MOMENTS, EXPONENTIAL SUMS, AND MONODROMY GROUPS

NICHOLAS M. KATZ AND PHAM HUU TIEP

ABSTRACT. We determine the geometric monodromy groups attached to various families, both
one-parameter and multi-parameter, of exponential sums over finite fields, or more precisely, the
geometric monodromy groups of the f-adic local systems on affine spaces in characteristic p > 0
whose trace functions are these exponential sums. The exponential sums here are much more general
than we previously were able to consider. As a byproduct, we determine the number of irreducible
components of maximal dimension in certain intersections of Fermat surfaces. We also show that in
any family of such local systems, say parameterized by an affine space S, there is a dense open set
of S over which the geometric monodromy group of the corresponding local system is a fixed known

group.
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1. INTRODUCTION

For V a finite dimensional C vector space, G < GL(V') a Zariski closed subgroup whose identity
component G° is semisimple, and (a,b) a pair of non-negative integers, the (a,b)-moment of G
acting on V', denoted

Ma,b = Ma,b(G7 V),

is defined to be the dimension of the space (V& @ (V*)¥*)& of G-invariants.
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By Larsen’s Alternative [Ka3, 1.1.6], one knows that if M5 2(G, V) = 2, then either G is finite or
G° = SL(V). If V is endowed with an orthogonal autoduality and G < O(V), and if My o = 3, then
either G is finite or G° = SO(V)H If V is endowed with a symplectic autoduality, dim(V') > 4, and
G < Sp(V), then My = 3 implies that either G is finite or G = Sp(V).

The cases of Larsen’s Alternative in which G is finite and dim (V') > 5 are completely determined
in |[GT2, Theorem 1.5]. Two natural questions then occur. Which of these finite groups can be
obtained as the geometric monodromy group of a hypergeometric sheaf on G,, in characteristic
p > 07 Which of these finite groups can be obtained as the geometric monodomy group of a family
of one-variable exponential sums?

The kinds of families of one-variable exponential sums in a given characteristic p > 0 we have in
mind are these. We fix a prime ¢ # p and a nontrivial additive character v : F,, — 11,(Qp). [In down
to earth terms, we embed Q((,) into Qp, which amounts to choosing a place of Q((,) over ¢. The
expressions we will write down will lie in Q((p), but we need to view them as lying in Qy in order
to apply ¢-adic cohomology.]

We are given a finite extension k/F,, a polynomial f(x) € k[z], say

f(z) = Z A,

of degree d > 1 which is Artin-Schreier reduced (meaning that A; = 0 whenever p|i). Let 1 <a < b
be prime-to-p integers. Suppose that either deg(f) > b or that deg(f) < b. In the case when
deg(f) < b, we require that f is not a constant multiple of 2. Another way of expressing this last
condition is that the polynomial sz + tz? + f(x) contains monomials of least 3 different degrees, a
condition which is automatic if deg(f) > b.

Let x be a multiplicative character of £*. When deg(f) > b, consider the local system

F(f,a,b,x)

on A?/k whose trace function is given as follows: for L/k a finite extension, and s,t € L,

—1
—— ) Yr(sa® +t2’ + f(z))xr(@).
#L; I XL

When deg(f) < b, we consider the same local system, but on A! xG,,, since we need t to be invertible
in this deg(f) < b case. These families are pure of weight zero, and lisse of rank max(deg(f),b) — 1
when y = 1 and of rank max(deg(f),b) when x # 1. They are geometrically irreducible precisely
when

Trace(Frob, 4 | F) =

ged(a, b, {i with A; #0}) =1,

which we will assume in what follows.

As we will see in Theorems and the Mo for the Ggeom of this local system is given by
the answer to what should be an easy question about intersections of Fermat surfaces in P3, with
homogeneous coordinates z, v, z, w, or equivalently about intersections of their affine cones in A%

For an integer n > 1, denote by ¥, proj C P? the locus

Ynproj = {2" +y" —2" —w" =0} C P3
and denote by ¥,, C A* the locus
Yo o= {2y - 2" —w" =0} C AL

Lyf dim(V') = 2 in this orthogonal case, G must be finite, because SOz is not semisimple.
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In what follows, when no confusion is possible, we also denote the polynomial z™ + y" — 2™ — w"

by ¥,. In A* /F,, consider the intersection of the following Fermat threefolds:
Ya, 2p,, and every X; with A; # 0.

Already ¥, N Xy has dimension two. [Equivalently, £, proj N Y proj has dimension one. Here is one
argument. Because each of a, b is prime to p, each of ¥, 05 and Xy proj is a smooth, geometrically
connected surface. The intersection, viewed as lying in ¥ .o, is either one dimensional or it is all
of ¥p proj- The second case could only occur if the polynomial 3, is divisible by ¥;, which cannot
happen, because a < b. A second argument is this. If the intersection had dimension 2, it would
be equal to both ¥ o and to Xp 05, and we would get the conclusion that X, pro; = X proj,
impossible because their Q; Euler characteristics differ.]
Denote by X(a, b, f) the intersection in A*/F, of the following affine Fermat threefolds,

Ya, 2p, and every X; with A; # 0.

Then Mo is the number of reduced irreducible components of dimension two of X(f,a,b), cf.
Theorems and

The loci X(f,a,b) and X.g(f,a,b) depend only on the set S of degrees of the Fermat surfaces
being intersected. Given a set S of prime-to-p positive integers with #5 > 2, let us denote

(1.0.1) Sproj (S) =[] Zipro  2(S) := [ &

1€S i€S
Recall that by assumption the set S of degrees occurring in ¥p.0i( f, a, b) satisfies ged(S) = 1: this
is equivalent to the geometric irreducibility of the family.

Every Fermat surface ¥ proj contains the two lines (z = z,y = w) and (z = w,y = 2). If a is
odd, 4 proj contains the third line (x = —y,z = —w). One knows that in any odd characteristic,
the intersection X1 proj M X2 proj consists precisely of the two lines (z = 2,y = w) and (z = w, y = z),
cf. [Ka3l p. 117]. And one knows that in any characteristic p # 3, the intersection X1 proj N 3 proj
consists precisely of the three lines (z = z,y = w), (x = w,y = z), and (x = —y,z = —w), cf. [Kadl
3.11.3].

Thus the question breaks into two natural parts: First, for which sets S with ged(S) = 1 consisting
only of odd degrees will ¥,10;(.S) have precisely three reduced irreducible components of dimension
one (which would necessarily be the three known lines). There may also be zero-dimensional reduced
irreducible components (i.e., finitely many closed points) outside these lines, these do not affect M 5.
Second, for which sets S with gcd(S) = 1 of degrees, at least one of which is even, will ¥,,4;(5) have
precisely two reduced irreducible components of dimension one (which would necessarily be the two
known lines). Again having finitely many points outside the two known lines does not affect M 5.

Our original idea was to attack directly this algebro-geometric question. But in fact we turn this
question on its head as follows. Given a set S of prime to p integers with #S = r+ 1 > 3 and
ged(S) = 1, enumerate the elements of S, say

(1.0.2) A>By>...>B,>1, ptA[]Bi, ged(A,By,...,B,) =1,

and consider the corresponding universal family of monic one-variable polynomials whose allowed
degrees are precisely S:

.
4+ g til‘Bi.
i=1
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We obtain a local system F(S) on A" /F, whose trace function is given as follows. For k/IF, a finite
extension, and (t1,...,t,) € A"(k)

77777 t)k ].7: Z¢kx —|—Ztl‘

xek

Trace(Frob,,

Given a multiplicative character x, we also have the local system (S, x) on A"/F, whose trace
function is given as follows. For k/F), a finite extension, and (t1,...,t,) € A"(k)

Trace(Frob, . ¢yl F (S, X)) Zwk x —|—Zt ) xr(x).
F z€k
In this notation, the above F(S) is just F(S,1).
The local system F(S, x) is geometrically irreducible, lisse of rank

D:=A- 517)(’
and pure of weight 0. Its geometric monodromy group Ggeom 7 (s,y) 18 @ Zariski closed subgroup
of GLp/Q, whose identity component is semisimple. On the one hand Ma s of the local system
F (S, x) is the number of reduced irreducible 2-dimensional components of ¥(S) over F,, on which
Ex(xy) ® Ly(zw) is geometrically trivial, cf. Theorem @ On the other hand, M> > is the My o for
the given D dimensional representation V' := F (S, x)7 of G := Ggeom, 7(5,x)-

The key point is that we can explicitly determine the group Ggeom,7(s,y)- This task, in the case
the group is finite, was done in [KT6, Theorem 11.2.3]. One of the main results of this paper,
Theorem completes the task in the infinite case. In turn, this allows us to determine My o for
Ggeom,F(s,x)» and thus solve the aforementioned algebro-geometric question about intersections of
Fermat hypersurfaces, in Theorem

Once we have these results in hand, a new question arises. Suppose given an S as in ,
A> By >...> By, with r > 3. Pick two indices in {B,...,B,}, say a := B; < b:= Bj < A, and
denote by

C:={A,By,...,B.} ~{B;,Bj}
with C enumerated as
A>Cr>...>Cha.

Suppose further given a finite extension k/F, and elements ¢; € k* for i = 1,...,7 — 2. Consider
the local system on A2/k obtained from F(S,x) by the pullback C; + ¢;. Call it
r—2

(1.0.3) F(f,a,b,x) = F(f,Bi,Bj,x), where f(z) := 24+ chxcl, with ¢; #0, 1 <i<r—2.
=1

This is the local system on A?/k whose trace function is given as follows. For K/k a finite extension,
and (s,t) € A%(K),

(1.0.4) Trace(Frob s,k F(f,a,b X sz[( z) + sz +tz®)x i (), subject to (1.0.3).

By Theorem and Corollary [2.5] u each such system F(f, B;, Bj,x) has the same M as the
system F (S, x). Because F(f, B;, Bj, x) is a pullback of F(S, x), we have the a priori inclusion
Ggeomzf(vaiijax) S Ggeomvf(S»X)'

In the case when Gyeom, 7(s,y) is @ (known!) finite group, we wish to classify those of its subgroups
which in the given D-dimensional representation have the same Ms2. We succeed entirely when
the known finite group is (the image of) one of Spy,(q), n > 1, or SU,(q), n > 3, in a Weil
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representation, by showing that, with very few exceptions, the only subgroups with the same M5 >
are the whole group itself, see Theorems [8:2] and This gives Theorem A striking aspect
of part (ii) of Theorem is that it applies to the relevant F(f,a,b, x) for any f all of whose
coefficients are nonzero and any (a,b).

We also consider one-parameter specializations of such F(S, x), i.e., systems F(f, a, x) with trace
function as follows: for K/k a finite extension and ¢ € K,

\/% ggb;((f(x) + tz%)xk (), subject to ((1.0.3)).
In Theorem we prove that for given a, the local system F(f,a,x) will have the same Ggeom
as F(S,x) for f in a dense open set of the affine space of allowed f’s

In the cases when x = 1, and Ggeom,7(s,1) is an extraspecial normalizer, we do not classify sub-
groups with the same My 2. Nonetheless, we prove that for given (a,b), the local system F(f, a,b, 1)
will have the same Ggeom as F(S,1) for f in a dense open set of the affine space of allowed f’s,
see Theorems and Again in this case we have the same “dense open set” result for
one-parameter specializations F(f,a, 1), with the added wrinkle that the case a = 1 behaves quite
differently in the extraspecial normalizer case. In each of the Theorems [I1.7], [I1.8] and [11.9] there
are unknown dense open sets. It would be of some interest to determine them explicitly.

The main results of this paper include Theorems [10.1, [11.7] [11.8| [11.9]

(1.0.5)  Trace(Froby,x|F(f,a,x)) =

2. MOMENTS AND POINT COUNTING

We begin this section with the basic fact about approximating moments by large L limits.

Theorem 2.1. Let k be a finite field of characteristic p, £ a prime { # p, X/k a smooth, geometri-
cally connected scheme of dimension d > 1, and F a lisse Qq sheaf on X which is t-pure of weight
zero for a chosen field embedding v : Q¢ — C. For integers a,b > 0, the moment M, of Ggeom,F 15

> (Trace(Frob,, | F))*(Trace(Frob,. 1| FY))"|.
zeX(L)

Myp = lim sup
finite extensions L/k

1
e
Proof. In terms of the auxiliary sheaf

G = (F)*" o (),
which is t-pure of weight zero, and hence geometrically semisimple, cf. [De2l, 3.4.1(iii)], we have
M, = dim H?(X7, G).

Our asserted formula for this dimension is

1
lim sup —_— Trace(Frob, 1.|G) ‘
finite extensions L/k #X(L) xe;l/) ’
By the Lefschetz trace formula, this is
1 2d
lim sup ‘ Z(—l)iTrace(FrobL]Hﬁ(XE, Q))‘
finite extensions L/k #X(L) i=0

By Deligne’s fundamental estimate [De2l 3.4], H! is (-mixed of weight < i, while H2¢ is (-pure
of weight 2d. But #X (L) = (#L)? + O((#L)? /2, and hence the H! summands with i < 2d
contribute 0 to the limsup. So we must prove that dim H2¢(X7, G) is

lim sup ‘
finite extensions L/k

# Xl o Trace(Frob, | H2 (X, G)) )
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If this H2? vanishes, we are done.

If H2? is nonzero, the eigenvalues of Frob;, on this H?? are each of the form (#k)%y, for i =
1,...,dim H?*¢, and each of these a; has complex absolute value |o;| = 1. Thus for L/k a finite
extension, we have

q dim H2¢

1 (#L) deg(L/k
Trace(Froby, Hfd X+, G)) = ;) des(L/k),
For any L/k, this last expression visibly has absolute value < (1/#X (L))(#L)%)dim H?*. As L/k
grows, the tuple (aileg(L/ k), .. ,agfi(éés)) will, infinitely ofter, come arbitrarily close to (1,...,1),
while the ratio #X (L)/((#L)%) has limit 1 as L grows. O

We next give a lemma on counting geometrically irreducible components.

Lemma 2.2. Let k be a finite field, and X/k a separated k-scheme of finite type, of dimension
d>0. Then
limsup  #X(L)/(#L)"

finite extensions L/k

is the number of geometrically irreducible components of X3 of dimension d.

Proof. Each geometrically irreducible component of X7 is defined over some finite extension of k,
so at the expense of replacing k by a finite extension of itself, we reduce to the case where each
geometrically irreducible component Z is defined over k, i.e. is a geometrically irreducible k-scheme
of dimension ez < d. The result then follows from the Lang-Weil estimate, that for each such
component Z, #7Z(L) = (#L)° + O((#L)°z~1/?). O

Theorem 2.3. Let k be a finite field of characteristic p > 0, and f(z) € k[z], say f(z) =, Az,
of degree d > 3 which is Artin-Schreier reduced (meaning that A; = 0 if pli). Let 1 < a < b < deg(f)
be prime to p integers, x a multiplicative character of k*, and consider the local system F, on A%/k
whose trace function is given as follows: for L/k a finite extension, and s,t € L,

~1
VEL

with the convention that 11,(0) = 1, but x(0) = 0 for x nontrivial. Consider the set € of exponents
which occur in f:

Trace(Frob, 4 1| Fy) = Z Yr(sz® +ta® + f(2))xr(z),

€L

E={ieZ, A #0}
and the affine locus £(S) as defined in (1.0.1) with S := {a,b} UE. Then

Mo (Fy) < Mao(Fr) = I;Erzlig) 7%&2;‘?)(2[’)

Moreover, if x> # 1 and all integers in S are odd, then
MQ’Q(.FX) < MZQ(.FIL).

More precisely, Mso(F1) is the number of geometrically irreducible components of dimension one in
Yproj(S), while My o(Fy) is the number of those components on which x(zy)x(zw) is geometrically
trivial.
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Proof. Recall that ¥; denotes the Fermat form z¢ + y% — 2¢ — w? for any d € Z>1. By Theorem
My o(Fy) is the large L limit of the sums

. ) r(f(@) + Fy) — F(z) = F(w)xe(ey)Xe(zw)

2
(#L) (z,y,2,w)EAL(L), Lqa=%p=0

— > DLy AZi(z,y, z,w)xr(ey) XL (zw).

2
(#L) (z,y,2,w)EAL(L), Lo=2p=0 €€

The key observation is that the affine variety
Yap i ={Xq =3, =0}

in A* is homogeneous, the affine cone over the projective variety Yabproj C P3 defined by these
same equations. We may omit the origin (0,0,0,0) € A* without changing the large L limit. Then
we choose, for each point in 3,4 oroj(L) a representative (zo,yo,20,wo) € Xqp(L). Then every
point (z,y,z,w) in ¥,,(L) \ {0} is uniquely of the form (rzo,7yo,r20,rwp) with r € L* and
(20, Y0, 20, wo) € Lap(L) a chosen representative. Moreover,

xz(zy)Xr(zw) = x1(Toyo) X1 (20w0)-

Thus we are looking at the large L limit of the sums

(#1L)2 Z Xz (zoyo) XL (z0wo) Z l/JL(ZAiEi(:Eo,yo,zo,wo)fri).

(20,Y0,20,wo) chosen rep. over L relx €€

The innermost sum is O(#L)"/? so long as the polynomial

> AiSi(x0, y0, 20, wo)r’

€€
in r is not Artin-Schreier trivial. The number of L-valued points on X4 i is O(#L), so the
Artin-Schreier nontrivial cases contribute O((#L)%?)/(#L)? to the sum, and hence contribute 0 to
the large L limit.

Because f(x) is Artin-Schreier reduced, the only way the polynomial » . o A;3;(o, Yo, 20, wo)rt

in r can be Artin-Schreier trivial is for every 3;(zo, yo, 20, wo) with 7 € £ to vanish, in which case
the inner sum is #L — 1. Thus our large L limiting sum is

GiP > (#L — Dxr(zy)XL(zw).

2
(#L) (z,y,2,w)EP3(L), Ta=%,=0, X,=0, Vie€
We break the domain of summation into finitely many closed points and the one-dimensional
geometrically irreducible components Z of the projective variety Y,0j(S) defined by
e=%p=0, %,=0, Vi€,

each of which is defined over some finite extension of k. At the expense of enlarging k, we may
assume each Z is defined over k. Then #Z(L) = #L + O(/#L). So our limsup is the limsup of

the sum

Z (#11;)2 Z (#L — 1)xp(zy)xL(zw).
(z,y,2,w)€Z(L)

When x(zy)x(zw) is geometrically trivial on (the dense open set where xyzw # 0 of) Z, this sum
over Z contributes 1 to the lim sup, while if x(zy)x(zw) is geometrically nontrivial on (the dense

1-dim irred. compt’s Z
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open set where zyzw # 0 of) Z, it contributes 0 to the limsup. Thus we have

Mo (Fy) < Mao(Fp) = limsup w

4Loo0 (F#L)?
So M o(Fu) is the number of geometrically irreducible components of dimension one in Xy,6i(.5),
while Ma 9(Fy) is the number of those components on which x(zy)x(zw) is geometrically trivial.
Now assume that all integers in S are odd. Then X,,j(S) contains the line z +y = 0 =
z + w. For any character y of kX, the sum of xz(zy)xz(zw) over this line is #L — 1 if x2 = 1
and 0 otherwise. Thus if x? # 1, this line is an irreducible component on which x(zy)x(zw) is
geometrically nontrivial, hence the asserted inequality

Ma2(Fy) < Mo (F1)
if ¥2 # 1. O
For ease of later reference, we given a slight generalization of this last result.

Theorem 2.4. Let k be a finite field of characteristic p > 0, and f(z) € k[z], say f(z) =, Az,
of degree d > 3 which is Artin-Schreier reduced (meaning that A; =0 if pli). Let n > 2, and let

1<by <by<...<b, <deg(f)

be prime to p integers, x a multiplicative character of k™, and consider the local system F, on A™/k
whose trace function is given as follows: for L/k a finite extension, and (t1,...,t,) € L",

-1 .
Trace(Frob(tlw,tn%L\]:X) = ﬁ Z QﬂL(Eitmb% + f(2)xL(z),

zeL

with the convention that 11,(0) = 1, but x1(0) = 0 for x nontrivial. Consider the set € of exponents
which occur in f:

E={ieZ, A;#0}
and the affine locus ¥(S) as defined in (1.0.1) with S :={b1,..., by} UE. Then

Mj2(Fy) < Mao(Fy) = limsup w

#L—00 (#L)2

Moreover, if x> # 1 and all integers in S are odd, then
MZQ(]:X) < MQQ(]:IL).

More precisely, Mso(F1) is the number of geometrically irreducible components of dimension one in
Yproj (), while My o(Fy) is the number of those components on which x(zy)x(zw) is geometrically
trivial.

Proof. The proof is essentially identical to that of the previous Theorem [2.3] which is the case n = 2.
Let us denote

B := {bl,...,bn}.

The role of ¥, there is played by Xp := N;%, here. The affine variety X is homogeneous, the
affine cone over the projective variety Xp ,ro; defined by the same equations. Because n > 2, the
projective variety ¥ p yroj has dimension one, i.e., all its geometriically irreducible components have
dimension < 1, so over any finite extension L/k has O(#L) L-valued points. From here on, the
proof is identical. O
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Corollary 2.5. In the setting of Theorem with S := & U {a,b}, write S as
A>By>...>B,>1

with r > 2. Consider the local system F(S,x) on A", whose trace function is given as follows: For
k/Fy, a finite extension, and (t1,...,t.) € A"(k)

Trace(Frob, . +.)k]F (S, X)) = \/_#LL Zwk(a:A + Z tixB )y (z).
1

€k i=

It is lisse of rank D := A — 61 and pure of weight zero. [It is geometrically irreducible if and only
if ged(S) = 1, but that is irrelevant here.] Then F(f,a,b,x) has the same Mz as F (S, x).

Proof. That F(S, x) has its My given by the same recipe, purely in terms of the data (95, x), as
did F(f,a,b, x), is the special case f(z) = 24, n = r, and b; = B, 1_;, of Theorem O

Theorem 2.6. Let k be a finite field of characteristic p > 0, and f(z) € k[z], say f(z) =, Aia’,
of degree d > 1 which is Artin-Schreier reduced (meaning that A; = 0 if pli). Let 1 < a < b be
prime to p integers, and suppose deg(f) < b. For x a character of k™, consider the local system F,

on (Al x G,,)/k whose trace function is given as follows: for L/k a finite extension, and s € L,
te L™,

Trace(Frob, s | Fy) = \/_#LL Z Yr(sz® +ta® + f(2))xr(z),

zeL

with the convention that 11,(0) = 1, but x1(0) = 0 for x nontrivial. Consider the set € of exponents
which occur in f:

E={ieZ, A #0}
and the affine locus ¥(S) as defined in (1.0.1) with S := {a,b} UE.
(i) Suppose that f(z) is not of the form (nonzero constant)z®. Then

M(F) < Maa(Fy) = limsup W'

Moreover, if x> # 1 and all integers in S are odd, then
MQQ(IX) < MQQ(.FIL).

More precisely, Mao(F1) is the number of geometrically irreducible components of dimension
one in Xpoi(S), while My o(Fy) is the number of those components on which x(xy)x(zw) is
geometrically trivial.

(ii) Suppose that f(x) = (nonzero constant)z®. If x = 1, then

. #3(5)(L)
Mso(F1) = —1+ limsup ——~—,
22(71) #L—>o£) (#L)?
while for x # 1 we have
: #3(5)(L)
Mso(F,) =limsup —————.
22(Fx) #L—mE (#L)?
Moreover, if a,b are both odd, and x? # 1, we have
#3(5)(L)

Mso(Fy) < limsup ———=—.
( X) #L—o0 (#L)2
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Proof. By Theorem and the argument of Theorem M, 5 for F, is the limsup over L of

TOHT L GIE L et @)+ 1) - £G) ~ S s
seLteL>

z,y,z,wEL

If the summation were over all (s,t) € L?, this would be

. S (@) + ) — F(2) — fw)xa(ay)xe(sw),

(#L)(#L - 1) z,y,z,WEL, ¥q=%,=0
and just as in the proof of Theorem [2.3] we would get
: #5(5)(L)
My o(Fy) < Moo(F1) = limsup .
22(Fx) 22(%1) #Lsco  (FL)?

However, the summation is only over (s,t) € L x L*. So we must subtract, for each L/k, the
expression

1 1 )
(#L)(#L —1) ; (#L)? m;@ Vr(sXa + f(x) + f(y) — f(2) — fw))xr(zy)xr(zw)

1 —
Z(#L)Q(#L —1) x’y%w;:’ i Vi (f(x) + f(y) — f(2) — f(w))xr(zy)xL(zw).

So long as f(x) contains monomials of degree e; # a, the ray calculation used in the proof of
Theorem shows that this limit (not just limsup) vanishes. The assertion about y? # 1 is proven
exactly as in Theorem

Suppose now that f(z) is a constant multiple of % and y = 1. Then the term we are subtracting
is equal to

1
Yr(0) = #3a (L) /((F#L)*(#L — 1)),
Y,2,WweEL, ¥5=0
which tends to 1 as L grows, simply because 3, is the affine cone over the smooth surface ¥, pro;.
Suppose finally that f(z) is a constant multiple of 2% and x # 1. Then the sum we are subtracing
is

1
yi(wy/zw).
(#L)2(#L B 1) z,y,2,WEL, %w;éo, ¥a=0
This sum will be O(1/v/#L), and thus have large L limit zero, if the Kummer sheaf Ly (zy)zw) 18
geometrically nontrivial on the dense open set U of ¥, ,10j Where xyzw is invertible. Thus U is the
open set in the affine surface 2 + y* = 2% + 1 where yz is invertible, and our sheaf is £, ,,/.) on
U. We will show that this sheaf has a geometrically nontrivial pullback.

Choose an element « € F2 \ Fp, and 8 with 8 = . It suffices to show the pullback of £, (4,,-)
to the closed subscheme y = 3 of U is geometrically nontrivial. This pullback is £, (s;/.), on the
open set of the curve

C:x%+a=2"+1

where zz is invertible. But the function Sx/z on C has a simple zero at each point (0,~) with ~

one of the a distinct roots of the polynomial 7 = o — 1. Hence L, (g,/) is geometrically nontrvial
on C.
So in this case when f(z) is a constant multiple of ® and x # 1, we have

: #5(5)(L)
MealP0) =T Gy
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[Of course in this case the set S = {a,b}.] The argument in the proof of Theorem [2.3|shows that if
a,b are both odd, but y? # 1, then
#2(5)(L)

My o (F,) < limsup ————%+—=.
22(F%) #L%og) (#L)?

The following result explains the moment drop for some local systems.

Theorem 2.7. Let k be a finite field of odd characteristic p > 0, and f(z) € k[x], say f(z) =
>, Aty of degree d > 1 which is Artin-Schreier reduced (meaning that A; = 0 if pli). Let1 <a <b
be prime to p integers, and suppose deg(f) # b. Consider the local system F on (A x G,,)/k whose
trace function is given as follows: for L/k a finite extension, and s € L, t € L™,

~1
Trace(Frob(, y 1| F) = ——= > r(sz® + tzb + f(x)).
( ( ,t),L| ) \/ﬂé ( ( ))
Suppose further that f is odd, i.e., that f(—x) = —f(x), that f is not a constant multiple of z°, and
that both a,b are odd. Let g(x) € k[z], say g(x) = >, Bix", of degree e > 1 which is Artin-Schreier
reduced (meaning that B; = 0 if pli). Consider the local system G on (Al x G,,)/k whose trace
function is given as follows: for L/k a finite extension, and s € L, t € L*,

2 X vnlsa® + 1+ (@) +(a)).

T‘race(F‘rob(&t),ng) = \/t
x€L

Then Mgvg(g) § MQ,Q(.T") —1.
Proof. Consider the set £ of exponents which occur in f:
Er={icZ, A #0}

and Sy := {a,b} U&s.
Consider also the set &7 of exponents with occur in f(z) + g(z?):

& ={i€l, A #0}U{2), B—J+#0}
and Sy 1 = {a,b} U& . Then from Theorems [2.3] and we know that

s
Moo F) = limenp e

, #5(57,+) (L)
M5 5(G) = limsup ’ .
2(9) #L—00 (#L)?
As Sy C Sf4, we trivially have My o(G) < Mao(F). Because Sy consists entirely of odd integers,
among the two-dimensional geometrically irreducible components of ¥(Sy) is the locus t+y =0 =
zZ+w.

It suffices to show that this locus  +y = 0 = z + w does not lie in (S ). Indeed, Sy
contains some nonzero even integer 2j, and hence 3(Sy 1) lies inside the hypersurface of equation
2% +y? = 2% + w?¥. So it suffices to show that the locus z +y = 0 = z + w does not lie in this
hypersurface. The intersection of this hypersurface with the locus x +y = 0 = 2 4+ w is the locus in
(z,2) space defined by 2% 4+ (—x)% = 227+ (—2)%. As we are in odd characteristic, this intersection
is the locus 2% = 2%, which is the union of 2j lines. O
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3. Ma2 AND RESULTANTS
We will need the following property of resultants, which is well-known:

Lemma 3.1. Let R, S be commutative rings, f,g € R[z], and let ¢ : R — S be a ring homomor-
phism.

