
RIGID LOCAL SYSTEMS AND FINITE SYMPLECTIC
GROUPS

NICHOLAS M. KATZ AND PHAM HUU TIEP

Abstract. For certain powers q of odd primes p, and certain in-
tegers n ≥ 1, we exhibit explicit rigid local systems on the affine
line in characteristic p > 0 whose geometric and arithmetic mon-
odromy groups are Sp(2n, q).
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1. Introduction

Let p be an odd prime, q a power of p, n ≥ 1 an integer, with
nq > 3 (to exclude the case n = 1, q = 3 of SL(2, 3)). After the triv-
ial representation, the next lowest dimensional (complex, irreducible)
representations of the finite group Sp(2n, q) are

two of dimension (qn − 1)/2, the “small” ones, and
two of dimension (qn + 1)/2, the “large” ones.
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These four representations are called the “individual” Weil representa-
tions. A remarkable fact about these representations of these groups is
this. If we write q = pa, then we have inclusions of groups

SL(2, pan) = SL(2, qn) ↪→ Sp(2n, q) ↪→ Sp(2na, p),

and the restriction of any of the individual Weil representations of the
big group Sp(2na, p) is one of the individual Weil representations of
SL(2, pan) and of the intermediate group Sp(2n, q).

If q ≡ 1( mod 4), all four individual Weil representations of Sp(2n, q)
are self dual. Each of the small ones is a faithful representation toward
Sp((qn− 1)/2,C), and each of the large ones factors through a faithful
representation of the simple group PSp(2n, q) toward SO((qn+1)/2,C).

If q ≡ 3(mod 4), none of the four is self dual: the two small ones are
duals of each other, and the two large ones are duals of each other. If in
addition qn ≡ 1(mod 4), then each of the small ones is faithful toward
SL((qn− 1)/2,C), and each of the large ones factors through a faithful
representation of the simple group PSp(2n, q) toward SL((qn+1)/2,C).
If, on the other hand, qn ≡ 3(mod4), then each of the small ones
factors through a faithful representation of the simple group PSp(2n, q)
toward SL((qn − 1)/2,C), and each of the large ones is faithful toward
SL((qn + 1)/2,C).

All four representations have characters which take values in the
(ring of integers of) the field Q(

√
εqq), for εq the sign defined by

εq := (−1)(q−1)/2,

so that εq = 1 when q ≡ 1(mod 4), and εq = −1 when q ≡ 3(mod 4).
Thus when q is a square, all four individual Weil representations

have integer traces. When q is not a square, the characters of the two
small (respectively of the two large) individual Weil representations are
Galois conjugates, by Gal(Q(

√
εqq)/Q), of each other.

There is a unique “matching” of small and large as follows. If we
name the two small representations Small1 and Small2, there is a unique
naming the large ones as Large1 and Large2 so that each of the direct
sums, called the total Weil representations Weil1 and Weil2,

Weil1 := Small1 ⊕ Large1,
Weil2 = Small2 ⊕ Large2,

has the property that for each element g ∈ Sp(2n, q), the square trace
(Trace(Weili(g)))2 is a power of ±q. More precisely, as g runs over
Sp(2n, q), we attain precisely the powers {(εqq)i}0≤i≤2n.

Another characterization of the correct matching is the property that
for each element g ∈ Sp(2n, q), the square absolute value |Trace(Weili(g))|2
is a non-negative power of p.
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Yet another characterization of the correct matching is the prop-
erty that for each element g ∈ Sp(2n, q), the square absolute value
|Trace(Weili(g))|2 is a non-negative power of q. As g runs over Sp(2n, q),
we attain precisely the powers {qi}0≤i≤2n. In fact, one knows that

|Trace(Weili(g))|2 = qdimFq (Ker(g−1)),

with Ker taken here in the tautological representation of Sp(2n, q) on a
2n-dimensional symplectic space over Fq, but we will not use this more
precise information.

It will also be important to pay attention to the parity of the di-
mensions of the individual Weil representations. If qn ≡ 1(mod4),
then Smalli is even dimensional and Largei is odd dimensional. If
qn ≡ 3(mod 4), then Smalli is odd dimensional and Largei is even di-
mensional. So for i = 1, 2 we name them Eveni and Oddi accordingly:

(1) If qn ≡ 1(mod 4), then Eveni := Smalli and Oddi := Largei.
(2) If qn ≡ 3(mod 4), then Eveni := Largei and Oddi := Smalli.

The distinction is this. Each Eveni is a faithful representation of
Sp(2n, q), while each Oddi factors through a (necessarily faithful) rep-
resentation of the simple group PSp(2n, q).

Now fix a prime ` 6= p, and embeddings

Q(ζp) ⊂ Q`(ζp) ⊂ C.

We will work with `-adic cohomology, over the coefficient field Q`(ζp).
We fix a nontrivial additive character ψ of the additive group of Fp,

We denote by χ2 the quadratic character of F×p , extended by zero across

0 ∈ Fp. On the affine line A1/Fp, we have the Artin-Schreier sheaf Lψ.
On Gm/Fp, we have the Kummer sheaf Lχ2 , and its extension by zero
to A1/Fp (which, when no confusion can arise, we will also denote Lχ2 .

We denote by AFp := Aψ,Fp the (negative of the) gauss sum

AFp := −g(ψ−2, χ2) := −
∑
x∈F×p

ψ(−2x)χ2(x).

When we are dealing with a finite extension field k/Fp, we use the
nontrivial additive character ψk := ψ ◦Tracek/Fp of k and the quadratic
character χ2,k := χ2 ◦ Normk/Fp of k×, extended by zero across 0 ∈ k.
We define

Aψ,k := Ak := (AFp)deg(k/Fp) = −
∑
x∈k×

ψk(−2x)χ2,k(x),

the last equality by the Hasse-Davenport relation.
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When n ≥ 2, we define three lisse sheaves on A2/Fp, with coordinates
(s, t). The first, lisee of rank (qn − 1)/2, is denoted

G(ψ, n, q,1).

The second, lisse of rank (qn + 1)/2, is denoted

G(ψ, n, q, χ2).

The third, lisse of rank qn, is simply the direct sum

W(ψ, n, q) := G(ψ, n, q,1)⊕ G(ψ, n, q, χ2).

Their trace functions are given as follows. For k/Fp a finite extension
field, and (s, t) ∈ A2(k), we have

Trace(Frobk,(s,t)|G(ψ, n, q,1)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2+sx(q+1)/2+tx),

Trace(Frobk,(s,t)|G(ψ, n, q, χ2)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2+sx(q+1)/2+tx)χ2,k(x),

and

Trace(Frobk,(s,t)|W(ψ, n, q)) = (−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

For compatibility with the Even and Odd nomenclature, we define

Godd(ψ, n, q) := whichever of G(ψ, n, q,1) or G(ψ, n, q, χ2) has odd rank

Geven(ψ, n, q) := whichever of G(ψ, n, q,1) or G(ψ, n, q, χ2) has even rank

For compatibilty with the Small -Large dichotomy, we define

Gsmall(ψ, n, q) := G(ψ, n, q,1), Glarge(ψ, n, q) := G(ψ, n, q, χ2).

At present, we are able to show the following two theorems.

Theorem 1.1. Suppose that n ≥ 2 is prime to p, and that q = pa with
a prime to p. Then we have the following results.

(i) The geometric monodromy group Ggeom of Geven(ψ, n, q) is Sp(2n, q)
in one of its individual even-dimensional Weil representations
Eveni. After pullback to A2/Fq, we have Ggeom = Garith.

(ii) The geometric monodromy group Ggeom of Godd(ψ, n, q) is PSp(2n, q)
in one of its individual odd-dimensional Weil representations Oddi.
After pullback to A2/Fq, we have Ggeom = Garith.

(iii) The two local systems Geven(ψ, n, q) and Godd(ψ, n, q) are correctly
matched, in the sense that the geometric monodromy group of
W(ψ, n, q) is Sp(2n, q) in one of its total Weil representations.
After pullback to A2/Fq, we have Ggeom = Garith.



RIGID LOCAL SYSTEMS AND FINITE SYMPLECTIC GROUPS 5

We next specialize s 7→ 1, to obtain lisse sheaves G1(ψ, n, q,1),
G1(ψ, n, q, χ2), andW1(ψ, n, q) on A1/Fp, whose trace functions at time
t ∈ k, for k/Fp a finite extension field, are given by

Trace(Frobk,t|G1(ψ, n, q,1)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2+x(q+1)/2+tx),

Trace(Frobk,t|G1(ψ, n, q, χ2)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2+x(q+1)/2+tx)χ2,k(x),

and

Trace(Frobk,t|W1(ψ, n, q)) = (−1/Ak)
∑
x∈k

ψk(x
qn+1 + xq+1 + tx2).

These are the rigid local systems of the title.
As above, we define G1,even(ψ, n, q,1) and G1,,odd(ψ, n, q,1) by

G1,odd(ψ, n, q) := whichever of G1(ψ, n, q,1) or G1(ψ, n, q, χ2) has odd rank,

G1,even(ψ, n, q) := whichever of G1(ψ, n, q,1) or G;1 (ψ, n, q, χ2) has even rank.

Theorem 1.2. Suppose that n ≥ 2 is prime to p, and that q = pa with
a prime to p. Then we have the following results.

(i) The geometric monodromy group Ggeom of G1,even(ψ, n, q) is Sp(2n, q)
in one of its even-dimensional individual Weil representations
Eveni. After pullback to A1/Fq, we have Ggeom = Garith.

(ii) The geometric monodromy group Ggeom of G1,odd(ψ, n, q) is PSp(2n, q)
in one of its odd-dimensional individual Weil representations Oddi.
After pullback to A1/Fq, we have Ggeom = Garith.

(iii) The two local systems G1,even(ψ, n, q) and G1,odd(ψ, n, q)are cor-
rectly matched, in the sense that the geometric monodromy group
ofW1(ψ, n, q) is Sp(2n, q) in one of its total Weil representations.
After pullback to A1/Fq, we have Ggeom = Garith.

As the reader will see, we make fundamental use of the ideas and
results of van der Geer and van der Flugt [vdG-vdV, §13, 364-367].

2. Group-theoretic information

In this section, we fix an integer N ≥ 1, a prime p, and a factorization
N = AB. We have inclusions of groups

SL(2, pN) ↪→ Sp(2A, pB) ↪→ Sp(2N, p).

Moreover, the Galois group Gal(FpB/Fp) acts by entry-wise conjuga-
tion on Sp(2A, pB). Denoting by CB the cyclic group of order B, we
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thus have the semidirect product group Sp(2A, pB)oCB, and we have
inclusions

Sp(2A, pB) ↪→ Sp(2A, pB) o CB ↪→ Sp(2N, p).

