
CONDITION (S+) IN RANKS 4, 8, AND 9

NICHOLAS M. KATZ AND PHAM HUU TIEP

Abstract. Condition (S+), introduced in [KT5], plays a key role in the study of Kloosterman
and hypergeometric l-adic local systems in positive characteristic p. Prior results of [KT5], [KT8]
establish (S+) for primitive Kloosterman and hypergeometric sheaves, except possibly in ranks 4,
8, and 9. In this paper we study (S+) in these remaining ranks, and completely determine when
(S+) does or does not hold.

1. Introduction

We work over an algebraically closed field C of characteristic zero, which we will take to be
Q` for a suitable prime `. Given a nonzero finite-dimensional C-vector space V , a group Γ and a
representation Φ : Γ → GL(V ), we say that the pair (Γ, V ) satisfies condition (S+) if each of the
following five conditions is satisfied.

(i) The Γ-module V is irreducible.
(ii) The Γ-module V is primitive.

(iii) The Γ-module V is tensor indecomposable.
(iv) The Γ-module V is not tensor induced.
(v) The determinant det(Γ|V ) is finite.

One knows [KT5, Lemma 1.6] that (Γ, V ) satisfies condition (S+) if and only if for G the Zariski
closure of Φ(Γ) in GL(V ), the pair (G,V ) satisfies condition (S+). Condition (S+) is a slightly
strengthening of condition (S) introduced in [GT2], and roughly speaking, corresponds to As-
chbacher’s class S of maximal subgroups of classical groups [Asch].

The importance of condition (S+) is this, cf. [KT5, Lemma 1.1].

Lemma 1.1. Suppose G ≤ GL(V ) is a Zariski closed subgroup, dim(V ) > 1, and (G,V ) satisfies
condition (S+). Then we have three possibiliites:

(a) The identity component G◦ is a simple algebraic group, and V |G◦ is irreducible.
(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such

that S CG/Z(G) < Aut(S).
(c) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is, dim(V ) = rn

for a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is an extraspecial
r-group E of order r1+2n acting irreducibly on V , and either R = E or Z(R) ∼= C4.

The application to hypergeometric sheaves is this. In a given characteristic p, we are given
a prime ` 6= p and a (geometrically irreducible) Q`-hypergeometric sheaf H of type (D,m) with
D > m ≥ 0 on Gm/Fp, definable over some finite extension k/Fp. We view H as a representation

π1(Gm/Fp) → GLD(Q`). If this pair satisfies condition (S+), we say that H satisfies condition
(S+).
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In previous papers [KT5] and [KT8], we showed that all primitive H of rank D > 1 satisfy
condition (S+) with the possible exception of ranks 4, 8, 9. This paper gives the complete
analysis of these exceptional cases. The inverse problem of which of the pairs (G,V ) satisfying
(S+) can actually occur as geometric monodromy groups of `-adic hypergeometric sheaves is the
subject of several recent papers, see e.g. [KRLT3], [KRLT4], [KT1], [KT2], [KT3], [KT4], [KT5],
[KT6], [KT7], [KT8], [Lee].

As defined above, the notion of (S+) for a geometrically irreducible hypergeometric sheaf H
requires, in addition to being tensor indecomposable and not tensor induced, being primitive. By
[KT5, 2.3], Kloosterman sheaves of any rank are tensor indecomposable; their being primitive or
not is irrelevant. By [KRLT3, 10.4]), hypergeometric sheaves of any type (D,m) with D > m > 0
and D 6= 4 are tensor indecomposable; their being primitive or not is irrelevant. [For D = 4, tensor
indecomposability is more complicated, and can fail.] Whether or not a given hypergeometric sheaf
is primitive can be visibly determined by its shape, see [KRLT3, Proposition 1.2].

The main result of the paper is summarized in the table below, in which we consider only
primitive hypergeometric sheaves of a given type (D,m) in a given characteristic p. We specify for
each listed type and characteristic whether all are (S+), or whether there exist some which, despite
being primitive, are not (S+).

type (D,m) all are (S+) in characteristic some are not (S+) in characteristic
(4, 0) p = 2 p > 2
(4, 1) p > 2 p = 2
(4, 2) p = 2 p > 2
(4, 3) p > 2 p = 2
(8, 0) p > 2 p = 2
(8, 1) all p
(8, 2) p = 2, 3 p ≥ 5
(8, 3) all p
(8, 4) all p
(8, 5) all p
(8, 6) all p
(8, 7) all p
(9, 0) all p
(9, 1) p 6= 3 p = 3
(9, 2) all p
(9, 3) p = 2, 3 p ≥ 5
(9, 4) all p
(9, 5) all p
(9, 6) all p
(9, 7) all p
(9, 8) all p