(i) If o(Res(f,g)) # 0, then Res(o(f),¢(g)) (computed as of two polynomials in Slx]) is also

nonzero.

(i) If ¢ preserves the degree of each of f and g, then Res(p(f), p(g)) # 0 implies p(Res(f, g)) # 0.
(iii) If S is an integral domain and ¢ preserves the degree of at least one of f and g, then

Res(o(f), ¢(g)) # 0 if and only if o(Res(f,g)) # 0.

Proof. (i) Assume that ¢(Res(f,g)) # 0. Let f(z) be of degree d and with leading term az?, and let
g(x) be of degree e and with leading term bz®. Suppose that ¢(a) = ¢(b) = 0, so that ¢(f) € S[z]
has degree < d and ¢(g) € S[x] has degree < e. In this case, ¢(Res(f,g)) = 0, a contradiction. So
we may assume that ¢(a) # 0, so that ¢(f) € S[x] has degree d. Now, if ¢(g) has degree ¢’ < e,
then

(3.1.1) ¢(Res(f,9)) = +p(a)*“Res(¢(f), #(9));

and hence Res(¢(f), ¢(g)) # 0.
(ii) follows from ([3.1.1) (with ¢’ = e).
(iii) follows from (i), (3.1.1)), and the assumption that S is an integral domain. O

Fix a prime p. First we look at any set Q := {q1 < ... < ¢y} of n > 1 positive powers of p, and
consider

(3.1.2) protar(Q) 1= [ {¢C€FH¢H" = (1)}

1<i<n
In the special case of characteristic p = 2, we have (—1)? = 1, and so
(3'1'3) Mtotal(Q) = Hged? (¢;—1)-
The following observation is helpful in computing fizotqi(Q).

Lemma 3.2. Let n > 2, p any prime, ¢ = pf, ¢; = ¢™ for 1 <i<mn, and mi < ... < my. Also
let e := ged(my, ..., my). Then

¢“ -1, p=2
Hltota(Q) = ¢°—1, p>2and 21t (mi/e) for all i,
0, p > 2 and 2|(m;/e) for some i.

Proof. The statement is obvious when p = 2, so we will assume p > 2. Replacing g by ¢¢, we may
assume that ged(m1,...,my) = e = 1. Suppose 2|m;, 21 m;, and ¢ € firorq1(Q). Since M=
and m; is odd, we see that the 2-part 2/ of the order of ¢ is 2(¢™ — 1) = 2(q — 1)2, twice the
2-part of ¢ — 1. As p > 2, 2f divides (¢® — 1)2, which in turn divides ¢" — 1 because 2|m;, and this
contradicts the equality (4" ~1 = —1.

Assume now that 2 { m; for all ¢, so that 21 (¢"* —1)/(q¢ — 1), and choose a primitive (2q — 2
root of unity @ € Fp. Then —1 = #4971 = §9""~1 "and hence ¢ € pyorar(Q) if and only if (¢6)7" ~ =1
for all i. There are exactly

god (™ —1,...,q" = 1) = ggedtmem) 1 =g — 1
possibilities for such (6. O

)th
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For any a € Z>2, let
(3.2.1) M, (a) = {A eF, |Vj, 2<j<a, (j) (A+1) —A 1) = 0} :

Note that My (a) is finite (by looking at the condition at j = a, if p { a. In fact, M,(2) = @ if
p > 2, My(3) = @ if p > 3; more generally, My(a) =@ if2<a<porifpfala—1). As we will
see in the proof of Proposition see (3.3.6)), for ¢ = p/ we have

Mp(q+1) = pora({a}) = {A € F," | 4771 = —1}.

We also set
(A+1Dv+1)" = (Av+1)* = (v+1)* +1
F,(Av) = ( ) 102 e Fy[A,v].

Keep the notation
Yo =a"+y" — 2% —w* € Fplz,y, z,w].

Proposition 3.3. Let 2 < b < ¢ be integers coprime to p. For finite extensions L/F,, the following
statements hold for the set X(L) of L-points of the surface

D ZIZZbZECIO
of Az, y, z, w).
(i) limgr o0 #E(L)/L? > 2+ #(Mp(b) N My(c)).
(ii) If the resultant R(A) := Res,(Fy(A,v), F.(A,v)) of the polynomials Fy(A,v) and F.(A,v) in
the variable v is not identically zero as a function of A, then

#1300 #5(L)/L? = 2+ #(Myp(b) N Mp(c)).

(iii) Ifb=2 < p then limy oo #X(L)/L* = 2.
(iv) If b=3 < p then limyr oo #3(L)/L* equals 2 when 2|c and 3 when 21 c.
v) The equality in (i) holds if b= pf 4 1.
(vi) Suppose ged((b—1),/,(c—1),/) =1, where n,y denotes the p'-part of n € Z>1. Then R(A) £ 0
and hence the equality in (ii) holds.
(vii) If ged(b—1,c—1) =1, then limyr oo #X(L)/L* = 2.
(viii) If gcd((b — 1)y, (c— l)p/) =1,p>2, and (b—1), = pf™, (c — 1), = pI™ with f,m,n € Z>y,
ged(m,n) =1, and 2|mn, then we also have limyr oo #5(L)/L? = 2.
Proof. For (i), consider any point P = (z,y,2,w) € X(L). Then z 4+ y = z 4+ w. Certainly, ¥
contains the two planes
(r=2z2 y=w)and (r =w, y=2)
which contribute 2(#L)? — #L points to X(L). So we have to count the points P € X(L) for which
z # x,y. For these points, we can use the parametrization
(3.3.1) r=A+1)z—Ay=(A+Du+y, z=y+u, w=Az—(A—- 1)y = Au+y,
for P in terms of A,u,y, where u := z —y # 0 and A := (x — 2)/(2 —y) # 0. The condition
Yy(P) = 0 now reads
(3.3.2) (A+Du+y)’ +9° — (y+u) — (Au+y) =0.

First we look at such points P with y = 0. Since u # 0, (3.3.2)) implies (A + 1)* — A®* — 1 = 0.
The leading term of this polynomial equation in A is bA’~!. Since p { b, there are at most b — 1
such A’s, which contributes at most (b — 1)#L points to X(L). This dies in the large L-limit.
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So we may now assume y # 0, and replace (A, y,u) by (A,y,v), where v := u/y # 0. Since y # 0,
now (3.3.2)) becomes
(3.3.3) (A+Dv+1)°" = (Ao +1)" = (v+ 1)’ +1=0.

Note that the coefficient for v/ in the left-hand-side of (3.3.3) is (g) ((A+1)7 — A7 — 1) when
2<j<b,and 0if j =0,1. So the condition P € 3(L) now reads

(3.3.4) Fy(A,v) = Fu(A,0) =0

Furthermore, if A € M,(b), then is vacuously true. Hence, if A € M,(b) N M,(c), then
is vacuously true, and each A contributes (#L — 1)? points to X(L) with y,v # 0, which do
not belong to the two planes (x = z, y = w) and (x = w, y = z). This yields the lower bound in
().

Now we look at A ¢ M, (b) N My(c), and assume that R(A) # 0 as a function of A. Applying
Lemma to the specialization homomorphism A — + at any point v where R(y) # 0, we see
that (3.3.4]) has no solution v when A = ~. Thus can have solutions in v only at A = ~
with R(y) = 0. This implies that the number of A for which has a common solution in v is
bounded independently of L (in fact by 2bc, an upper bound for the degree of R(A)). If A ¢ M, (b)
for instance, then Fj(A,v) is a nonzero polynomial in v, and hence has at most b zeros once A is
fixed. Thus each such A contributes at most max(b, ¢)(#L — 1) points to (L) (with y running),
and again this dies in the large L-limit. This proves the equality in (ii).

Suppose b = 2 < p. Then F5(A,v) = 2, and hence has no solutions. Furthermore,
M, (2) = @, proving (iii).

Suppose b = 3 < p. Then F3(A,v) = 3((A+1)v+2). Hence is equivalent to (A+1)v = —2
and (1) — (—v—1)° = (v+ 1)+ 1 = 0. If 2|c, this shows that (v + 1)¢ = 1. Thus there are at
most ¢ pairs (A4, v) that satisfy (3.3.4), contributing at most ¢(#L — 1) points to (L), and this dies
in the large L-limit. Suppose 2 { c. This argument then shows that there are exactly #L — 2 pairs
(A,v) that satisfy and A, v # 0, namely one for each v # 0, —2. This gives (#L—1)(#L —2)
more points to (L), proving (iv).

Next, suppose that b = ¢ 4+ 1 with ¢ := p/ > p. Then becomes

(3.3.5) (A7 + At =0,
which shows that

3. € + 1) if and only i T =-1
(3.3.6) A € My(q+ 1) if and only if A9 ,

i.e. A€ pota({g}). Now, if A ¢ My (b), then (3.3.5) has no solution since v # 0, and hence (3.3.3),
respectively (3.3.4), has no solution. If A € M,(b) ~ M,(c), then we have at most b —2 = ¢ — 1

possibilities for A, for each of which F.(A,v) = 0 yields at most ¢ possibilities for v. This contributes
at most (b—2)c (#L — 1) points to (L), and this dies in the large L-limit. Hence we have to count
only the A’s in M,,(b) N My(c), and hence (v) holds.

For (vi), note that the coefficient for v/=2 in Fy(A,v) is

i(?)((AJrl) — A —1) = (?):b(?j) (mod A)

when 2 < 5 <b. Hence,
b
b—1\ . (v+ 1)t -1
=b Vi -
£(0v) jZ<J—1) v

=2
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Thus the only roots of F;(0,v) are the elements of F(b-1), {1} (subtracted by 1). Similarly, the set
of roots of Fi.(0,v) is fi(c—1),, ~ {1} (translated by —1). So the assumption ged((b—1),, (c—1),) =1
implies that F(0,v) and F.(0,v) have no common root. Furthermore, the specialization A — 0
preserves the degree b — 2 of Fj(A,v) (as ptb). It follows from Lemma that R(0) # 0, and so
R(A) £ 0.

Note that (vi) implies (iii) and (v), since (b — 1),y = 1 when b = p/ + 1 with f > 0.

Assume now that ged(b— 1,¢ — 1) = 1. Then we may assume that p{ b(b — 1). In this case,

(;’) (A+1)2—A%—1) =b(b—1)A,

and hence M,,(b) = @, implying lim /oo #X(L)/L?* = 2 by (vi).
For (viii), note that (b — 1), = p/™ implies that p { (?) for j = p/™ + 1. Now

(- -n- (o en

J J

where ¢ := p/. Thus M, (b) is contained in {A | A" 1 = —1}. Similarly, M,(c) is contained in
{A| A1 = —1}. By Lemma the set {A | A7"~1 = A?"~1 = —1} is empty, and so we are
done by (vi). O

We will need the following well-known observation:

Lemma 3.4. Let p be a prime and n = Zizo nipt and m = Zz’zo m;p’ be the base p expansions of
integers m,m > 1. Suppose that m; < n; for all i. Then pt (:YLL)
Proof. The hypothesis implies that n —m = Y_,5(n; — m;)p' is the base p expansion of n — m.
Now for any j > 0 we have

m n—m

L+l 1= Yomap 4y (i —m)p T =y ' = L)

i>] (=] i2]

Since ) jzob%J is the exponent of the highest power of p that divides n!, and similarly for m! and
(n —m)!, the above equalities imply the claim. O
Proposition 3.5. Fix a prime p, integers n,r > 1, and consider prime to p integers
a=p"+1>b >by>...>b.>2.
For finite extensions L/F, consider the set (L) of L-points of the surface
SN =N, =% =...=%, =0
of A4(z,y, z,w). Then exactly one of the following statements holds for

M := limsup #%(L) /L.
#L—00
(a) p>2and M = 2.
(b) p=2 and M = 3.
(¢) p>2and M = p°+1 >4, where b; = p™i+1 for1 <i <r, and the integersn/e, mi/e,...,m,/e
are all odd for e := ged(n, my,...,m;).
(d) p=2and M =2°+12>5, where b; =2" + 1 for 1 <i <r, and e := ged(n, my,...,m;) > 2.



16 NICHOLAS M. KATZ AND PHAM HUU TIEP

Proof. We will follow the proof of Proposition and count the points P = (z,y,z,w) € X(L)
that lie outside of the two planes (z = z,y = w) and (x = w,y = z), for which we can use the
parametrization (3.3.1)). For these points, the condition P € ¥ reads

F.(Av) = Fy, (A,v)=...=F, (A,v) =0,

cf. ([3.3.4). Since X,(P) = 0 and a = p" + 1, we have AP"~! = 0, see (3.3.5). Now the proof of
Proposition [3.3|v) can be repeated verbatim to show that

M =2+ #M.N [ Ms,),
i=1
where M, and My, are defined in (3.2.1).

We will assume that M > 2 if p > 2, M > 3 if p = 2, and aim to show that we are in (c) with
M =p°+1>4orin (d) with M =2°+1 > 5. Note that when p = 2, 1 € M, for any integer
b > 3. Hence our assumption implies that

(3.5.1) For all i, M;, # @ if p> 2, and M,, D {1} if p= 2.
Consider the base p expansion
i>0

of ¢ :== b;. We already noted that M. = @ if 2 < p { ¢(c — 1), contrary to (3.5.1). On the other
hand, if p = 2 then 2 { ¢ and so p|(c¢ — 1). Henceforth we may assume that p|(c — 1), whence ¢y = 1.

Consider any digit ¢; > 1 of ¢, with ¢ > 1. By Lemma p1t ( Taking j := p’ + 1 in the
definition of M., we get
0=(A+ 1P — AP 1 = (A" 4+ 1)(A+ 1) — AP T 1= AP 4+ A
for A € M.. As A #£ 0, we get
(3.5.2) AP =

piil)'

in particular,
(3.5.3) AP = A A = 43

Assume in addition that ¢; > 2 (and so p > 2 as ¢; < p—1.) Then by Lemmawe have p 1 (
Taking j := p’ 4 1 in the definition (3.2.1]) of M., we get

0=(A+1)»'+1 - A%+ _q

QpiCJrl) .

= (A" + 1)2 (A4 1) — A%+
=(—A+1)*A+1) - A% -1
— —A(A+1),

and so A = —1. But this is impossible by (3.5.2)) (since p > 3 is odd in the case under consideration),
and so M, = @, again contradicting (3.5.1).

We have shown that any positive digit ¢; of ¢ must be equal to 1. Suppose now that ¢; =1 = ¢;
for some i > j > 1. Then (3.5.2)) holds for both A?" and AP, and so

AP = AV = — A, AP = 48,



MOMENTS, EXPONENTIAL SUMS, AND MONODROMY GROUPS 17

Furthermore, by Lemma we have p 1 (pi +;j +1). Taking j := p’ + p/ + 1 in the definition (3.2.1)
of M., we now get

0= (A4 )PPl P+ +1
— (AP +1)(AY + 1)(A+1) — AP+
=(-A+1)}(A+1)—-A%—1
=—-A(A+1),

and so A = —1. If p > 2, then this is again impossible by (3.5.2), and so M. = &, contrary to
(3.5.1). If p = 2, then M, C {1}, contradicting (3.5.1]).

We have shown that b; = ¢ has only two positive digits, ¢y and ¢,,, and both are equal to 1.
Thus by = p™ + 1. Applying the same argument to any b;, we see that b; = p™ 4+ 1. Hence

My, ={A€TF,| AP = 1Y,
Let e := ged(n,my,...,m;). If p > 2, then it follows from Lemma that

T
#(Man [\ Ms,)
i=1
equals p© + 1 if all n/e and m;/e are odd, and 0 otherwise, and thus we arrive at (c). Similarly, if
p = 2 then using Lemma we arrive at (d). O
Corollary 3.6. Fiz a prime p, a power ¢ = pf, an integer v > 1, and consider ¢; == ¢"™ with
1<my <...<my and ged(mq,...,m,) = 1. If p > 2, assume in addition that 2 { mymsg ... m,.
For finite extensions L/F,, consider the set (L) of L-points of the surface
> El :qu+l == ...:EqTJr]_ =0

of A*(z,y, z,w). Then

limsup #%(L)/L? = g+ 1.
#L—00

Proof. Arguing as in the proof of Proposition [3.5] we have

limsup #X(L)/L* = 2 + # Ni_; My(g; + 1).

#L—00
According to (3.3.6), N/_; Mp(¢; + 1) is precisely puotai(Q) for Q := {qi,...,¢-}. The statement
now follows from Lemma [3.2] O

In hindsight, Corollary is a reflection of [KT6, Theorem 16.7(i-bis), (ii)] and the fact that
SUn(q) acting on the natural module Fé\é, respectively €2, (¢) acting on the natural module IFgN
when p = 2, has at least ¢ + 1 orbits. (Also see Theorem 1.5 and Lemma 5.1 of [GT2].)

Theorem 3.7. Let k be a finite field of characteristic p > 0, and f(x) € k[z], say f(z) =, Aia’,
of degree d > 1 which is Artin-Schreier reduced. Let 1 < a < b be prime to p integers. Suppose that
we are in one of the following two situations.

(a) We have 1 < a < b < deg(f). We consider the local system F on A?/k whose trace function
is given as follows: for L/k a finite extension, and s,t € L,

Trace(Frob(syt),L]]:) = \/_##LL Z ’lﬁL(sxa + ta® + f(l’))

zeL
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(b) We have 1 < a < b, deg(f) < b, f(x) is not of the form (nonzero constant)z®. We consider
the local system F on (A' x G,,)/k whose trace function is given as follows: for L/k a finite
extension, and s,t € L x L™,

Trace(Frob 4 1| F) = \/_#LL Z Yo (f(x) + sz + txb)).

zel

Consider the set £ of exponents which occur in f:
E={ieZ|A; #0},

and denote by S the set
S :={a,b} UE.
Enumerate (in some order) the set S:
S={AB,Cy,...,C.}.

Suppose that
ged(A, B,Cq,...,C,) = 1.
Then we have the following results.
(i) Suppose B =2A. Then M o(F) = 2.
(ii) Suppose B = 3A. Then Mso(F) =3 if every s € S is odd, and My 2(F) =2 if some s € S

1S even.

Proof. The idea is to make use of the limsup formulas of Theorems and to compute Mo o.

Consider first the case when B = 2A. Then the two equations ¥4 = 0,394 = 0, which we view
as the equations ¥; = 3y = 0 applied to the variables 4, y#, 24, w?, show that we have an equality
of sets

{aty1} = (4w}

If any of z,y, z,w vanishes, this equality of sets has O(#L) solutions, so we may assume that each
of x,y, z,w is nonzero. Then we are in one of 24?2 cases, as follows. For each ordered pair ¢,n of
A™ roots of unity in pa(k), either

[z, w] = [Cz,my] or [w, 2] = [z, ny.
In this first case of [z, w] = [(x, ny], we use the various ¥¢, equations, that x¢ + 3¢ = 2C 4w,
to get
2% 4 yCi = G 4 %y ie., we have (CC" — 1)3:101 + (nci — l)yci =0.
This equation has #L solutions unless both (¢ = n% = 1. But ged(the Cj, A,2A) = 1, hence
ged((the Cj, A) = 1. So in order to have more than O(#L) solutions, we must have

¢ =% =1 for each C;.

As both ¢, n are A" roots of unity, and ged(the C;, A) = 1, these equalities force ¢ = 1 = 5, Thus in
this first case, we have the solution [z, w] = [z, %], with its (#L)? points, and A2 —1 other solutions,
each with #L points.The treatment of the second case, [w, z] = [(z,ny], is identical.

Consider now the case when B = 3A. Then the two equations X4 = 0,Y34 = 0, which we view
as the equations ¥; = Y3 = 0 applied to the variables z4,y4, 24, w4, show that either we have an
equality of sets

{atyh} = (4w}
or we have the relations

ot oyt =0=24 4wl
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Exactly as in the B = 2A discussion above, we use the fact that ged((the C;, A) = 1 to show
that from the equality of sets {4, 54} = {24, w4} we get that, up to O(#L), the (#L)? solutions
{z, 4} = {zw}.

It remains to deal with with the equation z4 4+ y* = 0 = 24 + w?. Fix an A" root 7 of —1.
Then this breaks into the A? cases y = 7z, z = Tnw, for each pair ¢,n of A™ roots of unity. We
then use the X, equations to obtain the relations

29 (14 (1)) =0, 291+ (r)“) =0.
In order to get more than O(#L) solutions, we must have
14 (1Q)% =0, 14 ()% =0 for each C;.
Suppose first that A is odd. Then we take 7 := —1, and our equations become
¢Y = —(—=1)% =% for each C;.
If all C; are odd, these are the equations
¢% =1 =1n% for each C;.

In order to get more than O(#L) solutions, we must have ( = 1 = 7.
Suppose next that A is odd but some C; is even, say C is even. (This can only happen if we are
in odd characteristic, as f is Artin-Schreier reduced, and p 1 ab.)Then we have the equation

CCl — _1 — 7,’01.

But ¢ and 7 are roots of unity of odd order, so no powers of either can be —1. So in this case we
haveonly r =y=2=w=0.

Finally, consider the case when A is even. Then ged(the C;, A) = 1, so there is some odd C;, say
(7 is odd. Then the two equations

14+ (1% =0, 14 () =0,
rewritten as
(7—()01 = _17 (7—77)01
and raised to the A power give
(FOY % = (~)A = 1, (A% = () = 1,

But ¢4 =94 =1, so we get 741 =1 = 4%, But 74 = —1 and C) is odd, so we get —1 = 1,

which is nonsense. Thus in this case as well the only solution is z =y =2 = w = 0. 0

Theorem 3.8. Let k be a finite field of characteristic p > 0, and f(z) € k[z], say f(z) = >, Az,
of degree d > 3 which is Artin-Schreier reduced (meaning that A; = 0 if pli). Let 1 < a < b < deg(f)
be prime to p integers, and consider the local system F on A?/k whose trace function is given as
follows: for L/k a finite extension, and s,t € L,

Trace(Frob, 4 | F) = \/_#LL Z U (sz® + ta® + f(x)).

€L
Consider the set £ of exponents which occur in f:

Suppose that the set {a,b} UE contains 1, ¢, and d, where 1 < ¢ < d and either of the following
conditions is satisfied.

(i) ged(e—1,d—1) = 1.
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(i) p> 2, ged((c — 1)y, (d— 1)) =1, and (c — 1), = p'™, (d — 1), = p/™ with f,m,n € Z>1,
ged(m,n) =1, and 2|mn.
Then M272(]:) = 2.

Proof. The local system F is pure of weight zero, so geometrically semisimple, and of rank

deg(f) -1 Z 21
so has My o(F) > 2. Thus it suffices to show that M o(F) < 2 under the stated hypotheses. Now
apply Theorem and Proposition [3.3)(vii), (viii). O

4. p-FINITE AND STRONGLY p-FINITE DATA

In this and the next section, we consider local systems F on A”"/F, defined as follows. We are
given a list of integers
(4.0.1) A>By>...>B,>1, ptA]]Bi ged(4, By,...,B,) =1.
i

For L/F), a finite extension, and (¢,...,t.) € L",

Trace(Frob, . +.0lF) = (=1/V# Z"lﬂL (x” + Zt x

zeL
Here we make a choice of /p € Qy, and define /#L := \/ﬁdeg(L/ Fr) | We will name this F as
]:(A?Bla"')BTa]l)

when confusion about “which F7?” is possible. Recall from [KT4, 2.5, 2.6] that such an F is
geometrically irreducible.

When r = 1, these local systems were the main subject of study in Chapter 10 of [KT6]. In gen-
eral, the local systems F(A, By,..., By, 1) with finite Ggeom (and their Ggeom) have been classified
in Chapter 11 of [KT6], some of whose results can be stated using the following notion.

Definition 4.1. Data (A, By,..., B,) with » > 1 subject to is said to be p-finite if one of
the following conditions holds.
(i) p>2,g=pf, A=(¢"+1)/2,and B; = (¢ +1)/2for 1 <i<randn>mq >...>m, >0
are integers such that 2|nm; ... m, and ged(n,my,...,m,) = 1.
(ii) ¢ = pf and A = ¢" + 1. Furthermore, either (r, By,n) = (1,1,1), or r > 2 and B; = ¢™ + 1,
1<i<r—1, wheren >mq > ... > m,_1 > 0 are integers with ged(n,my,...,my_1) = 1,
and B, = 1.
(iii) p=2,¢=2f, A=¢"+1, B, =q¢™ +1,1<i <r, wheren > my > ... > m, > 1 are integers
such that 2|nm; ... m, and ged(n,my,...,m,) = 1.
(iv) g=p/, A= (¢"+1)/(¢+1), B; = (qmi—i—l)/(q—i—l), 1<i<r,wheren>m;>...>m, >1
are odd integers with ged(n, my,...,m;) = 1.
(v
(v

) p=2, (A, By,...,B;) =(13,3) or (13
i p By}
(vil) p=3,1<r<3,A=5,{By,...,B;}
: &

~—

P g SN

,2,1}.
. 2,1}
1}

Iﬁlﬂlﬁooﬁ
o s s — |

1§’I“§3, A:7, {Bl,...,
(vili) p=5,1<r <2 A=3,{By,...,
(ix 5r=1,A=17 By =1.

() p=T.r=1. A=5 B =2
Definition 4.2. Data (A, Bi,...,B;) with k > 1 subject to (4.0.1) is said to be strongly p-finite,
if it satisfies [1.1](i) with ¢ € {3,5}, [£.1}ii) with r > 2 and either ¢ = 2, or 21 ¢ but 2|nmy ... m,_1,
4.1{(iii) with ¢ = 2 [.1[iv) with ¢ = 2, or one of (v)—(x) of [4.1]
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Theorem 4.3. A local system F = F(A, Bi,..., By, 1) in characteristic p subject to (4.0.1) has
finite Ggeom if and only if (A, Bi,...,B;) is p-finite. If the data is strongly p-finite, then Ms o(F)
equals 2 if 2|AB; ... B,, and 3 otherwise.

Proof. The first statement summarizes Theorems 10.2.6, 10.3.13 and 11.2.3 of [KT6]. The second
statement follows from the explicit determination of Ggeom and [GT2, Theorem 1.5], if we assume
in addition that A > 9 in the cases of [4.1f(ii), (iii) with ¢ = 2. Assume we are in the cases of [1.1](ii),
(iii) with ¢ = 2 and A = 2" +1 < 9. Now if B, =1 (so we are in [£.1[ii) with r > 2), then My = 3
by Corollary Thus we are left with the cases where p = 2, (A, By,...,B;) = (5,3), (9,5),
(9,5,3). The third case has M35 = 3 by Theorem The two remaining local systems of rank 8
and 4, with » =1 and (4, By) = (9,5), (5, 3), are dealt with in the next result, which also resolves
some open cases left in [KT6, Chapter §]. O

Theorem 4.4. Suppose p = 2. Then the following statements hold.

(i) Each of the following local systems Fs31 = F(5,3,1,1), Fs3 := F(5,3,1), and Hs3 :=
Hyp(Char, Chary ) has geometric monodromy group 214 L Ay, which is also the arithmetic
monodromy group over any finite extensions of Fy. For each of them, the arithmetic mon-
odromy group over Fy is ol+d. Ss.

(ii) Each of the local systems Fos31 := F(9,5,3,1,1), Fos3 := F(9,5,3,1), Fos1 := F(9,5,1,1),
Fos := F(9,5,1), and Hos := Hyp(Charg, Chary) has geometric monodromy group 217°-Q¢ (2),
which is also the arithmetic monodromy group over any finite extensions of Fq. For each of
them, the arithmetic monodromy group over Fy is 2116 . Og (2).

(iit) The local system Foz1 := F(9,3,1,1) has geometric monodromy group 2*7°¢ . SU3(2), which is
also the arithmetic monodromy group over any finite extensions of Fy. Over Fo, the arithmetic
monodromy group is 2'7¢ . SU3(2) - 2.

Furthermore, all the local systems considered in this theorem have Ma o = 3.

Proof. (a) First we note that both Hgs and Hsg satisfy (S+) by [KT3, Theorem 3.13]. Furthermore,
each of Fs31, Fos31, Fos1, Fo31 has Moo = 3 by Corollary We also use the facts that if
¢ denotes the character of the underlying representation for the arithmetic monodromy group
G arith,F, of any of the listed sheaves over Fa, then ¢ is irreducible of symplectic type; in particular,
Z(Garith 7,) < Ca. (Indeed, ¢ is visibly real-valued, and its restriction to Gigeom 0f Hos, respectively
Hss, is symplectically self-dual by [Ka2l, 8.8.1-2].) Furthermore, the restriction of ¢ to the arithmetic
monodromy group Gayith 7, Of any of the listed sheaves over Fy is rational-valued by [KT6, Theorem
7.1.2).