To see this, start with the group SL(2, pN), thought of as the au-
tomorphism group of the 2-dimensional FpN -space (FpN )2, with the
symplectic form

< (a, b), (c, d) >:= ad− bc.
Then think of this same space as a 2A-dimensional FpB -space, with
symplectic form

< (a, b), (c, d) >F
pB

:= TraceF
pN

/F
pB

(ad− bc).

Its automorphism group is Sp(2A, pB). Now think of Sp(2N, p) as the
automorphism group of (FpN )2 as a 2N -dimensional vector space over
Fp, with the symplectic form

< (a, b), (c, d) >Fp := TraceF
pN

/Fp(ad− bc).

Seen this way, the coordinate-wise action of Gal(FpN/FpB) embeds this
Galois group into Sp(2A, pB).

Similarly, if we think of Sp(2A, pB) as the automorphism group of
(FpB)2A with the standard symplectic form

((xi)i, (yi)i)F
pB

:=
A∑
j=1

(xjyj+A − xj+Ayj),

and we think of Sp(2N, p) as the automorphism group of (FpB)2A as
Fp-space, with the symplectic form

((xi)i, (yi)i)Fp := TraceF
pB
/Fp(

A∑
j=1

(xjyj+A − xj+Ayj)),

then the coordinate-wise action of Gal(FpB/Fp) embeds that Galois
group into Sp(2N, p).

Given a divisor b of B, we denote by Cb the cyclic subgroup of CB
of order b. Thus for each divisor b of B, we have inclusions

(2.0.1)
SL(2, pN) ↪→ Sp(2A, pB) ↪→ Sp(2A, pB) o Cb

↪→ Sp(2A, pB) o CB ↪→ Sp(2N, p).

Similarly, we have inclusions of the projective groups

(2.0.2)
PSL(2, pN) ↪→ PSp(2A, pB) ↪→ PSp(2A, pB) o Cb

↪→ PSp(2A, pB) o CB ↪→ PSp(2N, p).
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Theorem 2.1. Suppose that pN ≡ 1(mod 4) (so that the even Weil
representations land in SL((pN − 1)/2,C) and the odd ones land in
SL((pN + 1)/2,C)) and that pN ≥ 9. Then we have the following
results.

(i) View SL(2, pN) as sitting inside SL((pN − 1)/2,C) by one of its
even Weil representations. Let G be a finite group sitting in

SL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp).

Then for some factorization N = AB and for some divisor b of
B, G = Sp(2A, pB) o Cb as specified in (2.0.1).

(ii) View PSL(2, pN) as sitting inside SL((pN + 1)/2,C) by one of its
odd Weil representations. Let G be a finite group sitting in

PSL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp).

Then for some factorization N = AB and for some divisor b of
B, G is PSp(2A, pB) o Cb as specified in (2.0.2).

Theorem 2.2. Suppose that pN ≡ 3(mod 4) (so that the even Weil
representations land in SL((pN + 1)/2,C) and the odd ones land in
SL((pN − 1)/2,C)) and that pN ≥ 11. Then we have the following
results.

(i) View SL(2, pN) as sitting inside SL((pN + 1)/2,C) by one of its
even Weil representations. Let G be a finite group sitting in

SL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp).

Then for some factorization N = AB and for some divisor b of
B, G is Sp(2A, pB) o Cb as specified in (2.0.1).

(ii) View PSL(2, pN) as sitting inside SL((pN − 1)/2,C) by one of its
odd Weil representations. Let G be a finite group sitting in

PSL(2, pN) ≤ G < SL((pN + 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp).

Then for some factorization N = AB and for some divisor b of
B, G is PSp(2A, pB) o Cb as specified in (2.0.2).

It is not true that given an embedding Sp(2n, qm) ↪→ Sp(2nm, q) (by
base change as above), the two distinct irreducible Weil characters of
the same degree of Sp(2nm, q) would restrict to two distinct irreducible
Weil characters of Sp(2n, qm). However, the following is true:
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Lemma 2.3. Let q be an odd prime power and let n,m ≥ 1. For a
fixed degree D := (qnm±1)/2 and fixed irreducible Weil representations

Φ : Sp(2n, qm)→ SL(D,C), Ψ : Sp(2nm, q)→ SL(D,C),

there exists an embedding Θ : Sp(2n, qm) → Sp(2nm, q) such that the
representations Φ and Ψ ◦Θ of Sp(2n, qm) are equivalent.

Proof. As discussed above, we can fix an embedding ι ofX := Sp(2n, qm)
into Y := Sp(2nm, q). It is well known that Ψ ◦ ι is an irreducible Weil
representation of X of degree D. If Ψ ◦ ι ∼= Φ, then we can take Θ = ι.
Otherwise, there is an outer diagonal automorphism α of X such that
Ψ ◦ ι ◦ α ∼= Φ, in which case we take Θ = ι ◦ α. �

Lemma 2.4. Let G = Sp(2A, pB) o Cb be as specified in (2.0.1) and
consider the restriction of an irreducible Weil representation

Ψ : Sp(2N, p)→ SL(D,C)

to G. Then G is generated by elements g with Trace(Ψ(g)) 6= 0.

Proof. Let ψ denote the character of Ψ. We need to show that

H := 〈g ∈ G | ψ(g) 6= 0〉
coincides with G. By [TZ2, Lemma 2.6], ψ(t) 6= 0 for any transvection
t ∈ Sp(2A, pB). It follows that H contains all transvections of N :=
Sp(2A, pB), and so H ≥ N . Next, since ψ is irreducible over N C G,
it follows from [Is, Lemma 8.14(c)] that

∑
y∈Nx |ψ(y)|2 = |N | for any

coset Nx in G. In particular, there is some h ∈ N such that ψ(σh) 6= 0,
where σ is a generator of Cb. Thus H 3 σh, and so H = G. �

Proof of Theorem 2.1 and Theorem 2.2. (a) Let D = (pN ± 1)/2 ≥ 4
denote the dimension of the Weil representation in question, and let
ψ denote the irreducible character of G acting on V = CD. First we
show that Z(G) is of order 2, respectively 1, if D is even, respectively
odd. Indeed, by Schur’s lemma, any z ∈ Z(G) acts on V as a scalar γ,
a primitive cth-root of unity in C for some c ≥ 1. By hypothesis,

Dc = ψ(z) ∈ Q(
√
εpp) ⊆ Q(exp(2πi/p)).

It follows that the Euler function ϕ takes value at most 2 at c, and so
c ∈ {1, 2, 3, 4, 6}. Furthermore, c is coprime to p since 1 = det(z) = cD.
Hence c = 1 if 2 - D, and c ≤ 2 if 2|D, as claimed.

Inflating the representation to SL(2, pN) in the case D is odd, we
will assume that G contains H := SL(2, q) with q := pN . In light of
this inflation, we have shown that Z(G) = Z(H) ∼= C2.

(b) It is well known, see e.g. [KL, Table 5.2.A], that the smallest
index P (H) of proper subgroups of H is at least q if q 6= 9 and equals 6



RIGID LOCAL SYSTEMS AND FINITE SYMPLECTIC GROUPS 9

if q = 9. Since H acts irreducibly on V , it follows that the CH-module
V is primitive.

Next suppose that G preserves a tensor decomposition V = A⊗CB,
with dimA, dimB > 1. Then H acts projectively and irreducibly on
each of A and B. Again it is well known that the smallest dimen-
sion e(H) of nontrivial irreducible, projective representations of H over
fields of characteristic 6= p is (q − 1)/2 if q 6= 9 and 3 if q = 9. Since
e2 > D, it must be the case that H acts trivially projectively on at
least one of A and B, but this contradicts the irreducibility hypothesis.
Thus the CH-module V is tensor indecomposable.

Suppose that G preserves a tensor induced decomposition V = A1⊗
A2 ⊗ . . .⊗ Ak ∼= A⊗k1 for some k > 1. Clearly, k < D < P (H), whence
H cannot act transitively on {A1, A2, . . . , Ak}. But this means that
H preserves a tensor decomposition of V , contradicting the previous
result. Thus the CG-module V is not tensor induced.

Now we can apply [GT, Proposition 2.8] to (the image in SL(V ) of)
G to arrive at one of the three cases (i)–(iii) listed there. As G is
finite and Z(SL(V )) is finite, case (i) cannot occur. Suppose we are
in case (iii). Then D = tm for some prime r and some m ≥ 1. In
this case, t 6= p and the action of H on a finite t-group E that acts
irreducibly on V induces a homomorphism Φ : H → Sp(2m, t) with
Ker(Φ) ≤ Z(H). If D ≥ 5, we see that 2m ≤ tm − 2 < (q − 1)/2,
whereas the smallest degree of nontrivial irreducible representations of
H over a field of characteristic t is (q−1)/2, yielding a contradiction. If
D = 4, then we have necessarily (p,N, t,m) = (3, 2, 2, 2). The proof of
[GT, Proposition 2.8] shows that GCP , where P = Z(P )E is a 2-group
acting irreducibly on V = C4 and E is an extraspecial 2-group of order
25. By Schur’s lemma, Z(P ) ≤ Z(G) ∼= C2 (as shown in (a)), whence
P = E = 21+4

± . But this leads to a contradiction, since H = SL(2, 9)
cannot act nontrivially on P .

We have shown that S C G/Z(G) ≤ Aut(S) for some finite non-
abelian simple group S. Furthermore, if L = E(G) denotes the layer of
G, then L/Z(L) ∼= S, and L acts irreducibly on V by [GT, Lemma 2.5].
In particular, the smallest dimension eC(S) of nontrivial irreducible,
projective complex representations of S satisfies

(2.5.1) eC(S) ≤ D.

Moreover, H ≤ L since H is perfect.

(c) Here we consider the possibility S = An for some n ≥ 5. Indeed,
if q ≥ 11, then n ≥ P (H) = q. It follows from [KL, Proposition 5.3.7]
that

eC(S) = eC(An) ≥ n− 2 ≥ q − 2 > (q + 1)/2 > D,



10 NICHOLAS M. KATZ AND PHAM HUU TIEP

contradicting (2.5.1). Suppose q = 9. Then n ≥ P (S) = 6 and n ≤ 7
as εC(A8) = 8 > D. If n = 7, then using [CCNPW-Atlas] one can see
that L = 2A7 and Q(ψ|L) = Q(

√
−7), contrary to the assumptions. If

n = 6, then one easily checks using [CCNPW-Atlas] that either D = 5
and

A6
∼= PSp(2, 9)CG ≤ PSp(2, 9) o C2,

or D = 4 and

2A6
∼= Sp(2, 9)CG ≤ Sp(2, 9) o C2.

