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Introduction

The study of exponential sums over finite fields goes back to Gauss. The importance of
estimating them goes back at least to Kloosterman’s 1926 paper [Kl]. In the one-variable
case, it was understood by Hasse and Davenport in 1934 [HD] that the good estimate would
result from the proof of the Riemann Hypothesis for curves over finite fields. That proof was
supplied by Weil in 1945 [Weil1]. See also Weil’s 1948 paper [Weil2], whose Math Review
was written by Kloosterman. The following year, Weil explained [Weil3] what should be
true for projective smooth varieties of any dimension over finite fields, in what came to be
known as the Weil Conjectures. The next big advance came with Grothendieck’s invention,
and the development by his school, of `-adic cohomology and its sheaf theoretic setting, cf.
[SGA4, 7.2]. This setting allowed Deligne to prove the Riemann Hypothesis part of the Weil
Conjectures in the general case, cf. [De1, 1.6]. Deligne then vastly generalized his result
to the setting of `-adic sheaves in [De2, 3.3.1], and used this generalization to prove the
Sato–Tate Conjecture for elliptic curves over function fields, cf. [De2, 3.5.7]. To do this,
Deligne brings to bear the arithmetic and geometric monodromy groups attached to a lisse
sheaf which is “pure of weight zero”, and shows that determining these groups is precisely
what leads to equidistribution theorems in the function field case.

At this point, let us clarify the notion of “pure of integer weight w” for a lisse Q` sheaf
F on a smooth, geometrically connected X/Fq. The requirement is that for every field

embedding ι : Q` ⊂ C, the following condition holds: for every finite extension L/Fq, and
every point x ∈ X(L), the eigenvalues of Frobx,L on F all have, via ι, complex absolute value

(#L)w/2. Note that if an element α ∈ Q` has |ι(α)|C independent of ι, then α is an algebraic
number, all of whose conjugates (as algebraic numbers) have the same complex absolute value
as each other.

Another key output of the `-adic theory is the ability to interpret a parametrized family
of exponential sums as the Frobenius traces of an `-adic sheaf on the parameter space, and to
control the open set on which this sheaf is a local system. Moreover, the results of Weil and
Deligne will ensure that this local system, after a partial Tate twist, is pure of weight zero.
One then obtains equidistribution results for the family of exponential sums in question, as
soon as one computes the arithmetic and geometric monodromy groups of the local system
in question.

The families of exponential sums we will deal with in this book will typically have pa-
rameter space either the affine line A1 or the multiplicative group Gm := A1 r {0} over a
finite field k, of characteristic p > 0. Their incarnating sheaves will be `-adic local systems
on the parameter space, for any choice we like of a prime ` 6= p.

Given a prime p, it was conjectured by Abhyankar [Abh] and proven by Raynaud [Ray]
(see also [Pop]) that any finite group G which is generated by its Sylow p-subgroups occurs
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6 INTRODUCTION

as a quotient of the fundamental group of the affine line A1/Fp. The analogous result for
the multiplicative group Gm, also conjectured by Abhyankar and proven by Harbater [Har],
is that any finite group G which, modulo the subgroup Op′(G) generated by its Sylow p-
subgroups, is cyclic, occurs as a quotient of the fundamental group of Gm/Fp. In the ideal
world, given such a finite group G, and a complex representation V of G, we would be able,
for any prime ` 6= p, to choose an embedding of C into Q`, and to write down an explicit
Q`-local system on either A1/Fp or on Gm/Fp whose geometric monodromy group is G, in
the given representation.

Needless to say, we do not live in the ideal world. On Gm/Fp, the simplest local sys-
tems are the hypergeometric sheaves. They are simplest in the sense that among irreducible
local systems of rank > 1, they are characterized by having their H1

c of minimum possible
dimension, namely one, cf. [Ka-ESDE, 8.5.3]. So it is natural to investigate their mon-
odromy groups. A key step in this investigation is to show that monodromy groups of a wide
class of hypergeometric sheaves H satisfy the group-theoretic condition (S+), cf. Theorem
5.2.9 for the precise statement. [Condition (S+) is a slight strengthening of condition (S )
introduced in [GT3], and roughly speaking, corresponds to Aschbacher’s class S of maximal
subgroups of classical groups [Asch].] When (S+) holds, it imposes strong restrictions on
the pair (Ggeom,H). If Ggeom is infinite, then the identity component G◦geom of Ggeom is a
simple algebraic group, still acting irreducibly. If G := Ggeom is finite, then either G is almost
quasisimple (that is, S C G/Z(G) ≤ Aut(S) for some non-abelian simple group S), or G is
an “extraspecial normalizer”, in particular, the dimension of the representation is a prime
power rn and there is an extraspecial r-group E in G of order r1+2n acting irreducibly.

The converse question of which (complex or modular) representations of almost quasisim-
ple groups satisfies condition (S) is of great importance to the Aschbacher–Scott program of
classifying maximal subgroups of finite classical groups, and ultimately to primitive permu-
tation group theory. We refer the reader to [T] for a detailed account of this problem. The
complex representations of almost quasisimple groups that can arise in the hypergeometric
context have been classified in [KT5], see §3.1; for these representations condition (S+) is
established in Theorem 3.1.6. We also note that the full extraspecial normalizers in GLrn(C),
respectively in Sprn(C) or Orn(C), satisfy (S); see [KlL, Proposition 7.6.2] for the result in
the more general situation of `-modular representations with ` 6= r.

In studying local systems and their monodromy groups, there are two kinds of natural
questions which arise. The first is this: given a simple (in the sense of simple to remember)
local system, determine its monodromy group.

One of the main themes of this book, along the lines of the first kind of question, is to
investigate what are arguably the simplest one-parameter families F(A,B, χ) of exponential
sums, those of the form

(0.0.0.1) t 7→ −
∑
x

ψ(xA + txB)χ(x),

for given prime to p integers A > B > 0 with gcd(A,B) = 1, a fixed additive character
ψ, and a given multiplicative character χ? It turns out that these families are Kummer
pullbacks of hypergeometric sheaves, cf. Theorem 10.1.1. This relation allows us, in §§10.2,
10.3, to completely determine their monodromy groups. In turn, building on these one-
parameter results, in Chapter 11 we complete the classification of all multi-parameter families
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F(A,B1, . . . , Br, χ) of exponential sums

(0.0.0.2) (t1, t2, . . . , tr) 7→ −
∑
x

ψ(xA + t1x
B1 + . . .+ trx

Br)χ(x)

that admit finite monodromy, and the determination of the corresponding geometric mon-
odromy groups Ggeom.

The second kind of natural question is this: given a finite group G together with a
faithful irreducible representation V satisfying (S+), construct a simple (again, in the sense
of simple to remember) local system whose monodromy is (G, V ), if such a local system
exists. This second question, when G is almost quasisimple, has already been the subject of a
number of papers by the authors, some jointly with Antonio Rojas-León, cf. the Bibliography.
Investigation of the other (S+) case, when G is an extraspecial normalizer, is a second main
theme of this book.

Let us now turn to a more detailed description of the contents of this book. We work
with geometrically irreducible hypergeometric sheaves H on Gm, i.e., those that are lisse
on Gm and whose Ggeom acts irreducibly. At the possible expense of interchanging 0 and
∞ on Gm by inversion, we may and will assume H is of type (D,m) with D > m. One
knows [Ka-ESDE, 8.4.11] that if Ggeom is finite, then a generator of local monodromy at
0 is an element of Ggeom which has all distinct eigenvalues in the given representation (a
simple spectrum element). In general, such a generator has regular spectrum, in the sense of
Definition 1.1.5.

Our first main result, Theorem 2.4.4, shows that if such a sheaf H in characteristic p has
wild part of dimension 1 ≤ w < (p − 1)/2, then its geometric monodromy group Ggeom is
either infinite, or finite but imprimitive (unless H has rank 2 and p = 5). This result can be
viewed as a hypergeometric version of the celebrated result [FT] of Feit and Thompson on
linear groups of degree < (p− 1)/2.

Building on [KT5, Theorem 7.4], our Theorem 3.1.10 shows that if D ≥ 11 and H
has a finite geometric monodromy group Ggeom which is almost quasisimple of Lie type in
some characteristic r, then the characteristic of H must necessarily be r, aside from three
exceptions for D = 12 and D = 14. A similar result for hypergeometric sheaves with Ggeom

an extraspecial normalizer was established in [KT5, Theorem 9.19].
Our next result, Theorem 3.3.4, extending prior work of Howe [HS, Theorem 4.6.3], gives

a full classification of representations of (not necessarily connected) simple algebraic groups
that admit elements with regular spectrum.

The next main result, Theorem 5.2.9, vastly generalizing earlier related results in [KT5],
shows that any geometrically irreducible hypergeometric sheaf of type (D,m) with D > m
satisfies (S+), as long as it is primitive and has rank 6= 4, 8, 9.

In Chapter 6, we determine, in Theorem 6.2.14, the possible identity component G◦geom of
Ggeom for a hypergeometric sheafH of type (D,m) withD > m satisfying (S+) whoseGgeom is
infinite. Recall from [GT3, Proposition 2.8] that (S+) (which by Theorem 5.2.9 is automatic
so long as D 6= 4, 8, 9 and H is primitive) implies that G0

geom is a simple algebraic group
acting irreducibly. In [Ka-ESDE, 7.2.7], it is proved that in sufficiently large (depending
on w := D −m) characteristic p, the only such possibilities for the given representation of
G0

geom are either one of the classical groups SLD, SOD, or SpD for even D, in the standard
D-dimensional representation or its dual, or G2 in its 7-dimensional representation, or SL3
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in its 8-dimensional adjoint representation, or Spin7 in its 8-dimensional spin representation.
Removing the constraint on size of the characteristic p, Theorem 6.2.14, shows that, aside
from a few possible low-rank exotic exceptions in characteristic p = 2, 3, these are the only
possibilities.

Chapter 7 is devoted to the study of the extraspecial normalizer case in odd character-
istic, with Theorem 7.3.5 as the principal result. Perhaps not surprisingly, the study of the
extraspecial normalizer case in characteristic p = 2 is hugely more complicated, and takes
up Chapters 8 and 9. Among other results, in parallel with the approach of [KT7], we are

able to realize in Theorem 9.1.11 the extraspecial normalizers 21+2nf
+ · Ω+

2n(2f ) as geomet-
ric monodromy groups of hypergeometric sheaves, whereas type − extraspecial normalizers
21+2nf
− ·Ω−2n(2f ) are realized in Theorem 8.5.5 following the approach of [KT6]. Furthermore,

a novel use of Witt vectors allows us to produce, for the first time, explicit local systems with
geometric monodromy groups of shape (4 ∗ 21+2nf

− ) · Sp2n(2f ), see Theorem 9.3.9.
Chapter 10 is devoted to computing the monodromy groups of the one-parameter families

F(A,B, χ) in (0.0.0.1). The main results are Theorems 10.2.4 and 10.2.7 (for exponents
A > B = 1), and Theorems 10.3.13, 10.3.14, and 10.3.21 (for exponents A > B > 1).
In particular, the list of (A,χ) for which the local system F(A, 1, χ) in (0.0.0.1) has finite
monodromy, previously conjectured in [KT1] and [R-L], is proved to be complete. We
also show (see Lemmas 10.3.15, 10.3.16,10.3.17, and 10.3.18) that the exotic possibilities
for p = 2, 3 in Theorem 6.2.14 do not occur in the context of the one-parameter systems
F(A,B, χ). Multi-parameter analogues of these results for the families F(A,B1, . . . , Ar, χ)
in (0.0.0.2) are obtained in Chapter 11.

Chapter 12 is devoted to treating some of the very few cases of families with non-monomal
perturbing terms where we can say anything at all. This is very much an area in which
much remains to be done. The proofs of the main results in this chapter, Theorems 12.2.3
and 12.3.6, once again highlight the importance of the moment M2,2 in the study of the
Ggeom of local systems. In addition, Theorems 12.5.4, 12.5.5, 12.5.11, and 12.5.12 determine
geometric monodromy groups for some special classes of two-parameter local systems with
non-monomial coefficients. This theme will be further explored in the forthcoming paper
[KT8].

The appendices consist of two Magma programs.
A word about notation. Throughout the book, we use F for a local system which is pure

of some integer weight, and we use G to denote a suitable constant field twist of F which
is pure of weight zero. The two are geometrically isomorphic, so have the same geometric
monodromy group Ggeom, but their arithmetic monodromy groups Garith,F and Garith,G may
differ. [They will coincide if F is itself pure of weight zero and we take G := F .] When F
has nonzero weight, the group Garith,F is never finite, indeed never has a semisimple identity
component, simply because its determinant is pure of nonzero weight. It is only Garith,G which
can ever be finite.



CHAPTER 1

The basic (S−), (S), and (S+) settings

1.1. Conditions (S−), (S), and (S+) for local systems

We work over an algebraically closed field C of characteristic zero, which we will take
to be Q` for some prime ` in the rest of this book. Given a nonzero finite-dimensional C-
vector space V and a Zariski closed subgroup G ≤ GL(V ), recall from [GT3, 2.1] that G (or
more precisely the pair (G, V )) is said to satisfy condition (S) if each of the following four
conditions is satisfied.

(i) The G-module V is irreducible.
(ii) The G-module V is primitive.
(iii) The G-module V is tensor indecomposable.
(iv) The G-module V is not tensor induced.

We also say that G, or the pair (G, V ), satisfies condition (S−), if it fulfills (i), (ii), and (iii).

We have the following two elementary but useful lemmas.

Lemma 1.1.1. Suppose that H ≤ G ≤ GL(V ) and G,H are both Zariski closed. If
(H, V ) satisfies (S) (respectively satisfies (S−)), then (G, V ) satisfies (S) (respectively sat-
isfies (S−)).

Proof. Immediate from the definitions. �

Lemma 1.1.2. Suppose that G ≤ GL(V ) is Zariski closed, irreducible and primitive, and
that dim(V ) is a prime number. Then (G, V ) satisfies (S).

Proof. Indeed, conditions (iii) and (iv) are automatic. �

Lemma 1.1.3. [KT5, Lemma 1.1] Suppose 1 6= G ≤ GL(V ) is a Zariski closed, irreducible
subgroup. Then the following statements holds.

(i) If G satisfies (S), dim(V ) > 1, and Z(G) is finite, then we have three possibilities:
(a) The identity component G◦ is a simple algebraic group, i.e. G◦ has no nontrivial

connected normal Zariski closed subgroups, and V |G◦ is irreducible.
(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group

S such that S CG/Z(G) < Aut(S).
(c) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is,

dim(V ) = rn for a prime r, and G contains a normal r-subgroup R = Z(R)E,
where E is an extraspecial r-group E of order r1+2n acting irreducibly on V , and
either R = E or Z(R) ∼= C4.

(ii) Z(G) is finite if and only if det(G) is finite.

Definition 1.1.4. A pair (G, V ) is said to satisfy the condition (S+), if it satisfies (S)
and, in addition, |Z(G)| is finite (equivalently, det(G) is finite). More generally, if Γ is any

9



10 1. THE BASIC (S−), (S), AND (S+) SETTINGS

group given with a finite-dimensional representation Φ : Γ → GL(V ), then we say (Γ, V )
satisfies (S+), if (Φ(Γ), V ) satisfies the three conditions of (S) and, in addition, det(Φ(Γ)) is
finite.

Definition 1.1.5. Given a group G, an element g ∈ G and a a finite dimensional repre-
sentation Φ : G→ GL(V ) over C, we say that

(a) g has simple spectrum on V , or g is an ssp-element on V , if Φ(g) is diagonalizable and
has pairwise distinct eigenvalues on V ;

(b) g has almost simple spectrum on V , or g is an asp-element on V , if Φ(g) is diagonalizable
and has at least dim(V )− 1 pairwise distinct eigenvalues on V ;

(c) g is an m2sp-element on V , if Φ(g) is diagonalizable and each of its eigenvalues on V has
multiplicity ≤ 2;

(d) g has regular spectrum on V , if for any λ ∈ C, dim Ker(Φ(g) − λ · Id) ≤ 1, equivalently,
Φ(g) has at most one Jordan block with eigenvalue λ for any λ ∈ C; and

(e) g has almost regular spectrum on V , if V decomposes as the sum V0⊕V1 of Φ(g)-invariant
subspaces, dimV0 ≤ 1, and g has regular spectrum on V1.

In a perhaps unfortunate terminology due to Sylvester [Syl1], an element g ∈ GL(V )
with regular spectrum is also called “non-derogatory”. Such an element is regular in the
sense that its centralizer in GL(V ) has smallest possible dimension, and this is the reason
behind our term “regular spectrum”.

The relevance of Definition 1.1.5 to the study of monodromy groups of hypergeometric
sheaves is explained in Proposition 2.4.3 (below). Let us also recall two elementary results.

Lemma 1.1.6. [GT3, Lemma 2.5] Given a Zariski closed subgroup G ⊂ GL(V ) and a
Zariski closed normal subgroup H C G, suppose that (G, V ) satisfies (S−). Then either
H ≤ Z(G) or V |H is irreducible.

Lemma 1.1.7. [KT5, Lemma 1.6] Let Γ be a group, C an algebraically closed field of
characteristic zero, n ∈ Z≥1, Φ : Γ → GLn(C) = GL(V ) a representation of Γ, and G ≤
GL(V ) the Zariski closure of Φ(Γ). Then (Γ, V ) satisfies (S+) if and only if (G, V ) satisfies
(S+). This equivalence holds separately for each of the four conditions defining (S+).

To prove an analogue of Lemma 1.1.3 for groups satisfying (S−), first we need the fol-
lowing result on p-groups:

Lemma 1.1.8. Let p be a prime and let P be a finite p-group. Suppose that every charac-
teristic abelian subgroup of P is cyclic, and also central if p = 2. Then P = E ∗C is a central
product of subgroups E and C, where E = 1 or E is an extraspecial p-group, and C = Z(P )
is cyclic.

Proof. By Hall’s theorem, see e.g. [Gor], we have that P = E ∗X is a central product,
where E = 1 or E is an extraspecial p-group, and either X is cyclic, or p = 2 and X is either
a dihedral group

D2m = 〈x, y | x2m−1

= y2 = 1, yxy−1 = x−1〉,
a generalized quaternion group

Q2m = 〈x, y | x2m−2

= y2, y4 = 1, yxy−1 = x−1〉,
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or a semi-dihedral group

SD2m = 〈x, y | x2m−1

= y2 = 1, yxy−1 = x−1+2m−2〉,
of order 2m ≥ 16. In either case, Z(P ) = Z(E) ∗ Z(X) is characteristic abelian in P , hence
cyclic by assumption, and Z(E) has order 1 or p. Hence we are done if p > 2 or if p = 2 but
X is cyclic (taking C := X).

Assume now that p = 2, butX is non-cyclic. In the above notation, Z(X) = 〈x2m−2〉 ∼= C2,
hence Z(P ) = Z(X) ≥ Z(E). Note that P/Z(P ) = E/Z(E) × X/Z(X), where X/Z(X)

is dihedral of order 2m−1, with center 〈x2m−3〉/Z(X). Now, if Q denotes the full inverse
image of Z(P/Z(P )) in P , so that Q/Z(P ) = Z(P/Z(P )) ∼= E/Z(E) × Z(X/Z(X)), then

Q = E ∗ 〈x2m−3〉. Thus Z(Q) = 〈x2m−3〉 ∼= C4 is characteristic abelian, however not central
in Q, a contradiction. �

Lemma 1.1.9. Let 1 6= G ≤ GL(V ) be a Zariski closed, irreducible subgroup. Suppose
that G satisfies (S−), dim(V ) > 1, and Z(G) is finite. Then we have three possibilities:

(a) The identity component G◦ = L1∗L2∗ . . .∗Ln is a central product of simple algebraic
groups, which are permuted transitively by G via conjugation, and V |G◦ is irreducible.

(b) G is finite, F ∗(G) = Z(G)E(G), E(G) = L1 ∗ L2 ∗ . . . ∗ Ln is a central product of
quasisimple groups which are permuted transitively by G via conjugation, and V |E(G)

is irreducible.
(c) G is finite and it is an extraspecial normalizer in characteristic r, i.e. dim(V ) = rn

for a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is an
extraspecial r-group E of order r1+2n acting irreducibly on V , and either R = E or
Z(R) ∼= C4. Furthermore, R/Z(R) = Or(G/Z(G)) is the unique minimal normal
subgroup of G/Z(G), and G/Z(G)R embeds in Sp2n(r).

Proof. (i) By Lemma 1.1.3(ii), det(G) is finite. Now we can apply the arguments in
the proof of [GT3, Proposition 2.8] to G. Suppose G◦ 6= 1. Then G◦ is semisimple, and so
G◦ = L1 ∗ L2 ∗ . . . ∗ Ln is a central product of simple algebraic groups. Now, G permutes
L1, L2, . . . , Ln via conjugation. If this action is not transitive, then we can write G◦ = A ∗B,
where A is the product of the Li’s belonging to one G-orbit, and B is the product of the rest.
Furthermore, A,B C G and A,B 6≤ Z(G). Hence A and B are irreducible on V by Lemma
1.1.6, and so B ≤ Z(G) by Schur’s lemma, leading to a contradiction. Thus (a) holds if
G◦ 6= 1.

(ii) We will now assume that G is finite. As dim(V ) > 1, G > Z(G). Let L̄ be a minimal
normal subgroup of G/Z(G). Suppose L̄ is non-abelian. Then the arguments in part 2) of
the proof of [GT3, Proposition 2.8] show that L̄ is the unique minimal normal subgroup of
G/Z(G), and K = L1 ∗ L2 ∗ . . . ∗ Ln is a central product of quasisimple groups which are
permuted transitively by G via conjugation, if K = L(∞) and L is the full inverse image
of L̄ in G. The uniqueness of L̄ implies that E(G) = K, and that F ∗(G) = Z(G)E(G).
Furthermore, V |E(G) is irreducible by Lemma 1.1.6, and so (b) holds.

(iii) Suppose now that L̄ is an (elementary) abelian r-subgroup for a prime r, and let L
be the full inverse image of L̄ in G. Then [L,L] ≤ Z(G), whence L is nilpotent and so we
can write L = Or′(Z(G)) × L1 for an r-subgroup L1 C G. As L C G and L 6≤ Z(G), V is
irreducible over L by Lemma 1.1.6, and so over L1 as well; in particular, L1 is non-abelian.
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Since dim(V ) > 1, Lemma 1.1.6 implies that any characteristic abelian subgroup of L1 is
contained in Z(G), and so is cyclic and central in L1. By Lemma 1.1.8, L1 = E1 ∗ L2, where
E1 is extraspecial and L2 = Z(L1) is cyclic.

For any x, y ∈ L1, we have xr ∈ Z(G) and [x, y] ∈ Z(G), whence [x, y]r = [xr, y] = 1. The
latter implies by [KS, 5.3.4(b)] that (xy)r = xryr when r > 2 and (xy)4 = x4y4 when r = 2.
Setting r′ = r if r > 2 and r′ = 4 if r = 2, we then see that

(1.1.9.1) R := {x ∈ L1 | xr
′
= 1}

is a characteristic subgroup of L1; in particular, RCG. Note that E1 6= 1 is a central product
of extraspecial r-group of order r3 and so it contains non-central elements of order r′ (see
e.g. [KS, p. 115]), and thus R 6≤ Z(G). By Lemma 1.1.6, V |R is irreducible, and any
characteristic abelian subgroup of R is cyclic and central. Again applying Lemma 1.1.8, we
obtain that R = E ∗ C, where E is extraspecial and C is cyclic. Moreover, exp(R)|r′ by
(1.1.9.1), and so Z(R) ≤ Z(G) is cyclic of order dividing r′. It follows that either R = E, or
r = 2 and C ∼= C4, i.e. the first statement in (c) holds.

Next, Z(R) = R ∩ Z(G) = R ∩ Z(L1), and so 1 6= R/Z(R) ↪→ L1/Z(L1) = L/Z(L) = L̄.
The minimality of L̄ then implies that L̄ = R/Z(R). By Schur’s lemma, CG(R) = Z(G), so
Ḡ := G/Z(G) embeds in

Aut0(R) := {f ∈ Aut(R) | f acts trivially on Z(R)}.
According to [Gri] (for r = 2) and [Wi] (for r > 2), Aut0(R) contains the normal subgroup L̄
of all inner automorphisms of R and Aut0(R)/L̄ ↪→ Sp(L̄) ∼= Sp2n(r), and thus G/Z(G)R ↪→
Sp2n(r). The minimality of L̄ implies that G/Z(G)R acts irreducibly on L̄. Next, L̄ ≤ Or(Ḡ),
and the r-group Or(Ḡ)/L̄ < Sp(L̄) acting on the Fr-space L̄ must have a nonzero fixed point
subspace X̄ which is G-invariant. Hence X̄ = L̄ by irreducibility, and so L̄ = Or(Ḡ). Finally,
if M̄ is any minimal normal subgroup of Ḡ, then the preceding arguments imply that M̄ is
abelian and equal to Or(Ḡ), completing the proof of (c). �

For later use, we prove another result on p-groups:

Proposition 1.1.10. Let p be a prime, V = Cn with n > 1, and let P ≤ GL(V ) a finite
irreducible p-group. Let χ denote the character of G on V . Suppose that every characteristic
abelian subgroup of P is central in P . Then the following statements hold.

(i) n = pm for some m ∈ Z≥1, P = E ∗C is a central product of subgroups E and C, where
E is an extraspecial p-group of order p1+2m, and C = Z(P ) is cyclic.

(ii) If h ∈ GL(V ) has finite p′-order and h normalizes P , then the order M of the automor-
phism f of P induced by h is less than pm+1/(p− 1).

(iii) Suppose k ∈ Z≥1 and p - k. Then Symk(χ) is a multiple of an irreducible character of
degree pm of P . If in addition 1 ≤ k ≤ n− 1, the same statement holds for ∧k(χ).

(iv) Suppose k ∈ Z≥1 and p|k. Then Symk(χ) contains at least N distinct linear characters
of P , where N := p2m − 1 if p > 2 and N := 2m−1(2m + 1) if p = 2. If in addition
2 ≤ k ≤ n − 2, the same statement holds for ∧k(χ), with N := p2m − 1 if p > 2 and
N := 2m−1(2m − 1) if p = 2.

Proof. (i) Since P is irreducible, Z(P ) is cyclic, and by hypothesis every characteristic
abelian subgroup of P is cyclic. Hence P = E ∗ C, with E and C as described in Lemma
1.1.8. Now V |E is irreducible, so |E| = p1+2m with n = pm.
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(ii) Note that exp(E) = p or p2. Setting

P2 := {x ∈ P | xp2 = 1}, C2 := Ω2(C) := {z ∈ C | zp2 = 1},
we then see that P2 = {xz | x ∈ E, z ∈ C2}, whence P2 = E ∗C2 is a characteristic subgroup
of P , of exponent p or p2. As P2 ≥ E is irreducible on V , h centralizes Z(P2) < Z(GL(V )),
so f |P2 belongs to

Aut0(P2) = {y ∈ Aut(P2) | y acts trivially on Z(P2)}.
Moreover, if f j acts trivially on P2, then hj ∈ CGL(V )(P2) = Z(GL(V )), and so hj centralizes
P as well. Thus f and f |P2 have the same order M .

Note that xp, [x, y] ∈ Z(P2) for all x, y ∈ P2, and so [x, y]p = 1 . Hence the commuta-
tor map (x, y) 7→ [x, y] induces a non-degenerate symplectic bilinear form on P2/Z(P2) ∼=
E/Z(E) ∼= F2m

p , taking values in Ω1(Z(P2)) := {z ∈ Z(P2) | zp = 1} ∼= Fp. Certainly, h

acts on P2/Z(P2) preserving the form, and h acts trivially on Z(P2). If some power hj acts
trivially on P2/Z(P2), then, since p - o(h), we have that hj centralizes P by [KS, 8.2.2].
Thus M is equal to the order of the map in Sp(P2/Z(P2)) induced by f . In particular,
M ≤ meo(Sp2m(p)), whence M < pm+1/(p− 1) by [GMPS, Table 3].

(iii) As E is extraspecial, Z(E) = 〈z〉 ∼= Cp, and we may assume z acts on V as ζp · Id.
Now, given p - k, we see that z acts as the scalar ζkp 6= 1 on V ⊗k. Thus, any irreducible

constituent of the E-character afforded by V ⊗k lies above the character z 7→ ζkp of Z(E),
and the extraspecial p-group E has a unique such irreducible character, which has degree
pm. As both Symk(V ) and ∧k(V ) are inside V ⊗k, the statement follows for E, and hence for
P = E ∗ C (as C acts via scalars on V ).

(iv) Denote Σ := Sym or ∧, and assume 1 ≤ k ≤ n − 1 when Σ = ∧. It is well-known
that Σk(V ) is a nontrivial irreducible module for SL(V ). As GL(V ) = Z(GL(V ))SL(V ) and
SL(V )/Z(SL(V )) is simple, the only elements of GL(V ) that can act via scalars on Σk(V ) are
the ones in Z(GL(V )). It follows that Σk(χ) cannot be a multiple of a single linear character
of P . As p|k in this case, the generator z of Z(E) acts as ζpp = 1 on V ⊗k, and thus the

character of E on V ⊗k is a sum of pmk linear characters. The previous observation implies
that ∧k(χ)|E must contain at least two distinct linear characters. Since P = E ∗ C with
C < GL(V ), Σk(χ) must contain at least two distinct linear characters, say α and β, with
α|E 6= β|E.

First we consider the case p > 2. Denoting D := 〈ζp2 · Id〉 < Z(GL(V )), one readily check
that E ∗D = P2 ∗D = E+ ∗D, where E+ ∼= p1+2m

+ is extraspecial of exponent p. Extending
α to P2 ∗D, we may assume that α|E+ is nontrivial. It is well-known that

NGL(V )(E
+) = Z(GL(V ))E+ o Sp2m(p),

and Sp2m(p) has two orbits on Irr(E+/Z(E+)): {1E+}, and one of length p2m − 1. Also,
Z(E+) = Z(E) acts trivially on V ⊗k. Since NGL(V )(E

+) also acts on ∧k(V ), Clifford’s
theorem implies that Σk(χ)|E+ contains the NGL(V )(E

+)-orbit O of α|E+ which has length
p2m − 1.

Now we can write every element g ∈ P2 (not uniquely) as g = xd with x ∈ E+ and d ∈ D.
Then d acts on Σk(V ) as µ(d), where µ ∈ Irr(D) and µ(ζp2 · Id) = ζkp2 . For each λ ∈ O, the

E+-eigenspace Wλ in Σk(V ) that corresponds to λ is invariant under P2, and g acts on this
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subspace as the scalar λ(x)µ(d). If these actions of each g ∈ P2 are the same on Wλ and Wλ′

for O 3 λ′ 6= λ, then λ(x) = λ′(x), a contradiction because E+ ≤ P2D. Hence, Σk(χ) must
contain at least |O| = p2m − 1 distinct linear characters of P2, whence the statement follows
for P .

Next we consider the case p = 2. It is well known, see e.g. [Gri], that either

P2 = E = 21+2m
ε for some ε = ± and NGL(V )(P2) = Z(GL(V ))P2 ·Oε

2m(2),

or

P2 = E ∗ C4 and NGL(V )(P2) = Z(GL(V ))P2 · Sp2m(2).

Choose κ = + if Σ = Sym and κ = − if Σ = ∧. Since C4 acts via scalars on Σk, arguing as
above, we see that it suffices to show that Σk(χ) contain at least N distinct linear characters
for C4 ∗ E. Repeating the argument and using C4 ∗ E = C4 ∗ Eκ, we see that it suffices to
show that Σk(χ) contains at least N distinct linear characters for Eκ = 21+2m

κ . Note that
the representation of Eκ on V is orthogonal if κ = +, and symplectic if κ = −. Moreover,
the contraction map shows that Σk(V ) contains Σk−2(V ) as modules over O(V ), respectively
over Sp(V ), see [OV, Table 5]. As 2|k ≥ 2, it suffices to prove the statement for k = 2.
Now, V ⊗2 = Sym2(V )⊕∧2(V ) affords the regular character of Eκ/Z(Eκ), which breaks into
three NGL(V )(E

κ)-orbits: {1Eκ}, one of length 2m−1(2m − κ), and another, say O, of length
(2m−1 + κ)(2m − κ). By the choice of κ, Σ2(χ)|Eκ contains 1Eκ , and dim Σ2(V ) = 1 + |O|.
Since NGL(V )(E

κ) also acts on Σ2(V ), Clifford’s theorem implies that Σ2(V ) affords 1Eκ and
the orbit O, proving the statement with N = dim Σ2(V ). �

1.2. Kloosterman and hypergeometric sheaves

We work in characteristic p, and use Q`-coefficients for a chosen prime ` 6= p. We fix a
nontrivial additive character ψ of Fp, with values in µp(Q`). We will consider Kloosterman

and hypergeometric sheaves on Gm/Fp as representations of π1 := π1(Gm/Fp), and prove
that, under various hypotheses, they satisfy (S+) as representations of π1. As noted in
Lemma 1.1.7, this is equivalent to their satisfying (S+) as representations of their geometric
monodromy groups.

On Gm/Fp, we consider a Kloosterman sheaf

Kl := Klψ(χ1, . . . , χD)

of rank D ≥ 2, defined by an unordered list of D not necessarily distinct multiplicative
characters of some finite subfield Fq of Fp.

One knows that Kl is absolutely irreducible, cf. [Ka-GKM, 4.1.2]. One also knows,
by a result of Pink [Ka-MG, Lemmas 11 and 12] that Kl is primitive so long as it is not
Kummer induced. Recall that Kl is Kummer induced if and only if there exists a nontrivial
multiplicative character ρ such that the unordered list of the χi is equal to the unordered list
of the ρχi. Thus primitivity (or imprimitivity) of Kl is immediately visible.

Recall that for any smooth, geometrically connected X/Fq and any lisse Q` sheaf on
X, with geometric monodromy group Ggeom, a celebrated theorem of Grothendieck [De2,
1.3.8] tells us that the radical of G◦geom is unipotent. Thus if F is geometrically semisimple,
then G◦geom is semisimple. Applying this last statement to det(F), we see that det(F) is
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geometrically of finite order, since its G◦geom, being a semisimple subgroup of GL1(Q`), is
trivial.

Theorem 1.2.1. [KT5, Theorem 1.7] Let Kl be a Kloosterman sheaf of rank D ≥ 2 in
characteristic p which is primitive. Suppose that D is not 4. If p = 2, suppose also that
D 6= 8. Then Kl satisfies (S+).

More generally, we consider a (Q`-adic) hypergeometric sheaf H of type (D,m) with
D > m ≥ 0, thus

H = Hypψ(χ1, . . . , χD; ρ1, . . . , ρm).

[A Kloosterman sheaf is none other than a hypergeometric sheaf H of type (D, 0).] Here the
χi and, if m > 0, the ρj are (possibly trivial) multiplicative characters of some finite subfield
F×q , with the proviso that no χi is any ρj. [The case m = 0 is precisely the Kl case.] One
knows [Ka-ESDE, 8.4.2, (1)] that such an H is lisse on Gm, geometrically irreducible. Its
local monodromy at 0 is tame, a successive extension of the χi. It is of finite order if and only
if the χi are pairwise distinct, in which case that local monodromy is their direct sum ⊕iχi,
cf. [Ka-ESDE, 8.4.2, (5)]. Its local monodromy at ∞ is the direct sum of a tame part of
rank m which is a successive extension of the ρj, with a totally wild representation WildD−m
of rank D −m and Swan conductor one, i.e. it has all ∞-breaks 1/(D −m). It is of finite
order if and only the ρj, if any, are pairwise distinct, in which case that local monodromy is
the direct sum of ⊕jρj with WildD−m. We denote by w := D −m the dimension of the wild
part Wild, and let

(1.2.1.1) J := the image of I(∞) on H.

Theorem 1.2.2. [KT5, Theorem 4.1] Let H be an irreducible Q`-hypergeometric sheaf
on Gm/Fp, with p 6= `, and of type (D,m) with D − m ≥ 2. Denote by G0 the Zariski
closure inside the geometric monodromy group Ggeom of the normal subgroup generated by all
Ggeom-conjugates of the image of I(0). Then G0 = Ggeom. In particular, if Ggeom is finite
then it is generated by all Ggeom-conjugates of the image of I(0), and Ggeom = Op(Ggeom).

Theorem 1.2.3. [KT5, Theorem 4.7] Let H be an irreducible Q`-hypergeometric sheaf
on Gm/Fp definable on Gm/Fq for some finite extension Fq/Fp, with p 6= `, and of type
(D,m) with D > m. Denote by GP (∞) the Zariski closure inside the geometric monodromy
group Ggeom of the normal subgroup generated by all Ggeom-conjugates of the image of the
wild inertia group P (∞). Then Ggeom/GP (∞) is a finite cyclic group of order prime to p.

In the case of a hypergeometric sheafH withm > 0, primitivity is less easy to determine at
first glance, because there is also the possibility of Belyi induction, cf. [KRLT3, Proposition
1.2]. It is known that an H of type (D, 1) is primitive unless D is a power of p, cf. [KRLT3,
Cor 1.3]. It is also known [KRLT3, Proposition 1.4] that an H of type (D,m), with D >
m ≥ 2 and D a power of p, is primitive.

Theorem 1.2.4. [KT5, Theorem 1.9] Let H be a hypergeometric sheaf of type (D,m)
with D > m > 0, with D ≥ 4. Suppose that H is primitive, p - D, and w > D/2. If p is
odd and D = 8, suppose w > 6. If p 6= 3, suppose that either D 6= 9, or that both D = 9 and
w > 6. Then H satisfies (S+).
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Theorem 1.2.5. [KT5, Theorem 1.12] Let H be a hypergeometric of type (D,m) with
D > m > 0, with D > 4. Suppose that H is primitive. Suppose that p|D, and w >
(2/3)(D − 1). If p = 2, suppose D 6= 8. If p = 3, suppose (D,m) is not (9, 1). Then H
satisfies (S+).

These two results will be significantly strengthened in Theorem 5.2.9.
We end this section with the following result, which corrects an inaccuracy in [KT5,

Theorem 9.19(ii)].

Theorem 1.2.6. Let H be an irreducible hypergeometric sheaf of type (D,m) in char-
acteristic p with D > m, D ≥ 10, such that its geometric monodromy group G = Ggeom

is a finite extraspecial normalizer in some characteristic r. Then p = r, D = pn for some
n ∈ Z≥1, and the following statements hold.

(i) Suppose p > 2. Then H is Kloosterman, in fact the sheaf Kl(Charntriv(pn + 1)) (studied
by Pink [Pink] and Sawin [KT1, p. 841]).

(ii) Suppose p = 2. Then the 2-part of Z(G) has order 2, and so in Lemma 1.1.3(i)(c) we
have that R = E is a normal extraspecial 2-group 21+2n

ε of G for some ε = ±. Moreover,
after tensoring H with a suitable rank one sheaf Lχ, we obtain Z(G) = C2.