Table 1. (S+) for primitive hypergeometric sheaves in ranks 4, 8, 9

2. Review of known results in rank 4

Lemma 2.1. In characteristic p = 2, any primitive Kloosterman sheaf Kl of rank 4 has (S+).
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Proof. By [KT5, proof of 2.3], all Kloosterman sheaves are tensor indecomposable for I(∞). Suppose
Kl is 2-tensor induced. Then the map of I(∞) to S2 is trivial on P (∞) (because w = 4 ≥ 2), while
the group I(∞)/P (∞) has odd pro-order. So Kl is tensor decomposable for I(∞), contradiction. �

Lemma 2.2. In odd characteristic p, there exist primitive Kloosterman sheaves Kl of rank 4 which
are tensor induced. More precisely, choose a character χ of order r ≥ 5, p - r. Then the (primitive)
Kloosterman sheaf

Klψ(χ, χ,1, χquad)

is 2-tensor induced.

Proof. This is an instance of [Ka-CC, 6.3]. �

Lemma 2.3. In characteristic p = 2, there exist primitive hypergeometric sheaves H of type (4, 1)
which are tensor decomposable. More precisely, choose two odd primes r, s, a character χ of order
r and a character ρ of order s. Then the (primitive) hypergeometric sheaf

Hypψ(χρ, χρ, χρ, χρ : 1)

is tensor decomposable.

Proof. This is an instance of [Ka-CC, 5.2]. �

Lemma 2.4. In odd characteristic p, every hypergeometric sheaf of type (4, 1) has (S+).

Proof. By [KRLT3, 10.4], any such H is tensor decomposable on I(∞). If it were 2-tensor induced,
the map of I(∞) to S2 would be trivial on P (∞). The image of a generator of I(∞)/P (∞) is a
three cycle (if it were trivial, H would be tensor decomposed for I(∞)). Then [2]?H would be tensor
decomposable for I(∞). But [2]?WildH is totally wild and I(∞)-irreducible (all its slopes are 2/3),
contradicting [KRLT3, 10.4]. �

Lemma 2.5. In characteristic p = 2, every hypergeometric sheaf H of type (4, 2) has (S+).

Proof. This is an instance of [KT5, 3.3]. �

Lemma 2.6. In any odd characteristic p, there are primitive hypergeometric sheaves H of type (4, 2)
which are 2-tensor induced. More precisely, choose two odd primes r, s, p - rs. Choose characters
α of order r and β of order s. Then the (primitve) hypergeometric sheaf

Hypψ(α, β, both square roots of αβ : 1, αβ)

is 2-tensor induced.

Proof. This is an instance of [Ka-CC, 6.5]. �

Lemma 2.7. In characteristic p = 2, there exist primitive hypergeometric sheaves H of type (4, 3)
which are not (S+).

Proof. Consider the (primitive) hypergeometric sheaf Hypψ(Char(5) r {1};1,1,1). By [Ka-ESDE,
8.8.1 and 8.8.2], it is orthogonally self-dual. Its Ggeom is not finite, because its “downstairs” char-
acters, all 1, are not pairwise distinct. By [KT8, 4.1.5], it follows that G◦geom = SO(4). Therefore
H cannot be (S+), because its G◦geom is not a simple algebraic group. �

Lemma 2.8. In characteristic p = 3, primitive hypergeometric sheaves H of type (4, 3) satisfy
(S+).
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Proof. Since p = 3 and w = 1, the image Q of P (∞) in G := Ggeom of H is generated by a single
element h which is a complex reflection of order 3. If G0 denotes the normal closure of Q in G, then
G/G0 is cyclic of order coprime to 3 by [KT5, Theorem 4.7].

First we show that G0 is irreducible in the underlying representation V . As G0CG, G permutes
the m isotypic components of V |G0 . But G is assumed to be primitive, so m = 1. This means
that if ϕ0 is an irreducible constituent of the character of the representation V |G0 , then ϕ0 is G-
invariant. But G/G0 is cyclic, so ϕ0 extends to an irreducible character θ of G. As ϕ lies above ϕ0,
by Gallagher’s theorem [Is, (6.17)], ϕ = θλ for some irreducible character λ of G/G0. In this case,
λ(1) = 1 and ϕ|G0 = θG0 = ϕ0, which means G0 is irreducible.

Suppose that G0 is an irreducible, but imprimitive subgroup of GL(V ) that is generated by
complex reflections of order 3. Such a group, by [ST], has index r for some r ∈ Z≥1 in Cm o S4 for
some m ∈ Z≥1 divisible by 3r: G0 = Ao S4, where

A =

{
diag(εa1 , . . . , εa4) | ai ∈ Z, r|

4∑
i=1

ai

}
,

ε ∈ C× has order m, and S4 consists of permutational 4×4-matrices. The group G0 contains exactly
38 complex reflections of order 3, each conjugate in G0 to diag(εm/3, 1, 1, 1) or diag(ε−m/3, 1, 1, 1).
All these elements are contained in the normal subgroup A of G0, so they do not generate G0, a
contradiction.