(b) Let F denote any of the systems Fogs31, Fos51, Fo53, and let G denote its geometric monodromy
group. By the above, G is a finite irreducible subgroup of Spg(C) with M2 = 3. Now we can apply

[GT2, Theorem 1.5] to G, and note that case (B) cannot occur because the dimension D = 8,

whereas case (D) cannot occur because ¢ is of symplectic type. It follows that we are in case (C)
of |[GT2, Theorem 1.5]:

(4.4.1) 270~ B 9 G < Ngp (¢)(E) = E- 05 (2),

and G/E < O (2) acts transitively on 27 (nonzero) singular vectors and on 36 nonsingular vectors

of the natural module F§ for Oy (2). In particular, 27 divides |G/E|. In fact, the observations in

(a) imply that also holds for G_ .y , 7, the arithmetic monodromy group of F over Fs.
Next, observe that a pullback of F yields Fgs, which is a Kummer pullback of Hgs. In particular,

if G denotes the geometric monodromy group of Fg5 and H denotes that of Hos, then G < H,
H/G — Cy, and G — G. Clearly 5 divides |H|, so it also divides |G| and |G/E|. Thus 27-5 divides
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|G/E|. Using the list of maximal subgroups of Og (2) [Atlas] we deduce that G/E is either Qg (2)
or Og (2). In the latter case, [KT6, Proposition 8.2.4] implies, however, that |¢(g)| = V2 for some
g € G, which is impossible by (a). Hence we conclude that G = E - €5 (2), and the same holds for
G aritnr, 7+ On the other hand, the Frobenius at (1,0,...,0) over Fy (where 1 is the coefficient for
2°) has trace —2/4/2 and hence does not belong to Goritnp, 7~ Together with (4.4.1), this implies
that Garith,JFz,f‘ =L Og(2)-

(c) To identify H, the Ggeom for Hgs, we recall that H satisfies (S+) by (a). First suppose that
H is an extraspecial normalizer. Together with (a), this implies that

(4.4.2) 270~ By 9 H < Ng, (¢)(E1) = E1 - Og (2).

We already mentioned that each of Cy and Cs injects in H, hence also in H/E; < Og(2). Again
using the list of maximal subgroups of Qg (2) [Atlas] we deduce that H/E; is either Q0 (2) or Og4 (2).
In the latter case, [KT6, Proposition 8.2.4] implies, however, that |¢(g)| = /2 for some g € H,
which is impossible by (a). Hence we conclude that H = E; - 5 (2) (in fact, the same holds for
Glarith,F4 Hes Decause it normalizes O(H) = E; and hence also satisfies ) In particular, H is
perfect. Since H/G — Cy, we also have G = H. Knowing now that

G < GurithFy, Fos < Garith,Fy,Fos1 = G

we conclude that Garitnr, 7; = G. Next, again using the Frobenius at s = 1 of Fg5 with trace
—+/2, we see that this Frobenius is in Glarith,Fa, Fos, DUt Ot in its subgroup G of index 2. This shows
that Garith,Fo,Fos = Garith,Fa,Fos1 = £ - Og (2). AS Garith,Fo, Fos 15 @ subgroup of Garith Fy 75, Which
normalizes O2(H) = F; and hence satisfies , we deduce that GarithFy 295 = o146 Oq (2).

Assume now that H is almost quasisimple, with R the unique non-abelian composition factor.
Then G(*) = H(*) is a cover of R with center Z(H>)) < Z(H) < Cy = Z(E,) = Z(E), cf. ([&4.1),
. On the other hand, E N G(®) is a normal 2-subgroup of G(*), so

ENG™ < Z(E)NG™ = Z(G>)).
We also know from G < G = E - S that
G®))(ENG™) =2 G®E/E<G/E =528U42).

It follows that R is a simple subquotient of SU4(2). Using [Atlas], we readily see that R = Az, Ag,
or SU4(2); in particular, Out(R) is a 2-group. Recalling that

R < H/Z(H) < Aut(R), Z(H) < Cs, Cy — H,

we have that Cy < R. This rules out the possibilities A5 and Ag, and so R = SU4(2). But H acts
irreducibly on Hgs of dimension 8, so we must have that H 2 Sp,(3)-2. This is however impossible,
because H = O%(H).

(d) In dimension 8, it remains to determine G, the Ggeom for Foa1, which also has Mso = 3. As
in the case of G, this equality implies by |[GT2, Theorem 1.5] that

(4.4.3) 2!%0 =~ By <Gy < Ny ) (E2) = B2 - Og (2),

moreover, G1/Ey < Og (2) still acts acts transitively on 27 (nonzero) singular vectors and on 36
non-singular vectors of the natural module W = F$ for Og (2); in particular, 27 divides |G1/FEs|.
Using the list of maximal subgroups of Og (2) [Atlas] we deduce that G/ E» is either Oy (2), Q4 (2),
a subgroup of M := 05 (2) 1S3, or a subgroup of N := GUjs(2) - 2 = 3172 % 254, The first case
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is impossible since |G1| < |G| = |Ea| - |4 (2)|. To rule out the second possibility, we make use of
[KT6, Corollary 7.1.5], which shows that

(4.4.4) o(z) = -1 (mod 3)

for any odd-order element x € G;. Indeed, in this case we have G; = G since |G| = |G| and

G < G; in particular, G; contains an element g; of order 5 which has rational trace. The latter
condition implies that ¢(g1) € {—2,3}, violating (4.4.4). In the third possibility, we can realize M
as the stabilizer of the decomposition

W = (e1, e2)r, D (€3, e4)r, ® (€5, €6)F,,
where the quadratic form @@ on W takes value
af + 2129 + T3 + TF + T3Ty + 25 + T3 + T5T6 + T

at the vector 2?21 x;e;. But then the vectors u := e; + ez and v := 2?21 e; have Q(u) = Q(v) =1
and belong to different M-orbits, showing that M is not transitive on the non-singular vectors of
W. This leaves only the fourth possibility: G1/F2 < N. In particular, G; is solvable.

Now we use the embedding Gq < G = Ggeom,Foss1 = £ - Q5 (2). Then

3= M2(G1) > M22(EG1) > M>2(Spg(C)) = 3,

showing that M (EG1) = 3. Thus EG1/E is a solvable subgroup of €25 (2) which acts transitively
on 27 singular vectors and on 36 non-singular vectors of FS. Using the list of maximal subgroups of
5 (2) as in the preceding paragraph, we see that FG1/E is contained in Ny = GUj3(2). Recalling
E is a 2-group and G; = 0% (G1) (as the Ggeom for a local system on A?%/F,), we then have

EG1/E < O (Ny) = SU3(2) = 317 x Qs
Moreover, 27 and 36 both divide |G1/Es| = |G1|/|E|, so in fact we have
(4.4.5) 3172 % Cy < EG1/E < 317 % Qs.

Suppose that EG1/E = 3?2 X Cy in . Note that we can turn the quadratic space W = F$ into
the Hermitian space W7 := F$ for SU3(2) in such a way that the set N(W) of 36 non-singular vectors
of W is exactly the set N(W7) of 36 non-singular vectors of Wy. Since EG1/E acts transitively on
N(W) = N (W), the stabilizer of any w € N (W) has order 3, which implies that a fixed involution
j in EG1/FE does not fix any w € N(W7). The Sylow 2-subgroups of SU3(2) are isomorphic to Qsg,
so any involution in SU3(2) is conjugate to j and hence does not fix any w € N(W7). But this
is a contradiction, since the stabilizer of any w € N (W) in SU3(2) is SU3(2) = Ss, which clearly
contains an involution. We have therefore shown that

(4.4.6) BG4 /E = SUs(2).

Recall that a pullback of Fg3; contains the Pink-Sawin system F(9,1,1) which has 2176 as its
Ggeom by [KT6, Theorem 7.3.8]. This implies that G contains Z(E) = Cy. As [E, E] = Z(E), in the
conjugation action on E/Z(E) = F§ the subgroup E acts trivially, whereas SU3(2) acts irreducibly
(indeed, no proper parabolic subgroup of GLg(2) can contain 3% = 03(SUs(2)) as a subgroup).
So (4.4.6) shows that G; acts irreducibly on E/Z(E). It follows that ENG; = Z(E) or E. In the
former case, implies that |G| = 2|SU3(2)| = 2* - 33, which is impossible since 7 contains
E» of order 2. We conclude that G; <0 E, and

G1 = E - SUs(2)
by (4.4.6).
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To identify GarithFy,Fos, We note that Guariehr, 75 = (G1,91), where g1 = Frobg 1) r,. The
pullback s = 0 of Fo3; is the Pink-Sawin system F(9,1,1), so by [KT6, Theorem 7.3.8], g is
contained in its Ggeom, Which is contained in G1. Moreover, g; has trace —+/2, showing g1 ¢ G1.
Thus G has 2 in Garith Fy, Fos1 » Whence we also have Garith,ry,Fos, = G1-

(e) Now we work in dimension 4. Let G denote the geometric monodromy group of Fs3;. Since
it has M3 2 = 3 and is of symplectic type, the restriction of Sym2(<p) to G is irreducible, whence G
satisfies (S+) by [GT3l Lemma 2.1].

First we consider the case where G is almost quasisimple. Then G(®) is a quasisimple irreducible
subgroup of Sp,(C). Using [HM] we then deduce that G(*) is 2 - As or 2 - Ag. Potentially G
could still have index 2 over G(*). But using the rationality of the restriction of ©p to G, we get
G = G(®) < 2.A¢. On the other hand, a pullback of Fs3; is the Pink-Sawin system F(5,1,1) which
has 21 as its Ggeom by [KT6, Theorem 7.3.8]. This yields a contradiction, since 21+ cannot
embed in 2 - Ag.

We have therefore shown that G is an extraspecial normalizer, and so

(4.4.7) 2™~ B 4G < Ng,,()(E) = E- 0 (2);

note that Oy (2) = Ss5. Now let H denote the Ggeom for Hs3 and let G denote the Gigeom for Fss,
so that H/G — C5. Recall from (a) that H satisfies (S+). Assume in addition that H is almost
quasisimple. Then G(®) = H() is a cover of a non-abelian simple group R. But G — G, SO
implies that R is a simple subquotient of S5. It follows that R = As. We also know that
H < Sp,(C) is almost quasisimple with rational traces. Hence H = SLa(5) in a faithful irreducible
representation of degree 4; in particular, any element of order 3 in H has trace 1 [Atlas]. Thus any
element ¢ of order 3 in I(co) has trace 1 in ¢, and trace —1 on the tame part of Hss. So ¢ has trace
2 on the wild part Wild of Hs3, which means that t acts trivially on Wild, a contradiction.

We have now shown that H is also an extraspecial normalizer, and so also holds for
H. Note that both C5 and Cj inject in H, so 15 divides the order of H/E < Sj. Inspecting
the list of maximal subgroups of Symy [Atlas], we see that H/E = S5 or As. But H = O?(H),
so H = E - As; in particular, H is perfect. Since H/G — C5, we also have that G = H. Now
Glarith,F,, Fs; Dormalizes G and O2(G) = E, so holds for Gaith F,,Fss, Which already contains
the subgroup G = E - As of index 2 in F -S5. By [KT6L Proposition 8.2.4], E - S5 contains an
element = with |¢(x)| = v/2. Since ¢ is rational on G arith,Fy, Fs3» We conclude that Gaurigh F,, 75 = G-
Noting that holds for Gasith F, 753 Which has only rational traces and contains Garith F,, 73 »
we deduce that Garithr, 2455 = G-

Next, GarithF,, 7y Dormalizes G and O2(G) = E, so (4.4.7) holds for GarithF, Fys- But now
G arith,Fo, Fs3 contains the Frobenius at s = 1 with trace —+/2 that does not belong to G. Using
, we conclude that Garith Fy 755 = E - S5. As Glarith Fy, 7y €mbeds in Glarith 7y, 25, Which also
satisfies (as it normalizes O2(H) = E), we must have that GasithFy 255 = £ - Ss.

Now, E - As = G = Ggeom,Fsz < Ggeom, Fsz1 = G < E-Ss and ¢|a is rational-valued, so G = G.

Repeating the same inclusions for Gurithr,, We get GarithF, 7sn = G. Finally, as Garith Fo, Fosy

normalizes O2(G) = E, we have
E - S5 = GarithFo,Fs3 < Garith,Fo,Fsyn < E - Ss,

whence Garith,F2,f531 =F- 55.

(f) As mentioned in the proof of Theorem {4.3| we already know My 9 = 3 unless F = Fs3 or Fos.
But Ggeom, 753 = Ggeom,Fs, according to (i) and Ggeom,Fos = Ggeom,Foss1» 50 Fs3 and Fgs both have
Ms o = 3 as well. O
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5. MULTIPARAMETER LOCAL SYSTEMS: BALANCED PAIRS AND Infmono(A4, B)

We will now develop some framework to study the case in which » > 2 and F(A, By,..., B, 1)
has infinite Ggeom. First we attach to the data (A, By, ..., B;) a balanced pair (A, B = some B;) as
follows. We must distinguish three cases.

(i) If A and all B; are odd, we choose any of the B;.
(ii) If A is even, then some B; is odd, and we choose any odd B;.
(iii) If A is odd and some B; is even, then we choose some even B;.

Notice that, in all cases, at least one of A, B is odd, and hence C is odd. We now formulate the
following hypothesis infmono(A, B) for a pair (A, B) of integers A > B > 1 with p t AB. For
C :=gcd(A, B), A= CAy, B= CBy, we have the direct sum decomposition

FA,B 1) = @ F(Ao Bo,x),
xEChar(C)

where, in general, F(A, B,Y) is the local system on A!/F,(x) whose trace function is given as
follows: for L/F,(x) a finite extension and t € L,

Trace(Froby 1| F(A, B, X)) = (—1/+/#L) ZwL(xA + tzB)x(z).

el
The hypothesis infmono(A, B) is the following:

for each x € Char(C), Ggeom,7(40,Bo,x) 18 infinite,
with the exception of Geom, 7(4,B,,1) When (Ao, Bo) = (2,1).

Lemma 5.1. For C := ged(A, B),A = CAy, B = CBy, suppose C is odd and C > 3. Then the
following statements hold.
(i) If F(Ao, Bo, 1) has infinite Ggeom, then infmono(A, B) holds.
(ii) Suppose F(Ao, By, 1) has finite Ggeom but some summand F (Ao, By, x) of F(A, B, 1) has infi-
nite Ggeom. Then there is a divisor Cy of C with Cy < C such that any summand F (Ao, By, ¢)
of F(A, B, 1) has infinite Ggeom precisely when ¢ =1 # ¢ i.e. p € Char(C) \ Char(Cp).

Proof. (i) is immediate from [KT6l, Corollary 11.2.8(ii)].

For (ii), let S denote the set of x &€ Char(C) for which F(Ao, By, x) has infinite Ggeom; in
particular, x € S but 1 ¢ S. For any x € Char(C) \ S, F (Ao, Bo, x) has finite Ggeom, so by [KT6!
Corollary 11.2.8(i)] we have (Ao, By) = ((¢" +1)/(¢+1),(¢™ +1)/(¢ + 1) and o(x)|ged(q + 1,C)
for some power ¢ of p and some odd integers n > m; furthermore, F(Ao, By, X") has finite Ggeom for
all x' € Char(q+ 1). In particular, Char(Cy) C Char(C) \ S for Cy := ged(q + 1,C). It follows that
S = Char(C') \ Char(Cj). Since x € S, Cy < C. O

(5.0.1) infmono(A4, B) :

The following statement is a consequence of Lemma (ii), but we will offer an independent
proof.

Lemma 5.2. Suppose that x and p are nontrivial characters of odd order C' which are Galois
conjugate under Gal(Q((c)/Q). Then F(Ag, Bo, Xx) has finite Ggeom if and only if F (Ao, Bo, p) has
finite Ggeom -

Proof. The question is geometric, so we may work over extensions of F,2(x,p). Over a finite
extension k/F,2(x,p), all traces of F (Ao, Bo,x) and of F(Ag, By, p) lie in Q(¢,¢c), and point
by point their traces are conjugate under Gal(Q((c, (,)/Q((p)). In both cases, finiteness of Ggeom
is equivalent to all traces being algebraic integers, a condition which is invariant under Galois
conjugation. O
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Because F is geometrically irreducible and starts life over F), if Ggeom, 7 is infinite, then its
identity component G° is semisimple, by Grothendieck’s local monodromy theorem [De2, 1.3.9].
Next we determine Ggeom, 7 in some “easy” cases.

Theorem 5.3. Consider the local system F := F(A, B1,..., By, 1) subject to (4.0.1)). Suppose that
F(A, B,1) has infinite geometric monodromy group H for some balanced pair (A, B = B;) with
ged(A, B) = 1. Then we have the following results.

(i) If 2t AB; then Ggeom, 7 = Spa_1-
(ii) Otherwise, SLa—1 < Ggeom,F < {9 € GLa_1|det(g)? = 1}.

Proof. Suppose first that 2 { AB;. Then by [KT6l Theorems 10.2.4(iii) and 10.3.21(iii)], H = Spy_;.
As F(A,B,1) is a pullback of F, we have H < Ggeom,7. But we have an a priori inclusion
Ggeom, 7 < Spa_1. Hence Ggeom, 7 = Sp4_ in this case.

Suppose next that 2|AB;. Then by [KT6, Theorems 10.2.4(i) and 10.3.21(i)], we have

(5.3.1) SLa—1 < H <{g € GLa_1|det(g)? =1}, in fact, H =SLg_; if B# A — 1.

As F(A,B,1) is a pullback of F, we again have H < Ggeom, 7, and so SLa_1 <0 Ggeom, 7 < GL 4,
is irreducible. By [KTG6, 2.3.1], we have Gigeom, 7 < {9 € GLa_1|det(g)? = 1}. [To apply the cited
result, use the fact that the question is geometric, and after pullback to A" /IF,2, all Frobenius traces
of F lie in Q((p).] O

Theorem 5.4. Consider the local system F = F(A, Bi,..., By, 1) with r > 2 subject to (4.0.1]).
Suppose Ggeom,F 15 infinite. Then we have the following results.

(i) Suppose that A =2B; for some i. Then Ggeom, 7 = SLa-1.
(i) Suppose that A = 3B; for some i. Then Ggeom 7 = Spa_y if 21 ABy...B,, and G

geom,F —
SLa_1 if and 2|AB, ... B,.

Proof. Both assertions result from Theorem In (i), by Theorem we have My o(F) = 2. This
in turn implies by [GT2, Theorem 1.5] that G;eomJ-— =SLs_;.

In (ii), by Theorem we have Mo o(F) =3 if 21 AB; ... B,, and Myo(F) =2 if 2|AB; ... B,.
In the former case we also have an a priori inclusion Ggeom,7 < Spy_q. This in turn implies by
[GT2, Theorem 1.5] that Ggeom, 7 = Spa_1- In the latter case, we have G;eomf = SL4_1 as in

(i) 0

To work with pairs (A4, B) with C' = gcd(A, B) > 1, we first observe:

Lemma 5.5. Let Ay > By be prime to p integers with gcd(Ag, By) = 1, and x # ¢ two multiplicative
characters. We have the following results.

(i) In all cases, F(Ao, By, x) is not geometrically isomorphic to F(Ag, Bo, ¥).
(i) If AgBy is even, then F(Ag, Bo,X) is not geometrically isomorphic to F(Ag, By, )" .
(ii-bis) If AgBy is even, then F(Ag, By, X) is not geometrically isomorphic to F(Ag, Bo,x)" -
(iii) If AgBy is odd, the dual of F (Ao, Bo,X) is F(Ag, Bo,X)-

(iv) If AgBy is odd, F (Ao, Bo, Xx) is not geometrically isomorphic to F(Aq, Bo, ). It is isomor-
phic to the dual of F(Ag, Bo, ) only for ¢ =X.

Proof. We first prove that F (Ao, Bo, x) is not geometrically isomorphic to F(Ag, By, ¢), i.e., that
H2(G,/Fp, F(Ao, Bo, X) ® F(Ao, Bo,¢)¥) = 0. The dimension of this H? ia the limsup, over finite
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extensions L of F,(, ¢), of the sums

(#1[/)2 Z Z (a0 — A0 4 (2B — yBo))x(x)p(1/y)

teL xyeL*

—r 3 v - (/G

CEnBy wELX

The inner sum for ¢ # 1 has (40 # 1 (because ged(Ag, By) = 1), so this inner sum is bounded in
absolute value by Agy/#L (Weil bound). For ¢ = 1, the inner sum is Y ;. x(2)¢(1/z), which
vanishes unless x@ = 1, in which case the inner sum is #L — 1,

We next prove that if AgBy is even, then F(Ag, Bo, x) is not geometrically isomorphic to the
dual F(Ag, Bo,¢)". This amounts to the vanishing of H2(Gy,/F,, F(Ao, Bo, x) ® F(Ao, Bo, ®)).
The dimension of this H2 ia the limsup, over finite extensions L of F,(x, ¢), of the sums

W/#L)*Y > wpla +yto + @™ +y7)x(z)e(y).
tel z,yeL*

Bo — _1. Then this sum is

(L/#L) > Y du(a™ 1+ (rO)%)x(2)p(¢x).

CEppy zELX

For every ¢ € up,, we claim that (7¢)4° # —1. Indeed, if (7¢)4° = —1, then (7¢)40B0 = (—1)Bo,
but(r¢)AeBo = (—1)40(¢)A0Bo = (—1)40  and hence (—1)4° = (—1)P0, impossible as Ay and By
have opposite parities in the AgBy even case. Therefore each inner sum is bounded in absolute
value by Agv/#L (Weil bound), and we are done in this AgBy even case.

The proof of (ii-bis) is identical: the particular x, ¢ play no role in the proof of (ii).

Assertion (iii) is obvious: the trace functions of F (Ao, Bo,x) and F(Ao, Bo,X) are complex
conjugates of each other if AyBy is odd. Assertion (iv) then follows from (i) and (iii). O

Choose a root of unity 7 with 7

In view of assertion (iii) of Lemma in the case when AB is odd, for C' = ged(A, B), we
choose a set Rep(C) C Char(C) of (C — 1)/2 nontrivial characters such that for each nontrivial
X € Char(C), precisely one of x,Y lies in Rep(C).

Theorem 5.6. Let A > B > 1 be prime to p integers with 2 {1 gcd(A, B) = C > 1. Suppose that
infmono(A, B) holds, and write (A, B) = (C Ay, CBy). Then we have the following results.
(i) Suppose that AB is even and Ao > 2. Then Gy, Fa,B1) = Sbag-1 X [ 11y echar(c) SLao-
(ii) Suppose that AB is odd and Ay > 3. Then precisely one of x,X lies in Rep(C), and
Ggeom7]:(A7B7]l) = SI)AO_1 x HXERGP(C) SLAO
Proof. We begin with the direct sum decomposition
FA,B 1) = @ F(Ao Bo,x),
xEChar(C)

Recall from [KT4, 3.10] that, up to multiplicative translation, the local systems F(Ag, By, x) are
each geometrically isomorphic to Kummer [Ag]* pullbacks of hypergeometric sheaves. We have

F (Ao, Bo, 1) = [Ao]*H smali, Ao, Bo »

QO = x, we have

]:(A(LBO)X) = [AO]*/Hbig,Ao,Bo,px'

and for x # 1. and any choice of p, with p
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(i) Suppose first that AB is even, and Ap > 3. By infmono(A4, B), each Gyeom, 7(A9,Bo,y) 19
infinite. Then by [KT6l 10.2.4 and 10.3.21], we have

geom,}'(Ao,Bo,]l) = SLA0*17
and for each y # 1 we have
g;eom7]:(A07Boyx) = SLa,-
Now consider the direct sum of hypergeometric sheaves H(A, B, 1) defined as

H(A7 B, ]1) = Hsmall,Ao,Bo @ @ Hbig,Ao,Bo,pX-
1#x€eChar(C)

Up to multiplicative translation, we have a geometric isomorphism
F(A,B,1) = [Ao]*H(A, B, 1).
As finite pullback doesn’t change Ggeoy,, we have

(¢] J—
geomvHsmall,AO By SLAO_I ’

and for each X % 1 we have
geom Hp; SLAO‘
) zg,AO,BO,pX

In this AB even case, it suffices to show that G;eomﬁ( AB1) is the asserted product
;eom,’H(A7B,]l) = SLAO—1 X H SLAO‘
x€Char(C),x#1
For this, we apply Goursat-Kolchin-Ribet [Ka2, 1.8.2]. We must show that for any character £
of Ggeom,H(A,B,]l)7
(a) there is no isomorphism between L&H smair, Ay, B, and any Hbig, Ao, Bo,py OF its dual Hl\fi 9,40, Bo.px
(b) For x # ¢ both nontrivial, there is no isomorphism between £ ® Hbig,Ao,Bo,p, and either

A : v
Hbig, Ao,Bo,p, OF 1S dual Hbz‘g,Ao,Bo,W'

The first condition holds trivially, as the ranks are different, Ay — 1 versus Ag. It suffices to show
the second condition with the stronger statement for £ any character of g8°™%@me 2 0(q /R ).
Such a character is a Kummer sheaf £,. Indeed, as Ag > 3, either Ay — By > 1, in which case all
oo-slopes are < 1, and so L is tame at oo, or Ay — By = 1, in which case there is a single slope 1 at
00, but Ag — 1 > 2 slopes 0 at oo, so again £ must be tame at oo.

As the “upstairs” characters of Hypg a,,B,,0, and of both Hyig 4,.8,,0, and its dual Hgig’AO’BW
are Char(Ap), the set of all characters, the only possible £ is a Kummer £, for some x € Char(A4y).

It there were such an isomorphism, it would persist after [Ap]* Kummer pullback, which makes
the £ disappear. So in this AB even case, we are reduced to showing that for x # ¢ both nontriv-
ial, F (Ao, Bo, X) is not geometrically isomorphic to either F(Ag, By, ) or its dual F (Ao, Bo,)".

Applying Lemma [5.5] we complete the proof in the AB even case.
(ii) We now treat the case when AB is odd. Then AyBj is odd, and for each nontrivial x €

Char(C), the two local systems F (Ao, Bo, x) and F(Ag, By, x) are dual. Therefore F(A, B,1) has
the same Ggeom as the “reduced” direct sum

freduced(AyBy]l) = f(A(),Bo,]l) S @ J—“(A(),B(),X).
x€Rep(C)

Let us explain this last point. Our situation is that we have two local systems A and B of ranks M
and N respectively. We consider both the direct sum A® B and the direct sum A® B ®BY. For the
latter, an element v € 71 (A;/F,) maps to a “diagonal” element diag(Z, X,Y) in GL(A® B & BY),
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This element satisfies the matrix equation XY = Idyy. Hence every element (Z,X,Y) in the
Zariski closure also satisfies the matrix equation ‘XY = Iday. Thus the map
Ggeom,AQ}B@BV — Ggeom,.A@Ba (ZJ X: Y) — (Z7 X)
is injective: we recover Y as ‘X ~1. But this projection is surjective, so we get the asserted isomor-
phism
Ggeom,A@BEBBV = Ggeom,AEBB-

Analogously to the AB even case, we introduce the “reduced” direct sum of hypergeometric

sheaves

Hreduced(Aa B, ]1) = Hsmall,Ao,Bo @ @ Hbig,Ao,Bo,an
x€Rep(C),x#1
whose [Ag]* Kummer pullback is Freguced(A, B, 1). Then it suffices to prove that Gzeom,ﬂreduced( AB1)
is the asserted product

[e]
Ggeomvﬂreduced(A:an) - SpAO_l X H SLAO
Xx€Rep(C)

In view of Lemma(5.5] this is immediate from Goursat-Kolchin-Ribet [Ka2| 1.8.2]. Indeed, with the
hypothesis Ay > 3, we can instead directly apply [Ka2l 8.11.7.2], because the exclusion (1) of that
result, concerning factors of rank 2, is vacuous, as there are no such factors. O

6. MULTIPARAMETER LOCAL SYSTEMS WITH INFINITE MONODROMY. I

We continue to work with local systems defined in (4.0.1]), for which infmono(A, B) does not
necessarily hold. First we give a slight variant of Theorem [5.6]

Theorem 6.1. Given prime to p integers A > B > 1, suppose that C := gcd(A, B) is both odd
and > 3. Write (A,B) = (CAy,CBy). Let Sine, respectively Sgn be the set of those characters
x € Char(C) for which F(Ao, Bo,x) has infinite, respectively finite, Ggeom. Suppose that & #
Sint # Char(C). Then, by Lemma[5.1)(ii),
Skn = Char(Cp) and Sinsr = Char(C) ~ Char(Cp)
for some divisor Cy < C of C. Denote
]:inf(Aa B) = @xesmf]:(AO, BO,X)a ]:ﬁn(Aa B) = @XGSﬁn‘F(AO’ BOaX) = ]:(AOCO, BOCOa ]l)
Then the following statements hold for G := Ggeom F(a,B,1) and Hiin := Ggeom Fqn(A,B) -
(i) Suppose AoBy is even. Then
G;eom,]—'(A,B,]l) = G;eom,}'inf(A,B) = H SLAO'
Xesinf
If Ao — 1 # By, then Ggeom 7, p(A,B) = Ggeom,]:inf(A,B) and
G= Hgp ¥ Ggeom,}'inf(A,B)'
If Ag — 1 = By but Ay > 2, then
[G, G] == [Hﬁn,Hﬁn] X G;eom,}'inf(A,B)’
and the quotient G /|G, G| is a nontrivial finite elementary abelian p-group.

