating. As N ≥ 4, the
Higher Moment Theorem 1.20.2 and its Corollary 1.20.3 show that
Ggeom lies in O(N), and has fourth moment 3. By purity, we know
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that Ggeom is semisimple. The result is then an instance of Theorem

2.6.9, for N ≥ 9, or of Theorem 2.6.11, for N=7 or N=8.

It remains to prove that Ggeom for Gr0(˜)ncst contains a

reflection. To do this, it suffices to show that after pullback to some
curve, Ggeom for the pullback contains a reflection. In fact, we will

obtain a reflection as a local monodromy of such a pullback.
Recall that ˜ lives on a dense open set U fi L(D) such that M|U

is lisse. Write D over äk as ‡i aiPi. Define integers bi by

bi := ai, if p divides ai,

bi := ai + 1, if p does not divide ai.

Recall from 7.1.9 that there is a dense open set U1 fi L(D) such that

for f in U1(äk), f has divisor of poles D, df has divisor of poles ‡biPi
(i.e., f has Swan-minimal poles, cf. 6.4.6), f is Lefschetz on C - D,

f*ä$…/ä$… is an irreducible middle extension sheaf on !1 with Ggeom
the full symmetric group Sdeg(D) in its deleted permutation

representation, f*ä$…/ä$… has at least one finite singularity, and its

local monodromy at each finite singularity is a reflection.
Pick a function f in U1(äk) such that -f lies in U(äk). Because U1

and U are open in L(D), for all but finitely many ¬ in äk≠, ¬f lies in
U1(äk), and -¬f lies in U(äk).

The idea is to fix a sufficiently general ¬ in U(äk), and then to
consider the äk-map

!1 ¨ L(D)
given by

t ÿ t - ¬f.
Since -¬f lies in U(äk), t - ¬f lies in U for all but finitely many t. So if

we exclude a finite closed subscheme Z of !1/äk, we get a map

!1 - Z ¨ U,
t ÿ t - ¬f.

We will show that after we pull back Gr0(˜)ncst to !
1 - Z, its local

monodromy at some point of Z is a reflection.
Consider the perverse sheaf

L := (f*ä$…/ä$…)[1].

Thus L on !1/äk is perverse, irreducible, non-punctual, has ∏, each
of its local monodromies at finite distance is a reflection, and, by
Corollary 6.4.5, all its ‘-slopes are ≤ 1. The perverse sheaf K = Ì[1]

on !1/äk is perverse, irreducible, non-punctual, and has ∏. By
assumption, the local monodromy of K at some finite singularity is a
unipotent pseudoreflection. We next apply Theorem 6.1.18 and its
Corollary 6.1.19 to this situation. We conclude that for all but finitely

many ¬ in äk≠, the middle convolution
K*midMultTrans¬(L)
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is perverse, semisimple, has ∏, and is non-punctual, say
K*midMultTrans¬(L) = Œ¬[1],

and the local monodromy of Œ¬ at some finite singularity is a

reflection. In particular, we can choose ¬ in äk≠ such that this holds,
and such that ¬f lies in U1(äk), and -¬f lies in U(äk). Fix such a choice

of ¬. At the expense of enlarging the ground field k, we may assume

that f lies in L(D)(k), and that ¬ lies in k≠.

Choose a finite closed subscheme Z of !1 such that !1 - Z
maps to U and such that both of the perverse sheaves (remember K
has ∏)

K*~MultTrans¬(L) and K*midMultTrans¬(L)

are lisse on !1 - Z. To conclude the proof, we will now show that for
this choice of ¬ and Z, we have an isomorphism

Œ¬ | !1 - Z ¶ Gr0(˜)ncst | !
1 - Z

of lisse sheaves on !1 - Z. For this, we argue as follows. It is
tautologous that the perverse sheaves

˜ncst[1] | !
1 - Z

and

K*~MultTrans¬(L) | !
1 - Z

have the same trace function. Both are lisse sheaves on !1 - Z,
placed in degree -1. Write

K*~MultTrans¬(L) | !
1 - Z = Œ~¬[1].

Then both ˜ncst | !
1 - Z and Œ~¬ are lisse on !1 - Z, “-mixed of

weight ≤ 0, and have the same trace function. Therefore

Gr0(˜ncst) | !
1 - Z and Gr0(Œ~¬)

have the same trace function. So by Chebotarev their arithmetic
semisimplifications are isomorphic. Both of these are lisse and “-pure
of weight zero, so both are geometrically, and a fortiori
arithmetically, semisimple. Therefore we have an isomorphism of

lisse sheaves on !1 - Z,

Gr0(˜ncst) | !
1 - Z ¶ Gr0(Œ~¬).

We have already seen in Lemma 7.1.17 that

Gr0(˜ncst) ¶ Gr0(˜)ncst.

And by Theorem 6.4.5, applied to K and to MultTrans¬(L)(1/2), we

have

Gr0(K*~MultTrans¬(L)(1/2)) ¶ K*midMultTrans¬(L)(1/2).

Passing to !1 - Z, this isomorphism gives

Gr0(Œ~¬) ¶ Œ¬.

Putting this all together, we get the desired isomorphism

Œ¬ | !1 - Z ¶ Gr0(˜)ncst | !
1 - Z. QED
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We record for later use the following corollary.
CCCCoooorrrroooollllllllaaaarrrryyyy 7777....2222....4444 Suppose that
1) deg(D) ≥ 2g+3,

2) Ì|!1 - S is, geometrically, symplectically self dual, and the local
monodromy at some point s in S(äk) is a unipotent pseudoreflection.

Then Ggeom for Gr0(˜) contains a reflection.

pppprrrrooooooooffff Indeed, we have a direct sum decomposition

Gr0(˜) = Gr0(˜)ncst · Gr0(˜)cst,

in which the second summand is geometrically constant. So if an

element © in π1
geom(U) acts as a reflection ®(©) on Gr0(˜)ncst, this

same © acts as the reflection ®(©) · (identity) on Gr0(˜). QED

TTTThhhheeeeoooorrrreeeemmmm 7777....2222....5555 (uses the truth of the Larsen Eighth Moment
Conjecture) Suppose that the following four conditions hold.
1) deg(D) ≥ 2g + 7.

2) Ì|!1 - S is, geometrically, symplectically self dual, and there
exists a point s in S(äk) at which the local monodromy is tame, with

Ì(s)/Ì(s)I(s) of odd dimension.
3) Either p ± 2, or the local monodromy of Ì at s is unipotent.

4) N := rank(Gr0(˜)ncst) ≥ 8.

Then Ggeom for Gr0(˜)ncst is O(N).

pppprrrrooooooooffff From Theorem 7.2.1, we see that Ggeom is either SO(N) or

O(N). Restricting ˜ncst to a curve !1 - Z as in the proof of Theorem

7.2.3, it suffices to show that, in the notations of that proof, the
convolution sheaf Œ¬ has some local monodromy of determinant -1.

Suppose first p ± 2. In this case, the result is immediate from
Theorem 6.1.18, part 3), applied to Ì[1] and to (f*ä$…/ä$…)[1]. This

result tells us that if © is a finite singularity of f*ä$…/ä$…, then s + ¬©

is finite singularity of Ì, and we have an isomorphism of I(0)-
representations

Œ¬(s + ¬©)/Œ¬(s + ¬©)
I(s + ¬©j) moved to 0

¶ (Ì(s)/Ì(s)I(s) moved to 0)‚(the quadratic character Òç2
).

As Ì is, geometrically, symplectically self dual, det(Ì) is

geometrically trivial, so trivial on I(s). Visibly det(Ì(s)I(s)) is trivial
on I(s). Therefore the I(0)-representation

(Ì(s)/Ì(s)I(s) moved to 0)‚(the quadratic character Òç2
)

has determinant (Òç2
)ºn, for n := dim(Ì(s)/Ì(s)I(s)).

Since n is odd by hypothesis, we have (Òç2
)ºn = Òç2

. The

above isomorphism then shows that Œ¬(s + ¬©)/Œ¬(s + ¬©)
I(s + ¬©j)
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has determinant Òç2
moved to s + ¬© as I(s + ¬©)-representation. As

Œ¬(s + ¬©)
I(s + ¬©j) has trivial determinant as I(s + ¬©)-

representation, we see that Œ¬ as I(s + ¬©)-representation has

determinant Òç2
moved to s + ¬©.

Suppose now that p = 2, and that the local monodromy of Ì at
s is unipotent. In this case, we have, by Theorem 6.1.18, part 2), an
isomorphism of I(‘)-representations

FT¥loc(s + ¬©, ‘)(Œ¬(s + ¬©)/Œ¬(s+ ¬©)
I(s + ¬©)) ¶

FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s))‚FT¥loc(¬©, ‘)(a quadratic character ®),

for ® some character of order 2 of I(¬©).
Because Ì is unipotent at s, and hence tame at s, the

I(‘)-representation

FT¥loc(s, ‘)(Ì(s)/Ì(s)I(s)) ¶ [x -s ÿ 1/(x-s)]*(Ì(s)/Ì(s)I(s))

is unipotent, of odd dimension n := dim(Ì(s)/Ì(s)I(s)). Thus

FT¥loc(s + ¬©, ‘)(Œ¬(s + ¬©)/Œ¬(s+ ¬©)
I(s + ¬©))

is an odd-dimensional successive extension of FT¥loc(¬©, ‘)(®) by

itself. Therefore Œ¬(s + ¬©)/Œ¬(s+ ¬©)
I(s + ¬©) is an odd-dimensional

successive extension of ® (translated to s + ¬©) by itself, and we
conclude as above that det(Œ¬) is nontrivial of order 2 as I(s + ¬©)-

representation. QED

(7.2.6) In a similar vein, we have the following result.
TTTThhhheeeeoooorrrreeeemmmm 7777....2222....7777 Suppose that the following two conditions hold.
1) deg(D) ≥ 2g+3.

2) For some point s in S(äk), Ì(s)/Ì(s)I(s) is not a semisimple
representation of I(s).
Then we have the following results for the group Ggeom for

Gr0(˜)ncst.

1) If Ì|!1 - S is, not geometrically self dual, then

N := rank(Gr0(˜)ncst) ≥ 2,

and Ggeom fl SL(N).

2)If Ì|!1 - S is, geometrically, symplectically self dual, then

N := rank(Gr0(˜)ncst) ≥ 3,

and Ggeom is SO(N) or O(N).

3)If Ì|!1 - S is, geometrically, orthogonally self dual, then

N := rank(Gr0(˜)ncst) ≥ 2,

and Ggeom = Sp(N).

pppprrrrooooooooffff We restrict to an !1 - Z as in the proof ofTheorem 7.2.3, using
Non-semisimplicity Corollary 6.1.22 to see that Œ¬ has a non-

semisimple local monodromy representation at some point. As this
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local monodromy representation is not semisimple, it cannot have
finite image, and it must have dimension at least 2. Therefore we
have N ≥ 2. If N = 2 in case 3), we use the fact that Ggeom is, by

purity, a semisimple subgroup of Sp(2), which is not finite, so must
be Sp(2). In the remaining cases, we use Larsen's alternative
(Theorem 2.2.2) via the Higher Moment Theorem 1.20.2. Since the
finite case has been ruled out, we get all the conclusions, except the
assertion that N ≥ 3 in case 2). But Ggeom is a semisimple group, and

neither SO(2) nor O(2) is semisimple. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....2222....8888 Suppose that the following three conditions hold.
1) deg(D) ≥ 2g + 3.

2) Ì|!1 - S is, geometrically, symplectically self dual, and there
exists a point s in S(äk) at which the local monodromy is tame, with

Ì(s)/Ì(s)I(s) of odd dimension and not semisimple as an I(s)-
representation.
3) Either p ± 2, or the local monodromy of Ì at s is unipotent.

Then N ≥ 3, and Ggeom for Gr0(˜)ncst is O(N).

pppprrrrooooooooffff The previous theorem shows that Ggeom is either SO(N) or

O(N). The argument used in proving Theorem 7.2.5 shows that Ggeom
contains an element of determinant -1. QED

((((7777....3333)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo ppppuuuullllllllbbbbaaaacccckkkk ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss aaaannnndddd
ooooffff tttthhhheeeeiiiirrrr ssssyyyymmmmmmmmeeeettttrrrriiiicccc ppppoooowwwweeeerrrrssss
(7.3.1) In this section, we further specialize the perverse sheaf K

on !1/k with which we have been working. Let us write !1 as
Spec(k[t]). We begin with an elliptic curve Et over the function field

k(t). Denote by j : !1 - S fi !1 the inclusion of an open dense set

over which Et/k(t) extends to an elliptic curve π : ‰t ¨ !1 - S. On

!1 - S, we form the lisse, rank two sheaf R1π*ä$…(1). It is pure of

weight -1, and symplectically self dual toward ä$…(1). [We remark in

passing that in any characteristic p ≥ 5, Ì is automatically
everywhere tamely ramified [Ka-TLFM,7.6.2 and 7.5.1], in particular
at ‘.]
(7.3.2) We assume that Et/k(t) has nonconstant j invariant, and

that it has mmmmuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee rrrreeeedddduuuuccccttttiiiioooonnnn at some point s of S(äk). This
means precisely [SGA 7, Expose IX, 3.5] that the local monodromy of

R1π*ä$…(1) at s is a unipotent pseudoreflection, i.e., it is Unip(2), a

single unipotent Jordan block of size 2. The group Ggeom for

R1π*ä$…(1) is SL(2). [Indeed, it is a semisimple (by purity, cf. [De-

Weil II, 1.3.9 and 3.4.1 (iii)]) subgroup of SL(2) = Sp(2), so is either
finite or is SL(2). As it contains a unipotent pseudoreflection, it must
be SL(2).]
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(7.3.3) We form the middle extension sheaf Ì : = j*R
1π*ä$…(1) on

!1, and the perverse sheaf K := Ì[1] on !1. Thus K is arithmetically
self dual as a perverse sheaf, geometrically irreducible, pure of
weight zero, non-punctual, and geometrically has ∏. It is
everywhere tamely ramified if p ≥ 5.
(7.3.4) More generally, for each integer n ≥ 1, we form the lisse
sheaf

Symmn(R1π*ä$…)((n+1)/2)

on U. It is lisse of rank n + 1, and pure of weight -1. If n is odd (resp.
even), it is symplectically (resp. orthogonally) self dual toward ä$…(1).

It is geometrically irreducible, because all the symmetric powers of
the standard representation of SL(2) are irreducible. Its local

monodromy at s is Symmn(Unip(2)) = Unip(n+1), a single unipotent
Jordan block of size n+1. We define the middle extension sheaf

Ìn : = j*Symmn(R1π*ä$…)((n+1)/2)

on !1, and the perverse sheaf

Kn := Ìn[1] on !1.

Thus each Kn is arithmetically self dual as a perverse sheaf,

geometrically irreducible, pure of weight zero, non-punctual, and
geometrically has ∏. For n=1, we recover Ì and K.
For each n ≥ 1, we have

(7.3.4.1) Ìn(s)/Ìn(s)
I(s) = Unip(n+1)/invariants ¶ Unip(n).

(7.3.5) Denote by

j‘ : !1 ¨ @1

the inclusion. In the terminology of elliptic curves over function
fields, the (unitarized) L-function of Et/k(t) is the reversed

characteristic polynomial

L(Et/k(t), T) := det(1 - TFrobk | H1(@1‚käk, j‘*Ì)).

And for each n ≥ 1, the (unitarized) L-function of its n'th symmetric
power is the reversed characteristic polynomial

L(Symmn(Et/k(t)), T) := det(1 - TFrobk | H1(@1‚käk, j‘*Ìn)).

(7.3.6) We now bring to bear our proper, smooth, geometrically
connected curve C/k, of genus denoted g, together with its effective
divisor D of degree

deg(D) ≥ 2g + 3.
Recall that UD,S fi L(D) is the dense open set whose äk-valued points

consist of those f in L(D)(äk) whose divisor of poles is D, and which are
finite etale over S.
(7.3.7) For f any nonconstant function in k(C), we can form the
pullback by f of the elliptic curve Et/k(t), which we denote Ef/k(C).

Concretely, Et/k(t) can be given by a generalized Weierstrass

equation
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Et : y
2 + a1(t)y + a3(t)xy = x3 + a2(t)x

2 + a4(t)x + a6(t),

with the ai(t) rational functions of t, holomorphic on !1 -S such

that the discriminant »(the ai(t)'s) is invertible on !1 - S. Then

Ef/k(C) is the elliptic curve over k(C) obtained by the substitution

t ÿ f in the rational functions ai(t):

Ef : y
2 + a1(f)y + a3(f)xy = x3 + a2(f)x

2 + a4(f)x + a6(f).

(7.3.8) If we take f in UD,S(k), the f defines a morphism from

C - D to !1, and a morphism from C - D - f-1(S) to !1 - S. For such
an f, Ef/k(C) spreads out to an elliptic curve

πf : ‰f ¨ C - D - f-1(S).

Denote by

jf : C - D - f-1(S) ¨ C - D

and
jD : C- D ¨ C

the inclusions. Because f in UD,S(k) is finite etale over S, we have

jf*R
1πf*ä$…(1) = f*Ì,

and, for each n ≥ 1,

jf*Symmn(R1πf*ä$…)((n+1)/2) = f*Ìn.

So the unitarized L-functions of Ef/k(C) and its symmetric powers

are given by

L(Ef/k(C), T) = det(1 - TFrobk | H1(C‚käk, jD*f
*Ì)),

and, for each n ≥ 1,

L(Symmn(Ef/k(C)), T) = det(1 - TFrobk | H1(C‚käk, jD*f
*Ìn)).

Similarly if we take kd/k the extension field of degree d, and f in

UD,S(kd), we get, for each n ≥ 1,

L(Symmn(Ef/kd(C)), T) = det(1 - TFrobkd
| H1(C‚käk, jD*f

*Ìn)).

(7.3.9) Now view the cohomology group H1(C‚käk, jD*f
*Ìn) as

the Gr0 of the cohomology group Hc
1((C - D)‚käk, f

*Ìn). Similarly,

view H1(@1‚käk, j‘*Ìn) as the Gr
0 of the subgroup (via f*)

Hc
1(!1‚käk, Ìn) fi Hc

1((C - D)‚käk, f
*Ìn).

So we have a Frobkd
-equivariant inclusion

H1(@1‚käk, j‘*Ìn) fi H1(C‚käk, jD*f
*Ìn),

and hence a divisibility of L-functions for each n ≥ 1:

L(Symmn(Et/kd(t)), T) | L(Symmn(Ef/kd(C)), T).

(7.3.10) The quotient

L(Symmn(Ef/kd(C)), T)/L(Symmn(Et/kd(t)), T)

is a polynomial which one might call the "new part" of the L-
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function of Symmn(Ef/kd(C)). Of course, this notion of "new part" is

not intrinsic to the elliptic curve Ef/kd(C), but rather depends on

viewing it as the pullback by f of Et/k(t).

(7.3.11) Let us make explicit how these "new parts" of L-functions
are captured by the perverse sheaves

Mn := M = Twist(L = ä$…(1/2)[1], Kn, Ï = L(D), h = 0).

If either Ì is tame at ‘ (in which case all the Ìn are tame at ‘,

and which is automatic if p ≥ 5), or if D is prime to p, then, by
Lemma 7.1.7, the perverse sheaves Mn are all lisse on the dense

open set UD,S. In general, we pick for each n a dense open set

Un fi UD,S on which Mn is lisse.

(7.3.12) On the open set Un, Mn is ˜n(1/2)[…(D)], with ˜n lisse

and “-mixed of weight ≤ 0, given stalkwise by

˜n,f = Hc
1((C - D)‚käk, f

*Ìn).

We have

Gr0(˜n)f = H1(C‚käk, jD*f
*Ìn),

Gr0(˜n)cst = the constant sheaf H1(@1‚käk, j‘*Ìn),

(Gr0(˜n)ncst)f = H1(C‚käk, jD*f
*Ìn)/H

1(@1‚käk, j‘*Ìn).

Thus for kd/k the extension field of degree d, and for f in Un(kd), we

have

det(1 - TFrobkd,f
| Gr0(˜n)ncst)

= L(Symmn(Ef/kd(C)), T)/L(Symmn(Et/kd(t)), T).

(7.3.13) We now turn to the determination of the group Ggeom for

Gr0(˜n)ncst. For n ≥ 2, the answer is wonderfully simple.

TTTThhhheeeeoooorrrreeeemmmm 7777....3333....11114444 Suppose deg(D) ≥ 2g + 3. For n ≥ 2, and

N : = rank(Gr0(˜n)ncst), the group Ggeom for Gr0(˜n)ncst is O(N) if

n is odd, and is Sp(N) if n is even.
pppprrrrooooooooffff For n ≥ 2,

Ìn(s)/Ìn(s)
I(s) = Unip(n+1)/invariants ¶ Unip(n)

is not semisimple, and has dimension n. If n is even, then Ìn is,

geometrically, orthogonally self dual, and the result is a special case
of Theorem 7.2.7, part 3). If n is odd, then Ìn is, geometrically,

symplectically self dual, and the result is a special case of Corollary
7.2.8. QED

(7.3.15) The case n=1 is more complicated, because Ggeom can be

finite in certain cases. Nonetheless, the "general case" behaves well.
TTTThhhheeeeoooorrrreeeemmmm 7777....3333....11116666 Suppose deg(D) ≥ 2g + 3. Suppose

N : = rank(Gr0(˜1)ncst) ≥ 9.
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Then the group Ggeom for Gr0(˜1)ncst is O(N).

pppprrrrooooooooffff This is a special case of Theorem 7.2.3. QED

(7.3.17) We also have the following short list of possibilities when
N is 7 or 8.
TTTThhhheeeeoooorrrreeeemmmm 7777....3333....11118888 Suppose deg(D) ≥ 2g + 3. Suppose N : =

rank(Gr0(˜1)ncst) is 7 or 8. Then the group Ggeom for Gr0(˜1)ncst
is either O(N) or it is the Weyl group of EN in its reflection

representation.
pppprrrrooooooooffff This is a special case of Theorem 7.2.3. QED

((((7777....4444)))) CCCCaaaauuuuttttiiiioooonnnnaaaarrrryyyy eeeexxxxaaaammmmpppplllleeeessss
(7.4.1) Here are five examples to show that the hypothesis N ≥ 9
in the theorem above is essential. These examples are all based on
the general fact that if we pick polynomials a1(t), a2(t), a3(t), a4(t),

a6(t) in k[t] with deg(ai) ≤ i, and with nonconstant j invariant, then

the ellliptic surface over @1 whose generic fibre is the Weierstrass
equation

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x + a6(t).

is a rational surface, cf. [Shioda-MWL, 10.14 on page 237].
(7.4.2) In each example, we specify an elliptic curve Et/k(t) given

as a Weierstrass equation with coefficients in k[t], we form the

middle extension sheaf Ì = Ì1 on !1 attached to it, we denote by S

fi !1 the finite singularities of Ì, we take C to be @1, we take D to
be the divisor d‘ for an integer d ≥ 3, and we write M1,d for the

perverse sheaf on L(D) attached to the situation. In each of the five

examples, the sheaf Ì is in fact the Hc
1 along the fibres of the given

affine Weierstrass equation over !1, thanks to Corollary 7.5.5 of the
Appendix to this chapter.
(7.4.3) When we are in characteristic p ≥ 5, the sheaf Ì is
automatically everywhere tamely ramified, in particular at ‘. So
for p ≥ 5, M1,d is lisse on UD,S, the space of polynomials of degree d

which are finite etale over each äk-valued point of S. In case p is 2 or
3, Ì need not be tame at ‘, and will not be in our examples. But if
we take only d prime to p, then it remains true, by Lemma 7.1.7,
that M1,d is lisse on UD,S.

EEEExxxxaaaammmmpppplllleeee 7777....4444....4444 In this first example, take p ≥ 5, and take as Et/k(t)

the elliptic curve

y2 = 4x3 - 3x - t.

Its discriminant is 33 - 27t2 = 27(1 - t2). At t = _1, we have
multiplicative reduction. At ‘, we have bad, but potentially good
(after taking the sixth root of t), reduction. Since Ì is tame at ‘,
the Euler Poincarïe formula gives
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ç(!1‚käk, Ì) = ç(!1‚käk - {_1}, Ì) + 2

= (1 - 2)rank(Ì) + 2 = 0.

Therefore Hc
1(!1‚käk, Ì) = 0, and hence its Gr0 quotient vanishes:

H1(@1‚käk, j‘*Ì) = 0.

Each M1,d is lisse on UD,S={_1}, the space of polynomials f(t) of

degree d such that f(t)2 - 1 has 2d distinct zeroes over äk. For such

an f, Ef has multiplicative reduction at the 2d zeroes of f(t)2 - 1. It

has good reduction at ‘ if 6 divides d; otherwise it has bad but
potentially good reduction at ‘. By the vanishing

H1(@1‚käk, j‘*Ì) = 0 explained above, we have

Gr0(˜1,d)cst = 0, Gr0(˜1,d) ¶ Gr0(˜1,d)ncst.

Using the Euler Poincarïe formula, we readily compute

Nd := rank of Gr0(˜1,d) = rank of Gr0(˜1,d)ncst
= -[(1 - 2d)2 + 2d] = 2d-2, if 6 does not divide d,
= -[(2-2d)2 + 2d] = 2d-4, if 6 divides d.

So we have Nd ≥ 9 precisely for d ≥ 7. For d = 5 or 6, we have

Nd = 8.

In fact, for d ≤ 6, Ggeom for Gr0(˜1,d) ¶ Gr0(˜1,d)ncst is

finite. As noted in 7.4.1 above, for any nonconstant polynomial f of

degree ≤ 6, the ellliptic surface X over @1 whose generic fibre is Ef is

a rational surface. Hence all of its cohomology is algebraic, and

therefore the action of Frobenius on H2(X‚käk,.ä$…(1)) is of finite

order. But H1(@1‚käk, j‘*f
*Ì) is a subquotient, by Proposition 7.5.2

of the Appendix to this chapter, of H2(X‚käk,.ä$…(1)), so the action of

Frobenius on H1(@1‚käk, j‘*f
*Ì) is also of finite order. So for d ≤ 6,

every Froebenius on Gr0(˜1,d) is of finite order, and hence [Ka-

ESDE, 8.14.3] Ggeom is finite.

EEEExxxxaaaammmmpppplllleeee 7777....4444....5555 In this second example, take p ≥ 5, and take as
Et/k(t) the elliptic curve

y2 = 4x3 - 3tx - 1.

Its discriminant is (3t)3 - 27 = 27(t3 - 1). At t in µµµµ3(äk), we have

multiplicative reduction. At ‘, we have bad, but potentially good
(after taking the fourth root of t), reduction. Since Ì is tame at ‘,
the Euler Poincarïe formula gives

ç(!1‚käk, Ì) = ç(!1‚käk - µµµµ3(äk), Ì) + 3

= (1 - 3)rank(Ì) + 3 = -1.

Therefore hc
1(!1‚käk, Ì) = 1. In this case, we have

Hc
1(!1‚käk, Ì) = H1(@1‚käk, j‘*Ì),

so we have
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dimH1(@1‚käk, j‘*Ì) = 1.

Each M1,d is lisse on UD,S=µµµµ3
, the space of polynomials f(t) of degree

d such that f(t)3 - 1 has 3d distinct zeroes over äk. For such an f, Ef

has multiplicative reduction at the 3d zeroes of f(t)3 - 1. It has good
reduction at ‘ if 4 divides d; otherwise it has bad but potentially

good reduction at ‘. By the calculation h1(@1‚käk, j‘*Ì) = 1

explained above, we have

Gr0(˜1,d)cst = the rank one constant sheaf h1(@1‚käk, j‘*Ì),

rankGr0(˜1,d) = 1 + rankGr0(˜1,d)ncst.

Using the Euler Poincarïe formula, we readily compute the rank Nd

of Gr0(˜1,d)ncst:

Nd + 1 := rank of Gr0(˜1,d) = 1 + rank of Gr0(˜1,d)ncst
= -[(1 - 3d)2 + 3d] = 3d-2, if 4 does not divide d,
= -[(2-3d)2 + 3d] = 3d-4, if 4 divides d.

Thus we have
Nd = 3d - 3, if 4 does not divide d,

= 3d - 5, if 4 divides d.
So we have Nd ≥ 9 precisely for d ≥ 5. For d = 4, we have Nd = 7.

For d=3, we have Nd = 6.

In fact, for d ≤ 4, Ggeom for Gr0(˜1,d) (and hence for its direct

summand Gr0(˜1,d)ncst) is finite. Exactly as in the first example,

this finiteness results from the fact that for any nonconstant

polynomial f of degree ≤ 4, the ellliptic surface X over @1 whose
generic fibre is Ef is a rational surface.

EEEExxxxaaaammmmpppplllleeee 7777....4444....6666 In this third example, again take p ≥ 5, but take as
Et/k(t) the elliptic curve

y2 = 4x3 - 3tx - t.

Its discriminant is (3t)3 - 27t2 = 27t2(t - 1). At t =1, we have
multiplicative reduction. At t=0, we have bad, but potentially good
(after taking the sixth root of t), reduction. At ‘, we have bad, but
potentially good (after taking the fourth root of t), reduction. Since Ì
is tame at ‘, we see from the Euler Poincarïe formula that

ç(!1‚käk, Ì) = ç(!1‚käk - {0,1}, Ì) + 1

= (1 - 2)rank(Ì) + 1 = -1.

Therefore hc
1(!1‚käk, Ì) = 1. In this case, we have

Hc
1(!1‚käk, Ì) = H1(@1‚käk, j‘*Ì),

so we have

dimH1(@1‚käk, j‘*Ì) = 1.

Each M1,d is lisse on UD,S={0,1}, the space of polynomials f(t) of
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degree d such that f(t)(f(t) - 1) has 2d distinct zeroes over äk. For
such an f, Ef has multiplicative reduction at the d zeroes of f(t) - 1,

and bad but potentially good reduction at the d zeroes of f(t). It has
good reduction at ‘ if 4 divides d, otherwise it has bad but
potentially good reduction at ‘. By the calculation

h1(@1‚käk, j‘*Ì) = 1 explained above, we have

Gr0(˜1,d)cst = the rank one constant sheaf h1(@1‚käk, j‘*Ì),

rankGr0(˜1,d) = 1 + rankGr0(˜1,d)ncst.

Using the Euler Poincarïe formula, we readily compute the rank Nd

of Gr0(˜1,d)ncst:

Nd + 1 := rank of Gr0(˜1,d) = 1 + rank of Gr0(˜1,d)ncst
= -[(1 - 2d)2 + d] = 3d-2, if 4 does not divide d,
= -[(2-2d)2 + d] = 3d-4, if 4 divides d.

Thus we have
Nd = 3d - 3, if 4 does not divide d,

= 3d - 5, if 4 divides d.
So we have Nd ≥ 9 precisely for d ≥ 5. For d = 4, we have Nd = 7.

For d=3, we have Nd = 6.

Once again, for d ≤ 4, Ggeom for Gr0(˜1,d) (and hence for its

direct summand Gr0(˜1,d)ncst) is finite. Exactly as in the first

example, this finiteness results from the fact that for any
nonconstant polynomial f of degree ≤ 4, the ellliptic surface X over

@1 whose generic fibre is Ef is a rational surface.

EEEExxxxaaaammmmpppplllleeee 7777....4444....7777 Take p = 3, and take as Et/k(t) the elliptic curve

y2 = x3+ x2 + t.
This curve has good reduction over ´m, and multiplicative reduction

at 0.
We claim that Swan‘(Ì) = 1. To see this, consider the locus

‰aff : y2 = x3+ x2 + t, t ± 0,

in !2≠´m, and denote by

π : ‰aff ¨ ´m,

(x, y, t) ÿ t,

the structural map. The only nonvanishing Riπ~$… are R
1π~$… = Ì,

and R2π~$… = $…(-1). Both are lisse. From the Leray spectral

sequence, we get

çc(‰
aff‚käk, $…)

= -çc(´m‚käk, R
1π~$…) + çc(´m‚käk, R

2π~$…)

= -çc(´m‚käk, Ì) + çc(´m‚käk, $…(-1)).
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Since Ì is lisse on ´m and tame at 0, the first term is Swan‘(Ì).

The second term vanishes. So we must show that

çc(‰
aff‚käk, $…) = 1.

We can view ‰aff as the open set of !2 where y2 - x3- x2 is
invertible (solve for t). So we have

çc(‰
aff‚käk, $…)

= çc(!
2‚käk, $…) - çc((y

2 = x3+ x2 in !2)‚käk, $…)

= 1 - çc((y
2 = x3+ x2 in !2)‚käk, $…).

To see that the affine curve y2 = x3+ x2 has Euler characteristic
zero, cut it up as the disjoint union of the origin (0, 0) and (putting

Y : = y/x) of the open curve (Y2 = x + 1, x ± 0), which is itself the

complement of two points Y = _1 in the curve Y2 = x + 1, which is

an !1. So our curve is "point + !1 - 2 points", so has Euler
characteristic zero.

The Euler Poincarïe formula gives

çc(!
1‚käk, Ì) = 1 + çc(´m‚käk, Ì) = 1 - Swan‘(Ì) = 0.

Therefore Hc
1(!1‚käk, Ì) = 0, and hence its Gr0 quotient vanishes:

H1(@1‚käk, j‘*Ì) = 0.

Take d ≥ 3 prime to 3. For f a polynomial of degree d with d

distinct roots, f*Ì is a middle extension on !1, lisse on !1 - f-1(0). It
has unipotent local monodromy at each zero of f, and its Swan

conductor at ‘ is d. By the vanishing H1(@1‚käk, j‘*Ì) = 0

explained above, we have

Gr0(˜1,d)cst = 0, Gr0(˜1,d) ¶ Gr0(˜1,d)ncst.

Using the Euler Poincarïe formula, we readily compute

Nd := rank of Gr0(˜1,d) = rank of Gr0(˜1,d)ncst
= -[(1 - d)2 + d - d] = 2d - 2.

So for d prime to 3, we have Nd ≥ 9 precisely for d ≥ 7. For d = 5, we

have Nd = 8, and for d = 4 we have Nd = 6.

Once again, for d = 4 or 5, Ggeom for

Gr0(˜1,d) = Gr0((˜1,d)ncst) is finite. Exactly as in the first example,

this finiteness results from the fact that for any nonconstant

polynomial f of degree ≤ 6, the ellliptic surface X over @1 whose
generic fibre is Ef is a rational surface.

EEEExxxxaaaammmmpppplllleeee 7777....4444....8888 Take p = 2, and take as Et/k(t) the elliptic curve

y2 + xy = x3 + t.
This curve has good reduction over ´m, and multiplicative reduction

at 0.
We claim that Swan‘(Ì) = 1. The proof is almost identical to

the proof of this same fact in the characteristic 3 example just



Pullbacks to curves from !1 317

above, and is left to the reader.
The Euler Poincarïe formula gives

çc(!
1‚käk, Ì) = 1 + çc(´m‚käk, Ì) = 1 - Swan‘(Ì) = 0.

Therefore Hc
1(!1‚käk, Ì) = 0, and hence its Gr0 quotient vanishes:

H1(@1‚käk, j‘*Ì) = 0.

Take d ≥ 3 prime to 2. For f a polynomial of degree d with d

distinct roots, f*Ì is a middle extension on !1, lisse on !1 - f-1(0). It
has unipotent local monodromy at each zero of f, and its Swan

conductor at ‘ is d. By the vanishing H1(@1‚käk, j‘*Ì) = 0

explained above, we have

Gr0(˜1,d)cst = 0, Gr0(˜1,d) ¶ Gr0(˜1,d)ncst.

Using the Euler Poincarïe formula, we readily compute

Nd := rank of Gr0(˜1,d) = rank of Gr0(˜1,d)ncst
= -[(1 - d)2 + d - d] = 2d - 2.

So for d prime to 2, we have Nd ≥ 9 precisely for d ≥ 7. For d = 5, we

have Nd = 8, and for d = 3 we have Nd = 4.

Once again, for d = 3 or 5, Ggeom for

Gr0(˜1,d) = Gr0((˜1,d)ncst) is finite. Exactly as in the first example,

this finiteness results from the fact that for any nonconstant

polynomial f of degree ≤ 6, the ellliptic surface X over @1 whose
generic fibre is Ef is a rational surface.

((((7777....5555)))) AAAAppppppppeeeennnnddddiiiixxxx:::: DDDDeeeeggggeeeennnneeeerrrraaaattttiiiioooonnnn ooooffff LLLLeeeerrrraaaayyyy ssssppppeeeeccccttttrrrraaaallll sssseeeeqqqquuuueeeennnncccceeeessss
(7.5.1) The following result is certainly well known to the
experts, but I do not know a convenient reference.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 7777....5555....2222 Let k be a finite field, C/k a proper, smooth,
geometrically connected curve, X/k proper smooth, and
geometrically connected of dimension n ≥ 2, and f : X ¨ C a proper
morphism which over a dense open set U of C is smooth of relative
dimension n-1, with geometrically connected fibres. Fix a prime
number … which is invertible in k. We have the following results.
1) The Leray spectral sequence for f,

E2
p,q = Hp(Cºkäk, R

qf*$…) à Hp+q(Xºkäk, $…),

degenerates at E2.

2) For j : U ¨ C the inclusion of any dense open set over which f is
smooth, and any integer i, the adjunction map

Rif*$… ¨ j*j
*Rif*$…

is surjective, and sits in a short exact sequence

0 ¨ Pcti ¨ Rif*$… ¨ j*j
*Rif*$… ¨ 0,
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with Pcti a punctual sheaf, supported in C - U.

3) The sheaf Pcti vanishes if and only if the sheaf Pct2n-i vanishes:
the adjunction map

Rif*$… ¨ j*j
*Rif*$…

is an isomorphism if and only if the adjunction map

R2n-if*$… ¨ j*j
*R2n-if*$…

is an isomorphism.
4) For j : U ¨ C the inclusion of any dense open set over which f is
smooth, we have

Rif*$… ¶ j*j
*Rif*$… for i ≤ 1.

pppprrrrooooooooffff Because Cºkäk has cohomological dimension 2, the only

possibly nonvanishing E2
p,q have p either 0, 1, or 2. So the only

possibly nonvanishing differentials in the spectral sequence are

d2
: H0(Cºkäk, R

qf*$…)¨ H2(Cºkäk, R
q-1f*$…).

The source is mixed of weight ≤ q, while the target, which we can

rewrite as Hc
2(Uºkäk, R

q-1f*$… |U), is pure of weight q+1, and so d2
must vanish, as it is Gal(äk/k)-equivariant.

Assertion 2) results from the local invariant cycle theorem
[De-Weil II, 3.6.1], according to which the canonical map

Rif*$… ¨ j*j
*Rif*$…

is surjective for every i. So we have a short exact sequence on C,

0 ¨ Pcti ¨ Rif*$… ¨ j*j
*Rif*$… ¨ 0,

for each i, where Pcti is a punctual sheaf.
To prove 3), we argue as follows. Because Pcti is punctual, we

have the equivalence

Pcti = 0 if and only if H0(Cºkäk, Pct
i) = 0.

Taking cohomology on Cºkäk, we find a short exact sequence of H0's,

(*)

0 ¨ H0(Cºkäk, Pct
i)¨ H0(Cºkäk, R

if*$…)¨ H0(Cºkäk, j*j
*Rif*$…) ¨0,

and isomorphisms,

(**) H1(Cºkäk, R
if*$…) ¶ H1(Cºkäk, j*j

*Rif*$…),

H2(Cºkäk, R
if*$…) ¶ H2(Cºkäk, j*j

*Rif*$…).

Now by Poincarïe duality on C and on the smooth fibres of f, we
have
(***) the groups

Hp(Cºkäk, j*j
*Rqf*$…) and H2-p(Cºkäk, j*j

*R2n-2-qf*$…)(n)

are $…-dual, and hence have equal dimensions.

On the other hand, by Poincarïe duality on X, we have
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(****) the groups

Hi(Xºkäk, $…) and H2n-i(Xºkäk, $…)(n)

are $…-dual, and hence have equal dimensions.

Equating their dimensions, using the degeneration proven in part 1)
and (*) and (**) above, we find

h0(Cºkäk, Pct
i) +h0(Cºkäk, j*j

*Rif*$…)

+ h1(Cºkäk, j*j
*Ri-1f*$…) + h

2(Cºkäk, j*j
*Ri-2f*$…)

= h0(Cºkäk, Pct
2n-i) +h0(Cºkäk, j*j

*R2n-if*$…)

+ h1(Cºkäk, j*j
*R2n-i-1f*$…) + h

2(Cºkäk, j*j
*R2n-i-2f*$…).

Cancelling using (***), we are left with

h0(Cºkäk, Pct
i) = h0(Cºkäk, Pct

2n-i),

which proves 3). For 4), we need only use 3) and remark that the

sheaves R2n-1f*$… and R2nf*$… both vanish. This holds by proper

base change, and the fact that f, being flat (an integral connected
scheme over a regular scheme of dimension one is either flat or lies
entirely over a single closed point), has all its fibres of the same
dimension, here n-1. QED

RRRReeeemmmmaaaarrrrkkkk 7777....5555....3333 The case i=2 of part 3) tells us that we have an
isomorphism

R2f*$… ¶ j*j
*R2f*$…,

if and only if all the fibres of f are geometrically irreducible. Notice
that having geometrically irreducible fibres is antithetical to having
normal crosing divisors as special fibres. And even if we start with a
situation in which all the fibres of f are geometrically irreducible, we
will destroy this property if we blow up X at a closed point.

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....5555....4444 Let k be a finite field, C/k a proper, smooth,
geometrically connected curve, and D an effective divisor on C. Pick
functions a1, a2, a3, a4, a6 in L(D), and consider the locus in

@2≠(C - D) defined by the homogenized generalized Weierstrass
equation

Y2Z + a1XYZ + a3YZ
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

View this locus as a relative curve f0 : X0 ¨ C - D. Suppose that the

discriminant »(a1, a2, a3, a4, a6) is not identically zero in L(12D),

and that at each zero ∂ of » in (C - D)(äk), one of the two following
conditions holds.
a) » has a simple zero at ∂.
b) Each of a3, a4, a6 has a zero at ∂, and a6 has a simple zero at ∂.

Then the total space X0 is smooth over k, and for any prime …

invertible in k, the sheaves R0f0*$… and R1f0*$… on C - D are

middle extensions, lisse on the open set C - D - » of C - D where » is
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invertible. The sheaf R0f0*$… is the constant sheaf $….

pppprrrrooooooooffff Over C - D - », f0 is a relative elliptic curve, so smooth over a

smooth curve, so its total space is smooth over k. Fix a äk-valued
zero ∂ of » in C - D. The fibre of f0 over ∂ is smooth outside a single

point, say x0. Also X0 is smooth at each point which is smooth in its

fibre. That X0 is smooth over k, or equivalently regular (k being a

perfect field) at x0 if either a) or b) holds is standard [Sil-ATEC,

Lemma 9.5].
By resolution for surfaces, we can compactify f0 : X0 ¨ C - D

to a proper morphism f : X ¨ C with X a proper smooth
geometrically connected surface over k. Because f is proper and
smooth with geometrically connected fibres over C - D - », all the

Rif*$… are lisse on C - D - », and R0f*$… | C - D - » is the constant

sheaf $…. By Proposition 7.5.2, part 4), R0f*$… and R1f*$… are

middle extensions on C, and hence their restrictions to C - D are

middle extension on C - D. That R0f0*$… = $… results from its being

a middle extension, and the previously noted fact that

R0f*$… | C - D - » is the constant sheaf $…. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 7777....5555....5555 Hypotheses and notations as in the previous

corollary, consider the locus in !2≠(C - D) defined by the generalized
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

View this locus as a relative affine curve π : X0
aff ¨ C - D. For any

prime … invertible in k, the natural map is an isomorphism

R1π~$… ¶ R1f0*$…,

and R1π~$… is a middle extension.

pppprrrrooooooooffff We obtain π : X0
aff ¨ C - D from f0 : X0 ¨ C - D by

deleteting the zero section. That R1π~$… ¨ R1f0*$… is an

isomorphism can be checked fibre by fibre: removing a single point

from a connected proper curve does not change its Hc
1. We have

proven in the above corollary that R1f0*$… is a middle extension.

QED



CCCChhhhaaaapppptttteeeerrrr 8888:::: OOOOnnnneeee vvvvaaaarrrriiiiaaaabbbblllleeee ttttwwwwiiiissssttttssss oooonnnn

cccc uuuu rrrr vvvv eeee ssss

((((8888....1111)))) TTTTwwwwiiiisssstttt sssshhhheeeeaaaavvvveeeessss iiiinnnn tttthhhheeee sssseeeennnnsssseeee ooooffff [[[[KKKKaaaa----TTTTLLLLFFFFMMMM]]]]
(8.1.1) In this chapter, we will use the general machine we have
developed to discuss briefly the twist sheaves to which [Ka-TLFM]
was devoted.
(8.1.2) We work over a finite field k. We fix a prime number …
invertible in k, and a field embedding ä$… fi ^. We fix a nontrivial

multiplicative character

ç : k≠ ¨ ä$…
≠.

On ´m/k, we have the corresponding lisse, rank one Kummer sheaf

Òç, whose trace function is given as follows: for E/k a finite

extension field, and for å in ´m(E) = E≠, we have

Trace(FrobE,å | Òç) = ç(NormE/k(å)).