Proof. Part (i) is precisely [KT5, Theorem 9.19(i)], and the first claim of part (ii) is also
established in the first paragraph of the proof of [KT5, Theorem 9.19]. Now, if V denotes
the underlying representation, then V |E is irreducible and self-dual, we have by Gallagher’s
Theorem [Is, (6.17)] that V ∗ ∼= V ⊗A⊗B, with A and B being one-dimensional representa-
tions of the finite group G; moreover, (the character of) A has odd order and (the character
of) B has 2-power order. Since p = 2, we can find a one-dimensional representation L of G
such that L⊗2 = A, on which the 2-subgroup E acts trivially. Then the G-representation
U := V ⊗L yields a hypergeometric sheaf H⊗Lχ whose geometric monodromy group is the
image H of G in GL(U), and we also have U∗ ∼= U⊗B. Now any odd-order element z ∈ Z(H)
acts on U as some root of unity ζ ∈ C× with ζm = 1 for some odd m ∈ Z. Evaluating the
action of z on U∗ and U , we see that ζ−2 = B(z) has a 2-power order in C× and hence
ζ = 1. Thus O2′(Z(H)) acts trivially on U . By the first claim of part (ii), |O2(Z(H))| ≤ 2.
On the other hand, since E acts trivially on L and faithfully on V , E embeds in H as an
irreducible normal 2-subgroup. in particular, Z(E) still acts via µ2 on U . It follows that H
is an extraspecial 2-normalizer with Z(H) = Z(E) ∼= C2. �

1.3. More on condition (S+) for hypergeometric sheaves

Over a field k, a representation Φ : G→ GL(V ) of a group G is called tensor decomposable
if there exists a k-linear isomorphism V ∼= A ⊗k B with both A, B of dimension ≥ 2, such
that Φ(G) ≤ GL(A)⊗k GL(B), the latter being the image of GL(A)×GL(B) in GL(A⊗kB)
by the map (φ, ρ) 7→ φ ⊗ ρ. Tensor indecomposability is one part of the condition (S+),
which is shown in [KT5] to play a central role in the study of hypergeometric sheaves. More
precisely, a geometrically irreducible hypergeometric sheaf H satisfies (S+) if and only if it
is primitive, tensor indecomposable, and not tensor induced.

Various results in [KRLT3] on tensor indecomposability for the monodromy groups of
hypergeometric sheaves of type (D,m) with D > m > 0 are proved relying on the following
representation-theoretic fact:
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Theorem 1.3.1. [KRLT3, Theorem 2.3] Let J be a finite group, with normal Sylow p-
subgroup P and with cyclic quotient J/P . Let V be a finite-dimensional CJ-module which
is the direct sum T ⊕W of a nonzero tame part T (i.e., one on which P acts trivially) and
of an irreducible submodule W which is totally wild (i.e., one in which P has no nonzero
invariants). Suppose that one of the following conditions holds.

(a) dim(V ) is neither 4 nor an even power of p.
(b) dim(V ) is an even power of p and dim(T ) > 1.
(c) dim(V ) = 4, p > 2, and dim(T ) 6= 2.

Then J does not stabilize any decomposition V = A⊗B with dim(A), dim(B) > 1.

We offer another result which applies to some situations not covered by Theorem 1.3.1:

Theorem 1.3.2. Let p be any prime, n ≥ 1. Let G < GL(V ) ∼= GLpn(C) be a finite
group with a normal subgroup P which is an extraspecial p-group of order p1+2n. Suppose
that p2n− 1 admits a primitive prime divisor ` (in the sense of [Zs]) and that G contains an
element g of order ` that does not centralize P . Then G is irreducible, primitive on V , and
cannot fix any nontrivial tensor decomposition or a tensor induced decomposition of V .

Proof. (i) It suffices to prove the statement in the case G = P 〈g〉 ∼= P oC`. Note that
any complex irreducible representation of P is either trivial on Z(P ) ∼= Cp or has degree pn.
It follows that V |P is irreducible. Thus G acts irreducibly on V , with character say ϕ.

By Schur’s Lemma, Z(P ) acts on V via scalars, and so Z(P ) ≤ Z(G) and g centralizes
Z(P ). Next, the assumption about ` = |g| implies that the action of g on P/Z(P ) is
irreducible. Hence, if g has nonzero fixed points on P/Z(P ), then g acts trivially on P/Z(P ).
As g acts coprimely on P and g centralizes both Z(P ) and P/Z(P ), we then have that g
centralizes P , a contradiction. We have shown that |CP/Z(P )(g)| = 1, whence Z(P ) is the
complete inverse image of CP/Z(P )(g) in P . It follows by [GT1, Lemma 2.4] that

(1.3.2.1) |ϕ(g)| = 1.

(ii) Next we observe that if 1 6= P1 ≤ P is a g-invariant subgroup, then either P1 = Z(P )
or P1 = P . Indeed, the claim is obvious if P1 ≤ Z(P ). Suppose P1 6≤ Z(P ) and P1 < P .
Then P1Z(P )/Z(P ) is g-invariant, and so P1Z(P ) = P by irreducibility. As P1 ∩ Z(P ) = 1,
we have P1

∼= P/Z(P ) is abelian. In this case, P = P1×Z(P ) is also abelian, a contradiction.
A similar argument shows that

(1.3.2.2) O`′(G) = G.

Suppose now that G fixes a nontrivial imprimitive decomposition V = ⊕si=1Vi with s > 1.
As s|pn, [G : StabG(V1)] = s is coprime to `, and so we may assume that g fixes V1. Now
StabP (V1) is g-invariant, and has order at least |P |/s ≥ pn+1. It follows by the preceding
statement that StabP (V1) = P , i.e. P fixes V1. But in this case V1 = V by irreducibility, a
contradiction. We have shown that G acts primitively on V .

(iii) Assume now that G fixes a tensor decomposition V = A⊗B, with

(1.3.2.3) 1 < pa := dimA ≤ dimB < pn.

This leads to projective representations of G on A and on B, which are both irreducible over
P since P is irreducible on V . Since |G| = p2n+1`, by [Is, (11.21)] the Schur multiplier of



18 1. THE BASIC (S−), (S), AND (S+) SETTINGS

G is a p-group. Thus we can find a finite group Ĝ with a central p-subgroup Z1, such that
Ĝ/Z1

∼= G and the projective representations of G on A and B lift to linear representations

of Ĝ, with characters α and β, respectively.
Let Z1 ≤ T1 ≤ Q ≤ Ĝ be such that Q/Z1 = P and T1/Z1 = Z(P ). Note that

(1.3.2.4) Ĝ/Q ∼= G/P ∼= C`.

By irreducibility, Z1 acts via scalars on A, so Z1 ≤ Ker(αα). Hence, αα|Q can be viewed as a
character of P , which then contains 1P as an irreducible constituent since αα|Q contains 1Q.
Now αα|P − 1P is a P -character of degree p2a − 1 ≤ pn − 1 (recalling (1.3.2.3)). Inspecting
Irr(P ) as we did at the beginning of (i), we see that Z(P ) ≤ Ker(αα|P − 1P ). Thus, for any
t ∈ T1,

|α(t)|2 = (αα− 1Q)(t) + 1 = (αα− 1Q)(1) + 1 = α(1)2,

which means that T1 acts via scalars on A.
Let the subgroup T consist of all elements of Ĝ that acts on A via scalars, so that T ≥ T1.

We claim that T ≤ Q. If not, then, keeping in mind (1.3.2.4) and the fact that Z1 is a p-

group, we may assume that an inverse image ĝ of order ` of g in Ĝ is contained in T . This
implies that α(ĝ) = paε, with ε ∈ C× a root of unity. Certainly, β(ĝ) is an algebraic integer.
It follows that

ϕ(g) = α(ĝ)β(ĝ) = paγ

for some algebraic integer γ. This in turn implies that |ϕ(g)|2/p2 = γγ is an algebraic integer,
contradicting (1.3.2.1). Thus T ≤ Q as stated.

Modding out by Ker(α) (which is contained in T ), we may assume that α is faithful.

Slightly abusing the notation, we will denote the images of Ĝ, Q, T in this quotient by the
same letters. Now we have that α|Q is a faithful irreducible character of the p-group Q, with
T acting via scalars. Let Ψ denote the representation of Q on A. Next we show that

(1.3.2.5) Q/T ∼= C2n
p .

Indeed, since Q/T is a quotient of P/Z(P ) ∼= C2n
p , Q/T is elementary abelian of order pc for

some c ≤ 2n. Now if c < 2n, then the choice of ` = |ĝ| implies that ĝ centralizes Q/T . As T
acts on A via scalars and Ψ is faithful, ĝ also centralizes T . The coprime action of ĝ on the
p-group Q now yields that ĝ centralizes Q, and so g centralizes P , a contradiction.

Recall we have shown that Q/T acts projectively and irreducibly on A. It is well known,
cf [Is, (11.16), p. 197] that the Schur multiplier of the elementary abelian group Q/T is
also elementary abelian. Hence, we can find a p-group R with an elementary abelian central
subgroup Z2 and with a faithful irreducible linear action Θ on A that lifts the projective
action of Q/T ∼= R/Z2. More precisely, if we fix a representative g ∈ Q of a coset gT ∈ Q/T ,
then there is a representative h ∈ R of gT but now viewed as a coset in R/Z2 such that
Ψ(g) = Θ(h). In this case, Θ(h) can be scalar only when Ψ(g) is, whence g ∈ T by the
choice of T . Thus Z2 consists precisely of all elements h ∈ R such that Θ(h) is scalar.
The faithfulness of Θ now implies that Z2 is cyclic. Also, Z2 6= 1 as otherwise R would
be abelian and so cannot act irreducibly on A. It follows that Z(R) = Z2

∼= Cp. Since
R/Z2 is elementary abelian, it now follows that [R,R] = Φ(R) = Z(R) (where Φ(R) is the
Frattini subgroup of R). In other words, R is extraspecial, of order |Z(R)| · |R/Z2| = p1+2n
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by (1.3.2.5). As Θ is a faithful irreducible representation of R, we must have that

dimA = deg Θ = pn,

contradicting (1.3.2.3).

(iv) We have shown that G fixes no nontrivial tensor decomposition of V . Suppose now
that G fixes a tensor induced decomposition V = V1⊗V2⊗. . .⊗Vm ∼= V ⊗m1 , where dimV1 = pd,
m > 1, and dm = n. Note that the choice of ` implies that ` ≥ 2n + 1 > m. Hence, every
element of order ` of G must act trivially on the set {V1, . . . , Vm}. This in turn implies by
(1.3.2.2) that G also acts trivially on the same set, that is, G fixes each of the tensor factors
Vi. But this contradicts the previous result. �

We now state a well-known result which will be useful later.

Theorem 1.3.3. Let k be a finite field of characteristic p, X/k a smooth, geometrically
connected scheme, ` 6= p a prime, and F ,G two lisse Q` sheaves on X, each of which is
pure of weight zero. Suppose that F and G have identical trace functions: for every finite
extension L/k, and every point x ∈ X(L), we have

Trace(Frobx,L|F) = Trace(Frobx,L|G).

Then we have the following results.

(i) There exists a geometric isomorphism φ of F with G, i.e., an isomorphism of their
pullbacks to X ⊗k k.

(ii) Pick a geometric point η of X, and use φ to view F and G as representations ρF and
ρG of πgeom

1 := π1(X ⊗k k, η) on the same finite dimensional Q` vector space V (V
being the stalk Fη = Gη via φ). Then the two image groups ρF(πgeom

1 ) and ρF(πgeom
1 )

are conjugate subgroups of the ambient GL(V ).
(iii) The geometric monodromy groups Ggeom,F and Ggeom,G are conjugate subgroups of

the ambient GL(V ).

Proof. Assertion (iii) is obtained from the last sentence of (ii) by passing to Zariski
closures of the conjugate image groups. Assertion (ii) is just a concrete spelling out of
assertion (i).

To prove (i), we argue as follows. By Chebotarev, the equality of traces implies that F
and G have isomorphic arithmetic semisimplifications, i.e., isomorphic semisimplifications as
representations of πarith

1 := π1(X, η). Because πgeom
1 C πarith

1 is a normal subgroup, it follows
that F and G have isomorphic semisimplifications as representations of πgeom

1 . Because F and
G are each pure of weight zero, each is semisimple as a representation of πgeom

1 , by [De2, 3.4.1
(iii)]. Hence F and G are isomorphic as representations of πgeom

1 , i.e., they are geometrically
isomorphic. �

To end this section, we give a well-known result for which we do not know an explicit
reference.

Theorem 1.3.4. Let n ≥ 1 be an integer, p a prime and k/Fp an algebraically closed field
of characteristic p. Then for G a finite group of order prime to p,

Homgp(π1(An/k), G) = 1.
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Proof. For n = 1, this is Abhyankar’s insight [Abh, Proposition 6, (I) and (II)]. For
n ≥ 2, we use the “weak Bertini” result of [Ka-ACT, Corollary 3.4.2], applied with V =
An, π = Id, f = 0 there to reduce from n to n − 1, viewing An−1 as the zero set of the
polynomial fA,b = Ax+ b there. �

1.4. Moments and monodromy

We first recall the notion of moments. Let C (sic) be an algebraically closed field of
characteristic zero, V a finite dimensional C vector space, and G ≤ GL(V ) a Zariski closed
subgroup. For non-negative integers a, b, the (a, b)-moment Ma,b(G, V ) is the dimension

Ma,b(G, V ) := dim
(
(V ⊗a ⊗ (V ∨)⊗b)G

)
.

In applications, F will be a lisse Q`-sheaf on some geometrically connected X/Fq, ` 6= p,

V will be the representation of Ggeom attached to F , G will be Ggeom, and Q` will be the
algebraically closed field of characteristic zero. By fundamental results of Grothendieck and
Deligne [De2, 1.3.8 and 3.4.1 (iii)], Ggeom is a semisimple algebraic group (meaning that its
identity component G0

geom is semisimple).
The importance of the M2,2 moment is given by Larsen’s Alternative. First recall the

following basic facts. Suppose G ≤ GL(V ) and dim(V ) ≥ 2.

(a) If SL(V ) ≤ G, and dim(V ) ≥ 2, then M2,2(G, V ) = 2.
(b) If V is given with an orthogonal autoduality 〈·, ·〉, and either G = O(V ) or both

dim(V ) 6= 2, 4 and G = SO(V ), then M2,2(G, V ) = 3.
(c) If V is given with an alternating autoduality 〈·, ·〉 and dim(V ) ≥ 4, thenM2,2(Sp(V ), V ) =

3.

Remark 1.4.1. The special behavior in dimensions 2 and 4 is this. The group SO2 is
not semisimple, but rather is GL1 with the 2-dimensional representation x 7→ diag(x, 1/x),
and has M2,2 = 6 in this representation. The group SO4 has M2,2 = 4 in its standard
representation because it is (SL(2)×SL(2))/(±diag(id, id)) in the representation std2⊗ std2.
In both cases, this “too large M2,2” issue is cured by passing to O instead of SO.

Theorem 1.4.2. (Larsen’s Alternative, [Ka-LAMM, 1.1.6]) Suppose G ≤ GL(V ) is
semisimple and dim(V ) ≥ 2. Then we have the following results.

(i) If M2,2(G, V ) = 2, then either G is finite or G◦ = SL(V ).
(ii) If V is given with an orthogonal autoduality 〈·, ·〉, G ≤ O(V ), and M2,2(G, V ) = 3,

then either G is finite or SO(V ) ≤ G ≤ O(V ).
(iii) If V is given with an alternating autoduality 〈·, ·〉, dim(V ) ≥ 4, G ≤ Sp(V ), and

M2,2(G, V ) = 3, then either G is finite or G = Sp(V ).

The cases in dimension ≥ 5 when Larsen’s alternative implies finiteness are given by the
following theorem.

Theorem 1.4.3. [GT2, Theorem 1.5] Let V = Cd with d ≥ 5, G = GL(V ), Sp(V ),
or O(V ). Assume G is a semisimple subgroup of G. Set S̄ = S/Z(S) for S := F ∗(G) if
G is finite. Then G is irreducible on every G-composition factor of V ⊗ V ∗, equivalently,
M2,2(G, V ) = M2,2(G, V ), if and only if one of the following holds.

(A) G ≥ [G,G].
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(B) (Lie-type case) One of the following holds.
(i) S̄ = PSp2n(q), n ≥ 2, q = 3, 5, G = Z(G)S, and V |S is a Weil module of dimension

(qn ± 1)/2.
(ii) S̄ = PSUn(2), n ≥ 4, and V |S is a Weil module of dimension (2n + 2(−1)n)/3 or

(2n − (−1)n)/3.
(C) (Extraspecial cases) d = pa for some prime p, p > 2 if G = GL(V ) and p = 2 otherwise,

F ∗(G) = Z(G)E for some extraspecial subgroup E of order p1+2a of G, and one of the
conclusions (i)–(iii) of [GT2, Lemma 5.1] holds.

(D) (Exceptional cases) (dim(V ), S̄, G,G) is as listed in Table I.

The following two results of [GT2] address higher moments of closed subgroups of G.

Theorem 1.4.4. [GT2, Theorem 1.6] Let V = Cd with d ≥ 5, G = GL(V ), Sp(V ),
or O(V ). Assume G is a semisimple subgroup of G. Then G is irreducible on every G-
composition factor of V ⊗3, equivalently, M3,3(G, V ) = M3,3(G, V ), if and only if one of the
following holds.

(A) G ≥ [G,G]; moreover, G 6= SO(V ) if d = 6.
(B) (Extraspecial case) d = 2a for some a > 2. If G = GL(V ) then G = Z(G)E · Sp2a(2)

with E = 21+2a
+ . If G = Sp(V ), respectively O(V ), then E · Ωε

2a(2) ≤ G ≤ E · Oε
2a(2),

with E = 21+2a
ε and ε = −, resp. ε = +.

(C) (Exceptional cases) G is finite, with the unique nonabelian composition factor

S̄ ∈ {PSL3(4), SU3(3),PSU4(3), J2,A9,Ω
+
8 (2), SU5(2), G2(4), Suz, J3, Co2, Co1, F4(2)},

and (dim(V ), S̄, G,G) is as listed in the lines marked by (?) in Table I.

Theorem 1.4.5. [GT2, Theorem 1.4] Let V = Cd with d ≥ 5 and G be GL(V ), Sp(V ),
or O(V ). Assume that G is a Zariski closed subgroup of G such that G◦ is reductive. Then
one of the following statements holds.

(i) M4,4(G, V ) > M4,4(G, V ).
(ii) G ≥ [G,G].

(iii) d = 6, G = Sp(V ), and G = 2J2.

As in Theorem 1.4.3(C), consider finite groups G with F ∗(G) = Z(G)E of symplectic
type, i.e. E is either extraspecial of odd exponent p, an extraspecial 2-group of type ±, or
a central product of an extraspecial 2-group with a cyclic group of order 4 (with the central
involutions identified).

If E is extraspecial of order p1+2a, then an irreducible faithful module V over an alge-
braically closed field F of characteristic ` 6= p for E has dimension pa and is unique once the
character of Z(E) is fixed. Moreover, we consider the following situations: E C G ≤ G ≤
GL(V ), where Z := Z(G), and

(a) p is odd, G ≤ N := (EZ) o Sp2a(p) and G = GL(V );
(b) p = 2, G ≤ N := (EZ) · Sp2a(2) and G = GL(V );
(c) p = 2, G ≤ N := E ·O+

2a(2) and G = O(V );
(d) p = 2, G ≤ N := E ·O−2a(2) and G = Sp(V ).

We now assume that E C G ≤ N , |E| = p1+2a, d = dim(V ) = pa > 4, W := F2a
p the

natural module for N/(EZ ∩N), and take this opportunity to correct some inaccuracies in
the proofs of Propositions 5.2 and 5.3 of [GT2].
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d S̄ G G
The largest 2k with

Mk,k(G,V ) = Mk,k(G, V )
Mk+1,k+1(G, V ) vs.
Mk+1,k+1(G, V )

6 A7 6A7 GL6 4 21 vs. 6
6 PSL3(4) (?) 6 · PSL3(4) · 21 GL6 6 56 vs. 24
6 PSU3(3) (?) (2× PSU3(3)) · 2 Sp6 6 195 vs. 104
6 PSU4(3) (?) 61 · PSU4(3) GL6 6 25 vs. 24
6 J2

(?) 2J2 Sp6 10 10660 vs. 9449
7 SL2(8) SL2(8) · 3 O7 4 81 vs. 15
7 Sp6(2) Sp6(2) O7 4 16 vs. 15
8 PSL3(4) 41 · PSL3(4) GL8 4 17 vs. 6
8 A9

(?) 2A9 O8 6 191 vs. 106
8 Ω+

8 (2) (?) 2Ω+
8 (2) O8 6 107 vs. 106

10 SU5(2) (?) (2× SU5(2)) · 2 Sp10 6 120 vs. 105
10 M12 2M12 GL10 4 15 vs. 6
10 M22 2M22 GL10 4 7 vs. 6
12 G2(4) (?) 2G2(4) · 2 Sp12 6 119 vs. 105
12 Suz (?) 6Suz GL12 6 25 vs. 24
14 2B2(8) 2B2(8) · 3 GL14 4 90 vs. 6
14 G2(3) G2(3) O14 4 21 vs. 15
18 Sp4(4) (2× Sp4(4)) · 4 O18 4 25 vs. 15
18 J3

(?) 3J3 GL18 6 238 vs. 24
22 McL McL O22 4 17 vs. 15
23 Co3 Co3 O23 4 16 vs. 15
23 Co2

(?) Co2 O23 6 107 vs. 105
24 Co1

(?) 2Co1 O24 6 106 vs. 105
26 2F4(2)′ 2F4(2)′ GL26 4 26 vs. 6
28 Ru 2Ru GL28 4 7 vs. 6
45 M23 M23 GL45 4 817 vs. 6
45 M24 M24 GL45 4 42 vs. 6
52 F4(2) (?) 2F4(2) · 2 O52 6 120 vs. 105
78 Fi22 Fi22 O78 4 21 vs. 15

133 HN HN O133 4 21 vs. 15
248 Th Th O248 4 20 vs. 15
342 O′N 3O′N GL342 4 3480 vs. 6

1333 J4 J4 GL1333 4 8 vs. 6

Table I. Exceptional cases with small moments in dimension d ≥ 5

Proposition 1.4.6. (cf. [GT2, Proposition 5.2]). Assume ` = 0 and pa > 4.

(i) Assume G = GL(V ). If p > 2 then M3,3(N, V ) −M3,3(G, V ) ≥ 2p − 5. If p = 2 then
M4,4(N, V ) > M4,4(G, V ) and M3,3(N, V ) = M3,3(G, V ).

(ii) Assume p = 2, a ≥ 4, and G = Sp(V ) or O(V ). Then M3,3(N, V ) = M3,3(G, V ) and
M4,4(N, V ) > M4,4(G, V ).
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Proof. (i) It was stated at the beginning of the proof of [GT2, Proposition 5.2], that

M := V ∗ ⊗ V
is trivial on Z, and, considered as a module over EZ/Z, it is the permutation module on W
with E/Z(E) acting by translations, and, as a module over N/Z, it is the permutation module
on W with N/EZ ∼= Sp(W ) acting naturally. The emphasized part of the statement is true
only when p > 2. Indeed, if p = 2 then N/Z is non-split over EZ/Z, see [Gri, Theorem 1].
Assume that p > 2. It is well known that N is split over EZ (with a complement S ∼= Sp(W )
being the centralizer of a suitable involution), and V |S is reducible (in fact it is a sum of two

irreducible Weil modules). Let M1 = Ind
N/Z
S (1S) denote the permutation N/Z-module on

W with S acting naturally. Since the corresponding permutation action is doubly transitive,
M1
∼= F⊕M2 with M2 nontrivial irreducible. By Frobenius reciprocity,

HomN/Z(M,M1) ∼= HomS(M |S, 1S) ∼= HomS(V |S, VS)

has dimension at least 2. Since HomN/Z(M,F) ∼= HomN(V, V ) ∼= F, it follows that M contains
both F and M2, and by dimension comparison we conclude that M ∼= M1.

Now, if p > 2, then all the arguments in part (i) of the proof of [GT2, Proposition 5.2]
apply, and we are done. Assume p = 2. To prove M4,4(N, V ) > M4,4(G, V ), by [GT2,
Remark 2.3] it suffices to show that N is reducible on the simple G-module Sym4(V ) of
dimension

D := 2a−2(2a + 1)(2a−1 + 1)(2a + 3)/3.

Assume the contrary. Recall that E = C4 ∗ 21+2a
+ and Z(E) = C4 acts trivially on Sym4(V )

but E does not (as one can check by computing the trace of some non-central involution).
Since N/EZ acts transitively on the 22a − 1 nontrivial irreducible characters of E/(E ∩ Z),
it follows from Clifford’s theorem that 22a − 1 divides D, which is impossible.

Next we observe for p = 2 that M3,3(N, V ) ≥ M3,3(G, V ) = 6. As mentioned in the
proof of [GT2, Proposition 5.2], the E/Z(E)-module M affords the character ρ :=

∑
v∈W v,

where we again identify Irr(E/Z(E)) with W as in the proof of [GT2, Lemma 5.1]. It follows
that M⊗3 is the permutation module on W ×W ×W , and that the fixed point subspace

for ZE inside M⊗3 affords the E/Z(E)-character 1E ·
(∑

u,v,w∈W,u+v+w=0 1
)

. On the triples

(u,w,w), u, v, w ∈ W , u + v + w = 0, Sp(W ) acts with exactly 6 orbits, with the first four
orbit representatives being (0, 0, 0); (u, 0,−u), (u,−u, 0), (0, u,−u) with u 6= 0; and 2 orbits
of (u, v, u + v) with u, v ∈ W linearly independent and the inner product (u|v) = µ ∈ F2.
Each orbit gives rise to an induced module IndSPi(Li), 1 ≤ i ≤ 6, for S := Sp(W ), with
dimLi = 1. Since

dim HomS(IndSPi(Li),F) = dim HomPi(Li,F) ≤ 1,

it follows that M3,3(N, V ) ≤ 6, and we are done. In fact, now since M3,3(N, V ) = 6, the
previous inequality must in fact be an equality, and thus Li ∼= F, i.e. all the six induced
modules are permutation modules.

(ii) A similar argument as in (i) also applies to show that M4,4(N, V ) > M4,4(G, V ) in
the case G = Sp(V ). Indeed, assume that N is irreducible on the simple G-module Sym4(V )
of the same dimension D. Since Z(E) acts trivially on Sym4(V ) but E does not, and N/E
has two orbits of length d(d+ 1)/2 and (d− 2)(d+ 1)/2 on the 22a − 1 nontrivial irreducible
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characters of E/Z(E), we see from Clifford’s theorem that one of these two lengths divides
D. But this is impossible.

Next we show that M4,4(N, V ) > M4,4(G, V ) in the case G = O(V ). Indeed, assume N
is irreducible on the simple G-module Sym4(V )/Sym2(V ) of dimension

D′ := 2a−2(2a + 1)(2a−1 + 3)(2a − 1)/3.

Since Z(E) acts trivially on Sym4(V )/Sym2(V ) but E does not, and N/E has two orbits
of length d(d− 1)/2 and (d + 2)(d− 1)/2 on the 22a − 1 nontrivial irreducible characters of
E/Z(E), we see from Clifford’s theorem that one of these two lengths divides D′. But this
is again impossible.

To show that M3,3(N, V ) = M3,3(G, V ), first we observe that M3,3(N, V ) ≥M3,3(G, V ) =
15. Next, as mentioned in the proof of [GT2, Proposition 5.2], the fixed point subspace of E
on M⊗3, considered as an N/E-module, is the direct sum of 15 induced modules (from one-
dimensional submodules). Arguing as in (i), we obtain the upper bound M3,3(N, V ) ≤ 15,
hence the equality M3,3(N, V ) = 15, and thus the 15 induced modules are in fact permutation
modules. �

Proposition 1.4.7. (cf. [GT2, Proposition 5.3].) Assume ` = 0 and pa > 4. Then
M3,3(G, V ) = M3,3(G, V ) if and only if G is as described in case (B) of [GT2, Theorem 1.6].

Proof. By Proposition 1.4.6 we may assume p = 2. In fact the proof of Proposition
1.4.6 establishes the “if” part of our claim. For the “only if” part, suppose that M3,3(G, V ) =
M3,3(G, V ). The decomposition of the E-fixed point subspace on (V ∗ ⊗ V )⊗3 as the sum of
permutation N/(EZ∩N)-modules in the proof of Proposition 1.4.6 also shows that G/Z(G)E
has the same orbits on W ×W as of M := N/(EZ∩N). Now the proof of [GT2, Proposition
5.3] shows that H ≥ [M,M ], yielding the statement. �



CHAPTER 2

Some basic facts about monodromy groups

2.1. Arithmetic semisimplicity

Let k be a finite field of characteristic p > 0, X/k a smooth, geometrically irreducible
k-scheme, ` 6= p a prime, and F a lisse Q` sheaf on X which is pure of some weight. By
[De2, 3.4.1 (iii)], F is completely reducible (:= semisimple) as a representation of πgeom

1 (X),
or equivalently as a representation of its Ggeom. However, F need not be arithmetically
semisimple, i.e. semisimple as a representation of πarith

1 (X). Equivalently, F need not be
semisimple as a representation of its Garith. However, we have the following fundamental
result of Faltings, Mori, and Zarhin, cf. [Zar1] and [Zar2, Theorem 1.2].

Theorem 2.1.1. Let A/X be an abelian scheme, with structural morphism f : A → X.
Then R1f?Q` is arithmetically semisimple.

Passing to Jacobians, we find

Corollary 2.1.2. Let C/X be a proper smooth family of curves, with geometrically con-
nected fibres of some genus g ≥ 1, and structural morphism f : C → X. Then R1f?Q` is
arithmetically semisimple, and hence every direct factor of R1f?Q` is arithmetically semisim-
ple.

In what follows, we often deal with the following situation: X/k is an affine dense open
set Spec (R) in an affine space An/k, and C/X is either an Artin-Schreier curve of affine
equation

yp − y = a polynomial fr(x) ∈ R[x] of degree 2g + 1,

(whose complete nonsingular model has a single point at∞), or an Artin-Schreier-Witt curve
(with Witt vectors of length two)

[up, vp]− [u, v] = [ar(x), br(x)]

with ar(x), br(x) ∈ R[x] polynomials each of which is Artin-Schreir reduced and of fixed
degree da, db. Here too the complete nonsingular model has a single point at ∞.

In the Artin-Schreier case, the R1f? is the direct sum of p − 1 summands, each of rank
2g, corresponding to the p− 1 nontrivial additive characters ψ of Fp. The trace function of
the ψ component, call it Fψ, is given as follows. For L/k a finite extension, and r0 ∈ R⊗k L,

Trace(Frobr0,L|Fψ) = −
∑
x∈L

ψL(fr0(x)).

In the Artin-Schreier-Witt case, there are p2 − p summands, each of rank max(pda, db),
corresponding to the p2 − p faithful characters ψ2 of Z/p2Z. The trace function of the ψ2

25
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component, call it Fψ2 , is given as follows. For L/k a finite extension, and r0 ∈ R⊗k L,

Trace(Frobr0,L|Fψ2) = −
∑
x∈L

ψ2,L([ar0(x), br0(x)]).

We will use without further reminders that these local systems are arithmetically semisim-
ple, and we will refer to each of them simply as “the local system whose trace function is
. . .”.

2.2. Finiteness of Ggeom and Garith

In this section, Fq is a finite field of characteristic p, and X/Fq is a smooth, geometrically

connected Fq-scheme. We also fix a choice of prime ` 6= p, and consider lisse Q` sheaves
F on X. Taking as base point an algebraic closure of the function field of X, we have the
(profinite) arithmetic fundamental group

πarith
1 (X) := π1(X)

and its closed normal subgroup

πgeom
1 (X) := π1(X ⊗Fq Fq)C πarith

1 (X).

which sits in the short exact sequence

1→ πgeom
1 (X)→ πarith

1 (X)→ Gal(Fq/Fq)→ 1.

A lisse Q` sheaf on X of rank d is a continuous representation ρF : πarith
1 (X) → GLd(Q`).

One knows [Ka-Sar, 9.0.7] that for any such F , there exists a finite extension Eλ/Q` such
that ρF has image in GLd(Eλ), and indeed in a suitable basis has image in GLd(Oλ), for Oλ
the ring of λ-adic integers in Eλ.

We say that F is arithmetically semisimple (respectively geometrically semisimple) if it is
completely reducible as a representation of πarith

1 (X) (respectively πgeom
1 (X)). Similarly for

the notions of arithmetic and geometric irreducibility.
Attached to F we have two algebraic groups, Garith and GgeomCGarith ⊂ GLd(Q`), namely

Ggeom,F := Ggeom := the Zariski closure of ρF(πgeom
1 (X)),

Garith,F := Garith := the Zariski closure of ρF(πarith
1 (X)).

Theorem 2.2.1. ([KRLT1, Prop. 2.1 and Remark 2.2]) Suppose F is arithmetically
semisimple and pure of weight zero for all embeddings of Q` into C. Then F has finite Garith

if and only if for every finite extension k/Fq and every point x ∈ X(k), the Frobenius Frobx,k
has Trace(Frobx,k|F) an algebraic integer.

Remark 2.2.2. Here is an example to show that the hypothesis of arithmetic semisim-
plicity is essential in the above Therem 2.2.1, cf. [KRLT1, Remark 2.2]. On X/Fq, take the
rank two sheaf F on which πgeom

1 (X) acts trivially (so that F is geometrically isomorphic to
Q` ⊕ Q`), and on which πarith

1 (X) acts through its quotient Gal(Fq/Fq) by having Frobq act

as the upper unipotent automorphism with matrix

(
1 1
0 1

)
. Then F is arithmetically inde-

composable, but its arithmetic semisimplification is trivial. Its Garith,F is not finite, rather
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it is the upper unipotent group

{(
1 z
0 1

)}
, but each of its Frobenius traces is the algebraic

integer 2.
Conversely, if a sheaf F has finite Garith, then in particular Garith is reductive, and hence

F is arithmetically semisimple.
We also remark that if F has finite Garith, then F is (trivially) pure of weight zero and

(trivially) has det(F) arithmetically of finite order.

Theorem 2.2.1 implies the following consequence, which allows us to deduce finiteness of
Garith (and Ggeom) in all the cases we are interested in.

Corollary 2.2.3. Suppose F is arithmetically semisimple and pure of weight zero for all
embeddings of Q` into C. Suppose further that for some finite extension K/Q, all Frobenius
traces of F take values in OK [1/p], for OK the ring of integers of K. Then F has finite
Garith if and only if all Frobenius traces are p-adically integral at all p-adic places ℘ of K.

Theorem 2.2.4. ([Ka-ESDE, 8.14.3.1 and 8.14.4]) Suppose F is geometrically irre-
ducible and det(F) is arithmetically of finite order. Then Ggeom is finite if and only if Garith

is finite. If F is pure of weight zero, this finiteness is equivalent to F having all its Frobenius
traces algebraic integers.

Lemma 2.2.5. Suppose F is a finite direct sum F :=
⊕

iFi. Then F has finite Ggeom

(respectively finite Garith) if and only if each Fi has finite Ggeom (respectively finite Garith). In
general, without assuming finiteness in either of the two cases, i.e. arithmetic or geometric,
the relevant group GF is a subgroup of the product group

∏
iGFi which maps onto each factor.

Proof. In each of the two (geometric and arithmetic) contexts, ρF is the direct sum of
the ρFj . Thus Ker(ρF) lies in each Ker(ρFi), so each of the latter groups will be of finite
index in the appropriate π1 if Ker(ρF) is of finite index. Conversely, if each Ker(ρFi) is of
finite index, then Ker(ρF), being the intersection of these normal subgroups of finite index, is
itself of finite index. In the finite monodromy case, each of the relevant monodromy groups
is the literal image of ρF , respectively of the ρFi (the Zariski closure of a finite subgroup of
a GL is itself).

In the finite case, the second assertion results from the fact that in each context, i.e.
either geometric or arithmetic, ρF is the direct sum of the ρFj . If we no longer assume
finiteness, then we must deal with the Zariski closures of the images on the respective π1(X)
(i.e., either geometric or arithmetic) under the homomorphisms ρF and the ρFj . Let us
temporarily denote these literal image groups as ΓF and the ΓFj . Then ΓF is a subgroup of
the product group

∏
i ΓFj which maps onto each factor. So we must check that an inclusion

of subgroups A < B < GLd gives an inclusion of their Zariski closures, which is immediate
from the definition of Zariski closure, and that given a finite product of subgroups Ai < GLdi ,
the Zariski closure of the product

∏
iAi in

∏
i GLdi is the product of the individual Zariski

closures of the Ai < GLdi . An obvious induction reduces us to treat the case of two factors,
call them X, Y . Denoting the Zariski closure of A by A, we argue as follows. Since X × Y
is closed and contains X × Y , we have X × Y ⊇ X × Y . Conversely, suppose a polynomial
f(x, y) vanishes on X×Y . Then for any x′ ∈ X, the polynomial f(x′, y) vanishes on {x′}×Y ,
so it also vanishes on {x′} × Y . Thus f vanishes on X × Y . Hence, for any y′ ∈ Y , the
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polynomial f(x, y′) vanishes on X × {y′}, so it also vanishes on X × {y′}. Thus f(x, y)
vanishes on X × Y , showing X × Y ⊆ X × Y . �

Theorem 2.2.4 remains true under a weaker assumption.

Theorem 2.2.6. Suppose F is arithmetically irreducible and det(F) is arithmetically of
finite order. Then Ggeom is finite if and only if Garith is finite.

Proof. Because Ggeom ≤ Garith, it is obvious that if Garith is finite, then Ggeom is finite.
To prove the converse, we argue as follows. Suppose that F has finite Ggeom and that det(F)
is arithmetically of finite order.

One knows [De3, 1.2] that geometrically, F is the direct sum of pairwise non isomorphic
constituents, transitively permuted by Gal(Fq/Fq). For n the number of such summands,
and Xn := X ⊗Fq Fqn , the pullback of F to Xn is the direct sum of n irreducible lisse sheaves
Gi on Xn. For any of these, say G1, denoting by

π : Xn → X

the projection, we have

F ∼= π?(G1).

By Lafforgue [L, VII.7], cf. also [De3, proof of 1.9], one knows that F is pure of weight
zero. Therefore its pullback to Xn is pure of weight zero, and hence each Gi is pure of weight
zero. By Grothendieck’s “the radical is unipotent” theorem [De2, 1.3.8, 1.3.9], one knows
that det(G1) is geometrically of finite order, say of order d. Then det(G1)⊗d is geometrically
trivial, so arithmetically of the form αdeg /Fqn . Choosing β with βnd = 1/α, we have that
G1 ⊗ βn deg /Fqn has determinant which is arithmetically of finite order.