(ii) Suppose AgBy is odd. Choose a subset Rep(Sint) C Sint of #Sie/2 nontrivial characters
such that for each nontrivial x € Sint, precisely one of x,X lies in Rep(Sie). Then

G geom, Fint (A,B) = H SLag, G = Hfin X Gaeom, Fipe(A,B)-
XERep(Sinf)
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Proof. The proof of the identification of G;eomf( AB1) = G;eom,]_.inf( AB) via Goursat-Kolchin-
Ribet, is a subset of the proof of Theorem [5.6] and is left to the reader.

Next, observe that Gg com, Fint (A, B) is perfect and has no nontrivial finite quotient; furthermore,
(6.1.1) F(A,B,1) = Fun(A, B, 1) ® Fine(4, B).

Assume in addition that Ay — 1 # Bp. Then ([5.3.1)) and the arguments in the proof of Theoremj
611]

show that Ggeom,7,:(4,B) = Ggeom,finf(A,B)' Now, the action of G on the two summands in (
projects G onto the finite group Hpy, and onto Ggeeom, 7,:(4,8)- Since Ggeom, 7,¢(4,3) has no finite

quotient, an application of the classical Goursat lemma, cf. [L| Exercise 5, p. 75], shows that
G = Hfin X Ggeom, Fipi(A,B)-

Assume now that Ay — 1 = By but Ay > 2. By [KT6, Theorem 10.3.13], we have Cy = 1, and

(6.1.2) (p, Ao, Hsn) = (3,5,5p4(3) x 3), (5,3,SLa(5) x 5).

The action of G on any summand F(Ag, By, x) of F(A, B, x) projects G onto Hg, when y = 1 and
onto an intermediate group between SL 4, and SL 4, - p when x € Sipe. Hence it projects [G, G| onto
the quasisimple group [Hgp, Han] when x = 1, and onto SLy4,. Again using the classical Goursat
lemma, we conclude that

[G, G] = [Hﬁn, Hﬁn] X Ggeom,}]nf(A,B)‘
Now, the above action projects G/[G, G] onto C), on every summand, hence G/[G, G] is a nontrivial
finite elementary abelian p-group. 0

This last result allows a partial strengthening of Lemma (1)

Corollary 6.2. Hypotheses and notations as in Theorem the local systems F (Ao, Bo, x) with
X € Sinf are pairwise non-isomorphic as representations of Ggeom,finf(A,B)'

geom, Fing(4,5)
and the constituents F(Ag, By, x) indexed by x € Siy¢ are nontrivial irreducible representations of
the various nontrivial factor groups. In the case when AgBy is odd, the group Ggeom,7,,:(4,B) 15 @
product of copies of SLy,, Ao > 3, and the constituents are either the natural module for one of the
SL4, factors or the dual of the natural module for that factor. In this case it remains to observe
that, because Ag > 2, the natural module for a given SL 4, factor is not self-dual. ]

Theorem 6.3. Consider the local system F := F(A, By,..., By, 1) with r > 2, subject to (4.0.1)).
Suppose that F(A, B, 1) has infinite geometric monodromy group for some (not necessarily) balanced
pair (A, B = B;) with 24 C = ged(A, B). Then F is Lie-irreducible, i.e., Ggeom,F acts irreducibly.

Proof. Write (A, B) = (CAg,CBy). When C = 1, or when Ag = 2, or when Ay = 3 and B is odd,
we have already established the statement in Theorem (and its proof), and in Theorem

It remains to treat the case when C' > 3 and either Ay > 2 or both AgBy is odd and Ag > 3. In
these cases, we have the direct sum decomposition

F(AB1)= @ F(Ay,Box),
xEChar(C)

Proof. In the case when AyBjy is even, the group G is a product of nontrivial groups,

into pairwise non-isomorphic geometrically irreducible constituents. Precisely one of these con-
stituents has rank Ag — 1, namely F (Ao, By, 1), the other C' — 1 constituents each have rank Ay.

(a) Let Siyf, respectively Sgn be the set of those characters x € Char(C') for which F(Ay, Bo, X)
has infinite, respectively finite, Ggeom, and write

CO = #Sﬁn.
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Recall from Lemma [5.1] that either Cy = 0, or Cj is a proper divisor of C' > 3, hence
#Sint = C — Cp > 2.
Because F(A, B, 1) is a pullback of F, we have H < G for

G:= Ggeom,}'a H = Ggeom,}'(A,B,]l)7
and hence H° < G°. Now we can apply Theorem and Theorem to see that

(631) H° = i?)f = zeom,]:inf(A,B)'

By Lemma [5.5(i) and Corollary each of C' — Cy > 2 constituents F (Ao, Bo,Xx), X € Sint, IS
irreducible under H®, and that they are pairwise non-isomorphic as representations of H°.

(b) We argue by contradiction. We know [KT5, 2.6] that F is geometrically irreducible, i.e. that
G is an irreducible subgroup of GL4—1 = GL(V) with V' := F5. Suppose that G° is reducible on
V. Because G° <1 G, the action of G° on V is completely reducible. Let

V = é niWi
=1

be the decomposition of V' into isotypical components under the action of G°. Then G transitively
permutes these m isotypical components, and it must also transitively permute the isomorphism
classes of the W;. Therefore the multiplicities n; have a common value n, and V = n(&,W;)
under G°. Now if n > 1, then some simple summand of V|go has multiplicity > n, contradicting
the conclusion of (a). Hence

(6.3.2) n=1and m > 2,

the latter because we assume V|go is reducible.

Now the summands W, are transitively permuted by G, so all have the same dimension as each
other, say common dimension M. Under the subgroup H°, each W; is a partial direct sum of
the H°-components of V. In the case Cy = 0, exactly one of these G;eom,HA’B’]l)—Components has
dimension Ag — 1 > 2, all the others have dimension Ag. So exactly one of the W; has dimension
which is —1 (mod Ap), any other W; has dimension divisible by Ap. This contradicts the fact that
dim(W;) = M for all i.

Assume now that Cy > 1. By Theorem [6.1}, H contains the subgroup
(6.3.3) H{. x H°

where H{ = Hgp, unless Ag — 1 = By, in which case we take Hf = [Hpn, Hn]. Observe that
in either case, F(AoCy, BoCp, 1) splits into a direct sum of Cp simple modules under Hf,, one of
dimension Ag— 1, and the other Cy— 1 of dimension Ag. On all of these summands H® acts trivially,
see ((6.3.1)).

On the other hand, the remaining C' — Cy subsheaves F(Ag, By, X), X € Sinf, give simple, pairwise
non-isomorphic H°-submodules, as mentioned in (a). Thus each of these simple modules of multi-
plicity 1 must occur in some, and exactly one, W; upon restriction to H°. Call W; big if W;|go is
nontrivial, equivalently, contains some F (A, By, x) with x € Sin¢, and small otherwise. As before,
we have

mM =D :=dim(V) = 4)C —1=—-1 (mod Ay),
and so

Suppose W; is big, so its restriction to H° contains some F(Ag, By, x;) with x; € Sinf, and consider
any h € Hg . Recall that h, as any other element in G, sends W to some Wj,. Since h centralizes
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H®, see , the H°-modules h(W;) and W; are isomorphic and hence have the same H° simple
summands. But F(Ay, By, x;) occurs with multiplicity 1 in V'|go, hence h(W;) = Wy = W,;. Thus
W; is stabilized by Hf  and hence it is an Hf  x H°submodule. Recall that all but one simple
summand of the H  x H°-module V has dimension Ay, and the remaining one, F (Ao, By, 1), has
dimension Ay — 1. As Ag > 3, condition now implies that W; must contain F(Ag, By, 1),
which uniquely determines W;. We have shown that among the W;’s, there is exactly one big
summand, and all other are small.

Relabeling the W;’s we may assume W is big, and Wa,..., W, are all small. As m > 2 by
(6.3.2)), we have

(6.3.5) dim(@2,W;) > D/2 = (AgC — 1) /2.
On the other hand, each small W; is trivial on H° (by definition), and so must be contained in
F(AoCoy, BoCp, 1), and does not contain F(Ag, By, 1) (which already occurs in the big Wi). It
follows that
dim(®2,W;) < Aog(Co — 1).
As Cy < C'/2, this contradicts (6.3.5)). O
In tandem with Theorem we prove:

Proposition 6.4. Consider the local system F := F(A, By,..., By, 1) with r > 2 subject to (4.0.1]).
Suppose that A > 5, that for some j, A and B; have different parity, and that G° := Ggeom’? acts
wrreducibly on F. Then F cannot be self-dual for the action of G°.

Proof. We argue by contradiction. Assume that the underlying (A — 1)-dimensional representation
space
V.= fﬁ
for G' := Ggeom,F is self-dual over G°. Then Homgeo (VV,V) is a one-dimensional representation of
G/G°, call it £. This means precisely that V = £ ® V" as a representation of G. By pullback, we
get a geometric isomorphism
F(A, Bj,1) = Lo @ F(A, Bj, 1)"
for Lo the restriction of £ to the subgroup Ggeom 7(4,8;,1) < G-
Now define C' := gecd(A4, Bj), and write (A, Bj) = (CAy, CBy). Then C is odd, and precisely one
of Ay, By is even. In the decomposition
f(Aaij]l) :’F(onB(b]l)@ @ f(AOaBO>X)
xEChar(C),x#1
into a direct sum of local systems which are pairwise not geometrically isomorphic, the summand
F(Aop, By, 1) is the unique one of lowest rank Ay — 1. Therefore the isomorphism above,
]:(Aijv]l) = Lo ®]:(A’ Bj’]l)va
gives a geometric isomorphism

F(Aog, Bj, 1) = Lo ® F(Ao, By, 1),

for Lo, the restriction of Ly to the image in Ggeom, 7(49,B0,1) Of Ggeom,F(A,B;,1)-
We now consider the local system F(Ay, By, 1). Up to a multiplicative translation, it is the [Ag]*
pullback
[AO]*/Hsmall,Ao,Bo .
Thus F(Ap, By, 1) is lisse at 0, and (as Hsmaii, A9,B, 15 hypergeometric of type (A9 — 1, By — 1))
its I(oo)-representation is the direct sum Tame @ Wild with Tame of rank By — 1 and Wild of rank
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Ay — By, with all slopes Ag/(Ap — Bp). The same statements about local monodromy hold for its
dual f(AO, Bo, ]l)v

Our Lo is a constituent of F (Ao, By, 1) ® F(Ap, By, 1), so is lisse on Al

We first treat the case when A is odd and By is even. Suppose first that Ag — By # 1. Because
ged(Ag, Ag — By) = 1, the slope Ag/(Ag — Bp) > 1 is not an integer. But the oo-slope of Ly,
namely Swans(Lo,) is an integer. So if Swana,(Lo0) > 0, then Lo o ® F (Ao, By, 1)V will be totally
wild at oo, so cannot be geometrically isomorphic to F(Ag, By, 1), which at co has a tame part
of dimension By —1 > 1 (> 1 because By is odd). Therefore £y must be tame at oo, hence is
geometrically trivial. But then we have a geometric isomorphism of F(Ag, Bo, 1) with its dual,
contradicting (ii-bis) of Lemma

Suppose next that Ag — By = 1 but that A4g — By # By — 1 > 1. Then F(Ag, By, 1) at oo
has a wild part of dimension 1 with slope Ay and a tame part of dimension By — 1 > 1. So if
Swans(Lo0) > 0, then Loo ® F(Ag, Bo, 1) will have a wild part of dimension > 2, so cannot
be geometrically isomorphic to F(Ag, By, 1). Again Ly must be tame at oo, hence geometrically
trivial, and again a contradiction of (ii-bis) of Lemma

Finally, we have the case when Ay — By =1 and By — 1 = 1, i.e., the case (Ao, By) = (3,2). Here
(A,B) = (3C,2C). As A>5, we have C' > 1. So in the decomposition

F(A,Bj,1) = F(40,Bo,1)® €  F(Ao, Bo,x)
xEChar(C),x#1

there are C' — 1 > 1 distinct irreducible components F(Ayp, By, x) of rank Ap. The geometric
isomorphism

F(A, Bj,1) = Lo @ F(A, B;,1)"

then gives a geometric isomorphism

P Fl,Box) = P Lo®F(Ao,Bo ).
x€Char(C),x#1 x€Char(C),x#1

Matching irreducible constituents, we see that for some pair x, ¢ of (not necessarily distint) non-
trivial characters in Char(C'), we have a geometric isomorphism

F(A07 BO7X) = LO,O & ‘F(A07 BO7 QO)V

Again in this situation, both F(Ao, By, x) and F(Ag, Bo, ) are lisse on Al. Each is the [Ag]*
pullback of a hypergeometric Hpig Ay By,py» TeSPECtiVely Hiig g By,p,- Thus both of F(Ag, Bo, x)
and F (Ao, By, ) at oo have a wild part of dimension Ay — By = 3 —2 = 1 and a tame part of
dimension By = 2. So if Lo were not tame at oo, Lo o ® F(Ag, Bo, )Y would have a wild part
of dimension > By = 2, impossible as F(Ag, By, x) has a wild part of dimension 1. Thus Lo is
geometrically trivial, and hence we get

F(A07 BO7 X) = F(AO, BOy 90)V7

contradicting either (ii) or (ii-bis) of Lemma This concludes the proof in the case that Ag is
odd and By is even.

We now treat the case when Ag is even and By is odd. If Ay = 2, then By = 1 and hence
(A, B) = (2C, 0); in this case we have My 3(F) = 2 by Theorem 3.7 As Ggeom,r is infinite, we have

Ggeom 7 =5SL4—1 and we are done in this A9 = 2 case.

It remains to treat the case when Ayg > 4 is even and By is odd. If ged(A,B) = 1, then

Ggeom,F(A,B) 18 infinite, hence has G[g)eom 7 =SL4_1, and we are done in this case.
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Suppose now that C' > 1. The just as in the case (Ao, By) = (3,2) discussed above, we match
irreducible constituents to see that for some pair y, ¢ of (not necessarily distint) nontrivial characters
in Char(C), we have a geometric isomorphism

F(A07B()7X) = EO,O ®F(A07BO790)V'

Both F(Ag, By, x) and F(Ag, By, )" are lisse at 0. As I(co)-representations each is Tame & Wild,
with Tame of rank By and Wild of rank Ay — By with all slopes Ag/(Ap — By).

If Ag — By # 1, then the slope Ag/(Ag — Bp) is not an integer. If Lo had Swan., > 0, then
Lo @ F(Ao, By, )" would be totally wild at oo, impossible because F(Ay, By, x) has a tame part
of dimension By > 1. Thus Ly is geometrically trivial. Then

F(A07B07X) g‘F(A()?BOv(p)va

contradicting either (ii) or (ii-bis) of Lemma

It remains to treat the case when Ag— By = 1. Here Tame has dimension By = Ay —1 > 3, while
Wild has dimension 1. If If £y had Swans, > 0, then £y ® F (Ao, Bo, )" would have a wild part
of dimension at least By > 3, impossible because F(Ag, By, x) has a wild part of dimension 1. So
again here, we get

F (Ao, Bo, x) = F(Ao, Bo, )",

contradicting either (ii) or (ii-bis) of Lemma [5.5] O
Remark 6.5. We exclude the case A = 3 in Proposition because F(3,2,1) has rank two, and

in any characteristic p > 5 has infinite Ggeom, and hence Ggo,,, = SL2 = Sp, in any characteristic
p > 5.

Now we can determine Ggeom in the presence of infmono(A4, B):

Theorem 6.6. Consider the local system F = F(A, Bi,..., By, 1) with r > 2 subject to (4.0.1]).
Suppose that condition infmono(A, B) holds for some, not necessarily balanced, pair (A, B = B;)
with 21 C = ged(A, B). Then the following statements hold for Ggeom, -

(i) Suppose that AB is even. Then Ggeom,r = SLa-1.
(ii) Suppose that AB is odd. If 2 1 ABy...B,, then Geeom,r = Spa_1. If 2|AB1...B,, then
?geom,]—' =SLa-1.

Proof. (a) First we assume that the pair (A4, B) is balanced, and write Ag = A/C and By = B/C.
In view of Theorems [5.3 and it suffices to treat the cases with

(6.6.1) C >3, Ay>5if 24 AB, and Ag > 3 if 2|AB.

Recall the condition infmono(A, B) for the balanced pair (A, B) implies that G = Ggeom, 7 is
infinite, so G° is semisimple, say of rank

r = rank(G°).
By Theorem G° acts irreducibly on the underlying representation V' of dimension D = A — 1.
We aim to show that G° is a simple algebraic group. Assume the contrary:

G=G1*xGyx...%xGy,

where n > 1, G; is a simple algebraic group of rank a;, and a1 > a3 > ... > ap > 1. Thus

n
r = E Q.
1=1

We will derive a contradiction when n > 2.
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As G° acts irreducibly and faithfully on V| the underlying representation of G, we can write
Vlige =V1@Va®...Q V,,

where V; is an irreducible G;-module of dimension d; > 2. In fact, by [KIL2, Proposition 5.4.11] we
have

dz‘ > a; + 1.
Since (x +1)(y+1) > x+y+ 1 for all z,y € Z>(, we have
(6.6.2) D=]Jdi=[J(ai+1) = (a+1)(b+1),
i=1 i=1
where

a:=a1+a+...+ap_1, b:=a,, a+b=r.

(al) First we consider the case 2|AB. By Theorem [5.6{i), G° contains a semisimple subgroup of
rank
Ag—24+(A—-1)(C-1)=A-1-C,
andsor>A—-1—-C. AsC = A/Ay < A/3 by (6.6.1]), we have
r>24/3—1= (2D —1)/3,

and so

(6.6.3) D< BT; L
As Ag > 3 and C > 3 by , we also have

(6.6.4) r>05.

On the other hand, a,b > 1 implies that (2a —1)(2b—1) > 1, i.e. 2ab > a + b. Hence, using (6.6.2))
we now have

3 1 3 b)+1 3 b)+1 2ab—a—-0b+1
p_drEl_p 3erb+l gy datb L 2ebmazbEl
2 2 2 2
contrary to (6.6.3)).

(a2) Now suppose that 2 f AB. By Theorem [5.6{ii), G° contains a semisimple subgroup H of
rank
Ag—1 Cc-1
02 + (A= 1)=5— = (A~ 1)C/2 = (A= C)/2,
andsor > (A—C)/2. As C = A/Ay < A/5 by (6.6.1)), we have

r>2A/5= (2D +2)/5,

and so

(6.6.5) p<r=2
As Ag > 5 and C > 3 by , we also have

(6.6.6) r > 6.

Assume in addition that b > 2. Then either a,b > 3, or b = 2 but a > 4, and so (2a—3)(2b—3) > 5,
i.e. 2ab > 3a + 3b — 2. Hence, using (6.6.2)) we now have
5r—2 5(a+0b)—2 _5(a+b)—2_2ab—3a—3b+4>

5~ P~ 2 2 2

contrary to (6.6.5)).

D —

>(a+1)(b+1)

0,
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It remains to consider the case a,, = b= 1. Write G° = X %Y, where X := Gy *...xG,_1 and

Y :=G,,. Then
G°/X=XY/X=2Y/(XNY)

is isomorphic to SLo or PSLy. Recall that each of the simple factor of the subgroup H have rank
> (Ap—1)/2 > 2, and hence any homomorphism from it into SLy or PSLy is trivial. It follows that
H < X. Note that X acts on V via a sum of d, =b+ 1 > 2 copies of V1 ® ... ® V,,_1, we see that
each simple summand of V'|y has multiplicity > 2. However, the simple summand F(Ag, By, 1) of
V' |y has multiplicity 1, again a contradiction.

(b) Continue with the assumption of (a). We have shown that G° is a simple algebraic group of
rank r > 5, see ((6.6.4), (6.6.6]). Furthermore, (6.6.3), respectively (6.6.5)), still holds, so
D < (5r —2)/2.
In particular, D < 14 if r =6, D <16 if r =7, and D < 19 if »r = 8. Applying [KIL2, Proposition
5.4.12], we see that G° is not an exceptional algebraic group, and thus it is a classical group. Since
r > 5, we have that

5r — 2
<

D < < min(r(r +1)/2,7(2r — 1) — 1,271,

and
5r — 2

D < < min(r(r +1)/2,7(2r — 1) — 1,271, 20),

when r = 5. Applying [KIL2, Proposition 5.4.11], we conclude that V|ge (of dimension D = A — 1)
must be the natural module or its dual for the classical group G°. In other words, G° = SLp, Spp,
or SO D-

Suppose 2|AB. Then ([6.6.3) rules out the groups Spp and SOp since they have D > 2r. Hence
we must have G° = SL 4_1 in this case.

Suppose 2 1 AB. The choice of the balanced pair (A, B) implies that A and B; are all odd, so
V' is symplectic, ruling out SLp and SOp. Hence we must have Spp = G° < G < Spp, and so
G =5pa_;-

(c) It remains to consider the case 2|AB;...B,, 2 { AB, and infmono(A, B) holds for the
(unbalanced) pair (A, B = B;). By Theorem [6.3| we still know that G° is irreducible on V.

Suppose first that ged(A, B;) = 1. Then H := Ggeom r(4,8,1) 18 Spa_; by [KT6, Theorems
10.2.4(iii) and 10.3.21(iii)]. As F(A,B) is a pullback of F, our G = Ggeom, 7, and hence G°,
contains H = Sp,_;. Thus

(6.6.7) r>(A—1)/2=D/2.

Assume G° is not simple. Now we can continue the analysis in (a2) to show that r = a + b
witha >b>1and D > (a+1)(b+1). If b > 2, then (a—1)(b—1) > 1, ab > a+ b, and
so D > 2(a +b) + 1 = 2r + 1, contradicting (6.6.7). If b = 1, then as in (a2) we arrive at the
contradiction that V|g has simple summands with multiplicity > 2.

We have shown that G° is simple of rank r. Recall that A > B; are odd, so A>3 and D > 2. If
r =1 or A = 3, then necessarily D = 2, G° = SL», and we are done. We may therefore assume

A>5 1r>2

Hence implies D < (5r —2)/2. Assume in addition that » > 5. Then the same arguments as
in (b) show that G° = SLp, Spp, or SOp. Applying Proposition we conclude that G° = SLp.

Suppose r = 4. Then G° = SLs, SOg, Spg, SOsg, or Fy, and D < 8 by (6.6.7). Since V is
irreducible and faithful over G°, using [Lu] we see that (G°, D) = (SLs,5), (Sps,8), or (SOsg, 8).
The latter two cases are impossible by Proposition [6.4} so G° = SLp.
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Suppose 7 = 3. Then G° = SL4, SO7, or Spg, and D < 6 by . Since V is irreducible and
faithful over G°, using [Lu| we see that (G°, D) = (SL4,4), (SOs,6), or (Spg,6). The latter two
cases are impossible by Proposition [6.4] so G° = SLp.

Suppose r = 2. Then G° = SL3, Spy, or G2, and D < 4 by . Since V is irreducible and
faithful over G°, using [Lu| we see that (G°, D) = (SL3, 3), or (Spy4,6). The latter case is ruled out
by Proposition [6.4] and so G° = SLp.

Now suppose that gcd(A4, B;) = C' > 1 for the unbalanced pair (A, B = B;) with infmono(A, B).
Again write (4, B) = (C4, CBy). If Ag = 3, then By = 1, and we are done by Theorem [5.3[(ii).

It now remains to treat the case Ay > 5. Exactly as in the discussion of the case when 2t AB
in the balanced case, we prove that Ggeom’ 7 is a simple algebraic group, then that G° is one of

the classical groups SLa_1, Spy_; if A is odd, or SO 4_1, acting on its natural module or its dual.
Proposition then shows that Gg.,,, = SLa_1. O

Our next result visibly improves Theorem

Theorem 6.7. Consider the local system F := F(A, Bi,..., By, 1) with r > 2 subject to (4.0.1).
Suppose that F(A, B,1) has infinite geometric monodromy group H for some (not necessarily bal-
anced) pair (A, B = B;) with 24 C = gcd(A, B). Then the following statements hold.

(i) Suppose that AB is even. Then Gy, 7 = SLa—1.
(ii) Suppose that AB is odd. If 2 1 ABy...B,, then Ggeomr = Spa_1. If 2|AB1...B,, then
Ggeom,]: = SLAfl‘

Proof. (a) Since F(A, B,1) is a pullback of F, H < G := Ggeom,F, and G is infinite. Hence G° is
semisimple, say of rank

r = rank(G°).
We aim to show that G° is a simple algebraic group. Assume the contrary:

G°=G1*Gox...xGy,

where n > 1, G; is a simple algebraic group of rank a;, and a3 > as > ... > a, > 1. Thus

We will derive a contradiction when n > 2.
By Theorem 6.3, G° acts irreducibly and faithfully on V', the underlying representation of G. So
we can write

Vigg =V 0he...0V,

where V; is an irreducible G;-module of dimension d; > 2. In fact, by [KIL2, Proposition 5.4.11] we
have

d; > a; + 1.
Since (z+1)(y +1) >z +y+ 1 for all z,y € Z>(, we have
(6.7.1) A-1=D=]]d>]J(ai+1) = (a+1)(b+1),
i=1 i=1
where

a:=a14+a+...+ap_1, b:=a,, a+b=r.
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Write Ag = A/C and By = B/C, and let V denote the underlying representation for G. Also,
let Sint denote the set of characters x € Char(C) such that F(Ag, By, x) has infinite Ggeom- By
Theorem [6.6] we may assume

(6.7.2) C > 1, Sins # Char(C),
so that Sins = Char(C)) \ Char(Cp) for some proper divisor Cj of C' by Lemma [5.1](ii). As C'is odd,

we have

Co < C/3.
Also, in view of Theorem [5.4] it suffices to treat the cases with
(6.7.3) Ay >5if 21 AB, and Ay > 3 if 2| AB.

(al) First we consider the case 2|AB. By Theorem G° contains a semisimple subgroup H°
of rank (Ap — 1)(C' — Cp) > 2C(Ap — 1)/3. Namely, H® is the product of the SL4, factors, one for
each F (A, By, x) with x € Sips. By Corollary , the subsheaves F(Ag, By, x) with x € Sins are
simple summands with multiplicity 1 for the module V|go. Thus we have

(6.7.4) r>20(A)—1)/3 > 4.
In this case, C = (D +1)/Ao < (D+1)/3, s0 3r > 240C —2C > 4(D +1)/3, and thus
(6.7.5) D+1<09r/4.

Suppose that b < Ag—1. Then every homomorphism from H® to G,, of rank b is trivial. It follows
that H° < Gy *...* Gp_1, and hence the restriction of V' to H® is a sum of d,, = dim(V},) > 2
copies of the same module. But this contradicts the above multiplicity-one assertion.

We have therefore shown that

(6.7.6) r/2>b> Ag— 1.
Together with (6.7.3) and (6.7.4]), this implies that
ab="0b(r —b) > (Ag—1)(r — (Ao — 1)) > (Ao — 1)}(2C/3 — 1) > (Ag — 1)(4C/3 — 2).

Henee (@+1)(b+1)—D = (ab+7+1) — (AC — 1)
= (Ag— 1)(4C/3 —2+2C/3) + 1 — (AC — 1)
> (Ag—1)(2C —2) +1— (A4C — 1)
= (Ag—2)(Co—2) > 1.

This however contradicts ((6.7.1]).

(a2) Next we consider the case 21 AB. By Theorem G° contains a semisimple subgroup H°
of rank (A9 —1)(C — Cp)/2 > C(Ap —1)/3. Namely, H° is the product of the SLy, factors, one for
each F(Ag, By, x) with x € Rep(Sinf). By Corollary the subsheaves F(Ag, By, x) with x € Siut
are simple summands with multiplicity 1 for the module V|go. Thus we have

(6.7.7) r>C(A)—1)/3 > 4.
In this case, C = (D +1)/Ag < (D +1)/5, so 3r > AgC — C > 4(D + 1)/5, and thus
(6.7.8) D+1<150/4

Arguing as in (al), we see that (6.7.6)) still holds. Together with (6.7.3)) and (6.7.7)), this implies
that

ab = b(r —b) > (Ag — 1)(r — (Ao — 1)) > (Ag — 1)2(C/3 — 1) > (Ao — 1)(4C/3 — 4).
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Suppose C' > 9. Then

(@+1)(b+1)—D = (ab+7+1) — (4C — 1)
= (Ag—1)(AC/3 =4+ C/3) + 1 — (AC — 1)
> (Ag— 1)(5C/3 — 4) + 1 — (AC — 1)
= (2/3)(AC — 5C/2 — 6A0) + 6

(2/3)(A0 —5/2)(Co—6) —4 > 1

since Ag > 5. This however contradicts ((6.7.1]).
It remains to consider the case C' € {3,5, 7}, in which we have Cp =1 and r > (49— 1)(C'—1)/2.
Now we have

ab="b(r —b) > (Ag— 1)(r — (Ag — 1)) > (A9 — 1)3(C - 3)/2 > (Ag — 1)(2C — 6).