We denote by j : ´m ¨ !1 the inclusion. On !1, we form the

perverse sheaf
K := j*Òç(1/2)[1],

which is geometrically irreducible, and pure of weight zero. It is
geometrically self dual only for ç of order two.
(8.1.3) We also fix a proper, smooth, geometrically connected
curve C/k, of genus denoted g, together with an effective divisor D
on C with

deg(D) ≥ 2g + 3.
We also fix a reduced closed subscheme S of C - D with dim(S) ≤ 0,
i.e., S is a finite, possibly empty, set of closed points of C - D.
(8.1.4) The Riemann Roch space L(D) will occur in what follows

both as a space of !1-valued functions on the open curve C-D, with

† : L(D) ¨ Homk-schemes(C-D, !
1)

the natural evaluation map, and as a space of !1-valued functions
on the open curve C-D - S, again with † the natural evaluation
map. In either context, this space of functions is 4-separating.
Indeed, it is d-separating, for d:= deg(D) - (2g-1).
(8.1.5) We suppose given on C - D - S a geometrically irreducible
perverse sheaf L, which is “-pure of weight zero and non-punctual.
In other words, L is Ì[1] for Ì an irreducible middle extension sheaf
on C - D - S, which on some dense open set is lisse, “-pure of weight
-1, and not geometrically constant. When S is nonempty, we denote
by

jS : C - D - S ¨C - D

the inclusion. Then jS*~L := (jS*Ì)[1] is a geometrically irreducible
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perverse sheaf on C - D, which is “-pure of weight zero, non-
punctual, and geometrically nonconstant. We have

Hc
i((C - D - S)‚käk, L) = 0 for i ± 0,

Hc
i((C - D)‚käk, jS*~L) = 0 for i ± 0.

(8.1.6) We denote by Sing(L)finite fi C - D - S the finite set of

closed points of C - D - S at which L, or equivalently Ì, is not lisse.
And we denote by Sing(jS*Ì)finite the finite set of closed points of

C - D at which jS*Ì is not lisse. So we have trivial inclusions

Sing(L)finite fi Sing(jS*Ì)finite fi S ⁄ Sing(L)finite.

(8.1.7) Recall [Ka-TLFM, 5.0.6] that we denote by
Fct(C, deg(D), D, S) fi L(D)

the dense open set whose äk-points consist of those functions f in
L(D)(äk) whose divisor of poles is D, and which, over äk, have deg(D)
distinct zeroes, all of which lie in C - D - S.
(8.1.8) There are now two slightly different "standard inputs", cf.
1.15.4, we are interested in. The first is

the integer m = 1,

the perverse sheaf K := j*Òç(1/2)[1] on !1/k,

the affine k-scheme V := C - D - S,

the k-morphism h : V ¨ !1 given by h = 0,
the perverse sheaf L :=Ì[1] on C - D - S,
the integer d:= deg(D) - (2g-1),
the space of functions (L(D), †) on C - D - S.

With this input, we form the perverse sheaf on L(D)
MS := Twist(L, K, Ï = L(D) on C - D - S, h = 0).

(8.1.9) If we take S to be empty, we get the second standard
input of interest, namely

the integer m = 1,

the perverse sheaf K := j*Òç(1/2)[1] on !1/k,

the affine k-scheme V := C - D,

the k-morphism h : V ¨ !1 given by h = 0,
the perverse sheaf jS*~L := jS*Ì[1] on C - D,

the integer d:= deg(D) - (2g-1),
the space of functions (L(D), †) on C - D.

With this input, we form the perverse sheaf on L(D)
M& := Twist(jS*~L, K, Ï = L(D) on C - D, h = 0).

There is a natural excision morphism
MS ¨ M&

of perverse sheaves on L(D).
LLLLeeeemmmmmmmmaaaa 8888....1111....11110000 The excision map induces an isomorphism

Gr0(MS((…(D) - 1)/2)) ¶ Gr0(M&((…(D) - 1)/2)).

pppprrrrooooooooffff We can also think of MS as formed on C - D using jS~L:

MS := Twist(jS~L, K, Ï = L(D) on C - D, h = 0).



One variable twists on curves 323

Since Hc
*(!‚äk, K) = 0 for our K, we can apply Corollary 1.4.5 to the

short exact sequence

0 ¨ iS
*jS*Ì ¨ jS~L ¨ jS*~L ¨ 0.

We get a short exact sequence of perverse sheaves on L(D),
0 ¨ Ker ¨MS ¨ M& ¨ 0,

with

Ker: = Twist( iS
*jS*Ì, K, Ï = L(D) on C - D, h = 0).

Twisting, we get an exact sequence
0 ¨ Ker((…(D) - 1)/2) ¨MS((…(D) - 1)/2) ¨ M&((…(D) - 1)/2) ¨ 0.

Because Ì is mixed of weight ≤ -1, iS
*jS*Ì is a punctual perverse

sheaf on C - D which is “-mixed of weight ≤ -1. By Corollary 1.15.11,

Ker((…(D) - 1)/2) is “-mixed of weight ≤ -1, and hence its Gr0

vanishes. So applying the exact functor [BBD, 5.3.5] Gr0 to this exact
sequence gives the asserted result.

LLLLeeeemmmmmmmmaaaa 8888....1111....11111111 1) The perverse sheaves MS and M& on L(D) are

each lisse on Fct(C, deg(D), D, S⁄Sing(L)finite).

2) On this open set, Gr0(˜S) ¶ Gr0(˜&) is the lisse sheaf

Twistç,C,D(jS*Ì) of [Ka-TLFM, 5.2.2.1].

3) We have the inequality

rank(Gr0(˜&))

≥ (2g - 2 + deg(D))rank(Ì) + ùSing(jS*Ì)finite(äk).

pppprrrrooooooooffff 1) That each is lisse on Fct(C, deg(D), D, S⁄Sing(L)finite) is

proven by first showing that, on this open set, each is of the form
(a single sheaf)[…(D)],

and then by using the Euler Poincarïe formula to show that the
stalks of this sheaf have constant rank on the open set, cf. [Ka-
TLFM, 5.2.1]. The sheaf in question being of perverse origin, it is lisse
if its stalks have constant rank, cf. [Ka-SMD, Proposition 11].

2) That Gr0(˜&) is the lisse sheaf Twistç,C,D(jS*Ì) on the space

Fct(C, deg(D), D, S⁄Sing(L)finite) is essentially a tautology.

3) The inequality for its rank is proven in [Ka-TLFM, 5.2.1, part 5)].
QED

LLLLeeeemmmmmmmmaaaa 8888....1111....11112222 We have Gr0(˜&) ¶ Gr0(˜&)ncst.

pppprrrrooooooooffff Since Hc
*(!‚äk, K) = 0, Kunneth gives

Hc
*((V≠!1)‚äk, pr1

*L‚pr2
*K) = 0.

By Corollary 1.20.3, part 3), this implies that both Gr0(M&)cst and

Gr0(˜&)cst vanish. QED
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((((8888....2222)))) MMMMoooonnnnooooddddrrrroooommmmyyyy ooooffff ttttwwwwiiiisssstttt sssshhhheeeeaaaavvvveeeessss iiiinnnn tttthhhheeee sssseeeennnnsssseeee ooooffff [[[[KKKKaaaa----TTTTLLLLFFFFMMMM]]]]
TTTThhhheeeeoooorrrreeeemmmm 8888....2222....1111 (uses the truth of the Larsen Eighth Moment
Conjecture in Guralnick-Tiep form) Denote by N the rank of

Gr0(˜&) = Twistç,C,D(jS*Ì). Suppose that deg(D) ≥ 2g + 7. Then we

have the following results.
1) If either ç is not of order 2, or K is not geometrically self dual,

then Ggeom for Gr0(˜&) contains SL(N).

2) If ç has order two, and if Ì| C - D - S - Sing(L) is, geometrically,

symplectically self dual, then Ggeom for Gr0(˜)ncst is either SO(N)

or O(N).
3) If N ≥ 8, if ç has order two, and if Ì| C - D - S - Sing(L) is,

geometrically, orthogonally self dual, then Ggeom for Gr0(˜)ncst is

Sp(N).
pppprrrrooooooooffff The hypothesis that deg(D) ≥ 2g + 7 insures that the space of
functions L(D) is 8-separating. The inequality

rank(Gr0(˜&))

≥ (2g - 2 + deg(D))rank(Ì) + ùSing(jS*Ì)finite(äk),

proven above in Lemma 8.1.11, part 3), together with the hypothesis
that deg(D) ≥ 2g + 7 shows that N ≥ 5, and that N ≥ 10 if
rank(Ì) ≥ 2. So in case 1), we simply apply Larsen's Alternative and
the Guralnick-Tiep Theorem 2.5.4. In case 2), we have rank(Ì) ≥ 2
because Ì is symplectically self dual, so rank(Ì) is even. Therefore
N ≥ 10 in case 2). In case 3), we have N ≥ 8 by hypothesis. So cases
2) and 3) result from Theorem 2.5.2. QED

TTTThhhheeeeoooorrrreeeemmmm 8888....2222....2222 Suppose the following four conditions hold.
1) deg(D) ≥ 2g + 3.
2) ç has order two.
3) Ì| C - D - S - Sing(L) is, geometrically, symplectically self dual.
4) There exists a point ∫ in Sing(jS*Ì)finite(äk) at which the local

monodromy is tame, with Ì(∫)/Ì(∫)I(∫) of odd dimension.
Then we have the following results concerning the group Ggeom for

Gr0(˜&) = Twistç,C,D(jS*Ì).

1) Ggeom contains an element of determinant -1.

2) If the local monodromy at ∫ is a unipotent pseudoreflection, then
Ggeom contains a reflection.

pppprrrrooooooooffff Replacing Ì on C - D - S by jS*Ì on C - D, we reduce to the

case when S is empty. For any f in Fct(C, deg(D), D, Sing(L)finite)(äk),

the construction ¬ ÿ ¬ - f defines a map

® : U := !1 - {CritValues(f)⁄f(Sing(L)finite)}

¨ Fct(C, deg(D), D, Sing(L)finite).

Since f is a finite map f : C - D ¨ !1, f*L := f*Ì[1] is perverse on !1.
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According to [Ka-TLFM, 5.3.5], we have a geometric isomorphism of

lisse sheaves on U := !1 - {CritValues(f)⁄f(Sing(L)finite)},

®*Twistç,C,D(Ì) ¶ (j*Òç[1])*mid(f*Ì[1]) | U.

We will show that for a well chosen f, Ggeom for this pullback to a

curve already contains an element of the required kind (either
having determinant -1, or being a reflection) as a local monodromy.

Choose the function f so that it satisfies the following extra

condition: for each ∫ in Sing(L)finite(äk), the fibre f
-1(f(∫)) over f(∫)

consists of deg(D) distinct äk-points, of which only ∫ lies in
Sing(L)finite. This is possible, by [Ka-TLFM, 2.2.6, part 2), applied

with S := Sing(L)finite(äk)]. Then by the Irreducible Induction

Criterion [Ka-TLFM, 3.3.1], the perverse sheaf f*L := f*Ì[1] is

geometrically irreducible on !1. As f*L is non-punctual and has

generic rank deg(D)rank(Ì) > 1, it certainly has ∏.
At the point f(∫), use f to identify the inertia group I(∫) with

the inertia group I(f(∫)). With this identification, we have an I(f(∫))-
isomorphism

(f*Ì)(f(∫)) ¶ Ì(∫) · (a trivial I(f(∫))-representation),

simply because f is finite etale over f(∫), and ∫ is the only singularity

of Ì in the fibre f-1(f(∫)) over f(∫).
Now apply Theorem 6.1.18, part 3), to K = j*Òç(1/2)[1] and to

f*L, at the finite singularity 0 of K, and at the finite singularity f(∫)

of f*L. We find that for the lisse sheaf on U

Ó : = ®*Twistç,C,D(Ì),

we have an I(f(∫))-isomorphism

Ó(f(∫))/Ó(f(∫))I(f(∫)) ¶ (Ì(∫)/Ì(∫)I(∫))‚Òç(x-∫).

Suppose first that Ì(∫)/Ì(∫)I(∫) has odd dimension. Just as in
the proof of Theorem 7.2.5), the fact that Ì is symplectic shows that

I(∫) acts trivially on det(Ì(∫)/Ì(∫)I(∫)), and hence acts by Òç(x-∫)

on det((Ì(∫)/Ì(∫)I(∫))‚Òç(x-∫)). So we find that I(f(∫)) acts on

Ó(f(∫))/Ó(f(∫))I(f(∫)) and hence also on Ó(f(∫)) with determinant
Òç(x-f(∫)). Thus we get elements of determinant -1 in the inertia

group at f(∫).
If the local monodromy at ∫ is a unipotent pseudoreflection, i.e.,

if Ì(∫)/Ì(∫)I(∫) has dimension one, then the above discussion shows
that local monodromy at f(∫) is a reflection. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888....2222....3333 Suppose that the following four conditions hold.
1) deg(D) ≥ 2g + 3.
2) ç has order two.
3) Ì| C - D - S - Sing(L) is, geometrically, symplectically self dual.
4) There exists a point ∫ in Sing(jS*Ì)finite(äk) at which the local



326 Chapter 8

monodromy is a unipotent pseudoreflection.
Then we have the following results concerning the group Ggeom for

Gr0(˜&) = Twistç,C,D(jS*Ì).

1) If N : = rank(Gr0(˜1)) ≥ 9, then Ggeom is O(N).

2) If N is 7 or 8, then Ggeom is either O(N) or it is the Weyl group of

EN in its reflection representation.

pppprrrrooooooooffff By the previous result, Ggeom contains a reflection. Now

repeat the first paragraph of the proof of Theorem 7.2.3. QED

(8.2.4) We also have the following result, analogous to Theorem
7.2.7.

TTTThhhheeeeoooorrrreeeemmmm 8888....2222....5555 Denote by N the rank of

Gr0(˜&) = Twistç,C,D(jS*Ì). Suppose that

1) deg(D) ≥ 2g+3,

2) for some point s in S(äk), Ì(s)/Ì(s)I(s) is not a semisimple
representation of I(s).
Then we have the following results for the group Ggeom for

Gr0(˜&) = Twistç,C,D(jS*Ì).

1) If either ç is not of order 2, or K is not geometrically self dual,
then N ≥ 2, and Ggeom fl SL(N).

2) If ç has order two, and if Ì| C - D - S - Sing(L) is, geometrically,
symplectically self dual, then N ≥ 3, and Ggeom is SO(N) or O(N).

3) If ç has order two, and if Ì| C - D - S - Sing(L) is, geometrically,
orthogonally self dual, then N ≥ 2, and Ggeom = Sp(N).

pppprrrrooooooooffff The proof is entirely analogous to the proof of Theorem 7.2.7,
and is left to the reader. QED



CCCChhhhaaaapppptttteeeerrrr 9999:::: WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss sssshhhheeeeaaaavvvveeeessss aaaassss

iiii nnnnppppuuuu tttt ssss

((((9999....1111)))) WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss sssshhhheeeeaaaavvvveeeessss
(9.1.1) In this chapter, we will study various several parameter
families of elliptic curves, which will serve as "inputs" in later
chapters. What these families have in common is that all of them
are given as families of Weierstrass equations.
(9.1.2) We begin with some general results.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....1111....3333 Let k be a field, and S/k a separated k-scheme of
finite type which is locally a complete intersection, everywhere of
some dimension d. Pick functions a1, a2, a3, a4, a6 in Æ(S, ØS), and

consider the locus ‰aff in !2≠S defined by the generalized
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

View ‰aff as a relative affine curve π : ‰aff ¨ S. Then for any

prime number … invertible in k, R1π~ä$…[d] is a perverse sheaf on S.

pppprrrrooooooooffff Because ‰aff is defined in !2≠S by one equation, and S itself is

locally a complete intersection, we see that ‰aff itself is locally a
complete intersection, everywhere of dimension d+1. Therefore [Ka-

SMD, Corollary 6] ä$…[d+1] is perverse on ‰aff. Now ‰aff is a finite flat

double cover of the x-line, by the map

® : ‰aff ¨ !1≠S,
(x, y, s) ÿ (x, s).

Since ® is finite, ®*ä$…[d+1] = ®~$…[d+1] is perverse on !1≠S. Because

® is finite and flat of degree 2, we have the Trace map

Trace : ®*ä$… = ®*®
*ä$… ¨ ä$….

We also have the natural adjunction map

ä$… ¨ ®*®
*ä$….

The composite

ä$… ¨ ®*®
*ä$… ¨ ä$…

is multiplication by 2, cf. [SGA 4, Expose XVIII, Thm. 2.9, Var4, I].
So we have a direct sum decomposition

®*ä$… = ä$… · ( := Ker(Trace : ®*ä$… ¨ ä$…)).

Thus [d+1] is a direct summand of ®*ä$…[d+1], hence is itself

perverse on !1≠S.
We make use of this perversity as follows. We factor π as
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® pr2

‰aff ¨ !1≠S ¨ S.
We will show that

R1(pr2)~ ¶ R1π~ä$…,

Ri(pr2)~ = 0 for i ± 1.

Once we have shown this, then we have

R(pr2)~[d+1] = R1(pr2)~[d] = R1π~ä$…[d].

This shows that R(pr2)~[d+1] is semiperverse on S, since it is a

single sheaf, concentrated in dimension d = dim(S). To show that
R(pr2)~[d+1] is perverse, we must show that its dual

R(pr2)*(D([d+1])) is semiperverse. But D([d+1]) is perverse, being

the dual of the perverse object [d+1], and pr2 is an affine

morphism, so the semiperversity results from Artin's theorem, cf.
[SGA 4, Expose XIV, 3.1] and [BBD, 4.1.1].

We next calculate the Ri(pr2)~. Because ® is finite, the Leray

spectral sequence gives

Riπ~ä$… = Ri(pr2)~(®*ä$…) = Ri(pr2)~ä$… · Ri(pr2)~.

The cohomology of !1 is known: we have

R2(pr2)~ä$… = ä$…(-1),

Ri(pr2)~ä$… = 0 for i ± 2.

The vanishing of R1(pr2)~ä$… shows that R
1(pr2)~ ¶ R1π~ä$…. The

only possibly nonvanishing Ri(pr2)~ have i in {0, 1, 2}. To show that

Ri(pr2)~ = 0 for i = 0 and 2, we argue as follows. The geometric

fibres of ‰aff/S are geometrically irreducible affine plane curves, so

R0π~ä$… = 0 [Ka-Sar-RMFEM, 10.1.5, applied fibre by fibre] and

R2π~ä$… = ä$…(-1). Looking fibre by fibre and comparing dimensions,

we get the vanishing of Ri(pr2)~ for i = 0 and 2. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....1111....4444 Hypotheses and notations as in Proposition 9.1.3
above, suppose in addition that k is a finite field, and that S/k is
smooth and geometrically connected. Suppose further that the
discriminant » of our Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

is nonzero in Æ(S, ØS), and that its j invariant is nonconstant. Then

we have the following results.

1) The perverse sheaf R1π~ä$…[d]((d+1)/2) on S is mixed of weight ≤ 0.

2) Gr0(R1π~ä$…[d]((d+1)/2)) is geometrically irreducible, geometrically

nonconstant, and autodual. Its restriction to S[1/»] is „(d/2)[d], for
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„ the lisse sheaf R1π~ä$…(1/2)|S[1/»], which is pure of weight zero

and symplectically self dual, with Ggeom = SL(2).

pppprrrrooooooooffff That R1π~ä$…[d]((d+1)/2) is mixed of weight ≤ 0, or

equivalently that R1π~ä$… on S is mixed of weight ≤ 1, is a special

case of Deligne's theorem [De-Weil II, 3.3.1]. In the case at hand, it is

due to Hasse. On the open set S[1/»] where » is invertible, R1π~ä$… is

lisse of rank 2 and (by [Hasse]) pure of weight one. At finite field-

valued points of S where » vanishes, the stalk of R1π~ä$… is the Hc
1

of a singular Weierstrass cubic, which either vanishes ("additive
case") or is one-dimensional ("multiplicative case"); in the latter case,
the Frobenius eigenvalue is _1. The hypothesis that j is nonconstant

implies [De-Weil II, 3.5.5] that Ggeom for R1π~ä$… | S[1/»] is SL(2).

This in turn implies that on S[1/»], the perverse sheaf

R1π~ä$…[d]((d+1)/2) is geometrically irreducible, and is its own Gr0.

To show that Gr0(R1π~ä$…[d]((d+1)/2)) is geometrically

irreducible on S, we apply the criterion of Second Corollary 1.8.3,

part 3). Putting M := R1π~ä$…[d]((d+1)/d), we must show that there

exists a real œ > 0 such that for variable finite extensions E/k, we
have

‡x in S(E) |M(E, x)|2 = 1 + O((ùE)-œ/2).

Thanks to the Othogonality Theorem 1.7.2, part 3), the geometric

irreducibility of R1π~ä$… | S[1/»] tells that we have

‡x in S[1/»](E) |M(E, x)|2 = 1 + O((ùE)-1/2).

The terms where » = 0 make a negligible contribution. Indeed, each

term |M(E, x)|2 for x an E-valued point of the locus » = 0 is, as

noted above, either 0 or (ùE)-d-1, and the number of terms over

which we sum is O((ùE)d-1).
That the geometrically irreducible object M is self dual results

(by Third Corollary 1.8.4, part 3)) from the fact that via any “, its
trace function takes real values.

That Gr0(R1π~ä$…[d]((d+1)/2)) is not geometrically constant is

obvious from the fact that already on the dense open set S[1/»] it is
not geometrically constant, indeed its Ggeom is SL(2). QED

VVVVaaaannnniiiisssshhhhiiiinnnngggg PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn 9999....1111....5555 Let k be a field, d ≥ 1 an integer,

!d/k the affine space Spec(k[t1,..., td]). Choose a1, a2, a3, and a4
arbitrarily in the subring k[t1,..., td-1] of polynomials which do not

involve td. Choose a6 := td. Over !
d/k, consider the Weierstrass

cubic ‰aff
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y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Then for any prime … invertible in k, we have

Hc
*(!d‚käk, R

1π~ä$…) = 0,

Hc
*(!d‚käk, R

1π~ä$…[d]) = 0.

pppprrrrooooooooffff The two statements are trivially equivalent. We will prove
the first. Consider the Leray spectral sequence for π,

E2
a,b := Hc

a(!d‚käk, R
bπ~ä$…) à Hc

a+b(‰aff‚käk, ä$…).

On the one hand, we have

Riπ~ä$… = 0 for i not in {1, 2},

R2π~ä$… = ä$…(-1).

So E2
a,b vanishes unless b is 1 or 2. The only nonvanishing E2

a,2

term is E2
2d,2. The terms E2

a,1 vanish for a outside [0, 2d]. From

this pattern of vanishing

*
* * * * ... *

we see that the spectral sequence degenerates at E2, and that

Hc
a(!d‚käk, R

1π~ä$…) ¶ Hc
a+1(‰aff‚käk, ä$…), for 0 ≤ a ≤ 2d.

Because a6 is td, and the other ai do not involve td, we can use the

Weierstrass equation to "solve for a6", i.e., we have

‰aff ¶ !d+1, coordinates x, y, t1,..., td-1.

Therefore we have

Hc
i(‰aff‚käk, ä$…) = 0 for i ± 2d+2.

Hence we have Hc
*(!d‚käk, R

1π~ä$…) = 0. QED

((((9999....2222)))) TTTThhhheeee ssssiiiittttuuuuaaaattttiiiioooonnnn wwwwhhhheeeennnn 2222 iiiissss iiiinnnnvvvveeeerrrrttttiiiibbbblllleeee
(9.2.1) In this section, we work over a #[1/2]-scheme S, i.e., a
scheme S on which 2 is invertible. This allows us to complete the
square in a Weierstrass cubic, and to reduce to the case a1 = a3 = 0.

More precisely, pick functions a1, a2, a3, a4, a6 in Æ(S, ØS), and

consider the Weierstrass cubic ‰aff defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The quantity ëy := y + (a1x + a3)/2 satisfies the equation

ëy2 = x3 + ëa2x
2 + ëa4x + ëa6,

where

ëa2 := a2 + (a1)
2/4,

ëa4 := a4 + (a1a3)/2,

ëa6 := a6 + (a3)
2/4.
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TTTTwwwwiiiissssttttiiiinnnngggg LLLLeeeemmmmmmmmaaaa 9999....2222....2222 Let S be a #[1/2]-scheme, a2, a4, a6

functions in Æ(S, ØS). Consider the locus ‰
aff in !2≠S defined by the

Weierstrass cubic

y2 = x3 + a2x
2 + a4x + a6.

View ‰aff as a relative affine curve π : ‰aff ¨ S.

Fix an invertible function f on S, and denote by ‰f
aff the locus

in !2≠S defined by the Weierstrass equation

y2 = x3 + fa2x
2 + f2a4x + f3a6.

View ‰f
aff as a relative affine curve πf :‰

aff ¨ S.

For any prime number … invertible on S, we have a canonical
isomorphism of sheaves on S,

R1(πf)~ä$… ¶ Òç2(f)
‚R1π~ä$…,

where ç2 denotes the quadratic character, and Òç2
the

corresponding Kummer sheaf.

pppprrrrooooooooffff Denote by ® : ‰aff ¨ !1≠S the projection onto the x-line.

Because 2 is invertible, and ‰aff has equation of the form y2 = f(x),
we have

®*ä$… = ä$… · Òç2(f(x))

= ä$… · Òç2(x
3 + a2x

2 + a4x + a6)
.

Just as in the proof of Proposition 9.1.3, the vanishing of R1(pr2)~ä$…
gives

R1π~ä$… ¶ R1(pr2)~Òç2(x
3 + a2x

2 + a4x + a6)
.

Applying this same formula to πf, we get

R1(πf)~ä$… ¶ R1(pr2)~Òç2(x
3 + fa2x

2 + f2a4x + f3a6)
.

Now apply the S-automorphism (x, s) ÿ (xf, s) of !1≠S to rewrite
the left hand side as

R1(pr2)~Òç2(x
3 + fa2x

2 + f2a4x + f3a6)

¶ R1(pr2)~Òç2((f
3)(x3 + a2x

2 + a4x + a6))

¶ R1(pr2)~Òç2((f)(x
3 + a2x

2 + a4x + a6))

(because ç2 is quadratic)

¶ Òç2(f)
‚R1(pr2)~Òç2(x

3 + a2x
2 + a4x + a6)

(by the projection formula)

¶ Òç2(f)
‚R1π~ä$…. QED

((((9999....3333)))) TTTThhhheeeeoooorrrreeeemmmmssss ooooffff ggggeeeeoooommmmeeeettttrrrriiiicccc iiiirrrrrrrreeeedddduuuucccciiiibbbbiiiilllliiiittttyyyy iiiinnnn oooodddddddd
cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc
(9.3.1) In this section, we work over a field k in which 2 is
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invertible. We will give a number of families of Weierstrass cubics

over affine spaces, π : ‰aff ¨ !d, for which the perverse sheaf

R1π~ä$…[d] on !d is geometrically irreducible.

(9.3.2) There are three simple principles we will apply, given as
9.3.3-5 below. The first two are standard. We include proofs for ease
of reference.

EEEExxxxtttteeeerrrrnnnnaaaallll tttteeeennnnssssoooorrrr pppprrrroooodddduuuucccctttt LLLLeeeemmmmmmmmaaaa 9999....3333....3333 Let k be a field in which
a prime … is invertible. Let S and T be geometrically irreducible
nonempty separated k-schemes of finite type. Suppose K and L are
ä$…-perverse sheaves on S and T respectively. Suppose that K is

geometrically irreducible on S, and that L is geometrically
irreducible on T. Then their external tensor product

K$L := (pr1
*K)‚(pr2

*L)

is geometrically irreducible on S≠kT. If K and L are both self dual,

then K$L is self dual.
pppprrrrooooooooffff We first reduce to the case when k is algebraically closed, S is
the support of K, T is the support of L, and S and T are both reduced.
Then [BBD, 4.3.2 and 4.3.3] we can find affine open sets U fi S and V
fi T, inclusions denoted j : U ¨ S, k : V ¨T, with U/k and V/k
smooth and connected, and irreducible lisse sheaves Ì and Ó on U
and V respectively, such that K = j~*Ì[dimU], L = k~*Ó[dimV]. Their

external tensor product K$L is the middle extension
(j≠k)~*((Ì$Ó)[dim(U≠V)]). So it suffices [BBD, 4.3.1 and 4.3.3] to see

that Ì$Ó is geometrically irreducible on U≠V, i.e., that if we pick
base points u in U and v in V, the action ® of π1(U≠V, u≠v) on Ì$Ó

is irreducible. But there is a canonical homomorphism
å : π1(U, u)≠π1(V, v) ¨ π1(U≠V, u≠v).

The composite ®«å is the external tensor product of the
representations Ì of π1(U, u) and Ó of π1(V, v). Since the external

tersor product of finite-dimensional irreducible ä$…-representations

of two groups G and H is an irreducible representation of G≠H, ®«å is
irreducible, and a fortiori ® itself is irreducible.

That the external tensor product of self dual perverse sheaves
is self dual results from [BBD, 4.2.7 (b)]. QED

LLLLooooccccaaaallll NNNNaaaattttuuuurrrreeee LLLLeeeemmmmmmmmaaaa 9999....3333....4444 Let k be a field in which a prime … is
invertible. Let S be a geometrically irreducible separated k-scheme
of finite type, which is the union of finitely many Zariski open sets
Ui. Suppose K is a ä$…-perverse sheaf on S, whose support is S. Then

the following conditions are equivalent:
1) K is geometrically irreducible on S,
2) K|Ui is geometrically irreducible on Ui, for each i.

pppprrrrooooooooffff We reduce immediately to the case when k is algebraically
closed. Since the support of K is S, there exists an affine open set
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V fi S such that K|V is Ì[d], for a lisse ä$…-sheaf Ì on V. At the

expense of shrinking V, we may further assume that V fi Ui for

each i. Now K is geometrically irreducible on S if and only if Ì is
geometrically irreducible as lisse sheaf on V and if, denoting by
j : V ¨ S the inclusion, the canonical adjunction map of perverse
sheaves on S

K ¨ Rj*j
*K = Rj*(Ì[d])

is injective, and maps K isomorphically to the perverse subsheaf
j~*(Ì[d]) of Rj*(Ì[d]).

On the other hand, K|Ui is geometrically irreducible on Ui if and

only if Ì is geometrically irreducible as lisse sheaf on V and if,
denoting by ji : V ¨ Ui the inclusion, the canonical adjunction map

of perverse sheaves on Ui

K|Ui ¨ Rji*j
*K = Rji*(Ì[d])

is injective, and maps K|Ui isomorphically to the perverse subsheaf

ji~*(Ì[d]) of Rji*(Ì[d]). By transitivity [BBD, 2.1.7], if we denote by

ki : Ui ¨ S the inclusion, we have

j~*(Ì[d]) = ki~*ji~*(Ì[d]).

Restricting to Ui, this gives

(j~*(Ì[d]))| Ui = ji~*(Ì[d]).

If either 1) or 2) holds, then Ì is geometrically irreducible as
lisse sheaf on V. If 1) holds, the above equality says that K|Ui is the

middle extension ji~*(Ì[d]), and hence 2) holds. If 2) holds, both K

and j~*(Ì[d]) are perverse subsheaves of the perverse sheaf Rj*(Ì[d])

which agree on each Ui, and hence coincide. Thus 1) holds. QED

MMMMiiiissssssssiiiinnnngggg PPPPooooiiiinnnnttttssss LLLLeeeemmmmmmmmaaaa 9999....3333....5555 Let k be an algebraically closed field
in which a prime … is invertible. Let S/k be an affine, smooth,
connected k-scheme, of dimension d ≥ 1. Let Ì be a constructible
ä$…-sheaf on S. Suppose that the following three conditions hold.

1) Ì[d] is a perverse sheaf on S.

2) Hc
*(S, Ì[d]) = 0.

3) There exists a finite subset Z fi S(k) such that Ì|Z = 0 and such
that Ì[d]|S - Z is irreducible and self dual as perverse sheaf on S - Z.
Then Ì[d] is irreducible and self dual as a perverse sheaf on S.

pppprrrrooooooooffff Denote by j : S - Z ¨ S the inclusion. By 3), j*Ì[d] is perverse

irreducible and self dual on S - Z. So its middle extension j~*(j
*Ì[d])

is perverse irreducible and self dual on S. So it suffices to show that

Ì[d] ¶ j~*(j
*Ì[d]). But Ì|Z = 0 by 3), i.e., Ì ¶ j~(j

*Ì). So it suffices to

show that j~(j
*Ì[d]) ¶ j~*(j

*Ì[d]). Since j*Ì[d] is self dual, it suffices

by duality to show that j~*(j
*Ì[d]) ¶ Rj*(j

*Ì[d]). Since Z is a finite
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set of k-points, we obtain j~*(j
*Ì[d]) by first forming Rj*(j

*Ì[d])

and then by throwing away all cohomology sheaves in degree ≥ 0. So

we have j~*(j
*Ì[d]) ¶ Rj*(j

*Ì[d]) if and only if the object

Rj*(j
*Ì[d]) has no nonzero cohomology sheaves in degree ≥ 0, if and

only if the object Rj*j
*Ì has no nonzero cohomology sheaves in

degree ≥ d. Now above degree zero, Rj*j
*Ì is concentrated on Z. So

we must show that (Rj*j
*Ì)|Z is concentrated in degree ≤ d. As Z is

finite, it is the same to show that Hi(Z, (Rj*j
*Ì)|Z) = 0 for i ≥ d.

To see this, we argue as follows. We have a distinguished
triangle

... j~j
*Ì ¨ Rj*j

*Ì¨ (Rj*j
*Ì)|Z ¨ ... .

By 2), we have Hc
*(S, Ì[d]) = 0, a vanishing we rewrite as

Hc
*(S, j~(j

*Ì[d])) = 0.

Since j*Ì[d] is self dual, by 3), the dual of this vanishing is

H*(S, Rj*(j
*Ì[d])) = 0,

i.e.,

H*(S, Rj*j
*Ì) = 0.

Looking back at the distinguished triangle, we see that the
coboundary map is an isomorphism

Hi(Z, (Rj*j
*Ì)|Z) ¶ Hi+1(S, j~j

*Ì).

Because S is affine of dimension d, and j~j
*Ì is a single constructible

sheaf, we have

Hi+1(S, j~j
*Ì) = 0 for i ≥ d.

Therefore we find

Hi(Z, (Rj*j
*Ì)|Z) = 0 for i ≥ d,

as required. QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....6666 Let k be a field in which 2 is invertible,

!2 = Spec(k[s, t]), and π : ‰aff ¨ !2 the relative affine curve
defined by the Weierstrass equation

y2 = x3 + sx2 + s3t.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff Immediate reduction to the case when k is algebraically

closed. Over each point of the locus s = 0, we have fibre y2 = x3.

Looking fibre by fibre, we see that R1π~ä$… | (s = 0) vanishes. On the

locus where s is invertible, our curve is the s-twist of the curve

‰1
aff : y2 = x3 + x2 + t,
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whose structural morphism we denote π1 : ‰1
aff ¨!1.

By Twisting Lemma 9.2.2, R1π~ä$… on !2[1/s] ¶ ´m≠!1 is the

external tensor product

R1π~ä$… ¶ Òç2(s)
$R1π1~ä$….

Denote by j : ´m ¨ !1 the inclusion. Then j*Òç2(s)
vanishes at

s=0. So if we extend by zero from !2[1/s] to !2, we get an

isomorphism on !2,

R1π~ä$… ¶ j*Òç2(s)
$R1π1~ä$…,

i.e.,

R1π~ä$…[2] ¶ j~*(Òç2(s)
[1])$R1π1~ä$…[1].

The asserted vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is obvious from this

isomorphism, the Kunneth formula, and the vanishing of

Hc
*(!1‚käk, j*Òç2

).

It remains to establish the irreducibility and self duality of

R1π~ä$…[2] ¶ j~*(Òç2(s)
[1])$R1π1~ä$…[1]. The first factor

j~*(Òç2(s)
[1]) is perverse irreducible and self dual. So it suffices, by

Lemma 9.3.3, to show that R1π1~ä$…[1] is perverse irreducible and

self dual. The curve y2 = x3 + x2 + t has nonconstant j, and its

» = -16(4t + 27t2) has only simple zeroes in any characteristic not

two. So R1π1~ä$… is a middle extension, by Corollary 7.5.5. Its

restriction to !1[1/»] is geometrically irreducible, because the j

invariant is not constant. Therefore R1π1~ä$…[1] is the middle

extension from !1[1/»] of a perverse irreducible which is self dual,
so is itself perverse irreducible and self dual. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....7777 Hypotheses as in Theorem 9.3.6 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....8888 Let k be a field in which 2 is invertible. Over

!2 = Spec(k[a2, a6]), consider the relative affine curve

π : ‰aff ¨ !2

defined by the Weierstrass equation

y2 = x3 + a2x
2 + a6.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.
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pppprrrrooooooooffff Immediate reduction to the case when k is algebraically

closed. The asserted vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special

case of Proposition 9.1.5.

We next show that over the open set !2[1/a2] where a2 is

invertible, R1π~ä$…[2] | !
2[1/a2] is geometrically irreducible. Indeed,

the change of variables s = a2, t = a6/(a2)
3 gives us the family

y2 = x3 + sx2 + s3t
over the open set of the (s, t) plane where s is invertible. So by

Theorem 9.3.6, we find that R1π~ä$…[2] | !
2[1/a2] is geometrically

irreducible and self dual. Since the j invariant is nonconstant,

R1π~ä$…[2] | !
2[1/»] is geometrically irreducible and self dual. The

union of the the two open sets !2[1/a2] and !2[1/»] is !2 - (0,0).

Indeed, » is

» = -16a6(4(a2)
3 + 27a6),

so if » and a2 both vanish, then a6 also vanishes. Thus R1π~ä$…[2] is

irreducible and self dual as perverse sheaf on !2 - (0,0).

We now observe that R1π~ä$… vanishes at (0,0) (by inspection).

By Proposition 9.1.3, R1π~ä$…[2] is perverse on !2. By Proposition

9.1.5, we have Hc
*(!2, R1π~ä$…) = 0. So we may invoke the Missing

Points Lemma 9.3.5, with S = !2, Z = (0, 0), and Ì = R1π~ä$…. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....9999 Hypotheses as in Theorem 9.3.8 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....11110000 Let k be a field in which 6 is invertible,

!2 = Spec(k[s, t]), and π : ‰aff ¨ !2 the relative affine curve
defined by the Weierstrass equation

y2 = 4x3 - s2tx - s3t.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff The proof is very similar to that of Theorem 9.3.6 Just as we
did there, we first reduce to the case when k is algebraically closed.

Looking fibre by fibre, we see that R1π~ä$… vanishes on the locus s=0.

On the open set where s is invertible, our curve is the s-twist of the
curve

‰1
aff : y2 = 4x3 - tx - t,
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whose structural morphism we denote π1 : ‰1
aff ¨!1.

We find

R1π~ä$…[2] ¶ j~*(Òç2(s)
[1])$R1π1~ä$…[1],

which makes clear the asserted vanishing Hc
*(!2‚käk, R

1π~ä$) = 0.

It remains to show that R1π1~ä$…[1] is perverse irreducible and

self dual on !1. Since the j invariant j = 1728t/(t - 27) of ‰1
aff is

nonconstant, R1π1~ä$… | !
1[1/»] is lisse, irreducible, and self dual. As

» = t2(t - 27), we see from Corollary 7.5.5 that R1π1~ä$… is a middle

extension, and hence that R1π1~ä$…[1] is perverse irreducible and self

dual on !1. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....11111111 Hypotheses as in Theorem 9.3.10 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....11112222 Let k be a field in which 6 is invertible. Over

!2 = Spec(k[g2, g3]), consider the relative affine curve π : ‰aff ¨ !2

defined by the Weierstrass equation

y2 = 4x3 - g2x - g3.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff The vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special case of

Proposition 9.1.5. On the open set where g2g3 is invertible, the

change of variables

s = g3/g2, t = (g2)
3/(g3)

2,

i.e.,

g2 = s2t, g3 = s3t,

makes the open set !2[1/g2g3] of the (g2, g3)-plane isomorphic to

the open set !2[1/st] of the (s, t)-plane, and carries our family

y2 = 4x3 - g2x - g3
to the twist family

y2 = 4x3 - s2tx - s3t.

By the previous Theorem 9.3.10, R1π~ä$…[2] | !
2[1/g2g3] is

geometrically irreducible and self dual.

Since the j invariant j = 1728(g2)
3/((g2)

3 - 27(g3)
2) is

nonconstant, R1π~ä$…[2] | !
2[1/»] is also geometrically irreducible

and self dual. The union of the two open sets !2[1/g2g3] and !2[1/»]
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is !2 - (0,0). Indeed, as » = (g2)
3 - 27(g3)

2, if both » and g2g3
vanish, then both g2 and g3 vanish. Therefore the restriction of

R1π~ä$…[2] to !
2 - (0,0) is geometrically irreducible and

geometrically self dual. By inspection, R1π~ä$… vanishes at (0,0). As

already proven, we have Hc
*(!2‚käk, R

1π~ä$…) = 0. So we have only

to apply the Missing Points Lemma 9.3.5 to the situation S = !2,

Z = (0,0), Ì = R1π~ä$…. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....11113333 Hypotheses as in Theorem 9.3.12 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

(9.3.14) Strangely enough, the last two results 9.3.12-13 remain
true in characteristic 3, although their proofs are necessarily quite
different, since these are now families of curves whose j invariant
j = 1728 = 0 is constant.

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....11115555 Let k be a field of characteristic 3, !1 = Spec(k[t]),

and π : ‰aff ¨ !1 the relative affine curve defined by the
Weierstrass equation

y2 = 4x3 -tx - t.

Then the perverse sheaf R1π~ä$…[1] on !1 is geometrically irreducible

and geometrically self dual.
pppprrrrooooooooffff Immediate reduction to the case when k is algebraically

closed. Since k has characteristic 3, » = t3. So R1π~ä$…|´m is a lisse

sheaf of rank two which is self dual.

By Corollary 7.5.5, R1π~ä$… is a middle extension from ´m,

hence is self dual. What we must show is that the lisse sheaf

Ì := R1π~ä$…|´m is geometrically irreducible on ´m. For this, we

argue as follows. Because our family has constant j invariant
j = 1728 = 0, Ì has finite geometric monodromy and hence is a
semisimple representation of π1(´m). Denote by

[2]: ´m ¨ ´m

t ÿ t2

the squaring map. It makes ´m a Galois finite etale covering of itself

with Galois group _1. We will show that [2]*Ì is the direct sum of
two distinct characters å and ∫ of π1(´m), which are different but

which are interchanged by the nontrivial galois automorphism [-1]
of the upper ´m. Once we have shown this, then Mackey theory

tells us that [2]*å = [2]*∫ is irreducible. So we can compute the
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inner product (in the realm of semisimple finite-dimensional ä$…-

representations of π1(´m))

<Ì, [2]*å> = (1/2)(<Ì, [2]*å> + <Ì, [2]*∫>)

= (1/2)<Ì, [2]*[2]
*Ì>

= (1/2)<[2]*Ì, [2]*Ì>
= (1/2)<å + ∫, å + ∫>
= (1/2)(1 + 1) = 1.

Since Ì has rank 2, we must have Ì = [2]*å, which as noted above

is irreducible.

To analyze [2]*Ì, we view it as R1π[2]~ä$… for the curve

π[2] : ‰[2]
aff ¨ ´m defined by

y2 = 4x3 -t2x - t2.

This curve over ´m is the t-twist of the curve π[2t] : ‰[2t]
aff ¨ ´m

defined by

y2 = 4x3 -x -1/t.
We recall that 4 = 1, and write this last equation as

x3 - x = y2 + 1/t.
Let us denote by ¥ and ä¥ the two nontrivial additive characters of
É3, and by Ò¥ and Òä¥ the corresponding Artin-Schreier sheaves on

!1. Denote by ® the projection of ‰[2t]
aff onto the y-line over ´m.

Then we have
®*ä$… = ä$… · Ò¥(y2 + 1/t) · Òä¥(y2 + 1/t)

= ä$… · Ò¥(y2 + 1/t) · Ò¥(-y2 - 1/t)

¶ ä$… · Ò¥(1/t)‚Ò¥(y2) · Ò¥(-1/t)‚Ò¥(-y2).

Applying pr2 : !1≠´m ¨ ´m, we get

R1π[2t]~ä$… = R1pr2~(®*ä$…)

¶ R1pr2~(Ò¥(1/t)‚Ò¥(y2)) · R1pr2~(Ò¥(-1/t)‚Ò¥(-y2))

¶ Ò¥(1/t)‚R1pr2~(Ò¥(y2)) · Ò¥(-1/t))‚R1pr2~(Ò¥(-y2)).

The sheaves R1pr2~(Ò¥(y2)) and R1pr2~(Ò¥(-y2)) on ´m are

isomorphic (by y ÿ iy) and constant (Kunneth formula), of rank
one, so geometrically they are isomorphic to the constant sheaf.
Thus we find

R1π[2t]~ä$… ¶ Ò¥(1/t) · Ò¥(-1/t).

So by the twisting lemma, we have

[2]*Ì ¶ Òç2(t)
‚R1π[2t]~ä$…

¶ Òç2(t)
‚Ò¥(1/t) · Òç2(t)

‚Ò¥(-1/t).

The sheaves Òç2(t)
and Òç2(-t)

are geometrically isomorphic. On

the other hand, the sheaves Ò¥(1/t) and Ò¥(-1/t) are not

geometrically isomorphic, as they are inverses and both nontrivial
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of order 3. So putting
å := Òç2(t)

‚Ò¥(1/t),

we have

[2]*Ì = å + ∫, å ± ∫, ∫ = [-1]*å,
as required. QED
CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....11116666 Hypotheses as in Theorem 9.3.15 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[1](1) on !1 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....11117777 Let k be a field of characteristic 3,

!2 = Spec(k[s, t]), and π : ‰aff ¨ !2 the relative affine curve
defined by the Weierstrass equation

y2 = 4x3 - s2tx - s3t.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff Repeat the first ten lines of the proof of Theorem 9.3.10, and
then invoke Theorem 9.3.15 above. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....11118888 Hypotheses as in Theorem 9.3.17 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....3333....11119999 Let k be a field of characteristic 3,

!2 = Spec(k[g2, g3]). Consider the relative affine curve π : ‰aff ¨ !2

defined by the Weierstrass equation

y2 = 4x3 - g2x - g3.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff Immediate reduction to the case when k is algebraically

closed. The vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special case of

Proposition 9.1.5.

