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It is now some thirty years since Deligne first proved his
general equidistribution theorem [De-Weil II, Ka-GKM, Ka-Sar-
RMFEM], thus establishing the fundamental result governing the
statistical properties of suitably "pure" algebro-geometric families of
character sums over finite fields (and of their associated L-
functions). Roughly speaking, Deligne showed that any such family
obeys a "generalized Sato-Tate law", and that figuring out which
generalized Sato-Tate law applies to a given family amounts
essentially to computing a certain complex semisimple (not
necessarily connected) algebraic group, the "geometric monodromy
group" attached to that family.

In our earlier books [Ka-GKM], [Ka-ESDE], and [Ka-TLFM],
computations of geometric monodromy groups were carried out
either directly on an open curve as parameter space, or by
restriction to a well-chosen open curve in the parameter space. Once
on an open curve, our main tool was to compute, when possible, the
local monodromy at each of the missing points. This local
monodromy information told us that our sought-after semisimple
group contained specific sorts of elements, or specific sorts of
subgroups. We typically also had a modicum of global information,
e.g., we might have known that the sought-after group was an
irreducible subgroup of GL(N), or of the orthogonal group O(N), or of
the symplectic group Sp(N). It was often then possible either to
decide either exactly which group we had, or to show that our group
was on a very short list of possibilities, and then to distinguish
among those possibilities by some ad hoc argument.

In this book, we introduce new techniques, which are
resolutely global in nature. They are sufficiently powerful that we
can sometimes prove that a geometric monodromy group is, say,
the symplectic group Sp(N), without knowing the value of N; cf.
Theorem 3.1.2 for an instance of this. The price we pay is that these
new techniques apply only to families which depend on very many
parameters, and thus our work here is nearly disjoint from our
earlier "local monodromy" methods of analyzing one-parameter
families. However, it is not entirely disjoint, because the new
techniques will often leave us knowing, say, that our group is either
SO(N) or O(N), but not knowing which. In such cases, we sometimes
prove that the group is in fact O(N) by restricting to a suitable
curve in the parameter space and then proving that the local
monodromy at a particular missing point of this curve is a
reflection: since SO(N) contains no reflections, we must have O(N).

Our work is based on two vital ingredients, neither of which
yet existed at the time of Deligne's original work on equidistribution.
The first of these ingredients is the theory of perverse sheaves,
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pioneered by Goresky and MacPherson in the topological setting, and
then brilliantly transposed to algebraic geometry by Beilinson,
Bernstein, Deligne, and Gabber. The second is Larsen's Alternative,
discovered by Larsen ten odd years ago, which very nearly
characterizes classical groups by their fourth moments.

This book has two goals, one "applied" and one "theoretical". The
applied goal is to calculate the geometric monodromy groups
attached to some quite specific universal families of (L-functions
attached to) character sums over finite fields. The theoretical goal is
to develop general techniques, based on combining a diophantine
analysis of perverse sheaves and their higher moments with
Larsen's Alternative and other group-theoretic results, which can be
used to achieve the applied goal, and which are of interest in their
own right.

Let us begin by describing some of the universal families we
have in mind. Grosso modo, they are of three sorts:

families of additive character sums,
families of multiplicative character sums, and
Weierstrass (and other) families of L-functions of elliptic curves

over function fields in one variable.
In the additive character case, we fix a finite field k and a

nontrivial ^-valued additive character ¥ of k. For any finite
extension E/k, we denote by ¥E the additive character of E defined

by
¥E(x) := ¥(TraceE/k(x)).

Fix a pair of integers n ≥ 1 and e ≥ 3. We denote by ∏(n,e)(E) the
space of polynomials over E in n variables of degree ≤ e. We are
concerned with the families of sums, parameterized by f in
∏(n,e)(E), given by

Sum(E, f, ¥) := ‡x1, ..., xn in E ¥E(f(x1, ..., xn)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say M(n, e, ¥), on ∏(n, e)/k. On some dense open set,
say U(n, e, ¥) of ∏(n, e)/k, this perverse sheaf is a [shift and a Tate
twist of a] single lisse sheaf, say ˜(n, e, ¥), which is pure of weight
zero. [When the degree e is prime to char(k), we can take U(n, e, ¥)
to be the open set Î(n, e) consisting of "Deligne polynomials" of
degree e in n variables, those whose leading forms define smooth,

degree e hypersurfaces in @n-1.] It is the geometric monodromy of
this lisse sheaf ˜(n, e, ¥) on U(n, e, ¥) which we wish to calculate.