Furthermore, if S 6∼= An (and q = 9 still), then the condition that L
acts irreducibly on CD with D = 4, 5 implies by inspecting [TZ1, Table
I] and [CCNPW-Atlas] that either (L,D) = (SL(2, 7), 4), or (L,D) =
(PSL(2, 11), 5), or S = PSp(4, 3). The first two possibilities are ruled
out since PSL(2, 9) cannot be embedded in S or L. In the third case,
we have (G,D) = (PSp(4, 3), 5) or (Sp(4, 3), 4), as stated. From now
on we may assume that q ≥ 11 and D ≥ 5.

Next, suppose that S is a simple classical group of dimension d de-
fined over Fs of prime characteristic t 6= p (with d chosen minimal
possible). Then d ≥ e(H) = (q − 1)/2 ≥ 5. It follows from (2.5.1)
that eC(S) ≤ d + 1 < d2/2. Hence [KL, Corollary 5.3.11] implies that
(S, d) = (SU(5, 2), 5), (Ω±(8, 2), 8), (Sp(6, 2), 6). An inspection of char-
acter tables of universal covers of S rules out the existence of a complex
irreducible character of degree D for L in the cases S = SU(5, 2) and
Ω−(8, 2). Suppose S = Sp(6, 2). Then (q − 1)/2 ≤ d = 6, whence
q ∈ {11, 13} and so H = SL(2, q) cannot embed in L, a contradic-
tion. Likewise, if S = Ω+(8, 2), then (q − 1)/2 ≤ d = 8, whence
q ∈ {11, 13, 17} and again H = SL(2, q) cannot embed in L, a contra-
diction.

Suppose that S is a simple exceptional group defined over Fs of prime
characteristic t 6= p. Then the universal cover of S has a nontrivial irre-
ducible representation of smallest possible degree d ≤ 248 over Fs, and
so (q − 1)/2 = e(H) ≤ d yields q ≤ 497. But then (2.5.1) implies that
eC(S) ≤ (q+1)/2 ≤ d+1 ≤ 249. The Landazuri–Seitz–Zalesskii bounds
[KL, Table 5.3.A] now show that (S, d) = (F4(2),≤ 26), (2F4(2)′, 26),
(3D4(s ≤ 3), 8), (G2(s ≤ 5),≤ 7), (2B2(s ≤ 32), 4). Among these
groups, the only one that can have a projective irreducible complex rep-
resentation of degree D ≤ d+1 is S = 2F4(2)′. In this case, (q−1)/2 ≤
d = 26, q ≤ 53. On the other hand, (q + 1)/2 ≥ D ≥ eC(S) = 26,
whence q = 53. But this is a contradiction, as SL(2, 53) cannot embed
in L.
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(d) Now we consider the case S is a simple group of Lie type defined
over a field Fs with s = pf . We view S = [GF ,GF ] for some Frobenius
endomorphism F : G → G of a simple algebraic group G of adjoint
type, defined over Fp. Recall that H/Z(H) contains a p′-element x of
order (q+ 1)/2, and that H/Z(H) ↪→ L/Z(L) ∼= S. As shown in p. (i)
of the proof of [GKT, Theorem 9.10],

(2.5.2) |x| ≤ (s+ 1)r,

if r denotes the rank of G. We will show that in most of the cases
(2.5.2) contradicts the assumption

(2.5.3) eC(S) ≤ D = (q ± 1)/2 ≤ (q + 1)/2 = |x|.
We will freely use various lower bounds on eC(S) as recorded in [KL,
Table 5.3.A] and [T, Table I]. First we consider the case where V |L is
a Weil module and S ∈ {PSL(n, s),PSU(n, s)} with n ≥ 3, or S =
PSp(2n, s) with n ≥ 1.

(d1) If S = PSL(n, s) then

dimV = (sn − s)/(s− 1), (sn − 1)/(s− 1)

is congruent to 0 or 1 modulo p, and so it can be equal to D only when
dimV = (sn− s)/(s− 1) (and p = 3). But in this exception, V |L is an
induced module, contradicting the primitivity of the CH-module V .

(d2) Similarly, if S = PSU(n, s), then V |L can be a Weil module of
dimension D = (q ± 1)/2 only when D = (q + (−1)n)/2, p = 3, and
dimV = (sn − (−1)n)/(s+ 1). But in this case,

q = (2D − (−1)n)3 = (2sn−1 − 2sn−2 + . . .± 2s2 ± (2s− 3))3 ≤ s

(where Xp denotes the p-part of the integer X), and so

(s+ 1)/2 ≥ D = (sn − (−1)n)/(s+ 1) ≥ s(s− 1),

a contradiction.

(d3) Suppose that S = PSp(2n, s). Then V |L can be a Weil module
of dimension (q ± 1)/2 only when

pN = q = sn = pnf

and dimV = (sn ± 1)/2. Again by Schur’s lemma, CG(L) = Z(G) =
Z(H), and furthermore, the outer-diagonal automorphisms of L fuse
the two Weil representations of degree D of L. It follows that G/Z(G)
can induce only field automorphisms of L, and so G/L is a cyclic group
of outer field automorphisms of order say b|f .

Assume that 2 - D. Then (after modding out by Z(H) that acts
trivially on V ) G embeds in Aut1(S) ∼= S oCf , where Cf is the group
of (outer) field automorphisms of S. It follows that G ∼= S o Cb. By
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Lemma 2.3, we can embed S = PSp(2n, s) in PSp(2N, p) in such a way
that ψ|S extends to a (fixed) Weil character of PSp(2N, p). Moreover,
the normalizer of S in PSp(2N, p) induces Aut1(S). Thus there is a
subgroup G1 ≤ PSp(2N, p) < SL(V ), isomorphic to G and inducing
the same automorphisms on S as G does. Note that all elements of
G1 have traces in Q(

√
εpp) while acting on V as so does PSp(2N, p).

Suppose that g ∈ G and g1 ∈ G1 induce the same automorphism on
S. Then by Schur’s lemma, g = λg1 for some λ ∈ C×. Furthermore,
λD = 1 and λ ∈ Q(

√
εpp), if we assume in addition that ψ(g1) 6= 0.

As p - D and D is odd, we conclude as in (a) that λ = 1. Note by
Lemma 2.4 that we can generate G1 by elements g1 with ψ(g1) 6= 0. It
follows that G = G1, that is, G is a subgroup SoCb of PSp(2N, p) (as
specified in (2.0.2)).

Assume now that 2|D. Then we have shown that G ∼= L·Cb with L ∼=
Sp(2n, s). Again by Lemma 2.3, we can embed L in Sp(2N, p) in such
a way that ψ|L extends to a (fixed) Weil character of Sp(2N, p). More-
over, the normalizer of L in Sp(2N, p) induces Aut1(S). Furthermore,
there is a subgroup G1 ≤ Sp(2N, p) < SL(V ), with G1 = Sp(2n, s)oCb
as specified in (2.0.1) inducing the same automorphisms on S as G does.
Note that all elements of G1 have traces in Q(

√
εpp) while acting on V

as so does Sp(2N, p). Suppose that g ∈ G and g1 ∈ G1 induce the same
automorphism on S. Then h := g−1g1 centralizes S = L/Z(L), and so
[h, L] ≤ Z(L) centralizes L. Now the Three Subgroups Lemma implies
that [h, L] = [h, [L,L]] is contained in [[h, L], L] = 1, i.e. h centralizes
L. It then follows from Schur’s lemma that g = λg1 for some λ ∈ C×.
We again have λD = 1 and λ ∈ Q(

√
εpp), if we assume in addition that

ψ(g1) 6= 0. As p - D, we conclude as in (a) that λ = ±1. Note by
Lemma 2.4 that we can generate G1 by elements g1 with ψ(g1) 6= 0,
and furthermore the central involution of L acts as −1 on V . It follows
that G = G1, and so G is a subgroup LoCb of Sp(2N, p) (as specified
in (2.0.1)).

(e) We continue to assume that S is a simple classical group defined
over a field Fs with s = pf , and moreover, in view of (d), that V |L is
not a Weil module if

S ∼= PSL(n, s), PSU(n, s), PSp(2n, s).

Suppose S = PSL(2, s); in particular, s 6= 9 as PSL(2, 9) ∼= A6. In view
of (d), we may assume that D = dimV = s ± 1. On the other hand,
D = (q ± 1)/2, so p = 3 = s = q, contrary to the assumption that
q ≥ 11.
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Next we consider the case S = PSL(3, s) or PSU(3, s). By Theorems
3.1 and 4.2 of [TZ1], we have

(s− 1)(s2 − s+ 1)/3 ≤ D ≤ (s+ 1)2,

yielding s ∈ {3, 5}. Now, any nontrivial χ ∈ Irr(L) of degree (q ± 1)/2
and at most ≤ (s + 1)2 is a Weil character, which has been ruled out
in (ii), unless L = SU(3, 3) and D = 14, forcing q = 27. But this is a
contradiction, since 13 divides |PSL(2, 27)| but not |SU(3, 3)|.

Suppose now that S = PSL(4, s) or PSU(4, s). For s ≥ 5 we have

(s− 1)(s3 − 1)/2 ≤ D ≤ (s+ 1)3,

which is impossible only when s ≤ 11. If s = 3, then instead of (2.5.2)
we have |x| ≤ 13, ruling out all characters of 3′-degree of L.

To finish off type A, assume now that S = PSL(n, s) or PSU(n, s)
with n ≥ 5. Then (2.5.2)–(2.5.3) imply

(sn + 1)(sn−1 − s2)
(s+ 1)(s2 − 1)

≤ D ≤ (s+ 1)n−1,

whence
s2n−3 < (s+ 1)n < s51n/40

(because (s+ 1)/s ≤ 4/3 < 311/40), a contradiction as n ≥ 5.
Suppose S = PΩ±(2n, s) with n ≥ 4. For n ≥ 5 we get that

(sn − 1)(sn−1 − s)
s2 − 1

≤ eC(S) ≤ D ≤ (s+ 1)n,

whence
s2n−3.1 < (s+ 1)n < s51n/40,

a contradiction. If n = 4, then, since D is coprime to s, [Lu] implies
that

D ≥ (s2 + s+ 1)(s2 + 1)(s− 1)2 > (s+ 1)4,

contradicting (2.5.2)–(2.5.3).
Suppose S = PSp(2n, s) with n ≥ 2 or Ω(2n+ 1, s) with n ≥ 3. For

n ≥ 3 we have that

(sn − 1)(sn − s)
s2 − 1

≤ D ≤ (s+ 1)n,

whence
s2n−2.1 < (s+ 1)n < s51n/40,

a contradiction. If n = 2, then S = PSp(4, s), and we have

s(s− 1)2 ≤ D ≤ (s+ 1)2,

forcing s = 3. In this case, instead of (2.5.2) we have |x| ≤ 5, and L
has no nontrivial non-Weil character of degree ≤ 5.
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(f) Here we handle the cases where S is an exceptional group of Lie
type over Fs with s = pf . If S is of type E6,

2E6, E7, or E8, then

(s5 + s)(s6 − s3 + 1) ≤ eC(S) ≤ D ≤ (s+ 1)8,

a contradiction. Similarly, if S = F4(s), then

s8 − s4 + 1 = eC(S) ≤ D ≤ (s+ 1)4,

which is impossible. Likewise, if S = G2(s) with s ≥ 5, then

s3 − 1 ≤ eC(S) ≤ D ≤ (s+ 1)2,

again a contradiction. Next, if S = G2(3), then instead of (2.5.2) we
have |x| ≤ 13, and eC(S) = 14, a contradiction. If S = 2G2(s), then

s2 − s+ 1 = eC(S) ≤ D ≤ (s0.5 + 1)2,

again a contradiction. Finally, if S = 3D4(s), then since D = dimV is
coprime to s, we see by [Lu] that

D ≥ s8 + s4 + 1 > (s+ 1)4,

contradicting (2.5.2).