The remaining possibility is that G0 is irreducible and primitive. Then the classification theorem
of [ST] implies that the primitive complex reflection group G0 in dimension 4 must be 3 × Sp4(3)
in one of its 4-dimensional reflection representations, for which it is easy to verify (S+) for G0 and
hence for G as well. �

Lemma 2.9. In characteristic p ≥ 5, all primitive hypergeometric sheaves H of type (4, 3) have
(S+).

Proof. This is [KT8, 4.1.1]. �

3. previously known cases of tensor induction in ranks 8 and 9

Lemma 3.1. In characteristic p ≥ 5, there exist hypergeometric sheaves of type (8, 2) which are
3-tensor induced. More precisely, the tensor induction

[3]⊗?Klψ(Char(3) r Char(1))

is geometrically isomorphic to a multiplicative translate of

Hypψ(Char(9) r Char(1);Char(4) r Char(2)).

Proof. This is the special case of [Ka-ESDE, 10.6.11] with its χ1, χ2 taken to be the the two char-
acters of order 3. �

Lemma 3.2. In characteristic p ≥ 5, there exist hypergeometric sheaves of type (9, 3) which are
2-tensor induced. More precisely, choose a prime r ≥ 7, r 6= p, and a character χ of order r. Then
the tensor induction

[2]⊗?Klψ(χ, χ2, χ−3)

is geometrically isomorphic to a multiplicative translate of

Hypψ(χ, χ2, χ−3,both square roots of each of χ3, χ−2, χ−1;Char(3)).

Proof. This is the special case of [Ka-ESDE, 10.6.9] with its χ1, χ2, χ3 taken to be the the three
characters χ, χ2, χ−3. �
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Remark 3.3. In both Lemmas 3.1 and 3.2, the indicated examples of tensor induced sheaves can
be checked to be primitive.

4. Kloosterman sheaves of rank 8 in characteristic p = 2

In Lemma 3.1, the “downstairs” characters are the two characters of order 4, which make no
sense in characteristic p = 2. So we simply erase them.

Theorem 4.1. In characteristic p = 2, the Kloosterman sheaf Klψ(Char(9) r Char(1)) is 3-tensor
induced. More precisely, the tensor induction

[3]⊗?Klψ(Char(3) r Char(1))

is geometrically isomorphic to

Klψ(Char(9) r Char(1)).

Proof. The argument is not conceptual, but rather by means of a Magma calculation. First we recall
from [KRLT2, Lemma 1.2] some descent results.The sheaf Klψ(Char(3) r Char(1)) has a descent to
Gm/F4, given by the pure of weight zero lisse sheaf A whose trace function is given as follows: for
k/F4 a finite extension, and t ∈ k×,

Trace(Frobt,k|A) = (−1/2deg(k/F4)
∑
x∈k

ψk(x
3/t+ x).

Let us denote

A(t, k) := Trace(Frobt,k|A).

The sheaf Klψ(Char(9) r Char(1)) has a descent to Gm/F4, given by the pure of weight zero lisse
sheaf B whose trace function is given as follows: for k/F4 a finite extension, and t ∈ k×,

Trace(Frobt,k|B) = (−1/2deg(k/F4)
∑
x∈k

ψk(x
9/t+ x).

Let us denote

B(t, k) := Trace(Frobt,k|B).

[In both cases, we consider these descents to live on Gm/F4 rather than on Gm/F2 in order both
to have integer traces and to be pure of weight zero.]

It suffices to show that the Kummer pullback [3]?(B) and the triple tensor product

C :=
⊗
ζ∈µ3

[t 7→ ζt]?(A)

are are geometrically isomorphic. Indeed, once we have this, we argue as follows. The tensor
induction [3]⊗?A is a descent through ]3] of sC, , cf, [Ka-ESDE, 10.3.5]. Because B has all slopes
1/8, its pullback [3]?(B) has all slopes 3/8, so is geometrically irreducible (indeed I(∞)irreducible).
Therefore C is geometrically irreducible. A fortiori, its descent [3]⊗?A is geometrically irreducible.
Thus both B and [3]⊗?A are geometrically irreducible, and their [3]? pullbacks are geometrically
isomorphic. Therefore for some Kummer sheaf Lρ with ρ3 = 1, we have a geometric isomorphism of
[3]⊗?A with Lρ⊗B. By [Ka-ESDE, 10.6.9], the I(0)-representation of [3]⊗?A is precisely Char(9)r
Char(1). Since B itself has Char(9) r Char(1) as its I(0)-representation, then both B and Lρ ⊗ B
have this I(0)-representation, and hence ρ = 1.

