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Abstract. This is (a slightly more detailed version of) our talk at
the conference in honor of Laumon’s sixtieth birthday. We report
here on some unexpected occurrences of G2, first stumbled upon
experimentally, later proven, but still not understood. Proofs will
appear elsewhere.

1. elliptic sums

Let k be a finite field, E/k an elliptic curve, and f : E(k) → C a
function on the finite abelian group E(k). Given f , we define a function
S(f) of characters Λ ∈ Homgroup(E(k),C×) by

S(f)(Λ) :=
∑
p∈E(k)

f(P )Λ(P ).

This function S(f) is the “Fourier transform” of f in the sense of finite
abelian groups. Given two functions f, g on E(k), their convolution is
the function on E(k) defined by

(f ? g)(P ) :=
∑

R+S=P

f(R)g(S).

Their Fourier transforms are related by the usual identity S(f ? g) =
S(f)S(g), i.e., for each Λ we have

S(f ? g)(Λ) = S(f)(Λ)S(g)(Λ).

For a given function f , the moments of its Fourier transform S(f),
defined by

Mn(S(f)) := (1/#E(k))
∑

Λ

S(f)(Λ)n

are thus given in terms of the multiple self-convolutions f ?n of f with
itself by

(1/#E(k))
∑

Λ

S(f ?n)(Λ) = f ?n(0).
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For any writing of n as a+ b with a, b strictly positive integers, we thus
have

Mn(S(f)) = (f ?n)(0) =
∑
P

f ?a(P )f ?b(−P ).

2. elliptic equidistribution

Fix a prime number ` invertible in k, and an embedding ι of Q` into
C. There is an obvious notion of convolution of objects in Dc

b(E,Q`),
defined in terms of the addition map sum : E×k E → E, by (A,B) 7→
A ? B := Rsum?(A � B). If we attach to A ∈ Dc

b(E,Q`) its trace
function on E(k), given by fA,k(P ) := Trace(Frobk,P |A), then by the
Lefschetz Trace Formula we have the identity fA,k ? fB,k = fA?B,k of
functions on E(k).

In general, if A and B are each perverse sheaves on E, their convo-
lution need not be perverse. To remedy that, we work first on Ek, the
extension of scalars of E to k. We say that an object A ∈ Dc

b(Ek,Q`)
has property P if, for all lisse rank one sheaves L on Ek, we have

H i(Ek, A⊗ L) = 0 for i 6= 0.

We have the following lemma.

Lemma 2.1. Let A ∈ Dc
b(Ek,Q`) have property P. Then A is perverse.

Because lisse rank one L’s on Ek are primitive in the sense that
sum?(L) ∼= L� L, the A’s with property P are stable by convolution.
Thus perverse sheaves with property P are stable by convolution. An
irreducible perverse sheaf on Ek has property P unless it is an L[1].

Corollary 2.2. The perverse sheaves on Ek with property P form a
neutral Tannakian category, with convolution as the tensor operation,
δ0 as the identity, N 7→ N∨ := [P 7→ −P ]?DN as the dual, and
“dim”(N) := χ(Ek, N) = h0(Ek, N). For any lisse rank one L on Ek,
N 7→ H0(Ek, N ⊗ L) is a fibre functor.

Remark 2.3. Just as in Gabber-Loeser [Ga-Loe], the abelian category
structure on the above Tannakian category is the one induced by view-
ing it not as a full subcategory of the category Perv of all perverse
sheaves on Ek, but rather as the quotient cateory Perv/Neg of Perv
by the subcategory Neg consisting of those perverse sheaves which are
of Euler characteristic zero, or (equivalently) of the form F [1] for F
a lisse sheaf on Ek, or (equivalently) successive extensions of objects
L[1]. The irreducible (resp. semisimple) objects in Perv/Neg are just
the irreducible (resp. semisimple) perverse sheaves with property P .
The semisimple perverse sheaves with property P themselves form a
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Tannakian category; its structure of abelian category is equal to the
naive one.

We now return to working on E/k. Recall that for a character Λ
of E(k), the Lang torsor construction [De-ST, 1.4] gives a lisse rank
one sheaf LΛ on E, whose trace function on E(k) is Λ. The perverse
sheaves on E which, pulled back to Ek, have property P , themselves
form a neutral Tannakian category. For each character Λ of E(k),
N 7→ H0(Ek, N ⊗ LΛ) is a fibre functor. The action of Frobk on
H0(Ek, N ⊗ LΛ) is an automorphism of this fibre functor, so gives a
conjugacy class Frobk,Λ in the Tannakian group Garith,N attached to
N . Notice in passing that, by the Lefschetz trace formula,

Trace(Frobk|H0(Ek, N ⊗ LΛ)) =
∑

P∈E(k)

Trace(Frobk,P |N)Λ(P )

is the value at Λ of the elliptic sum S(fN,k) attached to the trace
function fN,k on N on E(k).