On the other hand, F has finite Ggeom, hence so does each Gi, and hence so does G1 ⊗
βndeg /Fqn . Then by the previous Theorem 2.2.4, we conclude thatG1 ⊗ βn deg /Fqn has finite
Garith. Therefore its direct image by π has finite Garith (simply because π1(Xn)C π1(X) has
finite index). But this direct image is F⊗βdeg /Fq . Therefore det(F⊗βdeg /Fq) is arithmetically
of finite order, i.e. det(F) ⊗ βrank(F) deg /Fq is arithmetically of finite order. As det(F) is
arithmetically of finite order by hypothesis, the quantity β is itself a root of unity: G1 itself
already had finite Garith. �

Remark 2.2.7. Here is an example to show that we can have a geometrically irreducible
F which is pure of weight zero and with finite Ggeom whose Garith is not finite. Namely, we
start with a geometrically irreducible G whose Garith is finite. We then choose an `-adic unit
α which is pure of weight zero but which is not a root of unity. Then the constant field twist
F := G ⊗ αdeg has the same Ggeom as G, but its Garith is not finite, indeed det(F) is not
arithmetically of finite order (precisely because α is not a root of unity). Here is a concrete
example. Choose a prime number r 6= ` with r ≡ 1 (mod 4), so that r = a2 + b2 for some
a, b ∈ Z. Then take α := (a+ bi)/(a− bi).

2.3. Geometric and arithmetic determinants

We begin with a general result on geometric determinants.
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Proposition 2.3.1. Let p be a prime, ` 6= p a second prime, Fq/Fp be a finite extension,

d ≥ 1 an integer, and F a Q`-local system on Ad/Fq. Suppose that all Frobenius traces of F
take values in a field K. Define the integer N ≥ 0 to be the largest integer n such that the
group µpn(Q`) lies in K. Then det(F) is geometrically of order dividing pN .

Proof. We may replace F by its determinant, which still takes values in K. Thus we are
reduced to the case when F is lisse of rank one, call it L. By Grothendieck’s global version
of his local monodromy theorem, cf. [De2, 1.3.8], the group Ggeom for L is a semisimple
subgroup of GL1, i.e., it is a finite group, hence it is µA for some integer A ≥ 1. We first
observe that A is some power pn of p for some n ≥ 0. Indeed, if we write A = A0p

n with
p - A0, then L⊗pn is geometrically of order A0 prime to p. But πgeom

1 of Ad/Fq has no nontrivial
prime to p quotient. Thus A0 = 1. Thus L is geometrically of order pn for some n ≥ 0.

Suppose first that L satisfies the following condition: for every integer d ≥ 1 and every
point x ∈ Ad(Fqd), we have

Trace(Frobx,F
qd
|L) = (Trace(Frob0,Fq |L))d.

Then we claim that L is geometrically trivial, or equivalently that L as a character of
πarith

1 is trivial on πgeom
1 , or equivalently that as a character of πarith

1 it factors through the
quotient πarith

1 /πgeom
1
∼= Gal(Fq/Fq), i.e. as a function on ˆZ of the form d 7→ αd for some α.

By Chebotarev, it suffices to check this on Frobenius elements in πarith
1 , which is exactly the

displayed equation, with α := Trace(Frob0,Fq |L).
Thus the minimal n such that L is geometrically of order pn is the minimal n such that

for every integer d ≥ 1 and every point x ∈ Ad(Fqd), we have

(Trace(Frobx,F
qd
|L))p

n

= (Trace(Frob0,Fq |L))dp
n

.

If this holds, then each ratio

Trace(Frobx,F
qd
|L)/(Trace(Frob0,Fq |L))d

must lie in µpn , and n is minimal such that this holds. But these ratios all lie in K, which
therefore contains µpn . �

Here is a variant.

Proposition 2.3.2. Let p be a prime, ` 6= p a second prime, Fq/Fp be a finite extension,

X/Fq a smooth, geometrically connected Fq-scheme, and F a Q`-local system on X. Suppose
that all Frobenius traces of F take values in a field K (which we may always take to be a
finite extension of Q`, cf. [Ka-Sar, 9.0.7]). Denote by A the order of the group of all roots
of unity in K. The det(F) is geometrically of order dividing A.

Proof. The question is geometric, so at the expense of replacing Fq by a finite exten-
sion, we reduce to the case when X(Fq) is nonempty. Choosing a point x0 ∈ X(Fq), the
argument proving Proposition 2.3.1 shows that the geometric order of det(F) is the order of
the subgroup of K× generated by all ratios

det(Frobx,F
qd
|F)/ det(Frobx0,Fq |F)d

for all d ≥ 1 and all x ∈ X(Fqd). �
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In this section, p is a prime, ` is a prime ` 6= p (specified so we can speak of Q`-adic
cohomology), ψ is a nontrivial additive character of Fp, k = Fq is a finite extension of Fp,
χ is a (possibly trivial) multiplicative character of k×, D ≥ 3 is an integer which is prime
to p, and a strictly positive integer d < D. For an integer N prime to p, we denote by ψN
the additive character x 7→ ψ(Nx), and by ψk,N its extension to k by composition with the
trace: ψk,N(x) := ψ(Trk/Fp(Nx)). We write

ψk := ψk,1.

We next recall the notion of Kummer and Artin-Schreier sheaves. The Artin-Schreier
sheaf Lψ is the lisse rank one sheaf on A1/Fp whose trace function at a point t ∈ k, for k a
finite extension of Fp, is

Trace(Frobt,k|Lψ) := ψk(t),

with ψk as defined above. For any scheme X/Fp, and any function f on X, we view f as a
morphism to A1, and define Lψ(f) := f ?Lψ as a lisse sheaf on X. For k/Fp a finite extension
and x ∈ X(k), we have

Trace(Frobx,k|Lψ(f)) := ψk(f(x)).

For a multiplicative character χ of a finite extension k of Fp, the Kummer sheaf Lχ on
Gm/k is the lisse sheaf of rank one whose trace function at a point t ∈ E×, for E a finite
extension of k, is

Trace(Frobt,E|Lχ) := χE(t),

with χE := χ ◦ NormE/k. By abuse of notation, for χ nontrivial we also let Lχ denote
the sheaf j!Lχ on A1/k for the inclusion j : Gm → A1: it has trace 0 at time 0. For any
scheme X/k and any invertible function f on X, we view f as a morphism to Gm, and define
Lχ(f) := f ?Lχ as a lisse sheaf on X. For E/k a finite extension and x ∈ X(E), we have

Trace(Frobx,E|Lχ(f)) := χE(f(x)).

Theorem 2.3.3. Fix a monic polynomial

f(X) = XD +
d∑
i=1

aiX
i ∈ k[X].

We have the following results.

(i) If D = 2d+ 1 is odd, then

det
(
Frobq|H1

c (A1/k,Lψ(f(X)))
)

= qd

(ii) If D = 2d+ 2 is even, then

det
(
Frobq|H1

c (A1/k,Lψ(f(X)))
)

=
(
−Gauss(ψk,D/2, χ2)

)
qd.

(iii) If D = 2d+ 1 is odd and χ is nontrivial, then

det
(
Frobq|H1

c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))
)

=
(
−Gauss(ψk,D, χ)

)
qd.

(iv) If D = 2d+ 2 is even and χ is nontrivial, then

det
(
Frobq|H1

c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))
)

=
(
−Gauss(ψk,−D, χ)

)(
−Gauss(ψk,D/2, χ2)

)
qd.
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Proof. Exactly as in the proof of [KT1, 2.3], we unify the first two cases, where “there
is no χ”, with cases (iii) and (iv) by replacing H1

c (A1/k,Lψ(f(X))) by H1
c (Gm/k,Lψ(f(X))), and

allowing χ = 1 in cases (iii) and (iv). This changes the dimension of the cohomology group
from D− 1 to D, but does so by adding the extra eigenvalue 1. So this does not change the
determinant. In the formulas (iii) and (iv), the factor (−Gauss(ψk,1)) is also 1.

On the one hand, the L-function is given cohomologically by

L(T ) = det
(
1− (FrobqT |H1

c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))
)
.

The Hasse-Davenport method is to write the additive form of the L-function:

L(T ) = 1 +
∑
n≥1

AnT
n,

An =
∑

monic P (X) ∈ k[X],

deg(P ) = n, P (0) 6= 0

χ(P (0))ψk
( ∑

roots α

of P

f(α)
)
.

The “miracle” is that L(T ) is not an infinite series, but rather a polynomial of degree D.
Comparing the coefficients of the term of degree D, we get

(−1)D det(Frobq|H1
c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))) = AD.

Thus our determinant is (−1)DAD. To compute AD, we argue as follows. To deal with the
expression inside the ψ, we observe that for each integer n, the sum of the nth powers of the
roots of P is simply the nth Newton function Nn(roots of P ), which is a universal polynomial
in the coefficients of P that we also denote by Nn. Thus∑

roots α of P

f(α) =
∑

roots α of P

(
αD +

d∑
i=1

aiα
i
)

= ND(roots of P ) +
d∑
i=1

aiNi(roots of P ),

and hence

AD =
∑

S1,...,SD∈k, SD 6=0

χ(SD)ψk
(
ND(S1, . . . , SD) +

d∑
i=1

aiNi(S1, . . . , SD)
)
.

We compute the Ni as polynomials in the Sj by the identity

1/(1 +
∑
i≥1

(−1)iSiT
i) = exp(

∑
n≥1

NnT
n/n).

Applying d/dT , we have the identity

−(
∑
i≥1

(−1)iiSiT
i)/(1 +

∑
j≥1

(−1)jSjT
j) =

∑
n≥1

NnT
n.

We now expand the left side, as

−(
∑
i≥1

(−1)iiSiT
i)(1 +

∑
m≥1

(−
∑
j≥1

(−1)jSjT
j)m).
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When we ignore all but the first two terms in the geometric series, we find that ND, the
coefficient of TD, is thus

ND = (−1)D+1DSD −
∑

i+j=D, i≥1, j≥1

(−1)iiSi(−1)j+1Sj +R,

with R a polynomial in which every monomial has usual degree ≥ 3 in the variables Si.
Let us first look at the case when D = 2d + 1 is odd. Combining the terms SiSD−i and

SD−iSi, their coefficients add to (−1)DD, we see that

ND = (−1)D+1DSD + (−1)DD
d∑
i=1

SiSD−i +RD,

with RD isobaric of weight D in the Si but in which every monomial has usual degree ≥ 3.
Thus (−1)DAD is equal to

∑
S1,...,SD∈k, SD 6=0

χ(SD)ψk
(
(−1)D+1DSD + (−1)DD

d∑
i=1

SiSD−i +RD +
d∑
i=1

aiNi(S1, . . . , Si)
)
,

where we use the fact that Ni is a polynomial in S1, . . . , Si. The variable SD occurs only
once, so (−1)DAD is now equal to

( ∑
SD∈k×

χ(SD)ψk((−1)D+1DSD)
) ∑
S1,...,SD−1∈k

ψk
(
(−1)DD

d∑
i=1

SiSD−i+RD+
d∑
i=1

aiNi(S1, . . . , Si)
)
.

Because ND is isobaric of degree D, for each i ≤ d, the variable SD−i appears in this sum as

(−1)DDSD−i
(
Si + a polynomial in only the Sj, j < i, every monomial of usual degree ≥ 2

)
.

Summing first over SD−1, we get 0 unless S1 = 0, in which case we get q. Once we know
S1 = 0 in our sum, summing over SD−2 gives 0 unless S2 = 0, in which case we get q.
Continuing in this way we get

AD = qd
( ∑
SD∈k×

χ(SD)ψk((−1)D+1DSD)
)
Gauss(ψk,(−1)D+1D, χ),

and thus det(Frobk) = (−1)DGauss(ψk,(−1)D+1D, χ)qd.

When D = 2d + 2 is even, the only difference is that the coefficient of TD now has the
extra term SD/2SD/2, which occurs with coefficient (−1)D(D/2). This extra “middle term”
persists, and at the end of the argument getting the previous answer, this “middle term”
creates an extra factor Gauss(ψk,(−1)D(D/2), χ2).

Thus for D = 2d + 1 odd, the determinant is (−Gauss(ψk,D, χ))qd, while for D = 2d + 2
even it is (−Gauss(ψk,D/2, χ2))(−Gauss(ψk,−D, χ))qd. �

Corollary 2.3.4. Suppose we are given a prime to p integer D ≥ 3, and a multiplicative
character χ of a finite extension k = Fq of Fp, and a strictly positive integer d < D. Consider
the lisse sheaf F(D,≤ d, χ) on Ad/k whose trace function is given as follows.
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(a) For F(D,≤ d,1) on Ad/Fp, L/Fp a finite extension, and (a1, . . . , ad) ∈ Ld, the trace
is

(a1, . . . , ad) 7→ −
∑
x∈L

ψL(xD +
d∑
i=1

aix
i).

(b) For F(D,≤ d, χ) with χ a nontrivial character of k×, L/k a finite extension, and
(a1, . . . , ad) ∈ Ld, the trace is

(a1, . . . , ad) 7→ −
∑
x∈L

ψL(xD +
d∑
i=1

aix
i)χL(x).

These local systems are geometrically irreducible, pure of weight one, of ranks D − 1 and D
respectively. For d := [(D − 1)/2], their geometric determinants are trivial. Moreover, we
have the following results on their arithmetic determinants.

(i) If D = 2d + 1 is odd, then for either choice of
√
p, the local system F(D,≤

d,1)(1/2) has arithmetically trivial determinant. Indeed, for any choice of αD,1
with (αD,1)D−1 = pd, the local system F(D,≤ d,1) ⊗ (αD,1)− deg has arithmetically
trivial determinant.

(ii) If D = 2d+ 2 is even, then for any choice of αD,1 with

(αD,1)D−1 = (−Gauss(ψD/2, χ2))pd,

the local system F(D,≤ d,1)⊗ (αD,1)− deg has arithmetically trivial determinant.
(iii) If D = 2d+ 1 is odd, then for any choice of αD,χ with

(αD,χ)D = (−Gauss(ψk,D, χ))qd,

the local system F(D,≤ d, χ)⊗ (αD,χ)− deg /k has arithmetically trivial determinant.
(iv) If D = 2d+ 2 is even, then for any choice of αD,χ with

(αD,χ)D = (−Gauss(ψk,−D, χ))(−Gauss(ψk,D/2, χ2)))qd,

the local system F(D,≤ d, χ)⊗ (αD, χ)− deg /k has arithmetically trivial determinant.

Proof. That the sheaves F(D,≤ d, χ) are lisse results from the fact that their ranks are
constant and they are sheaves of perverse origin in the sense of [Ka-Scont]. The purity is
due to Weil. The explicit formulas for their determinants, and the behavior of Gauss sums
under field extension give the asserted arithmetic triviality of the αD,χ-twisted sheaves. Each
is geometrically irreducible because already pulled back to the A1 which is (s1, 0, . . . , 0) each
is the Fourier transform of a lissse rank one sheaf on Gm, extended across 0 by direct image
(and hence perverse irreducible on A1). �

Remark 2.3.5. Suppose we “go too far” in Theorem 2.3.3 when D is even, in the sense
that we also allow a term aD/2X

D/2 in f(X). What changes in the argument is that the
involvement of SD/2 now comes also from the ND/2 term, so that what was previously the
sum ∑

SD/2∈k

ψk((−1)D(D/2)(SD/2)2) = Gauss(ψk,(−1)D(D/2), χ2)
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now becomes ∑
SD/2∈k

ψk((−1)D(D/2)(SD/2)2 − (−1)D/2aD/2(D/2)SD/2) =

= Gauss(ψk,(−1)D(D/2), χ2)ψk,(−1)D(D/2)((−aD/2)2/4),

the last equality by completing the square. The consequence for the corresponding lo-
cal systems on Ad+1 in cases (ii) and (iv) of Corollary 2.3.4 is that even after the αD,χ
twistings, their arithmetic and geometric determinants are no longer trivial, but are rather
Lψ

k,(−1)D(D/2)
((−aD/2)2/4).

Similarly, suppose we “go too far” in Theorem 2.3.3 when D = 2d + 1 is odd, in the
sense that we also allow a term ad+1X

d+1 in f(X). What changes now is at the end of the
argument, when we have already set S1, . . . , Sd−1 to vanish, the terms involving Sd+1 and Sd,
previously just the single term (−1)DDSd+1Sd, are now

(−1)DDSd+1Sd + (−1)d+2(d+ 1)ad+1Sd+1 + (−1)d+1dadSd =

= Sd+1

(
(−1)DDSd + (−1)d+2(d+ 1)ad+1

)
+ (−1)d+1dadSd.

So when we sum over Sd+2 we solve for Sd and get q times ψk(−d(d + 1)adad+1/D). The
consequence for the corresponding local systems on Ad+1 in cases (i) and (iii) of Corollary
2.3.4 is that even after the αD,χ twistings, their arithmetic and geometric determinants are
no longer necessarily trivial, but are rather Lψk(−d(d+1)adad+1/D).

The second part of the above Remark 2.3.5 gives the following corollary.

Corollary 2.3.6. For D = 2d+ 1, and any χ, consider the local system F(D, d+ 1,≤
d− 1, χ) on Ad/Fq whose trace function is given as follows. For k/Fq a finite extension, and
(a1, . . . , ad−1, ad+1) ∈ Ad(k),

(a1, . . . , ad−1, ad+1) 7→ −
∑
x∈k×

ψk(x
D + ad+1x

d+1 +
d−1∑
i=1

aix
i)χk(x).

Its geometric determinant is trivial, and after an αD,χ twist, its arithmetic determinant is
trivial as well.

A second, somewhat artificial, corollary is this.

Corollary 2.3.7. If p|d(d+ 1), then F(D,≤ d+ 1, χ) has geometrically trivial determi-
nant, and its αD,χ twist has arithmetically trivial determinant.

The next corollary is an exercise in Gauss sums, left to the reader.

Corollary 2.3.8. We have the following results about the systems F(D,≤ d, χ) intro-
duced in Theorem 2.3.3.

(i) If p is odd, and D = 2d + 1 is odd, then for either choice Gauss of quadratic Gauss
sum over Fp, the local system

F(D,≤ d,1)⊗ (−Gauss)− deg

on Ad/Fp has arithmetic determinant (χ2(−1)d)deg (which is trivial if either d is
even or if p ≡ 1 mod 4, otherwise is (−1)deg). In all cases, the pullback of F(D,≤
d,1)⊗ (−Gauss)−deg to Ad/Fp2 has arithmetically trivial determinant.
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(i-bis) If p = 2 and D = 2d+ 1 is odd, then on Ad/Fp2, the local system

F(D,≤ d,1)⊗ (p)− deg /Fp2

has arithmetically trivial determinant.
(ii) If D = 2d+ 2 is even (which forces p to be odd), then the local system

F(D,≤ d,1)⊗ (−Gauss(ψ(−1)dD/2, χ2))−deg

on Ad/Fp has arithmetically trivial determinant.
(iii) If p is odd, and D = 2d+ 1 is odd, then the local system

F(D,≤ d, χ2)⊗ (−Gauss(ψ(−1)dD, χ2))− deg

on Ad/Fp has arithmetically trivial determinant.
(iii-bis) If D = 2d + 1 is odd, q a power of p and χ a nontrivial character of F×q2 of order

dividing q + 1, then the local system

F(D,≤ d, χ)⊗ (−Gauss(ψFq2 ,−D, χ))− deg /Fq2

on Ad/Fq2 has arithmetically trivial determinant. [Notice that every element of F×q ,

in particular −D, becomes a (q+ 1)th power in Fq2 (surjectivity of the norm), so we
could as well use (−Gauss(ψFq2 , χ))− deg.]

(iii-ter) If D = 2d + 1 is odd, p = 2, q a power of p and χ a nontrivial character of F×q2 of
order dividing q + 1, then the local system

F(D,≤ d, χ)⊗ (−q)− deg /Fq2

on Ad/Fq2 has arithmetically trivial determinant. Indeed, when p = 2, then by
Stickelberger’s theorem [BEW, Theorem.11.6.1], −Gauss(ψFq2 ,−D, χ) = −q. Hence

on Ad/Fq4, the local system

UD,χ ⊗ (q2)− deg /Fq4

has arithmetically trivial determinant, simply by the Hasse-Davenport relation

−Gauss(ψFq4 ,−D, χ) = (−Gauss(ψFq2 ,−D, χ))2.

(iv) If D = 2d + 2 is even (which forces p to be odd), then for either choice Gauss of
quadratic Gauss sum over Fp, the local system

F(D,≤ d, χ2)⊗ (−Gauss(ψ, χ2))− deg

on Ad/Fp has arithmetic determinant (χ2(−2))deg.
(iv-bis) If D = 2d+ 2 is even, q a power of p and χ a nontrivial character of F×q2 of order m

dividing q + 1, then the local system

F(D,≤ d, χ)⊗ q− deg /Fq2

on Ad/Fq2 has arithmetic determinant
(
(−1)

q+1
2

+ q+1
m

)− deg /Fq2 , this last statement
using Stickelberger’s determination [BEW, 11.6.1] of Gauss(ψFq2 ,−D, χ) as being

(−1)(q+1)/mq.

In general, we can only say the following about geometric determinants.
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Lemma 2.3.9. For any character χ of k× for k/Fp a finite extension, the system F(D,≤
D − 1, χ) and any pullback of it has geometric determinant of order dividing p.

Proof. This is immediate from Proposition 2.3.1, since the K there for F(D,≤ D−1, χ)
can be taken to be Q(ζp, values of χ). �

We will now give a variant of the above results. The proof of Theorem 2.3.10 below is a
very slight variation on the proof of Theorem 2.3.3, but we include it for the convenience of
the reader.

Theorem 2.3.10. Let Fq/Fp be a finite extension, and D ≥ 3 a prime to p integer. Fix
a polynomial

f(X) = aDX
D +

d∑
i=1

aiX
i ∈ k[X]

with deg(f) = D. We have the following results.

(i) If D = 2d+ 1 is odd, then

det
(
Frobq|H1

c (A1/k,Lψ(f(X)))
)

= qd

(ii) If D = 2d+ 2 is even, then

det
(
Frobq|H1

c (A1/k,Lψ(f(X)))
)

= χ2((D/2)aD)(−Gauss(ψk, χ2))qd.

(iii) If D = 2d+ 1 is odd and χ is nontrivial, then

det
(
Frobq|H1

c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))
)

= χ(−DaD)(−Gauss(ψk, χ))qd.

(iv) If D = 2d+ 2 is even and χ is nontrivial, then

det
(
Frobq|H1

c (Gm/k,Lψ(f(X))⊗Lχ(X))
)

= χ2((D/2)aD)χ(−DaD)(−Gauss(ψkχ2))(−Gauss(ψk, χ))qd.

Proof. Exactly as in the proof of [KT1, 2.3], we unify the first two cases, where “there
is no χ”, with cases (iii) and (iv) by replacing H1

c (A1/k,Lψ(f(X))) by H1
c (Gm/k,Lψ(f(X))), and

allowing χ = 1 in cases (iii) and (iv). This changes the dimension of the cohomology group
from D− 1 to D, but does so by adding the extra eigenvalue 1. So this does not change the
determinant. In the formulas (iii) and (iv), the factor (−Gauss(ψk,1)) is also 1.

On the one hand, the L-function is given cohomologically by

L(T ) = det
(
1− FrobqT |H1

c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))
)
.

The Hasse-Davenport method is to write the additive form of the L-function:

L(T ) = 1 +
∑
n≥1

AnT
n,

An =
∑

monic P (X) ∈ k[X],

deg(P ) = n, P (0) 6= 0

χ(P (0))ψk
( ∑

roots α

of P

f(α)
)
.

The “miracle” is that L(T ) is not an infinite series, but rather a polynomial of degree D.
Comparing the coefficients of the term of degree D, we get

(−1)D det(Frobq|H1
c (Gm/k,Lψ(f(X)) ⊗ Lχ(X))) = AD.
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Thus our determinant is (−1)DAD. To compute AD, we argue as follows. To deal with the
expression inside the ψ, we observe that for each integer n, the sum of the nth powers of the
roots of P is simply the nth Newton function Nn(roots of P ), which is a universal polynomial
Nn in the coefficients Si of P . Thus∑

roots α of P

f(α) =
∑

roots α of P

(
aDα

D +
d∑
i=1

aiα
i
)

= aDND(roots of P ) +
d∑
i=1

aiNi(roots of P ),

and hence

AD =
∑

S1,...,SD∈k, SD 6=0

χ((−1)DSD)ψk
(
aDND(S1, . . . , SD) +

d∑
i=1

aiNi(S1, . . . , SD)
)
.

We compute the Ni as polynomials in the Sj by the identity

log
(

1/(1 +
∑
i≥1

(−1)iSiT
i)
)

=
∑
n≥1

NnT
n/n.

Applying d/dT , we have the identity

−(
∑
i≥1

(−1)iiSiT
i)/(1 +

∑
j≥1

(−1)jSjT
j) =

∑
n≥1

NnT
n.

We now expand the left side, as

−(
∑
i≥1

(−1)iiSiT
i)(1 +

∑
m≥1

(−
∑
j≥1

(−1)jSjT
j)m).

When we ignore all but the first two terms in the geometric series, we find that ND, the
coefficient of TD, is thus

ND = (−1)D+1DSD −
∑

i+j=D, i≥1, j≥1

(−1)iiSi(−1)j+1Sj +R,

with R a polynomial in which every monomial has usual degree ≥ 3 in the variables Si.
Let us first look at the case when D = 2d + 1 is odd. Combining the terms SiSD−i and

SD−iSi, their coefficients add to (−1)DD, we see that

ND = (−1)D+1DSD + (−1)DD
d∑
i=1

SiSD−i +RD,

with RD isobaric of weight D in the Si but in which every monomial has usual degree ≥ 3.
Thus (−1)DAD is equal to∑
S1, . . . , SD ∈ k,

SD 6= 0

χ((−1)DSD)ψk
(
(−1)D+1aDDSD+(−1)DaDD

d∑
i=1

SiSD−i+aDRD+
d∑
i=1

aiNi(S1, . . . , Si)
)
,
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where we use the fact that Ni is a polynomial in S1, . . . , Si. The variable SD occurs only
once, so (−1)DAD is now equal to( ∑

SD∈k×
χ((−1)DSD)ψk((−1)D+1aDDSD)

)
×

∑
S1,...,SD−1∈k

ψk
(
(−1)DaDD

d∑
i=1

SiSD−i + aDRD +
d∑
i=1

aiNi(S1, . . . , Si)
)
.

Because ND is isobaric of degree D, for each i ≤ d, the variable SD−i appears in this sum as

(−1)DaDDSD−i
(
Si+a polynomial in only the Sj, j < i, every monomial of usual degree ≥ 2

)
.

We further analyze the case when D = 2d+1 is odd as follows. Summing first over SD−1,
we get 0 unless S1 = 0, in which case we get q. Once we know S1 = 0 in our sum, summing
over SD−2 gives 0 unless S2 = 0, in which case we get q. Continuing in this way we get

AD = qd
( ∑
SD∈k×

χ((−1)DSD)ψk((−1)D+1aDDSD)
)

= qdχ(−DaD)Gauss(ψk, χ),

and thus
det(Frobk) = (−1)Dχ(−DaD)Gauss(ψk, χ)qd.

When D = 2d + 2 is even, the only difference is that the coefficient of TD now has the
extra term SD/2SD/2, which occurs with coefficient (−1)DaD(D/2) = aD(D/2). This extra
“middle term” persists, and at the end of the argument getting the previous answer, this
“middle term” creates an extra factor χ2((D/2)aD)Gauss(ψk, χ2).

Thus for D = 2d + 1 odd, the determinant is χ(−DaD)(−Gauss(ψk, χ))qd, while for
D = 2d+ 2 even it is χ2((D/2)aD)χ(−DaD)(−Gauss(ψkχ2))(−Gauss(ψk, χ))qd. �

Corollary 2.3.11. Suppose we are given a prime to p integer D ≥ 3, and a multiplicative
character χ of a finite extension k = Fq of Fp, and a strictly positive integer d < D. Consider
the lisse sheaf F ](D,≤ d, χ) on (Gm × Ad)/k whose trace function is given as follows.

(a) For F ](D,≤ d,1) on (Gm ×Ad)/Fp, L/Fp a finite extension, and (aD, a1, . . . , ad) ∈
L× × Ld, the trace is

(aD, a1, . . . , ad) 7→ −
∑
x∈L

ψL(aDx
D +

d∑
i=1

aix
i).

(b) For F ](D,≤ d, χ) with χ a nontrivial character of k×, L/k a finite extension, and
any point (aD, a1, . . . , ad) ∈ L× × Ld, the trace is

(aD, a1, . . . , ad) 7→ −
∑
x∈L

ψL(aDx
D +

d∑
i=1

aix
i)χL(x).

These local systems are geometrically irreducible, pure of weight one, of ranks D − 1 and D
respectively. For d := [(D − 1)/2], their geometric determinants are given as follows.

(i) If D = 2d+ 1 is odd, then det(F ](D,≤ d, χ)) = Lχ(aD).
(ii) If D = 2d+ 2 is even, then det(F ](D,≤ d, χ)) = Lχ2(aD) ⊗ Lχ(aD).
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Proof. That the sheaves F ](D,≤ d, χ) are lisse results from the fact that their ranks
are constant and they are sheaves of perverse origin in the sense of [Ka-Scont]. The purity
is due to Weil. The explicit formulas for their determinants, and the behavior of Gauss sums
under field extension give the asserted geometric determinant formulas. Each is geometrically
irreducible because already pulled back to the A1 which is (1, s1, 0, . . . , 0) each is the Fourier
transform of a lissse rank one sheaf on Gm, extended across 0 by direct image (and hence
perverse irreducible on A1). �

2.4. Infinite monodromy groups

We begin with an elementary lemma which will be used below.

Lemma 2.4.1. Let k be an algebraically closed field, X/k and Y/k smooth connected
schemes,

f : Y → X

a finite étale map, ` a prime invertible in k, and F a lisse Q` sheaf on Y . Suppose that the
direct image G := f?F on X has finite Ggeom. Then F on Y has finite Ggeom.

Proof. The pullback f ?G has finite Ggeom, since π1(Y ) < π1(X) is a subgroup (of finite
index, a fact we use next). By Frobenius reciprocity, this pullback f ?G = f ?f?F contains
F as a constituent, indeed as a direct factor since in characteristic zero finite-dimensional
representations of finite groups are completely reducible. Therefore F itself has finite Ggeom.

�

Proposition 2.4.2. Let H be a hypergeometric sheaf Hypψ(χ1, . . . , χD; ρ1, . . . , ρm) of
type (D,m) in characteristic p, with wild part Wild of dimension w = D −m > 0. Then the
action of I(∞) on Wild has finite image.

Proof. The key points are that Wild is I(∞)-irreducible (because all its slopes are 1/w)
and is the restriction to I(∞) of a representation of the decomposition group D(∞) (because
H lives on Gm over some finite field k/Fp). By the I(∞)-irreducibility, Deligne’s monodromy
filtration [Ka-GKM, 7.0.6] on Wild must be trivial, i.e. the action of I(∞) must be trivial
on some open subgroup. �

Proposition 2.4.3. Let H := Hypψ(χ1, . . . , χD; ρ1, . . . , ρm) be an irreducible hypergeo-
metric sheaf in characteristic p of type (D,m) with D > m ≥ 0. Let G = Ggeom denote the
geometric monodromy group of H and V be the underlying representation. For g ∈ G, we let
ō(g) denote the order of the element gZ(G) in G/Z(G).

(i) Suppose χ1, . . . , χD are pairwise distinct. Then I(0) has finite cyclic p′-image 〈g0〉, and
g0 is an ssp-element on V .

(ii) Suppose ρ1, . . . , ρm are pairwise distinct if m > 0. The image J of I(∞) is finite, the
image Q of P (∞) is a normal subgroup QC J , and the quotient J/Q is a finite cyclic
p′-group, which is generated by the image g∞ in Ggeom of any element γ ∈ I(∞) of order
prime to p that generates I(∞)/P (∞). The element g∞ is an m2sp-element on V . If
m = 0 then g∞ is an ssp-element on V , and if m = 1 then g∞ is an asp-element on V .
Moreover, ō(g∞) is divisible by w := D −m if p - w, and by w0(q0 + 1) if p|w = w0q0

with p - w0 and q0 a power of p.
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Proof. (i) This is proved in [Ka-ESDE, 8.4.2(6)].
(ii) One knows [Se, pp. 80-82] that P (∞)C I(∞) with pro-cyclic p′-quotient. By Propo-

sition 2.4.2, I(∞) has finite image on Wild. By [Ka-ESDE, 8.4.2 (6)], I(∞) has finite,
prime to p cyclic image on Tame. By Propositions 5.8 and 5.9 of [KRLT4], g∞ has simple
spectrum on Wild. If m > 0, g∞ also has simple spectrum on Tame because ρ1, . . . , ρm are
pairwise distinct, cf [Ka-ESDE, 8.4.2 (6)]. Next, if p - w, then g∞ permutes the w simple

Q-summands of Wild cyclically, so w|ō(g∞). If p|w = w0q0, then g
w0(q0+1)
∞ acts as a scalar

on Wild, but g∞ has w0q0 > w0(q0 + 1)/2 distinct eigenvalues on Wild. This shows that the
central order of the image of g∞ on Wild is w0(q0 + 1), hence w0(q0 + 1)|ō(g∞). Hence the
statements follow. �

For an integer D with p - D, Char(D) is the set of all multiplicative characters of order
dividing D.

Theorem 2.4.4. Let H be a hypergeometric sheaf Hypψ(χ1, . . . , χD; ρ1, . . . , ρm) of type
(D,m) in characteristic p, with wild part w = D − m > 0. Suppose that p > 2w + 1 and
D ≥ 2. Then one of the following statements holds.

(a) Ggeom is infinite.
(b) Ggeom is finite, and H is imprimitive and Kloosterman. Moreover, p - D, and for some

tame character Λ, H ∼= LΛ⊗Kl(Char(D)) is Kummer induced from a Kloosterman sheaf
of rank 1.

(c) Ggeom is finite, and (w, p,D) = (1, 5, 2).

Proof. (i) We will assume that G = Ggeom is finite, and aim to show that H is imprim-
itive unless (w, p,D) = (1, 5, 2). Let V denote the representation underlying H, and let Q
denote the image of P (∞) in G. We claim that Q is isomorphic to the additive group of

Fp(ξ), where ξ is a primitive wth root of unity in Fp
×

, and that the set of characters of Q on
Wild is

(2.4.4.1) x 7→ ψ
(
TrFp(ξ)/Fp(wξ

jx)
)
, 0 ≤ j ≤ w − 1.

In the special case when our H has
∏

i χi/
∏

j ρj trivial if w is odd, and equal to the quadratic

character when w is even, this is proven in [KRLT3, Lemma 3.1]. In general, there exists
a tame character Λ such that LΛ ⊗ H has the desired ratio. This operation of tensoring
replaces Wild by Wild⊗ Λ, a change which does not affect the restriction to P (∞).

By [KT5, Proposition 4.8], Q 6≤ Z(G). As Q is elementary abelian, we can find a
p-element g ∈ Q such that

(2.4.4.2) g ∈ Qr Z(G), gp = 1.

Consider the case g as chosen in (2.4.4.2) has at most (p − 3)/2 distinct eigenvalues on
V . By Zalesskii’s conjecture, proved in [Rob], the normal closure A := 〈gG〉 of 〈g〉 in G is
abelian, but not central since g /∈ Z(G). It follows from Clifford’s theorem that the restriction
of V to A is a sum of at least two A-isotypic components, and so (G, V ) is imprimitive. In
particular, H is imprimitive if 1 ≤ w ≤ (p− 5)/2, or if w = D = (p− 3)/2.

(ii) Now we consider the case w = (p − 3)/2 < D; in particular Tame 6= 0. If p = 5 but
D > 2, then G is infinite by Theorem 4.1.1. The possibility (w, p,D) = (1, 5, 2) is recorded
in (c).
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Suppose now that p ≥ 11. Then w = (p− 3)/2 does not divide p− 1, and so K := Fp(ξ)
is a proper extension of Fp. Clearly, K is the Fp-span of the powers ξi, 0 ≤ i ≤ w − 1, of
ξ, and the kernel K1 of TrK/Fp has codimension one in the Fp vector space K. Hence, if
for all x ∈ K we were to have TrK/Fp(xξ

i) = 0 for all i, then we would have K1 = K, a
contradiction. Thus for any nonzero z ∈ K, there is some power ξj with 0 ≤ j ≤ w − 1,
such that TrK/Fp(zξ

j) 6= 0. As K > Fp, we can pick 0 6= z ∈ K1. Then z has trace zero, but
some zξj has nonzero trace. By (2.4.4.1), this means precisely that of the w eigenvalues of z
on Wild, at least one eigenvalue is 1, but not all eigenvalues are 1; in particular, z /∈ Z(G).
Recall that 1 is the only eigenvalue of z on Tame. It follows that z has at most w = (p−3)/2
distinct eigenvalues on V , and we are done by the result of (i).

Next, let p = 7. Then (2.4.4.1) shows that Q ∼= C7 admits two nontrivial characters λ and
λ−1 on Wild. In particular, the element g as in (2.4.4.2) can be chosen to have eigenvalues ζ7

and ζ7 on Wild, and 1 on Tame as Tame 6= 0. It follows from Blichfeldt’s 60-degree theorem
[Bl, Theorem 8, p. 96] that G is imprimitive.

(iii) Now we may assume that G is finite and imprimitive, and that (w, p,D) 6= (1, 5, 2).
Since (p − 1) - w, H cannot be Belyi induced, and so it is Kummer induced by [KRLT3,
Proposition 1.2]. In other words, for some prime to p integer N > 1, H is [N ]?H′, for
H′ a hypergeometric sheaf of type (D/N,m/N). Note that H′ has wild part of dimension
1 ≤ w/N < w ≤ (p− 3)/2 (in particular p ≥ 7), and has finite geometric monodromy group,
by Lemma 2.4.1 above, applied to the degree N Kummer covering of Gm by itself.

Choose the largest possible such N . If D > N , so that D/N ≥ 2, then, as p ≥ 7, we can
apply the above results to H′, and conclude that H′ is again Kummer induced, contrary to
the choice of N . It follows that D = N and so m = 0, i.e. H is Kloosterman of rank D = N
prime to p, H′ is Kloosterman of rank one, and H is Kummer induced of degree D. Hence,
by [Ka-MG, Lemma 12], H is Klψ(χ1, . . . , χD) with the χi all the Dth roots of some tame
character σ, which we write as σ = ΛD. Thus the set of χi’s is precisely the set ΛChar(D),
and hence H is LΛ ⊗Klψ(Char(D)). �

Remark 2.4.5. (i) Note that (half of) the local systems considered in [KT1, Theorem
11.1] have Ggeom = SL2(p), and they are Kummer pullbacks of hypergeometric sheaves
in characteristic p with w = (p− 1)/2. This example shows that the bound p > 2w+ 1
in Theorem 2.4.4 is best possible. Furthermore, [KRLT4, Theorem 30.7(v)] gives a
hypergeometric sheaf of type (2, 1) in characteristic p = 5 with Ggeom = 5 × SL2(5),
a finite primitive complex reflection group. Hence case (c) of Theorem 2.4.4 is a real
exception.

(ii) In the case of Kloosterman sheaves, Theorem 2.4.4 was already proved in [Ka-MG,
Proposition 6], which in turn relied on the well-known result of Feit and Thompson
[FT].