We now prove that [3]?(B) and C are geometrically isomorphic. Because [3]?(B) is geometrically
irreducible and of the same rank (8) as C, it suffices to show there is a nonzero hom (as local
systems on Gm/F4 from [3]?(B) to C; any such map is an isomorphism. Up to scalars there is at
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most one isomorphism, as the “ratio” of two is an automorphism of [3]?(B); as [3]?(B) is geometrcally
irreducible, its only endomorphisms are scalars. Thus the hom group

H2
c (Gm/F4, [3]?(B)∨ ⊗ C)

either vanishes, or has dimenion one. As B is self-dual [Ka-ESDE, 8.8.1], this hom group is also

H2
c (Gm/F4, [3]?(B)⊗ C).

We next calculate the Euler-Poincaré characteristic of [3]?(B)⊗C. The first factor [3]?(B) has all
slopes 3/8. The second factor has all slopes ≤ 1/2, simply because A and each of its multiplicative
translates has all slopes 1/2. Therefore [3]?(B) ⊗ C has all slopes ≤ 1/2, and rank 64. Thus
Swan∞([3]?(B)⊗C) ≤ 32 (and [3]?(B)⊗C) is tame at 0). For any lisse sheaf F on Gm which is tame
at 0, the Euler-Poincaré formula gives

h1c(Gm/F4,F)− h2c(Gm/F4,F) = Swan∞(F),

So either

h2c(Gm/F4, [3]?(B)⊗ C) = 1 and h1c(Gm/F4, [3]?(B)⊗ C) ≤ 33,

or

h2c(Gm/F4, [3]?(B)⊗ C) = 0 and h1c(Gm/F4, [3]?(B)⊗ C) ≤ 32.

We next calculate the Euler-Poincaré characteristic of [3]?(B) ⊗ [3]?(B)∨. Here all slopes are
≤ 3/8, so Swan∞([3]?(B) ⊗ [3]?(B)∨) ≤ 64 × (3/8) = 24. Here the h2c = 1, and for any finite
extension Fq/F4, the eigenvalue of FrobFq on this H2

c is q. Thus h1c ≤ 25. By Deligne’s fundamental

result [De, 3.3.1], the H1
c is mixed of weight ≤ 1. So by the Lefschetz trace formula, for any finite

extension Fq/F4, the estimate∣∣∣q −∑
t∈F×

q

(Trace(Frobt,Fq |[3]?(B)))2
∣∣∣ ≤ 25

√
q.

Suppose now that [3]?(B) and C are not geometrically isomorphic. We obtain a contradiction as
follows. The H2

c of [3]?(B)⊗ C vanishes, and for any finite extension Fq/F4 we have the estimate∣∣∣∑
t∈F×

q

Trace(Frobt,Fq |[3]?(B))Trace(Frobt,Fq |C)
∣∣∣ ≤ 32

√
q.

A Magma calculation shows that [3]?(B) and C have the same traces at all points of Gm(F46).
Thus the sum ∑

t∈F×
46

Trace(Frobt,F46
|[3]?(B))Trace(Frobt,Fq |C)

ie equal to the sum ∑
t∈F×

46

Trace(Frobt,F46
|[3]?(B))2.

This first sum has absolute value ≤ 32∗26 = 2048, while the second sum is within 25×26 = 1600 of
q = 46 = 4048. So the first sum is at most 2048, while the second sum is at least 2448, the desired
contradiction. �

Remark 4.2. In any characteristic p 6= 3, the Kloosterman sheafKlψ(Char(9)rChar(1)) is primitive.
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5. Hypergeometric sheaves of type (9, 1) in characteristic p = 3

In Lemma 3.2, the “downstairs” characters are Char(3), of which only 1 makes sense in charac-
teristic p = 3. So we erase the others.

Theorem 5.1. In characteristic p = 3, pick an prime r ≥ 7, and fix a character χ of order r. Then
either the hypergeometric sheaf

Hypψ(χ, χ2, χ−3, both square roots of each of χ3, χ−2, χ−1;1)

or the hypergeometric sheaf

Hypψ(χ, χ2, χ−3, both square roots of each of χ3, χ−2, χ−1;χquad)

with χquad the quadratic chacter, is 2-tensor induced. More precisely, a multiplicative translate of
one of them is the tensor induction

[2]⊗?Klψ(χ, χ2, χ−3).

