
AIRY SHEAVES OF LAURENT TYPE: AN INTRODUCTION

NICHOLAS M. KATZ AND PHAM HUU TIEP

To Enrico Bombieri, with the utmost admiration

Abstract. We develop the general theory of Airy sheaves of Laurent type, the local systems whose
trace functions have a particular “Airy-Laurent” shape. The main goal is to provide tools for the
later determination of their monodromy groups. See [KRLT5] for instances of such determinations.
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1. Introduction

In classical analysis, Airy functions are the Fourier transforms of exponentials eg(x) of polynomials,
(originally for the polynomial g(x) := x3/3) and Airy differential equations are the linear differential
equations g′(d/dt)y + ty = 0 they satisfy. These differential equations have an irregular singularity
at ∞, and have quite interesting differential galois groups. In the seminal paper [Such] of Such, he
introduces their `-adic finite field analogues, the local systems whose trace functions are of the form

t 7→ −
∑
x

ψ(g(x) + tx).

The local systems we are concerned with here are generalizations of these Airy local systems in
several ways. We allow the “t term” tx to be replaced by txa, we allow the polynomial g(x) to be
replaced by a Laurent polynomial f(1/x) + g(x), and we allow an “outside factor” χ(x) in the sum.
Here is a more detailed discussion.

We work in characteristic p > 0, and denote by Fp an algebraic closure of Fp. We also fix a prime

` 6= p to be able to speak of Q`-adic cohomology. We fix integers

A ≥ 1, B ≥ 1, a > B

about which we assume
p - ABa.

We fix polynomials

f(x) ∈ k[x], deg(f) = A, k some finite subfield of Fp,
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g(x) ∈ k[x], deg(f) = B, k some finite subfield of Fp,
We make the assumption that both f(x) and g(x) are Artin-Schreier reduced: this means that in
the expression f(x) =

∑
i cix

i, g(x) =
∑

i dix
iwe have ci = 0, di = 0 if p|i. We define

gcddeg(f) := gcd({i|ci 6= 0}), gcddeg(g) := gcd({i|di 6= 0})
the greatest common divisor of the degrees of the monomials appearing in f , respectively in g. We
suppose

gcd(a, gcddeg(f)) = 1, gcd(a, gcddeg(g)) = 1.

We also fix a (possibly trivial) multiplicative character χ of k×, with the convention that for
χ 6= 1, we have χ(0) = 0, but 1(0) = 1. We denote by G(f, g, a, χ) the lisse sheaf on Gm/k whose
trace function at time t ∈ L×, for L/k a finite extension, is

t 7→ −
∑
x∈L×

ψL(f(1/x) + g(x) + txa)χL(x).

2. Basic facts about G(f, g, a, χ)

The local system G(f, g, a, χ) is lisse of rank D = A+ a on Gm, and pure of weight one. We view
it as being the Fourier transform

FTψ([a]?(Lψ(f(1/x)+g(x)) ⊗ Lχ(x))).

Lemma 2.1. Given A ≥ 1, B ≥ 1, a > B, p - ABa, f, g both Artin-Schreier reduced, and
gcd(a, gcddeg(f)) = 1, gcd(a, gcddeg(g)) = 1. Then the following statements hold for G(f, g, a, χ).

(i) The I(∞)-representation of G(f, g, a, χ) is irreducible. It has rank A + a and all slopes
A/(A+ a).

(ii) The I(0)-representation of G(f, g, a, χ) is the direct sum

W (B, a−B)⊕ (Q`)
A+B,

with W (B, a−B) an irreducible I(0)-representation of rank a−B with all slopes B/(a−B).

Proof. This is a straightforward application of Laumon’s results on the local monodromy of FTψ.
The input sheaf to FTψ is lisse on Gm of rank a, with I(0)-slopes A/a and I(∞) slopes B/a.
The hypotheses gcd(a, gcddeg(g)) = 1, gcd(a, gcddeg(f)) = 1 imply respectively that the I(0)- and
I(∞)-representations of the input sheaf are irreducible, cf. the proof of Lemma 2.1 in kt30.

Then the I(∞)-representation of G(f, g, a, χ) is FTloc(0,∞)(rank a, slopes A/a), which has rank
A + a and all slopes A/(A + a), cf. [Ka-ESDE, 7.4.4(4)]. The I(0)-representation of G(f, g, a, χ),
modulo its subspace of I(0)-invariants, cf. [Ka-ESDE, 7.4.3.1], is FTloc(∞)(rank a, slopes B/a),
which is the asserted W (B, a−B). The asserted irreducibilities result from the the irreducibilities of
the input and the fact that FTloc(0,∞) and FTloc(∞, 0) are suitable equivalences of categories. �

Corollary 2.2. Hypotheses as in Lemma 2.1, suppose in addition that a > 2B. Then the deter-
minant of G(f, g, a, χ) is tame, so geometrically some Kummer sheaf LΛ. Moreover, if χ has odd
order N , then Λ has order dividing 2N , while if χ has even order N , then Λ has order dividing N .

Proof. The slopes of G(f, g, a, χ) at∞ are all < 1, and the slopes at 0 are B/(a−B) < 1. Therefore
the determinant of G(f, g, a, χ), a priori of finite order by Grothendieck’s local monodromy theo-
rem, is tame, hence geometrically some Kummer sheaf LΛ. Then the arithmetic determinant of
G(f, g, a, χ) is some constant field twist LΛ ⊗ αdeg of LΛ. Denote by M the order of Λ. Over any
finite extension L/k containing µM , the trace of Frobt,L|LΛ, as t runs over L×, attains all values in
µM . Then we recover M as the ratios of these Frobenius traces at various points s, t ∈ L×. Thus
we also recover M as the same ratios of Frobenius trace on the constant field twist LΛ⊗αdeg of LΛ.
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Each Frobt,L|G(f, g, a, χ) and all its powers have traces in Q(ζp, ζN ) for N the order of χ. So each
Frobenius determinant lies in Q(ζp, ζN ). Therefore the geometric determinant takes values both in
µM and in Q(ζp, ζN ). But the only roots of unity in Q(ζp, ζN ) lie in ±µpN . Thus µM ≤ ±µN . �

Lemma 2.3. Given A ≥ 1, B ≥ 1, a > B, p - ABa, f, g both Artin-Schreier reduced, and
gcd(a, gcddeg(f)) = 1, gcd(a, gcddeg(g)) = 1. Then G(f, g, a, χ) is geometrically selfdual if and

only if ABa is odd, both f(x) and g(x) are odd polynomials, and χ2 = 1.

Proof. The oddness conditions, and χ2 trivial, imply autoduality. For p = 2, over even degree
extensions k/F2(coef ′s of f, g), after the constant field twist by 1/

√
#k, the traces are real (in fact

in Q). And when p is odd, after the constant field twist by 1/Gauss(ψ, χ2) and over even degree
extensions of Fp(coef ′s of f, g), the traces are real.

To prove the converse, we argue as follows. Since G := G(f, g, a, χ) is geometrically irreducible, it
is self dual if and only if H2

c (Gm/Fp,G ⊗ G) is nonzero (and in fact has dimension 1). We compute
this dimension as the limsup, over extensions k/Fp(coef ′s of f, g), of the sums

1/(#k(#k − 1))
∑

t∈k×,x,y∈k

ψk(f(1/x) + f(1/y) + g(x) + g(y) + t(xa + ya))χk(xy).

The t = 0 “missing” summand is

1/(#k(#k − 1))
∑
x,y∈k

ψk(f(1/x) + f(1/y) + g(x) + g(y))χk(xy) =

= 1/(#k((#k − 1))(
∑
x,y∈k

ψk(f(1/x) + g(x))χk(x)2,

which is O(1/(#k − 1), because the sum being squared is, by the Weil bound, of absolute value
≤ (A+ a)

√
#k.

So the limsup doesn’t change if we add this term.Then we have the limsup of

1/(#k − 1)
∑

x,y∈k,xa+ya=0

ψk(f(1/x) + f(1/y) + g(x) + g(y))χk(xy).

This is then the limsup of the sum of the a sums, one for each ζ with ζa = −1,

Sζ := 1/(#k − 1)
∑
x∈k

ψk(f(1/x) + f(1/ζx) + g(x) + g(ζx))χk(ζx
2).

Both f(x) and g(x) are Artin-Schreier reduced and gcd(a, gcddeg(f)) = gcd(a, gcddeg(g)) = 1.
Then the two sums f(x) + f(x/ζ) and g(x) + g(ζx) are each Artin-Schreier reduced. Unless both
sum vanish, the Sζ summand is O(1/

√
#k), again by the Weil estimate. And even if both sums

do vanish, then the sum still vanishes unless χ2 is the trivial character. Thus in all cases, we must
have χ2 trivial if we are to have self duality.

Suppose now that χ2 is trivial and G is self dual. Then for at least one ζ with ζa = −1, both
f(x) + f(x/ζ) = 0 and g(x) + g(ζx) = 0. In the case p = 2, both f, g are odd polynomials (because
both are Artin-Schreier reduced), so there is nothing to prove.

Thus it remains to treat the case when p is odd. Suppose first that a is even. Then we claim
that for any ζ with ζa = −1, f(x) + f(x/ζ) 6= 0. To see this, write f(x) =

∑
n anx

n, and define
Ef := {n|an 6= 0}, the set of exponents which occur in f . By hypothesis, we have

gcd(a, all n ∈ Ef ) = 1.

