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Introduction

The study of exponential sums over finite fields goes back to Gauss. The importance of
estimating them goes back at least to Kloosterman’s 1926 paper [KI|. In the one-variable
case, it was understood by Hasse and Davenport in 1934 [HD] that the good estimate would
result from the proof of the Riemann Hypothesis for curves over finite fields. That proof was
supplied by Weil in 1945 [Weill]. See also Weil’s 1948 paper [Weil2], whose Math Review
was written by Kloosterman. The following year, Weil explained [Weil3] what should be
true for projective smooth varieties of any dimension over finite fields, in what came to be
known as the Weil Conjectures. The next big advance came with Grothendieck’s invention,
and the development by his school, of /-adic cohomology and its sheaf theoretic setting, cf.
[SGA4, 7.2]. This setting allowed Deligne to prove the Riemann Hypothesis part of the Weil
Conjectures in the general case, cf. [Dell 1.6]. Deligne then vastly generalized his result
to the setting of ¢-adic sheaves in [De2], 3.3.1], and used this generalization to prove the
Sato—Tate Conjecture for elliptic curves over function fields, cf. [De2, 3.5.7]. To do this,
Deligne brings to bear the arithmetic and geometric monodromy groups attached to a lisse
sheaf which is “pure of weight zero”, and shows that determining these groups is precisely
what leads to equidistribution theorems in the function field case.

At this point, let us clarify the notion of “pure of integer weight w” for a lisse Qp sheaf
F on a smooth, geometrically connected X/F,. The requirement is that for every field
embedding ¢« : Q, C C, the following condition holds: for every finite extension L/F,, and
every point x € X (L), the eigenvalues of Frob, ; on F all have, via ¢, complex absolute value
(#L)"/2. Note that if an element a € Q, has |¢(a)|c independent of ¢, then « is an algebraic
number, all of whose conjugates (as algebraic numbers) have the same complex absolute value
as each other.

Another key output of the /-adic theory is the ability to interpret a parametrized family
of exponential sums as the Frobenius traces of an /-adic sheaf on the parameter space, and to
control the open set on which this sheaf is a local system. Moreover, the results of Weil and
Deligne will ensure that this local system, after a partial Tate twist, is pure of weight zero.
One then obtains equidistribution results for the family of exponential sums in question, as
soon as one computes the arithmetic and geometric monodromy groups of the local system
in question.

The families of exponential sums we will deal with in this book will typically have pa-
rameter space either the affine line A! or the multiplicative group G,, := A' \ {0} over a
finite field k, of characteristic p > 0. Their incarnating sheaves will be f-adic local systems
on the parameter space, for any choice we like of a prime ¢ # p.

Given a prime p, it was conjectured by Abhyankar [Abh] and proven by Raynaud [Ray]
(see also [Pop]) that any finite group G which is generated by its Sylow p-subgroups occurs
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6 INTRODUCTION

as a quotient of the fundamental group of the affine line Al /E The analogous result for
the multiplicative group G,,, also conjectured by Abhyankar and proven by Harbater [Har],
is that any finite group G which, modulo the subgroup O” (G) generated by its Sylow p-
subgroups, is cyclic, occurs as a quotient of the fundamental group of G,, /IETp In the ideal
world, given such a finite group GG, and a complex representation V' of GG, we would be able,
for any prime ¢ # p, to choose an embedding of C into Q;, and to write down an explicit
Q-local system on either Al /IF_p or on G,, /IF_p whose geometric monodromy group is G, in
the given representation.

Needless to say, we do not live in the ideal world. On G,,/F,, the simplest local sys-
tems are the hypergeometric sheaves. They are simplest in the sense that among irreducible
local systems of rank > 1, they are characterized by having their H! of minimum possible
dimension, namely one, cf. [Ka-ESDE| 8.5.3]. So it is natural to investigate their mon-
odromy groups. A key step in this investigation is to show that monodromy groups of a wide
class of hypergeometric sheaves H satisfy the group-theoretic condition (S+), cf. Theorem
for the precise statement. [Condition (S+) is a slight strengthening of condition (.5)
introduced in [GT3], and roughly speaking, corresponds to Aschbacher’s class S of maximal
subgroups of classical groups [Asch].] When (S+) holds, it imposes strong restrictions on
the pair (Ggeom; H). If Ggeom 1s infinite, then the identity component Ggeom Of Ggeom 1 a
simple algebraic group, still acting irreducibly. If G := Ggeom is finite, then either G is almost
quasisimple (that is, S < G/Z(G) < Aut(S) for some non-abelian simple group S), or G is
an “extraspecial normalizer”, in particular, the dimension of the representation is a prime
power " and there is an extraspecial r-group E in G of order r'*2" acting irreducibly.

The converse question of which (complex or modular) representations of almost quasisim-
ple groups satisfies condition (S) is of great importance to the Aschbacher—Scott program of
classifying maximal subgroups of finite classical groups, and ultimately to primitive permu-
tation group theory. We refer the reader to [T] for a detailed account of this problem. The
complex representations of almost quasisimple groups that can arise in the hypergeometric
context have been classified in [KT5], see §3.1} for these representations condition (S+) is
established in Theorem [3.1.6, We also note that the full extraspecial normalizers in GL,(C),
respectively in Sp,.(C) or O, (C), satisfy (S); see [KIL, Proposition 7.6.2] for the result in
the more general situation of /-modular representations with ¢ # r.

In studying local systems and their monodromy groups, there are two kinds of natural
questions which arise. The first is this: given a simple (in the sense of simple to remember)
local system, determine its monodromy group.

One of the main themes of this book, along the lines of the first kind of question, is to
investigate what are arguably the simplest one-parameter families F(A, B, x) of exponential
sums, those of the form

(0.0.0.1) ts = d(a? +ta”)x(x),

for given prime to p integers A > B > 0 with ged(A4, B) = 1, a fixed additive character
¥, and a given multiplicative character x? It turns out that these families are Kummer
pullbacks of hypergeometric sheaves, cf. Theorem [10.1.1} This relation allows us, in §§10.2]
to completely determine their monodromy groups. In turn, building on these one-
parameter results, in Chapter [[T]we complete the classification of all multi-parameter families
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F(A, By, ..., B, x) of exponential sums
(0.0.0.2) (o ta s ty) = = > (e + 2™+ 2 x()

that admit finite monodromy, and the determination of the corresponding geometric mon-
odromy groups Ggeom-

The second kind of natural question is this: given a finite group G together with a
faithful irreducible representation V' satisfying (S+), construct a simple (again, in the sense
of simple to remember) local system whose monodromy is (G,V), if such a local system
exists. This second question, when G is almost quasisimple, has already been the subject of a
number of papers by the authors, some jointly with Antonio Rojas-Ledn, cf. the Bibliography.
Investigation of the other (S+) case, when G is an extraspecial normalizer, is a second main
theme of this book.

Let us now turn to a more detailed description of the contents of this book. We work
with geometrically irreducible hypergeometric sheaves H on G,,, i.e., those that are lisse
on G,, and whose Ggeom acts irreducibly. At the possible expense of interchanging 0 and
oo on G, by inversion, we may and will assume H is of type (D,m) with D > m. One
knows [Ka-ESDE, 8.4.11] that if Ggeom is finite, then a generator of local monodromy at
0 is an element of Ggeom Which has all distinct eigenvalues in the given representation (a
simple spectrum element). In general, such a generator has regular spectrum, in the sense of
Definition [LT.H

Our first main result, Theorem [2.4.4] shows that if such a sheaf # in characteristic p has
wild part of dimension 1 < w < (p — 1)/2, then its geometric monodromy group Ggeom 1S
either infinite, or finite but imprimitive (unless H has rank 2 and p = 5). This result can be
viewed as a hypergeometric version of the celebrated result [FT] of Feit and Thompson on
linear groups of degree < (p —1)/2.

Building on [KT5, Theorem 7.4], our Theorem shows that if D > 11 and H
has a finite geometric monodromy group Ggeom Which is almost quasisimple of Lie type in
some characteristic r, then the characteristic of H must necessarily be r, aside from three
exceptions for D = 12 and D = 14. A similar result for hypergeometric sheaves with Ggeom
an extraspecial normalizer was established in [KT5, Theorem 9.19)].

Our next result, Theorem , extending prior work of Howe [HS|, Theorem 4.6.3], gives
a full classification of representations of (not necessarily connected) simple algebraic groups
that admit elements with regular spectrum.

The next main result, Theorem [5.2.9] vastly generalizing earlier related results in [KT5],
shows that any geometrically irreducible hypergeometric sheaf of type (D, m) with D > m
satisfies (S+), as long as it is primitive and has rank # 4, 8, 9.

In Chapter @ we determine, in Theorem , the possible identity component Gg,,,, of
Glgeom for a hypergeometric sheaf H of type (D, m) with D > m satisfying (S+) whose Ggeom is
infinite. Recall from [GT3], Proposition 2.8] that (S+) (which by Theorem[5.2.9)is automatic
so long as D # 4,8,9 and H is primitive) implies that Ggeom is a simple algebraic group
acting irreducibly. In [Ka-ESDE, 7.2.7], it is proved that in sufficiently large (depending
on w := D — m) characteristic p, the only such possibilities for the given representation of
G° ... are either one of the classical groups SLp, SOp, or Spp, for even D, in the standard

geom
D-dimensional representation or its dual, or G5 in its 7-dimensional representation, or SLg



8 INTRODUCTION

in its 8-dimensional adjoint representation, or Spin, in its 8-dimensional spin representation.
Removing the constraint on size of the characteristic p, Theorem [6.2.14] shows that, aside
from a few possible low-rank exotic exceptions in characteristic p = 2, 3, these are the only
possibilities.

Chapter [7] is devoted to the study of the extraspecial normalizer case in odd character-
istic, with Theorem as the principal result. Perhaps not surprisingly, the study of the
extraspecial normalizer case in characteristic p = 2 is hugely more complicated, and takes
up Chapters [§] and [0} Among other results, in parallel with the approach of [KT7], we are
able to realize in Theorem the extraspecial normalizers 2f2nf - Q3 (27) as geomet-
ric monodromy groups of hypergeometric sheaves, whereas type — extraspecial normalizers
2!+2n) .7 (27) are realized in Theorem following the approach of [KT6]. Furthermore,
a novel use of Witt vectors allows us to produce, for the first time, explicit local systems with
geometric monodromy groups of shape (4 % 2"72"/) . Sp, (2/), see Theorem 9.3.9L

Chapter [10]is devoted to computing the monodromy groups of the one-parameter families
F(A,B,x) in (0.0.0.1). The main results are Theorems [10.2.4] and [10.2.7] (for exponents
A > B = 1), and Theorems [10.3.13} [10.3.14] and [10.3.21] (for exponents A > B > 1).
In particular, the list of (A, x) for which the local system F(A,1,x) in has finite
monodromy, previously conjectured in [KT1] and |[R-L], is proved to be complete. We
also show (see Lemmas [10.3.15} [10.3.16410.3.17, and that the exotic possibilities
for p = 2,3 in Theorem do not occur in the context of the one-parameter systems
F(A, B, x). Multi-parameter analogues of these results for the families F(A, By,..., A, x)
in are obtained in Chapter .

Chapter|12]is devoted to treating some of the very few cases of families with non-monomal
perturbing terms where we can say anything at all. This is very much an area in which
much remains to be done. The proofs of the main results in this chapter, Theorems [12.2.3
and [12.3.6, once again highlight the importance of the moment M, in the study of the
G geom Of local systems. In addition, Theorems [12.5.4] [12.5.5] [12.5.11] and determine
geometric monodromy groups for some special classes of two-parameter local systems with
non-monomial coefficients. This theme will be further explored in the forthcoming paper
IKTg].

The appendices consist of two Magma programs.

A word about notation. Throughout the book, we use F for a local system which is pure
of some integer weight, and we use G to denote a suitable constant field twist of F which
is pure of weight zero. The two are geometrically isomorphic, so have the same geometric
monodromy group Ggeom, but their arithmetic monodromy groups Gasith, 7 and Garigh,g may
differ. [They will coincide if F is itself pure of weight zero and we take G := F.] When F
has nonzero weight, the group G, is never finite, indeed never has a semisimple identity
component, simply because its determinant is pure of nonzero weight. It is only Gayighg Which
can ever be finite.




CHAPTER 1
The basic (S—), (S), and (S+) settings

1.1. Conditions (S—), (S), and (S+) for local systems

We work over an algebraically closed field C of characteristic zero, which we will take
to be Qy for some prime ¢ in the rest of this book. Given a nonzero finite-dimensional C-
vector space V' and a Zariski closed subgroup G < GL(V'), recall from [GT3), 2.1] that G (or
more precisely the pair (G,V)) is said to satisfy condition (S) if each of the following four
conditions is satisfied.
(i) The G-module V is irreducible.
(ii) The G-module V' is primitive.
(iii) The G-module V is tensor indecomposable.
(iv) The G-module V' is not tensor induced.
We also say that G, or the pair (G, V), satisfies condition (S—), if it fulfills (i), (ii), and (iii).

We have the following two elementary but useful lemmas.

LEMMA 1.1.1. Suppose that H < G < GL(V) and G,H are both Zariski closed. If
(H,V) satisfies (S) (respectively satisfies (S—)), then (G, V') satisfies (S) (respectively sat-
isfies (S—)).

PRrROOF. Immediate from the definitions. 0J

LEMMA 1.1.2. Suppose that G < GL(V') is Zariski closed, irreducible and primitive, and
that dim(V') is a prime number. Then (G,V') satisfies (S).

PROOF. Indeed, conditions (iii) and (iv) are automatic. O

LeEMMA 1.1.3. [KT5, Lemma 1.1] Suppose 1 # G < GL(V) is a Zariski closed, irreducible
subgroup. Then the following statements holds.
(i) If G satisfies (S), dim(V) > 1, and Z(G) is finite, then we have three possibilities:

(a) The identity component G° is a simple algebraic group, i.e. G° has no nontrivial
connected normal Zariski closed subgroups, and V'|go is irreducible.

(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group
S such that S <1 G/Z(G) < Aut(95).

(c) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is,
dim(V') = r™ for a prime r, and G contains a normal r-subgroup R = Z(R)E,
where E is an extraspecial r-group E of order r'**" acting irreducibly on V', and
either R=E or Z(R) = Cy.

(ii) Z(G) is finite if and only if det(G) is finite.

DEFINITION 1.1.4. A pair (G,V) is said to satisfy the condition (S+), if it satisfies (S)
and, in addition, |Z(G)| is finite (equivalently, det(G) is finite). More generally, if ' is any

9



10 1. THE BASIC (S—), (S), AND (S+) SETTINGS

group given with a finite-dimensional representation ® : I' — GL(V'), then we say (I', V)
satisfies (S+), if (®(I"), V') satisfies the three conditions of (S) and, in addition, det(®(I")) is
finite.

DEFINITION 1.1.5. Given a group G, an element g € G and a a finite dimensional repre-
sentation ® : G — GL(V') over C, we say that

(a) g has simple spectrum on V, or g is an ssp-element on V', if ®(g) is diagonalizable and
has pairwise distinct eigenvalues on V/;

(b) g has almost simple spectrum on V', or g is an asp-element on V', if ®(g) is diagonalizable
and has at least dim(V') — 1 pairwise distinct eigenvalues on V;

(c) g is an m2sp-element on V, if ®(g) is diagonalizable and each of its eigenvalues on V' has
multiplicity < 2;

(d) g has regular spectrum on V', if for any A € C, dim Ker(®(g) — A - Id) < 1, equivalently,
®(g) has at most one Jordan block with eigenvalue A for any A € C; and

(e) g has almost reqular spectrum on V| if V' decomposes as the sum V& V; of ®(g)-invariant
subspaces, dim Vy < 1, and ¢ has regular spectrum on V.

In a perhaps unfortunate terminology due to Sylvester [Syll], an element g € GL(V)
with regular spectrum is also called “non-derogatory”. Such an element is regular in the
sense that its centralizer in GL(V') has smallest possible dimension, and this is the reason
behind our term “regular spectrum”.

The relevance of Definition to the study of monodromy groups of hypergeometric
sheaves is explained in Proposition m (below). Let us also recall two elementary results.

LEMMA 1.1.6. |[GT3, Lemma 2.5] Given a Zariski closed subgroup G C GL(V) and a
Zariski closed normal subgroup H <1 G, suppose that (G,V) satisfies (S—). Then either
H < Z(G) or Vg is irreducible.

LEmMA 1.1.7. [KT5, Lemma 1.6] Let T be a group, C an algebraically closed field of
characteristic zero, n € Zs1, ® : I' = GL,(C) = GL(V) a representation of ', and G <
GL(V) the Zariski closure of ®(I'). Then (I', V') satisfies (S+) if and only if (G,V) satisfies
(S+). This equivalence holds separately for each of the four conditions defining (S+).

To prove an analogue of Lemma for groups satisfying (S—), first we need the fol-
lowing result on p-groups:

LEMMA 1.1.8. Let p be a prime and let P be a finite p-group. Suppose that every charac-
teristic abelian subgroup of P is cyclic, and also central if p = 2. Then P = ExC is a central
product of subgroups E and C, where E =1 or E is an extraspecial p-group, and C = Z(P)
15 cyclic.

ProOF. By Hall’s theorem, see e.g. [Gor]|, we have that P = E % X is a central product,
where ¥ =1 or F is an extraspecial p-group, and either X is cyclic, or p = 2 and X is either
a dihedral group

Dyn = (z,y | 2™ =y = Lyay ' =a7),
a generalized quaternion group

2

Qom = (z,y | 2" =2yt = Lyay ™t =271,
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or a semi-dihedral group

SDan = (,y |0 =2 = Lyay ™ =2 2"

of order 2™ > 16. In either case, Z(P) = Z(FE) = Z(X) is characteristic abelian in P, hence
cyclic by assumption, and Z(FE) has order 1 or p. Hence we are done if p > 2 or if p = 2 but
X is cyclic (taking C := X).

Assume now that p = 2, but X is non-cyclic. In the above notation, Z(X) = (22" ) = (5,
hence Z(P) = Z(X) > Z(FE). Note that P/Z(P) = E/Z(E) x X/Z(X), where X/Z(X)
is dihedral of order 2™, with center (22" )/Z(X). Now, if Q denotes the full inverse
image of Z(P/Z(P)) in P, so that Q/Z(P) = Z(P/Z(P)) = E/Z(E) x Z(X/Z(X)), then
Q = E x (z"°). Thus Z(Q) = (z2"") = C, is characteristic abelian, however not central
in (), a contradiction. O

9

LEMMA 1.1.9. Let 1 # G < GL(V) be a Zariski closed, irreducible subgroup. Suppose
that G satisfies (S—), dim(V') > 1, and Z(G) is finite. Then we have three possibilities:

(a) The identity component G° = Ly Lox...x L, is a central product of simple algebraic
groups, which are permuted transitively by G via conjugation, and V| is irreducible.

(b) G is finite, F*(G) = Z(G)E(G), E(G) = Ly % Ly x ... % L, is a central product of
quasisimple groups which are permuted transitively by G' via conjugation, and V| g
15 irreducible.

(c) G is finite and it is an extraspecial normalizer in characteristic r, i.e. dim(V') = r"
for a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is an
extraspecial r-group E of order r'™2" acting irreducibly on V, and either R = E or
Z(R) = Cy. Furthermore, RJZ(R) = O,(G/Z(G)) is the unique minimal normal
subgroup of G/Z(G), and G/Z(G)R embeds in Sp,,(r).

PRrOOF. (i) By Lemma [1.1.3(ii), det(G) is finite. Now we can apply the arguments in
the proof of [GT3|, Proposition 2.8] to G. Suppose G° # 1. Then G° is semisimple, and so
G° = Ly % Ly x...x L, is a central product of simple algebraic groups. Now, G permutes
Ly, Lo, ..., L, via conjugation. If this action is not transitive, then we can write G° = A x B,
where A is the product of the L;’s belonging to one G-orbit, and B is the product of the rest.
Furthermore, A, B << G and A, B £ Z(G). Hence A and B are irreducible on V' by Lemma
[[.1.6, and so B < Z(G) by Schur’s lemma, leading to a contradiction. Thus (a) holds if
G° # 1.

(ii) We will now assume that G is finite. As dim(V) > 1, G > Z(G). Let L be a minimal
normal subgroup of G/Z(G). Suppose L is non-abelian. Then the arguments in part 2) of
the proof of [GT3, Proposition 2.8] show that L is the unique minimal normal subgroup of
G/Z(G), and K = Ly % Ly % ... % L, is a central product of quasisimple groups which are
permuted transitively by G via conjugation, if K = L(>) and L is the full inverse image
of L in G. The uniqueness of L implies that F(G) = K, and that F*(G) = Z(G)E(G).
Furthermore, V|p(g) is irreducible by Lemma [1.1.6} and so (b) holds.

(iii) Suppose now that L is an (elementary) abelian r-subgroup for a prime 7, and let L
be the full inverse image of L in G. Then [L, L] < Z(G), whence L is nilpotent and so we
can write L = O,/(Z(G)) x Ly for an r-subgroup L; < G. As L <G and L £ Z(G), V is
irreducible over L by Lemma [1.1.6] and so over L; as well; in particular, L; is non-abelian.
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Since dim(V) > 1, Lemma implies that any characteristic abelian subgroup of L; is
contained in Z(G), and so is cyclic and central in L;. By Lemma , L, = E x Ly, where
E, is extraspecial and Ly = Z(Ly) is cyclic.

For any x,y € Ly, we have 2" € Z(G) and [z,y] € Z(G), whence [z,y]" = [2",y] = 1. The
latter implies by [KS, 5.3.4(b)] that (zy)” = 2"y" when r > 2 and (zy)* = z'y* when r = 2.
Setting ' = r if r > 2 and " = 4 if r = 2, we then see that

(1.1.9.1) R={zelL |z =1}

is a characteristic subgroup of Ly; in particular, R <<G. Note that F; # 1 is a central product
of extraspecial r-group of order 73 and so it contains non-central elements of order r’ (see
e.g. [KS| p. 115]), and thus R £ Z(G). By Lemma Vg is irreducible, and any
characteristic abelian subgroup of R is cyclic and central. Again applying Lemma [1.1.§], we
obtain that R = E % C, where F is extraspecial and C' is cyclic. Moreover, exp(R)|r’ by
(1.1.9.1)), and so Z(R) < Z(G) is cyclic of order dividing r’. It follows that either R = E, or
r=2and C = (4, i.e. the first statement in (c) holds.

Next, Z(R) = RNZ(G) = RNZ(Ly), and so 1 # R/Z(R) — L/Z(L,) = L/Z(L) =
The mlmmahty of L then implies that L = R/Z(R). By Schur’s lemma, Cs(R) = Z(G), s
G := G/Z(G) embeds in

Auto(R) :={f € Aut(R) | f acts trivially on Z(R)}.

According to [Gri] (for r = 2) and [Wi] (for r > 2), Auty(R) contains the normal subgroup L
of all inner automorphisms of R and Auto(R)/L < Sp(L) = Sp,, (), and thus G/Z(G)R —
SPay, (7). The minimality of L implies that G/Z(G)R acts irreducibly on L. Next, L < O,(G),
and the r-group O,(G)/L < Sp(L) acting on the F,-space L must have a nonzero fixed point
subspace X which is G-invariant. Hence X = L by irreducibility, and so L = O,(G). Finally,
if M is any minimal normal subgroup of G, then the preceding arguments imply that M is
abelian and equal to O,(G), completing the proof of (c). O

L.

For later use, we prove another result on p-groups:

PROPOSITION 1.1.10. Let p be a prime, V = C" withn > 1, and let P < GL(V) a finite
wrreducible p-group. Let x denote the character of G on V. Suppose that every characteristic
abelian subgroup of P is central in P. Then the following statements hold.

(i) n = p™ for somem € Z>y, P = ExC is a central product of subgroups E and C, where
E is an extraspecial p-group of order p'™®™, and C = Z(P) is cyclic.

(ii) If h € GL(V) has finite p'-order and h normalizes P, then the order M of the automor-
phism f of P induced by h is less than p™ ™ /(p —1).

(iil) Suppose k € Zs1 and pt k. Then Sym*(x) is a multiple of an irreducible character of
degree p™ of P. If in addition 1 < k <n — 1, the same statement holds for N\¥(x).

(iv) Suppose k € Zsy and plk. Then Sym”(x) contains at least N distinct linear characters
of P, where N := p*™ — 1 if p > 2 and N := 2™71(2™ + 1) if p = 2. If in addition
2 < k < n —2, the same statement holds for A*(x), with N := p*™ — 1 if p > 2 and
N =271 2m 1) if p = 2.

PROOF. (i) Since P is irreducible, Z(P) is cyclic, and by hypothesis every characteristic
abelian subgroup of P is cyclic. Hence P = F % C, with F and C as described in Lemma
1.1.8f Now Vg is irreducible, so |E| = p'™™ with n = p™.
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(ii) Note that exp(E) = p or p?. Setting
Py={zeP|a” =1}, Co:=0(C)={zeC | =1},

we then see that P = {zz |z € E, z € Cs}, whence P, = E % (5 is a characteristic subgroup
of P, of exponent p or p*>. As P, > F is irreducible on V, h centralizes Z(P,) < Z(GL(V)),
so f|p, belongs to

Auto(Py) = {y € Aut(P,) | y acts trivially on Z(P,)}.

Moreover, if f7 acts trivially on P, then b/ € Cgrn)(P2) = Z(GL(V)), and so b’ centralizes
P as well. Thus f and f|p, have the same order M.
Note that 2P, [x,y] € Z(P,) for all 2,y € P», and so [z,y]’ = 1 . Hence the commuta-

~Y

tor map (z,y) — [z,y] induces a non-degenerate symplectic bilinear form on P,/Z(P;) =
E/Z(E) = 2™, taking values in Q)(Z(P,)) == {z € Z(P,) | 2> = 1} = F,. Certainly, h
acts on P,/Z(P,) preserving the form, and h acts trivially on Z(P,). If some power h/ acts
trivially on P,/Z(P,), then, since p t o(h), we have that h’ centralizes P by [KS| 8.2.2].
Thus M is equal to the order of the map in Sp(FP»/Z(P,)) induced by f. In particular,
M < meo(Spy,,(p)), whence M < p™*/(p — 1) by [GMPS], Table 3].

(iii) As E is extraspecial, Z(F) = (z) = C,, and we may assume z acts on V as ¢, - Id.
Now, given p { k, we see that z acts as the scalar ¢} # 1 on V®*. Thus, any irreducible
constituent of the E-character afforded by V®* lies above the character z C;f of Z(E),
and the extraspecial p-group E has a unique such irreducible character, which has degree
p™. As both Sym*(V) and AF(V) are inside V&, the statement follows for E, and hence for
P = FE xC (as C acts via scalars on V).

(iv) Denote ¥ := Sym or A, and assume 1 < k < n — 1 when 3 = A. It is well-known
that (V) is a nontrivial irreducible module for SL(V'). As GL(V) = Z(GL(V))SL(V) and
SL(V)/Z(SL(V)) is simple, the only elements of GL(V') that can act via scalars on ¥*(V') are
the ones in Z(GL(V)). It follows that 3*(y) cannot be a multiple of a single linear character
of P. As p|k in this case, the generator z of Z(E) acts as (¢! = 1 on V®, and thus the
character of £ on V® is a sum of p™* linear characters. The previous observation implies
that AF(x)|z must contain at least two distinct linear characters. Since P = E * C' with
C < GL(V), ¥*(x) must contain at least two distinct linear characters, say o and 3, with
alg # Ble.

First we consider the case p > 2. Denoting D := ((,2 -Id) < Z(GL(V)), one readily check
that E% D = Pyx D = E* x D, where E+ = p!™™ is extraspecial of exponent p. Extending
a to Py x D) we may assume that «|g+ is nontrivial. It is well-known that

Nerw)(E') = Z(GL(V))E™ % Spy,,(p),

and Sp,,,(p) has two orbits on Irr(ET/Z(E™T)): {1g+}, and one of length p*™ — 1. Also,
Z(ET) = Z(E) acts trivially on V®*. Since N (ET) also acts on A*(V), Clifford’s
theorem implies that X*(x)|gz+ contains the Ngpo(E™)-orbit O of a|g+ which has length

2m

pe — 1.
Now we can write every element g € P, (not uniquely) as g = xd with x € Et and d € D.
Then d acts on ¥¥(V) as u(d), where p € Irr(D) and (¢ - 1d) = q;. For each A € O, the

ET-eigenspace W) in ¥¥(V) that corresponds to A is invariant under P, and g acts on this
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subspace as the scalar A\(x)u(d). If these actions of each g € P, are the same on W, and W),
for O 3 X # A, then \(z) = N(x), a contradiction because E* < P,D. Hence, YX*(y) must
contain at least |O] = p*™ — 1 distinct linear characters of P, whence the statement follows

for P.
Next we consider the case p = 2. It is well known, see e.g. [Gri|, that either

Py = E =2""" for some € = £ and Ngr)(P) = Z(GL(V)) P, - 05,,(2),

or
P2 = E X 04 and NGL(V)(PQ) = Z(GL(V))PQ . Spgm(Q)

Choose k = + if ¥ = Sym and k = — if ¥ = A. Since Cy acts via scalars on X¥, arguing as
above, we see that it suffices to show that ¥*() contain at least N distinct linear characters
for Cy x E/. Repeating the argument and using Cy x £ = Cy * E*, we see that it suffices to
show that ¥*() contains at least N distinct linear characters for E* = 21%2™ Note that
the representation of E* on V is orthogonal if k = +, and symplectic if K = —. Moreover,
the contraction map shows that ¥*(V) contains ¥*=2(V) as modules over O(V), respectively
over Sp(V), see [OV] Table 5]. As 2|k > 2, it suffices to prove the statement for k = 2.
Now, V&2 = Sym?(V) @ A%(V) affords the regular character of E*/Z(E*), which breaks into
three Ngrv)(E)-orbits: {1g«}, one of length 2771(2™ — k), and another, say O, of length
(2™~ + k)(2™ — k). By the choice of k, ¥?(x)|g+ contains 1g«, and dim X*(V) = 1 + |O|.
Since Ngr,v)(E") also acts on $(V), Clifford’s theorem implies that X?(V) affords 1p~ and
the orbit O, proving the statement with N = dim %?(V). O

1.2. Kloosterman and hypergeometric sheaves

We work in characteristic p, and use Q-coefficients for a chosen prime ¢ # p. We fix a
nontrivial additive character ¥ of F,, with values in 11,(Q;). We will consider Kloosterman
and hypergeometric sheaves on G,,/F, as representations of 7 := m(G,,/F,), and prove
that, under various hypotheses, they satisfy (S+) as representations of 7. As noted in
Lemma , this is equivalent to their satisfying (S+) as representations of their geometric
monodromy groups.

On G,,/F,, we consider a Kloosterman sheaf

Kl :=Kly(x1,---,Xxp)

of rank D > 2, defined by an unordered list of D not necessarily distinct multiplicative
characters of some finite subfield F, of F,,.

One knows that Kl is absolutely irreducible, cf. [Ka-GKM, 4.1.2]. One also knows,
by a result of Pink [Ka-MG| Lemmas 11 and 12] that Kl is primitive so long as it is not
Kummer induced. Recall that Kl is Kummer induced if and only if there exists a nontrivial
multiplicative character p such that the unordered list of the y; is equal to the unordered list
of the px;. Thus primitivity (or imprimitivity) of Kl is immediately visible.

Recall that for any smooth, geometrically connected X/F, and any lisse Qy sheaf on
X, with geometric monodromy group Ggeom, & celebrated theorem of Grothendieck [De2l,
1.3.8] tells us that the radical of G2, ., is unipotent. Thus if F is geometrically semisimple,

geom

then G2, is semisimple. Applying this last statement to det(F), we see that det(F) is

geom
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)
geom’

geometrically of finite order, since its G being a semisimple subgroup of GL;(Qy), is

trivial.

THEOREM 1.2.1. [KT5 Theorem 1.7] Let Ki be a Kloosterman sheaf of rank D > 2 in
characteristic p which is primitive. Suppose that D is not 4. If p = 2, suppose also that
D # 8. Then Kl satisfies (S+).

More generally, we consider a (Q-adic) hypergeometric sheaf H of type (D,m) with
D > m >0, thus

H = Hypy(X1,- -, XD P1s- - s Pm)-

[A Kloosterman sheaf is none other than a hypergeometric sheaf H of type (D, 0).] Here the
x; and, if m > 0, the p; are (possibly trivial) multiplicative characters of some finite subfield
Fx, with the proviso that no x; is any p;. [The case m = 0 is precisely the Kl case.] One
knows [Ka-ESDE, 8.4.2, (1)] that such an H is lisse on G,,, geometrically irreducible. Its
local monodromy at 0 is tame, a successive extension of the y;. It is of finite order if and only
if the y; are pairwise distinct, in which case that local monodromy is their direct sum &;Y;,
cf. [Ka-ESDE] 8.4.2, (5)]. Its local monodromy at oo is the direct sum of a tame part of
rank m which is a successive extension of the p;, with a totally wild representation Wildp_,,
of rank D —m and Swan conductor one, i.e. it has all co-breaks 1/(D — m). It is of finite
order if and only the p;, if any, are pairwise distinct, in which case that local monodromy is
the direct sum of @©;p; with Wildp_,,,. We denote by w := D — m the dimension of the wild
part Wild, and let

(1.2.1.1) J := the image of I(c0) on H.

THEOREM 1.2.2. [KT5, Theorem 4.1] Let H be an irreducible Qq-hypergeometric sheaf
on G,,/F,, with p # {, and of type (D,m) with D — m > 2. Denote by Gy the Zariski
closure inside the geometric monodromy group Ggeom 0f the normal subgroup generated by all
Ggeom-congugates of the image of 1(0). Then Gy = Ggeom- In particular, if Ggeom is finite
then it is generated by all Ggeom-conjugates of the image of 1(0), and Ggeom = OP(Ggeom)-

THEOREM 1.2.3. [KT5, Theorem 4.7] Let H be an irreducible Qg-hypergeometric sheaf
on (Gm/IFT, definable on G,,/F, for some finite extension F,/F,, with p # (, and of type
(D, m) with D > m. Denote by Gp() the Zariski closure inside the geometric monodromy
group Ggeeom 0f the normal subgroup generated by all Ggeom-conjugates of the image of the
wild inertia group P(00). Then Ggeom/Gp(soy 15 a finite cyclic group of order prime to p.

In the case of a hypergeometric sheaf H with m > 0, primitivity is less easy to determine at
first glance, because there is also the possibility of Belyi induction, cf. [KRLT3|, Proposition
1.2]. Tt is known that an H of type (D, 1) is primitive unless D is a power of p, cf. [KRLT3|
Cor 1.3]. Tt is also known [KRLT3| Proposition 1.4] that an H of type (D, m), with D >
m > 2 and D a power of p, is primitive.

THEOREM 1.2.4. [KT5, Theorem 1.9] Let H be a hypergeometric sheaf of type (D, m)
with D > m > 0, with D > 4. Suppose that H is primitive, p 4 D, and w > D/2. If p is
odd and D = 8, suppose w > 6. If p # 3, suppose that either D # 9, or that both D =9 and
w > 6. Then H satisfies (S+).
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THEOREM 1.2.5. [KT5, Theorem 1.12] Let H be a hypergeometric of type (D, m) with
D > m > 0, with D > 4. Suppose that ‘H is primitive. Suppose that p|D, and w >
(2/3)(D —1). If p = 2, suppose D # 8. If p = 3, suppose (D, m) is not (9,1). Then H
satisfies (S+).

These two results will be significantly strengthened in Theorem [5.2.9,
We end this section with the following result, which corrects an inaccuracy in [KT5!
Theorem 9.19(ii)].

THEOREM 1.2.6. Let H be an irreducible hypergeometric sheaf of type (D, m) in char-
acteristic p with D > m, D > 10, such that its geometric monodromy group G = Ggeom
18 a finite extraspecial normalizer in some characteristic r. Then p = r, D = p" for some
n € Z>1, and the following statements hold.

(i) Suppose p > 2. Then H is Kloosterman, in fact the sheaf KI(Charyyiy (p™ + 1)) (studied
by Pink [Pink| and Sawin [KT1), p. 841]).

(ii) Suppose p = 2. Then the 2-part of Z(G) has order 2, and so in Lemma[1.1.5(i)(c) we
have that R = E is a normal extraspecial 2-group 217" of G for some € = +. Moreover,
after tensoring H with a suitable rank one sheaf L, we obtain Z(G) = Cs.

PROOF. Part (i) is precisely [KT5, Theorem 9.19(i)], and the first claim of part (ii) is also
established in the first paragraph of the proof of [KT5l Theorem 9.19]. Now, if V' denotes
the underlying representation, then V|g is irreducible and self-dual, we have by Gallagher’s
Theorem [Is, (6.17)] that V* =V ® A® B, with A and B being one-dimensional representa-
tions of the finite group G; moreover, (the character of) A has odd order and (the character
of) B has 2-power order. Since p = 2, we can find a one-dimensional representation L of G
such that L®? = A, on which the 2-subgroup E acts trivially. Then the G-representation
U :=V ® L yields a hypergeometric sheaf H ® L, whose geometric monodromy group is the
image H of G in GL(U), and we also have U* = U® B. Now any odd-order element z € Z(H)
acts on U as some root of unity ¢ € C* with ("™ = 1 for some odd m € Z. Evaluating the
action of z on U* and U, we see that (72 = B(z) has a 2-power order in C* and hence
¢ = 1. Thus Oy (Z(H)) acts trivially on U. By the first claim of part (ii), |O2(Z(H))| < 2.
On the other hand, since E acts trivially on L and faithfully on V', F embeds in H as an
irreducible normal 2-subgroup. in particular, Z(E) still acts via g on U. It follows that H
is an extraspecial 2-normalizer with Z(H) = Z(E) = Cs. O

1.3. More on condition (S+) for hypergeometric sheaves

Over a field k, a representation ® : G — GL(V') of a group G is called tensor decomposable
if there exists a k-linear isomorphism V = A ®; B with both A, B of dimension > 2, such
that ®(G) < GL(A) ®, GL(B), the latter being the image of GL(A) x GL(B) in GL(A®y B)
by the map (¢, p) — ¢ ® p. Tensor indecomposability is one part of the condition (S+),
which is shown in [KT5] to play a central role in the study of hypergeometric sheaves. More
precisely, a geometrically irreducible hypergeometric sheaf #H satisfies (S+) if and only if it
is primitive, tensor indecomposable, and not tensor induced.

Various results in [KRLT3| on tensor indecomposability for the monodromy groups of
hypergeometric sheaves of type (D, m) with D > m > 0 are proved relying on the following
representation-theoretic fact:
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THEOREM 1.3.1. [KRLT3, Theorem 2.3] Let J be a finite group, with normal Sylow p-
subgroup P and with cyclic quotient J/P. Let V be a finite-dimensional C.J-module which
is the direct sum T & W of a nonzero tame part T (i.e., one on which P acts trivially) and
of an irreducible submodule W which is totally wild (i.e., one in which P has no nonzero
invariants). Suppose that one of the following conditions holds.

(a) dim(V') is neither 4 nor an even power of p.

(b) dim(V') is an even power of p and dim(7T") > 1.

(c¢) dim(V) =4, p > 2, and dim(T') # 2.

Then J does not stabilize any decomposition V = A ® B with dim(A),dim(B) > 1.

We offer another result which applies to some situations not covered by Theorem [1.3.1}

THEOREM 1.3.2. Let p be any prime, n > 1. Let G < GL(V) = GL,(C) be a finite
group with a normal subgroup P which is an extraspecial p-group of order p'™2". Suppose
that p** — 1 admits a primitive prime divisor { (in the sense of [Zs]) and that G contains an
element g of order { that does not centralize P. Then G 1is irreducible, primitive on V, and
cannot fiz any nontrivial tensor decomposition or a tensor induced decomposition of V.

PROOF. (i) It suffices to prove the statement in the case G = P(g) = P x Cy. Note that
any complex irreducible representation of P is either trivial on Z(P) = C, or has degree p".
It follows that V|p is irreducible. Thus G acts irreducibly on V', with character say ¢.

By Schur’s Lemma, Z(P) acts on V via scalars, and so Z(P) < Z(G) and g centralizes
Z(P). Next, the assumption about ¢ = |g| implies that the action of ¢ on P/Z(P) is
irreducible. Hence, if g has nonzero fixed points on P/Z(P), then g acts trivially on P/Z(P).
As g acts coprimely on P and g centralizes both Z(P) and P/Z(P), we then have that ¢
centralizes P, a contradiction. We have shown that |Cp/zp)(g)| = 1, whence Z(P) is the
complete inverse image of Cp/z(p)(g) in P. It follows by [GT1], Lemma 2.4] that

(1.3.2.1) o(g)] = 1.

(ii) Next we observe that if 1 # P; < P is a g-invariant subgroup, then either P, = Z(P)
or P = P. Indeed, the claim is obvious if P, < Z(P). Suppose P, £ Z(P) and P, < P.
Then P\Z(P)/Z(P) is g-invariant, and so PyZ(P) = P by irreducibility. As P, NZ(P) =1,
we have P, = P/Z(P) is abelian. In this case, P = P, x Z(P) is also abelian, a contradiction.
A similar argument shows that

(1.3.2.2) 0"(G) =G.

Suppose now that G fixes a nontrivial imprimitive decomposition V' = &;_,V; with s > 1.
As s|p™, [G : Stabg(V1)] = s is coprime to ¢, and so we may assume that g fixes V;. Now
Stabp(V}) is g-invariant, and has order at least |P|/s > p™*!. It follows by the preceding
statement that Stabp(V}) = P, i.e. P fixes Vi. But in this case V; = V by irreducibility, a
contradiction. We have shown that G acts primitively on V.

(iii) Assume now that G fixes a tensor decomposition V' = A ® B, with
(1.3.2.3) 1 <p®:=dimA<dimB < p".

This leads to projective representations of G on A and on B, which are both irreducible over
P since P is irreducible on V. Since |G| = p***1¢, by [Is, (11.21)] the Schur multiplier of
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G is a p-group. Thus we can find a finite group G with a central p-subgroup Z;, such that
(GG/Z; = G and the projective representations of G on A and B lift to linear representations

of é, with characters a and [, respectively.
Let Z; <Ty < Q < G be such that Q/Z; = P and T1/Z, = Z(P). Note that

(1.3.2.4) G/Q=G/P=C,.

By irreducibility, Z; acts via scalars on A, so Z; < Ker(a@). Hence, aa|g can be viewed as a
character of P, which then contains 1p as an irreducible constituent since a@|g contains 1.
Now a@|p — 1p is a P-character of degree p** — 1 < p" — 1 (recalling (1.3.2.3)). Inspecting
Irr(P) as we did at the beginning of (i), we see that Z(P) < Ker(aa@|p — 1p). Thus, for any
tel,

a®)]* = (a@ — 1g)(t) + 1 = (aq — 1g)(1) + 1 = a(1)*,
which means that 77 acts via scalars on A.

Let the subgroup T consist of all elements of G that acts on A via scalars, so that T" > T}.
We claim that 7" < @. If not, then, keeping in mind and the fact that Z; is a p-
group, we may assume that an inverse image g of order ¢ of g in G is contained in 7. This
implies that a(g) = p“e, with e € C* a root of unity. Certainly, 8(g) is an algebraic integer.
It follows that

w(g) = a(9)B(9) = p™
for some algebraic integer . This in turn implies that |p(g)|?/p* = 77 is an algebraic integer,
contradicting . Thus T < () as stated.