Proof. All Kloosterman sheavesKlψ(ρ1, ρ2, ρ3) with ρ1ρ2ρ3 = 1 have isomorphic I(∞)-representations,
cf. [Ka-ESDE, 8.6.4], call it Wild3. Because p = 3, Wild3 is P (∞)-irreducible. The dual of
Klψ(ρ1, ρ2, ρ3) isKlψ(ρ1, ρ2, ρ3), which is in turn geometrically isomorphic to [t 7→ −t]?Klψ(ρ1, ρ2, ρ3).

Looking at the I(∞)-representations, we find an isomorphism

Wild∨3
∼= [t 7→ −t]?Wild3.

Let us denote

A := Klψ(χ, χ2, χ−3), C := Klψ(χ, χ2, χ−3)⊗ [t 7→ −t]?Klψ(χ, χ2, χ−3),

and

B := Hypψ(χ, χ2, χ−3, both square roots of each of χ3, χ−2, χ−1;1).

By [Ka-ESDE, 10.6.5(2(1)], [2]⊗?A and B have the same I(0)-representations as each other.
What about their I(∞)-representations? By [Ka-ESDE, 10.3.5], the I(∞)-representation of

C = [2]?[2]⊗?(A) is

Wild3 ⊗ [t 7→ −t]Wild3 ∼= Wild3 ⊗Wild∨3 = 1⊕ End0(Wild3).

Because Wild3 is P (∞)-irreducible, the space of P (∞)-invariants in Wild3⊗Wild∨3 is one-dimensional.
Thus End0(Wild3) is totally wild. The slopes of End0(Wild3) are ≤ 1/3, and its rank is 8. By the
integrality of Swan conductors, we have Swan∞(End0(Wild3)) ≤ 2. Recalling that

Swan∞([2]?[2]⊗?(A)) = Swan∞(1⊕ End0(Wild3)) = Swan∞(End0(Wild3)),

Thus the I(∞)-representation of [2]?[2]⊗?(A) is the direct sum of a totally wild part of rank 8, with
1. Therefore the I(∞)-representation of [2]⊗?(A) is the direct sum of a totally wild part of rank 8,
and either 1 or χquad. Thus Swan∞([2]⊗?(A) ≥ 1, while Swan∞([2]?[2]⊗?(A)) ≤ 2. Therefore

Swan∞([2]⊗?(A) = 1, Swan∞([2]?[2]⊗?(A)) = 2.

Thus the semisimplification of [2]⊗?(A) is either the direct sum of a Kloosterman sheaf of rank
8 with one of 1, χquad, or it is a multiplicative translate of one of the asserted hypergeometrics.
As neither 1 nor χquad is among the characters occurring in the I(0)-representation of [2]⊗?(A), it
must be the latter. �

Remark 5.2. In Theorem 5.1, each of the specified local systems of type (9, 1) can be checked to
be primitive.
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6. The case p = 2

Theorem 6.1. In characteristic p = 2, no primitive, geometrically irreducible hypergeometric sheaf
H of type (8,m) with 8 > m > 0 is tensor induced. In the case (8,m) with 6 ≥ m > 0, primitivity
is not needed.

Proof. Consider first the case (8, 7). If Ggeom is infinite, we are done by [KT8, 4.1.5]. Suppose
Ggeom is finite and primitive. Since p = 2 and w = 1, the image Q of P (∞) in Ggeom is generated
by a single element h which is a (true) reflection; let G0 denote the normal closure of Q in Ggeom.
Then Ggeom/G0 is cyclic of odd order by [KT5, Theorem 4.7]. Moreover, as shown in the proof of
[KT8, Theorem 4.2.3], G0 is either S9 in its deleted permutation representation, or it is the Weyl
group W (E8) in its reflection representation. In both of these cases, one know that (S+) holds.

Indeed, the quasisimple subgroup G
(∞)
0 (which is either A9 or 2 · Ω+

8 (2)) acts irreducibly in the
representation in question, but has no proper subgroup of index ≤ 8 and no nontrivial irreducible

projective representation of degree < 8, see [Atlas], and hence (S+) already holds for G
(∞)
0 .

Consider next the case of an H of type (8,m) with 6 ≥ m > 0, and the map of Ggeom to S3
arising if H is 3-tensor induced. The image of P (∞) is either trivial or it is a 2-group inside S3.

Suppose first that the image of P (∞) is nontrivial. Then up to conjugation it is the cyclic
group generated by the transposition (1, 2). But the image of I(∞) normalizes the image of P (∞).
Therefore the image of I(∞) is again the cyclic group generated by (1, 2). In this case, H is tensor
decomposable as an I(∞)-representation, a contradiction by [KRLT3, 10.4].