SupposeN is perverse on E, has property P , is arithmetically semisim-
ple, is ι-pure of weight zero, and has dimension n := “dim”(N). Denote
by Garith,N , respectively Ggeom,N , the Tannakian groups attached to N
on E , respectively on Ek. In general we have inclusions of reductive
Q`-algebraic groups

Ggeom,N CGarith,N ⊂ GL(“dim”(N)).

Pick a maximal compact subgroup K of Garith,N(C). The semisimplifi-
cation (in the sense of Jordan decomposition) Frobssk,Λ of the conjugacy
class Frobk,Λ intersects K in a single conjugacy class θk,Λ of K. Via
the inclusion of K ⊂ Garith,N(C) into GL(n), we have

det(1− Tθk,Λ) = det(1− TFrobk|H0(Ek, N ⊗ LΛ)),

so in particular

Trace(θk,Λ) = Trace(Frobk|H0(Ek, N ⊗ LΛ))

=
∑

P∈E(k)

Trace(Frobk,P |N)Λ(P ).

Exactly as in [Ka-CE, 1.1, 7.3], Deligne’s Weil II results [De-Weil II,
3.3.1] and the Tannakian formalism give the following theorem.

Theorem 2.4. In the above situation, suppose Ggeom,N = Garith,N .
Then as L/k runs over larger and larger finite extension fields of k,
the conjugacy classes {θL,Λ}Λ char. of E(L) become equidistributed in the
space K# of conjugacy classes of K, for its “Haar measure“ of total
mass one.
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3. The search for G2

We work over C. Recall that G2, the automorphism group of the
octonions, is the fixer in SO(7) of an alternating trilinear form. It is
a connected irreducible subgroup of SO(7). According to a theorem
of Gabber [Ka-ESDE, 1.6], the only connected irreducible subgroups
of SO(7) are SO(7) itself, G2, and the image of SL(2) in Sym6(std2),
which we shall denote “Sym6(SL(2))”. For each of these three groups
G, its normalizer in the full orthogonal group O(7) = {±1}×SO(7) is
the group±G := {±1}×G. Among these six groups, we can distinguish
G2 by its moments (for the given seven dimensional representation, call
it V ). For an integer n ≥ 1 and H any of these six groups, we define

Mn(H) := dim((V ⊗n)H).

For K a maximal compact subgroup of H, we have

Mn(H) =

∫
K

Trace(k|V )n.

The third and fourth moments are given by the following table.

M3 M4

Sym6(SL(2)) 1 7
±Sym6(SL(2)) 0 7
G2 1 4
±G2 0 4
SO(7) 0 3
O(7) 0 3

So if M3 is nonzero, we have either G2 or Sym6(SL(2)). We can
distinguish these two cases by their M4. But there is another, compu-
tationally easier, way to distinguish the two. Take maximal compact
subgroups UG2 and Sym6(SU(2)) of these two groups. For UG2, its
traces in the given seven dimensional representation lie in the inter-
val [−2, 7], while the traces of Sym6(SU(2)) (namely the values of the
function sin(7θ)/ sin(θ)) lie in the interval [−1.64, 7].

4. Beauville families of elliptic curves

Starting with an elliptic curve E/k, how can we produce geometri-
cally irreducible perverse sheaves N which have P , are ι-pure of weight
zero, and which, in the Tannakian sense, are self dual of dimension
seven? Start with a “seven point sheaf” on E, by which we mean a
geometrically irreducible lisse sheaf F of rank two on a dense open set
j : U ⊂ E of E which is ι-pure of weight zero, whose determinant is
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trivial, and such that (E \ U)(k) consists of seven points, at each of
which the local monodromy of F is unipotent and nontrivial. Then

N := j?F(1/2)[1]

is perverse, ι-pure of weight zero, and geometrically irreducible of “di-
mension” χ(Ek, N) = 7. If in addition F is isomorphic to its pullback
by P 7→ −P , then N is self dual. Because N is geometrically irre-
ducible, the autoduality has a sign. Because N has odd “dimension”,
the autoduality must be orthogonal.

One way to get such an N on E, at least if 2 is invertible in k, is to
view E as a double covering of P1. Concretely, write E as a Weierstrass
equation y2 = g(x), g ∈ k[x] a cubic with distinct roots in k, so that
x : E → P1 is the double covering. If we start with a “four point
sheaf” G on P1, one of whose bad points is ∞ but none of whose bad
points is a zero of the cubic g(x), then its pullback to E by the x to
E \ x−1({the bad points}) is a ”seven point sheaf” on E, providing an
N of the desired type.