(g) It remains to consider the case S is one of 26 sporadic simple
groups. We will search for χ ∈ Irr(L) where χ(1) = (q ± 1)/2 with
q||S|, and, moreover, S has an element of order (q + 1)/2. Possible
cases are for (L, q, χ(1)) are:
• (J2, 27, 14), but then 13 divides |PSL(2, 27)| but not |J2|;
• (6Suz, 12, 25). Here, PSL(2, 25) ↪→ S, but |Z(L)| = 6 is too big;
• (2Co1, 24, 49), but S does not have any element of order 25. �

Recall [Zs] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) 6=
(2, 6), (2k − 1, 2), then an − 1 has a primitive prime divisor, that is, a
prime divisor ` that does not divide

∏n−1
i=1 (ai − 1); write ` = ppd(a, n)

in this case. Furthermore, if in addition a, n ≥ 3 and (a, n) 6= (3, 4),
(3, 6), (5, 6), then an − 1 admits a large primitive prime divisor, i.e. a
primitive prime divisor ` where either ` > m+ 1 (whence ` ≥ 2m+ 1),
or `2|(am − 1), see [F2].

Theorem 2.6. Let q = pf be a power of an odd prime p and let d ≥ 2.
If d = 2, suppose that pdf − 1 admits a primitive prime divisor ` > 5.
If d ≥ 3, suppose in addition that (p, df) 6= (3, 4), (3, 6), (5, 6), so
that pdf − 1 admits a large primitive prime divisor `, in which case we
choose such an ` to maximize the `-part of pdf −1. Let W = Fdq and let
G be a subgroup of GL(W ) ∼= GL(d, q) of order divisible by the `-part
Q := (qd−1)` of qd−1. Then either L := O`′(G) is a cyclic `-group of
order Q, or there is a divisor j < d of d such that one of the following
statements holds.
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(i) L = SL(Wj) ∼= SL(d/j, qj), d/j ≥ 3, and Wj is W viewed as a
d/j-dimensional vector space over Fqj .

(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over
Fqj endowed with a non-degenerate symplectic form, and L =
Sp(Wj) ∼= Sp(d/j, qj).

(iii) 2|jf , 2 - d/j, Wj is W viewed as a d/j-dimensional vector space
over Fqj endowed with a non-degenerate Hermitian form, and L =

SU(Wj) ∼= SU(d/j, qj/2).
(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space

over Fqj endowed with a non-degenerate quadratic form of type −,
and L = Ω(Wj) ∼= Ω−(d/j, qj).

(v) (p, df, L/Z(L)) = (3, 18,PSL(2, 37)), (17, 6,PSL(2, 13)).

Proof. (a) We proceed by induction on d ≥ 2. For the induction base
d = 2, note that L ≤ G ∩ SL(2, q). The list of maximal subgroups of
SL(2, q) is well known. Using this list, one easily checks that either
L ∼= CQ, or (i) holds with j = 1.

(b) For the induction step d ≥ 3, we will assume that L 6∼= CQ, and
apply the main result of [GPPS] to see that G is one of the groups
described in Examples 2.1–2.9 of [GPPS].

If G is described in Example 2.1 of [GPPS], then a0 = 1 since ` =
ppd(p, df). Furthermore, one of (i)–(iv) holds, with j = 1.

Next, as ` does not divide the order of any (maximal) parabolic
subgroup of GL(W ) ∼= GL(d, q), G must act irreducibly on W , and
so cannot be any of the groups in Example 2.2 of [GPPS]. Likewise,
the condition `||G| rules out all the groups listed in Example 2.3 of
[GPPS]. Suppose G is one of the groups described in Example 2.5 of
[GPPS]. Then d = 2m = ` − 1 (and ` is a Fermat prime). Since ` is
a large primitive prime divisor, `2|(qd − 1) and so `2 divides |G|. On
the other hand, |G| divides (q − 1)21+2m · |Sp(2m, 2)| and so it is not
divisible by `2 = (2m + 1)2, a contradiction.

(c) Suppose G is among the groups described in Example 2.4 of
[GPPS]. Again, as ` = ppd(p, df), G can appear only in Example
2.4(b) of [GPPS]. Thus there is a divisor 1 < j|d and W is endowed
with the structure of a d/j-dimensional vector space Wj over Fqj , and
G ≤ GL(Wj) o Cj, where Cj is the group of field automorphisms of
Fqj over Fq. Note that j ≤ d ≤ df < `, so L ≤ GL(Wj) ∼= GLd/j(q

j)

has order divisible by Q = ((qj)d/j − 1)` = Q. If j = d, then L ∼= CQ,
contrary to our assumption. If d/j = 2, then qj > q is not a Mersenne
prime, and so the induction base implies that (i) holds with j = d/2. If
d/j ≥ 3, then we still have (p, (d/j)jf) = (p, df) 6= (3, 4), (3, 6), (5, 6),
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and moreover d/j < d. The induction hypothesis then implies that one
of (i)–(iv) holds.

(d) In Examples 2.6–2.9 of [GPPS], S C G/(G ∩ Z) ≤ Aut(S) for
some non-abelian simple group S, where Z := Z(GL(d, q)) ∼= Cq−1 and
the full inverse image N of S in G acts absolutely irreducibly on W .

In Example 2.6 of [GPPS] we have S = An; in particular, ` ≤ n.
First, in Example 2.6(a) of [GPPS] we have n− 2 ≤ d ≤ n− 1, and so
` ≥ d+1 ≥ n−1 > n/2, whence `2 - |G|. As ` is a large primitive prime
divisor, we then have ` ≥ 2d+ 1 > n and so ` - |G|, a contradiction. In
Examples 2.6(b), (c) of [GPPS], we must have that ` = d + 1 ∈ {5, 7}
and n ≤ 7. It follows that `2 - |G|, contradicting the choice of ` to be
a large primitive prime divisor.

In Example 2.7 of [GPPS], S is a sporadic simple group. Further-
more, we have that ` = d + 1 and `2 - |G|, contradicting the largeness
of `.

In Example 2.8 of [GPPS], S is a simple group of Lie type in the
same characteristic p. But then the condition ` = ppd(p, df) with p > 2
rules out this case.

In Example 2.9 of [GPPS], S is a simple group of Lie type in char-
acteristic 6= p. If S appears in Table 7 of [GPPS], then ` = d + 1 and
`2 - |G|, again contradicting the largeness of `. Finally, assume that S
appears in Table 8 of [GPPS]. Using the fact that ` is a large prime
divisor of pdf − 1, we can again rule out all cases except for the case
(d, `, S) = ((` − 1)/2, `,PSL2(`)). In this case, |G|` = ` = 2d + 1. To
handle this last case, we use a strengthening [Tr, Theorem 3.2.2] of the
main result of [F2], proved by A. MacLaughlin and S. Trefethen. This
result asserts that ` can be chosen so that (pdf − 1)` > 2df + 1, unless
(p, df) = (3, 18), respectively (17, 6), where ` = 37, 13, respectively.
This leads to the two exceptions listed in (v) (as it is easy to see that
L/Z(L) ∼= S in these situations). �

Theorem 2.7. Suppose G is a finite irreducible subgroup of SL((pN +
1)/2,C), and suppose that, so viewed, G has all its traces in Q(

√
εpp).

Suppose in addition that p ≥ 13 if N = 1 and that (p,N) 6= (3, 2),
(3, 3), (5, 3). Then we have the following results.

(i) Suppose that (pN + 1)/2 is even and G lies in the image, under
an even Weil representation, of Sp(2N, p) in SL((pN + 1)/2,C).
Then one of the following statements holds.
(a) G contains SL(2, pN) in one of its even Weil representations,

and hence for some factorization N = AB and for some divi-
sor b of B, G is Sp(2A, pB) o Cb.
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(b) p = 3, N is odd, G contains L = SU(N, 3) = O2(G) < G as a
normal subgroup (and induces a graph automorphism on L).

(ii) If (pN + 1)/2 is odd, suppose G lies in the image, under an odd
Weil representation, of PSp(2N, p) in SL((pN +1)/2,C). Then G
contains PSL(2, pN) in one of its odd Weil representations, and
hence for some factorization N = AB and for some divisor b of
B, G is PSp(2A, pB) o Cb.

Proof. (a) First we consider the case N = 1. Then (pN + 1)/2 ≥ 7
according to our assumption. The maximal subgroups of SL(2, p) are
well known, and none of them can have a complex irreducible represen-
tation of degree (p+1)/2. Hence G = SL(2, p) in (i) and G = PSL(2, p)
in (ii).

(b) From now on we assume N > 1 and let W = F2N
p denote the

natural module for Sp(2N, p). By [F2] there is a large primitive prime
divisor ` = ppd(p, 2N), and we choose such an ` to maximize (p2N −
1)`. Note that |G| is divisible by D := (pN + 1)/2. Inflating the
representation of PSp(2N, p) in (ii) to Sp(2N, p), we may assume that
G is a subgroup of Sp(2N, p), of order divisible by (p2N − 1)`. Now we
can apply Theorem 2.6 to G < GL(2N, p) to determine the structure
of L = O`′(G). First note that if L is cyclic, then by Ito’s theorem [Is,
(6.15)], any irreducible complex character of G has degree coprime to
`, and so G cannot act irreducibly on V := CD. The same argument
shows that L cannot act trivially on V . Let d(L) denote the smallest
degree of nontrivial complex irreducible representations of L.

(c) Suppose we are in case (v) of Theorem 2.6. Then SCG/Z(G) ≤
Aut(S) ∼= S · C2, S = PSL(2, `) with ` = 37, respectively 13. It is
easy to see that G cannot have a complex irreducible representation of
degree (39 + 1)/2, (173 + 1)/2, respectively.