Suppose next that the image of P (∞) is trivial. In this case, the map to S3 factors through the
group I(∞)/P (∞), a pro-cyclic group of odd pro-order. So either the image of I(∞) is trivial, or
is the cyclic group generated by a 3-cycle. If the image is trivial, then H is tensor decomposable as
an I(∞)-representation, contradiction. If the image is nontrivial, then the Kummer pullback [3]?H
is tensor decomposable. If w := 8 −m, the dimension of the wild part WildH of H, is prime to 3,
then [3]?WildH is still I(∞)-irreducible and totally wild (all slopes 3/w), and again a contradiction
by [KRLT3, 10.4].

This 3 - m consideration leaves only the cases when H has type (8, 5) or (8, 2).
Let us treat first the case of (8, 2). Here the wild part WildH has rank 6, so is the Kummer

direct image [3]?Wild2 of a totally wild I(∞)-representatiomn of rank 2 with both slopes 1/2. Then
[3]?WildH is

[3]?WildH = [3]?[3]?Wild2 ∼=
⊕
ζ∈µ3

[t 7→ ζt]?Wild2.

At this point, we invoke the following lemma.

Lemma 6.2. Let p be a prime, q a (possibly trivial) power pe of p for some e ≥ 0. Let Wildq be
an irreducible I(∞)-representation of dimension q with Swan∞(Wildq) = 1. Then Wildq is P (∞)-

irreducible, and for any λ 6= 1 in Fp
×

, Wildq is not P (∞)-isomorphic to [t 7→ λt]?Wildq.

Proof. In the case q = 1, Wild1 is of the form Lρ ⊗ Lψ(ax) for some Kummer sheaf Lρ and some

a ∈ Fp
×

. So in this case the assertion amounts to the observation that

Lψ(ax) ⊗ L∨ψ(λax) ∼= Lψ(a(1−λ)x)

is nontrivial on P (∞).

Suppose now that q > 1. By [Ka-GKM, 8.6.3(2)], for any λ 6= 1 in Fp
×

, we have

det(Wildq) = det([t 7→ λt]?Wildq).
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That Wildq is P (∞)-irreducible is [Ka-GKM, 1.14.2]. We now argue by contradiction. Suppose that

for some λ 6= 1 in Fp
×

, we have a P (∞)-isomorphism Wildq ∼= [t 7→ λt]?Wildq. Because P (∞)CI(∞),
it follows that for some Kummer sheaf Lρ, we have an I(∞)-isomorphism

Lρ ⊗Wildq ∼= [t 7→ λt]?Wildq.

Comparing determinants, we see that det(Lρ ⊗Wildq) = det(Wildq). But

det(Lρ ⊗Wildq) = Lρq ⊗ det(Wildq).

Therefore det(Wildq) = Lρq ⊗ det(Wildq), and hence ρq = 1. Being in characteristic p, this forces
ρ = 1. Thus we find an I(∞)-isomorphism Wildq ∼= [t 7→ λt]?Wildq, contradicting [Ka-ESDE,
8.6.3(1)]. �

We now return to H of type (8, 2) in characteristic p = 2. We argue by contradiction. If
H is 3-tensor induced, then [3]?H is tensor decomposable, and hence [KRLT3, 10.1, 10.4] linearly
tensor decomposable, as I(∞)-representation. Then [3]?H is linearly tensor decomposable as P (∞)-
representation. This representation is

2 · 1 +
⊕
ζ∈µ3

[t 7→ ζt]?Wild2.

The key point is that we have three pairwise nonisomorphic irreducible P (∞)-representations of
dimension 2, along with a two dimensional trivial representation.

Suppose that there exist two dimensional representations A,B, C of P (∞) such that

A⊗ B ⊗ C ∼= 2 · 1 +
⊕
ζ∈µ3

[t 7→ ζt]?Wild2.

It cannot be the case that each of A,B, C is the direct sum of two linear characters, for then their
tensor product is the sum of eight linear characters. So at least one of them, say A, is P (∞)-
irreducible. Write D := B ⊗ C. Then A ⊗ D has a two dimensional space of P (∞)-invariants. In
other words, A∨ occurs with multiplicity 2 in D. But D has rank 4, while A has rank 2, so we must
have D = 2A∨. But then A ⊗ D = 2End(A) has all multiplicities even. This is a contradiction,
since Wild2 occurs with multiplicity one.

We now turn to the case of an H of type (8, 5). Here the P (∞)-representation of [3]?H is

5 · 1+ α+ β + γ,

with α, β, γ being three distinct nontrivial linear characters of P (∞). Suppose this is A ⊗ B ⊗ C.
In any of the factors is P (∞)-irreducible,say A, then exactly as in the (8, 2) case the dimension of
the space of P (∞)-invariants is the multiplicity of A∨ in B ⊗ C. But this multiplicity is at most 2
(rather than 5). So each of A,B, C is the sum of two linear characters, say

(A+B)(S + T )(X + Y ).