We rewrite this as

gcd(a, all n− a with n ∈ Ef ) = 1.
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If f(x) + f(x/ζ) = 0, then an(1 + 1/ζn) = 0 for all n ∈ Ef , i.e., ζn = −1 for all n ∈ Ef , i.e., ζn = ζa

for all n ∈ Ef , and finally ζn−a = 1 for all n ∈ Ef . Define

D := gcd( all n− a with n ∈ Ef ).

Then ζD = 1. But gcd(a,D) = 1, so there exist integers u, v with au + Dv = 1. Then ζ =
(ζa)u(ζD)v = (−1)u. Thus ζ is ±1, neither of which has ζa = −1 if a is even.

Suppose next that a is odd. Then the above argument shows that ζ is ±1. But of these two
choices, only ζ = −1 has ζa = −1. For this ζ = −1, we have f(x) + f(−x) = 0, which means
precisely that f is an odd polynomial. The same argument applied to g, using the fact that
gcd(a, all n ∈ Eg) = 1, shows that ζ = −1, hence that g is an odd polynomial. �

Lemma 2.4. Given A ≥ 1, B ≥ 1, a > B, p - ABa, f, g both Artin-Schreier reduced, and
gcd(a, gcddeg(f)) = 1, gcd(a, gcddeg(g)) = 1. Suppose that χ and ρ are multiplicative characters

of k× for k/Fp a finite extension containing the coefficients of both f and g. If χ 6= ρ, then
G(f, g, a, χ) and G(f, g, a, ρ) are not geometrically isomorphic.

Proof. We argue by contradiction. Suppose that G(f, g, a, χ) and G(f, g, a, ρ) are geometrically
isomorphic. As each is geometrically irreducible, the cohomology group

H2
c (Gm/Fp,G(f, g, a, χ)⊗ G(f, g, a, ρ)∨)

is pure of weight 2 and of dimension one. The dual G(f, g, a, ρ)∨ is the (−1)-Tate twist of its complex
conjugate: its trace function at t ∈ L× is

t ∈ L× 7→ −1

#L

∑
x∈L×

ψL(−f(1/x)− g(x)− txa)ρ(x).

So the trace function of G(f, g, a, χ)⊗ G(f, g, a, ρ)∨ is

t ∈ L× 7→ −1

#L

∑
x,y∈L×

ψL(f(1/x)− f(1/y) + g(x)− g(y) + t(xa − ya))χ(x)ρ(x).

The sum over t of this trace is, by the Lefschetz trace formula,

Trace(FrobL|H2
c )− Trace(FrobL|H1

c ),

with H2
c pure of weight 2, and H1

c mixed of weight ≤ 1. Thus the dimension, namely 1, of the
relevant H2

c is the limsup, as L/k grows,

1

#L

∑
t∈L×

1

#L

∑
x,y∈L×

ψL(f(1/x)− f(1/y) + g(x)− g(y) + t(xa − ya))χ(x)ρ(x).

So far as the limsup is concerned, we may replace this sum over t ∈ L× by the sum over all t ∈ L:
indeed the t = 0 summand is

1

(#L)2

(
−
∑
x∈L×

ψL(f(1/x) + g(x))χ(x)
)(
−
∑
y∈L×

ψL(−f(1/y − g(y))ρ(y)
)
.

Each of the factors is O(
√

#L), so this t = 0 term is O(1/#L), and hence does not affect the limsup.



AIRY SHEAVES OF LAURENT TYPE: AN INTRODUCTION 5

Thus the dimension, 1, of the H2
c is the limsup of

1

#L

∑
t∈L

1

#L

∑
x,y∈L×

ψL(f(1/x)− f(1/y) + g(x)− g(y) + t(xa − ya))χ(x)ρ(x)

=
1

#L

∑
x,y∈L×,xa=ya

ψL(f(1/x)− f(1/y) + g(x)− g(y) + t(xa − ya))χ(x)ρ(x)

=
∑

ζ∈µa(Fp

1

#L

∑
x,L×

ψL(f(1/x)− f(1/ζx) + g(x)− g(ζx))χ(x)ρ(ζx).

The ζ = 1 summand is

1

#L

∑
x,L×

χ(x)ρ(ζx) =
ρ(ζx)

#L

∑
x,L×

(χ/ρ)(x) = 0,

simply because χ/ρ is nontrivial. In each of the remaining summands, the Laurent polynomial
f(1/x) − f(1/ζx) + g(x) − g(ζx) inside the ψ is itself nonzero (because gcd(a, gcddeg(f)) = 1 and

gcd(a, gcddeg(g)) = 1) and Artin-Schreier reduced, so each of these summands is O(1/
√

#L). Thus
the limsup vanishes, the desired contradiction. �

Lemma 2.5. Let X/Fq be smooth and geometrically connected of dimension d ≥ 1, ` 6= p, K/Q a

finite extension, and L/K a finite Galois extension. Suppose that F and G are nonzero lisse Q`-
sheaves on X. Suppose that both F and G are geometrically irreducible, and have all their Frobenius
traces in L. Suppose further that for every σ ∈ Gal(L/K), there exist lisse sheaves Fσ and Gσ on
X whose trace functions are the σ-conjugates of those of F and of G. If F and G are geometrically
isomorphic, then Fσ and Gσ are geometrically isomorphic.

Proof. If F and G are geometrically isomorphic, then because each is geometrically isomorphic,
there exists an αdeg twist such we have an arithmetic isomorphism

F ∼= G ⊗ αdeg.

This implies that for every finite extension k/Fq, and every t ∈ X(k), we have an equality

Trace(Frobt,k|F) = αdeg(k/Fq)Trace(Frobt,k|G).

Because F is not the zero sheaf, for some k0/Fq and some t ∈ X(k0), Trace(Frobt,k0 |F) is nonzero.

Then Trace(Frobt,k0 |G) must also be nonzero, and we recover αdeg(k/Fq) as the ratio of nonzero traces

of F and of G. As these traces lie in L, it follows that αdeg(k0/Fq) lies in L. Extending scalars from
Fq to k0, we reduce to the case when α ∈ L×. Then we simply apply σ to the above equality of
traces to obtain

Trace(Frobt,k|Fσ) = σ(α)deg(k/Fq)Trace(Frobt,k|Gσ),

i.e., we have an arithmetic isomorphism

Fσ ∼= Gσ ⊗ σ(α)deg,

and hence the desired geometric isomorphism. �

Proposition 2.6. Given A ≥ 1, B ≥ 1, a > B, p - ABa, let F and G be local systems on Gm/Fp,
whose local monodromies are of the form

FI(0)
∼= (A+B)1⊕WF , GI(0)

∼= (A+B)1⊕WG ,
with WF ,WG both irreducible of rank a−B and totally wild, and

FI(∞)
∼= VF , GI(∞)

∼= VG ,
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with VF , VG both of rank A + a with all slopes < 1. Let L be a rank one local system on Gm/Fp,
such that F ∼= G ⊗ L. Then L ∼= Q`.

Proof. We first show that L is tame at ∞. Indeed, it if were not, then VG ⊗ L has all slopes equal
to Swan∞(L) ≥ 1, while VF has all slopes < 1. Once we have this, it suffices to show that LI(0) is
trivial. Suppose first that a−B > 1. Then

GI(0) ⊗ LI(0)
∼= (A+B)LI(0) ⊕ (irreducible of rank > 1).

So the one-dimensional constituents are each LI(0). But the the one-dimensional constituents of
FI(0) are each 1. Suppose next that a−B = 1. Then in both FI(0) and GI(0), the trivial constituents
are in the majority. But after tensoring with LI(0), the LI(0) constituents are in the majority. Hence
LI(0) is trivial. �

Corollary 2.7. For F as in Proposition 2.6 above, suppose L is a rank one local system on Gm/Fp,
such that F∨ ∼= F ⊗ L. Then L ∼= Q`.

Proof. Indeed, both F and F∨ have the shapes of local monodromies of the Proposition. �

Proposition 2.8. Suppose p - ABa, f , g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) = 1,
gcd(a, gcddeg(g)) = 1. Then the I(0)-representation of G(f, g, a, χ) is tensor indecomposable under
each of the following conditions.

(a) The rank A+ a 6= 4.
(b) A+ a = 4 and p = 2.
(c) A+ a = 4, p 6= 2, and (A,B, a) 6= (1, 1, 3).

Proof. Indeed, the I(0)-representation is the direct sum T ⊕ W of a nonzero tame part and an
irreducible wild part. In rank 6= 4, the result follows from [KRLT3, 10.4]. In the case of rank 4,
the tame part has rank A + B ≥ 2, so in characteristic p = 2 we may again apply [KRLT3, 10.4].
To apply [KRLT3, 10.4] with p odd and rank 4, we must avoid the case A + B = 2, i.e., the case
A = 1 = B and a = 3. �

Proposition 2.9. Suppose p - ABa, f , g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) = 1,
gcd(a, gcddeg(g)) = 1. Suppose that G(f, g, a, χ) is tensor indecomposable for I(0). Let us denote

D := A+ a, t := A+B, w := a−B,
the rank, the dimension of the tame part T , and the dimension of the wild part W of the I(0)-
representation V = T ⊕W . Then G(f, g, a, χ) is not tensor induced over I(0) under each of the
following conditions.

(a) D is not a power.
(b) w = 1.

(c) t− w >
√
D.

(d) p - w and w < D −
√
D.

Proof. Case (a) is trivial.