Next suppose that we are in case (i), so that L ∼= SL(2N/j, pj). Then
2N/j ≥ 3, and, according to [TZ1, Theorem 1.1], d(L) > pj(2N/j−1) =
p2N−j > D, and so L acts trivially on V , a contradiction.

Assume now that we are in case (iv), so that L ∼= Ω−(2N/j, pj). If
2N/j ≥ 8, then by [TZ1, Theorem 1.1], d(L) > pj(2N/j−3) > pN > D. If
2N/j = 6, then L is a cover of PSU(6, pj), and so d(L) ≥ (q4− 1)/(q+
1) > (q3 + 1)/2 = D for q := pj. If 2N/j = 4, then L ∼= PSL(2, q2) for
q := pj = pN/2, and so d(L) = (q2 + 1)/2 = (pN + 1)/2 = D. In all
cases, L cannot embed in Sp(2N, p), since Sp(2N, p) has an irreducible
complex representation of degree D − 1 with kernel of order ≤ 2.

(d) Suppose we are in case (ii) of Theorem 2.6. Note that the central
involution j of L = Sp(Wj) acts as the scalar −1 and so coincides with
the central involution of Sp(2N, p). Hence, if D is even, then j acts
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as −1 on V , and if 2 - D then j acts trivially on V . The complex
irreducible representations of degree ≤ D are classified in [TZ1, Theo-
rem 5.2], and together with the described action of j on V , it implies
that L acts irreducibly on V , via one of its two Weil representations of
degree D. By Schur’s lemma, CG(L) acts via scalars on V , and so it is
contained in Z(Sp(2N, p)) = 〈j〉. It follows that CG(L) = Z(G) = 〈j〉
and so G/Z(G) ≤ Aut(L). Note that the outer diagonal automorphism
of L fuses the two Weil representations of degree D of L, whereas all
field automorphisms stabilize each of these Weil representations. Thus
G = 〈L, σ〉, where σ is a field automorphism of order say b|B, as stated.

(e) Finally, suppose we are in case (iii) of Theorem 2.6, so that
L = SU(Wj) ∼= SU(m, q) with q := pj/2 and 2 - m := 2N/j ≥ 3. Recall
[TZ2, §4] that L has q+1 complex irreducible Weil characters ζ im,q, 0 ≤
i ≤ q, of degree (qm−q)/(q+1) for i = 0 and (qm+1)/(q+1) = 2D/(q+
1) for i > 0. As L C G, all irreducible summands of the CL-module
V have common dimension e|D. If m ≥ 5, then any nontrivial non-
Weil irreducible character of L has degree > (qm + 1) = 2D, see [TZ1,
Theorem 4.1]. If m = 3, then q 6= 3 as (p,N) 6= (3, 3), and one can
check using [Geck] that any nontrivial non-Weil irreducible character
of L has degree not dividing D. Furthermore, (qm−q)/(q+1) does not
divide D either. We have therefore shown that e = (qm + 1)/(q + 1)
and furthermore

(2.7.1) ψ|L =

(q+1)/2∑
j=1

ζ ijm,q

with q ≥ i1, . . . , i(q+1)/2 > 0 (not necessarily distinct), if ψ denotes the
character of Sp(2N, p) afforded by V .

Recall that L C G ≤ GL(W ) and L acts irreducibly (although not
necessarily absolutely) on W , since `||L|. Hence CEnd(W )(L) is a finite
division ring; in fact it is Fq2 . Let H < GL(W ) be the central prod-
uct of U(Wj) and Z(GL(Wj)) ∼= Cq2−1, whose intersection is precisely
Z(U(Wj)). Then H induces all inner-diagonal automorphisms of L, and
HoCj < GL(W ) induces all automorphisms of L. Since CEnd(W )(L) =
{0} ∪ Z(GL(Wj)), we have shown that G ≤ NGL(W )(L) = H o Cj.

Next we observe that each ζ im,q extends to U(Wj) and then to H,

and furthermore H/L is abelian (as [H,H] = L). In particular, ζ
ij
m,q

extends to G∩H, and furthermore any irreducible character of G∩H
lying above ζ

ij
m,q is in fact an extension of it by Gallagher’s theorem [Is,

(6.17)]. Since ψ|G is irreducible, it follows by Clifford’s theorem that

(pj/2 + 1)/2 = (q + 1)/2 = ψ(1)/ζ i,jm,q(1) ≤ [G : G ∩H] ≤ j.
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This is possible only when (p, j) = (3, 2), N = m, L = SU(N, 3).
In this case, the above analysis shows that [G : G ∩H] = 2 and so G
induces an outer graph automorphism of L, as well as L = O2(G) < G.
One can check that V is indeed irreducible over the subgroup U(N, 3)·2
of Sp(2N, 3) when N ≥ 3 is odd. �

Remark 2.8. (i) Note that the cases (p,N) = (3, 2), (3, 3), and (5, 3)
are real exceptions to Theorem 2.7. Indeed, PSp(4, 3) contains a sub-
group G = 24 o A5 that acts irreducibly on C5, see [CCNPW-Atlas].

Next, we show that Sp(6, 3) < SL(14,C) contains a subgroup G ∼=
SL(2, 13) that acts irreducibly on C14. First, according to [CCNPW-Atlas],
PSp(6, 3) contains a maximal subgroup Ḡ ∼= PSL(2, 13). As PSL(2, 13)
does not any nontrivial representation of degree 6 over a field of char-
acteristic 3, the full inverse image G of Ḡ in Sp(6, 3) is isomorphic
to SL(2, 13), with the central involution equal to the central involu-
tion j of Sp(6, 3). In particular, j acts as the scalar −1 on C14. In-
specting the complex representations of SL(2, 13) with j acting as −1
in [CCNPW-Atlas], we see that SL(2, 13) acts irreducibly on C14, as
stated.

Likewise, we claim that PSp(6, 5) < SL(63,C) contains a subgroup
G ∼= J2 that acts irreducibly on C63. Indeed, according to [JLPW], 2J2
has a faithful irreducible representation of degree 6 over F5 of symplec-
tic type, yielding an embedding 2J2 ↪→ Sp(6, 5), with an involution a
having trace 4 and an element b of order 3 having trace 0. This leads
to an embedding G ∼= J2 into PSp(6, 5). Observe that a is conjugate
to the element h−1 in [TZ2, Lemma 2.6], and so a has trace 15 on C63.
Next, W = [b,W ]⊕CW (b), where CW (b) is of dimension 2, and b has
no nonzero fixed point on the non-degenerate space [b,W ] ∼= F4

5. Using
[JLPW] one can check that Sp([b,W ]) ∼= Sp(4, 5) has one conjugacy
class of such elements of order 3. Hence Sp(W ) ∼= Sp(6, 5) has exactly
one conjugacy class of elements of order 0 with trace 0. Thus we may
assume that b belongs to a Levi subgroup GL(3, 5) of the stabilizer of a
totally isotropic subspace W1

∼= F3
5 of W in Sp(W ), and that b acts on

W1 with trace 0 and determinant 1. Arguing as in the proof of [TZ2,
Lemma 2.6] we see that b has trace 0 on C63. The determined traces of
a and b on C63 allow one to prove using the character table of J2 that
J2 is irreducible on C63.

(ii) We also note Case (i)(b) does not arise in Theorem 2.7 if we
require in addition that G has no nontrivial p′-quotient.
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3. Finiteness of the arithmetic monodromy of W(ψ, n, q),
d’aprés van der Geer and van der Flugt

The local system W(ψ, n, q) is pure of weight zero and lisse of rank
qn on A2/Fp. Its trace function, at time (s, t) ∈ A2(k), for k/Fp a finite
extension field, is the exponential sum

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

Think of (s, t) as fixed in A2(k). Write this sum as

(−1/Ak)
∑
x∈k

ψk(xR(x)),

with R(x) the additive, Fq-linear polynomial

R(x) = R(s,t)(x) := xq
n

+ sxq + tx.

When k is a finite extension of Fq, we can write this sum as

(−1/Ak)
∑
x∈k

ψFq(Tracek/Fq(xR(x))).

The insight of van der Geer and van der Flugt [vdG-vdV, & 13] is to
then view

Tracek/Fq(xR(x))

as a quadratic form on k, viewed as an Fq vector space; it is the qua-
dratic form attached to the symmetric bilinear form

(x, y)R := Tracek/Fq(xR(y) + yR(x)).

As they explain [vdG-vdV, 13.1], the Fq vector space

WR := {x ∈ k|(x, y)R = 0 for all y ∈ k}
is precisely the set of zeroes in k of the polynomial

ER(x) := xq
2n

+ sq
n

xq
n+1

+ 2tq
n

xq
n

+ sq
n−1

xq
n−1

+ x.

At this point, we invoke the following lemma.

Lemma 3.1. Let p be an odd prime, α an element of Z[ζp][1/p] and
α its complex conjugate (i.e., the image of α under the Galois auto-
morphism ζp 7→ ζ−1p ). Then α lies in Z[ζp] if and only if αα lies in
Z[ζp].

Proof. If α lies in Z[ζp], then so does α. For the converse, use the fact
that in the field Q(ζp), there is a unique place over p, whose normalized
valuation ordp has ordp(ζp − 1) = 1/(p− 1). By uniqueness, we have

ordp(α) = ordp(α),
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and hence

ordp(αα) = 2ordp(α).

But for α ∈ Z[ζp][1/p], α lies in Z[ζp] if and only if ordp(α) ≥ 0. �

The sum

(−1/Ak)
∑
x∈k

ψFq(Tracek/Fq(R(x)x))

visibly lies in Z[ζp][1/p] (the only possible nonintegrality is from the
1/Ak factor, whose square is ±1/#k).

The key calculation is due to [vdG-vdV].

Lemma 3.2. For k/Fq a finite extension field, (s, t) ∈ A2(k), and
R := R(s,t), the square absolute value of our exponential sum is given
by

|(−1/Ak)
∑
x∈k

ψFq(Tracek/Fq(R(x)x))|2 = #WR = qdimFq (WR).

Proof. We have

|(−1/Ak)
∑
x∈k

ψFq(Tracek/Fq(R(x)x))|2 =

= (1/#k)
∑
x,y∈k

ψFq(Tracek/Fq(xR(x)− yR(y))) =

(make the substitution (x, y) 7→ (x+ y, y))

= (1/#k)
∑
x∈k

ψFq(Tracek/Fq(xR(x))
∑
y∈k

ψFq(Tracek/Fq(xR(y)+yR(x))).