Among the 8 linear characters we get by multiplying out, precisely 5 are trivial. Write D :=
(S + T )(X + Y ). If A ⊗ D contains 4 trivial characters, then D is 4A∨, and all multiplicites are
multiples of 4, a contradiction. If A⊗D contains just one trivial character, then B ⊗D contains 4
trivial characters, again a contradiction. At the expense of interchanging A and B, we may assume
that

A⊗D contains 3 trivial characters, B ⊗D contains 2 trivial characters.

Thus among the four characters of D, namely SX,SY, TX, TY , precisely 3 are A∨, and precisely
2 are B∨. At the expense of interchanging S and T , and of interchanging X and Y , we may
assume that each of SX,SY, TX is A∨. Then SX = SY and hence X = Y . But then D has even
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multiplicities, hence also A ⊗ D has even multiplicities, a contradiction. This completes the (8, 5)
case, and, with it, the proof of Theorem 6.1. �

Theorem 6.3. In characteristic p = 2, no geometrically irreducible hypergeometric sheaf H of type
(9,m) with 9 > m ≥ 0 is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 3.4]. The case (9, 8) is done by
combining [KT8, 4.2.3] and [KT8, 4.1.5]. For H of type (9,m) with 7 ≥ m > 0, we argue as follows.
In these cases, the dimension w := 9−m of the wild part is ≥ 2. So if H were 2-tensor induced, the
resulting map of I(∞) to S2 would be trivial on P (∞), and the image of a generator of I(∞)/P (∞)
would be a transposition, cf. [KT5, 3.2(ii)]. But I(∞)/P (∞) has pro-order prime to p = 2. So H
is tensor decomposable, contradicting [KRLT3, 10.1, 10.4]. �

7. The case p = 3

Theorem 7.1. In characteristic p = 3, no geometrically irreducible hypergeometric sheaf H of type
(8,m) with 8 > m ≥ 0, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 3.4]. The case of type (8, 7)
is done in [KT8, 4.4.1]. Suppose now that H has type (8,m) with 6 ≥ m > 0. In these cases,
H is tensor indecomposable by [KT5, Lemma 2.4]. By way of contradiction, assume H is 3-tensor
induced.

Consider the case m < 6, so that the dimension w := 8 −m of the wild part is ≥ 3. Then the
resulting map of I(∞) to S3 would be trivial on P (∞), and the image of a generator of I(∞)/P (∞)
would be a 3-cycle, cf. [KT5, 3.2(ii)]. But I(∞)/P (∞) has pro-order prime to p = 3. So H is tensor
decomposable, a contradiction.

Suppose finally that m = 6. Then the wild part has dimension 2, and so the image Q of P (∞)
in Ggeom is generated by an element h of order 3 which acts in the underlying representation V

as diag(ζ3, ζ3, 1, 1, 1, 1, 1, 1). In particular, h has trace 5. Suppose h permutes the 3 tensor factors
V1, V2, V3 of V nontrivially. Without any loss of generality, we may assume that

h : V1 → V2 → V3 → V1.

Then the arguments in the proof of [GT3, Lemma 2.25] show that Trace(h) = 2. More precisely, if
(e11, e

1
2) is a basis of V1, then (e1i ⊗ e2j ⊗ e3k | 1 ≤ i, j, k ≤ 2) is a basis of V , where

h : e1i 7→ e2i 7→ e3i 7→ e1i

for i = 1, 2. Now observe that h permutes the indicated 8 basis vectors of V , fixing exactly two of
them: e11 ⊗ e21 ⊗ e31 and e12 ⊗ e22 ⊗ e32. Hence Trace(h) = 2.

Since the element h has trace 5 on V , we conclude that h acts trivially on {V1, V2, V3}. Thus Q
acts trivially on {V1, V2, V3}. This closed condition also holds for every conjugate of Q in Ggeom.
Hence it holds for the Zariski closure G0 of the normal closure of Q in Ggeom. In other words, G0

acts trivially on {V1, V2, V3}. On the other hand, G/G0 is a finite cyclic group of order coprime
to 3 by [KT5, Theorem 4.7]. It follows that G cannot permute V1, V2, V3 transitively, again a
contradiction. �

Theorem 7.2. In characteristic p = 3, no hypergeometric sheaf H of type (9,m) with 9 > m ≥ 0
and m 6= 1 is tensor induced.

Proof. The case of (9, 8) is done in [KT8, 4.1.1]. It remains to treat the types (9,m) with 7 ≥ m > 0.
In these cases, the dimension w := 9−m of the wild part is ≥ 2. So if H were 2-tensor induced, the
resulting map of I(∞) to S2 would be trivial on P (∞), and the image of a generator of I(∞)/P (∞)
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would be a transposition, cf. [KT5, 3.2(ii)]. Therefore [2]?H would be tensor decomposed, and
hence linearly tensor decomposed.