Let us now recall the notion of “Lie irreducible”. Given an algebrically closed field k in
which ` is invertible, a smooth, geometrically connected scheme X/k, a lisse Q`-sheaf F on
X is said to be Lie irreducible if, in the given representation of Ggeom, the identity component
G◦geom acts irreducibly. Equivalently, F is Lie irreducible if, for any finite étale f : Y → X
with Y connected, the pullback f ?F on Y remains irreducible. [Just pass to the covering
which trivializes Ggeom/G

◦
geom.] In a similar vein, we say that F is Lie self-dual if it is Lie
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irreducible and if the restriction to G◦geom of the given representation is self-dual. Finally, we
say that two Lie irreducible sheaves F1 and F2 on X are Lie-isomorphic if for some finite
étale f : Y → X with Y connected, the pullbacks f ?F1 and f ?F2 on Y are isomorphic.

Lemma 2.4.6. Let H1 and H2 be (geometrically irreducible) hypergeometric sheaves on
Gm/Fp, formed using possibly different additive characters ψ1 and ψ2. Denote by (D1,m1)
and (D2,m2), with D1 > m1 and D2 > m3, their types. Suppose that D2 ≥ 2 and that
(D2,m2) 6= (2, 1). Suppose further that both H1 and H2 are Lie irreducible, and that they are
Lie isomorphic. Then there exists a multiplicative character χ of some F×q and an isomor-
phism

H1
∼= Lχ ⊗H2.

Proof. Let Y → Gm be a finite étale pullback, with Y connected, on which H1 and H2

become isomorphic. Think of Y as corresponding to the open subgroup of finite index in
π1(Gm/Fp), namely π1(Y ). Then passsing to a smaller open subgroup of finite index which

is normal in π1(Gm/Fp), we may reduce to the case when π1(Y ) C π1(Gm/Fp) is a normal

subgroup. Then H1 and H2 are representations of π1(Gm/Fp) whose restrictions to π1(Y )
are irreducible and isomorphic. Here there exists a linear character Λ of the quotient group
π1(Gm/Fp)/π1(Y ) such that we have an isomorphism

H1
∼= Λ⊗H2.

Let us observe the trivial consequence that D1 = D2.
We must show that Λ is tame at both 0 and ∞. It is tame at 0 because both H1 and

H2 are tame at 0. If Λ were not tame at 0, it would have Swan conductor ≥ 1 at 0, which
in turn would force H1 to be totally wild at 0, which it is not. If If Λ were not tame at
∞, it would have Swan conductor Swan∞(Λ) ≥ 1. Suppose first that D2 −m2 ≥ 2. Then
the ∞ slopes of H2, which are either 0 or 1/(D2 −m2), are all < 1, and so H1 would have
all slopes equal to Swan∞(Λ) ≥ 1, and hence Swan∞(H1) = Swan∞(Λ)D2 ≥ D2 ≥ 2, again
a contradiction as Swan∞(H1) = 1. Finally, suppose D2 − m2 = 1. Then by hypothesis
m2 ≥ 2, so that H2 has m2 ≥ 2 ∞ slopes 0. Then H1 has m2 ≥ 2 ∞ slopes Swan∞(Λ), so
Swan∞(H1) ≥ Swan∞(Λ)m2 ≥ 2, the same contradiction. �

Corollary 2.4.7. In the situation of the above Lemma 2.4.6, let A be a prime to p
integer such that both Kummer pullbacks [A]?H1 and H2 have unipotent local monodromy at
0. Then we have an isomorphism

[A]?H1
∼= [A]?H2.

Proof. Indeed, after the pullback we have an isomorphism

[A]?H1
∼= LχA ⊗ [A]?H2.

But both [A]?H1 andH2 are unipotent at 0, hence LχA is trivial at 0. Being a tame character,
it is then trivial. �

Corollary 2.4.8. Suppose that the hypergeometric sheaf H on Gm/Fp is Lie self-dual.
Let A be a prime to p integer such the Kummer pullback [A]?H has unipotent local monodromy
at 0. Then [A]?H is self-dual.

Proof. Apply the previous Corollary 2.4.7 to H and its dual. �
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In the same spirit, we have the following lemma.

Lemma 2.4.9. Let H be a geometrically irreducible hypergeometric sheaf of type (D,m)
with D −m ≥ 2. Suppose that G◦geom = SLD. Then the determinant gives an isomorphism

Ggeom/G
◦
geom
∼= µN(Q`) for some prime to p integer N ≥ 1. Equivalently, det(H) ∼= Lχ for

some tame character χ.

Proof. Because G◦geom = SLD, the determinant gives an isomorphism Ggeom/G
◦
geom

∼=
µN(Q`) for some integer N ≥ 1. Because D −m ≥ 2, we know by [KT5, Theorem 4.1] that
Ggeom is the Zariski closure of the normal subgroup generated by the image of I(0). Therefore
the quotient group µN , being abelian, is generated by the image of I(0), which is a group of
(pro) order prime to p. Thus the quotient is a character of π1(Gm/Fp) of finite order prime
to p, necessarily an Lχ. Alternatively, by [Ka-ESDE, Theorem 8.12.2], det(H) = Lχ for χ
the product of the “upstairs” characters of H. �

Corollary 2.4.10. Let H be a geometrically irreducible hypergeometric sheaf of type
(D,m) with D − m ≥ 2. Suppose that G◦geom = SLD. Let A be a prime to p integer such
that the Kummer pullback [A]?H has unipotent local monodromy at 0. Then [A]?H1 has
Ggeom,[A]?H = SLD.

Proof. Indeed, if [A]?H is unipotent, then each character occuring in the image of I(0)
has order dividing A, so N divides A, i.e., χA = 1. �

Remark 2.4.11. Suppose H is of type (D,m) with D − m = 1. Then one knows
[Ka-ESDE, Theorem 8.12.2] that det(H) = Lχ ⊗ Lψ, with χ the product of the “upstairs”
characters of H. So in this case, if A is a prime to p integer such that the Kummer pull-
back [A]?H has unipotent local monodromy at 0, det([A]?H) = Lψ. In particular, if H has
G◦geom = SLD, then [A]?H has Ggeom,[A]?H = {γ ∈ GLD| det(γ)p = 1}.

2.5. Estimating the size of Ggeom when it is finite

Lemma 2.5.1. Let X/Fq be smooth and geometrically connected. Let F be a lisse Q`-adic
sheaf on Gm/Fq which is pure of weight zero and for which Garith is finite. Then GgeomCGarith,
and the quotient group Garith/Ggeom is cyclic of order

#(Garith/Ggeom) = gcd
(
d ∈ Z≥1 | there exists x ∈ X(Fqd) with Frobx,F

qd
|F = id

)
= gcd

(
d ∈ Z≥1 | there exists x ∈ X(Fqd) with Trace(Frobx,F

qd
|F) = rank(F)

)
.

Proof. The two asserted formulas are equivalent, since in a faithful C-representation V
of a finite group, here the action of Garith on F , only the identity element has trace equal to
dim(V ).

The quotient Garith/Ggeom is a finite quotient of the pro-cyclic group Gal(Fq/Fq), so is itself
cyclic. The coset Ggeom of Garith is the unique coset containing the identity element of Ggeom,
and this element is also the identity element of Garith. If some Frobx,F

qd
|F = id, then over Fqd

we have Ggeom = Garith, which is to say that |Garith/Ggeom| divides d. So if the asserted gcd is
1, then the index must be 1. Conversely, if Ggeom = Garith, then by Deligne’s equidistribution
theorem in this finite case [Ka-Sar, Theorem 9.7.13], we will obtain Frobenii which attain
any specified element of Garith over all extensions of Fq of sufficiently large degree. �
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Lemma 2.5.2. Let F be a lisse Q`-adic sheaf on Gm/Fq which is pure of weight zero and
for which Ggeom = Garith is finite. Let S0 and S∞ be real constants such that all I(0)-slopes
of F are ≤ S0 and all I(∞)-slopes of F are ≤ S∞. Then we have the inequality∣∣∣∣#{x ∈ F×q |Trace(Frobx,Fq |F) = rank(F)}

q − 1
− 1

|Ggeom|

∣∣∣∣ ≤ (S0 + S∞)
√
q

q − 1
.

Proof. Let us write G := Ggeom(= Garith). Write the regular representation RepG as the
usual sum of irreducible representations Λ of G

RepG − 1 =
⊕
Λ6=1

dim(Λ)Λ,

and recall that RepG is |G| times the characteristic function of idG.
Sum both sides of this equality over the Frobx,Fq |F . We get

(2.5.2.1)

|G|·#{x ∈ F×q |Trace(Frobx,Fq |F) = rank(F)}−(q−1) =
∑
Λ6=1

dim(Λ)
∑
x∈F×q

Trace(Λ(Frobx,Fq |F)).

Because each Λ is a representation of G = Garith, we may form the pushout sheaf Λ(F) on
Gm/Fq. It will be lisse, pure of weight zero, and its I(0) (respectively I(∞)) slopes will be
bounded by S0 (respectively S∞), because each Λ(F) is a direct factor of some tensor power
F⊗a ⊗ (F∨)⊗b. By the Lefschetz trace formula, we have∑

x∈F×q

Trace(Λ(Frobx,Fq |F)) =
∑
i

(−1)iTrace
(
Frobq|H i

c(Gm/Fq,Λ(F))
)
.

The only possibly nonvanishing H i
c are H2

c and H1
c . For Λ nontrivial, the H2

c vanishes,
because Λ is irreducible nontrivial on G = Ggeom. By the Euler-Poincare formula on Gm,
applied to Λ nontrivial, we have

dim
(
H i
c(Gm/Fq,Λ(F))

)
= Swan0(Λ(F)) + Swan∞(Λ(F)) ≤ (S0 + S∞) dim(Λ).

By Deligne [De2, 3.3.4], each H1
c is mixed of weight ≤ 1, so we have the estimate∣∣Trace

(
Frobq|H1

c (Gm/Fq,Λ(F))
)∣∣ ≤ dim(H1

c )
√
q ≤ (S0 + S∞) dim(Λ)

√
q

Thus we have the estimate∣∣∑
Λ6=1

dim(Λ)
∑
x∈F×q

Trace
(
Λ(Frobx,Fq |F)

)∣∣ ≤∑
Λ 6=1

(dim(Λ)2(S0 + S∞)
√
q ≤ |G|(S0 + S∞)

√
q.

Dividing through Equation (2.5.2.1) by |G|(q − 1) we get the asserted result. �

Corollary 2.5.3. Let H be an irreducible hypergeometric sheaf of type (D,m) with
w := D −m > 0. Suppose that Ggeom = Garith is finite. Then∣∣∣∣#{x ∈ F×q |Trace(Frobx,Fq |H) = rank(H)}

q − 1
− 1

|Ggeom|

∣∣∣∣ ≤ √
q

(q − 1)w
.

Proof. Indeed H is tame at 0, so we may take S0 = 0, and all its ∞-slopes are either 0
or 1/w, so we may take S∞ = 1/w. �
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Here is a variant on A1. What we use here is that for G lisse on A1 whose H2
c vanishes,

the Euler-Poincaré formula gives

dim
(
H1
c (A1/Fq,G)

)
= Swan∞(G)− rank(G).

Lemma 2.5.4. Let F be a lisse Q`-adic sheaf on A1/Fq which is pure of weight zero and
for which Ggeom = Garith is finite. Let S∞ be a real constant such all I(∞)-slopes of F are
≤ S∞. Then we have the inequality∣∣∣∣#{x ∈ Fq|Trace(Frobx,Fq |F) = rank(F)}

q
− 1

|Ggeom|

∣∣∣∣ ≤ (S∞ − 1)
√
q

.

Proof. The only new point here is that for any Λ(F), its ∞ slopes are still ≤ S∞, so
for Λ 6= 1 we have

dim
(
H1
c (A1/Fq,Λ(F))

)
= Swan∞(Λ(F))−dim(Λ) ≤ S∞ dim(Λ)−dim(Λ) = (S∞−1) dim(Λ).

The rest of the proof proceeds as in the proof of Lemma 2.5.2. �

2.6. Limsup formula for moments

Let X0/Fq be smooth and geometrically connected, of dimension d ≥ 1, ` 6= p a prime, and

F a lisse Q` sheaf on X0 which is pure of weight zero. By fundamental results of Grothendieck
and Deligne [De2, 1.3.8 and 3.4.1 (iii)], Ggeom is a semisimple algebraic group (meaning that
its identity component G0

geom is semisimple). For V the representation of Ggeom attached to
F , a, b nonnegative integers, and

X := X0 ⊗Fq Fq,
we have

Ma,b(F) := dim
(
(V ⊗a ⊗ (V ∨)⊗b)Ggeom

)
= dim

(
H2d
c (X,F⊗a ⊗ (F∨)⊗b)

)
.

Because F is pure of weight zero, the trace function of F∨ is the complex conjugate of the
trace function of F .

Theorem 2.6.1. As L/Fq runs over finite extensions, we have the limsup formula

Ma,b(F) = lim sup
L/Fq

∣∣ 1

(#L)d

∑
x∈X0(L)

Trace(Frobx,L|F)aTrace(Frobx,L|F∨)b)
∣∣.

Proof. For the auxiliary sheaf G := F⊗a⊗ (F∨)⊗b, which is lisse and pure of weight zero
on X0, this is the statement that we recover dim(H2d

c (X,G)) as the limsup

lim sup
L/Fq

∣∣ 1

(#L)d

∑
x∈X0(L)

Trace(Frobx,L|G)
∣∣.

By the Lefschetz trace formula, we have∑
x∈X0(L)

Trace(Frobx,L,G) =
∑

0≤i≤2d

(−1)iTrace(FrobL|H i
c(X,G)).
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For i < 2d, the group H i
c(X,G) is mixed of weight ≤ i, by Deligne’s fundamental estimate

[De2, 3.3.4], so for every finite extension L/Fq we have∣∣ ∑
0≤i≤2d−1

(−1)iTrace(FrobL|H i
c(X,G)

∣∣ ≤ (#L)d−1/2
( ∑

0≤i≤2d−1

hic(X,G)
)
.

So if H2d(X,G) vanishes, we are done. When H2d(X,G) is nonzero, we must show that

dimH2d(X,G) = lim sup
L/Fq

∣∣ 1

(#L)d
Trace(FrobL|H2d(X,G))

∣∣.
The key point here is that H2d(X,G) is pure of weight 2d: the eigenvalues of FrobFq on
H2d(X,G) are of the form qdαj, for 1 ≤ j ≤ dimH2d(X,G), with each |αj| = 1. For L/Fq of
degree n, the eigenvalues of FrobL on this space are (#L)dαnj . Thus we are reduced to the

statement that given D ≥ 1 points αj ∈ S1, we recover D as

lim sup
n

∣∣ ∑
1≤j≤D

αnj
∣∣,

which holds because in the compact group (S1)
D

, powers of any point (α1, . . . , αD) come
arbitrarily close to the identity element (1, . . . , 1). �



CHAPTER 3

Representations of reductive groups containing elements with
special spectra

3.1. Almost quasisimple groups containing elements with simple spectra

One of the main goals of [KT5] was to describe triples (G, V, g) subject to the following
condition:

(3.1.0.1)
G is an almost quasisimple finite group, with S the unique non-abelian composition
factor, V a faithful irreducible CG-module, and g ∈ G has simple spectrum on V .

With G as in (3.1.0.1), let E(G) denote the layer of G, so that E(G) is quasisimple and
S ∼= E(G)/Z(E(G)). On the other hand, G/Z(G) is almost simple: S CG/Z(G) ≤ Aut(S).
We will frequently identify G with its image in GL(V ). Let d(S) denote the smallest degree
of faithful projective irreducible complex representations of S, and let ō(g) denote the order
of the element gZ(G) in G/Z(G). Adopting the notation of [GMPS], let meo(X) denote
the largest order of elements in a finite group X. An element g ∈ G ≤ GL(V ) is called an
ssp-element, or an element with simple spectrum, if the multiplicity of any eigenvalue of g
acting on V is 1. (Note that in (3.1.0.1), we do not (yet) assume that V |E(G) is irreducible.)

We begin with a useful observation:

Lemma 3.1.1. [KT5, Lemma 6.1] In the situation of (3.1.0.1), we have

d(S) ≤ dim(V ) ≤ ō(g) ≤ meo(G/Z(G)) ≤ meo(Aut(S)).

Let S(n−1,1) denote the deleted permutation module of Sn. We will also need to consider
the so-called basic spin modules (acted on faithfully by the double cover Ân), see e.g. [KlT,
§2].

Theorem 3.1.2. [KT5, Theorem 6.2] In the situation of (3.1.0.1), assume that S = An
with n ≥ 8. Then one of the following statements holds.

(i) E(G) = An and one of the following holds.
(a) dimV = n− 1, V |An ∼= S(n−1,1)|An, and, up to a scalar, g is either an n-cycle, or a

disjoint product of a k-cycle and an (n− k)-cycle for some 1 ≤ k ≤ n− 1 coprime
to n.

(b) n = 8, dimV = 14, and, up to a scalar, g is an element of order 15 in A8.

(ii) E(G) = Ân and one of the following holds.
(a) n = 8, dimV = 8, V |E(G) is a basic spin module, and ō(g) = 10, 12, or 15.
(b) G/Z(G) ∼= A9, dimV = 8, V |E(G) is a basic spin module, and ō(g) = 9, 10, 12, or

15.

47
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(c) G/Z(G) ∼= S9, dimV = 16, V |E(G) is the sum of two basic spin modules, and
ō(g) = 20.

(d) G/Z(G) ∼= S10, dimV = 16, V |E(G) is a basic spin module, and ō(g) = 20 or 30.
(e) G/Z(G) ∼= A11, dimV = 16, V |E(G) is a basic spin module, and ō(g) = 20.
(f) G/Z(G) ∼= S12, dimV = 32, V |E(G) is a basic spin module, and ō(g) = 60.

Table II, reproduced from [KT5], summarizes the classification of ssp-elements in the
non-generic cases of sporadic groups and A7 and some small rank Lie-type groups, under the
additional condition that V |E(G) is irreducible. For each V , we list all almost quasisimple
groups G with common E(G) that act on V , and we list the number of isomorphism classes
of such representations in a given dimension, for a largest possible G up to scalars (if no
number is given, it means the representation is unique up to equivalence in given dimension).
For each representation, we list the names of conjugacy classes of ssp-elements in a largest
possible G, as listed in [GAP], and/or the total number of them. We also give a reference
where a local system realizing the given representation is constructed. The indicator (-)
means that no hypergeometric sheaf with G as monodromy group can exist.

Theorem 3.1.3. [KT5, Theorem 6.4] In the situation of (3.1.0.1), assume that S is one
of 26 sporadic simple groups, or A7, and that V |E(G) is irreducible. Then (S,G, V, g) are as
listed in Table II.

Lemma 3.1.4. Let q = pf > p and q 6= 4, 8, 9, 25. Suppose that S = PSL2(q) and
g ∈ Aut(S) has order at least (q − 1)/ gcd(2, q − 1). Then g ∈ PGL2(q).

Proof. Suppose that g /∈ H := PGL2(q), and thus the coset gH is an element of order
e ≥ 2 in the cyclic quotient Aut(S)/H ∼= Cf . As shown on [GMPS, p. 7679], we then have
that o(g) ≤ e(q1/e + 1).

Suppose p = 2. Then one can check that e(q1/e + 1) < q − 1, unless (e, q) = (2, 4), (3, 8).
Suppose p > 2. Then one can check that e(q1/e + 1) < (q − 1)/2, unless (e, q) = (2, 9),

(2, 25). �

Theorem 3.1.5. In the situation of (3.1.0.1), assume that S is a finite simple group of
Lie type. Then one of the following statements holds.

(i) S ∼= PSL2(q) and dim(V ) ≤ ō(g) ≤ q + 1. Moreover, if q ≥ 11 then the image of g in
Aut(S) lies in PGL2(q).

(ii) S = PSLn(q), n ≥ 3, E(G) is a quotient of SLn(q), and V |E(G) is one of q − 1 Weil
modules, of dimension (qn− 1)/(q− 1) or (qn− q)/(q− 1). Moreover, dim(V ) ≤ ō(g) ≤
(qn − 1)/(q − 1).

(iii) S = PSUn(q), n ≥ 3, E(G) is a quotient of SUn(q), and V |E(G) is one of q + 1 Weil
modules, of dimension (qn − (−1)n)/(q + 1) or (qn + q(−1)n)/(q + 1).

(iv) S = PSp2n(q), n ≥ 2, 2 - q, E(G) is a quotient of Sp2n(q), every irreducible constituent
of V |E(G) is one of four Weil modules, of dimension d := (qn ± 1)/2, and dim(V ) = d
or 2d.

(v) Non-generic cases:
(a) S is one of the following groups: PSL3(4), PSU4(3), Sp6(2), Ω+

8 (2), 2B2(8), G2(3),
G2(4), V |E(G) is simple, and the classification of ssp-elements in G can be read off
from Table I.



3.1. ALMOST QUASISIMPLE GROUPS CONTAINING ELEMENTS WITH SIMPLE SPECTRA 49

S meo(Aut(S)) d(S) G dim(V ) ssp-classes

A7 12 4 2A7 4 (2 reps) [KRLT4] 9 classes
S7 6 (2 reps) [KT5] 7A, 6C, 10A, 12A (4 classes)

3A7 6 (2 reps) [KRLT4] 6 classes
6A7 6 (4 reps) [KRLT4] 15 classes

M11 11 10 M11 10 (3 reps) [KRLT4] 11AB (2 classes)
11 [KRLT4] 11AB (2 classes)

M12 12 10 2M12 · 2 10 (4 reps) (-) 11 classes
M12 11 (2 reps) (-) 11AB (2 classes)

2M12 · 2 12 (2 reps) (-) 24AB (2 classes)
M22 14 10 2M22 · 2 10 (4 reps) [KRLT4] 10 classes
M23 23 22 M23 22 [KRLT4] 23AB (2 classes)
M24 23 23 M24 23 [KRLT4] 23AB (2 classes)
J2 24 6 2J2 6 (2 reps) [KRL] 17 classes

2J2 · 2 14 (2 reps) [KRLT4] 28AB, 24CDEF (6 classes)
J3 34 18 3J3 18 (4 reps) [KRLT4] 19AB, 57ABCD (6 classes)
HS 30 22 HS · 2 22 (2 reps) (-) 30A

McL 30 22 McL · 2 22 (2 reps) [KRLT4] 30A, 22AB (3 classes)
Ru 29 28 2Ru 28 [KRLT4] 29AB, 58AB (4 classes)
Suz 40 12 6Suz 12 (2 reps) [KRLT3] 57 classes
Co1 60 24 2Co1 24 [KRLT3] 17 classes
Co2 30 23 Co2 23 [KRLT2] 23AB, 30AB (4 classes)
Co3 30 23 Co3 23 [KRLT1] 23AB, 30A (3 classes)

PSL3(4) 21 6 6S · 21 6 (4 reps) [KRLT4] many classes
41S · 23 8 (8 reps) [KRLT4] 12 classes
2S · 22 10 (4 reps) [KRLT4] 14CDEF (4 classes)

PSU4(3) 28 6 61S · 22 6 (4 reps) [KRLT4] many classes
Sp6(2) 15 7 Sp6(2) 7 [KRLT4] 7A, 8B, 9A, 12C, 15A

2Sp6(2) 8 [KRLT4] 8 classes
Sp6(2) 15 (-) 15A

Ω+
8 (2) 30 8 2Ω+

8 (2) · 2 8 [KRLT4] 22 classes
2B2(8) 15 14 2B2(8) · 3 14 (6 reps) [KRLT4] 15AB (2 classes)
G2(3) 18 14 G2(3) · 2 14 (2 reps) [KRLT4] 14A, 18ABC (4 classes)
G2(4) 24 12 2G2(4) · 2 12 (2 reps) [KRLT4] 20 classes

Table II. Elements with simple spectra in non-generic cases

(b) V |E(G) is the direct sum of two simple modules of equal dimension, and one of the
following possibilities occurs.

(α) E(G) = S = SU4(2), G/Z(G) = Aut(S), either dim(V ) = 8 and ō(g) =
9, 10, 12, or dim(V ) = 10 and ō(g) = 10, 12.

(β) S = SU5(2), G/Z(G) = Aut(S), dim(V ) = 22, and ō(g) = 24.
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Proof. If S 6∼= PSL2(q), then the theorem is just [KT5, Theorem 6.6], which also gives
the first statement in (i) when S = PSL2(q). For the second claim in (i), assume q ≥ 11.
Then

ō(g) ≥ dim(V ) ≥ (q − 1)/ gcd(2, q − 1)

by Lemma 3.1.1, and so we are done unless q = 25. If q = 25, but the image of g is not
contained in PGL2(25), then using [CCNPW] we can check that ō(g) ≤ 12; on the other
hand, V |E(G) is either irreducible of dimension ≥ 24, or a sum of two simple summands of
dimension 12 or 13 that are fused by g. Thus ō(g) < dim(V ), a contradiction. �

Theorem 3.1.6. In the situation of (3.1.0.1), assume in addition that V |E(G) is irre-
ducible and that dim(V ) 6= 4, 6. Then the following statements hold.

(i) The action of G on V is tensor indecomposable and not tensor induced.
(ii) Either (G, V ) satisfies (S+), or (G, V ) is imprimitive and one of the following cases

occurs.
(a) E(G)/Z(E(G)) ∼= PSLn(q), n ≥ 2, q ≥ 3, and dim(V ) = (qn − 1)/(q − 1).
(b) E(G) = PSL2(7) and dim(V ) = 7.
(c) E(G) = M11 and dim(V ) = 11.
(d) E(G) = 2M12 and dim(V ) = 12.

Proof. (i) The statement is obvious in the case dim(V ) is a prime, so we may assume
that dim(V ) ≥ 8. In particular, using [CCNPW] we see that S 6∼= A5 and so d(S) ≥ 3.

If S ∼= A6, then we can check directly using [CCNPW] that dim(V ) 6= 9 (because
G possesses an ssp-element), and d(S) = 3. If furthermore dim(V ) ≥ 10, then we get
E(G) ∼= SL2(9), dim(V ) = 10, and G/Z(G)E(G) ≤ C2, in which case one can check the
statements readily. Hence we may assume dim(V ) ≤ 8 when S ∼= A6. Now, Theorems 10.3.5,
3.1.3, and 3.1.5 imply that dim(V ) < d(S)2 in all remaining cases. Hence, if (G, V ) is tensor
decomposable: G ≤ GL(A)⊗GL(B) with 1 < dim(A) < dim(B), then we may assume that
dim(A) < d(S), and so the projective representation of E(G) on A is reducible, contradicting
the irreducibility of E(G) on V = A⊗B. Thus (G, V ) is tensor indecomposable.

Assume now that (G, V ) is tensor induced and let H C G be the subgroup of G that
stabilizes each of the n ≥ 2 tensor factors, each of dimension d so that dim(V ) = dn. Then
dim(V ) < d(S)2 again implies that d < d(S) and so E(G) 6≤ H (because otherwise E(G)
would stabilize each of the tensor factor and act reducibly on each of them). As E(G) is
quasisimple, we must have that E(G)∩H = Z(E(G)). Thus S = E(G)/Z(E(G)) embeds in
G/H ↪→ Sn and acts faithfully on the set of n tensor factors. However, as d(S) ≥ 3 we have

n = logd dim(V ) < log2 d(S)2 < d(S) + 1 ≤ P (S),

where P (S) denotes the smallest index of proper subgroups in S, contradicting S ↪→ Sn.
We have shown that (G, V ) is not tensor induced, whence the statement follow. For a

later application in Theorem 5.2.12, we also note that when dim(V ) = 6 and d(S) < 3,
S = A5 and V is imprimitive by [CCNPW]. Hence, (S+) also holds if dim(V ) = 6 and V
is primitive.

(ii) Note by Lemma 1.1.6 that (S+) necessarily implies that E(G) is irreducible on V . In
view of (i), it suffices to determine whether the G-module is primitive.

Assume that G fixes an imprimitive decomposition V = ⊕ti=1Vi with t > 1. Since
Z(E(G)) ≤ Z(G) by irreducibility of E(G), we see that Z(G) acts trivially on {V1, . . . , Vt}.
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Now irreducibility of E(G) on V implies that S := E(G)/Z(E(G)) acts transitively on this
set, when S has a proper subgroup of index t that divides dim(V ). Using [KlL, Table
5.2.A] and [CCNPW], and going through the cases listed in Theorems 10.3.5, 3.1.3, and
3.1.5, we can check that when dim(V ) > 12, the latter is possible only when (S, dim(V )) 6=
(PSLn(q), (qn− 1)/(q− 1)), leading to (a). Assume now that dim(V ) ≤ 12 and we are not in
(a). Now we have

5 ≤ P (S) ≤ t ≤ dim(V ),

and that dim(V ) 6= 6 by assumption. We will use [GAP] to check this condition for the
modules listed in Theorems 10.3.5, 3.1.3, and 3.1.5 when S 6∼= A5,A6, and in [GAP] when
S = A5, A6.

When S = A5
∼= PSL2(4), the possibility dim(V ) = 5 is already included in (a) (indeed, if

χ ∈ Irr(S) has degree 5, then χ = IndSM(α) for a non-principal linear character α of M ∼= A4).
When S = A6

∼= PSL2(9), any proper subgroup of S has index 6 or ≥ 10 whereas
dim(V ) ≤ meo(Aut(S)) = 10 [CCNPW], so, in view of (a) and the assumption dim(V ) 6= 6,
no further consideration is needed.

When S = A7, any proper subgroup of S has index 7 or ≥ 15 whereas dim(V ) ≤
meo(Aut(S)) = 12 [CCNPW], so V can only have dimension 7 which is impossible.

When S = A8, any proper subgroup of S has index 8 or ≥ 15 whereas dim(V ) ≤
meo(Aut(S)) = 15 [CCNPW], so V can only have dimension 8 or 15. There is no V
of dimension 15, see [CCNPW], and the ones of dimension 8 are primitive (since any sub-
group of index 8 of E(G) = 2A8 is isomorphic to 2A7, which is perfect, and so any linear
character of it is trivial and cannot induce to E(G) to yield V |E(G)).

When S = PSL2(7), we only need to look at the case dim(V ) = 7, which leads to (b);
(indeed, if χ ∈ Irr(S) has degree 7, then χ = IndSM(α) for a non-principal linear character α
of M ∼= S4).

When S = PSL2(11), P (S) = 11 and dim(V ) ≤ meo(Aut(S)) = 12 [CCNPW], so in
view of (a), V can only have dimension 11. However, such a module is primitive (since any
subgroup of index 11 of E(G) = S is isomorphic to A5, which is perfect, and so any linear
character of it is trivial and cannot induce to S to yield V |S).

When S = M11, P (S) = 11 = meo(Aut(S)) [CCNPW], so dim(V ) = 11, leading to (c);
indeed, if χ ∈ Irr(S) has degree 11, then χ = IndSM(α) for a non-principal linear character α
of M ∼= A6 · 23.

When S = M12, P (S) = 12 = meo(Aut(S)) [CCNPW], so dim(V ) = 12, leading to

(d); indeed, if χ ∈ Irr(E(G)) has degree 12, then E(G) ∼= 2M12 and χ = Ind
E(G)
M (α) for a

non-principal linear character α of M ∼= 2×M11. �

Using the aforementioned results on representations of almost quasisimple groups admit-
ting ssp-elements, we now prove

Theorem 3.1.7. Let H < GL(V ) ∼= GLd(C) be a finite almost quasisimple group that
admits an element h with simple spectrum. Assume in addition that V is irreducible over
L := E(H). Then either

ō(h) < d2/2

or one of the following cases occurs.

(a) d = 2, H = SL2(5), and ō(h) = 2, 3, or 5.
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(b) d = 3, H = A5, and ō(h) = 5.
(c) d = 3, H = PSL2(7), and ō(h) = 7.
(d) d = 3, H = 3A6, and ō(h) = 5.
(e) d = 4, H = Sp4(3), and ō(h) = 9 or 12.
(f) d = 6, L = 61 · PSU4(3), H/Z(H) ∼= PSU4(3) · 22, and ō(h) = 18.

Proof. We will assume that

(3.1.7.1) ō(h) ≥ d2/2.

The list of possible H in the case d = 2, 3 is well known, see e.g. [HM], and we easily arrive
at (a)–(d). From now on, we will assume d ≥ 4, and let S = L/Z(L) be the unique non-
abelian composition factor of H. Also, let meo(Aut(S)) denote the largest order of elements
in Aut(S).

(i) Here we consider the case S = An with n ≥ 5. If n = 5, then ō(h) ≤ meo(Aut(S)) =
6 < d2/2, contrary to (3.1.7.1). If n = 6, then ō(h) ≤ meo(Aut(S)) = 10, so (3.1.7.1)
implies that d = 4. In this case, we have by [CCNPW] that L = 2A6 and S CH/Z(H) ≤
S · 21, which then implies that ō(h) ≤ 6, again contradicting (3.1.7.1). If n = 7, then
ō(h) ≤ meo(Aut(S)) = 12, so (3.1.7.1) again implies that d = 4. In this case, we have by
[CCNPW] that H = 2A7 and so ō(h) ≤ 7, again contradicting (3.1.7.1).

Assume now that n ≥ 8. Then we can apply Theorem 10.3.5 to see that (3.1.7.1) implies
that we are in case (i)(a) of Theorem 10.3.5, and so ō(h) ≤ n2/4 < (n − 1)2/2 = d2, a
contradiction.

(ii) Assume now that S is one of 26 sporadic simple groups, and apply Theorem 3.1.3.
Using the information on (V,meo(Aut(S)) listed in Table 1, we see that (3.1.7.1) implies that
H = 2J2 and d = 6, in which case we also have ō(h) ≤ 15, violating (3.1.7.1).

(iii) From now on we may assume that S is a simple group of Lie type, and apply
Theorem 3.1.5. First consider the case S = PSL2(q) with q ≥ 7 and q 6= 9 (note that the
cases SL2(4) ∼= PSL2(5) ∼= A5 and PSL2(9) ∼= A6 have already been considered in (i)). If
q = 7, then ō(h) ≤ 8, and so (3.1.7.1) implies that d = 4, whence H = L = SL2(7) and
ō(h) ≤ 7 (see [CCNPW]), a contradiction. If q = 8, then ō(h) ≤ 9 whereas d ≥ 7, see
[CCNPW], contradicting (3.1.7.1). If q ≥ 11, then ō(h) ≤ q + 1 by Theorem 3.1.5(i),
whereas d ≥ (q − 1)/2 (see [TZ1, Theorem 1.1]), and this again violates (3.1.7.1).

Suppose S = PSLn(q) with n ≥ 3 and (n, q) 6= (3, 2), (3, 4). Then d ≥ (qn−q)/(q−1) and
meo(Aut(S)) = (qn− 1)/(q− 1) ≤ d+ 1 by [GMPS, Theorem 2.16], contradicting (3.1.7.1).
The case SL3(2) ∼= PSL2(7) has already been treated. Suppose now that S = PSL3(4).
Then meo(Aut(S)) = 21, so (3.1.7.1) yields that d = 6, L = 6S, S CH/Z(H) ≤ S · 21 (see
[CCNPW]), in which case we have ō(h) ≤ 8, a contradiction.

Suppose next that S = PSp2n(q) with n ≥ 2 and (n, q) 6= (2, 3). Then d ≥ (qn− 1)/2 and
meo(Aut(S)) ≤ qn+1/(q − 1) by [GMPS, Theorem 2.16], again violating (3.1.7.1). Assume
now that S = PSp4(3). Then meo(Aut(S)) = 12, so (3.1.7.1) yields that d = 4, H = Sp4(3),
ō(h) = 9 or 12 (see [CCNPW]), and we arrive at (e).

Suppose S = PSUn(q) with n ≥ 3 and (n, q) 6= (3, 2), (3, 3), (4, 2), (4, 3), (5, 2). Then
d ≥ (qn − q)/(q + 1) and meo(Aut(S)) ≤ qn−1 + q2 by [GMPS, Theorem 2.16], again
contradicting (3.1.7.1). Note that PSU3(2) is solvable, and PSU4(2) ∼= PSp4(3) has already
been handled. If S = SU5(2), then d ≥ 10 and meo(Aut(S)) = 24, contrary to (3.1.7.1).
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If S = SU3(3), then d ≥ 6 and meo(Aut(S)) = 12, again contradicting (3.1.7.1). Suppose
next that S = PSU4(3). Then meo(Aut(S)) = 28, so (3.1.7.1) yields that d = 6, L = 61 · S,
S CH/Z(H) ≤ S · 22, and ō(h) = 18 (see [CCNPW]), leading to (f).

Finally, in the exceptional cases S = Sp6(2), Ω+
8 (2), 2B2(8), G2(3), and G2(4) of Theorem

3.1.5(v), using the information on (V,meo(Aut(S)) listed in Table 1, we can check that
meo(Aut(S)) < d2/2, violating (3.1.7.1). �

Theorem 3.1.8. [KT5, Corollary 8.4] Suppose (3.1.0.1) gives rise to a hypergeometric
sheaf H of type (D,m) with D − m ≥ 2, with G = Ggeom, g a generator of the image of
I(0) in G, and V realizes the action of G on H. Suppose in addition that we are in the
cases (ii)–(iv) of Theorem 3.1.5, and that V |E(G) is irreducible. Then G/Z(G) ∼= PGLn(q),
respectively PSp2n(q), PGUn(q).

Theorem 3.1.9. [KT5, Theorem 8.5] Let p be a prime. Let G be a finite irreducible
subgroup of GL(V ) ∼= GLpn(C) that satisfies (S+) and is an extraspecial normalizer, so that
GBR = Z(R)E for some some extraspecial p-group E of order p1+2n that acts irreducibly on
V , and furthermore either R = E or Z(R) ∼= C4, as in [GT3, Proposition 2.8(iii)]. Suppose
that a p′-element g ∈ G has simple spectrum on V and that pn ≥ 11. Then the following
statements hold.

(i) Suppose p > 2. Then exp(R) = p, ō(g) = pn + 1, and the coset gZ(G)R as an element
of G/Z(G)R ↪→ Sp2n(p) generates a cyclic maximal torus Cpn+1 of Sp2n(p).

(ii) Suppose p = 2. Then one can find integers a1 > a2 > . . . > at ≥ 1 such that n =∑t
i=1 ai, gcd(2ai + 1, 2aj + 1) = 1 if i 6= j, ō(g) =

∏t
i=1(2ai + 1), and the coset gZ(G)R

as an element of G/Z(G)R ↪→ Sp2n(2) generates a cyclic maximal torus C2a1+1 × . . .×
C2at+1 of Sp2n(2).

Our next result offers an optimal refinement of [KT5, Theorem 7.3]:

Theorem 3.1.10. Let H be a hypergeometric sheaf in characteristic p of type (D,m) with
D > m and with finite geometric monodromy group G = Ggeom. Suppose that G is an almost
quasisimple group of Lie type:

S CG/Z(G) ≤ Aut(S)

for some finite simple group S of Lie type in characteristic r, and either H is (S+), or G(∞)

is irreducible on H. Then at least one of the following statements holds.