To treat case (b), suppose w = 1, and V is tensor induced: V = U1 ⊗ . . . ⊗ Un with n ≥ 2,
dim(Ui) = d ≥ 2, and I(0) acts through GLd(C) o Sn. As p - aB and a − B = w = 1, p > 2. Since
W has dimension w = 1, some element γ ∈ P (0) must act on W as a scalar ζ 6= 1, an N th root of
unity with N > 1 a p-power. By Lemma 2.2(ii) of KT30, γ is tensor indecomposable, so it must
induce an n-cycle while permuting the n tensor factors of V . By the formula for tensor induction
[GI],

|Trace(γ|V )| ≤ d ≤ D/2 ≤ D − 2
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since D = dn ≥ 4. On the other hand,

|Trace(γ|V )| = |D − 1 + ζ| ≥ D − 2,

with equality only when ζ = −1, which is impossible since p > 2.

To treat case (c), use the I(0)-tensor indecomposability of V to apply (ii) of Lemma 2.4 of

kt30. It shows the existence of an element h ∈ I(0) with |Trace(h|V )| ≤
√
D if V is tensor

induced. But V = t1 + W , and any h ∈ I(0), being of finite order, has |Trace(h|W )| ≤ w. Hence√
D ≥ |Trace(h|V )| ≥ t− w, a contradiction.

For case (d), we may assume w > 1 by (b), and then use the fact that an element γ ∈ I(0)
which is generator of I(0)/P (0) has spectrum on W consisting of all the wth roots of some root of
unity ρ (because when p - w, W is the Kummer induction [w]?L of some rank one L, and γ acts
by cyclically permuting the w factors of the induction: because γ has finite order on V , ρ is itself
a root of unity). Then we apply Lemma 2.2 (i) of kt30 (with its a = w) to see that γ is tensor

indecomposable in the I(0)-representation if w < D −
√
D. Then we repeat the argument of case

(b): if V is n-tensor induced, then

|Trace(γ|V )| ≤ d = D1/n ≤
√
D.

But Trace(γ|W ) = 0 since w > 1, and hence
√
D ≥ |Trace(γ|V ) = t = D − w, i.e w ≥ D −

√
D, a

contradiction. �

Theorem 2.10. Suppose that p - ABa(A+a)(a−B), f and g are both Artin-Schreier reduced, and
gcd(a, gcddeg(f)) = gcd(a, gcddeg(g)) = 1. Then G(f, g, a, χ) is primitive on Gm/Fp, under each of
the following conditions.

(a) w := a−B is not of the form ps − 1 for any s ≥ 1.
(b) w = ps − 1 and A 6= 1.
(c) w = ps − 1, A = 1, and χ 6= χ2 (for χ2 the quadratic character).
(d) w = ps − 1, A = 1, χ = χ2, ABa is odd, each of f, g is an odd polynomial, and B < 2p.
(e) w = ps − 1, A = 1, χ = χ2, and G(f, g, a, χ) has infinite Ggeom.

(f) w = ps − 1, A = 1, χ = χ2, p ≥ 5, each of f, g ∈ Fp[x], with g(x) =
∑B

i=0 aix
i, and either

B ≡ p− 1

2
mod (p− 1)

or ∑
i: i≡ p−1

2
mod (p−1)

ai 6= 0.

Proof. We argue by contradiction. Suppose G(f, g, a, χ) = π?H for some finite etale π : U → Gm of
degree d > 1 and some local system H on U . Then d × rank(H) = rank(G(f, g, a, χ)) = A + a is
prime to p. Also U is geometrically connected, otherwise π?H is not irreducible. Denote by X the
complete nonsingular model of U , and denote by π : X → P1 the finite flat map on the complete
curves. Let

C := π−1(0), E = π−1(∞),

of cardinalities c, e respectively.
For each point x ∈ E, denote by

πx : Spec ((KX,x)∧)→ Spec ((KP1,∞)∧)

the induced map of the spec’s of completed function fields. Then for G := G(f, g, a, χ), we have

G|I(∞) = ⊕x∈Eπx?(HI(x)).
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But G|I(∞) is irreducible, hence there is precisely one point in E, call it ∞up, and

G|I(∞) = π∞up?(HI(∞up)),
with HI(∞up) irreducible (because its direct image is irreducible). Because ∞up is the unique point
lying over ∞, the degree of π∞up is precisely d := deg(π), which is a divisor of A + a. Looking at
degrees, we thus have

d× rank(H) = rank(G).

Therefore deg(π∞up) = d is prime to p, hence π∞up is tame. By [Ka-TLFM, 1.6.4.1], it follows that

Swan∞up(H) = Swan∞(G).

Similarly, we have
G|I(0) = ⊕x∈Cπx?(HI(x)),

while
G|I(0) = WB,a−B ⊕ (Q`)

A+B,

with WB,a−B irreducible of rank w := a−B with all slopes B/(a−B). There is precisely one point
x0 ∈ C whose πx0?(HI(x)) contains WB,a−B as a summand. More precisely, we have

πx0?(HI(x0)) = WB,a−B ⊕ (Q`)
n, for some n ≥ 0.

We first consider the case n = 0. Then HI(x0) is irreducible. Moreover, it cannot be tame, i.e., it
cannot be a Kummer sheaf Lχ: if it were, then by Frobenius reciprocity its direct image contains

all Lρ with ρdeg(πx0 ) = χ, whereas its direct image is totally wild. Looking at degrees, we have

deg(πx0)× rank(H) = rank(WB,a−B) = a−B.
As p - (a−B), we see that πx0 has degree prime to p. Again by [Ka-TLFM, 1.6.4.1], it follows that

Swanx0(H) = Swan(G) = B.

In this n = 0 case, we now argue as follows. On the one hand, for G := G(f, g, a, χ), for the
Euler–Poincaré characteristic we have

EP(U,H) = EP(Gm,G) = −Swan0(G)− Swan∞(G) = −B −A.
But

EP(U,H) = EP(U)rank(H)−
∑
x∈C

Swanx(H)− Swan∞up(H)

= EP(U)rank(H)−B −
∑

x∈C,x6=x0

Swanx(H)−A.

Subtracting these two expressions for EP(U,H), we find that

EP(U)rank(H) =
∑

x∈C,x6=x0

Swanx(H).

In particular, EP(U)rank(H) ≥ 0, and hence EP(U) ≥ 0. As U is the complement of at least
two points (one in D and at least one in C) in a complete nonsingular curve, call it X, we have
EP(U) = 2−2gX−1−#C ≥ 0. On the other hand 2−2gX−1−#C ≤ 0, with equality only if gX = 0
and #C = 1. Because #C = 1, deg(πx0) must be d = deg(π). Then the entire I(0)-representation
is wild, a contradiction, since the I(0)-representation has an A+B ≥ 2 dimensional trivial part.

Suppose next that n ≥ 1. Then πx0?(HI(x0)) contains Q`, which we write as L1. Then by
Frobenius reciprocity, HI(x0) contains L1. Then deg(πx0) cannot be divisible by any prime to p
integer r > 1, for otherwise πx0?(HI(x0)) contains πx0?(L1), which contains all Lρ with ρr = 1. This
is impossible, because the entire tame part of the I(0)-representation of G is copies of L1. Thus
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deg(πx0) = ps for some s ≥ 0. If s = 0, i.e. if deg(πx0) = 1 is prime to p, then Swanx0(H) =
Swan(G) = B, and we conclude as in the n = 0 case above.

Suppose next that n ≥ 1 and deg(πx0) = ps with s ≥ 1. Then by Frobenius reciprocity, πx0?(L1)
contains L1 just once, and contains no Lρ for any nontrivial ρ (because it only contains Lρ if

ρdeg(πx0 ) = 1). Therefore

πx0?(L1) = L1 ⊕ (totally wild of rank ps − 1).

If HI(x0) were not simply L1, any other irreducible constituent would either be tame (in which
case its direct image would also have a wild part of rank ps − 1, or would be wild, in which case its
direct image would be totally wild.

Thus in this n ≥ 1 case, we have n = 1, rank(H) = 1,HI(x0) = L1, and

πx0?(HI(x0)) = πx0?(L1) = L1 ⊕ (totally wild of rank ps − 1).

So the wild part of the I(0)-representation of G has dimension w = ps − 1.
We now continue with the analysis of the case when w = ps− 1. Looking at what remains of the

I(0)-representation, we find

LA+B−1
1 =

⊕
x∈C,x6=x0

πx?(HI(x)).