If w is odd, the [2]?WildH is totally wild and I(∞)-irreducible, contradicting [KRLT3, 10.1, 10.4].
It remains to treat the types (9, 7), (9, 5), (9, 3). The case (9, 3) is done in [KT5, 3.6].
For (9, 5) and (9, 7), we argue as we did in the p = 2 treatment of the case of (8, 5). Consider

first an H of type (9, 5). The P (∞)-representation of [4]?H is

5 · 1 + α+ β + γ + δ,

with α, β, γ, δ being four distinct nontrivial linear characters of P (∞). Suppose this is A⊗ B. We
cannot have A an irreducible P (∞)-representation, otherwise the dimension of the invariants in
A⊗ B is the multiplicity of A∨ in B, which is at most 1 (rather than 5).

As irreducible representations of P (∞) are either linear or of dimension ≥ p = 3, each of A,B is
the sum of three linear characters, say

(A+B + C)(X + Y + Z).

Then of the nine characters we get by multiplying out, precisely 5 are trivial. We cannot have
A(X + Y + Z) = 31, otherwise each of X,Y, Z is A∨ and all multiplicties would be divisible by 3.
Similarly for B(X + Y + Z) and C(X + Y + Z). At the expense of reordering A,B,C, we may
assume that each of A(X + Y + Z) and B(X + Y + Z) contains precisely two trivial characters,
and C(X + Y + Z) contains precisely one trivial character. At the expense of reordering X,Y, Z,
we may assume that X = Y = A∨. Precisely two of X,Y, Z are B∨, so at least one of X,Y is equal
to Bvee. Therefore A∨ = B∨, i.e., A = B. Then

A⊗ B = (2A+ C)(2A∨ + Z) = 4 · 1 + 2AZ + 2CA∨ + CZ.

But C(X +Y +Z) = C(2A∨+Z) contains 1 precisely once, so we must have CZ = 1. Then A⊗B
is 5 · 1 + 2AZ + 2CA∨, contradicting the fact that each of α, β, γ, δ occurs with multiplicity one.
Thus [4]?H, and a fortiori [4]?H is tensor indecomposable for P (∞),

In the case of an H of type (9, 7), the P (∞)-representation of [2]?H is

5 · 1 + α+ β,

with α, β two distinct nontrivial linear characters of P (∞). Exactly as in the (9, 5) case, each of
A,B is the sum of three linear characters, say

(A+B + C)(X + Y + Z).

None of A(X+Y +Z)B(X+Y +Z)C(X+Y +Z) can be 3 ·1. So each contains at most two trivial
characters, giving at most 6 trivial characters (rather than 7). Thus [2]?H is tensor indecomposable
for P (∞), �

8. The case p ≥ 5

Theorem 8.1. In character p ≥ 5, no geometrically irreducible hypergeometric sheaf of type (8,m)
with 8 > m ≥ 0, m 6= 2, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 1.7]. If H of type (8,m) with
8 > m > 0 is tensor induced, the map of I(∞) to S3 must be trivial on the p-group P (∞) (because
p ≥ 5), and the image of a generator of I(∞)/P (∞) must be a three cycle (if it were trivial, H would
be tensor decomposable for I(∞), contradicting [KRLT3, 10.4]). Then [3]?H is tensor decomposable,
hence linearly tensor decomposable, for I(∞), and a fortiori for P (∞). If the dimension w = 8−m
of the wild part is prime to 3, then [3]?WildH is totally wild and I(∞)-irreducible, contradicting
[KRLT3, 10.4]. It remains to treat the case (8, 5). Here we repeat verbatim the p = 2 discussion of
the (8, 5) case. �
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Theorem 8.2. In character p ≥ 5, no geometrically irreducible hypergeometric sheaf of type (9,m)
with 9 > m ≥ 0, m 6= 3, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 1.7]. If H of type (9,m)
with 9 > m > 0 is tensor induced, the map of I(∞) to S2 must be trivial on the p-group P (∞)
(because p is odd), and the image of a generator of I(∞)/P (∞) must be a transposition (if it were
trivial, H would be tensor decomposable for I(∞), contradicting [KRLT3, 10.4]). Then [2]?H is
tensor decomposable, hence linearly tensor decomposable, for I(∞), and a fortiori for P (∞). If the
dimension w = 9 −m of the wild part is odd, then [2]?WildH is totally wild and I(∞)-irreducible,
contradicting [KRLT3, 10.4].

Thus it remains to treat the cases (9, 7), (9, 5), (9, 1). The case (9, 1) is done by [KT5, 1.9]. The
cases of (9, 7) and (9, 5) are done exactly as they were in the p = 3 case. �
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