The inner sum is #k if x lies in WR, and the inner sum vanishes if x
does not lie in WR (for in that case y 7→ ψFq(Tracek/Fq(xT (y)+yR(x)))
is a nontrivial additive character of k). Therefore our square absolute
value is ∑

x∈WR

ψFq(Tracek/Fq(xR(x)).

But for x ∈ WR, the quadratic form Tracek/Fq(xR(x)) vanishes identi-
cally (as it is one half of Tracek/Fq(xR(y) + yR(x))|y=x). �

Proposition 3.3. Given the data (ψ, n, q), there exists an integer D
such that for any finite extension field k/Fp, and for any (s, t) ∈ A2(k),
all eigenvalues of the Frobenius automorphism

Frobk,(s,t)|W(ψ, n, q)

are roots of unity of order dividing D.
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Proof. We have shown that the traces of the lisse sheaf W(ψ, n, q) at
all points (s, t) ∈ A2(k), for all finite extensions k/Fq, are algebraic
integers, in fact lie in Z[ζp]. For an arbitrary extension k/Fp, and fixed
(s, t) ∈ A2(k), denote by A the endomorphism Frobk,(s,t)|W(ψ, n, q).
Some finite extension L/k contains Fq. Fix one such L. Then for
r := deg(L/k), Ar = FrobL,(s,t)|W(ψ, n, q). As L is a finite extension
of Fq, all powers of Ad have traces in Z[ζp]. By the usual “consider
the poles of d/dT (log(det(1 − TAd))” argument, cf. [Ax, top of page
256], all the eigenvalues of Ad are algebraic integers, and hence all the
eigenvalues of A are algebraic integers.

These algebraic integers are pure of weight zero, hence are roots
of unity. The characteristic polynomial of A has coefficients in Q(ζp),
hence in Q`(ζp) for any pre-chosen ` 6= p. So each of these roots of unity
lies in an extension field of Q`(ζp) of degree at most qn. As Q`(ζp) has

only finitely many extensions of each degree inside Q`, it follows that
all these roots of unity lie in a single finite extension Eλ of Q`(ζp). In
such an Eλ, the group of roots of unity is finite. The order of this group
serves as the D of the corollary. �

Corollary 3.4. Given the data (ψ, n, q), there exists an integer D such
that for any finite extension field k/Fp, and for any (s, t) ∈ A2(k), the
Frobenius automorphism

Frobk,(s,t)|W(ψ, n, q)

has D’th power the identity.

Proof. Indeed, the lisse sheaf W(ψ, n, q) is the ψ-component of the H1

of a family of Artin-Schreier curves, so by Weil [Weil, middle paragraph
on p. 72, and last complete sentence on p. 80] each Frobk,(s,t)|W(ψ, n, q)

is (over Q`) diagonalizable. �

Putting this all together, we get the following theorem.

Theorem 3.5. The groups Ggeom and Garith for W(ψ, n, q) on A2/Fp
are finite, as are the groups Ggeom and Garith for each of its direct
summands Godd(ψ, n, q) and Geven(ψ, n, q).

Proof. It suffices to prove the statement forW(ψ, n, q), since the groups
for its direct summands are quotients of those forW(ψ, n, q). Since we
have the inclusion Ggeom ⊂ Garith, it suffices to prove that Garith is

finite. The group Garith ⊂ GL(qn,Q`) is an algebraic group in which,
by Chebotarev, every element has order dividing D. Therefore D kills
the Lie algebra Lie(Garith), and hence Garith is finite. �
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4. Determining the monodromy of W(ψ, n, q), of
Geven(ψ, n, q), and of Godd(ψ, n, q)

We first establish a fundamental rationality property of our local
systems.

Lemma 4.1. The local systems Geven(ψ, n, q), and Godd(ψ, n, q) have
all their Frobenius traces in the quadratic field Q(

√
εpp).

Proof. We must show that for any square a ∈ F×p , replacing ψ by ψa
does not change the traces. [The normalizing factor AFp := −g(ψ−2, χ2)
is equal to −g(ψ−2a, χ2), precisely because a is a square.] These traces
are

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)

and

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)χ2,k(x).

Using ψa instead, these traces become

(−1/Ak)
∑
x∈k

ψk(ax
(qn+1)/2 + sax(q+1)/2 + tax)

and

(−1/Ak)
∑
x∈k

ψk(ax
(qn+1)/2 + sax(q+1)/2 + tax)χ2,k(ax).

The key point is that, because a is a square a ∈ F×p , we have

a(q
n+1)/2 = aa(q

n−1)/2 = a, and a(q+1)/2 = aa(q−1)/2 = a.

So these ψa sums are obtained from the original ones by the change of
variable x 7→ ax. �

We next check the determinants of our local systems

Lemma 4.2. Suppose p ≡ 1(mod 4). Then we have the following re-
sults.

(i) The arithmetic monodromy group Garith for Geven(ψ, n, q) lies in
Sp((qn − 1)/2,C).

(ii) The arithmetic monodromy group Garith for Godd(ψ, n, q) lies in
SO((qn + 1)/2,C).

Proof. The first statement is proven in [Ka-MMP, 3.10.1]. The second
statement is proven in [Ka-NG2, 1.7]. In that second reference, one is
to use ψa for a = (−1)(q

n−1)/4((qn + 1)/2), but this a mod squares in
F×p is indeed −2. �
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Lemma 4.3. Suppose q ≡ 3(mod4). Denote by reven (respectively
rodd) whichever of (qn ± 1)/2 is even (respectively odd). Thus reven
is the rank of Geven(ψ, n, q) and rodd is the rank of Godd(ψ, n, q). Then
we have the following results.

(i) The arithmetic monodromy group Garith for Geven(ψ, n, q) lies in
SL(reven,C).

(ii) The arithmetic monodromy group Garith for Godd(ψ, n, q) lies in
SL(rodd,C).

(iii) The arithmetic monodromy group Garith for W(ψ, n, q) lies in
SL(qn,C).

Proof. Let us denote the determinants in question by

Deven := det(Geven(ψ, n, q)), Dodd := det(Geven(ψ, n, q)), DW := det(W(ψ, n, q)).

These are each lisse of rank one and pure of weight zero on A2/Fp.
Because W is the direct sum, we have

DW ∼= Deven ⊗Dodd.

So it suffices to show any two of the three assertions of the lemma.
Suppose first we are in characteristic p ≥ 5. The only roots of

unity in Q(
√
εpp) are ±1. Because both Geven(ψ, n, q) and Godd(ψ, n, q)

have all their Frobenius traces in Q(
√
εpp), so also do their determi-

nants. On the other hand, these determinants are, point by point,
roots of unity (being, in fact, D’th roots of unity for some fixed D).
Therefore the Frobenius determinants all lie in ±1, and hence each
of Deven := det(Geven(ψ, n, q)) and Dodd := det(Geven(ψ, n, q)) is lisse
of rank one on A2/Fp with D⊗2even and D⊗2odd arithmetically, and hence

geometrically trivial. But π1(A2/Fp) has no nontrivial prime to p quo-
tients. Therefore both Deven and Dodd are geometrically trivial. So to
check that they are arithmetically trivial as well, it suffices to check at
a single Fp point of A2. We check at the origin. The result is then,
with some tedium, checked to be a special case of [KT-gpconj, 2.3].

It remains to treat the case of characteristic p = 3. We will do this
by giving a proof of the lemma which is valid in all odd characteristics.
First, it suffices to prove that two of the three DW , ∼= Deven, ⊗Dodd are
geometrically constant. Then both Deven and ⊗Dodd are geometrically
constant, and we then verify their arithmetic triviality by checking at
a single point, just as in the paragraph above.

We will use the Hasse-Davenport argument, cf. [D-H, §3, II, pp.
162-165] or [Ka-MG, pp. 53-54], and apply it to W(ψ, n, q) and to
whichever of the G is G(ψ, n, q,1). Their trace functions, at a point
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(s, t) ∈ A2(k), are given by the expressions

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)

and

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

In both cases, the polynomial f(x) being summed inside the ψ is of the
form

f(x) := xm +
d∑
i=1

aix
i

with m ≥ 5 prime to p and with d < m/2.
In terms of the L-function for Lψk(fx)), the determinant of −Frob

on H1
c (A1/k,Lψk(fx))) is the coefficient of Tm−1. Using the additive

expression of the L-series, we see that this coefficient is expressed in
terms of the Newton symmetric functions N1, . . . , Nm of the first m−1
elementary symmetric functions s1, . . . , sm−1, as∑

s1,...,sm−1∈k

ψk(Nm(s1, . . . , sm−1) +
d∑
i=1

aiNi(s1, . . . , si)).

[We have used the fact that Ni is a polynomial in s1, . . . , si.] Thus
the variables sm−1, sm−2, . . . , sd+1 occur only in the Nm term. In the
polynomial Nm, these variables occur in the form

(−1)mmsm−isi + sm−i(a polynomial in variables sj with j < i),

for m− j > m/2. When m is even, the variable sm/2 occurs as

(−1)m(m/2)s2m/2 + sm/2(a polynomial in variables sj with j < m/2),

Summing over sm−1, we get #k times the sum of the terms with
s1 = 0, and this sum is independent of the value of sm−1, so it is

(#k)
∑

s2...,sm−2∈k

ψk(Nm(0, s2, . . . , sm−2, 0) +
d∑
i=1

aiNi(0, s2, . . . , si)).

Summing then over sm−2, we get #k times the sum of these terms with
s2 = 0 as well, thus

(#k)2
∑

s3...,sm−3∈k

ψk(Nm(0, 0, s3, . . . , sm−3, 0, 0)+
d∑
i=1

aiNi(0, 0, s3, . . . , si)).
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Continuing in this way, we get

(#k)(m−1)/2 if m is odd, (#k)(m−2)/2
∑

sm/2∈k

ψk((m/2)s2m/2) if m is even.

As for the determinant of Frob itself on H1
c (A1/k,Lψk(fx))), it is there-

fore

(#k)(m−1)/2 if m is odd, (#k)(m−2)/2(−
∑

sm/2∈k

ψk((m/2)s2m/2)) if m is even.

This expression, independent of choices of the coefficients a1, . . . , ad of
the polynomial f(x), establishes the asserted geometric constance. �

At this point, we recall a key result from [KT-gpconj, 17.2] about the
local systems G0,even(ψ, n, q) and G0,odd(ψ, n, q) obtained by specializing
s 7→ 0 in Geven(ψ, n, q) and Godd(ψ, n, q).

Theorem 4.4. Suppose q = pa, p an odd prime, and q > 3. We have
the following results.

(i) The group Ggeom for G0,even(ψ, n, q) is SL(2, qn) in one of its even
Weil representations.

(ii) The group Ggeom for G0,odd(ψ, n, q) is PSL(2, qn) in one of its odd
Weil representations.