Here » is (g2)
3. On the open set !2[1/g2], R

1π~ä$… is lisse of

rank two and self dual. Pull back by the map

ƒ : ´m ¨ !2[1/g2],

t ÿ (t, t).

By Theorem 9.3.15, ƒ*(R1π~ä$…) is irreducible, and hence

R1π~ä$… | !
2[1/g2] is irreducible.

Denote by
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j : !2[1/g2] ¨ !2

the inclusion. It remains only to see that R1π~ä$…[2] is its own middle

extension j~*j
*R1π~ä$…[2] from !2[1/g2]. Because we are in

characteristic 3, over the locus g2 = 0, every geometric fibre is

isomorphic to y2 = x3, and so R1π~ä$…[2] vanishes on this locus, i.e.,

we have

R1π~ä$…[2] = j~j
*R1π~ä$…[2].

We will show that this holds outside a finite set Z fi !2(k) of the
form 0≠Z3. Once we have shown this, then we have only to apply

Missing Points Lemma 9.3.5.
For this, it suffices to show that

j~(j
*R1π~ä$…[2]) | !

2 - Z ¶ Rj*(j
*R1π~ä$…[2]) | !

2 - Z.

This will be a consequence of Deligne's generic base change theorem

[De-Fin, 1.9 (ii)]. We view j : !2[1/g2] ¨ !2 as a morphism of

!1 := Spec(k[g3]) schemes. Over a dense open set

U = !1 - Z3 fi !1 := Spec(k[g3]),

the formation of Rj*(j
*R1π~ä$…) commutes with arbitrary change of

base on U.
Let us spell out what this means. We may shrink U, and

assume 0 lies in Z3. For any b in U(k) fi k≠, the restriction of

Rj*(j
*R1π~ä$…) to the line g2 ÿ (g2, b) in !2 is the following. We

consider the one-parameter family

‰b
aff : y2 = x3 + g2x

2 + b

over the g2-line, with structural morphism πb : ‰b
aff ¨ !1.

In characteristic 3, the discriminant is (g2)
3. Let us denote by

jb : !1 - {0} ¨ !1

the inclusion. Then jb
*R1πb~ä$… is lisse on ´m, and we have

Rjb*(jb
*R1πb~ä$…) ¶ Rj*(j

*R1π~ä$…) | (the line g2 ÿ (g2, b)).

How do we make use of this? Because b ± 0 and k is

algebraically closed, we can write b as ∫3. Then our b-frozen family,
written in terms of ëx := x+∫ and y, has equation

y2 = (ëx)3 + g2(ëx - ∫) = (ëx)3 + g2ëx -∫g2.

Here we may apply Corollary 7.5.5 to conclude that R1πb~ä$… on !1

is a middle extension across g2 = 0. Looking at the fibre over 0, we

see that R1πb~ä$… vanishes at 0. Since it is the middle extension

across zero of the lisse sheaf jb
*R1πb~ä$…, we have

jb~(jb
*R1πb~ä$…) ¶ Rjb*(jb

*R1πb~ä$…).
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Therefore the object

Rj*(j
*R1π~ä$…) | (the line g2 ÿ (g2, b))

vanishes at the point (0, b), so long as b does not lie in Z3. Thus if we

take for Z the finite set 0≠Z3, we have

j~(j
*R1π~ä$…[2]) | !

2 - Z ¶ Rj*(j
*R1π~ä$…[2]) | !

2 - Z,

as required. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....3333....22220000 Hypotheses as in Theorem 9.3.19 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

RRRReeeemmmmaaaarrrrkkkk 9999....3333....22221111 Here is another method of showing that for k a field

of characteristic p > 2, and π : ‰aff ¨ !2 = Spec(k[g2, g3]) defined

by the Weierstrass equation

y2 = 4x3 - g2x - g3,

has R1π~ä$…|!
2[1/»] geometrically irreducible. Rather than reduce to

the case when k is algebraically closed, we will instead reduce to the
case when k is Ép. This is legitimate because for any field K (here

taken to be Ép), for any geometrically connected K-scheme X (here

taken to be !2[1/»]), for any algebraically closed overfield L/K, and
for any geometric point x of X‚KL, with image point x' in X‚KäK,

the natural homomorphism
π1(X‚KL, x) ¨ π1(X‚KäK, x')

is surjective, cf. [Ka-LG, 1.2.2] and [EGA IV 4, 5.21]. Denote by

pr2 : !1≠!2 ¨ !2 the projection of the x-line. Because 2 is

invertible, we have (cf. the proof of Lemma 9.2.2)

R1π~ä$… = R1pr2~Òç2(4x
3 - g2x - g3)

,

and

Ripr2~Òç2(4x
3 - g2x - g3)

= 0, for i ± 1.

Thus we may view !2 as the space Ï of polynomial functions of

degree at most one on !1, and the perverse sheaf R1π~ä$…(1)[2] on

!2 as the object M = Twist(L, K, Ï, h) attached to the standard
input (cf. 1.15.4) over k = Ép given by

the integer m = 1,

the perverse sheaf K = j*Òç2
(1/2)[1] on !m/k,

the affine k-scheme of finite type V = !1/k,

the k-morphism h : V ¨ !m given by h(x) = 4x3,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d ≥ 2,
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the space of functions (Ï, †) on V given by polynomials of
degree at most one.

Because Hc
*(!1‚käk, j*Òç2

(1/2)[1]) = 0, we see from Lemma

1.15.5, part 3), that Gr0(M(1/2)) = Gr0(M(1/2))ncst. By the Standard

Input Theorem 1.15.6, part 2), Gr0(M(1/2)) = Gr0(M(1/2))ncst is

geometrically irreducible on !2. Therefore Gr0(M(1/2)) | !2[1/»] is
either geometrically irreducible, or it is zero. But the object

M(1/2) | !2[1/»] is already pure of weight zero and nonzero: it is the

lisse rank two sheaf R1π~ä$…(3/2)|!
2[1/»], placed in degree -2. Thus

R1π~ä$…(3/2)|!
2[1/»] = Gr0(M(1/2)) | !2[1/»].

Hence the lisse sheaf R1π~ä$…|!
2[1/»] is geometrically irreducible.

QED

((((9999....4444)))) GGGGeeeeoooommmmeeeettttrrrriiiicccc IIIIrrrrrrrreeeedddduuuucccciiiibbbbiiiilllliiiittttyyyy iiiinnnn eeeevvvveeeennnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc

TTTTwwwwiiiissssttttiiiinnnngggg LLLLeeeemmmmmmmmaaaa 9999....4444....1111 Let S be an É2-scheme, a2, a4, a6

functions in Æ(S, ØS). Consider the locus ‰
aff in !2≠S defined by the

Weierstrass cubic

y2 + xy = x3 + a2x
2 + a4x + a6.

View ‰aff as a relative affine curve π : ‰aff ¨ S.

Fix a function f on S, and denote by ‰f
aff the locus in !2≠S

defined by the Weierstrass equation

y2 + xy = x3 + (a2 + f)x2 + a4x + a6.

View ‰f
aff as a relative affine curve πf : ‰

aff ¨ S.

For any prime number … invertible on S, we have a canonical
isomorphism of sheaves on S,

R1(πf)~ä$… ¶ Ò¥(f)‚R1π~ä$…,

where ¥ denotes the nontrivial additive character of É2, and Ò¥ the

corresponding Artin-Schreier sheaf.

pppprrrrooooooooffff Denote by ® : ‰aff ¨ !1≠S the projection onto the x-line. This
finite flat double covering is ramified over x = 0, so if we denote by

j : ´m≠S ¨ !1 ≠S

the inclusion, we have
®*ä$… = ä$… · ( := Ker(Trace : ®*ä$… ¨ ä$…)),

with  supported in ´m≠S. Thus  = j~j
*, and we can compute

j* as follows. Over ´m≠S, we take new coordinates (x, ëy := y/x). In

terms of these, our equation becomes an Artin-Schreier equation

(ëy)2 + ëy = x + a2 + a4/x + a6/x
2.

So we find
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j* = Ò¥(x + a2 + a4/x + a6/x
2).

So we find that, denoting now by pr2,´m
the projection

pr2,´m
: ´m≠S ¨ S,

we have

R1(π)~ä$… ¶ R1(pr2,´m
)~Ò¥(x + a2 + a4/x + a6/x

2).

Repeating the same argument with πf instead of π, we find

R1(πf)~ä$…

¶ R1(pr2,´m
)~Ò¥(x + a2 + f + a4/x + a6/x

2)

¶ R1(pr2,´m
)~(Ò¥(f)‚Ò¥(x + a2 + a4/x + a6/x

2))

¶ Ò¥(f)‚R1(pr2,´m
)~Ò¥(x + a2 + a4/x + a6/x

2)

¶ Ò¥(f)‚R1π~ä$…. QED

TTTThhhheeeeoooorrrreeeemmmm 9999....4444....2222 Let k be a field of characteristic 2,

!2 : = Spec(k[a2, a6]). Consider the relative affine curve

π : ‰aff ¨ !2

defined by the Weierstrass equation

y2 + xy = x3 + a2x
2 + a6.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff The vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special case of

Propostion 9.1.5. Denote by π0,6 : ‰0,6
aff ¨ !1 := Spec(k[a6]) the

relative affine curve defined by putting a2 = 0:

y2 + xy = x3 + a6.

In this family, » = a6 and j = 1/a6.

By the previous Lemma 9.4.1, R1π~ä$… on !2 is the external

tensor

R1π~ä$… ¶ Ò¥(a2)
$R1π0,6~ä$….

The sheaf Ò¥(a2)
is lisse of rank one on !1. So it remains to show

that R1π0,6~ä$… is a geometrically irreducible and geometrically self

dual middle extension. It is lisse on ´m (because » = a6). It is

geometrically irreducible and geometrically self dual on ´m because

the j invariant j = 1/a6 is nonconstant. It is a middle extension

across a6 = 0 by Corollary 7.5.5. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....4444....3333 Hypotheses as in Theorem 9.4.2 above, suppose in
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addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.4, part 2). QED

TTTThhhheeeeoooorrrreeeemmmm 9999....4444....4444 Let k be a field of characteristic 2,

!2 : = Spec(k[a2, a4]). Consider the relative affine curve

π : ‰aff ¨ !2

defined by the Weierstrass equation

y2 + xy = x3 + a2x
2 + a4x.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff The vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special case of

Proposition 9.1.5. Denote by π0,4 : ‰0,4
aff ¨ !1 := Spec(k[a4]) the

relative affine curve defined by putting a2 = 0:

y2 + xy = x3 + a4x.

In this family, » = (a4)
2 and j = 1/(a4)

2 .

Just as in the preceding theorem, we have

R1π~ä$… ¶ Ò¥(a2)
$R1π0,4~ä$….

We must show that R1π0,4~ä$… is a geometrically irreducible and

geometrically self dual middle extension. It is lisse on ´m (because

» = (a4)
2 ). It is geometrically irreducible and geometrically self

dual on ´m because the j invariant j = 1/(a4)
2 is nonconstant. It is

a middle extension across t = 0 because it is the absolute Frobenius

pullback of the middle extension sheaf R1π0,6~ä$… on !1 which

occurred in the previous theorem. Indeed, on !1 := Spec(k[t]), we

have Frob2
*(R1π0,6~ä$…) is R

1π0,6,Fr~ä$… for the relative affine

curve π0,6,Fr : ‰0,6,Fr
aff ¨ !1 defined by the Weierstrass equation

y2 + xy = x3 + t2.
So here we have

R1(π0,6,Fr)~ä$… ¶ R1(pr2,´m
)~Ò¥(x + (t/x)2)

¶ R1(pr2,´m
)~Ò¥(x + t/x)

:= R1π0,4~ä$….

Thus R1π0,4~ä$… ¶ Frob2
*(R1π0,6~ä$…) is itself a middle extension.

QED

RRRReeeemmmmaaaarrrrkkkk 9999....4444....5555 The middle extension sheaf R1π0,4~ä$… on !1 is the
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middle extension of the Kloosterman sheaf Kl2(¥) [Ka-GKM, 11.0.1] on

´m.

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....4444....6666 Hypotheses as in Theorem 9.4.4 above, suppose in
addition that k is a finite field. Then the geometrically irreducible

perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.5, part 2). QED

(9.4.7) To end this section, we given a case where j remains
constant, j = 0 = 1728, in our family.
TTTThhhheeeeoooorrrreeeemmmm 9999....4444....8888 Let k be a field of characteristic 2,

!2 : = Spec(k[a4, a6]). Consider the relative affine curve

π : ‰aff ¨ !2 defined by the Weierstrass equation

y2 + y = x3 + a4x + a6.

Then the perverse sheaf R1π~ä$…[2] on !2 is geometrically irreducible

and geometrically self dual, and Hc
*(!2‚käk, R

1π~ä$) = 0.

pppprrrrooooooooffff The vanishing Hc
*(!2‚käk, R

1π~ä$) = 0 is a special case of

Proposition 9.1.5. In this family, » = 1. So R1π~ä$… is lisse of rank two

on all of !2, and geometrically self dual. To see that it is
geometrically irreducible, pull back by the map

ƒ : !1 ¨ !2,
t ÿ (t, 0),

obtaining the curve π0,4 : ‰0,4
aff ¨ !1 := Spec(k[t]) defined by

y2 + y = x3 + tx.

Then ƒ*1π~ä$… is R
1π0,4~ä$…, which in turn is

R1π0,4~ä$… = R1(pr2 : !1≠!1 ¨ !1)~Ò¥(x3 + tx).

It is geometrically irreducible on !1, because

R1π0,4~ä$…[1] = R1(pr2 : !1≠!1 ¨ !1)~Ò¥(x3 + a4x)[1]

is the Fourier Transform on !1 of the perverse, geometrically

irreducible object Ò¥(x3) on !1. QED

RRRReeeemmmmaaaarrrrkkkk 9999....4444....9999 It is also useful to keep in mind the description

(verification left to the reader) of R1π~ä$… as the external tensor

product

R1π~ä$… ¶ (R1π0,4~ä$…)$Ò¥(a6)
.

CCCCoooorrrroooollllllllaaaarrrryyyy 9999....4444....11110000 Hypotheses as inTheorem 9.4.8 above, suppose in
addition that k is a finite field. Then the geometrically irreducible
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perverse sheaf R1π~ä$…[2](3/2) on !2 is self dual.

pppprrrrooooooooffff Immediate from Proposition 9.1.5, part 2). QED
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CCCChhhhaaaapppptttteeeerrrr 11110000:::: WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiii llll iiiieeeessss

((((11110000....1111)))) UUUUnnnniiiivvvveeeerrrrssssaaaallll WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss iiiinnnn aaaarrrrbbbbiiiittttrrrraaaarrrryyyy
cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc
(10.1.1) We first give the motivation. Over any field K, or indeed
Zariski locally over (the spec of) any ring R, an elliptic curve E/R
can always be given by a Weierstrass equation

Ea's : y
2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,

with coefficients ai in R, subject to the condition that the

discriminant » be invertible in R. For any unit ¬ in R, the map

(x, y) ÿ (X, Y) := (¬2x, ¬3y)
is an isomorphism from the curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

to the curve

Y2 + ¬a1XY + ¬2a3Y = X3 + ¬2a2X
2 + ¬4a4X + ¬6a6.

(10.1.2) Recall [Sil-ATEC, page 364] the precise formula for ».
Given quantities a1, a2, a3, a4, a6 in any ring R, one defines

quantities b2, b4, b6, and b8 in R by the formulas

b2 := (a1)
2 + 4a2,

b4 := a1a3 + 2a4,

b6 := (a3)
2 + 4a6,

b8 := (a1)
2a6 + 4a2a6 - a1a3a4 + a2(a3)

2 - (a2)
4.

Then one defines the quantity » := »(a1, a2, a3, a4, a6) in R by

» := -(b2)
2b8 -8(b4)

3 - 27(b6)
2 + 9b2b4b6.

Notice that if one gives ak weight k, then bk is isobaric of weight k,

and » is isobaric of weight 12, as a universal #-polynomial in the
ai's.

(10.1.3) We now specialize to the case when K is a function field in
one variable over a finite field. Thus we work over a finite field k of
characteristic p, in which a prime … is invertible. We fix a
projective, smooth, geometrically connected curve C/k, of genus
denoted g. We also fix on C an effective divisor D. We assume that

deg(D) ≥ 2g + 3.
We denote

V := C - D.
Suppose we are given functions fk in the Riemann Roch spaces

L(kD), for k = 1, 2, 3, 4, 6. Then we form the Weierstrass equation

Ef's : y
2 + f1xy + f3y = x3 + f2x

2 + f4x + f6.

We view it as a relative affine curve over V, with structural
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morphism
πf's : Ef's ¨ V.

Its discriminant » := »(f1, f2, f3, f4, f6) then lies in L(12D). If » is

nonzero, our Weierstrass equation defines an elliptic curve over K.
And every elliptic curve over K, indeed every Weierstrass equation
over K with nonvanishing », is obtained this way for some choice of
effective divisor D with deg(D) ≥ 2g + 3.
(10.1.4) For a fixed divisor D, we are interested in the variation of
the L-function of Ef's/k(C) as (f1, f2, f3, f4, f6) varies in

L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D).
Similarly, for each finite extension field kd/k, we are interested in

the variation of the L-function of Ef's/kd(C) as the f's vary in

(L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D))‚kkd.

For this to be a reasonable question, we must restrict to a dense
open set of L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D) (viewed as an affine space
over k) over which the L-function is a polynomial of constant
degree.
(10.1.5) We denote by

GWI1fd
(C, D) fi L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D)

the open set whose äk-valued points are the f's over äk such that the
function »(f's) in L(12D) has divisor of poles 12D and has 12deg(D)
distinct zeroes "at finite distance", i.e., in (C - D)(äk). We will see below
that this open set is nonempty, and hence dense. Here GW is
intended to evoke "general Weierstrass". The subscript I1fd is

intended to evoke "Neron type I1 at finite distance", a property

enjoyed by the Ef's with f's in GWI1fd
(C, D)(äk) simply because their

»'s have only simple zeroes at finite distance. In particular, such an
Ef's has multiplicative reduction, with local monodromy a unipotent

pseudoreflection, at each zero of » at finite distance. Because Ef's
has at least one point of multiplicative reduction, its j invariant is
nonconstant.
LLLLeeeemmmmmmmmaaaa 11110000....1111....6666 The open set GWI1fd

(C, D) is nonempty.

pppprrrrooooooooffff We argue in each characteristic separately. In characteristic
2, we consider a curve of the form

y2 + xy + f3y = x3 + 1,

i.e., we take the vector of f's to be (1, 0, f3, 0, 1). Here » is equal to

(f3)
4 + (f3)

3 + 1.

The polynomial t4 + t3 + 1 has distinct roots over äk. We have only to
take f3 in L(3D)‚käk which has divisor of poles 3D and which, as a

finite flat map of degree 3deg(D) from C - D to !1, is finite etale over

each of the 4 zeroes of t4 + t3 + 1. Such choices of f3 exist, thanks to

Lemma 6.2.9, applied to the divisor 3D.
In characteristic 3, we consider a curve of the form
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y2 = x3 + x2 + f4x + 1,

i.e., we take the vector of f's to be (0, 1, 0, f4, 1). Here » is equal to

(f4)
3 - (f4)

2 + 1.

The polynomial t3 - t2 + 1 has distinct roots over äk. We have only to
take f4 in L(4D)‚käk which has divisor of poles 4D and which, as a

finite flat map of degree 4deg(D) from C - D to !1, is finite etale over

each of the 3 zeroes of t3 - t2 + 1. Such choices of f4 exist, thanks to

Lemma 6.2.9, applied to the divisor 4D.
In characteristic p ≥ 5, we consider a curve of the form

y2 = x3 - (3/4)x - f6/4

(which we could rewite in the more familiar form

(2y)2 = 4x3 - 3x - f6),

i.e., we take the vector of f's to be (0, 0, 0, -3/4, -f6/4). Here » is

equal to

-27((f6)
2 - 1).

The polynomial 27(t2 - 1) has distinct roots in äk. We have only to
take f6 in L(6D)‚käk which has divisor of poles 6D and which, as a

finite flat map of degree 6deg(D) from C - D to !1, is finite etale over

each of the 2 zeroes of 27(t2 - 1). Such choices of f6 exist, thanks to

Lemma 6.2.9, applied to the divisor 6D.
In characteristic p > 5, we could instead consider a curve of the

form

y2 = x3 - (3/4)f4x - 1/4

(which we could rewite in the more familiar form

(2y)2 = 4x3 - 3f4x - 1),

i.e., we take the vector of f's to be (0, 0, 0, -3f4/4, -1/4). Here » is

equal to

27((f4)
3 - 1).

The polynomial 27(t3 - 1) has distinct roots in äk. We have only to
take f4 in L(4D)‚käk which has divisor of poles 4D and which, as a

finite flat map of degree 4deg(D) from C - D to !1, is finite etale over

each of the 3 zeroes of 27(t3 - 1). Such choices of f4 exist, thanks to

Lemma 6.2.9, applied to the divisor 4D. QED

LLLLeeeemmmmmmmmaaaa 11110000....1111....7777 Given f's in GWI1fd
(C, D)(äk), indeed given f's in

L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D) whose » has divisor of poles 12D,
Ef's/äk(C) has good reduction "at infinity", i.e., at each point P of D(äk).

pppprrrrooooooooffff Pick a point P in D(äk), say of multiplicity r ≥ 1 in D. In terms
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of a uniformizing parameter π at P, the formal expansion of fk at P

is

fk = π-krFk,

with Fk holomorphic at P. By the change of variables

(x, y) ÿ (π2rx, π3ry),
the curve Ef's over the P-adic completion KP of K becomes

isomorphic to the curve EF's over that field. By isobaricity, we have

»(F's) = π12r»(f's).
Since »(f's) has a pole of order 12r at P, »(F's) is invertible at P. As
the F's are holomorphic at P, we see that EF's has good reduction at

P. QED

LLLLeeeemmmmmmmmaaaa 11110000....1111....8888 Let kd/k be a finite extension, f's in

GWI1fd
(C, D)(kd), and πf's : Ef's ¨ (C - D)‚kkd the structural

morphism. Denote by
j : V := C - D ¨ C

the inclusion. Then we have the following results.

1) The sheaf R1πf's~ä$… on V‚kkd is a geometrically irreducible

middle extension of generic rank two.
2) This sheaf is lisse on (V‚kkd)[1/»(f's)], pure of weight one, and its

local monodromy at each zero of »(f's) in V(äk) is a unipotent
pseudoreflection.

3) The sheaf j*R
1πf's~ä$… on C‚kkd is lisse at each point at infinity.

4) The cohomology groups Hc
i(V‚käk, R

1πf's~ä$…) vanish for i ± 1.

5) The cohomology group Hc
1(V‚käk, R

1πf's~ä$…) is mixed of weight

≤ 2, and we have the formula

dimHc
1(V‚käk, R

1πf's~ä$…) = 12deg(D) - 2çc(V‚käk, ä$…).

6) The cohomology groups Hc
i(C‚käk, j*R

1πf's~ä$…) vanish for i ± 1.

7) The cohomology group Hc
1(C‚käk, j*R

1πf's~ä$…) is pure of weight

two, it is the weight two quotient of Hc
1(V‚käk, R

1πf's~ä$…), and we

have the formula

dimHc
1(C‚käk, j*R

1πf's~ä$…)

= 12deg(D) - 2ùD(äk) -2çc(V‚käk, ä$…)

= 4g - 4 + 12deg(D).

pppprrrrooooooooffff 1) That R1πf's~ä$… on V‚kkd is a middle extension of generic

rank two is a special case of Corollary 7.5.5, because all the zeroes of
» are simple. It is geometrically irreducible because the j invariant
of Ef's is nonconstant. Assertion 2) is "mise pour memoire". Assertion

3) results from the previous Lemma 10.1.7. Assertions 4) and 6)
result from 1). Assertions 5) and 7) result from 1), from Deligne's
main theorem in Weil II [De-Weil II, 3.3.1] for the mixedness and
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purity, and from the Euler Poincarïe formula, whose straightforward
application is left to the reader. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....1111....9999 Denote by N the common dimension

N := dimHc
1(C‚käk, j*R

1πf's~ä$…).

We have the inequality
N ≥ 28g + 32.

pppprrrrooooooooffff Indeed, we have the exact formula N = 4g - 4 + 12deg(D) (by
Lemma 10.1.8, part 7)), and the inequality deg(D) ≥ 2g + 3. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....1111....11110000 For any finite extension kd/k, and for any point

f's in GWI1fd
(C, D)(kd), the unitarized L-function of Ef's/kd(C) is

given by

L(Ef's/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf's~ä$…(1))).

pppprrrrooooooooffff This results from the fact that j*R
1πf,g~ä$… is a middle

extension from the open set V[1/(»(f's)])‚käk where it is lisse, and

the vanishing given by Lemma 10.1.8, part 6). QED

(10.1.11) Our next task is to capture these L-functions in the
context of suitable perverse sheaves M = Twist(L, K, Ï, h) attached
to suitable "standard input", cf. 1.15.4. Over

!5 := Spec(k[a1, a2, a3, a4, a6]),

we have the universal Weierstrass curve

Ea's : y
2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,

whose structural morphism we denote

πa's : Ea's ¨ !5.

We take
the integer m = 5,

the perverse sheaf K = R1πa's~ä$…(3)[5] on !5/k = Spec(k[a's]),

the affine k-scheme V/k given by V := C - D,

the k-morphism h : V ¨ !5 given by h = 0,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d = 1 - 2g + deg(D),

the space of !5-valued functions (Ï, †) on V given by the
finite-dimensional k-vector space

Ï = L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D),
and the k-linear map

† : Ï ¨ Homk-schemes(V, !
5),

(f1, f2, f3, f4, f6) ÿ

the map v ÿ (f1(v), f2(v), f3(v), f4(v), f6(v)).

It results from Propostions 9.1.4 and 9.1.5 that this is standard

input, and, using Kunneth, that H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0.
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LLLLeeeemmmmmmmmaaaa 11110000....1111....11112222 The perverse sheaf M is lisse on the dense open set
GWI1fd

(C, D).

pppprrrrooooooooffff On this dense open set, there is only one nonvanishing

cohomology sheaf (by Lemma 10.1.8, part 4)), namely Ó-dim(Ï)(M),
which is tautologically a sheaf of perverse origin on the space Ï. The
stalks of this sheaf are

f's ÿ Hc
1(V‚käk, R

1πf's~ä$…)(3),

which have constant rank on GWI1fd
(C, D), by Lemma 10.1.8, part

5). By [Ka-SMD, Proposition 11], Ó-dim(Ï)(M) is lisse on GWI1fd
(C, D).

QED

(10.1.13) Thus on the open set GWI1fd
(C, D), M is

˜(5/2)[…(D) + …(2D) + …(3D) + …(4D) + …(6D)],
with ˜ the lisse sheaf, mixed of weight ≤ 0, given stalkwise by

˜f's := Hc
1(V‚käk, R

1πf's~ä$…)(1).

The sheaf Gr0(˜) on GWI1fd
(C, D) is lisse of rank N, orthogonally self

dual, and pure of weight zero. We have

Gr0(˜)f's = Hc
1(C‚käk, j*R

1πf's~ä$…)(1).

Because of the vanishing H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0 noted

in 10.1.11 above, we have (by Corollary 1.20.3, part 3))

Gr0(˜)cst = 0, Gr0(˜) = Gr0(˜)ncst. QED

TTTThhhheeeeoooorrrreeeemmmm 11110000....1111....11114444 Let k be a finite field, in which a prime … is
invertible. Fix a projective, smooth, geometrically connected curve
C/k, of genus denoted g. Fix on C an effective divisor D of

degree ≥ 2g + 3. Then the group Ggeom for the lisse sheaf Gr0(˜) on

the dense open set GWI1fd
(C, D) is O(N), for N := 4g - 4 + 12deg(D) the

rank of Gr0(˜).
pppprrrrooooooooffff As noted in Corollary 10.1.9 above, we have N ≥ 28g + 32, so
certainly N ≥ 9. By the argument given in the first paragraph of the
proof of Theorem 7.2.3, it suffices to show that Ggeom contains a

reflection.
To show this, we argue in each characteristic separately,

exactly as we did in proving Lemma 10.1.6. The idea, in all cases, is
to invoke Corollary 7.2.4 suitably. We will spell out the details in the
characteristic 2 case, and just indicate the changes to be made in
treating the case of other characteristic.

In characteristic 2, we consider the pullback of ˜ to the
inverse image of GWI1fd

(C, D) in L(3D) by the map

i : L(3D) ¨ L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D),
f3 ÿ (1, 0, f3, 0, 1).
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Then i-1(GWI1fd
(C, D)) is the dense open set U fi L(3D) whose äk-

valued points are those f3 in L(3D)‚käk which have divisor of poles

3D and which, as finite flat maps of degree 3deg(D) from C - D to !1,

are finite etale over each of the 4 zeroes of X4 + X3 + 1. The lisse

sheaf i*˜ on U is precisely the ˜ of 7.1.14 attached to the perverse
sheaf M constructed in 7.1.4 attached to the the following situation.

Over !1 := Spec(k[t]), we have the curve

Et : y
2 + xy + ty = x3 + 1,

with structural morphism

πt : Et ¨ !1.

Its » is t4 + t3 + 1, which has simple zeroes. We denote by S fi !1

the zero set of t4 + t3 + 1:

S := {t | t4 + t3 + 1 = 0} fi !1.

At each of these zeroes, Et has multiplicative reduction. On !1, we

form the sheaf

Ì := R1πt~ä$…(1).

We see from Corollary 7.5.5 that Ì is a middle extension. Its

restriction to !1 - S is lisse of rank 2, geometrically irreducible
(because j is nonconstant), pure of weight -1, and symplectically self
dual toward ä$…(1). At each point in S(äk), the local monodromy of Ì

is a unipotent pseudoreflection. At ‘, Et has local monodromy of

order 3 (because Et acquires good reduction at ‘ after passing to

k(t1/3)), and hence Ì is tame at ‘. We put
K := Ì[1].

We use this K on !1, we take our curve C and the divisor 3D to be
the (C, D) used in the construction of 7.1.2-4. This construction gives
us a perverse sheaf on L(3D) which, up to a Tate twist and a shift, is

the pullback i*M. Our open set U fi L(3D) is precisely the set UD,S of

7.1.6, and our i*˜ on U is precisely the lisse sheaf on UD,S denoted

˜ in 7.1.14. We then apply Corollary 7.2.4, which tells us that Ggeom

for Gr0(i*˜) = i*Gr0(˜) contains a reflection. Therefore the larger

group Ggeom for Gr0(˜) contains a reflection.

In characteristic 3, we use the analogous argument, but for the
map

i : L(4D) ¨ L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D),
f4 ÿ (0, 1, 0, f4, 1),

and the initial family

y2 = x3 + x2 + tx + 1.
In characteristic p ≥ 5, we have two choices of how to give the

analogous argument. We can use the map
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i : L(4D) ¨ L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D),
f4 ÿ (0, 0, 0, -3f4/4, -1/4),

and the initial one one-parameter family

y2 = x3 - (3/4)tx - 1/4.
Or we can use the map

i : L(6D) ¨ L(D)≠L(2D)≠L(3D)≠L(4D)≠L(6D),
f6 ÿ (0, 0, 0, -3/4, -f6/4),

and the initial one-parameter family

y2 = x3 - (3/4)x - t/4.
In all cases, we apply Corollary 7.2.4, which tells us that Ggeom

for Gr0(i*˜) = i*Gr0(˜) contains a reflection, and we conclude that

the larger group Ggeom for Gr0(˜) contains a reflection. QED

((((11110000....2222)))) UUUUssssuuuuaaaallll WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc pppp ≥≥≥≥ 5555
(10.2.1) In this section, we work over a finite field k with
characteristic p ≥ 5. We fix a projective, smooth, geometrically
connected curve C/k, of genus denoted g. We also fix on C two
effective divisors D2 and D3. We assume that

deg(D2) ≥ 2g + 3, deg(D3) ≥ 2g + 3.

From the two divisors D2 and D3, we form the auxiliary divisor

Dmax := Max(3D2, 2D3).

Concretely, if D2 = ‡nPP and D3 = ‡mPP, then

Dmax := ‡ Max(3nP, 2mP)P.

We denote
V := C - (D2 ⁄ D3) = V - Dmax.

Given functions f2 and f3 in the Riemann Roch spaces L(D2) and

L(D3) respectively, we form the Weierstrass equation

Ef's : y
2 = 4x3 - f2x - f3,

which we view as a relative affine curve over V, with structural
morphism

πf's : Ef's ¨ V.

Its discriminant »(f2, f3) is given by

»(f2, f3) = (f2)
3 - 27(f3)

2,

and lies a priori in L(Dmax).

(10.2.2) For fixed divisors D2 and D3 as above, we are interested

in the variation of the L-function of Ef's/k(C) as (f2, f3) varies in

L(D2)≠L(D3). Similarly, for each finite extension field kd/k, we are

interested in the variation of the L-function of Ef's/kd(C) as the f's

vary in (L(D2)≠L(D3))‚kkd.

(10.2.3) For this to be a reasonable question, we must restrict to a
dense open set of L(D2)≠L(D3) (viewed as an affine space over k) over

which the L-function is a polynomial of constant degree.
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(10.2.4) We denote by
WI1fd

(C, D2, D3) fi L(D2)≠L(D3)

the open set whose äk-valued points are the f's over äk such that the
function »(f2, f3) in L(Dmax) has divisor of poles Dmax, and has

deg(Dmax) distinct zeroes "at finite distance", i.e., in V(äk). We will see

below that this open set is nonempty, and hence dense. Here W is
intended to evoke "Weierstrass". The subscript I1fd is intended to

evoke "Neron type I1 at finite distance", a property enjoyed by the

Ef's with f's in WI1fd
(C, D2, D3)(äk) simply because their »'s have

only simple zeroes at finite distance. In particular, such an Ef's has

multiplicative reduction, with local monodromy a unipotent
pseudoreflection, at each zero of » at finite distance. Because Ef's
has at least one point of multiplicative reduction, its j invariant is
nonconstant.

LLLLeeeemmmmmmmmaaaa 11110000....2222....5555 The open set WI1fd
(C, D2, D3) is nonempty.

pppprrrrooooooooffff First, let us show that the open set where »(f2, f3) in

L(Dmax) has divisor of poles Dmax is nonempty. For this, take any

f2 in L(D2) with divisor of poles D2, and any f3 in L(D3) with divisor

of poles D3. For all but finitely many values of ¬ in äk, » for the pair

(f2, ¬f3),

»(f2, ¬f3) = (f2)
3 - 27(g3)

2,

visibly has divisor of poles Dmax.

Now take (f2, f3) in (L(D2)≠L(D3))‚käk such that f2 and f3 have

divisor of poles D2 and D3 respectively, such that both f2 and f3
have Swan-minimal poles, cf. Lemma 6.2.7 and 6.4.6, and such that

»(f2, f3) has divisor of poles Dmax. For any scalars (a, b) in !2(äk),

the pair (f2 + a, f3 + b) has the same property, that »(f2 + a, f3 + b)

has divisor of poles Dmax. We will show that for some (a, b) in

!2(äk), the pair (f2 + a, f3 + b) lies in WI1fd
(C, D2, D3)(äk).

To see this, we argue as follows. We work over äk. In V≠!2, with
coordinates (v, a, b), consider the hypersurface Z of equation

(a + f2(v))
3 - 27(b + f3(v))

2 = 0.

By means of the automorphism of V≠!2 given by
(v, a, b) ÿ (v, a - f2(v), b - g3(v)),

Z receives isomorphically the product
V≠C ¶ V,

for C the curve in !2 of equation

a3 - 27b2 = 0.
This curve is smooth outside (0, 0), and C - (0, 0) is ´m, by the map
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´m ¨ C - (0, 0),

t ÿ (3t2, t3).
Thus our original hypersurface Z is smooth outside the graph Æƒ of

the map

ƒ : V ¨ !2,
v ÿ ƒ(v) := (-f2(v), -f3(v)).

Thus Z - Æis a geometrically connected smooth surface, isomorphic
to V≠´m.

Consider the projection

π : Z ¨ !2

which is the composite of the inclusion

Z fi V≠!2

with the projection of V≠!2 onto !2. The scheme-theoretic fibre of

π over a äk-valued point (a, b) of !2 is the closed subscheme of
V‚käk defined by »(a + f2(v), b + f3(v)) = 0. A priori, this is a finite

subscheme of V‚käk which is finite and flat over äk of degree

deg(Dmax). We must show that for some choice of (a, b), this fibre is

etale over äk. For this, it suffices to show that the map π is etale on a
dense open set of V, say on V - W for some closed subscheme W of
dimension at most one. Then π(W) lies in some proper closed

subscheme T of !2, the map π is etale over !2 - T, and any äk-

valued point (a, b) of !2 - T does the job.
To see that π is generically etale on Z, we look at π restricted

to Z - Æ. Via the isomorphism above
V≠´m ¶ Z - Æ,

(v, t) ÿ (v, 3t2 - f2(v), t
3 - f3(v)),

the map π becomes the map

ëπ : V≠´m ¨ !2,

(v, t) ÿ (3t2 - f2(v), t
3 - f3(v)).

Zariski locally on V, we may choose an ØV basis ∆ of the tangent

bundle Der(V/k). Using it, the Jacobian matrix dëπ is

6t 3t2

-(∆f2)(v) -(∆f3)(v),

and the Jacobian determinant at (v, t) is

-6t(∆f3)(v) + 3t
2(∆f2)(v).

Since t lies in ´m, this vanishes if and only if

-2(∆f3)(v) + t(∆f2)(v) = 0,

i.e., if and only if the two vectors (∆f2, ∆f3)(v) and (t, -2) are

orthogonal. Thus either the map ƒ is etale on a dense open set of the

source, or for every v in V(k) and for every t in äk≠, we have the
perpendicularity relation
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grad(f2, f3)(v) – (t, -2).

This second possibility cannot hold. Indeed, since f2 and f3 both

have Swan-minimal poles, neither df2 nor df3 vanishes identically,

and hence for some v in V(äk), we have
grad(f2, f3)(v) ± (0, 0).

For this fixed v, the orthogonality
grad(f2, f3)(v) – (t, -2)

can hold for at most one value of t, since (t1, -2) and (t2, -2) are

linearly independent for t1 ± t2 in äk.

Therefore the map ƒ is etale on a dense open set of the source
Z. QED.

LLLLeeeemmmmmmmmaaaa 11110000....2222....6666 Write Dmax over äk as ‡P cPP. Forany point (f2, f3)

in WI1fd
(C, D2, D3)(äk), or more generally for any point (f2, f3) in

(L(D2)≠L(D3))(äk) such that »(f2, f3) has divisor of poles Dmax, the

reduction type of Ef's at a point P of Dmax(äk) is determined by the

integer cP as follows. If cP • 0 mod 12, then Ef's has good reduction

at P, otherwise it has potentially good but additive reduction at P.
pppprrrrooooooooffff Fix a point P in Dmax(äk). Write c := cP, the multiplicity of P

in Dmax. Denote by n (resp. m) the multiplicity with which P occurs

in D2 (resp. in D3). Thus c = Max(3n, 2m). Pick a uniformizing

parameter z at P. Thus we have, over the P-adic completion KP of

the function field K := äk(C), an elliptic curve

y2 = 4x3 - f2x - f3
with ordP(f2) ≥ -n, ordP(f3) ≥ -m, and ordP(»(f2, f3)) = -c.

Suppose first that c • 0 mod 12, say c = 12d. Because
c = Max(3n, 2m), we find

ordP(z
4df2) ≥ 4d - n = (1/3)(c - 3n) ≥ 0,

ordP(z
6df3) ≥ 6d - m = (1/2)(c - 2m) ≥ 0,

ordP(»(z
4df2, z

6df3)) = ordP(z
12d»(f2, f3)) = 0.

Thus the KP-isomorphic curve

y2 = 4x3 - z4df2x - z6df3
has good reduction at P, as asserted.

This same argument shows that even when c is not divisible by
12, if we pass to the degree 12, fully ramified extension LP of KP

obtained by adjoining z1/12, then our curve acquires good reduction
at the unique place over P. Thus our curve always has potentially
good reduction at P. If c = ordP(») is not divisible by 12, our curve

cannot have good reduction at P. But a curve with potentially good
reduction has either good reduction or additive reduction. QED
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LLLLeeeemmmmmmmmaaaa 11110000....2222....7777 Let kd/k be a finite extension, (f2, f3) a point in

WI1fd
(C, D2, D3)(kd), πf's : Ef's ¨ V‚kkd the structural morphism.

Denote by
j : V := C - Dmax ¨ C

the inclusion. Then we have the following results.

1) The sheaf R1πf's~ä$… on V‚kkd is a geometrically irreducible

middle extension of generic rank two.
2) This sheaf is lisse on (V‚kkd)[1/»(f2, f3)], pure of weight one, and

its local monodromy at each zero of »(f2, f3) in V(äk) is a unipotent

pseudoreflection.

3) The sheaf j*R
1πf's~ä$… on C‚kkd is lisse at each point P at infinity

with cP • 0 mod 12, and it vanishes at all other points at ‘.

4) The cohomology groups Hc
i(V‚käk, R

1πf's~ä$…) vanish for i ± 1.

5) The cohomology group Hc
1(V‚käk, R

1πf's~ä$…) is mixed of weight

≤ 2, and we have the formula

dimHc
1(V‚käk, R

1πf's~ä$…) = deg(Dmax) - 2çc(V‚käk, ä$…).

6) The cohomology groups Hc
i(C‚käk, j*R

1πf's~ä$…) vanish for i ± 1.

7) The cohomology group Hc
1(C‚käk, j*R

1πf's~ä$…) is pure of weight

two, it is the weight two quotient of Hc
1(V‚käk, R

1πf's~ä$…), and we

have the formula

dimHc
1(C‚käk, j*R

1πf's~ä$…)

= deg(Dmax) - 2ù{P in Dmax(äk) with cP • 0 mod 12}

-2çc(V‚käk, ä$…)

= 4g - 4 + 2ùDmax(äk) + deg(Dmax)

- 2ù{P in Dmax(äk) with cP • 0 mod 12}

= 4g - 4 + deg(Dmax)

+ 2ù{P in Dmax(äk) with cP î• 0 mod 12}.

pppprrrrooooooooffff Because we are in characteristic p ≥ 5, the sheaf R1πf's~ä$… is

automatically everywhere tame. Having made this observation, the
proof is essentially identical to the proof of Lemma 10.1.8, and is left
to the reader. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....2222....8888 Denote by N the common dimension

N := dimHc
1(C‚käk, j*R

1πf's~ä$…).

We have the inequalities
N ≥ 4g - 4 + deg(Dmax) ≥ 4g - 4 + 3(2g + 3) = 10g + 5.

pppprrrrooooooooffff Immediate from Lemma 10.2.7, part 7) above, the definition
of Dmax, and the inequality deg(D2) ≥ 2g + 3. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11110000....2222....9999 For any finite extension kd/k, and for any point
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f's in WI1fd
(C, D2, D3)(kd), the unitarized L-function of Ef's/kd(C) is

given by

L(Ef's/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf's~ä$…(1))).

pppprrrrooooooooffff This results from the fact that j*R
1πf,g~ä$… is a middle

extension from the open set V[1/»(f2, f3)]‚käk where it is lisse, and

the vanishing given by Lemma 10.2.7, part 6). QED

(10.2.10) Our next task is to capture these L-functions in the
context of suitable perverse sheaves M = Twist(L, K, Ï, h) attached
to suitable "standard input", cf. 1.15.4. Over

!2 := Spec(k[g2, g3]),

we have the Weierstrass curve

Eg's : y
2 = 4x3 - g2x - g3,

whose structural morphism we denote

πg's : Eg's ¨ !2.

We take
the integer m = 2,

the perverse sheaf K = R1πg's~ä$…(3/2)[2] on !2 = Spec(k[g2,g3]),

the affine k-scheme V/k given by V := C - Dmax,

the k-morphism h : V ¨ !2 given by h = 0,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d = 1 - 2g + Min(deg(D
2
), deg(D3)),

the space of !2-valued functions (Ï, †) on V given by the
finite-dimensional k-vector space

Ï = L(D2)≠L(D3),

and the k-linear map

† : Ï ¨ Homk-schemes(V, !
2),

(f2, f3) ÿ

the map v ÿ (f2(v), f3(v)).

It results from Propositions 9.1.4 and 9.1.5 that this is standard

input, and, using Kunneth, that H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0.

LLLLeeeemmmmmmmmaaaa 11110000....2222....11111111 The perverse sheaf M is lisse on the dense open set
WI1fd

(C, D2, D3).

pppprrrrooooooooffff On this dense open set, there is only one nonvanishing

cohomology sheaf (by Lemma 10.2.7, part 4)), namely Ó-dim(Ï)(M),
which is tautologically a sheaf of perverse origin on the space Ï. The
stalks of this sheaf are

f's ÿ Hc
1(V‚käk, R

1πf's~ä$…)(3/2),
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which have constant rank on WI1fd
(C, D) (by Lemma 10.2.7, part

5)). By [Ka-SMD, Proposition 11], Ó-dim(Ï)(M) is lisse on
WI1fd

(C, D2, D3). QED

(10.2.12) Thus on the open set WI1fd
(C, D2, D3), M is

˜(1)[…(D2) + …(D3)],

with ˜ the lisse sheaf, mixed of weight ≤ 0, given stalkwise by

˜f's := Hc
1(V‚käk, R

1πf's~ä$…)(1).

The sheaf Gr0(˜) on WI1fd
(C, D2, D3) is lisse of rank N, orthogonally

self dual, and pure of weight zero. We have

Gr0(˜)f's = Hc
1(C‚käk, j*R

1πf's~ä$…)(1).