(i) p = r, i.e. H and S have the same characteristic.
(ii) D ≤ 10 and S is one of the following simple groups: A5, A6, A8, PSL2(7), SL2(8),

PSL2(11), PSL3(4), SU3(3), SU4(2) ∼= PSp4(3), SU5(2), PSU4(3), Sp6(2), Ω+
8 (2). More

precisely, one of the following statements holds.
(ii-2) D = 2, and S = A5.
(ii-3) D = 3, and S = A5, A6, PSL2(7).
(ii-4) D = 4, and S = A5, A6, PSL2(7), SU4(2).
(ii-5) D = 5, and S = A5, A6, PSL2(11), SU4(2).
(ii-6) D = 6, and S = A5, A6, PSL2(7), PSL2(11), PSL3(4), SU3(3), SU4(2), PSU4(3).
(ii-7) D = 7, and S = A8, PSL2(7), SL2(8), SU3(3), Sp6(2).
(ii-8) D = 8, and S = A6, A8, PSL2(7), SL2(8), PSL3(4), Sp6(2), Ω+

8 (2).
(ii-9) D = 9, and S = A6, SL2(8).
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(ii-10) D = 10, and S = A6, PSL2(11), PSL3(4), SU4(2), SU5(2).
(iii) D = 12, S = SU3(4), and p = 5 or 13.
(iv) D = 14, p = 13, and S = 2B2(8) or G2(3).

Proof. Assume (H, G) is as in the theorem, but p 6= r. Note that (S+) implies by
Lemma 1.1.6 that the central cover L := G(∞) of S is irreducible on the underlying repre-
sentation V = VH of H; in paricular Z(G) = CG(L) and G/Z(G) ↪→ Aut(S). Recall that a
generator g0 of the image of I(0) in G, a p′-element, has simple spectrum on V , which implies

(3.1.10.1) D ≤ ō(g0) ≤ meo(Aut(S)).

Let Q denote the image of I(∞) in G, and let ϕ denote the character of the G-module
V . Suppose that there exists a constant 0 < α < 1 such that |ϕ(x)|/ϕ(1) ≤ α for all
x ∈ Qr Z(G). We will frequently use the following lower bound

(3.1.10.2) |Q| > w ≥ D(1− α)(1− 1/|Q|)
for w := dimWild = D − m. [Indeed, the action of Q on Wild implies by Propositions 5.8
and 5.9 of [KRLT4] that w < |Q|, and the second inequality in (3.1.10.2) is reproduced from
[KT5, (7.2.2)].] Furthermore, in the cases where Q/(Q ∩Z(G)) is cyclic, in particular when
Sylow p-subgroups of Aut(S) are cyclic, we must have that

(3.1.10.3) w ≤ [Q : Q ∩ Z(G)].

Indeed, the cyclic assumption implies that Q is abelian. By Propositions 5.8 and 5.9 of
[KRLT4], the character of the Q-module Wild is a sum of w distinct linear characters λi,
1 ≤ i ≤ w. Note that Q ∩ Z(G) acts on VH via a central character ν, and Q has exactly
[Q : Q ∩ Z(G)] linear characters lying above ν. Hence the claim follows.

Now we can apply [KT5, Theorem 7.4] to see that D ≤ 22, and arrive at the following
possibilities for S:

PSL2(5, 7, 8, 9, 11, 25), A8, PSL3(3, 4), PSU4,5,6(2), PSU3,4(3)
PSU3(4, 5), Sp6(2), PSp6(3), PSp4(5), Ω+

8 (2), 2B2(8), G2(3, 4),

which we will analyze individually. We also let g∞ ∈ G be a p′-element that generates the
image of I(∞) in G modulo Q, and note that the cases S = G2(4) and S = SU3(4) are
treated by Theorem 24.6, respectively Corollary 24.7, of [KRLT4].

(a) If S = PSL2(q) with q = 4, 5, 7, 8, then meo(Aut(S)) ≤ 9 [CCNPW], so D ≤ 9 by
(3.1.10.1), and (ii) holds. If S = A6

∼= PSL2(9) ∼= Sp6(2)′, then meo(Aut(S)) ≤ 10, so again
D ≤ 10 and (ii) holds. In addition, if D = 10, then ō(g0) = 10 by (3.1.10.1), whence p = 3
since g0 is a p′-element. More generally, the list of possibilities in (ii-2)–(ii-10) can be verified
using [HM].

Suppose S = PSL2(11), but p 6= 11 and D > 10. Note that S ≤ G/Z(G) ≤ Aut(S) = S ·2,
and both S and S · 2 inject in GL3(F11) as irreducible subgroups. By [KT5, Theorem 4.14],
this implies that w ≤ 3. On the other hand, D ≤ meo(Aut(S)) = 12, and using [GAP] we
can check that |ϕ(x)| ≤ 2 for all x ∈ Gr Z(G). Thus we can take α = 1/5, and as |Q| ≥ 2,
(3.1.10.2) implies w > 4, a contradiction.

Suppose S = PSL2(25), but p 6= 5 and D ≤ 22. Since V |L is irreducible, we have D = 12
or 13 by [GAP], and so S ≤ G/Z(G) ≤ S ·22. Next, each of S and S ·22 injects in GLd(F5) as
an irreducible subgroup for some d ≤ 4. By [KT5, Theorem 4.14], this implies that w ≤ 4.
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Using [GAP] we can check that |ϕ(x)| ≤ 5 for all x ∈ G r Z(G), and thus we can take
α = 5/12. Hence (3.1.10.2) yields |Q| > w ≥ 4. Since |Q| ≥ 5, (3.1.10.2) now implies w ≥ 6,
a contradiction.

Suppose S = A8
∼= SL4(2), but p 6= 2 and D > 8. Since meo(Aut(S)) = 15 [GAP] and

V |L is irreducible, we see that D = 14 and ō(g0) = 15. The latter rules out p = 3, 5. In the
remaining case p = 7, the Sylow p-subgroups of Aut(S) are of order 7, so w ≤ 7 by (3.1.10.3).
However, ϕ(x) = 0 for all x ∈ Q r Z(G), yielding α = 0 and so w ≥ 12 by (3.1.10.2), a
contradiction.

Suppose S = SL3(3), but p 6= 3. Since V |L is irreducible and D ≤ meo(Aut(S)) = 13, we
have D = 12 or 13 by [GAP], L = S and S ≤ G/Z(G) ≤ S · 2. Next, each of S and S · 2
injects in GLd(F3) as an irreducible subgroup for some d ≤ 6. By [KT5, Theorem 4.14], this
implies that w ≤ 6. Using [GAP] we can check that |ϕ(x)| ≤ 4 for all x ∈ G r Z(G), and
thus we can take α = 1/3. Hence (3.1.10.2) yields |Q| > w ≥ 4. Since |Q| ≥ 5, (3.1.10.2)
now implies w > 6, a contradiction.

Suppose S = PSL3(4), but p 6= 2 and D ≥ 11. Since V |L is irreducible and D ≤
meo(Aut(S)) = 21, we have D ∈ {15, 20, 21} by [GAP]. Now, since ō(g0) ≥ D ≥ 15, we
can see that 3 always divides ō(g0), showing p 6= 3. We can then check using [GAP] that
|ϕ(x)| ≤ 1 for all x ∈ Q r Z(G). Thus we can take α = 1/15, which implies w ≥ 12. This
however contradicts (3.1.10.3), since Sylow p-subgroups of Aut(S) have order p.

Suppose S = SU4(2) and D ≥ 11. Then D ≤ meo(Aut(S)) = 12, and L has no irreducible
characters of degree 11 or 12 [GAP], a contradiction.

Suppose S = SU5(2), but p 6= 2 and D ≥ 11. Since V |L is irreducible, we actually have
D = 11 and G = Z(G)S by [GAP]. Now S is an irreducible subgroup of GL5(F2), so w ≤ 5
by [KT5, Theorem 4.14]. If p = 5 or 11, then by [GAP] we have that |ϕ(x)| ≤ 1 for all
x ∈ QrZ(G). Thus we can take α = 1/11, which implies w ≥ 8 by (3.1.10.2), a contradiction.
Suppose p = 3. Again using [GAP] and (3.1.10.2), we see that |Q| > w ≥ 4, whence |Q| ≥ 9,
yielding w ≥ 5. Thus w = 5 and so W ∼= 34 is elementary abelian by [KRLT4, Proposition
5.8]. Next, 3 - |Z(G)| by [KT5, Proposition 4.8(iv)], hence Q ≤ S. Also, 5|ō(g∞) by
[KRLT4, Proposition 5.8], and thus an element of order 5 of S acts nontrivially on Q. It
follows that Q is a maximal torus of S and hence contains an element of class 3c in the
notation of [GAP], which however has eigenvalue 1 only with multiplicity 2 on V , showing
w ≥ 9, a contradiction.

Suppose S = PSU6(2), but p 6= 2. Since V |L is irreducible and D ≤ meo(Aut(S)) = 36,
we have D = 21 or 22 by [GAP]. Now, since ō(g0) ≥ 21, we can see that 3 always divides
ō(g0), showing p 6= 3. We can then check using [GAP] that |ϕ(x)| ≤ 2 for all x ∈ QrZ(G).
Thus we can take α = 2/21, which implies w ≥ 16. This however contradicts (3.1.10.3), since
Sylow p-subgroups of Aut(S) have order p.

Suppose S = SU3(3) and D ≥ 8. Then D ≤ meo(Aut(S)) = 12, and L has no irreducible
characters of degree 9 ≤ D ≤ 12 [GAP], a contradiction.

Suppose S = PSU4(3), but p 6= 3 and 7 ≤ D ≤ 22. Since V |L is irreducible, we have
D ∈ {15, 20, 21} by [GAP]. Now, since ō(g0) ≥ D ≥ 15, we can see that 2 always divides
ō(g0), showing p 6= 2. We can then check using [GAP] that |ϕ(x)| ≤ 1 for all x ∈ QrZ(G).
Thus we can take α = 1/15, which implies w ≥ 12. This however contradicts (3.1.10.3), since
Sylow p-subgroups of Aut(S) have order p.
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Suppose S = SU3(4), but p 6= 2. Since V |L is irreducible and D ≤ meo(Aut(S)) = 16,
we actually have D = 12 or 13 by [GAP]. First we consider the case D = 13, which implies
that G = Z(G) × S. In particular, G admits an irreducible representation G → GL3(F4),
hence [KT5, Theorem 4.14] implies that w ≤ 3. For p 6= 5, we can check that |ϕ(x)| ≤ 1
for all x ∈ Q r Z(G). Thus we can take α = 1/13, which implies w ≥ 8 by (3.1.10.2), a
contradiction. If p = 5, then using [GAP] we see that any element x ∈ Q r Z(G) has all
eigenspaces of dimension ≤ 4, which implies that w ≥ D − 4 = 9, again a contradiction.
Now suppose that D = 12. Note that the cases p = 5 and p = 13 are recorded in (iii), so we
have p = 3. Since the Sylow 3-subgroups of Aut(S) are of order 3, by (3.1.10.3) we have that
w ≤ 3. On the other hand, applying (3.1.10.2) with α = 0 we have w ≥ 8, a contradiction.

Suppose S = PSU3(5), but p 6= 5. Since V |L is irreducible and D ≤ meo(Aut(S)) = 30,
we actually have D = 20 or 21 by [GAP]. Now we can use [GAP] to check that no 3′-element
can have a simple spectrum on V , ruling out the case p = 3. For p 6= 3, 5, we can check that
|ϕ(x)| ≤ 5 for all x ∈ Q r Z(G). Thus we can take α = 1/4, which implies |Q| > w ≥ 8 by
(3.1.10.2). Applying (3.1.10.2) with |Q| ≥ 9, we actually have w ≥ 14. Also, since g0 has
simple spectrum on V , we see that g0Z(G) ∈ S · 3. Hence we can apply Theorem 1.2.2 to get
that S ≤ G/Z(G) ≤ S · 3. Since each of S and S · 3 is an irreducible subgroup of GLd(F5)
for some d ≤ 8, it follows from [KT5, Theorem 4.14] that w ≤ 8, a contradiction.

Suppose S = Sp6(2). Then D ≤ meo(Aut(S)) = 15, and so D ≤ 8 since V |L is irreducible,
see [GAP]. Thus (ii) holds in this case.

Suppose S = PSp4(5), but p 6= 5. Since V |L is irreducible and D ≤ meo(Aut(S)) = 30,
we actually have D = 12 or 13 and G/Z(G) = S by [GAP]. Since S is an irreducible
subgroup of GL5(F5), it follows from [KT5, Theorem 4.14] that w ≤ 5. Using [GAP] we
can check that |ϕ(x)| ≤ 5 for all x ∈ Qr Z(G). Thus we can take α = 5/12, which implies
|Q| > w ≥ 4 by (3.1.10.2). Applying (3.1.10.2) with |Q| ≥ 5, we actually have w ≥ 6, a
contradiction.

Next suppose S = Ω+
8 (2) and D ≥ 9. As D ≤ meo(Aut(S)) = 30, we have D = 28 since

V |L is irreducible, see [GAP]. Now (3.1.10.1) implies that ō(g0) = 30, but such elements do
not have simple spectrum on V , a contradiction.

(b) The last three cases of PSp6(3), 2B2(8), and G2(3) require a more substantial analysis.
Suppose S = PSp6(3), but p 6= 3. Since V |L is irreducible and D ≤ meo(Aut(S)) = 40, we
actually have D = 13 or 14 and G/Z(G) = S by [GAP]. For p 6= 2, we can check that
|ϕ(x)| ≤ 2 for all x ∈ Q r Z(G). Thus we can take α = 2/13, which implies w ≥ 9 by
(3.1.10.2). Since the Sylow 5-subgroups and 7-subgroups of S have order 5, respectively, this
bound rules out the cases p = 5 and 7 by (3.1.10.3). Assume p = 13. Then any x ∈ QrZ(G)
has central order 13 and spectrum β · µ13 on V for some β ∈ C×. This implies that w ≥ 12.
Since Sylow 13-subgroups of S have order 13, Q is abelian, and so w 6= 13 by [KRLT4,
Proposition 5.9] and w 6= 14 by (3.1.10.3). Thus w = 12, in which case 12|ō(g∞) and g∞ has
spectrum γ · µ12 on Wild for some γ ∈ C× by [KRLT4, Proposition 5.8]. However, using
[GAP] one can check that no such element exists in G = Z(G)L.

We have shown that p = 2. Then the 2′-element g0 has simple spectrum on V . Using
[GAP] we can check that ō(g0) = 13 = D, so L = S, and G = Z(G)S = Z(G) × S. Also,
2 - |Z(G)| by [KT5, Proposition 4.8(iv)]. By [KT5, Corollary 5.2], we can replace H by
another hypergeometric sheaf of the same type (D,m) but now with G = S. So we may
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assume G = S = PSp6(3); in particular, |Q| ≤ 29. Checking the spectrum of g0 on V , we
see that the set of “upstairs” characters of H is Char(13). Using [GAP] we can check that
|ϕ(x)| ≤ 5 for all 1 6= x ∈ Q. Thus we can take α = 5/13, which implies |Q| > w ≥ 4 by
(3.1.10.2). This in turn implies that |Q| ≥ 8, and so w ≥ 7 by (3.1.10.2). If w = 13, then
Q ∼= 212 by [KRLT4, Proposition 5.8], a contradiction. The case w = 11 is impossible since
g∞ ∈ S would have order divisible by 11. If w = 7, then Q ∼= 23 and each 1 6= x ∈ Q has
trace −1 on Wild by [KRLT4, Proposition 5.8]. It follows that these involutions x have trace
m− 1 = 5 on V , which is impossible by [GAP]. Suppose w = 9. Then Q ∼= 26 by [KRLT4,
Proposition 5.8], and consists of, say A involutions of class 2a and B involutions of class 2b,
in the notation of [GAP]. Then A+B = 63, and

4 = m = [ϕ|Q, 1Q]Q = (13− 3A+B)/64,

yielding A = −45, a contradiction.
Suppose w = 10. By [KRLT4, Proposition 5.9], g∞ ∈ S has order divisible by 5; in

particular, g15 = Id, and spectrum all the 5th roots of β · (µ3 r{1}) on Wild for some β ∈ C×.
It follows that β3 = 1, and g3

∞ has order 5 and spectrum all the 5th roots of unity on Wild,
each with multiplicity 2, which can be seen to be impossible by [GAP].

Suppose w = 8. By [KRLT4, Proposition 5.9], g∞ ∈ S has order divisible by 9; in
particular, g9 = Id, and spectrum all the 9th roots of γ · (µ9 r {1}) on Wild for some γ ∈ C×.
It follows that γ9 = 1, and the spectrum of g∞ on Wild is µ9 r {γ}. On the other hand,
since G is finite, g∞ also has simple spectrum on Tame. Checking the spectra of elements of
order 9 of S on V and replacing g∞ by its inverse if necessary, we see that the spectrum of
g∞ on V is µ9 t {ζj9 | j = 1, 4, 6, 7} as a multi-set, and so the spectrum of g∞ on Tame is
{ζj9 | j = 1, 4, 6, 7, j0} for some j0 ∈ {0, 2, 3, 5, 8}. The irreducibility of H implies j0 6= 0 (as
1 already appears “upstairs”), and Q(ϕ) = Q(ζ3) implies that the spectrum of g∞ is stable
under the unique subgroup C3 of Gal(Q(ζ9)/Q), whence j0 = 3. Thus the set of “downstairs”
characters of H is {ξj9 | j = 1, 3, 4, 6, 7}. However, the resulting H now fails the V -test, as
can be shown by direct computation.

Suppose w = 12. By [KRLT4, Proposition 5.9], g∞ ∈ S has order divisible by 3 and
spectrum all the 3rd roots of δ · (µ5 r {1}) on Wild for some δ ∈ C×. It follows that 5
divides o(g3) and in fact o(g) = 15. Checking the spectra of elements of order 15 of S on
V , we see that the spectrum of g∞ on V contains 4 eigenvalues with multiplicity 2, which
is a contradiction since g∞ has simple spectra on both Wild (of dimension 12) and Tame (of
dimension 1).

(c) Suppose S = 2B2(8). Since D ≤ meo(Aut(S)) = 15 and V |L is irreducible, we have
D = 14 and L = S by [GAP]. Now, (3.1.10.1) implies that ō(g0) = 15, ruling out p = 3, 5.
The case p = 13 can indeed arise, see [KRLT4, Theorem 26.2], leading to possibility (iv).
We can also rule out p = 2 as follows. Using [GAP] we can check that |ϕ(x)| ≤ 2 for
all 2-elements x ∈ Q r Z(G), and thus we can take α = 1/7. Hence (3.1.10.2) yields
|Q| > w ≥ 6. Hence |Q| ≥ 8, and (3.1.10.2) now implies w ≥ 11. We also note by [KT5,
Proposition 4.8(v)] that |Z(G)|2 ≤ 2, and so |Q| ≤ 27. The case w = 11 is now impossible
by [KRLT4, Proposition 5.8], since no element in Aut(S) has order 11. If w = 13, then
|Q| = 212 by [KRLT4, Proposition 5.8], again a contradiction. Suppose w = 14. Applying
[KRLT4, Proposition 5.8] again, we see that 7|ō(g∞), which implies that g∞ and Q are
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both contained in Z(G)S. In this case, G = Z(G)S by [KT5, Theorem 4.6]. But this is a
contradiction, since g0 /∈ Z(G)S. Finally, suppose w = 12. In this case, Q has an irreducible
summand of dimension 4 on Wild by [KRLT4, Proposition 5.8]. However, Q ≤ Z(G)P for
a Sylow 2-subgroup P of S, and all irreducible characters of P are of degree 1 or 2, again a
contradiction.

(d) Finally, we consider S = G2(3). Since D ≤ meo(Aut(S)) = 18 and V |L is irreducible,
we have D = 14 and L = S by [GAP]. Now, (3.1.10.1) implies that ō(g0) = 14 or 18,
ruling out p = 2. The case p = 13 can indeed arise, see [KRLT4, Theorem 23.2], leading
to possibility (iv). If p = 7, then ϕ(x) = 0 for all x ∈ Q r Z(G), which implies w ≥ 12 by
(3.1.10.2). But this contradicts (3.1.10.3), since Sylow 7-subgroups of Aut(S) have order 7.
Next we rule out p = 3 as follows. Using [GAP] we can check that |ϕ(x)| ≤ 5 for all 3-
elements x ∈ QrZ(G), and thus we can take α = 5/14. Hence (3.1.10.2) yields |Q| > w ≥ 6.
Hence |Q| ≥ 9, and (3.1.10.2) now implies w ≥ 8. We also note by [KT5, Proposition
4.8(iv)] that 3 - |Z(G)|, and so |Q| ≤ 36 and Q ≤ S. The case w = 10, respectively
11, is impossible by [KRLT4, Proposition 5.8], since no element in Aut(S) has order 5 or
11. If w = 14, then Q = 36 is elementary abelian by [KRLT4, Proposition 5.8], again a
contradiction (since Sylow 3-subgroups of S have order 36 but exponent 9). Suppose w = 9.
Then Q is irreducible on Wild by [KRLT4, Proposition 5.9]. Since Q acts trivially on Tame
(of dimension 5) and faithfully on V , an element z ∈ Z(Q) of order 3 will act as scalar ζ3 on
Wild and thus ϕ(z) = 9ζ3 +5, which is impossible by [GAP]. Suppose w = 8, respectively 13.
Applying [KRLT4, Proposition 5.8] again, we see that w|ō(g∞), which implies that g∞ and
Q are both contained in Z(G)S. In this case, G = Z(G)S by [KT5, Theorem 4.6]. But this
is a contradiction, since g0 /∈ Z(G)S. Finally, suppose w = 12. As in the previous case, we
have g∞ /∈ Z(G)S. On the other hand, 4|ō(g∞) by [KRLT4, Proposition 5.9]. So, modulo
Z(G), g∞ belongs to class 4b in the notation of [GAP], and has traces 0 on Wild and on V ,
whence on Tame as well. Since dimTame = 2, it follows that the set {ρ1, ρ2} of “downstairs”
characters of H is stable under multiplication by the quadratic character ξ2. As p = 3 and
ō(g0) ≥ D, we also see that, modulo Z(G), g0 belongs to class 14a in the notation of [GAP],
and so has spectrum β · µ14 on V , for some β ∈ C×. It follows that the set {χ1, . . . , χ14} of
“upstairs” characters of H is stable under multiplication by ξ2, and so H is Kummer induced
by [KRLT4, Proposition 3.7], a contradiction. �

Remark 3.1.11. In the case where D 6= 4, 8, 9, it is shown in Theorem 5.2.9 (below) that
if H is primitive then it is (S+). Also, the construction of particular hypergeometric sheaves
with (p,D, S) as indicated in cases (iii)–(iv), and in various subcases of (ii), of Theorem
3.1.10, is carried out in [KRLT4]. Our proof of Theorem 3.1.10 also shows that, conversely,
if S = 2B2(8) or G2(3), then (D, p) = (14, 13).

3.2. Modules with small weight multiplicities

Let G be a simple, simply connected Lie group over C, of rank r. With respect to a fixed
maximal torus T in G, let {α1, α2, . . . , αr} be a system of simple roots, {$1, $2, . . . , $r} be
the corresponding fundamental weights, with the same labeling as given [Hum, §11.4]. For
a dominant integral weight λ ∈ 〈$1, $2, . . . , $r〉Z≥0

, let L(λ) denote the irreducible rational
CG-module with highest weight λ.
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Definition 3.2.1. (i) In the above notation, L(λ) is called weight multiplicity-free, or
WMF, if the largest multiplicity of any weight in L(λ) is at most 1. Similarly, L(λ) is
called WM2, respectively WM3, if the largest multiplicity of any weight in L(λ) is at
most 2, respectively 3.

(ii) A semisimple element g ∈ G is called WMF, respectively WM2, WM3, on L(λ), if the
largest multiplicity of any eigenvalue of g on L(λ) is at most 1, 2, or 3, respectively.

WMF modules were classified by Howe in [HS, Theorem 4.6.3]. In the cases where G
admits a (nontrivial) graph automorphism τ of order 2, i.e. when G is of type Ar with r ≥ 2,
Dr with r ≥ 4, and E6, we need to extend Howe’s result to deal with WM2 modules that are
τ -invariant. When G is of type D4, we also need to classify WM3 modules.

In theory, the multiplicitymλ(µ) of any weight µ in L(λ) can be determined using Freuden-
thal’s formula, or Kostant’s formula, see [Hum]. Based on these formulas, algorithms are
developed and implemented in various computer packages to compute mλ(µ), see [Lie] in par-
ticular. However, it is highly nontrivial to deduce a closed, effective formula for all mλ(µ).
In practice, the following reduction formula turns out to be useful in many cases:

Proposition 3.2.2. [Cav, Proposition A] Let λ =
∑r

i=1 ai$i be a dominant integral
weight and let µ be a dominant weight such that µ = λ −

∑r
i=1 ciαi with c1, . . . , cr ∈ Z≥0.

Also, assume that J is a subset J of {1, . . . , r} with the property that cj ≤ aj for all j ∈ J .
Set λ′ := λ−

∑
j∈J(aj − cj)$j and µ′ := µ−

∑
j∈J(aj − cj)$j. Then mλ(µ) = mλ′(µ

′).

First we treat type A3:

Lemma 3.2.3. Let G be of type A3 and let L(λ) be WM2. Then λ is one of the following
weights: a$1 or a$3 with a ∈ Z≥0, a$2 with 1 ≤ a ≤ 3, $1 +$2, $2 +$3.

Proof. Recall (see e.g.[Hum, Table 1, p. 69])

$1 = (3α1 + 2α2 + α3)/4, $2 = (2α1 + 4α2 + 2α3)/4, $3 = (α1 + 2α2 + 3α3)/4.

Write λ = a$1+b$2+c$3 also as (a, b, c). We will also write mx,y,z(a, b, c) for the multiplicity
of the weight (x, y, z) = x$1 + y$2 + z$3 in L(a, b, c) = L(λ).

(i) First we consider the case a, c ≥ 1 and let µ := λ − ($1 + $3) = (a − 1, b, c − 1).
Note that $1 + $3 = α1 + α2 + α3. Assume b ≥ 1. Then, by Proposition 3.2.2 we can take
J = {1, 2, 3} and get mλ(µ) = mλ1(µ1) for

λ1 = λ− (a− 1, b− 1, c− 1) = (1, 1, 1), µ1 = µ− (a− 1, b− 1, c− 1) = (0, 1, 0).

Thus mλ(µ) = m1,1,1(0, 1, 0) = 4, with the second equality checked using [Lie].
Assume now that b = 0. By Proposition 3.2.2 we can take J = {1, 3} and get mλ(µ) =

mλ2(µ2) for

λ2 = λ− (a− 1, 0, c− 1) = (1, 0, 1), µ2 = µ− (a− 1, b− 1, c− 1) = (0, 0, 0).

Thus mλ(µ) = m1,0,1(0, 0, 0) = 3 (with the second equality again checked using [Lie] – in
what follows we will skip similar references to [Lie]).

(ii) We have shown that at least one of a, c is 0, and may therefore assume a = 0.
Assume in addition that b ≥ 2 and c ≥ 1, and take µ := λ − 2$2 = (0, b − 2, c), noting
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2$2 = α1 + 2α2 +α3. By Proposition 3.2.2 we can take J = {2, 3} and get mλ(µ) = mλ3(µ3)
for

λ3 = λ− (0, b− 2, c− 1) = (0, 2, 1), µ3 = µ− (0, b− 2, c− 1) = (0, 0, 1).

Thus mλ(µ) = m0,2,1(0, 0, 1) = 3.
Suppose now that b = 1 but c ≥ 2, and take µ := λ − ($2 + 2$3) = (0, 0, c − 2). As

$2+2$3 = α1+2α2+2α3, by Proposition 3.2.2 we can take J = {3} and get mλ(µ) = mλ4(µ4)
for

λ4 = λ− (0, 0, c− 2) = (0, 1, 2), µ4 = µ− (0, 0, c− 2) = (0, 0, 0).

Thus mλ(µ) = m0,1,2(0, 0, 1) = 3.
Finally, assume that a = c = 0 but b ≥ 4, and take µ := λ − 4$2 = (0, b − 4, 0). As

4$2 = 2α1 + 4α2 + 2α3, by Proposition 3.2.2 we can take J = {2} and get mλ(µ) = mλ5(µ5)
for

λ4 = λ− (0, b− 4, 0) = (0, 4, 0), µ4 = µ− (0, b− 4, 0) = (0, 0, 0).

Thus mλ(µ) = m0,4,0(0, 0, 0) = 3. �

Recall we label the simple roots for type D4 in such a way that a triality graph automor-
phism fixes α2 and permutes α1, α3, and α4.

Lemma 3.2.4. Let G be of type D4 and let L(λ) be WM3. Then λ is one of the following
weights: a$i with i ∈ {1, 3, 4} and 0 ≤ a ≤ 3, $1 +$3, $1 +$4, $3 +$4. If moreover L(λ)
is WM2, then λ ∈ {0, $1, $3, $4}.

Proof. Recall (see e.g. [Hum, Table 1, p. 69])

$1 = (2α1 + 2α2 + α3 + α4)/2, $2 = α1 + 2α2 + α3 + α4,

$3 = (α1 + 2α2 + 2α3 + α4)/2, $4 = (α1 + 2α2 + α3 + 2α4)/2.

Write λ = a$1 + b$2 + c$3 + d$4 also as (a, b, c, d). We will also write mx,y,z,t(a, b, c, d) for
the multiplicity of the weight (x, y, z, t) = x$1 + y$2 + z$3 + t$4 in L(a, b, c, d) = L(λ).

(i) First we consider the case b ≥ 1 and let µ := λ−$2 = (a, b− 1, c, d). Also set

a1 := min(a, 1), c1 := min(c, 1), d1 = min(d, 1),

so that

(3.2.4.1) a = a1a, c = c1c, d = d1d, 0 ≤ a1, c1, d1 ≤ 1.

Note that $2 = α1 + 2α2 + α3 + α4.
Assume in addition that b ≥ 2. Then by Proposition 3.2.2 we can always put 2 in J .

Moreover, we will put 1 in J if and only if a1 = 1, and similarly for 3 and 4. With this
convention and using (3.2.4.1), we now have mλ(µ) = mλ1(µ1) for

λ1 = λ− (a1(a− 1), b− 2, c1(c− 1), d1(d− 1)) = (a1, 2, c1, d1),

µ1 = µ− (a1(a− 1), b− 2, c1(c− 1), d1(d− 1)) = (a1, 1, c1, d1).

Thus mλ(µ) = ma1,2,c1,d1(a1, 1, c1, d1) ≥ 5, with the latter inequality checked using [Lie].



3.2. MODULES WITH SMALL WEIGHT MULTIPLICITIES 61

Assume now that b = 1. Then, we will put 1 in J if and only if a1 = 1, and similarly
for 3 and 4. With this choice of J and using Proposition 3.2.2 and (3.2.4.1), we now have
mλ(µ) = mλ2(µ2) for

λ2 = λ− (a1(a− 1), 0, c1(c− 1), d1(d− 1)) = (a1, 1, c1, d1),

µ2 = µ− (a1(a− 1), 0, c1(c− 1), d1(d− 1)) = (a1, 0, c1, d1).

Thus mλ(µ) = ma1,1,c1,d1(a1, 0, c1, d1) ≥ 4, with the latter inequality checked using [Lie]
again.

(ii) We have shown that b = 0. Assume in addition that a ≥ 4 and let µ := λ − 4$1 =
(a− 4, 0, c, d). Also set

c2 := min(c, 2), d2 := min(d, 2),

and choose γ, δ ∈ {0, 1} so that γ = 1 if and only c ≥ 2 and δ = 1 if and only d ≥ 2. Note
that 4$2 = 4α1 + 4α2 + 2α3 + 2α4. We will put 1 in J . In addition, we will put 3 in J if and
only if c2 = 2 (i.e. γ = 1) and similarly for 4. With this choice of J and using Proposition
3.2.2, we now have mλ(µ) = mλ3(µ3) for

λ3 = λ− (a− 4, 0, γ2(c− 2), δ2(d− 2)) = (4, 0, c2, d2),

µ1 = µ− (a− 4, 0, γ2(c− 2), δ2(d− 2)) = (0, 0, c2, d2).

Thus mλ(µ) = m4,0,c2,d2(0, 0, c2, d2). Using [Lie], we can check that m4,0,c2,d2(0, 0, c2, d2) ≥ 6
for 0 ≤ c2, d2 ≤ 2.

We have therefore shown that 0 ≤ a, c, d ≤ 3 and b = 0. A direct check using [Lie] shows
that, if λ is one of these 64 weights, but not listed in the lemma’s first statement, then L(λ)
has some weight multiplicity ≥ 6. The second statement is then checked using [Lie]. �

Lemma 3.2.5. Let G be of type A2 or A4, with graph automorphism τ , and let L(λ) be
WM2 and τ -invariant. Then either λ = 0, or G is of type A2 and λ = $1 +$2.

Proof. (i) First we consider the case of A4. Using [Hum, Table 1, p. 69] one can see
that

(3.2.5.1) $1 +$4 = α1 + α2 + α3 + α4, $2 +$3 = α1 + 2α2 + 2α3 + α4.

Since τ interchanges $1 with $4 and $2 with $3, we can write λ = a($1 +$4)+b($2 +$3);
abbreviate it as (a, b). We will also write mx,y(a, b) for the multiplicity of the weight (x, y) =
x($1 +$4) + y($2 +$3) in L(a, b) = L(λ).

First we consider the case a ≥ 1 and let µ := λ − ($1 + $4) = (a − 1, b); also set
b1 := min(b, 1). By Proposition 3.2.2 we can always put 1 and 4 in J . Moreover, we will put
both 2 and 3 in J if b1 = 1, and none of them if b1 = 0. With this choice of J and using
Proposition 3.2.2, we now have mλ(µ) = mλ1(µ1) for

λ1 = λ− (a− 1, b1(b− 1)) = (1, b1), µ1 = µ− (a− 1, b1(b− 1)) = (0, b1)

Thus mλ(µ) = m1,b1(0, b1) ≥ 4, with the latter inequality checked using [Lie].
We have shown that a = 0. Assume now that b ≥ 2, and let µ := λ−($2+$3) = (0, b−1).

By (3.2.5.1) and Proposition 3.2.2, we can choose J = {2, 3} and obtain mλ(µ) = mλ2(µ2)
for

λ2 = λ− (0, b− 2) = (0, 2), µ2 = µ− (0, b− 2) = (0, 1).

Thus mλ(µ) = m0,2(0, 1) = 7, with the latter equality checked using [Lie].
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Finally, m0,1(0, 0) = 5, and the statement follows.

(ii) ForA2, an analogous argument shows thatma($1+$2)((a−2)($1+$2) = m2($1+$2)(0) =
3 when a ≥ 2. �

Lemma 3.2.6. Let G be of type A5, with graph automorphism τ , and let L(λ) be WM2
and τ -invariant. Then λ = 0 or λ = $3 (and corresponds to the middle node of the Dynkin
diagram).

Proof. Using [Hum, Table 1, p. 69] one can see that

(3.2.6.1)

$1 +$5 = α1 + α2 + α3 + α4 + α5,

$2 +$4 = α1 + 2α2 + 2α3 + 2α4 + α5,

2$3 = α1 + 2α2 + 3α3 + 2α4 + α5.

Since τ interchanges $1 with $5 and $2 with $4, we can write λ = a($1 + $5) + b($2 +
$4) + c$3; abbreviate it as (a, b, c). We will also write mx,y,z(a, b, c) for the multiplicity of
the weight (x, y, z) = x($1 +$5) + y($2 +$4) + z$3 in L(a, b, c) = L(λ).

First we consider the case a ≥ 1 and let µ := λ − ($1 + $5) = (a − 1, b, c). Also set
b1 := min(b, 1) and c1 := min(c, 1). By Proposition 3.2.2 we can always put 1 and 5 in J .
Moreover, we will put both 2 and 4 in J if b1 = 1, and none of them if b1 = 0, and similarly
for 3. With this choice of J and using Proposition 3.2.2, we now have mλ(µ) = mλ1(µ1) for

λ1 = λ− (a− 1, b1(b− 1), c1(c− 1)) = (1, b1, c1),

µ1 = µ− (a− 1, b1(b− 1), c1(c− 1)) = (0, b1, c1).

Thus mλ(µ) = m1,b1,c1(0, b1, c1) ≥ 5, with the latter inequality checked using [Lie].
We have shown that a = 0. Assume now that b ≥ 1, and let

µ := λ− ($2 +$4 −$1 −$5) = (1, b− 1, c).

Note from (3.2.6.1) that $2 +$4−$1−$5 = α2 +α3 +α4. Hence, by Proposition 3.2.2 we
can always put 2 and 4 in J . Moreover, we will put 3 in J if and only if c1 = 1, but none of
1, 5. With this choice of J and using Proposition 3.2.2, we now have mλ(µ) = mλ2(µ2) for

λ2 = λ− (0, b− 1, c1(c− 1)) = (0, 1, c1), µ2 = µ− (0, b− 1, c1(c− 1)) = (1, 0, c1).

Thus mλ(µ) = m0,1,c1(1, 0, c1) ≥ 3, with the latter inequality checked using [Lie].
We have therefore shown that a = b = 0. Assume now that c ≥ 3, and let µ := λ−2$3 =

(0, 0, c− 2). Using Proposition 3.2.2 with J = {3}, we now have mλ(µ) = mλ3(µ3) for

λ3 = λ− (0, 0, c− 3) = (0, 0, 3), µ3 = µ− (0, 0, c− 3) = (0, 0, 1).

Thus mλ(µ) = m0,0,3(0, 0, 1) = 6. Finally, m0,0,2(0, 0, 0) = 5, and the statement follows. �

Proposition 3.2.7. Let G be of type E6, with graph automorphism τ , and let L(λ) be
WM2 and τ -invariant. Then λ = 0.

Proof. In the chosen labeling, τ interchanges $1 with $6, $3 with $5, and fixes $2

and $4. Hence we can write λ = a($1 + $6) + b($3 + $5) + c$2 + d$4; abbreviate it as
(a, b, c, d). We will also write mx,y,z,t(a, b, c, d) for the multiplicity of the weight

(x, y, z, t) = x($1 +$6) + y($3 +$5) + z$2 + d$4
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in L(a, b, c, d) = L(λ).
Note that there is a positive root α0 such that {−α0, α1, . . . , α6} is the set of vertices for

the extended Dynkin diagram E
(1)
6 ; moreover, α0 is connected only to α2 in this diagram.

Consider the subsystem subgroup

H := 〈Xαi , X−αi | 0 ≤ i ≤ 6, i 6= 2〉,
where as usual Xβ is the root subgroup corresponding to the root β. Then H is the direct
product H0×H1 of semisimple subgroups H0 of type A1 with simple root system {α0}, and
H1 with simple root system A5, and τ induces a graph automorphism of H1. We can choose
a maximal torus T = T 0×T 1, where T 0 is a maximal torus in H0 and T 1 is a maximal torus
in H1. Then, without loss of generality, we may identify the set of fundamental weights of
H1 with {$i | 1 ≤ i ≤ 6, i 6= 2}. As shown in [GLT, Lemma 4.1], the restriction of L(λ)
to H contains a simple subquotient U0 ⊗U1, where U0 is a simple H0-module, and U1 is the
simple H1-module with highest weight a($1 +$6) + b($3 +$5) + d$4, which is τ -invariant.
Now, since the T -module L(λ) is WM2, the same holds for U0⊗U1, and so for the T 1-module
U1 as well. Applying Lemma 3.2.6, we obtain that a = b = 0 and d ∈ {0, 1}.