We now combine this result with Theorems 2.1 and 2.2, to obtain
the following corollary.

Corollary 4.5. Suppose q = pa, p an odd prime, and na is prime to
p. Suppose also that n ≥ 2. We have the following results.

(i) The group Ggeom for Geven(ψ, n, q) is one of the groups Sp(2A, pB)
in one of its even Weil representations, for some factorization of
na as na = AB.

(ii) The group Ggeom for Godd(ψ, n, q) is one of the groups PSp(2C, pD)
in one of its odd Weil representations, for some factorization of
na as na = CD.

Proof. To prove (i), we argue as follows. By the determinant lemma
above, the group Ggeom for Geven(ψ, n, q) lies in the relevant SL group
SL(reven,C), and it contains SL(2, qn), the geometric monodromy group
of the pullback local system G0,even(ψ, n, q). By Theorems 2.1 and 2.2,
Ggeom is one of the groups Sp(2A, pB)oCb for some divisor b of B. By
hypothesis, na is prime to p, and hence b, a divisor of na = AB, is
prime to p. Because Geven(ψ, n, q) is lisse on A2/Fp, its Ggeom has no
nontrivial prime to p quotient, and hence b = 1.

Repeat essentially the same argument to prove (ii). �
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Proposition 4.6. In the above corollary, we have (A,B) = (C,D),
and Ggeom for W(ψ, n, q) is the diagonal image of Sp(2A, pB) in the
product group Sp(2A, pB)× PSp(2A, pB).

Proof. The group Ggeom,W is a subgroup of the product Sp(2A, pB) ×
PSp(2C, pD) which maps onto each factor. The group PSp(2C, pD) is
simple, and the only quotient groups of Sp(2A, pB) are itself, the simple
group PSp(2A, pB), and the trivial group. If (A,B) 6= (C,D), we argue
by contradiction. By Goursat’s lemma, Ggeom,W would be the product
group Sp(2A, pB) × PSp(2C, pD). From the known character table of
SL(2, qn), for any of its individual Weil representations there are ele-
ments of trace zero. So in the product group Sp(2A, pB)×PSp(2C, pD)
(indeed already in the subgroup SL(2, qn)× PSL(2, qn)), there are ele-
ments whose traces are zero in both summands of any given represen-
tation of Sp(2A, pB)× PSp(2C, pD) of the form

(an even Weil rep. of Sp(2A, pB)⊕ an odd Weil rep. of PSp(2C, pD).

On the other hand, we have shown that over all extension fields k/Fq,
all Frobenius traces have square absolute value in the set {qd}d=0,...,2n.
In other words, if we compute Garith,W after extending scalars to A1/Fq,
all of its traces have square absolute value in this set. Therefore all
elements in the subgroup Ggeom,W have traces whose square absolute
value lies in this set. In particular, Ggeom,W contains no elements of
trace zero. This contadiction shows that (A,B) = (C,D).

Now Ggeom,W is a subgroup of Sp(2A, pB)×PSp(2A, pB) which maps
onto each factor. So again by Goursat’s lemma, either Ggeom,W is the
diagonal image of Sp(2A, pB) in Sp(2A, pB)×PSp(2A, pB), or it is the
full product group. The above “trace zero” argument shows that the
product group is not possible. �

Lemma 4.7. Suppose q = pa, p an odd prime, and na is prime to p.
Suppose also that n ≥ 2. After extension of scalars to A2/Fqn, we have
Garith = Ggeom for each of Geven(ψ, n, q), Godd(ψ, n, q), and W(ψ, n, q).

Proof. Apply Theorems 2.1 and 2.2 to the relevant Garith groups. The
normalizer of Sp(2A, pB) in Sp(2AB, p) is Sp(2A, pB) o CB, and the
normalizer of PSp(2A, pB) in PSp(2AB, p) is PSp(2A, pB) oCB. Thus
for Geven(ψ, n, q) we have

Ggeom = Sp(2A, pB) ↪→ Garith ↪→ Sp(2A, pB) o CB,

and for Geven(ψ, n, q) we have

Ggeom = PSp(2A, pB) ↪→ Garith ↪→ PSp(2A, pB) o CB.
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Thus in both cases Ggeom has index dividing B, and hence dividing
an = AB in Garith. So in both cases we attain Garith = Ggeom after
extension of scalars to FpB , and hence to the larger field Fpan = Fqn .
Then Garith,W is a subgroup of Sp(2A, pB)× PSp(2A, pB) which maps
onto each factor. Now repeat the “trace zero” argument, to show that
Garith,W is the the diagonal image of Sp(2A, pB) in this product. In
particular, Garith,W is equal to Ggeom,W . �

Theorem 4.8. Suppose q = pa, p an odd prime, and na is prime to
p. Suppose also that n ≥ 2. After extension of scalars to A2/Fqn,
the local systems Geven(ψ, n, q) and Godd(ψ, n, q) are correctly matched
in the sense that W(ψ, n, q) is a total Weil representation, and their
respective geometric (and arithmetic) monodromy groups are Sp(n, q),
PSp(n, q), Sp(n, q).

Proof. From Lemma 3.2, the square absolute values of the traces of el-
ements of Ggeom,W are powers of q, hence powers of p, hanceW(ψ, n, q)
does indeed incarnate a total Weil representation. These square abso-
lute values will then be all the powers {pBd}d=0,...,2A of pB. Therefore
pB, being the trace of some element of Ggeom,W , is itself a power of
q. Therefore pB is qf for the least f ≥ 1 such that qf is the square
absolute value of the trace of some element of Ggeom,W = Garith,W .

So it suffices to exhibit a point (s, t) ∈ A2(Fqn) at which

|Trace(FrobFqn ,(s,t)|W(ψ, n, q)|2 = q.

We will show that (1,−2) is such a point.
Recall that for (s, t) ∈ A2(Fqn), this square absolute value is the

cardinality of the set of zeroes in Fqn of the polynomial

xq
2n

+ sq
n

xq
n+1

+ 2tq
n

xq
n

+ sq
n−1

xq
n−1

+ x.

If we choose s, t both to lie in Fq, the Fqn zeroes are the zeroes x ∈ Fqn
of

x+ sxq + 2tx+ sxq
−1

+ x,

or, raising to the q’th power, the the zeroes x ∈ Fqn of

2xq + sxq
2

+ 2txq + sx.

Let us denote by F the operator

F (x) := xq,

the qth power arithmetic Frobenius. Then our equation becomes

(sF 2 + (2 + 2t)F + s)(x) = 0.
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Take s = 1, t = −2. The equation becomes

(F − 1)2(x) = 0.

We will show that the only Fqn solutions are x ∈ Fq. To see this, put
y := (F − 1)(x). Then (F − 1)(y) = 0, i.e., y lies in Fq. Then we
seek x ∈ Fqn such that (F − 1)(x) = y For y = 0, the solutions of
(F − 1)(x) = y are all x ∈ Fq. For any fixed y 6= 0 in Fq, any solution
x of (F − 1)(x) = y, i.e., any solution of

xq − x = y,

lies in a degree p extension of Fq. By hypothesis n is prime to p, so for
y 6= 0 in Fq, the equation (F − 1)(x) = y has no solutions in Fqn . �

Corollary 4.9. Hypotheses as in Theorem 4.8, each of the local sys-
tems Geven(ψ, n, q), Godd(ψ, n, q), and W(ψ, n, q) has Ggeom = Garith

after extension of scalars to A2/Fq.

Proof. In Lemma 4.7 we proved that these equalities of Ggeom with
Garith take place after extension of scalars to A2/FpB , and in Theorem
4.8 we proved that pB = q. �

5. Changing the choice of ψ to ψ2; which Weil
representation?

Recall that Sp(2n, q) has two “small” Weil representations, of dimen-
sion (qn − 1)/2, and two “large” ones, of dimension (qn + 1)/2, with a
matching of small and large imposed by the total Weil representation.
We have shown that for any choice of nontrivial additive character of
Fp, the local systems Geven(ψ, n, q) and Godd(ψ, n, q) incarnate a cor-
rectly matched pair, with geometric monodromy groups respectively
Sp(2n, q) and PSp(2n, q).

Theorem 5.1. We have the following results.

(i) Suppose 2 is a square in Fq (i.e., suppose q is ±1 mod 8). Then
pulled back to A2/Fq, there exist arithmetic isomorphisms of local
systems

Geven(ψ, n, q) ∼= Geven(ψ2, n, q), Godd(ψ, n, q) ∼= Godd(ψ2, n, q).

(ii) Suppose 2 is not a square in Fq. Then Geven(ψ, n, q) and Godd(ψ, n, q)
incarnate the other correctly matched pair.

Proof. Suppose first that 2 is a square in Fq. Then over extensions
k/Fq, the normalizing factor Aψ2,k = Aψ,k. Inside the exponential sum,
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the substitution x 7→ 2x turns the ψ sum into the ψ2 sum, simply
because

2(qn+1)/2 = 2(qn−1)/22 = χ2,Fqn
(2) = 2, 2(q+1)/2 = 2(q−1)/22 = χ2,Fq(2) = 2,

and over over extensions k/Fq, we have χ2,k(2x) = χ2,k(x).
Suppose now that 2 is not a square in Fq. It suffices to show that

G(ψ, n, q,1) is not geometrically isomorphic to G(ψ2, n, q,1). In fact,
we will show that even after specializing s 7→ 1, the resulting local
systems G1(ψ, n, q,1) and G1(ψ2, n, q,1) are not geometrically isomor-
phic. Geometrically, we can ignore the normalizing factors. Then
G1(ψ, n, q,1) is the Fourier transform FTψ of Lψ(x(qn+1)/2+x(q+1)/2).

We now express G1(ψ2, n, q,1) as an FTψ. Its trace function (again
ignoring the normalizing factor) at t ∈ A1(k) is

−
∑
x∈k

ψ(2x(q
n+1)/2 + 2x(q+1)/2 + 2tx) =

(remembering that 2(q+1)/2 = −2, and that 2(qn+1)/2 = 2(−1)n)

= −
∑
x∈k

ψ((−1)n(2x)(q
n+1)/2 − (2x)(q+1)/2 + t(2x)) =

= −
∑
x∈k

ψ((−1)nx(q
n+1)/2 − x(q+1)/2 + tx).