In the multiplicative character case, we fix a finite field k and

a nontrivial ^-valued multiplicative character ç of k≠, extended to
all of k by ç(0) := 0. For any finite extension E/k, we denote by çE

the multiplicative character of E≠ defined by
çE(x) := ç(NormE/k(x)),

again extended to all of E by çE(0) := 0. Fix a pair of integers n ≥ 1

and e ≥ 3. We are concerned with the families of sums,
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parameterized by f in ∏(n,e)(E), given by
Sum(E, f, ç) := ‡x1, ..., xn in E çE(f(x1, ..., xn)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say M(n, e, ç), on ∏(n, e)/k. On some dense open set,
say U(n, e, ç) of ∏(n, e)/k, this perverse sheaf is a [shift and a Tate
twist of a] single lisse sheaf, say ˜(n, e, ç). [When the degree e is
prime to char(k), we can take U(n, e, ç) to be the open set ÍÎ(n, e)
consisting of "strong Deligne polynomials" of degree e in n variables,

those which define smooth hypersurfaces in !n and whose leading

forms define smooth, degree e hypersurfaces in @n-1.] When çe is
nontrivial, ˜(n, e, ç) is pure of weight zero, and it is the geometric

monodromy of ˜(n, e, ç) we wish to calculate. When çe is trivial,
˜(n, e, ç) is mixed of weight ≤ 0, and it is the weight zero quotient
of ˜(n, e, ç) whose geometric monodromy we wish to calculate.

In the simplest instance of Weierstrass families of L-functions
of elliptic curves, we fix a finite field k of characteristic p ≥ 5. We

denote by ç2 the quadratic character of k≠. Fix a pair of integers

d2 ≥ 3 and d3 ≥ 3. For each finite extension E/k, we have the

product space (∏(1,d2)≠∏(1,d3))(E) of pairs (g2(t), g3(t)) of one-

variable polynomials over E of degrees at most d2 and d3
respectively. We are concerned with the families of sums,
parameterized by (g2, g3) in (∏(1,d2)≠∏(1,d3))(E),

Sum(E, g2, g3) := ‡x, t in k ç2,E(4x
3 - g2(t)x - g3(t)).

It turns out that these sums are, up to sign, the local traces of a
perverse sheaf, say W(d2, d3), on ∏(1,d2)≠∏(1,d3)/k. On the dense

open set U(d2, d3), of ∏(1,d2)≠∏(1,d3)/k, defined by the condition

that (g2)
3 - 27(g3)

2 has Max(3d2, 2d3) distinct zeroes in äk, this

perverse sheaf is a [shift and a Tate twist of a] single lisse sheaf, say
„(d2, d3), which is mixed of weight ≤ 0. The weight zero quotient

Gr0„(d2, d3) of „(d2, d3) is related to L-functions of elliptic curves

over function fields as follows. For (g2, g3) in U(d2, d3)(E), the

Weierstrass equation

y2 = 4x3 - g2(t)x - g3(t)

defines an elliptic curve over the rational function field E(t), and its

(unitarized) L-function is the local L-function of Gr0„(d2, d3) at the

point (g2, g3) in U(d2, d3)(E). It is the geometric monodromy of

Gr0„(d2, d3) we wish to calculate.

This concludes our quick overview of the sorts of universal
families we wish to treat. These families have in common some
essential features.

The first feature is that, in each case, the parameter space is

itself a large linear space of !m-valued functions (m = 1 in the first



4 Introduction

two sorts of families, m = 2 in the third sort) on some fixed variety
V, i.e., in each case our parameter space is a large linear subspace

Ïof the space Homk-scheme(V, !
m). [It happens that V is itself an

affine space in the examples we have given above (!n in the first

two sorts, !1 in the third sort), but this turns out to be a red
herring.]