The simplest way to produce a four point sheaf G on P1 is to take
the R1π?Q`(1/2) for an elliptic surface π : E → P1 with precisely four
bad fibres, each of which is semistable. Over C, these are precisely the
elliptic surfaces classified by Beauville [Beau] thirty years ago, of which
there are six. Up to isogeny there are only four, to wit

y2 = −x(x− 1)(x− λ2), λ 6= 0, 1,−1,∞,

y2 = 4x3 + ((a+ 2)x+ a)2, a 6= 0, 1,−8,∞,

y2 = 4x3+(b2+6b−11)x2+(10−10b)x+4b−3, b 6= 0,∞, root of b2+11b−1,

and

y2 = 4x3 + (3cx+ 1)2, c 6=∞, c3 6= 1.

Attached to each of these four families is the monic cubic polynomial
f(x) whose roots are its three finite bad points, namely the cubics

x3 − x, x(x− 1)(x+ 8), x(x2 + 11x− 1), x3 − 1,

and its four point sheaf G(x) on the projective x-line.

Theorem 4.1. For each of the four families, with associated cubic
f(x) and four point sheaf G(x), there is an explicit nonzero integer
polynomial P (T ) ∈ Z[T ] with the following property. For each finite
field k in which ` is invertible, and for each t ∈ k at which P (t) 6= 0 in
k, the equation

Et : y2 = tf(x) + t2
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defines an elliptic curve over k, and the N on this Et gotten by pulling
back G(x) has

Ggeom,N = Garith,N = G2.

The proof, sadly, is essentially a computer verification. We have a
priori inclusions

Ggeom,N CGarith,N ⊂ O(7).

One first shows, conceptually, that Ggeom,N is Lie-irreducible, l.e., that
(Ggeom,N)0 is an irreducible subgroup of SO(7). So One then shows,
again conceptually, that the moments M3 and M4 for the data (k, t)
are each independent of (k, t), provided that P (t) is nonzero in k. And
one shows, again conceptually, that if M3 = 0, then we would have an
explicit upper bound (something like 294/

√
#k) for the absolute value

of the empirical M3 computed over k, as in section 1. One then finds
numerically a single good data point (Fp, t), with p around 105, for
which the empirical M3 exceeds 1.0. This shows that M3 is nonzero,
so must be 1, at this data point and hence at every good data point.
This in turn forces Ggeom,N to be either G2 or Sym6(SL(2)). In either
of these cases, Garith,N will be either the same group, or ± that group.
In the latter case, it will be −θFp,Λ rather than θFp,Λ which lies in G2

or in Sym6(SL(2)) accordingly. One then finds a single good data
point (Fp, t) at which there are traces both more negative than −1.64
and strictly greater than 2. At this point we must have Ggeom,N =
Garith,N = G2. Because M4 is constant, we must have M4 = 4 at every
good data point, hence we must have Ggeom,N = G2 at every good data
point.

It remains to show that Garith,N is always G2, never±G2, at any good
data point (k, t). For this, we argue as follows. We have Garith,N =
±G2, if and only if every θk,Λ, Λ a character of Et(k), lies in −G2, i.e.,
has determinant −1.Thus we have Garith,N = G2 precisely when θk,1,
1 the trivial character of Et(k), has determinant 1. Unscrewing these
definitions, we must show that for any good data point (k, t), we have

det(Frobk|H1(Et/k,F(1/2))) = 1.

We now use the Leray spectral sequence for the x double covering Et →
P1. For the four point sheaf G, the cohomology groups H i(P1/k,G) all
vanish, so we find that

H1(Et/k,F(1/2)) = H1(P1/k,G(1/2)⊗ Lχ2(tf(x)+t2)),

for Lχ2 the Kummer sheaf attached to the quadratic character χ2 of
k×. In other words, at time t we are looking at the “interesting part”
of H2(1) of the Beauville elliptic surface over the x line, quadratically
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twisted by tf(x) + t2. The entire H2 has Hodge numbers (2, 32, 2).
There are 29 “trivial” algebraic classes over k, given by the zero sec-
tion and classes of components of fibres. The orthogonal of this 29
dimensional subspace is the ”interesting part” we are looking at. Its
Hodge numbers are (2, 3, 2).

We now analyze t 7→ H1(P1/k,G(1/2) ⊗ Lχ2(tf(x)+t2)) as a sheaf on
the t-line over Z. We need to invert 2, t, the discriminant of f(x),
and the discriminant of f(x) + t. In the four families, this amounts to
inverting the integer polynomial D(t) given respectively by

2t(4−27t2), 6t(5184−2380t−27t2), 10t(125−5522t−27t2), 6t(t−1).