Because of the vanishing H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0 noted

in 10.2.10 above, we have (by Corollary 1.20.3, part3))

Gr0(˜)cst = 0, Gr0(˜) = Gr0(˜)ncst.

TTTThhhheeeeoooorrrreeeemmmm 11110000....2222....11113333 Let k be a finite field of characteristic p ≥ 5, in
which a prime … is invertible. Fix a projective, smooth, geometrically
connected curve C/k, of genus denoted g. Fix on C effective divisors
D2 and D3, both of degree ≥ 2g + 3. Define Dmax := Max(3D2, 2D3).

Write Dmax over äk as ‡cPP. Denote by

N := 4g - 4 + deg(Dmax)

+ 2ù{P in Dmax(äk) with cP î• 0 mod 12}

the rank of the lisse sheaf Gr0(˜) on the dense open set
WI1fd

(C, D2, D3). Suppose that

N ≥ 9.
Suppose also that

either 3D2 ≥ 2D3, or 2D3 ≥ 3D2,

i.e., suppose that Dmax = 2D2 or that Dmax = 2D3. Then the group

Ggeom for the lisse sheaf Gr0(˜) on WI1fd
(C, D2, D3) is O(N).

pppprrrrooooooooffff The argument is similar to that used in proving Theorem
10.1.14. By assumption, we have N ≥ 9. By the argument given in
the first paragraph of the proof of Theorem 7.2.3, it suffices to show
that Ggeom contains a reflection.

Suppose first we are in the case 3D2 ≥ 2D3. In this case, we

consider the pullback of ˜ to the inverse image of WI1fd
(C, D2, D3)

in L(D2) by the map

i : L(D2) ¨ L(D2)≠L(D3),

f2 ÿ (3f2, 1).

Here i-1(WI1fd
(C, D2, D3)) is the dense open set in L(D2) whose äk-
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valued points are those f2 with divisor of poles D2 and which, as

finite flat maps from C - Dmax = C - D2 ¨!1, are finite etale over

the cube roots of unity.

The lisse sheaf i*˜ on U is precisely the ˜ of 7.1.14 attached to
the perverse sheaf M constructed in 7.1.2-4, attached to the
following situation.

Over !1 := Spec(k[t]), we have the curve

Et : y
2 = 4x3 - 3tx - 1,

with structural morphism

πt : Et ¨ !1.

Its » is 27(t3 - 1), which has simple zeroes S = µ3. At each of these

zeroes, Et has multiplicative reduction. On !1, we form the sheaf

Ì := R1πt~ä$…(1).

We see from Corollary 7.5.5 that Ì is a middle extension. Its

restriction to !1[1/»] is lisse of rank 2, geometrically irreducible
(because j is nonconstant), pure of weight -1, and symplectically self
dual toward ä$…(1). At each point in S(äk) := µ3(äk), the local

monodromy of Ì is a unipotent pseudoreflection. At ‘, Et has local

monodromy of order 4 (because Et acquires good reduction at ‘

after passing to k(t1/4)), hence Ì is tame at ‘. We put
K := Ì[1].

We use this K on !1, and we take our curve C and the divisor D2 to

be the (C, D) used in the construction of 7.1.2-4 This construction
gives us a perverse sheaf on L(D2) which, up to a Tate twist and a

shift, is the pullback i*M. Our open set U fi L(D2) is precisely the set

UD,S of 7.1.6 and our i*˜ on U is precisely the lisse sheaf on UD,S
denoted ˜ in 7.1.14. We then apply Corollary 7.2.4, which tells us

that Ggeom for Gr0(i*˜) = i*Gr0(˜) contains a reflection. Therefore

the larger group Ggeom for Gr0(˜) contains a reflection.

Suppose now we are in the case 2D3 ≥ 3D2. In this case, we

consider the pullback of ˜ to the inverse image of WI1fd
(C, D2, D3)

in L(D3) by the map

i : L(D3) ¨ L(D2)≠L(D3),

f3 ÿ (3, f3).

Here i-1(WI1fd
(C, D2, D3)) is the dense open set in L(D3) whose äk-

valued points are those f3 with divisor of poles D3 and which, as

finite flat maps from C - Dmax = C - D3 ¨!1, are finite etale over

the square roots of unity.



364 Chapter 10

The lisse sheaf i*˜ on U is precisely the ˜ of 7.1.14 attached to
the perverse sheaf M constructed in 7.1.2-4, attached to the
following situation.

Over !1 := Spec(k[t]), we have the curve

Et : y
2 = 4x3 - 3x - t,

with structural morphism

πt : Et ¨ !1.

Its » is 27(1 - t2), which has simple zeroes S = µ2. At each of these

zeroes, Et has multiplicative reduction. On !1, we form the sheaf

Ì := R1πt~ä$…(1).

We see from Corollary 7.5.5 that Ì is a middle extension. Its

restriction to !1[1/»] is lisse of rank 2, geometrically irreducible
(because j is nonconstant), pure of weight -1, and symplectically self
dual toward ä$…(1). At each point in S(äk) := µ2(äk), the local

monodromy of Ì is a unipotent pseudoreflection. At ‘, Et has local

monodromy of order 6 (because Et acquires good reduction at ‘

after passing to k(t1/6)), and hence Ì is tame at ‘. We put
K := Ì[1].

We use this K on !1, and we take our curve C and the divisor D3 to

be the (C, D) used in the construction of 7.1.2-4. This construction
gives us a perverse sheaf on L(D3) which, up to a Tate twist and a

shift, is the pullback i*M. Our open set U fi L(D3) is precisely the set

UD,S of 7.1.6, and our i*˜ on U is precisely the lisse sheaf on UD,S
denoted ˜ in 7.1.14. We then apply Corollary 7.2.4, which tells us

that Ggeom for Gr0(i*˜) = i*Gr0(˜) contains a reflection. Therefore

the larger group Ggeom for Gr0(˜) contains a reflection. QED

RRRReeeemmmmaaaarrrrkkkk 11110000....2222....11114444 We expect that the above theorem will remain
true if we drop the hypothesis that either 3D2 ≥ 2D3 or 2D3 ≥ 3D2.

In this more general case, we have only the following less
satisfactory result.

TTTThhhheeeeoooorrrreeeemmmm 11110000....2222....11115555 Let k be a finite field of characteristic p ≥ 5, in
which a prime … is invertible. Fix a projective, smooth, geometrically
connected curve C/k, of genus denoted g. Fix on C effective divisors
D2 and D3, both of degree ≥ 2g + 3. Define Dmax := Max(3D2, 2D3).

Denote by
N := 4g - 4 + deg(Dmax)

+ 2ù{P in Dmax(äk) with cP î• 0 mod 12}

the rank of the lisse sheaf Gr0(˜) on the dense open set
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WI1fd
(C, D2, D3). Suppose that at least one of the following conditions

holds:
4g - 4 + 3deg(D2) ≥ 10,

4g - 4 + 2deg(D3) ≥ 9.

Then
N ≥ 9,

and the group Ggeom for the lisse sheaf Gr0(˜) on WI1fd
(C, D2, D3)

is either SO(N) or O(N). If in addition N is odd, then Ggeom is O(N).

pppprrrrooooooooffff That N ≥ 9 is immediate, since
N ≥ 4g - 4 + deg(Dmax)

≥ 4g - 4 + Max(deg(3D2), deg(2D3))

= Max(4g - 4 + 3deg(D2), 4g - 4 + 2deg(D3)) ≥ 9.

Since both D2 and D3 have degree ≥ 2g + 3, the space L(D2)≠L(D3) of

!2-valued functions on C - Dmax is at least 4-separating. As N ≥ 4,

the Higher Moment Theorem 1.20.2 and 2.1.1 show that Ggeom lies in

O(N), and has fourth moment 3. By purity, we know that Ggeom is

semisimple. By Larsen's Alternative 2.2.2, Ggeom is either finite, or

SO(N), or O(N).
We next show that the group Ggeom contains the scalar -1. The

argument is similar to that given in [Ka-TLFM, proof of 5.5.2, part
3)]. At the expense of extending scalars from k to a finite extension,
we may pick a k-valued point (f2, f3) of WI1fd

(C, D2, D3). Then the

pullback of Gr0(˜) to the one-parameter family
i : ´m ¨ WI1fd

(C, D2, D3),

t ÿ (t2f2, t
3f3),

which amounts to looking at the L-functions of all quadratic twists

of the single curve Ef's/k(C) : y
2 = 4x3 - f2x - f3, is the tensor

product

i*Gr0(˜)

¶ Òç2(t)
‚(the constant sheaf H1(C‚käk, j*R

1πf's~ä$…)(1)),

whose Ggeom is the subgroup {_1} of O(N). Since the Ggeom for

i*Gr0(˜) is a subgroup of Ggeom for Gr0(˜), we see that Ggeom for

Gr0(˜) contains the scalar -1.
We now show that Ggeom is not finite. Once we have this

result, it then follows from Larsen's criterion that Ggeom must be

either SO(N), or O(N). Since Ggeom contains -1, the SO(N) case is not

possible if N is odd.
To show that Ggeom is not finite, we make use of the

semicontinuity results of [Ka-SMD, Corollary 10]. We apply these
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results to the sheaf of perverse origin Ó-dim(Ï)(M) on the space
L(D2)≠L(D3). This allows us to compare the Ggeom of its (lisse)

restriction ˜(1) to the dense open set U := WI1fd
(C, D2, D3), to the

Ggeom of its its (lisse) pullback ˜2(1) to a dense open set U2 of L(D2),

by the map
i2 : L(D2) ¨ L(D2)≠L(D3),

f2 ÿ (3f2, 1),

if
4g - 4 + 3deg(D2) ≥ 10,

or to the Ggeom of its lisse pullback ˜3(1) to a dense open set U3 of

L(D3), by the map

i3 : L(D3) ¨ L(D2)≠L(D3),

f2 ÿ (3, f3),

if
4g - 4 + 2deg(D3) ≥ 9.

In considering this plethora of data, there are a total of fifteen lisse
sheaves on three different spaces we need to look at. On the space
WI1fd

(C, D2, D3), we have the five lisse sheaves

Gr-1(˜), ˜, Gr0(˜) = Gr0(˜)ncst, Gr
0(˜)cst = 0.

The first three sit in a short exact sequence

0 ¨ Gr-1(˜) ¨ ˜ ¨ Gr0(˜) ¨ 0.
We denote by

G-1 : = the group Ggeom for Gr-1(˜),

Gbig := the group Ggeom for ˜,

G0 := the group Ggeom for Gr0(˜).

Thus
Gbig/Âu(Gbig) ¶ G0 ≠ G-1.

On the space U2, we have the five lisse sheaves

Gr-1(˜2), ˜2, Gr
0(˜2) = Gr0(˜2)ncst · Gr0(˜2)cst.

The first three sit in a short exact sequence

0 ¨ Gr-1(˜2) ¨ ˜2 ¨ Gr0(˜2) ¨ 0.

We denote by

G-1,2 : = the group Ggeom for Gr-1(˜2),

Gbig,2 := the group Ggeom for ˜2,

G0,2 := the group Ggeom for Gr0(˜2),

G0,2,ncst ¶ G0,2 := the group Ggeom for Gr0(˜2)ncst.

Thus
Gbig,2/Âu(Gbig,2) ¶ G0,2 ≠ G-1,2 ¶ G0,2,ncst ≠ G-1,2.

The lisse sheaf ˜2 is precisely the one constructed in the proof of

Theorem 10.2.13 in the case when 3D2 ≥ 2D3, where we considered
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the pullbacks of the curve y2 = 4x3 - 3tx - 1 over k(t) by functions

f2 in L(D2). The geometrically constant sheaf Gr0(˜2)cst has rank

one.
On the space U3, we have the five lisse sheaves

Gr-1(˜3), ˜3, Gr
0(˜3) = Gr0(˜3)ncst, Gr

0(˜3)cst = 0.

The first three sit in a short exact sequence

0 ¨ Gr-1(˜3) ¨ ˜3 ¨ Gr0(˜3) ¨ 0.

We denote by

G-1,3 : = the group Ggeom for Gr-1(˜3),

Gbig,3 := the group Ggeom for ˜3,

G0,3 := the group Ggeom for Gr0(˜3).

Thus
Gbig,3/Âu(Gbig,3) ¶ G0,3 ≠ G-1,3.

The lisse sheaf ˜3 is precisely the one constructed in the proof of

Theorem 10.2.13 in the case when 2D3 ≥ 3D2, where we considered

the pullbacks of the curve y2 = 4x3 - 3x - t over k(t) by functions
f3 in L(D3).

We now show that Ggeom for Gr0(˜), i.e., the group G0, is not

finite. To do this, we introduce the following notation. For any linear
algebraic group G over ä$…, we denote by r(G) its "rank", in the sense

r(G) = maximum dimension of an algbraic torus (´m)n in G.

The semicontinuity result [Ka-SMD, Corollary 10 (2c)] gives us the
inequalities

r(Gbig) ≥ r(Gbig,2),

r(Gbig) ≥ r(Gbig,3).

On the other hand, we have the tautologous equalities
r(Gbig) = r(G0) + r(G-1),

r(Gbig,2) = r(G0,2) + r(G-1,2) = r(G0,2,ncst) + r(G-1,2),

r(Gbig,3) = r(G0,3) + r(G-1,3).

So we have the inequalities
r(G0) + r(G-1) ≥ r(G0,2,ncst) + r(G-1,2) ≥ r(G0,2,ncst),

r(G0) + r(G-1) ≥ r(G0,3) + r(G-1,3) ≥ r(G0,3).

Now suppose that Ggeom for Gr0(˜), i.e., the group G0, is finite.

We argue by contradiction. If G0 is finite, then r(G0) = 0, so we get

inequalities
r(G-1) ≥ r(G0,2,ncst),

r(G-1) ≥ r(G0,3).

Let us denote by N2 the rank of Gr0(˜2)ncst, and by N3 the rank of

Gr0(˜3). We have
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N2 + 1 = rank of Gr0(˜2) ≥ 4g - 4 + deg(3D2),

N3 = rank of Gr0(˜3) ≥ 4g - 4 + deg(2D3).

From Theorem 7.3.16, we have the following results concerning the
groups G0,2,ncst and G0,3:

G0,2,ncst = O(N2), if N2 ≥ 9,

G0,3 = O(N3), if N3 ≥ 9.

Now the orthogonal group O(n) has rank [n/2], the integral part of
n/2. So if G0 is finite, we get the following inequalities:

r(G-1) ≥ r(G0,2,ncst) = [N2/2] ≥ [(4g - 5 + deg(3D2))/2],

if 4g - 4 + 3deg(D2) ≥ 10,

and
r(G-1) ≥ r(G0,3) = [N3/2] ≥ [(4g - 4 + deg(2D3))/2],

if 4g - 4 + 2deg(D3) ≥ 9.

We now need to estimate the rank of G-1. For this, we need to

understand the structure of Gr-1(˜). Over äk, write the divisors D2
and D3 as

D2 = ‡ aPP, D3 = ‡bPP.

Then
Dmax = ‡ cPP, cP = Max(3aP, 2bP).

Then Gr-1(˜) is the direct sum, indexed by those points P of
Dmax(äk) with cP • 0 mod 12, of lisse sheaves of rank 2, which are

the H1's along the fibres of families of elliptic curves over the base,
cf. Lemmas 10.2.6 and 10.2.7. Furthermore, except at those points
where in addition 3aP = 2bP, we have a family with constant j

invariant (j = 1728 if 3aP > 2bP, and j = 0 if 2bP > 3aP). Let us

denote by
S := {points P in Dmax(äk) with 3aP = 2bP • 0 mod 12}.

Thus we have

Gr-1(˜)
¶ ·s in S (lisse sheaves of rank 2, with Ggeom fi SL(2))

·(some lisse sheaves of rank 2 whose Ggeom is finite).

Thus we have an inclusion

G-1 fi (SL(2))ùS≠(a finite group),

and so an inequality
r(G-1) ≤ ùS.

On the other hand, from the very definition of S we see that any
point P in S lies in both D2 and in D3, that aP • 0 mod 4, and that

bP • 0 mod 6. Thus we have the two inequalities

ùS ≤ deg(D2)/4, ùS ≤ deg(D3)/6.

Putting this all together, we find the inequalities
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deg(D2)/4 ≥ ùS ≥ r(G-1) ≥[N2/2] ≥ [(4g - 5 + deg(3D2))/2],

if 4g - 4 + 3deg(D2) ≥ 10,

deg(D3)/6 ≥ ùS ≥ r(G-1) ≥ [N3/2] ≥ [(4g - 4 + deg(2D3))/2],

if 4g - 4 + 2deg(D3) ≥ 9.

In the first case, we have
deg(D2)/4 ≥ [(4g - 5 + deg(3D2))/2]

≥ (4g - 6 + deg(3D2))/2

= 2g - 3 + (3/2)deg(D2),

i.e., we have
0 ≥ 2g - 3 + (5/4)deg(D2) > 2g - 3 + deg(D2) ≥ 4g,

the last inequality because deg(D2) ≥ 2g + 3 by hypothesis. The

resulting inequality 0 > 4g is the desired contradiction.
In the second case, we have

deg(D3)/6 ≥ [(4g - 4 + deg(2D3))/2] = 2g - 2 + deg(D3),

i.e., we have
0 ≥ 2g - 2 + (5/6)deg(D3) ≥ 2g - 2 + (5/6)(2g + 3)

≥ (11/3)g + 1/2,
again a contradiction. QED
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CCCChhhhaaaapppptttteeeerrrr 11111111:::: FFFFJJJJTTTTwwwwiiiisssstttt ffffaaaammmmiiiilllliiiieeeessss aaaannnndddd

vvvvaaaa rrrr iiii aaaannnn tttt ssss

((((11111111....1111)))) ((((FFFFJJJJ,,,, ttttwwwwiiiisssstttt)))) ffffaaaammmmiiiilllliiiieeeessss iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc pppp ≥≥≥≥ 5555
(11.1.1) We first give the motivation. Let K be a field, E/K and E'/K
two elliptic curves over K with the same j invariant: j(E/K) = j(E'/K)
in K. Suppose further that j(E/K)(j(E/K) - 1728) is invertible in K.
Then E'/K is a quadratic twist of E/K. Our main interest will be in
the case when 6 is invertible in K. But first let us review the cases of
characteristics 2 and 3.
(11.1.2) If K has characteristic 2, then E is ordinary, and so can be
written in the form

y2 + xy = x3 + a2x
2 + a6.

Here, j = 1/a6, so a6 is determined by j, and the effect of a2 is to

perform a quadratic twist using the Artin-Schreier sheaf Ò¥, cf.
Twisting Lemma 9.4.1.
(11.1.3) If K has characteristic 3, then E is ordinary, and so can be
written in the form

y2 = x3 + a2x
2 + a6

with a2 invertible. Here j = -(a2)
3/a6. This curve is the quadratic

twist by a2 of the curve y2 = x3 + x2 + a6/(a2)
3.

(11.1.4) We henceforth assume that 6 is invertible in K. In this
case, we denote by FJ the following fractional linear expression in j:

FJ := j/(j - 1728).
In terms of the Weierstrass cubic

y
2
= 4x

3
- g2x - g3,

we have

j = 1728(g2)
3/((g2)

3 - 27(g3)
2),

FJ = (g2)
3/27(g3)

2,

j = 1728FJ/(FJ - 1).
Given a value j in K, j ± 0, j ± 1728, put t := FJ := j/(j - 1728). Thus
t lies in K - {0, 1}. The curve

E1,t : y
2 = 4x3 - 3tx - t

has j(E1,t/K) = j, or, equivalently, has FJ(E1,t/K) = t. We think of

this E1,t/K as the "reference" elliptic curve with given j, j ± 0,

j ± 1728. Any E'/K with the same j is a quadratic twist of the
reference curve Et/K, so is of the form

E' ¶ Es,t : y
2 = 4x3 - 3s2tx - s3t,

for some s in K≠. We call t the FJ parameter of E', and we call s a
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twist parameter for E'.

(11.1.5) Thus as t varies over K - {0, 1}, and s varies over K≠, the
curves

Es,t : y
2 = 4x3 - 3s2tx - s3t

exhaust the K-isomorphism classes of those elliptic curves over K
whose j is neither 0 nor 1728. [Of course each isomorphism class it
attained infinitely often, since multiplying s by a nonzero square
keeps us in the same isomorphism class.]
(11.1.6) We now specialize to the case when K is a function field in
one variable over a finite field. Thus we work over a finite field k of
characteristic p ≥ 5, in which a prime … is invertible. We fix a
projective, smooth, geometrically connected curve C/k, of genus
denoted g. We also fix on C two effective divisors D0 and D1. We

assume that
deg(Di) ≥ 2g + 3,

for i=0, 1.
(11.1.7) Given a function f in the Riemann Roch space L(D0) and a

function g in the Riemann Roch space L(D1), we consider the

Weierstrass equation

Ef,g : y
2 = 4x3 - 3f2gx - f3g.

Provided that g ± 1 and f ± 0, this is an elliptic curve over k(C). As
we allow the efffective divisors D0 and D1 to grow, we sweep out

(with repetition) all the elliptic curves over k(C) whose j is neither 0
nor 1728.
(11.1.8) For fixed efffective divisors D0 and D1, we are interested

in the variation of the L-function of Ef,g/k(C) as (f, g) vary in

L(D0)≠L(D1) . Similarly, for each finite extension field kd/k, we are

interested in the variation of the L-function of Ef,g/kd(C) as (f, g)

vary in L(D0)‚kkd≠L(D1)‚kkd . For this to be a reasonable question,

we must restrict to a dense open set of L(D0)≠L(D1) (viewed as an

affine space over k) over which the L-function is a polynomial of
constant degree.
(11.1.9) We denote

V := C - (D0 ⁄ D1).

We define
FJTwist(D0, D1) fi L(D0)≠L(D1)

to be the dense open set whose äk-valued points are the pairs (f, g)
with f in L(D0)‚käk, g in L(D1)‚käk, such that

1) f has divisor of poles D0,

2) g has divisor of poles D1,

3) fg(g-1) has deg(D0) + 2deg(D1) distinct zeroes in V(äk).

[Equivalently, f has deg(D0) distinct zeroes, which all lie in V(äk), g

has deg(D1) distinct zeroes, which all lie in V(äk), g-1 has deg(D1)
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distinct zeroes, which all lie in V(äk), and these three zero sets are
pairwise disjoint.]
(11.1.10) For any d ≥ 1 and for any (f, g) in FJTwist(D0, D1)(kd),

Ef,g is an elliptic curve over kd(C). It has good reduction over

(V‚kkd)[1/(fg(g-1))], it has multiplicative reduction at the deg(D1)

zeroes of g-1, and it has additive reduction at the deg(D0) + deg(D1)

zeroes of fg. Its reduction type at the äk-valued points of D0 ⁄ D1
depends only on the divisors D0 and D1: it is independent of the

particular choice of (d, f, g) such that (f, g) in FJTwist(D0, D1)(kd).

Denote by πf,g : ‰f,g
aff ¨ V‚kkd the relative affine curve of

equation

y2 = 4x3 - 3f2gx - f3g.

Its R1πf,g~ä$… on V‚kkd has a tensor product decomposition as

follows. On !1 = Spec(k[t]), we have

π1,t : ‰1,t
aff ¨ !1,

the relative affine curve of equation

y2 = 4x3 - 3tx - t.

Its R1π1,t~ä$… on !1 is a middle extension sheaf (by Corollary 7.5.5),

which is lisse outside the two points {0, 1}. Because the map g is

finite etale over both these points, the pullback g*R1π1,t~ä$… is a

middle extension on V‚kkd. Similarly, the extension by zero from

´m of Òç2
is a middle extension on !1, lisse outside 0, while f is

finite etale over 0, so the pullback f*(Òç2
) := Òç2(f)

is a middle

extension. We have an isomorphism on V‚kkd

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$….

(11.1.11) Notice that the two tensor factors, Òç2(f)
and

g*R1π1,t~ä$…, have disjoint ramification. As each is a middle

extension, so is their tensor product. Since ‰f,g has nonconstant j

invariant, the middle extension R1πf,g~ä$… is geometrically

irreducible. Thus we have:

LLLLeeeemmmmmmmmaaaa 11111111....1111....11112222 For (f, g) in FJTwist(D0, D1)(kd), R
1πf,g~ä$… on

V‚kkd is a geometrically irreducible middle extension of generic

rank two, which is lisse on (V‚kkd)[1/(fg(g-1))], and which has the

tensor product structure

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$….

(11.1.13) Denote by j : V ¨ C the inclusion. The unitarized L-
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function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

(11.1.14) Because both Òç2
and R1π1,t~ä$… are tamely ramified at

‘ on !1, for each point P in (C - V)(äk) = (D0 ⁄ D1)(äk), the I(P)-

representation attached to R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$… is

tame, and depends only on the the data (ordP(f), ordP(g)). For (f, g)

in FJTwist(D0, D1)(äk), this data is just (-ordP(D0), -ordP(D1)). Here is

the explicit recipe.

LLLLeeeemmmmmmmmaaaa 11111111....1111....11115555 Over äk, write
D0 = ‡aPP, D1 = ‡bPP.

For any point P in (D0 ⁄ D1)(äk), the 2-dimensional I(P)-

representation attached to R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$… is

tame, and given as follows. Pick a topological generator ©P of the

tame quotient I(P)tame of I(P). Then (©P)
4 acts trivially, and the

action of ©P is given by the following table.

aP bP eigenvalues of ©P
even 0 mod 4 1, 1
odd 0 mod 4 -1, -1
even 2 mod 4 -1, -1
odd 2 mod 4 1, 1
arbitrary 1 or 3 mod 4 i, -i.

pppprrrrooooooooffff We first analyze the 2-dimensional I(P)-representation

attached to g*R1π1,t~ä$…, i.e., to the curve

y2 = 4x3 -3gx - g.
At a point P in D0 but not in D1, the function g is invertible at P, as

is g(g-1), and so this curve has good reduction at P, and ©P acts

trivially. Similarly, if P lies in D1 but bP • 0 mod 4, this curve again

has good reduction at P, and ©P acts trivially. This good reduction

when bP • 0 mod 4 shows that we always attain good reduction

after adjoining the fourth root of a uniformizing parameter at P,

and hence that (©P)
4 acts trivially in all cases. If P lies in D1 but

bP • 2 mod 4, then this curve is a quadratic twist at P of a curve

with good reduction, and ©P acts as the scalar -1. Finally, if bP • _1

mod 4, then neither this curve nor its quadratic twist has good
reduction at P, and so ©P acts with eigenvalues _i. Tensoring with

Òç2(f)
, we find the asserted table. QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....1111....11116666 For P in (D0 ⁄ D1)(äk), we have the formula

2 - dim(R1πf,g~ä$…)
I(P) = 0 if 2aP + bP • 0 mod 4,

= 2, if not.
pppprrrrooooooooffff Immediate from Lemma 11.1.15. QED

LLLLeeeemmmmmmmmaaaa 11111111....1111....11117777 Denote by j : V fi C the inclusion. Then for (f, g) in
FJTwist(D0, D1)(äk), we have

1) Hc
i(V‚käk, R

1πf,g~ä$…) = 0 for i ± 1,

2) dimHc
1(V‚käk, R

1πf,g~ä$…)= -çc(V‚käk, R
1πf,g~ä$…)

= 4g - 4 + 2deg(D0) + 3deg(D1) + 2ù((D0 ⁄ D1)(äk)),

3) Hc
i(C‚käk, j*R

1πf,g~ä$…) = 0 for i ± 1,

4) dimHc
1(C‚käk, j*R

1πf,g~ä$…) = -çc(C‚käk, j*R
1πf,g~ä$…)

= 4g - 4 + 2deg(D0) + 3deg(D1)

+ ‡P in (D0⁄D1)(äk)
(2 - dim(R1πf,g~ä$…)

I(P))

= 4g - 4 + 2deg(D0) + 3deg(D1)

+ 2ù{P in(D0 ⁄ D1)(äk) with 2aP + bP î• 0 mod 4}

≥ 4g - 4 + 2deg(D0) + 3deg(D1).

pppprrrrooooooooffff Assertions 1) and 3) result from the fact that the coefficient
sheaf is a geometrically irreducible middle extension which is not
geometrically trivial. Assertion 2) is a straightforward application of
the Euler Poincarïe formula, because the coefficient sheaf is
everywhere tame, and we know the rank of each of its stalks,
namely 2 on (V[1/(fg(g-1))])‚käk, one at the deg(D1) zeroes of g-1,

and zero at the deg(D0) + deg(D1) zeroes of fg. Thus we have

çc(V‚käk, R
1πf,g~ä$…)

= 2çc(V[1/(fg(g-1))]‚käk) + deg(D1)

= 2(2 - 2g - ù((D0 ⁄ D1)(äk)) - deg(D0) - 2deg(D1)) + deg(D1)

= 4 - 4g - 2ù((D0 ⁄ D1)(äk)) - 2deg(D0) - 3deg(D1).

To prove 4), we argue as follows. By 3), we have the first equality.

Because R1πf,g~ä$… is everywhere tame, we have

-çc(C‚käk, j*R
1πf,g~ä$…)

= -çc(V‚käk, R
1πf,g~ä$…) - ‡P in (D0⁄D1)(äk)

dim(R1πf,g~ä$…)
I(P)

= 4g - 4 + 2deg(D0) + 3deg(D1)

+ 2ù((D0 ⁄ D1)(äk)) - ‡P in (D0⁄D1)(äk)
dim(R1πf,g~ä$…)

I(P)
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= 4g - 4 + 2deg(D0) + 3deg(D1)

+ ‡P in (D0⁄D1)(äk)
(2 - dim(R1πf,g~ä$…)

I(P))

= 4g - 4 + 2deg(D0) + 3deg(D1)

+ 2ù{P in(D0 ⁄ D1)(äk) with 2aP + bP î• 0 mod 4}

≥ 4g - 4 + 2deg(D0) + 3deg(D1),

the penultimate inequality by the previous Corollary 11.1.16. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....1111....11118888 Denote by N the common dimension

N := dimHc
1(C‚käk, j*R

1πf,g~ä$…)

for (f, g) in FJTwist(D0, D1)(äk). We have the inequality

N ≥ 14g + 11.
pppprrrrooooooooffff Indeed, we have by assumption the inequalities

deg(Di) ≥ 2g + 3,

for i = 0, 1. The previous result gives
N ≥ 4g - 4 + 2deg(D0) + 3deg(D1),

so we find
N ≥ 4g - 4 + 2(2g + 3) + 3(2g + 3) = 14g + 11.

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....1111....11119999 For any finite extension kd/k, and for any (f, g)

in FJTwist(D0, D1)(kd), the unitarized L-function of Ef,g/kd(C) is

given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

pppprrrrooooooooffff This results from the fact that j*R
1πf,g~ä$… is a middle

extension from the open set (V[1/(fg(g-1))])‚käk where it is lisse, and

the vanishing given by Lemma 11.1.17, part, 3). QED

(11.1.20) Our next task is to capture these L-functions in the
context of suitable perverse sheaves M = Twist(L, K, Ï, h) attached
to suitable "standard input", cf. 1.15.4. We take

the integer m = 2,

the perverse sheaf K = R1πs,t~ä$…(3/2)[2]

¶ Òç2(s)
(1/2)[1]$R1π1,t~ä$…(1)[1] on !2/k = Spec(k[s,t]),

the affine k-scheme V/k given by V := C - (D0 ⁄ D1),

the k-morphism h : V ¨ !2 given by h = 0,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d = 1 - 2g + min(deg(D0), deg(D1)),

the space of !2-valued functions (Ï, †) on V given by the
finite-dimensional k-vector space Ï = L(D0)≠L(D1) and the k-linear

map
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† : Ï ¨ Homk-schemes(V, !
2),

(f, g) ÿ the map v ÿ (f(v), g(v)).
It results from Theorem 9.3.10 that this is standard input, and,

using Kunneth, that H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0.

LLLLeeeemmmmmmmmaaaa 11111111....1111....22221111 The perverse sheaf M is lisse on the dense open set
FJTwist(D0, D1).

pppprrrrooooooooffff On this dense open set, there is only one nonvanishing

cohomology sheaf, namely Ó-dim(Ï)(M), which is tautologically a
sheaf of perverse origin on the space Ï, cf. Lemma 11.1.17, part 1).
The stalks of this sheaf are

(f,g) ÿ Hc
1(V‚käk, R

1πf,g~ä$…)(2),

which have constant rank on FJTwist(D0, D1), cf. Lemma 11.1.17,

part 2). By [Ka-SMD, Proposition 11], Ó-dim(Ï)(M) is lisse on
FJTwist(D0, D1). QED

(11.1.22) Thus on the open set FJTwist(D0, D1), M is

˜(1)[…(D0) + …(D1)], with ˜ the lisse sheaf, mixed of weight ≤ 0,

given stalkwise by

˜f,g := Hc
1(V‚käk, R

1πf,g~ä$…)(1).

The sheaf Gr0(˜) on FJTwist(D0, D1) is lisse of rank

N = 4g - 4 + 2deg(D0) + 3deg(D1)

+ 2ù{P in(D0 ⁄ D1)(äk) with 2aP + bP î• 0 mod 4},

orthogonally self dual, and pure of weight zero. We have

Gr0(˜)f,g = Hc
1(C‚käk, j*R

1πf,g~ä$…)(1).

Because of the vanishing H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0 noted

in 11.1.20 above, we have (by 1.20.3, part 3))

Gr0(˜)cst = 0, Gr0(˜) = Gr0(˜)ncst.

TTTThhhheeeeoooorrrreeeemmmm 11111111....1111....22223333 Let k be a finite field of characteristic p ≥ 5, in
which a prime … is invertible. Fix a projective, smooth, geometrically
connected curve C/k, of genus denoted g. Fix on C two effective
divisors D0 and D1, both of degree ≥ 2g + 3. Then the group Ggeom

for the lisse sheaf Gr0(˜) on the dense open set FJTwist(D0, D1) is

O(N), for
N = 4g - 4 + 2deg(D0) + 3deg(D1)

+ 2ù{P in(D0 ⁄ D1)(äk) with 2aP + bP î• 0 mod 4},

the rank of Gr0(˜).
pppprrrrooooooooffff As noted above in 11.1.18, we have N ≥ 14g + 11, so certainly
N ≥ 9. By the argument given in the first paragraph of the proof of
Theorem 7.2.3, it suffices to show that Ggeom contains a reflection.

For this, we argue as follows. At the expense of replacing k by a
finite extension of itself, we may suppose that there exists a k-
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rational point (f0, g0) in the dense open set FJTwist(D0, D1). We then

freeze the function g0. Thus g0 has divisor of poles D1, and both g0
and g0-1 have deg(D1) distinct zeroes over äk, all located in V. We

now look at all pairs (f, g0) which lie in FJTwist(D0, D1), i.e., we look

at all f with divisor of poles D0, such that f has deg(D0) distinct

zeroes over äk, all of which lie in V[1/g0(g0-1)].

Write the open curve V[1/g0(g0-1)] as C - D0 - S0, with S0 a

reduced, finite closed subcheme of C - D0. Write V as C - D0 - S,

with S either empty or a reduced, finite closed subcheme of C - D0.

And also write V[1/g0(g0-1)] as V - S01, with S01 the reduced, finite

closed subcheme of V defined by the vanishing of g0(g0 - 1). Thus

V[1/g0(g0-1)] = C - D0 - S0,

V = C - D0 - S.

In the notation of [Ka-TLFM, 5.0.6] and 8.1.7, a pair (f, g0) lies in

FJTwist(D0, D1) if and only if f lies in the dense open subset of L(D0)

given by
Fct(C, deg(D0), D0, S0) fi L(D0).

We will show that after we restrict ˜ to
Fct(C, deg(D0), D0, S0)≠{g0} fi FJTwist(D0, D1),

thus obtaining a lisse sheaf ˜restr on Fct(C, deg(D0), D0, S0), the

group Ggeom for Gr0(˜restr) contains a reflection (and hence the

group Ggeom for Gr0(˜) contains a reflection). We will do this by

relating ˜restr to the twist sheaves of [Ka-TLFM] and Chapter 8.

Consider the sheaf

Ì:= g0
*R1π1,t~ä$…(1) on C - D1.

The sheaf R1π1,t~ä$… is a geometrically irreducible middle extension

on !1 of generic rank two, lisse outside 0 and 1, vanishing at 0, and
with unipotent local monodromy at 1. Since g0 as a finite flat map

of C - D1 to !1 of degree deg(D1) is finite etale over both 0 and 1, Ì

is a geometrically irreducible (FJ = g0 is nonconstant) middle

extension of generic rank two on C - D1. It is lisse outside of S01, it

has unipotent local monodromy at the deg(D1) zeroes of g0 - 1, and

it vanishes at the deg(D1) zeroes of g0.

Consider the inclusions
jS : V fi C - D0,

j1 : V fi C - D1.

Then

(11.1.23.1) L1 := (j1)
*Ì[1] = (g0 : V ¨ !1)*R1π1,t~ä$…(1)[1]

is a perverse and geometrically irreducible middle extension on V,
and
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L0 := jS~*L1 = jS*(j1)
*Ì[1]

is a perverse and geometrically irreducible middle extension on
C - D0.

Now consider the following two standard inputs.
The first is

the integer m = 1,

the perverse sheaf K := j*Òç(1/2)[1] on !1/k,

the affine k-scheme V0 := C - D0,

the k-morphism h : V0 ¨ !1 given by h = 0,

the perverse sheaf L0 := (jS)*(j1)
*Ì[1] on C - D0,

the integer d:= deg(D) - (2g-1),
the space of functions (L(D0), †) on C - D0.

With this input, we form the perverse sheaf on L(D0)

M0 := Twist(L0, K, Ï = L(D0) on C - D0, h = 0).

The second standard input is
the integer m = 1,

the perverse sheaf K := j*Òç(1/2)[1] on !1/k,

the affine k-scheme V = C - D0 - D1,

the k-morphism h : V ¨ !1 given by h = 0,

the perverse sheaf L1 := (j1)
*Ì[1] = (Ì|V)[1],

the integer d:= deg(D) - (2g-1),
the space of functions (L(D0), †) on V.

With this input, we form the perverse sheaf on L(D0)

M1 := Twist(L1, K, Ï = L(D0) on V, h = 0).

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 11111111....1111....22224444 The perverse sheaf
M1 := Twist(L1, K, Ï = L(D0) on V, h = 0)

on L(D0) ¶ L(D0)≠{g0} is, up to a shift and a Tate twist, the

restriction of the perverse sheaf M on L(D0)≠L(D1) to L(D0)≠{g0}.

More precisely, we have
M | L(D0)≠{g0} ¶ M1(1/2)[…(D1)].

pppprrrrooooooooffff This is a tautology, thanks to proper base change, the fact
that

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$…,

cf. 11.1.12, and the observation, made in 11.1.23.1 above that

L1 := (j1)
*Ì[1] = (g0 : V ¨ !1)*R1π1,t~ä$…(1)[1]. QED

We now bring to bear Lemmas 8.1.10 and 8.1.11, applied to the
perverse sheaves M0 and M1 on L(D0). [In the notations of those

lemmas, our D0 is its D, our M1 is its M&, and our M0 is its MS.]

Thus both M1 and M0 are lisse on Fct(C, deg(D0), D, S0), and we
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have

Gr0(M0((…(D0) - 1)/2)) ¶ Gr0(M1((…(D0) - 1)/2)).

We introduce lisse sheaves ˜0 and ˜1 on Fct(C, deg(D0), D, S0) by

M0|Fct(C, deg(D0), D, S0) = ˜0(1/2)[…(D0)],

M1|Fct(C, deg(D0), D, S0) = ˜1(1/2)[…(D0)].

Restricting to FJTwist(D0, D1), we obtain an isomorphism of lisse

sheaves on Fct(C, deg(D0), D, S0),

˜restr := ˜ | Fct(C, deg(D0), D, S0)≠{g0} ¶ ˜1,

cf. Key Lemma 11.1.24. Passing to Gr0, we obtain

Gr0(˜restr) ¶ Gr0(˜1).

By Lemma 8.1.10, we have

Gr0(˜1) ¶ Gr0(˜0) ¶ Twistç2,C,D0
((jS)*(j1)

*Ì).

The local monodromy of (jS)*(j1)
*Ì at each zero of g0 - 1 is a

unipotent pseudoreflection. By Theorem 8.2.2, conclusion 2), Ggeom

for Gr0(˜0) ¶ Gr0(˜restr) contains a reflection. QED

((((11111111....2222)))) ((((jjjj----1111,,,, ttttwwwwiiiisssstttt)))) ffffaaaammmmiiiilllliiiieeeessss iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc 3333
(11.2.1) In this section, we consider the analogue in characteristic
3 of the (FJ, twist) families we considered when 6 was invertible.
The theory is quite similar to that in higher characteristic, but we
must now take into account phenomena of wild ramification, which
are themselves reflections of the fact that in charactertistic 2 or 3,
the two special j values 0 and 1728 coalesce.
(11.2.2) Over a field K of characteristic 3, an elliptic curve with
nonzero j is ordinary, and can be written in the form

Es,t : y
2 = x3 + sx2 + s3t,

with both s and t invertible. Here j = 1/t, and Es,t is the quadratic

twist by s of the curve

E1,t : y
2 = x3 + x2 + t.

As s and t each run over K≠, the curves Es,t exhaust, with infinite

repetition, the isomorphism classes of elliptic curves E/K with j ± 0.
(11.2.3) We now specialize to the case when K is a function field in
one variable over a finite field of characteristic 3. Thus we work
over a finite field k of characteristic 3, in which a prime … is
invertible. We fix a projective, smooth, geometrically connected
curve C/k, of genus denoted g. We also fix on C two effective divisors
D0 and D1. We assume that

deg(Di) ≥ 2g + 3,

for i=0, 1.
(11.2.4) Given a function f in the Riemann Roch space L(D0) and a

function g in the Riemann Roch space L(D1), we consider the



FJTwist families and variants 381

Weierstrass equation

Ef,g : y
2 = x3 + fx2 + f3g.

Provided that fg ± 0, this is an elliptic curve over k(C), with j = 1/g.
As we allow the effective divisors D0 and D1 to grow, we sweep out

(with repetition) all the elliptic curves over k(C) with j ± 0.
(11.2.5) We are interested in the variation with (f, g) in
L(D0)≠L(D1) of the L-function of Ef,g/k(C). Similarly, for each finite

extension field kd/k, we are interested in the variation with (f, g) in

L(D0)‚kkd≠L(D1)‚kkd of the L-function of Ef,g/kd(C). For this to be

a reasonable question, we must restrict to a dense open set of
L(D0)≠L(D1) (viewed as an affine space over k) over which the L-

function is a polynomial of constant degree.
(11.2.6) We define

V := C - (D0 ⁄ D1).

Our next task is to define a dense open set

j-1Twist(D0, D1) fi L(D0)≠L(D1)

over which the L-function is a polynomial of constant degree. We
will do this in two steps. We will first define a preliminary dense
open set

j-1Twist(D0, D1)prelim fi L(D0)≠L(D1),

and then we will define j-1Twist(D0, D1) as a dense open set

j-1Twist(D0, D1) fi j-1Twist(D0, D1)prelim.

(11.2.7) We define

j-1Twist(D0, D1)prelim fi L(D0)≠L(D1)

to be the dense open set whose äk-valued points are the pairs (f, g)
with f in L(D0)‚käk, g in L(D1)‚käk, such that the following four

conditions hold:
1) f has divisor of poles D0,

2) g has divisor of poles D1,

3) g has Swan-minimal poles, cf. 6.4.6,
4) fg has deg(D0) + deg(D1) distinct zeroes in V(äk) (i.e., f has deg(D0)

distinct zeroes, which all lie in V(äk), g has deg(D1) distinct zeroes,

which all lie in V(äk), and these two zero sets are disjoint).

(11.2.8) Take any finite extension kd/k and any kd-valued point

(f, g) in j-1Twist(D0, D1)prelim. Denote by

πf,g : ‰f,g
aff ¨ V

the relative affine curve of equation

Ef,g : y
2 = x3 + fx2 + f3g.

Its R1πf,g~ä$… on V‚kkd has a tensor product decomposition as

follows. On !1 = Spec(k[t]), we have
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π1,t : ‰1,t
aff ¨ !1,

the relative affine curve of equation

E1,t : y
2 = x3 + x2 + t.

Its R1π1,t~ä$… on !1 is an irreducible middle extension sheaf, cf. 7.4.7

and 7.5.5. It is lisse on ´m and its local monodromy at the origin is a

unipotent pseudoreflection. Because the map g is finite etale over 0,

the pullback g*R1π1,t~ä$… is a middle extension on V‚kkd. Similarly,

f*(Òç2
) := Òç2(f)

is a middle extension. We have an isomorphism

on V‚kkd

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$….

As the two tensor factors are middle extensions with disjoint

ramification, R1πf,g~ä$… is a middle extension. Since ‰f,g has

nonconstant j invariant, the middle extension R1πf,g~ä$… is

geometrically irreducible. Thus we have

LLLLeeeemmmmmmmmaaaa 11111111....2222....9999 For (f, g) in j-1Twist(D0, D1)prelim(kd), R
1πf,g~ä$… on

V‚kkd is a geometrically irreducible middle extension of generic

rank two, which is lisse on (V‚kkd)[1/fg], and which has the tensor

product structure

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$….

(11.2.10) Denote by j : V ¨ C the inclusion. The unitarized L-
function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

We can recover H1(C‚käk, j*R
1πf,g~ä$…(1)) as the weight zero

quotient of

Hc
1(V‚käk, R

1πf,g~ä$…(1))

= Hc
1(V‚käk, Òç2(f)

‚g*R1π1,t~ä$…(1)).