Each individual direct image πx?(HI(x)) is then a sum of L1. Being tame, it follows that H is
tame at each x 6= x0 in C. Then H must be I(x)-trivial at each such x, otherwise its direct image
contains various Lρ with nontrivial ρ. Then each πx for x 6= x0 must have degree 1: it cannot have
degree divisible by a prime to p integer r > 1 because that introduces nontrivial tame pieces in
the direct image, and it cannot have degree a strictly positive power of p, because that introduces
nonzero wild parts in the direct image. Thus at each x 6= x0 in C, the degree of πx is 1. From the
above displayed equation

LA+B−1
1 =

⊕
x∈C,x6=x0

πx?(HI(x)),

we then see that

#C = A+B,

and that H is lisse of rank one outside of the single point ∞up. Thus

EP(U,H) = EP(Gm,G) = −Swan0(G)− Swan∞(G) = −B −A.
At the same time, remembering that H has rank one, we have

EP(U,H) = EP(U)− Swan∞up(H) = EP(U)−A.
Thus EP(U)−A = −B −A, and hence

EP(U) = −B.
In terms of the complete nonsingular model X of U , this gives

−B = EP(U) = 2− 2gX −#D −#C = 2− 2gX − 1− (A+B),

hence 2 − 2gX − 1 − A = 0, i.e., −2gX = A − 1. This can only hold if gX = 0 and A = 1.
Putting ∞up at ∞, H is lisse of rank one on A1, with Swan∞(H) = 1. Thus H is Lψ(αx) for some

α 6= 0 in Fp. Putting x0 at 0, the morphism π is a polynomial H(x) ∈ Fp[x] which has degree
A + a = 1 + a = 1 + B + w = ps + B, which has 0 as a root of multiplicity ps, and which has B
simple zeros, each of which is nonzero. Thus we obtain a geometric isomorphism

G(f, g, a, χ) ∼= [H(x)]?Lψ(αx).
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Over a large enough finite extension k/Fp (namely one which contains α and the coefficients of

each of the polynomials f, g,H, and with χ#k−1 = 1) both of G(f, g, a, χ) and [H(x)]?Lψ(αx) are
geometrically irreducible and geometrically isomorphic local systems on Gm/k. Therefore there

exists some γ ∈ Q`
×

for which we have an arithmetic isomorphism

(2.10.1) G(f, g, a, χ)⊗ γdeg ∼= [H(x)]?Lψ(αx).

Recall that G(f, g, a, χ) is, arithmetically, the Fourier transform

G(f, g, a, χ) := FTψ([a]?(Lψ(f(1/x)+g(x)) ⊗ Lχ(x))),

and hence
G(f, g, a, χ)⊗ γdeg := FTψ([a]?(Lψ(f(1/x)+g(x)) ⊗ Lχ(x)⊗ γdeg)).

Applying the inverse Fourier transform FTψ to equation 2.10.1, we get an arithmetic isomorphism

[a]?(Lψ(f(1/x)+g(x)) ⊗ Lχ(x)⊗ γdeg) ∼= FTψ([H(x)]?Lψ(αx)).

We next prove that this cannot happen if χ has order ≥ 3. The key point is that

Gal(Q(χ, ζp)/Q(ζp)) = Gal(Q(χ)/Q).

So we may choose σ ∈ Gal(Q(χ, ζp)/Q(ζp)) so that the σ-conjugate system to G(f, g, a, χ) is

G(f, g, a, χ)σ = G(f, g, a, χσ),

while
([H(x)]?Lψ(αx))

σ = [H(x)]?Lψ(αx).

Applying Lemma 2.5, we find that [H(x)]?Lψ(αx) is isomorphic to both G(f, g, a, χ) and to G(f, g, a, χσ).
But if χ has order ≥ 3, there exists σ for which χσ is any character of the same order as χ, and in
particular there exists σ for which χσ 6= χ. For such a σ, G(f, g, a, χ) and to G(f, g, a, χσ) are not
geometrically isomorphic, by Lemma 2.4.

For χ = 1, the “traces nowhere vanishing” argument of the proof of Proposition 3.6 of kt30 shows
that G(f, g, a,1) is always primitive.

We now deal with the case A = 1, w = ps − 1, χ = χ2 has order 2, and G(f, g, a, χ2) ∼=
[H(x)]?Lψ(αx) with H a polynomial of degree B + ps, with 0 as a root of multiplicity ps and with
B simple roots, each nonzero. For an I(0) representation V , [H(x)]?V as I(0) representation is
the induction through H viewed as lying in Fp[[x]], call it Hfml. We apply this to V := Lψ(αx),
which is trivial as I(0) representation We recall from [Ka-MMP, 6.4.5, 2)] that we may compute
Swan0([Hfml(x)]?Lψ(αx)) = Swan0([Hfml(x)]?L1) as follows. Expand Hfml(x):

Hfml(x) = xp
s
(
∑
m≥0

αmx
m).

Then Swan0([Hfml(x)]?L1) is the least prime to p integer m with αm 6= 0.
On the other hand, the I(0) representation of [H(x)]?Lψ(αx) is the direct sum of [Hfml(x)]?Lψ(αx)

with B copies of L1, so

Swan0([H(x)]?Lψ(αx)) = Swan0([Hfml(x)]?Lψ(αx)) (= Swan0([Hfml(x)]?L1)).

But H is a polynomial of degree B + ps. Thus in Fp[[x]], H = Hfml, and its expansion is

H(x) = xp
s
(
B∑

m=0

amx
m),

with a0, aB both nonzero. Moreover, if 1 ≤ m ≤ B − 1 is nonzero, then am = 0 (otherwise Swan0

would be this lower m).
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Suppose now that ABa is odd and that both f, g are odd polynomials. Then G(f, g, a, χ2) is self
dual (in fact orthogonally self dual). So if G(f, g, a, χ2) ∼= [H(x)]?Lψ(αx), then

H := [H(x)]?Lψ(αx)

is self dual. AsH is pure of weight zero and geometrically irreducible, its autoduality is equivalent to
having dim(H2

c (Gm/Fp,H⊗2)) = 1. This dimension is the limsup over larger and larger extension L
of any chosen finite extension k/Fp which contains the coefficients of f, g,H, of the complex absolute
value of

(1/#L)
∑
t∈L×

(Trace(Frobt,L|H))2 = (1/#L)
∑
t∈L×

∑
x,y∈L:H(x)=t=H(y)

ψL(αx)ψL(αy)

= (1/#L)
∑

x,y∈L:H(x)=H(y)6=0

ψL(α(x+ y)).

The “missing” term with t = 0 is (1/#L)(
∑

x∈L:H(x)=0 ψL(αx)))2, which is at most deg(H)2/#L,

so does not affect the limsup. So the dimension of this H2
c is the limsup of

(1/#L)
∑

x,y∈L:H(x)=H(y)

ψL(α(x+ y)).

The affine curve H(x) = H(y) is smooth outside the point (0, 0). Indeed, its singularities are the
points on the curve where dH(x)/dx = 0 = dH(y)/dy. From the explicit form of H above, we see
that dH(x)/dx = aB(ps +B)xp

s+B−1, dH(y)/dy = aB(ps +B)yp
s+B−1.

The polynomial H(x)−H(y) has the factorization

H(x)−H(y) = (x− y)∆H , with ∆H := (H(x)−H(y))/(x− y).

The polynomial ∆H is not divisible by x− y, indeed its leading term is αB
∏
ζ∈µps+B ,ζ 6=1(x− ζy).

The intersection of the two loci x − y = 0 and ∆H = 0 is the single point (0, 0)).Thus the curve
∆H = 0 is lisse outside the point (0, 0) (because this open set of ∆H = 0 is the complement of x = y
in H(x) = H(y)).

The sum of ψL(α(x+ y)) over the locus x = y vanishes. So our limsup is the limsup of

(1/#L)
∑

x,y∈L:∆H=0

ψL(α(x+ y)).

We will show that this limsup is in fact 0 provided that B < 2p. Suppose first that B < p. Then
in the expansion of H, there can be no middle terms: we must have

H(x) = xp
s
(α0 + αBx

B).

Then
∆H = a0(x− y)p

s−1 + aB
∏

16=ζ∈µps+B

(x− ζy).

This is the finite part of the projective curve of equation

a0Z
B(X − Y )p

s−1 + aB
∏

1 6=ζ∈µps+B

(X − ζY ) = 0,

which has ps +B − 1 points at ∞. If we invert X − Y , then in coordinates

z := Z/(X − Y ), x := X/(X − Y ), and thus Y/(X − Y ) = x− 1,

this curve becomes
a0z

B + aB
∏

16=ζ∈µps+B

(x− ζ(x− 1)) = 0.
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This affine curve, call it C, is defined by this polynomial, which is an Eisenstein polynomial in z for
any of the factors (x − ζ(x − 1)) with 1 6= ζ ∈ µps+B. In particular, it is Eisenstein for the factor
2x− 1 (present because ps + B is even, as B was odd). Thus C is geometrically irreducible, hence
∆H = 0 is geometrically irreducible. The points on C with z = 0 are the points at ∞ on ∆H = 0,
and z has a simple pole on ∆H = 0 at each of its zeroes in C. In particular, 2x−1 has a pole of order
B at the zero of z over 2x−1 = 0. Over ∆H = 0, we are summing Lψ(α((X+Y )/(X−Y ))) = Lψ(α(2x−1)),
which has Swan = B at the zero of z in C over 2x − 1. In particular, Lψ(α((X+Y )/(X−Y ))) is not

geometrically constant. Hence this sum is O(1/
√

#L), and the limsup is 0.
Suppose now that 2p > B > p. Then in the expansion of H, there can be a middle term:

H(x) = xp
s
(a0 + apx

p + aBx
B) = a0x

ps + apx
p+ps + aBx

ps+B.

In this case, we write
p+ ps := pN,

and

∆H = a0(x− y)p
s−1 + ap

(
(xN − yN )p−1((xN − yN )/(x− y)

)
+ aB

∏
16=ζ∈µps+B

(x− ζy).