If C =7, then ab>8(Ap—1),a+b=1r>3(Ay— 1), and so
(a+1)(b+1)>11(Ag—1)+1—(TAg—1) =44y -9 > 0.

If C =5, then ab > 4(Ap— 1), a+b>2(Ap — 1), and so
(a+1)(b+1)>6(Ag—1)+1—(5Ay—1)=A4p—4>0.

If C' =3, then ab > (A9 — 1) > 4(Ag — 1), a+b=1r > (Ay — 1), and so
(a+1)(b+1)>5(A—1)+1—-(34p—1)=24,—-3>0.

In all cases, we arrive at a contradiction with .

(b) We have shown that G° is a simple algebraic group of rank r > 4, see , .
Furthermore, , respectively , still holds, so
D < (15r —4)/4.

In particular, D < 14 ifr =4, D <21 ifr =6, D <25if r =7, and D < 29 if r = 8. Applying
[KIL2, Proposition 5.4.12], we see that G° is not an exceptional algebraic group, and thus it is a
classical group.

Assume in addition that » > 7. Then

15r — 4

D < < min(r(r +1)/2,7(2r — 1) — 1,2"71).

Applying [KIL2, Proposition 5.4.11], we conclude that V|ge (of dimension D = A — 1) must be the
natural module or its dual for the classical group G°. In other words, G° = SLp, Spp, or SOp.

Suppose 2|AB;y...B,. As A = AyC > 9, Proposition rules out the groups Spp and SOp.
Hence we must have G° = SL4_1 in this case.

Suppose 2 1 ABj ... B,. Then V is symplectic, ruling out SLp and SOp. Hence we must have
Spp = G° <G < Spp, and so G = Spy_;.

(c) Now we return to the general case, where we know only that » > 4. If r > 7, then we are
done by (b).

Suppose that A > 14 if 2|AB and A > 23 if 21 AB. In the former case, r > 6 by . In the
latter case, 7 > 6 by . Thus we have r > 7, and so are again done by (b).

The rest of the proof is to analyze the remaining cases, in which we may assume

(6.7.9) 4<r<6,3<A<I13if2/AB, and 3 < A<21if2{AB.
Suppose A = 21. Then 2t B, and C € {3,7}. By (6.7.3) we have Ay # 3, so (Ao,C) = (7,3)

and r > 6 by (6.7.8). In view of (6.7.9), we now have r = 6, but G° > H° = SL7. So in fact
G° = H° = HJ; and hence G° is reducible on V' by (6.7.2)), a contradiction.
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Suppose A € {3,5,7,11,13,17,19} U {2,4,8}. Since C is an odd proper divisor of A, in these
cases we must have C' = 1, violating .

Suppose A = 15. Then G° is a simple classical group of rank 4 < r < 6 acting irreducibly on
V = C!. This is impossible by [Lu].

Suppose A = 12. Then (A, C) = (4,3) and r > 6 by (6.7.5), whence r = 6. Now G° is a simple
classical group of rank 6 acting irreducibly on V = C''. This is impossible by [Lu].

If A =10, then C =5 and Ay = 2, violating (6.7.3]).

Suppose A = 9. Then (4y,C) = (3,3) by 2|AB. Now G° is a simple classical group of
rank 4 < r < 6 acting irreducibly on V = C®, whence G° = Spg or SOg by [Lu]. In either case, this
contradicts Proposition [6.4

Finally, if A =6, then C = 3 and Ay = 2, violating . O

Next we prove the following extension of [KT6, Theorem 11.1.3]:

Theorem 6.8. Let V = CP with D > 6, and let G < GL(V) be a Zariski closed, irreducible
subgroup, with G° # 1 being semisimple. Suppose that G contains a subgroup Gy which is one of
the following groups.

(a) Gy is the image of Sps,(q) in a nontrivial subrepresentation of degree D of a total Weil rep-
resentation of degree ¢" for some odd prime power ¢ = p! and some n > 1. Furthermore, if
D = q", assume that ¢" > 13.

(b) G1 is the image of SU,(q) in a nontrivial subrepresentation of degree D of the total Weil
representation of degree q" for some prime power ¢ = p! and some odd n > 3 with (n,q) # (3,2).
Furthermore, if G is reducible on V', assume that Vg, contains a simple summand of dimension
(¢" —q)/(¢+1), and, in addition, (n,q) # (3,3).

(c) G1 is the image of 2 - Jo in an irreducible representation of degree D = 6.

(d) Gy is the image of 61 - PSU4(3) in an irreducible representation of degree D = 6.

(e) Gy is the image of 2 - G2(4) in an irreducible representation of degree D = 12.

Then G° is a simple algebraic group acting irreducibly on V and G° > G1. Moreover, one of the
following conclusions holds.

(i) G° =SL(V), Sp(V), or SO(V).

)
('ii) (GO,D) = (GQ,?), and G1 = PSL2(13) or SU3(3).
) (GO,D) = (EG, 27) and G1 = SL2(27).

)

Proof. (A) By assumption, ¢" > D > 6 in (a) and (n,q) # (3,2) in (b), so G; is quasisimple.
According to [KIL2, Table 5.2.A] and [Atlas], for the smallest index P(G1) of proper subgroups of
G1 we have P(G1) > ¢"+1 > D in case (a), unless (n,q) = (1, 11), for which we have D < (¢"+1)/2
by hypothesis, and P(G1) > (¢" + 3)/2 > D. Similarly, P(G1) > ¢" +1 > D in case (b),
unless (n,q) # (3,5), in which case P(G1) = 50. Furthermore, P(G;) = 100 > D in case (c),
P(G1) =112 > D in case (d), and P(G1) =416 > D in case (e). Thus in all cases we have

(6.8.1) P(G1) > D or (S, P(Gy), D) = (PSU3(5), 50, > 50),

where S := G1/Z(G1) is simple.

By [KILI, Theorem 3|, the smallest degree e(G1) of any nontrivial projective representation of
G (over C) is at least the smallest degree e(S) of any nontrivial projective representation of S (over
C). According to [KIL2 Table 5.3.A],

(6.8.2) e(S) = (¢" — 1)/2 > (D — 1)/2 > max(6, /11D /4)
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in case (a), unless D < 12. If 6 < D < 12 but Vg, is irreducible, then ¢" > 11 (as D > 6) and
(6.8.3) e(S)=(¢"—1)/2> D — 1> max(5,V4D).

If 6 < D < 12 but V|g, is reducible, then D = ¢" < 11, which is excluded by our hypothesis.
Similarly,

(6.8.4) e(S) = (¢" — ¢)/(q + 1) = max(6,V3D)
in case (b), and
(6.8.5) e(S)=D>V6D >6

in cases (c)—(e). Moreover, in all cases the smallest nontrivial projective representation of S is also
a projective representation of GG1, so in fact we have

(6.8.6) e(G1) =e(S) > /11D /4 > 4.

(A1) By assumption, G acts irreducibly on V := CP, and G, is quasisimple. Suppose that G
fixes an imprimitive decomposition

V=VieVead... &V,

with m > 1. Then 1 < m|D and dim(V;) = D/m for all i.

Suppose we are in the case P(G1) > D of . Then every homomorphism Gy — S,;, is trivial,
and so the action of G; on the m summands V; is trivial. In other words, GGy stabilizes every V;.
If in addition Vg, is irreducible, then Vj, being fixed by G, is equal to V, contrary to m > 1.
So Vg, is reducible. In particular, we are either in (a) with D = ¢", in which case Vg, is a
sum Wy @ Wy of two simple summands, W; of dimension d := (¢" — 1)/2 and W5 of dimension
d+1=(¢"+1)/2, or in (b), in which case V|g, is a sum @&;_; of s > 1 simple summands, W; of
dimension d := (¢" —q)/(¢+ 1) and W, ..., W; all of dimension d +1 = (¢" +1)/(¢+ 1). In either
case, because W is a simple summand of multiplicity one in V|g,, we may assume that W; occurs
in V (and only in V7). Since each W; with ¢ > 1 has dimension d + 1, we see that

dim(Vj) = -1 (mod d+ 1), dim(V3) =0 (mod d+ 1).
Thus dim(V;) # dim(V2), a contradiction.

Suppose now that we are in the case P(G1) < D of (6.8.1), so that G1/Z(G1) = PSU3(5). The
same arguments as above show that G cannot act trivially on the set {V1,...,V;,}. As P(G1) = 50,
we must have that m > 50, and so dim(V;) < 2 as D < 5%. But the simple summands of V|g,
has dimension 20 or 21, so no V; can be fixed by G;. Using [Atlas] we can check that every proper
subgroup of G has index 50 or > 126 > m. It follows that every Gi-orbit on {V1,...,V;,} is of
length 50, and hence 50| D. On the other hand, by and hypothesis, D € {62, 83,104,125}, a
contradiction.

(A2) We have shown that G acts primitively on V. Let ® denote the representation of G on V.
Next suppose that G fixes a tensor decomposition

V=Vl

with 1 < dim(V7) < dim(V3). Then the quasisimple group G; admits a projective representation
on Vi, of dimension < /D, whose image is either trivial, or a quasisimple cover of the simple group
S := G1/Z(G1). By , every composition factor of the projective representation of G; on Vj
is trivial, and so the corresponding image of G; in PGL(V}) is contained in a Borel subgroup which
is solvable. As (G; is quasisimple, this image is trivial, i.e. G1 acts via scalars on Vj. Pulling the
constants to the action of G; on Vs, for every g € G1 we can write

®(g9) = Idgim(vy) ® ¥(g)
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for a unique matrix ¥(g) € GL(V2). Since ®@|q, is a linear representation, it follows that ¥ is a linear
representation G; — GL(V2). Thus ®|g, is the sum of dim(V;) > 1 copies of the representation
U. In particular, every simple summand of Vg, occurs with multiplicity > dim(V;) > 1. But this
contradicts our hypothesis on Vg, .

(A3) We have shown that G cannot fix any tensor decomposition of V. Finally, suppose G fixes
a tensor induced decomposition

V=W®.. . QV,2V>"
with m > 2 and dim(V;) > 2. Then
m <log, D < P(Gy),

the latter inequality because of . In such a case, G1 must fix every tensor factor V;, and
hence Vg, is tensor decomposable, contrary to the preceding result.

Note that Z(G)° < Z(G®) is finite since G° is semisimple. Thus Z(G) is finite. We have shown
that (V, G) satisfies condition (S+). By [KT3l Lemma 1.1], G° is a simple algebraic group acting
irreducibly on V.

(B) By Schur’s lemma, Cg(G°) = Z(G) is cyclic. Furthermore, Out(G°) is a subgroup of Ss,
hence solvable. It follows that G/G° is solvable. But G is perfect, so G1 < G°.

Let r denote the rank of the simple algebraic group G°. We will now analyze each of the
possibilities for G°.

(B1) Suppose G° is of type A,. In this case, G° admits an irreducible projective complex repre-
sentation O of dimension r 4+ 1 with finite cyclic kernel. Thus O|g, is now a nontrivial projective
representation, and, arguing as in (A), we see that

r+1>e(Gy)>+/11D/4,
by (6.8.6). It follows that r > 4 and D < 4(r + 1)2/11 < r(r + 1)/2. Applying [KIL2, Proposition
5.4.11], we conclude that the D-dimensional module V' of G° is the natural module, or its dual and
so G° = SLp.
(B2) Suppose G° is of type B, with » > 2. In this case, G° admits an irreducible projective
complex representation © of dimension 2r + 1 with finite cyclic kernel and with image contained in
PSOg,41. Thus O|g, is now a nontrivial projective representation, and hence

(6.8.7) 2r+1>e(Gy) > /11D /4

by (6.8.6). Now, if r = 2, then e(G1) = 5, and so by (6.8.2))—(6.8.5)) we must have that G1/Z(G1) =
PSL2(11). Since SLa(11) is the universal cover of PSLy(11), © lifts to a 5-dimensional orthogonal

representation of SLy(11), which is impossible. So
r>3and D <4(2r +1)%/11 < r(2r +1).

Applying [KIL2, Proposition 5.4.11], we see that either the D-dimensional module V' of G° is the
natural module of dimension 27 + 1 and so G° = SOp, or 3 <r <5 and D = 2". It remains to look
at the latter possibilities.

Note that if D = 8, then G; = SLy(17) and V|g, is irreducible of symplectic type. (Indeed, if we
are in case (a), then, as ¢" # 8, we have (¢" £1)/2 = D = 8, whence (n,q) = (1,17) and so G; =
SL5(17) in an irreducible Weil representation. If we are in case (b), then 8 = D > (¢" — q)/(q¢ + 1),
which is at least 10 if n > 5, and at least 12 if n = 3 but ¢ > 4. So (n,q) = (3,3), and we quickly
reach a contradiction.) However, in this case we have e(G1) = 8 and r = 3, contrary to (6.8.7).

Similarly, if D = 16, 32, or 64, then either (D,Gy) = (16,SLa(31)), (64,SL3(127)) and Vg, is
irreducible, or D = 32 and G; = SU5(2), or D = 64 and G; = SU3(4). (Indeed, if we are in case (a),
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then, as ¢" # 16, 32,64, we have (¢" £1)/2 = D = 16, 32, or 64, whence (D,n,q) = (16,1,31) or
(64,1,127) and G acts in an irreducible Weil representation. If we are in case (b), then D > (¢" —
q)/(g+1), which is at least 72 ifn > 9,orn =7but ¢ > 3,orn=5but ¢ > 4,orn =3 but ¢ > 9. If
(n,q) = (7,2), then D € {42,43,> 85}. If (n,q) = (5, 3), then D € {60,61,> 121}. If (n,q) = (5, 2),
then D € {10,11,21,32} by hypothesis, so D = 32. If (n,q) = (3,8), then D € {56,57,> 113}.
If (n,q) = (3,7), then D € {42,43,> 85}. If (n,q) = (3,5), then D € {20,21,41,62,> 83}
by hypothesis. If (n,q) = (3,4), then by hypothesis D € {12,13,25,38,51,64}, so D = 64. If
(n,q) = (3,3) then D = 6,7 by hypothesis.)

Now, in the case D = 16 and G = SL2(31) we have e(G1) = 15 and r = 4, contrary to (6.8.7)).

In the case D = 32 and G; = SU;(2), we have G° = Spin;;. The projection G° — SOj; has
kernel of order 2 which must then intersect G trivially since G7 is simple. It follows that Gy
embeds in SO1;. But this is a contradiction, since every nontrivial complex representation of degree
11 of SU5(2) is either irreducible non-self-dual, or a direct sum of a trivial representation and an
irreducible representation of symplectic type (of degree 10) see [Atlas].

(B3) Suppose G° is of type D, with » > 4. In this case, G° admits an irreducible projective
complex representation © of dimension 2r with finite cyclic kernel and with image contained in
PSOg,. Thus ©|¢g, is now a nontrivial projective representation, and hence

(6.8.8) 2r > e(G1) > /11D /4

by (6.8.6)), so
D < 16r2/11 < r(2r — 1).

Applying [KIL2 Proposition 5.4.11], we see that either the D-dimensional module V' of G° is (quasi-
equivalent in the case r = 4 to) the natural module of dimension 2r and so G° =2 SOp,or4 <r <7
and D = 2"~!. It remains to look at the latter possibilities.

If (r, D) = (4,8), then G; = SL2(17) and V¢, is of symplectic type, as shown in (B2). However,
V|ge is quasi-equivalent to the natural module, so it is of orthogonal type, a contradiction.

If (r,D) = (5,16), then G; = SL2(31) as shown in (B2). However, in this case e(G1) = 15 and
r = 5, contrary to (6.8.8]).

If (r,D) = (6,32), then G = SUs5(2) as shown in (B2), and G° = Spin;5. The projection
G° — SO19 has kernel of order 2 which must then intersect G trivially since G is simple. It follows
that G1 embeds in SO15. But this is a contradiction, since every nontrivial complex representation
of degree 12 of SU;(2) is either a sum of of a trivial representation and a non-self-dual irreducible
representation (of degree 11), or a sum of two copies of the trivial representation and an irreducible
representation of symplectic type (of degree 10), see [Atlas].

If (r,D) = (7,64), then G; = SU3(4) as shown in (B2), and G° = Spin;,. The projection
G° — SO14 has kernel of order 2 which must then intersect G trivially since G is simple. It follows
that G1 embeds in SO14. But this is a contradiction, since every nontrivial complex representation
of degree 14 of SU3(4) is either a sum of of a trivial representation and a non-self-dual irreducible
representation (of degree 13), or a sum of two copies of the trivial representation and an irreducible
representation of symplectic type (of degree 12), see [Atlas].

(B4) Suppose G° is of type C, with » > 3. In this case, G° admits an irreducible projective
complex representation © of dimension 2r with finite cyclic kernel and with image contained in
PSpy,. Thus O|g, is now a nontrivial projective representation, and hence (6.8.8)) holds by (6.8.6]),

and so

D <16r?/11 < r(2r —1) — 1.
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Applying [KIL2, Proposition 5.4.11], we see that either the D-dimensional module V' of G° is the
natural module of dimension 2r and so G° = Spp, or 3 <r <5 and D =2", or (r,D) = (3,14). It
remains to look at the latter possibilities.

If D = 8, then G; = SL2(17) as shown in (B2). However, in this case we have e¢(G;) = 8 and

r = 3, contrary to (6.8.8).
If D = 16, then G; = SL2(31) as shown in (B2). However, in this case we have e(G1) = 15 and

r = 4, contrary to (6.8.8)).
If D = 32, then Gy = SU5(2) as shown in (B2), and this is recorded in conclusion (ii).
If (r, D) = (3,14), then this violates (/6.8.8]).
(B5) Suppose G° = G3. Then G° < SL7, and so

(6.8.9) e(G1) <7,

whence D < 17 by (6.8.6)). Since V|ge is irreducible, we must have D = 7 or 14 by [Lul.

Suppose D = 7. In case (a), (since ¢" > 13 when D = ¢") we have (¢" £1)/2 = D =7, and
o (n,q) = (1,13) and G; = PSLy(13). In case (b), since D > (¢" — q)/(q¢ + 1) is at least 10 when
n >5orn =3 but ¢ >4, we have (n,q) = (3,3) and G; = SU3(3). These two possibilities are
recorded in conclusion (iii).

Suppose D = 14. In case (a) we have (¢" £1)/2 = D = 14, and so (n,q) = (1,27) and
G1 = SLy(27). This violates (6.8.9), since e(G1) = 13. In case (b), D > (¢" —q)/(¢ + 1) is at
least 20 when n > 7, or n = 5 but ¢ > 3, or n = 3 but ¢ > 5. Now if (n,q) = (5,2) then
D € {10,11, > 21}. If (n,q) = (3,4) then D € {12,13,> 25}. If (n,q) = (3,3), then D € {6,7} by
hypothesis.

(B6) Suppose G° = F;. Then G° < SLgg, and so
(6.8.10) e(G1) < 26,

whence D < 245 by (6.8.6). Since V|ge is irreducible, we must have D = 26 or 52 by [Lul.

Suppose D = 26. In case (a) we have (¢" £1)/2 = D = 26, and so G; = SLy(53). But SL2(53)
cannot be embedded in Fy by [GrR]. In case (b), D > (¢" —q)/(q+1) is at least 42 when n > 7, or
n=>5butq>3,orn=3butq>7. Nowif (n,q) = (5,2) then D € {10, 11,21, 32}. If (n,q) = (3,5)
then D € {20,21,> 41}. If (n,q) = (3,4) then D € {12,13,25,> 38}. If (n,q) = (3,3), then
D € {6,7} by hypothesis.

Suppose D = 52. In case (a) we have (¢" £1)/2 = D = 52 and so G7 = SL2(103). But
SL5(103) cannot be embedded in Fy by [GrR]. In case (b), D > (¢" — q)/(¢ + 1) is at least 56
1fn>9orn-?butq>3orn—5butq>30rn—3buq SIf( q) = (7,2), then
D € {42,43,> 85}. If (n,q) = (5,2) or (3,3) then D < 32. If (n,q) = (3,7), thenD € {42,43,> 85}.
If (n,q) = (3,5), then D € {20,21,41, > 62} by hypothesis. If (n,q) = (3,4), then by hypothesis
D € {12,13,25,38, 51, 64}.

(B7) Suppose G° = Eg. Then G° admits an irreducible projective representation of degree 27,
and so

e(Gl) S 27

whence D < 265 by (6.8.6). Since V|ge is irreducible, we must have D = 27 or 78 by [Lul.

In case (a), D = ¢" or (¢" £1)/2, so G1 = SL2(27) as recorded in (iv), or SL2(53), which cannot
be projectively embedded in Eg by [GrR]. So we are in case (b). Since no PSU,(q) with n > 5, or
n =3 but ¢ > 9, can be embedded in Eg by |GrR], we have n = 3 and ¢ < 8. If (n,q) = (3, 8), then
by hypothesis D € {56,57} or D > 113} or 170 < D < 512. If (n,q) = (3,7), then by hypothesis
D € {42,43,> 85}. If (n,q) = (3,5), then D € {20,21,41,62, > 83} by hypothesis. If (n,q) = (3,4),
then by hypothesis D € {12,13,25} or 38 < D < 64.
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(B8) Suppose G° = E7. Then G° admits an irreducible projective representation of degree 56,

and so
e(G1) < 56,

whence D < 1140 by (6.8.6). Since V|ge is irreducible, we must have D = 56, 133, or 912 by [Lul.

In case (a), D = ¢" or (¢" £1)/2, so G; = SLg(113) or SLy(1813), neither of which can be
projectively embedded in E7 by [GrR]. So we are in case (b). Since no PSU,(¢) with n > 5, or
n =3 but ¢ > 9, can be embedded in Eg by [GrR], we have n = 3 and ¢ < 8. If (n,q) = (3,8), then
by hypothesis D € {56,57,113} or 170 < D < 512, so D = 56 and G; = PSU3(8) as recorded in (v).
If (n,q) = (3,7), then by hypothesis D € {42,43,85,128} or 171 < D < 343. If (n,q) = (3,5), then
D <41 or 62 < D < 125 by hypothesis. If (n,q) = (3,4), then by hypothesis D < 51 or D = 64.

(B9) Finally, suppose G° = Eg. Then G° < SLagg, and so

€(G1> < 2487

whence D < 22365 by (6.8.6)). Since V|go is irreducible, we must have D = 248 or 3875 by [Lul.
In case (a), D = ¢" or (¢" £+ 1)/2, which is impossible. So we are in case (b). Since no PSU,,(q)
with n > 5, or n = 3 but ¢ > 9, can be embedded in Eg by [GrR], we have n = 3 and ¢ < 8.
Now if ¢ < 5 then D < 125. If (n,q) = (3,8), then by hypothesis D < 227 or 284 < D < 512. If
(n,q) = (3,7), then by hypothesis D < 214 or 257 < D < 343. None of these values can fit the
values 248 or 3875. 0

Now we can prove the main result of this section. Recall that the systems F(A, By,..., By, 1)
with finite Ggeom are already classified in Theorem 11.2.4 of [KT6].

Theorem 6.9. Consider the local system F = F(A, Bi,..., By, 1) with r > 1 subject to (4.0.1).
Suppose that A > T and that Ggeom,F 15 infinite. Then the following statements hold.

(i) Suppose that ABy ...B, is even. Then Gg,, = SLa_1.

(ii) Suppose that ABy ...DB, is odd. Then Ggeom, 7 = SPs_1-

Proof. If k = 1, then the result follows from Theorems 10.2.4 of 10.3.21 of [KT6]. Hence we will
assume r > 2. Since ged(A, By, ..., By) = 1, there must be some 7 such that

24C :=gcd(A4, B)).
Now if F(A, B;, 1) has infinite monodromy group, then we are done by Theorem [6.7

It remains to consider the case in which F(A, B;, 1) has finite geometric monodromy group Gj.
By Theorem [5.4(ii), we may assume that

Let G := Ggeom,7- Applying Theorem (with its f(x) taken to be 24, and its by, ..., b, taken to
be {1, By,...,Bk_1}), we see that F has
#3(L

Maz =S Gy
where X is the locus ¥1 =¥, =Yg, =...=%p, , =0.

(b) Let p denote the characteristic of F, and consider the case where (A4,B,) = (p" + 1,1)
for some n € Z>;1. According to [KT6, Theorem 11.2.3], when A = p” + 1, the local system
F(A,By,..., By, 1) in characteristic p { ABj ... B, can have finite Ggeom only in the “van-der-Geer—
van-der-Vlugt” situations, that is when B; = p" + 1 for 1 < j < r — 1, and either B, = p™" + 1
with m, > 0, or B, = 1.

We apply Proposition to F. Suppose p = 2; in particular, 21 ABj ... B,. In the case of(b)
we have Mj 2 = 3 and hence G = Spy_;. In the case of (d), which is “vdG-vdV”, G is finite.
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Suppose p > 2. In the case of (a), we have Ms2 = 2, and hence G° = SL4_1. In the case of
3-5|(c), which is again “vdG-vdV”, G is finite.

(¢) In the rest of the proof, we will assume that
(6.9.2) If A—1is a p-power then B, # 1.

Moreover, using [KT6, Theorem 11.2.3], we may assume that some B; is neither 1 nor a 2-power
plus one when p = 2. Replacing B; by this Bj, we may furthermore assume that

(6.9.3) If p=2and A—1is a 2-power then B; — 1 is not a 2-power.

Let V denote the underlying representation of GG, and apply Theorems 10.3.14 and 11.2.4 of [KT6]
to G.

Suppose C' > 1. Then, since C is odd, we are in case (iii) of [KT6, Theorem 11.2.4]. In
particular, V|g, is a sub-representation of the total Weil representation of SU,(¢) that contains the
submodule F(A/C, B;/C, 1) of dimension (¢" — q)/(q¢ + 1), for an odd integer n > 3 and a power
q = p/. Furthermore, C|(¢ + 1) by [KT6, Corollary 11.2.8(i)], and this rules out the possibility
(n,q) = (3,3). If moreover (n,q) = (3,2), then we have (4/C, B;/C) = (3,1), contrary to (6.9.1).
Hence (n,q) # (3,2). Thus we fulfill hypothesis (b) of Theorem

Suppose C' = 1. Then [KT6, Theorem 11.2.4] implies that F (A, B;, 1) is as described in Theorems
10.2.6 and 10.3.13 of [KT6]. Next, assumption rules out possibility (iv) of [KT6, Theorem
10.2.6], and assumption rules out possibility (iii) of [KT6, Theorem 10.3.13]. Furthermore,
in case (ii) of [KT6, Theorem 10.26] we have (n,q) # (3,2) because A > 7. Thus G satisfies the
hypothesis of Theorem [6.8) when C' =1 as well.

It follows that the semisimple group G° = Ggeom’ 7 satisfies one of the conclusions of Theorem
In particular, G° > G acts irreducibly on V. Hence, by Proposition Ve is not self-dual
in case (i). Next we observe that none of the possibilities (ii) and (iv) of Theorem [6.8] cannot occur.
Indeed, in the case of (ii) we have (D,p,G1,C) = (32,2,SU5(2),3). In such a case, by [KTG,
Theorem 11.2.4], A = 33 and B; € {3,9}, which is forbidden by (6.9.3). in the case of [6.8[iv) we
have (D,p,G1,C) = (27, 3,SL2(27),2), which is ruled out since C is odd.

Suppose G° satisfies Theorem [6.8[1), that is, G° = SL(V), Sp(V), or = SO(V). In case (i), V|ge
is not self-dual, so we must have G° = SLp. In case (b), V' is symplectic self-dual, so G° = Spp,.

Suppose G° satisfies Theorem [6.8(iii). Here A = 8, so V|ge is not self-dual, contradicting the
fact that the 7-dimensional module of G is self-dual.

Finally, we consider the case when G° satisfies Theorem (V) Then we have A = 57, C = 1,
G1 = PSU3(8), and Theorems 10.2.4 and 10.3.21 of [KT6] imply that p = 2 and B; = 1 (and so
i =k). As p=2, all B; are odd and hence G < Spss. We will derive a contradiction by showing
that G = Spsg in this case. Indeed, recalling k > 2, we have that B; > 1 = B; and ged(A, By) is
odd. Replacing (A, B;) by (4, B1), we have G° = Spg by the already established result. O

Finally, we remove the restriction A > 7 in Theorem

Theorem 6.10. Consider the local system F := F(A, By,..., BBy, 1) withr > 1 subject to (4.0.1]).

Suppose that 3 < A <6 and that Ggeom, 7 15 infinite. Then the following statements hold.
(i) Suppose that ABy ...B, is even. Then Gg,, = SLa_1.
(ii) Suppose that ABy ...DB, is odd. Then Ggeom, 7 = SPs_1-

Proof. Denote G := Ggeom, 7. If k = 1, then the result follows from Theorems 10.2.4 and 10.3.21
of [KT6]. Also, if A = 3, then G° < GLy is a semisimple algebraic group, whence G° = SLo.
Henceforth we assume

(6.10.1) k>2 4<A<6.
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Suppose that for some i we have A = 2B; or A = 3B;. In the latter case we have A = 6 because
of . Hence Theorem implies that M3 2 = 2 in both cases, when G° = SL4_1 by Larsen’s
Alternative.