Modding out by Ker(«) (which is contained in T'), we may assume that « is faithful.
Slightly abusing the notation, we will denote the images of G, Q, T in this quotient by the
same letters. Now we have that a/q is a faithful irreducible character of the p-group @, with
T acting via scalars. Let ¥ denote the representation of (Q on A. Next we show that

(1.3.2.5) QT =C2r.

Indeed, since Q/T is a quotient of P/Z(P) = Cg”, Q/T is elementary abelian of order p© for
some ¢ < 2n. Now if ¢ < 2n, then the choice of ¢ = |g| implies that § centralizes Q/T. As T
acts on A via scalars and W is faithful, ¢ also centralizes T'. The coprime action of g on the
p-group () now yields that g centralizes (), and so g centralizes P, a contradiction.

Recall we have shown that Q)/T acts projectively and irreducibly on A. It is well known,
cf [Isl (11.16), p. 197] that the Schur multiplier of the elementary abelian group Q/T is
also elementary abelian. Hence, we can find a p-group R with an elementary abelian central
subgroup Z, and with a faithful irreducible linear action ® on A that lifts the projective
action of Q/T = R/Z,. More precisely, if we fix a representative g € @ of a coset g1 € Q/T,
then there is a representative h € R of ¢gI' but now viewed as a coset in R/Z5 such that
U(g) = O(h). In this case, O(h) can be scalar only when ¥(g) is, whence g € T by the
choice of T. Thus Z, consists precisely of all elements h € R such that ©(h) is scalar.
The faithfulness of ©® now implies that Z, is cyclic. Also, Zy # 1 as otherwise R would
be abelian and so cannot act irreducibly on A. It follows that Z(R) = Zy = C,. Since
R/Z, is elementary abelian, it now follows that [R, R] = ®(R) = Z(R) (where ®(R) is the
Frattini subgroup of R). In other words, R is extraspecial, of order |Z(R)| - |R/Z,| = p' "
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by (1.3.2.5). As O is a faithful irreducible representation of R, we must have that
dim A = deg® = p",
contradicting (|1.3.2.3)).

(iv) We have shown that G fixes no nontrivial tensor decomposition of V. Suppose now
that G fixes a tensor induced decomposition V = V;@V,o®...0V,, = V™ where dim V; = p?,
m > 1, and dm = n. Note that the choice of ¢ implies that ¢ > 2n + 1 > m. Hence, every
element of order ¢ of G must act trivially on the set {Vi,...,V,,}. This in turn implies by
that G also acts trivially on the same set, that is, G fixes each of the tensor factors
V;. But this contradicts the previous result. O

We now state a well-known result which will be useful later.

THEOREM 1.3.3. Let k be a finite field of characteristic p, X/k a smooth, geometrically
connected scheme, £ # p a prime, and F,G two lisse Qp sheaves on X, each of which is
pure of weight zero. Suppose that F and G have identical trace functions: for every finite
extension L/k, and every point x € X (L), we have

Trace(Frob, 1| F) = Trace(Frob, 1|G).

Then we have the following results.

(i) There exists a geometric isomorphism ¢ of F with G, i.e., an isomorphism of their
pullbacks to X ®y k.

ii) Pick a geometric point 7 of X, and use ¢ to view F and G as representations pr and

(i) g ] p
pg of mF" = m(X ®¢ k,7) on the same finite dimensional Qq vector space V. (V
being the stalk Fi; = Gy via ¢). Then the two image groups pr(mi") and pr(mi™)
are conjugate subgroups of the ambient GL(V).

iii) The geometric monodromy groups Gaeom.7 and Ggeeom.g are conjugate subgroups of

geom, geom,g

the ambient GL(V').

PROOF. Assertion (iii) is obtained from the last sentence of (ii) by passing to Zariski
closures of the conjugate image groups. Assertion (ii) is just a concrete spelling out of
assertion (i).

To prove (i), we argue as follows. By Chebotarev, the equality of traces implies that F
and G have isomorphic arithmetic semisimplifications, i.e., isomorphic semisimplifications as
representations of 7ith ;= 71, (X 7). Because 7" < 71" is a normal subgroup, it follows
that F and G have isomorphic semisimplifications as representations of 7§*™. Because F and
G are each pure of weight zero, each is semisimple as a representation of 75" by [De2, 3.4.1
(iii)]. Hence F and G are isomorphic as representations of 75" i.e., they are geometrically

isomorphic. O

To end this section, we give a well-known result for which we do not know an explicit
reference.

THEOREM 1.3.4. Let n > 1 be an integer, p a prime and k/F, an algebraically closed field
of characteristic p. Then for G a finite group of order prime to p,

Homg,(m (A" /k),G) = 1.
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PROOF. For n = 1, this is Abhyankar’s insight [Abh, Proposition 6, (I) and (II)]. For
n > 2, we use the “weak Bertini” result of [Ka-ACT] Corollary 3.4.2], applied with V' =
A" m = 1Id, f = 0 there to reduce from n to n — 1, viewing A""! as the zero set of the
polynomial f4;, = Az + b there. 0

1.4. Moments and monodromy

We first recall the notion of moments. Let C (sic) be an algebraically closed field of
characteristic zero, V' a finite dimensional C vector space, and G < GL(V') a Zariski closed
subgroup. For non-negative integers a, b, the (a,b)-moment M, (G, V) is the dimension

M,y (G,V) = dim((V®a ® (Vv)®b>c)_

In applications, F will be a lisse Q-sheaf on some geometrically connected X/F,, ¢ # p,
V will be the representation of Ggeom attached to F, G will be Ggeom, and Q, will be the
algebraically closed field of characteristic zero. By fundamental results of Grothendieck and
Deligne [De2] 1.3.8 and 3.4.1 (iii)], Ggeom 1s a semisimple algebraic group (meaning that its
identity component G, is semisimple).
The importance of the Myo moment is given by Larsen’s Alternative. First recall the
following basic facts. Suppose G < GL(V') and dim(V') > 2.
(a) If SL(V) < G, and dim(V') > 2, then My 5(G,V) = 2.
(b) If V is given with an orthogonal autoduality (-,-), and either G = O(V) or both
dim(V) # 2,4 and G = SO(V), then M, 5(G,V) = 3.
(c) If V is given with an alternating autoduality (-, -) and dim(V') > 4, then M5 »(Sp(V), V) =
3.

REMARK 1.4.1. The special behavior in dimensions 2 and 4 is this. The group SO, is
not semisimple, but rather is GL; with the 2-dimensional representation = — diag(z,1/x),
and has Mo = 6 in this representation. The group SO4 has Mys = 4 in its standard
representation because it is (SL(2) x SL(2))/(%diag(id, id)) in the representation stds ® stds.
In both cases, this “too large M, 5" issue is cured by passing to O instead of SO.

THEOREM 1.4.2. (Larsen’s Alternative, [Ka-LAMMI 1.1.6]) Suppose G < GL(V) is
semisimple and dim(V') > 2. Then we have the following results.
(i) If Mao(G,V) =2, then either G is finite or G° = SL(V).
(ii) If V is given with an orthogonal autoduality (-,-), G < O(V), and M25(G,V) = 3,
then either G is finite or SO(V) < G < O(V).
(iii) If V is given with an alternating autoduality (-,-), dim(V) > 4, G < Sp(V), and
M, 5(G, V) = 3, then either G is finite or G = Sp(V').

The cases in dimension > 5 when Larsen’s alternative implies finiteness are given by the
following theorem.

THEOREM 1.4.3. [GT2, Theorem 1.5] Let V = C* with d > 5, G = GL(V), Sp(V),
or O(V). Assume G is a semisimple subgroup of G. Set S = S/Z(S) for S = F*(G) if
G is finite. Then G is irreducible on every G-composition factor of V & V*, equivalently,
My o(G, V) = Myo(G, V), if and only if one of the following holds.

(A) G > G, G].
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(B) (Lie-type case) One of the following holds.
(i) S =PSp,,(q),n>2,q=3,5,G=Z(G)S, and V|g is a Weil module of dimension
(" + 1)/

(i) S = PSU,(2), n > 4, and Vg is a Weil module of dimension (2" + 2(—1)")/3 or
(2" — (—1)")/3
(C) (Extraspecial cases) d = p* for some prime p, p > 2 if G = GL(V) and p = 2 otherwise,
F*(Q) = Z(G)E for some extraspecial subgroup E of order p™2* of G, and one of the
conclusions (i)—(iii) of [GT2, Lemma 5.1] holds.
(D) (Ezceptional cases) (dim(V), S, G, G) is as listed in Table I.

The following two results of [GT2] address higher moments of closed subgroups of G.

THEOREM 1.4.4. [GT2, Theorem 1.6] Let V = C% with d > 5, G = GL(V), Sp(V),

or O(V). Assume G is a semisimple subgroup of G. Then G is irreducible on every G-

composition factor of V3, equivalently, M3 3(G,V) = M33(G,V), if and only if one of the

following holds.

(A) G > [G, G]; moreover, G # SO(V) if d = 6.

(B) (Extraspecial case) d = 2% for some a > 2. If G = GL(V) then G = Z(G)E - Spy,(2)
with E = 22 If G = Sp(V), respectively O(V), then E - Q5,(2) < G < E - 05,(2),
with E = 2172 and e = —, resp. € = +.

(C) (Exceptional cases) G is finite, with the unique nonabelian composition factor

S € {PSLs3(4),SUs(3), PSU4(3), Ja, Ag, Q3 (2), SU5(2), Go(4), Suz, Js, Coy, Coy, F4(2)},
and (dim(V), S, G, G) is as listed in the lines marked by *) in Table I.

THEOREM 1.4.5. [GT2, Theorem 1.4] Let V = C? with d > 5 and G be GL(V'), Sp(V),
or O(V). Assume that G is a Zariski closed subgroup of G such that G° is reductive. Then
one of the following statements holds.

(1) M474(G, V) > M4’4(G, V)
(i) G > [G, G].
(iii) d =6, G =Sp(V), and G = 2.J;.

As in Theorem [1.4.3(C), consider finite groups G with F*(G) = Z(G)E of symplectic
type, i.e. E is either extraspecial of odd exponent p, an extraspecial 2-group of type =+, or
a central product of an extraspecial 2-group with a cyclic group of order 4 (with the central
involutions identified).

If E is extraspecial of order p'*2¢, then an irreducible faithful module V over an alge-
braically closed field F of characteristic ¢ # p for E has dimension p* and is unique once the
character of Z(FE) is fixed. Moreover, we consider the following situations: £ <G < G <
GL(V), where Z := Z(G), and
(a) pisodd, G < N :=(EZ) x Spy,(p) and G = GL(V);

(b) p=2,G < N :=(EZ)-Spy,(2) and G = GL(V);
(c)p=2,G<N:=F-03,2) and G = O(V);
(d)p=2,G<N:=FE-0,,(2) and G = Sp(V).

We now assume that £ <G < N, |[E| = p'™*, d = dim(V) = p* > 4, W := F2* the
natural module for N/(EZ N N), and take this opportunity to correct some inaccuracies in
the proofs of Propositions 5.2 and 5.3 of [GT2].
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d g a b The largest 2k with Mk+17k+1(G, V) vs.
Mk:,k(G7 V) = Mk,k(Ga V) Mk+1,k+1 (G’ V)
6 A7 6A7 GL6 4 21 vs. 6
6 || PSLy(4) ® | 6-PSL3(4)-2, | GLg 6 56 vs. 24
6 || PSU3(3) ™ | (2 x PSU3(3))-2 | Spg 6 195 vs. 104
6 || PSU4(3) ™ | 6, -PSU43) GLg 6 25 vs. 24
6 Jo ™ 2.J Sps 10 10660 vs. 9449
7] SLy(8) SL,(8) - 3 O 4 81 vs. 15
71 Spg(2) Spg(2) O 4 16 vs. 15
8| PSLs3(4) 4, - PSL3(4) GLg 4 17 vs. 6
8 Ay ) 2A¢ Osg 6 191 vs. 106
81 Qf(2)™ 207 (2) Og 6 107 vs. 106
10| SU5(2) ™ [ (2 xSUs(2))-2 | Spy 6 120 vs. 105
10 M12 2M12 GLlO 4 15 vs. 6
10 Mo, 2 My, GLg 4 7vs. 6
12 Go(4)™ 2Gi5(4) - 2 SP1s 6 119 vs. 105
12| Suz® 6Suz GL12 6 25 vs. 24
14 2B2(8) 232(8) -3 GL14 4 90 vs. 6
14 G2(3) Gg(g) 014 4 21 vs. 15
18 Sp,(4) (2x Sps(4)) -4 | Ogs 4 25 vs. 15
18 Jg & 3.J3 GLg 6 238 vs. 24
22 McL McL Oas 4 17 vs. 15
23 Cos Cos Oo3 4 16 vs. 15
23 || Cop ™ Co, Oa3 6 107 vs. 105
24| Co @ 2C0, Oy 6 106 vs. 105
26 2F4(2)/ 2F4(2)/ GL26 4 26 vs. 6
28 Ru 2Ru GLoag 4 7vs. 6
45 Mo My GLys 4 817 vs. 6
45 Moy, My, GLys 4 42 vs. 6
52| Fu(2)™ 2F4(2) - 2 Osz 6 120 vs. 105
78 Fig, Fig, O7s 4 21 vs. 15
133 HN HN 0133 4 21 vs. 15
248 Th Th 0248 4 20 vs. 15
342 O'N 30'N GLs4o 4 3480 vs. 6
1333 J4 J4 GLs33 4 8 vs. 6

TABLE I. Exceptional cases with small moments in dimension d > 5

ProOPOSITION 1.4.6. (cf. [GT2] Proposition 5.2]). Assume ¢ =0 and p* > 4.
(i) Assume G = GL(V). If p > 2 then M33(N,V) — M;3(G,V) >2p—5. If p =2 then
M4’4<N, V) > M4’4(G, V) and M373(N, V) = M373(G, V)

(ii) Assume p =2, a > 4, and G = Sp(V') or O(V).

M474(N, V) > M4’4(G, V)

Then Mg’g(N, V) = M373(G, V) and
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PROOF. (i) It was stated at the beginning of the proof of [GT2|, Proposition 5.2], that
M =V'eV

is trivial on Z, and, considered as a module over EZ/Z it is the permutation module on W
with E/Z(FE) acting by translations, and, as a module over N/Z, it is the permutation module
on W with N/EZ = Sp(W) acting naturally. The emphasized part of the statement is true
only when p > 2. Indeed, if p = 2 then N/Z is non-split over EZ/Z, see |Gri, Theorem 1].
Assume that p > 2. It is well known that N is split over EZ (with a complement S 2 Sp(W)
being the centralizer of a suitable involution), and Vg is reducible (in fact it is a sum of two

irreducible Weil modules). Let M; = Indjsv/ ?(15) denote the permutation N/Z-module on
W with S acting naturally. Since the corresponding permutation action is doubly transitive,
My, = F & M, with M, nontrivial irreducible. By Frobenius reciprocity,

HOIHN/Z(M, Ml) = HOIIls(MLg, 15) = HOII15<V‘S, Vs)

has dimension at least 2. Since Homy,z(M,F) = Homy(V, V) = F, it follows that A/ contains
both F and M>, and by dimension comparison we conclude that M = M;.

Now, if p > 2, then all the arguments in part (i) of the proof of [GT2, Proposition 5.2]
apply, and we are done. Assume p = 2. To prove My4(N,V) > My4(G,V), by [GT2|
Remark 2.3] it suffices to show that N is reducible on the simple G-module Sym*(V) of
dimension

D =222+ 1)(2*7 ' + 1)(2" + 3) /3.
Assume the contrary. Recall that E = Oy * 2172* and Z(E) = Cy acts trivially on Sym*(V)
but E does not (as one can check by computing the trace of some non-central involution).
Since N/EZ acts transitively on the 2% — 1 nontrivial irreducible characters of E/(E N Z),
it follows from Clifford’s theorem that 22¢ — 1 divides D, which is impossible.

Next we observe for p = 2 that Ms3(N,V) > M;33(G,V) = 6. As mentioned in the
proof of [GT2, Proposition 5.2], the £/Z(E)-module M affords the character p:= 3" . v,
where we again identify Irr(E/Z(E)) with W as in the proof of [GT2], Lemma 5.1]. It follows
that M®3 is the permutation module on W x W x W, and that the fixed point subspace

for ZE inside M®3 affords the E/Z(FE)-character 1g - (Zu’v’wew’uﬂJm:O 1). On the triples

(u,w,w), u,v,w € W, u+v+w =0, Sp(W) acts with exactly 6 orbits, with the first four
orbit representatives being (0,0, 0); (u,0, —u), (u, —u,0), (0,u, —u) with u # 0; and 2 orbits
of (u,v,u + v) with u,v € W linearly independent and the inner product (u|v) = u € Fs.
Each orbit gives rise to an induced module Indy (L;), 1 < i < 6, for S := Sp(W), with
dim L; = 1. Since

dim Homg(Ind}, (L;), F) = dim Homp, (L;, F) < 1,

it follows that M;3(N,V) < 6, and we are done. In fact, now since Ms3(N,V) = 6, the
previous inequality must in fact be an equality, and thus L; = F, i.e. all the six induced
modules are permutation modules.

(ii) A similar argument as in (i) also applies to show that M, 4(N,V) > M, 4(G,V) in
the case G = Sp(V/). Indeed, assume that N is irreducible on the simple G-module Sym*(1")
of the same dimension D. Since Z(F) acts trivially on Sym*(V') but E does not, and N/E
has two orbits of length d(d + 1)/2 and (d — 2)(d + 1)/2 on the 2** — 1 nontrivial irreducible
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characters of E/Z(E), we see from Clifford’s theorem that one of these two lengths divides
D. But this is impossible.

Next we show that My 4(N,V) > My4(G,V) in the case G = O(V). Indeed, assume N
is irreducible on the simple G-module Sym*(V)/Sym?(V) of dimension

D' :=20"2(2° +1)(2*7' + 3)(2* — 1)/3.

Since Z(E) acts trivially on Sym*(V)/Sym?(V) but E does not, and N/E has two orbits
of length d(d — 1)/2 and (d + 2)(d — 1)/2 on the 2?* — 1 nontrivial irreducible characters of
E/Z(E), we see from Clifford’s theorem that one of these two lengths divides D’. But this
is again impossible.

To show that M3 5(N,V) = M3 3(G,V), first we observe that Ms3(N, V) > M;5(G,V) =
15. Next, as mentioned in the proof of [GT2] Proposition 5.2], the fixed point subspace of F
on M®3 considered as an N/E-module, is the direct sum of 15 induced modules (from one-
dimensional submodules). Arguing as in (i), we obtain the upper bound M;3(N, V) < 15,
hence the equality M;3(N, V) = 15, and thus the 15 induced modules are in fact permutation
modules. 0J

ProprosITION 1.4.7. (cf. |[GT2, Proposition 5.3].) Assume { = 0 and p* > 4. Then
M;3(G,V) = M;33(G, V) if and only if G is as described in case (B) of [GT2l, Theorem 1.6].

ProoOF. By Proposition [1.4.6] we may assume p = 2. In fact the proof of Proposition
establishes the “if” part of our claim. For the “only if” part, suppose that M;3(G, V) =
M;3(G, V). The decomposition of the E-fixed point subspace on (V* ® V)®3 as the sum of
permutation N/(EZNN)-modules in the proof of Proposition also shows that G/Z(G)E
has the same orbits on W x W as of M := N/(EZNN). Now the proof of [GT2], Proposition
5.3] shows that H > [M, M], yielding the statement. O



CHAPTER 2

Some basic facts about monodromy groups

2.1. Arithmetic semisimplicity

Let k be a finite field of characteristic p > 0, X/k a smooth, geometrically irreducible
k-scheme, ¢ # p a prime, and F a lisse Q, sheaf on X which is pure of some weight. By
[De2| 3.4.1 (iii)], F is completely reducible (:= semisimple) as a representation of 77" (X),
or equivalently as a representation of its Ggeom. However, F need not be arithmetically
semisimple, i.e. semisimple as a representation of 7ith(X). Equivalently, F need not be
semisimple as a representation of its G, However, we have the following fundamental

result of Faltings, Mori, and Zarhin, cf. [Zarl] and [Zar2, Theorem 1.2].

THEOREM 2.1.1. Let A/ X be an abelian scheme, with structural morphism f: A — X.
Then R'f,Qq is arithmetically semisimple.

Passing to Jacobians, we find

COROLLARY 2.1.2. Let C/X be a proper smooth family of curves, with geometrically con-
nected fibres of some genus g > 1, and structural morphism f : C — X. Then R'f,Q, is
arithmetically semisimple, and hence every direct factor of R f,Qy is arithmetically semisim-

ple.
In what follows, we often deal with the following situation: X/k is an affine dense open

set Spec (R) in an affine space A"/k, and C/X is either an Artin-Schreier curve of affine
equation

y? —y = a polynomial f,.(x) € R[z] of degree 2g + 1,
(whose complete nonsingular model has a single point at 0o), or an Artin-Schreier-Witt curve
(with Witt vectors of length two)

[up’vp} - [uvv] = [ar(x)’ b?“(mﬂ

with a,.(z),b.(z) € R[z] polynomials each of which is Artin-Schreir reduced and of fixed
degree d,, d,. Here too the complete nonsingular model has a single point at oo.

In the Artin-Schreier case, the R!f, is the direct sum of p — 1 summands, each of rank
2g, corresponding to the p — 1 nontrivial additive characters ¢ of IF,. The trace function of
the ¢ component, call it F, is given as follows. For L/k a finite extension, and ry € R®y, L,

Trace(Frob,, 1| Fy) = — Z¢L(fro ().
zeLl

In the Artin-Schreier-Witt case, there are p*> — p summands, each of rank max(pd,, dy),
corresponding to the p? — p faithful characters ¢ of Z/p?Z. The trace function of the 1,

25
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component, call it F,, is given as follows. For L/k a finite extension, and ry € R ®y L,

Trace(Froby,, 1| Fy,) = — Z Vo, 1([ary (2), byy (2)]).

zeLl

We will use without further reminders that these local systems are arithmetically semisim-
ple, and we will refer to each of them simply as “the local system whose trace function is

7

2.2. Finiteness of Ggeom and Gty

In this section, F, is a finite field of characteristic p, and X/F, is a smooth, geometrically
connected F,-scheme. We also fix a choice of prime ¢ # p, and consider lisse Q; sheaves
F on X. Taking as base point an algebraic closure of the function field of X, we have the
(profinite) arithmetic fundamental group

T 1= 1y (X)

and its closed normal subgroup

(X)) == m (X ®p, Fy) < mh(X).
which sits in the short exact sequence
1 — 75°"(X) — 7 (X) - Gal(F,/F,) — 1.

A lisse Q sheaf on X of rank d is a continuous representation pr : T3 (X) — GLg(Qy).

One knows [Ka-Sarl, 9.0.7] that for any such F, there exists a finite extension E)/Q, such
that pr has image in GLy4(F)), and indeed in a suitable basis has image in GL4(O,), for O,
the ring of A\-adic integers in Fy.

We say that F is arithmetically semisimple (respectively geometrically semisimple) if it is
completely reducible as a representation of 7@ (X) (respectively 7™ (X)). Similarly for
the notions of arithmetic and geometric irreducibility. o

Attached to F we have two algebraic groups, Gaith and Ggeom <Garith C GL4(Qy), namely

Ggeom 7 = Ggeom 1= the Zariski closure of pr(75*" (X)),
Garith,F := Guaritn := the Zariski closure of pr(73"(X)).

THEOREM 2.2.1. ([JKRLT1, Prop. 2.1 and Remark 2.2]) Suppose F is arithmetically
semisimple and pure of weight zero for all embeddings of Qg into C. Then F has finite G aimn
if and only if for every finite extension k/F, and every point x € X (k), the Frobenius Frob,
has Trace(Frob, ;|F) an algebraic integer.

REMARK 2.2.2. Here is an example to show that the hypothesis of arithmetic semisim-
plicity is essential in the above Therem [2.2.1] ¢f. [KRLTT, Remark 2.2]. On X/F,, take the
rank two sheaf F on which 75" (X) acts trivially (so that F is geometrically isomorphic to
Q¢ ® Qy), and on which 7ith(X) acts through its quotient Gal(F,/F,) by having Frob, act
1
01
composable, but its arithmetic semisimplification is trivial. Its G 7 is not finite, rather

as the upper unipotent automorphism with matrix ) Then F is arithmetically inde-
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it is the upper unipotent group { (0 i) }, but each of its Frobenius traces is the algebraic

integer 2.

Conversely, if a sheaf F has finite G, then in particular G is reductive, and hence
F is arithmetically semisimple.

We also remark that if F has finite Gyien, then F is (trivially) pure of weight zero and
(trivially) has det(F) arithmetically of finite order.

Theorem [2.2.1] implies the following consequence, which allows us to deduce finiteness of
Glarith (and Ggeom) in all the cases we are interested in.

COROLLARY 2.2.3. Suppose F s arithmetically semisimple and pure of weight zero for all
embeddings of Q, into C. Suppose further that for some finite extension K/Q, all Frobenius

traces of F take values in Ok[1/p], for Ok the ring of integers of K. Then F has finite
Garitn of and only if all Frobenius traces are p-adically integral at all p-adic places p of K.

THEOREM 2.2.4. ([Ka-ESDE| 8.14.3.1 and 8.14.4]) Suppose F is geometrically irre-
ducible and det(F) is arithmetically of finite order. Then Ggeom is finite if and only if Gaien
18 finite. If F is pure of weight zero, this finiteness is equivalent to F having all its Frobenius
traces algebraic integers.

LEMMA 2.2.5. Suppose F is a finite direct sum F := @@, F;. Then F has finite Ggeom
(respectively finite Garitn) if and only if each F; has finite Ggeom (respectively finite Gaien ). In
general, without assuming finiteness in either of the two cases, i.e. arithmetic or geometric,
the relevant group G r is a subgroup of the product group [ [, G, which maps onto each factor.

PROOF. In each of the two (geometric and arithmetic) contexts, pr is the direct sum of
the pr,. Thus Ker(pr) lies in each Ker(pr,), so each of the latter groups will be of finite
index in the appropriate m; if Ker(px) is of finite index. Conversely, if each Ker(pz,) is of
finite index, then Ker(pz), being the intersection of these normal subgroups of finite index, is
itself of finite index. In the finite monodromy case, each of the relevant monodromy groups
is the literal image of pz, respectively of the pr, (the Zariski closure of a finite subgroup of
a GL is itself).

In the finite case, the second assertion results from the fact that in each context, i.e
either geometric or arithmetic, pr is the direct sum of the pr,. If we no longer assume
finiteness, then we must deal with the Zariski closures of the images on the respective m1(X)
(i.e., either geometric or arithmetic) under the homomorphisms pr and the pr,. Let us
temporarily denote these literal image groups as I'z and the I',. Then I'r is a subgroup of
the product group [, I'r, which maps onto each factor. So we must check that an inclusion
of subgroups A < B < GL, gives an inclusion of their Zariski closures, which is immediate
from the definition of Zariski closure, and that given a finite product of subgroups 4; < GLg;,,
the Zariski closure of the product [, A; in [], GLg, is the product of the individual Zariski
closures of the A; < GLg4,. An obvious induction reduces us to treat the case of two factors,
call them X,Y. Denoting the Zariski closure of A by A, we argue as follows. Since X x Y
is closed and contains X x Y, we have X x Y D X x Y. Conversely, suppose a polynomial
f(x,y) vanishes on X xY. Then for any 2’ € X, the polynomial f(2',y) vanishes on {z'} XY,
so it also vanishes on {2’} x Y. Thus f Vanlshes on X x Y. Hence, for any 3/ € Y, the
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polynomial f(z,y’) vanishes on X x {y'}, so it also vanishes on X x {y/}. Thus f(x,y)

vanishes on X x Y, showing X xY C X x Y. O

Theorem remains true under a weaker assumption.

THEOREM 2.2.6. Suppose F is arithmetically irreducible and det(F) is arithmetically of
finite order. Then Ggeom 15 finite if and only if Gaien @s finite.

PROOF. Because Ggeom < Glarith, it is obvious that if Gyien is finite, then Ggeom is finite.
To prove the converse, we argue as follows. Suppose that F has finite Ggeom and that det(F)
is arithmetically of finite order.

One knows [Ded|, 1.2] that geometrically, F is the direct sum of pairwise non isomorphic
constituents, transitively permuted by Gal(F,/F,). For n the number of such summands,
and X, ;== X ®p, F4n, the pullback of F to X, is the direct sum of n irreducible lisse sheaves
G; on X,,. For any of these, say G, denoting by

m: X, =X

the projection, we have
.F% W*(gl).

By Lafforgue [L, VIL7], cf. also [De3l proof of 1.9], one knows that F is pure of weight
zero. Therefore its pullback to X, is pure of weight zero, and hence each G; is pure of weight
zero. By Grothendieck’s “the radical is unipotent” theorem [De2| 1.3.8, 1.3.9], one knows
that det(G,) is geometrically of finite order, say of order d. Then det(G,)®¢ is geometrically
trivial, so arithmetically of the form a¢/Fs*. Choosing # with 3" = 1/a, we have that
G, ® pndee/Fan has determinant which is arithmetically of finite order.

On the other hand, F has finite Ggeom, hence so does each G;, and hence so does G; ®
Brdeg/Fan - Then by the previous Theorem [2.2.4] we conclude thatGy ® fm98/Fa has finite
Glaritn- Therefore its direct image by 7 has finite Gien (simply because m1(X,,) <71 (X) has
finite index). But this direct image is F® £98/F. Therefore det(F ®[39°/F4) is arithmetically
of finite order, i.e. det(F) ® Brank(F)des/Fa ig arithmetically of finite order. As det(F) is
arithmetically of finite order by hypothesis, the quantity g is itself a root of unity: G; itself
already had finite Gin. O

REMARK 2.2.7. Here is an example to show that we can have a geometrically irreducible
F which is pure of weight zero and with finite Ggeom Whose Gaign is not finite. Namely, we
start with a geometrically irreducible G whose G ., is finite. We then choose an ¢-adic unit
« which is pure of weight zero but which is not a root of unity. Then the constant field twist
F := G ® a8 has the same Ggeom as G, but its G is not finite, indeed det(F) is not
arithmetically of finite order (precisely because « is not a root of unity). Here is a concrete
example. Choose a prime number r # ¢ with r = 1 (mod 4), so that r = a? + b* for some
a,b € Z. Then take a := (a + bi)/(a — bi).

2.3. Geometric and arithmetic determinants

We begin with a general result on geometric determinants.
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PROPOSITION 2.3.1. Let p be a prime, { # p a second prime, F,/F, be a finite extension,
d > 1 an integer, and F a Qqy-local system on A4/F,. Suppose that all Frobenius traces of F
take values in a field K. Define the integer N > 0 to be the largest integer n such that the
group pn(Qp) lies in K. Then det(F) is geometrically of order dividing p~ .

Proor. We may replace F by its determinant, which still takes values in K. Thus we are
reduced to the case when F is lisse of rank one, call it £. By Grothendieck’s global version
of his local monodromy theorem, cf. [De2l 1.3.8], the group Ggeom for £ is a semisimple
subgroup of GLy, i.e., it is a finite group, hence it is p4 for some integer A > 1. We first
observe that A is some power p” of p for some n > 0. Indeed, if we write A = Agp™ with
p1 Ag, then LZP" is geometrically of order Ay prime to p. But 75°™ of A?/F, has no nontrivial
prime to p quotient. Thus Ay = 1. Thus £ is geometrically of order p" for some n > 0.

Suppose first that £ satisfies the following condition: for every integer d > 1 and every

point x € A%F ), we have

Trace(Frobx,qu |£) = (Trace(Frobyg,|£))".

Then we claim that £ is geometrically trivial, or equivalently that £ as a character of
7ot g trivial on %™, or equivalently that as a character of 72" it factors through the
quotient miith /78°™ = Gal(F,/F,), i.e. as a function on "Z of the form d + a? for some a.
By Chebotarev, it suffices to check this on Frobenius elements in 72ih which is exactly the
displayed equation, with o := Trace(Frobgr,|L).

Thus the minimal n such that £ is geometrically of order p™ is the minimal n such that

for every integer d > 1 and every point x € Ad(qu), we have
(Trace(Frobxv]qu |£))"" = (Trace(Frobgr,|L£))™".
If this holds, then each ratio
Trace(FrobL]qu |£)/(Trace(Frobgx, |£))*

must lie in p,», and n is minimal such that this holds. But these ratios all lie in K, which
therefore contains fi,n. 0J

Here is a variant.

PROPOSITION 2.3.2. Let p be a prime, { # p a second prime, F,/F, be a finite extension,
X/F, a smooth, geometrically connected F,-scheme, and F a Qq-local system on X . Suppose
that all Frobenius traces of F take values in a field K (which we may always take to be a
finite extension of Qy, cf. [Ka-Sarl, 9.0.7]). Denote by A the order of the group of all roots
of unity in K. The det(F) is geometrically of order dividing A.

PROOF. The question is geometric, so at the expense of replacing IF, by a finite exten-
sion, we reduce to the case when X (F,) is nonempty. Choosing a point zo € X (F,), the
argument proving Proposition shows that the geometric order of det(F) is the order of
the subgroup of K* generated by all ratios

det(Frob, r ,|F)/ det(Frobs, g, |F)?
for all d > 1 and all x € X (F ). O
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In this section, p is a prime, ¢ is a prime ¢ # p (specified so we can speak of Q-adic
cohomology), ¢ is a nontrivial additive character of F,, & = F, is a finite extension of I,
X is a (possibly trivial) multiplicative character of £*, D > 3 is an integer which is prime
to p, and a strictly positive integer d < D. For an integer N prime to p, we denote by ¥y
the additive character x — 1(Nz), and by 1y x its extension to k by composition with the
trace: Yy v () = Y(Tryr, (Nz)). We write

Yy 1= ¢k,1.

We next recall the notion of Kummer and Artin-Schreier sheaves. The Artin-Schreier
sheaf L, is the lisse rank one sheaf on A'/F, whose trace function at a point ¢ € k, for k a
finite extension of I, is

Trace(Frobtk\Ed,) = ¢k (t),

with v, as defined above. For any scheme X/F,, and any function f on X, we view f as a
morphism to A', and define Lyf) := f*Ly as a lisse sheaf on X. For k/F, a finite extension
and z € X (k), we have

Trace(Frobg 1| Ly(r)) == Yr(f(x)).

For a multiplicative character x of a finite extension k of F,, the Kummer sheaf L, on
Gy, /k is the lisse sheaf of rank one whose trace function at a point ¢ € E*, for E a finite
extension of k, is

Trace(Frob, g|L,) := x£&(t),

with xg := x o Normg/,. By abuse of notation, for x nontrivial we also let £, denote
the sheaf jiL, on A'/k for the inclusion j : G,, — A': it has trace 0 at time 0. For any
scheme X/k and any invertible function f on X, we view f as a morphism to G,,, and define
Ly = f*Ly as a lisse sheaf on X. For E/k a finite extension and x € X(F), we have

Trace(Frob, g|Ly(p)) == xe(f(2)).
THEOREM 2.3.3. Fiz a monic polynomial
d
FX) =X+ a:X' € k[X].
i=1

We have the following results.
(i) If D =2d+1 is odd, then

det (Frobg | H; (A /K, Lysxy)) = ¢
(i) If D =2d+ 2 is even, then
det (Froby| H}(A'/k, Ly(s(x))) = (—Gauss(y,p/2, x2)) g
(iii) If D =2d + 1 is odd and x is nontrivial, then
det (Frobg| H; (G /K, Ly(sx)) ® Lyx))) = (—Gauss(tr,p, x)) "
(iv) If D = 2d + 2 is even and x is nontrivial, then
det (Froby| H} (G [k, Lyrxy) @ Lyx))) = (—Gauss(yy,—p, X)) (—Gauss(¢y, p/2, X2)) ¢
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PROOF. Exactly as in the proof of [KT1) 2.3], we unify the first two cases, where “there
is no x”, with cases (iii) and (iv) by replacing HX(A'/k, Lys(x)) by HX (G /k, Ly(s(x)), and
allowing y = 1 in cases (iii) and (iv). This changes the dimension of the cohomology group
from D — 1 to D, but does so by adding the extra eigenvalue 1. So this does not change the
determinant. In the formulas (iii) and (iv), the factor (—Gauss(¢x, 1)) is also 1.

On the one hand, the L-function is given cohomologically by

L(T) = det(1 — (Frob,T|H} (G [k, Lyrx)) @ Lox)))-

The Hasse-Davenport method is to write the additive form of the L-function:

T)=1+ ZAnT”,

n>1
Ay = > X(PO)( Y fl@)
monic P(X) € k[X], roots «
deg(P) =n,P(0) #0 of P

The “miracle” is that L(T') is not an infinite series, but rather a polynomial of degree D.
Comparing the coefficients of the term of degree D, we get

(—1)D det(Frobq|Hcl(Gm/E, [:1/,(]0()()) X E)((X))) = AD.

Thus our determinant is (—1)?Ap. To compute Ap, we argue as follows. To deal with the
expression inside the v, we observe that for each integer n, the sum of the n' powers of the
roots of P is simply the n' Newton function N, (roots of P), which is a universal polynomial
in the coefficients of P that we also denote by N,,. Thus

Z fla) = Z (aD + iaiai)

roots a of P roots o of P
d
= Np(roots of P) + Z a;N;(roots of P),
=1
and hence
d
Ap = Z X(SD)¢k(ND(S1,~-7SD)+Zaz‘Nz‘(S17-~;SD))-

S1yeees Sp€k,Sp#0 =1

We compute the N; as polynomials in the S; by the identity
1/( 1—1—2 )LST") = exp( ZN T"/n).
i>1 n>1
Applying d/dT, we have the identity
—O (=DHESTY /(14D (-1Y8;T) = > N, ™.
i>1 j>1 n>1
We now expand the left side, as

—O (=DASTH(1+ ) (=) (=178,T)™).

i>1 m>1 7>1
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When we ignore all but the first two terms in the geometric series, we find that Np, the
coefficient of TP is thus

Np=(-1)P"'DSp— Y (=1)fiSi(-1)""'S; + R,
i+j=D,i>1,j>1
with R a polynomial in which every monomial has usual degree > 3 in the variables S;.

Let us first look at the case when D = 2d + 1 is odd. Combining the terms S5;Sp_; and
Sp_iS;, their coefficients add to (—1)PD, we see that

Np = (=1)P*'DSp + ( DDZSSDH—RD,

=1

with Rp isobaric of weight D in the .S; but in which every monomial has usual degree > 3.
Thus (—1)P Ap is equal to

Z X(SD)wk((_ )P DSp + ( DDZSSD ’L+RD+ZG'Z (S1,...,8 ))7

Sty Sp€k, Sp#0

where we use the fact that N; is a polynomial in Si,...,S;. The variable Sp occurs only
once, so (—1)P Ap is now equal to

(D X(Sp)u((=1)PT'DSp)) > DDZSSD 1+RD+Za@ (Sh,.-.,5)).

Sp€ekX S1,eeey SD,1€k
Because Np is isobaric of degree D, for each i < d, the variable Sp_; appears in this sum as
(—1)DDSD_1~(SZ- + a polynomial in only the S;, j < ¢, every monomial of usual degree > 2).

Summing first over Sp_;, we get 0 unless S; = 0, in which case we get q. Once we know
S1 = 0 in our sum, summing over Sp_o gives 0 unless Sy = 0, in which case we get g.
Continuing in this way we get

Ap = ¢*( Z X(Sp)ir((=1)P*' DSp)) Gauss(¢y, (_1)p+1p, X)),

SpekX

and thus det(Froby,) = (—1)”Gauss(ty, (—1)p+1p, x)q*-

When D = 2d + 2 is even, the only difference is that the coefficient of TP now has the
extra term Sp/2Sp/2, which occurs with coefficient (—1)”(D/2). This extra “middle term”
persists, and at the end of the argument getting the previous answer, this “middle term”
creates an extra factor Gauss(vy, (—1y0(p/2), X2)-

Thus for D = 2d + 1 odd, the determinant is (—Gauss(¢x p, x))q?, while for D = 2d + 2
even it is (—Gauss(¢k p/2, x2))(—Gauss(¢y_p, x))q" O

COROLLARY 2.3.4. Suppose we are given a prime to p integer D > 3, and a multiplicative
character x of a finite extension k = F, of IF,,, and a strictly positive integer d < D. Consider
the lisse sheaf F(D,< d,x) on A?/k whose trace function is given as follows.
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(a) For F(D,<d,1) on AY/F,, L/F, a finite extension, and (ay,...,aq) € LY, the trace
is

d
(ay,...,aq) — — Zl/}L(xD + Zaixi).
z€eLl i=1
(b) For F(D,< d,x) with x a nontrivial character of k*, L/k a finite extension, and
(ay,...,aq) € L4, the trace is

d
(a1,...,aq) — — Z¢L($D + Z aixi)XL(x).
zel =1
These local systems are geometrically irreducible, pure of weight one, of ranks D — 1 and D
respectively. For d := [(D — 1)/2], their geometric determinants are trivial. Moreover, we
have the following results on their arithmetic determinants.

(i) If D = 2d + 1 is odd, then for either choice of \/p, the local system F(D, <
d,1)(1/2) has arithmetically trivial determinant. Indeed, for any choice of ap1
with (ap1)P~t = p, the local system F(D,< d, 1) ® (ap1)~ 9% has arithmetically
trivial determinant.

(ii) If D = 2d+ 2 is even, then for any choice of apy with

)77 = (—Gauss(¢p /2, x2))p,
the local system F(D,< d, 1) ® (ap1)~ %8 has arithmetically trivial determinant.

(iii) If D =2d + 1 is odd, then for any choice of ap, with

(OéD,n

(apn)” = (—Gauss(¥r,p, X))q*,

the local system F(D, < d,x) ® (ap,)~ 9/ has arithmetically trivial determinant.
(iv) If D = 2d + 2 is even, then for any choice of ap,, with

(aD,X)D = (—Gauss(¢r,—p, X)) (—Gauss(¢r, p2, x2)))q%,
the local system F(D,< d,x) ® (ap,x)” %8/* has arithmetically trivial determinant.

PRrROOF. That the sheaves F(D, < d, x) are lisse results from the fact that their ranks are
constant and they are sheaves of perverse origin in the sense of [Ka-Scont|. The purity is
due to Weil. The explicit formulas for their determinants, and the behavior of Gauss sums
under field extension give the asserted arithmetic triviality of the ap ,-twisted sheaves. Each
is geometrically irreducible because already pulled back to the A! which is (sy,0,...,0) each
is the Fourier transform of a lissse rank one sheaf on G,,, extended across 0 by direct image
(and hence perverse irreducible on Al). O

REMARK 2.3.5. Suppose we “go too far” in Theorem [2.3.3| when D is even, in the sense
that we also allow a term ap/X D/2in f(X). What changes in the argument is that the
involvement of Sp/, now comes also from the Np/, term, so that what was previously the
sum

Z Ve((=1)”(D/2)(Spy2)?) = Gauss(vy (—1)p(py2): X2)

SD/QEk
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now becomes

> Ul(=1)P(D/2)(Sppa) = (~1)"aps(D/2)Spy2) =
SD/Qek
= Gauss(1hy, (—1)2(p2): X2) Uk, (—1)0(py2) ((—apy2)?/4),
the last equality by completing the square. The consequence for the corresponding lo-

cal systems on ATl in cases (ii) and (iv) of Corollary is that even after the ap,
twistings, their arithmetic and geometric determinants are no longer trivial, but are rather

Ly, by ((ap)?/9)-

Similarly, suppose we “go too far” in Theorem [2.3.3] when D = 2d + 1 is odd, in the
sense that we also allow a term ag, 1 X% in f(X). What changes now is at the end of the
argument, when we have already set Si,...,S4_1 to vanish, the terms involving S;,1 and Sy,
previously just the single term (—1)P DSy, 1S4, are now

(=1)”DSus154 + (=1)"2(d + 1)agp1S441 + (=1)'dagSq =

= Sa1((=1)”DSy + (—1)"(d + 1)ags+1) + (—1)*'daqSa.
So when we sum over Sy we solve for Sy and get ¢ times ¥y(—d(d + 1)agagzi1/D). The
consequence for the corresponding local systems on A in cases (i) and (iii) of Corollary

is that even after the ap, twistings, their arithmetic and geometric determinants are
no longer necessarily trivial, but are rather Ly, (—q(d+1)agaz,./D)-

The second part of the above Remark gives the following corollary.