Because N = 1+ps−1 is even, the factor (XN −Y N )/(X−Y ) is divisible by X+Y . Now we repeat
the above argument. The curve ∆H = 0 is the finite part of the projective curve of equation

a0Z
B(X − Y )p

s−1 + apz
B−p((XN − Y N )p−1((XN − Y N )/(X − Y )

)
+ aB

∏
16=ζ∈µps+B

(X − ζY ) = 0,

which has ps +B − 1 points at ∞. If we invert X − Y , then in coordinates

z := Z/(X − Y ), x := X/(X − Y ), and thus Y/(X − Y ) = x− 1,

we obtain the affine curve C of equation

a0z
B + apz

B−p((xN − (x− 1)N )p−1((xN − (x− 1)N )
)

+ aB
∏

16=ζ∈µps+B

(x− ζ(x− 1)) = 0.

The curve C is defined by this polynomial, which is (again) an Eisenstein polynomial in z for the
for the factor (2x− 1). From this point on, we repeat verbatim the proof in the case B < p above.

In this w = ps− 1, A = 1 case, if G(f, g, a, χ2) is induced, then it is induced from a rank one local
system Lψ(αx), which has finite Ggeom, and hence G(f, g, a, χ) itself has finite Ggeom.

In the w = ps − 1, A = 1 case with f, g ∈ Fp[x], p ≥ 5 and g(x) =
∑

i aix
i, we will use the

hypothesis that either B ≡ p−1
2 mod (p− 1) or∑

i: i≡ p−1
2

mod (p−1)

ai 6= 0

to show that Ggeom is infinite. For this, it suffices to exhibit a point t ∈ F×p where

Trace(Frobt,Fp |G(f, g, a, χ2))

is not divisible by Gauss(ψ, χ2) as an algebraic integer. [Recall that G(f, g, a, χ2) has Frobenius traces
in Z[ζp], and is pure of weight one. Pass to G0(f, g, a, χ2) := G(f, g, a, χ2)⊗(Gauss(ψ, χ2)−deg, which
is pure of weight zero with traces in Z[ζp][1/p]. This twist G0 has arithmetic determinant of finite
order. Indeed, any Frobenius determinant on G0 at a point t ∈ F×q is an element of Z[ζp][1/p] which
is a unit all all places λ - p of Q(ζp) (because G0 is part of a compatible system) and has complex
absolute value after all complex embeddings. As Q(ζp) has a unique place over p, it follows (product
formula) that this determinant has absolute value 1 everywhere, so is a root of unity in Q(ζp), so
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has order dividing 2p. Thus the arithmetic determinant of G0 has finite order. Then finiteness of
Ggeom is equivalent to G0 having all Frobenius traces algebraic integers.]

To show that Trace(Frobt,Fp |G(f, g, a, χ2)) is not divisible by Gauss(ψ, χ2) in Z]ζp], we use a p-adic
calculation. Define

π := ζp − 1.

Then ordp(π) = 1/(p− 1), while ordp(Gauss(ψ, χ2)) = 1/2. For p ≥ 5, we have 1/2 > 1/(p− 1). So
we need only find a Frobenius trace Trace(Frobt,Fp |G(f, g, a, χ2)) which is divisible by π but not by

π2. This amounts to computing this Frobenius trace mod π2. For any x ∈ Fp,

ψ(x) = ζxp = (1 + π)x ≡ 1 + πx mod π2,

and for any x ∈ F×p ,

χ2(x) ≡ x(p−1)/2 mod p.

So for any Laurent polynomial L(x) =
∑

i aix
i ∈ Fp[x, 1/x], and any x ∈ F×p , we have

χ2(x)ψ(L(x)) ≡ x(p−1)/2(1 + π)L(x) ≡ x(p−1)/2(1 + πL(x)) mod π2.

Expanding out L(x) =
∑

i aix
i,∑

x∈F×p

χ2(x)ψ(L(x)) ≡
∑
x∈F×p

x(p−1)/2(1 + π
∑
i

aix
i) mod π2 ≡

≡
∑
x∈F×p

χ2(x) +
∑
i

ai
∑
x∈F×p

xai+(p−1)/2 mod π2.

The sum
∑

x∈F×p χ2(x) vanishes. The sum
∑

x∈F×p x
ai+(p−1)/2 vanishes mod p unless the exponent

ai + (p− 1)/2 is a multiple of p− 1, in which case it is −1 mod p. Thus

−
∑
x∈F×p

χ2(x)ψ(L(x)) ≡ π
∑

i: i≡ p−1
2

mod (p−1)

ai mod π2.

In G(f, g, a, χ2), the relevant Laurent polynomial is f(1/x) + g(x) + txa. Here f(1/x) = a−1/x,

g(x) =
∑B

i=0 aix
i. Because p ≥ 5, the 1/x term contributes 0. If B is not (p − 1)/2 mod (p − 1),

the txa term contributes 0, no matter what the value of t ∈ F×p . So for such B, we are done; if∑
i≤B: i≡ p−1

2
ai 6= 0, then we may choose any t ∈ F×p at which to take the trace.

If, on the other hand, B is not (p − 1)/2 mod (p − 1), then the exponent a in txa, which is
a = B + ps − 1, is (p− 1)/2 mod (p− 1). So the txa term contributes t, and

−
∑
x∈F×p

χ2(x)ψ(L(x)) ≡ π(
∑

i≤B: i≡ p−1
2

mod (p−1)

ai) + t mod π2.

We may always choose t ∈ F×p so that the the innermost sum is nonzero mod p. �

Here is an extension of the previous Theorem 2.10 to the special case B = 1, where we drop the
hypothesis that p - (a−B).

Theorem 2.11. Suppose that p - ABa(A + a), f and g are both Artin-Schreier reduced, and
gcd(a, gcddeg(f)) = gcd(a, gcddeg(g)) = 1. Suppose that B = 1. Then G(f, g, a, χ) is primitive on

Gm/Fp.
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Proof. Repeat verbatim the first four paragraphs of the proof of Theorem 2.10, down to the point

deg(πx0)× rank(H) = rank(WB,a−B) = a−B

in the discussion of the n = 0 case. Because B = 1,WB,a−B has Swan0(WB,a−B) = B = 1. In this
n = 0 case, H is totally wild, and

πx0?H ∼= WB,a−B.

By [Ka-TLFM, 1.6.4.1], we have

Swan0(πx0?H) = Swanx0(H) + rank(H)Swan0(πx0?L1).

In this equality, the left hand side is Swan0(πx0?H) = Swan0(WB,a−B) = 1, while on the right
Swanx0(H) ≥ 1 and Swan0(πx0?L1) ≥ 0. Therefore we must have

Swanx0(H) = 1 and Swan0(πx0?L1) = 0.

Because Swan0(πx0?L1) = 0, we must have deg(πx0) := D prime to p. [Indeed, if πx0?L1 is tame,
then πx0?L1) has rank D, and, being tame, is given by

πx0?L1 = ⊕χ with χD=1.

Thus there are precisely D characters of order dividing D, hence D is prime to p.
Once we have deg(πx0) := D prime to p, repeat the rest of the n = 0 case EP argument to get a

contradiction.
Suppose now that n ≥ 1. Exactly as in the proof of Theorem 2.10, we see that deg(πx0) = ps for

some s ≥ 0. If s = 0, i.e. if deg(πx0) = 1 is prime to p, then Swanx0(H) = Swan(G) = B, and we
conclude as in the n = 0 case above.

We further see that when s ≥ 1, we have n = 1, rank(H) = 1, HI(x0) = L1, and

πx0?(HI(x0)) = πx0?(L1) = L1 ⊕ (totally wild of rank ps − 1).

But deg(πx0) divides the rank of πx0?(HI(x0)), which is 1 + (a − B) = a (because B = 1). But
p - a, so deg(πx0) cannot be ps with s ≥ 1. �

Here is an extension of Theorem 2.10 to the special case A = 1, where we (partially) drop the
hypothesis that p - (A+ a)(a−B).

Theorem 2.12. Suppose that p - ABa, f and g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) =
gcd(a, gcddeg(g)) = 1. Suppose that A = 1 and that A+ a = n0p

e with e ≥ 0 and 1 ≤ n0 < p. Then

G(f, g, a, χ) is primitive on Gm/Fp.

Proof. Because A = 1, the I(∞) representation of G(f, g, a, χ) is totally wild of rank A+ a = 1 + a,
with all slopes A/(A + a) = 1/(a + 1). By Pink’s argument [Ka-MG, Lemma 11], if this I(∞)
representation is induced, it is Kummer induced of some prime to p degree D > 1. As this D
divides the rank 1 + a, we see that D|n0, and hence D < p, Thus G(f, g, a, χ) = π?H for some lisse
H on a finite etale connected

π : U → Gm

of degree D.
On the complete nonsingular model X of U , there is a unique point x∞ lying over ∞, simply

because GI(∞) is irreducible.
Now consider the unique point x0 ∈ X over 0 for which πx0?H contains WB,a−B as I(0) repre-

sentation. The degree d0 of πx0 is ≤ D, hence is < p, hence is prime to p. Thus we have

πx0?(HI(x0)) = WB,a−B ⊕ (Q`)
n, for some n ≥ 0.
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Because d0 := deg(πx0) is prime to p, we have

Swanx0(HI(x0)) = Swan0(WB,a−B ⊕ (Q`)
n) = B.