Using [Hum, Table 1, p. 69] one can see that

(3.2.7.1)

$1 +$6 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6,

$2 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6,

$4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6.

Consider the case d = 1 but c ≥ 1, and let µ := λ− ($4 −$1 −$6) = (1, 0, c, 0). Applying
Proposition 3.2.2 with J = {2}, we have mλ(µ) = mλ1(µ1) for

λ1 = λ− (0, 0, c− 1, 0) = (0, 0, 1, 1), µ1 = µ− (0, 0, c− 1, 0) = (1, 0, 1, 0).

Thus mλ(µ) = m0,0,1,1(1, 0, 1, 0) = 6, with the latter equality checked using [Lie].
Since m0,0,0,1(1, 0, 0, 0) = 4, we have shown that d = 0. Assume now that c ≥ 2, and let

µ := λ− (2$2 −$1 −$6) = (1, 0, c− 2, 0). Again applying Proposition 3.2.2 with J = {2},
we have mλ(µ) = mλ2(µ2) for

λ2 = λ− (0, 0, c− 2, 0) = (0, 0, 2, 0), µ2 = µ− (0, 0, c− 2, 0) = (1, 0, 0, 0).

Thus mλ(µ) = m0,0,2,0(1, 0, 0, 0) = 3, with the latter equality checked using [Lie]. Also, by
[Lie] we have m0,0,1,0(0, 0, 0, 0) = 6, whence the statement follows. �

Recall we label the simple roots for type Dr with r ≥ 5 in such a way that the graph
automorphism τ interchanges αr−1 and αr, and fixes every other simple root αi, 1 ≤ i ≤ r−2.

Lemma 3.2.8. Let G be of type D5 and let L(λ) be τ -invariant. Suppose G contains a
semisimple element g, whose image in SO10(C) has an eigenvalue equal to 1, such that g is
WM2 on L(λ). Then λ = 0 or $1.

Proof. (i) Write λ = a$1 + b$2 + c$3 + d$4 + e$5. Since λ is τ -invariant, we have
that d = e. It is well known, see e.g. [Lu, Appendix A.2] that Z(G) = 〈z〉 ∼= C4, with
$4(z) = ζ4 = $5(z)−1 and $i(z

2) = 1 when 1 ≤ i ≤ 3; in particular, λ(z2) = 1. Next, any
simple root takes value ±1 on z, (see e.g. [Hum, Table 1, p. 59]), and any weight of L(λ) is
λ−

∑5
i=1 biαi with bi ∈ Z≥0, (see e.g. [Lu, Theorem 2.1]). Hence, any weight of L(λ) takes
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value 1 on z2, and so, without loss, we may replace G = Spin10(C) by Spin10(C)/〈z2〉 =
SO10(C) = SO(V ) with V = C10.

(ii) Let (e1, e2, . . . , e5, f1, f2, . . . , f5) be a hyperbolic basis for theG-invariant bilinear form
on V . By assumption, we may assume that

(3.2.8.1) g = diag(x1, x2, x3, x4, 1, x
−1
1 , x−1

2 , x−1
3 , x−1

4 , 1)

with xi ∈ C× in this basis. In particular, g belongs to a Levi subgroup L2
∼= SO6(C)×GL2(C)

of the parabolic subgroup P 2 := StabG(〈e4, e5〉C) of G. We also choose the maximal torus

T =
{

diag(y1, y2, y3, y4, y5, y
−1
1 , y−1

2 , y−1
3 , y−1

4 , y−1
5 ) | yi ∈ C×

}
.

By Smith’s theorem [Sm], L(λ)|L2 contains a simple submodule U1⊗U0, where the SO6(C)-
module U1 has highest weight d$′1+c$′2+d$′3, with {$′1, $′2, $′3} being the set of fundamental
weights of SL4(C) (a double cover of SO6(C)). In particular, U1, viewed as an SL4(C)-
module, is invariant under the graph automorphism of SL4(C). Writing g = g2h2 with
g2 := diag(x4, 1, x

−1
4 , 1) ∈ GL2(C) and h2 := diag(x1, x2, x3, x

−1
1 , x−1

2 , x−1
3 ) ∈ SO6(C), and

using the assumption that g is WM2 on L(λ), we see that h2 is WM2 on U1. This in turn
implies that U1 is WM2, whence

(3.2.8.2) d = e = 0 and 0 ≤ c ≤ 3

by Lemma 3.2.3.

(iii) Note that g also belong to a Levi subgroup L5
∼= GL5(C) of the parabolic subgroup

P 5 := StabG(W ) of G, where W := 〈e1, e2, . . . , e5〉C. Next we claim that every composition
factor X of the restriction of L(λ) to any standard subgroup H ∼= SL4(C) of L5 is WM2.
(Here, by an SL4(C) standard subgroup of GL5(C) = GL(W ) we mean any subgroup of
GL(W ) that is isomorphic to SL4(C), fixes w and stabilizes W ′ for some decomposition
W = 〈w〉 ⊕W ′ with 0 6= w ∈ W .) Indeed, we may assume that the element g in (3.2.8.1) is
represented by diag(x1, x2, x3, x4, 1) in GL(W ), and take the standard subgroup H to fix e5

and stabilize 〈e1, e2, e3, e4〉C. Consider any composition factor Y of the restriction of L(λ) to
L5 and any composition factor X of the restriction of Y to H . Also, fix z ∈ C× such that
z20 = x1x2x3x4, and inside L5 we write g = diag(x1, x2, x3, x4, 1) = h5h

′
5g5, where

h5 := z4·Id ∈ Z(L5), h′5 := diag(z, z, z, z, z−4), g5 := diag(x1z
−5, x2z

−5, x3z
−5, x4z

−5, 1) ∈H .

Then h5 acts as a scalar on Y . Furthermore, h′5 centralizes H , with

H ∗ 〈h′5〉 = StabSL(W )(〈e5〉C, 〈e1, e2, e3, e4〉C) ∼= GL4(C).

So without loss we may assume X is h′5-invariant and so h′5 acts as a scalar on X. As
g = h5h

′
5g5 is WM2 on L(λ) and h5h

′
5 is scalar on X, g5 is WM2 on X, whence X is WM2 as

claimed.

(iv) By Smith’s theorem [Sm], the restriction of L(λ) to [L5,L5] ∼= SL5(C) contains a
direct summand which is simple of highest weight aω1 + bω2 + cω3 +dω4, with {ω1, ω2, ω3, ω4}
being the set of fundamental weights of SL5(C). Similarly, the restriction of the latter to the
standard subgroup H that fixes e5 and stabilizes 〈e1, e2, e3, e4〉C contains a direct summand
X which is simple with highest weight aω′1 + bω′2 + cω′3, with {ω′1, ω′2, ω′3} being the set of
fundamental weights of SL4(C). Applying (iii) to X and using Lemma 3.2.3, we see that one
of the following occurs:
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• a = b = 0, 1 ≤ c ≤ 3;
• a = 0, b = c = 1;
• b = c = 0, 0 ≤ a ≤ 3;
• a = b = 1, c = 0; or
• a = c = 0, 1 ≤ b ≤ 3.
Recall d = e = 0 by (3.2.8.2). Now using [Lie] we can check that in the 12 listed above

cases, there is some µ such that mλ(µ) ≥ 4, unless λ = 0 or $1. �

Proposition 3.2.9. Let G be of type Dr with r ≥ 5 and let L(λ) be τ -invariant. Suppose
G contains a semisimple element g, whose image in SO2r(C) has an eigenvalue equal to 1,
such that g is WM2 on L(λ). Then λ = 0 or $1.

Proof. (i) We proceed by induction, with induction base r = 5 proved in Lemma 3.2.8.
For the induction step r ≥ 6, since λ =

∑r
i=1 ai$i is τ -invariant, ar−1 = ar. If 2 - r, then the

same arguments as in part (i) of the proof of Lemma 3.2.8 shows that Z(G) = 〈z〉 ∼= C4 with
z2 acting trivially on L(λ). Suppose 2|r. Then Z = 〈z1, z2〉 ∼= C2

2 with G/〈z1z2〉 ∼= SO2r(C).
Now we can check using [Lu, Appendix A.2] that each of $r−1$r and $i, 1 ≤ i ≤ r − 2,
takes value 1 at z1z2. Arguing as in the proof of Lemma 3.2.8, we again see that z1z2 acts
trivially on L(λ).

Thus, regardless of the parity of r, we may replaceG by SO2r(C). Let (e1, e2, . . . , er, f1, f2, . . . , fr)
be a hyperbolic basis for the G-invariant bilinear form on C2r. By assumption, we may as-
sume that

(3.2.9.1) g = diag(x1, x2, . . . , xr−1, 1, x
−1
1 , x−1

2 , . . . , x−1
r−1, 1)

with xi ∈ C× in this basis. In particular, g belongs to a Levi subgroup L ∼= SO2r−2(C) ×
GL1(C) of the parabolic subgroup P := StabG(〈e1〉C) of G. We also choose the maximal
torus

T =
{

diag(y1, y2, . . . , yr, y
−1
1 , y−1

2 , . . . , y−1
r ) | yi ∈ C×

}
.

By Smith’s theorem [Sm], L(λ)|L contains a simple submodule U , where the SO2r−2(C)-
module U has highest weight

∑r
i=2 ai$

′
i−1, with {$′1, $′2, . . . , $′r−1} being the set of funda-

mental weights of Spin2r−2(C). In particular, U is invariant under the graph automorphism
of SO2r−2(C). We can also write the element g in (3.2.9.1) as g = hg′, with

h := diag(x1, 1, . . . , 1, x
−1
1 , 1, . . . , 1) ∈ GL1(C) ≤ Z(L)

and
g′ := diag(1, x2, . . . , xr−1, 1, 1, x

−1
2 , . . . , x−1

r−1, 1) ∈ SO2r−2(C).

In particular, as an element of SO2r−2(C), g′ has eigenvalue 1 on C2r−2. Furthermore, h
acts as a scalar on U . Hence, since g is WM2 on L(λ), g′ is WM2 on U . By the induction
hypothesis,

a3 = a4 = . . . = ar = 0, 0 ≤ a2 ≤ 1.

(ii) Consider the case a2 = 1. First we note, see [OV, Table 5] that L($2) = ∧2(V ) for
V := L($1) = C2r, and it is easy to see that m$2(0) = r ≥ 6.

So we may assume that a1 ≥ 1, and let µ := λ−$2 = a1$1. Note that

$2 = α1 + 2
r−2∑
i=2

αi + αr−1 + αr,
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see [Hum, Table 1, p. 69]. Hence, applying Proposition 3.2.2 with J = {1}, we obtain that

mλ(µ) = m$1+$2($1).

Again by [OV, Table 5],

V ⊗ ∧2(V ) = ∧3(V )⊕ V ⊕ L($1 +$2).

Analyzing the action of T on these modules, we see that $1 has multiplicity 1 in V , r− 1 in
∧3(V ), and 3r − 2 in V ⊗ ∧2(V ). Thus mλ(µ) = m$1+$2($1) = 2(r − 1) ≥ 10.

(iii) Now we consider the case a2 = 0 but a1 ≥ 2, and let µ := λ − 2$1 = (a1 − 2)$1.
Note that

2$2 = 2
r−2∑
i=1

αi + αr−1 + αr,

see [Hum, Table 1, p. 69]. Applying Proposition 3.2.2 with J = {1}, we obtain that
mλ(µ) = m2$1(0). Again by [OV, Table 5],

Sym2(V ) = C⊕ L(2$1).

Analyzing the action of T on these modules, we see that 0 has multiplicity 1 in C and r in
Sym2(V ). Thus mλ(µ) = m2$1(0) = r − 1 ≥ 5. �

Proposition 3.2.10. Let G = SLr+1 with r ≥ 4 and let L(λ) be τ -invariant. Write
r + 1 = 2m+ j with j ∈ {0, 1}. Suppose G contains a semisimple element

g = diag
(
t1, t2, . . . , tm, 1︸︷︷︸

j times

, t−1
m , t−1

m−1, . . . , t
−1
1

)
with ti ∈ C× such that g is WM2 on L(λ). Then λ = 0, or r = 5 and λ = $3.

Proof. We proceed by induction on r ≥ 4. The induction base r = 4, 5 is already
established in Lemma 3.2.5 and Lemma 3.2.6.

For the induction step r ≥ 6, assume λ 6= 0. Let W = 〈e1, e2, . . . , er+1〉C, so that
G = SL(W ). We can extend L(λ) to a GL(W )-module V , and write
(3.2.10.1)

g = diag(t1, h, t
−1
1 ), with h := diag

(
t2, t3, . . . , tm, 1︸︷︷︸

j times

, t−1
m , t−1

m−1, . . . , t
−1
2 , 1

)
∈ SLr−1.

Note that g belongs to the Levi subgroup L = GL1×GLr−1×GL1 of the parabolic subgroup

P = StabGL(W )

(
〈e1〉C, 〈e1, . . . , er〉C

)
,

and [L,L] = {1} × SLr−1 × {1} in L. Let T denote the diagonal torus of G. By Smith’s
theorem, V |L contains a simple submodule U , which, as [L,L]-module, has highest weight ν,
which is the restriction of λ to T ∩ [L,L] and hence invariant under the graph automorphism
τ ′ of [L,L].

Since g is WM2 on V , it is WM2 on U . By (3.2.10.1) we have g = zh, with h ∈ [L,L]
and z = diag(t1, Ir−1, t

−1
1 ) ∈ Z(L). Hence, h is also WM2 on U . By the induction hypothesis

applied to r − 2, either ν = 0, and so λ = a($1 + $r) with a ≥ 1, or r = 7, ν = $4, and so
λ = a($1 +$7) +$4 with a ≥ 0.
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Suppose a ≥ 1 in either case, and consider µ := λ− ($1 +$r). By Proposition 3.2.2, we
can choose J = {1, r} and obtain mλ(ν) = mλ1(µ1) for

λ1 = λ− (a− 1)($1 +$r) = $1 +$r, µ1 = µ− (a− 1)($1 +$r) = 0

in the first case, and

λ1 = λ− (a− 1)($1 +$7) = $1 +$7 +$4, µ1 = µ− (a− 1)($1 +$7) = $4

Direct computation shows that mλ1(µ1) = r ≥ 5 in the first case. In the second case,
mλ1(µ1) = 16 by [Lie]. In either case, g cannot be WM2 on V .

Finally, we consider the case (r, λ) = (7, $4). Then L(λ) = ∧4(W ), and direct computa-
tion shows that g has eigenvalue 1 with multiplicity ≥ 6 on L(λ), again a contradiction. �

3.3. Regular spectrum and simple spectrum elements

Let V be a finite dimensional C-vector space. Recall from Definition 1.1.5 that an element
g ∈ GL(V ) is said to have regular spectrum if each eigenvalue of g occurs with a single Jordan
block. We have the following elementary lemma of linear algebra, whose proof is left to the
reader.

Lemma 3.3.1. For a given element g ∈ GL(V ), the following conditions are equivalent.

(i) g has regular spectrum.
(ii) The minimal polynomial of g is equal to the characteristic polynomial of g.
(iii) The powers g0 := IdV , g, g

2, . . . , gdim(V )−1 are linearly independent in End(V ).

Recall also from Definition 1.1.5 that an element g ∈ GL(V ) is said to have simple
spectrum if it has dim(V ) distinct eigenvalues. Thus an element with simple spectrum has
regular spectrum, but not conversely. For example, a single Jordan block of size dim(V ) has
regular spectrum, but not simple spectrum so long as dim(V ) ≥ 2.

Proposition 3.3.2. Let V be a finite dimensional C-vector space, and G ≤ GL(V ) a
Zariski closed subgroup which is reductive. Let the connected components of G be denoted
G(i), with the identity component denoted G◦. Suppose a given connected component G(i)

contains an element g which has regular spectrum. Then this component G(i) contains an
element with simple spectrum, and the set of simple spectrum elements in G(i) is Zariski
dense in G(i) .

Proof. By Lemma 3.3.1, the powers g0 := Id, g, g2, . . . , gdim(V )−1 are linearly indepen-
dent in End(V ), or equivalently the vector

g0 ∧ g ∧ g2 ∧ . . . ∧ gdim(V )−1 ∈ ∧dim(V )(End(V ))

is nonzero. Thus the wedge map

(3.3.2.1) A ∈ G(i) 7→ A0 ∧ A ∧ A2 ∧ . . . ∧ Adim(V )−1 ∈ ∧dim(V )(End(V ))

is a morphism from G(i) to ∧dim(V )(End(V )) which is not identically zero, and hence is nonzero
on a dense open set of G(i).

Now choose a maximal compact subgroup K of the complex Lie group G(C). One knows,
cf. [Mos, p. 44] or [Ho, Theorem 3.1], that topologically G(C) is the product of K with a
Euclidean space, and (hence) that K meets each G(i), and that the intersections K ∩G(i)(C)
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are precisely the connected components of K. Because G is reductive, K◦ is a maximal
compact subgroup of G◦(C), and hence K◦ is Zariski dense in G◦ (Weyl’s unitarian trick).
Now pick elements ki ∈ K ∩ G(i)(C). Then the connected components of K are the cosets
K(i) = kiK

◦, the connected components of G are the G(i) = kiG
◦, and thus each K(i) = kiK

◦

is Zariski dense in G(i) = kiG
◦. Because the wedge map (3.3.2.1) above is nonzero on the

given G(i), it must be nonzero on K(i) (by Zariski density). Thus K(i) contains elements with
regular spectrum. But every element in K(i), being an element of the compact group K,
is diagonalizable. For diagonalizable elements, the notions of regular spectrum and simple
spectrum coincide. Thus K(i) contains elements with simple spectrum. As K(i) ⊂ G(i), G(i)

contains elements with simple spectrum. In G(i), the set of elements with simple spectrum is
open (this being an open condition on the characteristic polynomial), and being nonempty
will necessarily be Zariski dense in G(i). �

Theorem 3.3.3. Let V = CN and let G ≤ GL(V ) be a reductive subgroup such that G◦ is
a simple algebraic group of rank r ≥ 4, V |G◦ is irreducible, and some element g ∈ GrZ(G)G◦

has a regular spectrum on V . Then one of the following holds.

(a) G◦ ∼= SO2r is of type Dr, N = 2r, and V |G◦ ∼= L($1).
(b) G◦ is of type A5, N = 20, and V |G◦ ∼= L($3).

Proof. (i) Since V |G◦ is irreducible, CG(G◦) = Z(G). It follows that, modulo Inn(G◦),
the conjugation by g induces a graph automorphism τ of G◦ of order e > 1; in particular,
G◦ is of type Ar, Dr, or E6. By Proposition 3.3.2, we may replace g by another element
in the same gG◦-coset and assume that g has simple spectrum on V ; in particular, g is
semisimple. If V |G◦ = L(λ) has highest weight λ, then λ is τ -invariant. We also note that
h := ge ∈ Z(G)G◦ (because ge induces an inner automorphism of G◦), h is semisimple, and
that the multiplicity of any eigenvalue of h on V is at most e, as g has simple spectrum on
V . Writing h = zh1 with z ∈ Z(G) and h1 ∈ G◦, we also have that the multiplicity of any
eigenvalue of h1 on V is at most e. Furthermore, e ≤ 2, or e = 3 and G◦ is of type D4.

(ii) Now, if G◦ is of type E6, then e = 2 and so L(λ) is WM2. Hence λ = 0 by Proposition
3.2.7, a contradiction.

Next, suppose that G◦ is of type D4. If e = 3, then L(λ) is WM3, and λ can be identified
by Lemma 3.2.4; however, none of these weights is τ -invariant. So e = 2, L(λ) is WM2, and
so (a) holds by Lemma 3.2.4 (with the proviso that V |G◦ ∼= L($1) up to a twist by Aut(G◦)).

Now assume that G◦ is of type Dr with r ≥ 5, so that e = 2, and Aut(G◦) ∼= O2r/C2.
Hence the image of g in Aut(G◦) is the image of some g1 ∈ O2r r SO2r. Such an element g1

must have eigenvalue −1 on C2r. Now the image of h1 in Aut(G◦) is the image of g2
1, and

the latter belongs to SO2r and has eigenvalue 1 on C2r. Also, h1 is WM2 on V . Hence (a)
holds by Proposition 3.2.9.

(iii) Finally, we consider the case G◦ is of type Ar, so without loss we may assume that
G◦ = SLr+1 and τ(X) = tX−1. Then the image of g in Aut(G◦) is the map X 7→ τ(AXA−1)
for some A ∈ G◦, and the image of g2 and h1 is the map X 7→ (τ(A)A)X(τ(A)A)−1. Hence,
we may assume that the semisimple element h1 is τ(A)A, the cosquare of A. The possible
Jordan canonical form of cosquares are known, see e.g. [Bal, Theorem 3.6]. In particular,
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since τ(A)A is semisimple, it is similar to

diag
(
a1, a

−1
1 , . . . , am, a

−1
m , 1, . . . , 1︸ ︷︷ ︸

n times

)
for some ai, bj ∈ C×. As h1 is WM2 on L(λ), we can apply Proposition 3.2.10 to arrive at
(b). �

Now we are ready to classify irreducible representations of (possibly disconnected) simple
algebraic groups that admit elements with regular spectrum. See also [Za2] (and references
therein) for related results.

Theorem 3.3.4. Let G be a (not necessarily connected) reductive group over C with G◦

being simple. Let V be a finite-dimensional faithful representation of G such that V |G◦ is
irreducible. Then G admits an element g with regular spectrum on V if and only if one of
the following statements holds.

(A) g ∈ Z(G)G◦, and V |G◦ = L(λ) is WMF and classified in [HS, Theorem 4.6.3], see also
[Seitz, §6] and [ZS]. Specifically, one of the following holds.
(a) G◦ is of type Ar with r ≥ 1, and L(λ) = L(a$1) or L(a$r) with a ∈ Z≥0, or

L(λ) = L($i) with 2 ≤ i ≤ r − 1.
(b) G◦ is of type Br with r ≥ 1, and L(λ) = L($1), the natural representation of degree

2r + 1, or L($r), the spin representation of degree 2r.
(c) G◦ is of type Cr with r ≥ 3, and L(λ) = L($1), the natural representation of degree

2r, or L(λ) = L($3) of degree 14 when r = 3.
(d) G◦ is of type Dr with r ≥ 4, and L(λ) = L($1), the natural representation of degree

2r, or L(λ) is one of the two half-spin representations L($r−1) and L($r) of degree
2r−1.

(e) (G◦, V |G◦ , dim(V )) = (G2, L($1), 7), (E6, L($1 or $6), 27), (E7, L($7), 56).
(B) g /∈ Z(G)G◦, and one of the following holds.

(a) G◦ is of type Dr with r ≥ 4 and V |G◦ = L($1).
(b) (G◦, V |G◦ , dim(V )) = (SL6, L($3), 20), (SL4, L($2), 6), (SL3, L($1 +$2), 8).

Proof. (i) For the “only if” direction, by Proposition 3.3.2, we can replace g by another
element from the same G◦-coset and assume that g has simple spectrum on V . Now, if
g = zh ∈ Z(G)G◦ with z ∈ Z(G) and h ∈ G◦, then h also has simple spectrum on V , and it
is semisimple. Hence V |G◦ is WMF, and (A) follows from Howe’s result [HS, Theorem 4.6.3].

Consider the case g /∈ Z(G)G◦. If G◦ has rank r ≥ 4, then (B) follows from Theorem
3.3.3. As g induces a non-inner automorphism of G◦, it remains to consider the case G◦ is
of type A2 or A3, and V |G◦ = L(λ) is invariant under the graph automorphism τ . Arguing
as in the proof of Theorem 3.3.3, we see that L(λ) is WM2, and λ 6= 0 by faithfulness. Now
the statement follows from Lemma 3.2.5 for type A2. Suppose G◦ is of type A3. By Lemma
3.2.3, λ = a$2 with 1 ≤ a ≤ 3. Arguing as in the proof of Theorem 3.3.3, we may assume
that g2 is a scalar multiple of h1 := diag(t1, t2, t

−1
1 , t−1

2 ). Viewing G◦ = SL(W ), we have

L($2) ∼= ∧2(W ), L(2$2) ∼= Sym2(∧2(W ))/L(0), L(3$2) ∼= Sym3(∧2(W ))/ ∧2 (W ).

Using these identifications, one easily checks that the multiplicity of 1 as an eigenvalue for
h1 on L(2$2) is ≥ 4, and on L(3$2) is ≥ 6. As g is WM2 on V , we conclude that λ = $2.
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(ii) For the “if” direction, in the case of (A), L(λ) is WMF and so some element in a
maximal torus of G◦ has simple spectrum on L(λ).

Suppose we are in (B). In the case of (a), twisting L(λ) by a suitable automorphism of G◦

when G◦ is of type D4, we may assume that L(λ) = L($1), and G/CG(G◦) ∼= PO2r. Now,
we may take g to be a multiple of diag(−1, 1, h), where h ∈ SO2r−2 has simple spectrum and
no eigenvalue ±1 on C2r−2, and such g has simple spectrum on V .

The case of SL4 in (B)(b) then also occurs, because A3
∼= D3. Next, as shown in

[Ka-ESDE, 10.7.1 (4)], a hypergeometric sheaf H of type (8, 2) in (any) characteristic p > 7
has Ggeom = PSL3 · 2. By Theorem 1.2.2, the image of I(0) in Ggeom cannot be contained in
G◦geom, hence a generator g0 of it is in Ggeom r G◦geom and has regular spectrum on H, and
thus the case of SL3 in (B)(b) occurs.

Finally, we show that the case of G◦ = SL6 in (B)(b) also occurs. Consider J :=(
0 I3

−I3 0

)
and the outer automorphism τ : X → J−1tX−1J ofG◦. ThenH := CG◦(τ) ∼= Sp6.

As L($3) is τ -invariant, L($3) extends to a module V overG := G◦o〈τ〉. Next, V |H ∼= A⊕B,
a direct sum of irreducible H-modules A = L($′1) ∼= L($1)|H of dimension 6 and B = L($′3)
of dimension 14. As τ centralizes H but not G◦, and has order 2, it must act on V as

(3.3.4.1) ε · diag(IdA,−IdB)

for some ε = ±1. Now consider h = diag(a, b, c, a−1, b−1, c−1) ∈ H with a, b, c ∈ C×. Then h
acts on V as ∧3(h), which is conjugate to

diag
(
(abc)[±1], a[±1], a[±1], b[±1], b[±1], c[±1], c[±1], (abc−1)[±1], (ab−1c)[±1], (a−1bc)[±1]

)
,

(here the notation d[±1] means that the matrix has two consecutive entries d and d−1 on the
diagonal). As A ∼= L($1)|H , h acts on A as

(3.3.4.2) diag(a, b, c, a−1, b−1, c−1).

Hence, h acts on B as

(3.3.4.3) diag
(
(abc)[±1], a[±1], b[±1], c[±1], (abc−1)[±1], (ab−1c)[±1], (a−1bc)[±1]

)
.

Choosing a, b, c suitably (say a = ζ3, b = ζ5, and c = ζ7), we see from (3.3.4.1)–(3.3.4.3) that
g := hτ ∈ GrG◦ has simple spectrum on V . �



CHAPTER 4

Hypergeometric sheaves with wild part of dimension one

In this chapter, we consider hypergeometric sheaves H in characteristic p of type (D,D−
1). Recall that a complex reflection is an element γ ∈ GLD that is conjugate to diag(ζ, 1, . . . , 1)
for some 1 6= ζ ∈ C×; γ is a (true) reflection if ζ = −1.

4.1. General situation

Theorem 4.1.1. Let H be a hypergeometric sheaf in odd characteristic p of type (D,D−
1). If Ggeom is infinite, then G◦geom = SLD, Ggeom = µN ∗ SLD for some N ∈ Z≥1, and H
satisfies (S+). If D > 4 when p = 3, D > 2 when p = 5, or D ≥ 2 when p ≥ 7, then Ggeom

is infinite.

Proof. In odd characteristic p, any hypergeometric sheaf of type (D,D − 1) satis-
fies (S−). To see that it is primitive, notice that it cannot be Kummer induced because
gcd(D,D − 1) = 1. It cannot be Belyi induced because its wild part has dimension w = 1,
which is not divisible by p− 1, cf. [KT5, proof of Theorem 3.13]. By [KT5, Lemma 2.4], it
is tensor indecomposable.

Because w = 1, P (∞) acts through complex reflections of order p. By Mitchell’s theorem
[Mit, Theorem 1], no finite primitive group containing complex reflections of order ≥ 4
exists in any dimension > 2, and none containing complex reflections of order 3 exists in
any dimension > 4. Moreover, no finite primitive linear groups of degree 2 can contain
noncentral elements of prime order p ≥ 7. Therefore Ggeom is infinite. Because the given
representation VH of Ggeom is both primitive and tensor-indecomposable, it results from
[Ka-MG, Prop. 1] that the action of Ggeom is Lie-irreducible, i.e. G◦geom acts irreducibly.
By Deligne [De2, 3.4.1(iii) and 1.3.9], Ggeom is a semisimple algebraic group, and hence
Lie(Ggeom) is a semisimple Lie subalgebra of End(VH) which acts irreducibly on VH. But
Lie(Ggeom) is normalized by the image of P (∞), so in particular by a complex reflection of
order p. As p ≥ 3, one knows, cf. [Ka-ESDE, 1.5] or [BH, Proposition 6.4] that Lie(Ggeom)
must be Lie(SL(VH)), and hence that G◦geom = SL(VH) = SLD. Now GLD = GL1 ∗ SLD,
and Z(Ggeom) is finite (see Lemma 1.1.3(iii)). Hence Ggeom is the central product µN ∗ SLD
for some integer N ≥ 1. Also, note that SLD has no finite quotient and has no nontrivial
projective representation of degree < D, see [KlL, Proposition 5.4.11]. It follows that H is
not tensor induced, and thus satisfies (S+). �

Remark 4.1.2. As shown in [KRLT4, Theorem 30.7], there are hypergeometric sheaves
of type (D,D−1), of rank D = 2, 4 in characteristic p = 3 and of rank D = 2 in characteristic
p = 5, with Ggeom a finite, primitive complex reflection group. This shows that the bounds
D > 4 for p = 3 and D > 2 for p = 5 in Theorem 4.1.1 are best possible.

71
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Corollary 4.1.3. Let p be a prime and A ∈ Z≥3 be such that p - A(A − 1). For χ a
character of E× for some finite extension E/Fp, consider the local system

F(A,A− 1, χ)

of rank A on A1/Fp whose trace function for K/E a finite extension and t ∈ K is

t 7→ −
∑
x∈K×

ψK(xA − txA−1)χK(x).

Then we have the following results.

(i) Suppose that A ≥ 3 when p ≥ 7, A ≥ 4 when p = 5, and A ≥ 6 when p = 3. Then
the Ggeom of F(A,A− 1,1) has G◦geom = SLA−1.

(ii) Suppose that A ≥ 2 when p ≥ 7, A ≥ 3 when p = 5, and A ≥ 5 when p = 3. Then
for any nontrivial χ, the Ggeom of F(A,A− 1, χ) has G◦geom = SLA.

Proof. At the expense of replacing ψ by the additive character x 7→ ψ(−Ax), these
local systems are geometrically isomorphic to multiplicative translates of the [A]? Kummer
pullbacks of hypergeometric sheaves of types (A − 1, A − 2) and (A,A − 1) respectively, cf.
[KT6, Corollary 3.10, (i) and (ii)]. Because p - A(A − 1), p must be odd. Finite pullback
does not change the identity component G◦geom of Ggeom, so the result follows from Theorem
4.1.1. �

Remark 4.1.4. Unlike the case p > 2, hypergeometric sheaves of type (D,D − 1) in
characteristic p = 2 can be imprimitive. No such sheaf can be Kummer induced (simply
because gcd(D,D−1) = 1), but it can be Belyi induced. By [KRLT4, Proposition 3.7], this
can happen precisely when there are characters Λ and σ such that one of the following holds
for H = Hyp(χ1, . . . , χD; ρ1, . . . , ρD−1):

(a) D = 2, {χ1, χ2} = {Λ, σ}, ρ1 = (Λσ)1/2.
(b) 2 - D ≥ 3, {χ1, . . . , χD} is the set of all Dth roots of Λσ, {ρ1, . . . , ρD−2} is the set of all

(D − 2)th roots of Λ, and ρD−1 = σ.

Such a Belyi induced sheaf is induced, by the map x 7→ 1/xA(x − 1)B with (A,B) either
(1, 1) or (2, D−2), from the rank one sheaf LΛ(x)⊗Lσ(x−1) which has finite Ggeom, and hence
any Belyi induced sheaf has finite Ggeom. Thus, when p = 2, a hypergeometric sheaf of type
(D,D− 1) with D > 1 is either primitive, or has finite Ggeom. [In the trivial case D = 1, the
sheaf is Lχ ⊗ Lψ, which is both primitive and has finite Ggeom.]

Theorem 4.1.5. Let H be a hypergeometric sheaf in characteristic p = 2 of type (D,D−
1). Suppose Ggeom is infinite. Then G◦geom is either SLD or SOD. If furthermore D 6= 4, then
H satisfies (S+).

Proof. Since Ggeom is finite when D = 1, so we will assume D > 1. Now H is primitive
by Remark 4.1.4, and tensor indecomposable by [KT5, Lemma 2.4]. Thus Ggeom is infinite,
primitive, and tensor indecomposable, so it results from [Ka-MG, Prop. 1] that the action
of Ggeom is Lie-irreducible, i.e. G◦geom acts irreducibly. Just as in the proof of Proposition
4.1.1 above, we see that Lie(Ggeom) is a semisimple Lie subalgebra of End(VH) which acts
irreducibly on VH. But Lie(Ggeom) is normalized by the image of P (∞), so in particular by
a reflection. In this case, one knows [Ka-ESDE, 1.5] that Lie(Ggeom) is either Lie(SLD) or
Lie(SOD), and hence that G◦geom is either SLD or SOD.
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When D 6= 4 and H is primitive, we need to show that H is not tensor induced, which
is obvious unless D is a proper power. We may therefore assume that D ≥ 8. The same
arguments as at the end of the proof of Theorem 4.1.1 yield the result when G◦ = SLD or
SOD. (Note SpinD has no nontrivial projective representation of dimension < D, see [KlL,
Proposition 5.4.11].) �

4.2. Further analysis

Here is a way to distinguish the two cases of SL and SO in Theorem 4.1.5.

Theorem 4.2.1. Let H be a hypergeometric sheaf in characteristic p = 2 of type (D,D−
1). Suppose D > 2 and Ggeom is infinite. If G◦geom = SOD, then there exists a tame character
χ such that H ⊗ Lχ is orthogonally self-dual, and has Ggeom,H⊗Lχ = OD. If there exists no
tame character χ that makes H⊗Lχ self-dual, then G◦geom = SLD.

Proof. Suppose that G◦geom = SOD. As Ggeom contains a reflection, we have OD ≤ Ggeom.
The normalizer of SOD in GLD is the central product GL1 ∗ OD. Thus Ggeom is the central
product µN ∗ OD for some integer N ≥ 1; each element in Ggeom can be written as λγ with
λ ∈ µN and γ ∈ OD. If N is odd, this writing is unique, but if N is even then there is
precisely one other writing of this element, namely (−λ)(−γ). In either case, λ2 is well
defined as a character Λ of Ggeom. Viewed as a character of π1(Gm/F2), Λ is tame at 0 and
has Swan∞(Λ) ≤ 1.

Suppose first that Swan∞(Λ) = 0. Then Λ is a tame character, so has a unique tame
square root, which we write χ. Then for H⊗Lχ, this “formation of λ2” character is trivial,
which is to say that Ggeom,H⊗Lχ ≤ OD. Tensoring with a tame character does not change
the identity component of Ggeom (because it disappears after a Kummer pullback). Thus we
have

SOD ≤ Ggeom,H⊗Lχ ≤ OD.

But the geometric determinant of H ⊗ Lχ is always of order divisible by p (here 2) in the
w = 1 case, cf. [Ka-ESDE, 8.12.2 (2)], which rules out the SOD possibility.

We now argue by contradiction, to show that the case when Swan∞(Λ) = 1 cannot occur.
Suppose that Λ has Swan∞(Λ) = 1. Then we may again choose a square root L of Λ,

but now L has Swan∞(L) = 2, and Swan∞(L2) = Swan∞(Λ) = 1. Just as in the previous
paragraph, L⊗H has its Ggeom,L⊗H < OD. Now look at the I(∞)-representation of H; it is

Wild1 ⊕ ρ1 ⊕ . . .⊕ ρD−1,

for some wild part of rank one and some list of length D − 1 of tame characters ρi. After
tensoring with L, the I(∞)-representation of L⊗H is

LWild1 ⊕ Lρ1 ⊕ . . .⊕ LρD−1.

This I(∞)-representation is now self-dual, so the set of characters which occur must be stable
by complex conjugation (i.e. by inversion). So we may pair up pairs of inverses, with at most
two singletons left over.

If there are two singletons left over, at least one of them must be one of the Lρi, say Lρ1.
Then Lρ1 = (Lρ1)−1, i.e., L2 = (ρ1)−2. But (ρ1)−2 is tame, hence L2 is tame, but L2 = Λ
has Swan∞ = 1, contradiction.
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If there is one singleton left over, then either that singleton is an Lρ1 and we get a
contradiction as in the previous paragraph, or the singleton is LWild1, and, as D ≥ 3, there
is at least one pair, say Lρ1 and Lρ2, of inverses. In this case we have Lρ1 = (Lρ2)−1, hence
L2 is tame, being (ρ1ρ2)−1, again a contradiction.

If there are no singletons, there is at least one pair, say Lρ1 and Lρ2, of inverses, and we
get the same contradiction. �

Remark 4.2.2. In contrast to the situation in Theorem 4.1.1, where we only need D > 4,
in the situation of Theorem 4.1.5 the assumption that Ggeom is infinite is essential, because
we can have finite Ggeom for all even D ≥ 4. For any odd integer n ≥ 5, the hypergeometric
sheaf of type (n− 1, n− 2) in characteristic p = 2,

H := Hyp(Charntriv(n);Char(n− 2)),

whose “upstairs” characters are all the nontrivial characters of order dividing n, and whose
“downstairs” characters are all the characters of order dividing n − 2, has Ggeom the full
symmetric group Sn in its deleted permutation representation, cf. [KT5, 9.3(i) and its
proof].

Theorem 4.2.3. Let H be a (geometrically irreducible) hypergeometric sheaf in charac-
teristic p = 2 of type (D,D − 1) which is primitive. Suppose that D ≥ 5 and that Ggeom is
finite. Then D is even, and one of the following statements holds.

(a) There exists a tame character χ such that H⊗Lχ is geometrically isomorphic to the sheaf

H := Hyp(Charntriv(D + 1);Char(D − 1))

of Remark 4.2.2, whose Ggeom is the symmetric group SD+1 in its deleted permutation
representation.