Thus G1(ψ2, n, q,1) is the Fourier transform FTψ of Lψ((−1)nx(qn+1)/2−x(q+1)/2).
As the two inputs

Lψ(x(qn+1)/2+x(q+1)/2) and Lψ((−1)nx(qn+1)/2−x(q+1)/2)

are visibly not geometrically isomorphic, neither are their FTψ outputs.
�

We now invoke a fundamental result of Guralnick, Magaard, and
Tiep [GMT, Theorem 1.1, (ii) and (iii)]. Recall that 2 is a square in
Fq if and only if q is ±1(mod 8). So their result gives

Theorem 5.2. Suppose q = pa, p an odd prime, and na is prime to p.
Suppose also that n ≥ 2. On A2/Fp, there exists geometric isomorphism
of local systems

Sym2(Gsmall(ψ, n, q)) ∼= Λ2(Glarge(ψ2, n, q)),

Sym2(Gsmall(ψ2, n, q)) ∼= Λ2(Glarge(ψ, n, q)).
Pulled back to A2/Fqn, these exist as arithmetic isomorphisms.
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Proof. For the geometric isomorphisms, this is immediate from Theo-
rem 4.8 and [GMT, 1.1, (ii) and (iii)], because in view of Theorem 4.8
it is a statement about the representation theory of Ggeom. Pulled back
to A2/Fqn , we know that Ggeom = Gairth, so we have an equality of all
Frobenius traces over extension fields of Fqn , as every such Frobenius
lies in Ggeom. �

6. Specializing s 7→ 1

Specializing s 7→ 1, we get the following corollary of Theorem 5.2.

Corollary 6.1. Suppose q = pa, p an odd prime, and na is prime to p.
Suppose also that n ≥ 2. On A1/Fp, there exists geometric isomorphism
of local systems

Sym2(G1,small(ψ, n, q)) ∼= Λ2(G1,large(ψ2, n, q)),

Sym2(G1,small(ψ2, n, q)) ∼= Λ2(G1,large(ψ, n, q)).
Pulled back to A2/Fqn, these exist as arithmetic isomorphisms.

When we specializes 7→ 1, the groups Ggeom and Garith can only
shrink. Each of the local systems

G1,small := G1,small(ψ, n, q)

and
G1,large := G1,large(ψ, n, q)

is geometrically irreducible (thanks to the Fourier Transform descrip-
tion). In view of Theorem 4.8, we get

Proposition 6.2. Suppose q = pa, p an odd prime, and na is prime
to p. Suppose also that n ≥ 2. We have the following results, which we
now express in terms of G1,even and G1,odd.

(i) After extension of scalars to A1/Fqn, we have inclusions of geo-
metric and arithmetic monodromy groups

Ggeom,G1,even ⊂ Garith,G1,even ⊂ Garith,Geven = Sp(n, q).

(ii) The restriction to Ggeom,G1,even of the even Weil representation of
of Sp(n, q) is irreducible (this being the taulogical representation
of the geometrically irreducible local system G1,even).

(iii) After extension of scalars to A1/Fqn, we have inclusions of geo-
metric and arithmetic monodromy groups

Ggeom,G1,odd ⊂ Garith,G1,odd ⊂ Garith,Godd = PSp(n, q).

(iv) The restriction to Ggeom,G1,odd of the odd Weil representation of of
PSp(n, q) is irreducible (this being the taulogical representation of
the geometrically irreducible local system G1,odd).
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We now combine this result with Theorem 2.7.

Theorem 6.3. Suppose q = pa, p an odd prime, and na is prime to p.
Suppose also that n ≥ 2. We have the following results.

(i) Suppose (qn + 1)/2 is even. Then G1,large = G1,even(ψ, n, q) has

SL(2, qn) ⊂ Ggeom,G1,even ⊂ Garith,G1,even ⊂ Sp(n, q).

For some factorization na = AB, we have Ggeom,G1,even = Sp(2A, pB),
and after extension of scalars to A1/Fqn, we have

Ggeom,G1,even = Garith,G1,even .

(ii) Suppose (qn + 1)/2 is odd, and that qn 6= 32, 53. Then G1,large =
G1,odd(ψ, n, q) has

PSL(2, qn) ⊂ Ggeom,G1,odd ⊂ Garith,G1,odd ⊂ PSp(n, q).

For some factorization na = CD, we have Ggeom,G1,odd = Sp(2C, pD),
and after extension of scalars to A1/Fqn, we have

Ggeom,G1,odd = Garith,G1,even .

(iii) Suppose qn = 32 or 53. The above statement (ii) remains true.

Proof. The first assertion of (i) and (ii) is immediate from Theorem
2.7, remembering that the Ggeom groups have no nontrivial prime to
p quotients, cf. the proof of Corollary 4.5. The second statement is
proven as in the proof of Lemma 4.7.

It remains to prove (iii).
We first consider the case qn = 32. Here we look at maximal sub-

groups G < PSp(4, 3) on which an odd Weil representation, toward
SL(5,C), remains irreducible. If G contains PSL(2, 9), we are done.
The other possibility is G = 24 o A5. This group is best seen us-
ing the isomorphism A5

∼= SL(2, 4) as the affine special linear group
F2
4 o SL(2, 4). In this case, Ggeom for G1,odd(ψ, 2, 3) is either this G or

it is PSp(4, 3). In the latter case, we are done. If Ggeom is G, then also
Garith is G (because G is its own normalizer in SL(5,C)). A computer
calculation shows that over F9, the traces of G1,odd(ψ, 2, 3) lie in Z[ζ3]
but do not lie in Z. On the other hand, all traces of G in its unique
five-dimensional irreducible representation lie in Z.

We now turn the case qn = 53. Here we look at maximal subgroups
G < PSp(6, 5) on which an odd Weil representation, toward SL(63,C),
remains irreducible. When G contains PSL(2, 53), we are done. The
other possibility is that G = J2. In this case, Ggeom for G1,odd(ψ, 3, 5) is
either J2 or it is PSp(6, 5). In the latter case, we are done. If Ggeom is
J2, then also Garith is J2 (because J2 is its own normalizer in SL(63,C)).
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A computer calculation shows that over F25, the traces of G1,odd(ψ, 3, 5)
lie in Z[ζ5]

+ but do not lie in Z. On the other hand, all traces of J2 in
its unique 63-dimensional irreducible representation lie in Z. �

We now make use of Corollary 6.1, applied to our local systems using
ψ2.

Theorem 6.4. Suppose q = pa, p an odd prime, and na is prime to p.
Suppose also that n ≥ 2. We have the following results.

(i) Suppose (qn + 1)/2 is even. For some factorization na = AB,
G1,small = G1,odd(ψ, n, q) has

Ggeom,G1,odd = PSp(2A, pB).

After extension of scalars to A1/Fqn, we have

Ggeom,G1,odd = Garith,G1,odd .

(ii) Suppose (qn + 1)/2 is odd. For some factorization na = CD,
G1,large = G1,even(ψ, n, q) has

Ggeom,G1,even = Sp(2C, pD).

After extension of scalars to A1/Fqn, we have

Ggeom,G1,even = Garith,G1,even .

Proof. Suppose first (qn + 1)/2 is even. Then

G1,large(ψ2, n, q) = G1,even(ψ2, n, q),

and by Corollary 6.1, we have

Λ2(G1,even(ψ2, n, q)) ∼= Sym2(G1,odd(ψ, n, q).

Therefore Sym2(G1,odd(ψ, n, q) has its Ggeom (and its Garith, after ex-
tension of scalars to A1/Fqn) equal to PSp(2A, pB) for some factoriza-
tion na = AB. The Ggeom for sG1,odd(ψ, n, q) itself is therefore either
PSp(2A, pB) or a double covering of PSp(2A, pB), so either the prod-
uct PSp(2A, pB)×±1 or Sp(2A, pB). It cannot be Sp(2A, pB), because
Sp(2A, pB) has no faithful irreducible representation of odd dimension
(qn− 1)/2. It cannot be the product PSp(2A, pB)×±1 because Ggeom

has no nontrivial prime to p quotient.
Suppose now that (qn + 1)/2 is odd. Then

G1,large(ψ2, n, q) = G1,odd(ψ2, n, q),

and by Corollary 6.1, we have

Λ2(G1,odd(ψ2, n, q) ∼= Sym2(G1,even(ψ, n, q)).
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Therefore Sym2(G1,even(ψ, n, q) has its Ggeom (and its Garith, after ex-
tension of scalars to A1/Fqn) equal to PSp(2C, pD) for some factor-
ization na = CD. The Ggeom for sG1,even(ψ, n, q) itself is therefore
either PSp(2C, pD) or a double covering of PSp(2C, pD), so either the
product PSp(2C, pD){×±1} or Sp(2C, pD). It cannot be PSp(2C, pD),
because PSp(2C, pD) has no irreducible representation of even dimen-
sion (qn− 1)/2. It cannot be the product PSp(2C, pD)×{±1} because
Ggeom has no nontrivial prime to p quotient. �

Proposition 6.5. In the above theorem, we have (A,B) = (C,D),
and Ggeom for W1(ψ, n, q) is the diagonal image of Sp(2A, pB) in the
product group Sp(2A, pB)× PSp(2A, pB).

Proof. Repeat the proof of Proposition 4.6. �

Lemma 6.6. Suppose q = pa, p an odd prime, and na is prime to
p. Suppose also that n ≥ 2. After extension of scalars to A1/Fqn,
we have Garith = Ggeom for each of G1,even(ψ, n, q), G1,odd(ψ, n, q), and
W1(ψ, n, q).

Proof. Repeat the proof of Lemma 4.7. �

Theorem 6.7. Suppose q = pa, p an odd prime, and na is prime to
p. Suppose also that n ≥ 2. After extension of scalars to A1/Fqn, the
local systems G1,even(ψ, n, q) and G1,odd(ψ, n, q) are correctly matched
in the sense that W1(ψ, n, q) is a total Weil representation, and their
respective geometric (and arithmetic) monodromy groups are Sp(n, q),
PSp(n, q), Sp(n, q).

Proof. Repeat the proof of Theorem 4.8 (with the point (1,−2) re-
placed by the point t = −2). �

Corollary 6.8. Hypotheses as in Theorem 6.7, each of the local sys-
tems G1,even(ψ, n, q), G1,odd(ψ, n, q), and W1(ψ, n, q) has Ggeom = Garith

after extension of scalars to A1/Fq.
Proof. The argument of Lemma 4.7 gives this equality after extension
of scalars to A1/FpB , and Theorem 6.7 shows that q = pB. �

Remark 6.9. It is plausible that Theorems 1.1 and 1.2 in fact remain
valid for n ≥ 2 and q = pa without the hypotheses that that both n
and a be prime to p. Using the character tables in Magma, and the
calculation of the traces over a few small finite fields of our local systems
G1,odd(ψ, n, q) and Godd(ψ, n, q), we have checked that part (ii) of each
of the Theorems 1.1 and 1.2 remains valid in each of the three special
cases (p = n = 3, a = 1), (p = n = 3, a = 2), and (p = n = 5, a = 1).
But even to do the cases (p = n, a = 1) or (p = n, a = 2) for higher p,
much less the general case, would seem to require new ideas.
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