At any other point xi lying over 0, the degree di := deg(πxi) is again ≤ D < p, hence is prime to
p. At each such point, πxi(HI(x0)) is a trivial I(0) representation. This first implies that HI(xi) is
tame, and then that both di = 1 (otherwise the Kummer direct image of any Lχ by [di] will not be

entirely trivial) and that HI(xi) is just the direct sum Q`
rank(H)

.
Now we give the EP argument. On the one hand, we have

EP(U,H) = EP(Gm,G) = −Swan0(G)− Swan∞(G) = −B −A,
while we also have

EP(U,H) = EP(U)rank(H)−
∑

xi over 0

Swanxi(H)− Swanx∞(H) =

= EP(U)rank(H)−B −A.
Comparing the two expressions for EP(U,H), we find EP (U)rank(H) = 0, and hence EP (U) = 0.
But

EP (U) = 2− 2gX −#{xi over 0} − 1,

hence 2gX = 1 − #{xi over 0}. Hence gX = 0 and there is precisely one point over 0, as well as
precisely one point over ∞. Thus in suitable coordinates U is Gm, x∞ = ∞, x0 = 0, and π is the
D’th power map. At x0 = 0, H cannot be totally wild (otherwise [D]?(H) would be totally wild at
0), so must contain some Lχ. Then [D]?(H) contains [D]?(Lχ) , which cannot be I(0)-trivial unless
D = 1 (and χ = 1). Thus D = 1, contradiction. �

Corollary 2.13. Suppose that p - ABa, f and g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) =
gcd(a, gcddeg(g)) = 1. Suppose that A = 1 and that A + a = n0p

e with 0 ≤ e ≤ 1 and 1 ≤ n0 < p.
If e = 0, suppose further that A+ a is not a power. Then G(f, g, a, χ) satisfies (S+).

Proof. Indeed, the I(∞)-representation is tensor indecomposable, cf. Lemma 3.4 later on. Further-
more, if e = 1, then D = A+ a cannot be a power. Thus in all cases, G(f, g, a, χ) cannot be tensor
induced. �

3. Elements with special spectra and tensor induction

Let V = Cd. We will say an element g ∈ GL(V ) has quasi-simple spectrum, and write g is a
qsp-element, if g is diagonalizable, and has at most one repeated eigenvalue but at least two distinct
eigenvalues.

Proposition 3.1. Let V = V1 ⊗ . . . ⊗ Vn be a tensor product of n ≥ 2 C-vector spaces each of
dimension d ≥ 2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn induces a nontrivial permutation π

on the set of n tensor factors Vi and that g has simple or quasi-simple spectrum, and finite order
on V . Then the following statements hold.

(i) Suppose d ≥ 3. Then π is either an n-cycle or a 2-cycle.
(ii) If d = 2, then π is either an n-cycle, a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle

and a 3-cycle.

Proof. Write π = σ1σ2 . . . σl as a product of disjoint cycles of non-increasing lengths

(3.1.1) k1 ≥ k2 ≥ . . . ≥ kl ≥ 1.

If l = 1, then π is an n-cycle, and we are done. Hence we will assume l ≥ 2, and so dim(V ) = dn ≥ 4.
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First we note that if g = X⊗Y is tensor decomposable, then both X and Y have simple spectra.
Indeed, if X, say of size s× s with s > 1 has only a single eigenvalue, then each of the eigenvalues
of g repeats ≥ s times, contrary to the assumption that g has a simple eigenvalue. Hence X has at
least two distinct eigenvalues α1 6= α2. Now if Y admits a multiple eigenvalue β1 = β2, then α1β1

and α2β1 are two distinct multiple eigenvalues of g, again a contradiction. Hence Y has a simple
spectrum, and similarly does X.

Suitably conjugating g in GL(V ), we may assume that

π = (1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k1 + k2) . . .
( l−1∑
i=1

k1 + 1,
l−1∑
i=1

ki + 2, . . . , n
)
.

Now we can write g = X ⊗ Y , where

X ∈ GL(V1 ⊗ V2 ⊗ . . .⊗ Vk1+...+kl−1
)

permutes the n− kl tensor factors V1, . . . , Vn−kl , inducing the permutation

(1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k1 + k2) . . .
( l−2∑
i=1

k1 + 1,

l−2∑
i=1

ki + 2, . . . , n− kl
)
,

and

Y ∈ GL(Vn−kl+1 ⊗ Vn−kl+2 ⊗ . . .⊗ Vn)

inducing the kl tensor factors cyclically.
By the previous remark, both X and Y have simple spectra, and we may rescale X and Y so that

both have finite order. Also, since π is nontrivial, we have k1 ≥ 2 and kl ≤ k1 by (3.1.1). Assume
first that d ≥ 3. Then, applying [KT8, Proposition 5.2.3], we see that k1 = 2, k2 = . . . = kl−1 = 1.
Now if kl = 1, then we arrive at (i). If kl = 2, then we must have l = 2 by (3.1.1). In this case,
the proof of [KT8, Lemma 5.2.2] shows that g has at least two distinct multiple eigenvalues on V ,
a contradiction.

Assume now that d = 2. Again applying [KT8, Proposition 5.2.3], we have that either

(a) k1 = 2 and k2 = . . . = kl−1 = 1, or
(b) k1 = 3 and k2 = . . . = kl−1 = 1, or
(c) k1 = 3, k2 = 2, and k3 = . . . = kl−1 = 1.

In the case of (a), we cannot have (l, kl) = (2, 2) again by [KT8, Lemma 5.2.2]. So kl = 1, and we
arrive at (ii).

Suppose we are in the case of (b). If kl = 1 then we arrive at (ii). If kl = 2, then l = 2 by (3.1.1),
and (ii) holds again. If kl = 3, then l = 2 by (3.1.1), and the proof of [KT8, Lemma 5.2.2] shows
that g has at least two distinct multiple eigenvalues on V (namely γδ and γδζ3 in its notation), a
contradiction.

Finally, assume we are in the case of (c). If kl = 1 then we arrive at (ii). If kl = 2, then l = 3
by (3.1.1), and the proof of [KT8, Lemma 5.2.2] shows that g has at least two distinct multiple
eigenvalues on V , again a contradiction. �

We rule out the case of n-cycle of Proposition 3.1 in a more special situation.

Proposition 3.2. Let r ≥ 2 be a prime and let V = V1⊗ . . .⊗Vr be a tensor product of r C-vector
spaces each of dimension d ≥ 2. Suppose g ∈

(
GL(V1)⊗ . . . ⊗GL(Vr)

)
o Sr induces an r-cycle on

the set of r tensor factors Vi. Assume in addition that g is conjugate to

diag
(
1, . . . , 1︸ ︷︷ ︸
t times

, α, αζ, αζ2, . . . , αζw−1
)
,
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where t ≥ 2, w ≥ 1, α ∈ C× is a root of unity, ζ = exp(2πi/w), and (α,w) 6= (1, 1). Then d = r = 2,
and either (t, w, α) = (3, 1,−1), or t = w = 2 and α = ±1.

Proof. (a) The assumptions imply that g is a qsp-element of finite order, with 1 being the only
multiple eigenvalue. Again conjugating g suitably in GL(V ), we may assume that

g : V1 7→ V2 7→ . . . 7→ Vr 7→ V1.

In particular, gr induces a semisimple element of GL(V1), and thus we can find a basis (e1
1, . . . , e

1
d)

of V1 in which gr acts as diag(x1, x2, . . . , xd) for some roots of unity xi ∈ C×. Defining eij = gi−1(e1
j )

for 2 ≤ i ≤ r and 1 ≤ j ≤ d, we see that (ei1, . . . , e
i
d) is a basis of Vi. Now arguing as in the proof of

[KT8, Proposition 5.2.1], we see that the spectrum of g can be written (counting multiplicities) as

(3.2.1) Spec (g) = {1, . . . , 1︸ ︷︷ ︸
t times

} t Z = X t Y,

where X = {x1, x2, . . . , xd}, and Y consists of (dr − d)/r r-tuples, each being all the rth roots of
some xi1xi2 . . . xir with 1 ≤ i1, i2, . . . , ir ≤ d being not all the same, and

Z := {α, αζ, αζ2, . . . , αζw−1}.
In particular, Y is stable under the multiplication by the subgroup µr of C×.

Suppose d = r = 2. Then (3.2.1) shows that

x1 + x2 = Trace(g) = t+ α

w∑
i=1

ζiw.

If w = 2, then we get t = 2 and then 2 = x1 + x2, which implies x1 = x2 = 1 for the roots of unity
x1, x2. In this case, X = {1, 1} and Y = {1,−1}, and so α = ±1. If w = 1, then we get t = 3 and
then 3 = x1 + x2 − α which implies x1 = x2 = 1 = −α for the roots of unity x1, x2, α.

(b) We will now assume (d, r) 6= (2, 2), so that

(3.2.2) (dr − d)/r ≥ 2.

In particular, Y contains at least two µr-cosets of β, γ ∈ C× (counting multiplicities).
First we show that

(3.2.3) r|w.
For suppose that r - w. Then |{β, βζr} ∩ Z| ≤ 1, and similarly |{γ, γζr} ∩ Z| ≤ 1. It follows from
(3.2.1) that at least one of β, βζr is 1, which means that the µr-coset of β is µr. Similarly, the
µr-coset of γ is µr. Thus Y contains ζr twice, and hence ζr 6= 1 is a multiple eigenvalue of g, a
contradiction.

In particular, the elements in Z sum up to zero, and so

(3.2.4) Trace(g) = t.

Next we show that the multi-set Y contains 1 at most once. Indeed, if Y contains 1 at least
twice, then since Y is µr-stable, Y contains ζr at least twice, again a contradiction.