Next suppose that By = A — 1; in particular 2|AB;. If F(A, B1,1) has infinite geometric
monodromy group H, then H° = SL4_; by [KT6 Theorem 10.3.21(i)]. As F(A, B1,1) is a pullback
of F, it follows that G° = SL4_;. If F(A, By,1) has finite geometric monodromy group, then
(A, B1,p) = (5,4,3) by [KT6, Theorem 10.3.13]. In this case we have {Bs,...,B,} C {1,2}, and G
is finite by [KT6, Theorem 11.2.3(vii)].

We now assume that

B, #A—-1,A/2,A/3
and analyze the remaining cases.

(a) Suppose A = 4. Then B; # 2,3 and so k < 2, contrary to (6.10.1)).

(b) Suppose A = 5. First we consider the case that B; = 2 for some i, and let H denote the
geometric monodromy group of F(A, B;,1). If H is infinite, then H° = SL4_; by [KT6, Theorem
10.3.21(i)], whence G° = SLy_;. If H is finite, then (H,p) = (Sp4(3),3) or (2A7,7) by [KT6!
Theorem 10.3.13]. In both cases we have My o(H) = 2, whence M o(F) =2 and G° = SLy.

In the remaining case, B; # 2,4, so k > 2 forces (A, By,...,B,) = (5,3,1) and p # 3,5. If p =2
then G is finite by [KT6, Theorem 11.2.3(ii)]. If p > 5, then F(5,3,1) has Spy as its Ggeom by
[IKT6, Lemma 10.3.20]. As F is symplectic self-dual, we conclude that G = Sp,.

(c) Finally, assume A = 6. Then B; # 2, 3,5, so k > 2 forces (A, Bi,...,B;) = (6,4,1) and p > 5.
Let H denote the geometric monodromy group of F(6,1,1). If in addition p # 5,11, then H is
infinite by [KT6, Theorem 10.2.6], whence H = SL5 by [KT6, Theorem 10.2.4(i)], and we conclude
that G° = SLs.

Suppose p = 5. Then M9 = 2 by Proposition whence G° = SLs.

In the remaining case we have p = 11. Recall that G acts irreducibly on the underlying represen-
tation V = C®, of prime dimension D = 5. Since G° # 1 is semisimple; in particular non-abelian,
it must have some simple submodule of dimension > 1 on V', and so Clifford’s theorem implies that
G° is irreducible on V' as well. Now D = 5 being prime forces G° to be simple, of rank < 4. An
inspection of [Lu] or use of Gabber’s theorem [Ka2) 1.8] shows that either G° = SLs, or G° = SLa,
or G° = SO;5. In the latter two cases, V|ge is self-dual. Note that G/Cg(G°) < Out(G°) = 1 and
Ca(G°) is abelian by Schur’s lemma. So G/G° is abelian, and hence the simple H = PSLy(11)
must embed in G°. But this is a contradiction, since V|g is non-self-dual. Hence we conclude
that G° = SLs. (Alternatively, by considering the pullback F(6,4,1) of F and its decomposi-
tion as F(3,2,1) @ F(3,2, x2), we see by that G;eom,]-—(6,4,ll) projects onto SL3. This rules out the
possibilities SLs and SO5 for G°). O

7. MULTIPARAMETER LOCAL SYSTEMS WITH INFINITE MONODROMY. II

In this section, we are given a (possibly trivial) multiplicative character y of (the multiplicative
group of) a finite extension L/F,. We consider a local system F, on A"/L defined as follows. We
are given a list of integers

A>By>...>B.>1, ptA[[Bi, ged(4,By,...,B,) = 1.
i
as in ([#.0.1)). For E/L a finite extension, and (t1,...,t) € E¥,
k

F) = (—1VH#L) Y wp® + ) tieP)xp(z).

zeL =2

Trace(Froby, . 4.2



48 NICHOLAS M. KATZ AND PHAM HUU TIEP

Here we make a choice of |/p € Qy, and define \/#L := \/;Edeg(L/ o) We adopt the usual convention
that x(0) = 0if x # 1, but 1(0) = 1. We will name this F, as

.F(A,Bl,...,B,«,X)

when confusion about ”which F,?” is possible. Recall from [KT5, 2.6] that such an F, is geomet-
rically irreducible.
In the previous sections, we determined G

[¢]

geom, Fy for any F1 whose Ggeom is infinite. We now do
the same for any F, with x # 1 whose Ggeom, 7, is infinite.
We begin with the “easy” case.

Theorem 7.1. Let x be nontrivial. Suppose that for given data
A>B;>...>B,>1, ptA]][Bi gd(4,By,...,B;) =1,

(2

with A > 3, k > 2, and both Fy, F, have infinite Ggeom. Then we have the following results.

(i) If AT, B; is even, then Gocom, 7, = Ska-
(ii) If ATI; B; is odd, p # 2, and x is the quadratic character, then Ggeom, 7, = SOA.
(iii) If A[[; B; is odd, and x? # 1, then Goeom, 7, = SLa-
Proof. If AT, B; is even and Ggeom, 7, is infinite, then G;eom’ A= SL4_1 by Theorems and

Therefore My o(F1) = 2. By Theorem we have My o(Fy) < Mao(Fu). But for any local
system of rank > 1, My > 2. Therefore M 2(Fy) = 2. Given that Ggeom, 7, is infinite, we must
have G3 ..., 7 = SLa by Larsen’s Alternative [Ka3l, 1.1.6],

If A]]; B; is odd and Ggeom, 7, is infinite, then Ggeom 7 = Spa_;. Therefore My o(Fy) = 3.
Therefore Ms o(Fy) < 3, so either My o(Fy) = 2 or Mao(F,) = 3. If pis odd and x is the quadratic
character, then F, is orthogonally self-dual (being self-dual because its traces are real, and being
geometrically irreducible of odd rank). Thus we have an a priori inclusion Ggeom, 7 < 0a. Given

that Ggeom, 7, is infinite, we must have G = SO4 by Larsen’s Alternative [Ka3l, 1.1.6]. Thus

geom, Fy
we have SOp < G < Op. But det(F) is lisse on A* of order dividing 2, so must be geometrically
trivial as p # 2.
Finally, we must treat the case when A[], B; is odd, Ggeom,7; = Sps_1, and x%2 # 1. When
x? # 1 and A and all B; are odd, we have Mo (Fy) < Mao(F1) by Theorem Therefore
M> 5 (Fy) = 2 in this case, and we have G = SL 4 by Larsen’s Alternative [Ka3l 1.1.6]. O

geom, Fy

It remains to treat cases with x nontrivial in which /7 has finite Ggeom but F has infinite Ggeom-

Theorem 7.2. Consider the case of p arbitrary, ¢ = pf for some f > 1, r > 2,
n>mi>...>mp_1 >0
integers with ged(n, m1,...,my—1) =1 and Fy, x # 1, formed with
(A,B1,....B.)=(¢"+1,d™ +1,....,4™ " +1,1).
Then G° SL4.

geom, Fy =

Proof. The only purpose of the ged hypothesis is to insure that our choice of ¢ is correct. The
fact that B, = 1 insures the geometric irreducibility. We compute My o(Fy) as the number of
geometrically irreducible components of dimension 2 of the intersection ¥4 g, . p, of the Fermat
surfaces

Zd:azd+yd—zd—wd:()
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as d runs over the exponents (A, By, ..., B;). We have the obvious inclusion

2A7Bl,...,BT - EA,BT = El—l—q",l-

Using the equation 1 = z +y — z — w = 0, we may solve for w as w = z + y — 2z, and rewrite
Y14qn1 as the locus in the A? of z,y, 2 of

R T (o TR R A= (X
Let us temporarily write
Q:=q".

According to [KT6, Lemma 12.3.2], we have the following factorization in F2 [z, y, 2]:

Q4@ 140 (ppy — )T = —(y —2) H (x+ Ay — (A+1)2).
A€F 5, AR=—A
In the special case p = 2, we get the identity in Fg[z,y, 2]
(7.2.1) Q4 HQ 0 (g — )R = (y— 2) H (x+Ay — (A+1)z2).

AGFQ

Going back to x,y, z, w, these linear factors give the following @ + 1 affine planes in A%:

(7.2.2) (y=z,w=ux), (r=2z,w=y)
together with the @) — 1 planes P4, one for each A € F» with AR~ = 1, of equation
(7.2.3) Py:(z=—-Ay+(A+1)z,w=—(A—-1)y+ Az).

By [KT6, Theorem 11.2.3], Ggeom,F, is infinite, so it suffices to show that Mss(F,) = 2. The
geometrically irreducible components of ¥4 g, .. p, are then among the planes above. So it suffices
to show that for each A € Fg with AQ-1 = _1, the limsup over extensions F of L dies:

> xlay/zw) =0.

(z,y,2,w)EPA(E)

7.2.4 lim sup
( ) B/L, #E—o0 (#E)?

We readily calculate on P4, with coordinates v, z,
zy /2w = (—Ay? + (A + 1)y2)/(—(A— yz + A2

= (A + (A+1)z/y)/(—=(A=1)z/y + A(z/y)?)

= (A+ A+ 1D)z/y)/((z/y)(—=(A = 1) + A(z/y)).
This is an expression in the quantity

T :=z/y,
namely
(—A+A+1)T)/(T(—(A—-1)+ AT)).

Thus

Y xlay/zw)=HE - 1) Y xX(~A+ (A+ DTX(T(—(A 1) + AT)).
(2,y,2,w)€PA(E) TeL

So it suffices to show that for every A € Fgz with A9~1 = —1, this sum is O(V#E).
Suppose first that p is odd. Then @ + 1 is even, hence A is neither 1 nor —1. Then the local
system

Ly(—a+A+1)T) © Ly(T(—(A-1)+AT))
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is lisse of rank one on P!\ {0, 00, A/(A+1), A/(A—1)}, extended by direct image across the missing
points, at each of which the ramification is tame but nontrivial. Then by the usual Weil estimate,
this sum has absolute value at most 2v/#FE.

Suppose next that p = 2. Then for A # 1, the above argument gives the same bound 2v/#FE. In
the case A = 1, local system is just Ly(r2) = LYQ(T), But x, being nontrivial in characteristic 2, has

odd order, so x? # 1, and in this case the sum vanishes. ]

Theorem 7.3. Suppose given r > 2 and integers
n>mi>...>m, >0

with ged(n, my, ..., m;) =1 and 2|n [, m;. Let p be a prime, ¢ = p/ with f > 1, k= ged(p—1,2),
and form the data

(A, By,....B) = ((¢"+1)/k, ("™ +1)/Ky...,(¢"" +1)/K).

If p = 2, make the further assumption that m, > 1. Then for F := F(A, Bi,...,B,) and any x

with X" ;é 1, we have Ggeom]E = SLy4.

Proof. Because ged(n,mq,...,m,) = 1 and 2|n[], m;, there is some m; whose parity is different
from that of n: i.e., if n is even the gcd condition forces some m; to be odd, and if n is odd, the
evenness condition forces some m; to be even. Pick one such m := m,; such that n and m have
opposite parities.

Next we show that

(7.3.1) d:=gced((¢"+1)/k,(¢"+1)/k) = 1.
Indeed, e := ged(n,m) is odd as n and m; have different parity. Let k € {n,m} be the one that is

even. Then ¢* =1 (mod 4) when p > 2, and so (¢* + 1)/k is always odd and hence 2 { d. Suppose
d>1, and let £ > 2 be any prime divisor of d. Then ¢ divides

ged(¢®" —1,¢*™ — 1) = ¢** — 1,
and so £|(¢° — 1) or £|(¢° + 1). In the former case, as e|n and ell > 2 we have ¢|(¢" — 1)/k and so
(" +1)/k =2/k (mod {), a contradiction. In the latter case, as 2 { e and 2|k we have k = 2le for
some | € Z>1. Now £|(¢?* — 1) and (¢%¢ — 1)|(¢*¢ — 1), so we again have (¢* +1)/k = 2/x (mod £),
a contradiction.
By [KT6, Theorem 11.2.3], Ggeom, 7 (4,B;,y) 18 infinite. Using and applying Theorems 10.2.4
and 10.3.21 of [KTG], we obtain that Goeom, FABix) = = SLa. Since F(A, B;, x) is a pullback of F,

we conclude that Ggeom 7y = SLy4. O

We now begin preparation for the SU case. We begin with an “axiomatic” result, which reveals
the simple underlying mechanism.

Theorem 7.4. Let p be a prime A > B > 1 a pair of odd, prime to p integers, C := ged(A, B).
Write (A, B);= (AoC, BoC). Suppose that x is a multiplicative character with x> # 1, with the
following property: For every multiplicative character p with p© = x, the local system F(Ag, By, p)
has infinite Ggeom. [Indeed, it has Ggeom = SLa,, in view of Theorems 10.2.4 and 10.3.21 of [KT6].
Notice that Ag, By are both odd, so Ay — By > 2.] Then

F(A,B,x)= @ F(Ao,Bo,p)
pipC=x

has

Ggeom F(A,B,x) H SLAO

p:pC=x
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Proof. For each p, pick a multiplicative character o, with
A
0,% =p.

Then B, ,c_, F (Ao, Bo, p) is geometrically isomorphic to the Kummer [Ao]* pullback of the direct
sum of hypergeometric sheaves

@ Hbig, Ao,Bo,0p-

p:pC=x
Each constituent hypergeometric sheaf is of type (Ao, By), of odd rank Ay > 3. As Kummer pullback
does not change Ggeoy,, We see that each constituent hypergeometric sheaf has its Ggeom,H =SL4,.

So it suffices to show that

?geom,@p:pczx Hbig,Ag,Bg,op = H SLAO'
p:pC=x
For this, we apply Goursat-Kolchin-Ribet in the form [Ka2l 8.11.7.2]. We must show that for
p1 # p2, there is no Kummer sheaf £ such that L ® Hiig 40,800 ), 18 geometrically isomorphic to
either Hpig 4¢,B¢,0,, OF tO its dual. [Notice that because Ay — By is even, the dual of Hy;g 4, B,,
is (with the same 1)) geometrically isomorphic to Hp;g, 4, Bo,@-]
We argue by contradiction. Suppose that

Tpo

Ly ® Hbig,AmBo,Gpl = Hbi%Ao,Bo,UpQ'
Looking at the I(0)-representations of the two hypergeometrics, which are each Char(A4y), we first
conclude that A4° = 1. From the definition of Hbig, Ao, Bo,o,, » cf [KT4, §3], we see that
L @ Hpig,A0,B0,00, = Hbig,A9,By.0,, /AT0

So if the purported isomorphism holds, then o, / ABo = 0p,. But their Ay powers are p; and py
respectively, (because Ao = 1). But p; # p2, the desired contradiction.
If instead we have

LA @ Hbig,Ag,Bo,0p, = Hbig,Ag,Bo57y-
then we get the equality o, / ABo = 0,,. But their Ag powers are p; and pz. These cannot be equal,
because their C' powers are y and Y respectively, which are not equal, precisely because x? # 1. O

With this “axiomatic” result in hand, we now turn to the SU case directly. In preparation,
observe that for any prime power ¢ > 1 and any odd integer n > 1, the ratio (¢ +1)/(¢ + 1) is
odd, indeed for n > 3 it is 1 mod ¢(q — 1).

Proposition 7.5. Let p be a prime, ¢ = p! with f > 1, r > 2, and
n>m;>...>m,>1

a sequence of odd integers with gcd(n,my,...,m,) = 1. Define

(A, B1,.., Br) = ((¢" + 1) /(g + 1), (¢"™ + 1) /(g +1),...,(¢"" +1) /(g +1)).
Consider F := F(A, By, ..., B, x) where 71 # 1. We have the following results.
(i) If ged(n,m;) =1 for some i, then Gg..y, = SLa.
(ii) In general, with ¢ := ged(n,m;) and C := (¢ +1)/(q + 1) we have

Ggeom,]—'(A,Bi,x) = H SLA/C:
p:pC=x
In particular, Ggeom, F(A,B;,x) acts on F with C' simple summands, none of which is self-dual
and any two of which are neither isomorphic nor dual to each other.
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Proof. The first assertion is easy, since ged(A, B;) = 1 and so already the pullback F(A, B, x)
has Ggeom = SLa by Theorems 10.2.4 and 10.3.21 of [KT6]. For the second assertion, with ¢ =
ged(n, m;) and @ = ¢¢ we have

where

A= (@™ +1)/(Q@+1),Bo= (@™ +1)/(Q+1),

It remains only to remark that if x?*! # 1 and p© = y, then p@*t! = pClatl) £ 1. Hence
F (Ao, By, p) indeed has infinite Ggeom. Now if p > 2 then 2|(¢+1) and so x? # 1, and if p = 2 then
x # 1 implies x? # 1. The formula for Ggeom,F(A,B;,y) then follows from Theorem The last

statement also follows since each of the C' simple summands F(Ag, By, p) is acted on by exactly one
of the C simple factors SL4, as on its natural module (or its dual), and Ag > Q?* - Q+1>3. O

Now we can complete the SU case:
Theorem 7.6. Let p be a prime, ¢ =p! with f > 1, r > 2, and
n>mi;>...>m, > 1

a sequence of odd integers with ged(n,my,...,m,) = 1. Define
(A, By1,....,B) = ((¢" +1)/(g+1),(¢™ +1)/(g+1),....(¢" +1)/(¢ +1)).
Consider F := F(A, B1,..., B, x) with any x where x4 # 1. Then F has G;eomf =SL4.

Proof. (a) Let G := Ggeom,7- If there is some ¢ such that ged(n,m;) = 1, then we are done by
Proposition [7.5(i). Hence we may assume that

(7.6.1) ¢i = ged(n,m;) > 1
for all i. Since r > 2 and 2t nmy ...m,, this implies that
(7.6.2) n > 15, n/c > 3.

for ¢ := ¢,. (Indeed, if n < 15, then either n is a prime or n = 9. In the former case ged(n,m;) = 1,
and in the latter case, ged(n, mg) = 1, both violating (7.6.1)).)

We know by [KT5, 2.6] that F is geometrically irreducible, i.e. that G is an irreducible subgroup
of GL4 = GL(V') with V := F5. By Proposition (ii), for each 1 < i < r, G contains a semisimple
subgroup

N (¢ +1)/(a+1)
H; = (SLigngny/geisny)

of rank
_a" - v tl "
g+l g+l g+l

In particular,

n __ ¢ n _ .n/3 24
(7.6.3) R,=L 4,279 22

g+1 g+1 3
Furthermore, the H;-module V' is a direct sum of (¢“ + 1)/(q + 1) pairwise non-isomorphic simple
summands, all of dimension

_atl
BYCERE

(b) Because G° < G, by Clifford’s theorem we may express V|pG® = n(&7,W;) as the sum of
n copies each of pairwise non-isomorphic simple summands Wy, ..., W,,. Note that G° > H; for

5 -
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all .. Now if n > 1, then some simple summand of V|g, has multiplicity > n, contradicting the
discussion in (a). Hence n = 1.
Next, the summands W; are transitively permuted by G, so all have the same dimension

M= (¢"+1)/m(qg+1).

Since G° > H; and all simple summands of V|, have the same dimension D;, we must have that
D;|M; equivalently, (¢“ + 1)/m(q + 1) € Z for all i. In turn, this implies that m(q + 1) divides

gcd(qcl+1,qci—|—1,...,qcr+1) =q°+1,

where e := ged(cq, c,...,¢r). As e divides ¢; = ged(n, m;), we have e divides n and each m;, and
thus e| ged(n, my,...,m;) = 1. Thus e = 1 and so m = 1. We have shown that G° acts irreducibly
on V.

(c) Recall from ([7.6.3)) that the semisimple group G° has rank R > R, > 2A/3. As shown in (b),
G° acts irreducibly on V' of dimension A < 3R/2, and

A=(@"+1)/(g+1)>2¥+1)/3

by . Arguing as in part (al) of the proof of Theorem we conclude that G° is simple.
The arguments in part (b) of the proof of Theorem we then see that G° = SL(V), Sp(V), or
SO(V). In the two latter cases, the G°-module V is self-dual. Restricting to H,, we see that some
simple summand of the H,-module V is either self-dual, or dual to another simple summand. This
is however impossible by Proposition (ii). Hence G° = SL4. O

Now we consider the remaining cases of an F, on A" /E with finite Ggeom, 7, and with r > 2.
These remaining cases are listed in [KT6, Theorem 11.2.3]. They are

(i)p=2,r=2,A=13, B;=3,By=1,and G=2-Gy(4).

(i) p=3,r=2,3, A=7,{B1,...,B,} C{4,2,1}, and G = 61 - PSU4(3).

(iii) p=3,r=2,3, A=5,{By,..., B} C{4,2,1}. Furthermore, G = Sp,(3) x 3 if some B; is 4,
and G = Sp,(3) otherwise.

(iv) p=5,A=3, By =2, By =1, and G = SLy(5) x 5.

Each of these cases, with the exception of F(5,2,1) in characteristic p = 3, has the following
property: for any x # 1, F, has infinite Ggeom. This is immediate from [KT6, Theorem 11.2.3],
which lists all cases of an F, with finite Ggeom. In the exceptional case of F := F(5,2,1) in
characteristic p = 3, we have a Weil representation of degree 4 of Sp,(3). In this case, F,, yields a
Weil representation of degree 5 of PSp,(3).

Theorem 7.7. For any of the F listed above other than F(5,2,1) in characteristic p = 3, and any
x # 1, G;eomfx = SL4. In the exceptional case of F(5,2,1) in characteristic p = 3, the same is

true for any x with x> # 1.

Proof. In cases (ii)—(iv), Ggeom, 7y has Mao = 2, whence the same holds for F,. As Ggeom 7, is

infinite by the discussion preceding the theorem, we conclude Ggeom, A= SL4. In case (i), the
pullback F(13,3,x) has SLi3 as its Ggeom by Theorems 10.3.13 and 10.3.21 of [KT6], so we are
done again. O

Now we can prove the first main result of the paper. Recall that local systems F(A, By, ..., By, X)
with finite Ggeom (and the corresponding Ggeom) have been determined in [KT6, Theorem 11.2.3].

Theorem 7.8. Consider the local system Fy, := F(A, Bi,..., By, x) over A" JF, with r > 1 subject
to (4.0.1), of dimension D = A—1if x =1, and D = A otherwise. Suppose that D > 2 and that
G := Ggeom,r, 18 infinite. Then the following statements hold.



54 NICHOLAS M. KATZ AND PHAM HUU TIEP

i) If AB; ... B, is even, then G° = SLp.

(ii) If ABy ... B, is odd and x # 1, x2, then G° = SLp.

(iii) If ABy ... By is odd and x =1, then G = Spp.

(iv) Suppose ABj ...By is odd, p # 2, and x = x2. Then G = SOp, unless (r, A, B,) = (1,7,1),
in which case we have G = G5.

Proof. If k = 1 and A > 3, then the result follows from Theorems 10.2.4 of 10.3.21 of [KT6]. If
A =2, then F = F(2,1,x), and 1 # G° < GLg is semisimple, so G° = SLs.

We next treat the cases r > 2 when F(A, By, ..., B, 1) has infinite Ggeom. These cases result
from Theorem [7.1]

Finally, assume that » > 2 and F(A, By, ..., By, 1) has finite Ggeom. Applying [KT6, Theorem
11.2.3], we arrive at one of the possibilities considered in Theorems and 0

We now consider the following variant. Given a finite field L of characteristic p, a multiplicative
character y of L*, and data (A, By,...,B,) subject to , we denote by F¥(A, By,..., B, x)
the local system on (G, x A")/L whose trace function is given as follows: for E'/L a finite extension,
and (s,t1,...,t,) € E* x E",

Trace(Frob(sy, )8l F* (A, B, ..., By, X)) = (=1/\/#E) > _(sz™ + ) tixP).

zeE

Theorem 7.9. Consider ]-'f( = FYA,By,...,B,,x) with v > 1 subject to , of dimension
D=A-1ifx =1, and D = A otherwise. Suppose that D > 2 and that G := Ggeom,]—‘f( is infinite.
Then the following statements hold.

(i) If ABy ... B, is even, then G° = SLp.
(ii) If ABy ... By is odd and x # 1, x2, then G° = SLp.
(iii) If ABy ... By is odd and x = 1, then G = Spp.
(iv) Suppose ABj ...B, is odd, p # 2, and x = x2. Then G = Op, unless (r, A, B,) = (1,7,1), in

which case we have G = {£1} x Gs.

Proof. We follow the idea behind [KT6, 8.5.1]. After the partial Kummer covering of G,, x A" by
itself,
[AId] 2 (8,1, ty) = (s 0,0 1),

the change of variable z ~ x/s, and the reparameterization s + s,t; + t;s%, this pullback
is just (the restriction to G, x A" of) the external tensor product Ly ® F(A,B1,..., By, Xx)-
Finite pullback doesn’t change G°, nor does tensoring with a Kummer sheaf of finite order. In
the case when y = 1 and AB; ... B, is odd, .7-")3 is symplectic. So on the one hand its G° = Spp
while we also have G < Spp. In the case when p # 2, x = x2 and AB;...B, is odd, ]:;“( is
orthogonal. So its G° = SOp while we also have G < Op. However, after the partial Kummer
pullback [A,1d]*, we obtain L,,(s) ® F(A4, B, ..., By, x2). Here F,, has odd rank A and trivial
determinant, so this [A,Id]*]-}ﬂ(2 pullback has nontrivial determinant. Therefore ]-"322 must have
nontrivial determinant. g

8. MZ}Q AND FINITE SYMPLECTIC AND SPECIAL UNITARY GROUPS

In this section, we will determine the subgroups of G = Sp,,,(¢) with 2 1 ¢, and G = SU,(q) with
2 { n, which have the same M 2 on an irreducible Weil representation of G. These results will allow
us to determine Ggeom for F(f, A, B), as defined in , in

Let p be any odd prime and ¢ = pf. Then G = Spy,(q) has two total Weil representations of
degree ¢", with characters £ + n, and £* + n*, where £ € Irr(G) has degree (¢" + 1)/2, n € Irr(G)
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has degree (¢" — 1)/2, and * denotes the action of the outer automorphism of G,, induced by the
conjugation by an element in CSp,,,(¢) ~ Spa, (¢)Z(CSp,,(¢)), cf. [TZ2], [KTI].

Theorem 8.1. [KT7, Theorem 2.1] Assume (n,q) # (1,3). Then the following statements hold for
any irreducible Weil character @ = £,&*,n,m* of G = Sp,,,(q)-

(i) Ifn>2, orifn=1but 0 € {& "}, then

[ (qg+7)/4, =1 (mod 4),
Mz 2(0) _{ (24—5)/4, 353 (mod 4).

(ii) If n =1 but 0 € {n,n*}, then Mo drops by one, i.e.

[ (g+3)/4, g=1 (mod 4),
My(0) = { (g+ 1)/4, ZE 3 (mod 4).

Theorem 8.2. Let ¢ = p/ be a power of an odd prime p, n > 1, and (n,q) # (1,3). Let H be a
subgroup of G = Sps,,(q) and 0 be an irreducible Weil character of G, and suppose that

Mso(H,0) = M 2(G,0).

Then either H = G, or one of the following cases occurs.

(i) (G,H,0(1)) = (Spa(5),SLa(3),2).
(i) (G, H,0(1)) = (Sp,(3), 254 A5, 4).

Proof. We argue by contradiction. If H < G, there exists a subgroup M with H < M < G and M a
maximal subgroup of G. We will show that this leads to a contradiction except in the two specified
exceptional cases. For brevity, in this proof (a) (or (a), with some subscript i) will denote an
irreducible character of G of degree a € Z>1. We will freely use the fact that Mso(H,8) = M2 (G, 6)
implies that H, and so M, is irreducible on any irreducible constituent o of the G-character 66.
Moreover, M 1(H,0) = M; 1(G,0) =1 by [GT2, Lemma 3.1], so 6 is irreducible over H and M as
well.

(a) Here we consider the case n = 1. First suppose that ¢ = 5. If 6 € {£,£*}, then
00 = (1) + (3) + (5)

as one can check using [GAP]. This implies that (5) is irreducible over M, and so |M| > 26, which
is impossible by [Atlas]. If 6 € {n,n*}, then 00 = (1) + (3) by [GAP]. Then (3) is irreducible on
G, and so |G| > 10 and 3 divides |G|, whence G = SL(3) by [Atlas|, as stated in (i).

Assume now that 9 < ¢ =1 (mod 4). Using the character table of G [Do] one can check that

~ g+1 (¢-5)/4 g+ 1 (g—5)/4
=M+ @+ 50+ D (et =0+ )+ D e+ 1),
i=1 i=1
Similarly, if 7 < ¢ =3 (mod 4), then
B (g—3)/4 (q—4)/4
E=W+@+ > g+, m=O+ > (g+1);:
i=1 i=1

In both cases, some (q + 1) is irreducible over M, and so |M| > (¢ + 1), which is impossible by
[BHR], Tables 8.1, 8.2].
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(b) From now on, we will assume n > 2. According to [KT7, formulas (2.1.7) and (2.1.11)], we
have

_ (¢—5)/4 2
-0+ T gy L G
(8.2.1) W /4 2
m= 0+ (I s G+ X
when ¢ =1 (mod 4), and
B o 1 (q 3)/4 2
g6 =1y + (L 2(q> Z <
(8.2.2) (q 3)/4 E
when ¢ = 3 (mod 4). In particular, there exist (not necessarlly distinct) v, € Irr(G) such that
(8.2.3) ¢ +1 divides y(1), §(1) = (¢" —;(eq)(_q"l)— <q) for some € = £, and 7|, 6| € Irr(M).