COROLLARY 2.3.6. For D =2d+ 1, and any x, consider the local system F(D,d+ 1,<
d—1,x) on AY/F, whose trace function is given as follows. For k/F, a finite extension, and

(al,...,ad,l,ad+¢) < f&d(k),

d—1
(alu ey Qd—1, ad+1) = = Z wk<xD + a’d+1xd+1 + Z CL,L‘TZ)X]C(.T)
=1

rekX
Its geometric determinant is trivial, and after an ap, twist, its arithmetic determinant is
trivial as well.
A second, somewhat artificial, corollary is this.

COROLLARY 2.3.7. If pld(d+1), then F(D,< d+1,x) has geometrically trivial determi-
nant, and its ap, twist has arithmetically trivial determinant.

The next corollary is an exercise in Gauss sums, left to the reader.

COROLLARY 2.3.8. We have the following results about the systems F(D,< d,x) intro-
duced in Theorem [2.3.3.

(i) If p is odd, and D = 2d + 1 is odd, then for either choice Gauss of quadratic Gauss
sum over IF,, the local system
F(D,< d, 1) ® (—Gauss) ™ 9

on AY/F, has arithmetic determinant (xo(—1)%)9€ (which is trivial if either d is
even or if p = 1 mod 4, otherwise is (—1)%°8). In all cases, the pullback of F(D, <
d,1) ® (—Gauss)~ 9 to A?/F 2 has arithmetically trivial determinant.
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(i-bis) If p=2 and D = 2d+ 1 is odd, then on A®/F 2, the local system
F(D,<d, 1) ® (p)~d&/F

has arithmetically trivial determinant.
(ii) If D = 2d + 2 is even (which forces p to be odd), then the local system

F(D, < d, 1) ® (—Gauss(th_1yapy2, x2))~ *®

on AY/F, has arithmetically trivial determinant.
(iii) If p is odd, and D = 2d + 1 is odd, then the local system

‘F(Dv < da XQ) & (—GaUSS(w(,l)dD, XQ))_deg
on A?/F, has arithmetically trivial determinant.

(iii-bis) If D = 2d + 1 is odd, q a power of p and x a nontrivial character of IF; of order
dividing q + 1, then the local system

‘F(Du S d; X) ® (_GaUSS("Lqu%iD, X))_deg/]qu

on AY/F 2 has arithmetically trivial determinant. [Notice that every element of Fy,
in particular —D, becomes a (g + 1)™ power in F2 (surjectivity of the norm), so we
could as well use (—Gauss(@DFqQ,X))’deg.]

(iii-ter) If D = 2d + 1 is odd, p = 2, q a power of p and x a nontrivial character of IFZQ of
order dividing q + 1, then the local system

F(D,<d,x) ® (—q)” /"

on Ad/]qu has arithmetically trivial determinant. Indeed, when p = 2, then by
Stickelberger’s theorem [BEW, Theorem.11.6.1], —Gauss(¢r ,-p,x) = —q. Hence
on AY/F . the local system

UD,X ® (q2>7deg/ﬂ7q4
has arithmetically trivial determinant, simply by the Hasse-Davenport relation
—Gauss(qu%,D, X) = <_Gauss<qu2,7D7 X))2

(iv) If D = 2d + 2 is even (which forces p to be odd), then for either choice Gauss of
quadratic Gauss sum over IF,, the local system

F(D, < d, x2) @ (—Gauss(v), o))~

on A?/F, has arithmetic determinant (xo(—2))3%.
(iv-bis) If D = 2d+ 2 is even, q a power of p and x a nontrivial character of ]quz of order m
dividing q + 1, then the local system
F(D,<d,x)®q ‘8l
d . . . ﬂl &1 —deg/]Fg .
on A?/F,2 has arithmetic determinant ((—1) 2 Tm ) ©°, this last statement
using Stickelberger’s determination [BEW], 11.6.1] of Gauss(gZ)Fq%_D,X) as being
(—1)(a+D)/mg,

In general, we can only say the following about geometric determinants.
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LEMMA 2.3.9. For any character x of k* for k/F, a finite extension, the system F(D, <
D —1,x) and any pullback of it has geometric determinant of order dividing p.

PRroOF. This is immediate from Proposition [2.3.1} since the K there for (D, < D—1,x)
can be taken to be Q((,, values of x). O

We will now give a variant of the above results. The proof of Theorem [2.3.10] below is a

very slight variation on the proof of Theorem [2.3.3] but we include it for the convenience of
the reader.

THEOREM 2.3.10. Let F,/F, be a finite extension, and D > 3 a prime to p integer. Fiz
a polynomaial

d
F(X)=apXP +> a; X' € k[X]
i=1
with deg(f) = D. We have the following results.
(i) If D =2d + 1 is odd, then
det (Froby|H! (A /k, Ly(s(xy)) = ¢°
(ii) If D = 2d + 2 is even, then

det (Froby| H!(A'/k, Ly(s(x))) = x2((D/2)ap)(—Gauss(yy, x2))q".
(ili) If D = 2d + 1 is odd and x is nontrivial, then

det(Frobq\Hcl (Gm/E, Eqp(f(x)) &® £X(X))) = Y(—DCLDX—GBUSS(wk, X))qd
(iv) If D = 2d + 2 is even and x is nontrivial, then

det (Froby| H} (G /k, Ly(r(x)@Lx(x))) = X2((D/2)ap)X(—Dap)(—Gauss(¢x2)) (—Gauss(¢x, X)) q*.

PROOF. Exactly as in the proof of [KT1] 2.3], we unify the first two cases, where “there
is no x”, with cases (iii) and (iv) by replacing HX(A'/k, Lys(x)) by HX (G /k, Ly(r(x)), and
allowing y = 1 in cases (iii) and (iv). This changes the dimension of the cohomology group
from D — 1 to D, but does so by adding the extra eigenvalue 1. So this does not change the
determinant. In the formulas (iii) and (iv), the factor (—Gauss(¢, 1)) is also 1.

On the one hand, the L-function is given cohomologically by

L(T) = det(1 — Frob, T|H; (G /k, Ly(s(x)) ® Ly(x)))-
The Hasse-Davenport method is to write the additive form of the L-function:

L(T)=1+) A",

n>1

Ay = 3 XPO)eR( Y fle).

monic P(X) € k[X], roots o
deg(P) =n,P(0) #0 of P

The “miracle” is that L(7') is not an infinite series, but rather a polynomial of degree D.
Comparing the coefficients of the term of degree D, we get

(—1)D det(Fl’Obqu‘fc1 (Gm/E, Ew(f(X)) (029 ,CX(X))) = AD.
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Thus our determinant is (—1)P?Ap. To compute Ap, we argue as follows. To deal with the
expression inside the v, we observe that for each integer n, the sum of the n'® powers of the
roots of P is simply the n'® Newton function N, (roots of P), which is a universal polynomial
N,, in the coefficients S; of P. Thus

d
Y. )= X (aa”+ 3 e

roots a of P roots o of P

d
= apNp(roots of P)+ Z a;N;(roots of P),
i=1
and hence

AD == Z X((_1>DSD>¢I<:(G/DND(S17‘~7SD)+ZaiNi(Sl7~wSD))-

S1yeeny Spek, Sp#0 =1
We compute the NV; as polynomials in the S; by the identity
10g<1/ 1+ > (~1)8,TY) ) =Y N T/n.
i>1 n>1
Applying d/dT, we have the identity
O (=DESTH /(14D (1Y 8Ty = > N, T™.
i>1 7>1 n>1
We now expand the left side, as
—O (FDHESTH L+ ) (=D (=17 S19)™).
i>1 m>1 7>1

When we ignore all but the first two terms in the geometric series, we find that Np, the
coefficient of T, is thus

Np=(-1)P"'DSp— Y (=1)fiSi(-1)""'S; + R,
i+j=D,i>1,j>1
with R a polynomial in which every monomial has usual degree > 3 in the variables S;.

Let us first look at the case when D = 2d + 1 is odd. Combining the terms S;Sp_; and
Sp_iS;, their coefficients add to (—1)P D, we see that

Np = (=1)P*H1DSp + ( DDZSSDZ+RD,

i=1

with Rp isobaric of weight D in the S; but in which every monomial has usual degree > 3.
Thus (—1)P Ap is equal to

Z X((—l)DSD)'(ﬁk((—1)D+ICLDDSD+( CLDDZSSD z+aDRD+Z al Sl,...,S>),

Sty Sp €k, i=1 =1
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where we use the fact that N; is a polynomial in Si,...,S;. The variable Sp occurs only
once, so (—1)P Ap is now equal to

(> (=1)PSp)en((—1)P* apDSp)) x

SpekX
Z ka(( (IDDZSSD z+aDRD+Zaz Sl,...,S)>.
S1yeeey Sp_1€k =1 =1

Because Np is isobaric of degree D, for each i < d, the variable Sp_; appears in this sum as
(—1)DaDDSD,i(Si+a polynomial in only the S, j < i, every monomial of usual degree > 2).
We further analyze the case when D = 2d+ 1 is odd as follows. Summing first over Sp_1,

we get 0 unless S7 = 0, in which case we get ¢. Once we know S; = 0 in our sum, summing
over Sp_o gives 0 unless Sy = 0, in which case we get ¢. Continuing in this way we get

Ap=q'( 3 X((~1)PSp)e((~1)*apDSp))

SpekX*

= ¢'X(~Dap)Gauss(vy, x),
and thus
det(Froby) = (—=1)”X(—Dap)Gauss(¢y, x)g*

When D = 2d + 2 is even, the only difference is that the coefficient of TP now has the
extra term SpaSp/e, which occurs with coefficient (—1)Pap(D/2) = ap(D/2). This extra
“middle term” persists, and at the end of the argument getting the previous answer, this
“middle term” creates an extra factor x2((D/2)ap)Gauss(¢x, x2)-

Thus for D = 2d + 1 odd, the determinant is X(—Dap)(—Gauss(¢y, x))q¢, while for
D =2d+ 2 even it is X2((D/2)ap) (—Dap)(—Gauss(¢x2))(—Gauss(¢y, x))g?. O

COROLLARY 2.3.11. Suppose we are given a prime to p integer D > 3, and a multiplicative
character x of a finite extension k = F, of IF,,, and a strictly positive integer d < D. Consider
the lisse sheaf F*(D,< d,x) on (G,, x AY)/k whose trace function is given as follows.

(a) For F¥(D,< d,1) on (G,, x AY)/F,, L/F, a finite extension, and (ap,ay,...,aq) €
L* x L%, the trace is

(@Daala"'a ZwL apx +Zaz

z€eL
(b) For F*(D,< d,x) with x a nontrivial character of k*, L/k a finite extension, and

any point (ap,ai,...,aq) € L* x Le, the trace is
(CLD,CLl,.--, ZwL a/DI +Za'x XL
z€eLl

These local systems are geometrically irreducible, pure of wezght one, of ranks D — 1 and D
respectively. For d := [(D — 1)/2], their geometric determinants are given as follows.

(i) If D =2d+1 is odd, then det(F*(D,< d,x)) = Lx(ap)-

(ii) If D = 2d + 2 is even, then det(F*(D, < d, X)) = Lys(ap) @ Lx(ap)-
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PROOF. That the sheaves F*(D, < d, x) are lisse results from the fact that their ranks
are constant and they are sheaves of perverse origin in the sense of [Ka-Scont|. The purity
is due to Weil. The explicit formulas for their determinants, and the behavior of Gauss sums
under field extension give the asserted geometric determinant formulas. FEach is geometrically
irreducible because already pulled back to the A' which is (1, 51,0, ...,0) each is the Fourier
transform of a lissse rank one sheaf on G,,, extended across 0 by direct image (and hence
perverse irreducible on Al). O

2.4. Infinite monodromy groups
We begin with an elementary lemma which will be used below.

LEMMA 2.4.1. Let k be an algebraically closed field, X/k and Y/k smooth connected
schemes,

f:Yy—=X

a finite étale map, € a prime invertible in k, and F a lisse Qq sheaf on'Y . Suppose that the
direct image G 1= fo F on X has finite Ggeom. Then F on'Y has finite Ggeom -

PRrROOF. The pullback f*G has finite Ggeom, since m(Y) < m1(X) is a subgroup (of finite
index, a fact we use next). By Frobenius reciprocity, this pullback f*G = f*f,F contains
F as a constituent, indeed as a direct factor since in characteristic zero finite-dimensional
representations of finite groups are completely reducible. Therefore F itself has finite Ggeom-

O

PROPOSITION 2.4.2. Let H be a hypergeometric sheaf Hypy(x1,--., XD} P1s---»Pm) Of
type (D, m) in characteristic p, with wild part Wild of dimension w = D —m > 0. Then the
action of I(occ) on Wild has finite image.

PROOF. The key points are that Wild is I(oo)-irreducible (because all its slopes are 1/w)
and is the restriction to (o) of a representation of the decomposition group D(co) (because
H lives on G,,, over some finite field k/F,). By the I(oco)-irreducibility, Deligne’s monodromy
filtration [Ka-GKM, 7.0.6] on Wild must be trivial, i.e. the action of I(co) must be trivial
on some open subgroup. O

PROPOSITION 2.4.3. Let H = Hypy(X1s---, XDiP1,- -5 Pm) be an irreducible hypergeo-
metric sheaf in characteristic p of type (D,m) with D > m > 0. Let G = Ggeom denote the
geometric monodromy group of H and V be the underlying representation. For g € G, we let
o(g) denote the order of the element gZ(G) in G/Z(G).

(i) Suppose x1,-..,xp are pairwise distinct. Then I(0) has finite cyclic p’'-image {go), and
go 1S an ssp-element on V.

(ii) Suppose pi,...,pm are pairwise distinct if m > 0. The image J of I(c0) is finite, the
image Q of P(00) is a normal subgroup Q < J, and the quotient J/Q is a finite cyclic
p'-group, which is generated by the image goo in Ggeom 0f any element v € I(c0) of order
prime to p that generates 1(00)/P(00). The element go, is an m2sp-element on V. If
m = 0 then g is an ssp-element on V, and if m = 1 then g is an asp-element on V.
Moreover, 6(gs) is divisible by w := D —m if pf w, and by wo(qo + 1) if plw = woqo
with p{wy and qo a power of p.
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PROOF. (i) This is proved in [Ka-ESDE, 8.4.2(6)].

(ii) One knows [Sel pp. 80-82] that P(oc0) <11(o0) with pro-cyclic p’-quotient. By Propo-
sition [2.4.2] I(o0o) has finite image on Wild. By [Ka-ESDE| 8.4.2 (6)], I(co) has finite,
prime to p cyclic image on Tame. By Propositions 5.8 and 5.9 of [KRLT4], g, has simple
spectrum on Wild. If m > 0, g, also has simple spectrum on Tame because p1, ..., p, are

pairwise distinct, cf [Ka-ESDE| 8.4.2 (6)]. Next, if p { w, then g, permutes the w simple

(Q-summands of Wild cyclically, so w|06(gx). If plw = woqo, then géUOO(qOH) acts as a scalar

on Wild, but g, has woqy > wo(qo + 1)/2 distinct eigenvalues on Wild. This shows that the
central order of the image of g, on Wild is wg(go + 1), hence wo(qo + 1)|6(goo). Hence the
statements follow. O

For an integer D with p {4 D, Char(D) is the set of all multiplicative characters of order
dividing D.

THEOREM 2.4.4. Let H be a hypergeometric sheaf Hypy(X1,-- -, XD:P1s---»Pm) Of type
(D, m) in characteristic p, with wild part w = D —m > 0. Suppose that p > 2w + 1 and
D > 2. Then one of the following statements holds.

(a) Ggeom 1 infinite.
(b) Ggeom s finite, and H is imprimitive and Kloosterman. Moreover, p{ D, and for some
tame character A, H = L, ® KI(Char(D)) is Kummer induced from a Kloosterman sheaf

of rank 1.

(¢) Ggeom is finite, and (w,p, D) = (1,5,2).

PROOF. (i) We will assume that G = Ggeom 1s finite, and aim to show that A is imprim-
itive unless (w,p, D) = (1,5,2). Let V denote the representation underlying H, and let @
denote the image of P(c0) in G. We claim that ) is isomorphic to the additive group of
F, (&), where ¢ is a primitive w'" root of unity in ]I‘Tpx, and that the set of characters of () on
Wild is
(2.4.4.1) x = (Trp, ¢ r, (W), 0 <j <w-—1.

In the special case when our H has [ [, x;/ ] ; pj trivial if w is odd, and equal to the quadratic
character when w is even, this is proven in [KRLT3, Lemma 3.1]. In general, there exists
a tame character A such that £, ® H has the desired ratio. This operation of tensoring
replaces Wild by Wild ® A, a change which does not affect the restriction to P(o0).

By [KTS5, Proposition 4.8], @ € Z(G). As Q is elementary abelian, we can find a
p-element g € () such that

(2.4.4.2) gEQNZ(G), ¢ =

Consider the case g as chosen in has at most (p — 3)/2 distinct eigenvalues on
V. By Zalesskii’s conjecture, proved in [Rob], the normal closure A := (g“) of (g) in G is
abelian, but not central since g ¢ Z(G). It follows from Clifford’s theorem that the restriction
of V to A is a sum of at least two A-isotypic components, and so (G,V) is imprimitive. In
particular, H is imprimitive if 1 <w < (p—5)/2, orif w=D = (p— 3)/2.

(ii) Now we consider the case w = (p — 3)/2 < D; in particular Tame # 0. If p = 5 but
D > 2, then G is infinite by Theorem [£.1.1] The possibility (w,p, D) = (1,5,2) is recorded
in (c).
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Suppose now that p > 11. Then w = (p — 3)/2 does not divide p — 1, and so K :=IF,(&)
is a proper extension of F,. Clearly, K is the [F,-span of the powers ', 0 < i < w — 1, of
¢, and the kernel K; of Trg/p, has codimension one in the [, vector space K. Hence, if
for all x € K we were to have TrK/]Fp(:Bgi) = 0 for all 7, then we would have K; = K, a
contradiction. Thus for any nonzero z € K, there is some power & with 0 < 7 < w — 1,
such that Trgr, (267) # 0. As K > F,, we can pick 0 # z € K;. Then z has trace zero, but
some z&? has nonzero trace. By , this means precisely that of the w eigenvalues of z
on Wild, at least one eigenvalue is 1, but not all eigenvalues are 1; in particular, z ¢ Z(G).
Recall that 1 is the only eigenvalue of z on Tame. It follows that z has at most w = (p—3)/2
distinct eigenvalues on V', and we are done by the result of (i).

Next, let p = 7. Then shows that () = C'; admits two nontrivial characters A and
A~ on Wild. In particular, the element ¢ as in can be chosen to have eigenvalues (;
and ¢, on Wild, and 1 on Tame as Tame # 0. It follows from Blichfeldt’s 60-degree theorem
[BL, Theorem 8, p. 96] that G is imprimitive.

(iii) Now we may assume that G is finite and imprimitive, and that (w,p, D) # (1,5,2).
Since (p — 1) t w, H cannot be Belyi induced, and so it is Kummer induced by [KRLT3|
Proposition 1.2]. In other words, for some prime to p integer N > 1, H is [N]|,H’', for
H' a hypergeometric sheaf of type (D/N,m/N). Note that H' has wild part of dimension
1 <w/N <w < (p—3)/2 (in particular p > 7), and has finite geometric monodromy group,
by Lemma above, applied to the degree N Kummer covering of G,, by itself.

Choose the largest possible such N. If D > N, so that D/N > 2, then, as p > 7, we can
apply the above results to H’, and conclude that H’ is again Kummer induced, contrary to
the choice of N. It follows that D = N and so m = 0, i.e. ‘H is Kloosterman of rank D = N
prime to p, H' is Kloosterman of rank one, and H is Kummer induced of degree D. Hence,
by [Ka-MG| Lemma 12], H is Kly(x1,- .., xp) with the x; all the D' roots of some tame
character o, which we write as ¢ = A”. Thus the set of x,’s is precisely the set AChar(D),
and hence H is L ® Kl (Char(D)). O

REMARK 2.4.5. (i) Note that (half of) the local systems considered in [KT1, Theorem
11.1] have Ggeom = SLa(p), and they are Kummer pullbacks of hypergeometric sheaves
in characteristic p with w = (p — 1)/2. This example shows that the bound p > 2w + 1
in Theorem is best possible. Furthermore, [KRLT4, Theorem 30.7(v)| gives a
hypergeometric sheaf of type (2,1) in characteristic p = 5 with Ggeom = 5 X SLa(5),
a finite primitive complex reflection group. Hence case (c¢) of Theorem is a real
exception.
(ii) In the case of Kloosterman sheaves, Theorem was already proved in [Ka-MG/,
Proposition 6], which in turn relied on the well-known result of Feit and Thompson
[FT].

Let us now recall the notion of “Lie irreducible”. Given an algebrically closed field k in
which / is invertible, a smooth, geometrically connected scheme X/k, a lisse Q;-sheaf F on
X is said to be Lie irreducible if, in the given representation of Ggeom, the identity component
G¢..... acts irreducibly. Equivalently, F is Lie irreducible if, for any finite étale f : Y — X

geom
with Y connected, the pullback f*F on Y remains irreducible. [Just pass to the covering
which trivializes Ggeom/Ggeom-] In a similar vein, we say that F is Lie self-dual if it is Lie
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irreducible and if the restriction to Gg,,, of the given representation is self-dual. Finally, we
say that two Lie irreducible sheaves F; and F; on X are Lie-isomorphic if for some finite

étale f : Y — X with Y connected, the pullbacks f*F; and f*F5 on Y are isomorphic.

LEMMA 2.4.6. Let Hy and Hs be (geometrically irreducible) hypergeometric sheaves on
G,n/F,, formed using possibly different additive characters 1, and 1. Denote by (Dy,m;)
and (Dy,ms), with Dy > my and Dy > mg, their types. Suppose that Dy > 2 and that
(Dg,mg) # (2,1). Suppose further that both Hy and Hsy are Lie irreducible, and that they are
Lie isomorphic. Then there exists a multiplicative character x of some ¥y and an isomor-
phism

Hi =L, ® Ho.

ProOOF. Let Y — G,, be a finite étale pullback, with Y connected, on which H; and H,
become isomorphic. Think of Y as corresponding to the open subgroup of finite index in
71(G,,/F,), namely 7,(Y"). Then passsing to a smaller open subgroup of finite index which
is normal in 7 (G,,/F,), we may reduce to the case when 7,(Y) <1 7,(G,,/F,) is a normal
subgroup. Then H; and H, are representations of m(G,,/F,) whose restrictions to m(Y)
are irreducible and isomorphic. Here there exists a linear character A of the quotient group
71(G,,/F,)/m1(Y) such that we have an isomorphism

Hi = A®Hs.
Let us observe the trivial consequence that D; = Ds.

We must show that A is tame at both 0 and oco. It is tame at 0 because both H; and
H, are tame at 0. If A were not tame at 0, it would have Swan conductor > 1 at 0, which
in turn would force H; to be totally wild at 0, which it is not. If If A were not tame at
00, it would have Swan conductor Swan.,(A) > 1. Suppose first that Dy — mg > 2. Then
the oo slopes of Hs, which are either 0 or 1/(Dy — my), are all < 1, and so H; would have
all slopes equal to Swan,,(A) > 1, and hence Swan,,(H;) = Swan.,(A)Dy > Dy > 2, again
a contradiction as Swan.(H;) = 1. Finally, suppose Dy — ms = 1. Then by hypothesis
mg > 2, so that Hy has my > 2 oo slopes 0. Then H; has my > 2 0o slopes Swany.(A), so
Swan,.(H1) > Swany, (A)mg > 2, the same contradiction. O

COROLLARY 2.4.7. In the situation of the above Lemma let A be a prime to p
integer such that both Kummer pullbacks [A]*H, and Hs have unipotent local monodromy at
0. Then we have an isomorphism

[A]*H, = [A]*H,.
PROOF. Indeed, after the pullback we have an isomorphism
[A]"Hy = L4 @ [A]"Ho.

But both [A]*H; and H, are unipotent at 0, hence £, 4 is trivial at 0. Being a tame character,
it is then trivial. O

COROLLARY 2.4.8. Suppose that the hypergeometric sheaf H on Gm/IETp 1s Lie self-dual.

Let A be a prime to p integer such the Kummer pullback [A]*H has unipotent local monodromy
at 0. Then [A]*H is self-dual.

PRrOOF. Apply the previous Corollary to H and its dual. ([l
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In the same spirit, we have the following lemma.

LEMMA 2.4.9. Let H be a geometrically irreducible hypergeometric sheaf of type (D, m)
with D —m > 2. Suppose that G5, = SLp. Then the determinant gives an isomorphism

it geom
Ggeom/Ggeom = 1n(Qp) for some prime to p integer N > 1. Equivalently, det(H) = L, for
some tame character x.

(e} ~Y

PROOF. Because Gt = SLp, the determinant gives an isomorphism Ggeom/G =

geom geom
1n(Qy) for some integer N > 1. Because D — m > 2, we know by [KT5], Theorem 4.1] that
G'geom 18 the Zariski closure of the normal subgroup generated by the image of 1(0). Therefore
the quotient group py, being abelian, is generated by the image of 7(0), which is a group of
(pro) order prime to p. Thus the quotient is a character of 7 (G,,/F,) of finite order prime
to p, necessarily an £,. Alternatively, by [Ka-ESDE| Theorem 8.12.2|, det(H) = L, for x
the product of the “upstairs” characters of H. O

COROLLARY 2.4.10. Let ‘H be a geometrically irreducible hypergeometric sheaf of type
(D,m) with D —m > 2. Suppose that Gg,,,, = SLp. Let A be a prime to p integer such
that the Kummer pullback [A]*H has unipotent local monodromy at 0. Then [A]*H; has

Ggeom,[A]*?—l = SLp.

PROOF. Indeed, if [A]*H is unipotent, then each character occuring in the image of 1(0)
has order dividing A, so N divides A4, i.e., x4 = 1. O

REMARK 2.4.11. Suppose H is of type (D,m) with D — m = 1. Then one knows
[Ka-ESDE, Theorem 8.12.2] that det(H) = £, ® Ly, with x the product of the “upstairs”
characters of H. So in this case, if A is a prime to p integer such that the Kummer pull-
back [A]*H has unipotent local monodromy at 0, det([A]*H) = L. In particular, if H has
Goeom = SLp, then [A]*H has Gyeom apn = {7 € GLp|det(y)? = 1}.

geom
2.5. Estimating the size of Ggom When it is finite

LEMMA 2.5.1. Let X/F, be smooth and geometrically connected. Let F be a lisse Qp-adic
sheaf on G, /F, which is pure of weight zero and for which G is finite. Then Ggeom <Garith,
and the quotient group Gasith/Ggeom 15 cyclic of order

#(Garith/ Ggeom) = gcd(d € Z>1 | there exists v € X(Fa) with Frobx,qu|]—" = id)
= ged(d € Zsq | there exists z € X (Fq) with Trace(Frob, f ,|F) = rank(F)).

PROOF. The two asserted formulas are equivalent, since in a faithful C-representation V'
of a finite group, here the action of G, on F, only the identity element has trace equal to
dim (V).

The quotient Gayith/Ggeom is a finite quotient of the pro-cyclic group Gal(F,/F,), so is itself
cyclic. The coset Ggeom Of Gasith is the unique coset containing the identity element of Ggeom,
and this element is also the identity element of Gyyien. If some Frob,, Fq |F = id, then over ¥ ya

we have Ggeom = Garith, Which is to say that |Gasith/Ggeom| divides d. So if the asserted ged is
1, then the index must be 1. Conversely, if Ggeom = Glaritn, then by Deligne’s equidistribution
theorem in this finite case [Ka-Sarl, Theorem 9.7.13], we will obtain Frobenii which attain
any specified element of Gy.ien over all extensions of F, of sufficiently large degree. 0
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LEMMA 2.5.2. Let F be a lisse Qp-adic sheaf on G /F, which is pure of weight zero and
for which Ggeom = Garith @5 finite. Let Sy and S be real constants such that all 1(0)-slopes
of F are < Sy and all I(c0)-slopes of F are < Sy. Then we have the inequality

#{z € F|Trace(Frob,r, |F) = rank(F)} 1 < (So + SOO)\/G.
q— 1 |Gge0m| - q— 1

PROOF. Let us write G := Ggeom(= Garith). Write the regular representation Rep; as the
usual sum of irreducible representations A of G

Reps — 1 = @ dim(A)A,

A#1

and recall that Repg, is |G| times the characteristic function of idg.
Sum both sides of this equality over the Frob, g, |F. We get
(2.5.2.1)

|G|-#{x € F|Trace(Frob, p,|F) = rank(F)}—(¢—1) = Z dim(A) Z Trace(A(Frob, g, | F)).
A#1 zEFy

Because each A is a representation of G = G, we may form the pushout sheaf A(F) on

G /F,. It will be lisse, pure of weight zero, and its I(0) (respectively I(c0)) slopes will be

bounded by Sy (respectively S.,), because each A(F) is a direct factor of some tensor power
F®r @ (FY)®b. By the Lefschetz trace formula, we have

> Trace(A(Frob, r, | F)) = Z(-l)iTrace(Frobq|H;<@m/E,A(f))).

The only possibly nonvanishing H’ are H? and H!. For A nontrivial, the H? vanishes,
because A is irreducible nontrivial on G = Ggeom. By the Euler-Poincare formula on G,,,
applied to A nontrivial, we have

dim (H (G, /Fq, A(F))) = Swang(A(F)) + Swanos (A(F)) < (Sp + Soo) dim(A).
By Deligne [De2] 3.3.4], each H! is mixed of weight < 1, so we have the estimate
| Trace (Froby| H (G /Fq, A(F)))| < dim(H})v/g < (So + Seo) dim(A) /g
Thus we have the estimate

1> dim(A) Y Trace(A(Frob, s, |F))| < ) (dim(A)*(So + See)v/@ < |GI(So + Sxo) v/

AAL pp— AFL
Dividing through Equation (2.5.2.1)) by |G|(¢ — 1) we get the asserted result. O

COROLLARY 2.5.3. Let ‘H be an irreducible hypergeometric sheaf of type (D, m) with
w:=D —m > 0. Suppose that Ggeom = Garith 15 finite. Then

‘#{x € x| Trace(Frob, r,|H) = rank(#)} 1 Vi

q—1 |Geeom|| ~ (¢ — 1w

PRrROOF. Indeed H is tame at 0, so we may take Sy = 0, and all its oo-slopes are either 0
or 1/w, so we may take So, = 1/w. O
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Here is a variant on A!. What we use here is that for G lisse on A! whose H 3 vanishes,
the Euler-Poincaré formula gives

dim(H}(A'/F,,G)) = Swan(G) — rank(G).

LEMMA 2.5.4. Let F be a lisse Qq-adic sheaf on A'/F, which is pure of weight zero and
for which Ggeom = Glarith s finite. Let Sy be a real constant such all I(oo)-slopes of F are
< Ss- Then we have the inequality

#{x € F,|Trace(Frob, | F) = rank(F)} 1 < (Seo — 1)

q ‘ Ggeom ’ - \/a

PROOF. The only new point here is that for any A(F), its oo slopes are still < S, so
for A # 1 we have

dim(H}(A'/Fy, A(F))) = Swane (A(F))—dim(A) < S dim(A) —dim(A) = (S —1) dim(A).

The rest of the proof proceeds as in the proof of Lemma [2.5.2 0

2.6. Limsup formula for moments

Let X, /F, be smooth and geometrically connected, of dimension d > 1, £ # p a prime, and
F alisse Qy sheaf on X, which is pure of weight zero. By fundamental results of Grothendieck
and Deligne [De2l, 1.3.8 and 3.4.1 (iii)], Ggeom is a semisimple algebraic group (meaning that
its identity component Gy, is semisimple). For V the representation of Gyeom attached to
F, a,b nonnegative integers, and

X := Xo &5, F,

we have

Mo y(F) = dim((VE @ (VV)&P)Ceeom)
= dim (H2'(X, F** @ (F¥)*")).

Because F is pure of weight zero, the trace function of FV is the complex conjugate of the
trace function of F.

THEOREM 2.6.1. As L/F, runs over finite extensions, we have the limsup formula

1
M, ,(F) :limsup|—d Z Trace(Frobz,L|.7-")“Trace(Frobm7L|fv)b)|.
LF, (F#L) cexall)

PROOF. For the auxiliary sheaf G := F®*® (F)®’, which is lisse and pure of weight zero
on X, this is the statement that we recover dim(H?¢(X,G)) as the limsup

1
lim sup|——— Trace(Frob,,1|G)|.
LF, | (#L)? meg(%m

By the Lefschetz trace formula, we have

> Trace(Frob, ;,G) = Y (—1)"Trace(Frob,|Hi(X,G)).

2€Xo(L) 0<i<2d
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For i < 2d, the group H!(X,G) is mixed of weight < i, by Deligne’s fundamental estimate
[De2| 3.3.4], so for every finite extension L/IF, we have

| > (=1)'Trace(Frob, |[HI(X,G)| < (H#L)™*( > hiX,9))
0<i<2d—1 0<i<2d—1
So if H?*¥(X,G) vanishes, we are done. When H?*(X,G) is nonzero, we must show that

dlmszX g) = limsu
(X,G) L/qu} #L)

The key point here is that H?¢(X,G) is pure of weight 2d: the eigenvalues of Frobg, on
H?*(X,G) are of the form ¢%«;, for 1 < j < dim H*)(X, G), with each |o;| = 1. For L/F, of
degree n, the eigenvalues of Frob; on this space are (#L)day. Thus we are reduced to the
statement that given D > 1 points a;; € S 1 we recover D as

lim Sup‘ Z

1<5<D

— = Trace(Frob |H*!(X, G))|.

which holds because in the compact group (Sl) , powers of any point (ay,...,ap) come
arbitrarily close to the identity element (1,...,1). O



CHAPTER 3

Representations of reductive groups containing elements with
special spectra

3.1. Almost quasisimple groups containing elements with simple spectra

One of the main goals of [KT5] was to describe triples (G, V, g) subject to the following
condition:

(3.1.0.1)
G is an almost quasisimple finite group, with S the unique non-abelian composition
factor, V' a faithful irreducible CG-module, and g € G has simple spectrum on V.

With G as in (3.1.0.1), let E(G) denote the layer of G, so that E(G) is quasisimple and
S = E(G)/Z(E(G)). On the other hand, G/Z(G) is almost simple: S <1 G/Z(G) < Aut(S).
We will frequently identify G with its image in GL(V'). Let 9(.S) denote the smallest degree
of faithful projective irreducible complex representations of S, and let 6(g) denote the order
of the element ¢Z(G) in G/Z(G). Adopting the notation of [GMPS], let meo(X) denote
the largest order of elements in a finite group X. An element g € G < GL(V) is called an
ssp-element, or an element with simple spectrum, if the multiplicity of any eigenvalue of g
acting on V' is 1. (Note that in (3.1.0.1)), we do not (yet) assume that Vg is irreducible.)

We begin with a useful observation:

LEMMA 3.1.1. [KT5, Lemma 6.1] In the situation of (3.1.0.1)), we have
0(5) < dim(V) <0(g9) < meo(G/Z(G)) < meo(Aut(S)).

Let S~ L1 denote the deleted permutation module of S,. We will also need to consider
the so-called basic spin modules (acted on faithfully by the double cover A,), see e.g. [KIT)

§2].

THEOREM 3.1.2. [KT5, Theorem 6.2] In the situation of (3.1.0.1), assume that S = A,
with n > 8. Then one of the following statements holds.
(i) E(G) = A, and one of the following holds.

(a) dimV =n—1, V|, = SCO=UD|s  and, up to a scalar, g is either an n-cycle, or a
disjoint product of a k-cycle and an (n — k)-cycle for some 1 < k <n—1 coprime
ton.

(b) n =38, dimV = 14, and, up to a scalar, g is an element of order 15 in As.

(ii) E(G) = A, and one of the following holds.

(a) n =38, dimV =38, Vlgq) is a basic spin module, and o(g) = 10, 12, or 15.

(b) G/Z(G) = Ay, dimV = 8, Vg is a basic spin module, and o(g) =9, 10, 12, or
15.

47
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(c) G/Z(G) = Sy, dimV = 16, Vg is the sum of two basic spin modules, and
o(g) = 20.

(d) G/Z(G) = Sy, dimV = 16, V|g@q) s a basic spin module, and o(g) = 20 or 30.

() G/Z(G) = Ay, dimV =16, Vg is a basic spin module, and 6(g) = 20.

(f) G/Z(G) = Sz, dimV = 32, Vg is a basic spin module, and o(g) = 60.

Table II, reproduced from [KT5], summarizes the classification of ssp-elements in the
non-generic cases of sporadic groups and A; and some small rank Lie-type groups, under the
additional condition that V|g) is irreducible. For each V, we list all almost quasisimple
groups G with common E(G) that act on V', and we list the number of isomorphism classes
of such representations in a given dimension, for a largest possible G up to scalars (if no
number is given, it means the representation is unique up to equivalence in given dimension).
For each representation, we list the names of conjugacy classes of ssp-elements in a largest
possible G, as listed in [GAP], and/or the total number of them. We also give a reference
where a local system realizing the given representation is constructed. The indicator (-)
means that no hypergeometric sheaf with G as monodromy group can exist.

THEOREM 3.1.3. [KT5| Theorem 6.4] In the situation of (3.1.0.1)), assume that S is one
of 26 sporadic simple groups, or As, and that V|g) is irreducible. Then (S,G,V,g) are as
listed in Table II.

LEMMA 3.1.4. Let ¢ = p/ > p and q # 4, 8, 9, 25. Suppose that S = PSLy(q) and
g € Aut(S) has order at least (¢ — 1)/ ged(2,q — 1). Then g € PGLa(q).

PROOF. Suppose that g ¢ H := PGLs(q), and thus the coset gH is an element of order
e > 2 in the cyclic quotient Aut(S)/H = Cy. As shown on [GMPS| p. 7679], we then have
that o(g) < e(q/c +1).

Suppose p = 2. Then one can check that e(¢"/¢ 4 1) < ¢ — 1, unless (e, q) = (2,4), (3,8).

Suppose p > 2. Then one can check that e(¢'/¢ + 1) < (¢ — 1)/2, unless (e, q) = (2,9),
(2,25). 0

THEOREM 3.1.5. In the situation of , assume that S is a finite simple group of

Lie type. Then one of the following statements holds.

(i) S = PSLy(q) and dim(V) < o(g) < g+ 1. Moreover, if ¢ > 11 then the image of g in
Aut(S) lies in PGLa(q).

(ii) S = PSL,(q), n > 3, E(G) is a quotient of SLy,(q), and V|gq) is one of ¢ — 1 Weil
modules, of dimension (¢" —1)/(¢—1) or (¢" —q)/(¢—1). Moreover, dim(V') < o(g) <
(¢" = 1)/(g—1).

(iii) S = PSU,(q), n > 3, E(G) is a quotient of SU,(q), and V|gq) is one of ¢ +1 Weil
modules, of dimension (¢" — (—=1)")/(q¢+1) or (¢" +q(—1)")/(¢ + 1).

(iv) S = PSp,y,(q), n > 2, 21 q, E(G) is a quotient of Sp,,(q), every irreducible constituent
of Vg is one of four Weil modules, of dimension d := (¢" +£1)/2, and dim(V) = d
or 2d.

(v) Non-generic cases:

(a) S is one of the following groups: PSLs(4), PSU4(3), Spe(2), Q4 (2), 2Ba(8), Ga(3),
G2(4), Vg is simple, and the classification of ssp-elements in G' can be read off
from Table I.
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S | meo(Aut(S)) [2(5) | G \ dim(V) \ ssp-classes
A; 12 4 2A; 4 (2 reps) [KRLT4] 9 classes
S, 6 (2 reps) [KT5] | 7A, 6C, 104, 12A (4 classes)
3A7 6 (2 reps) [KRLT4] 6 classes
6A; 6 (4 reps) [KRLT4] 15 classes
M1 11 10 My, 10 (3 reps) [KRLT4] 11AB (2 classes)
11 [KRLT4] 11AB (2 classes)
Mis 12 10 | 2Myy -2 10 (4 reps) (-) 11 classes
M;s 11 (2 reps) (-) 11AB (2 classes)
2M;5 - 2 12 (2 reps) (-) 24AB (2 classes)
Mag 14 10 | 2Mgy -2 |10 (4 reps) [KRLT4] 10 classes
Mas 23 22 Mo 22 [KRLT4] 23AB (2 classes)
Moy 23 23 Moy 23 [KRLT4] 23AB (2 classes)
Jo 24 6 2J5 6 (2 reps) [KRL] 17 classes
2J5-2 |14 (2 reps) [KRLT4] | 28AB, 24CDEF (6 classes)
Js 34 18 3J3 18 (4 reps) [KRLT4] | 19AB, 5TABCD (6 classes)
HS 30 22 HS-2 22 (2 reps) (-) 304
McL 30 22 | McL-2 |22 (2reps) [KRLT4] 304, 22AB (3 classes)
Ru 29 28 2Ru 28 [KRLT4] 29AB, 58AB (4 classes)
Suz 40 12 6Suz 12 (2 reps) [KRLT3| 57 classes
Coy 60 24 2Co, 24 [KRLT3| 17 classes
Cog 30 23 Cog 23 [KRLT?2] 23AB, 30AB (4 classes)
Cogs 30 23 Cos 23 [KRLT1] 23AB, 30A (3 classes)
PSL;(4) 21 6 65-2; | 6 (4 reps) [KRLT4] many classes
4,523 | 8 (8 reps) [KRLT4] 12 classes
2525 |10 (4 reps) [KRLT4] 14CDEF (4 classes)
PSU4(3) 28 6 615 -2, | 6 (4 reps) [KRLT4] many classes
Spe(2) 15 7 | Spe(2) 7 [KRLT4] 7A, 8B, 94, 12C, 154
25pg(2) 8 [KRLT4] 8 classes
Spe(2) 15 (-) 154
Qi (2) 30 8 [205(2) 2 8 [KRLT4] 22 classes
By (8) 15 14 | By(8) -3 | 14 (6 reps) [KRLT4] 15AB (2 classes)
G2(3) 18 14 | G5(3)-2 |14 (2 reps) [KRLT4] 14A, 18ABC' (4 classes)
Go(4) 24 12 | 2G9(4) -2 | 12 (2 reps) [KRLT4] 20 classes

TABLE II. Elements with simple spectra in non-generic cases

(b) Vg is the direct sum of two simple modules of equal dimension, and one of the
following possibilities occurs.
() E(G) = S = SU4(2), G/Z(G) = Aut(S), either dim(V) = 8 and o(g) =
9,10, 12, or dim(V') = 10 and o(g) = 10, 12.