(c) Suppose that X contains 1 at least twice. Then, without loss we may assume x1 = x2 = 1.
Now if xj 6= 1 for some j > 2, then Y contains δ at least twice for

δr = xr−1
1 xj = xr−1

2 xj 6= 1,

and thus δ 6= 1 is a multiple eigenvalue of g, a contradiction. It follows that

x1 = x2 = . . . = xd = 1,
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which means that gr acts trivially on V1 and hence gr = idV . The formula for tensor induction [GI]
and (3.2.4) then show that

t = Trace(g) = d.

Note that, in this case, Y consists of (dr − d)/r copies of µr and X contains 1 exactly d times. So
the multiplicity of 1 as an eigenvalue of g is

d+ (dr − d)/r.

But this multiplicity is at most t+ 1 = d+ 1, so we arrive at (dr − d)/r ≤ 1, contrary to (3.2.2).
We have therefore shown that X contains 1 at most once. But in (c) we showed that Y also

contains 1 at most once. On the other hand, the multiplicity of 1 in Spec (g) is at least t ≥ 2. So we
conclude that t = 2, and each of X and Y contains 1 exactly once. In such a case, the µr-invariance
of Y implies that ζr ∈ Y . Since ζr 6= 1, ζr belongs to the set Z which is µw-invariant. By (3.2.3),
Z is also µr-invariant, and hence 1 = (ζr)(ζr)

−1 belongs to Z. But then the multiplicity of 1 in
Spec (g) becomes 3, a contradiction. �

Next we will prove an auxiliary result on finite permutation groups.

Lemma 3.3. Let p be a prime, and let J = P o C be a transitive subgroup of Sn with n > 1
such that P is a transitive normal p-subgroup and C = 〈γ〉 is a cyclic p′-group. Suppose that every
element in the coset γP is either trivial, a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and
a 3-cycle. Then one of the following statements holds.

(i) p = n = |J | = |P | = 2.
(ii) p = n = |J | = |P | = 3.
(iii) p = n = 3, P = C3, and J = S3. Furthermore, γ is a 2-cycle.
(iv) n = 4, p = 2, P = C2

2 , and J = A4. Furthermore, γ is a 3-cycle.

Proof. Let ρ denote the corresponding permutation character of J . Then the transitivity of J means
that

(3.3.1)
∑
x∈J

ρ(x) = |J |.

Also, since P is transitive, we have

(3.3.2)
∑
x∈P

ρ(x) = |P |, and n = pc ≤ |P | for some c ∈ Z≥1.

(a) First consider the case J = P . Then either p = 2 and every nontrivial element x in P is a
2-cycle, in which case ρ(x) = n − 2, or p = 3 and every nontrivial element x in P is a 3-cycle, in
which case ρ(x) = n− 3. Using (3.3.2), in the former case we have

|P | =
∑
x∈P

ρ(x) = n+ (|P | − 1)(n− 2) = 2 + |P |(n− 2),

i.e. |P |(n− 3) = −2. As |P | ≥ 2, we must have that n = 2 and hence |P | = 2, as stated in (i). In
the latter case we have

|P | =
∑
x∈P

ρ(x) = n+ (|P | − 1)(n− 3) = 3 + |P |(n− 3),

i.e. |P |(n− 4) = −3. As |P | ≥ 3, we conclude that n = 3 and hence |P | = 3, as stated in (ii).
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(b) From now on we will assume that J > P , i.e. γ /∈ P . By assumption, ρ(x) ≥ n − 5 for all
x ∈ γP ; furthermore, x6 = 1, so J/P ↪→ C6. It follows from (3.3.1) and (3.3.2) that

(3.3.3) 6|P | ≥ |J | =
∑
x∈J

ρ(x) =
∑
x∈P

ρ(x) +
∑
x∈γP

ρ(x) ≥ (n− 4)|P |,

whence pc = n ≤ 10.
Assume in addition that p ≥ 5. Then in fact we have n = p ∈ {5, 7} and hence P ∼= Cp. Now

NSp(P ) = P o 〈σ〉,

where σ is a (p− 1)-cycle; in particular, any 1 6= σi has a unique fixed point. As P C J and γ /∈ P ,
we have 1 6= σj ∈ γP for some j ∈ Z. Thus σi is either a 2-cycle, a 3-cycle, or a disjoint product of
a 2-cycle and a 3-cycle, none of which can have exactly one fixed point.

Now we consider the case p = 3. As γ 6= 1 is a 3′-element, it must be a 2-cycle, and thus γ2 = 1.
It follows that J/P = C2, so instead of (3.3.3) we now have

2|P | = |J | =
∑
x∈J

ρ(x) =
∑
x∈P

ρ(x) +
∑
x∈γP

ρ(x) ≥ (n− 4)|P |.

Thus 3c = n ≤ 6. It follows that n = 3, P = C3 and J = S3 as J > P , and we arrive at (iii).
Finally, let p = 2. As γ 6= 1 is a 2′-element, it must be a 3-cycle, and thus γ3 = 1. It follows that

J/P = C3. Furthermore, any element x ∈ J belongs to γP if and only if x−1 ∈ γ−1P , and so we
also have ρ(y) ≥ n− 5 for all y ∈ γ−1P . So instead of (3.3.3) we now have

3|P | = |J | =
∑
x∈J

ρ(x) =
∑
x∈P

ρ(x) +
∑
x∈γP

ρ(x) +
∑

x∈γ−1P

ρ(x) ≥ (2n− 9)|P |.

Thus 2c = n ≤ 6. The case n = 2 is impossible since J > P ≥ C2. So n = 4. Since the subgroup
P of a Sylow 2-subgroup of S4, which is dihedral of order 8, is normalized by the 3-cycle γ, we
conclude that P ∼= C2

2 and so J = A4, as stated in (iv). �

Now we establish some basic lemmas about tensor indecomposability and lack of tensor induction
for I(∞) of `-adic local systems.

Lemma 3.4. Let F be an irreducible I(∞)-representation of rank D ≥ 2 all of whose slopes are
N/D with N ≥ 1 and gcd(N,D) = 1. Suppose further that p2 - D. Then F is tensor indecomposable.

Proof. By (the I(∞)-version of) [KT5, 2.2], if F is tensor decomposable, we can write it as A⊗ B
where both A,B are I(∞)-representations of dimensions ≥ 2. Because p2 - D, at least one of A,B
has dimension prime to p, say A has dimension prime to p. By the argument proving [KT5, 2.2(ii)],
we may do so in such a way that A has Ggeom ≤ SLdim(A), and then infer that both A,B have all
slopes ≤ N/D. Each of A,B is irreducible (otherwise their tensor product is reducible). Let λ be
the unique slope of A (unique because A is I(∞)-irreducible). Then for d := dim(A), dλ ∈ Z. This
integrality shows that λ < N/D; indeed, if λ = N/D, then dN/D ∈ Z with d < D, impossible
because gcd(N,D) = 1. Similarly, B has unique slope µ < N/D, and hence A ⊗ B has slopes
≤ sup(λ, µ) < N/D, contradiction. �

Lemma 3.5. Let F be an I(∞)-representation of rank D ≥ 2 all of whose slopes are N/D with
N ≥ 1 and gcd(N,D) = 1. Then F is I(∞)-irreducible.

Proof. Indeed, any nonzero irreducible subrepresentation V has all slopes N/D, and the product
dim(V )×N/D ∈ Z, impossible if dim(V ) < D. �

Combining Lemmas 3.4 and 3.5, we get the following corollary.
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Corollary 3.6. Suppose gcd(a,A) = 1 and p2 - D := A + a. Then G(f, g, a, χ) is both I(∞)-
irreducible and I(∞)-tensor indecomposable.

Proof. Here the I(∞)-slopes are A/(A+ a) with gcd(A, a+A) = 1. �

Lemma 3.7. Let F be an irreducible I(∞)-representation of rank D ≥ 2 all of whose slopes are
N/D with N ≥ 1 and gcd(N,D) = 1. Suppose further that p2 - D. Suppose that D = dn with n ≥ 2,
n < p, and gcd(n,D) = 1. Then F is not n-tensor induced.

Proof. If F were n-tensor induced, the map I(∞) 7→ Sn, giving the action on the tensor factors,
is trivial on P (∞), simply because P (∞) is a pro-p group while Sn for n < p has order prime to
p. So the image of I(∞), is a cyclic subgroup of Sn, generated by the image π of a chosen element
γ ∈ I(∞) which generates I(∞)/P (∞). We first claim that π is an n-cycle. For if not, write it
as a product of disjoint cycles to see that γ preserves a tensor decomposition, and (hence) that
every power of γ, times any element of P (∞), preserves this same tensor decomposition. Thus the
entire group I(∞) preserves this tensor decomposition. By Lemma 3.4, this contradicts the tensor
indecomposablity of F . Once γ induces an n-cycle, γ (and then the entire group I(∞) preserves the
tensor decomposition of the Kummer pullback [n]?F . But this Kummer pullback [n]?F has rank D
and all slopes nN/D, so is irreducible when gcd(n,D) = 1 (because then gcd(nN,D) = 1), hence
is tensor indecomposable, the desired contradiction. �

Lemma 3.8. Suppose F is an I(∞)-representation of the form T ⊕W , with T tame of rank t ≥ 1
and with W irreducible of rank w ≥ 1 with all slopes m/w with m ≥ 1 and gcd(m,w) = 1. Suppose
further that t + w 6= 4. Suppose that D := t + w, the rank of F , is a power D = dn with n ≥ 2,
n < p, and gcd(n,w) = 1. Then F is not n-tensor induced.