The second feature is that our family of sums has the following
structure: for each E/k, we are given a function

K(E, ): !m(E) ¨ ^,
x ÿ K(E, x),

on the E-valued points of the target !m, and our family of sums is

f in Ï(E) fi HomE-scheme(V, !
m) ÿ ‡v in V(E) K(E, f(v)).

In the additive character case, we have m=1, and x ÿ K(E, x) is the

function x ÿ ¥E(x) on !1(E) = E. In the multiplicative character

case, we have m=1, and x ÿ K(E, x) is the function x ÿ çE(x) on

!1(E) = E. In the case of L-functions of elliptic curves over function
fields, we have m=2, and the function (a, b) ÿ K(E, a, b) on

!2(E) = E≠E is the function

(a, b) ÿ ‡x in E ç2,E(4x
3 -ax -b).

[In these cases, the function x ÿ K(E, x) on !m(E) also satisfies in
addition the "integral zero" condition

‡x in !m(E) K(E, x) = 0,

as the reader will easily check. This turns out to be an important
condition, but one that can be somewhat relaxed.]

The third feature is that, in each case, the collection of
functions

K(E, ): !m(E) ¨ ^,
x ÿ K(E, x),

is, up to sign, the trace function of a perverse sheaf K on !m.
Although not apparent from these examples, there is also

interest in introducing, in addition to our perverse sheaf K on !m, a
perverse sheaf L on the source variety V, with trace function

L(E, ): V(E) ¨ ^,
v ÿ L(E, v),

and considering the family of sums

f in Ï(E) fi HomE-scheme(V, !
m) ÿ ‡v in V(E) K(E, f(v))L(E, v).

Slightly more generally, one might fix a single function

h in Homk-scheme(V, !
m),

and consider the family of sums "with an offset of h", namely

f in Ï(E) fi HomE-scheme(V, !
m)

ÿ ‡v in V(E) K(E, h(v) + f(v))L(E,v).

Let us now turn to a brief description of the "theoretical"
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aspects of this book, which are mainly concentrated in the first two
chapters.

In the first chapter, we show that, under very mild hypotheses
on K and L, these sums are, for any fixed h, the trace function (up
to sign) of a perverse sheaf Twist(L,K,Ï,h) on the function space Ï.
This general construction is responsible for the perverse sheaves
M(n, e, ¥) and M(n, e, ç) on the space ∏(n, e)/k discussed in the
additive and multiplicative character cases, and it is responsible for
the perverse sheaf W(d2, d3), on ∏(1,d2)≠∏(1,d3)/k discussed in the

Weierstrass family case. We then formulate in diophantine terms a
general orthogonality theorem for pure perverse sheaves, which is
formally analogous to the orthogonality theorem for the characters
of finite-dimensional representations of a compact Lie group.
Proceeding along the same lines, we formulate in diophantine terms
the theory of the Frobenius-Schur indicator for geometrically
irreducible pure lisse sheaves. This theory is formally analogous to
that of the Frobenius-Schur indicator for irreducible representations
of a compact Lie group, which tells us whether a given irreducible
representation is self dual or not, and tells us, in the autodual case,
whether the autoduality is symplectic or orthogonal We then show
that, given these diophantine invariants for suitable input perverse

sheaves K on !m and L on V, there is a simple rule for calculating
them for (a suitable quotient of) the perverse sheaf Twist(L,K,Ï,h)
on the function space Ï.