(B) S =SUs(2), G/Z(G) = Aut(S), dim(V') = 22, and o(g) = 24.
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PROOF. If S 2 PSLy(q), then the theorem is just [KT5, Theorem 6.6], which also gives
the first statement in (i) when S = PSLs(g). For the second claim in (i), assume ¢ > 11.
Then

6(g) = dim(V) > (¢ — 1)/ ged(2,¢ = 1)
by Lemma [3.1.1} and so we are done unless ¢ = 25. If ¢ = 25, but the image of g is not
contained in PGLy(25), then using [CCNPW] we can check that 6(g) < 12; on the other
hand, Vg is either irreducible of dimension > 24, or a sum of two simple summands of
dimension 12 or 13 that are fused by g. Thus 6(g) < dim(V'), a contradiction. O

THEOREM 3.1.6. In the situation of (3.1.0.1), assume in addition that V|g) is irre-
ducible and that dim(V') # 4,6. Then the following statements hold.

(i) The action of G on V is tensor indecomposable and not tensor induced.
(i) Either (G,V) satisfies (S+), or (G,V) is imprimitive and one of the following cases

(a) E(G)/Z(E(G)) = PSL,(g), n > 2, ¢ > 3, and dim(V) = (¢" — 1)/ (g — 1),
(b) E(G) = PSLy(7) and dim(V) =T7.

(¢) E(G) =My and dim(V) = 11.

(d) E(G) =2M2 and dim(V) = 12.

PRrROOF. (i) The statement is obvious in the case dim(V') is a prime, so we may assume
that dim(V) > 8. In particular, using [CCNPW]| we see that S % A; and so 9(5) > 3.

If S = Ag, then we can check directly using [CCNPW] that dim(V) # 9 (because
G possesses an ssp-element), and 9(S) = 3. If furthermore dim(V) > 10, then we get
E(G) = SLy(9), dim(V) = 10, and G/Z(G)E(G) < Cy, in which case one can check the
statements readily. Hence we may assume dim(V’) < 8 when S = Ag. Now, Theorems ,
13.1.3) and [3.1.5[imply that dim(V') < 9(5)? in all remaining cases. Hence, if (G, V) is tensor
decomposable: G < GL(A) ® GL(B) with 1 < dim(A) < dim(B), then we may assume that
dim(A) < 9(5), and so the projective representation of E(G) on A is reducible, contradicting
the irreducibility of F(G) on V = A® B. Thus (G, V) is tensor indecomposable.

Assume now that (G,V) is tensor induced and let H < G be the subgroup of G that
stabilizes each of the n > 2 tensor factors, each of dimension d so that dim(V') = d". Then
dim(V) < 9(5)? again implies that d < 9(S) and so E(G) £ H (because otherwise F(G)
would stabilize each of the tensor factor and act reducibly on each of them). As FE(G) is
quasisimple, we must have that E(G) N H = Z(E(G)). Thus S = E(G)/Z(E(G)) embeds in
G/H — S,, and acts faithfully on the set of n tensor factors. However, as 9(S) > 3 we have

n = log, dim(V) < log, 9(S)? < 9(S) + 1 < P(S),

where P(S) denotes the smallest index of proper subgroups in S, contradicting S < S,,.

We have shown that (G, V) is not tensor induced, whence the statement follow. For a
later application in Theorem we also note that when dim(V) = 6 and 9(S5) < 3,
S = As and V is imprimitive by [CCNPW]. Hence, (S+) also holds if dim(V) = 6 and V
is primitive.

(ii) Note by Lemma that (S+) necessarily implies that E(G) is irreducible on V. In
view of (i), it suffices to determine whether the G-module is primitive.

Assume that G fixes an imprimitive decomposition V' = @&!_,V; with ¢ > 1. Since
Z(E(G)) < Z(G) by irreducibility of F(G), we see that Z(G) acts trivially on {V4,...,V;}.
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Now irreducibility of E(G) on V implies that S := E(G)/Z(E(G)) acts transitively on this
set, when S has a proper subgroup of index ¢ that divides dim(V'). Using [KIL, Table
5.2.A] and [CCNPW], and going through the cases listed in Theorems [10.3.5] [3.1.3] and
B.1.5 we can check that when dim(V') > 12, the latter is possible only when (S, dim(V)) #
(PSL,(q), (¢" —1)/(¢—1)), leading to (a). Assume now that dim(V") < 12 and we are not in
(a). Now we have
5 < P(S) <t <dim(V),

and that dim(V) # 6 by assumption. We will use [GAP] to check this condition for the
modules listed in Theorems [10.3.5 and when S % As, Ag, and in [GAP] when
S = A57 A6-

When S = A; = PSLy(4), the possibility dim(V') = 5 is already included in (a) (indeed, if
x € Irr(S) has degree 5, then x = Ind};(«) for a non-principal linear character o of M = Ay).

When S = Ag = PSLy(9), any proper subgroup of S has index 6 or > 10 whereas
dim(V) < meo(Aut(S)) = 10 [CCNPW]I, so, in view of (a) and the assumption dim(V") # 6,
no further consideration is needed.

When S = A;, any proper subgroup of S has index 7 or > 15 whereas dim(V) <
meo(Aut(S)) = 12 [CCNPW]J, so V' can only have dimension 7 which is impossible.

When S = Ag, any proper subgroup of S has index 8 or > 15 whereas dim(V) <
meo(Aut(S)) = 15 [CCNPW]|, so V can only have dimension 8 or 15. There is no V
of dimension 15, see [CCNPW], and the ones of dimension 8 are primitive (since any sub-
group of index 8 of F(G) = 2Ag is isomorphic to 2A;, which is perfect, and so any linear
character of it is trivial and cannot induce to E(G) to yield V|gq))-

When S = PSLy(7), we only need to look at the case dim(V') = 7, which leads to (b);
(indeed, if x € Irr(S) has degree 7, then y = Ind}, () for a non-principal linear character o
of M = 54)

When S = PSLy(11), P(S) = 11 and dim(V) < meo(Aut(S)) = 12 [CCNPW]/, so in
view of (a), V' can only have dimension 11. However, such a module is primitive (since any
subgroup of index 11 of F(G) = S is isomorphic to As, which is perfect, and so any linear
character of it is trivial and cannot induce to S to yield V|g).

When S = My, P(S) = 11 = meo(Aut(S)) [CCNPW], so dim(V') = 11, leading to (c);
indeed, if x € Irr(S) has degree 11, then y = Ind3,(«) for a non-principal linear character a
of M = A6 . 23.

When S = Mj,, P(S) = 12 = meo(Aut(S)) [CCNPW], so dim(V) = 12, leading to
(d); indeed, if x € Irr(F(G)) has degree 12, then E(G) = 2Mjy and x = IndJ\E/[(G)(oz) for a
non-principal linear character v of M = 2 x My;. 0

Using the aforementioned results on representations of almost quasisimple groups admit-
ting ssp-elements, we now prove

THEOREM 3.1.7. Let H < GL(V) = GL4(C) be a finite almost quasisimple group that
admits an element h with simple spectrum. Assume in addition that V is irreducible over
L:= E(H). Then either

o(h) < d?/2
or one of the following cases occurs.

(a) d =2, H =SLy(5), and 6(h) =2, 3, orb.
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, H=1Sp,(3), and 6(h) =9 or 12.

Proor. We will assume that
(3.1.7.1) o(h) > d*/2.

The list of possible H in the case d = 2, 3 is well known, see e.g. [HM], and we easily arrive
at (a)—(d). From now on, we will assume d > 4, and let S = L/Z(L) be the unique non-
abelian composition factor of H. Also, let meo(Aut(S)) denote the largest order of elements
in Aut(95).

(i) Here we consider the case S = A, with n > 5. If n = 5, then 6(h) < meo(Aut(S)) =
6 < d?/2, contrary to (3.1.7.1). If n = 6, then 6(h) < meo(Aut(S)) = 10, so
implies that d = 4. In this case, we have by [CCNPW]| that L = 2A¢ and S < H/Z(H) <
S -2y, which then implies that 6(h) < 6, again contradicting (3.1.7.1). If n = 7, then
o(h) < meo(Aut(5)) = 12, so again implies that d = 4. In this case, we have by
[CCNPW]| that H = 2A; and so 6(h) < 7, again contradicting (3.1.7.1)).

Assume now that n > 8. Then we can apply Theorem [10.3.5to see that (3.1.7.1) implies
that we are in case (i)(a) of Theorem and so o(h) < n?/4 < (n—1)*/2 = d?, a

contradiction.
(ii) Assume now that S is one of 26 sporadic simple groups, and apply Theorem .
Using the information on (V, meo(Aut(S)) listed in Table 1, we see that (3.1.7.1)) implies that

H =2J, and d = 6, in which case we also have o(h) < 15, violating (3.1.7.

(iii) From now on we may assume that S is a simple group of Lie type, and apply
Theorem [3.1.5] First consider the case S = PSLy(¢q) with ¢ > 7 and ¢ # 9 (note that the
cases SLo(4) = PSLy(5) = As and PSLy(9) = Ag have already been considered in (i)). If
g = 7, then o(h) < 8, and so implies that d = 4, whence H = L = SLy(7) and
o(h) < 7 (see [CCNPW]), a contradiction. If ¢ = 8, then o(h) < 9 whereas d > 7, see
[CCNPWJ, contradicting (3.1.7.1). If ¢ > 11, then 6(h) < ¢ + 1 by Theorem [3.1.5(i),
whereas d > (¢ — 1)/2 (see [TZ1l, Theorem 1.1]), and this again violates (3.1.7.1)).

Suppose S = PSL,(¢q) with n > 3 and (n,q) # (3,2), (3,4). Thend > (¢"—¢q)/(¢g—1) and
meo(Aut(S)) = (¢" —1)/(¢—1) < d+1 by [GMPS], Theorem 2.16], contradicting (3.1.7.1).
The case SL3(2) = PSLy(7) has already been treated. Suppose now that S = PSLj3(4).
Then meo(Aut(S)) = 21, so yields that d = 6, L = 6S, S < H/Z(H) < S -2, (see
[CCNPW]), in which case we have 6(h) < 8, a contradiction.

Suppose next that S = PSp,,(¢) with n > 2 and (n,q) # (2,3). Then d > (¢" —1)/2 and
meo(Aut(S)) < ¢"*'/(¢ — 1) by [GMPS| Theorem 2.16], again violating (3.1.7.1). Assume
now that S = PSp,(3). Then meo(Aut(S)) = 12, so yields that d =4, H = Sp,(3),
o(h) =9 or 12 (see [CCNPW]), and we arrive at (e).

Suppose S = PSU,(¢) with n > 3 and (n,q) # (3,2), (3,3), (4,2), (4,3), (5,2). Then
d > (¢" — q)/(q¢ + 1) and meo(Aut(S)) < ¢"!' + ¢* by [GMPS, Theorem 2.16], again
contradicting (3.1.7.1). Note that PSU;(2) is solvable, and PSU,4(2) = PSp,(3) has already
been handled. If S = SU;(2), then d > 10 and meo(Aut(S)) = 24, contrary to (8.1.7.1).
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If S = SU3(3), then d > 6 and meo(Aut(S)) = 12, again contradicting (3.1.7.1). Suppose
next that S = PSU4(3). Then meo(Aut(S)) = 28, so (3.1.7.1)) yields that d =6, L =6, - S,
S<AQH/Z(H) < S -2, and 6(h) = 18 (see [CCNPW]), leading to (f).

Finally, in the exceptional cases S = Spg(2), Q4 (2), 2Bs(8), Go(3), and G5(4) of Theorem
B.1.5[(v), using the information on (V,meo(Aut(S)) listed in Table 1, we can check that

meo(Aut(S9)) < d?/2, violating (3.1.7.1]). O

THEOREM 3.1.8. [KT5| Corollary 8.4] Suppose gives rise to a hypergeometric
sheaf H of type (D, m) with D —m > 2, with G = Ggeom, g a generator of the image of
I1(0) in G, and V' realizes the action of G on H. Suppose in addition that we are in the
cases (ii)—(iv) of Theorem and that V| gy is irreducible. Then G/Z(G) = PGL,(q),
respectively PSp,, (¢), PGU,(q).

THEOREM 3.1.9. [KT5, Theorem 8.5] Let p be a prime. Let G be a finite irreducible
subgroup of GL(V') = GL,»(C) that satisfies (S+) and is an extraspecial normalizer, so that
G> R =Z(R)E for some some extraspecial p-group E of order p***" that acts irreducibly on
V', and furthermore either R = E or Z(R) = C4, as in |[GT3, Proposition 2.8(iii)]. Suppose
that a p'-element g € G has simple spectrum on V and that p™ > 11. Then the following
statements hold.

(i) Suppose p > 2. Then exp(R) = p, 0(g) = p™ + 1, and the coset gZ(G)R as an element
of G/Z(G)R — Sp,, (p) generates a cyclic mazimal torus Cyniy of Spy,(p)-

(ii) Suppose p = 2. Then one can find integers a; > as > ... > a; > 1 such that n =
S as, ged(2% 4 1,2% +1) = 1 ifi # j, o(g) = [['_,(2% + 1), and the coset gZ(G)R
as an element of G/Z(G)R — Sp,,(2) generates a cyclic mazimal torus Caai1q X ... X
Caery1 0f Spay(2).

Our next result offers an optimal refinement of [KT5l Theorem 7.3]:

THEOREM 3.1.10. Let H be a hypergeometric sheaf in characteristic p of type (D, m) with
D > m and with finite geometric monodromy group G = Ggeom. Suppose that G' is an almost
quasisimple group of Lie type:
S <AG/Z(G) < Aut(S)
for some finite simple group S of Lie type in characteristic v, and either H is (S+), or G
1s irreducible on H. Then at least one of the following statements holds.

(i) p=r, i.e. H and S have the same characteristic.

(ii) D < 10 and S is one of the following simple groups: As, Ag, As, PSLa(7), SLa(8),
PSLy(11), PSL3(4), SU3(3), SU4(2) = PSp,(3), SU5(2), PSU4(3), Sp(2), Q4 (2). More
precisely, one of the following statements holds.

ii-2) D=2, and S = As.

(.
(11—3) D= 5 and S = A5, AG) PSLQ(?)

(ii-d) D =4, and S = A, Ag, PSL(7), SU4(2).

(ii-5) D =5, and S = As, Ag, PSLy(11), SU4(2).

(ii-6) D =6, and S = As, A, PSLa(7), PSLy(11), PSL3(4), SU3(3), SU4(2), PSU4(3).
(ii-7) D =17, and S = Ag, PSLy(7), SLa(8), SU3(3), Sp(2).

(11—8) D= 8, and S = A6, Ag, PSLQ(?), SL2(8), PSL3(4)7 Sp6(2)7 Q;(Z)

(11—9) D= 9, and S = A6, SL2(8)
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(11—10) D= 10, and S = AG, PSLQ(ll), PSL3(4), SU4(2), SU5(2)
(iii) D =12, S =SU3(4), and p =5 or 13.
(iv) D =14, p =13, and S = *B,(8) or G»(3).

PROOF. Assume (H,G) is as in the theorem, but p # r. Note that (S+) implies by
Lemma that the central cover L := G(®) of S is irreducible on the underlying repre-
sentation V' = V3, of H; in paricular Z(G) = Cg(L) and G/Z(G) — Aut(S). Recall that a
generator gy of the image of 1(0) in G, a p’-element, has simple spectrum on V', which implies

(3.1.10.1) D < 06(go) < meo(Aut(S)).

Let @ denote the image of I(co) in G, and let ¢ denote the character of the G-module
V. Suppose that there exists a constant 0 < a < 1 such that |p(z)|/¢(1) < « for all
r € QN Z(G). We will frequently use the following lower bound

(3.1.10.2) QI >w> D1 —a)(1-1/|Q])

for w := dimWild = D — m. [Indeed, the action of @ on Wild implies by Propositions 5.8
and 5.9 of [KRLT4] that w < |Q], and the second inequality in (3.1.10.2) is reproduced from
[KT5| (7.2.2)].] Furthermore, in the cases where Q/(Q NZ(G)) is cyclic, in particular when
Sylow p-subgroups of Aut(S) are cyclic, we must have that

(3.1.10.3) w<[Q: QNZ(G).

Indeed, the cyclic assumption implies that () is abelian. By Propositions 5.8 and 5.9 of
[KRLT4], the character of the @-module Wild is a sum of w distinct linear characters \;,
1 < i < w. Note that @ N Z(G) acts on V3 via a central character v, and @) has exactly
(@ : Q@ NZ(G)] linear characters lying above v. Hence the claim follows.

Now we can apply [KT5, Theorem 7.4] to see that D < 22 and arrive at the following
possibilities for S:

PSLy(5,7,8,9,11,25), As, PSL3(3,4), PSUy56(2), PSU34(3)
PSUs(4,5), Spg(2), PSps(3), PSp,(5), Qi (2), *Ba(8), Ga(3,4),

which we will analyze individually. We also let g, € G be a p/-element that generates the
image of I(c0) in G modulo @, and note that the cases S = G5(4) and S = SUj3(4) are
treated by Theorem 24.6, respectively Corollary 24.7, of [KRLT4].

(a) If S = PSLy(q) with ¢ = 4,5,7,8, then meo(Aut(S)) < 9 [CCNPW]|, so D < 9 by
(3-1.10.1)), and (ii) holds. If S = Ag = PSL,(9) = Sps(2)’, then meo(Aut(S)) < 10, so again
D < 10 and (ii) holds. In addition, if D = 10, then 6(go) = 10 by (3.1.10.1)), whence p = 3
since go is a p’-element. More generally, the list of possibilities in (ii-2)—(ii-10) can be verified
using [HM].

Suppose S = PSLy(11), but p # 11 and D > 10. Note that S < G/Z(G) < Aut(S) = S-2,
and both S and S - 2 inject in GL3(FF};) as irreducible subgroups. By [KT5], Theorem 4.14],
this implies that w < 3. On the other hand, D < meo(Aut(S)) = 12, and using [GAP] we
can check that |p(x)| < 2 for all z € G\ Z(G). Thus we can take o = 1/5, and as |Q| > 2,
(3.1.10.2) implies w > 4, a contradiction.

Suppose S = PSLy(25), but p # 5 and D < 22. Since V|, is irreducible, we have D = 12
or 13 by [GAP], and so S < G/Z(G) < S-2,. Next, each of S and S-2; injects in GLg(F5) as
an irreducible subgroup for some d < 4. By [KT5, Theorem 4.14], this implies that w < 4.



3.1. ALMOST QUASISIMPLE GROUPS CONTAINING ELEMENTS WITH SIMPLE SPECTRA 55

Using [GAP] we can check that |p(z)| < 5 for all x € G \ Z(G), and thus we can take
a =5/12. Hence (3.1.10.2) yields |Q| > w > 4. Since |Q| > 5, (3.1.10.2)) now implies w > 6,

a contradiction.

Suppose S = Ag = SL4(2), but p # 2 and D > 8. Since meo(Aut(5)) = 15 [GAP] and
V| is irreducible, we see that D = 14 and 6(go) = 15. The latter rules out p = 3,5. In the
remaining case p = 7, the Sylow p-subgroups of Aut(S) are of order 7, so w < 7 by (3.1.10.3]).
However, ¢(z) = 0 for all x € @ \ Z(G), yielding = 0 and so w > 12 by a
contradiction.

Suppose S = SL3(3), but p # 3. Since V|, is irreducible and D < meo(Aut(S)) = 13, we
have D = 12 or 13 by [GAP], L = S and S < G/Z(G) < S - 2. Next, each of S and S -2
injects in GL4(FF3) as an irreducible subgroup for some d < 6. By [KT5, Theorem 4.14], this
implies that w < 6. Using [GAP] we can check that |p(z)| < 4 for all z € G\ Z(G), and
thus we can take o = 1/3. Hence yields |Q| > w > 4. Since |Q| > 5,
now implies w > 6, a contradiction.

Suppose S = PSL3(4), but p # 2 and D > 11. Since V| is irreducible and D <
meo(Aut(S)) = 21, we have D € {15,20,21} by [GAP]. Now, since o(go) > D > 15, we
can see that 3 always divides 6(gg), showing p # 3. We can then check using [GAP] that
lo(x)] <1 for all x € @ N\ Z(G). Thus we can take o = 1/15, which implies w > 12. This
however contradicts ([3.1.10.3)), since Sylow p-subgroups of Aut(S) have order p.

Suppose S = SUy(2) and D > 11. Then D < meo(Aut(S)) = 12, and L has no irreducible
characters of degree 11 or 12 [GAP], a contradiction.

Suppose S = SU;(2), but p # 2 and D > 11. Since V|, is irreducible, we actually have
D =11 and G = Z(G)S by [GAP]. Now S is an irreducible subgroup of GLs(F5), so w < 5
by [KT5, Theorem 4.14]. If p = 5 or 11, then by [GAP] we have that |p(z)| < 1 for all
z € QNZ(G). Thus we can take @ = 1/11, which implies w > 8 by (8.1.10.2)), a contradiction.
Suppose p = 3. Again using [GAP] and , we see that |Q| > w > 4, whence |Q| > 9,
yielding w > 5. Thus w = 5 and so W = 3* is elementary abelian by [KRLT4, Proposition
5.8]. Next, 3 t |Z(G)| by [KT5, Proposition 4.8(iv)], hence @ < S. Also, 5/06(g9) by
[KRLT4] Proposition 5.8], and thus an element of order 5 of S acts nontrivially on Q. It
follows that () is a maximal torus of S and hence contains an element of class 3c in the
notation of [GAP], which however has eigenvalue 1 only with multiplicity 2 on V', showing
w > 9, a contradiction.

Suppose S = PSUg(2), but p # 2. Since V|, is irreducible and D < meo(Aut(S)) = 36,
we have D = 21 or 22 by [GAP]. Now, since 6(gg) > 21, we can see that 3 always divides
0(go), showing p # 3. We can then check using [GAP] that |p(z)| < 2 for all z € Q \Z(G).
Thus we can take o = 2/21, which implies w > 16. This however contradicts , since
Sylow p-subgroups of Aut(S) have order p.

Suppose S = SU3(3) and D > 8. Then D < meo(Aut(S)) = 12, and L has no irreducible
characters of degree 9 < D < 12 [GAP], a contradiction.

Suppose S = PSU4(3), but p # 3 and 7 < D < 22. Since V|, is irreducible, we have
D € {15,20,21} by [GAP]. Now, since 6(gp) > D > 15, we can see that 2 always divides
0(go), showing p # 2. We can then check using [GAP] that |p(z)| <1 for all z € Q \Z(G).
Thus we can take o = 1/15, which implies w > 12. This however contradicts , since
Sylow p-subgroups of Aut(S) have order p.
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Suppose S = SUs(4), but p # 2. Since V|, is irreducible and D < meo(Aut(S)) = 16,
we actually have D = 12 or 13 by [GAP)]. First we consider the case D = 13, which implies
that G = Z(G) x S. In particular, G admits an irreducible representation G — GL3(Fy),
hence [KT5, Theorem 4.14] implies that w < 3. For p # 5, we can check that |¢(x)] < 1
for all z € Q \ Z(G). Thus we can take o = 1/13, which implies w > 8 by , a
contradiction. If p = 5, then using [GAP] we see that any element = € @ \ Z(G) has all
eigenspaces of dimension < 4, which implies that w > D — 4 = 9, again a contradiction.
Now suppose that D = 12. Note that the cases p = 5 and p = 13 are recorded in (iii), so we
have p = 3. Since the Sylow 3-subgroups of Aut(S) are of order 3, by we have that
w < 3. On the other hand, applying with a = 0 we have w > 8, a contradiction.

Suppose S = PSU3(5), but p # 5. Since V|, is irreducible and D < meo(Aut(S)) = 30,
we actually have D = 20 or 21 by [GAP]. Now we can use [GAP] to check that no 3'-element
can have a simple spectrum on V/, ruling out the case p = 3. For p # 3,5, we can check that
lp(z)| <5 for all z € Q N\ Z(G). Thus we can take o = 1/4, which implies |Q| > w > 8 by
. Applying with |@Q] > 9, we actually have w > 14. Also, since gy has
simple spectrum on V', we see that goZ(G) € S-3. Hence we can apply Theorem to get
that S < G/Z(G) < S - 3. Since each of S and S - 3 is an irreducible subgroup of GL4(F5)
for some d < 8, it follows from [KT5l Theorem 4.14] that w < 8, a contradiction.

Suppose S = Spg(2). Then D < meo(Aut(S)) = 15, and so D < 8since V|, is irreducible,
see [GAP]. Thus (ii) holds in this case.

Suppose S = PSp,(5), but p # 5. Since V| is irreducible and D < meo(Aut(S)) = 30,
we actually have D = 12 or 13 and G/Z(G) = S by [GAP]. Since S is an irreducible
subgroup of GL5(Fs), it follows from [KT5, Theorem 4.14] that w < 5. Using [GAP] we
can check that |¢(z)] <5 for all z € @ \ Z(G). Thus we can take a = 5/12, which implies
|Q] > w > 4 by (3.1.10.2). Applying with |@] > 5, we actually have w > 6, a
contradiction.

Next suppose S = Qg (2) and D > 9. As D < meo(Aut(S)) = 30, we have D = 28 since
V| is irreducible, see [GAP]. Now implies that 6(go) = 30, but such elements do
not have simple spectrum on V', a contradiction.

(b) The last three cases of PSpg(3), 2Bo(8), and Go(3) require a more substantial analysis.
Suppose S = PSpg(3), but p # 3. Since V| is irreducible and D < meo(Aut(S)) = 40, we
actually have D = 13 or 14 and G/Z(G) = S by [GAP]. For p # 2, we can check that
lp(z)] < 2 for all z € @ \ Z(G). Thus we can take @ = 2/13, which implies w > 9 by
. Since the Sylow 5-subgroups and 7-subgroups of S have order 5, respectively, this
bound rules out the cases p =5 and 7 by (3.1.10.3). Assume p = 13. Then any = € Q \Z(G)
has central order 13 and spectrum [ - j113 on V' for some g € C*. This implies that w > 12.
Since Sylow 13-subgroups of S have order 13, @ is abelian, and so w # 13 by [KRLT4,
Proposition 5.9] and w # 14 by (3.1.10.3)). Thus w = 12, in which case 12|6(gs) and go, has
spectrum 7 - p1o on Wild for some v € C* by [KRLT4|, Proposition 5.8]. However, using
[GAP] one can check that no such element exists in G = Z(G) L.

We have shown that p = 2. Then the 2’-element gy has simple spectrum on V. Using
[GAP] we can check that 6(go) = 13 = D, so L = S, and G = Z(G)S = Z(G) x S. Also,
2 1 |Z(G)| by [KT5, Proposition 4.8(iv)]. By [KT5l, Corollary 5.2], we can replace H by
another hypergeometric sheaf of the same type (D, m) but now with G = S. So we may
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assume G = S = PSp4(3); in particular, |Q] < 2°. Checking the spectrum of gy on V', we
see that the set of “upstairs” characters of H is Char(13). Using [GAP] we can check that
lp(z)| < 5 for all 1 # x € . Thus we can take a = 5/13, which implies |Q| > w > 4 by
(3-1.10.2). This in turn implies that |Q| > 8, and so w > 7 by (3.1.10.2). If w = 13, then
Q = 2" by [KRLT4, Proposition 5.8], a contradiction. The case w = 11 is impossible since
g € S would have order divisible by 11. If w = 7, then Q = 23 and each 1 # x € @ has
trace —1 on Wild by [KRLT4|, Proposition 5.8]. It follows that these involutions z have trace
m —1=>5on V, which is impossible by [GAP]. Suppose w = 9. Then Q = 2° by [KRLT4,
Proposition 5.8|, and consists of, say A involutions of class 2a and B involutions of class 2b,
in the notation of [GAP]. Then A + B = 63, and

4=m =gl 1glo = (13 - 34+ B)/64,

yielding A = —45, a contradiction.

Suppose w = 10. By [KRLT4, Proposition 5.9], g € S has order divisible by 5; in
particular, ' = Id, and spectrum all the 5" roots of 3- (u3 ~ {1}) on Wild for some 3 € C*.
It follows that 3% = 1, and ¢ has order 5 and spectrum all the 5" roots of unity on Wild,
each with multiplicity 2, which can be seen to be impossible by [GAP].

Suppose w = 8. By [KRLT4, Proposition 5.9], g € S has order divisible by 9; in
particular, ¢° = Id, and spectrum all the 9" roots of v - (19 \ {1}) on Wild for some v € C*.
It follows that v° = 1, and the spectrum of g, on Wild is pg ~ {7}. On the other hand,
since (G is finite, g, also has simple spectrum on Tame. Checking the spectra of elements of
order 9 of S on V' and replacing g., by its inverse if necessary, we see that the spectrum of
goo O Vis ug U{{J | j = 1,4,6,7} as a multi-set, and so the spectrum of g, on Tame is
{17 =1,4,6,7,540} for some jo € {0,2,3,5,8}. The irreducibility of H implies j, # 0 (as
1 already appears “upstairs”), and Q(¢) = Q((3) implies that the spectrum of g, is stable
under the unique subgroup C of Gal(Q((y)/Q), whence j, = 3. Thus the set of “downstairs”
characters of H is {55 | j = 1,3,4,6,7}. However, the resulting H now fails the V-test, as
can be shown by direct computation.

Suppose w = 12. By [KRLT4, Proposition 5.9], g € S has order divisible by 3 and
spectrum all the 3' roots of § - (us ~ {1}) on Wild for some § € C*. It follows that 5
divides o(g?) and in fact o(g) = 15. Checking the spectra of elements of order 15 of S on
V', we see that the spectrum of g, on V contains 4 eigenvalues with multiplicity 2, which
is a contradiction since g, has simple spectra on both Wild (of dimension 12) and Tame (of
dimension 1).

(c) Suppose S = 2B,(8). Since D < meo(Aut(S)) = 15 and V|, is irreducible, we have
D =14 and L = S by [GAP]. Now, (3.1.10.1)) implies that 6(go) = 15, ruling out p = 3, 5.
The case p = 13 can indeed arise, see [KRLT4, Theorem 26.2], leading to possibility (iv).
We can also rule out p = 2 as follows. Using [GAP] we can check that |p(z)| < 2 for
all 2-elements z € @ \ Z(G), and thus we can take o = 1/7. Hence yields
|Q| > w > 6. Hence |Q| > 8, and now implies w > 11. We also note by [KT5|
Proposition 4.8(v)] that |Z(G)]y < 2, and so |Q| < 27. The case w = 11 is now impossible
by [KRLT4, Proposition 5.8], since no element in Aut(S) has order 11. If w = 13, then
|Q| = 2'2 by [KRLT4, Proposition 5.8], again a contradiction. Suppose w = 14. Applying
[KRLT4| Proposition 5.8] again, we see that 7|6(¢gs), which implies that g, and @ are
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both contained in Z(G)S. In this case, G = Z(G)S by [KT5L Theorem 4.6]. But this is a
contradiction, since gg ¢ Z(G)S. Finally, suppose w = 12. In this case, () has an irreducible
summand of dimension 4 on Wild by [KRLT4, Proposition 5.8]. However, Q < Z(G)P for
a Sylow 2-subgroup P of S, and all irreducible characters of P are of degree 1 or 2, again a
contradiction.

(d) Finally, we consider S = G5(3). Since D < meo(Aut(S)) = 18 and V|, is irreducible,
we have D = 14 and L = S by |[GAP]. Now, (3.1.10.1)) implies that o(gy) = 14 or 18,
ruling out p = 2. The case p = 13 can indeed arise, see [KRLT4, Theorem 23.2|, leading
to possibility (iv). If p = 7, then ¢(x) = 0 for all z € @ \ Z(G), which implies w > 12 by
(3.1.10.2). But this contradicts (3.1.10.3)), since Sylow 7-subgroups of Aut(S) have order 7.
Next we rule out p = 3 as follows. Using [GAP] we can check that |o(x)| < 5 for all 3-
elements z € Q \Z(G), and thus we can take a = 5/14. Hence yields |Q| > w > 6.
Hence |Q| > 9, and now implies w > 8. We also note by [KT5, Proposition
4.8(iv)] that 3 t |Z(G)|, and so |Q] < 3% and Q@ < S. The case w = 10, respectively
11, is impossible by [KRLT4l Proposition 5.8], since no element in Aut(S) has order 5 or
11. If w = 14, then @ = 3° is elementary abelian by [KRLT4, Proposition 5.8], again a
contradiction (since Sylow 3-subgroups of S have order 3% but exponent 9). Suppose w = 9.
Then @ is irreducible on Wild by [KRLT4| Proposition 5.9]. Since @ acts trivially on Tame
(of dimension 5) and faithfully on V', an element z € Z(Q) of order 3 will act as scalar (3 on
Wild and thus ¢(z) = 9¢3+5, which is impossible by [GAP]. Suppose w = 8, respectively 13.
Applying [KRLT4, Proposition 5.8] again, we see that w|6(g..), which implies that g., and
() are both contained in Z(G)S. In this case, G = Z(G)S by [KT5, Theorem 4.6]. But this
is a contradiction, since gy ¢ Z(G)S. Finally, suppose w = 12. As in the previous case, we
have goo ¢ Z(G)S. On the other hand, 4|0(g~) by [KRLT4, Proposition 5.9]. So, modulo
Z(G), gso belongs to class 4b in the notation of [GAP], and has traces 0 on Wild and on V/,
whence on Tame as well. Since dim Tame = 2, it follows that the set {p1, p2} of “downstairs”
characters of H is stable under multiplication by the quadratic character &. As p = 3 and
0(g0) > D, we also see that, modulo Z(G), go belongs to class 14a in the notation of [GAP],
and so has spectrum [ - 14 on V', for some 5 € C*. It follows that the set {x1,...,x14} of
“upstairs” characters of H is stable under multiplication by &, and so ‘H is Kummer induced
by [KRLT4| Proposition 3.7], a contradiction. O

REMARK 3.1.11. In the case where D # 4,8,9, it is shown in Theorem [5.2.9] (below) that
if H is primitive then it is (S+). Also, the construction of particular hypergeometric sheaves
with (p, D, S) as indicated in cases (iii)—(iv), and in various subcases of (ii), of Theorem
is carried out in [KRLT4]. Our proof of Theorem also shows that, conversely,
if S = 2B,(8) or G(3), then (D, p) = (14,13).

3.2. Modules with small weight multiplicities

Let G be a simple, simply connected Lie group over C, of rank r. With respect to a fixed
maximal torus T" in G, let {1, a9, ..., @, } be a system of simple roots, {wy,ws,...,w,} be
the corresponding fundamental weights, with the same labeling as given [Huml §11.4]. For
a dominant integral weight A\ € (wy, ws, ..., w,)z.,, let L(A) denote the irreducible rational
CG-module with highest weight . -



3.2. MODULES WITH SMALL WEIGHT MULTIPLICITIES 59

DEFINITION 3.2.1. (i) In the above notation, L(\) is called weight multiplicity-free, or
WMF, if the largest multiplicity of any weight in L()\) is at most 1. Similarly, L(\) is
called WM2, respectively WM3, if the largest multiplicity of any weight in L()) is at
most 2, respectively 3.

(ii) A semisimple element g € G is called WMF, respectively WM2, WM3, on L(\), if the
largest multiplicity of any eigenvalue of g on L(\) is at most 1, 2, or 3, respectively.

WMF modules were classified by Howe in [HS, Theorem 4.6.3]. In the cases where G
admits a (nontrivial) graph automorphism 7 of order 2, i.e. when G is of type A, with r > 2,
D, with r > 4, and Fg, we need to extend Howe’s result to deal with WM2 modules that are
T-invariant. When G is of type Dy, we also need to classify WM3 modules.

In theory, the multiplicity m, (u) of any weight 1 in L() can be determined using Freuden-
thal’s formula, or Kostant’s formula, see [Hum|. Based on these formulas, algorithms are
developed and implemented in various computer packages to compute my(u), see [Li€] in par-
ticular. However, it is highly nontrivial to deduce a closed, effective formula for all my(u).
In practice, the following reduction formula turns out to be useful in many cases:

PROPOSITION 3.2.2. [Cavl, Proposition A] Let A = >, a;w; be a dominant integral
weight and let p be a dominant weight such that p = X — !, cioy with ¢1,..., ¢, € L.
Also, assume that J is a subset J of {1,...,r} with the property that ¢; < a; for all j € J.

Set = A =3 s(a; —cj)wy and p' = p— 3 ;(a; — ¢j)wj. Then my(p) = my(1).
First we treat type As:

LEMMA 3.2.3. Let G be of type Az and let L(\) be WM2. Then X\ is one of the following
weights: awy or aws with a € Zsq, aws with 1 < a < 3, w; + ws, wy + ws.

PROOF. Recall (see e.g.[Hum)| Table 1, p. 69])
W = (30&1 + 20&2 + 063)/4, Wy = (2051 + 40(2 + 2063)/4, w3 — (Oél + 20(2 + 3053)/4
Write A = aw; +bws+cws also as (a, b, ¢). We will also write my,, .(a, b, ¢) for the multiplicity
of the weight (z,vy, 2) = xw; + yws + zws in L(a,b,c) = L(A).

(i) First we consider the case a,c > 1 and let p := A\ — (w; + w3) = (a — 1,b,c — 1).
Note that w; + w3 = a1 + as + a3. Assume b > 1. Then, by Proposition we can take
J ={1,2,3} and get m,(p) = my, (1) for

M=A—(a—1,b—1,c—-1)=(1,1,1), py=p—(a—1,b—1,¢—1)=(0,1,0).
Thus my () = m11.1(0,1,0) = 4, with the second equality checked using [Lie].
Assume now that b = 0. By Proposition we can take J = {1,3} and get m,(u) =
M, (p2) for
A=A—(a—1,0,c—1)=(1,0,1), go=p—(a—1,b—1,¢—1) =(0,0,0).
Thus my(p) = my01(0,0,0) = 3 (with the second equality again checked using |[Lie| — in
what follows we will skip similar references to [Lie]).

(i) We have shown that at least one of a,c is 0, and may therefore assume a = 0.
Assume in addition that b > 2 and ¢ > 1, and take pu := A — 2wy = (0,b — 2,¢), noting
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2wy = oy + 205 + a3. By Proposition we can take J = {2,3} and get my(u) = my,(us)
for

A3=A—(0,b—2,¢c—1)=1(0,2,1), us=p—(0,b—2,¢—1)=(0,0,1).

Thus my(u) = mo21(0,0,1) = 3.

Suppose now that b = 1 but ¢ > 2, and take p := A — (wy + 2w3) = (0,0,¢ — 2). As
wo+2ws = a1+2a9+2a3, by Proposition|3.2.2| we can take J = {3} and get my(u) = my, (pa)
for

)‘4:)‘_<O7O70_2):(07172)7 IU4ZIU—(O,O,C—2) :(07070)

Thus my(u) = me12(0,0,1) = 3.

Finally, assume that @ = ¢ = 0 but b > 4, and take p := A — 4wy = (0,0 — 4,0). As
dwy = 201 + 4z + 23, by Proposition we can take J = {2} and get m(u) = mx, (i5)
for

)‘4 =A- (O7b_470) = (07470)7 Ha = = (Oab_470) = (07070)
Thus my () = mo40(0,0,0) = 3. O

Recall we label the simple roots for type D, in such a way that a triality graph automor-
phism fixes a, and permutes a1, asz, and ay.

LEMMA 3.2.4. Let G be of type Dy and let L(\) be WM3. Then X is one of the following
weights: aww; with i € {1,3,4} and 0 < a < 3, w; + w3, wy + wy, ws + wy. If moreover L(\)
18 WM2, then \ € {0, w1, W3,W4}.

PROOF. Recall (see e.g. [Huml, Table 1, p. 69])
W = (2041 + 20(2 + ag + Oé4)/2, Wy = (] + 2042 + a3 + Qly,
Wy = (051 + 209 + 2003 + 044)/2, Wy = (Ozl + 209 + a3 + 2&4)/2

Write A = aw; + bwy + cws + dwy also as (a, b, ¢, d). We will also write m,, . +(a,b, ¢,d) for
the multiplicity of the weight (x,y, z,t) = xwy + ywy + zws + tw, in L(a, b, c,d) = L(N).

(i) First we consider the case b > 1 and let p:= X\ — wy = (a,b — 1,¢,d). Also set
ay :=min(a, 1), ¢ :=min(c, 1), d; = min(d, 1),
so that
(3.2.4.1) a=aia, c=cec, d=did, 0<ay,c,d <1.

Note that wy = a1 + 200 + a3 + aua.
Assume in addition that b > 2. Then by Proposition [3.2.2] we can always put 2 in J.
Moreover, we will put 1 in J if and only if a; = 1, and similarly for 3 and 4. With this

convention and using (3.2.4.1)), we now have my(u) = my, (p1) for
)\1 =\— (al(a — ].),b— 2,01(0— 1),d1<d — 1)) = ((11,2,C1,d1),
pr=p—(a1(a—1),0—2,¢1(c—1),di(d—1)) = (a1, 1,¢1,dy).

Thus my () = My 2.61.4, (a1, 1, ¢1,dy) > 5, with the latter inequality checked using |[Lie].
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Assume now that b = 1. Then, we will put 1 in J if and only if a; = 1, and similarly
for 3 and 4. With this choice of J and using Proposition and , we now have
ma(p) = my, (p2) for

A =A—(a;(a—1),0,¢1(c—1),di(d = 1)) = (a1, 1, ¢1,dy),
po = p— (a(a—1),0,¢c1(c — 1),d1(d — 1)) = (a1,0,¢1,dy).

Thus ma(1t) = May1.60.4,(@1,0,¢1,dy) > 4, with the latter inequality checked using [Lie]
again.

(ii) We have shown that b = 0. Assume in addition that ¢ > 4 and let p := X\ — 4wy =
(a —4,0,¢,d). Also set

¢y :=min(c,2), dy := min(d,2),

and choose 7,6 € {0,1} so that v = 1 if and only ¢ > 2 and § = 1 if and only d > 2. Note
that 4wy = 4aq + 4as + 2a3 + 2a4. We will put 1 in J. In addition, we will put 3 in J if and
only if ¢; = 2 (i.e. v = 1) and similarly for 4. With this choice of J and using Proposition
3.2.2) we now have my(u) = my,(us) for

A3 =A— ((I - 47 0772(0 - 2)7 5Q(d - 2)) = (47 07 Ca, d?)a
pr=p—(a—4,0,72(c = 2),02(d = 2)) = (0,0, c2, da).
Thus my(ft) = M40,c0.d5(0, 0, c2,d2). Using [Lie|, we can check that my g c,.4,(0,0, c2,d2) > 6
for 0 < c9,dy < 2.
We have therefore shown that 0 < a,c¢,d < 3 and b = 0. A direct check using [Lie| shows

that, if A is one of these 64 weights, but not listed in the lemma’s first statement, then L(\)
has some weight multiplicity > 6. The second statement is then checked using [Lie]. 0

LEMMA 3.2.5. Let G be of type Ay or Ay, with graph automorphism T, and let L(\) be
WM2 and T-invariant. Then either A =0, or G s of type As and A\ = wy + ws.

PROOF. (i) First we consider the case of A4. Using [Huml Table 1, p. 69] one can see
that

(3251) Wi+ Wy = aq + ag + a3 + Qy, TWo + w3 = (1 + 20./2 + 20[3 + Qy.