To insure that these polynomials have zeroes which stay disjoint from
each other and from∞, we invert the integer d given by 6, 6× 73, 30×
31, 6 in the four cases. Then over Spec (Z[1/d]) we have the punctured
affine t line S := A1[1/dD(t)]/Z[1/d], and over S we have the projective
x line (P1)S, with structural map denoted ρ : (P1)S → S. This (P1)S
carries the four point sheaf G, which is lisse outside ∞ and the three
roots of f(x), and it carries the twisting sheaf Lχ2(tf(x)+t2). The sheaf

H := R1ρ?(G(1/2)⊗ Lχ2(tf(x)+t2))

is lisse (use Deligne’s semicontinuity theorem, cf. [Lau-SCCS, Cor.
2.1.2]) of rank seven, ι-pure of weight zero, and orthogonally self dual
on S := A1[1/dD(t)]/Z[1/d]. It is automatically tamely ramified along
∞ and the zeroes of dD(t), and so by the tame specialization theorem
[Ka-ESDE, 8.17.13] it has the “same” Ggeom on each geometric fibre
of S/Z[1/d]. Factoring out the Lχ2(t), we can write H as the tensor
product of Lχ2(t) with the sheaf

K := R1ρ?(G(1/2)⊗ Lχ2(f(x)+t)).

This last sheaf K is, on each geometric fibre, the middle additive convo-
lution [Ka-RLS, 2.6.2] of Lχ2 with the direct image sheaf [−f ]?G(1/2).
Since we know the local monodromies of G(1/2), we can first com-
pute the local monodromies of [−f ]?G(1/2), then those of K (using
[Ka-RLS, 3.3.6]), then those of H. The upshot is that the (Jordan
block structures of the) local monodromies of H are given by

31⊕ 4χ2 at 0,

Unip(3)⊕ χ3Unip(2)⊕ χ3Unip(2) at ∞,
and, for the first three Beauville families

2Unip(2)⊕ 31 at the two invertible zeroes ofD(t),
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while for the last Beauville family we get

2χ6 ⊕ 2χ6 ⊕ 31 at the unique invertible zero of D(t).

Since all the local monodromies have trivial determinant, we see that
det(H) is geometrically trivial on each geometric fibre of S/Z[1/d].
Therefore (use the homotopy sequence) det(H) is the pullback from
Spec (Z[1/d]) of a ±1-valued character, i.e., a quadratic Dirichlet char-
acter whose conductor divides a power of d. In the four cases, this forces
the conductor to divide, respectively 24, 24×73, 24×5×31, 24. In each
of the four cases, we then test numerically enough primes to show that
this Dirichlet character is in fact trivial.Thus det(H) is arithmetically
trivial on S.

5. G2 as a “usual” monodromy group

Theorem 5.1. For the first three Beauvile families (but not the fourth),
the sheaf H has

Ggeom = Garith = G2.

The proof is, once again, essentially a computational verification.
The first step is to show that the sheaf [−f ]?G(1/2) is geometrically ir-
reducible on each geometric fibre. [It is this step which fails for the
fourth family.] This geometrically irreducibility either holds on all
geometric fibres, or on none, and one uses a numerical calculation to
show that it holds in some low characteristic. Then the sheaf K, and
hence also the sheaf H, is geometrically irreducible. If it were not Lie-
irreducible, because its rank is the prime seven, it would either have
finite global monodromy or be induced from a rank one sheaf. In either
case all its local monodromies would be semisimple. But one of its local
monodromies is unipotent, so in fact H is Lie-irreducible. So on each
fibre of S/Z[1/d], its groups Ggeom and Garith sit in

Ggeom CGarith ⊂ SO(7).

By the same trick as before, we show that Ggeom,N = G2 by showing it
in one low characteristic p, by first computing the empirical M3 over
Fp to show that M3 6= 0, then finding Fp points where traces are both
< −1.64 and > 2.0 to show that we have we cannot have Sym6(SL(2))
in this characteristic. So we have Ggeom = G2 in this characteristic,
and hence in every characteristic. Since G2 is its own normalizer in
SO(7), we have Ggeom = Garith = G2.

Remark 5.2. Thus we have, in each good characteristic and hence
over C as well, a family of quadratic twists of each of the first three
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Beauville surfaces in which a 7 dimensional piece of H2 has monodromy
group G2. What is the conceptual explanation for this? Can one “see”
an alternating trilinear form on this piece of H2?
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