Up to this point in our theoretical analysis, we require
relatively little of our space of functions Ï, only that it contain the
constant functions and that it separate points. We then formulate
the notion of "higher moments" for pure perverse sheaves. [The
orthogonality theorem is concerned with the "second moment".] To
get results on the higher moments, we must require that the
function space Ï be suitably large, more precisely, that it be "d-
separating" for some d ≥ 4. Here d-separating means that given any
field extension E/k, and any d distinct points v1, ..., vd in V(E), the

E-linear map "simultaneous evaluation" at the points v1, ..., vd",

Ï‚kE ¨ (!m(E))d,

f ÿ (f(v1), f(v2), ..., f(vd))

is surjective. [In the examples, the degrees ("e" in the first two cases,
"d2" and "d3" in the Weierstrass case) are taken to be at least 3 in

order to insure that our function spaces are at least 4-separating.]
We end the first chapter by proving a quite general "Higher

Moment Theorem" . We suppose that the function space Ï is d-
separating for some d ≥ 4. Then we get control of the even moments
M2k, for every positive even integer 2k ≤ d, of (a suitable quotient

of) the perverse sheaf Twist(L,K,Ï,h) on the function space Ï. An
immediate consequence of this control is the fact that the support of
(this suitable quotient of) the perverse sheaf Twist(L,K,Ï,h) is the
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entire space Ï. Its restriction to an open dense set of Ï is a (shift of
a single) lisse sheaf, whose geometric monodromy is what we wish to
calculate, and whose higher moments we now control.

In chapter 2, we bring to bear some very important ideas of
Michael Larsen, about the determination of classical groups through
their higher moments. The idea which we exploit most extensively is
"Larsen's Alternative", in which we are given an integer N ≥ 2 and a
reductive subgroup H of one of the classical groups GL(N, ^) or
O(N, ^), or, when N is even and at least 4, Sp(N, ^), and we are told
that H has the same fourth moment as the ambient group in the
given N-dimensional representation (namely 2, 3, 3 in the three
successive cases). Larsen's Alternative is the marvelous statement
that either H is finite, or that, in the three successive cases, we have

H contains SL(N), in the GL(N) case,
H is either SO(N) or O(N), in the O(N) case,
H is Sp(N), in the Sp(N) case.

This very nearly reduces us to ruling out the possibility that H is
finite. [We say very nearly, because we must still compute
determinants, i.e., we must still distinguish between SO(N) and O(N),
and we must still distinguish among the various groups between
SL(N) and GL(N).] Fortunately, there is a great deal known about the
possible finite groups which could arise in this context. For N ≥ 3,
any such finite group is, because of its low fourth moment,
automatically a primitive subgroup of GL(N). We can then apply the
plethora of known results on finite primitive irreducible subgroups of
GL(N), due (in chronological order) to Blichfeldt, Mitchell, Huffman-
Wales, Zalesskii, and Wales. We can apply all this theory to an H
which is the geometric monodromy group attached to (a suitable
quotient of the restriction to a dense open set of) the perverse sheaf
Twist(L,K,Ï,h), thanks to the control over moments gained in the
first chapter. For such an H, there are further tools we can bring to
bear, both algebro-geometric (the theory of "sheaves of perverse
origin") and diophantine in nature. All of this is explained in the
second chapter.

A further idea of Michael Larsen is his unpublished "Eighth
Moment Conjecture". Suppose N ≥ 8, and suppose we are given a
reductive subgroup H of one of GL(N, ^) or O(N, ^), or, when N is
even, Sp(N, ^). Suppose H has the same eighth moment as the
ambient group in the given N-dimensional representation. Then
Larsen conjectured that, in the successive cases, we have

H contains SL(N), in the GL(N) case,
H is either SO(N) or O(N), in the O(N) case,
H is Sp(N), in the Sp(N) case.

In other words, if we have the correct eighth moment (which
implies that the lower even moments are also "correct"), then the "H
finite" case of Larsen's Alternative cannot arise. Larsen's Eighth
Moment Conjecture has recently been proven by Guralnick and Tiep.
Combining their result and the Higher Moment Theorem, we avoid
the need to rule out the "H finite" case, provided only that our space
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of functions Ï is at least 8-separating. To see what this means in
practice, consider the three examples of universal families we
considered above. To have Ï 8-separating, we need to take the
degree e ≥ 7 in the cases of additive and multiplicative character
sums, and we need to take the degrees d2 and d3 both ≥ 7 in the

Weierstrass case. [But we still face the earlier mentioned problem of
computing the determinant.]