Since 7 interchanges w; with w, and ws with w3, we can write A = a(w; +w,) + b(wws + ws);
abbreviate it as (a,b). We will also write m, ,(a, b) for the multiplicity of the weight (z,y) =
$(YD1 + W4) + y(wz + W3) in L(a, b) = L()\)

First we consider the case a > 1 and let u := A — (w; + wy) = (a — 1,b); also set
by := min(b, 1). By Proposition we can always put 1 and 4 in J. Moreover, we will put
both 2 and 3 in J if b; = 1, and none of them if by = 0. With this choice of J and using

Proposition [3.2.2, we now have mj(u) = my, (p1) for
M=A—=(a=10bi(b—=1)) = (1,b1), pu =p— (a—1,b:(b—1)) = (0,b1)
Thus my(p) = map, (0,b1) > 4, with the latter inequality checked using [Lie].
We have shown that a = 0. Assume now that b > 2, and let y := A\—(wy+w3) = (0,b—1).
By (3.2.5.1) and Proposition [3.2.2) we can choose J = {2,3} and obtain my(u) = my,(u2)

for
Ao =A—(0,0—2)=(0,2), uo =p—(0,b—2)=(0,1).
):

Thus my(u) = me2(0,1) = 7, with the latter equality checked using [Lie].
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Finally, m1(0,0) = 5, and the statement follows.
(ii) For A, an analogous argument shows that m(w, 4o,) ((a—2)(w1+w2) = Ma(ew, 4w,)(0) =
3 when a > 2. O

LEMMA 3.2.6. Let G be of type As, with graph automorphism T, and let L(\) be WM2
and T-invariant. Then X =0 or A = w3 (and corresponds to the middle node of the Dynkin
diagram,).

PROOF. Using [Huml, Table 1, p. 69] one can see that

W1+ W5 = a1 + Qg + g + Qg + as,
(3261) Wy + w4y = a1 + 200 + 203 + 204 + a5,
203 = aq + 200 + 3as + 204 + as.
Since 7 interchanges w; with ws and wy with wy, we can write A = a(w; + ws) + b(ws +
wy) + cws; abbreviate it as (a,b,c¢). We will also write m,, .(a,b,c) for the multiplicity of
the weight (z,y, 2) = x(wy + ws) + y(ws + ws) + zws in L(a,b,c) = L(A).

First we consider the case a > 1 and let p := A — (w; + ws) = (a — 1,b,¢). Also set

by := min(b, 1) and ¢; := min(c,1). By Proposition we can always put 1 and 5 in J.

Moreover, we will put both 2 and 4 in J if b; = 1, and none of them if by = 0, and similarly
for 3. With this choice of J and using Proposition we now have my(u) = my, (u1) for

M=A—(a—1,00(b—1),c1(c = 1)) = (1,b1,¢1),
pr=pn—(a—1,01(b—1),c1(c—1)) = (0,b1,c1).

Thus my (i) = mip, ¢, (0,01,¢1) > 5, with the latter inequality checked using [Lie].
We have shown that a = 0. Assume now that b > 1, and let

pi=A—(wy+ws—w —ws) =(1,b—1,¢).

Note from (3.2.6.1]) that ws 4+ w4 — w1 — w5 = as + a3 + a4. Hence, by Proposition we
can always put 2 and 4 in J. Moreover, we will put 3 in J if and only if ¢; = 1, but none of
1,5. With this choice of J and using Proposition [3.2.2) we now have my(u) = my,(u2) for

)‘2 =A- (0>b - 1701(0 - 1)) - (Oa 1701)7 M2 = b — (Oab - 1,Cl<C— 1)) = (1,0,01)-

Thus my(u) = mo1.(1,0,c¢1) > 3, with the latter inequality checked using [Lie].
We have therefore shown that a = b = 0. Assume now that ¢ > 3, and let u := A\ —2w3 =
(0,0, ¢ —2). Using Proposition with J = {3}, we now have m,(u) = my,(us) for

A=A —(0,0,¢—3) = (0,0,3), gz =p— (0,0,¢—3) = (0,0,1).
Thus my (i) = mo3(0,0,1) = 6. Finally, mg02(0,0,0) = 5, and the statement follows. [

PROPOSITION 3.2.7. Let G be of type Eg, with graph automorphism 7, and let L(\) be
WM2 and T-invariant. Then A = 0.

PROOF. In the chosen labeling, 7 interchanges w; with wg, ws with ws, and fixes wy
and w,. Hence we can write A = a(w; + wg) + b(ws + ws) + cws + dwy; abbreviate it as
(a,b,c,d). We will also write my,, ..(a,b, c,d) for the multiplicity of the weight

(z,y,2,t) = x(w1 + wg) + y(ws + ws) + 22 + dwy
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in L(a,b,c,d) = L()).

Note that there is a positive root o such that {—ag, aq,...,as} is the set of vertices for
the extended Dynkin diagram Eél); moreover, aq is connected only to «s in this diagram.
Consider the subsystem subgroup

H:= (X, X o |0<i<6, i#2),

where as usual Xpg is the root subgroup corresponding to the root 8. Then H is the direct
product Ho x H of semisimple subgroups H of type A; with simple root system {«p}, and
H | with simple root system As, and 7 induces a graph automorphism of H;. We can choose
a maximal torus T' = Ty x T'y, where Ty is a maximal torus in H, and T’y is a maximal torus
in H,. Then, without loss of generality, we may identify the set of fundamental weights of
H, with {w; | 1 <i <6, i # 2}. As shown in [GLT, Lemma 4.1], the restriction of L(\)
to H contains a simple subquotient Uy ® Uy, where Uy is a simple Hy-module, and U; is the
simple ‘H;-module with highest weight a(w + wg) + b(ws + w;) + dwy, which is T-invariant.
Now, since the T-module L(\) is WM2, the same holds for Uy® Uy, and so for the T';-module
U, as well. Applying Lemma [3.2.6] we obtain that a =b =0 and d € {0, 1}.
Using [Hum! Table 1, p. 69] one can see that

w1 + wg = 201 + 209 + 3aiz + day + 3as + 20,
(3.2.7.1) wy = a1 + 209 + 2a3 + 3as + 205 + ag,
wy = 201 + 3ag + 4oz + 6y + das + 20.
Consider the case d =1 but ¢ > 1, and let p:= X\ — (wy — w1 — wg) = (1,0,¢,0). Applying
Proposition with J = {2}, we have my(u) = my, (p1) for
A =A—(0,0,c—1,0)=(0,0,1,1), p11 = pu — (0,0,¢ — 1,0) = (1,0,1,0).

Thus my () = mep1.1(1,0,1,0) = 6, with the latter equality checked using [Lie].

Since mg,0,1(1,0,0,0) = 4, we have shown that d = 0. Assume now that ¢ > 2, and let
pi=\— (2w —wy — wg) = (1,0,¢ — 2,0). Again applying Proposition with J = {2},
we have my(u) = my,(uz2) for

A2 =A—(0,0,c—2,0)=(0,0,2,0), pz=p—(0,0,c—2,0)=(1,0,0,0).

Thus my (1) = mop20(1,0,0,0) = 3, with the latter equality checked using [Lie]. Also, by
[Lie] we have mg1,0(0,0,0,0) = 6, whence the statement follows. O

Recall we label the simple roots for type D, with » > 5 in such a way that the graph
automorphism 7 interchanges a,._; and «,., and fixes every other simple root a;, 1 < i < r—2.

LEMMA 3.2.8. Let G be of type D5 and let L(\) be T-invariant. Suppose G contains a
semisimple element g, whose image in SO19(C) has an eigenvalue equal to 1, such that g is

WM2 on L(\). Then A =0 or w;.

PROOF. (i) Write A = aw; + bwy + cws + dwy + ews. Since A is T-invariant, we have
that d = e. It is well known, see e.g. |Lu, Appendix A.2] that Z(G) = (z) = C4, with
wy(z) = (4 = ws(2) ! and w;(2?) = 1 when 1 < i < 3; in particular, A(2%) = 1. Next, any
simple root takes value £1 on z, (see e.g. [Huml Table 1, p. 59]), and any weight of L(A) is
A — 30 b with b; € Zsg, (see e.g. [Lu, Theorem 2.1]). Hence, any weight of L(\) takes
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value 1 on 22, and so, without loss, we may replace G = Spin;y(C) by Spin,,(C)/(2?) =
SOlo(C) = SO(V) with V = CIO.

(ii) Let (e, e, ..., €5, f1, fa, ..., f5) be a hyperbolic basis for the G-invariant bilinear form
on V. By assumption, we may assume that

(3.2.8.1) g = diag(wy, 29, x5, 24, L2y 2yt 2yt gt 1)

with z; € C* in this basis. In particular, g belongs to a Levi subgroup Ly = SO4(C) x GLy(C)
of the parabolic subgroup Pj := Stabg({(e4, €5)c) of G. We also choose the maximal torus

T = {diag(y1, Y2, Y3, Y1, Y5 Y1 >3 Y5 wyr L ys ) | yi € CF.

By Smith’s theorem [Sm)|, L())|z, contains a simple submodule U; ® Uy, where the SOg(C)-
module U; has highest weight dw]+cw)+dw}, with {w], w), s} being the set of fundamental
weights of SL4(C) (a double cover of SOg(C)). In particular, U, viewed as an SL4(C)-
module, is invariant under the graph automorphism of SL4(C). Writing ¢ = g2hs with
go = diag(xy, 1,2,',1) € GLo(C) and hy := diag(xy, 2o, x3, 77", 25", 25") € SOg(C), and
using the assumption that g is WM2 on L()\), we see that hy is WM2 on U;. This in turn
implies that U; is WM2, whence

(3.2.8.2) d=e=0and 0<c<3

by Lemma |3.2.3]

(iii) Note that g also belong to a Levi subgroup Ls = GL5(C) of the parabolic subgroup
P; .= Stabg(W) of G, where W := (e, es,...,e5)c. Next we claim that every composition
factor X of the restriction of L(\) to any standard subgroup H = SL4(C) of L5 is WM2.
(Here, by an SL4(C) standard subgroup of GLs(C) = GL(W) we mean any subgroup of
GL(W) that is isomorphic to SL4(C), fixes w and stabilizes W’ for some decomposition
W = (w) ® W' with 0 # w € W.) Indeed, we may assume that the element ¢ in (3.2.8.1) is
represented by diag(z1, za, 3,24, 1) in GL(WW), and take the standard subgroup H to fix e
and stabilize (ey, es, €3, €4)c. Consider any composition factor Y of the restriction of L(\) to
L5 and any composition factor X of the restriction of Y to H. Also, fix z € C* such that
2?0 = xyx92314, and inside L5 we write g = diag(zy, Ta, T3, 74, 1) = hshlgs, where

hs := z*1d € Z(Ls), hi := diag(z, 2,2, 2,27%), g5 := diag(z127°, 2027 °, w327 ", 2427°,1) € H.

Then h; acts as a scalar on Y. Furthermore, hi centralizes H, with
H x <h,5> = StabSL(W)((e5>(c, <61, €9, €3, €4>C> = GL4(C)

So without loss we may assume X is hi-invariant and so hi acts as a scalar on X. As
g = hshigs is WM2 on L(\) and hshf is scalar on X, g5 is WM2 on X, whence X is WM2 as
claimed.

(iv) By Smith’s theorem [Sml, the restriction of L(X) to [Ls, Ls] = SL5(C) contains a
direct summand which is simple of highest weight aw; + bws + cws + dwy, with {wy, wa, w3, ws}
being the set of fundamental weights of SL5(C). Similarly, the restriction of the latter to the
standard subgroup H that fixes e; and stabilizes (eq, ea, €3, €4)c contains a direct summand
X which is simple with highest weight aw] + bwj + cwj, with {w],w), wi} being the set of
fundamental weights of SLs(C). Applying (iii) to X and using Lemma[3.2.3] we see that one
of the following occurs:
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ea=b=0,1<c<3;

ea=0,b=c=1;

eb=c=0,0<a<3;

ea=0bb=1,¢c=0;0r

ea=c=0,1<b<3.

Recall d = e = 0 by (3.2.8.2). Now using [Lie| we can check that in the 12 listed above
cases, there is some p such that my(u) > 4, unless A = 0 or w;. O

PROPOSITION 3.2.9. Let G be of type D, withr > 5 and let L(\) be T-invariant. Suppose

G contains a semisimple element g, whose image in SO, (C) has an eigenvalue equal to 1,
such that g is WM2 on L(X). Then A =0 or w;.

PROOF. (i) We proceed by induction, with induction base r = 5 proved in Lemma
For the induction step r > 6, since A = >\, a;w; is 7-invariant, a,_; = a,. If 21 r, then the
same arguments as in part (i) of the proof of Lemma shows that Z(G) = (z) = C, with
z? acting trivially on L()). Suppose 2|r. Then Z = (z1, z9) = C% with G/(z122) = SO,,(C).
Now we can check using [Lu, Appendix A.2| that each of w,_ 1w, and w;, 1 < i < r —2,
takes value 1 at z1z,. Arguing as in the proof of Lemma [3.2.8] we again see that z;zs acts
trivially on L(A).

Thus, regardless of the parity of 7, we may replace G by SO,,.(C). Let (eq,ea,..., 6., fi1, fo, ...

be a hyperbolic basis for the G-invariant bilinear form on C*". By assumption, we may as-
sume that

(3.2.9.1) g = diag(w1, 20, ..., 7, 1, Lzy oyt o 1)
with x; € C* in this basis. In particular, g belongs to a Levi subgroup L = SO, _5(C) X
GL1(C) of the parabolic subgroup P := Stabg({e1)c) of G. We also choose the maximal
torus

T = {diag(ylay27 s 7yT7y;13y517 s ay;1> ’ Yi € CX}
By Smith’s theorem [Sml|, L())|; contains a simple submodule U, where the SO, _5(C)-
module U has highest weight Y., a;o)_;, with {w, @), ..., w._,} being the set of funda-
mental weights of Spin,, _,(C). In particular, U is invariant under the graph automorphism
of SO, _5(C). We can also write the element g in as g = hg', with

h = diag(z1,1,...,1,27%1,...,1) € GL(C) < Z(L)

and
g = diag(1,z9,..., 21,1, 1, 25", ..., 2.1, 1) € SOg,_»(C).
In particular, as an element of SO, »(C), ¢’ has eigenvalue 1 on C*~2. Furthermore, h
acts as a scalar on U. Hence, since g is WM2 on L()\), ¢’ is WM2 on U. By the induction
hypothesis,
as=as=...=a, =0, 0<ay <1.
(ii) Consider the case a; = 1. First we note, see [OV], Table 5] that L(wwy) = A?(V) for
V = L(w;) = C?", and it is easy to see that m,(0) =r > 6.
So we may assume that a; > 1, and let g := A — ws = ayw;. Note that
r—2
Wy = 1 +2ZO&Z + +Oér,
i=2

7fT)
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see [Huml Table 1, p. 69]. Hence, applying Proposition with J = {1}, we obtain that
mA(1) = Moy 1oy (1)
Again by [OV] Table 5],
Von(V)=AV)eV & Liw + ).

Analyzing the action of T' on these modules, we see that w; has multiplicity 1 in V, r —1 in
A3(V), and 3r — 2 in V @ A%2(V). Thus my(i) = Me, 1w, (1) = 2(r — 1) > 10.
(iii) Now we consider the case a = 0 but a; > 2, and let p := X\ — 2wy = (a3 — 2)w;.

Note that

r—2

2ty = QZ o + 1+

i=1
see [Huml, Table 1, p. 69]. Applying Proposition with J = {1}, we obtain that
my (i) = Mmaw, (0). Again by [OV] Table 5],

Sym*(V) = C @ L(2w,).

Analyzing the action of T" on these modules, we see that 0 has multiplicity 1 in C and r in
Sym?(V'). Thus my () = maw, (0) =7 — 1 > 5. O

PROPOSITION 3.2.10. Let G = SL,y1 with v > 4 and let L(\) be T-invariant. Write
r+1=2m+j with j € {0,1}. Suppose G contains a semisimple element
g=diag(ti, to, ..., by, L t0 0 )

j times
with t; € C* such that g is WM2 on L(X). Then A =0, orr =15 and \ = ws.

Proor. We proceed by induction on r > 4. The induction base r = 4,5 is already
established in Lemma [3.2.5 and Lemma [3.2.6
For the induction step r > 6, assume A # 0. Let W = (ej,es,...,€.41)c, SO that
G = SL(W). We can extend L(A) to a GL(W)-module V| and write
(3.2.10.1)
g = diag(t1, h, t7"), with h:= diag(ta,t3, ..., tm, \1/_/,15;1,:5;}_1, 31 1) €SL_y.
J times

Note that g belongs to the Levi subgroup L = GL; x GL,_; x GL; of the parabolic subgroup

P = StabGL(W) (<61>(C7 <617 - 767”><C)7

and [L,L] = {1} x SL,_; x {1} in L. Let T denote the diagonal torus of G. By Smith’s
theorem, V|, contains a simple submodule U, which, as [L, L]-module, has highest weight v,
which is the restriction of A to T'N[L, L] and hence invariant under the graph automorphism
7" of [L, L.

Since g is WM2 on V, it is WM2 on U. By we have g = zh, with h € [L, L]
and z = diag(ty, I,_1,t; ") € Z(L). Hence, h is also WM2 on U. By the induction hypothesis
applied to r — 2, either v = 0, and so A = a(w; + w,) with a > 1, or r =7, v = wy, and so
A = a(w; + wy) + wy with a > 0.
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Suppose a > 1 in either case, and consider y := X\ — (w; + @, ). By Proposition [3.2.2) we
can choose J = {1,r} and obtain m,(v) = my, (u1) for

M=A—(a—1)(w+w)=w1+w, 1 =p— (a—1)(w1 +w,) =0
in the first case, and
M=A—(a—)(w +w7) =w1+wr+wy, 1 = p— (a—1)(wy + wr) = wy
Direct computation shows that my,(u1) = r > 5 in the first case. In the second case,
my, (p1) = 16 by [Lie]. In either case, g cannot be WM2 on V.

Finally, we consider the case (r,\) = (7,74). Then L(A\) = A*(W), and direct computa-
tion shows that g has eigenvalue 1 with multiplicity > 6 on L(\), again a contradiction. [

3.3. Regular spectrum and simple spectrum elements

Let V be a finite dimensional C-vector space. Recall from Definition that an element
g € GL(V) is said to have regular spectrum if each eigenvalue of g occurs with a single Jordan
block. We have the following elementary lemma of linear algebra, whose proof is left to the
reader.

LEMMA 3.3.1. For a given element g € GL(V), the following conditions are equivalent.

(i) g has regular spectrum.
(ii) The minimal polynomial of g is equal to the characteristic polynomial of g.
(iii) The powers ¢° :=Idy, g, ¢, ..., g™ V)=1 are linearly independent in End(V).

Recall also from Definition that an element g € GL(V) is said to have simple
spectrum if it has dim (V') distinct eigenvalues. Thus an element with simple spectrum has
regular spectrum, but not conversely. For example, a single Jordan block of size dim(V') has
regular spectrum, but not simple spectrum so long as dim(V') > 2.

PROPOSITION 3.3.2. Let V' be a finite dimensional C-vector space, and G < GL(V) a
Zariski closed subgroup which is reductive. Let the connected components of G be denoted
G, with the identity component denoted G°. Suppose a given connected component G®
contains an element g which has reqular spectrum. Then this component G® contains an

element with simple spectrum, and the set of simple spectrum elements in G is Zariski
dense in G .

ProoF. By Lemma , the powers ¢° := Id, ¢, ¢%, ..., ¢%™")=1 are linearly indepen-
dent in End(V), or equivalently the vector
P AgGNANGNA A gV e Adim(V) (End(V))
is nonzero. Thus the wedge map
(3.3.2.1) AcGD s AONANAPN . A AT AGV)(Epd (V)

is a morphism from G to AY™(V)(End(V')) which is not identically zero, and hence is nonzero
on a dense open set of G,

Now choose a maximal compact subgroup K of the complex Lie group G(C). One knows,
cf. [Mos, p. 44] or [Hol Theorem 3.1], that topologically G(C) is the product of K with a
Euclidean space, and (hence) that K meets each G, and that the intersections K NG®(C)
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are precisely the connected components of K. Because G is reductive, K° is a maximal
compact subgroup of G°(C), and hence K° is Zariski dense in G° (Weyl’s unitarian trick).
Now pick elements k; € K N G%W(C). Then the connected components of K are the cosets
K@ = k;K°, the connected components of G are the G = k;G°, and thus each KW = k; K°
is Zariski dense in G® = k;G°. Because the wedge map above is nonzero on the
given G it must be nonzero on K® (by Zariski density). Thus K contains elements with
regular spectrum. But every element in K being an element of the compact group K,
is diagonalizable. For diagonalizable elements, the notions of regular spectrum and simple
spectrum coincide. Thus K contains elements with simple spectrum. As K® ¢ G0 G®
contains elements with simple spectrum. In G®, the set of elements with simple spectrum is
open (this being an open condition on the characteristic polynomial), and being nonempty
will necessarily be Zariski dense in G, 0

THEOREM 3.3.3. Let V = C and let G < GL(V) be a reductive subgroup such that G° is
a simple algebraic group of rankr > 4, V|ge is irreducible, and some element g € GNZ(G)G°
has a reqular spectrum on V. Then one of the following holds.

(a) G° = S0,, is of type D,, N =2r, and Vg = L(w).
(b) G° is of type A5, N =20, and V|go = L(ws3).

PROOF. (i) Since V|ge is irreducible, Cs(G°) = Z(G). It follows that, modulo Inn(G°),
the conjugation by g induces a graph automorphism 7 of G° of order e > 1; in particular,
G° is of type A,, D,, or Eg. By Proposition [3.3.2] we may replace g by another element
in the same ¢G°-coset and assume that g has simple spectrum on V; in particular, g is
semisimple. If V|ge = L(\) has highest weight A, then X is 7-invariant. We also note that
h = g° € Z(G)G"° (because g° induces an inner automorphism of G°), h is semisimple, and
that the multiplicity of any eigenvalue of h on V' is at most e, as g has simple spectrum on
V. Writing h = zh; with z € Z(G) and hy € G°, we also have that the multiplicity of any
eigenvalue of h; on V is at most e. Furthermore, e < 2, or e = 3 and G° is of type Djy.

(i) Now, if G° is of type Eg, then e = 2 and so L()) is WM2. Hence A = 0 by Proposition
3.2.7, a contradiction.

Next, suppose that G° is of type Dy. If e = 3, then L()\) is WM3, and A can be identified
by Lemma ; however, none of these weights is 7-invariant. So e = 2, L(\) is WM2, and
so (a) holds by Lemma [3.2.4] (with the proviso that V|ge = L(ww;) up to a twist by Aut(G®)).

Now assume that G° is of type D, with r > 5, so that e = 2, and Aut(G°) = O,,./Cs.
Hence the image of ¢ in Aut(G°) is the image of some g; € Og, N\ SOs,. Such an element ¢,
must have eigenvalue —1 on C*. Now the image of h; in Aut(G°) is the image of ¢?, and
the latter belongs to SOy, and has eigenvalue 1 on C*. Also, h; is WM2 on V. Hence (a)
holds by Proposition [3.2.9.

(iii) Finally, we consider the case G° is of type A,, so without loss we may assume that
G° = SL,4; and 7(X) = 'X~!. Then the image of g in Aut(G°) is the map X — 7(AXA™)
for some A € G°, and the image of g and h; is the map X — (7(A)A)X (7(A)A)~!. Hence,
we may assume that the semisimple element h; is 7(A)A, the cosquare of A. The possible
Jordan canonical form of cosquares are known, see e.g. [Bal, Theorem 3.6]. In particular,



3.3. REGULAR SPECTRUM AND SIMPLE SPECTRUM ELEMENTS 69

since 7(A)A is semisimple, it is similar to

diag(al, arl,. .. am,a ml, 1,..., 1)
——
n times
for some a;,b; € C*. As h; is WM2 on L(\), we can apply Proposition [3.2.10 to arrive at
(b). O

Now we are ready to classify irreducible representations of (possibly disconnected) simple
algebraic groups that admit elements with regular spectrum. See also [Za2] (and references
therein) for related results.

THEOREM 3.3.4. Let G be a (not necessarily connected) reductive group over C with G°
being simple. Let V' be a finite-dimensional faithful representation of G such that V|ge is
irreducible. Then G admits an element g with reqular spectrum on V if and only if one of
the following statements holds.

(A) g € Z(G)G®°, and V|ge = L(\) is WMF and classified in [HS|, Theorem 4.6.3], see also

[Seitzl, §6] and [ZS]. Specifically, one of the following holds.

(a) G° is of type A, with r > 1, and L(\) = L(aw,) or L(aw,) with a € Zsq, or
L(\) = L(w;) with2 <i<r—1.

(b) G° is of type B, with r > 1, and L(\) = L(w), the natural representation of degree
2r + 1, or L(w,), the spin representation of degree 2.

(c) G° is of type C, with r > 3, and L(\) = L(w,), the natural representation of degree
2r, or L(\) = L(ws) of degree 14 when r = 3.

(d) G° is of type D, with r > 4, and L(\) = L(wy), the natural representation of degree
2r, or L(X) is one of the two half-spin representations L(w,_1) and L(w,) of degree
2r—1

(e) ( Go dlm(V)) (GQ, ( ) 7) (E6,L(w1 or wﬁ),27), (E7,L(’W7),56)

(B) g ¢ Z(G )G° and one of the following holds.
(a) G° is of type D, with r > 4 and V|Go = L(w).
(b) (G°, Vg, dim(V)) = (SLg, L(z35), 20), (SLy, (), 6), (SLs, Ly + @), 8).

PROOF. (1) For the “only if” direction, by Proposition , we can replace g by another
element from the same G°-coset and assume that g has simple spectrum on V. Now, if
g = zh € Z(G)G° with z € Z(G) and h € G°, then h also has simple spectrum on V', and it
is semisimple. Hence Vg is WMF, and (A) follows from Howe’s result [HS| Theorem 4.6.3].

Consider the case g ¢ Z(G)G°. If G° has rank r > 4, then (B) follows from Theorem
B.3.3l As g induces a non-inner automorphism of G°, it remains to consider the case G° is
of type Ay or Az, and V|ge = L(A) is invariant under the graph automorphism 7. Arguing
as in the proof of Theorem we see that L()A) is WM2, and X # 0 by faithfulness. Now
the statement follows from Lemma for type As. Suppose G° is of type A3. By Lemma
, A = awy with 1 < a < 3. Arguing as in the proof of Theorem [3.3.3, we may assume
that g2 is a scalar multiple of h; := diag(ty, s, t; ", 1, ). Viewing G° = SL(W), we have

L(wg) =2 A2(W), L(2wy) = Sym*(A2(W))/L(0), L(3wy) = Sym?(A*(W))/ A2 (W).

Using these identifications, one easily checks that the multiplicity of 1 as an eigenvalue for
hy on L(2t03) is > 4, and on L(3ws) is > 6. As g is WM2 on V| we conclude that A = ws.
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(ii) For the “if” direction, in the case of (A), L(A\) is WMF and so some element in a
maximal torus of G° has simple spectrum on L(\).

Suppose we are in (B). In the case of (a), twisting L(\) by a suitable automorphism of G°
when G° is of type Dy, we may assume that L(\) = L(w;), and G/Cq(G°) = PO,y,.. Now,
we may take g to be a multiple of diag(—1, 1, h), where h € SOs,_5 has simple spectrum and
no eigenvalue 1 on C?*"~2, and such ¢ has simple spectrum on V.

The case of SLy in (B)(b) then also occurs, because A3 = Dj. Next, as shown in
[Ka-ESDE, 10.7.1 (4)], a hypergeometric sheaf H of type (8,2) in (any) characteristic p > 7
has Ggeom = PSL3 - 2. By Theorem , the image of 1(0) in Ggeom cannot be contained in
Ggeom» hence a generator go of it is in Ggeom \ G and has regular spectrum on H, and
thus the case of SL3 in (B)(b) occurs.

Finally, we show that the case of G° = SLg in (B)(b) also occurs. Consider J :=

_0[3 % and the outer automorphism 7 : X — J 71X~ J of G°. Then H := Cgo(7) = Spg.
As L(ws3) is T-invariant, L(ws) extends to a module V over G := G°x (7). Next, V |y = A®B,
a direct sum of irreducible H-modules A = L(w!) = L(w;)|g of dimension 6 and B = L(w})
of dimension 14. As 7 centralizes H but not G°, and has order 2, it must act on V' as

(3.3.4.1) ¢ - diag(Id, —Idp)
for some ¢ = +1. Now consider h = diag(a,b,c,a™, b7, ¢™') € H with a,b,c € C*. Then h
acts on V as A3(h), which is conjugate to

diag((abc)[i”, CL[:H], a[:l:l]’ b[:l:l}7 b[il], C[:I:l}7 C[il], (abc_l)[ﬂ], (ab_lc)[il], (a_lbc)[ﬂ]),

(here the notation d*'! means that the matrix has two consecutive entries d and d~' on the
diagonal). As A = L(w;)|y, h acts on A as

]
geom

(3.3.4.2) diag(a,b,c,a™t, b7t 7).
Hence, h acts on B as
(3.3.4.3) diag ((abc) 1B B B (e Y (ab~le)EY ) (a7 tbe) [il]).

Choosing a, b, ¢ suitably (say a = (3, b = (5, and ¢ = (7), we see from (3.3.4.1)—(3.3.4.3|) that
g := ht € G . G° has simple spectrum on V. O




CHAPTER 4

Hypergeometric sheaves with wild part of dimension one

In this chapter, we consider hypergeometric sheaves H in characteristic p of type (D, D —
1). Recall that a complez reflection is an element v € GLp that is conjugate to diag(¢, 1,...,1)
for some 1 # ¢ € C*; v is a (true) reflection if ( = —1.

4.1. General situation

THEOREM 4.1.1. Let H be a hypergeometric sheaf in odd characteristic p of type (D, D —
1). If Ggeom is infinite, then Ggeom = SLp, Ggeom = v * SLp for some N € Z>;, and H

satisfies (S+). If D > 4 when p =3, D > 2 when p =5, or D > 2 when p > 7, then Ggeom
18 infinite.

PROOF. In odd characteristic p, any hypergeometric sheaf of type (D,D — 1) satis-
fies (S—). To see that it is primitive, notice that it cannot be Kummer induced because
ged(D, D — 1) = 1. It cannot be Belyi induced because its wild part has dimension w = 1,
which is not divisible by p — 1, cf. [KT35, proof of Theorem 3.13]. By [KT5, Lemma 2.4], it
is tensor indecomposable.

Because w = 1, P(00) acts through complex reflections of order p. By Mitchell’s theorem
[Mitl, Theorem 1], no finite primitive group containing complex reflections of order > 4
exists in any dimension > 2, and none containing complex reflections of order 3 exists in
any dimension > 4. Moreover, no finite primitive linear groups of degree 2 can contain
noncentral elements of prime order p > 7. Therefore Ggeom is infinite. Because the given
representation Vy of Ggeom is both primitive and tensor-indecomposable, it results from
[Ka-MG/, Prop. 1] that the action of Gyeom is Lie-irreducible, i.e. G, acts irreducibly.
By Deligne [De2| 3.4.1(iii) and 1.3.9], Ggeom is a semisimple algebraic group, and hence
Lie(Ggeom) 1s a semisimple Lie subalgebra of End(V};) which acts irreducibly on V3. But
Lie(Ggeom) is normalized by the image of P(c0), so in particular by a complex reflection of
order p. As p > 3, one knows, cf. [Ka-ESDE| 1.5] or [BH, Proposition 6.4] that Lie(Ggeom)
must be Lie(SL(V3)), and hence that Gg,,, = SL(Vy) = SLp. Now GLp = GL; * SLp,
and Z(Ggeom) 1s finite (see Lemma M(m)) Hence Ggeom is the central product pn * SLp
for some integer N > 1. Also, note that SLp has no finite quotient and has no nontrivial
projective representation of degree < D, see [KILL Proposition 5.4.11]. It follows that H is
not tensor induced, and thus satisfies (S+). O

REMARK 4.1.2. As shown in [KRLT4, Theorem 30.7], there are hypergeometric sheaves
of type (D, D—1), of rank D = 2,4 in characteristic p = 3 and of rank D = 2 in characteristic
p = 5, with Ggeom a finite, primitive complex reflection group. This shows that the bounds
D >4 for p=3and D > 2 for p =5 in Theorem are best possible.

71
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COROLLARY 4.1.3. Let p be a prime and A € Z>s3 be such that p t A(A—1). For x a
character of E* for some finite extension E/F,, consider the local system

F<A7 A— 17 X)
of rank A on A'/F, whose trace function for K/E a finite extension and t € K is

t— — Z Vi (2 =tz )y ().
TEKX

Then we have the following results.

(i) Suppose that A > 3 whenp > 7, A >4 whenp =75, and A > 6 when p = 3. Then
the Ggeom of F(A, A—1,1) has Gy, = SLa_1.

(ii) Suppose that A > 2 when p > 7, A>3 when p=2>5, and A > 5 when p = 3. Then
for any nontrivial x, the Ggeom of F(A, A —1,x) has G5y, = SLa.

geom

PROOF. At the expense of replacing ¢ by the additive character x +— 1(—Ax), these
local systems are geometrically isomorphic to multiplicative translates of the [A]* Kummer
pullbacks of hypergeometric sheaves of types (A — 1, A — 2) and (A, A — 1) respectively, cf.
[KT6, Corollary 3.10, (i) and (ii)]. Because p ¥ A(A — 1), p must be odd. Finite pullback

does not change the identity component G, 0f Ggeom, so the result follows from Theorem

E11l O

REMARK 4.1.4. Unlike the case p > 2, hypergeometric sheaves of type (D,D — 1) in
characteristic p = 2 can be imprimitive. No such sheaf can be Kummer induced (simply
because ged(D, D —1) = 1), but it can be Belyi induced. By [KRLT4] Proposition 3.7], this
can happen precisely when there are characters A and ¢ such that one of the following holds
for H = Hyp(x1, - XD p1s-- -, pD-1):

(a) D =2, {x1,x2} = {A, 0}, 1 = (Ao)'/2
(b) 24 D >3, {x1,--.,xp} is the set of all D™ roots of Ao, {p1,...,pp_2} is the set of all

(D — 2)*™ roots of A, and pp_, = 0.

Such a Belyi induced sheaf is induced, by the map z — 1/z4(x — 1) with (A, B) either
(1,1) or (2, D —2), from the rank one sheaf £, (;) ® L (z—1) which has finite Gyeom, and hence
any Belyi induced sheaf has finite Ggeom. Thus, when p = 2, a hypergeometric sheaf of type
(D,D —1) with D > 1 is either primitive, or has finite Ggeom. [In the trivial case D = 1, the
sheaf is £, ® Ly, which is both primitive and has finite Ggeom.]

THEOREM 4.1.5. Let H be a hypergeometric sheaf in characteristic p = 2 of type (D, D —
1). Suppose Ggeom i infinite. Then Ggg,, is either SLp or SOp. If furthermore D # 4, then
H satisfies (S+).

PROOF. Since Ggeom is finite when D = 1, so we will assume D > 1. Now H is primitive
by Remark [£.1.4] and tensor indecomposable by [KT5, Lemma 2.4]. Thus Ggeon is infinite,
primitive, and tensor indecomposable, so it results from [Ka-MG!| Prop. 1] that the action
of Ggeom is Lie-irreducible, i.e. Gg,,, acts irreducibly. Just as in the proof of Proposition
above, we see that Lie(Ggeom) is @ semisimple Lie subalgebra of End(V3) which acts
irreducibly on V3. But Lie(Ggeom) is normalized by the image of P(00), so in particular by
a reflection. In this case, one knows [Ka-ESDE, 1.5] that Lie(Ggeom) is either Lie(SLp) or
Lie(SOp), and hence that G¢,., is either SLp or SOp.

geom
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When D # 4 and H is primitive, we need to show that H is not tensor induced, which
is obvious unless D is a proper power. We may therefore assume that D > 8. The same
arguments as at the end of the proof of Theorem yield the result when G° = SLp or
SOp. (Note Spinp, has no nontrivial projective representation of dimension < D, see [KIL|
Proposition 5.4.11].) O

4.2. Further analysis
Here is a way to distinguish the two cases of SL and SO in Theorem [1.1.5

THEOREM 4.2.1. Let H be a hypergeometric sheaf in characteristic p = 2 of type (D, D —
1). Suppose D > 2 and Ggeom is infinite. If Gg,,, = SOp, then there exists a tame character
X such that H @ L, is orthogonally self-dual, and has Ggeomuec, = Op. If there erists no

tame character x that makes H @ L, self-dual, then Gg., = SLp.
PROOF. Suppose that Gg,,,, = SOp. As Ggeom contains a reflection, we have Op < Ggeom-

The normalizer of SOp in GLp is the central product GL; * Op. Thus Ggeom is the central
product py * Op for some integer N > 1; each element in Ggeom can be written as Ay with
A€ uy and v € Op. If N is odd, this writing is unique, but if N is even then there is
precisely one other writing of this element, namely (—A)(—~). In either case, A\? is well
defined as a character A of Gyeom. Viewed as a character of m(G,,/Fy), A is tame at 0 and
has Swan.(A) < 1.

Suppose first that Swan,,(A) = 0. Then A is a tame character, so has a unique tame
square root, which we write Y. Then for H ® L,, this “formation of A\*” character is trivial,
which is to say that Ggeomuec, < Op. Tensoring with a tame character does not change
the identity component of Ggeom (because it disappears after a Kummer pullback). Thus we
have

S()D < Ggeom,H@EX < OD-

But the geometric determinant of H ® £, is always of order divisible by p (here 2) in the
w =1 case, cf. [Ka-ESDE| 8.12.2 (2)], which rules out the SOp possibility.
We now argue by contradiction, to show that the case when Swan,,(A) = 1 cannot occur.
Suppose that A has Swan,(A) = 1. Then we may again choose a square root L of A,
but now L has Swan, (L) = 2, and Swan,(L?) = Swan,,(A) = 1. Just as in the previous
paragraph, L ® H has its Ggeom,on < Op. Now look at the I(oo)-representation of H; it is

Wild; © p1 & ... @ pp-1,

for some wild part of rank one and some list of length D — 1 of tame characters p;. After
tensoring with L, the I(oo)-representation of L @ H is

LWIldl EB Lpl @ Ce @ LPD—l-

This I(oo)-representation is now self-dual, so the set of characters which occur must be stable
by complex conjugation (i.e. by inversion). So we may pair up pairs of inverses, with at most
two singletons left over.

If there are two singletons left over, at least one of them must be one of the Lp;, say Lp;.
Then Lp, = (Lpy)~ Y, ie., L? = (p1)~2. But (p;)~? is tame, hence L? is tame, but L? = A
has Swan,, = 1, contradiction.
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If there is one singleton left over, then either that singleton is an Lp; and we get a
contradiction as in the previous paragraph, or the singleton is LWild,, and, as D > 3, there
is at least one pair, say Lp; and Lpy, of inverses. In this case we have Lp; = (Lp)™", hence
L? is tame, being (p1p2)~!, again a contradiction.

If there are no singletons, there is at least one pair, say Lp; and Lp,, of inverses, and we
get the same contradiction. O

REMARK 4.2.2. In contrast to the situation in Theorem [£.1.1| where we only need D > 4,
in the situation of Theorem the assumption that Ggeom is infinite is essential, because
we can have finite Ggeom for all even D > 4. For any odd integer n > 5, the hypergeometric
sheaf of type (n — 1,n — 2) in characteristic p = 2,

H := Hyp(Charyyiv (n); Char(n — 2)),

whose “upstairs” characters are all the nontrivial characters of order dividing n, and whose
“downstairs” characters are all the characters of order dividing n — 2, has Ggeom the full
symmetric group S, in its deleted permutation representation, cf. [KT5, 9.3(i) and its
proof].

THEOREM 4.2.3. Let H be a (geometrically irreducible) hypergeometric sheaf in charac-
teristic p = 2 of type (D, D — 1) which is primitive. Suppose that D > 5 and that Ggeom 1S
finite. Then D is even, and one of the following statements holds.

(a) There exists a tame character x such that H® L, is geometrically isomorphic to the sheaf

H := Hyp(Charyy,iy (D + 1); Char(D — 1))

of Remark whose Ggeom 15 the symmetric group Spiy in its deleted permutation
representation.

(b) G = Z(G)Gy, Gy is a complex reflection group, and either D = 6 and Gy is W(Eg) =
SU4(2) - 2 or the Mitchell group 61 - PSU4(3) - 25, or D = 8 and Gy = W (Es).

PROOF. (i) Since p = 2 and w = 1, the image of P(00) in G = Ggeom is generated by a
single element h, which acts as —1 on Wild and 1 on Tame, i.e. a (true) reflection. Let Gy
denote the normal closure of (k) in G. By Theorem [1.2.3] G/G is cyclic of odd order.

By assumption, G is a finite primitive subgroup of GLp(C) that contains the reflection g.
We will need the following refinement of Mitchell’s theorem [Mit] (which is [Ka-LAMM,
1.4.4] in the case D > 8):

G = Z(G)Gy, and either Gy is Spy1 in its deleted permutation representation, or
(D, Go) = (5, 2 X SU4(2)), (6, W(Eﬁ)), (6, 61 - PSU4(3) . 22), (7, W(E7)), or (8, W(Eg))

Indeed, let H < GLp(C) denote the complex reflection group Sp1 (in its deleted permu-
tation representation), or 2 x SUy(2), W (Eg), 61-PSU4(3)-29, W(E7), W(Es), when D = 5, 6,
6, 7, or 8, respectively. Correspondingly, let S := Api1, SU4(2), SU4(2), PSU4(3), Spg(2), or
Q4 (2), so that S is the unique non-abelian composition factor of H. Then Mitchell’s theorem
implies that G/Z(G) = H/Z(H). Note that H/Z(H) = 5-2, 5, 5-2, 5-2,, 5, and S-2 in the
above cases. As G/G is cyclic, it follows that S is also the unique non-abelian composition
factor of Go. Now we can apply the Shephard-Todd classification [ST] to Gg to see that
Go = H; in particular, Go/Z(Go) = H/Z(H) = G/Z(G). Now, since Z(G) NGy < Z(Gy), we
have that Z(G)Go/Z(G) = Go/(Z(G) N Gy) has order divisible by |Go/Z(Go)| = |G/Z(G)|.
Hence G = Z(G)Gy, and the claim is proved.
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Also note that Z(G) is a finite group of scalars py for some N > 1.

(ii) Here we consider the case Go = Spy1. Then h is a 2-cycle in Sp, 1, whence Gp(so) <
Sp+1, and so a fortiori the quotient Ggeom/Sp+1 = pn has order prime to p = 2. So the
projection of Gigeom = Sp1 X ey onto the py factor is a character of odd order, so tame, say
x~ ! Then H ® L, has Ggeom = Spi1.