LLLLeeeemmmmmmmmaaaa 11111111....2222....11111111 For (f, g) in j-1Twist(D0, D1)prelim(äääk), we have

1) Hc
i(V‚käk, R

1πf,g~ä$…) = 0 for i ± 1,

2) dimHc
1(V‚käk, R

1πf,g~ä$…)= -çc(V‚käk, R
1πf,g~ä$…)

= -2çc((V‚käk)[1/fg], ä$…)

-deg(D1) + ‡poles P of g SwanP(g
*R1π1,t~ä$…).

pppprrrrooooooooffff Assertion 1) results from the fact that the coefficient sheaf is
a geometrically irreducible middle extension which is not
geometrically trivial. Assertion 2) is a straightforward application of
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the Euler Poincarïe formula. Indeed, the sheaf

R1πf,g~ä$… ¶ Òç2(f)
‚g*R1π1,t~ä$…

is lisse where fg is invertible. At the deg(D0) zeroes of f, it is tame,

and its stalk vanishes. At the deg(D1) zeroes of g, it is tame, and

local monodromy is a unipotent pseudoreflection. Thus we have

çc(V‚käk, R
1πf,g~ä$…)

= çc((V‚käk)[1/fg], Òç2(f)
‚g*R1π1,t~ä$…) + deg(D1).

The lisse rank one sheaf Òç2(f)
on (V‚käk)[1/fg] is everywhere tame.

Therefore the the lisse sheaf Òç2(f)
‚g*R1π1,t~ä$…) on (V‚käk)[1/fg]

is tame except possibly at the poles of g, and at any pole P of g, we
have

SwanP(Òç2(f)
‚g*R1π1,t~ä$…) = SwanP(g

*R1π1,t~ä$…).

So the Euler Poincarïe formula gives

çc((V‚käk)[1/fg], Òç2(f)
‚g*R1π1,t~ä$…)

= 2çc((V‚käk)[1/fg], ä$…) - ‡poles P of g SwanP(g
*R1π1,t~ä$…).

Putting this all together, we find assertion 2). QED

(11.2.12) The cohomology groups Hc
1(V‚käk, R

1πf,g~ä$…(1)) can be

all captured by a suitable perverse sheaf M = Twist(L, K, Ï, h)
attached to suitable "standard input", cf. 1.15.4 We take

the integer m = 2,

the perverse sheaf K = R1πs,t~ä$…(3/2)[2]

¶ Òç2(s)
(1/2)[1]$R1π1,t~ä$…(1)[1] on !2/k = Spec(k[s,t]),

the affine k-scheme V/k given by V := C - (D0 ⁄ D1),

the k-morphism h : V ¨ !2 given by h = 0,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d = 1 - 2g + min(deg(D0), deg(D1)),

the space of !2-valued functions (Ï, †) on V given by the
finite-dimensional k-vector space Ï = L(D0)≠L(D1) and the k-linear

map

† : Ï ¨ Homk-schemes(V, !
2),

(f, g) ÿ the map v ÿ (f(v), g(v)).
It results from Theorem 9.3.6 that this is standard input, and, using

Kunneth, that H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0.

LLLLeeeemmmmmmmmaaaa 11111111....2222....11113333 On the dense open set j-1Twist(D0, D1)prelim, the

perverse sheaf M has only one nonvanishing cohomology sheaf,

namely Ó-dim(Ï)(M), whose stalks are
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(f,g) ÿ Hc
1(V‚käk, R

1πf,g~ä$…)(2).

pppprrrrooooooooffff This is just a translation of the previous Lemma 11.2.11. QED

(11.2.14) Thus on the open set j-1Twist(D0, D1)prelim, M is the

object ˜(1)[…(D0) + …(D1)], with ˜ := Ó-dim(Ï)(M)(-1) the sheaf of

perverse origin, mixed of weight ≤ 0, given stalkwise by

˜f,g := Hc
1(V‚käk, R

1πf,g~ä$…)(1).

We now invoke the fact [Ka-SMD, Prop. 12] that for a sheaf of
perverse origin ˜ on a smooth connected k-scheme, here

j-1Twist(D0, D1)prelim, the set of points where its stalk has

maximum rank is a dense open set,

Umax fi j-1Twist(D0, D1)prelim,

and ˜ is lisse on Umax.

(11.2.15) We now define the dense open set j-1Twist(D0, D1) to be

j-1Twist(D0, D1) := Umax fi j-1Twist(D0, D1)prelim.

Thanks to the dimension formula of Lemma 11.2.11, part 2) above,
we can also characterize Umax as the set of points (f, g) in

j-1Twist(D0, D1)prelim at which

‡poles P of g SwanP(g
*R1π1,t~ä$…)

attains it maximum value.

LLLLeeeemmmmmmmmaaaa 11111111....2222....11116666 Let M be a two-dimensional continuous ä$…-

representation of I(‘) with trivial determinant. Then both I(‘)-
breaks of M are Swan(M)/2. In particular, if Swan(M) > 0, then M is

totally wild, and MP(‘) = MI(‘) = 0.
pppprrrrooooooooffff If M is any irreducible ä$…-representation of I(‘), then the

break-decomposition [Ka-GKM, 1.1, 1.2] shows that M has a single
I(‘) slope, Swan(M)/dim(M), with multiplicity dim(M).

If our two-dimensional M is reducible, then, because it has
trivial determinant, it is an extension of a linear character ® of I(‘)

by the inverse character ®-1. Both ® and ®-1 have the same Swan
conductor, say x, so M has a single break x, with multiplicity 2.

Since Swan(M) = Swan(®) + Swan(®-1), we find that x = Swan(M)/2.
If Swan(M) > 0, then all breaks of M are nonzero, and hence

[Ka-GKM, 1.9] MP(‘) = 0. The inclusion MI(‘) fi MP(‘) gives the
final conclusion. QED

LLLLeeeemmmmmmmmaaaa 11111111....2222....11117777 Write D1 over äk as ‡aPP. Define integers cP, one

for each P in D1, by

cP = aP, if aP is prime to 3,

= aP - 2, if 3|aP.
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Suppose g in L(D1) has divisor of poles D1 and has Swan-minimal

poles. Then we have the following results.
1) We have the inequality

‡poles P of g SwanP(g
*R1π1,t~ä$…) ≤ ‡P cP.

2) If aP ±3 for all P, then we have the equality

‡poles P of g SwanP(g
*R1π1,t~ä$…) = ‡P cP.

3) For all but at most ù{P in D1 with aP = 3} values of ¬ in äk≠, we

have the equality

‡poles P of g SwanP((¬g)
*R1π1,t~ä$…) = ‡P cP.

pppprrrrooooooooffff The sheaf R1π1,t~ä$… is lisse of rank two on ´m, has

geometrically trivial determinant ä$…(-1), and has Swan‘ = 1. Hence

its I(‘)-representation, call it M, has trivial determinant, rank two,
and Swan conductor 1. By Lemma 11.2.16, both I(‘)-breaks are 1/2.
It now follows from Lemma A6.2.2 that at each pole P of g, we have

SwanP((¬g)
*R1π1,t~ä$…) = cP, for every ¬ in äk≠, if aP ± 3,

SwanP((¬g)
*R1π1,t~ä$…) = cP, for all but one ¬ in äk≠, if aP = 3.

So there are at most as many exceptional ¬ in äk≠ as there are triple
poles of g. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....2222....11118888 A point (f, g) in j-1Twist(D0, D1)prelim(äk) lies in

j-1Twist(D0, D1) if and only if

‡poles P of g SwanP(g
*R1π1,t~ä$…) = ‡P cP.

LLLLeeeemmmmmmmmaaaa 11111111....2222....11119999 Notations as in Lemma 11.2.17 above, write D0

over äk as ‡Q bQQ. Let (f, g) be a äk-valued point of j-1Twist(D0, D1),

and denote by j : V ¨ C the inclusion. We have the following results.

1) Hc
i(V‚käk, R

1πf,g~ä$…) = 0 for i ± 1.

2) dimHc
1(V‚käk, R

1πf,g~ä$…)

= -2çc((V‚käk)[1/fg], ä$…) -deg(D1) + ‡P cP.

3) Hi(C‚käk, j*R
1πf,g~ä$…(1)) = 0 for i ±1.

4) h1(C‚käk, j*R
1πf,g~ä$…(1)) = -çc(C‚käk, j*R

1πf,g~ä$…(1))

= -2çc((V‚käk)[1/fg], ä$…) -2ù{P in D1 with 3|aP}

- 2ù{Q in (D0 - D0€D1)(äk) with bQ even}.

5) h1(C‚käk, j*R
1πf,g~ä$…(1)) ≥ 12g + 8, with equality if and only if

every aP is divisible by 3, every bQ for Q in (D0 - D0€D1)(äk) is even,

and deg(D0) = deg(D1) = 2g + 3.

pppprrrrooooooooffff We have the vanishing asserted in 1) and 3) because

R1πf,g~ä$…(1) is a geometrically irreducible middle extension of
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generic rank two. Assertion 2) is immediate from Lemma 11.2.11
and Corollary 11.2.18. To prove 4), we argue as follows. For brevity,
denote by Ï the lisse sheaf on (V‚käk)[1/fg] given by

Ï := R1πf,g~ä$…(1)|(V‚käk)[1/fg] = Òç2(f)
‚g*R1π1,t~ä$….

By the Euler Poincarïe formula, we have

Hc
1(C‚käk, j*R

1πf,g~ä$…) := Hc
1(C‚käk, j*Ï)

= -çc(C‚käk, j*Ï)

= -çc
1((V‚käk)[1/fg], Ï) - ‡x in C‚käk - (V‚käk)[1/fg]

dim(ÏI(x))

= -2çc((V‚käk)[1/fg], ä$…) + ‡P cP

- ‡x in C‚käk - (V‚käk)[1/fg]
dim(ÏI(x)).

To compute the ÏI(x) terms, we must examine more closely the

sheaf Ï := Òç2(f)
‚g*R1π1,t~ä$…. Recall that R

1π1,t~ä$… is lisse on

´m, its local monodromy at 0 is a unipotent pseudoreflection, and its

I(‘) representation is totally wild, with both breaks 1/2. At a zero x

of f, g has neither zero nor pole, so g*R1π1,t~ä$… is lisse at x, while f

has a simple zero, so ÏI(x) = 0. At each of the deg(D1) zeroes x of g, f

is invertible, and g*R1π1,t~ä$… has local monodromy a unipotent

pseudoreflection, so dim(ÏI(x)) = 1. At any pole x of g, g*R1π1,t~ä$…
has a nonzero Swan conductor. As it is a two-dimensional I(x) -
representation with trivial determinant, it must be totally wild at x,
cf. Lemma 11.2.16. But Òç2(f)

is everyhwere tame, so Ï is totally

wild at x, and so ÏI(x) = 0. Finally, at a pole x of f which is not a

pole of g, g is invertible, so g*R1π1,t~ä$… is lisse at x, and so

dim(ÏI(x)) = 2dim((Òç2(f)
)I(x)) is 0, if f has an odd order pole at x,

and it is 2 is f has an even order pole. Thus we find

h1(C‚käk, j*R
1πf,g~ä$…(1))

= -2çc((V‚käk)[1/fg], ä$…) + ‡P cP
- deg(D1) - 2ù{Q in (D0 - D0€D1)(äk) with bQ even}.

To conclude the proof of 4), we simply note that by definition of the
integers cP, we have

‡P cP - deg(D1) = ‡P (cP - aP) = -2ù{P in D1 with 3|aP}.

To prove 5), we use 4) and compute

h1(C‚käk, j*R
1πf,g~ä$…(1))

= -2çc((V‚käk)[1/fg], ä$…)

-2ù{P in D1 with 3|aP}

- 2ù{Q in (D0 - D0€D1)(äk) with bQ even}
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= -2(2 - 2g - ù((D0 ⁄ D1)(äk)) - deg(D0) - deg(D1))

-2ù{P in D1 with 3|aP}

- 2ù{Q in (D0 - D0€D1)(äk) with bQ even}

= -4 + 4g + 2ù((D0 ⁄ D1)(äk)) + 2deg(D0) + 2deg(D1)

-2ù{P in D1 with 3|aP}

- 2ù{Q in (D0 - D0€D1)(äk) with bQ even}

≥ -4 + 4g + 2deg(D0) + 2deg(D1)

≥ -4 + 4g + 2(2g + 3) + 2(2g + 3) ≥ 12g + 8.
To get the last two equalities, we use first the inequality

ù((D0 ⁄ D1)(äk))

≥ ù{P in D1 with 3|aP} + ù{Q in (D0 - D0€D1)(äk) with bQ even},

and then the inequalities
deg(Di) ≥ 2g + 3, for i = 0, 1. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....2222....22220000 Denote by N the common dimension

N := dimHc
1(C‚käk, j*R

1πf,g~ä$…)

for (f, g) in j-1Twist(D0, D1)(äk).

1) We have the inequality
N ≥ 8.

2) We have N ≥ 9 except in the case when g = 0, D1 = 3P for some

rational point P, and D0 is either 3P or P + 2Q for some second

rational point Q.
pppprrrrooooooooffff This is immediate from Lemma 11.2.19, part 5). QED

(11.2.21) Our situation now is this. On the space j-1Twist(D0, D1),

we have the lisse sheaf ˜, which is mixed of weight ≤ 0. The lisse

sheaf Gr0(˜) is orthogonally self dual, and captures the L-function;
for any finite extension kd /k, and any point (f, g) in

j-1Twist(D0, D1)(kd), we have

Gr0(˜)(f,g) = Hc
1(C‚käk, j*R

1πf,g~ä$…(1)),

and the unitarized L-function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

TTTThhhheeeeoooorrrreeeemmmm 11111111....2222....22222222 Let k be a finite field of characteristic p = 3, … a
prime not 3. Fix a projective, smooth, geometrically connected curve
C/k, of genus denoted g. Fix on C two effective divisors D0 and D1,

both of degree ≥ 2g + 3. Then the group Ggeom for the lisse sheaf

Gr0(˜) on the dense open set j-1Twist(D0, D1) is O(N), for

N ≥ 12g + 8 the rank of Gr0(˜).
pppprrrrooooooooffff By a slight variation on the proof of Theorem 11.1.23 which
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we leave to the reader, we prove that Ggeom contains a reflection. If

N ≥ 9, then we are done, by the argument given in the first
paragraph of the proof of Theorem 7.2.3.

It remains to treat the case N = 8. Here we have either O(8) or
the Weyl group W(E8), by Theorem 2.6.11. We will give an ad hoc

argument to show that when N = 8, Ggeom cannot be finite, and

hence must be O(8).
If we have N = 8, then by Corollary 11.2.20 we have g = 0, D1

is 3P for some rational point P, and D0 is either 3P or P + 2Q for

some second rational point Q. Thus the curve C is @1, and an

automorphism of C = @1 carries P to ‘ and Q, if present, to 0. Thus
D1 is 3[‘], and D0 is either 3[‘] ("the first case") or [‘] + 2[0] ("the

second case"). Let us denote by Gr0(˜1) and Gr0(˜2) the Gr
0(˜)

sheaves attached to the two cases. In fact, these two cases are

equivalent, as follows. In terms of the coordinate t on !1 fi @1, the
map

f ÿ f/t2

is an isomorphism
L(3[‘]) ¶ L([‘] + 2[0]).

Given (f, g) in j-1Twist(3[‘], 3[‘]) with f(0) invertible, the point

(f/t2, g) lies in j-1Twist(3[‘], ([‘] + 2[0]), and this map

(f, g) ÿ (f/t2, g)
defines an isomorphism

å : {the dense open set of j-1Twist(3[‘], 3[‘]) with f(0) invertible}

¶ j-1Twist(3[‘], ([‘] + 2[0]).
Given a finite extension kd/k, the characteristic polynomial of

Frobenius at a point (f, g) in j-1Twist(3[‘], 3[‘])(kd) with f(0)

invertible is the unitarized L-function of the elliptic curve Ef,g over

kd(t), while the characteristic polynomial of Frobenius at the

corresponding point (f/t2, g) in j-1Twist(3[‘], ([‘] + 2[0])(kd) is the

unitarized L-function of the elliptic curve Ef/t2,g over kd(t). But the

curve Ef,g is the quadratic twist by f of the curve E1,g, and hence,

as f and f/t2 have ratio a square, the curves Ef,g and Ef/t2,g over

kd(t) are isomorphic, and hence have the same unitarized L-

functions. Therefore we have an isomorphism of lisse sheaves

å*Gr0(˜2) ¶ Gr0(˜1)| {the open set where f(0) is invertible}.

So it suffices to treat the case D0 = D1 = 3[‘].

This case starts life over the prime field É3. The polynomials

g(t) := t3 + t2 - 1,

f(t) := t3 - t2 + 1,
are distinct irreducibles over É3 (each is a cubic with no zero in É3),
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and g has a Swan-minimal pole at ‘. So for at least one choice of

œ = _1 in É3
≠, the point (f, œg) lies in j-1Twist(3[‘], 3[‘])(É3).

We argue by contradiction. Suppose Gr0(˜) has finite Ggeom.

Then it has finite Garith. [Indeed, Garith lies in O(N) and normalizes

the irreducible finite subgroup Ggeom of O(N). Put

n := ùAutgp(Ggeom). Then for every element © of Garith, ©
n

commutes with Ggeom, so ©n is a scalar in O(N), so ©2n = 1, so

Garith is an algebraic group with Lie(Garith) killed by 2n, so

Lie(Garith) = 0, so Garith is finite.] So every eigenvalue of

FrobÉ3,(f,œg)
on Gr0(˜)(f,œg) is a root of unity. Equivalently, every

eigenvalue of FrobÉ3
on

H1(@1‚É3
äÉ3, j*R

1πf,œg~ä$…)

is of the form 3≠(a root of unity).The sheaf

R1πf,œg~ä$…) ¶ Òç2(f)
‚(œg)*R1π1,t~ä$… is totally wild at ‘, so we

have

H1(@1‚É3
äÉ3, j*R

1πf,œg~ä$…) ¶ Hc
1(!1‚É3

äÉ3, R
1πf,œg~ä$…).

Hence the ordinary integer

Trace(FrobÉ3
|Hc

1(!1‚É3
äÉ3, R

1πf,œg~ä$…))

is divisible by 3. The groups Hc
i(!1‚É3

äÉ3, R
1πf,œg~ä$…) vanish for

i ±1 (because R1πf,œg~ä$… is an irreducible middle extension of

generic rank two). For any t in !1(É3), we have f(t) ± 0 (because f is

irreducible), and so

Trace(FrobÉ3,t
| R1πf,œg~ä$…)

= - ‡x in É3
ç2(x

3 + f(t)x2 + f(t)3œg(t))

= - ç2(f(t))‡x in É3
ç2(x

3 + x2 + œg(t)),

the last equality by replacing x by f(t)x in the summation over x. So
by the Lefschetz Trace Formula, we have

Trace(FrobÉ3
|Hc

1(!1‚É3
äÉ3, R

1πf,œg~ä$…))

= ‡t in É3
ç2(f(t))‡x in É3

ç2(x
3 + x2 + œg(t)).

We now achieve the desired contradiction, by showing that the
integer

‡t in É3
ç2(f(t))‡x in É3

ç2(x
3 + x2 + œg(t))

is not divisible by 3. Indeed, for å in É3, we have the congruence

ç2(å) • å mod (3).

So we have congruences mod (3),
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‡t in É3
ç2(f(t))‡x in É3

ç2(x
3 + x2 + œg(t))

• ‡x in É3
‡t in É3

f(t)(x3 + x2 + œg(t)).

Now the function x3 + x2 takes the value 0 at x=0 and x=2, and the
value 2 at x=1. So summing over the three x values separately we
have an equality in É3,

‡x in É3
‡t in É3

f(t)(x3 + x2 + œg(t)).

= 2‡t in É3
f(t)(0 + œg(t)) + ‡t in É3

f(t)(2 + œg(t))

= 2‡t in É3
f(t)œg(t) + 2‡t in É3

f(t) + ‡t in É3
f(t)œg(t)

= 2‡t in É3
f(t)

= 2‡t in É3
(t3 - t2 + 1)

= 2.
So we have

Trace(FrobÉ3
|Hc

1(!1‚É3
äÉ3, R

1πf,œg~ä$…)) • 2 mod (3). QED

((((11111111....3333)))) ((((jjjj----1111,,,, ttttwwwwiiiisssstttt)))) ffffaaaammmmiiiilllliiiieeeessss iiiinnnn cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc 2222
(11.3.1) In this section, we consider the characteristic 2 analogue

of the (j-1, twist) families we considered in characteristic 3.
(11.3.2) Over a field K of characteristic 2, an elliptic curve with
nonzero j is ordinary, and can be written in the form

Es,t : y
2 + xy = x3 + sx2 + t.

Here, j = 1/t, so t is determined by j, and the effect of s is to
perform a quadratic twist using the Artin-Schreier sheaf Ò¥, cf.

Twisting Lemma 9.4.1. As s runs over K and t runs over K≠, the
curves Es,t exhaust, with infinite repetition, the isomorphism classes

of elliptic curves E/K with j ± 0.
(11.3.3) We now specialize to the case when K is a function field in
one variable over a finite field of characteristic 2. Thus we work
over a finite field k of characteristic 2, in which a prime … is
invertible. We fix a projective, smooth, geometrically connected
curve C/k, of genus denoted g. We also fix on C two effective divisors
D0 and D1. We assume that

deg(Di) ≥ 2g + 3,

for i=0, 1.
(11.3.4) Given a function f in the Riemann Roch space L(D0) and a

function g in the Riemann Roch space L(D1), we consider the

Weierstrass equation

Ef,g : y
2 + xy = x3 + fx2 + g.

Provided that g ± 0, this is an elliptic curve over k(C), with j = 1/g.
As we allow the efffective divisors D0 and D1 to grow, we sweep out
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(with repetition) all the elliptic curves over k(C) with j ± 0.
(11.3.5) We are interested in the variation with (f, g) in
L(D0)≠L(D1) of the L-function of Ef,g/k(C). Similarly, for each finite

extension field kd/k, we are interested in the variation with (f, g) in

L(D0)‚kkd≠L(D1)‚kkd of the L-function of Ef,g/kd(C). For this to be

a reasonable question, we must restrict to a dense open set of
L(D0)≠L(D1) (viewed as an affine space over k) over which the L-

function is a polynomial of constant degree.
(11.3.6) We define

V := C - (D0 ⁄ D1).

Our next task is to define a dense open set

j-1Twist(D0, D1) fi L(D0)≠L(D1)

over which the L-function is a polynomial of constant degree. We
will do this in two steps. We will first define a preliminary dense
open set

j-1Twist(D0, D1)prelim fi L(D0)≠L(D1),

and then we will define j-1Twist(D0, D1) as a dense open set

j-1Twist(D0, D1) fi j-1Twist(D0, D1)prelim.

(11.3.7) We define

j-1Twist(D0, D1)prelim
fi L(D0)≠L(D1)

to be the dense open set whose äk-valued points are the pairs (f, g)
with f in L(D0)‚käk, g in L(D1)‚käk, such that the following five

conditions hold:
1) f has divisor of poles D0,

2) f has Swan-minimal poles, cf. 6.4.6,
3) g has divisor of poles D1,

4) g has Swan-minimal poles, cf. 6.4.6,
5) g has deg(D1) distinct zeroes in V(äk), i.e., g has deg(D1) distinct

zeroes, which all lie in V(äk).

(11.3.8) For any d ≥ 1 and for any (f, g) in

j-1Twist(D0, D1)prelim(kd), Ef,g is an elliptic curve over kd(C). It has

good reduction over (V‚kkd)[1/g], and it has multiplicative

reduction at the zeroes of g.

(11.3.9) Denote by πf,g : ‰f,g
aff ¨ V‚kkd the relative affine

curve of equation

y2 + xy = x3 + fx2 + g.

Its R1πf,g~ä$… on V‚kkd has a tensor product decomposition as

follows. On !1 = Spec(k[t]), we have

π0,t : ‰0,t
aff ¨ !1,

the relative affine curve of equation
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y2 + xy = x3 + t.

Its R1π0,t~ä$… on !1 is a middle extension sheaf (by 7.5.5), which is

lisse on ´m and geometrically irreducible (because j = 1/t is

nonconstant, cf. the last paragraph of the proof of Theorem 9.3.10).

Because the map g is finite etale over 0, the pullback g*R1π0,t~ä$… is

a middle extension on V‚kkd. The sheaf Ò¥ on !1 is lisse, so the

pullback f*(Ò¥) := Ò¥(f) is lisse on V‚kkd. We have an isomorphism

on V‚kkd

R1πf,g~ä$… ¶ Ò¥(f)‚g*R1π0,t~ä$….

Here one factor is lisse, so in particular the two tensor factors, Ò¥(f)

and g*R1π0,t~ä$…, have disjoint ramification. As each is a middle

extension, so is their tensor product. Since ‰f,g has nonconstant j

invariant, the middle extension R1πf,g~ä$… is geometrically

irreducible. Thus we have

LLLLeeeemmmmmmmmaaaa 11111111....3333....11110000 For (f, g) in j-1Twist(D0, D1)prelim(kd), R
1πf,g~ä$…

on V‚kkd is a geometrically irreducible middle extension of generic

rank two, which is lisse on (V‚kkd)[1/g], and which has the tensor

product structure

R1πf,g~ä$… ¶ Ò¥(f)‚g*R1π0,t~ä$….

(11.3.11) Denote by j : V ¨ C the inclusion. The unitarized L-
function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

We can recover H1(C‚käk, j*R
1πf,g~ä$…(1)) as the weight zero

quotient of

Hc
1(V‚käk, R

1πf,g~ä$…(1))

= Hc
1(V‚käk, Ò¥(f)‚g*R1π0,t~ä$…(1)).

[We will see later that if (f, g) lie in j-1Twist(D0, D1)(kd), then this

last cohomology group is in fact pure of weight zero, cf. Lemma
11.3.20, part 2), and Lemma 11.3.21.]

LLLLeeeemmmmmmmmaaaa 11111111....3333....11112222 For (f, g) in j-1Twist(D0, D1)prelim(äääk), we have

1) Hc
i(V‚käk, R

1πf,g~ä$…) = 0 for i ± 1,

2) dimHc
1(V‚käk, R

1πf,g~ä$…)= -çc(V‚käk, R
1πf,g~ä$…)

= -2çc((V‚käk)[1/g], ä$…)

-deg(D1) + ‡P in (D0 ⁄ D1)(äk)
SwanP(Ò¥(f)‚g*R1π0,t~ä$…).

pppprrrrooooooooffff Assertion 1) results from the fact that the coefficient sheaf is
a geometrically irreducible middle extension which is not
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geometrically trivial. Assertion 2) is a straightforward application of
the Euler Poincarïe formula. Indeed, the sheaf on V‚käk,

R1πf,g~ä$… ¶ Ò¥(f)‚g*R1π0,t~ä$…,

is lisse where g is invertible. At the deg(D1) zeroes of g, it is tame,

and local monodromy is a unipotent pseudoreflection. Thus we have

çc(V‚käk, R
1πf,g~ä$…)

= çc((V‚käk)[1/g], R
1πf,g~ä$…) + deg(D1).

The sheaf R1πf,g~ä$… on (V‚käk)[1/g] is lisse of rank two, and tame

except possibly at the points of D0⁄D1, so the Euler Poincarïe

formula gives

çc((V‚käk)[1/g], R
1πf,g~ä$…)

= 2çc((V‚käk)[1/g], ä$…)

- ‡P in (D0 ⁄ D1)(äk)
SwanP(Ò¥(f)‚g*R1π0,t~ä$…).

Putting this all together, we find assertion 2). QED

(11.3.13) The cohomology groups Hc
1(V‚käk, R

1πf,g~ä$…(1)) can be

all captured by a suitable perverse sheaf M = Twist(L, K, Ï, h)
attached to suitable "standard input", cf. 1.15.4. We take

the integer m = 2,

the perverse sheaf K = R1πs,t~ä$…(3/2)[2]

¶ Ò¥(s)(1/2)[1]$R
1π0,t~ä$…(1)[1] on !2/k = Spec(k[s,t]),

the affine k-scheme V/k given by V := C - (D0 ⁄ D1),

the k-morphism h : V ¨ !2 given by h = 0,
the perverse sheaf L = ä$…(1/2)[1] on V/k,

the integer d = 1 - 2g + min(deg(D0), deg(D1)),

the space of !2-valued functions (Ï, †) on V given by the
finite-dimensional k-vector space Ï = L(D0)≠L(D1) and the k-linear

map

† : Ï ¨ Homk-schemes(V, !
2),

(f, g) ÿ the map v ÿ (f(v), g(v)).
It results from Theorem 9.4.2 that this is standard input, and, using

Kunneth, that H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K) = 0.

LLLLeeeemmmmmmmmaaaa 11111111....3333....11114444 On the dense open set j-1Twist(D0, D1)prelim, the

perverse sheaf M has only one nonvanishing cohomology sheaf,

Ó-dim(Ï)(M), whose stalks are

(f,g) ÿ Hc
1(V‚käk, R

1πf,g~ä$…)(2).

pppprrrrooooooooffff This is just a translation of the previous Lemma 11.3.12. QED
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(11.3.15) Thus on the open set j-1Twist(D0, D1)prelim, M is the

object ˜(1)[…(D0) + …(D1)], with ˜ := Ó-dim(Ï)(M)(-1) the sheaf of

perverse origin, mixed of weight ≤ 0, given stalkwise by

˜f,g := Hc
1(V‚käk, R

1πf,g~ä$…)(1).

We now invoke the fact [Ka-SCMD, Prop. 12] that for a sheaf of
perverse origin ˜ on a smooth connected k-scheme, here

j-1Twist(D0, D1)prelim, the set of points where its stalk has

maximum rank is a dense open set,.

Umax fi j-1Twist(D0, D1)prelim,

and ˜ is lisse on Umax.

(11.3.16) We now define the dense open set j-1Twist(D0, D1) to be

j-1Twist(D0, D1) := Umax fi j-1Twist(D0, D1)prelim.

Thanks to the dimension formula of Lemma 11.3.12, part 2) above,
we can also characterize Umax as the set of points (f, g) in

j-1Twist(D0, D1)prelim at which

‡P in (D0 ⁄ D1)(äk)
SwanP(Ò¥(f)‚g*R1π0,t~ä$…)

attains it maximum value.

LLLLeeeemmmmmmmmaaaa 11111111....3333....11117777 Write D1 over äk as ‡aPP. Define integers cP, one

for each P in D0⁄D1, by

cP = aP, if aP is odd,

= aP - 2, if aP is even and aP > 2,

= 1, if aP = 2,

= 0, if aP = 0.

Write D0 over äk as ‡åPP. Define integers ∫P, one for each P in

D0⁄D1, by

∫P = åP, if åP is odd,

= åP -1, if åP is even and åP ± 0,

= 0, if åP = 0.

Suppose f in L(D0)‚käk (resp. g in L(D1)‚käk) has divisor of poles D0
(resp. divisor of poles D1) and has Swan-minimal poles. Suppose also

that g has no zeroes in D0. Fix a point P in D0⁄D1. Then we have the

inequality

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) ≤ Max(2∫P, cP),

and, for all but at most four values of ¬ in äk≠ we have the equality

SwanP(Ò¥(¬f)‚g*R1π0,t~ä$…) = Max(2∫P, cP).

pppprrrrooooooooffff This follows from the following more precise Lemma.
LLLLeeeemmmmmmmmaaaa 11111111....3333....11117777 ((((bbbbiiiissss)))) Hypotheses and notations as in Lemma
11.3.17 above, we have the following results.
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1) At a point P which lies in D0 but not in D1, we have

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) = 2SwanP(Ò¥(f)).

2) At a point P in D0 with åP ± 2, we have

SwanP(Ò¥(f)) = ∫P.

3) At a point P in D0 with åP = 2, we have

SwanP(Ò¥(f)) ≤ ∫P = 1,

and for all but precisely one value of ¬ in äk≠, we have
SwanP(Ò¥(¬f)) = ∫P.

4) At a point P which lies in D1, we have

SwanP(g
*R1π0,t~ä$…) = cP,

and both I(P)-breaks of g*R1π0,t~ä$… are cP/2.

5) At a point P which lies in D1 but not in D0, we have

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) = SwanP(g
*R1π0,t~ä$…) = cP.

6) At a point P which lies in D0€D1 at which 2∫P ± cP, we have

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) = Max(2SwanP(Ò¥(f)), cP).

7) At a point P which lies in D0€D1, and at which 2∫P = cP, we

have the inequality

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) ≤ Max(2∫P, cP),

and for all but at most four values of ¬ in äk≠ we have the equality

SwanP(Ò¥(¬f)‚g*R1π0,t~ä$…) = Max(2∫P, cP).

pppprrrrooooooooffff 1) At a point P which lies in D0 but not in D1, the function g

is invertible, so g*R1π0,t~ä$… is lisse of rank two at P.

2) If åP is odd, this is standard [De-SomTrig, 3.5.4]. If åP is even but

not 2, say åP = 2k with k > 1, then in terms of a uniformizing

parameter z at P, the expansion of f at P can be written in the form

A2/z2k + B/z2k-1 + less polar terms.

Because f has a Swan-minimal pole at P, both A and B lie in äk≠. This
expansion in turn is Artin-Schreier equivalent to

B/z2k-1 + less polar terms

(becauseA2/z2k is Artin-Schreier equivalent to A/zk, which is less

polar than B/z2k-1 for k > 1) and we are reduced to the case when
åP is prime to p.

3) If åP = 2, then the expansion of f at P can be written in the form

A2/z2 + B/z1 + holomorphic,
which is Artin-Schreier equivalent to

(B - A)/z + holomorphic.

For ¬ in äk≠, ¬2f then has expansion at P

¬2A2/z2 + ¬2B/z1 + holomorphic,
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which is Artin-Schreier equivalent to

(¬2B - ¬A)/z + holomorphic.

So if ¬ in äk≠ is not A/B, then SwanP(Ò¥(¬2f)) = ∫P = 1. Thus we

have SwanP(Ò¥(¬f)) = ∫P for all ¬ in äk≠ save (B/A)2.

4) The Swan conductor is computed in Lemma A6.2.2. That the two
I(P)-breaks are equal is Lemma 11.2.16.
5) At a point P which lies in D1 but not in D0, Ò¥(f) is lisse of rank

one.
6) At a point P which lies in D0€D1 at which 2∫P ± cP, either Ò¥(f)
has Swan conductor ∫P, or ∫P = 1 and Ò¥(f) is tame. In the first

case, both breaks of g*R1π0,t~ä$… are cP/2 ± ∫P/2, and hence [Ka-

GKM, 1.3] both breaks of Ò¥(f)‚g*R1π0,t~ä$… are Max(cP/2, ∫P). In

the second case, Ò¥(f)‚g*R1π0,t~ä$… has the same SwanP as

g*R1π0,t~ä$…, namely cP, and Ò¥(f) is tame. So in both cases the

asserted inequalit holds.
7) At a point P which lies in D0€D1, and at which 2∫P = cP, Ò¥(f)

has break at most ∫P, and all breaks of g*R1π0,t~ä$… are cP/2. So

[Ka-GKM, 1.3] all breaks of Ò¥(f)‚g*R1π0,t~ä$… are at most

Max(cP/2, ∫P). This gives the asserted inequality.

To see that for all but at most four values of ¬ in äk≠ we have
the equality

SwanP(Ò¥(¬f)‚g*R1π0,t~ä$…) = Max(2∫P, cP),

we argue as follows. By its very definition, ∫P is odd. So the unique

break of g*R1π0,t~ä$…, namely cP/2 = ∫P, is odd. So each of the at

most two irreducible constituents Mi of g
*R1π0,t~ä$… as I(P)-

representation is purely of odd integer slope ∫P.

If åP is odd, then ∫P = åP is the order of pole of f at P. Then

by the Break Depression Lemma [Ka-GKM, 8.5.7.1], we see that for

each of the Mi, for all but one values of ¬ in äk≠,Ò¥(¬f)‚Mi has all its

breaks ∫P. As there are at most two Mi, there are at most two

exceptional ¬ in äk≠.
If åP is even, say åP = 2k, then in terms of a uniformizing

parameter z at P, the expansion of f at P can be written in the form

A2/z2k + B/z2k-1 + less polar terms,

with A and B in äk≠. If k > 1, then ¬2f is Artin-Schreier equivalent to

¬2B/z2k-1 + less polar terms,
and we repeat the above argument, to get at most two exceptional ¬

in äk≠. If k = 1, then ¬2f is Artin-Schreier equivalent to
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(¬2B - ¬A)/z + holomorphic.
By the Break Depression Lemma, there are at most two nonzero

values of ¬2B - ¬A we must avoid, so there are at most four nonzero
values of ¬ we must avoid. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....3333....11118888 A point (f, g) in j-1Twist(D0, D1)prelim(äk) lies in

j-1Twist(D0, D1) if and only if for each point P in (D0⁄D1)(äk), we

have the equality

SwanP(Ò¥(f)‚g*R1π0,t~ä$…) = Max(2∫P, cP),

or equivalently (cf. Lemma 11.3.10), the equality

SwanP(R
1πf,g~ä$…) = Max(2∫P, cP),

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....3333....11119999 Given a point (f, g) in j-1Twist(D0, D1)prelim(äk),

for all but finitely many values of ¬ in äk≠, (¬f, g) lies in

j-1Twist(D0, D1), and we have

SwanP(Ò¥(¬f)) = ∫P.

at every point P in D0(äk).

LLLLeeeemmmmmmmmaaaa 11111111....3333....22220000 Denote by j : V ¨ C the inclusion. Let (f, g) be a
point of

j-1Twist(D0, D1)(äk). Then we have the following results.

1) The canonical map of sheaves on C‚käk,

j~(R
1πf,g~ä$…) ¨ j*(R

1πf,g~ä$…)

is an isomorphism.
2) For every i, we have

Hc
i(V‚käk, R

1πf,g~ä$…) ¶ Hi(C‚käk, j*R
1πf,g~ä$…).

3) Hc
i(V‚käk, R

1πf,g~ä$…) = 0 for i ± 1,

4) dimHc
1(V‚käk, R

1πf,g~ä$…)= -çc(V‚käk, R
1πf,g~ä$…)

= -2çc((V‚käk)[1/g], ä$…)

-deg(D1) + ‡P in (D0 ⁄ D1)(äk)
Max(2∫P, cP)

= 4g - 4 + deg(D1) + ‡P in (D0 ⁄ D1)(äk)
(2 + Max(2∫P, cP)).

pppprrrrooooooooffff By Corollary 11.3.18, at each point P in (D0⁄D1)(äk), we have

SwanP(R
1πf,g~ä$…) = Max(2∫P, cP).

Since Max(2∫P, cP) > 0, we see from Lemma 11.2.16 that R1πf,g~ä$…)

is totally wild at P, and hence has no nonzero I(P)-invariants. This

proves 1). To prove 2), apply the functor Hi(C‚käk, \) to the

isomorphism of 1). Assertion 3) was already proven in Lemma
11.3.12, part 1), and 4) is simply Lemma 11.3.12, part 2), combined
with the exact value of the Swan conductors given by 11.3.18. QED
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LLLLeeeemmmmmmmmaaaa 11111111....3333....22221111 For (f, g) in j-1Twist(D0, D1)(kd), the unitarized L-

function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| Hc

1(V‚käk, R
1πf,g~ä$…(1))).

It is a polynomial of degree
4g - 4 + deg(D1) + ‡P in (D0 ⁄ D1)(äk)

(2 + Max(2∫P, cP)).

pppprrrrooooooooffff This is immediate from Lemma 11.3.20, part 2) above, and
the description of the unitarized L-function as

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

QED

LLLLeeeemmmmmmmmaaaa 11111111....3333....22222222 Denote by N the common dimension

N := dimHc
1(C‚käk, j*R

1πf,g~ä$…(1))

= dimHc
1(V‚käk, R

1πf,g~ä$…(1))

for (f, g) in j-1Twist(D0, D1)(äk). We have the inequality

N ≥ 4g - 4 + deg(D1) + 2deg(D0) + 2ù{P in D0(äk) with åP odd}.

pppprrrrooooooooffff 1) By Lemma 11.3.21 above, we have
N = 4g - 4 + deg(D1) + ‡P in (D0 ⁄ D1)(äk)

(2 + Max(2∫P, cP))

≥ 4g - 4 + deg(D1) + ‡P in D0(äk)
(2 + Max(2∫P, cP))

≥ 4g - 4 + deg(D1) + ‡P in D0(äk)
(2 + 2∫P).

Recall that for P in D0(äk), ∫P is either åP, if åP is odd, or is åP - 1,

if åP is even, so we have

2 + 2∫P = 2åP + 2∂åP,odd

and hence
‡P in D0(äk)

(2 + 2∫P) = ‡P in D0(äk)
( 2åP + 2∂åP,odd

)

= 2deg(D0) + 2ù{P in D0(äk) with åP odd}.

QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....3333....22223333 1) We always have N ≥ 10g + 7.
2) We have N ≥ 9 if any of the following three conditions is satisfied:
a) g ≥ 1,
b) deg(D0) + ù{P in D0(äk) with åP odd} ≥ 5,

c) deg(D1) ≥ 5.

pppprrrrooooooooffff 1) Using the fact that deg(D1) ≥ 2g + 3, we get

N ≥ 4g - 4 + deg(D1) + 2deg(D0) + 2ù{P in D0(äk) with åP odd}

≥ 4g - 4 + (2g + 3) + 2deg(D0) + 2ù{P in D0(äk) with åP odd}

= 6g - 1 + 2deg(D0) + 2ù{P in D0(äk) with åP odd}.

Now use the fact that deg(D0) ≥ 2g + 3. If deg(D0) is odd, then some P

in D0 has odd åP, so in this case we have
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2deg(D0) + 2ù{P in D0(äk) with åP odd} ≥ 2(2g+3) + 2 = 4g + 8.

If deg(D0) is even, then we must have deg(D0) ≥ 2g + 4, and we

again obtain the same inequality
2deg(D0) + 2ù{P in D0(äk) with åP odd} ≥ 4g + 8.

Thus we get
N ≥ 6g - 1 + 4g + 8 = 10g + 7.

2), case 2a) Obvious from 1).
2), case 2b) In this case, we have

N ≥ 4g - 4 + deg(D1) + 10

≥ 4g - 4 + (2g + 3) + 10
≥ 6g + 9.

2), case 2c) In this case we have
N ≥ 4g + 1 + 2deg(D0) + 2ù{P in D0(äk) with åP odd}.

If deg(D0) = 3, at least one P in D0 has åP odd, so we have

N ≥ 4g + 1 + 6 + 2 ≥ 4g + 9.
If deg(D0) ≥ 4, then 2deg(D0) ≥ 8, and we get the same inequality

N ≥ 4g + 9. QED

(11.3.24) Our situation now is this. On the space j-1Twist(D0, D1),

we have the lisse sheaf ˜, of rank
N = 4g - 4 + deg(D1) + ‡P in (D0 ⁄ D1)(äk)

(2 + Max(2∫P, cP)),

which is pure of weight zero, orthogonally self dual, and which
captures the L-function; for any finite extension kd /k, and any

point (f, g) in j-1Twist(D0, D1)(kd), we have

˜(f,g) = Hc
1(V‚käk, R

1πf,g~ä$…(1)) ¶ Hc
1(C‚käk, j*R

1πf,g~ä$…(1)),

and the unitarized L-function of Ef,g/kd(C) is given by

L(Ef,g/kd(C), T) = det(1 - TFrobkd
| H1(C‚käk, j*R

1πf,g~ä$…(1))).

TTTThhhheeeeoooorrrreeeemmmm 11111111....3333....22225555 Let k be a finite field of characteristic p = 2, and
… an odd prime. Fix a projective, smooth, geometrically connected
curve C/k, of genus denoted g. Fix on C two effective divisors D0 and

D1, both of degree ≥ 2g + 3. Then the group Ggeom for the lisse sheaf

˜ on the dense open set j-1Twist(D0, D1) is O(N), for N ≥ 10g + 7 the

rank of Gr0(˜).

pppprrrrooooooooffff We know by Corollary 1.20.3 that Ggeom is a semisimple

subgroup of O(N) with fourth moment M4 ≤ 3. For N ≥ 2, O(N) in its

standard representation has M4 = 3, cf. [Ka-LAMM, proof of 1.1.6 2)].

Since N ≥ 10g + 7, Ggeom has M4 = 3. By Larsen's Alternative

Theorem 2.2.2, Ggeom is either SO(N), or O(N), or finite.

We will first give a diophantine proof that Ggeom is not finite.

We will then give a middle convolution proof to show that Ggeom
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contains a reflection. Then the only remaining possibility for Ggeom
is O(N), and we are done.

To prove that Ggeom is not finite, we argue as follows. Over the

entire space L(D0)≠L(D1), we have the perverse sheaf M constructed

in 11.3.13. The sheaf of perverse origin on Ï := L(D0)≠L(D1),

˜ := Ó-dim(Ï)(M)(-1),

extends the lisse sheaf ˜ on j-1Twist(D0, D1). Its stalk at any point

(f, g) in (L(D0)≠L(D1))(äk) is

˜f,g := Hc
1(V‚käk, Ò¥(f)‚g*R1π0,t~ä$…)(1).

By the Scalarity Corollary 2.8.13, it suffices to exhibit a single finite
extension kd/k, and a single point (f, g) in (L(D0)≠L(D1))(kd) such

that no power of Frobkd
acts as a scalar on

Hc
1(V‚käk, Ò¥(f)‚g*R1π0,t~ä$…)(1).

For this, take for g the constant function 1. Then g*R1π0,t~ä$… is the

constant sheaf on V with value

g*R1π0,t~ä$… = R1π0,1~ä$… = H1(E0,1‚käk, ä$…),

for E0,1 the elliptic curve over k whose affine equation, ‰0,1, is

y2 + xy = x3 + 1.
So for g = 1, we have

˜f,1 := Hc
1(V‚käk, Ò¥(f))‚ä$…

H1(E0,1‚käk, ä$…)(1).