With these tools at hand, we get down to concrete applications.
Chapters 3 and 4 are devoted to additive character sums, first on

!n and then on more general varieties. In chapter 5, we study
multiplicative character sums. The results we obtain in these
chapters are nearly complete, except that in a number of cases we
cannot distinguish whether we have SO(N) or O(N). In chapter 6, we
apply the theory of middle additive convolution on the additive

group ´a = !1 to both additive and multiplicative character sums

on !n. This theory allows us in many cases to compute
determinants, and thus distinguish between the O(N) and SO(N)
cases. It is in this use of middle additive convolution that we are
falling back on the method of restricting to a suitable curve and
then computing local monodromies, in order to show that our group
contains pseudoreflections of specified determinant. In an appendix
to chapter 6, we further develop some technical themes which
appeared in the proof of a key technical result, Theorem 6.2.11,
which was worked out jointly with Eric Rains.

In chapter 7, we work systematically with "pullback to a curve

from !1" situations. A typical example of the situation we study is
this. Take a finite field k of odd characteristic, and consider the
rational function field in one variable k(¬), over which we have the
Legendre curve, defined by the equation

y2 = x(x-1)(x - ¬).
Fix an integer e ≥ 3. For each finite extension E/k, and each each
polynomial f(¬) in E[¬] of degree at most e (i.e., f lies in ∏(1, e)(E)),
we have the pullback equation

y2 = x(x-1)(x - f(¬)).
The sums

Sum(f, E) := ‡x,¬ in E ç2,E(x(x-1)(x - f(¬)))

are, up to sign, the trace function of a perverse sheaf on ∏(1, e). For
f in the dense open set U of ∏(1, e) consisting of those polynomials f
such that f(f-1) has 2e distinct roots in äk, this perverse sheaf is a
(shift and a Tate twist of a) single lisse sheaf, whose rank N is

2e - 2, if e odd,
2e - 3, if e even,

and whose local L-function at f in U(E) is precisely the unitarized L-
function of the elliptic curve over E(¬) defined by the pullback
equation

y2 = x(x-1)(x - f(¬)).
We prove that this lisse sheaf has geometric monodromy group the
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full orthogonal group O(N), provided that N ≥ 9. At the very end of
this chapter, we give some results on degeneration of Leray spectral
sequences, which are certainly well known to the experts, but for
which we know of no convenient reference.

In chapter 8, we indicate how the general theory of
Twist(L,K,Ï,h) developed here allows us to recover some of the
results of [Ka-TLFM].

Chapters 9, 10, and 11 are devoted to a detailed study of
families of L-functions of elliptic curves over function fields in one
variable over finite constant fields. Chapter 9 is devoted to
explaining how various classical families of elliptic curves provide

appropriate input, namely a suitable perverse sheaf K on an !m, to
the general theory. Chapter 10 works out what the general theory
gives for various sorts of Weierstrass families, and Chapter 11 works
it out for other, more neglected, universal families, which we call
FJTwist families.

In chapter 12, we return to theoretical questions, developing
some general if ad hoc methods which allow us to work "over #"
instead of "just" over a finite field. These methods apply nicely to the
case of multiplicative character sums, and to the various
Weierstrass and FJTwist families. What they make possible is
equidistribution statements where we are allowed to work over
bigger and bigger finite fields, whose characteristics are allowed to
vary, e.g., bigger and bigger prime fields, rather than the more
restrictive setting of bigger and bigger finite fields of a fixed
characteristic. Unfortunately, the methods do not apply at all to
additive character sums. Nonetheless, we believe that the
corresponding equidistribution statements, about additive character
sums over bigger and bigger finite fields whose characteristics are
allowed to vary, are in fact true statements. It is just that we are
presently incapable of proving them.

In the final chapter 13, we make explicit the application of our
results to the arithmetic of elliptic curves over function fields. We
first give results on average analytic rank in our families. We then
pass to the large-N limit, e.g., by taking Weierstrass families of type
(d2, d3) as described earlier, and letting Max(3d2, 2d3) tend to

infinity, and give results concerning low-lying zeroes as incarnated
in the eigenvalue location measures of [Ka-Sar, RMFEM].
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