Thus we are reduced to treating the case when H has Ggeom = Sp4i1 in its deleted
permutation representation. Without loss, we may assume h = (n — 1,n) € Sp,1. As usual,
let go generate the image of I(0) and let g, of odd order, generate the image of I(c0)
modulo P(o0). Since dimWild = 1, g, centralizes the 2-cycle h, hence g, belongs to the
subgroup Sp_; that fixes both n — 1 and n, and has simple spectrum on Tame which is
now the permutation module for Sp_;. By [KT5, Theorem 6.2], g is either a (D — 1)-
cycle and 2|D, or the disjoint product of an a-cycle and a b-cycle, with a + b = D — 1
and ged(a, D — 1) = 1. However, in the latter case, the spectrum of g, on Tame would
contain 1 twice, a contradiction. Hence we are in the former case, and so 2|D and the set of
“downstairs” characters of ‘H is Char(D — 1). As g has simple spectrum, again by [KT5]
Theorem 6.2], go is either a (D + 1)-cycle, or the disjoint product of a c-cycle and a d-cycle,
with c+d = D+ 1 and ged(e, D+ 1) = 1. However, in the latter case, the spectrum of gy on
‘H would contain 1, and so 1 would occur both “upstairs” and “downstairs”. Hence we are
in the former case, and so the set of “upstairs” characters of H is Chary, (D + 1), as stated.

(iii) Next we consider the additional possibilities in the cases with D = 5,7. Then
Z(G) NGy = Z(Gy) = Cy; in particular, N = 2N,y. Furthermore, G/Gy = Z(G)Go /Gy =
Z(G)/Z(Gy) is cyclic of odd order, which equals Ny. It follows that 2 Ny, and G = Zy x Gy
with Zy := Oy (Z(G)) = pn,. Arguing as in (ii), we may tensor ‘H with a suitable £, to
get Gigeom = Go. As in (ii), we also get an odd-order element g, that centralizes h and has
simple spectrum on Tame of dimension D — 1.

Suppose D = 7, so that Gy = W(E;) = 2 X Spg(2). As 21 0(gx), goo € Spg(2), of order
> 6 since it has simple spectrum on Tame. Thus g, has order 7, 9, or 15, see [GAP]. On
the other hand, g, centralizes —Id - h, an involution in Spg(2), and this is impossible.

A similar argument rules out the case of D = 5. 0J

REMARK 4.2.4. It is shown in [KRLT4] that the three cases listed in Theorem [1.2.3|(b)
do indeed give rise to primitive hypergeometric sheaves with w = 1 in characteristic p = 2
and with Ggeom = Go.

We find the following result amazing, for which it would be nice to find a conceptual,
rather than a case-by-case, explanation.

THEOREM 4.2.5. Let H be a (geometrically irreducible) hypergeometric sheaf in charac-
teristic p of type (D, D — 1) with D > 1, which is primitive. If Ggeom 15 finite, then D is
even. [But notice that, as explained in Remark , there are such sheaves in characteristic
p = 2 of any odd rank D > 3 which are imprimitive.]

PROOF. (i) Assume the contrary: there exists such a sheaf #H, but of odd rank D > 3.
By Theorem [4.1.1] if p > 3, then we actually have p = D = 3. By Theorem [£.2.3] we also
have D = 3 when p = 2. Thus D = 3 and p = 2 or 3. We will consider the elements g, and
Jso as in the proof of Theorem and a complex reflection 1 # h in the image of P(c0).
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Since H is primitive and D = 3, H satisfies (S+), and so G = Ggeom is either almost
quasisimple, or an extraspecial normalizer, by Lemma [[.1.3] Suppose we are in the former
case. Then it is well known, see also [HM], that G = Z(G) x L, where L = As, SL3(2), or
3-Ag. Write h = zt, with z € Z(G) and t € L, so that t is a scalar multiple of a complex
reflection of order p. Checking the spectra of elements of L in a 3-dimensional irreducible
representation, we see that o(t) = 2 and so p = 2. Now g, has odd order, centralizes ¢, and
is not central, since it has two distinct eigenvalues on Tame. But this is a contradiction, since
C.(t) is a 2-group in all three possibilities.

(ii) So we are in the extraspecial normalizer case. As D = 3, we get G < ZG, where
7 = Z(GL3(C)) and Gy = 31" x SLy(3). Again write h = zt, with 2 € Z and t € Gj.
Suppose p = 3, so that t is a scalar multiple of a complex reflection of order 3. As g, has
3'-order, centralizes t, and is non-central, we see that goo = Zooteo, Where zo, € Z and t, € Gy
has order 2. Similarly, as gg has 3’-order and simple spectrum on H, we see that gy = zoto,
where zo € Z and ty € Gy has order 4. Now, the spectra of elements of order 2 and 4 of G
on C? are {—1, —1, 1}, respectively {4, (s, 1} (with counting multiplicities); in particular, t.,
has to admit both 1 and —1 as eigenvalues on Tame. By tensoring H with £, for a suitable
multiplicative character x, which does not change the finiteness and irreducibility of Ggeom,
see [KRLT4, Lemma 5.10], we may assume that

(4.2.5.1) H = Hyp(1,&, €457, 7E2)

for some multiplicative character v. By [Ka-ESDE| 8.12.2(2)], the determinant of # is
L,; in particular, any p’-element in G has determinant equal to 1. With this identification
(#.2.5.1) of H, gs has spectrum a, —a, —a for some a € C*. Hence 1 = det(go) = 3,
but 3 1 0(geo), SO @ = 1. This forces v € {1,&}, and so 1 occurs both “upstairs” and
“downstairs” in H, violating the irreducibility of H.

We have shown that p = 2, so that ¢ is a scalar multiple of a complex reflection of order
2. As g, has odd order, centralizes ¢, and is non-central, we see that g, = 2ooteo, Where
Zoo € Z and t,, € G has order 3. Similarly, as gy has odd order and simple spectrum on H,
we see that gg = zgto, where zg € Z and tg € G has order 9. Now, the spectra of elements of
order 3 and 9 of Gy on C? are {a, o, B} with o # 8 and o = 8% = 1, respectively {¢;™""} or
{¢y 25, 8} By again tensoring ‘H with £, for a suitable multiplicative character x and dualizing
it if necessary, which do not change the finiteness and irreducibility of Ggeom, We may assume
that

(4.2.5.2) H = Hyp(S, &, 6557, 76s)

for some multiplicative character v. By [Ka-ESDE| 8.12.2(2)], the determinant of # is
Le, Ly in particular, any p’-element in G has determinant a cubic root of 1. With this
identification (4.2.5.2) of H, g has spectrum 6,6, (s or 6, (s, (3 for some § € C*. Hence

= det(goo)® = 0°. This forces v = £§ for some 0 < j < 8. Since the “upstairs” and
“downstairs” characters of H do not intersect, j # 1,4,7. Now, if j = 0,3,6, then choose
A= = V€3 and o = €3, so that y = 01/2 and Aa = 3J+3 =& If j = 2,5,8, then
choose A := &) = v and o := €77, so that y& = 0/? and AO‘ — £77° = &5, In both cases,
the “upstairs” characters in (4.2.5.2)) are cubic roots of Ao, and the “downstairs” characters
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are A and ¢'/2. This shows by [KRLT3, Proposition 1.2] that # is imprimitive, a final
contradiction. O

A further note is that the reflection representation of the Weyl group W (F}) cannot give
rise to primitive hypergeometric sheaves with w = 1 in any characteristic p (for the reason
that every complex reflection in W (F}) has order 2, forcing p = 2 if such a sheaf exists, but no
odd-order elements of W (F}) can have simple spectrum in this representation, contradicting
the existence of the element gg). Finally, the Weyl groups of type B/C and D are ruled out
in the following lemma:

LEMMA 4.2.6. Let n > 3 and let G be the Weyl group of type B, or D,. Then there is
no hypergeometric sheaf H of type (n,n — 1) in any characteristic p with Ggeom realizing G
in its reflection representation.

PROOF. Assume the contrary. Note that the complex reflections in G are of order 2, in
particular the non-identity element A in the image of P(00) in G has order 2. Hence p = 2,
and we can consider the elements gy and g, of odd order in G as in the proof of Theorem
[1.2.3] Note that G = E x S, where E is a 2-group (of order 2" if G = W(B,,) and of order
2" if G = W(D,)), and S = S,,, acting in its natural permutation representation II. Now
Ey := E{gp) is a subgroup of order |F|-0o(go), with 21 0(go). Thus (go) is a complement to £
in Ey, and so by the Schur-Zassenhaus theorem, all such complements are conjugate in Ej.
As Ey = E x (EyN S), we see that gg is conjugate to an element hy € S. Thus hg acts on II
with simple spectrum, and this is possible only when hq is an n-cycle. It follows that 2 1 n,
and the set of “upstairs” characters of #H is Char(n); in particular, no “downstairs” character
is 1. Similarly, g, is conjugate to some ho, € S, and g, acts on Tame with n — 1 distinct
eigenvalues, none of which is 1. On the other hand, h., acting on II admits eigenvalue 1, and
so it must have n distinct eigenvalues on H. This again implies that h., is an n-cycle, and
the set of “downstairs” characters of H is Char(n) ~ {1}, which intersects the upstairs set
nontrivially, violating the irreducibility of H. O






CHAPTER 5

Tensor induced local systems

5.1. 2-tensor induced sheaves

Given a representation ® : G — GL(V), and an integer n > 2, we say that (G, V) is n-
tensor induced if dim(V') is an n'® power d" with d > 2 and there exists a tensor factorization
of V as

V=V"ehe -1V,
with each dim(V;) = d, such that
G < (@1L,GL(V) % S,

with the symmetric group S,, acting by permuting the tensor factors V; transitively.
One says that (G, V) is not tensor induced if it is not n-tensor induced for any n > 2.
We have the following obvious but useful lemmas.

LEMMA 5.1.1. Given (G,V) whose dimension D = dim(V') > 2 not a power (i.e., not
an n'™ power for any n > 2), then (G, V) is not tensor induced.

LEMMA 5.1.2. Let V = A®c B be a tensor product of two C-vector spaces A and B, both
of dimension > 2. Suppose h =X ® Y with X € End(A) and Y € End(B).

(i) If h has almost simple spectrum on V', then X has simple spectrum on A and Y has
sitmple spectrum on B.

(ii) If h has almost regqular spectrum on V', then X has regular spectrum on A and Y has
reqular spectrum on B.

PROOF. (i) Suppose for instance that X acts as on some 2-dimensional subspace

o
0

A; C A, for some o € C. We may assume that Y acts as 0
subspace By C B, for some 3,7 € C. If § = ~, then af is the unique eigenvalue for h on
Ay ® By of dimension 4. If § # ~, then both af and a~ are eigenvalues of multiplicity 2 for
h on A; ® B;. It follows that h cannot have almost simple spectrum on V.

* ) )
) on some 2-dimensional

(ii) Assume that X does not have regular spectrum on A. Then the Jordan canonical
form for X on A contains a.J, @ aJy, for some a,b > 1 and some « € C, where .J, denotes the
Jordan block of size a and with eigenvalue 1. In particular, X has two linearly independent
eigenvectors uy, us on B, with eigenvalue . Now, if Y has two linearly independent eigen-
vectors vy, vy on B, with (not necessarily distinct) eigenvalues 31, B2, then u; ® vy, us ® vy are
h-eigenvectors with eigenvalue af;, and u; ® vs, us ® v9 are h-eigenvectors with eigenvalue
a3, contradicting the assumption that h has almost regular spectrum. So we may assume

79
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that Y is represented by a single Jordan block J. on B, with ¢ := dim(B) > 2. Recall, see
[F1, Theorem VIII.2.7], that

(5.1.2.1) In @ 0 = Jin-1® Imin-s3® ... D Jm_ni1
when m > n > 1. It follows that h has Jordan blocks aJ, .1 and aJpy.q Witha+c—1,b+
c— 12> 2, again a contradiction. O

To deal with the case when D is a power, we begin with recalling the following lemma.

LeEMMA 5.1.3. [KT5, Lemma 3.2] Let F be either a Kloosterman sheaf Kl of rank D > 4
or a hypergeometric sheaf H of type (D,m) with D > m > 0 and D > 4. Suppose F is
n-tensor induced for a given n > 2. Consider the composite homomorphism

Trl(Gm/F_P) — (®?:1GL(A1>> A Sn — Sn;

obtained by projecting onto the last factor. Suppose we are in either of the following four
situations.

(i) F is a Kloosterman sheaf of rank D > 4.

(ii) F is a hypergeometric sheaf H of type (D, m) with D # 4. Denote by py the least

prime dividing D, and suppose we have the inequality D —m > D /p?.

(i) F is a hypergeometric sheaf H of type (4,1) and p is odd.

(iv) F is a hypergeometric sheaf H of type (4,2) and p = 2.
Then this composite homomorphism factors through the tame quotient my (Gm/E)tame at 0,00
and its image is an n-cycle in S,,. Moreover, n is prime to p.

Now we will focus on 2-tensor induced sheaves. In this case, we can do much better.

LEMMA 5.1.4. Suppose that p = 2. Let H be a hypergeometric sheaf of type (D, m) with
w:=D—m2>2and D > 4. Then H is not 2-tensor induced.

PROOF. Suppose H is 2-tensor induced. The projection of Ggeom onto So is a linear
character of 7(G,,/F;) which is tame at 0 and whose co-slope is < 1/w < 1 (because
w > 2). Hence (by the integrality of Swan conductors) this character is tame at both 0 and
0o. But 7, (G,, /Fa)tame 8t 0 ig a4 group of profinite order prime to 2, so admits no nontrivial
homomorphism to Sy. Thus H is tensor decomposed, impossible if D > 4 by [KT5|, Lemmas
2.2 and 2.3]. O

REMARK 5.1.5. The case when p = 2 and w := D — m = 1 is dealt with in Theorem

0.2.9

LEMMA 5.1.6. Suppose that p is odd. Let H be a hypergeometric sheaf of type (D, m) with
D > m. Suppose that H s 2-tensor induced. Consider the composite homomorphism

7T1(Gm/]FTp) — (®$:1GL(A1)) X 52 — SQ,

obtained by projecting onto the last factor. Then this composite homomorphism factors
through the tame quotient m1(G,,/F,)t?me 2 00 [f in addition D > 4, its image is an 2-
cycle in S,.

PROOF. If p is odd, any homomorphism from 71(G,,/F,) to a group of order 2 is tame
at both 0 and oco. This homomorphism must be nontrivial if D > 4, otherwise H would be
tensor decomposed, and this is not the case, cf. [KT5, Lemmas 2.2 and 2.3]. O
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COROLLARY 5.1.7. Suppose that p is odd. Let H be a hypergeometric sheaf of type (D, m)
with D > m. Suppose that H is 2-tensor induced. Then the Kummer pullback [2]*H is tensor
decomposable.

PrROOF. Immediate from Lemma [5.1.6/ O

LEMMA 5.1.8. Suppose p is odd. Let H be an (irreducible) hypergeometric on Gm/E
of type (D, m) with D > m. Denote by W the wild part of the I(co)-representation, and
w :=dim(W) = D —m. Then we have the following results.

(i) Ifw is odd, then the Kummer pullback [2]*W is irreducible (as I(oo)-representation).

(ii) If w is even, then [2]*W is the direct sum W, ® W), of two non-isomorphic irreducible
I(o00)-representations, each of which is totally wild of dimension w/2 with all slopes
2/w.

Proor. All slopes of 2]*W are 2/w. If w is odd, then ged(2,w) = 1, and the asserted
irreducibility is [Ka-GKM, 1.14 (1)]. If w is even, then we apply [Ka-GKM, 1.14 (2)];
write w = 2ngp® with ny prime to p (which is odd) and with e > 0. Then W is [2ng],V
for an irreducible I(oco)-representation of rank p® and all slopes 1/p¢. Thus W is [2],WV, for
Wo := [no]xV. The rank of Wy is w/2. and all its slopes are 2/w. Then

21W = [2]*[2].Wo = Wo & [z > —a]* W,

Because W, has Swan.,(Wy) = 1, it is inequivalent to any nontrivial multiplicative translate
of itself, cf. [Ka-GKM, 4.1.4]. O

PROPOSITION 5.1.9. Suppose p is odd. If D > m > 0 and w is odd, then H is not 2-tensor
induced.

PROOF. Because m > 0, the I(oco)-representation of H is T@ W, with T' tame and nonzero
(because of dimension m). Therefore the I(co)-representation of [2]*H is of the form T; & W,
with 7} tame and nonzero, and W irreducible and totally wild. By [KRLT3|, Proposition
10.1], the I(oco)-representation of [2]*H is tensor indecomposable, and hence a fortiori [2]*H
is itself tensor indecomposable as a lisse sheaf on G,,/F,. One knows, by Corollary h
that if H were 2-tensor induced, then [2]*H would be tensor decomposable. O

PROPOSITION 5.1.10. Suppose p is odd. Suppose H is primitive, of type (D, m) wth
D >m >0, and w := D —m even. Then H is not 2-tensor induced under any of the
following three conditions.
(i) D >9.
(iil) D=9, p # 3, and m # 3.
(iii) D=9, p=3, and m # 1.

PROOF. If H is 2-tensor induced, then D is a square, D = d? with d > 3 (because D >9
by hypothesis), and [2]*H is isomorphic to A; ® Ay with A; and A; local systems on G,,,/F,,,
each of rank d. Passing to the I(oo)-representations, let

Al‘[(oo) = Tl D Wl, ./4.2’[(00) = T2 D WQ,
with the T; tame and the W; totally wild I(oo)-representations.
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On the other hand, by Lemma/|5.1.8] (2), when w is even the I(oo)-representation of [2]*H

is of the form
H‘](OO) = T+ Wa + WIN

with 7" tame and nonzero, and W, and W), nonisomorphic irreducible I(oo)-representations,
each of dimension w/2 with all slopes 2/w. Thus we have an isomorphism of [ (oo)-representations

T4+ W,+W,=(T1 + W) @ (Ty + Ws).

We next replace each term by its I(0)-semisimplification (but don’t change their names).
We still have this tensor decomposition, simply because for characteristic zero representations,
semisimplification commutes with tensor products.

We wish to derive a contradiction. Suppose first that T; # 0. Then

T+ W, + Wy, =T, @ Wy +W; ® Wy + other terms.

Because each totally wild irreducible on the left hand side occurs with multiplicity 1, either
Wy =0 or dim(7}) = 1 and T} ® Wy is either W, or W}, or W, + W,
It Ty # 0 but W5 = 0, then

T+Wa+Wb:<T1+W1)®T2:T1®T2+T2®W1.

Thus dim(7%) = 1, and the second factor has dimension 1, not d.

If 77 # 0 and Wy # 0, then as above we have that dim(7}) = 1 and T} ® Wj is either W,
or Wy or W, + W,

We cannot have T} ® Wy = W, + W, for then W7 ® W, is totally tame. This could
happen if W; = 0, but then the first factor 77 + W; has dimension 1, not d. Thus W; and
Wy are both nonzero, and their tensor product is totally tame. Write the decompositions
of Wy =% . Wy, Wo =37 i Wa; as sums of I(co) irreducibles. Then every tensor product
Wi, ® Wy ; is totally tame. By [KRLT3, Lemma 10.2], this can only happen when each
Wi, and each Wy ; has dimension 1, and each W5 is (a tame character) @ WY, for every i, j.
Thus

Wy = (tame T3) @ Wiy, W = (tame Ty) @ WY,.
Then we would have
T+Wa+Wb: (T1+T3®W171)®<T2+T4®W1\f1)

In this case, each of W,, W, is one-dimensional, so both T} ® T, and Ty ® T3 are one-
dimensional. Then both tensor factors have dimension 2, not d > 3.

Thus we have 77 ® Wy is either W, or W, say T1 ® Wy = W,. We next claim that
Ty # 0. For if Ty = 0, then the second factor has dimension dim(W,) = w/2. But each factor
has dimension d. Thus w/2 = d, and 2/w = 1/d. The first factor 77 + W; has dimension
1+dim(W7), which is necessarily d. This dim(W;) = d—1. Thus every irreducible constituent
of W7 is totally wild of rank < d — 1, and so has all its slopes > 1/(d — 1). Then every slope
of Wy is > 1/(d —1). Then in

T+Wa+Wb:(T1+W1)®(T2+W2)7

we have

TH+Wa+Wy=(T1+ W)@ Wy =W, + W, @ Ws.
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Here W, and W, have all slopes 1/d, but W, has all slopes > 1/(d — 1), hence[Ka-GKM|
1.3] Wi ® W has all slopes > 1/(d — 1). But every nonzero slope in T+ W, + W}, is 1/d.

Thus if 77 # 0, then also T3 # 0, and (by symmetry) both T}, 75 have dimension 1, and
both W7, W5 are nonzero. Tensoring our putative decomposition by the inverse of the tame
character T7 ® T5, we reduce to the case of a decomposition

T+Wo+Wy=(1dW)® (1oW,).

Then both W5 and W; are nonzero totally wild summands of 7'+ W, + W,,. Therefore
we must have, up to interchanging a,b, W, = W,, Wy = W,. But then W, ® W, is totally
tame, which implies [KRLT3, Lemma 10.2] that each of W,, W}, has dimension 1. Then each
tensor factor has dimension 2. But each factor has dimension d > 3, contradiction.

Thus in order to have a tensor decomposition, we must have T} =T, = 0, and

THW,+ W, =W @ W,

is the tensor product of two totally wild I(oco)-representations, each of rank d.
We next show that both W and W, must be irreducible as I(co)-representations. Write

W1 - Wl,l "—WLQ ‘|— e + lef
as the sum of irreducibles, with dim(W; ;) > dim(W; ) > - -+ > dim(W; f). Similarly, write
Wo=Wa1+--+ W

as the sum of irreducibles, with dim(W5 ;) > --- > dim(Ws,).

We first rule out the case when f > 2 and dim(W;) = 1. Then every irreducible
constituent of W5 has dimension 1, hence there are d constituents. Let us call them L4,. .., Ly.
If dim(W73,1) > 2, then each of the d tensor product Wy, ® L, is I(00)-irreducible, and having
dimension > 2 must be totally wild (otherwise it would be totally tame, because the P(c0)
invariants are a subrepresentation, and this can only happen [KRLT3, Lemma 10.2] when
both factors have dimension one). So we would have at least d > 4 totally wild irreducible
summands in W; ® Ws, contradiction. If both dim(W;;) = 1 and dim(W5;) = 1, then
also W, is the sum of d one-dimensional summands, say N, ..., Ny. Then of the d? tensor
products N; ® L;, precisely two of them are wild (namely the W, and W}, pieces), and the
other d? — 2 are tame.

This leads to a contradiction, as follows. Renumbering, we may suppose that N; ® £,
is wild. If also M} ® £; is wild for some jy, > 2, then every N; ® £; with ¢ > 2 is tame. In
particular, taking ¢ = 2, every L; is

N, @ (some one — dimensional tame T ;).

But for j # 1, jo, and there are such j, because d > 3 N7 ® £; is tame, hence N is a tame
character times £, i.e. N; is a tame character times A5. Thus all the A are tame twists of
cach other, all the £; are tame twists of the dual, and W; ® W, is totally tame, contradiction.
If M1 ® Ly is wild but M ® £; is tame for all j > 2, a similar argument, left to the reader,
leads to the same contradiction.

We now treat the case when f > 2 and dim(W5;) > 2. In this case, we again get a
contradiction if dim(W; ;) = 1. Thus

Wy = Wi1 + Wia+ (other terms), Wy = Wy, + (other terms),
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with both Wi 1, Ws; of dimension > 2. We first show that ¥, must be irreducible. Otherwise
Wy = Ws1 + Was + (other terms),
and so W7 ® Wy contains at least three constituents, namely
Wiin@Waq, Wit ®@Waa, Wia® Way,

none of which is totally tame, a contradiction.

We now treat the case when Wj is irreducible. Then we have the a priori inequality f < 2
on the number of irreducible constituents of Wi. If f = 2, so that $WW; = W; 1 + Wi 4, then
at least one of Wy ® Wy or Wi ® W has a tame part, since 7'+ W, + W, has nonzero
tame part T'. Say W;,; ® W; has a tame part. Then for x a tame character in this tame part,
Wi, ® (W ® X contains 1, which means that Wy ; is the dual of Wy ® . So in this case
already the single component Wi ; of W; has full dimension d. Thus W; is irreducible, and
its dual is W5 ® .

Tensoring with y, we have the following situation. W is a totally wild ireducible I(c0)-
representation of dimension d > 3, and End(W) is of the form 7"+ W, + W, with a nonzero
tame part 7', and two inequivalent totally wild ireducible I(co)-representations W, and W},
each of the same dimension w/2, and each with all slopes 2/w.

Suppose first that p{ d. The argument of the end of the proof of [KRLT3|, Lemma 10.2]
shows that End(W) has a tame summand of rank d and d — 1 totally wild summands, each
of rank d. If d > 4, this is a contradiction. If d = 3 and p > 3, then the tame part of H has
dimension d = m = 3, which is a contradiction because we assume m # 3 when D = 9 and
p#3.

Suppose next that p|d. Write d = noq with p { ny and with ¢ a strictly positive power of
p. The argument of [KRLT3| Lemma 10.2] shows that End(W) has ng summands, each of
which has a nonzero wild part, and that the tame part of End(W) has dimension ng. Thus
if ng > 3, we have a contradiction.

If ng = 2, then the argument shows that we have two summands, one of which is totally
wild and the other of which has a tame part of dimension 2. In this case, our H of type
(D = d?,m) has m = 2, and hence a wild part of dimension w = d*> — 2. But as d > 3 by
hypothesis, we have w > (2/3)(D — 1), i.e., d* —2 > (2/3)(d* — 1), i.e., 3d*> — 6 > 2d* — 2,
i.e. d*> > 8, which holds because d > 3. So in this case, H satisfies (S+), by [KT5, Theorem
1.12], and in particular is not 2-tensor induced.

If ng = 1, then as explained at the end of the proof of [KRLT3| Lemma 10.2], End(W)
has a tame part of dimension 1. Thus m = 1, our H is of type (D, 1), with w = D — 1, and
again we trivially have D —1 = w > (2/3)(D —1). Except in the case ¢ = p = 3, which is the
excluded case (D,m) = (9,1) and p = 3, once again H satisfies (S+), by [KT5, Theorem
1.12], and in particular is not 2-tensor induced. 0

REMARK 5.1.11. The excluded cases really can be 2-tensor induced, cf. [Ka-ESDE]
10.9.1] for the case D = 9,m = 3 and cf. [Ka-CCl| Theorems 6.3 and 6.5] for the cases
D=4m=0or 2.
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5.2. Tensor induced sheaves: General case

PROPOSITION 5.2.1. Let V =V, ® ... ®V, be a tensor product of n > 2 C-vector spaces
each of dimension d > 2. Suppose g € (GL(Vl) ®...0 GL(Vn)) X S,, permutes the n tensor
factors V; cyclically and that g has almost simple spectrum and finite order on V. Then the
following statements hold.

(i) The action of g" on Vi has simple spectrum.
(i) If d > 3 then n = 2.
(iii) If d =2 thenn < 3.

PrOOF. The automorphism g is, by hypothesis, the composition of isomorphisms g; :
V; — Viyq for ¢« < n with an isomorphism g, : V,, — V. If we use g1, ..., g,_1 to identify the
V; with each other, then V' is V/®", and ¢ is the map v; Qv ®. .. Qv, + gn(v,) QU ®. .. Qv,_;.
And the automorphism g" of V" is ¢%", i.e. ¢"(v1®...Qv,) = gu(v1) ... gn(v,). Since g
has finite order on V", so also does ¢g", and hence g, has finite order on V. By “the action

of g" on V;” we mean the action of g, on V;. Since o(g) < oo, we can diagonalize the action
1

of g" on Vi: g"(ej) = aje; for a basis (ef,...,ey) of Vi and a; € C*. Now we can fix bases
(el,...,¢e4) of Vi such that
grepr el el s el = age,
1 2 3 n 1
€y > €5 > €5 > ... e > e
(5.2.1.1) 2T 20T
ey ea el L el e agel.
(a) Note that
1o 2 ol o 02
gle;®e;®...Qef) =qe; ®e;® ... el
Assumg now that a; = as. Then by (5.2.1.1]), e} ®e? ®...®e} with j = 1,2 are eigenvectors
for g with eigenvalue «, and in fact

lRAEREER...Qel +esRe2ReEIR.. Qe +...+eaRer®... Qe 'Rl

is a third such an eigenvector, with all three being linearly independent. Thus « is an
eigenvalue of g with multiplicity at least 3, a contradiction. Hence (i) follows.

(b) Using (j5.2.1.1]), we can see that
g”(e}1 ® e?z ®...8 e’;n) = a0, .. .ajnejl-l ® 632‘2 ®...Q¢€] .
Thus, every eigenvalue of g" on V' is of the form 8 = aj,aj, ... o, with 1 < j; < d. Hence,
the number N of distinct eigenvalues (without counting multiplicities) of g™ on V' is at most

the number of ordered d-tuples (ki, ko, .. ., kq), where k;, 1 < j < d, is the number of indices
1, 1 <17 < n, such that j; = 7. Thus

N < N(n,d),

where N (n, d) the number of ordered d-tuples (ki, ks, . .., kq), where k; € Z>( and Z;lzl k; =
n. We now prove by induction on d > 1 that

(5.2.1.2) N(n,d) = <”+d_ 1).

n
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Clearly, N(n,1) = 1, proving the induction base d = 1. To prove the induction step from
d — 1 to d, we proceed by another induction on n > 1, with the obvious induction base
N(1,d) =d = (f) By counting tuples with a fixed value 0 < k; < n (and noting there is
exactly one tuple with k; = n) we get

N(n,d)=1+N(1,d-1)+...+ Nn—1,d—1)+ N(n,d — 1)
and similarly
Nn—1,d)=1+N(l,d=1)+...+ N(n—1,d—1).

It follows that N(n,d) = N(n — 1,d) + N(n,d — 1). By the two induction hypotheses, we
have

N(n,d) = n+d—2 n n+d—2\ (n+d-—2 n n+d—2\ (n+d-1\ (n+d-1
U n—1 n S\ d-1 d—2 ) \ d-1 ) n ’
completing the proof of ((5.2.1.2]).

Since each eigenvalue of g on V is an n™ root of some eigenvalue of ¢", we have shown
that g has at most n(”+ff_1) distinct eigenvalues on V. As g has almost simple spectrum on
V', it follows that

h

(5.2.1.3) d" —1=dim(V) - 1 gn("+d_1>.

n

Suppose now that d > 4 and n > 3. Then 3(d§2) =d(d+1)(d+2)/2 < d®—d. In general,
if j > 2, then (d + j)/j < d, whence

n—1

n+d-—1 dd+1)...(d+n-1) d+2\ yrd+J 3 -3
_ — JI = < (@ - dyan? < an -
”( n ) 2. (n—1) \ s H3 R

violating ([5.2.1.3)).

We have shown that n =2 if d > 4. If d = 3, then (5.2.1.3)) implies that
3"—1<n(n+1)(n+2)/2,
and so n < 3. If d = 2, then implies that 2" — 1 < n(n+ 1), and so n < 4.
(¢) Assume now that d =n = 3. Using (5.2.1.1]), we see that
g: ei X eg X eg — ageé X e% X eg’ — 012(136% X e% & e? — alagage} X e% X eg.
Thus g stabilizes the 3-dimensional subspace
(e1®e3@es, 3@l ®ey, e ®e3®el)c

and admits all the 3 cubic roots of ajasas as eigenvalues on this subspace. The same is
however also true for the subspace

(er@es@es, e;@e e, @6 el)c,
contradicting the assumption that ¢ has almost simple spectrum. Hence n = 2 if d = 3,

proving (ii).
Next we consider the case d = 2 and n = 4. Again using (5.2.1.1)), we see that

.| 2 3 4 1 2 3 4 1 2 3 4
g:e1®e; e ey = ey ®e] Key, Qe — ajtne; ®e;Qe] K e,.
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Thus ¢ stabilizes the 2-dimensional subspace

(1@ el ®e;, el ®e;@el)c
and has both square roots of ajas as eigenvalues on this subspace. On the other hand, g also
maps

1 2 3 4 1 2 3 4 1 2 3 4 2.1 2 3 4 2 .21 2 3 4
€1®62®62®61 '_> 04161®61®62®62 |_> a1&262®61®61®62 ’_> Oz104262®62®61®61 '_> a1a261®62®62®61.

Thus ¢ stabilizes the 4-dimensional subspace
<ei®e§®e§®e‘1‘, ei@e%@e%@e%, e%@e%@e?@e%, e%@e%@e?@e‘ﬁ@

and has all four quartic roots of a?a3 as eigenvalues on this subspace. In particular, each of
Vajag and —./ajas has multiplicity > 2 as g-eigenvalue on V', again a contradiction. Hence
n < 3 if d = 2, establishing (iii). O

LEMMA 5.22. Let V = Vi ® ... ®V, be a tensor product of n = a + b C-vector spaces
each of dimension d > 2, with a,b € Zsy. Suppose g € (GL(Vl) ®...0 GL(Vn)) xS,
permutes the first a tensor factors Vi, 1 <1i < a, cyclically, and the next b tensor factors V;,
a+1<1i<a+b, cyclically, and that g has almost simple spectrum and finite order on V.

Then (a,b) # (2,2) and (a,b) # (3,3).

PROOF. Assume that (a,b) = (2,2). Arguing as in the proof of Proposition [5.2.1 but
changing the notation for simplicity, we may assume that in some bases (e; | 1 < i < d) for
Vi, (fi |1 <i<d)for Va, (g;] 1 <i<d)for V3, and (h; | 1 < i < d) for Vy, we have

g:eil—>fir—>oziei, gzl—>hl|—>ﬁlgl

for some o, 5; € C*. It follows by inspecting the action of g on (e1® fa, e2® f1)¢ that g admits
both v := y/a;a; and —v as eigenvalues on V; ® V5. Similarly, g admits both 0 := /315,
and —¢ as eigenvalues on V3 ® Vj. Since v6 = (—7)(—9) and (—7v)d = (=), it follows that
both v and —~v¢ are eigenvalues with multiplicity > 2 for g on V, a contradiction.

Assume now that (a,b) = (3,3). As above, we may assume that in some bases (¢; | 1 <
i <d)for Vi, (fi| 1 <i<d)forVa, (¢, | 1 <i<d) for V5, we have

g:e = fi—r gi = aue
for some a; € C*. It follows by inspecting the action of g on

(e1® f1®¢2,e2R fL®ag,61® fa® g1)c

that g admits all three roots v, v(3, 7¢2 of 7 := ajay as eigenvalues on V; @ Vo ® V3. Similarly,

g admits all §, (3, 0¢3 for some § € C* as eigenvalues on V; ® V5 ® V. Since
Vo = (7C3)(5C32.) = (7C§)(5C3),

it follows that +¢ is an eigenvalue with multiplicity > 3 for g on V, again a contradiction. [J

PROPOSITION 5.2.3. Let V =V, ® ... ®V, be a tensor product of n > 2 C-vector spaces
each of dimension d > 2. Suppose g € (GL(V1) ® ... ®@ GL(V,)) x S, induces a nontrivial
permutation ™ on the set of n tensor factors V; and that g has almost simple spectrum and
finite order on V. Then the following statements hold.
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(i) Suppose d > 3. Then 7 is a 2-cycle. Suppose that g interchanges Vi and V. Then the
action h of g*> on Vi (which is defined uniquely up to a scalar) has simple spectrum.
Moreover, if n > 3 or if g has simple spectrum on 'V, then o(h) > d*/2.

(i) If d = 2, then m is either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a
3-cycle.

ProoOF. Write m = 0105 ... 07 as a product of disjoint cycles of non-increasing lengths
k12k222k121
Suitably conjugating ¢ in GL(V'), we may assume that

-1 -1
m=(12. k) +Lk+2.. kt+k) . O k+1) k+2,...,n).
=1 =1

By Lemma m(l), ¢ has almost simple spectrum on V@ Vo ®...@ Vi, VI@Vo®...Q Vi 1k,
(ifl >2),and on V1 @ Vo ® ... R Vi, +ky+ks if L > 3. Applying Proposition to the action
ofgon Vi @Vo®...® Vi, wesee that ky =2ifd >3 and kb <3if d = 2.

Suppose d = 2 but [ > 2 and ky > 2. By applying Lemma to the action of g on
Vi@Va®...® Vi, 1k, we see that (ki, k2) = (3,2). Again applying Lemma , we conclude
that k3 = 1 if [ > 3. Hence (ii) follows.

Assume now that d > 3. If [ > 2, then by applying Lemma to the action of g
on V1 @ Vo ® ... ® Vi 1k, we see that (ki, ko) = (2,1). Thus 7 = (1,2) is a 2-cycle. By
Proposition [5.2.1](i), ~ has simple spectrum on V;. To bound m := 6(h), we follow the
proof of Proposition and consider an eigenbasis (ey,...,eq) of g? on V; and the basis
(fi=gler),..., fa:=gleq)) of V5. By the choice of m, g*™ =~ -1d on V; for some y € C*.
Now

9" (fi) = 9" (9(e) = 9(¢*" (&) = g(ves) = 1 fi
for all 7, i.e. g°™ =~ -1Id on V, as well. Thus ¢ =~%-1d on V; ® V5, and so €™ = ~2 for all
eigenvalues € of g on V; ® V5. However, by Lemma [5.1.2] ¢ has simple spectrum on V; ® V5.
It follows that d? = dim(V; ® Vi) < 2m, as stated in (i). O

PROPOSITION 5.2.4. Let V =V, ® ... ®V, be a tensor product of n > 2 C-vector spaces
each of dimension d > 2. Suppose g € (GL(Vl) ® ... GL(Vn)) X S,, permutes the n
tensor factors V; cyclically and that g has almost reqular spectrum on V. Then the following
statements hold.

(i) The action of g™ on Vi has regular spectrum.
(i) n=2ifd>3, andn <3 ifd=2.

PROOF. (i) Assume that ¢" does not have regular spectrum on V;. Then we can find
linearly independent eigenvectors ei and e3 for g™ on Vi, for the same eigenvalue o € C. The
arguments in (a) of the proof of Proposition show that dim Ker(g — - Id) > 3. Hence
the statement follows.

(ii) Replacing g by a scalar multiple, we may assume that ¢”" is unipotent on each V;,
and hence acts as the single Jordan block J; (with eigenvalue 1) on each of them by (i). In
general, if J, denotes the Jordan block of size a with eigenvalue 1, then J, ® J, is conjugate
to

Ja-‘rb—l S Ja+b—3 D...P Ja—b—i—la
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when a > b > 1, see [F1, Theorem VIII.2.7]. An induction on n shows that the Jordan
canonical form of g" on V' consists of one block J,4-1)+1 and some other blocks of size at
most n(d —1) — 1.

As g" is unipotent, all distinct eigenvalues ¢;, 1 <i <[, of g on V are n'® roots of unity.
But ¢ has almost regular spectrum, so, aside from possibly one additional Jordan block of
size 1, each of these eigenvalues ¢; gives rise to a unique Jordan block of g, say of size d; and
with eigenvalue €;, which then yields a Jordan block of same size (but with eigenvalue 1) for
g". By the above analysis, one of these blocks has size n(d — 1) + 1, and all others have size
< n(d—1) — 1, and possibly one extra of size 1. It follows that

dTL

dodi<(nd-1)+1)+(I-1)(n(d-1)-1)+1

<(nd-1D)+D+n-1)nd-1)-1)+1=n*d-1)+3 —n.

Hence n =2ifd >3, and n < 3if d = 2.

Now we consider the general case, and let e denote the number of distinct eigenvalues of
g* on V; (without counting multiplicities). If e > 3, then n = 2 by Proposition (applied
to g on U®", where U C V; is spanned by three eigenvectors for three distinct eigenvalues of
g"). If e =1, then we are done by the unipotent case.

Consider the case e = 2. If d = 2, then ¢" has simple spectrum on V;, and so n < 3 by
Proposition Suppose now that d > 3 but n > 3. As e = 2, the largest size of Jordan
blocks of g™ on V] is at most d — 1, and g™ has two distinct eigenvalues a # 5 on V;. Hence,
arguing as above, g" has on V' at most one Jordan block of size n(d — 2) + 1 and all others of
size at most n(d — 2) — 1. Up to a scalar, the eigenvalues of g" on V are o™ ‘", 0 < i < n,
a total of at most n 4 1 distinct eigenvalues. Thus g has at most n(n + 1) eigenvalues on V.
As g has almost regular spectrum on V', they lead to at most n(n + 1) Jordan blocks for ¢g",
and possibly one extra of size 1. We now have that

d" < n(n+1)(n(d—2)—1)+2+1,

which is impossible unless (n,d) = (3,3). In this remaining case, g*> has 3 Jordan blocks of
size 3 with eigenvalue /3% and 3 Jordan blocks of size 1 with eigenvalue a/3?, if we assume
that ¢® acts on V; as aJ; @ BJ5. These six Jordan blocks of ¢® come from six Jordan blocks
of g with eigenvalues among the three cubic roots of a8%. Thus either some such cubic root
leads to at least 3 Jordan blocks of g, or each of them leads to two Jordan blocks. Both of
these possibilities contradict the assumption that ¢ has almost regular spectrum on V. [

LEMMA 5.2.5. Let V = V1 ® ... ®V, be a tensor product of n = a + b C-vector spaces
each of dimension d > 2, with a,b € Zss. Suppose g € (GL(Vi) ® ... ® GL(V,,)) x S,
permutes the first a tensor factors V;, 1 <1 < a, cyclically, and the next b tensor factors V;,
a+1 <i<a+b, cyclically, and that g has almost reqular spectrum on V. Then (a,b) # (2,2)
and (a,b) # (3,3).

PROOF. (i) Assume that (a,b) = (2,2). We may assume that in some bases (e; | 1 <7 <
d) for V1 and (f; | 1 <i < d) for V5 we have

g:ep— f1—= ager, es = fo = age
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for some ay # ay € C*, or
g:ei—= fi= arer, ea = for= aq(e +eo)

for some a; € C*. As shown in the proof of Lemma [5.2.2] in the former case g admits
both v := \/aja; and —v as eigenvalues on V; ® V5. Direct computation shows that in the
latter case g admits both v := a; and —v as eigenvalues on V; ® V5. Similarly, there is some
d € C* such that g admits both § and —§ as eigenvalues on V3 ® Vj. Since 7§ = (—v)(—9)
and y(—0) = (—v)d, it follows that dim Ker(g — 0 - Id) > 2 and dim Ker(g + 76 - Id) > 2, a
contradiction.

(ii) Assume now that (a,b) = (3,3). As above, we may assume that in some bases
(e; |1 <i<d)for Vi, (f; |1 <i<d)for Vs, (g;]1<1i<d)for V3, we have

g:iel— fi—= g1 = aier, ex = fo= go = o€y
for some a; # as € C*, or
g:ep— fi— g1 — ey, 62'—>f2'—>92'—>041(61+62)

for some a; € C*. As shown in the proof of Lemma [5.2.2] in the former case g admits all
three roots v,v(3,7(3 of v := aay as eigenvalues on V; ® V, ® V3. Direct computation
shows that in the latter case g admits all three roots 7, v(3, 7¢3 of 73 := a3 as eigenvalues on
Vi®Va®@Vs. Similarly, there exists some § € C* such that g admits all §, 63, 63 as eigenvalues
on V; ® Vs ® Vi. Since 70 = (v¢3)(6¢2) = (7¢2)(0¢3), it follows that dim Ker(g — 4 - Id) > 3,

again a contradiction. 0

PROPOSITION 5.2.6. Let V =V, ® ... ®V, be a tensor product of n > 2 C-vector spaces
each of dimension d > 2. Suppose g € (GL(V1) ® ... ® GL(V,,)) x S, induces a nontrivial
permutation m on the set of n tensor factors V; and that g has almost reqular spectrum on
V. Then the following statements hold.

(i) Suppose d > 3. Then 7 is a 2-cycle.
(i) If d = 2, then m is either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a
3-cycle.

PROOF. (a) Write m = 0103 ... 0y as a product of disjoint cycles of non-increasing lengths
ey > ke > ... >k > 1.