The curve E0,1 is ordinary, so no power of Frobenius on

H1(E0,1‚käk, ä$…)(1) is scalar. Suppose we can choose an f in some

L(D0)(kd) such that Hc
1(V‚käk, Ò¥(f)) is nonzero. Then no power of

Frobenius on ˜f,1 is scalar. [Indeed, over any field E, given any

integers n ≥ 1 and m ≥ 1, if A in GL(n, E) and B in GL(m, E) have
A‚B scalar, then both A and B are scalar, cf. [Ka-TLFM, 1.1.1].]

By Corollary 11.3.17 (bis), parts 1-3), we can choose a function
f in L(D0)(äk) with divisor of poles D0 such that

SwanP(Ò¥(f)) = ∫P

at every point P in D0(äk). We claim Hc
1(V‚käk, Ò¥(f)) is nonzero.

The sheaf Ò¥(f)) is lisse of rank one on V, so Hc
0(V‚käk, Ò¥(f)) = 0.

As Ò¥(f) is wildly, and hence nontrivially, ramified at all points of

D0, we have Hc
2(V‚käk, Ò¥(f)) = 0. So it suffices to show that

çc(V‚käk, Ò¥(f)) is nonzero. By the Euler Poincarïe formula, we have

-çc(V‚käk, Ò¥(f)) = -çc(V‚käk, ä$…) + ‡P in D0(äk)
SwanP(Ò¥(f))

= 2g - 2 + ù(D0⁄D1)(äk) + ‡P in D0(äk)
SwanP(Ò¥(f))

≥ -2 + ‡P in D0(äk)
(1 + SwanP(Ò¥(f)))
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= -2 + deg(D0) + ù{P in D0(äk) with åP odd}

≥ -2 + deg(D0) ≥ 1.

This concludes the proof that Ggeom is not finite.

((((11111111....4444)))) EEEEnnnndddd ooooffff tttthhhheeee pppprrrrooooooooffff ooooffff 11111111....3333....22225555:::: PPPPrrrrooooooooffff tttthhhhaaaatttt GGGGggggeeeeoooommmm ccccoooonnnnttttaaaaiiiinnnnssss

aaaa rrrreeeefffflllleeeeccccttttiiiioooonnnn
(11.4.1) The question is geometric, so we may at will replace k by
a finite extension of itself. Having done so, we may choose a k-valued
point (f, -g) in L(D0)≠L(D1) such that all three of the following

genericity conditions are satisfied, cf. Corollary 11.3.19 for the first
condition, Corollary 6.2.15 for the second condition, and [Ka-TLFM,
2.4.2] for the third condition.

1) (f, -g) lies in the dense open set j-1Twist(D0, D1), and

SwanP(Ò¥(f)) = ∫P
at every point P in D0(äk).

2) View g as a finite flat map of degree d1 : = deg(D1) from

C - D1 to !1. Then the restriction to !1 - CritValues(g) of g*ä$… is a

lisse sheaf, whose geometric monodromy group Ggeom is the full

symmetric group Sd1
, in its standard d1-dimensional permutation

representation. Local monodromy at each finite singularity (i.e., at

each critical value of g in !1) is a reflection, the action of a
transposition in Sd1

. Moreover, the sheaf g*ä$… has at least one finite

singularity.

3) The map g : C - D1 ¨ !1 separates the points of (D0 - D0€D1)(äk),

and for each point P in (D0 - D0€D1)(äk), the fibre g
-1(P) consists of

d1 distinct points äk-valued points. [This third condition is vacuous if

(D0 - D0€D1)(äk) is empty, i.e., if D0(äk) fi D1(äk).]

(11.4.2) The idea is to freeze f and g, and to consider the
restriction of ˜ to the one-parameter family

¬ ÿ (f, ¬ - g).

(11.4.3) Let us denote by Ì the sheaf on !1 which is this
restriction:

Ì := [¬ ÿ (f, ¬ - g)]*˜.

Then Ì is a sheaf of perverse origin on !1, being the pullback of the
sheaf of perverse origin ˜ on L(D0)≠L(D1), cf. [Ka-SMD, Proposition

7]. This means precisely that Ì has no nonzero punctual sections on

!1‚käk, and hence that Ì[1] is a perverse sheaf on !1.

(11.4.4) Whatever the value of ¬ in äk, the point (f, ¬ - g) lies in

j-1Twist(D0, D1)prelim(äk), and hence [Lemma 11.3.12, part 1)] we

have
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Hc
i(V‚käk, Ò¥(f)‚(¬ - g)*R1π0,t~ä$…)(1) = 0 for i ± 1.

(11.4.5) We denote by

U fi !1

the dense open set

U := [¬ ÿ (f, ¬ - g)]-1(j-1Twist(D0, D1)).

Thus Ì is lisse on U. To show that Ggeom contains a reflection, it

suffices to show that some local monodromy of Ì|U is a reflection.
Thus, to conclude the proof of Theorem 11.3.25, it suffices to prove
the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 11111111....4444....6666 Notations and hypotheses as above, !1 - U is
nonempty, and the local monodromy of Ì|U at each point of

(!1 - U)(äk) is a reflection.

pppprrrrooooooooffff For technical reasons, it is important to work on the possibly
slightly larger affine curve

V1 := C - D1.

Each ¬-g is holomorphic on V1‚käk , and makes V1‚käk a finite flat

covering of !1‚käk of degree deg(D1).

Let us denote by
j1 : V := C - (D0⁄D1) ¨ V1

the inclusion. At any point of V1 - V, i.e., at any point of D0 which

does not lie in D1, ¬ - g is holomorphic, and hence (¬ - g)*R1π0,t~ä$…

is tame, but Ò¥(f) is wild. So Ò¥(f)‚(¬ - g)*R1π0,t~ä$… is totally wild

at each point of V1 - V, and hence we have

Hc
i(V‚käk, Ò¥(f)‚(¬ - g)*R1π0,t~ä$…)(1)

¶ Hc
i(V1‚käk, (j1*Ò¥(f))‚(¬ - g)*R1π0,t~ä$…)(1).

We now use the projection formula for ¬ - g to rewrite

Hc
i(V1‚käk, (j1*Ò¥(f))‚(¬ - g)*R1π0,t~ä$…)(1)

¶ Hc
i(!1‚käk, ((¬-g)*(j1*Ò¥(f)))‚R1π0,t~ä$…)(1).

In terms of the sheaf Ì on !1, we have

Ì¬ := ˜f,¬-g = Hc
1(!1‚käk, ((¬-g)*(j1*Ò¥(f)))‚R1π0,t~ä$…)(1),

and the other Hc
i vanish.

Our next task is to relate the sheaf Ì, or more precisely the
perverse sheaf Ì[1], to an additive convolution. This will require a
certain amount of preparation.

On !1, the sheaves
 := g*(j1*Ò¥(f))

and

Ò := R1π0,t~ä$…
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are both middle extensions. On any dense open set on which it is
lisse,  has finite arithmetic monodromy (being the finite direct
image of a character of finite arithmetic order, Ò¥(f)) and is hence

pure of weight 0. In particular,  is the middle extension of a sheaf
with finite geometric monodromy, so is geometrically the direct sum
of geometrically irreducible middle extensions, say

geom ¶ ·i i.

Of these i, some have ∏, and some may not. But if we lump

together the i acccording as to whether or not they have ∏, we get

an arithmetic direct sum decomposition,
 = ∏ · not∏,

with

∏
geom := ·i such that i has ∏ i,

not∏
geom := ·i such that i does not have ∏ i.

The sheaf Ò is lisse of rank 2 and pure of weight 1 on ´m, its local

monodromy at 0 is a unipotent pseudoreflection, and its two I(‘)-
slopes are both 1/2.

The local monodromy of  at finite distance will be of essential
importance later.

LLLLeeeemmmmmmmmaaaa 11111111....4444....7777 The middle extension sheaf  := g*(j1*Ò¥(f)) on !1

has finite singularities. At each finite singularity of , its local
monodromy is a reflection.

pppprrrrooooooooffff Consider the map g : v1 := C - D1 ¨ !1. The local monodromy

of  := g*(j1*Ò¥(f)) at a point s in !1(äk), i.e., the attached I(s)-

representation, is the direct sum of the inductions of the local
mondromies of j1*Ò¥(f)) at the points in the fibre:

g*(j1*Ò¥(f)) as I(s)-representation

¶ ·points t in g-1(s) IndI(t)
I(s)(Ò¥(f) as I(t)-rep'n.)

At a point s in !1(äk) whose fibre contains a point P of
(D0 - D0€D1)(äk), it contains exactly one such point, and g is finite

etale over s. The sheaf j1*Ò¥(f) on C - D1 has local monodromy a

(wild) reflection at P, and is lisse of rank one at any other point in

the fibre g-1(s). So the local monodromy of  := g*(j1*Ò¥(f)) at s is

a wild reflection. Over a point s in !1(äk) whose fibre does not meet
(D0 - D0€D1)(äk), the sheaf j1*Ò¥(f) is lisse of rank one at every

point in the fibre, and so the local monodromy of  := g*(j1*Ò¥(f))

is the same as that of g*ä$…. This monodromy is trivial, if g is finite

etale over s, or it is a reflection, if s is one of the nonzero number of
critical values of g. QED for Lemma 11.4.7

We define perverse sheaves K, K∏, Knot∏, and L on !1 by
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K := (1/2)[1],
K∏ := ∏(1/2)[1],

Knot∏ := not∏(1/2)[1],

L := Ò(1)[1].
The perverse sheaf L is geometrically irreducible, lisse of rank 2 on
´m, and its local monodromy at 0 is a unipotent pseudoreflection. At

‘, both its I(‘)-slopes are 1/2. We remark that L has ∏, being a
geometrically irreducible middle extension of generic rank 2.

Becuause L has ∏, we can form both the ~ additive convolution

K*~L of K and L on !1, and their middle convolution K*midL on !1,

cf. 6.1.1-2.

LLLLeeeemmmmmmmmaaaa 11111111....4444....8888 1) The perverse sheaf K*~L on !1 is equal to

Ó-1(K*~L)[1].

2) On U, the sheaves Ó-1(K*~L) and Ì(1/2) are both lisse, pure of

weight -1, and have the same trace function.
3) On U, the perverse sheaves K*~L and Ì(1/2)[1] are geometrically

isomorphic, i.e., the lisse sheave Ó-1(K*~L)|U and Ì(1/2)|U are

geometrically isomorphic.

pppprrrrooooooooffff 1) We must show that Ó-i(K*~L) vanishes for i ± 1. This can

be checked fibre by fibre. At a point ¬ in äk, the stalk of Ó-i(K*~L) is

by definition the cohomology group

Hc
2-i(!1‚käk, ((t ÿ ¬ - t)*(g*(j1*Ò¥(f))))‚R1π0,t~ä$…)(3/2).

But for any sheaf ˆ on V1, here j1*Ò¥(f), we have

(t ÿ ¬ - t)*g*ˆ ¶ (¬ - g)*ˆ

on !1. This is just proper base change for the proper map g, and the
base change t ÿ ¬ - t, via the Cartesian diagram

id
V ¨ V

¬ -g d d g

!1 ¨ !1

tÿ ¬ - t.
So we can rewrite this stalk as

¶ Hc
2-i(!1‚käk, ((¬-g)*(j1*Ò¥(f)))‚R1π0,t~ä$…)(3/2).

We have already noted above (second paragraph of the proof of
11.4.6) that these groups vanish for i ± 1.

2) The above calculation of stalks shows that sheaves Ó-1(K*~L) and

Ì(1/2) have, fibre by fibre, isomorphic stalks. On the open set U,

these stalks have constant rank, so both Ó-1(K*~L) and Ì(1/2), being

sheaves of perverse origin, are lisse on U. The calculation of stalks
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shows that these lisse sheaves on U are both punctually pure, hence
pure, of weight -1.

3) As Ó-1(K*~L)|U and Ì(1/2)|U have isomorphic stalks, they have

the same trace function. By Chebotarev, they have isomorphic
semisimplifications as representations of π1(U), and hence a fortiori

they have isomorphic semisimplifications as representations of

π1
geom(U). As these lisse sheaves are both pure of weight -1, they

are already semisimple as representations of π1
geom(U). Hence they

are isomorphic as representations of π1
geom(U)., i.e, they are

geometrically isomorphic on U. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....4444....9999 On U, the perverse sheaf Ì(1/2)[1] is geometrically
isomorphic to the middle convolution K*midL.

pppprrrrooooooooffff By Theorem 6.5.4, with the roles of K and L interchanged, we

have an isomorphism of perverse sheaves on !1

Gr0(K*~L) ¶ K*midL.

On U, K*~L is itself (lisse and) pure of weight zero, so we get

(K*~L)|U ¶ (K*midL)|U.

Combine this with the geometric isomorphism
(Ì(1/2)[1](|U ¶ (K*~L)|U. QED

LLLLeeeemmmmmmmmaaaa 11111111....4444....11110000 The perverse sheaf K*midL on !1 is geometrically

semisimple and non-punctual, it has finite singularities, and all of its
local monodromies at finite singularities are reflections.
pppprrrrooooooooffff We have a direct sum decomposition of perverse sheaves

K = K∏ · Knot∏,

and hence a corresponding decomposition
K*midL = K∏*midL · Knot∏*midL.

We first claim that Knot∏*midL is lisse on !1. Indeed, the

sheaf Knot∏ is geometrically the direct sum of perverse sheaves of

the form Ò¥(åx)[1], with å in äk. For any perverse L which has ∏,

the perverse sheaf on !1‚käk

(Ò¥(åx)[1])*midL

is of the form
Ò¥(åx)‚(a constant sheaf)[1],

cf. the proof of Theorem 6.5.4, so in particular is lisse on !1‚käk.

Thus Knot∏*midL is of the form

(a lisse sheaf on !1)[1].
So we are reduced to showing that K∏*midL is geometrically

semisimple and non-punctual, that it has finite singularities, and
that all of its local monodromies at finite singularities are reflections.
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We have already proven in Lemma 11.4.7 above that the
middle extension sheaf  has finite singularities, and that its local
monodromy at each is a reflection. On the other hand, not∏ is

itself lisse on !1, being geometrically the direct sum of sheaves of
the form Ò¥(åx), with å in äk. So we infer from the direct sum

decomposition
 = ∏ · not∏

that ∏ is a middle extension sheaf which has finite singularities,

and that its local monodromy at each is a reflection.
We now apply Theorem 6.1.16. Because L has local monodromy

at 0 which is a unipotent pseudoreflection, while all the local
monodromies of ∏ at finite singularities are reflections, we find

that the perverse sheaf K∏*midL is geometrically semisimple and

non-punctual.
To compute the local monodromies of K∏*midL at its finite

singularities, we first note that L has only one finite singularity, at
0, so by Theorem 6.1.18 the finite singularities of K∏*midL are

located at the finite singularities of K∏. Since K∏ has finite

singularities, K∏*midL has finite singularities. Because the

singularity of L at 0 is a unipotent pseudoreflection, while the local
monodromy of K∏ at each of its finite singularities is a reflection, it

now follows from the Unipotent Pseudoreflection Input Corollary bis
6.1.20 that the local monodromy of K∏*midL at each finite

singularity is a reflection. QED

(11.4.11) We now obtain the desired Theorem 11.4.6.

CCCCoooorrrroooollllllllaaaarrrryyyy 11111111....4444....11112222 ((((==== TTTThhhheeeeoooorrrreeeemmmm 11111111....4444....6666)))) Denote by j : U fi !1 the
inclusion. Then

1) we have a geometric isomorphism of perverse sheaves on !1

(j*(Ì|U))(1/2)[1] ¶ K*midL,

2) !1 - U is nonempty,

3) the local monodromy of Ì|U at each point of (!1 - U)(äk) is a
reflection.
pppprrrrooooooooffff 1) Since K*midL is geometrically semisimple and non-

punctual, it is the middle extension of its restriction to any dense
open set, here U, where it is geometrically isomorphic to
(Ì|U)(1/2)[1] by Corollary 11.4.9.

2) We cannot have U = !1, otherwise K*midL would have no finite

singularities.
3) This is simply a restatement of the fact that the local
monodromy of K*midL at each finite singularity is a reflection. QED

This concludes the proof of Theorem 11.3.25. QED
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((((11112222....1111)))) FFFFiiiibbbbrrrreeeewwwwiiiisssseeee ppppeeeerrrrvvvveeeerrrrssssiiiittttyyyy:::: bbbbaaaassssiiiicccc pppprrrrooooppppeeeerrrrttttiiiieeeessss
(12.1.1) In earlier chapters, our main actors were ä$…-perverse

sheaves on separated schemes of finite type over a field k of
posititive characteristic p ± …. Most of the time, k was a finite field.
What happens if instead of working over a finite field k, we work
over a base scheme S, which we assume to be separated and of
finite type over Spec(#[1/…])?
(12.1.2) Let S/#[1/…] be a separated #[1/…]-scheme of finite type,
and let f : X ¨ S, or simply X/S if no confusion is possible, be a
separated S-scheme of finite type. Suppose given an object M in

Dbc(X, ä$…). For a field E, and an E-valued point s in S(E), we denote

by Xs,E/E the E-scheme which is the fibre of X/S over the E-valued

point s in S(E), by is,E : Xs,E ¨ X the "inclusion" of this fibre, and by

M | Xs,E the restriction (is,E)
*M of M to this fibre.

(12.1.3) We say that M is fibrewise perverse on X/S if for every
field E, and for every E-valued point s in S(E), M | Xs,E is perverse

on Xs,E. Since perversity is invariant under field extension, it is

equivalent, in this definition, to require "only" that the restriction of
M to every geometric fibre of X/S (i.e., to every Xs,E whose field E is

algebraically closed) be perverse. Or it is equivalent to let s run over
the points of the scheme S, and to test on the fibre Xs,˚(s), where

we view s as a ˚(s)-valued point of S.
(12.1.4) Instead of looking at all fields, or at all algebraically closed
fields, we can take any property PPPP of isomorphism classes of fields,
and look only at the restriction of M to all fibres Xs,E, E any field

with property PPPP, s any E-valued point of S. We say that M is PPPP-
fibrewise perverse on X/S if If M | Xs,E is perverse, whenever E is

any field with property PPPP, and s is any E-valued point of S.
(12.1.5) Taking for PPPP the property of being a finite field, we get
the notion of finite fibrewise perversity of M on X/S. Taking for PPPP
the property of having positive characteristic, we get the notion of
positive characteristic fibrewise perversity of M on X/S.
(12.1.6) Happily, for schemes of finite type over #[1/…], all these
notions coincide.

LLLLeeeemmmmmmmmaaaa 11112222....1111....7777 Let S/#[1/…] be a separated #[1/…]-scheme of finite
type, and f : X ¨ S a separated S-scheme of finite type. The

following conditions on an object M in Dbc(X, ä$…) are equivalent.

1) M is fibrewise perverse on X/S.
2) M is positive characteristic fibrewise perverse on X/S.
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3) M is finite fibrewise perverse on X/S.

pppprrrrooooooooffff It is trivial that 1) à 2) à 3). To show that 3) à 1), we argue
as follows. As noted in 12.1.3 above, it suffices to treat fibres Xs,˚(s),

for s a point of the scheme S. Replacing S by the closure s in S, we
reduce to the case when S is reduced and irreducible, and s is its
generic point ˙. Replacing S by a dense open set of itself, we may
further assume that the formation of the relative Verdier dual

DX/S(M) := RHom(M, f~ä$…,S),

for f : X ¨ S the structural morphism, commutes with arbitrary
base change on S [Ka-Lau, 1.1.7]. We then pick a nice stratification
of X which is adapted to both M and to.DX/S(M) Concretely, we pick

a partition of Xred into a finite disjoint union of locally closed
subschemes Zi, each of which is a connected, regular scheme, such

that for each cohomology sheaf Ój(M), each cohomology sheaf

Ój(DX/S(M)), and for each i, the restrictions Ój(M) | Zi and

Ój(DX/S(M)) | Zi are lisse on Zi. Further shrinking on S, we may

assume that S is regular and connected. For each i, denote by d(i)
the dimension of (Zi)˙, the generic fibre of Zi/S, and denote by

πi : Zi ¨ S

the structural morphism. Further shrinking on S, we may assume

that all the sheaves Rjπi~É… on S are lisse. Then we see from looking

at the stalks at ˙ that Rjπi~É… = 0 for j > 2d(i), and R2d(i)πi~É… is a

nonzero lisse sheaf on S. Therefore every fibre of Zi/S has dimension

d(i).
Fix a closed point s of S. Because S is of finite type over #[1/…],

˚(s) is a finite field. Now (Zi)s,˚(s) has dimension d(i). The perversity

of M | Xs,˚(s) means that for each integer j, we have the two

inequalities

dimSupp(Ój(M) | Xs,˚(s)) ≤ -j,

dimSupp(Ój(DX/S(M)) | Xs,˚(s)) ≤ -j.

Thus we see that for each pair (an index i, an integer j) such that
d(i) > -j,

we have

Ój(M) | (Zi)s,˚(s) is somewhere zero on (Zi)s,˚(s),

and

Ój(DX/S(M)) | (Zi)s,˚(s) is somewhere zero on (Zi)s,˚(s).

But both Ój(M) | Zi and Ój(DX/S(M)) | Zi are lisse on the regular

connected scheme Zi, so if they vanish anywhere they are

identically zero. Therefore we find that for each pair (an index i, an
integer j) such that
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d(i) > -j,
we have

Ój(M) | Zi = 0, and Ój(DX/S(M)) | Zi = 0.

Now restrict to the generic fibre (Zi)˙ of Zi/S. This generic fibre

is regular and connected, being a limit of open sets of Zi, and its

dimension is d(i). Therefore the vanishings

Ój(M) | (Zi)˙ = 0, and Ój(DX/S(M)) | (Zi)˙ = 0,

which hold whenever d(i) > -j, show that M | X˙ is perverse, as

required. QED

RRRReeeemmmmaaaarrrrkkkk 11112222....1111....8888 A similar argument gives the following more
general result, whose proof is left to the reader.

LLLLeeeemmmmmmmmaaaa 11112222....1111....9999 Let S be a noetherian separated #[1/…]-scheme
which is excellent, f : X ¨ S a separated morphism of finite type,

and M an object in Dbc(X, ä$…). Then the set of points s in S such

that M | Xs is perverse on Xs is constructible.

((((11112222....2222)))) UUUUnnnniiiiffffoooorrrrmmmmiiiittttyyyy rrrreeeessssuuuullllttttssss ffffoooorrrr mmmmoooonnnnooooddddrrrroooommmmyyyy;;;; tttthhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg
(12.2.1) Suppose now that S is a separated scheme of finite type
over #[1/…], and that f : X ¨ S is a separated morphism of finite
type which is smooth and surjective, with geometrically connected
fibres, all of some common dimension n ≥ 1. We suppose given
1) an open set U fi X which meets every geometric fibre of X/S,
2) a field embedding “: ä$… fi ^,

3) an object M in Dbc(X, ä$…),

4) an integer w,
5) an integer N ≥ 1,
6) a Zariski closed ä$…-algebraic subgroup G fi GL(N).

(12.2.2) We make the following hypotheses G1), G2), G3), M1), M2),
M3), MG1), and MG2) about this plethora of data.
(12.2.3) We begin with three hypotheses on G.

G1) The (not necessarily connected) algebraic group G is semisimple,
in the sense that its identity component is semisimple.

G2) G is an irreducible subgroup of GL(N), i.e., the given N-
dimensional ä$…-representation of G is irreducible.

G3) The normalizer of G in GL(N) is ´m\G.

(12.2.4) We next give three hypotheses on M.

M1) M is fibrewise perverse on X/S, and “-mixed of weight ≤ w.
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(12.2.5) For each finite field E and for each point s in S(E), we
denote by Ms,E the perverse sheaf on Xs,E defined by

Ms,E := M | Xs,E,

and by Us,E fi Xs,E the dense open set U™Xs,E.

M2) Ms,E has lisse cohomology sheaves on Us,E, i.e., Ms,E | Us.E is of

the form ˜s,E[n], for a lisse sheaf ˜s,E on Us,E.

(12.2.6) Recall that M is “-mixed of weight ≤ w. Thus ˜s,E is

mixed of weight ≤ w-n. Form the lisse sheaf Grw-n(˜s,E) := the

weight w-n quotient of ˜s,E, and then form the lisse sheaf

Grw-n(˜s,E)ncst := the nonconstant quotient of Grw-n(˜s,E‚), cf.

1.10.3.

M3) Grw-n(˜s,E)ncst has rank N.

(12.2.7) We now give a hypothesis involving M and G.

MG1) Under the representation ®s,E : π1
arith(Us,E) ¨ GL(N, ä$…)

which "is" the lisse sheaf Grw-n(˜s,E)ncst, the group

Ggeom,s,E := the Zariski closure of ®s,E(π1geom(Us,E)) in GL(N)

is conjugate in GL(N) to G.

(12.2.8) As explained in [Ka-Sar-RMFEM, 9.6.3], it follows from
these axioms that for each finite field E and for each point s in S(E),

there exists an …-adic unit ås,E in ä$…
≠, with

|“(ås,E)|^ = Sqrt(ùE)n-w,

such that after replacing Grw-n(˜s,E)ncst by its constant field twist

Grw-n(˜s,E)ncst‚(ås,E)
deg = Gr0(˜s,E‚(ås,E)

deg))ncst,

the following condition holds:

MG2) Under the representation ®s,E,å : π1
arith(Us,E) ¨ GL(N, ä$…)

which "is" the lisse sheaf

Gr0(˜s,E‚(ås,E)
deg)ncst = Grw-n(˜s,E)ncst‚(ås,E)

deg,

we have the inclusion

®s,E,å(π1arith(Us,E)) fi Ggeom,s,E(ä$…).

[This makes sense, because constant field twists don't alter Ggeom.]

(12.2.9) So we could add to the initial data 12.2.1.1-6 the
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supplementary data 12.2.1.7,

7) for each finite field E and for each point s in S(E), a choice of an

…-adic unit ås,E in ä$…
≠, with |“(ås,E)|^ = Sqrt(ùE)n-w,

and impose condition MG2). This approach, where we specify the
constants ås,E as part of the data, will be used in the next section,

where we formulate and prove the Uniformity Theorem 12.3.3.
However, in applying the Uniformity Theorem it is more convenient
not to choose the constants ås,E in advance.

RRRReeeemmmmaaaarrrrkkkk 11112222....2222....11110000 In the applications we have in mind, the twist

˜s,E‚(ås,E)
deg) turns out to be the (possibly half-integral) Tate

twist ˜s,E((w-n)/2). When this is the case, and w-n is even, we

might as well replace the original M by M((w-n)/2), which has the
effect of making all the ås,E become 1, and of slightly simplifying

the story. But already when w-n is odd, there may be no global
"half a Tate twist", cf. [Ka-Sar-RMFEM, 9.9.6], though there is
always "half a Tate twist" up to a character of finite order [Ka-Sar-
RMFEM, 9.9.7]. We have taken the more general ås,E formulation,

following [Ka-Sar-RMFEM, 9.9.3 and 9.6.10], with an eye to later
possible applications.

((((11112222....3333)))) TTTThhhheeee UUUUnnnniiiiffffoooorrrrmmmmiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm
(12.3.1) We continue to work in the "basic setting" of the previous
section 12.2, with the constants ås,E chosen in advance. Using “, we

form the complex Lie group G(^), and choose in it a maximal

compact subgroup K. We denote by Kù the space of conjugacy

classes in K, and by µù the Borel measure of total mass one on Kù

which is the direct image from K of its Haar measure of total mass
one µHaar. For each finite field E, for each point s in S(E), and for

each point x in Us,E(E), we denote by FrobE,s,x its (geometric, as

always) Frobenius conjugacy class in π1
arith(Us,E). We denote by

ø(E, s, å, x) in Kù

the conjugacy class of “(®s,E,å(FrobE,s,x))
ss.

(12.3.2) Recall [Ka-Sar-RMFEM, proof of 9.2.6, 5) and 9.3.3] that
there exists a constant A(U/S) such that Us,E(E) is nonempty if

ùE > A(U/S)2. Whenever ùE > A(U/S)2, we denote by
(12.3.2.1) µ(E, s, å) := (1/ùUs,E(E)) ‡x in Us,E(E)

∂ø(E, s, å,x)

the probability measure on Kù obtained by averaging over the
Frobenius conjugacy classes, as x runs over Us,E(E).

UUUUnnnniiiiffffoooorrrrmmmmiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm 11112222....3333....3333 Hypotheses and notations as above,
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suppose we are in the basic setting of the previous section 12.2. Then

for any sequence of data (Ei, si, åi) in which each ùEi > A(U/S)
2 and

in which ùEi is strictly increasing, the measures µ(Ei, si, åi) on Kù

converge weak * to µù, i.e., for any continuous ^-valued central
function f on K, we have

—K fdµHaar = limi ¨ ‘ —K fdµ(Ei, si, åi)

= limi ¨ ‘ (1/ùUsi,Ei
(Ei)) ‡x in Usi,Ei

(Ei)
f(ø(Ei, si, åi, x)).

More precisely, there exist constants A and C such that for any
irreducible nontrivial irreducible unitary representation Ú of K, and

for any data (E, s, å) with ùE > 4A2, we have the estimates

2(ùE)n ≥ ùUs,E(E) ≥ (1/2)(ùE)n,

|‡x in Us,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ Cdim(Ú)(ùE)n-1/2,

and
|—
K
Trace(Ú)dµ(E, s, å)} ≤ 2Cdim(Ú)/Sqrt(ùE).

pppprrrrooooooooffff We will prove the "more precise" form of the theorem, in the
form of the next to last inequality

|‡x in Us,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ Cdim(Ú)(ùE)n-1/2,

which trivially (use ùUs,E(E) ≥ (1/2)(ùE)n) implies the last one.

We are free to pick any stratification {Si}i of S, i.e., to write

Sred as a finite disjoint union of locally closed subschemes, each of
finite type over #[1/…], and then to prove the theorem separately
over each Si, with suitable constants Ai and Ci over Si. Once we

have done this, we simply take A := Supi(Ai), and C := Supi(Ci).

This allows us to reduce to the case when S is normal and
connected. Suppose now that S is normal and connected. If there
were a single lisse sheaf Ì on U whose restriction to each Us,E were

a constant field twist of Gr0(˜s,E‚(ås,E)
deg))ncst, this theorem

would be a special case of [Ka-Sar-RMFEM, 9.6.10], applied with its
Ï = our Ì, its X = our U, with the constants

A := A(U/S), C := C(U/S, Ì)
of [Ka-Sar-RMFEM, 9.3.3 and 9.3.4]. The problem is that a priori no
such Ì need exist. To get around this problem, we argue as follows.

Since S is normal and connected, and X/S is smooth with
geometrically connected fibres, X is itself normal and connected.
Pick a dense open set V fi X on which M has lisse cohomology
sheaves. After shrinking on S, we may assume that V maps onto S.
Then on each geometric fibre of V/S, M has lisse cohomology
sheaves. Being perverse on each fibre with lisse cohomology sheaves,
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only Ó-n(M) is possibly nonzero on each fibre. Thus Ó-j(M) | V = 0

for j ± n (just look fibre by fibre), and Ó-n(M) is lisse on V.

The lisse sheaf ˜ := Ó-n(M) on V is “-mixed, of weight ≤ w - n,
so it is a successive extension of constructible, punctually pure
sheaves ˜i, each punctually pure of some weight wi ≤ w - n.

Shrinking on V, we may assume that each ˜i is itself lisse on V.

Once again shrinking on S, we once again have V/S surjective.
So it suffices to treat the case when S is normal and connected,

and when we have a dense open set V fi X with V/S surjective and
with M | V of the form ˜[n], with ˜ a lisse sheaf on V which is a
successive extension of lisse pure sheaves. Replacing V by V™U, we
may assume further that V fi U.

Further shrinking S, we may assume that for
f : V ¨ S

the structural morphism, all the sheaves

Rif*(any irreducible Jordan-Holder constituent of ˜)

are lisse on S, and of formation compatible with change of base on S.

Now consider the semisimplification ˜ss of ˜ as a lisse sheaf
on V. It is a sum of irreducible lisse sheaves, each pure of some
weight ≤ w - n. Denote by

Ì := ˜ss(wt = w-n)

the direct summand of ˜ss which is the sum of all those irreducible
constituents which are pure of weight w-n.

Denote by
Ìncst

the direct summand of Ì which is the sum of those irreducible
summands ˆ of ˜ for which

f*(ˆ) = 0.

Denote by
Ìcst

the direct summand of ˜ss(wt = w-n) which is the sum of those
irreducible summands ˆ of ˜ for which

f*(ˆ) ± 0.

So we tautologically have a direct sum decomposition
Ì = Ìcst · Ìncst.

We will show
KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 11112222....3333....4444 The lisse sheaf

Ìncst := ˜ss(wt = w-n)ncst
on V has the property that its restriction to each arithmetic fibre

Vs,E of V/S is a constant field twist of Gr0(˜s,E‚(ås,E)
deg)ncst.

Let us temporarily admit the truth of the Key Lemma. Then
we finish the proof as follows. As observed earlier, we can apply [Ka-
Sar-RMFEM, 9.6.10] to the sheaf Ìncst on V/S to conclude that
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whenever ùE > 4A(V/S)2, we have the estimate

|‡x in Vs,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ Cdim(Ú)(ùE)n-1/2,

for C the constant C(V/S, Ìncst). We now explain how to infer from

this estimate an similar estimate when the sum is taken over
Us,E(E) instead of "just" over Vs,E(E).

Consider the complement U - V of V in U. This is a closed subset
of U, which we regard as a closed reduced subscheme of U. Since
both U and V meet every fibre of X/S in an open and hence dense
set, we see that (U-V)/S has all its fibres of dimension ≤ n-1.
Let us denote by

π : U - V ¨ S

the projection. The sheaves Riπ~ä$… on S are constructible, and they

vanish for i > 2n-2. So we have the a priori inequality

0 ≤ ùUs,E(E) - ùVs,E(E) ≤ B(ùE)n-1,

for B the constant

B := Sups in S (rank of (·iR
iπ~ä$…)s).

From the trivial inequality
| Trace(Ú(ø(E, s, å, x)))| ≤ dim(Ú),

we get the trivial estimate

|‡x in Us,E(E) - Vs,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ Bdim(Ú)(ùE)n-1/2.

Adding this to the above estimate for the sum over V, we get

|‡x in Vs,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ (B+C)dim(Ú)(ùE)n-1/2,

as required, with the same constant A, but with C replaced by B+C.

It remains to prove the Key Lemma.
pppprrrrooooooooffff ooooffff tttthhhheeee KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 11112222....3333....4444 For any irreducible consituent ˆ
of Ì with f*ˆ ± 0, the adjunction map

f*f*ˆ ¨ ˆ

is an isomorphism. Indeed, it is injective (use the base change
hypothesis, and look fibre by fibre, where this map is the inclusion

of the π1
geom(Vs,E)-invariants in the π1

arith(Vs,E)-representation

which "is" ˆ | Vs,E), and it is surjective (its source is nonzero, and

its target is irreducible).
Thus in the decomposition

Ì = Ìcst · Ìncst,

we have

Ìcst = f*f*Ì,

f*Ìncst = 0.
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For each arithmetic fibre Vs,E of V/S, with structural map

fs,E : Vs,E ¨ Spec(E),

obtain a direct sum decomposition
Ì | Vs,E = Ìcst | Vs,E · Ìncst | Vs,E,

in which, by the base change hypothesis, we have

Ìcst | Vs,E = (fs,E)
*(fs,E)*(Ì | Vs,E),

(fs,E)*(Ìncst | Vs,E) = 0.

To go further, recall that for any lisse pure sheaf  on Vs,E, we

have a direct sum decomposition

 = cst · ncst
as a direct sum of a geometrically constant lisse sheaf cst and of a

lisse sheaf ncst none of whose irreducible constituents overäE is

geometrically constant, cf. Lemma 1.10.3. In terms of the structural
map

fs,E : Vs,E ¨ Spec(E),

it is the unique decomposition with

cst = (fs,E)
*(fs,E)*,

and
(fs,E)*ncst = 0.

Since , being pure, is geometrically semisimple, it follows that the
formation of cst and of ncst commutes with arithmetic

semisimplification:

(ss)cst = (cst)
ss,

(ss)ncst = (ncst)
ss.

Applying this decomposition with  taken to be Ì | Vs,E, we see

that
(Ì | Vs,E)cst = Ìcst | Vs,E,

(Ì | Vs,E)ncst = Ìncst | Vs,E,

and

((Ì | Vs,E)
ss)cst = (Ìcst | Vs,E)

ss,

((Ì | Vs,E)
ss)ncst = (Ìncst | Vs,E)

ss.

Applying this decomposition with  taken to be Grw-n(˜s,E),

we get

Grw-n(˜s,E) = (Grw-n(˜s,E))cst · (Grw-n(˜s,E))ncst
.

Passing to arithmetic semisimplification, we obtain

((Grw-n(˜s,E))
ss)ncst = ((Grw-n(˜s,E))ncst)

ss

=(Grw-n(˜s,E))ncst,

the last equality because (Grw-n(˜s,E))ncst is geometrically, and

hence arithmetically, irreducible.
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On the other hand, Ì := ˜ss(wt = w-n) on each arithmetic
fibre Vs,E of V/S has the same characteristic polynomials of

Frobenius as does Grw-n(˜s,E). Hence by Chebotarev we have

(Ì | Vs,E)
ss ¶ (Grw-n(˜s,E))

ss.

Passing to ncst parts, we get

((Ì | Vs,E)
ss)ncst ¶ ((Grw-n(˜s,E))

ss)ncst
.

As we have seen just above, the source is

((Ì | Vs,E)
ss)ncst = (Ìncst | Vs,E)

ss,

and the target is

((Grw-n(˜s,E))
ss)ncst ¶ (Grw-n(˜s,E))ncst,

Thus we obtain an isomorphism

(Ìncst | Vs,E)
ss ¶ (Grw-n(˜s,E))ncst.

As the target is geometrically and hence arithmetically irreducible,
so is the source, and hence Ìncst | Vs,E is itself arithmetically

irreducible. So we end up with an isomorphism

Ìncst | Vs,E ¶ (Grw-n(˜s,E))ncst.

But (Grw-n(˜s,E))ncst is a constant field twist of

(Gr0(˜s,E‚(ås,E)
deg))ncst (because |“(ås,E)|^ = Sqrt(ùE)n-w). This

concludes the proof of the Key Lemma 12.3.4, and with it the proof
of the Uniformity Theorem 12.3.3. QED

((((11112222....4444)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ooooffff tttthhhheeee UUUUnnnniiiiffffoooorrrrmmmmiiiittttyyyy TTTThhhheeeeoooorrrreeeemmmm ttttoooo ttttwwwwiiiisssstttt
sssshhhheeeeaaaavvvveeeessss
(12.4.1) In previous chapters, we worked over a finite field k in
which … is invertible. We fixed a choice of square root of char(k) in
ä$…, so that we could form Tate twists by half-integers. We worked

with "standard input", cf. 1.15.4 Thus we fixed
an integer m ≥ 1,

a perverse sheaf K on !m/k,
an affine k-scheme V/k of finite type,

a k-morphism h : V ¨ !m,
a perverse sheaf L on V/k,
an integer d ≥ 2,
a space of functions (Ï, †) on V, i.e., a finite-dimensional k-

vector space Ï and a k-linear map

† : Ï ¨ Homk-schemes(V, !
m).

(12.4.2) We made the following four hypotheses on these data.

1) K is “-mixed of weight ≤ 0, and Gr0(K), the weight 0 quotient of

K, is geometrically irreducible on !m/k.

2) L is “-mixed of weight ≤ 0, and Gr0(L), the weight 0 quotient of L,
is geometrically irreducible on V/k.
3) (Ï, †) is d-separating, and contains the constants.
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4) The #-graded vector space

H*c((V≠!
m)‚äk, pr1

*L‚pr2
*K)

is concentrated in degree ≤ m.
(12.4.3) We showed in 1.4.4 and 1.5.11 that the object
M = Twist(L, K, Ï, h) on the space Ï is perverse, and that after we
restricted M to a suitable dense open set U of Ï, M | U became
˜(m/2)[dimÏ], for a lisse ä$…-sheaf ˜ on U which is “-mixed of

weight ≤ 0.
(12.4.4) Let us say that we have "strong standard input" if in
addition we have the following two conditions 5) and 6):
5) d ≥ 4,

6) Gr0(K) is not geometrically constant.

(12.4.5) When we have strong standard input, we showed in

1.15.6 that Gr0(˜)ncst was geometrically irreducible, and gave in

2.2.3 some general results about its geometric monodromy.
(12.4.6) In this finite field situation, where we have Tate twists by
half-integers at our disposal, there is no greater generality attained
if instead of the six hypotheses above, we instead pick two integers a
and b, and replace the hypotheses 1), 2), and 6) of 12.2.1 above by
the following trivial variants 1a), 2b), 6a).

1a) 1) K is “-mixed of weight ≤ a, and Gra(K), the weight a quotient

of K, is geometrically irreducible on !m/k.

2b) L is “-mixed of weight ≤ b, and Grb(L), the weight b quotient of
L, is geometrically irreducible on V/k.

6a) Gra(K) is not geometrically constant.

(12.4.7) Indeed, K satisfies 1) and 6) if and only if K(-a/2) satisfies
1a) and 6a), and L satisfies 2) if and only if L(-b) satisfies 2b). And
we have the trivial relation between the corresponding twist
sheaves

M := Twist(L, K, Ï, h)
and

Ma,b := Twist(L(-b/2), K(-a/2), Ï, h),

namely
Ma,b = M(-(a+b)/2).

(12.4.8) Let us say that when 1a), 2b), 3), 4), 5), and 6a) are
satisfied, we have "strong standard input of type (a, b)". Thus our
earlier notion of strong standard input now becomes "strong
standard input of type (0,0)". The operation

(K L) ÿ (K(-a/2), L(-b/2))
carries us from strong standard input of type (0,0) to that of type
(a, b).
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(12.4.9) On a dense open set U fi Ï on which M, and hence Ma,b
as well, have lisse cohomology sheaves, we have

M | U = ˜(m/2)[dimÏ],
with ˜ lisse on U, and “-mized of weight ≤ 0, and we have

Ma,b | U = ˜a,b(m/2)[dimÏ],

with
˜a,b = ˜(-(a+b)/2)

“-mixed of weight ≤ a+b. Our results about the geometric

monodromy of Gr0(˜)ncst now become results about the geometric

monodromy of Gra+b(˜a+b)ncst.

(12.4.10) We now formulate a relative version of the notion of
strong standard input of type (a, b). We work over an normal and
connected affine #[1/…]-scheme S = Spec(A) which is of finite type
over #[1/…]. We fix two integers a and b. We suppose given

an integer m ≥ 1,

an object K in Dbc(!
m
S, ä$…) which is “-mixed of weight ≤ a

and which is fibrewise perverse on !m/S,
an affine S-scheme V/S of finite type,

an S-morphism h : V ¨ !m,

an object L in Dbc(V, ä$…).which is “-mixed of weight ≤ b and

which is fibrewise perverse on V/S,
an integer d ≥ 2,
a space of functions (Ï, †) on V, i.e., a locally free A-module of

finite rank Ï and an A-linear map

† : Ï ¨ HomS-schemes(V, !
m).

(12.4.11) We say that this is standard input of type (a, b) [resp.
strong standard input of type (a, b)] relative to S if for every finite
field E, and for every s in S(E), the pullbacks of these data to the
appropriate arithmetic fibres over S, to wit,

Ks,E on (!m)s,E = !m/E,

hs,E : Vs,E ¨ (!m)s,E = !m/E,

Ls,E on Vs,E
the integer d ≥ 2,
(Ïs,E, †s,E) as a space of functions on Vs,E,

constitute standard input of type (a, b) [resp. strong standard input
of type (a, b)].
(12.4.12) Given strong standard input of type (a,b) relative to S, we
form the twist sheaf M = Twist(L, K, Ï, h) on Ï, defined exactly as
in 1.3.3, except that we work over S rather than over k. By proper
base change and 1.4.4, part 4), applied to each arithmetic fibre over
S, we see that M is fibrewise perverse on Ï/S, and (by 1.5.11) “-
mixed of weight ≤ a + b + dimÏ - m.
(12.4.13) Let (N, G) be a pair consisting of an integer N ≥ 1, and a
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Zariski closed ä$…-algebraic subgroup G fi GL(N) which satisfies the

conditions G1), G2), and G3) of 12.2.3. Thus G is an irreducible,
semisimple (not necessarily connected) ä$…-algebraic subgroup of

GL(N) whose normalizer in GL(N) is ´m\G.

(12.4.14) Viewing Ï as an affine space over S, let U fi Ï be an open
set which meets every geometric fibre of Ï/S. We say that strong
standard input of type (a,b) relative to S gives uniform output of
type (U, N, G) relative to S if the following two conditions hold.
1) On each arithmetic fibre Us,E of U/S, Ms,E | Us,E has lisse

cohomology sheaves.
2) On each arithmetic fibre Us,E of U/S, write

Ms,E | Us,E ¶ ˜s,E[dimÏ], with ˜s,E a lisse sheaf on Us,E which is

“-mixed of weight ≤ a+b-m. Form the lisse sheaf

Gra+b-m(˜s,E)ncst.

This lisse sheaf on Us,E has rank N, and its geometric monodromy

group Ggeom,s,E is (conjugate in GL(N) to) G.

(12.4.15) Suppose we start with strong standard input of type (a, b)
relative to S, and suppose it gives uniform output of type (U, N, G)
relative to S. For each finite field E, and for each s in S(E), choose

[Ka-Sar-RMFEM, 9.6.3] an …-adic unit ås,E in ä$…
≠, with

|“(ås,E)|^ = Sqrt(ùE)m-a-b,

such that after replacing Gra+b-m(˜s,E)ncst by its constant field

twist

Gra+b-m(˜s,E)ncst‚(ås,E)
deg = Gr0(˜s,E‚(ås,E)

deg))ncst,

the following condition holds:

MG2) Under the representation ®s,E,å : π1
arith(Us,E) ¨ GL(N, ä$…)

which "is" the lisse sheaf

Gr0(˜s,E‚(ås,E)
deg))ncst = Gra+b-m(˜s,E)ncst‚(ås,E)

deg,

we have the inclusion

®s,E,å(π1arith(Us,E)) fi Ggeom,s,E(ä$…).