(b) G = Z(G)G0, G0 is a complex reflection group, and either D = 6 and G0 is W (E6) =
SU4(2) · 2 or the Mitchell group 61 · PSU4(3) · 22, or D = 8 and G0 = W (E8).

Proof. (i) Since p = 2 and w = 1, the image of P (∞) in G = Ggeom is generated by a
single element h, which acts as −1 on Wild and 1 on Tame, i.e. a (true) reflection. Let G0

denote the normal closure of 〈h〉 in G. By Theorem 1.2.3, G/G0 is cyclic of odd order.
By assumption, G is a finite primitive subgroup of GLD(C) that contains the reflection g.

We will need the following refinement of Mitchell’s theorem [Mit] (which is [Ka-LAMM,
1.4.4] in the case D > 8):

G = Z(G)G0, and either G0 is SD+1 in its deleted permutation representation, or
(D,G0) = (5, 2× SU4(2)), (6,W (E6)), (6, 61 · PSU4(3) · 22), (7,W (E7)), or (8,W (E8)).

Indeed, let H < GLD(C) denote the complex reflection group SD+1 (in its deleted permu-
tation representation), or 2×SU4(2), W (E6), 61 ·PSU4(3)·22, W (E7), W (E8), when D = 5, 6,
6, 7, or 8, respectively. Correspondingly, let S := AD+1, SU4(2), SU4(2), PSU4(3), Sp6(2), or
Ω+

8 (2), so that S is the unique non-abelian composition factor of H. Then Mitchell’s theorem
implies that G/Z(G) ∼= H/Z(H). Note that H/Z(H) ∼= S ·2, S, S ·2, S ·22, S, and S ·2 in the
above cases. As G/G0 is cyclic, it follows that S is also the unique non-abelian composition
factor of G0. Now we can apply the Shephard-Todd classification [ST] to G0 to see that
G0
∼= H; in particular, G0/Z(G0) ∼= H/Z(H) ∼= G/Z(G). Now, since Z(G)∩G0 ≤ Z(G0), we

have that Z(G)G0/Z(G) ∼= G0/(Z(G) ∩ G0) has order divisible by |G0/Z(G0)| = |G/Z(G)|.
Hence G = Z(G)G0, and the claim is proved.
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Also note that Z(G) is a finite group of scalars µN for some N ≥ 1.

(ii) Here we consider the case G0 = SD+1. Then h is a 2-cycle in SD+1, whence GP (∞) ≤
SD+1, and so a fortiori the quotient Ggeom/SD+1 = µN has order prime to p = 2. So the
projection of Ggeom = SD+1×µN onto the µN factor is a character of odd order, so tame, say
χ−1. Then H⊗Lχ has Ggeom = SD+1.

Thus we are reduced to treating the case when H has Ggeom = SD+1 in its deleted
permutation representation. Without loss, we may assume h = (n− 1, n) ∈ SD+1. As usual,
let g0 generate the image of I(0) and let g∞, of odd order, generate the image of I(∞)
modulo P (∞). Since dimWild = 1, g∞ centralizes the 2-cycle h, hence g∞ belongs to the
subgroup SD−1 that fixes both n − 1 and n, and has simple spectrum on Tame which is
now the permutation module for SD−1. By [KT5, Theorem 6.2], g∞ is either a (D − 1)-
cycle and 2|D, or the disjoint product of an a-cycle and a b-cycle, with a + b = D − 1
and gcd(a,D − 1) = 1. However, in the latter case, the spectrum of g∞ on Tame would
contain 1 twice, a contradiction. Hence we are in the former case, and so 2|D and the set of
“downstairs” characters of H is Char(D − 1). As g0 has simple spectrum, again by [KT5,
Theorem 6.2], g0 is either a (D + 1)-cycle, or the disjoint product of a c-cycle and a d-cycle,
with c+ d = D+ 1 and gcd(c,D+ 1) = 1. However, in the latter case, the spectrum of g0 on
H would contain 1, and so 1 would occur both “upstairs” and “downstairs”. Hence we are
in the former case, and so the set of “upstairs” characters of H is Charntriv(D+ 1), as stated.

(iii) Next we consider the additional possibilities in the cases with D = 5, 7. Then
Z(G) ∩ G0 = Z(G0) ∼= C2; in particular, N = 2N0. Furthermore, G/G0 = Z(G)G0/G0

∼=
Z(G)/Z(G0) is cyclic of odd order, which equals N0. It follows that 2 - N0, and G = Z0×G0

with Z0 := O2′(Z(G)) = µN0 . Arguing as in (ii), we may tensor H with a suitable Lχ to
get Ggeom = G0. As in (ii), we also get an odd-order element g∞ that centralizes h and has
simple spectrum on Tame of dimension D − 1.

Suppose D = 7, so that G0 = W (E7) = 2 × Sp6(2). As 2 - o(g∞), g∞ ∈ Sp6(2), of order
≥ 6 since it has simple spectrum on Tame. Thus g∞ has order 7, 9, or 15, see [GAP]. On
the other hand, g∞ centralizes −Id · h, an involution in Sp6(2), and this is impossible.

A similar argument rules out the case of D = 5. �

Remark 4.2.4. It is shown in [KRLT4] that the three cases listed in Theorem 4.2.3(b)
do indeed give rise to primitive hypergeometric sheaves with w = 1 in characteristic p = 2
and with Ggeom = G0.

We find the following result amazing, for which it would be nice to find a conceptual,
rather than a case-by-case, explanation.

Theorem 4.2.5. Let H be a (geometrically irreducible) hypergeometric sheaf in charac-
teristic p of type (D,D − 1) with D > 1, which is primitive. If Ggeom is finite, then D is
even. [But notice that, as explained in Remark 4.1.4, there are such sheaves in characteristic
p = 2 of any odd rank D ≥ 3 which are imprimitive.]

Proof. (i) Assume the contrary: there exists such a sheaf H, but of odd rank D ≥ 3.
By Theorem 4.1.1, if p ≥ 3, then we actually have p = D = 3. By Theorem 4.2.3, we also
have D = 3 when p = 2. Thus D = 3 and p = 2 or 3. We will consider the elements g0 and
g∞ as in the proof of Theorem 4.2.3, and a complex reflection 1 6= h in the image of P (∞).
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Since H is primitive and D = 3, H satisfies (S+), and so G = Ggeom is either almost
quasisimple, or an extraspecial normalizer, by Lemma 1.1.3. Suppose we are in the former
case. Then it is well known, see also [HM], that G = Z(G) × L, where L = A5, SL3(2), or
3 · A6. Write h = zt, with z ∈ Z(G) and t ∈ L, so that t is a scalar multiple of a complex
reflection of order p. Checking the spectra of elements of L in a 3-dimensional irreducible
representation, we see that o(t) = 2 and so p = 2. Now g∞ has odd order, centralizes t, and
is not central, since it has two distinct eigenvalues on Tame. But this is a contradiction, since
CL(t) is a 2-group in all three possibilities.

(ii) So we are in the extraspecial normalizer case. As D = 3, we get G < ZG0, where
Z := Z(GL3(C)) and G0 = 31+2

+ o SL2(3). Again write h = zt, with z ∈ Z and t ∈ G0.
Suppose p = 3, so that t is a scalar multiple of a complex reflection of order 3. As g∞ has
3′-order, centralizes t, and is non-central, we see that g∞ = z∞t∞, where z∞ ∈ Z and t∞ ∈ G0

has order 2. Similarly, as g0 has 3′-order and simple spectrum on H, we see that g0 = z0t0,
where z0 ∈ Z and t0 ∈ G0 has order 4. Now, the spectra of elements of order 2 and 4 of G0

on C3 are {−1,−1, 1}, respectively {ζ4, ζ4, 1} (with counting multiplicities); in particular, t∞
has to admit both 1 and −1 as eigenvalues on Tame. By tensoring H with Lχ for a suitable
multiplicative character χ, which does not change the finiteness and irreducibility of Ggeom,
see [KRLT4, Lemma 5.10], we may assume that

(4.2.5.1) H = Hyp(1, ξ4, ξ4; γ, γξ2)

for some multiplicative character γ. By [Ka-ESDE, 8.12.2(2)], the determinant of H is
Lψ; in particular, any p′-element in G has determinant equal to 1. With this identification
(4.2.5.1) of H, g∞ has spectrum α,−α,−α for some α ∈ C×. Hence 1 = det(g∞) = α3,
but 3 - o(g∞), so α = 1. This forces γ ∈ {1, ξ2}, and so 1 occurs both “upstairs” and
“downstairs” in H, violating the irreducibility of H.

We have shown that p = 2, so that t is a scalar multiple of a complex reflection of order
2. As g∞ has odd order, centralizes t, and is non-central, we see that g∞ = z∞t∞, where
z∞ ∈ Z and t∞ ∈ G0 has order 3. Similarly, as g0 has odd order and simple spectrum on H,
we see that g0 = z0t0, where z0 ∈ Z and t0 ∈ G0 has order 9. Now, the spectra of elements of
order 3 and 9 of G0 on C3 are {α, α, β} with α 6= β and α3 = β3 = 1, respectively {ζ1,4,7

9 } or
{ζ2,5,8

9 }. By again tensoring H with Lχ for a suitable multiplicative character χ and dualizing
it if necessary, which do not change the finiteness and irreducibility of Ggeom, we may assume
that

(4.2.5.2) H = Hyp(ξ9, ξ
4
9 , ξ

7
9 ; γ, γξ3)

for some multiplicative character γ. By [Ka-ESDE, 8.12.2(2)], the determinant of H is
Lξ3Lψ; in particular, any p′-element in G has determinant a cubic root of 1. With this
identification (4.2.5.2) of H, g∞ has spectrum δ, δ, δζ3 or δ, δζ3, δζ3 for some δ ∈ C×. Hence
1 = det(g∞)3 = δ9. This forces γ = ξj9 for some 0 ≤ j ≤ 8. Since the “upstairs” and
“downstairs” characters of H do not intersect, j 6= 1, 4, 7. Now, if j = 0, 3, 6, then choose
Λ := ξ3+j

9 = γξ3 and σ := ξ2j
9 , so that γ = σ1/2 and Λσ = ξ3j+3

9 = ξ3. If j = 2, 5, 8, then
choose Λ := ξj9 = γ and σ := ξ2j+6

9 , so that γξ3 = σ1/2 and Λσ = ξ3j+6
9 = ξ3. In both cases,

the “upstairs” characters in (4.2.5.2) are cubic roots of Λσ, and the “downstairs” characters
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are Λ and σ1/2. This shows by [KRLT3, Proposition 1.2] that H is imprimitive, a final
contradiction. �

A further note is that the reflection representation of the Weyl group W (F4) cannot give
rise to primitive hypergeometric sheaves with w = 1 in any characteristic p (for the reason
that every complex reflection in W (F4) has order 2, forcing p = 2 if such a sheaf exists, but no
odd-order elements of W (F4) can have simple spectrum in this representation, contradicting
the existence of the element g0). Finally, the Weyl groups of type B/C and D are ruled out
in the following lemma:

Lemma 4.2.6. Let n ≥ 3 and let G be the Weyl group of type Bn or Dn. Then there is
no hypergeometric sheaf H of type (n, n − 1) in any characteristic p with Ggeom realizing G
in its reflection representation.

Proof. Assume the contrary. Note that the complex reflections in G are of order 2, in
particular the non-identity element h in the image of P (∞) in G has order 2. Hence p = 2,
and we can consider the elements g0 and g∞ of odd order in G as in the proof of Theorem
4.2.3. Note that G = E o S, where E is a 2-group (of order 2n if G = W (Bn) and of order
2n−1 if G = W (Dn)), and S ∼= Sn, acting in its natural permutation representation Π. Now
E0 := E〈g0〉 is a subgroup of order |E| ·o(g0), with 2 - o(g0). Thus 〈g0〉 is a complement to E
in E0, and so by the Schur-Zassenhaus theorem, all such complements are conjugate in E0.
As E0 = E o (E0 ∩ S), we see that g0 is conjugate to an element h0 ∈ S. Thus h0 acts on Π
with simple spectrum, and this is possible only when h0 is an n-cycle. It follows that 2 - n,
and the set of “upstairs” characters of H is Char(n); in particular, no “downstairs” character
is 1. Similarly, g∞ is conjugate to some h∞ ∈ S, and g∞ acts on Tame with n − 1 distinct
eigenvalues, none of which is 1. On the other hand, h∞ acting on Π admits eigenvalue 1, and
so it must have n distinct eigenvalues on H. This again implies that h∞ is an n-cycle, and
the set of “downstairs” characters of H is Char(n) r {1}, which intersects the upstairs set
nontrivially, violating the irreducibility of H. �





CHAPTER 5

Tensor induced local systems

5.1. 2-tensor induced sheaves

Given a representation Φ : G → GL(V ), and an integer n ≥ 2, we say that (G, V ) is n-
tensor induced if dim(V ) is an nth power dn with d ≥ 2 and there exists a tensor factorization
of V as

V = V1 ⊗ V2 ⊗ · · · ⊗ Vn
with each dim(Vi) = d, such that

G ≤ (⊗ni=1GL(Vi)) o Sn,

with the symmetric group Sn acting by permuting the tensor factors Vi transitively.
One says that (G, V ) is not tensor induced if it is not n-tensor induced for any n ≥ 2.
We have the following obvious but useful lemmas.

Lemma 5.1.1. Given (G, V ) whose dimension D := dim(V ) ≥ 2 not a power (i.e., not
an nth power for any n ≥ 2), then (G, V ) is not tensor induced.

Lemma 5.1.2. Let V = A⊗CB be a tensor product of two C-vector spaces A and B, both
of dimension ≥ 2. Suppose h = X ⊗ Y with X ∈ End(A) and Y ∈ End(B).

(i) If h has almost simple spectrum on V , then X has simple spectrum on A and Y has
simple spectrum on B.

(ii) If h has almost regular spectrum on V , then X has regular spectrum on A and Y has
regular spectrum on B.

Proof. (i) Suppose for instance that X acts as

(
α ∗
0 α

)
on some 2-dimensional subspace

A1 ⊆ A, for some α ∈ C. We may assume that Y acts as

(
β ∗
0 γ

)
on some 2-dimensional

subspace B1 ⊆ B, for some β, γ ∈ C. If β = γ, then αβ is the unique eigenvalue for h on
A1 ⊗B1 of dimension 4. If β 6= γ, then both αβ and αγ are eigenvalues of multiplicity 2 for
h on A1 ⊗B1. It follows that h cannot have almost simple spectrum on V .

(ii) Assume that X does not have regular spectrum on A. Then the Jordan canonical
form for X on A contains αJa⊕αJb for some a, b ≥ 1 and some α ∈ C, where Ja denotes the
Jordan block of size a and with eigenvalue 1. In particular, X has two linearly independent
eigenvectors u1, u2 on B, with eigenvalue α. Now, if Y has two linearly independent eigen-
vectors v1, v2 on B, with (not necessarily distinct) eigenvalues β1, β2, then u1⊗v1, u2⊗v1 are
h-eigenvectors with eigenvalue αβ1, and u1 ⊗ v2, u2 ⊗ v2 are h-eigenvectors with eigenvalue
αβ2, contradicting the assumption that h has almost regular spectrum. So we may assume
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that Y is represented by a single Jordan block Jc on B, with c := dim(B) ≥ 2. Recall, see
[F1, Theorem VIII.2.7], that

(5.1.2.1) Jm ⊗ Jn ∼= Jm+n−1 ⊕ Jm+n−3 ⊕ . . .⊕ Jm−n+1

when m ≥ n ≥ 1. It follows that h has Jordan blocks αJa+c−1 and αJb+c−1 with a+ c−1, b+
c− 1 ≥ 2, again a contradiction. �

To deal with the case when D is a power, we begin with recalling the following lemma.

Lemma 5.1.3. [KT5, Lemma 3.2] Let F be either a Kloosterman sheaf Kl of rank D ≥ 4
or a hypergeometric sheaf H of type (D,m) with D > m > 0 and D ≥ 4. Suppose F is
n-tensor induced for a given n ≥ 2. Consider the composite homomorphism

π1(Gm/Fp)→ (⊗ni=1GL(Ai)) o Sn → Sn,

obtained by projecting onto the last factor. Suppose we are in either of the following four
situations.

(i) F is a Kloosterman sheaf of rank D ≥ 4.
(ii) F is a hypergeometric sheaf H of type (D,m) with D 6= 4. Denote by p0 the least

prime dividing D, and suppose we have the inequality D −m > D/p2
0.

(iii) F is a hypergeometric sheaf H of type (4, 1) and p is odd.
(iv) F is a hypergeometric sheaf H of type (4, 2) and p = 2.

Then this composite homomorphism factors through the tame quotient π1(Gm/Fp)tame at 0,∞,
and its image is an n-cycle in Sn. Moreover, n is prime to p.

Now we will focus on 2-tensor induced sheaves. In this case, we can do much better.

Lemma 5.1.4. Suppose that p = 2. Let H be a hypergeometric sheaf of type (D,m) with
w := D −m ≥ 2 and D > 4. Then H is not 2-tensor induced.

Proof. Suppose H is 2-tensor induced. The projection of Ggeom onto S2 is a linear

character of π1(Gm/F2) which is tame at 0 and whose ∞-slope is ≤ 1/w < 1 (because
w ≥ 2). Hence (by the integrality of Swan conductors) this character is tame at both 0 and
∞. But π1(Gm/F2)tame at 0,∞ is a group of profinite order prime to 2, so admits no nontrivial
homomorphism to S2. Thus H is tensor decomposed, impossible if D > 4 by [KT5, Lemmas
2.2 and 2.3]. �

Remark 5.1.5. The case when p = 2 and w := D − m = 1 is dealt with in Theorem
5.2.9.

Lemma 5.1.6. Suppose that p is odd. Let H be a hypergeometric sheaf of type (D,m) with
D > m. Suppose that H is 2-tensor induced. Consider the composite homomorphism

π1(Gm/Fp)→ (⊗2
i=1GL(Ai)) o S2 → S2,

obtained by projecting onto the last factor. Then this composite homomorphism factors
through the tame quotient π1(Gm/Fp)tame at 0,∞. If in addition D > 4, its image is an 2-
cycle in S2.

Proof. If p is odd, any homomorphism from π1(Gm/Fp) to a group of order 2 is tame
at both 0 and ∞. This homomorphism must be nontrivial if D > 4, otherwise H would be
tensor decomposed, and this is not the case, cf. [KT5, Lemmas 2.2 and 2.3]. �
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Corollary 5.1.7. Suppose that p is odd. Let H be a hypergeometric sheaf of type (D,m)
with D > m. Suppose that H is 2-tensor induced. Then the Kummer pullback [2]?H is tensor
decomposable.

Proof. Immediate from Lemma 5.1.6. �

Lemma 5.1.8. Suppose p is odd. Let H be an (irreducible) hypergeometric on Gm/Fp
of type (D,m) with D > m. Denote by W the wild part of the I(∞)-representation, and
w := dim(W ) = D −m. Then we have the following results.

(i) If w is odd, then the Kummer pullback [2]?W is irreducible (as I(∞)-representation).
(ii) If w is even, then [2]?W is the direct sum Wa⊕Wb of two non-isomorphic irreducible

I(∞)-representations, each of which is totally wild of dimension w/2 with all slopes
2/w.

Proof. All slopes of [2]?W are 2/w. If w is odd, then gcd(2, w) = 1, and the asserted
irreducibility is [Ka-GKM, 1.14 (1)]. If w is even, then we apply [Ka-GKM, 1.14 (2)];
write w = 2n0p

e with n0 prime to p (which is odd) and with e ≥ 0. Then W is [2n0]?V
for an irreducible I(∞)-representation of rank pe and all slopes 1/pe. Thus W is [2]?W0 for
W0 := [n0]?V . The rank of W0 is w/2. and all its slopes are 2/w. Then

[2]?W = [2]?[2]?W0 = W0 ⊕ [x 7→ −x]?W0.

Because W0 has Swan∞(W0) = 1, it is inequivalent to any nontrivial multiplicative translate
of itself, cf. [Ka-GKM, 4.1.4]. �

Proposition 5.1.9. Suppose p is odd. If D > m > 0 and w is odd, then H is not 2-tensor
induced.

Proof. Because m > 0, the I(∞)-representation ofH is T⊕W , with T tame and nonzero
(because of dimension m). Therefore the I(∞)-representation of [2]?H is of the form T1⊕W1

with T1 tame and nonzero, and W1 irreducible and totally wild. By [KRLT3, Proposition
10.1], the I(∞)-representation of [2]?H is tensor indecomposable, and hence a fortiori [2]?H
is itself tensor indecomposable as a lisse sheaf on Gm/Fp. One knows, by Corollary 5.1.7,
that if H were 2-tensor induced, then [2]?H would be tensor decomposable. �

Proposition 5.1.10. Suppose p is odd. Suppose H is primitive, of type (D,m) wth
D > m > 0, and w := D − m even. Then H is not 2-tensor induced under any of the
following three conditions.

(i) D > 9.
(ii) D = 9, p 6= 3, and m 6= 3.
(iii) D = 9, p = 3, and m 6= 1.

Proof. If H is 2-tensor induced, then D is a square, D = d2 with d ≥ 3 (because D ≥ 9
by hypothesis), and [2]?H is isomorphic to A1⊗A2 with A1 and A2 local systems on Gm/Fp,
each of rank d. Passing to the I(∞)-representations, let

A1|I(∞) = T1 ⊕W1, A2|I(∞) = T2 ⊕W2,

with the Ti tame and the Wi totally wild I(∞)-representations.
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On the other hand, by Lemma 5.1.8, (2), when w is even the I(∞)-representation of [2]?H
is of the form

H|I(∞) = T +Wa +Wb,

with T tame and nonzero, and Wa and Wb nonisomorphic irreducible I(∞)-representations,
each of dimension w/2 with all slopes 2/w. Thus we have an isomorphism of I(∞)-representations

T +Wa +Wb = (T1 +W1)⊗ (T2 +W2).

We next replace each term by its I(0)-semisimplification (but don’t change their names).
We still have this tensor decomposition, simply because for characteristic zero representations,
semisimplification commutes with tensor products.

We wish to derive a contradiction. Suppose first that T1 6= 0. Then

T +Wa +Wb = T1 ⊗W2 +W1 ⊗W2 + other terms.

Because each totally wild irreducible on the left hand side occurs with multiplicity 1, either
W2 = 0 or dim(T1) = 1 and T1 ⊗W2 is either Wa or Wb or Wa +Wb.

If T1 6= 0 but W2 = 0, then

T +Wa +Wb = (T1 +W1)⊗ T2 = T1 ⊗ T2 + T2 ⊗W1.

Thus dim(T2) = 1, and the second factor has dimension 1, not d.
If T1 6= 0 and W2 6= 0, then as above we have that dim(T1) = 1 and T1 ⊗W2 is either Wa

or Wb or Wa +Wb.
We cannot have T1 ⊗ W2 = Wa + Wb, for then W1 ⊗ W2 is totally tame. This could

happen if W1 = 0, but then the first factor T1 + W1 has dimension 1, not d. Thus W1 and
W2 are both nonzero, and their tensor product is totally tame. Write the decompositions
of W1 =

∑
iW1,i, W2 =

∑
jW2,j as sums of I(∞) irreducibles. Then every tensor product

W1,i ⊗W2,j is totally tame. By [KRLT3, Lemma 10.2], this can only happen when each
W1,i and each W2,j has dimension 1, and each W2,j is (a tame character)⊗W∨

1,i for every i, j.
Thus

W1 = (tame T3)⊗W1,1,W2 = (tame T4)⊗W∨
1,1.

Then we would have

T +Wa +Wb = (T1 + T3 ⊗W1,1)⊗ (T2 + T4 ⊗W∨
1,1).

In this case, each of Wa,Wb is one-dimensional, so both T1 ⊗ T4 and T2 ⊗ T3 are one-
dimensional. Then both tensor factors have dimension 2, not d ≥ 3.

Thus we have T1 ⊗ W2 is either Wa or Wb, say T1 ⊗ W2 = Wa. We next claim that
T2 6= 0. For if T2 = 0, then the second factor has dimension dim(Wa) = w/2. But each factor
has dimension d. Thus w/2 = d, and 2/w = 1/d. The first factor T1 + W1 has dimension
1+dim(W1), which is necessarily d. This dim(W1) = d−1. Thus every irreducible constituent
of W1 is totally wild of rank ≤ d− 1, and so has all its slopes ≥ 1/(d− 1). Then every slope
of W1 is ≥ 1/(d− 1). Then in

T +Wa +Wb = (T1 +W1)⊗ (T2 +W2),

we have

T +Wa +Wb = (T1 +W1)⊗W2 = Wa +W1 ⊗W2.
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Here Wa and W2 have all slopes 1/d, but W1 has all slopes ≥ 1/(d − 1), hence[Ka-GKM,
1.3] W1 ⊗W2 has all slopes ≥ 1/(d− 1). But every nonzero slope in T +Wa +Wb is 1/d.

Thus if T1 6= 0, then also T2 6= 0, and (by symmetry) both T1, T2 have dimension 1, and
both W1,W2 are nonzero. Tensoring our putative decomposition by the inverse of the tame
character T1 ⊗ T2, we reduce to the case of a decomposition

T +Wa +Wb = (1⊕W1)⊗ (1⊕W2).

Then both W2 and W1 are nonzero totally wild summands of T + Wa + Wb. Therefore
we must have, up to interchanging a, b, W1 = Wa,W2 = Wb. But then Wa ⊗Wb is totally
tame, which implies [KRLT3, Lemma 10.2] that each of Wa,Wb has dimension 1. Then each
tensor factor has dimension 2. But each factor has dimension d ≥ 3, contradiction.

Thus in order to have a tensor decomposition, we must have T1 = T2 = 0, and

T +Wa +Wb = W1 ⊗W2

is the tensor product of two totally wild I(∞)-representations, each of rank d.
We next show that both W1 and W2 must be irreducible as I(∞)-representations. Write

W1 = W1,1 +W1,2 + · · ·+W1,f

as the sum of irreducibles, with dim(W1,1) ≥ dim(W1,2) ≥ · · · ≥ dim(W1,f ). Similarly, write

W2 = W2,1 + · · ·+W2,e

as the sum of irreducibles, with dim(W2,1) ≥ · · · ≥ dim(W2,e).
We first rule out the case when f ≥ 2 and dim(W2,1) = 1. Then every irreducible

constituent ofW2 has dimension 1, hence there are d constituents. Let us call them L1, . . . ,Ld.
If dim(W1,1) ≥ 2, then each of the d tensor product W1,1⊗Lj is I(∞)-irreducible, and having
dimension ≥ 2 must be totally wild (otherwise it would be totally tame, because the P (∞)
invariants are a subrepresentation, and this can only happen [KRLT3, Lemma 10.2] when
both factors have dimension one). So we would have at least d ≥ 4 totally wild irreducible
summands in W1 ⊗ W2, contradiction. If both dim(W1,1) = 1 and dim(W2,1) = 1, then
also W1 is the sum of d one-dimensional summands, say N1, . . . ,Nd. Then of the d2 tensor
products Ni ⊗ Lj, precisely two of them are wild (namely the Wa and Wb pieces), and the
other d2 − 2 are tame.

This leads to a contradiction, as follows. Renumbering, we may suppose that N1 ⊗ L1

is wild. If also N1 ⊗ Lj is wild for some j0 > 2, then every Ni ⊗ Lj with i ≥ 2 is tame. In
particular, taking i = 2, every Lj is

N ∨2 ⊗ (some one− dimensional tame T2,j).

But for j 6= 1, j0, and there are such j, because d ≥ 3 N1 ⊗ Lj is tame, hence N1 is a tame
character times L∨j , i.e. N1 is a tame character times N2. Thus all the Ni are tame twists of
each other, all the Lj are tame twists of the dual, and W1⊗W2 is totally tame, contradiction.
If N1 ⊗ L1 is wild but N1 ⊗ Lj is tame for all j ≥ 2, a similar argument, left to the reader,
leads to the same contradiction.

We now treat the case when f ≥ 2 and dim(W2,1) ≥ 2. In this case, we again get a
contradiction if dim(W1,1) = 1. Thus

W1 = W1,1 +W1,2 + (other terms), W2 = W2,1 + (other terms),
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with both W1,1,W2,1 of dimension ≥ 2. We first show that W2 must be irreducible. Otherwise

W2 = W2,1 +W2,2 + (other terms),

and so W1 ⊗W2 contains at least three constituents, namely

W1,1 ⊗W2,1, W1,1 ⊗W2,2, W1,2 ⊗W2,1,

none of which is totally tame, a contradiction.
We now treat the case when W2 is irreducible. Then we have the a priori inequality f ≤ 2

on the number of irreducible constituents of W1. If f = 2, so that $W1 = W1,1 + W1,2, then
at least one of W1,1 ⊗W2 or W1,2 ⊗W2 has a tame part, since T + Wa + Wb has nonzero
tame part T . Say W1,i⊗W2 has a tame part. Then for χ a tame character in this tame part,
W1,i ⊗ (W2 ⊗ χ contains 1, which means that W1,i is the dual of W2 ⊗ χ. So in this case
already the single component W1,i of W1 has full dimension d. Thus W1 is irreducible, and
its dual is W2 ⊗ χ.

Tensoring with χ, we have the following situation. W is a totally wild ireducible I(∞)-
representation of dimension d ≥ 3, and End(W ) is of the form T +Wa +Wb with a nonzero
tame part T , and two inequivalent totally wild ireducible I(∞)-representations Wa and Wb,
each of the same dimension w/2, and each with all slopes 2/w.

Suppose first that p - d. The argument of the end of the proof of [KRLT3, Lemma 10.2]
shows that End(W ) has a tame summand of rank d and d− 1 totally wild summands, each
of rank d. If d ≥ 4, this is a contradiction. If d = 3 and p > 3, then the tame part of H has
dimension d = m = 3, which is a contradiction because we assume m 6= 3 when D = 9 and
p 6= 3.

Suppose next that p|d. Write d = n0q with p - n0 and with q a strictly positive power of
p. The argument of [KRLT3, Lemma 10.2] shows that End(W ) has n0 summands, each of
which has a nonzero wild part, and that the tame part of End(W ) has dimension n0. Thus
if n0 ≥ 3, we have a contradiction.

If n0 = 2, then the argument shows that we have two summands, one of which is totally
wild and the other of which has a tame part of dimension 2. In this case, our H of type
(D = d2,m) has m = 2, and hence a wild part of dimension w = d2 − 2. But as d ≥ 3 by
hypothesis, we have w > (2/3)(D − 1), i.e., d2 − 2 > (2/3)(d2 − 1), i.e., 3d2 − 6 > 2d2 − 2,
i.e. d2 > 8, which holds because d ≥ 3. So in this case, H satisfies (S+), by [KT5, Theorem
1.12], and in particular is not 2-tensor induced.

If n0 = 1, then as explained at the end of the proof of [KRLT3, Lemma 10.2], End(W )
has a tame part of dimension 1. Thus m = 1, our H is of type (D, 1), with w = D − 1, and
again we trivially have D−1 = w > (2/3)(D−1). Except in the case q = p = 3, which is the
excluded case (D,m) = (9, 1) and p = 3, once again H satisfies (S+), by [KT5, Theorem
1.12], and in particular is not 2-tensor induced. �

Remark 5.1.11. The excluded cases really can be 2-tensor induced, cf. [Ka-ESDE,
10.9.1] for the case D = 9,m = 3 and cf. [Ka-CC, Theorems 6.3 and 6.5] for the cases
D = 4,m = 0 or 2.
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5.2. Tensor induced sheaves: General case

Proposition 5.2.1. Let V = V1 ⊗ . . .⊗ Vn be a tensor product of n ≥ 2 C-vector spaces
each of dimension d ≥ 2. Suppose g ∈

(
GL(V1)⊗ . . .⊗GL(Vn)

)
o Sn permutes the n tensor

factors Vi cyclically and that g has almost simple spectrum and finite order on V . Then the
following statements hold.

(i) The action of gn on V1 has simple spectrum.
(ii) If d ≥ 3 then n = 2.
(iii) If d = 2 then n ≤ 3.

Proof. The automorphism g is, by hypothesis, the composition of isomorphisms gi :
Vi → Vi+1 for i < n with an isomorphism gn : Vn → V1. If we use g1, . . . , gn−1 to identify the
Vi with each other, then V is V ⊗n1 , and g is the map v1⊗v2⊗. . .⊗vn 7→ gn(vn)⊗v1⊗. . .⊗vn−1.
And the automorphism gn of V ⊗n1 is g⊗nn , i.e. gn(v1⊗ . . .⊗vn) = gn(v1)⊗ . . .⊗gn(vn). Since g
has finite order on V ⊗n1 , so also does gn, and hence gn has finite order on V1. By “the action
of gn on V1” we mean the action of gn on V1. Since o(g) <∞, we can diagonalize the action
of gn on V1: gn(e1

j) = αje
1
j for a basis (e1

1, . . . , e
1
d) of V1 and αj ∈ C×. Now we can fix bases

(ei1, . . . , e
i
d) of Vi such that

(5.2.1.1)

g : e1
1 7→ e2

1 7→ e3
1 7→ . . . 7→ en1 7→ α1e

1
1,

e1
2 7→ e2

2 7→ e3
2 7→ . . . 7→ en2 7→ α2e

1
2,

. . .

e1
d 7→ e2

d 7→ e3
d 7→ . . . 7→ end 7→ αde

1
d.

(a) Note that
g(e1

j ⊗ e2
j ⊗ . . .⊗ enj ) = αie

1
j ⊗ e2

j ⊗ . . .⊗ enj .
Assume now that α1 = α2. Then by (5.2.1.1), e1

j ⊗ e2
j ⊗ . . .⊗ enj with j = 1, 2 are eigenvectors

for g with eigenvalue α, and in fact

e1
1 ⊗ e2

2 ⊗ e3
2 ⊗ . . .⊗ en2 + e1

2 ⊗ e2
1 ⊗ e3

2 ⊗ . . .⊗ en2 + . . .+ e1
2 ⊗ e2

2 ⊗ . . .⊗ en−1
2 ⊗ en1

is a third such an eigenvector, with all three being linearly independent. Thus α is an
eigenvalue of g with multiplicity at least 3, a contradiction. Hence (i) follows.

(b) Using (5.2.1.1), we can see that

gn
(
e1
j1
⊗ e2

j2
⊗ . . .⊗ enjn

)
= αj1αj2 . . . αjne

1
j1
⊗ e2

j2
⊗ . . .⊗ enjn .

Thus, every eigenvalue of gn on V is of the form β = αj1αj2 . . . αjn with 1 ≤ ji ≤ d. Hence,
the number N of distinct eigenvalues (without counting multiplicities) of gn on V is at most
the number of ordered d-tuples (k1, k2, . . . , kd), where kj, 1 ≤ j ≤ d, is the number of indices
i, 1 ≤ i ≤ n, such that ji = j. Thus

N ≤ N(n, d),

where N(n, d) the number of ordered d-tuples (k1, k2, . . . , kd), where kj ∈ Z≥0 and
∑d

j=1 kj =
n. We now prove by induction on d ≥ 1 that

(5.2.1.2) N(n, d) =

(
n+ d− 1

n

)
.
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Clearly, N(n, 1) = 1, proving the induction base d = 1. To prove the induction step from
d − 1 to d, we proceed by another induction on n ≥ 1, with the obvious induction base
N(1, d) = d =

(
d
1

)
. By counting tuples with a fixed value 0 ≤ k1 ≤ n (and noting there is

exactly one tuple with k1 = n) we get

N(n, d) = 1 +N(1, d− 1) + . . .+N(n− 1, d− 1) +N(n, d− 1)

and similarly

N(n− 1, d) = 1 +N(1, d− 1) + . . .+N(n− 1, d− 1).

It follows that N(n, d) = N(n − 1, d) + N(n, d − 1). By the two induction hypotheses, we
have

N(n, d) =

(
n+ d− 2

n− 1

)
+

(
n+ d− 2

n

)
=

(
n+ d− 2

d− 1

)
+

(
n+ d− 2

d− 2

)
=

(
n+ d− 1

d− 1

)
=

(
n+ d− 1

n

)
,

completing the proof of (5.2.1.2).
Since each eigenvalue of g on V is an nth root of some eigenvalue of gn, we have shown

that g has at most n
(
n+d−1
n

)
distinct eigenvalues on V . As g has almost simple spectrum on

V , it follows that

(5.2.1.3) dn − 1 = dim(V )− 1 ≤ n

(
n+ d− 1

n

)
.

Suppose now that d ≥ 4 and n ≥ 3. Then 3
(
d+2

3

)
= d(d + 1)(d + 2)/2 ≤ d3 − d. In general,

if j ≥ 2, then (d+ j)/j < d, whence

n

(
n+ d− 1

n

)
=
d(d+ 1) . . . (d+ n− 1)

1 · 2 . . . · (n− 1)
= 3

(
d+ 2

3

)
·
n−1∏
j=3

d+ j

j
≤ (d3 − d)dn−3 < dn − 3,

violating (5.2.1.3).
We have shown that n = 2 if d ≥ 4. If d = 3, then (5.2.1.3) implies that

3n − 1 ≤ n(n+ 1)(n+ 2)/2,

and so n ≤ 3. If d = 2, then (5.2.1.3) implies that 2n − 1 ≤ n(n+ 1), and so n ≤ 4.

(c) Assume now that d = n = 3. Using (5.2.1.1), we see that

g : e1
1 ⊗ e2

2 ⊗ e3
3 7→ α3e

1
3 ⊗ e2

1 ⊗ e3
2 7→ α2α3e

1
2 ⊗ e2

3 ⊗ e3
1 7→ α1α2α3e

1
1 ⊗ e2

2 ⊗ e3
3.

Thus g stabilizes the 3-dimensional subspace

〈e1
1 ⊗ e2

2 ⊗ e3
3, e

1
3 ⊗ e2

1 ⊗ e3
2, e

1
2 ⊗ e2

3 ⊗ e3
1〉C

and admits all the 3 cubic roots of α1α2α3 as eigenvalues on this subspace. The same is
however also true for the subspace

〈e1
1 ⊗ e2

3 ⊗ e3
2, e

1
2 ⊗ e2

1 ⊗ e3
3, e

1
3 ⊗ e2

2 ⊗ e3
1〉C,

contradicting the assumption that g has almost simple spectrum. Hence n = 2 if d = 3,
proving (ii).

Next we consider the case d = 2 and n = 4. Again using (5.2.1.1), we see that

g : e1
1 ⊗ e2

2 ⊗ e3
1 ⊗ e4

2 7→ α2e
1
2 ⊗ e2

1 ⊗ e3
2 ⊗ e4

1 7→ α1α2e
1
1 ⊗ e2

2 ⊗ e3
1 ⊗ e4

2.