Proof. By [KRLT3, 10.4], F is tensor indecomposable. If it were n-tensor induced, then precisely
as in the proof of Lemma 3.7, the image of γ must be an n-cycle. Then [n]?F is tensor decomposed.
But [n]?F = [n]?T ⊕ [n]?W . Here [n]?T is tame of the same rank t,and [n]?W has rank w and
all slopes nm/w. Then [n]?W is irreducible by Lemma 3.5, and by [KRLT3, 10.4], [n]?F is tensor
indecomposable, the desired contradiction. �

Lemma 3.9. (Compare to [KT5, 3.2].) Suppose A, a ≥ 1, and F an I(∞)-representation of rank
D := A+ a all of whose slopes are A/(A+ a). Suppose that F is tensor indecomposable over I(∞).
Suppose that F is n-tensor induced for some n ≥ 2. Consider the map φ : I(∞) → Sn giving the
action on the tensor factors. If (n− 2)A < a, then φ is trivial on P (∞), and the image of φ is the
cyclic group generated by an n-cycle. Moreover, n is prime to p.

Proof. To show that φ is trivial on P (∞), view Sn ≤ On−1 by the deleted permutation representa-
tion. It suffices to show that φ : I(∞)→ On−1 has Swan∞ < 1. Note that

Swan∞ ≤ (n− 1)(the largest slope of F) = (n− 1)A/(A+ a).

Thus Swan∞ < 1 is the condition

(n− 1)A < A+ a, i.e., (n− 2)A < a.

Let γ ∈ I(∞) be a generator of I(∞)/P (∞). Then the image of φ is the cyclic subgroup of
Sn generated by φ(γ). If φ(γ) were not an n-cycle, it (and every power of it, and hence every
element of I(∞)) would preserve some given tensor decomposition of F , contradicting the tensor
indecomposablility of F over I(∞). Because I(∞)/P (∞) has (pro) order prime to p, its image
under φ has order prime to p. �

Remark 3.10. In the above Lemma 3.9, the condition (n− 2)A < a is always satisfied for n = 2.
For the extreme case A = 1, the condition is n < a + 2, which is satisfied by all n ≥ 2. Indeed, if
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n ≥ a + 2 > a + 1, while a + 1 = D = dn, then n > dn, which is false for all n ≥ 1 and all d ≥ 2:
worst case being d = 2, for which 2n ≥ n + 1. If in this A = 1 case we also had both p2 - (a + 1)
and gcd(n, 1 + a) = 1 whenever 1 + a = dn, then we would rule out F being tensor induced. [But
already for n = 2, we have a problem with a odd and 1 + a is a square (i.e., when a = 4k2 − 1, any
k ≥ 1.]

Theorem 3.11. Suppose p - ABa, f , g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) = 1,
gcd(a, gcddeg(g)) = 1. Suppose that G = G(f, g, a, χ) is n-tensor induced as a representation of

π1(Gm/Fp) for some n ≥ 2. Assume in addition that p - w = a− B and D = a+ A > 4. Then all
the following conditions hold.

(i) Either n = p = 3 or (D,n, p) = (16, 4, 2).
(ii) G is tensor decomposable over I(∞).

(iii) If in addition gcd(a,A) = 1, then pn|D.

Proof. By assumption, G = Ggeom stabilizes a tensor induced decomposition V = V1⊗V2⊗ . . .⊗Vn
of the underlying representation V , with d := dim(Vi) and D = dn. Let π : G → Sn denote the
permutation representation of G while acting on the n tensor factors of V . By Proposition 2.8, G is
tensor indecomposable over I(0), hence π(I(0)) is a transitive subgroup of Sn. Furthermore, since
D > 4, we must have w > 1 by Proposition 2.9(b).

Fix a p′-generator γ of I(0) over P (0), and write π(I(0)) = J = P o C, where P = π(P (0)) and
C = 〈π(γ)〉. By Lemma 2.1, the condition p - w implies that the action of γ on V has spectrum

(3.11.1) diag
(
1, . . . , 1︸ ︷︷ ︸
t times

, α, αζ, αζ2, . . . , αζw−1
)
,

where t = A+B ≥ 2, w = a−B ≥ 1, α ∈ C× is a root of unity, ζ = exp(2πi/w). As w > 1, γ|V is
a qsp-element. In fact, this also holds for any element in the coset γP (0) for the same reason.

Since J ≤ Sn is transitive and P C J , P acts on the set {V1, V2, . . . , Vn} with e ≥ 1 orbits
Ω1, . . . ,Ωe, all of length n/e and permuted cyclically by π(γ). Suppose that e > 1. Letting Uj be
the tensor product of the Vi in Ωj for 1 ≤ j ≤ e, we see that γ permutes the e tensor factors of the
decomposition V = U1 ⊗ U2 ⊗ . . .⊗ Ue cyclically, say

U1 7→ U2 7→ U3 7→ . . . 7→ Ue 7→ U1.

Choosing a prime divisor r of e, we see that γ permutes the r sets

∆j := {Ui | 1 ≤ i ≤ r, i ≡ j (mod r)}, 1 ≤ j ≤ r

cyclically. Letting Wj be the tensor product of the Ui in ∆j , 1 ≤ j ≤ r, we now have that the element
γ with spectrum (3.11.1) permutes the r tensor factors of the decomposition V = W1⊗W2⊗. . .⊗Wr

cyclically. But this is impossible by Proposition 3.2 and the assumption that D > 4.
Thus P ≤ Sn is a transitive subgroup; in particular, n = pc for some c ≥ 1. By Proposition 3.2

applied to any γ′ ∈ γP (0), π(γ′) cannot be an n-cycle (because D > 4). Applying Proposition 3.1
to γ′, we see that any element in the coset π(γ)P is either trivial, a 2-cycle, a 3-cycle, or a disjoint
product of a 2-cycle and a 3-cycle. Hence we can apply Lemma 3.3 to J .

In the cases of 3.3(i) or 3.3(ii), π(γ)P = P , and so some element γ1 ∈ γP (0) has π(γ1) being an
n-cycle, a contradiction. Thus we are in the case of 3.3(iii), whence n = p = 3, or of 3.3(iv), whence
(n, p) = (4, 2). Observe that in the latter case D = 16. Indeed, in this case π(γ) is a 3-cycle, so we
may write the action of γ as X ⊗ Y , where X ∈ GL(V1 ⊗ V2 ⊗ V3) permutes V1, V2, V3 cyclically,
and Y ∈ GL(V4). By the proof of Proposition 3.1, X has simple spectrum. Applying Proposition
3.1 to X, we see that d = 2 and hence D = 16. Thus we have proved (i).
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In these two remaining cases, we now show that

(3.11.2) a > (n− 2)A.

Assume we are in the case of 3.3(iii), so that π(γ) is a 2-cycle and D = d3. Since γ|V has finite
order and flips, say, V1 and V2, the formula for tensor induction [GI] shows that

|Trace(γ|V )| ≤ d2 ≤ D/2.
Now, (3.11.1) implies that Trace(γ|V ) = t, whence t+ w = D ≥ 2t, and so

a−B = w ≥ t = A+B,

implying (3.11.2).
Next suppose we are in the case of 3.3(iv), so that π(γ) is a 3-cycle and D = d4 = 16. Since γ|V

has finite order and permutes, say, V1, V2, and V3, cyclically, the formula for tensor induction [GI]
shows that

|Trace(γ|V )| ≤ d2 = D/4.

Now, (3.11.1) implies that Trace(γ|V ) = t, whence t+ w = D ≥ 4t, and so

a−B = w ≥ 3t = 3A+ 3B,

implying (3.11.2).
Thus we have proved (3.11.2). Now, if G is tensor indecomposable over I(∞), then the equality

n = p contradicts Lemma 3.9. So G is tensor decomposable over I(∞), proving (ii).
Assume in addition that gcd(a,A) = 1. Then the tensor decomposability over I(∞) of G implies

by Lemma 3.4 that p|D. But D = dn, so pn|D, establishing (iii). �

Corollary 3.12. Suppose p - ABa, f , g are both Artin-Schreier reduced, and gcd(a, gcddeg(f)) = 1,
gcd(a, gcddeg(g)) = 1. Suppose in addition that p - w = a − B and D = a + A > 4. If G(f, g, a, χ)

is primitive (e.g., by Theorem 2.10), then it satisfies (S+) if either p ≥ 5 or if p2 - D.

Remark 3.13. In cases when p|w, there are other ways to prove (S+). We can sometimes apply
Theorems 2.11 or 2.12 to prove primitivity, and we can sometimes apply Propositions 2.8 and 2.9
to prove the absence of tensor induction.
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[Such] Šuch, O., Monodromy of Airy and Kloosterman sheaves, Duke Math. J. 103 (2000), 397–444.



24 NICHOLAS M. KATZ AND PHAM HUU TIEP

[Wales] Wales, D., Quasiprimitive linear groups with quadratic elements, J. Algebra 245 (2001), 584–606.

[Zal] Zalesskii, A. E., Linear groups, Russian Math. Surveys 36 (1981), 63–128.

Department of Mathematics, Princeton University, Princeton, NJ 08544
E-mail address: nmk@math.princeton.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854
E-mail address: tiep@math.rutgers.edu


	1. Introduction
	2. Basic facts about G(f,g,a,)
	3. Elements with special spectra and tensor induction
	References