(12.4.16) Pick a maximal compact subgroup K of the complex Lie
group G(^). Then the Uniformity Theorem 12.3.3 applies to the
situation S = S, X/S = Ï/S of relative dimension n = dimÏ, U, “, M,

w = a + b + dimÏ - m, N, G. We denote by Kù the space of

conjugacy classes in K, and by µù the Borel measure of total mass

one on Kù which is the direct image from K of its Haar measure of
total mass one µHaar. For each finite field E, for each point s in S(E),

and for each point x in Us,E(E), we denote by FrobE,s,x its Frobenius
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conjugacy class in π1
arith(Us,E). We denote by

ø(E, s, å, x) in Kù

the conjugacy class of “(®s,E,å(FrobE,s,x))
ss. Whenever Us,E(E) is

nonempty (a condition which is automatic is ùE > A(U/S)2), we
denote by

µ(E, s, å) := (1/ùUs,E(E)) ‡x in Us,E(E)
∂ø(E, s, å,x)

the probability measure on Kù obtained by averaging over the
Frobenius conjugacy classes, as x runs over Us,E(E).

(12.4.17) Applying the Uniformity Theorem 12.3.3, we obtain the
following result.

UUUUnnnniiiiffffoooorrrrmmmm OOOOuuuuttttppppuuuutttt TTTThhhheeeeoooorrrreeeemmmm 11112222....4444....11118888 Suppose we start with strong
standard input of type (a, b) relative to S, and suppose it gives
uniform output of type (U, N, G) relative to S. For each finite field E

with ùE > A(U/S)2, and for each s in S(E), form the probability

measure on Kù given by
µ(E, s, å) := (1/ùUs,E(E)) ‡x in Us,E(E)

∂ø(E, s, å,x).

For any sequence of data (Ei, si, åi) in which each ùEi > A(U/S)
2

and in which ùEi is strictly increasing, the measures µ(Ei, si, åi) on

Kù converge weak * to µù, i.e., for any continuous ^-valued central
function f on K, we have

—K fdµHaar = limi¨ ‘(1/ùUsi,Ei
(Ei)) ‡x in Usi,Ei

(Ei)
f(ø(Ei, si, åi, x)).

More precisely, there exist constants A and C such that for any
irreducible nontrivial irreducible unitary representation Ú of K, and

for any data (E, s, å) with ùE > 4A2, we have the estimates

2(ùE)n ≥ ùUs,E(E) ≥ (1/2)(ùE)n,

|‡x in Us,E(E)
Trace(Ú(ø(E, s, å, x)))| ≤ Cdim(Ú)(ùE)n-1/2,

and
|—
K
Trace(Ú)dµ(E, s, å)} ≤ 2Cdim(Ú)/Sqrt(ùE).

CCCCoooorrrroooollllllllaaaarrrryyyy 11112222....4444....11119999 Suppose we are in the special case
S = Spec(#[1/…D]) for some nonzero integer D of the above Theorem
12.4.18. For each prime power q which is prime to …D and which

satisfies q > A(U/S)2, denote by staut the unique point in S(Éq), by

UÉq
the fibre Ustaut,Éq

of U/S above Éq, and by µq the probability

measure on Kù given by
µq := µ(Éq, staut, å)

:= (1/ùUÉq
(Éq)) ‡x in UÉq

(Éq)
∂ø(Éq, staut, å, x).

Then the measures µq on Kù converge weak * to µù, i.e., for any
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continuous ^-valued central function f on K, we have

——K fdµHaar = limq ¨ ‘ —K fdµq
= limq ¨ ‘(1/ùUÉq(Éq)) ‡x in UÉq

(Éq)
f(ø(Éq, staut, å, x)).

More precisely, there exist constants A and C such that for any
irreducible nontrivial irreducible unitary representation Ú of K, and

for any prime power q > 4A2 which is prime to …D, we have the
estimates

2qn ≥ ùUÉq
(Éq) ≥ (1/2)qn,

|‡x in UÉq
(Éq)

Trace(Ú(ø(Éq, staut, å, x)))| Cdim(Ú)qn-1/2

and
|—
K
Trace(Ú)dµq} ≤ 2Cdim(Ú)/Sqrt(q).

((((11112222....5555)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo mmmmuuuullllttttiiiipppplllliiiiccccaaaattttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr ssssuuuummmmssss
(12.5.1) We first recall the global incarnation of the Kummer

sheaves Ò® on ´m over a finite field E, ® being a ä$…
≠-valued

nontrivial character of E≠ of some given order. Given ®, denote by b
the number of roots of unity in the field $(®). Thus b is an even
integer, equal to the order of ® if order(®) is even, otherwise equal to
2≠order(®).
(12.5.2) To make the global construction, denote by ”b(X) in #[X]

the b'th cyclotomic polymomial. We write #[Ωb] for the ring

#[X]/(”b(X)). Its fraction field is the b'th cyclotomic field

$[Ωb] = $(Ωb), and #[Ωb] is the ring of integers in $(Ωb).

(12.5.3) We pick a prime number …, and work over the ring
R := #[Ω√][1/…b].

The group µb(R) of b'th roots of unity in R is the cyclic group of

order b generated by Ωb. [Because b is even, µb(R) is the group of all

roots of unity in R.] Over R, we have the group-scheme

´m,R := Spec(R[t, t-1]).

By means of the b'th power map
[b] : ´m,R ¨ ´m,R,

t ÿ tb,
´m,R becomes a finite etale galois covering of itself, with group

µb(R). This exhibits the group µb(R) as a quotient of π1(´m,R):

canb : π1(´m,R) n µ√(R).

(12.5.4) Fix a nontrivial R≠-valued character ç of µb(R), i.e., a

group homomorphism
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ç : µb(R) ¨ µb(R) fi R≠.

In the case that will be of interest later, ç will either be faithful,
i.e., have order b, or, if b/2 is odd, ç might instead have order b/2.
In both of these cases, b is the number of roots of unity in the
field $(ç), generated over $ by the values of ç.
(12.5.5) We denote by ç2 the quadratic character, i.e., the unique

nontrivial character of order two of µb(R). We will later have

occassion to consider both ç and ç≠ç2.

(12.5.6) Denote by äç := 1/ç the "conjugate" character. Denote by

Òç the R≠-valued character of π1(´m,R) defined as äç«can√. This

primordial Kummer sheaf Òç is thus a lisse, rank one R-sheaf on

´m,R. Its more usual …-adic incarnation, also denoted Òç when no

ambiguity is likely, is obtained by choosing a ring embedding of R
into ä$…, which allows us to view Òç as a lisse, rank one ä$…-sheaf

on ´m,R.

(12.5.7) Let E be a finite field. Then E admits a structure of R-
algebra if and only if …b is invertible in E and the group µb(E) is

cyclic of order b. If this is the case, each ring homomorphism R ¨ E
induces an isomorphism of groups

µb(R) ¶ µb(E),

and each such isomorphism of groups is induced by a unique ring
homomorphism. So a structure of R-algebra on E allows us to view

our R≠-valued character ç of µb(R) as an R≠-valued character of

µb(E). We then compose with the surjective group homomorphism

E≠ n µb(E),

x ÿ x(ùE - 1)/b,
and obtain a character

çE : E≠ ¨ R≠,

whose order is the same as that of ç.
(12.5.8) The fundamental compatibility is this. Suppose given a
finite field E in which …b is invertible and for which µb(E) is cyclic of

order b. If we choose a structure of R-algebra on E, then the
pullback of Òç to ´m,E is the "usual" Kummer sheaf ÒçE

, but

viewed as a lisse, rank one R-sheaf on ´m,E. If we then vary the

embedding of R into ä$…, the ä$…-sheaves on ´m,E we obtain from

ÒçE
exhaust all the Kummer sheaves Ò® on ´m,E, for all ä$…

≠-

valued characters ® of E≠ having the same order as ç.
(12.5.9) If instead we fix an embedding of R into ä$…, but vary the

structure of R-algebra on E, then it is also true that the ä$…-sheaves

on ´m,E we obtain from ÒçE
exhaust all the Kummer sheaves Ò®

on ´m,E, for all ä$…
≠-valued characters ® of E≠ having the same
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order as ç.
(12.5.10) What this means is this. Fix an embedding of R into ä$….

Form the lisse ä$…-sheaf Òç on ´m,R. Then for any finite field E in

which …b is invertible and for which µb(E) is cyclic of order b, we

obtain all the Kummer sheaves Ò® on ´m,E, for all ä$…
≠-valued

characters ® of E≠ of the same order as ç, simply by viewing E as
an R-algebra in all different possible ways, and restricting Òç to

the corresponding ´m,E.

(12.5.11) Having chosen b, …, and ç above, we now choose integers
n ≥ 1 and e ≥ 3. We suppose that

b = the number of roots of unity in $(ç).
Under this hypothesis, a finite-field valued point s of
S = Spec(#[Ωb][1/e…b]) is a pair (E, ®) consisting of a finite field E in

which e…b is invertible and which contains a primitive b'th root of
unity, and of a nontrivial multiplicative character

® : E≠ ¨ ä$…
≠,

whose order is the same as that of ç. Indeed, there is a unique
group isomorphism µb(R) ¶ µb(E) under which ç corresponds to ®,

and this isomorphism is induced by a unique ring homomorphism
from #[Ωb][1/e…b] to E.

(12.5.12) We work over the ring #[Ωb][1/e…b]. We consider the

following "strong standard input of type (a,b) = (1, n)" over
S = Spec(#[Ωb][1/e…b]):

the integer m = 1,

the object K = j~Òç[1] in Dbc(!
1
S, ä$…), for j the inclusion of

´m into !1 (it is “-mixed of weight ≤ 1 and fibrewise perverse on

!1/S),

the affine S-scheme V/S := !nS/S of finite type,

the S-morphism h = 0 : V ¨ !1,

the object L = ä$…[n] in Dbc(V, ä$…), (it is “-mixed of weight ≤ n

and fibrewise perverse on V/S),
the integer d =e+1,
the space of functions (Ï, †) = (∏e, eval) on V, with ∏e the

free R[1/e]-module of all polynomials of degree ≤ e in n variables.

(12.5.13) We attach to this data the integer N, defined by

N := (e-1)n, if çe ± ú,

N := (1/e)((e-1)n+1 - (-1)n+1), if çe = ú.
We denote by

ÍÎ(n, e) fi ∏e
the dense open set consisting of strong Deligne polynomials, cf. 5.1.10
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and 6.6.1.

(12.5.14) Theorems 6.7.19 and 6.7.21 then give us the following
"uniform output" theorems.

TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....11115555 Suppose that ç has order 2, and that n is odd.
Then the above strong standard input of type (1, n) gives uniform
output of type (U, N, G) = (ÍÎ(n, e), N, Sp(N)) relative to
S = Spec(#[1/2e…]).

TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....11116666 Suppose that ç has order 2, n is even, and N > 8.
Then the above strong standard input of type (1, n) gives uniform
output of type (U, N, G) = (ÍÎ(n, e), N, O(N)) relative to
S = Spec(#[1/2e…]).

(12.5.17) In the case when ç has order 3 or more, we define

a := the order of ç(ç2)
n.

Recall that

b := the number or roots of unity in $(ç) = $(ç(ç2)
n).

Thus b is even, and either b = a or b = 2a.
TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....11118888 Suppose that ç has order 3 or more, and that at
least one of the following conditions 1), 2), or 3) holds:

1)N > 4,
2) N > 2 and a > 3,
3) a ≥ 6.

Then the above strong standard input of type (1, n) gives uniform
output of type (ÍÎ(n, e), N, G) relative to S = Spec(#[Ωb][1/e…b]),

where G is the algebraic group

G = GLa(N), if b = a, or if çe = ú,

G = GLa(N), if b = 2a, n is odd, çe ± ú, and e is odd,

G = GLb(N), if b = 2a, n is odd, çe ± ú, and e is even,

G = GLb(N), if b = 2a, n is even, and çe ± ú.

(12.5.19) We now wish to make explicit the equidistribution
consequences of these theorems. A finite-field valued point s of
S = Spec(#[Ωb][1/e…b]) is a pair (E, ®) consisting of a finite field E in

which e…b is invertible and which contains a primitive b'th root of
unity, and of a nontrivial multiplicative character

® : E≠ ¨ ä$…
≠,

whose order is the same as that of ç. In the "uniform output"

theorems above, the lisse sheaf Grw-n(˜s,E)ncst of 12.4.14 induced

on ÍÎ(n, e)‚E is the lisse sheaf Gr0(˜(n,e,®))(-n/2). Recall that its
trace function is the following. For L/E a finite extension, and f in
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ÍÎ(n, e)(L), with homogenization F, denoting by ®L the

multiplicative character ®«Norm
L/E

of L≠, we have

Trace(FrobL,f | Gr
0(˜(n,e,®))(-n/2))

= (-1)n‡x in !n[1/f](L) ®L(f(x)), if ®
e ± ú,

= (-1)n‡x in @n[1/F](L) ®L(F(x)), if ®
e = ú.

(12.5.20) If ® has order 2 and n is even, then Gr0(˜(n,e,®)) is
orthogonally self dual and “-pure of weight 0. There is a unique
conjugacy class ø(E, ®, f) in the compact orthogonal group O(N, %)
whose characteristic polynomial is given by

det(1 - Tø(E, ®, f)) = “(det(1 - TFrobE,f | Gr
0(˜(n,e,®)))).

(12.5.21) If ® has order 2 and n is odd, then Gr0(˜(n,e,®)) is
symplectically self dual and “-pure of weight 0. There is a unique
conjugacy class ø(E, ®, f) in the compact symplectic group USp(N)
whose characteristic polynomial is given by the same rule,

det(1 - Tø(E, ®, f)) = “(det(1 - TFrobE,f | Gr
0(˜(n,e,®)))).

(12.5.22) If ® has order 3 or more, there is a bit more
normalization we need to do. Recall from Theorem 6.7.21 that the

group Ggeom for Gr0(˜(n,e,®)) is either GLb(N), or, if b is 2a with a

odd, possibly GLa(N), according to the following rule:

Ggeom = GLa(N), if b = a, or if çe = ú, or if ne is odd,

Ggeom = GLb(N), if b = 2a, çe ± ú, and ne is even.

Let us write GLc(N) for whichever it is. Then

Uc(N) := {A in U(N) with det(A)c = 1}

is a compact form of Ggeom = GLc(N).

(12.5.23) Denote by fern,e the Fermat polynomial

fern,e := 1 - (‡i=1 to n (xi)
e) in ÍÎ(n, e)(E).

Define an …-adic unit A(E, ®, n, e) by

A(E, ®, n, e) := det(FrobE,fern,e
| Gr0(˜(n,e,®))).

Choose an N'th root B(E, ®, n, e) of A(E, ®, n, e)-1:

A(E, ®, n, e)≠B(E, ®, n, e)N = 1.

Having chosen B(E, ®, n, e), there is a unique conjugacy class
ø(E, ®, f) in the group Uc(N) whose characteristic polynomial is

given by the rule
det(1 - Tø(E, ®, f))

= “(det(1 - TFrobE,f | Gr
0(˜(n,e,®))‚Bdeg)).



426 Chapter 12

(12.5.24) These conjugacy classes ø(E, ®, f) in the groups
O(N, %), if ® has order 2 and n is even,
USp(N), if ® has order 2 and n is odd,
Uc(N), if ® has order 3 or more,

are then the subject of the following equidistribution theorem,
obtained by applying the general Uniformity Theorem 12.3.3 in the
particular contexts of the three "uniform output" Theorems 12.5.15,
12.5.16, and 12.5.18 above.

TTTThhhheeeeoooorrrreeeemmmm 11112222....5555....22225555 Let b ≥ 2 be an even integer, and ç a nontrivial

ä$…
≠-valued character of µb(#[Ωb]) such that $(ç) = $(Ωb). Denote

by ç2 the quadratic character of µb(#[Ωb]). Fix integers e ≥ 3 and

n ≥ 1. Put

N := (e-1)n, if çe ± ú,

N := (1/e)((e-1)n+1 - (-1)n+1), if çe = ú.
Define the compact group K to be

O(N, %), if ç has order 2 and n is even,
USp(N), if ç has order 2 and n is odd,
Uc(N), if ç has order 3 or more.

[Here c = a if b = a, or if çe = ú, or if ne is odd, and c = b otherwise,

i.e., if b = 2a, çe ± ú, and ne is even.]

If ç has order 2 and n is even, suppose that
N > 8.

If ç has order 3 or more, suppose that one of the following three
conditions holds:

N > 4,

N > 2 and ç(ç2)
n has order > 3,

ç(ç2)
n has order ≥ 6.

Given the data (b, ç, e, n), there exist constants A and C with the
following properties. Fix a pair (E, ®) consisting of a finite field E with

ùE > 4A2 in which …eb is invertible and which contains a primitive

b'th root of unity, and of a multiplicative character ® of E≠ of the
same order as ç. Then

1/2 ≤ ùÍÎ(n, e)(E)/(ùE)dimÍÎ(n, e) ≤ 2.

Define the probablilty measure µ(E, ®, n, e) on Kù, the space of
conjugacy classes in K, by

µ(E, ®, n, e) := (1/ùÍÎ(n, e)(E)) ‡f in ÍÎ(n, e)(E) ∂ø(E, ®, f).

For any irreducible nontrivial irreducible unitary representation Ú
of K, we have the estimates

|‡f in ÍÎ(n, e)(E) Trace(Ú(ø(E, ®, f)))| ≤ Cdim(Ú)(ùE)dimÍÎ(n, e) -1/2,

and
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|—
K
Trace(Ú)dµ(E, ®, n, e)} ≤ 2Cdim(Ú)/Sqrt(ùE).

In particular, for any sequence of pairs (Ei, ®i) as above, in which

ùEi is strictly increasing, the measures µ(Ei, ®i, n, e) on Kù

converge weak * to to µù, the direct image from K of Haar measure
µHaar on K. For any continuous ^-valued central function g on K,

we have
—K fdµHaar
= limi ¨ ‘ (1/ùÍÎ(n, e)(Ei)) ‡f in ÍÎ(n, e)(Ei)

f(ø(Ei, ®i, f)).

((((11112222....6666)))) NNNNoooonnnn----aaaapppppppplllliiiiccccaaaattttiiiioooonnnn ((((ssssiiiicccc~~~~)))) ttttoooo aaaaddddddddiiiittttiiiivvvveeee cccchhhhaaaarrrraaaacccctttteeeerrrr ssssuuuummmmssss
(12.6.1) Let k be a finite field, p := char(k), … ± p, and ¥ a

nontrivial additive ä$…
≠-valued of k. Fix n ≥ 1, e ≥ 3, with e prime to

p. Denote by Î(n,e) the space of Deligne polynomials, and denote by
˜(n,e,¥)|Î(n,e) the lisse, geometrically irreducible and pure of

weight zero ä$…-sheaf of rank (e-1)n on Î(n,e) whose trace function

is given by

Trace(FrobE,f | ˜(n,e,¥)) = (-1)n(ùE)-n/2‡v in !n(E) ¥E(f(v)).

(12.6.2) Denote by Î(n, e)(odd) fi Î(n,e) the linear subspace
consisting of strongly odd Deligne polynomials, those in which every
monomial which occurs has odd degree. Recall that the restriction of
˜(n,e,¥) to Î(n,e,odd) is self dual, symplectically if n is odd and
orthogonally if n is even, cf. 3.10.6. Combining Theorem 3.10.7 and
Theorem 6.8.35, we have the following result.
TTTThhhheeeeoooorrrreeeemmmm 11112222....6666....3333 Let k be a finite field of characteristic p, … a prime

with … ± p, and ¥ a nontrivial additive ä$…
≠-valued of k. Fix integers

n ≥ 1, e ≥ 3,
with e prime to p and odd. Suppose that any of the following six
conditions holds:
a) p ≥ 7,
b) p ± 3 and n ≥ 3,
c) p = 5 and e ≥ 7,
d) p = 3 and e ≥ 7,
e) p= 2 and e ≥ 7.
Then we have the following results concerning the group Ggeom for

the lisse sheaf ˜(n,e,¥)|Î(n,e,odd).

1) If n is odd, Ggeom = Sp((e-1)n).

2) If n is even, Ggeom = O((e-1)n).

(12.6.4) Fix integers n ≥ 1 and e ≥ 3, with e odd. Then in each
characteristic p ≥ 7 which is prime to e…, if we fix a nontrivial
additive character ¥p of Ép, we get a lisse sheaf

˜(n,e,¥p)|Î(n,e,odd)‚Ép
on the space
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Î(n,e,odd)‚Ép,

which always has the same Ggeom, namely Sp((e-1)n) for odd n,

and O((e-1)n) for even n.
(12.6.5) With the same same input data (n, e), we can form, in
the same characteristics p, the sheaves ˜(n, e, ç2) on the spaces

ÍÎ(n, e)‚Ép.

With the exception of the one case (n=2, e = 3), the sheaf we get in
this way always has the same Ggeom as its additive character

analogue ˜(n,e,¥p)|Î(n,e,odd)‚Ép, namely Sp((e-1)n) for odd n, and

O((e-1)n) for even n.
(12.6.6) As we have explained in the last section 12.5, the fact
that the Kummer sheaf Òç2

"exists over #" leads to a uniformity

theorem for the constants A and C in the estimates proving
equidistribution for the sheaves ˜(n,e,¥p)|Î(n,e,odd)‚Ép, as p

varies. [The uniformity for A is essentially trivial, it is the
uniformity for C which is deep.] There is no analogous "existence
over #" of the Artin-Schreier sheaves Ò¥p

as p varies, and as a

result we cannot prove a uniformity for the analogous constant C in
the in the estimates proving equidistribution for the sheaves
˜(n,e,¥p)|Î(n,e,odd)‚Ép as p varies. Nonetheless, it seems quite

likely that such a uniformity does in fact hold in this case.

((((11112222....7777)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo ggggeeeennnneeeerrrraaaalllliiiizzzzeeeedddd WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss ooooffff
eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(12.7.1) Let S be an arbitrary scheme, g ≥ 0, and

® : C ¨ S,
or simply C/S, a projective smooth curve with geometrically
connected fibres, all of genus g. Let d be an integer with

d ≥ Max(2g-1, 0),
and D an effective Cartier divisor D in C which is finite and flat over
S of degree d (with the convention that D is empty if d = 0). We
recall from [Ka-TLFM, 6.1] some basic facts.
(12.7.2) Because d ≥ 2g-1, the functor on S-schemes Y/S given by

Y ÿ H0(CY, I
-1(D)Y)

is representable by the vector bundle L(D) over S, of rank d + 1 - g.
Inside L(D), the subfunctor which attaches to Y/S those global

sections f in H0(CY, I
-1(D)Y) which are invertible near D, and whose

zero locus (as a section of I-1(D)Y) is finite etale over Y of degree d,

is representable by an open subscheme
Fct(C, d, D, &) fi L(D).

(12.7.3) Suppose now that d ≥ 2g + 3. The fibre product over S of
the spaces L(kD) for k = 1, 2, 3, 4, and 6,

L(D)≠SL(2D)≠SL(3D)≠SL(4D)≠SL(6D)

represents the functor on S-schemes Y/S given by
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Y/S ÿ all tuples (f1, f2, f3, f4, f6), with fk in H0(CY, I
-1(kD)Y).

The discriminant »(f's) is a universal #-polynomial in the fi, isobaric

of weight 12, which defines an S-morphism
» : L(D)≠SL(2D)≠SL(3D)≠SL(4D)≠SL(6D) ¨ L(12D).

Inside L(12D), we have the open set
Fct(C, 12d, 12D,&) fi L(D).

We denote by
GWI1fd

(C, D) fi L(D)≠SL(2D)≠SL(3D)≠SL(4D)≠SL(6D)

the open subscheme which is the inverse image of this open set:

GWI1fd
(C, D) := »-1(Fct(C, 12d, 12D,&)).

(12.7.4) Suppose now that S = Spec(A) is an affine #[1/…]-scheme

of finite type. Over !5S, with coordinates (a1, a2, a3, a4, a6), we

have the affine curve in !2 over this base given by the universal
generalized Weierstrass equation

Ea's : y
2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,

with structural morphism

πa's : Ea's ¨ !5S.

(12.7.4.1) We obtain "strong standard input of type (0, 1)" relative
to S, cf. 12.4.4, as follows. We take

the integer m = 5,

the fibrewise perverse object K = R1πa's~ä$…(3)[5] on !5S,

the affine S-scheme V/S given by V := C - D,

the S-morphism h : V ¨ !5S given by h = 0,

the fibrewise perverse objectL = ä$…[1] on V,

the integer d = 1 - 2g + deg(D),

the space of !5-valued functions (Ï, †) on V given by
Ï := L(D)≠SL(2D)≠SL(3D)≠SL(4D)≠SL(6D),

with † the obvious evaluation map.

TTTThhhheeeeoooorrrreeeemmmm 11112222....7777....5555 The strong standard input 12.7.4.1 gives uniform
output of type (U, N, G), with

U := GWI1fd
(C, D),

N := 4g - 4 + 12deg(D),
G := O(N).

pppprrrrooooooooffff This is simply a restatement of Lemma 10.1.12 and Theorem
10.1.14. QED

(12.7.6) Let us make explicit the general Uniform Output Theorem
12.4.18 in this case. For each finite field k, for each k-valued point s
in S(k), and for each f = (f1, f2, f3, f4, f6) in

GWI1fd
(C, D)s,k(k), we have the elliptic curve Ef's over k(Cs,k), with

equation
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y2 + f1xy + f3y = x3 + f2x
2 + f4x + f6,

and its unitarized L-function
L(Ef's/k(Cs,k),T)

= det(1 - TFrobs,k,f | Hc
1(Cs,k‚käk, j*R

1πf's~ä$…)(1)).

There is a unique conjugacy class ø(k, s, f) in O(N, %) such that
L(Ef's/k(Cs,k),T) = det(1 - Tø(k, s, f)).

For k a large finite field, and any s in S(k), these conjugacy classes
are nearly equidistributed.

TTTThhhheeeeoooorrrreeeemmmm11112222....7777....7777 For each finite field k with ùk > A(GWI1fd
(C, D)/S)2,

and for each s in S(k), form the probability measure on

O(N, %)ù given by
µ(k, s)
:= average over the classes ø(k, s, f), f in GWI1fd

(C, D)s,k(k)

:= (1/ùGWI1fd
(C, D)s,k(k)) ‡f in GWI1,fd

(C,D)s,k(k)
∂ø(k, s, f).

For any sequence of data (ki, si) in which each ùki > A(U/S)
2 and in

which ùki is strictly increasing, the measures µ(ki, si) on O(N, %)ù

converge weak * to µù. More precisely, there exist constants A and
C such that for any irreducible nontrivial irreducible unitary

representation Ú of O(N, %), and for any data (k, s) with ùk > 4A2,
we have the estimate

|—
O(N, %)

Trace(Ú)dµ(k, s)| ≤ 2Cdim(Ú)/Sqrt(ùk).

((((11112222....8888)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo uuuussssuuuuaaaallll WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc
ccccuuuurrrrvvvveeeessss
(12.8.1) We work over an affine #[1/6…]-scheme S = Spec(A) of
finite type. We fix a genus g ≥ 0, and two integers

d2 ≥ 2g + 3, d3 ≥ 2g + 3.

We are given
® : C ¨ S,

or simply C/S, a projective smooth curve with geometrically
connected fibres, all of genus g, and two effective Cartier divisors D2
and D3 in C, both finite and flat over S, of degrees d2 and d3
respectively. We are also given a finite collection of pairwise disjoint
sections

Pi in C(S), i in I,

and collections of integers ai ≥ 0 and bi ≥ 0, I in I, such that

D2 = ‡i aiPi, D3 = ‡i biPi.

We define integers ci ≥ 0 by

ci := Max(3ai, 2bi), i in I.

We define the divisor



Uniformity results 431

Dmax = Max(3D2, 2D3)

to be
Dmax := ‡i ciPi.

(12.8.2) Formation of the discriminant

»(f2, f3) := (f2)
3 - 27(f3)

2

defines an S-morphism
» : L(D2)≠SL(D3) ¨ L(Dmax).

In L(Dmax), we have the open set

Fct(C, deg(Dmax), Dmax, &) fi L(Dmax).

We denote by
WI1fd

(C, D2, D3) fi L(D2)≠SL(D3)

the open subscheme which is the inverse image of this open set:

WI1fd
(C, D2, D3) := »-1(Fct(C, deg(Dmax), Dmax, &)).

(12.8.3) Over !2S, with coordinates (g2, g3), we have the affine

curve in !2 over this base given by the universal (usual)
Weierstrass equation

Eg's : y
2 = 4x3 - g2x - g3,

with structural morphism

πg's : Eg's ¨ !2S.

(12.8.4) We obtain "strong standard input of type (1, 1)" relative
to S, cf. 12.4.8, as follows. We take

the integer m = 2,

the fibrewise perverse sheaf object = R1πg's~ä$…(1)[2] on !2S,

the affine S-scheme V/S given by V := C - Dmax,

the S-morphism h : V ¨ !2S given by h = 0,

the fibrewise perverse object L = ä$…[1] on V/k,

the integer d = 1 - 2g + Min(deg(D
2
), deg(D3)),

the space of !2-valued functions (Ï, †) on V given by
Ï = L(D2)≠SL(D3)

with † the obvious evaluation map.

TTTThhhheeeeoooorrrreeeemmmm 11112222....8888....5555 Define the integer N by
N :=4g - 4 + deg(Dmax) + 2ù{i in I with ci î• 0 mod 12}.

Suppose that
N ≥ 9.

Suppose in addition that one of the following conditions a), b), or c)
holds:
a) Dmax = 3D2,

b) Dmax = 2D3,

c) N is odd, i.e., deg(Dmax) is odd, and at least one of the following

two conditions holds:
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c1) 4g - 4 + 3deg(D2) ≥ 10,

c2) 4g - 4 + 2deg(D3) ≥ 9.

The above strong standard input gives uniform output of type
(U, N, G), with

U := WI1fd
(C, D2, D3),

N as above,
G := O(N).

pppprrrrooooooooffff This is just a restatement of Lemma 10.2.11, Theorem 10.2.13,
and Theorem 10.2.15 QED

(12.8.6) We now spell out the general Uniform Output Theorem
12.4.18 in this case. The statement is essentially identical to that
given in Theorem 12.7.7 above for generalized Weierstrass families,
except that GWI1fd

(C, D) is replaced by WI1fd
(C, D2, D3).

(12.8.7) For each finite field k, each k-valued point s in S(k), and
each f = (f2, f3) in WI1fd

(C, D2, D3)s,k(k), we have the elliptic curve

Ef's over k(Cs,k), with equation

y2 = 4x3 - f2x - f3,

and its unitarized L-function
L(Ef's/k(Cs,k),T)

= det(1 - TFrobs,k,f | Hc
1(Cs,k‚käk, j*R

1πf's~ä$…)(1)).

There is a unique conjugacy class ø(k, s, f) in O(N, %) such that
L(Ef's/k(Cs,k),T) = det(1 - Tø(k, s, f)).

For k a large finite field, and any s in S(k), these conjugacy classes
are nearly equidistributed.
TTTThhhheeeeoooorrrreeeemmmm 11112222....8888....8888 For A0 := A(WI1fd

(C, D2, D3)/S), for each finite

field k with ùk > A0
2, and for each s in S(k), form the probability

measure on

O(N, %)ù given by
µ(k, s)
:= average over the classes ø(k, s, f), f in WI1fd

(C, D2, D3)s,k(k).

For any sequence of data (ki, si) in which each ùki > A0
2 and in

which ùki is strictly increasing, the measures µ(ki, si) on O(N, %)ù

converge weak * to µù. More precisely, there exist constants A and
C such that for any irreducible nontrivial irreducible unitary

representation Ú of O(N, %), and for any data (k, s) with ùk > 4A2,
we have the estimate

|—
O(N, %)

Trace(Ú)dµ(k, s)| ≤ 2Cdim(Ú)/Sqrt(ùk).
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((((11112222....9999)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo FFFFJJJJTTTTwwwwiiiisssstttt ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(12.9.1) Again in this section we work over an affine #[1/6…]-
scheme S = Spec(A) of finite type. We fix a genus g ≥ 0, and two
integers

d0 ≥ 2g + 3, d1 ≥ 2g + 3.

We are given
® : C ¨ S,

or simply C/S, a projective smooth curve with geometrically
connected fibres, all of genus g, and two effective Cartier divisors D0
and D1 in C, both finite and flat over S, of degrees d0 and d1
respectively. We are also given a finite collection of pairwise disjoint
sections

Pi in C(S), i in I,

and collections of integers ai ≥ 0 and bi ≥ 0, i in I, such that

D0 = ‡i aiPi, D1 = ‡i biPi.

We define integers ci ≥ 0 by

ci := 2ai + bi, i in I.

(12.9.2) We define an open set
FJTwist(D0, D1) fi L(D0)≠SL(D1)

as follows. We have an S-morphism
ƒ : L(D0)≠SL(D1) ¨ L(D0 + 2D1),

(f, g) ÿ fg(g-1),
and inside L(D0 + 2D1) we have the open set

Fct(C, d0 + 2d1, D0 + 2D1, &) fi L(D0 + 2D1).

Then we define

FJTwist(D0, D1) := ƒ-1Fct(C, d0 + 2d1, D0 + 2D1, &).

(12.9.3) Over !2S, with coordinates (s, t), we have the affine

curve in !2 over this base given by the FJTwist Weierstrass
equation

Es,t : y
2 = 4x3 - 3s2tx - s3t,

with structural morphism

πs,t : Es,t ¨ !2S.

(12.9.4) We obtain "strong standard input of type (1, 1)" relative
to S, cf. 12.4.8, as follows. We take

the integer m = 2,

the fibrewise perverse object = R1πs,t~ä$…(1)[2] on !2S,

the affine k-scheme V/S given by V := C - (D0 ⁄ D1),

the S-morphism h : V ¨ !2 given by h = 0,
the fibrewise perverse object L = ä$…[1] on V/S,

the integer d = 1 - 2g + min(deg(D0), deg(D1)),

the space of !2-valued functions (Ï, †) on V given by
Ï = L(D0)≠SL(D1)
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with † the obvious evaluation map.

TTTThhhheeeeoooorrrreeeemmmm 11112222....9999....5555 Define the integer N by
N = 4g - 4 + 2deg(D0) + 3deg(D1) + 2ù{i in I with ci î• 0 mod 4}.

Then the above strong standard input gives uniform output of type
(U, N, G), with

U := FJTwist(D0, D1),

N as above,
G := O(N).

pppprrrrooooooooffff This is just a restatement of Lemma 11.1.21 and Theorem
11.1.23. QED

(12.9.6) We now spell out the general Uniform Output Theorem
12.4.18 in this case. The statement is essentially identical to that
given in 12.8.8 above for usual Weierstrass families, except that
WI1fd

(C, D2, D3) is replaced by FJTwist(D0, D1).

(12.9.7) For each finite field k, each k-valued point s in S(k), and
each = (f, g) in FJTwist(D0, D1)s,k(k), we have the elliptic curve Ef,g
over k(Cs,k), with equation

y2 = 4x3 - 3f2gx - f3g
and its unitarized L-function

L(Ef,g/k(Cs,k),T)

= det(1 - TFrobs,k,f,g | Hc
1(Cs,k‚käk, j*R

1πf,gä$…)(1)).

There is a unique conjugacy class ø(k, s, f, g) in O(N, %) such that
L(Ef,g/k(Cs,k),T) = det(1 - Tø(k, s, f, g)).

For k a large finite field, and any s in S(k), these conjugacy classes
are nearly equidistributed.
TTTThhhheeeeoooorrrreeeemmmm 11112222....9999....8888 For A0 := A(FJTwist(D0, D1)/S), for each finite field

k with ùk > A0
2, and for each s in S(k), form the probability

measure on O(N, %)ù given by
µ(k, s)

:= average over the classes ø(k, s, f, g), (f, g) in
FJTwist(D0, D1)s,k(k)

For any sequence of data (ki, si) in which each ùki > A
2 and in

which ùki is strictly increasing, the measures µ(ki, si) on O(N, %)ù

converge weak * to µù. More precisely, there exist constants A and
C such that for any irreducible nontrivial irreducible unitary

representation Ú of O(N, %), and for any data (k, s) with ùk > 4A2,
we have the estimate

|—
O(N, %)

Trace(Ú)dµ(k, s)| ≤ 2Cdim(Ú)/Sqrt(ùk).
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((((11112222....11110000)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo ppppuuuullllllllbbbbaaaacccckkkk ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(12.10.1) In this section we work over a normal connected affine
#[1/6…]-scheme S = Spec(A) of finite type. We begin with the affine

line !1S over S. We suppose given an integer t ≥ 1 and an effective

Cartier divisor T in !1S, which is finite etale over S of degree t. We

further suppose that T is defined by the vanishing of a monic
polynomial T(x) in A[x] which is monic of degree t, and whose
discriminant is a unit in A. We suppose given a relative elliptic
curve

π : ‰ ¨ !1S - T.

We suppose that, on each geometric fibre of !1S/S, ‰ has

multiplicative reduction at some point of T. This ‰ over !1S - T is

our input elliptic curve. On !1S - T, we form the lisse sheaf

Ì := R1π*ä^….

Because 6 is invertible on S, the restriction of Ì to every geometric

fibre of (!1S - T)/S is everywhere tame (i.e., tame at ‘ and at each

geometric point of T).
(12.10.2) The pullback families arise as follows. We fix a genus g ≥
0, and an integer d ≥ 2g + 3. We are given

® : C ¨ S,
or simply C/S, a projective smooth curve with geometrically
connected fibres, all of genus g, and an effective Cartier divisors D in
C, finite and flat over S, of degree d. We are also given a finite
collection of pairwise disjoint sections

Pi in C(S), i in I,

and a collection of integers ai ≥ 1, i in I, such that

D = ‡i aiPi.

Thus

Dred = ‡i Pi
is finite etale over the base S.
(12.10.3) With this plethora of hypotheses stated, we now define an
open set

UD,T fi L(D).

For this, we use the degree t polynomial T(x) defining T fi !1S to

construct an S-morphism
T : L(D) ¨ L(tD),

f ÿ T(f).
We define UD,T to be the inverse image of the open set

Fct(C, td, tD, &) fi L(D)
under the map T:

UD,T := T-1Fct(C, td, tD, &).

(12.10.4) Each f in UD,T is a morphism
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f : C - f-1T - D ¨ !1 - T.

Over UD,T, the f
-1T form a divisor funiv

-1T in C≠UD,T, which is

finite etale over UD,T of degree td, and disjoint from D. Over UD,T,

the f's form a UD,T-morphism

funiv : (C - D)≠UD,T - funiv
-1T ¨ (!1S - T)≠UD,T.

Denote by

j : !1S - T ¨ @1S,

jC : (C - D)≠UD,T - funiv
-1T ¨ C≠UD,T

the inclusions. In both cases, we are dealing with the inclusion into a
proper smooth curve of the complement of a divisor (either T ‹ ‘

or funiv
-1T ‹ Dred) which is finite etale over the base. On the

sources, we have the lisse sheaves

Ì on !1 - T,

funiv
*(Ì$ä$…) on (C - D)≠UD,T - funiv

-1T,

which are tamely ramified along the "missing" divisors. It follows
[Ka-SE, 4.7.1] that the formation of

j*(Ì) on @1S,

and the formation of

jC*(funiv
*(Ì$ä$…)) on C≠UD,T

are compatible with arbitrary change of base on S and on UD,T
respectively and that the cohomology sheaves

Ri(pr2)*(j*Ì), for pr2 : @1S ¨ S,

and

Ri(pr2)*(jC*(funiv
*(Ì$ä$…))), for pr2 : C≠UD,T ¨ UD,T,

are lisse on S and on UD,T respectively.

(12.10.5) Looking fibre by fibre, we see that these Ri vanish for
i ±1. We define integers

Ndown:= rank of R1(pr2)*(j*(Ì)),

Nup := rank of R1(pr2)*(jC*(funiv
*(Ì$ä$…))),

N := Nup - Ndown.

(12.10.6) We obtain "strong input of type (0,1)" relative to S, cf.
12.4.8, as follows. We take

the integer m = 1,

the fibrewise perverse object j*(Ì)(1)[1]|!
1
S on !1S,

the affine S-scheme V := C-D,

the S-morphism h : V ¨ !1 given by h = 0,
the fibrewise perverse object L := ä$…[1] on C-D,

the integer d := deg(D) - (2g-1),

the space of !1valued functions (Ï, †) on C-D given by
Ï = L(D)
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with † the obvious evaluation map.

TTTThhhheeeeoooorrrreeeemmmm 11112222....11110000....7777 Suppose N ≥ 9. Then the above strong standard
input gives uniform output of type (U, N, G), with

U := UD,T,

N as above,
G := O(N).

pppprrrrooooooooffff This is just a restatement of Lemma 7.1.7 and Theorem 7.2.3.
QED

(12.10.8) We now spell out the general Uniform Output Theorem
12.4.18 in this case.
(12.10.9) For each finite field k, each k-valued point s in S(k), and

each f in UD,T,s,k(k), we have the elliptic curve f
*‰ over k(Cs,k),

and its unitarized L-function

L(f*‰s,k/k(Cs,k),T)

= det(1 - TFrobs,k,f | Hc
1(Cs,k‚käk, jCs,k*

Ì(1))).

This L-function is a polynomial of degree Nup. It is always divisible,

as a polynomial, by the unitarized L-function

L(‰s,k/k(@
1),T)

of the original elliptic curve ‰s,k/k(@
1), which is a polynomial of

degree Ndown. There is a unique conjugacy class ø(k, s, f) in O(N, %)

such that

L(f*‰s,k/k(Cs,k),T)/L(‰s,k/k(@
1), T) = det(1 - Tø(k, s, f)).

For k a large finite field, and any s in S(k), these conjugacy classes
are nearly equidistributed.
TTTThhhheeeeoooorrrreeeemmmm 11112222....11110000....11110000 For A0 := A(UD,T/S), for each finite field k with

ùk > A0
2, and for each s in S(k), form the probability measure on

O(N, %)ù given by
µ(k, s)

:= average over the classes ø(k, s, f), f in UD,T,s,k(k).

For any sequence of data (ki, si) in which each ùki > A
2 and in

which ùki is strictly increasing, the measures µ(ki, si) on O(N, %)ù

converge weak * to µù. More precisely, there exist constants A and
C such that for any irreducible nontrivial irreducible unitary

representation Ú of O(N, %), and for any data (k, s) with ùk > 4A2,
we have the estimate

|—
O(N, %)

Trace(Ú)dµ(k, s)| ≤ 2Cdim(Ú)/Sqrt(ùk).

((((11112222....11110000....11111111)))) TTTThhhhrrrreeeeeeee eeeexxxxaaaammmmpppplllleeeessss Here are three standard examples,
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where we give Ndown and Nup.

(12.10.11.1) FFFFJJJJ ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/6…]), take T := {0, 1}, and

over !1 - T with coordinate u take the relative elliptic curve ‰
given by the FJ equation

y2 = 4x3 - 3ux - u.
This curve has multiplicative reduction at u=1, additive reduction
at u=0 which becomes good after taking the sixth root of u, and
additive reduction at ‘ which becomes good after taking the fourth
root of u. We have

Ndown = 1.

For D = ‡i in I aiPi on C of degree d, and f in UD,T, f
*‰ has additive

reduction at the d geometric points over u=0, multiplicative
reduction at the d geometric points over u=1, additive reduction at
those points Pi with ai î• 0 mod 4, and good reduction at those

points Pi with ai • 0 mod 4. We have

Nup = 4g - 4 + 3d + 2ù{i in I with ai î• 0 mod 4}.

(12.10.11.2) LLLLeeeeggggeeeennnnddddrrrreeee ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/2…]), take

T := {0, 1}, and over !1 - T with coordinate ¬ take the relative
elliptic curve ‰ given by the Legendre equation

y2 = x(x-1)(x-¬).
This curve has multiplicative reduction at u-0 and at u=1, and
additive reduction at ‘ which after a quadratic twist becomes
multiplicative. We have

Ndown = 0.

For D = ‡i in I aiPi on C of degree d, and f in UD,T, f
*‰ has

multiplicative reduction at the d geometric points over u=0,
multiplicative reduction at the d geometric points over u=1,
additive reduction at those points Pi with ai odd, and multiplicative

reduction at those points Pi with ai even. We have

Nup = 4g - 4 + 2d + + ùI + ù{i in I with ai odd}.

(12.10.11.3) LLLLeeeevvvveeeellll 3333 ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/3…]), take T = µ3,

and over !1 - T with coordinate µ take the relative elliptic curve ‰
given by the "level 3" projective equation

X3 + Y3 + Z3 = 3µXYZ,
with (0, 1, -1) taken as origin. This curve has multiplicative
reduction at each cube root of unity, and at ‘. We have

Ndown = 0.

For D = ‡i in I aiPi on C of degree d, and f in UD,T, f
*‰ has

multiplicative reduction at the 3d geometric points over µ3, and at

each Pi.We have

Nup = 4g - 4 + 3d + + ùI.
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((((11112222....11111111)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo qqqquuuuaaaaddddrrrraaaattttiiiicccc ttttwwwwiiiisssstttt ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc
ccccuuuurrrrvvvveeeessss
(12.11.1). We work over an affine #[1/2…]-scheme S = Spec(A) of
finite type. We fix a genus g ≥ 0, and integers d ≥ 2g + 3, and t ≥ 1.
We are given

® : C ¨ S,
or simply C/S, a projective smooth curve with geometrically
connected fibres, all of genus g, and effective Cartier divisors D and
T in C, both finite and flat over S, of degrees d and t respectively.
We assume that D and T are scheme-theoretically disjoint, and that
T is finite etale over S. We are also given a finite collection of
pairwise disjoint sections

Pi in C(S), i in I,

and a collection of integers ai ≥ 1, i in I, such that

D = ‡i aiPi.