Suitably conjugating ¢ in GL(V'), we may assume that
-1 -1
™ = (1,27...,k1)(k1+1,k51+2,...,k1+k2>... (Zk1+1,2k2+2,,n)
i=1 i=1

By Lemmal5.1.2(ii), g has almost regular spectrum on V; @ V2 ®...@V;,, Vi@ Vo ®@...@ Vi, 14,
(ifl>2),andon Vi @ Vo ® ... @ Vi 1 gyt if { > 3.

Applying Proposition to the action of g on V} @ Vo ® ... ® V4,, we see that k; = 2
ifd>3and ky <3ifd=2.

Suppose d = 2 but [ > 2 and ky > 2. By applying Lemma to the action of g on
Vi@Va®...@ Vi ik, we see that (ki, k2) = (3,2). Again applying Lemmal[5.2.5] we conclude
that k3 = 1 if [ > 3. Hence (ii) follows.
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Assume now that d > 3. If [ > 2, then by applying Lemma to the action of g on
VI®@Va®...® Vi ik, we see that (ki, ko) = (2,1). Thus 7 = (1,2) is a 2-cycle. O]

PROPOSITION 5.2.7. Let H be a hypergeometric sheaf in characteristic p of type (D, m)
with D —m > 1. Suppose that H satisfies (S—) but is n-tensor induced:

Gyeom < (GL(V1) @ GL(V2) ® ... ® GL(V,,)) % S,

with d :== dim(V;) > 2 and n > 2. Then one of the following statements holds.

(a) The action of G on {V1,Va,..., V,} induces a subgroup C,, <S,,, generated by an n-cycle,
and furthermore p t n.
(b) p=2 and d = 2. Furthermore, D =4 if D —m =1 or if m > 0.

PROOF. Let ¢ denote the character of the representation ® : Ggeom — GL(V') realized
by H, and let () denote the image in Ggeom 0of P(00); note that () is finite. Also let Go < G
consist of all elements in G := Ggeom that fix every tensor factor V;. Then Gy is Zariski
closed.

(i) First we consider the case @) < Gy. Then the Zariski closure of the normal closure
of @ in G is contained in Gy, and so G/GY is a finite cyclic p’-group by Theorem On
the other hand, G/G) is a transitive subgroup of S,,, since (G, V') is tensor indecomposable.
Hence, G/Gy is generated by an n-cycle and p 1 n, as stated in (a).

(ii) We may now assume that Qo := Q N Gy is a proper subgroup of (). Consider any
element z € )\ Q). Then the p-element x induces a nontrivial permutation of p-power order
of S,,, which then has at least one orbit of length > p on {Vi, V5, ...V, }. The formula |[GI,
2.1] for tensor induced characters implies that |¢(z)| < D/dP~L.

Assume in addition that D —m = 1. Then z acts trivially on Tame of dimension D — 1,
whence

"' = D/d" = |p(z)] = D —-2=d" -2,
and so D =4 and p = 2, as stated in (b).

Now we may assume that D —m > 2. Using the obvious estimates |¢(y)| < D for y € Qo

and |Qo| < |Q|/p, for the dimension m of the tame part Tame we have

m = [¢lg, lolo = |62¢($)|

z€Q
(5.2.7.1) < DIQol + Dd™?(|Q] — |Qo)
N [
D D
<tgrg @ S DU +d ),

and thus m/D < 1/p+ d*~P.

e If p >3, then m/D <1/3+1/4 < 3/4.

e Suppose p = 2. Then m/D < 1/2+1/4 =3/4 whend >4, m/D <1/2+1/3 =5/6
when d = 3, and m/D < 1/4+41/2 = 3/4 when |Q/Qo| > 4.

e Finally, assume that p =2 =d = |Q/Qo|, D > 4, and m > 0. In this case, all elements
r € @ \ @ induce the same permutation o of order 2 on the set {V;,V5,...,V,}. On
the other hand, by [KRLT3l, Corollary 10.4], I(cco) does not preserve any nontrivial tensor
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decomposition of V', and so it must induce a transitive subgroup of S, while permuting
Vi,Va, ..., Voo As P(o0) < I(c0) and o(o) = 2, it follows that o is a product of disjoint
cycles of the same length 2. The number of o-orbits on {Vi,Va,... , V,} is n/2 > 2 since
D = 2" > 4. Hence the formula for tensor induced characters implies that |¢(z)| < D/d? for
all z € @~ Qo, and the estimates in again imply that m/D < 1/]Q/Qo|+1/d* = 3/4.

In all three cases, w = D —m > D/p3, where pj is the smallest prime divisor of D. Hence
(a) holds by Lemma [5.1.3] O

COROLLARY 5.2.8. Let H be a hypergeometric sheaf in characteristic p of type (D, m)
with D —m > 2. Suppose that H satisfies (S—) but is n-tensor induced:

Ggeom < (GL(Vi) @ GL(Va) ® ... @ GL(V;,)) % S,

with d := dim(V;) > 2 and n > 2. If p = d = 2, assume in addition that m > 0 and D > 8.
Then one of the following statements holds.

(a) n=21i.e (G,V) is 2-tensor induced, and p > 2.

(b) D =38, and (G,V) is 3-tensor induced.

ProOF. Note that the action of G = Ggeom induces a transitive subgroup G <S,, since
H is tensor indecomposable. Furthemore, G is generated by an n-cycle by Proposition m
Using D — m > 2, we see by Theorem that Ggeom is the Zariski closure of the normal
closure of the image (go) of 7(0) in it. In particular, this implies that the permutation =
induced by the action of g on {V;,V5,...,V,} is nontrivial. Next, one knows [Ka-ESDE|
Theorem 8.4.2 (6)] that gy has regular spectrum on V', and so we can apply Proposition m
In the case of p.2.6(i), 7 is a 2-cycle. When gy has finite order, i.e. when the “upstairs”
characters are all distinct, that order is prime to p, so the cyclic group (gy) cannot map onto
Z/27 unless p is odd. In the general case, when the “upstairs” characters have repetitions
but each characters has finite order dividing ¢ — 1 for ¢ some power of p, gg_l is unipotent,
and hence of pro-¢ order (remember we are dealing with an ¢-adic representation). If p were
2, then ¢, being # p, must be odd, and (go) is a group whose pro-order is odd, so cannot map
onto Z/27 if p = 2. Thus we must have that p > 2. Since 7 € G, we conclude that n = 2.

In the case of (ii), d = 2, and 7 is either a 2-cycle, a 3-cycle, or a disjoint product of
a 2-cycle and a 3-cycle. also, 7 is a power of an n-cycle. As D = 2" > 8, we must have that
n = 3, as stated in (b). O

One of the main results of the book is the following theorem:

THEOREM 5.2.9. Let H be a hypergeometric sheaf in characteristic p of type (D, m) with
D > m. Suppose that D # 4,8,9 and H is primitive. Then H satisfies (S+).

PROOF. First we note that, by Lemmas 2.3 and 2.4 of [K'T5|, H is tensor indecomposable,
and thus satisfies (S—). It remains to show that H is not tensor induced. Since the statement
follows from Theorem|1.2.1{when m = 0 and from Lemmal5.1.1{when D is not a proper power,
we will assume that m > 0 and that D > 9. Assume the contrary: H is n-tensor induced.

First we consider the case D —m > 2. Then, by Corollary we have that n = 2 and
p > 2. But this contradicts Propositions [5.1.9] and [5.1.10]

Next assume that D —m = 1. Choose a p’-element in I(co) which topologically generates
a complement to P(00), with image g.. Then Proposition and its proof imply that
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Ggeom induces a subgroup G = C,, generated by an n-cycle o in S,,, which is induced by the
action of go. One knows [Ka-ESDE! Theorem 8.4.2,(6)] that g, has regular spectrum on
the tame part Tame of dimension m = D — 1 and fixes the wild part of dimension 1, and
SO (oo has almost regular spectrum on H. Thus we can apply Proposition to goo tO
determine the permutation o. Let d denote the common dimension d of the tensor factors in
H.

Suppose d > 3. Then o is a 2-cycle. We claim that p must be odd. Indeed, g, stabilizes
the wild part and has finite order [Ka-GKM)| Lemma 1.11 (3)] on the wild part. On the
tame part Tame, if say all its characters have order dividing ¢—1 for a power ¢ of p, then ¢!
is pro-¢ on Tame. Thus a prime-to-p power of g, is pro-¢ on the entire I(0o)-representation.
So, using the fact o is a 2-cycle and arguing as in the proof of Corollary [5.2.8 we conclude
that p # 2. This is a contradiction, by Propositions [5.1.9/and [5.1.10, [Alternatively, we can
also apply Theorem M]

Suppose now that d = 2. As D > 8, we have n > 4. By Proposition [5.2.6] ¢ € S,, is
either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a 3-cycle. As n > 4, none of
these permutations can be an n-cycle, again a contradiction. 0

REMARK 5.2.10. The excluded cases can be tensor induced, cf. [Ka-ESDE, 10.9.1] for
the case D =9, m = 3, cf. [Ka-ESDE, 10.8.1] for the case D = 8, m = 2, and cf. [Ka-CC|
Theorems 6.3 and 6.5] for the cases D = 4, m = 0 or 2. And there are D = 4 cases which are
tensor decomposable, cf. [Ka-CCl Theorems 5.1 and 5.3] for the cases D =4, m =1 or 2.

LEMMA 5.2.11. Let X < PGLy(C) be a finite, elementary abelian 2-group, which is the
image of some irreducible subgroup of GLo(C). Suppose that h € PGLy(C) is an element of
odd order that normalizes X. Then h® centralizes X .

PROOF. Since the Schur multiplier of any finite 2-group is a finite 2-group, see [Is| Corol-
lary (11.21)], we may assume that X is the image in PGLy(C) of a finite irreducible 2-group
X < GLy(C): X = X/Z(X). Let o denote the character of X (acting on C?), and consider

A

any y € X N\ Z(X). Then y is not a scalar matrix, but y* € Z(X) is, since X is elementary
abelian. Thus y is conjugate to diag(a, —a) for some a € C*, and so ¢(y) = 0. It follows

that .
1 1 41Z(X)|
L= 0lg == D le@* = — o) = =
R
ie. |X|=|X/Z(X)| = 4. Thus X = C2, and so Aut(X) = S5. Now the conjugation by h
induces an element of odd order of Aut(X), hence the cube of the latter is trivial, i.e. h?
centralizes X. O]

The next result overlaps with Theorem but we will give an independent proof which
does not rely on the analysis of 2-tensor induced sheaves:

THEOREM 5.2.12. Let ‘H be a geometrically irreducible hypergeometric sheaf in charac-
teristic p of type (D, m) with D —m > 1. Suppose that H has finite geometric monodromy
group G = Ggeom and is primitive. Suppose in addition that D # 4,8,9. Then one of the
following statements holds.

(a) G is an almost quasisimple group and satisfies (S+).
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(b) D =3,5,7 and G satisfies (S+).

(c) p>2, D=7p", and H is Kloosterman, in fact the sheaf KI(Charyyi, (p" + 1)) (studied by
Pink |[Pink] and Sawin [KT1l p. 841]).

(d) p=2, D =2", G satisfies (S+) and is an extraspecial normalizer as in Lemmal[l.1.5(i)(c)
with r = 2.

PROOF. (A) Let ® : G — GL(V) be the faithful representation realized by H. Again by
Lemmas 2.3 and 2.4 of [KT5], (G,V) is tensor indecomposable, and hence satisfies (S—).
Note that if G is almost quasisimple, then (S—) implies by Lemma that F(G) is irre-
ducible on H, and so (S+) holds by Theorem [3.1.6] So we will assume that G is not almost
quasisimple. The arguments in the proof of [GT3], Proposition 2.8] (but assuming only that
® is primitive and tensor indecomposable) show that G/Z(G) has a unique minimal normal
subgroup L, which is either a direct product S™ of n > 2 copies of a finite non-abelian simple
group S, or an elementary abelian r-group of order 72" = D? for some prime r. Our proof
will be divided into cases according to this dichotomy. Let gy denote a generator of the image
of I(0) in G and note that gy has finite order coprime to p. Clearly, H satisfies (S+) when
D is a prime number, and so we may assume D > 10 or D = 6.

First we consider the case D —m = 1. Then any nontrivial element = in the image of
P(c0) in G acts trivially on the tame part Tame of dimension D — 1 and nontrivially on
the wild part of dimension 1 and thus is a complex reflection. Applying Mitchell’s theorem
[Mit], we see that G = Z(G)Gy, where either Gy = Spy in its deleted permutation module,
or D =6 and Gy = PSp,(3) - 2 or 61 - PSU4(3) - 25) (recall we are excluding D = 7,8). But
this violates the above dichotomy. [Alternatively, we can also apply Theorem to rule
out this case.|

From now on we may therefore assume that D —m > 2.

(B) Here we assume that L = S™ with S simple non-abelian and n > 1. Let L denote the
full inverse image of L in G and let R := L(*). As shown in part 2) of the proof of [G'T3|
Proposition 2.8] (see also Lemma [1.1.9(b)), R = Ry * Ry ... * R, is a central product of n
quasisimple groups Ry = Ry = ... = R, which are transitively permuted by G. Furthermore,
the R-module V' decomposes as V; @ Vo ® ... ® V,,, where V; is an irreducible R;-module, R;
acts trivially on V; with ¢ # j (since R; is perfect), and G' permutes the spaces V; transitively,
that is,

G < (GL(V)) @ GL(V3) ® ... ® GL(V,)) % S,

and (G, V) is n-tensor induced. Moreover, the arguments in the proof of [GT3| Proposition
2.8] (and of [GT3l, Lemma 2.6]) show that the image of G in the resulting homomorphism
O : G — S, agrees with the homomorphism G — S,, induced by the conjugation action of G
on {Ry, Ry, ..., R,}.

Let d := dim(V}), so that D = d". Since W = D —m > 2, by Theorem [1.2.2] G is the
normal closure of (go). It follows that g induces a nontrivial permutation 7 = ©(go) on the
set {V1,Va, ..., V,}.

(i) First we consider the case d > 3. By Proposition [5.2.3] 7 is a 2-cycle, and we may
assume that go interchanges V; and V;. Furthermore, if h denotes the action of g2 on V4,
then A has simple spectrum and

(5.2.12.1) o(h) > d?*/2.
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Correspondingly, go interchanges R; and Ry and normalizes each R; with j > 2; in partic-
ular, g2 normalizes R;. Recall that the quasisimple group R; acts irreducibly on Vi, via a
representation ®;. Now ®;(R;) is quasisimple, and R, := (®1(Ry), h) is an irreducible, finite
(since R; and g have finite order), almost quasisimple (since any element that centralizes it

is a scalar) subgroup of GL(V}). Applying Theorem [3.1.7| and using (5.2.12.1)), we see that
one of the conclusions (b)—(f) of Theorem [3.1.7| must hold.

(ii) Assume we are in the case of (e), so that d = 4 and R; = Sp,(3). First consider the
case 6(h) = 9. Using [GAP] we can check that h has eigenvalues

for some v € C*. Arguing as in the proof of Lemma [5.2.2 we see that the spectrum of gy on
Vi ® V5 consists of

aj, 1 <j <4, £/auay, 1 <i<j<d4

In particular, (g = /(7o) (7(q) is a multiple eigenvalue for gy on V; @ V5, which is impossible
by Lemma [5.1.2] since g has simple spectrum on V.

Next we consider the case o(h) = 12. Using [GAP] we can check that h has eigenvalues

{Bil1<j<4}=6-{C, [i=0,1,4,7}
for some v € C*. As above, the spectrum of gy on V; ® V5 consists of
In particular, 6¢, = \/(6¢12)(0¢],) is a multiple eigenvalue for gy on Vi ® Vs, again contra-
dicting Lemma [5.1.2
(iii) Now we consider the case of (f), so that d = 6, R/Z(R;) = PSU4(3) - 25, and
o(h) = 18. Using [GAP]| we can check that h has eigenvalues
{oj[1<j <6} =7-{¢s[i=1,3,6,713,15}
for some v € C*. As above, the spectrum of gy on Vi ® V5 consists of
78 1§j§6, :t,/()éiOéj, 1§’l<]§6
In particular, v¢fy = +/(7¢i8)(7¢fg) is a multiple eigenvalue for gy on V; ® Vs, which is
impossible by Lemma

(iii) Assume now that we are in the cases (b) or (d) of Theorem [3.1.7 so that 6(h) = 5.
Using [GAP] we can check that h has eigenvalues

{aj[1<5<3t=7-{G|i=014}
for some v € C*. As above, the spectrum of gy on Vi ® V5 consists of
aj, 1 <5 <3, £y/ma;, 1<i<j <3
In particular, v = /(7(5)(7¢2) is a multiple eigenvalue for gy on V3 ® V3, which is impossible
by Lemma[5.1.2] .
Next, consider the case (¢) of Theorem [3.1.7, so that R, = PSLy(7) and 6(h) = 7. As
Ry acts trivially on V; with j > 2, we see that R; = Ry = PSL,(7). As shown in the proof

of Proposition [5.2.3, the action on gy on V; ® V5 has order 20(h) = 14. For any j > 3, go
normalizes R; and fixes V;. As the 3-dimensional representation of R; = PSLy(7) on Vj is



96 5. TENSOR INDUCED LOCAL SYSTEMS

not fixed by any outer automorphism of R;, go|v, is a multiple scalar of an element in Rj,
and so has central order 2, 3, 4, or 7. It follows that

(5.2.12.2) 0(go) divides 84 and is divisible by 14.

In particular, we have by Lemma that D = 3" < 84, and p # 2,7. By assumption,
n > 3. If moreover p # 3, then by Proposition , we get that O(G) is a cyclic transitive
subgroup of S,,, generated by an n-cycle. But this is impossible, since ©(gg) is a 2-cycle. Now
if D = 3% then 6(gy) = 84 by Lemma and , forcing p # 3, and we arrive at a
contradiction. Suppose D = 3% and p = 3. Then we must have 6(gy) = 28 by Lemma
and (5.2.12.2). In particular, we may assume that the simple-spectrum (by Lemma [5.1.2)
element gy, has central order 4, and so has eigenvalues 1, (4, (3 on V3. On the other hand,
if h has eigenvalues 3;, 1 < j < 3, on Vi, then, as above, go has both /813, as eigenvalues
on Vi ® V,. It follows that (44/F1 52 is a multiple eigenvalue for gy on Vi ® Vo ® V3 = V| again
a contradiction.

(iv) Now we consider the case e = 2. As mentioned in the proof of Theorem [3.1.7]
we now have that the almost quasisimple group R; in GLy(C) must be SLy(5), and so
R; = R; = SLy(5). As the 2-dimensional representation of R; = SLy(5) on V; is not fixed
by any outer automorphism of R;, if gy fixes V; then goly, is a multiple scalar of an element
in R;, and so has central order 2, 3, or 5. By Proposition T = O(go) is a 2-cycle, a
3-cycle, or a disjoint product of a 2-cycle with a 3-cycle. Given any orbit of length e of O(go),
we know that the action of g¢ on each tensor factor in this orbit has central order 2, 3, or 5.
It follows that

(5.2.12.3) 5(go) € {6,12,18,30,36,60,90}.

By Lemma 3.1.1, D = 2" < 6(go) < 90, and D # 4,8 by assumption. Hence D = 2" with
4<n<6. Assume D = 2° or 2 and o(gy) € {36,60,90} by Lemma [3.1.1] and (5.2.12.3).
In particular, p # 2,3 as gp is a p’-element. Again applying Proposition [5.2.7, we see that
O(G) = C, is generated by an n-cycle in S,,. For n = 5 or 6, this however contradicts the
given shape of m = ©(gp).

Finally, assume n = 4. Then 7 = O(gy) can be only a 2-cycle, or a 3-cycle. Hence instead
of (5.2.12.3)), we now have that 6(gy) € {4,6,9,10,15}. Hence 6(gy) < 16 = D, contrary to
Lemma B.1.11

(C) Now we consider the case where L is an elementary abelian r-group of order r?" = D2
Note that in this case, by Lemmal|l.1.9, we have that G admits a normal r-subgroup R as in
Lemma M(C), in particular, R acts irreducibly on V', and

(5.2.12.4) R/Z(R) is elementary abelian of order 7"

It is clear that G cannot be tensor induced and hence satisfies (S+) when D = 2,3,5,7.
Assuming D = r" ¢ {2,3,4,5,7,8,9}, we then have D > 11 and therefore can apply Theorem
[1.2.6, Assuming furthermore that conclusion (c¢) does not hold, we must then have that
p=r=2 1If (G,V) is moreover (S+), then we arrive at (d). Hence we may assume that
(G,V) is k-tensor induced for some k > 2, and that

G < (GL(V4) ® GL(V3) ® ... ® GL(V)) x Sy.
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Let © : G — S denote the corresponding homomorphism, and let 7 := O(go). If 7 = Id,
then we can again apply Theorem to conclude that ©(G) = {Id}, a contradiction. So 7
is a nontrivial permutation of odd order. By Proposition |5.2.3] this implies that dim(V;) = 2,
2" = D =2% ie. k=n, and 7 is a 3-cycle.

Let K := Ker(0), so that K > Z(G). Assume that K = Z(G). Then, as RNZ(G) = Z(R)

by Schur’s lemma, we have by ([5.2.12.4)) that
C?" = R/Z(R) = R/(RNZ(G)) 2 RZ(G)/Z(G) < G/Z(G) = G/K < S,
which is impossible, since the 2-part of |S,| is
oln/20+[n/22 4 |n/2) 4. _ on
Hence K > Z(G), and so K/Z(G) is a nontrivial normal subgroup of G/Z(G). But L =
R/Z(R) is the unique minimal normal subgroup of G/Z(G), so we conclude that K > R. In
particular, R fixes each V; and induces a projective representation on V;.

Let X < PGL(V;) denote the image of R in this projective representation. Note that
Z(R) acts as scalars on V;, so using (5.2.12.4)) we see that X is an elementary abelian 2-
group. Recall that g3 € K. As R <1 K, we see that g5 normalizes X, and g3 has odd order.
By Lemma [5.2.11} gj centralizes X, i.e. [g], z] acts as a scalar on V; for each z € R. Tt follows
that [go, z] acts as a scalar on V', and so belongs to Z(G). Thus we can find

f:R—Z(G)
such that gjzgy® = zf () for all z € R. Now for 2,y € R we have

vy f(zy) = gowyge” = gowgn” - 9oygo " = wf(x) - yf(y) = zyf(2)f(y),
ie. f € Hom(R,Z(G)). In particular, if 2¢ denotes the exponent of R, then (f(x))* =
f(xz*") =1 for all z € R. On the other hand, an induction on j > 1 shows that

gy wge = a(f(x)).
In particular, if b denotes the odd order of gj, then
z = gy'wgy " = a(f())".
Thus f(x)’ = f(2)* =1, and so f(z) =1 for all x € R. We have shown that g centralizes

R. Hence, by Schur’s lemma, gj acts as a scalar, and so 6(gy) divides 9. But this contradicts
Lemma [3.1.1], since D > 16. O






CHAPTER 6

(Non-)existence results

6.1. Type A

We begin with an elementary fact and some lemmas about exotic behavior in low char-
acteristic.

LEMMA 6.1.1. Let @ < Sp(V) = SLy(C) be a finite 2-subgroup which acts irreducibly on
V = C? and has only integer traces. Then Q = Qg, the quaternion group of order 8.

PROOF. Certainly, @ is non-abelian, and so |Q| > 8. Next, any involution x € @) acts on
V as —Id, and thus is unique. Consider any y € @ of order > 4. Then y acts as diag(a, a™ 1)
with o € C* of 2-power order > 4 and o + o' € Z, hence {o,a'} = {1,—1}. Now, if ¢
denotes the character of the )-module V', then

QI =1Ql- [, ¢lo =D le(y)* =4 +4,
yeQ
ie. Q= Dgor (Qs. As (Q has a unique involution, we conclude that ) = Q)s. O

LEMMA 6.1.2. Suppose p = 3. Let H be a Kloosterman sheaf K := Kly(x, X) with Ggeom =
SLy (e.g., take x = 1, or take x of prime order > 5). Then Sym®(K) is a hypergeometric
sheaf of type (4,2), whose Ggeom is SLg in its 4-dimensional irreducible representation.

PRrROOF. The I(oo)-representation of any IC := Kly(x,X) is independent of which y we
choose, cf. [Ka-ESDE, 8.6.4]. This allows us to compute the I(co)-representation by choos-
ing a particular K. We take the particular choice of

Ko = Kly(&1,€7) = Le, ® Ky (1, &),
which by [Ka-GKM] 5.6.2] is geometrically the Kummer direct image
2]:(Le, © Ly(ar))-
Thus the I(co)-representation of [2]*(K) is the direct sum
Loy @ (Lya) D Ly(-20)):
So the I(co)-representation of [2]*(Sym?(K) is
Le, ® (Lyon) D Lyn) © Lo(-20) D Ly(—60))-

Up to this point, the discussion has been valid in any odd characteristic. But when p = 3,
the two characters Ly(we,) become trivial, so the I(oco)-representation of [2]*(Sym?(K)) is
just
Le, ® (11D Lyow) ® Ly(-20))-
99
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Therefore Swans ([2]*(Sym*(K))) = 2, and hence Swan,(Sym*(K)) = 1. We also see that
the I(oo)-representation of any such K is the direct sum Wildy & Tames.

Thus Sym®(K)) is a lisse sheaf on G,,/F3 which is geometrically irreducible (its Ggeom
being SLs in its 4-dimensional irreducible representation, which is tame at 0 because K is tame
at 0) and with Swan,, = 1. By [Ka-ESDE] 8.5.3], it follows that Sym®(K) is hypergeometric
of type (4,2). O

LEMMA 6.1.3. Suppose p = 2. Let H be a Kloosterman sheaf K := Kly(x,X) with Ggeom =
SLy (e.g., take x = 1, or take x of prime order > 5). Then Sym*(K) is a hypergeometric sheaf
of type (5,2), whose Ggeom 1s the image of SLy in its 5-dimensional irreducible representation.

PROOF. One knows [Ka-ESDE] 8.6.4] that the P(oo)-representation of K is independent
of the choice of y. Take the particular choice of

IC() = K;lw(fg,&?)
We now specialize to the case p = 2. Then P(o0) acts irreducibly, cf. [Ka-GKM, 1.15].
One knows that the Kummer pullback |3]*(Ky) on G,,/Fy is geometrically isomorphic to the
local system whose trace function at ¢ € Fya is ¢ + (1/2%) > (2 + tz). This local system
has its Ggeom a finite [KT1), 20.1] 2-group. All Frobenius traces are thus integers, and the
representation is symplectic. Thus the image of P(o00) is a finite 2-group inside SLy(C) which
is irreducible and has traces in Z. By Lemma [6.1.1 we see that the image of P(c0) is the
quaternion group (Jg in its irreducible 2-dimensional representation stds. From the character
table of Qg, one sees that Sym*(std,) is the direct sum of 2 copies of 1 and each of the three
linear characters of order 2. This shows that the P(occ) representation of [3]*(Sym*(K)) is
the direct sum of 2 copies of 1 and each of the three linear characters of order 2. Therefore
the I(oco)-representation of Sym*(K) is the direct sum of a 2-dimensional tame part and a
3-dimensional wild part, say Tame, @ Wilds. But Sym*(K) has all co-slopes < 1/2, and hence
has Swan,, < 3/2. But Swan conductors are integers, so Swan,, is 0 or 1. It cannot be 0
since the wild part is nonzero. We now conclude exactly as in the proof of Lemma [6.1.2
above. OJ

LEMMA 6.1.4. Suppose p = 2. Let H be the hypergeometric sheaf Hypy(1,1; p) with p #
1. Then Sym®(H) is geometrically isomorphic to the hypergeometric sheaf Hypy (1,1, 1; p2, p?)
of type (3,2), whose Ggeom 15 Os.

PRrROOF. The P(o0) representation of H is 1 & L£,. Hence the P(0co0) representation of
Sym*(H)is 1@ 1@ L. More precisely, let us consider the I(oco)-representation of H. By
[Ka-ESDE, 8.12.2 (1)], det(H) = L, geometrically. Therefore the I(co)-representation
has det = Ly, and £, is one summand. So the I(co)-representation is the direct sum
L, L, Ly, Thus the I(oo)-representation of Sym?(H) is

£p2 @b ﬁpig@ Ep@ ,Cw.

Now H has Ggeom = SL,, because it is a semisimple subgroup of SLs; which contains a
nonsemisimple element (namely local monodromy at 0, which is a unipotent Jordan block of

size 2). Therefore Sym?(H) has G, = SOs. Thus Sym?(H) is geometrically irreducible,

geom
lisse on G,,, tame at 0 and has Swan,, = 1. Thus Sym?*(#) is hypergeometric of type
(3,2). From its local monodromies, it is a multiplicative translate [Ka-ESDE| 8.5,5] of
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Hypy(1,1,1;p? p?). This sheaf is orthogonally self-dual, cf. [Ka-ESDE, 8.8.1], but its
determinant is Ly, so its Ggeom contains but cannot be SOs3, 50 its Ggeom is Os. In fact, there is
no multiplicative translate, because its determinant, £, detects multiplicative translates. [

THEOREM 6.1.5. Let ‘H be a hypergeometric sheaf in characteristic p, of type (D, m) with
D >m and D > 3, such that Gg..,, is a simple algebraic group of type Ay acting irreducibly
on H. Then (D,m,p) = (5,2,2), (4,2,3), (3,1,p > 2), (3,0,2), or (3,2,2). Conversely, all
the listed cases do occur.

PROOF. (i) Writing G := Ggeom, We have Z(G°) = Z(G) N G° by Schur’s lemma, and
G = Z(G)G" since G° has no outer automorphisms. Hence G/Z(G) = G°/Z(G°) = PGLy
and so G admits an irreducible representation A : G — GL3. Set e:=3 if p=2¢t D.

Assume in addition that 2|D, so that G° = SLy. If m := |Z(G)| is odd, then G =
Z(G) x SLy admits an irreducible representation A : G — GLg with kernel Z(G); set e = 2
in this case. If 2|m, then G = Z(G) o SLy is a central product, with Z(G) N SLy = (2™/2),
where Z(G) = (z). In this case, G admits a faithful irreducible representation A : G — GLo,
with SLs acts via its natural representation and z acts as the scalar (,,; again set e := 2.

Now consider the case p > 2 and 2 { D, so that G° = PSL; and G = Z(G) x G°.
Then G = I'/(g), where I' := Z(G) x SLy and Z(SLy) = (j) = C5. Now I' admits an
irreducible representation A : I' — GLs, with kernel Z(G) and with SL, acting via its natural
representation. Set e := 2 in this case.

Applying [KT5 Theorem 4.14] to A, we obtain

(6.1.5.1) 1<w:=D-m<e<3.

Without any loss, we may assume that G° = SL(W) = SL, acts on H via Sym" (W), where
n=D-1.

(ii) Now we consider any element g # 1 in the image @) of P(c0) in GG, and write g = zh
with z € Z(G) and h is conjugate to diag(a, ofl) € G° for some o € C* and

(6.1.5.2) o # 1,
since g ¢ Z(G). Then z acts on H as a scalar f € C*, whereas h acts on H as
(6.1.5.3) diag(a™, a"2,...,a® " a™"),

and D —w > n — 2 of these eigenvalues occur on Tame and so are all equal to 57! (as g acts
trivially on Tame). On the other hand, no two consecutive eigenvalues o’ and a/~2 can be
equal, because otherwise a? = 1, contrary to . Now, if D > 8, then each of the four
pairs {a?,a’7?} with j =n, n —4, n— 8, and n — 12 > 2 — n, contains 3! at most once,
forcing m = dim Tame < D — 4, contrary to (6.1.5.1)).

(iii) Assume now that D = 6 or 7. Again, each of the three pairs {a/, a2} with j = n,
n—4,n—8 > 2 —n, contains 87! at most once. But dim Tame > D — 3 by , SO
each of them contains 37! exactly once, and furthermore w = 3. Since e = 2 when 2|D,
implies that D = 7. Thus either o = o % = 87!, or "2 = "% = 7. In either
case we have o = 1, and so we may assume that o = {4 because of . Now g acts
as (- diag(—1,1,—1,1,—1,1,—1). As 1 is an eigenvalue of multiplicity > 4 for g, we have
B = —1, and g acts on Wild as the scalar —1. We have therefore shown that each nontrivial
element g € @) acts on Wild as the scalar —1. But this is impossible since we also have w = 3.
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(iv) Suppose D = 5. Then h acts on H as diag(a*,a?,1,a72, a™*), see (6.1.5.3)), and 1 is
an eigenvalue for g with multiplicity m > 2. This implies that o, or a®, or a* = 1. Together
with , we have one of the following three situations.

e o® =1but o’ # 1. Then o' = —1, and g acts as 8- diag(—1,¢s, 1, —Ca, —1). Asm > 2,
we must have that § = —1, g is a 2-element and hence p = 2, and w = 3. As ptw, Q is
elementary abelian by [KT5l Proposition 4.10], and thus g? = 1, which is a contradiction as
it has eigenvalue (4.

e o = 1 but o # 1. Then we may assume that a?> = (3, and so ¢ acts as 3 -
diag(¢Z,¢s5,1,¢3,¢3). As m > 2, we must have that 3 = (3 or ¢, g is a 3-element and
hence p = 3, and w = 3. But this contradicts , since e = 2 in this case.

e o' =1but a® # 1. Then o® = —1, and g acts as f3 - diag(l, —1, 1,—1,1). Ifm > 3,
then § = 1, and ¢ acts on Wild as the scalar —1, a contradiction since w = 2. So m = 2,
w=3, ==x1, p=2, as stated.

(iv) Suppose D = 4. Then h acts on H as diag(a?®, o, a™', a73), see (6.1.5.3)), and 1 is an
eigenvalue for g with multiplicity m > 2. This implies that a?, or a® = 1. Together with
(6.1.5.2)), we have one of the following two situations.

e o' = 1 but a? # 1. Then we may assume that o = (4, and g acts as B-diag(—@, Cay —(y, C4).
As m > 2, we must have that § = £(4, and ¢ acts on Wild as the scalar —1, a contradiction
since w = 2.

e o® = 1 but a®> # 1. Then we may assume that o = +(3, and so g acts as £ -
diag(l, G, 3, 1). As m > 2, we must have that § = £1, g is a 3-element and hence p = 3,
and w = 2, as stated.

(v) Now we consider the case D = 3. Assume first that p > 2. By (6.1.5.1), 1 < w < 2.
6.1.5.3)

Assume in addition that w = 1. Now h acts on H as diag(a?,1,a72), see (6.1.5.3)), and 1 is
an eigenvalue for g with multiplicity m = 2. This implies by that o? = —1, 8 = —1,
and g acts as diag(1,—1,1), i.e. p = 2, a contradiction.

Assume now that p = 2 and w = 2. By [KT5| Proposition 4.8(iv)], Z(G) has odd order,
and recall that G = Z(G) x PSL,y. Hence, Z(G) acts on ‘H via a linear character y of odd
order. Tensoring with Ly, we get a hypergeometric sheaf H' with Ggeom = PSLs, hence
self-dual. Now the set {x1, x2, x3} of “upstairs” characters of H' is stable under complex
conjugation, and so it contains 1. Similarly, the single “downstairs” character of H' is
stable under complex conjugation, and so it equals to 1. But this violates the geometric
irreducibility of H'.

(vi) For the converse, as shown in Theorems 3.3 and 3.7 of [Ka-CC], there exist hyperge-
ometric sheaves, of type (3,0) in characteristic p = 2 and of type (3, 1) in any characteristic
p > 2, with Ggeom realizing PSLy in its irreducible 3-dimensional representation. The cases

(D,m,p) = (5,2,2), (4,2,3), and (3,2,2) are shown in Lemmas [6.1.3] and to
0

occur.

To handle higher rank groups of type A, first we need a lifting lemma. For brevity, in
what follows we use ¥¥(V) to denote Sym*(V') when k € Zs; and ¥ = Sym, and AF(V)
when ¥ = A. In fact, we make the convention that the notation $*(V) when ¥ = A always
implies that 1 < k < dim(V') — 1. Slightly abusing the terminology, we will call a character
of a finite group @ scalar, if it is a multiple of a linear character of Q).
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LEMMA 6.1.6. Let k € Z>y, V = C%, and ¥ € {Sym,A}. Suppose H = CV and G <
GL(H) is a reductive group with finite center Z(G), such that G = Z(G)G° and G° acts
on H as SL(V) acts on X*(V). Then we can find a reductive subgroup H < GL(V) with
finite center Z(H) and a finite cyclic subgroup Z < H NZ(GL(V)) of order k, such that the
following conditions hold:

(a) H="Z(H)SL(V).
(b) Let W denote the natural action of GL(V) on X*(V). Then Z is the kernel of U|y.
(c) There is a surjective homomorphism m : H — G with Ker(w) = Z and V|g = ® o,

where ® denotes the representation of G on H.

In other words, G acts on H as H acts on XF(V).

PROOF. Since G° is irreducible on H, we have that Z(G) = (z), where z = (, - Idy €
GL(H) for some n € Z~;. By assumption, Z(G°) = Z(G) N G° is the image of Z(SL(V)) =
(4) = Cy acting on X¥(V). Choosing j = (4 -Idy € GL(V), we have that j acts on H as
¢%-1dyg. Since the latter belongs to Z(G), we have 1 = (¥ i.e. d|kn. Set

t = Cun - Idy € GL(V), H := (£)SL(V) < GL(V), Z := (t").

This ensures that (a) holds. Also, the kernel of GL(V') acting on ¥¥(V) is precisely ((x-Idy ) =
Z; in particular, (b) holds. Next, t acts on ¥*(V) as the scalar ¢}, = ¢,, which is the same
as the action of z on H. Now we can define 7 : H — G by setting 7(t) = z and (s to
be the natural projection SL(V') — SL(V)/(Z N (SL(V)). O

LEMMA 6.1.7. Let Q) be a finite group, and let x, be complex characters of Q).

(i) Suppose that xib is a multiple of some linear character 7. Then x = x(1)a and ¢ =
W(1)B for some linear characters «, 5 of Q such that aff = T.

(ii) Suppose that ¢ = p(1)X\ for a linear character X\ of Q, where either ¢ = Sym®(x) for
some k > 1, or o = N¥(x) for some 1 < k < d—1. Then x = x(1)v, where v is a
linear character of Q with v* = \.

(iii) Suppose that x = Indg(a) for some character o of a subgroup R < Q) and that x is a
multiple of a linear character X of Q). Then R =@ and o = x.

(iv) Suppose Q acts on a finite non-empty set Q, and suppose for some m, 1 <m < |Q|, Q
stabilizes every m-subset of 2. Then Q) acts trivially on €.

PROOF. (i) First we consider the case 7 = 1g. Write x = > 7", x; and ¢ = > ¢;, with
Xi, ¥; € Irr(Q). By assumption, @ = Ker(x;v;); in particular, 1 < [y;1;, 1g] = [X,-,Ej]. As
x; and 1); are irreducible, it follows that x; = Ej. If moreover x;(1) > 1, then, as 1 = [[XZ»,%-],
we see that x;1; must involve some nontrivial irreducible character of ), a contradiction. We
have shown that, for any pair 7,7, x; = Ej and has degree 1, whence the statement follows
in this case.

The general case then follows, if we replace ¥ by ' := 97T and apply the previous case
to xv'.

(ii) It suffices to show that, in a representation ® affording x, each g € @ acts as
a scalar matrix. Assume the contrary, so that d > 2. We may assume that ®(g) =
diag(au, s, ..., 1), but @ # as. Now, if ¥ = Sym, then X*(®)(g) admits (at least)
two distinct eigenvalues of and afay. If 1 < k < x(1) — 1 and ¥ = A, then X¢(®)(g)
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admits (at least) two distinct eigenvalues ayasay ... agr and asasay ... apr. We reach a
contradiction in both cases.

(iii) Assume the contrary: @ > R. By assumption, y = x(1)A, so for any g € Q ~ R we
have

W= (@@= | X ategr i@ < CUEE <0 pjatr) = v,

z€Q, rgr—leR

a contradiction.

(iv) Assume the contrary: there exists some w € Q and g € @ such that g(w) # w. Then
we can find an m-subset A C Q \ {g(w)} that contains w. As w € A but g(w) ¢ g(A),
g(A) # A, a contradiction. O

LEMMA 6.1.8. Let C? =V = V,®Vo®d...®V,, where dimV; = e = d/n. Let G := G xS,
with Gy = [[;—, GL(V;), be the stabilizer of this decomposition in GL(V). If k € Z>; and
Y € {Sym, A}, then there is an isomorphism of Gy-modules

(6.1.8.1) ¢ TH(V) ) STV @ 52(Va) @ ... 0 57 (V,),

T genes inEZZo, i1+io+...+in=k

which is also an isomorphism of G-modules in the case ¥ = Sym. If ¥ = A, then ¢ needs
not be G-equivariant, but ¢ has the property that the permutation actions of G on the sets of
subspaces ¢~ (L1 (V1) @ X2(Va) ® ... @ £ (V,,)) (on the left) and S7 (V) @ 52(Va) ® ... ®
Y (V,,) (on the right) are the same.

PROOF. The existence of a vector space isomorphism ¢ is well known, see [FH, (B.1),
(B.2)]. Now assume X = Sym. By viewing V = (V*)*, we may identify S¥(V) as the space of
homogeneous polynomials of degree k in d = en variables x4, ..., x4, where V; is spanned by
T(i—1)e41s - - - » Tie, and on which GL(V) acts via linear substitutions. Identifying each S7/(V;)
with the span of degree j homogeneous polynomials in variables z(i_1)et1, .- ., T, We get a
canonical isomorphism ¢ of G-modules.

Next assume that ¥ = A. Recall that AF(V) is the quotient of V®* by the subspace X
spanned by all v; ®...®wv, with two of the vectors equal. If m denotes the natural projection,
then vy A ... Avg = (v ® ... ® vg). Furthermore, if W is another C-space, then there is a
canonical linear map from A%(V)@AY(W) into A*T0 (VW ), taking (viA. . .Ave)@(wiA. . .Awy)
tovy A...Avg Awy A ... ANwy. This determines an isomorphism

(6.1.8.2) Fvew) = @ A W),
a+b=k

see [FH., (B.1)], which can easily be seen to be an isomorphism of GL(V') x GL(W)-modules.
Assume in addition that dim(W) = dim(V) and let 7 € GL(V @ W) be the involution
e; <> f;, for a fixed basis (eq,...,e4) of V and a fixed basis (fi,..., fg) of W. With v; € V
and w; € W as before, 7 sends v1 A ... Avg Awi A ... Awy to

T(U) A AT(V) AT(wp Ao Awy) = 27(wi) A AT(wp) AT(v1) Ao AT(0,)
on the left-hand-side of (6.1.8.2), and (v1 A ... Av,) @ (w1 A ... Awy) to
(T() Ao o AT(02) @ (T(wi) Ao AT(wp)) = (T(wi) Ao AT(wp)) @ (T(v1) Avo o AT(0,))
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on the right-hand-side of . Taking v; among ey,...,eq and w; among fi,..., fq,
we see that the actions of ¢ on the basis vectors of the two spaces in agree with
the indicated isomorphism up to a sign. This proves the case n = 2 for A*. The general
case then follows by iterating the isomorphism in , noting that S,, is generated by
transpositions. ]

The heart of the proof for type A groups relies on the analysis of the following situation:

HYPOTHESIS 6.1.9. Let V = C? with d > 3, k € Z>y, ¥ € {Sym, A}, p a prime, and
2 <k <d-2when ¥ = A. Let J < GL(V) be a finite subgroup with the following
properties:
(a) J = Q x C, where @ is a normal p-subgroup, and C' = (Z, &) is a p’-subgroup for some
Z < Z(GL(V)) and some o € J;
(b) There exists a linear character v of @ such that the character of the J-module X*(V') is

p+ Z 0;,
i=1

where ¢ € Irr(J), (1) > 1, and [¢|g,7]o = 0. Furthermore, either m = 0, or 6; € Irr(.J)
and 0;|g = 6;(1)y for all 1 <i <m.