Indeed, if 0 € {n,n*} then we can choose v(1) = §(1) = (¢"+1)(¢" —q)/2(¢g—1). Suppose 0 € {&,&*}.
Then we can choose v =6 and §(1) = (¢" — 1)(¢" + q)/2(q — 1).

Assume in addition that n = 2. Then implies that g(¢®> + 1)/2 divides |M|. Using
[BHR], Tables 8.12, 8.13] we now see that either M = Sp,(¢q?) x Ca, or ¢ = 3 and M = 2174 A,
In the former case, the degree of any irreducible character of M has p-part equal to 1 or g2,
contrary to the existence of § in . In the latter case, suppose # = £. Then shows
that (24) is irreducible on the image 2% - A5 of M in G/Ker(f). Hence 24 divides |As| = 60 by
Ito’s theorem [Is, (6.15)], a contradiction. Thus 6(1) = n(1) = 4, and using [GAP] we can check
that Mao(M,0) = 3 = Ma2(G,0). Now, as Oz(M)H is irreducible on (15), Oo(M)H/O2(M)
is a subgroup of As of order divisible by 15, whence HOo(M) = M. Working in M/Z where
Z = Z(09(M)) = Cy and noting that Aj is irreducible on O9(M)/Z = F3, we see that either
ZH = M or |ZH| = 2|A5| = 120. The latter is however impossible as H is irreducible on (15). So
ZH = M, whence H > [ZH,ZH| > [O2(M),09(M)] = Z. Thus H = ZH = M, and we arrive at
(ii).

Next we consider the case G = Spg(5). By the choice of v in (8.2.3), |[M| is divisible by 7 - 31.
Inspecting [BHR] Tables 8.28, 8.29], we see that M = Sp,(53) x Cs. In this case, the degree of any
irreducible character of M has p-part equal to 1 or ¢, contrary to the existence of § in .

Assume now that G = Spg(3). As noted in the proof of for ¢ = 3, both 6 and 06 — 14 are
irreducible over M. This implies that |M]| is divisible by 7 - 13 and Irr(M) contains a character of
degree > 168. Inspecting [BHR] Tables 8.28, 8.29], we arrive at a contradiction.

(¢) In the rest of the proof, we may assume that

(8.2.4) n >3 and (n,q) # (3,3), (3,5).

Then p?*/ — 1 admits a large primitive prime divisor £ in the sense of [F]. Note that Q := (¢*" — 1),
divides (¢"™ 4+ 1)/2, and so @ divides |M| by (8.2.3). Now we can apply [KT1, Theorem 4.6] to the
subgroup M < GLa,(q). If in addition

L:=0"(M)
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is abelian, then again by Ito’s theorem the irreducibility of |y implies that (1) divides |M/L and
hence £17(1) = (¢"+1)/2, a contradiction. Hence by [KT1, Theorem 4.6], there is a divisor j < 2n
of 2n such that we are in one of the following cases for L.

(c1) j < 2n/3 and L = SLy,/;(¢?). Note that if ¢/ = 3 then 2n/j > 6 by (8.2.4), and so
L % PSL4(3). Hence the smallest degree d(L) of nontrivial irreducible complex characters of L
satisfies

d(L) > (¢ = ¢)/(¢ = 1) > ¢ > (¢" +1)/2> (1)

by [TZ1, Theorem 1.1]. This forces the quasisimple subgroup L of G to be in the kernel of the Weil
character 7, which is absurd since Ker(n) < Z(G) = Cb.

(c2) jln, 7 <n/2,and L = Q;n/j(qj). Now if j < n/4 then

d(L) > ¢/ = "% > (¢" +1)/2 > n(1)

by [TZ1], Theorem 1.1], which leads to the contradiction L < Ker(n) < Cj as in (cl1).
Suppose j = n/3. Then (2n/j,¢7) # (6,3) by (8.2.4). Hence L = Qg (¢/) is a cover of PSUy(¢7) %
PSU4(3), and so
gy — ¢ 34 n
d(L) > ———= > (¢7 +1)/2=(¢" +1)/2>n(1)
¢ +1
by [TZ1, Theorem 1.1]. This again yields the contradiction L < Ker(n) < Cs as in (cl).

In the remaining case j = n/2, we have L = Q (¢"/?) = PSLy(¢"), sce [KIL2, Proposition
2.9.1(v)]. Now, d(PSL2(¢")) = (¢" 4+ 1)/2 > n(1) (as ¢" > 27 by (8.2.4)), and this again forces
L < Ker(n) < Cs, a contradiction.

(c3) jln, L = Sp2n/j(qj), and L 9 M < Ng(L) = L x C;. Then we look at the character ¢ in
(8.2.3). First suppose that e = —. As n > 3 by , p(2"=2f _ 1 has a primitive prime divisor
{1 by [Zs], and then ¢; divides both 6(1) and |M|. Note that £; > 2n — 1 > j, so in fact ¢; divides
|L|. Hence we can find some 1 < i < n/j such that ¢1|(¢* — 1). The primitivity of ¢; implies that
(n —1)lig, but ij <n < 2(n—1). Thus ij =n — 1, and so j|ged(n,n — 1) = 1. We conclude that
j=1and L =G, a contradiction.

Next we consider the case e = +. As before, L < G implies that j > 1. Suppose first that j = n.
Then Spy(¢") = LM < L-C,. It follows that the maximum degree of any « € Irr(M) is at most

(¢"+1)(¢" —q)
2(q—1)
contrary to (8.2.3). So we have j < n; in particular n > 4. Hence p("~1/ — 1 has a primitive prime
divisor £2 by [Zs]. Now £ divides both (1) and [M]. Note that fo > n > j, so in fact lo divides
|L|. Hence we can find some 1 < i < n/j such that £5|(¢* — 1). The primitivity of ¢ implies that
(n—1)|2i7, but 2ij < 2n < 3(n—1). Thusij = (n—1)/2 or n—1. It follows that j| ged(n,n—1) =1,

and so j = 1, again a contradiction.
(c4) j = 2jo € 2Z, n/jo > 3 is odd, L = SU,, /; (¢’°), and

L <M < Ng(L) < GU,j,(¢°) x Cj.

First suppose that 6(1) = £(1), and so ¢ = — in (8.2.3). As n > 3 by (8.24), p®**~2/ — 1 has a
primitive prime divisor ¢; by [Zs], and then ¢; divides both 6(1) and |M|. Note that ¢; > 2n—1 > j,

so in fact ¢1 divides |L|. Hence we can find some 1 < i < n/jg such that £1](¢g"%° — (=1)"). The
primitivity of ¢; implies that 2(n — 1)|2ijo, i.e. (n — 1)|ijo. But ijo <n <2(n—1),so0 ijo=n—1,
and jo|ged(n,n — 1) = 1. In this case, jo = 1, and i = n — 1 is even. Hence /1|(¢"° — 1), and so
2n — 2 divides ij9 = n — 1, a contradiction.

n(q" +1) <

=6(1),
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In the remaining case we have (1) = n(1). Since L < San/jO(qu), 0|r is the restriction to L
of a Weil character of degree (¢" — 1)/2 of Spy,,/;,(¢’°), and so it is a sum of the unipotent Weil
character of degree (¢" — ¢’°)/(¢’° + 1) and (¢/° — 1)/2 irreducible Weil characters, each of degree
(¢" 4+ 1)/(¢’° 4+ 1). Since these characters are not of the same degree, 0|y; cannot be irreducible, a
contradiction.

(c5) (p,nf) = (3,9) and L/Z(L) = PSLy(37). Here, since the smallest degree of nontrivial
irreducible representations of L over 3 is > 18, we must have that G = Sp(3), L = SL2(37) = M.
But then M cannot be irreducible on 6 of degree > (3% —1)/2.

(c6) (p,nf) = (17,6) and L/Z(L) = PSL2(13). Here, since the smallest degree of nontrivial

irreducible representations of L over [Fy7 is > 6, we must have that G = Spg(17), L = SLa(13) = M.
But then M cannot be irreducible on 6 of degree > (172 — 1) /2. O

Now let p be any prime, ¢ = p/, and 2t n > 5. Then G = SU,,(¢) has a total Weil representation
of degree ¢", with character wy, = Y7, (i n, where ¢, € Irr(G) has degree (¢" + ¢(—1)")/(q + 1)
when i = 0 and (¢" — (=1)")/(¢+ 1) when 1 < i < g, see e.g. [TZ2] and [KT2].

Theorem 8.3. [KT7, Theorem 3.4] Assume 2 { n and n > 5. Then for the irreducible Weil
character 0 = ; , of SUy(q), of degree (¢" —q)/(q+1) ifi =0 and (¢"+1)/(¢+1) if1 <i<gq,
we have
[ q+1, i=0, or2fqgandi=(q¢+1)/2,
M32(6) = { q, otherwise.
Theorem 8.4. Let ¢ = p! be a power of a prime p, 2 fn >3 odd, and (n,q) # (3,2). Let H be a
subgroup of G = SU,(q) and 0 be an irreducible Weil character of G, and suppose that

M o(H,0) = My 2(G,0).
Then H = G.

Proof. As in the proof of Theorem [8:2] we will assume that H < G and let H < M < G for a
maximal subgroup M of G. We will also use the fact that M o(H,0) = M2 (G, 0) implies that H,
and so M, is irreducible on any irreducible constituent o of the G-characters 6% and 66, as well as
on 6 itself.

(a) Here we consider the case n = 3. First suppose that ¢ = 3, respectively ¢ = 4. Using [GAP]
we can check that 66 has an irreducible constituent o with a(1) > 21, respectively a(1) = 65. On
the other hand, |M| < 216, respectively |M| < 960 by [Atlas], so «|y is reducible, a contradiction.

Assume now that ¢ > 5. First we consider the case (1) = ¢*> — ¢+ 1. Then 6(1) is divisible by
¢, a primitive prime divisor of p%/ — 1 by [Zs]. Using [BHR], Tables 8.5, 8.6], we see that [M| can
be divisible by £ only when M = Cyeq3 (g4+1) X PSL2(7), 3 Ag, 3- Ag - 23, 0or ¢ =5 and M = 3 - A7.
The first three cases are however impossible, because M cannot have an irreducible character of
odd degree ¢> — ¢+ 1 > 21. In the last case, #f contains an irreducible constituent « of degree 126,
and hence « is reducible over M by [Atlas].

It remains to consider the case 6(1) = ¢> — q¢. Then 6|y is irreducible; in particular, |M| >
¢*(q — 1)%2. Again using [BHR], Tables 8.5, 8.6] we can check that M must be a Borel subgroup of
G. Note that the degree of any irreducible character of M is then equal to 1 or divisible by a fixed
prime divisor 7 of (¢ — 1)/ ged(3,q — 1) [Geck]. However, any irreducible constituent of 0 — 15 has
degree > 1, and at least one of them, say (3, has degree coprime to r. Thus | is reducible, again
a contradiction.
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(b) From now on, we may assume n > 5, and write § = (;,, with 0 < < ¢. Then the proof of

Theorem [8.3|in [KT7] shows that 62 has an irreducible constituent

(¢"+ 1) - 1)
(+1)(*-1) °

v = C°,), of degree
X1

when ¢ # 0, and
(¢"+ ("' -1
(¢+1>

v =C%,, of degree
Xg—1

when i = 0. As 7|y is irreducible, we always have
(8.4.1) ~(1) divides |M].

As n > 5, p*f — 1 admits a large primitive prime divisor ¢ in the sense of [E]. Note that @ :=
(¢*™ — 1), divides (1), and so Q divides |M| by (8.4.1)). Now we can apply [KT1, Theorem 4.6] to
the subgroup M < Sps,,(q). If in addition

L:=0"(M)

is abelian, then again by Ito’s theorem the irreducibility of 7|5 implies that v(1) divides |M/L and
hence ¢ 1 (1), a contradiction. Hence by [KT1l, Theorem 4.6], there is a divisor j < 2n of 2n such
that we are in one of the following cases for L.

(b1) j < 2n/3 and L = SLy,, /;(¢?). Note that if ¢/ = 3 then 2n/j = 2n > 10, and so L % PSL4(3).

Hence, as in the proof of Theorem [8:2] we have
d(L) > (¢ — ) /(@ = 1) > ¢ > (¢" +1)/(g+1) 2 6(1)

by [TZ1, Theorem 1.1]. This forces the quasisimple subgroup L of G to be in the kernel of the Weil
character 6, which is absurd since Ker(0) < Z(G).

(b2) jln and L 2 Spy,, /;(¢?). Here, j # n/2 as 21 n; furthermore, ¢/ > 25 if j = n, and ¢/ > 23
if j=n/3 (as 2tn >5). Hence

d(L) > (¢" =1)/2> (¢" +1)/(¢+ 1) = 0(1)

by [TZ1, Theorem 1.1], which leads to the contradiction L < Ker(f) < Z(G) as in (bl).

(b3) j|n, 7 < n/2 (recall 24 n), and L = Q;n/j(qj). Now if j < n/4 then

d(L) > ¢/ = "% > (¢" +1) /(g +1) > 0(1)
by [TZ1, Theorem 1.1], which again leads to the contradiction L < Ker(0) < Z(G).
Suppose j =n/3. Then ¢/ > 23as2{n > 5. Hence L = Qg (¢7) is a cover of PSU4(¢7) % PSU4(3),
and so ,
¢

A1) > *E > (¥ 0/2> (¢ D/ g+ 1) > 001)

by [TZ1, Theorem 1.1]. This again yields the contradiction L < Ker(0) < Z(G).
(b4) j = 2jo € 2Z, n/jo > 3 is odd, L = SUn/jO(qjo), and

L <M < Ng(L) < GU,j,(¢°) x Cj.

As M < G = SU,(q), we have jo > 1. In particular, n is not prime, and so we may assume
n > 9. Tt follows that p®~1/ — 1 has a primitive prime divisor ¢; [Zs], which then divides |M| by
(841). As 1 > n > j, £1 divides |GU,,;,(¢”)|. Hence we can find some 1 < i < n/jo such that
01](g¥° — (=1)%). The primitivity of ¢; implies that (n — 1)|2ijo. But 2ijo < 2n < 3(n — 1), so
ijo=n—1or (n—1)/2, and thus jp| ged(n,n — 1) = 1, a contradiction.
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(b5) (p,nf) = (3,9) and L/Z(L) = PSL2(37). This case cannot however occur, since the smallest
degree of nontrivial irreducible representations of L over F3 is > 18, and hence L cannot embed in
G = SUy(3). O

9. M3 2 AND INTERSECTIONS OF FERMAT HYPERSURFACES
In this section, we fix a set S = {By, B1, ..., B} of integers
(9.0.1) By > By > ...> B, with r > 2 and ged(S) := ged(By, B, ...,B,) = 1.
We will sometimes write
A= By

when we wish to emphasize the largest B;. We work in characteristic p { [[; B;, and choose a prime
¢ # p so that we can speak of f-adic local systems. [For example, one might take for ¢ a prime
which divides []; B;.]

In [KT6l, 11.2.6], given a multiplicative character x of k* for E/F, a finite extension, we intro-
duced the local system

FYA,By,...,Brx)

on (G, x A")/E whose trace function is
(s$yt1y...,tp) €L X L — 721/@ s+t aB 4+ —i—thBT)X(a:).

We will denote this

FHS,x) = FYA,By,...,B, x).
The pullback of F* to s = 1 is the local system F(A, By, ..., B,,x) on A¥/E whose trace function
is

(t1,...,tp) € LF — 721% a4tz + o ) x ().

We will denote this
F(S,x) :=F(A,B1,...,Br,x).

As shown in §2, there is an intimate relationship between the Ms o of F(S,x) and the number
N(S,p) of geometrically irreducible components Z of dimension 2 of the E—locus

S(S) == M_oEs,,

where Y., is the Fermat hypersurface 5 + yBi = 28 + wBi in A*(2,y, z,w). As an application of
the results of the preceding sections, we will be able to completely determine this invariant N (S, p).

In fact, N (S, p) is related to Mz 2 of a more general kind of multi-parameter local system. Consider
a partition of S as

S =SoUT,#T =2, T = {a,b}, a <b.
and a polynomial f(z) =Y, c;z’ € E[z] for which
{i|Ci 75 O} = So.
In a more cumbersome expression, we assume that

= Z ez, all ep, # 0.

B»;ESO
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We now consider the two-parameter family F(f,a,b,x) on A?2/E if A := By € S, respectively
on (G, x A)/E if a < b= A := By, whose trace function at L-valued points is

(s,t) —> — ZwL(sxb +tx® + f(x))x(x).

The following theorem is a recapitulation of Theorems and see also Corollary Re-
member that #S5 > 3 in this section.

Theorem 9.1. For any x, any partition S = Sy UT as above and any f whose set of exponents is
So, the following three local systems

FHS,X), F(S,x), F(f.a.b,x)

have the same geometric My o as each other. This common Mo is the number N(S,x) of geo-
metrically irreducible components Z of dimension 2 of the E—locus Y(S) with the property that on
the dense open set xyzw # 0 of Z, the rank one local system L, (zyyx(zw) i geometrically trivial.
In particular, when x = 1, the common Mo is N(S,1) = N(S,p) of geometrically irreducible
components Z of dimension 2 of the Fp-locus $(S9).

Recall the definitions and of a data S = {By,..., B} to be p-finite, respectively strongly
p-finite.

Theorem 9.2. Given a set S = {By, B1,...,B,} subject to (9.0.1) and a prime p ¢ H?:o B;. The
following statements holds for the number N(S,p) of geometrically irreducible components Z of
dimension 2 of the Fy-locus ¥(S5).

(i) Suppose that S is either strongly p-finite or not p-finite. Then N(S,p) is 2 if 2| H?:o B;, and
3 otherwise.

(ii) Suppose that S is p-finite, but not strongly p-finite, i.e. we are in[L.1[i) with ¢ > 7, [A.1](ii) with
q > 2 and furthermore 2t nmy ... mp—1 if p > 2, [L1|(iii) with ¢ > 2, or[f.1|iv) with ¢ > 2. In
the case of [A.1i), N(S,p) equals (¢ +7)/4 if g=1 (mod 4) and (¢ +5)/4 if ¢ = 3 (mod 4).
In the cases of [A.1[ii)-4.1](iv), N(S,p) = ¢ + 1.

Proof. By Theorem N(S,p) is just the My of the local system F(S,1) of rank D = By — 1.
Now the statements follow from Theorem if S is strongly p-finite.

Suppose next that S is not p-finite. By Theorem F(S,1) has infinite Ggeom, whence Gge,, =
SLp if 2||[]i_y Bi and Ggeom = Spp otherwise (note that in the latter case By > 5 as k > 2, and
hence D > 4). It follows that the conclusion of (i) holds.

Finally, we consider the case where S is p-finite, but not strongly p-finite. By Theorem
F(S,1) has finite Ggeom, which is determined in [KT6, Theorem 11.2.3]. In the case of [4.1}i), we
have By = (¢" + 1)/2 with n > 2, and Ggeom is the image of Spy,(¢) in a Weil representation of
degree D = (¢" —1)/2 by [KT6, Theorem 11.2.3(i)], so the conclusion of (ii) follows from Theorem
In the case of [£.1](iv), we have By = (¢" +1)/(q + 1) with 2t n > 5, and Gyeom is the image
of SU,(¢) in a Weil representation of degree D = (¢" — ¢)/(q + 1) by [KT6, Theorem 11.2.3(iii)],
whence N(S,p) = Ms2 = g+ 1 by Theorem In the case of (ii) we have By = ¢ + 1,
Bi=q¢m+1for1<i<r-—1, B, =1, and furthermore 2 f nmy...m,_; if p > 2. In this case,
N(S,p) = ¢+ 1 by Corollary In the case of [4.1fiii) we have By = ¢" + 1 and B; = ¢" + 1 for
1 <i<kwithqg=27>2andn > 2. In this case, Ggeom = oitmf 5, (q¢) by [KT6, Theorem
11.2.3(ii)], and the proof of [GT2, Lemma 5.1] shows that N(S,p) = M22 = ¢ + 1, the number of
Q3,,(¢) orbits on the vectors of its natural module F2". O



62 NICHOLAS M. KATZ AND PHAM HUU TIEP

10. TWO-PARAMETER SPECIALIZATIONS OF MULTI-PARAMETER LOCAL SYSTEMS

In this and the next sections, we will use our results on Ms > to determine the geometric mon-
odromy groups of the two-parameter families F(f,a,b), 1 < a < b < deg(f), with f monic
and Artin-Schreier reduced, obtained as the specializations of the multi-parameter local systems
F(A,By,...,B,), as defined in given the data (1.0.2)).

Theorem 10.1. Let p = 2 and consider the data (1.0.2)) with r > 3, ged(n,mq,...,m,) =1, and
A=2"+1, B;=2"+1, 1 <i<r—1, and either B, = 2" +1 with m, > 1 or (B,,m,) = (1,0).

Then the following statements hold for the geometric monodromy group G' = Ggeom of the local
system F = F(f,a,b) defined in (1.0.4), with a = B; < b = B;.

(i) Either G =22 . Q5 (2) or G = 21727 .8U,,(2).

(i) If B, =1 and 2 fnmy ... m,_y, then G = 272" . SU,,(2).
(iif) If 2|n, then G = 212" . Q5 (2).

Proof. Note that F is a pullback of the local system F := F(A,By,...,B,); furthermore,
(10.1.1) Either n > 4, or (4, By,...,B,) =(9,5,3,1).

By Theorems and both F and F have Mo = 3; moreover, G embeds in the (finite)

geometric monodromy group G' < Spy. (C) of F. Now we can apply [GT2, Theorem 1.5] and use
the assumption n > 3 to conclude that

(10.1.2) E=2"""9G <Ng, . )(E) = E-03,(2);

furthermore, G/E < O(V) is transitive on the set of 2°~(2" + 1) (nonzero) isotropic vectors and
the set of (2" 4 1)(2"~1 — 1) anisotropic vectors of the natural module V = F3" of O5 (2). In
particular,

(10.1.3) |G/E]| is divisible by 27! - lem(2" + 1,271 —1).

Moreover, the semidirect product V x(G/FE) acts on the point set of V' as a rank 3 affine permutation
group with point stabilizer G/E. By [Li, Theorem|, we arrive at one of the following possibilities
for G/E.

(a) G/E is in one of the ‘exceptional’ cases listed in [Li, Theorem, part (C)]. Here, n = 3, 4 or 6,
so the lengths of the orbits of G/E on V ~\ {0}, which are the so-called subdegrees for V' x (G/E)
must be 27,36, or 119,136, or 2015, 2080, respectively. But those subdegrees do not match the
subdegrees listed in [Li, Table 14].

(b) G/E is in one of the ‘extraspecial’ cases listed in [Li, Theorem, part (B)]. Here we have
n=3,s0 (A, B1,...,B;) =(9,5,3,1) by . Furthermore, G/FE is a subgroup of Oy (2) that
normalizes an extraspecial 3-group 3?2; in particular, G/E cannot contain Q4 (2). Using the list
of maximal subgroups of Oy (2) [Atlas] and the fact that |G/E| is divisible by 27, we now see that
G/ E is solvable, and hence G is solvable. Next, since F is a pullback of the local system Fos31, by
Theorem [4.4(ii) we have

G<G=E; Q5 (2),

where F3 = E = 2'70 and Z(FE3) = Z(FE) acts via %1 in the underlying representation. Since G is
solvable, F3G is a solvable subgroup of Spyn(C), for which we have

(10.1.4) 3= M272(8p2n ((C)) < M272(E3G) < MQQ(G) = 3,



MOMENTS, EXPONENTIAL SUMS, AND MONODROMY GROUPS 63

and hence Mj2(E3G) = 3. Now the arguments in part (d) of the proof of Theorem with Gy
replaced by G and FE replaced by Ejs, show that, first, F3G = E3 - SU3(2), and, secondly, either
EsNG =1Z(E3) =Z(F) or G > E3. In the former case,

|G| = |B3 NG| - | E3G/E3| = 2|SU3(2)| = 3% - 2%,
which is a contradiction since G' contains F of order 27. So G > Fj3, and hence G = E3 - SU3(2).

(¢c) G/E is in one of the infinite families listed in [Li, Theorem, part (A)]. First, we may have
that

G/E <T1(2%") = Cyen_y - Cop;

in particular, 4 { |G/E| if 2 { n. This rules out the case 2 { n > 3 since 2"~ ! divides |G/E| by
. Assume now that 2|n > 4. By [Zs], 2! — 1 admits a primitive prime divisor ¢, for which
we have ¢ > n, ¢ divides |G/E| by (10.1.3), but not 2n(2** — 1), a contradiction.

In the imprimitive case, by [Li, Table 12] the subdegrees are (2" — 1)? and 2(2" — 1), none of
which is divisible by 4, whereas one of the subdegrees of G/F is divisible by 271

In the tensor product case, according to [Li, Table 12] the subdegrees are (¢ + 1)(¢"™ — 1) and
q(g™ ! —1)(¢™ — 1) with ¢™ = 2". Since the even subdegree of G/FE has 2-part equal to 2”1 we
get 2771 = ¢. As n > 3, we have ¢ = 22" < 23(n=1) — 3 whence m = 1 = ¢, a contradiction.

In all the remaining cases, we again match up the subdegrees listed in [Li, Table 12] to the ones
of G/E and compare the 2-part of the even subdegree. First, in the case G/E > SL,(q) we either
have ¢?* = 22" and ¢ = 2"~!, which is impossible as shown in the preceding case, or a = 2, ¢% = 22",
and ¢ = 2"~ !, which is also impossible, or a = 5, ¢'® = 22”, and ¢ = 2!, which is absurd.

In the case G/E 1> ?Bs(q) we have ¢* = 22" and ¢ = 2"~!, which is impossible since n > 3.

In the case G/E 1> Qf,(q) we have ¢*® = 22" and ¢ = 2", which is impossible.

Suppose G/E > Spg(q). Then ¢® = 22" and ¢ = 2"!, whence (n,q) = (4,2). But then the
subdegrees are 135,120 but not 136, 119.

Suppose G/E > Q5,(g). Then ¢?* = 22" and ¢*~! = 2"!, whence (a,q) = (n,2). Now the even
subdegree is 2"71(2" —¢), s0 € = —.

Suppose G/E 1> SU,(q). Then ¢?* = 22" and ¢! = 2"~ whence (a,q) = (n,2). Now the even
subdegree is 277 1(2" — (—=1)"), so 2 { n.

To summarize, with replacing E by Ej3 in the case (4, By,...,B,) = (9,5,3,1) if necessary, we
have shown that

(10.1.5) Either G/E > Q,,,(2), or 2{n and G/E > SU,(2).

Now, suppose that we have the first possibility in (10.1.5). Then Q3 (2) < G/E < 05,(2)
by . On the other hand, G injects in the geometric monodromy group G of F, which is
isomorphic to a subgroup of 272" . Q (2) by [KT6, Theorem 11.2.3(ii)] when n > 4 and Theorem
(ii) when n = 3. Comparing the orders of G' and G, we conclude that G/E = Q5 (2) and that
>~ ol+2n . () (2). The latter conclusion implies by by [KT6, Theorem 11.2.3(ii)] when n > 4 and
Theorem [4.4{(ii) when n = 3 that either B, > 1, or B, =1 but 2|nm; ... m,.

Next suppose that 2 { nm;j...m,_; and B, = 1; in particular, n > 4 since n,r > 3. Then G
injects in the geometric monodromy group G of F, which is isomorphic to 2172 . SU,,(2), by [KT6],
Theorem 11.2.3(ii)]. Again comparing the orders of G and G, we see that G/E = SU,(2) in (10.1.5),
and hence (ii) follows.

Finally, assume that we have the second possibility in , so 2 1 n, and, in addition, either
B, > 1,o0r B, =1 but 2|mj...my—1. Then G injects in the geometric monodromy group G of F,
which is Es3 - S by [KT6, Theorem 11.2.3(ii)] when n > 4 and Theorem [4.4(ii) when n = 3, where
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E3 = E = 22" and S = Qy, (2). Certainly, F3G < G < Spya(C) still has My o = 3, see (10.1.4).
So the preceding arguments but applied to E3G show that (10.1.5)) also holds for Fs3G:

Either E3G/E3 > Q5,(2), or E3G/E3 > SU,(2).