(12.11.2) Over C - D - T, we are given a relative elliptic curve
π : ‰ ¨ C - D - T.

We assume that on each geometric fibre of (C - D - T)/S, ‰ has
multiplicative reduction at some geometric point of T, and is
everywhere tamely ramified (this last condition is automatic if 6 is
invertible).
(12.11.3) We obtain "strong standard input of type (1, 1)" relative
to S, cf. 12.4.8, as follows. We take

the integer m = 1,

the fibrewise perverse object K := j*Òç2
[1] on !1S,

the affine S-scheme V := C - D - T,

the S-morphism h : V ¨ !1 given by h = 0,

the fibrewise perverse object L :=R1π*ä$…[1] on C - D - T,

the integer d := deg(D) - (2g-1),

the space of !1-valued functions (Ï, †) on V given by
Ï = L(D),

with † the obvious evaluation map.

(12.11.4) Recall from [Ka-TLFM, 6.1] that inside L(D), we have the
open subscheme

Fct(C d, D, T) fi L(D),
which represents the subfunctor of L(D) which attaches to Y/S those

global sections f in H0(CY, I
-1(D)Y) which are invertible near D,

invertible near T, and whose zero locus (as a section of I-1(D)Y) is

finite etale over Y of degree d.
(12.11.5) On (C - D - T)≠Fct(C d, D, T), we have the lisse sheaf

R1π*ä$…‚Òç2(f)
,

which is everywhere tamely ramified. If we denote by j the
inclusion

j : (C - D - T)≠Fct(C d, D, T) ¨ C≠Fct(C d, D, T),
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then the formation of

j*(R
1π*ä$…‚Òç2(f)

)

commutes with arbitrary change of base on Fct(C d, D, T), and the
cohomology sheaves

Ri(pr2)*(j*(R
1π*ä$…‚Òç2(f)

))

are lisse on Fct(C d, D, T). Looking fibre by fibre, we see that these

Ri vanish for i ±1. We define the integer N by

N := rank of R1(pr2)*(j*(R
1π*ä$…‚Òç2(f)

)).

TTTThhhheeeeoooorrrreeeemmmm 11112222....11111111....6666 Suppose N ≥ 9. Then the above strong standard
input gives uniform output of type (U, N, G), with

U :=Fct(C d, D, T),
N as above,
G := O(N).

pppprrrrooooooooffff This is just a restatement of Lemma 8.1.11 and Corollary
8.2.3. QED

(12.11.7) For any finite field k, for any k-valued point s in S(k), and
for any f in Fct(C d, D, T)s,k(k), we have an elliptic curve

‰s,k/k(Cs,k), and its quadratic twist ‰s,k‚ç2(f)/k(Cs,k) by f. Its

unitarized L-function
L(‰s,k‚ç2(f)/k(Cs,k), T)

= det(1 - TFrobs,k,f | Hc
1(Cs,k‚käk, j*(R

1π*ä$…‚Òç2(f)
)(1))).

is a polynomial of degree N. There is a unique conjugacy class
ø(k, s, f) in O(N, %) such that

L(‰s,k‚ç2(f)/k(Cs,k), T) = det(1 - Tø(k, s, f)).

(12.11.8) For k a large finite field, and any s in S(k), these
conjugacy classes are nearly equidistributed.
TTTThhhheeeeoooorrrreeeemmmm 11112222....11111111....9999 For U := Fct(C d, D, T), A0 := A(U/S), for each

finite field k with ùk > A0
2, and for each s in S(k), form the

probability measure on

O(N, %)ù given by
µ(k, s)

:= average over the classes ø(k, s, f), f in Us,k(k).

For any sequence of data (ki, si) in which each ùki > A
2 and in

which ùki is strictly increasing, the measures µ(ki, si) on O(N, %)ù

converge weak * to µù. More precisely, there exist constants A and
C such that for any irreducible nontrivial irreducible unitary

representation Ú of O(N, %), and for any data (k, s) with ùk > 4A2,
we have the estimate

|—
O(N, %)

Trace(Ú)dµ(k, s)| ≤ 2Cdim(Ú)/Sqrt(ùk).
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((((11112222....11111111....11110000)))) TTTThhhhrrrreeeeeeee eeeexxxxaaaammmmpppplllleeeessss Here are the same three standard
examples, where we now give N for various kinds of twist families.
(12.11.10.1) FFFFJJJJ ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/6…]), take the relative

elliptic curve ‰ over @1 - {0, 1, ‘} given by the FJ equation

y2 = 4x3 - 3ux - u.
This curve has multiplicative reduction at u=1, additive reduction
at u=0 which becomes good after taking the sixth root of u, and
additive reduction at ‘ which becomes good after taking the fourth
root of u.

Take T = {0, 1}, D = a‘‘ + ‡i in I aiPi. For f in Fct(!1, d, D, T),

‰‚ç2(f) has additive reduction at u=0, at the d geometric zeroes of

f, at ‘ and at all the points Pi, i in I, with ai odd. It has

multiplicative reduction at u=1. We have
N = 2d + 2ù{i in I with ai odd} - 1.

If we take T = {0, 1, ‘} and D = ‡i in I aiPi, then for f in

Fct(!1, d, D, T), ‰‚ç2(f) has exactly the same reduction types,

and the same N.
Finally, take T = {1} and D = a00 + a‘‘ + ‡i in I aiPi. Again for

f in Fct(!1, d, D, T), ‰‚ç2(f) has exactly the same reduction types,

and the same N.
(12.11.10.2) LLLLeeeeggggeeeennnnddddrrrreeee ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/2…]), take the

relative elliptic curve ‰ over @1 - {0, 1, ‘} given by the Legendre
equation

y2 = x(x-1)(x-¬).
This curve has multiplicative reduction at ¬=0 and at ¬=1, and
additive reduction at ‘ which after a quadratic twist becomes
multiplicative.

Take T = {0, 1}, D = a‘‘ + ‡i in I aiPi. For f in Fct(!1, d, D, T),

‰‚ç2(f) has multiplicative reduction at ¬=0 and at ¬=1. It has

multiplicative reduction at ‘ if a‘ is odd, otherwise it has additive

reduction at ‘. At the d geometric zeroes of f, and at all the points
Pi, i in I, with ai odd, it has additive reduction. We have

N = 2d + 2ù{i in I with ai odd} - œ‘,

with
œ‘ = 1 if a‘ is odd, 0 if a‘ is even.

If instead we take T = {0, 1, ‘} and D = ‡i in I aiPi, then for f

in Fct(!1, d, D, T), ‰‚ç2(f) has the same reduction types as in the

a‘ even case, and we have

N = 2d + 2ù{i in I with ai odd}.

Take T = {1}, and D = a00 + a‘‘ + ‡i in I aiPi. Then for f in



442 Chapter 12

Fct(!1, d, D, T), ‰‚ç2(f) has multiplicative reduction at ¬=1. It has

multiplicative reduction at ¬=0 if a0 is even, otherwise it has

additive reduction at ¬=0. It has multiplicative reduction at ‘ if a‘

is odd, otherwise it has additive reduction at ‘. At the d geometric

zeroes of f, and at all the points Pi, i in I, with ai odd, it has additive

reduction. So we get

N = 2d + 2ù{i in I with ai odd} + 1 - œ0 - œ‘,

with

œ0 = 1 if a0 is even, 0 if a0 is odd,

œ‘ = 1 if a‘ is odd, 0 if a‘ is even.

Similarly for T = {0}, and D = a11 + a‘‘ + ‡i in I aiPi, we find

N = 2d + 2ù{i in I with ai odd} + 1 - œ1 - œ‘,

with

œ1 = 1 if a1 is even, 0 if a1 is odd,

œ‘ = 1 if a‘ is odd, 0 if a‘ is even.

(12.11.10.3) LLLLeeeevvvveeeellll 3333 ffffaaaammmmiiiillllyyyy Over S = Spec(#[1/3…]), take the

relative elliptic curve ‰ @1 - {µ3, ‘} given by the "level 3"

projective equation

X3 + Y3 + Z3 = 3µXYZ,

with (0, 1, -1) taken as origin. This curve has multiplicative

reduction at each cube root of unity, and at ‘.

Take D = ‡Ω in µ3
aΩΩ + a‘‘ + ‡i in I aiPi, such that either a‘

or some aΩ vanishes. Take for T those points in {µ3, ‘} which are

absent from D. For f in Fct(!1, d, D, T), ‰‚ç2(f) has multiplicative

reduction at those points in {µ3, ‘} which are either absent from D,

or occur in D with even multiplicity. It has additive reduction at the

points which occur in D with odd multiplicity, and at the d

geometric zeroes of f. We have

N = 2d + 2ù{i in I with ai odd} + 4 - œ‘ - ‡Ω in µ3
œΩ,

with

œ‘ = 0 if ‘ occurs in D with odd multiplicity, 1 if not,

œΩ = 0 if Ω occurs in D with odd multiplicity, 1 if not.
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aaaannnndddd llllaaaarrrrggggeeee NNNN lllliiiimmmmiiiittttssss

((((11113333....1111)))) TTTThhhheeee bbbbaaaassssiiiicccc sssseeeettttttttiiiinnnngggg
(13.1.1) In this chapter, we will make explicit the application of
our results to L-functions of elliptic curves over function fields. We
first give applications to average rank, along the lines of [deJ-Ka, 9.7]
and [Ka-TLFM, 10.3]. We then pass to the large N limit, and give
applications to the distribution of low lying zeroes, along the lines of
[Ka-Sar-RMFEM, Chapters 12 and 13] and [Ka-TLFM, 10.5 and 10.6].
(13.1.2) To begin, we formulate a version, Theorem 13.1.5 below,
of Uniform Output Theorem 12.4.18 in the case when G is the
orthogonal group O(N), which pays attention to the "sign in the
functional equation" œ. For œ either choice of _1, let us denote by

Osignœ(N, %) := {A in O(N, %) with det(-A) = œ}.

Thus for A in Osignœ(N, %), the polynomial

P(T) = det(1 - TA)
has the functional equation

TNP(1/T) = œP(T).
(13.1.3) For œ either choice of _1, we denote by µsignœ the

restriction to Osignœ(N, %) of twice (sic) the normalized Haar

measure µ on O(N, %), i.e., µsignœ is normalized to give Osignœ(N, %)

total mass one. A function on Osignœ(N, %) is said to be "central" if it

is invariant under O(N, %)-conjugation. We denote by Osignœ(N, %)
ù

the quotient of Osignœ(N, %) by the equivalence relation of O(N, %)-

conjugation, and we denote by µsignœ
ù the direct image of µsignœ

on Osignœ(N, %)
ù. A continuous ^-valued function f on Osignœ(N, %)

ù

is none other than a continuous central ^-valued function ëf on
Osignœ(N, %), and

—Osignœ(N, %)
fdµsignœ = —Osignœ(N, %)

ù ëfdµsignœ
ù

=2—O(N, %) {ëf extended by 0}dµ.

LLLLeeeemmmmmmmmaaaa 11113333....1111....4444 Suppose that we are in the situation of the Uniform
Output Theorem 12.4.8, with constants A and C. Suppose in addition
that G is the full orthogonal group O(N). For each choice of œ = _1,

each choice of finite field E with ùE > Max(4A2, 4C2), and for each s
in S(E), the set

Us,E,signœ(E) := {x in Us,E(E) with ø(E, s, å, x) in Osignœ(N, %)}

is nonempty. More precisely, for ùE > 4A2, we have the estimate
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|ùUs,E,signœ(E)/ùUs,E(E) - 1/2| ≤ C/E1/2.

pppprrrrooooooooffff Recall from 12.4.18 that for ùE > 4A2, we have

2(ùE)n ≥ ùUs,E(E) ≥ (1/2)(ùE)n,

and for any irreducible nontrivial representation Ú of O(N, %), we
have

|‡x in Us,E(E)
Trace(Ú(ø(E, s, å, x))| ≤ Cdim(Ú)(ùE)n-1/2.

We apply this with Ú the one-dimensional representation det. It is
tautologous that we have

2ùUs,E,signœ(E) = ‡x in Us,E(E)
(1 + œdet(-(ø(E, s, å, x))))

= ùUs,E(E) + œ‡x in Us,E(E)
det(-(ø(E, s, å, x))).

Thus we find

|2ùUs,E,signœ(E) - ùUs,E(E)| ≤ C(ùE)n-1/2.

Dividing through by 2ùUs,E(E) ≥ (ùE)n, we find the desired estimate.

QED

TTTThhhheeeeoooorrrreeeemmmm 11113333....1111....5555 Suppose that we are in the situation of the
Uniform Output Theorem 12.4.8, with constants A and C. Suppose in
addition that G is the full orthogonal group O(N). For each choice of

œ = _1, each choice of finite field E with ùE > Max(4A2, 4C2), and for
each s in S(E), form the probability measure µsignœ(E, s, å) on

Osignœ(N, %)
ù defined by

µsignœ(E, s, å)

:= (1/ùUs,E,signœ(E)) ‡x in Us,E,signœ(E)
∂ø(E, s, å,x).

For either choice of œ = _1, and for any sequence of data (Ei, si, åi)

with each ùEi > Max(4A2, 4C2) and with ùEi strictly increasing, the

measures µsignœ(Ei, si, åi) on Osignœ(N, %)
ù converge weak * to

µsignœ
ù, i.e., for any continuous ^-valued central function f on

Osignœ(N, %), we have

—Osignœ(N, %)
fdµsignœ

= limi¨ ‘(1/ùUsi,Ei,signœ
(Ei)) ‡x in Usi,Ei,signœ

(Ei)
f(ø(Ei, si, åi, x)).

pppprrrrooooooooffff Thanks to Lemma 13.1.4, this results from applying 12.4.18 to
continuous central functions on O(N, %) which are supported in one
of the sets Osignœ(N, %). QED

(13.1.6) We define three integer-valued functions on O(N, %), as
follows. Each has values in the closed interval [0, N]. The first is the
"analytic rank",

ran(A) := ordT=1(det(1 - TA)).

The second is the "quadratic analytic rank", defined as
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rquad, an(A) := ran(A
2) = ‡œ in _1 ordT=œ(det(1 - TA)).

The third is the "geometric analytic rank"
rgeom, an(A) := ‡Ω in µ‘(^) of deg ≤ N over $ ordT=Ω(det(1 - TA)).

[The definition of geometric analytic rank we have taken above is
only the "correct" one when we are dealing with a situation where
all the classes ø(E, s, å, x) have characteristic polynomials in $[T],
as is the case, e.g, when we are dealing with L-functions of elliptic
curves. In general, one must pick a finite extension E¬/$… such that

all the characteristic polynomials lie in E¬[T], and replace "N" by the

maximum degree over $ of any of the finitely many roots of unity
in ä$… whose degree over E¬ is at most N. With any such definition,

the Analytic Rank Theorem 13.1.7 below remains valid.]

AAAAnnnnaaaallllyyyyttttiiiicccc RRRRaaaannnnkkkk TTTThhhheeeeoooorrrreeeemmmm 11113333....1111....7777 Suppose that we are in the
situation of the Uniform Output Theorem 12.4.8, with constants A
and C. Suppose in addition that G is the full orthogonal group O(N).
For each choice of œ = _1, each choice of finite field E with ùE >

Max(4A2, 4C2), and for each s in S(E), we denote by
Us,E,signœ(E) := {x in Us,E(E) with ø(E, s, å, x) in Osignœ(N, %)}.

For any sequence of data (Ei, si, åi) with each ùEi > Max(4A2, 4C2)

and with ùEi strictly increasing, we have the following tables of

limit formulas for various average analytic ranks. In the tables, the
first column is the quantity being averaged, the second is the set
over which it is being averaged, and the third column is the limit,
as i ¨ ‘, of the average.

ran(ø(Ei, si, åi, x)) Usi,Ei
(Ei) 1/2,

ran(ø(Ei, si, åi, x)) Usi,Ei,sign+
(Ei) 0,

ran(ø(Ei, si, åi, x)) Usi,Ei,sign-
(Ei) 1,

rquad,an(ø(Ei, si, åi, x)) Usi,Ei
(Ei) 1,

rgeom,an(ø(Ei, si, åi, x)) Usi,Ei
(Ei) 1,

Supplementary table, when N is odd
rquad,an(ø(Ei, si, åi, x)) Usi,Ei,sign+

(Ei) 1,

rquad,an(ø(Ei, si, åi, x)) Usi,Ei,sign-
(Ei) 1,

rgeom,an(ø(Ei, si, åi, x)) Usi,Ei,sign+
(Ei) 1,

rgeom,an(ø(Ei, si, åi, x)) Usi,Ei,sign-
(Ei) 1,
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Supplementary table, when N is even
rquad,an(ø(Ei, si, åi, x)) Usi,Ei,sign+

(Ei) 0,

rquad,an(ø(Ei, si, åi, x)) Usi,Ei,sign-
(Ei) 2,

rgeom,an(ø(Ei, si, åi, x)) Usi,Ei,sign+
(Ei) 0,

rgeom,an(ø(Ei, si, åi, x)) Usi,Ei,sign-
(Ei) 2,

pppprrrrooooooooffff Straightforward application of equidistribution as incarnated
in Theorem 13.1.5, cf. the proof of [deJ-Ka, 6.11], or of [Ka-TLMF,
8.3.3]. QED

(13.1.8) Let us now recall the definition of the eigenvalue location
measures √(c, Osignœ(N, %)) of [Ka-Sar-RMFEM, 6.20.1]. Here r ≥ 1 is

an integer, c = (c(1),..., c(r)) in #r is an "offset vector", i.e.,
0 < c(1) < c(2) < ... < c(r),

and
N > 2c(r) + 2.

We must proceed through cases, depending on the the parity of N.
and the value of œ = _1.
(13.1.9) For N even = 2d, the eigenvalues of an element A in
Osign+(N, %) = SO(2d, %) are of the form

e_iƒ(1), eiƒ(2),..., e_iƒ(d),
for a unique sequence of angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(d) ≤ π.
Formation of any given ƒ(i) defines a continuous central function on
Osign+(N, %) = SO(2d, %),

A ÿ ƒ(i)(A).
We rescale this function, and call it ø(i):

ø(i)(A) := Nƒ(i)(A)/2π.
Given the offset vector c, we define the continuous central function

Fc : Osign+(N, %) ¨ %r,

Fc(A) := (ø(c(1))(A),..., ø(c(r))(A)).

We then define the probability measure √(c, Osign+(N, %)) on %r to

be
√(c, Osign+(N, %))

:= (Fc)*(normalized Haar measure µsign+ on Osign+(N, %)).

(13.1.10) For N even = 2d, the eigenvalues of an element A in
Osign-(N, %) = O-(2d, %) are of the form

_1, e_iƒ(1), eiƒ(2),..., e_iƒ(d-1),
for a unique sequence of angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(d-1) ≤ π.
Formation of any given ƒ(i) defines a continuous central function on
Osign-(N, %) = O-(2d, %),

A ÿ ƒ(i)(A).
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We rescale this function, and call it ø(i):
ø(i)(A) := Nƒ(i)(A)/2π.

Given the offset vector c, we define the continuous central function

Fc : Osign-(N, %) ¨ %r,

Fc(A) := (ø(c(1))(A),..., ø(c(r))(A)).

We then define the probability measure √(c, Osign-(N, %)) on %r to

be
√(c, Osign-(N, %))

:= (Fc)*(normalized Haar measure µsign- on Osign-(N, %)).

(13.1.11) For N odd = 2d+1, the eigenvalues of an element A in
Osignœ(N, %) are of the form

-œ, e_iƒ(1), eiƒ(2),..., e_iƒ(d),
for a unique sequence of angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(d) ≤ π.
Formation of any given ƒ(i) defines a continuous central function on
Osignœ(N, %),

A ÿ ƒ(i)(A).
We rescale this function, and call it ø(i):

ø(i)(A) := Nƒ(i)(A)/2π.
Given the offset vector c, we define the continuous central function

Fc : Osignœ(N, %) ¨ %r,

Fc(A) := (ø(c(1))(A),..., ø(c(r))(A)).

We then define the probability measure √(c, Osignœ(N, %)) on %r to

be
√(c, Osignœ(N, %))

:= (Fc)*(normalized Haar measure µsignœ on Osignœ(N, %)).

EEEEiiiiggggeeeennnnvvvvaaaalllluuuueeee LLLLooooccccaaaattttiiiioooonnnn TTTThhhheeeeoooorrrreeeemmmm 11113333....1111....11112222 Fix an integer r ≥ 1, and

an offset vector c in #r. Suppose that we are in the situation of the
Uniform Output Theorem 12.4.8, with constants A and C. Suppose in
addition that G is the full orthogonal group O(N), with N > 2c(r) + 2.
For each choice of œ = _1, each choice of finite field E with

ùE > Max(4A2, 4C2), and for each s in S(E), the ùUs,E,signœ(E) points

Fc(ø(E, s, å, x)) in %r are approximately equidistributed for the

measure √(c, Osignœ(N, %)). More precisely, define a probability

measure √signœ(c, E, s, å) on %r by

√signœ(c, E, s, å) := (Fc)*µsignœ(E, s, å)

:= (1/ùUs,E,signœ(E)) ‡x in Us,E,signœ(E)
∂Fc(ø(E, s, å,x))

.

In any sequence of data (Ei, si, åi) with each ùEi > Max(4A2, 4C2)

and with ùEi strictly increasing, the measures √signœ(c, E, s, å) tend

weak * to the measure √(c, Osignœ(N, %)) on %r. In fact, for any
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continuous ^-valued function g on %r of polynomial growth (and not
just of compact support~), we have the limit formula

—%r gd√(c, Osignœ(N, %)) = limi¨‘ —%r gd√signœ(c, Ei, si, åi).

pppprrrrooooooooffff That the measures √signœ(c, E, s, å) := (Fc)*µsignœ(E, s, å)

converge weak * to (Fc)*(µsignœ on Osignœ(N, %)) is the direct image

by Fc of Theorem 13.1.5. That we have convergence for continuous

functions of polynomial growth results from the tail estimates of
[Ka-Sar-RMFEM, 7.11.2]. QED

((((11113333....2222)))) PPPPaaaassssssssaaaaggggeeee ttttoooo tttthhhheeee llllaaaarrrrggggeeee NNNN lllliiiimmmmiiiitttt:::: ggggeeeennnneeeerrrraaaallll rrrreeeessssuuuullllttttssss
(13.2.1) Fix a prime …. Suppose we are given a sequence, indexed
by integers j ≥ 1, of data as in 12.4.10, i.e.,

Sj, a normal connected affine #[1/…]-scheme Spec(Aj) of finite

type,
aj and bj, integers,

mj > 1 an integer,

Vj/Sj an affine Sj-scheme of finite type,

an Sj-morphism hj : Vj ¨ !mj,

an object Lj in Dbc(Vj, ä$…).which is “-mixed of weight ≤ bj and

which is fibrewise perverse on Vj/Sj,

an integer dj ≥ 2,

a space of functions (Ïj, †j) on Vj, i.e., a locally free Aj-module

of finite rank Ïj and an Aj-linear map

†j : Ïj ¨ HomSj-schemes(Vj, !
mj).

(13.2.2) We suppose that for each j, this data is strong standard
input of type (aj, bj), in the sense of 12.4.11 We further suppose that

for each j, we are given a dense open set Uj fi Ïj which meets

every geometric fibre of Ïj/Sj, and an integer Nj ≥ 1, such that for

every j, our strong standard input data produces uniform output of
type (Uj, Nj, O(Nj)) relative to Sj, in the sense of 12.4.14. Assume

further that the sequence of integers Nj is strictly increasing. Denote

by (Aj, Cj) the constants (A, C) occuring in Uniform Output Theorem

12.4.18 for the j'th input data.
TTTThhhheeeeoooorrrreeeemmmm 11113333....2222....3333 Suppose the hypotheses of 13.2.1 and 13.2.2 hold.

Fix an integer r ≥ 1, and an offset vector c in #r. Then we have the
following double limit formulas for the Katz-Sarnak measures √(œ, c)

on %r. Fix a continuous ^-valued function g of polynomial growth on

%r. For each j large enough that Nj > 2c(r) + 2, pick a sequence of

pairs (Ei,j, si,j) consisting of

a finite field Ei,j with ùEi,j > Max(4Aj
2, 4Cj

2),
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a point si,j in Uj(Ei,j),

such that ùEi,j is a strictly increasing function of i. Form the

measures

µsignœ(Ei,j, si,j, åi.j) on Osignœ(N, %)
ù,

as in 13.1.5, and their direct images

√signœ(c, E, s, å) := (Fc)*µsignœ(E, s, å) on %r,

as in 13.1.9-11. Then we have the double limit formula
—%r gd√(,œ,c) = limj¨‘ limi¨‘ —%r gd√signœ(c, Ei,j, si,j, åi,j).

RRRReeeemmmmaaaarrrrkkkk 11113333....2222....4444 In the next section, we will regard this double limit
formula as a statement about the totality of conjugacy classes
ø(Ei,j, si,j, åi,j, x).

((((11113333....3333)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo ggggeeeennnneeeerrrraaaalllliiiizzzzeeeedddd WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss ooooffff
eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(13.3.1) Here we are given a sequence, indexed by integers j ≥ 1,
of data (Sj/#[1/…], Cj/Sj of genus gj, Dj on Cj of degree dj ≥ 2gj + 3),

as in 12.7.1-5. We define the integer Nj by

Nj := 4gj - 4 + 12deg(Dj).

We suppose that Nj is a strictly increasing function of j. For each j,

we have the smooth Sj-scheme GWIfd(Cj, Dj), which carries the

corresponding family of elliptic curves in generalized Weierstrass
form

y2 + f1xy + f3y = x3 + f2x
2 + f4x + f6,

with f√ in L(√Dj). For each finite field kj with ùkj > Max(Aj
2, Cj

2),

for each point sj in Sj(kj), and for each point f's in GWIfd(Cj, Dj)sj
,

we have an elliptic curve Ef's,sj,kj
over the function field of Cj,sj

/kj,

whose unitarized L-function L(Ef's,sj,kj
/kj(Cj,sj

), T) is given as

follows, cf. 12.7.8. There is a unique conjugacy class ø(kj, sj, åj, f's)

in O(N, %)ù such that
L(Ef's,sj,kj

/kj(Cj,sj
), T) = det(1 - Tø(kj, sj, åj, f's)).

[Here åj = (ùkj)
2. In 12.7.8, åj is omitted in the notation.]

(13.3.2) For each j, the input data gives uniform output of type
(U, N, G) = (GWIfd(Cj, Dj), Nj, O(Nj)), cf. 12.7.5. So we obtain the

following two theorems. [Notice that not only the divisors Dj, but

also the bases Sj and the curves Cj/Sj are allowed to vary with j.

We expect that in most applications, S and C will be fixed, and that
only Dj on C/S will vary. But by prudence we state the general

version.]

TTTThhhheeeeoooorrrreeeemmmm 11113333....3333....3333 Hypotheses and notations as in 13.3.1 above, fix
any j ≥ 1. Consider all the conjugacy classes ø(kj, sj, åj, f's), which
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define the L-functions of the elliptic curves in the corresponding
generalized Weierstrass family. The Analytic Rank Theorem 13.1.7
and the Eigenvalue Location Theorem 13.1.12 apply to these
conjugacy classes.

TTTThhhheeeeoooorrrreeeemmmm 11113333....3333....4444 Fix an integer r ≥ 1, and an offset vector c in #r.
Hypotheses and notations as in 13.3.1 above, for j with Nj > 2c(r) + 2,

consider all the conjugacy classes ø(kj, sj, åj, f's). Then the double

limit formulas of Theorem 13.2.3 hold for them, cf. 13.2.4.

((((11113333....4444)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo uuuussssuuuuaaaallll WWWWeeeeiiiieeeerrrrssssttttrrrraaaassssssss ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc
ccccuuuurrrrvvvveeeessss
(13.4.1) Here we are given a sequence, indexed by integers j ≥ 1,
of data (Sj/#[1/6…], Cj/Sj of genus gj, pairwise disjoint sections {Pi,j}i
in Cj(Sj), effective divisors D2,j = ‡i ai,jPi,j and D3,j = ‡i bi,jPi,j on

Cj of degrees d2,j and d3,j, both ≥ 2gj + 3), as in 12.8.1-5. [In

particular, all the hypotheses of Theorem 12.8.5 are assumed to hold
hold.] We define the integers ci,j by

ci,j := Max(3ai,j, 2bi,j),

and the divisor Dmax,j by

Dmax,j := ‡i ci,jPi,j.

We then define the integer Nj by

Nj :=4gj - 4 + deg(Dmax,j) + 2ù{i with ci,j î• 0 mod 12}.

We suppose that Nj is a strictly increasing function of j. For each j,

we have the smooth Sj-scheme WIfd(Cj, D2,j, D3,j), which carries

the corresponding family of elliptic curves in Weierstrass form

y2 = 4x3 - f2x - f3,

with f2 in L(D2,j) and f3 in L(D3,j). For each finite field kj with

ùkj > Max(Aj
2, Cj

2), for each point sj in Sj(kj), and for each point

(f2, f3) in WIfd(Cj, Dj)sj
(kj), we have an elliptic curve Ef's,sj,kj

over

the function field of Cj,sj
/kj, whose unitarized L-function

L(Ef's,sj,kj
/kj(Cj,sj

), T) is given as follows, cf. 12.8.7. There is a

unique conjugacy class ø(kj, sj, åj, f's) in O(Nj, %)
ù such that

L(Ef's,sj,kj
/kj(Cj,sj

), T) = det(1 - Tø(kj, sj, åj, f's)).

[Here åj = 1. In 12.8.7, åj is omitted in the notation.]

(13.4.2) For each j, the input data gives uniform output of type
(U, N, G) = (WIfd(Cj, Dj), Nj, O(Nj)), cf. 12.8.5. So we obtain the

following two theorems. [Once again, notice that not only the
divisors D2,j and D3.j, but also the bases Sj and the curves Cj/Sj are

allowed to vary with j.]
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TTTThhhheeeeoooorrrreeeemmmm 11113333....4444....3333 Hypotheses and notations as in 13.4.1 above, fix
any j ≥ 1. Consider all the conjugacy classes ø(kj, sj, åj, f's), which

define the L-functions of the elliptic curves in the corresponding
usual Weierstrass family. The Analytic Rank Theorem 13.1.7 and the
Eigenvalue Location Theorem 13.1.12 apply to these conjugacy
classes.

TTTThhhheeeeoooorrrreeeemmmm 11113333....4444....4444 Fix an integer r ≥ 1, and an offset vector c in #r.
Hypotheses and notations as in 13.4.1 above, for j with Nj > 2c(r) + 2,

consider all the conjugacy classes ø(kj, sj, åj, f's). Then the double

limit formulas of Theorem 13.2.3 hold for them, cf. 13.2.4.

((((11113333....5555)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo FFFFJJJJTTTTwwwwiiiisssstttt ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(13.5.1) Here we are given a sequence, indexed by integers j ≥ 1,
of data (Sj/#[1/6…], Cj/Sj of genus gj, pairwise disjoint sections {Pi,j}i
in Cj(Sj), effective divisors D0,j = ‡i ai,jPi,j and D1,j = ‡i bi,jPi,j on

Cj of degrees d0,j and d1,j, both ≥ 2gj + 3), as in 12.9.1-5. We define

the integers ci,j by

ci,j := 2ai,j + bi,j,

and the integer Nj by

Nj :=4gj - 4 + 2deg(D0,j) + 3deg(D1,j) + 2ù{i with ci,j î• 0 mod 4}.

We suppose that Nj is a strictly increasing function of j. For each j,

we have the smooth Sj-scheme FJTwist(D0,j, D1,j), which carries

the corresponding family of elliptic curves in FJTwist form

y2 = 4x3 - 3f2gx - f3g,
with f in L(D0,j) and g in L(D1,j). For each finite field kj with

ùkj > Max(Aj
2, Cj

2), for each point sj in Sj(kj), and for each point

(f, g) in FJTwist(D0,j, D1,j)sj
(kj), we have an elliptic curve Ef,g,sj,kj

over the function field of Cj,sj
/kj, whose unitarized L-function

L(Ef,g,sj,kj
/kj(Cj,sj

), T) is given as follows, cf. 12.9.7. There is a

unique conjugacy class ø(kj, sj, åj, f,g) in O(Nj, %)
ù such that

L(Ef,g,sj,kj
/kj(Cj,sj

), T) = det(1 - Tø(kj, sj, åj, f,g)).

[Here åj = 1. In 12.9.7, åj is omitted in the notation.]

(13.5.2) For each j, the input data gives uniform output of type
(U, N, G) = (FJTwist(D0,j, D1,j), Nj, O(Nj)), cf. 12.9.5. So we obtain the

following two theorems. [Once again, notice that not only the
divisors D0,j and D1.j, but also the bases Sj and the curves Cj/Sj are

allowed to vary with j. ]

TTTThhhheeeeoooorrrreeeemmmm 11113333....5555....3333 Hypotheses and notations as in 13.5.1 above, fix
any j ≥ 1. Consider all the conjugacy classes ø(kj, sj, åj, f,g), which
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define the L-functions of the elliptic curves in the corresponding
FJTwist family. The Analytic Rank Theorem 13.1.7 and the
Eigenvalue Location Theorem 13.1.12 apply to these conjugacy
classes.

TTTThhhheeeeoooorrrreeeemmmm 11113333....5555....4444 Fix an integer r ≥ 1, and an offset vector c in #r.
Hypotheses and notations as in 13.5.1 above, for j with Nj > 2c(r) + 2,

consider all the conjugacy classes ø(kj, sj, åj, f,g). Then the double

limit formulas of Theorem 13.2.3 hold for them, cf. 13.2.4.

((((11113333....6666)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo ppppuuuullllllllbbbbaaaacccckkkk ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc ccccuuuurrrrvvvveeeessss
(13.6.1) Here we fix a normal connected affine #[1/6…]-scheme
S = Spec(A) of finite type, an integer t ≥ 1, and a Cartier divisor T in

!1S which is finite etale over S of degree t. We suppose further that

T is defined by the vanishing of a monic polynomial T(x) in A[x]
which is monic of degree t, and whose discriminant is a unit in A.
We suppose given a relative elliptic curve

π : ‰ ¨ !1S - T,

which, on each geometric fibre of !1S/S, has multiplicative

reduction at some point of T.
(13.6.2) Having fixed this initial input data as in 12.10.1, we
suppose given a sequence, indexed by integers j ≥ 1, of data (Cj/S of

genus gj, pairwise disjoint sections {Pi,j}i in Cj(S), an effective

divisors Dj = ‡i ai,jPi,j in Cj), as in 12.10.2. For each j, we form the

integers Ndown, Nup,j, and Nj := Nup,j - Ndown, as in 12.10.5. We

suppose that each Nj ≥ 9, and that Nj is a strictly increasing

function of j. For each j, we have the smooth S-scheme UDj,T
of

12.10.3, which carries the family of pullback elliptic curves

f*‰ over Cj - Dj - f
-1T,

f in UDj,T
. For each finite field kj with ùkj > Max(Aj

2, Cj
2), for each

point sj in S(kj), and for each point f in (UDj,T
)sj

(kj), we have an

elliptic curve f*‰sj,kj
over the function field of Cj,sj

/kj. The

unitarized L-function L(f*‰sj,kj
/kj(Cj,sj

), T) is a polynomial of

degree Nup,j, which is always divisible as a polynomial by the

unitarized L-function L(‰sj,kj
/kj(@

1), T) of the original elliptic curve

‰sj,kj
/kj(@

1). This latter L-function is a polynomial of degree Ndown.

The quotient of these L-functions, the "new part", is given as follows,
cf. 12.10.9. There is a unique conjugacy class ø(kj, sj, åj, f) in

O(Nj, %)
ù such that
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L(f*‰sj,kj
/kj(Cj,sj

), T)/L(‰sj,kj
/kj(@

1), T)

= det(1 - Tø(kj, sj, åj, f)).

[Here åj = 1. In 12.10.9, åj is omitted in the notation.]

(13.6.3) For each j, the input data gives uniform output of type
(U, N, G) = (UDj,T

, Nj, O(Nj)), cf. 12.10.7. So we obtain the following

two theorems.

TTTThhhheeeeoooorrrreeeemmmm 11113333....6666....4444 Hypotheses and notations as in 13.6.1 and 13.6.2
above, fix any j ≥ 1. Consider the conjugacy classes ø(kj, sj, åj, f),

which define the "new parts" of the L-functions of the elliptic curves
in the corresponding pullback families. The Analytic Rank Theorem
13.1.7 and the Eigenvalue Location Theorem 13.1.12 apply to these
conjugacy classes.

TTTThhhheeeeoooorrrreeeemmmm 11113333....6666....5555 Fix an integer r ≥ 1, and an offset vector c in #r.
Hypotheses and notations as in 13.6.1 and 13.6.2 above, for j with
Nj > 2c(r) + 2, consider all the conjugacy classes ø(kj, sj, åj, f). Then

the double limit formulas of Theorem 13.2.3 hold for them, cf. 13.2.4.

((((11113333....7777)))) AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss ttttoooo qqqquuuuaaaaddddrrrraaaattttiiiicccc ttttwwwwiiiisssstttt ffffaaaammmmiiiilllliiiieeeessss ooooffff eeeelllllllliiiippppttttiiiicccc
ccccuuuurrrrvvvveeeessss
(13.7.1) We work over an affine #[1/2…]-scheme S = Spec(A) of
finite type. We fix a genus g ≥ 0 and a projective smooth curve C/S
with geometrically connected fibres of genus g. We suppose given a
sequence, indexed by integers j ≥ 1, of data (pairwise disjoint
sections {Pi,j}i in C(S), disjoint effective Cartier divisors Tj and

Dj = ‡i ai,jPi,j in C, with Tj/S finite etale of degree tj, Dj/S finite flat

of degree dj ≥ 2g+3, an elliptic curve ‰j/C - Tj - Dj which, on every

geometric fibre of (C - Tj - Dj)/S has multiplicative reduction at

some point of Tj, and is everywhere tamely ramified), as in 12.11.1

and 12.11.2. We form the integer Nj as in 12.11.5. We suppose that

each Nj ≥ 9, and that Nj is a strictly increasing function of j. For

each j, we have the smooth S-scheme Fct(C dj, Dj, Tj), cf. 12.11.4,

which carries the quadratic twist family
‰j‚ç2(f),

f in Fct(C dj, Dj, Tj). For each finite field kj with

ùkj > Max(Aj
2, Cj

2), for each point sj in S(kj), and for each point f

in Fct(C dj, Dj, Tj)sj
(kj), we have an elliptic curve ‰j,sj,kj

‚ç2(f)

over the function field of Csj
/kj. The unitarized L-function

L(‰j,sj,kj
‚ç2(f)/kj(Csj

), T) is given as follows, cf. 12.11.7. There is a

unique conjugacy class ø(kj, sj, åj, f) in O(Nj, %)
ù such that
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L(‰j,sj,kj
‚ç2(f)/kj(Csj

), T) = det(1 - Tø(kj, sj, åj, f,g)).

[Here åj is a choice of Sqrt(ùkj). In 12.11.7, åj is omitted in the

notation.]
(13.7.2) For each j, the input data gives uniform output of type
(U, N, G) = (Fct(C dj, Dj, Tj), Nj, O(Nj)), cf. 12.11.6. So we obtain the

following two theorems.

TTTThhhheeeeoooorrrreeeemmmm 11113333....7777....3333 Hypotheses and notations as in 13.1.1 above, fix
any j ≥ 1. Consider the conjugacy classes ø(kj, sj, åj, f), which

define the L-functions of the elliptic curves in the corresponding
quadratic twist families. The Analytic Rank Theorem 13.1.7 and the
Eigenvalue Location Theorem 13.1.12 apply to these conjugacy
classes.

TTTThhhheeeeoooorrrreeeemmmm 11113333....7777....4444 Fix an integer r ≥ 1, and an offset vector c in #r.
Hypotheses and notations as in 13.7 above, for j with Nj > 2c(r) + 2,

consider all the conjugacy classes ø(kj, sj, åj, f). Then the double

limit formulas of Theorem 13.2.3 hold for them, cf. 13.2.4.
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Conjecture"

Laurent series 222288881111

Legendre family 444433338888,,,, 444444441111

Level 3 family 444433338888,,,, 444444442222

linear dual 14, 33331111

Local nature lemma 333333332222

Missing Points lemma 333333336666, 336, 338, 341

Moebius inversion formula 66667777, 71

Moebius partner function 77771111



472 Subject Index

moment 66660000----66661111,,,, see "absolute central moments of a bounded
random variable" or "central moments of a bounded random
variable"

monodromy homomorphism 111100005555

More Optimistic Drop Ratio Conjecture 111100003333

multiplicative character sums 7-8, 185-220, 253, 274, 421

new part of an L-function 333311110000-311, 452-453

Non-semisimplicity Corollary 222233331111, 307

Normal Subgroup Corollary 99999999

occurs via “ 22222222, 37

offset vector 444444446666, 447-448, 450-454

Orthogonality Theorem 5, 22225555, 29-31, 33, 35, 38, 48, 62-63

perverse origin see "sheaf of perverse origin"

perversity 11113333, 407-408

Perversity Corollary 11118888

positive characteristic fibrewise perversity 444400007777

Primitivity Theorem 99999999

product formula for Frobenius-Schur indicator 55555555, 66666666

projective drop 111100003333

projective order 111100003333

pseudoreflection 99999999, 100, 102-103, 191-193, 209-210, 229-231,
254-255, 258, 260, 264, 303-304, 306, 308, 324-326, 350, 352, 355,.
357, 360, 364, 380, 382-383, 386, 393, 403-404, 406

Pseudoreflection Output Corollary 222233331111, 258



Subject Index 473

Pseudoreflection Theorem 111199991111,,,, 222200009999

pullback families 308-312, 444433335555,,,, 444455552222, 453

Punctual Purity Corollary 111100009999, 170

punctual È-purity of weight w 22224444

punctual “-purity of weight w 22221111

quadratic analytic rank 444444444444

quadratic twist families 444433339999,,,, 444455553333, 454

quasifinitely 2-separating space of functions 11111111, 12

quasifinitely difference separating space of functions 11112222, 13, 17,
19, 113, 116, 182

radiciel morphism 11110000

reflection 99999999, 100-103, 189, 191, 207-209, 216, 218-219, 234,
238, 254, 256, 258-260, 270, 275, 277-278, 298, 303-306, 312, 324-
326, 354-356, 362-364, 377, 378, 380, 388, 400-403, 406

relative Verdier dual 444400008888

Riemann-Roch space 11110000,,,, 233, 222233337777,,,, 239

Scalarity Corollary 111100008888, 139, 170, 400

Second Homothety Contraction Corollary 111111119999, 122-123

Segre embedding 163

self dual families 146, 149

Semicontinuity Corollary 111100006666, 158, 173, 181

Semicontinuity Theorem 111100006666, 113, 118, 134-135, 297

semiperversity 11112222, 17-20, 23-24, 37, 53, 63, 328



474 Subject Index

Semiperversity Theorem 11113333, 23, 53

separation of variables 136

sheaf of perverse origin 6, 104-106, 108-109, 116-120, 122-123,
126, 128, 132, 135, 138, 156-158, 167-171, 173, 179-180, 182, 183,
186, 188-190, 276, 299, 323, 354, 361, 366, 377, 384, 394, 400, 401,
404

smooth stratification 11112222

space of functions 5, 9999, 10, 13, 19, 52, 162, 167, 171, 295, 321-
322, 324, 343, 379, 416, 418, 423, 448

special finite etale covering 222288888888

stability by homothety 111111114444, 116, 173-174

standard input 55552222, 64, 76, 81, 82, 85, 89, 111, 167, 185, 295,
322, 342, 353, 361, 377, 379, 383, 393

standard input of type (a,b) 444411118888

Standard Input Theorem 55553333, 57, 75, 88-89, 169, 343

strong Deligne polynomial see "Deligne polynomial, strong"

strong standard input 444411117777, 429, 432, 434, 437

strong standard input of type (a, b) 444411117777----444411118888, 419, 423, 424, 429,
431, 433, 439, 448

strong tensor indecomposability 99999999, 102-103

sum map 222222221111

Supersingularity Lemma 111144442222, 143-144, 178

Swan-minimal pole 222244448888, 281-294, 304, 357, 359, 381, 384, 389,
391, 394, 395

symmetric power 308-310

Tensor Indecomposability Lemma 99999999

transversality hypothesis 111166661111, 166



Subject Index 475

trace function, abstract see "abstract trace function"

trace function, approximate see "approximate trace function"

triangulated functor 22220000

Twelfth Moment Conjecture 99997777, 98

Twisting Lemma 111100007777,,,, 108-109, 173, 180, 333333331111,,,, 335, 339, 333344443333,
371, 390

type of a partition 66668888, 70-71, 73-76, 78, 80, 82, 87

uniform output 444411119999, 420, 424, 426, 429, 432, 434, 437, 440,
448, 449-451, 453-454

Uniform Output Theorem 444422220000,,,, 444422224444, 429, 432, 434, 437, 443-
445, 447, 448

Uniformity Theorem 444411111111, 416, 419-420, 426, 428

Unipotent Pseudoreflection Input Corollary 222222229999,,,, 222233330000, 406

Vanishing Proposition 333322229999

variance of a bounded random variable 55550000

Verdier dual 11113333, 18, 22, 25, 31, 34, 249, 408

Verdier dual, relative see "relative Verdier dual"

Weierstrass families 333344449999----333366669999,,,, 444422229999, 434, 449, 450

Weight Corollary 22223333

Weil II 23-25, 249, 253