Note that in the case ¥ = A we may, and will always, assume further that
(6.1.9.1) 2<k<d)2.

Indeed, it is well known that AY7F(y) = AF(x)det(x). Now, if J satisfies for AF(V),
then it also satisfies for AY7F(V), but with v replaced by 7 - det(x)|o. Replacing k by
d — k, we can therefore ensure (6.1.9.1).

PROPOSITION 6.1.10. Assume Hypothesis and assume in addition that d > 5 if
Y= A. Then J acts irreducibly on V.

PROOF. (i) Assume the contrary: J satisfies but the J-character x afforded by V
is reducible: x = a + f for some characters a and g of J, where a := a(1) > (1) =: b > 1.
In particular, 2a > a + b = d. We note furthermore that

(6.1.10.1) ¢|o is not scalar.

For, otherwise we would have ¢|gz = ¢(1)v for some linear character v of QZ (since Z acts
via scalars on X*(V)). Then v is J-invariant. But J/QZ is cyclic, so v extends to J, and, by
Gallagher’s theorem [Is| (6.17)], any irreducible character of J that lies above v is of degree
v(1) = 1. Thus ¢(1) = 1, contradicting 6.1.9(b).

(ii) By Lemma we can write
m k
(6.1.10.2) p+> 0= a+p8) =) S (a)(B).
i=1 1=0
Here, some summands X*~/(«)3!(3) may be zero in the case ¥ = A. We will call the

summand X*H(a)XH(B) admissible, if either ¥ = Sym, or S !(a)X!(8) # 0 and ¥ = A.
Since ¢ # 6; by hypothesis, there always exists a unique j such that ¢ is a constituent of



106 6. (NON-)EXISTENCE RESULTS

an admissible summand X577 ()% (8) in (6.1.10.2). Moreover, any admissible ¥¥~/(a)X!(53)
with [ # j is a sum of some 6; and hence is a multiple of 7 on restriction to Q.

Consider the case j # 1. By the above, ($¥7!(a)3)]|q is a multiple of v, and 1 <k —1 <
d/2 < a in the case ¥ = A, see (6.1.9.1). By Lemma both a|g and f|g are scalars:
alg = aX and B|q = bv for some linear characters A, v of Q. In this case, (X777 (a)X%(8))]o
is a multiple of A*717, and so is ¢|q, contrary to (6.1.10.1]).

(iii) We have shown that j = 1. In the case ¥ = A, k < a by (6.1.9.1]), hence ©¥(a)

is always admissible and so is scalar on ). Assume in addition b = 1. If ¥ = A, (6.1.9.1))
implies 4 < 2k < a+ 1, and so k < a — 1. Hence a|g = a(1)\ is scalar by Lemma [6.1.7]

It follows that (X*7'(a)8)|e is a multiple of the linear character A= - 8|g, whence g is
scalar, contradicting

Next suppose b = 2. If ¥ = A, then d > 5 by assumption, whence k& < a by (6.1.9.1)).
Hence we can apply Lemma m to ¥¥(a) to see that g is scalar, and so, as Z acts via
scalars on V, algz = a) for some linear A € Irr(QZ). It follows that (XF7!(a)B)|qz is
a multiple of \¥1 . B8|o,. Consider the case 8|gz € Irr(QZ). Then ¢|gz is a multiple of
the irreducible character \*~! - 8|oz, whence the latter is J-invariant, and so, J/QZ being
cyclic implies by Gallagher’s theorem that ¢|gz = A*~' - B|gz. Note that X*1(a)(1) > 1,
so X1 (a)B — ¢ is a true character, whose restriction to @ is still a multiple of \*~1 - g|q,
contradicting (6.1.10.2). Assume now that S|gz is reducible. Then (XF7'(a)8)|oz is a
multiple of \¥=1 . Bloz = B1 + B2 with 3; € Irr(QZ) of degree 1. Without loss, we may
assume @|gz contains fy. As J/QZ is cyclic, Stab;(f;) is cyclic over @Z and has index < 2
in J. Again by Gallagher’s theorem, either ¢ is of degree 1 and ¢|gz = i, or ¢ is of degree
2 and |gz = 51 + B2. However, as ¥ 1(a)(1) > 1, ¥ !(a)B — ¢ is again a true character,
whose restriction to @ contains (3 + (2)|q, contradicting (6.1.10.2)).

We have shown that b > 3. Consider the case k£ > 3. Then we can apply Lemma [6.1
to 2(a)X%(B) to see that alg = aX and B|g = bv for some linear \,v € Irr(Q). In this
case, (S !(a)B)|q is a multiple of N*"'v, whence so is ¢|g, contrary to (6.1.10.1)). Finally,
assume that k& = 2. Applying Lemma to X%(a) and X?(8), we again see that a|g = a\
and f|g = bv for some linear A\, v € Irr(()), and arrive at a contradiction as in the previous
case. UJ

ProproSITION 6.1.11. Under Hypothesis suppose that J acts transitively on the
summands of a decomposition V=V, ®Vo®...®V, with dimV; =t =d/n < d. Then one
of the following statements holds.

(A) @ stabilizes each V;.

(B) ¥ = A, t =1, and one of the following possibilities occurs:

(a) p=2,d=4, and k = 2.

(b) p=3,d=6, and k = 3.

(c)p=2,d=28, k=23, J is irreducible on N>(V), and o has at most 14 distinct
eigenvalues on N3(V).

(d) d = p°, k = 2, J is irreducible on A*(V), and o has at most k(d — 1)/2 distinct

eigenvalues on N*(V'), where either k = 4, or d = 3(mod4) and k = 5.

PROOF. Let x denote the character of J acting on V', and € := + or — according as > =
Sym or A. Note that J is contained in the stabilizer [}, GL(V;) % S,, of the decomposition.
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Hence we can use Lemma and the isomorphism ¢ in to replace X*(V) by the
direct sum in the right-hand-side of ; in particular, we will identify each ¢! (Zil (V1)®
52 (Va)®...@ %" (V,)) with £ (V1) @ X2(V5) ®@...@ X" (V,). We will assume that (A) does
not hold, that is, @ acts nontrivially on Q := {Vi,V,,...,V,,}, and let D denote the kernel
of the action of J on (2.

(i) First we consider the case where either ¥ = Sym, or ¥ = A but & < ¢. Then
we use to write X¥(V) = A @ B as a direct sum of two J-submodules, where
A=3kV) ®...dX*V,) and B is the direct sum of all remaining summands.

Suppose that ¢ is a constituent of the character of B. Then the character of the -module
A is scalar. Now, for any Q-orbit on €, say {Vi,...,V,,}, the submodule &7, %*(V;) of A is
an induced @-module. It follows from Lemma[6.1.7(iii) that m = 1, and thus @Q acts trivially
on ).

We have shown that ¢ is a constituent of the character of A, whence the character of the
Q-module B is scalar. Since () permutes the summands in B, applying Lemma m(iii) as
above, we see that () fixes each summand occurring in B. In particular, if £ > 3, or if k = 2
but n > 3, then () must fix each of the summands Ekil(‘/;) ® V; with 1 <4 # j <n, and so
it again acts trivially on ). It follows that

=n=2V=Vah (V)= W) e (h) Vel

As @ acts nontrivially on 2, we have Q = (@1, g), where @)1, of index 2 in @, fixes each
of V; and V3, and g : V; <> V5; in particular, x(g) = 0. Fix a basis (ey, ..., e;) for Vi, so that
(fi :==g(e;) | 1 <i <t)is a basis for Va. As Q1 < G1 = GL(V;) x GL(V3), by Lemma [6.1.§]
the @Q;-modules B and Vi ® V5 are isomorphic. But Q|p is scalar, so () is scalar on both V}
and V; by Lemmal6.1.7(1). As ¢* € Q1, it follows that

(6.1.11.1) g* e aey, fi =gle) = g°(e;) = g(g°(e)) = glaey) = af;, 1<i<t
for some root of unity a € C*. Also note that g : ¥%(V}) <> 32(V4), so

Tl"(g|B) = Tl“(g|22(v)> — Ez(X)(g) _ X(Q)Q _;EX<92)

by (6.1.11.1). On the other hand, dim(B) = ?, and t = d/2 > 1. It follows that g|p is not a

scalar, a contradiction.

(ii) We have shown that ¥ = A and k > ¢t = dim(V;). Since 2 < k < d/2, we can write
k=at+0b, witha <n/2 and 0 < b <t —1. Here we consider the case t > 2. Write A*(V) =
A® B, where A is the sum of summands A" (V}) ®...® A™(V,,) subject to the condition that
exactly a of the ¢; take value ¢, one of the remaining takes value b, and all the others equal
0; in particular, A contains the summand A; := AY (V) @ A{(Va) @ ... @ AH(V,) @ AP(V,yq).

Consider the case ¢ is a constituent of B. Then Q|4 is scalar. It follows from Lemma
m(iii) that @ stabilizes every summand in B (as any nontrivial Q-orbit would lead to a non-
scalar imprimitive @-module). Let A :={Vj,...,V,}ifb=0and A :={V;,..., V,, Vo1 } if
b>0. As @ fixes A, @Q fixes A. If b =0, then [A| =a=k/t <d/2t =n/2 <n-—-1.1If
b > 0, then tn = d > 2k = 2at + 2b > 2at, whence n > 2a+ 1 and |[A| =a+1<n-—1.
Thus A # €. The same argument applied to any S,-conjugate of A shows that @) fixes any
|Al-subset of . By Lemma [6.1.7|(iv), @ must act trivially on €2, i.e. (A) holds.

=to
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Next assume that ¢ is a constituent of A. Then Q|p is scalar, and so, by Lemmal6.1.7(iii),
@ stabilizes every summand in B. Assume in addition that 0 < b <t — 2. Then B contains
the summand

By = AN(V) @ NN (Vo) ® ... @ A (Vaur) @ ATH(Va) @ AP (Vaga),

whence @Q fixes Ay := {Vi, Vo, ..., Vot If a < n— 2, then A’ # Q. The same argument
applied to any (a + 1)-subset of €, and so @ acts trivially on Q by Lemma [6.1.7(iv). So
n/2>a>n-—1, whence n = 2, a =1, and b = 0 as k < d/2. Hence k = ¢, which is
impossible by (i).

Assume now that b = t — 1. Then tn = d > 2k = 2at + 2t — 2 > t(2a + 1), ie.
n > 2a+ 1> a+ 2. Suppose in addition that a < n — 3. Then B contains the summand

By = N(V) @ A'(Va) @ ... @ A (V1) @ ATHVL) @ AT H(Vi1) @ Vo,

whence @ fixes Ay 1= {Vi, V5, ..., Vi1, Vaia}, a proper subset of (2. The same argument
applied to any (a + 2)-subset of €, and so @ acts trivially on Q by Lemma [6.1.7(iv). So
a=mn—2,whence a =1, n=3,3t =d > 2k =2(2t— 1), and so t = 2. In this case, J
acts transitively on Q = {V}, V5, V3}, and the normal p-subgroup ) acts nontrivially on it.
It follows that @ = (@2, h), where ()5, a normal subgroup of index 3 in @, fixes each of V;,
and h : Vi — V4 +— V3 — Vp; in particular, x(h) = 0. Fix a basis (u,us) for Vi, so that
(v; := h(uy) | © = 1,2) is a basis for Vs, and (w; := h?*(w;) | i = 1,2) is a basis for V5. As
Q2 < G; = GL(V}) x GL(V,) x GL(V3), by Lemmathe Qo-modules B and V; @ Vo @ V3
are isomorphic. But Bl is scalar, so ()3 is scalar on each V; by Lemma m(l) As h? € Q,
it follows that

(6.1.11.2)

hS LU ﬁui, Vi — h4(uz) = h(hg(u,)) = B'Ui, W; —r h‘:’(ul) = h2(h3(uz)) = Bwi, 1= 1, 2

for some root of unity g € C*. One can check that the trace of h on A is 0, so
h)3 — 3x(h?)x(h) + 2x(h?
Te(hls) = Te(hlysqy) = A () = =R 2L _

by (6.1.11.2]). On the other hand, dim(B) = 8, whence h|g is not a scalar, a contradiction.

(iii) It remains to handle the case t = dim(V;) = 1. Let (k) denote the set of all k-subsets
of 2. By Lemma [6.1.7(iii), any nontrivial Q-orbit on Q(k) leads to a non-scalar @)-module.
A J-orbit on Q(k) will be called Q-nontrivial if ) acts nontrivially on it. It follows from

GLI(b) that

(6.1.11.3) J has at most one @-nontrivial orbit on Q(k).
Here we aim to show that J acts k-homogeneously on 2, i.e.
(6.1.11.4) J acts transitively on Q(k).

Since J acts transitively on €2 and ) <1 J acts nontrivially on €2, all Q-orbits on {2 have the
same length s > 1. If s 1 k, then any A € Q(k) cannot be stabilized by @), whence @ acts
nontrivially on the J-orbit of A, and so this orbit is the entire Q(k) by (6.1.11.3), and thus
holds. Hence, we may write k = as for some a € Z>;. Since () acts nontrivially
on {2, we may assume that g(V;) = V5 for some g € Q). Also recall that [Q| =n > 2k = 2as.
So we can find distinct Q-orbits Qq,...,Q,,...,Q, (all of length s). We may assume €,
contains V;, hence also Vo = g(14).



6.1. TYPE A 109

Consider the case s > 3. Then we may assume V3 € Q,, and take the k-subset
X =0 UQU...UQ 1 U Qe {V2}) U{Vi 1},

with V;, contained in Q1. As g(V1) = V5o ¢ X, g(X) # X. Now if n/s > a+ 2, then we can
find Vj, contained in 2,42, and set

Y i=QUQoU. .. UQqq U(Qq ~{Vo, V3}) U{Viy } U{V}, }.

Again, g(V1) = Vo ¢ Y, so g(Y) # Y. Thus the J-orbits of X and of Y are both Q-
nontrivial. However, these two orbits are distinct (since X intersects exactly a + 1 Q-orbits
and Y intersects exactly a + 2 Q-orbits), and this contradicts (6.1.11.3). If n/s < a+1, then
in fact (a,k,n) = (1,s,2s). Note that if s = 3, then p = 3 as @ has orbits of length s, and
we arrive at (B)(b). So we may assume s > 4 and choose a k-subset Y; of Q = Q; U Qy
with {|Y1 N Q4| [Y1 N Qa|} = {s —2,2}. Clearly, Y] is not @-invariant, so its J-orbit is again
(Q-nontrivial, and distinct from the J-orbit of X, since {|X N |, |X N Qa|} = {s — 1,1},
again contradicting .

Next suppose that s = 2, so that £ = 2a and p = 2, but (B)(a) does not hold. Now we
have n = d > max(5,2k), and so n/s > a + 2. Choose X as before, and take a k-subset Y3
of Qwith Yo D Oy U...UQ 9 and [YoN Q| =1fora—1<j <a+ 2. Clearly, Y5 is not
Q-invariant, so its J-orbit is again @-nontrivial, and distinct from the J-orbit of X (since X
intersects exactly a+ 1 Q-orbits and Y3 intersects exactly a+2 Q-orbits), again contradicting

(6.1.11.3).

(iv) We may now assume that .J is k-homogeneous on €, see (6.1.11.4). Let J = J/D <
S(€2) denote the permutation group induced by this action, and let ) denote the image of
@, which is a nontrivial p-subgroup by assumption. We claim that €2 can be identified with
some W =}, e € Z>1, such that the action of J on (2 is realized by a subgroup of the group

AGL(W) = {w = f(w) +v | f € GL(W), v € W} = AGL,(p)

of affine transformations of W. Since O,(J) > @Q > 1, the claim follows if J is 2-transitive,
see [Caml Theorem 4.1]. Assume J is not 2-transitive. Then it cannot be k-transitive, and
such groups are classified in [Kan2, Theorem 1]. As .J is solvable, we can easily check that
the claim holds in these cases as well; in fact, we can verify that £k = 2 and n = 3(mod 4).

Note that in all cases, J is a primitive subgroup of S(2). Now we can write J = W x Jp,
where W consists of translations w — v 4+ w and it is the unique minimal normal subgroup
of J, see [Caml Theorem 4.1], and Jy < GL(W) is the stabilizer of 0 in J. We can now write
(6.1.11.5)

V= @ V, with V,, = (e;)c, and Vh € Q, there is v € W such that h(e,) € V1.

zeW

Next we aim to show that k = 2. Assume the contrary: k > 3. If p > 2, then J, < GL(W)
cannot act 2-transitively on W N\ {0} (indeed, it acts imprimitively, preserving the sets of
nonzero points on F,-lines of W), whence J is not k-transitive on W with k& > 3. The latter
cannot happen by [Kan2, Theorem 1], since n = p° is odd and .J is solvable.

If p =2, then n = 2¢ > 8 and Jy < GL(W) cannot act 3-transitively on W ~ {0}
(indeed, it acts on the sets of nonzero points {z,y,z + y} on Fy-planes of W), whence J is
not k-transitive on W. If k > 4, then the latter cannot happen by [Kan2l, Theorem 1], since
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J is solvable. So assume k = 3. Again applying [Kan2, Theorem 1], we see that .J is still
2-transitive, and thus Jy is transitive on W~ {0}. As J > Q # 1, we must have W < Q.
Now, if @ > W, then 1 # Q/W < O,(Jp), and so Jy fixes the O,(Jy)-fixed point subspace
in W, which is nonzero and proper, contradicting its transitivity on W ~. {0}. So Q = W,
and so Jy = J/Q is a cyclic 2/-subgroup of GL(W). Any odd-order subgroup cannot be
2-transitive, so J is 3-homogeneous but not 3-transitive on n = 2¢ > 8 points of W, with
socle W and cyclic Jy. Applying [Kan2, Theorem 1] once more, we conclude that n = 8
and J =2 AGL;(8) =2 23 x 7. In this case, consider the action of h € Q on the decomposition
(6.1.11.5)). For any three distinct x,y,z € W,

hiez Ney Ne,) € (extv A €ytro A €sip)c

can be a multiple of e, A e, A e, only when {z,y,2} = {r + v,y + v,z + v}, in which case
3v=0and v=0,ie he D. It follows that Q acts on 2(3) with 7 orbits, of length 8 each.
Hence the restriction of A3(x) to @Q is the sum of seven characters of the form Indgm p(A),
with A being linear. As 7 is linear,

(6.1.11.6) IndZ-5 (M), Yo = [N lenplenn < 1,

whence [A3(X)|g, 7] < 7, and so ¢(1) > A3(x)(1) — 7 = 49 by (6.1.9)(b). Since D is an
abelian normal subgroup of J, ¢(1) divides |J/D| = 56 by Ito’s theorem [Isl (6.15)]. Thus
©(1) = 56, i.e. J is irreducible on A*(V). Next, o induces a generator ¢ of J, = C; and
so permutes cyclically the set W ~ {0}. Note that o7 fixes each V, in the decomposition
(6.1.11.5), and commutes with o that permutes the 7 spaces V, with « # 0 cyclically. Hence

we can find «, f € C* such that
o’ ey aey, ey feg, Yo # 0.
Thus o has only 2 eigenvalues a3?, 32 on A3(V), and so o has at most 14 distinct eigenvalues
on A3(V), and we arrive at (B)(c).
(v) It remains to deal with ¥*(V) = A%(V). We now show that

(6.1.11.7) d=p°, Q =W, and |J/D| € {d(d —1),d(d — 1)/2}.

First, d = p° by . Next, as mentioned above, if J is 2-transitive, then W = @, and
so Jo = J/Q = J/QD is a cyclic p’-subgroup of GL(W) = GL.(p). Any such subgroup is
contained in a maximal torus of GL,(p), hence has order N < p¢ — 1. The transitivity of .J,
on W~ {0} implies that N = p° — 1, and so |J| = N - |[W| = d(d — 1). Next, o induces a
generator t of Jy and so permutes cyclically the set W ~. {0}. Note that oV fixes each V,
in the decomposition , and commutes with o that permutes the N spaces V, with
x # 0 cyclically. Hence we can find «, § € C* such that

o e — aeg, e, Bey, Yo #0.

Thus o has only 2 eigenvalues a3, 3% on A?(V), and so o has at most 2N = 2(d — 1)
distinct eigenvalues on A?(V).

Suppose J is not 2-transitive, whence it has odd order and d = n = p® = 3(mod 4). One
can identify W with the field F,e such that Jy has 2 orbits on W~ {0}: the set W, of squares
and the set W_ of non-squares of IF,., and is contained in the subgroup I'L;(p®) of the semi-
linear transformations of Fe, see [Kandl, Proposition 3.1]. If W < @ in this case, then Jy
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would stabilize a nonzero proper subspace of W, hence a subset of size 2 < p® —1 < (p°—1)/2
of W . {0}, which is impossible. Thus we again have Q = W, and so Jy = J/Q is a cyclic
p'-subgroup of GL(W) = GL(p), of order N < p® — 1 as above. As Jy has two orbits of
length (p¢ —1)/2 on W ~ {0}, we must have that N =d — 1 or (d — 1)/2, and is
proved. Next, o induces a generator t of J, and so permutes cyclically each of the sets W,
and W_. Now o@1/2 fixes each V, in the decomposition (6.1.11.5), and commutes with o
that permutes the (d — 1)/2 spaces V, with x € W, respectively with z € V_, cyclically.
Hence we can find o, 54, 8- € C* such that

oI e s ey, ep > Brey, Yo € W, ey — fBoey, Yy e W_.

Thus o@~1/2 has only 5 eigenvalues a1, af_, 82, 2, 3: 8- on A*(V), and so o has at most
5(d — 1)/2 distinct eigenvalues on A*(V).

We again consider the action of any h € () on the decomposition (6.1.11.5)). For any x #
y € W, h(ezNey) € (ezry/\eyty)c can be a multiple of e, Ae, only when {z,y} = {z+v,y+v}.
If p > 2, we then have 20 = 0 and v = 0, i.e. h € D. It follows that @ acts on §2(2) with
(d —1)/2 orbits, of length d each. Hence A?(x)|g is the sum of (d — 1)/2 characters of the

form Indng(/\) with A being linear. Using (6.1.11.6]), we see that [A%(x)|g,V]q < (d—1)/2,
and thus

(6.1.11.8) (1) > A*(x)(1) — (d—1)/2 = (d —1)?/2

by (6.L9)(b)

If p= 2 then we have either v = 0, or v = z + y. It follows that @ acts on €(2) with
d—1 orblts of length d/2 each. Hence A%(x)|q is the sum of d — 1 characters of the form
Indgl()\), with A being linear and |Q,/(Q N D)| = 2. Again using (6.1.11.6]), we see that
[N?(0le:7)e < d—1, and so

(6.1.11.9) o(1) > A1) — (d—1)/2 = (d - 1)(d - 2)/2

by (6.1.9)(b)

In both cases, D is an abelian normal subgroup of J, so (1) divides |J/D| by Ito’s
theorem, and |J/D| divides d(d — 1) = 2(dim A*(V)) by (6.1.11.7). Noting 2 = k < d/2
and assuming (B)(a) does not hold, we conclude from (6.1.11.8)) and (6.1.11.9) that ¢(1) =
d(d —1)/2, i.e. J is irreducible on A?(V), establishing (B)(d). O

PROPOSITION 6.1.12. Under Hypothesis[6.1.9, suppose that J acts irreducibly on' V.. Then
either Q) acts irreducibly on V', or one of the following holds.

(a) X% = Sym?®, d =3, and V|q is a sum of 3 irreducible submodules of dimension 1.
(b) X=A, k=2,3,d=6, and Vg is a sum of d/k irreducible submodules of dimension k.
(c) X=A, k=2,3,d <2k, and V|g is a sum of d irreducible submodules of dimension 1.

PROOF. Assume that () is reducible on V. Then ()Z is also reducible on V, and since
J/QZ is cyclic but J is irreducible, we can decompose

Vigz=VieVad...d V,,

where V; € rr(QZ), dimV; =: t = d/m and m > 2. Since o generates J/()Z, we may also
write

(6.1.12.1) o: Vi Vo o= V=V,
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in particular, R := (o™, QZ) fixes each V;. Since R<1J, if a subspace U C X¥(V) is R-stable,
then so is o'(U), and (a)(U) = .7, ' (U) is a G-submodule. In what follows, we will
choose U to be some summand in the decomposition (6.1.8.1]).

(i) First we consider the case ¥ = Sym. Using Lemma we can write Sym*(V) =
A& B, where A = @ﬁlsymk(‘/;) and B, the sum of the remaining summands, are both J-
invariant. If the J-character of A contains ¢, then @ is scalar on summands Sym*~'(V;) ® V;
(with ¢ # j), and so Q|y; is scalar by Lemma say V; affords the ()Q-character )\;. By
(6.1.9)(b), \i*\; = v for all i # j, and n = d > 3. It follows that \; = \; and \F = 7.
But in this case, @) acts on A via the character dim(A)y, and so [¢|g,V]g > 0, violating
6.1.9)(b).

Hence the J-character of B contains ¢, and so Q|4 is scalar and Q|y; is again scalar by
Lemma [6.1.7)ii). Again let \; be the Q-character of V;, and we also have n = d > 3 and
Af = ~. Note that the \; are pairwise distinct, since J is irreducible on V. If k > 3, then B
contains the direct sum of two proper J-submodules B; & Bs, where

By =8ym" ' (Vi) @ Vo @ Sym" {(Va) @ V3 & ... ® Sym" (V) ® V4,

By =V, @ Sym" ' (1h) @ Va @ Sym" '(B) @ ... ® V,, ® Sym* (V).
If moreover the character of By contains ¢, then Q|p, is scalar, and in fact Af~'h\y = v = A},
whence A\; = )y, a contradiction. Otherwise Q|p, is scalar, and in fact M5! = v = A&,

whence \; = \g, again a contradiction. If £ = 2 and d > 4, then B contains the direct sum
of two proper J-submodules By & B3, with

Bi=()(Vielh) =ViehohoVe.. oV, 10V,eV,aV,
By:i=(o)(V1@V3) =N @Vs@Vh@Vid... 0V, 1 @VidV, o V.
Now we can repeat the previous argument to reach a contradiction.
(ii) From now on we may assume ¥ = A and 2 < k < d/2, see (6.1.9.1). We also write
k=qt—+r,
where ¢, 7 € Z>o and 0 <r <t — 1. Here we consider the case ¢t > 3.
First assume that » > 2. If ¢ = 0, then m > ¢+ 2. If ¢ > 1, then mt = d > 2k =

2qt + 2r > 2qt, and so m > 2q +1 > ¢+ 2 as well. Hence, (6.1.12.1) implies that A*(V)
contains the direct sum (o)(X) @ (o) (V) of G-modules, where

X = NN (Va)®@. .. @A (VRN (Vara), ¥ = A (V)RA (V2)@. . @A (V) A" (Vyr1) @V,

By (6.1.9)(b), the character of at least one of them, say (o)(X), does not contain ¢. It
follows from Lemma m that Qly,,, is scalar, and so 1 = dim(V,41) = ¢ by irreducibility, a
contradiction.

Next assume that » = 1. Then we still have mt = d > 2qt and m > ¢+ 2; also ¢ > 1 as
2 < k = qt+1. Hence, implies that A*(V) contains the direct sum (o) (X)® (o) (Y})
of G-modules, where X is as above, and

Vi=ANWV) @A (Va) @ ... @ A(Ver) @ ANTHV) @ A (Vgra).

By (6.1.9)(b), the character of at least one of them, say (o)(Y7), does not contain ¢. It
follows from Lemma that Q|y, is scalar, and so 1 = dim(V;) = ¢, again a contradiction.
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Assume now that r = 0. Then ¢ > 1 as 2 < k = ¢gt, and mt = d > 2qt implies m > ¢+ 1.
If moreover (m,t) = (¢ + 1,3), then (d,k) = (6,3). Hence we may assume m > ¢ + 2 when
t = 3. Now, (6.1.12.1) implies that A*(V) contains the direct sum (o)(X5) @ (o)(Ys) of
G-modules, where
Xy =NV @A (Ve) @ ... @ A (Vor) @ NTHV) @ Vi,
v, = { NV @N (V) ® ... @ N'(Vomr) @ NTH(V) @ A2 (Vo) i E > 4,
ANV QAN (Va) ® ... @ N (Voe1) ® Vo @ Vi ® Voo, if t = 3.
By (6.1.9)(b), the character of at least one of them, say (o)(Xs3), does not contain ¢. It
follows from Lemma that Q|y, is scalar, and so 1 = dim(V;) = ¢, again a contradiction.

(iii) Now we consider the case t = 2. We will use the same arguments as in (ii), by
exhibiting a direct sum of two G-submodules (o) (X) @ (o)(Y). Since at least one of them
does not contain ¢ in its character, Lemma[6.1.7| will imply that () is scalar on tensor factors
of X or Y, leading to the contradiction that dim(V;) =¢ = 1.

Suppose k =2q+ 1> 3. As n = 2m > 2k, we have m > q + 2, and can choose

X = N (V)RN (Vo)@. . @A (V)@Vys1, ¥ = A (V)@A(Va)®. . . @A (Vyo1) @V, @V 1@V
Next, suppose that k = 2qg > 4. As n = 2m > 2k, we have m > ¢ + 2, and can choose
X=NV)@N(Ve)®...0 N(Vim) ® Vg ® Vorn,
V=NV @A) ®...0 A2(Vyy) @ V1 @V, ® Vo1 @ Vira.
If k=2 and d=2m > 8, then we choose X =V; ® V5 ans Y =V; ® V3, so that
(X)=VieVhehoVd.. VoV, a)(Y)=ViakhoehoVid...,
(note that dim(o)(X) = 2m, dim(o)(Y) = 2m if 24 m and dim(e)(Y) = m if 2|m).
(iv) Finally, we consider the case t = 1, so that d = m, and write V; = (e;)c. Now, for
any k-subset {i1,...,ix} of {1,2,...,d}, (o) ({e;; Nei, A..)¢c) is a J-submodule of dimension

< d, and AF(V) is a direct sum of such submodules. By [6.1.9(b), one of them contains ¢ in
its character, in particular,

(6.1.12.2) (1) < d,
and () acts via a multiple of 7 on all others. Let \; denote the Q)-character of V;. Since J/QZ
is cyclic and J is irreducible on V', the d characters Ai, A9, ..., \;y are pairwise distinct.

Suppose k > 3 and d > 7, and there exists a (k — 1)-subset S = {ji1,...,Jk_1} of
{3,4,...,d} such that @ acts on both e; Aej, Aej, A...Aej,, and ea Aej, Aej, A...Nej
via the same character . Tt follows that v = A\ [I*2} A;, = A [112) Ay, and so A; = Ay, a
contradiction. Thus, for each such S, the character of () on at least one of e; A ej; Aej, A
... Nej, , and eg Aej Nej, AL Aej,, differs from ¢. It follows that

d—2 d—2
1) > >
(as 3 <k <d/2and d > 7), and this contradicts (6.1.12.2)).

So we have k = 2 and d > 5. Suppose ¢ is contained in the character of

M = (o)({e1 Nea)c) = (e1 Neg,ea Aes, ... eq 1 Aeg,eqer)c.
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In this case, @) acts via v on e; A eg and e; A eq, whence \A3 = v = Ay, and so A3 = Ay,
again a contradiction. Hence @) acts via the character dy on M, and so v = A\ Ay = A3,
leading again to the contradiction that Ay = As. O

LEMMA 6.1.13. Let H be a hypergeometric sheaf of type (6, m) with m < 6 in characteristic
p. Suppose that G2, realizes the image of SLs on its representation L(2woy). Then p = 2.

geom

Proor. We will show that if p > 2, no such H exists. In view of Theorem [4.1.1] we
know w > 1. Because G%, has no nontrivial outer automorphism which preserves the given
representation, Lemma tells us that after replacing ‘H by some £, ® H, x some tame
character, we may assume that Ggeom = SL3/p2. View H as giving a homomorphism Wy :
8" (G,,) — SLs3/ g, and use the vanishing of H?(78°™, o) to lift ¥y to a homomorphism
W 78°(G,,) — SLz. Then view ¥ as giving a rank 3 lisse sheaf on G,,/F, with Sym?(F) =
H. Because p # 2, the fact that H is tame at 0 and has highest oo-slope 1/w tells us that
F is tame at 0 and has highest co-slope 1/w. Then w < 3, because F is not tame at co but
has Swan < rank(F)(1/w) = 3/2.

Suppose first that p > 5. Then w # 2 by [Ka-ESDE] 7.2.7], applied to H. [For w = 2,
the only bad primes are 2,3, so if w = 2 then H would have its G2 either SLg or SOg or
Spg.] Therefore w = 3. This in turn implies that F is Kloosterman of rank 3. So its P(c0)
representation is the direct sum of three linear characters

P Lo
¢eps(Fp)
If we arbitrarily label the three elements of u3(F,) as (i, (, (s, then Sym?(F) has P(occ)
representation the direct sum of the six linear characters

D1 Lop(ocia) @ D1<i<i<3Ly(3(¢4¢)n)-

Because p > 5, each of these characters of P(co) is nontrivial (i.e. each of ¢; and (; + ¢; is
nonzero in F,), and thus Sym?(F) = H is totally wild, contradicting the fact H has w < 3.

It remains to treat the case p = 3. If w = 3, then F is Kloosterman of rank 3, the image
Q of P(c0) is 312 in one of its irreducible representations of dimension 3. So on JF, the center
of () acts as 3¢ for some nontrivial character of the center, i.e. a nontrivial additive character
of C3. Then the center acts on Sym?(F) = H as 6£2. Thus H is totally wild, contradicting
the fact that H has w < 3. Suppose now w = 2. Then the P(co) representation of F is
Wy & 1, with Wy the sum of two linear characters Ly(;) @ Ly(—y). Then Sym?*(F) = H has
P(00) representation given by

Ly(ar) © L(-20) DL O LD Lypa) B L)
Then m = 2, i.e. ‘H has w = 4, contradiction. O

LEMMA 6.1.14. Let H be a hypergeometric sheaf of type (15, m) with m < 15 in charac-

teristic p. Suppose that GG, realizes the image of SLg on its representation L(wws). Then
p=2.

PROOF. (i) We will show that if p > 2, then no such H exists. In view of Theorem
4.1.1, we know w := 15 —m > 1. DBecause Ggeom has no nontrivial outer automorphism
which preserves the given representation, Lemma tells us that after replacing H by
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some £, ® H, x some tame character, we may assume that Ggeom = SLg/p2. View H as
giving a homomorphism ¥, : 78°"(G,,) — SLg/ 9, and use the vanishing of H?(w*™, uo) to
lift ¥y to a homomorphism ¥ : 75" (G,,) — SLg. Then view ¥ as giving a rank 6 lisse sheaf
on G,,/F, with A2(F) = H. Because p # 2, the fact that H is tame at 0 and has highest
oo-slope 1/w tells us that F is tame at 0 and has highest oco-slope 1/w. Now F cannot be
tame at oo (simply because H is not). But Swan(F) < (rank(F))(highest slope) = 6/w

must be > 1 (otherwise F is tame at 00), hence w < 6, i.e.

(6.1.14.1) m > 9.

(i) Suppose first p  w. Then @, the image of P(cc) on H, is an abelian group of exponent
p by [KT5| Proposition 4.10]. Because p is odd, @ lifts uniquely from SLg/po to SLg. Thus
Q) < SLg = SL(V); let Zle a; denote the Q-character of V', so that () acts on H with the
character ), <j iy Consider first the case where the «;’s are pairwise distinct. Then each of
the following five sets of characters {ajae, ayas, ajay, anas, arag}, {asas, asay, asas, asag},
{asau, asas, asag}, {auas, agas}, {asas} consists of pairwise distinct characters, and so 1
can occur at most five times, contradicting .

Suppose instead that oy = oy =: a. Then for each ¢ € {3,4,5,6}, cqay; = asey. But 1g
is the only character in #|p occurring more than once. Thus a3 = a4 = a5 = ag =: 5, and
the character of H|q is @® + 83+ 6532 Since only 1 occurs more than once, aff = 5% = 1,
whence a = 3 = 1 as p > 2, and so @) acts trivially in #H, which is nonsense because w > 0.

(iii) It remains to treat the cases when 2 < p | w. As 2 < w < 6 by (6.1.14.1)), the
only cases of (p,w) to consider are (5,5),(3,3),(3,6). We first treat the case p = 5 = w,
so @ is non-abelian by [KT5| Proposition 4.10]. In this case, the @-module V' decomposes
as X @Y with XY irreducible of dimension 5 and 1. Hence the @-module H breaks as
AN (X)® X @Y. Let Qx denote the kernel of Q on X and let 5¢ denote the character of
Z(Q/Qx) on X. Then Z(Q/Qx) acts on A*(X) with character 10£%; in particular A?(X) is
totally wild, contradicting w = 5.

In the case p = 3, the )-module V' decomposes as X @Y with X irreducible of dimension
3 and Y either irreducible of dimension 3, or a sum of three irreducible submodules 1. In the
latter case, the @Q-module H breaks as A?(X) @ X @Y & A%(Y), with A?(X) totally wild (by
a similar argument as in the case p = 5) and X ® Y a sum of three irreducible modules each
of dimension 3 and so totally wild as well, yielding the contradiction w > 12. In the former
case, both A%2(X) and A?(Y) are again totally wild, and so, as w < 6, X ® Y must be tame.
By Lemma m(l), @ acts via scalars on X, contradicting its irreducibility. 0

LEMMA 6.1.15. Let ‘H be a hypergeometric sheaf of type (20, m) with m < 20 in charac-
teristic p. Suppose that Gy, realizes the image of SLe on its representation L(wwsz). Then
p < 3.

PROOF. (i) Arguing by contradiction, assume p > 5. Since Out(SLg) = Cs, the subgroup
G1 of G := Ggeom that induces only inner automorphisms of G° has index < 2 in G. Moreover,
since G° is irreducible on the underlying representation Vy, Co(G°) = Z(G), and G; =
Z(G)G°. If G = Gy, set Hy := H. In this case, H; has largest oco-slope 1/w.

If G > Gy, then G/G; = Cy. The composite map

ﬂ_%eom<Gm) -G — G/G1 = CQ
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is then trivialized by the unique (because p # 2) étale double covering of G,,/F,, namely the
Kummer double covering. Thus the Kummer pullback H; := [2]*H has G; as its geometric
monodromy group. In this case, H; has largest oo-slope 2/w.

In both cases, H; has (G; as its geometric monodromy group and has largest oo-slope
< 2/w.

Applying Lemma we obtain a reductive subgroup H < GLg = GL(V') which admits
a surjection o : H — (G; with kernel C3, and such that G; acts on V3 as H acts on
A3(V). The homomorphism ¥y : 7$*™ — G given by H; can be lifted to a homomorphism
U 78" — H (by the vanishing of H*(7{*™ C3)). We view U as giving us a rank 6 lisse
sheaf F on G,,/F, with A3(F) = H;. Because p # 3, F and H; have the same highest
oo-slope, which is < 2/w. Thus F has Swan., < rank(F)(2/w) = 12/w. As F is not tame
at 0o, we must have w < 12, or equivalently

(6.1.15.1) m > 8.

(ii) Let @ denote the image of P(c0) in G. Since p # 2, @ < G;. Next, since p # 3,
() embeds in H as a finite p-subgroup. Note that ) acts on the tame part Tamey of H via
the character m - 1¢ with m > 8, and the -module Wildy; of H is multiplicity-free. Because
p # 2, the action of @ on Wildy, = [2]*Wildy is isomorphic to its action on Wildy, so is
multiplicity free, and its action on Tamey, remains trivial of rank m. We now exploit the
fact that A3(F) = H;.

Assume first that () is abelian. Then () acts on F via a sum 2?21 «; of six linear
characters, and acts on #H; via the character > a; ooy, Suppose that a; # a; whenever
i # 7. Then each of the 6 collections

{aia]'ak ‘ <Z7]7 k) = (123)7 (124)7 (125)7 (126)}7 {aiajo% ’ (Z,j, k) = (134)7 (135)7 (136)}7
{aiajak ‘ <i7j7 k) = (234)7 (235>7 (236)}7 {aiajak ’ (i7j7 k) = (145)7 (245)7 (345)}7
{aiajoy | (4,5, k) = (156), (256), (356), (456)}, {aicjay | (4,7, k) = (146), (246), (346)}

contains 1g at most once, and thus m < 6, a contradiction. Hence we may assume «; =
ay =: a. Now, for each 3 <1i < j <6, ajo405 and asoya; coincide, hence cannot be among
()-characters on Wild, and so a5 = asoyrj. It follows that oy = ay = a5 = o =: 5. In
this case, we see that the character of Q on H; is 12a/3% + 4028 + 433. This contradicts the
fact that every irreducible Q)-character on Wild occurs exactly once in the )-character of H;.

i<j<k

(iii) It remains to treat the case when @ is non-abelian, whence p|w by [KT5l Proposition
4.10]; moreover QNZ(G) = 1 by [KT5, Proposition 4.8(i)]. Since p # 3 = |Ker(o)|, o injects
Q NZ(H) into Q@ N Z(G), hence Q@ NZ(H) = 1. On the other hand, Q — H = Z(H)SLs,
so @ embeds in H/Z(H), a quotient of SLg by Z(H) N SLg and so semisimple. By [Borl,
E-44, 11.5.16], @ embeds in the normalizer of some maximal torus 7 of H/Z(H), which has
Weyl group S¢. Now, if p > 7, then p 1 |Sg|, and so @) < T would be abelian. As w < 12
and p > b, it therefore remains to consider the case p = 5|w, i.e. w € {5,10}. Now Fy is
a faithful module for the non-abelian 5-subgroup (@), so it decomposes as X ® Y with X, Y
irreducible of dimension 5 and 1. Hence the Q-module H; breaks as A*(X) @& A}2(X) QY.
Let @Qx denote the kernel of  on X and let 5¢ denote the character of Z(Q/Qx) on X.
Then Z(Q/Qx) acts on A*(X) with character 10£3; in particular A3(X) is totally wild of
dimension 10. As w < 10, this implies that A?(X) ® Y is tame, whence Q acts via scalars
on X by Lemma [6.1.7](ii), contradicting its irreducibility. O
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Now we can prove the main result of this section:

THEOREM 6.1.16. Suppose that H is a hypergeometric sheaf in characteristic p, of type
(D, m) with D > m, such that Gg,,, is a simple algebraic group of type Aq_1 for some d > 3
and acts trreducibly on H. Then one of the following statements holds.

(a) d =D and SLp < Ggeom < GLp.

(b) (p,d, D) = (2,3,6), and Gy, acts on H as SLy = SL(V) acts on Sym?(V) or Sym?(V*).
(c) (d, D) = (3,8), and Gy, acts on H as SLz = SL(V') acts on the adjoint module.

(d) d = 4,6, and Gy, acts on H as SLg = SL(V) acts on A*(V) or A*(V*) for some

2 <k <d/2. Moreover, if d =6 then p < k.

PROOF. (i) Recall that 