In the former case, we have F3G = G, and so the composition factors of G are €2 (2) and Cb,
all present. But this contradicts the fact that G/E > SU,(2) (which yields a composition factor
PSU,(2) when n > 4 and C3 when n = 3). So we must have that

(10.1.6) E3G/E3 > SUn(Q)

Recall that E3G/E3 is a subgroup of S = Q(W), where W := F3/Z(E3) = F3" carries the quadratic
form 2Z(E3) +— 22 and symplectic form (2Z(E3), yZ(E3)) + [x,y], both invariant under the normal
subgroup Gp := SU,(2) of E3G/E3. Assuming n > 3 and applying [KT6, Proposition 8.4.1], we
obtain that
EgG/Eg < NO(W)<G1) = GU(Wl) A Gal(F4/IF2),

where W, := F}. Working from a standard basis for the Hermitian form on W; (over F4) back
to a Witt basis of W (over F3), one can readily check that the Galois automorphism a + a? of
F, induces (in that standard basis) an element of O(W') which is a product of n reflections. Since
2 1 n, this element is not in S = Q(W). On the other hand, since O(W) has index 2 over S and
24n>5 GUW;y) < S. It follows that F3G/E3 < Ng(G1) = GU,(2). Now we can use the fact
that G = 0% (G) to conclude that

(10.1.7) E3G/E3 = SUL(2).

Suppose now that n = 3. Then, using and the fact that F3G/FEs is transitive on both the
nonzero singular vectors and the non-singular vectors of the quadratic space F$, and arguing as in
part (b) (recalling that O3(SU3(2)) = 3}r+2), we see that holds in this case as well.

We have therefore shown that |G| < |E3G| = |Es| - |SU,(2)| = |E| - |SU,(2)|. But G/E > SU,(2)

by (10.1.5), so in fact G/E = SU,(2). O

In some special instances of the case where 2|m; ... m, but 2 { n of Theorem we can also
prove that F(f,a,b) has Ggeom = E-€5,,(2). [Also see Theorem about the “generic” situation.]
To do this, we first prove a general statement.

Proposition 10.2. Let k/F, be an finite extension, f(x) € k[z] a polynomial of degree A with
pt A, and a an integer

l<a<A, pfa.

Denote by Fy o the lisse sheaf on Al whose trace function at a pointt € L, for L/k a finite extension,
18

(—1/VH#L) Y u(f(x) + ta®).
zeLl
Then the following statements hold for its Ggeom-
(i) Ggeom, indeed its I(c0), contains elements of order a. In particular, Ggeom is not a finite
p-group.
(i) Assume in addition that gcd(A,a) = 1. Then Ggeom contains a subquotient of order (A —a),.

Proof. (i) Up to a Tate twist (1/2), Fy, is the Fourier Transform of the Kummer direct image

[al«(Ly(p)):
Fra=FTy(G) for G := [al«(Lyp)-
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The sheaf G is lisse of rank a on Gy, its I(0)-representation is @y e=1 Ly, and its I (co)-representation
has all slopes A/a > 1. By Laumon’s theory of local Fourier Transform, cf. [Ka2, 7.4.2, 7.4.4(2)],
the I(oo)-representation of Fy, is the direct sum

FTyloc(0,00)(G1(0)/Qe) & FTyloc(00, 00)(Gj1(s0))-

The first factor is @y.ye—1,y2£1Ly. Thus the subgroup I(c0) < Ggeom contains elements of order a.

(ii) The I(oco)-representation of G has rank a, and all slopes A/a. By Laumon’s result [Ka2|
7.4.1(1)],the second factor FTyloc(0o,00)(G|(x)) has rank A — a and all slopes A/(A —a). If
ged(A,a) = 1, one knows [Kall 1.1.4] that the second factor is I(oo)-irreducible, and one knows
further that denoting by (A4 — a),y the p’ part of A — a, the second factor is the Kummer induction
[(A—a)y ] W of an irreducible I (oo)-representation of dimension the p part of A—a. This description
of the second factor makes visible the group A-a), 35 2 quotient of the wild part of the I(c0)-
representation of Fy . O

Corollary 10.3. Consider the case 2 t n of Theorem m Assume that some m € {m;, m;} is
even and strictly positive. Then F(f,a,b) has Ggeom = 22" - Q5 (2).

Proof. For definiteness, we will assume m = m;, so that a = 2™ 4 1. By Theorem [10.1}, it suffices
to prove that |Ggeom| is divisible by some odd prime which does not divide |SU,(2)|.

First consider the case m > n/2. Applying Proposition m2(1) to the pullback t = 1 of F(f,a,b),
we see that |Ggeom| is divisible by 2™ + 1. Since 2m; # 6, 2°™ — 1 has a primitive prime divisor
¢ by [Zs]. Then ¢ certainly divides both 2™ + 1 and |Ggeom|- Suppose ¢ divides |SU,(2)|. Then
there is some 1 < k < n such that ¢ divides 2¥ — (—1)*. In particular, ¢|(22% — 1). The primitivity
of ¢ implies that 2m divides 2k. But 2m > n and 2k < 2n, so k = m. It follows that ¢ divides
2k — (—1)% = 2™ — 1, contradicting the choice of £. Thus ¢ does not divide |SU,,(2)|, as desired.

Assume now that 2 < m < n/2. Suppose that some prime r divides both 2" + 1 and 2™ + 1.
Then 7 divides ged (22" — 1,22™ — 1) = 22¢ — 1 for e := ged(n,m). As 2 ¢ n, e is odd, and so 2e
divides m. But in this case, r divides 2™ — 1 and so cannot divide 2™ + 1, a contradiction. Thus
2" + 1 and 2™ + 1 are coprime. Hence, by Proposition m(u) applied to the pullback t = 1 of
F(f,a,b), |Ggeom| is divisible by 2"~™ — 1. Note that n > 3 and n —m > n/2 is odd, so n —m > 3.
By [Zs], 2"~™ — 1 admits a primitive prime divisor ¢;. Suppose ¢; divides |[SU,(2)|. Then there is
some 1 < k < n such that ¢; divides 2¥ — (—1)¥. In particular, ¢1|(2%* — 1). The primitivity of £,
implies that n —m divides 2k, and hence n —m divides k since n—m is odd. But 2(n—m) > n > k,
so k =n—m. It follows that ¢; divides 2¥ — (—1)* = 2"~ + 1, contradicting the choice of ¢;. Thus
{1 does not divide |SU,(2)|, and we are done in this case as well. O

11. SEMICONTINUITY

First we recall some results from [Ka2l, 8.17, 8.18].

The situation we consider is the following. We are given a normal connected affine noetherian
scheme S = Spec (A) with A a noetherian normal integral domain with fraction field K, and a
chosen algebraic closure K of K. Thus Spec(K) is a generic point 1 of S, and Spec (K) is a
geometric generic point 77 of S. We are given X /S a smooth S-scheme of relative dimension D, with
geometrically connected fibres, and ¢ € X(5) a section of X/S. Then ¢(7) is a geometric generic
point of X. We are given a finite group G and a surjective homomorphism

m(X, ¢(7) - G.
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For each geometric point s of S, ¢(s) is a geometric point of X (and also of X). We have a
continuous group homomorphism

1 (X87 (b(S)) — 7T1(X7 ¢(S)) = 1 (X7 (Zs(ﬁ))
This last isomorphism is only canonical up to inner automorphism of the target group m (X, ¢(7)).
By composition, we get a group homomorphism

m(Xs, (s)) = G

which is well defined up to inner automorphism of GG. This applies in particular with s taken to be
7. We are interested in how the image of 71 (X, ¢(s)) in G compares with the image of m1 (X5, ¢(7))
in G: when are these two subgroups of G conjugate in G7 Let us denote these image groups G
and Gf.

Theorem 11.1. There exists a dense open set U C S such that for any geometric point s € U, Gy
and Gz are conjugate subgroups of G. Moreover, for any geometric point s € S, Gy is conjugate to
a subgroup of Gy.

Proof. We first reduce to the case when G5 = G.
Consider the scheme X, a smooth K-scheme, and compare it to the smooth K-scheme X7. We
have the 7 short exact sequence

1 = m (X, (7)) — m1(Xy, ¢(7) = Gal(K/K) = 1.
The scheme X, has the same function field as X, so the canonical map is surjective:

1 (XT]v ¢(ﬁ)) — T (Xv QZ)(ﬁ))
Thus the image of m1(X,, ¢(7)) is G, while the image of 71 (X7, ¢(7)) is a normal subgroup H of G,
with G/H the Galois group of some finite Galois extension L/K. View X as X ®4 K. Then for
the finite Galois extension L/ K, m1(Xz, ¢(7)) and 71 (X ®4 L, ¢(7])) have the same image H.

Now replace S by T:=the normalization of S in L (i.e., the Spec of the integral closure of A in L),
replace X by Xp := X xgT, and replace ¢ by the section ¢ (in terms of the finite map f: T — S,
¢ is (¢ o f) x idr as map to X xgT). In this new situation, the image H of 71 ((X1)g, ), ¢7(7))
is equal to the image of 71 (X7, ¢7(7)). Because L/K is separable (being Galois), one knows that
f T — S is both finite and surjective. Being finite, it is proper. Thus f is closed. Hence the image
of a dense open set V =T ~\ Z of T contains the dense open set U := S\ f(Z) of S.

Returning to the original notation (X, .S, ¢, G), this completes reduction to the case when Gy = G,
for G the image of 71 (X, ¢(7)). In this case, every Gy is visibly (conjugate to) a subgroup of G (by
the homomorphism

(X, 6(5)) > 71 (X, 6(5)) = m1(X, 6(7)),
Let F — X denote the finite etale G-covering classified by the surjection

m (X, (7)) - G.
Precisely because this is a surjection, F is connected. Being finite etale over X, which is in turn
smooth over the normal scheme S, we see that E is itself smooth over S, of relative dimension d.
Let us denote by
g:E— S
the structural morphism.

Then F; is a finite etale G-covering of X, but it may not be connected. One has G5 = G if and
only if Fy, which is smooth over s of dimension d, is itself connected ( or equivalently geometrically
irreducible, being smooth over s). [Indeed, the index of G5 in G is the number of geometrically
irreducible components of Ej.]
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For any prime / invertible on S, the Fy-rank of the stalk at s of R%?g(F,) is the number of
geometrically irreducible components of Es. By general constructibility theorems, R??g(F,) is a
constructible sheaf on S, so on a dense open set has constant rank. But at the generic point 7, the
rank is one (precisely because Gy = G). Therefore the rank is one on some dense open set U. Thus
for every s € U, we have G35 = G. [If there is no prime ¢ invertible on S, pick any two distinct
primes, say 2,3, and work separately on S[1/2] and on S[1/3].] For a more direct proof, see [EGA|
9.7.8] or [StPr, Lemma 37.27.5]. O

Corollary 11.2. Hypotheses and notations as in Theorem suppose that for some geometric
point so € S, Gsy = G. Then G = G, = G, and hence there exists a dense open set U of S such
that we have G = G for every geometric point s € S.

Proof. We have the inclusion, up to conjugation, G5, C G7. We also have the inclusion G5 C G,
simply via the map (X7, ¢(7)) = 71 (X, ¢(7)). Thus G = G4, C Gy C G, whence G = G, and
we apply Theorem [11.1 O

Here is a particular instance of Corollary

Proposition 11.3. Let p be a prime, ¢ = p/, x a (possibly trivial) multiplicative character of Fy,
r > 2 an integer, and let A > By > ... > B, > 1 be integers with gcd(A, By,...,B,) = 1 and
p1AB; ...B,. Consider the local system F(A,Bi,...,B,,x) on A" /F, with trace function for any
finite extension L/F,

1
(toostr) €L o S (et + a2 x (@),
x

in characteristic p, of rank D = A —1if x =1 and D = A otherwise, with geometric monodromy
group G = Ggeom. Given a choice iy € [1,k] and a polynomial f(x) € Fplz] of the form

f(z) = Z a;xBi,
1<i<r, isig
denote by F(A, By, f,x) the local system on A'/K; for K := F,(all coefficients of f) whose trace
function, for any finite extension L/K; is

te L —\/;TL %:wL(xA Y t2Bi + f(2))x(2),

and by F(A, By, f = 0,%) the local system on A'/F, whose trace function, for any finite extension
L/F, is

te L— —\/?1%7 ;wL (xA + tzBio) x ().

Suppose that F(A, By,...,By,x) has finite geometric monodromy group G, and that the specialized
local system F(A, By, f = 0,X) has the same geometric monodromy group G. Then in the A""1/F,
of possible f, there is an open dense set U C A1 such that for any f € U, the specialized local
system F(A, Bi,, f = 0,x) has the same geometric monodromy group G.

Here are some examples. In the first two of these examples, we are given r + 1 integers
n>mi>...>m; >0

with 2|nm; ... m,, ged(n, my,...,m;) = 1.
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() p=2,g=2T, A=¢"+1,r>2,B; =q¢™ +1for 1 <i < r,and either (m, >0, B, = ¢™ +1)
or (B, =1, my =0, and 2|nm; ... my_1). Suppose that 2|nm;, and ged(n,m;,) = 1. Then
F(A, Biy, f =0,1) has the same geometric monodromy group G as does F(A, By,..., B, 1),
namely the group gltans . 25, (¢). Simplest example: ig = 1 and m; = n— 1. The calculations
of the monodromy groups are Theorem 11.2.3 (ii) and Theorem 10.3.13(iii) of [KT6] for ¢" > 8
and Theorem [£.4] for ¢" = 4, 8.

(ii) p > 2, ¢ = p/, x is either 1 or the quadratic character ya, A = (¢" +1)/2, B; = (¢™ +1)/2,

1 <i<k,wheren >my >...>m, > 0 are integers with 2|nm; ... m,, gcd(n,my,...,m,) =
1, and xy =1 or x = x2. Suppose that 2|nm;, and ged(n, m;,) = 1. Then F(A, By, f = 0,X)
has the same geometric monodromy group G as does F(A, By, ..., By, x), namely the image

of Sp,,,(¢) in one of its irreducible Weil representations of degree D, with D = A—1for x =1
and D = A for x = x2. Simplest example: ig = 1 and m; = n — 1. The calculations of the
monodromy groups are Theorem 11.2.3 (i) and Theorem 10.3.13(i) of [KT6].

(iii) p arbitrary, ¢ = pf. In this third example, n > m; > ... > m, > 1 are all odd, and
ged(n,my,...,m,) = 1, x is a character of IF;2 of order dividing ¢ + 1. Suppose that
ged(n,mi,) = 1. Then F(A, B;,,f = 0,x) has the same geometric monodromy group G
as does F(A, By,..., By, x), namely the image of SU,,(¢) in a Weil representation of degree D,
with D = A —1 for x =1 and D = A for x # 1. Simplest example: i9 = 1 and m; =n — 2.
The calculations of the monodromy groups are Theorem 11.2.3 (iii) and Theorem 10.3.13(ii)
of [KTH.

Remark 11.4. In the above examples, we need the existence of an index iy such that ged(n, m;,) =
1. So we have nothing to say about one-parameter specializations in cases such as (n,mq,...m;)
(6,3,2) or (15,6,5,3) or (30,5,3,2).

A second problem is that in the examples, although we know Ggeom for an open dense set U of
f’s, we do not know which subgroups of Ggeom can occur for f’s not in U, nor for which f these
smaller groups occur.

Next we consider some one- and two-parameter systems in characteristic p = 2. We begin with
a lemma on generalized Pink—Sawin sheaves.

Lemma 11.5. Let p be a prime, n > 1 an integer, k/F, a finite extension, and f(z) € klz] a
polynomial of the form

n
f(z) = Zaixlﬂgl, an € k.
i=1

Denote by Fy the lisse sheaf on A'/k whose trace function at a point t € L, for L/k a finite
extension, 1S

ts (<1/VED) S v (f (@) + ta),
€L

i.e., Fr is, up to the Tate twist (1/2) which makes it pure of weight zero, the Fourier Transform
FTy(Lysy). Then there exists an explicit finite extension Lo/k such that for every finite extension
Li/Lgy, and every t € Ly,

| Trace(Froby 1, | F)|? = p™".
Proof. This is an instance of the argument of [vdG-vdV], Section 5]. Write
f(z) = zR(z)
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for R(z) the additive polynomial > ; a;zP". Then

| Trace(Froby 1, | Fp)|* = (1/#L1) Y tr,(zR(z) + to — yR(y) — ty) =
x,yELl

(substituting (z,y) — (z + y,y) and remembering that R(z + y) = R(z) + R(y))
= (1/#L1) Y ¢((x+y)R(@+y) +tx+ty —yR(y) — ty) =

z,yely
= (1/#L1) Y ¥r,(zR(z) +tz) Y ¢r(yR(z) + zR(y)).
el yeL

For the inner sum, the Tracer, /p, of yR(7) + zR(y) is equal to the Tracer, /r, of

y(Q ) +y(3 (ain) ).
Let us denote by _ _
Wgr(Ly) :={z € L1|(Z a;x?") + (Z(aix)l’").

Equivalently, Wx(L1) is the set of zeroes in Ly of the additive polynomial
n n ] ‘
Pr(z) := Z ax”" + Z a "
i=1 i=1

The sum
(#L) S br, (WR() + 2R@)) = (1/#L1) S 1, (yPr(),
yeLy yELy
which is 1 if Pr(z) = 0, and zero otherwise.
Take for Ly a field containing F 2 all the p*™ roots of Pg(x). [Notice that the highest degree term
of Pr(z) is anxp2n and its lowest degree term is a,z, so its derivative is the nonzero constant a,,
and hence Pg(z) has p? distinct zeroes over F,]. Then

|Trace(Froby 1, | F)|* = Z Y1, (zR(x) + tx).
z€EWR(L1

One checks that the map z — ¢, (zR(z) + tx) is a u, valued character of the finite abelian group
Wr(L1), so the sum >, cyp, r,) YL, (@R(x) + tz) is either 0, if the character is nontrivial, or is

1). But over any extension Li/Lg 1) = 0), whose cardinality 1s .
#Wr(L1). B y ion Ly/Lo, Wr(L1) = Wg(Lo), wh dinality is p*" O

Corollary 11.6. Keep the notation and assumption of Lemma [11.5. For every finite extension
Li/Lo and every t € Ly, Trace(Froby 1, |Fy) is either 0 or £p"( for some ( € pyp.

Proof. The trace lies in Z[(p] and divides p?™ in that ring, so is a unit at all places outside p, while
at the unique place over p of Q((,) it and its complex conjugate each have absolute value p". By
the product formula, this trace, divided by p”, is an element of Z[(,] all of whose absolute values
(at all places) are 1, hence is a root of unity in Z[(p). O

Theorem 11.7. Let p =2, ¢ =pf, r > 2, n > my > ... > m, >0, ged(n,my,...,m;) = 1,
2lnmy...my, and A = ¢"+ 1, B, = ¢ +1, 1 < i < r —1, and either B, = ¢™ + 1 with
my > 1 or (B;,m;) = (1,0). Recall, see [KT6, Theorem 11.2.3(ii)] and Theorem [{.4, that the
local system Fup := F(A,Bu,...,B;) has Ggeom,7,, = Gup equal to olt2ns o SU,(q) if B, = 1

and 2 ¥t nmy ...my_1, and gltani. 5, (q) otherwise. Assume in addition that (q,7,n,m1,m2) #
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(2,2,3,1,0). Fiz a choice of 1 <i < j<r. Ifi=j, setd:=1. Ifi < j, set d:= 2 and assume
r > 3. For f in the space A™=% of all polynomials

fl@y= Y aa

1<k<r, ki,

denote by F (A, By, Bj, f) the local system on A? whose trace function is

te L \/_#LL;%(Q;A + tzBi + f(z))
when 1 = j and
(s,t) € L* 1 f#% S vnlet +taP s+ 1(2)

when i < j. Then one of the following statements holds.
(i) There is an open dense set U C A"~% such that for any f € U, F(A, B;, Bj, f) has Ggeom the
group Gyp.
(ii) i = j, and for all f € GIt, F(A, By, Bi, f) has Ggeom the extraspecial 2-group ottns,
In particular, conclusion (i) holds if i < j. Moreover, conclusion (ii) holds if and only if i = j and
B;=1.

Proof. We first note that each F(A, B;, Bj, f) is a pullback of Fyp, so its Ggeom7]:(A7Bi7Bj7f) is a
subgroup of G, well defined up to conjugacy in Gy, = E - S, where E = 212nf and § = SUL(q),
respectively S = 5, (¢). We further note that, so long as all coefficients of f are nonzero, the group
Ggeom, F(A,B,,B;,f) 18 an irreducible subgroup of Spn (C), cf. [KT4, Prop. 2.4]. By the specialization
Theorem there is a subgroup Go < Gyp, well defined up to conjugacy in Gyp, and a dense
open set U C A""? such that for every f € U, Ggeomf(A’Bl.,Bj,f) is conjugate to Gg. Concretely,
there is a nonzero polynomial P(zy | 1 < k <7, k #i,j) in r — d variables over F, such that any
F(®) =D 1<icm, izis cizBi with Peg | 1 <k <, k#1,7) # 0 lies in U. Let us denote Uy, C A"
(with coordinates (si,...,s,)) the dense open set on which P(s; | 1 < k < r, k # i,j) # 0.
Replacing P by P Hk;& j Thy We reduce to the case when every f € U has all coefficients nonzero,
and hence for every f € U, Ggeom,F(a,B;,B,,r) i an irreducible subgroup of Spg(C). In particular,
the group Gy is an irreducible subgroup of Sp . (C).

Because Uy, C A" is a dense open set, F,, on A" and ]:up\Uup on Uy, have the same Ggeom, namely
Gup- Both Gy, and the arithmetic group Garitn, 7, F, are finite, with Gup <9 Garith, 7, < Spygn(C),
with the quotient Garith 7,,,F,/Gup 2 finite cyclic group. In the case S = €25, (¢), one knows that

Nsp,n(©)(Gup) < E - O3,(q) - Cf

contains Gy, with index dividing 2f. In the case S = SU,(q), our assumptions imply that (n,q) #
(3,2), whence S is simple and

Nsp,n(€)(Gup) < E- GUy(q) - Coy

contains Gyp with index dividing 2f(n+1), see [KT6, Proposition 8.4.1(b2)]. [For completeness, we
note that when S = SU,,(q) with (n,q) = (3,2), Garith,F,, F. has index 2 over Ggeom,7,, by Theorem
4.4|(iii).]

Thus over any extension L/F 2n+2, Garith, 7,p,.. = Gup- By the finite group version [KaS, Theorem
9.7.13] of Deligne’s equidistribution theorem, applied to Fup|v,,, over any sufficiently large finite
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extension L/Fni2, every element v € Gy, is conjugate to some Frobenius Frob,, . with
(51,.-+,8r) € Uyp(L). Such a Frobenius is Froby, s, 1 on F(A, B;, Bj, f) for

f(z) = Z spaBE,
1<k<m, k#i,j
Now view Ggeom,7(4,B;,B;,5) as a subgroup of Gyup. Then Frobs, s; 1 lies in Gurien 7(a,B,,8;,f), SO
normalizes Ggeom 7(4,B;,B;.f)- BUL Ggeom, 7(A,B;,B;,f) 18 conjugate in Gyp to Go, and hence, every
conjugacy class in Gy, contains an element that normalizes Go. Thus the normalizer N¢,, (Go) of
Go in Gyp meets every conjugacy class in G\p. Therefore

N¢,, (Go) = Gup,
whence
Go < Gup.

In particular, EGy/FE is a normal subgroup of the simple group G,,/E = S, whence EGy = E or
EGy = Gyp. Note that any proper subgroup of F has order < ¢*™ and so cannot be irreducible on
C9", and thus the only irreducible subgroup of E is E itself. Furthermore, M> 2(F) = @ > q+1,
whereas Ggeom F(A,B;,B;,f) With @ < j has the same M 5 as that of Gyp, which is equal to ¢ + 1, by
Theorems [9.1] and [9.2) . Hence in the former case, we must have that Go = E, ¢ = j, and furthermore
B; =1 by Proposition and thus conclusion (ii) holds by Theorem

In the latter case, (EﬁZ(E)Go)/Z(E) is a normal subgroup in Gup/Z(E) = (E/Z(FE)-S contained
in E/Z(FE). But S acts irreducibly on E/Z(E) = anf, so either ENZ(E)Go = Z(E) or Z(E)Gy >
E. However, since EGy = Gy, and Go < Gyp, the first possibility leads to Gy, /Z(E) = E/Z(E) x S,
which is impossible. So Z(E)Gp > E, in which case we have

Go = [Go, Go] = [Z(E)Go, Z(E)Go] = [E, E] = Z(E)
(since Z(E) = Z(Gyp)), whence Go = Z(E)Gy = EGy = G and (i) holds.

Assume now that ¢ = j and B; = 1. By Corollary [11.6} -, ) € {£q¢", 0} for all z € G, where ¢
denotes the character of the underlying representation. It follovvs that [gp, ©la, = ¢**|Z(Go)|/|Gol-
As Z(Go) = Z(E) = Cy and ¢ € Irr(Gy), we conclude that |Go| = 2¢*" = |E|, and hence Gy =
E. O

Here is the odd-p analogue of the above result:

Theorem 11.8. Letp > 2, q=p/, r>2, n>m; > ... >m,_1 >0, ged(n,mq,...,m_1) = 1,
and A=q¢"+1, Bi=q"+1,1<i<r—1, and B, = 1. Recall, see [KT6, Theorem 11.2.3(i-bis)],
that the local system Fup := F(A, B1,...,By) has Ggeom,r,, = Gup equal to p1+2nf x SU,(q) if
Lrnf o Spoy,,(q) otherwise. Fix a choice of 1 < i < j <r. Ifi =j, set
d:=1. Ifz < j, set d:=2 and assume r > 3. For f in the space A"~ of all polynomials

f(z) = Z cxrPr,

2{nmy...my_1, and pJ

L<k<r, k#i,j
denote by F (A, By, Bj, f) the local system on A? whose trace function is
te L —— Zm(:ﬁ‘ +tzPi + f(x))

F

zeLl
when t = j and

(s,t) € L? = f > p(a? +taP 4 saP + f(x)
x€eLl

when ¢ < j. Then one of the following statements holds.
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(i) There is an open dense set U C A™~¢ such that for any f € U, F(A, Bi, Bj, f) has Ggeom the
group Gp.
(ii) i = j, and for all f € GIt, F(A, B, B;, f) has Ggeom the extraspecial p-group pf%f.
In particular, conclusion (1) holds if i < j. Moreover, conclusion (ii) holds if and only if i = j and
B; =1.

Proof. We can follow the proof of Theorem almost verbatim. Note that since n > 2, § =

Span(q), respectively SU,(q) with 2 { n, is quasisimple. We also use the fact that Ggeom 7(4,B,,B;,)

has no nontrivial p’-quotient to show that, if G¢ is contained in EZ(S) then Gy < E for E =
1+2nf

Py . O

We can be much more precise in the quasisimple case:

Theorem 11.9. Let p be a prime, ¢ = pf, r > 2. Suppose that either

(@) p>2,n>mg>...>m >0 with2nmy...m,, ged(n,my,...,m,) =1, A= (¢" +1)/2,
Bi=(@™+1)/2,1<i<r, and x =1 or xa; or

by n>my >...>mp >1 with2 tnmy...m,, gcd(n,my,...,m,) =1, A= (¢"+1)/(g+ 1),
Bi= (g™ +1)/(qg+1),1<i<r, and x?™ =1.

Recall, see |[KT6, Theorem 11.2.3(i), (iil)], that the local system Fup, = F(A,Bi,...,Br,x) has

Ggeom, Fop =: Gup equal to the image of S := Spy,,(q) in case (a) and S := SUy(q) in case (b), in a

Weil representation of degree D = rank(Fyp). Fizx a choice of 1 <i < j<r. Ifi=7j, setd:=1. If

i < j, setd:=2 and assume r > 3. For f in the space A"~ of all polynomials

flz) = Z cprBr,

1<k<r, k#i,j

denote by F (A, B;, Bj, f,x) the local system on A? whose trace function is

teLw— \/_#LL Z¢L(xA +txPi 4 f(2))x(z)

zeLl

when t = j and

(s,) € L1 —= Sy (a + 0P + 52 + f(2))x(a)

Y #L z€L
when ¢ < j. Then we have the following results.
(i) If i = j, there is an open dense set U C A™"! such that for any f € U, F(A, B;, Bj, f,X)
has Ggeom the group Gp.

(i) In the case i < j, for any f € (Gy)" "2, i.e., for any f having all coefficients nonzero,
F(A, B;,Bj, f,x) has Ggeom the group Gp.

Proof. To prove (i), we follow the proof of Theorem almost verbatim. In the Sp case, we have
n > myp > mg > 0, so n > 2, and Spy,(q) is quasisimple for any odd ¢. In the SU case, we have
n > mj > mg > 1 are all odd, so n > 5, and SU,(q) is again quasisimple. We also use the fact
that Gigeom,7(4,B;,B,,f,y) 18 irreducible on F(A, B;, By, f, x) of rank D > 1 to see that G cannot be
contained in the image of Z(S).

To prove (ii), we use the fact that when ¢ < j, for any f all of whose coefficients are nonzero,
F(A, B, By, f, x) has the same Ms 5 as Fyp, cf. Theorem and Corollary The result is then
immediate from Theorem in the Sp case (since r > 3 implies n > 3 here), and from Theorem
in the SU case (since 7 > 3 implies n > 7 here). O
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