5.2. TENSOR INDUCED SHEAVES: GENERAL CASE 87

Thus g stabilizes the 2-dimensional subspace

〈e1
1 ⊗ e2

2 ⊗ e3
1 ⊗ e4

2, e
1
2 ⊗ e2

1 ⊗ e3
2 ⊗ e4

1〉C
and has both square roots of α1α2 as eigenvalues on this subspace. On the other hand, g also
maps

e1
1⊗e2

2⊗e3
2⊗e4

1 7→ α1e
1
1⊗e2

1⊗e3
2⊗e4

2 7→ α1α2e
1
2⊗e2

1⊗e3
1⊗e4

2 7→ α1α
2
2e

1
2⊗e2

2⊗e3
1⊗e4

1 7→ α2
1α

2
2e

1
1⊗e2

2⊗e3
2⊗e4

1.

Thus g stabilizes the 4-dimensional subspace

〈e1
1 ⊗ e2

2 ⊗ e3
2 ⊗ e4

1, e
1
1 ⊗ e2

1 ⊗ e3
2 ⊗ e4

2, e
1
2 ⊗ e2

1 ⊗ e3
1 ⊗ e4

2, e
1
2 ⊗ e2

2 ⊗ e3
1 ⊗ e4

1〉C
and has all four quartic roots of α2

1α
2
2 as eigenvalues on this subspace. In particular, each of√

α1α2 and −√α1α2 has multiplicity ≥ 2 as g-eigenvalue on V , again a contradiction. Hence
n ≤ 3 if d = 2, establishing (iii). �

Lemma 5.2.2. Let V = V1 ⊗ . . . ⊗ Vn be a tensor product of n = a + b C-vector spaces
each of dimension d ≥ 2, with a, b ∈ Z≥2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn

permutes the first a tensor factors Vi, 1 ≤ i ≤ a, cyclically, and the next b tensor factors Vi,
a + 1 ≤ i ≤ a + b, cyclically, and that g has almost simple spectrum and finite order on V .
Then (a, b) 6= (2, 2) and (a, b) 6= (3, 3).

Proof. Assume that (a, b) = (2, 2). Arguing as in the proof of Proposition 5.2.1, but
changing the notation for simplicity, we may assume that in some bases (ei | 1 ≤ i ≤ d) for
V1, (fi | 1 ≤ i ≤ d) for V2, (gi | 1 ≤ i ≤ d) for V3, and (hi | 1 ≤ i ≤ d) for V4, we have

g : ei 7→ fi 7→ αiei, gi 7→ hi 7→ βigi

for some αi, βi ∈ C×. It follows by inspecting the action of g on 〈e1⊗f2, e2⊗f1〉C that g admits
both γ :=

√
α1α2 and −γ as eigenvalues on V1 ⊗ V2. Similarly, g admits both δ :=

√
β1β2

and −δ as eigenvalues on V3 ⊗ V4. Since γδ = (−γ)(−δ) and (−γ)δ = γ(−δ), it follows that
both γδ and −γδ are eigenvalues with multiplicity ≥ 2 for g on V , a contradiction.

Assume now that (a, b) = (3, 3). As above, we may assume that in some bases (ei | 1 ≤
i ≤ d) for V1, (fi | 1 ≤ i ≤ d) for V2, (gi | 1 ≤ i ≤ d) for V3, we have

g : ei 7→ fi 7→ gi 7→ αiei

for some αi ∈ C×. It follows by inspecting the action of g on

〈e1 ⊗ f1 ⊗ g2, e2 ⊗ f1 ⊗ g1, e1 ⊗ f2 ⊗ g1〉C
that g admits all three roots γ, γζ3, γζ

2
3 of γ3 := α2

1α2 as eigenvalues on V1⊗V2⊗V3. Similarly,
g admits all δ, δζ3, δζ

2
3 for some δ ∈ C× as eigenvalues on V4 ⊗ V5 ⊗ V6. Since

γδ = (γζ3)(δζ2
3 ) = (γζ2

3 )(δζ3),

it follows that γδ is an eigenvalue with multiplicity ≥ 3 for g on V , again a contradiction. �

Proposition 5.2.3. Let V = V1 ⊗ . . .⊗ Vn be a tensor product of n ≥ 2 C-vector spaces
each of dimension d ≥ 2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn induces a nontrivial

permutation π on the set of n tensor factors Vi and that g has almost simple spectrum and
finite order on V . Then the following statements hold.
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(i) Suppose d ≥ 3. Then π is a 2-cycle. Suppose that g interchanges V1 and V2. Then the
action h of g2 on V1 (which is defined uniquely up to a scalar) has simple spectrum.
Moreover, if n ≥ 3 or if g has simple spectrum on V , then ō(h) ≥ d2/2.

(ii) If d = 2, then π is either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a
3-cycle.

Proof. Write π = σ1σ2 . . . σl as a product of disjoint cycles of non-increasing lengths

k1 ≥ k2 ≥ . . . ≥ kl ≥ 1.

Suitably conjugating g in GL(V ), we may assume that

π = (1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k1 + k2) . . .
( l−1∑
i=1

k1 + 1,
l−1∑
i=1

k2 + 2, . . . , n
)
.

By Lemma 5.1.2(i), g has almost simple spectrum on V1⊗V2⊗ . . .⊗Vk1 , V1⊗V2⊗ . . .⊗Vk1+k2

(if l ≥ 2), and on V1 ⊗ V2 ⊗ . . .⊗ Vk1+k2+k3 if l ≥ 3. Applying Proposition 5.2.1 to the action
of g on V1 ⊗ V2 ⊗ . . .⊗ Vk1 , we see that k1 = 2 if d ≥ 3 and k1 ≤ 3 if d = 2.

Suppose d = 2 but l ≥ 2 and k2 ≥ 2. By applying Lemma 5.2.2 to the action of g on
V1⊗V2⊗ . . .⊗Vk1+k2 , we see that (k1, k2) = (3, 2). Again applying Lemma 5.2.2, we conclude
that k3 = 1 if l ≥ 3. Hence (ii) follows.

Assume now that d ≥ 3. If l ≥ 2, then by applying Lemma 5.2.2 to the action of g
on V1 ⊗ V2 ⊗ . . . ⊗ Vk1+k2 , we see that (k1, k2) = (2, 1). Thus π = (1, 2) is a 2-cycle. By
Proposition 5.2.1(i), h has simple spectrum on V1. To bound m := ō(h), we follow the
proof of Proposition 5.2.1 and consider an eigenbasis (e1, . . . , ed) of g2 on V1 and the basis
(f1 = g(e1), . . . , fd := g(ed)) of V2. By the choice of m, g2m = γ · Id on V1 for some γ ∈ C×.
Now

g2m(fi) = g2m
(
g(ei)

)
= g
(
g2m(ei)

)
= g(γei) = γfi

for all i, i.e. g2m = γ · Id on V2 as well. Thus g2m = γ2 · Id on V1⊗V2, and so ε2m = γ2 for all
eigenvalues ε of g on V1 ⊗ V2. However, by Lemma 5.1.2, g has simple spectrum on V1 ⊗ V2.
It follows that d2 = dim(V1 ⊗ V2) ≤ 2m, as stated in (i). �

Proposition 5.2.4. Let V = V1 ⊗ . . .⊗ Vn be a tensor product of n ≥ 2 C-vector spaces
each of dimension d ≥ 2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn permutes the n

tensor factors Vi cyclically and that g has almost regular spectrum on V . Then the following
statements hold.

(i) The action of gn on V1 has regular spectrum.
(ii) n = 2 if d ≥ 3, and n ≤ 3 if d = 2.

Proof. (i) Assume that gn does not have regular spectrum on V1. Then we can find
linearly independent eigenvectors e1

1 and e1
2 for gn on V1, for the same eigenvalue α ∈ C. The

arguments in (a) of the proof of Proposition 5.2.1 show that dim Ker(g − α · Id) ≥ 3. Hence
the statement follows.

(ii) Replacing g by a scalar multiple, we may assume that gn is unipotent on each Vi,
and hence acts as the single Jordan block Jd (with eigenvalue 1) on each of them by (i). In
general, if Ja denotes the Jordan block of size a with eigenvalue 1, then Ja ⊗ Jb is conjugate
to

Ja+b−1 ⊕ Ja+b−3 ⊕ . . .⊕ Ja−b+1,
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when a ≥ b ≥ 1, see [F1, Theorem VIII.2.7]. An induction on n shows that the Jordan
canonical form of gn on V consists of one block Jn(d−1)+1 and some other blocks of size at
most n(d− 1)− 1.

As gn is unipotent, all distinct eigenvalues εi, 1 ≤ i ≤ l, of g on V are nth roots of unity.
But g has almost regular spectrum, so, aside from possibly one additional Jordan block of
size 1, each of these eigenvalues εi gives rise to a unique Jordan block of g, say of size di and
with eigenvalue εi, which then yields a Jordan block of same size (but with eigenvalue 1) for
gn. By the above analysis, one of these blocks has size n(d− 1) + 1, and all others have size
≤ n(d− 1)− 1, and possibly one extra of size 1. It follows that

dn =
l∑

i=1

di ≤ (n(d− 1) + 1) + (l − 1)(n(d− 1)− 1) + 1

≤ (n(d− 1) + 1) + (n− 1)(n(d− 1)− 1) + 1 = n2(d− 1) + 3− n.

Hence n = 2 if d ≥ 3, and n ≤ 3 if d = 2.

Now we consider the general case, and let e denote the number of distinct eigenvalues of
gk1 on V1 (without counting multiplicities). If e ≥ 3, then n = 2 by Proposition 5.2.1 (applied
to g on U⊗n, where U ⊆ V1 is spanned by three eigenvectors for three distinct eigenvalues of
gn). If e = 1, then we are done by the unipotent case.

Consider the case e = 2. If d = 2, then gn has simple spectrum on V1, and so n ≤ 3 by
Proposition 5.2.1. Suppose now that d ≥ 3 but n ≥ 3. As e = 2, the largest size of Jordan
blocks of gn on V1 is at most d− 1, and gn has two distinct eigenvalues α 6= β on V1. Hence,
arguing as above, gn has on V at most one Jordan block of size n(d− 2) + 1 and all others of
size at most n(d− 2)− 1. Up to a scalar, the eigenvalues of gn on V are αn−iβi, 0 ≤ i ≤ n,
a total of at most n+ 1 distinct eigenvalues. Thus g has at most n(n+ 1) eigenvalues on V .
As g has almost regular spectrum on V , they lead to at most n(n+ 1) Jordan blocks for gn,
and possibly one extra of size 1. We now have that

dn ≤ n(n+ 1)(n(d− 2)− 1) + 2 + 1,

which is impossible unless (n, d) = (3, 3). In this remaining case, g3 has 3 Jordan blocks of
size 3 with eigenvalue αβ2 and 3 Jordan blocks of size 1 with eigenvalue αβ2, if we assume
that g3 acts on V1 as αJ1 ⊕ βJ2. These six Jordan blocks of g3 come from six Jordan blocks
of g with eigenvalues among the three cubic roots of αβ2. Thus either some such cubic root
leads to at least 3 Jordan blocks of g, or each of them leads to two Jordan blocks. Both of
these possibilities contradict the assumption that g has almost regular spectrum on V . �

Lemma 5.2.5. Let V = V1 ⊗ . . . ⊗ Vn be a tensor product of n = a + b C-vector spaces
each of dimension d ≥ 2, with a, b ∈ Z≥2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn

permutes the first a tensor factors Vi, 1 ≤ i ≤ a, cyclically, and the next b tensor factors Vi,
a+1 ≤ i ≤ a+b, cyclically, and that g has almost regular spectrum on V . Then (a, b) 6= (2, 2)
and (a, b) 6= (3, 3).

Proof. (i) Assume that (a, b) = (2, 2). We may assume that in some bases (ei | 1 ≤ i ≤
d) for V1 and (fi | 1 ≤ i ≤ d) for V2 we have

g : e1 7→ f1 7→ α1e1, e2 7→ f2 7→ α2e2
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for some α1 6= α2 ∈ C×, or

g : e1 7→ f1 7→ α1e1, e2 7→ f2 7→ α1(e1 + e2)

for some α1 ∈ C×. As shown in the proof of Lemma 5.2.2, in the former case g admits
both γ :=

√
α1α2 and −γ as eigenvalues on V1 ⊗ V2. Direct computation shows that in the

latter case g admits both γ := α1 and −γ as eigenvalues on V1⊗ V2. Similarly, there is some
δ ∈ C× such that g admits both δ and −δ as eigenvalues on V3 ⊗ V4. Since γδ = (−γ)(−δ)
and γ(−δ) = (−γ)δ, it follows that dim Ker(g − γδ · Id) ≥ 2 and dim Ker(g + γδ · Id) ≥ 2, a
contradiction.

(ii) Assume now that (a, b) = (3, 3). As above, we may assume that in some bases
(ei | 1 ≤ i ≤ d) for V1, (fi | 1 ≤ i ≤ d) for V2, (gi | 1 ≤ i ≤ d) for V3, we have

g : e1 7→ f1 7→ g1 7→ α1e1, e2 7→ f2 7→ g2 7→ α2e2

for some α1 6= α2 ∈ C×, or

g : e1 7→ f1 7→ g1 7→ α1e1, e2 7→ f2 7→ g2 7→ α1(e1 + e2)

for some α1 ∈ C×. As shown in the proof of Lemma 5.2.2, in the former case g admits all
three roots γ, γζ3, γζ

2
3 of γ3 := α2

1α2 as eigenvalues on V1 ⊗ V2 ⊗ V3. Direct computation
shows that in the latter case g admits all three roots γ, γζ3, γζ

2
3 of γ3 := α3

1 as eigenvalues on
V1⊗V2⊗V3. Similarly, there exists some δ ∈ C× such that g admits all δ, δζ3, δζ

2
3 as eigenvalues

on V4⊗ V5⊗ V6. Since γδ = (γζ3)(δζ2
3 ) = (γζ2

3 )(δζ3), it follows that dim Ker(g− γδ · Id) ≥ 3,
again a contradiction. �

Proposition 5.2.6. Let V = V1 ⊗ . . .⊗ Vn be a tensor product of n ≥ 2 C-vector spaces
each of dimension d ≥ 2. Suppose g ∈

(
GL(V1) ⊗ . . . ⊗ GL(Vn)

)
o Sn induces a nontrivial

permutation π on the set of n tensor factors Vi and that g has almost regular spectrum on
V . Then the following statements hold.

(i) Suppose d ≥ 3. Then π is a 2-cycle.
(ii) If d = 2, then π is either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a

3-cycle.

Proof. (a) Write π = σ1σ2 . . . σl as a product of disjoint cycles of non-increasing lengths

k1 ≥ k2 ≥ . . . ≥ kl ≥ 1.

Suitably conjugating g in GL(V ), we may assume that

π = (1, 2, . . . , k1)(k1 + 1, k1 + 2, . . . , k1 + k2) . . .
( l−1∑
i=1

k1 + 1,
l−1∑
i=1

k2 + 2, . . . , n
)
.

By Lemma 5.1.2(ii), g has almost regular spectrum on V1⊗V2⊗ . . .⊗Vk1 , V1⊗V2⊗ . . .⊗Vk1+k2

(if l ≥ 2), and on V1 ⊗ V2 ⊗ . . .⊗ Vk1+k2+k3 if l ≥ 3.
Applying Proposition 5.2.4 to the action of g on V1 ⊗ V2 ⊗ . . .⊗ Vk1 , we see that k1 = 2

if d ≥ 3 and k1 ≤ 3 if d = 2.
Suppose d = 2 but l ≥ 2 and k2 ≥ 2. By applying Lemma 5.2.5 to the action of g on

V1⊗V2⊗ . . .⊗Vk1+k2 , we see that (k1, k2) = (3, 2). Again applying Lemma 5.2.5, we conclude
that k3 = 1 if l ≥ 3. Hence (ii) follows.
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Assume now that d ≥ 3. If l ≥ 2, then by applying Lemma 5.2.5 to the action of g on
V1 ⊗ V2 ⊗ . . .⊗ Vk1+k2 , we see that (k1, k2) = (2, 1). Thus π = (1, 2) is a 2-cycle. �

Proposition 5.2.7. Let H be a hypergeometric sheaf in characteristic p of type (D,m)
with D −m ≥ 1. Suppose that H satisfies (S−) but is n-tensor induced:

Ggeom ≤
(
GL(V1)⊗GL(V2)⊗ . . .⊗GL(Vn)

)
o Sn

with d := dim(Vi) ≥ 2 and n ≥ 2. Then one of the following statements holds.

(a) The action of G on {V1, V2, . . . , Vn} induces a subgroup Cn ≤ Sn, generated by an n-cycle,
and furthermore p - n.

(b) p = 2 and d = 2. Furthermore, D = 4 if D −m = 1 or if m > 0.

Proof. Let ϕ denote the character of the representation Φ : Ggeom → GL(V ) realized
by H, and let Q denote the image in Ggeom of P (∞); note that Q is finite. Also let G0 CG
consist of all elements in G := Ggeom that fix every tensor factor Vi. Then G0 is Zariski
closed.

(i) First we consider the case Q ≤ G0. Then the Zariski closure of the normal closure
of Q in G is contained in G0, and so G/G0 is a finite cyclic p′-group by Theorem 1.2.3. On
the other hand, G/G0 is a transitive subgroup of Sn, since (G, V ) is tensor indecomposable.
Hence, G/G0 is generated by an n-cycle and p - n, as stated in (a).

(ii) We may now assume that Q0 := Q ∩ G0 is a proper subgroup of Q. Consider any
element x ∈ QrQ0. Then the p-element x induces a nontrivial permutation of p-power order
of Sn, which then has at least one orbit of length ≥ p on {V1, V2, . . . , Vn}. The formula [GI,
2.1] for tensor induced characters implies that |ϕ(x)| ≤ D/dp−1.

Assume in addition that D −m = 1. Then x acts trivially on Tame of dimension D − 1,
whence

dn−1 ≥ D/dp−1 ≥ |ϕ(x)| ≥ D − 2 = dn − 2,

and so D = 4 and p = 2, as stated in (b).
Now we may assume that D−m ≥ 2. Using the obvious estimates |ϕ(y)| ≤ D for y ∈ Q0

and |Q0| ≤ |Q|/p, for the dimension m of the tame part Tame we have

(5.2.7.1)

m = [ϕ|Q, 1Q]Q =
∣∣ 1

|Q|
∑
x∈Q

ϕ(x)
∣∣

≤ D|Q0|+Dd1−p(|Q| − |Q0|)
|Q|

<
D

|Q/Q0|
+

D

dp−1
≤ D(1/p+ d1−p),

and thus m/D < 1/p+ d1−p.
• If p ≥ 3, then m/D < 1/3 + 1/4 < 3/4.
• Suppose p = 2. Then m/D < 1/2 + 1/4 = 3/4 when d ≥ 4, m/D < 1/2 + 1/3 = 5/6

when d = 3, and m/D < 1/4 + 1/2 = 3/4 when |Q/Q0| ≥ 4.
• Finally, assume that p = 2 = d = |Q/Q0|, D > 4, and m > 0. In this case, all elements

x ∈ Q r Q0 induce the same permutation σ of order 2 on the set {V1, V2, . . . , Vn}. On
the other hand, by [KRLT3, Corollary 10.4], I(∞) does not preserve any nontrivial tensor
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decomposition of V , and so it must induce a transitive subgroup of Sn while permuting
V1, V2, . . . , Vn. As P (∞) C I(∞) and o(σ) = 2, it follows that σ is a product of disjoint
cycles of the same length 2. The number of σ-orbits on {V1, V2, . . . , Vn} is n/2 ≥ 2 since
D = 2n > 4. Hence the formula for tensor induced characters implies that |ϕ(x)| ≤ D/d2 for
all x ∈ QrQ0, and the estimates in (5.2.7.1) again imply that m/D < 1/|Q/Q0|+1/d2 = 3/4.

In all three cases, w = D−m > D/p2
0, where p0 is the smallest prime divisor of D. Hence

(a) holds by Lemma 5.1.3. �

Corollary 5.2.8. Let H be a hypergeometric sheaf in characteristic p of type (D,m)
with D −m ≥ 2. Suppose that H satisfies (S−) but is n-tensor induced:

Ggeom ≤
(
GL(V1)⊗GL(V2)⊗ . . .⊗GL(Vn)

)
o Sn

with d := dim(Vi) ≥ 2 and n ≥ 2. If p = d = 2, assume in addition that m > 0 and D ≥ 8.
Then one of the following statements holds.

(a) n = 2 i.e. (G, V ) is 2-tensor induced, and p > 2.
(b) D = 8, and (G, V ) is 3-tensor induced.

Proof. Note that the action of G = Ggeom induces a transitive subgroup Ḡ ≤ Sn, since
H is tensor indecomposable. Furthemore, Ḡ is generated by an n-cycle by Proposition 5.2.7.
Using D −m ≥ 2, we see by Theorem 1.2.2 that Ggeom is the Zariski closure of the normal
closure of the image 〈g0〉 of I(0) in it. In particular, this implies that the permutation π
induced by the action of g0 on {V1, V2, . . . , Vn} is nontrivial. Next, one knows [Ka-ESDE,
Theorem 8.4.2 (6)] that g0 has regular spectrum on V , and so we can apply Proposition 5.2.6.
In the case of 5.2.6(i), π is a 2-cycle. When g0 has finite order, i.e. when the “upstairs”
characters are all distinct, that order is prime to p, so the cyclic group 〈g0〉 cannot map onto
Z/2Z unless p is odd. In the general case, when the “upstairs” characters have repetitions
but each characters has finite order dividing q − 1 for q some power of p, gq−1

0 is unipotent,
and hence of pro-` order (remember we are dealing with an `-adic representation). If p were
2, then `, being 6= p, must be odd, and 〈g0〉 is a group whose pro-order is odd, so cannot map
onto Z/2Z if p = 2. Thus we must have that p > 2. Since π ∈ Ḡ, we conclude that n = 2.

In the case of 5.2.6(ii), d = 2, and π is either a 2-cycle, a 3-cycle, or a disjoint product of
a 2-cycle and a 3-cycle. also, π is a power of an n-cycle. As D = 2n ≥ 8, we must have that
n = 3, as stated in (b). �

One of the main results of the book is the following theorem:

Theorem 5.2.9. Let H be a hypergeometric sheaf in characteristic p of type (D,m) with
D > m. Suppose that D 6= 4, 8, 9 and H is primitive. Then H satisfies (S+).

Proof. First we note that, by Lemmas 2.3 and 2.4 of [KT5],H is tensor indecomposable,
and thus satisfies (S−). It remains to show that H is not tensor induced. Since the statement
follows from Theorem 1.2.1 when m = 0 and from Lemma 5.1.1 when D is not a proper power,
we will assume that m > 0 and that D > 9. Assume the contrary: H is n-tensor induced.

First we consider the case D −m ≥ 2. Then, by Corollary 5.2.8 we have that n = 2 and
p > 2. But this contradicts Propositions 5.1.9 and 5.1.10.

Next assume that D−m = 1. Choose a p′-element in I(∞) which topologically generates
a complement to P (∞), with image g∞. Then Proposition 5.2.7 and its proof imply that
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Ggeom induces a subgroup Ḡ = Cn generated by an n-cycle σ in Sn, which is induced by the
action of g∞. One knows [Ka-ESDE, Theorem 8.4.2,(6)] that g∞ has regular spectrum on
the tame part Tame of dimension m = D − 1 and fixes the wild part of dimension 1, and
so g∞ has almost regular spectrum on H. Thus we can apply Proposition 5.2.6 to g∞ to
determine the permutation σ. Let d denote the common dimension d of the tensor factors in
H.

Suppose d ≥ 3. Then σ is a 2-cycle. We claim that p must be odd. Indeed, g∞ stabilizes
the wild part and has finite order [Ka-GKM, Lemma 1.11 (3)] on the wild part. On the
tame part Tame, if say all its characters have order dividing q−1 for a power q of p, then gq−1

∞
is pro-` on Tame. Thus a prime-to-p power of g∞ is pro-` on the entire I(∞)-representation.
So, using the fact σ is a 2-cycle and arguing as in the proof of Corollary 5.2.8, we conclude
that p 6= 2. This is a contradiction, by Propositions 5.1.9 and 5.1.10. [Alternatively, we can
also apply Theorem 4.1.1.]

Suppose now that d = 2. As D > 8, we have n ≥ 4. By Proposition 5.2.6, σ ∈ Sn is
either a 2-cycle, a 3-cycle, or a disjoint product of a 2-cycle and a 3-cycle. As n ≥ 4, none of
these permutations can be an n-cycle, again a contradiction. �

Remark 5.2.10. The excluded cases can be tensor induced, cf. [Ka-ESDE, 10.9.1] for
the case D = 9, m = 3, cf. [Ka-ESDE, 10.8.1] for the case D = 8, m = 2, and cf. [Ka-CC,
Theorems 6.3 and 6.5] for the cases D = 4, m = 0 or 2. And there are D = 4 cases which are
tensor decomposable, cf. [Ka-CC, Theorems 5.1 and 5.3] for the cases D = 4, m = 1 or 2.

Lemma 5.2.11. Let X < PGL2(C) be a finite, elementary abelian 2-group, which is the
image of some irreducible subgroup of GL2(C). Suppose that h ∈ PGL2(C) is an element of
odd order that normalizes X. Then h3 centralizes X.

Proof. Since the Schur multiplier of any finite 2-group is a finite 2-group, see [Is, Corol-
lary (11.21)], we may assume that X is the image in PGL2(C) of a finite irreducible 2-group

X̂ < GL2(C): X = X̂/Z(X̂). Let ϕ denote the character of X̂ (acting on C2), and consider

any y ∈ X̂ r Z(X̂). Then y is not a scalar matrix, but y2 ∈ Z(X̂) is, since X is elementary
abelian. Thus y is conjugate to diag(a,−a) for some a ∈ C×, and so ϕ(y) = 0. It follows
that

1 = [ϕ, ϕ]X̂ =
1

|X̂|

∑
y∈X̂

|ϕ(y)|2 =
1

|X̂|

∑
y∈Z(X̂)

|ϕ(y)|2 =
4|Z(X̂)|
|X̂|

,

i.e. |X| = |X̂/Z(X̂)| = 4. Thus X ∼= C2
2 , and so Aut(X) ∼= S3. Now the conjugation by h

induces an element of odd order of Aut(X), hence the cube of the latter is trivial, i.e. h3

centralizes X. �

The next result overlaps with Theorem 5.2.9, but we will give an independent proof which
does not rely on the analysis of 2-tensor induced sheaves:

Theorem 5.2.12. Let H be a geometrically irreducible hypergeometric sheaf in charac-
teristic p of type (D,m) with D −m ≥ 1. Suppose that H has finite geometric monodromy
group G = Ggeom and is primitive. Suppose in addition that D 6= 4, 8, 9. Then one of the
following statements holds.

(a) G is an almost quasisimple group and satisfies (S+).
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(b) D = 3, 5, 7 and G satisfies (S+).
(c) p > 2, D = pn, and H is Kloosterman, in fact the sheaf Kl(Charntriv(pn + 1)) (studied by

Pink [Pink] and Sawin [KT1, p. 841]).
(d) p = 2, D = 2n, G satisfies (S+) and is an extraspecial normalizer as in Lemma 1.1.3(i)(c)

with r = 2.

Proof. (A) Let Φ : G→ GL(V ) be the faithful representation realized by H. Again by
Lemmas 2.3 and 2.4 of [KT5], (G, V ) is tensor indecomposable, and hence satisfies (S−).
Note that if G is almost quasisimple, then (S−) implies by Lemma 1.1.6 that E(G) is irre-
ducible on H, and so (S+) holds by Theorem 3.1.6. So we will assume that G is not almost
quasisimple. The arguments in the proof of [GT3, Proposition 2.8] (but assuming only that
Φ is primitive and tensor indecomposable) show that G/Z(G) has a unique minimal normal
subgroup L̄, which is either a direct product Sn of n ≥ 2 copies of a finite non-abelian simple
group S, or an elementary abelian r-group of order r2n = D2 for some prime r. Our proof
will be divided into cases according to this dichotomy. Let g0 denote a generator of the image
of I(0) in G and note that g0 has finite order coprime to p. Clearly, H satisfies (S+) when
D is a prime number, and so we may assume D ≥ 10 or D = 6.

First we consider the case D − m = 1. Then any nontrivial element x in the image of
P (∞) in G acts trivially on the tame part Tame of dimension D − 1 and nontrivially on
the wild part of dimension 1 and thus is a complex reflection. Applying Mitchell’s theorem
[Mit], we see that G = Z(G)G0, where either G0 = SD+1 in its deleted permutation module,
or D = 6 and G0 = PSp4(3) · 2 or 61 · PSU4(3) · 22) (recall we are excluding D = 7, 8). But
this violates the above dichotomy. [Alternatively, we can also apply Theorem 5.2.9 to rule
out this case.]

From now on we may therefore assume that D −m ≥ 2.

(B) Here we assume that L̄ ∼= Sn with S simple non-abelian and n > 1. Let L denote the
full inverse image of L̄ in G and let R := L(∞). As shown in part 2) of the proof of [GT3,
Proposition 2.8] (see also Lemma 1.1.9(b)), R = R1 ∗ R2 ∗ . . . ∗ Rn is a central product of n
quasisimple groups R1

∼= R2
∼= . . . ∼= Rn, which are transitively permuted by G. Furthermore,

the R-module V decomposes as V1 ⊗ V2 ⊗ . . .⊗ Vn, where Vi is an irreducible Ri-module, Rj

acts trivially on Vi with i 6= j (since Rj is perfect), and G permutes the spaces Vi transitively,
that is,

G ≤
(
GL(V1)⊗GL(V2)⊗ . . .⊗GL(Vn)

)
o Sn

and (G, V ) is n-tensor induced. Moreover, the arguments in the proof of [GT3, Proposition
2.8] (and of [GT3, Lemma 2.6]) show that the image of G in the resulting homomorphism
Θ : G→ Sn agrees with the homomorphism G→ Sn induced by the conjugation action of G
on {R1, R2, . . . , Rn}.

Let d := dim(V1), so that D = dn. Since W = D −m ≥ 2, by Theorem 1.2.2, G is the
normal closure of 〈g0〉. It follows that g0 induces a nontrivial permutation π = Θ(g0) on the
set {V1, V2, . . . , Vn}.

(i) First we consider the case d ≥ 3. By Proposition 5.2.3, π is a 2-cycle, and we may
assume that g0 interchanges V1 and V2. Furthermore, if h denotes the action of g2

0 on V1,
then h has simple spectrum and

(5.2.12.1) ō(h) ≥ d2/2.
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Correspondingly, g0 interchanges R1 and R2 and normalizes each Rj with j > 2; in partic-
ular, g2

0 normalizes R1. Recall that the quasisimple group R1 acts irreducibly on V1, via a
representation Φ1. Now Φ1(R1) is quasisimple, and R̃1 := 〈Φ1(R1), h〉 is an irreducible, finite
(since R1 and g have finite order), almost quasisimple (since any element that centralizes it
is a scalar) subgroup of GL(V1). Applying Theorem 3.1.7 and using (5.2.12.1), we see that
one of the conclusions (b)–(f) of Theorem 3.1.7 must hold.

(ii) Assume we are in the case of (e), so that d = 4 and R̃1 = Sp4(3). First consider the
case ō(h) = 9. Using [GAP] we can check that h has eigenvalues

{αj | 1 ≤ j ≤ 4} = γ · {ζ i9 | i = 1, 4, 6, 7}
for some γ ∈ C×. Arguing as in the proof of Lemma 5.2.2, we see that the spectrum of g0 on
V1 ⊗ V2 consists of

αj, 1 ≤ j ≤ 4, ±√αiαj, 1 ≤ i < j ≤ 4.

In particular, γζ4
9 =

√
(γζ9)(γζ7

9 ) is a multiple eigenvalue for g0 on V1⊗V2, which is impossible
by Lemma 5.1.2, since g has simple spectrum on V .

Next we consider the case ō(h) = 12. Using [GAP] we can check that h has eigenvalues

{βj | 1 ≤ j ≤ 4} = δ · {ζ i12 | i = 0, 1, 4, 7}
for some γ ∈ C×. As above, the spectrum of g0 on V1 ⊗ V2 consists of

βj, 1 ≤ j ≤ 4, ±
√
βiβj, 1 ≤ i < j ≤ 4.

In particular, δζ4
12 =

√
(δζ12)(δζ7

12) is a multiple eigenvalue for g0 on V1 ⊗ V2, again contra-
dicting Lemma 5.1.2.

(iii) Now we consider the case of (f), so that d = 6, R̃1/Z(R̃1) = PSU4(3) · 22, and
ō(h) = 18. Using [GAP] we can check that h has eigenvalues

{αj | 1 ≤ j ≤ 6} = γ · {ζ i18 | i = 1, 3, 6, 7, 13, 15}
for some γ ∈ C×. As above, the spectrum of g0 on V1 ⊗ V2 consists of

αj, 1 ≤ j ≤ 6, ±√αiαj, 1 ≤ i < j ≤ 6.

In particular, γζ7
18 =

√
(γζ18)(γζ13

18 ) is a multiple eigenvalue for g0 on V1 ⊗ V2, which is
impossible by Lemma 5.1.2.

(iii) Assume now that we are in the cases (b) or (d) of Theorem 3.1.7, so that ō(h) = 5.
Using [GAP] we can check that h has eigenvalues

{αj | 1 ≤ j ≤ 3} = γ · {ζ i5 | i = 0, 1, 4}
for some γ ∈ C×. As above, the spectrum of g0 on V1 ⊗ V2 consists of

αj, 1 ≤ j ≤ 3, ±√αiαj, 1 ≤ i < j ≤ 3.

In particular, γ =
√

(γζ5)(γζ4
5 ) is a multiple eigenvalue for g0 on V1⊗V2, which is impossible

by Lemma 5.1.2.
Next, consider the case (c) of Theorem 3.1.7, so that R̃1 = PSL2(7) and ō(h) = 7. As

R1 acts trivially on Vj with j ≥ 2, we see that Ri
∼= R1

∼= PSL2(7). As shown in the proof
of Proposition 5.2.3, the action on g0 on V1 ⊗ V2 has order 2ō(h) = 14. For any j ≥ 3, g0

normalizes Rj and fixes Vj. As the 3-dimensional representation of Rj
∼= PSL2(7) on Vj is
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not fixed by any outer automorphism of Rj, g0|Vj is a multiple scalar of an element in Rj,
and so has central order 2, 3, 4, or 7. It follows that

(5.2.12.2) ō(g0) divides 84 and is divisible by 14.

In particular, we have by Lemma 3.1.1 that D = 3n ≤ 84, and p 6= 2, 7. By assumption,
n ≥ 3. If moreover p 6= 3, then by Proposition 5.2.7, we get that Θ(G) is a cyclic transitive
subgroup of Sn, generated by an n-cycle. But this is impossible, since Θ(g0) is a 2-cycle. Now
if D = 34, then ō(g0) = 84 by Lemma 3.1.1 and (5.2.12.2), forcing p 6= 3, and we arrive at a
contradiction. Suppose D = 33 and p = 3. Then we must have ō(g0) = 28 by Lemma 3.1.1
and (5.2.12.2). In particular, we may assume that the simple-spectrum (by Lemma 5.1.2)
element g|V3 has central order 4, and so has eigenvalues 1, ζ4, ζ

3
4 on V3. On the other hand,

if h has eigenvalues βj, 1 ≤ j ≤ 3, on V1, then, as above, g0 has both ±
√
β1β2 as eigenvalues

on V1⊗V2. It follows that ζ4

√
β1β2 is a multiple eigenvalue for g0 on V1⊗V2⊗V3 = V , again

a contradiction.

(iv) Now we consider the case e = 2. As mentioned in the proof of Theorem 3.1.7,
we now have that the almost quasisimple group R̃1 in GL2(C) must be SL2(5), and so
Ri
∼= R1

∼= SL2(5). As the 2-dimensional representation of Rj
∼= SL2(5) on Vj is not fixed

by any outer automorphism of Rj, if g0 fixes Vj then g0|Vj is a multiple scalar of an element
in Rj, and so has central order 2, 3, or 5. By Proposition 5.2.3, π = Θ(g0) is a 2-cycle, a
3-cycle, or a disjoint product of a 2-cycle with a 3-cycle. Given any orbit of length e of Θ(g0),
we know that the action of ge on each tensor factor in this orbit has central order 2, 3, or 5.
It follows that

(5.2.12.3) ō(g0) ∈ {6, 12, 18, 30, 36, 60, 90}.

By Lemma 3.1.1, D = 2n ≤ ō(g0) ≤ 90, and D 6= 4, 8 by assumption. Hence D = 2n with
4 ≤ n ≤ 6. Assume D = 25 or 26, and ō(g0) ∈ {36, 60, 90} by Lemma 3.1.1 and (5.2.12.3).
In particular, p 6= 2, 3 as g0 is a p′-element. Again applying Proposition 5.2.7, we see that
Θ(G) ∼= Cn is generated by an n-cycle in Sn. For n = 5 or 6, this however contradicts the
given shape of π = Θ(g0).

Finally, assume n = 4. Then π = Θ(g0) can be only a 2-cycle, or a 3-cycle. Hence instead
of (5.2.12.3), we now have that ō(g0) ∈ {4, 6, 9, 10, 15}. Hence ō(g0) < 16 = D, contrary to
Lemma 3.1.1.

(C) Now we consider the case where L̄ is an elementary abelian r-group of order r2n = D2.
Note that in this case, by Lemma 1.1.9, we have that G admits a normal r-subgroup R as in
Lemma 1.1.9(c); in particular, R acts irreducibly on V , and

(5.2.12.4) R/Z(R) is elementary abelian of order r2n.

It is clear that G cannot be tensor induced and hence satisfies (S+) when D = 2, 3, 5, 7.
Assuming D = rn /∈ {2, 3, 4, 5, 7, 8, 9}, we then have D ≥ 11 and therefore can apply Theorem
1.2.6. Assuming furthermore that conclusion (c) does not hold, we must then have that
p = r = 2. If (G, V ) is moreover (S+), then we arrive at (d). Hence we may assume that
(G, V ) is k-tensor induced for some k ≥ 2, and that

G ≤
(
GL(V1)⊗GL(V2)⊗ . . .⊗GL(Vk)

)
o Sk.
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Let Θ : G → Sk denote the corresponding homomorphism, and let π := Θ(g0). If π = Id,
then we can again apply Theorem 1.2.2 to conclude that Θ(G) = {Id}, a contradiction. So π
is a nontrivial permutation of odd order. By Proposition 5.2.3, this implies that dim(Vi) = 2,
2n = D = 2k, i.e. k = n, and π is a 3-cycle.

Let K := Ker(Θ), so that K ≥ Z(G). Assume that K = Z(G). Then, as R∩Z(G) = Z(R)
by Schur’s lemma, we have by (5.2.12.4) that

C2n
2 = R/Z(R) = R/(R ∩ Z(G)) ∼= RZ(G)/Z(G) ≤ G/Z(G) = G/K ≤ Sn,

which is impossible, since the 2-part of |Sn| is

2bn/2c+bn/2
2c+bn/23c+... < 2n.

Hence K > Z(G), and so K/Z(G) is a nontrivial normal subgroup of G/Z(G). But L̄ ∼=
R/Z(R) is the unique minimal normal subgroup of G/Z(G), so we conclude that K ≥ R. In
particular, R fixes each Vi and induces a projective representation on Vi.

Let X < PGL(Vi) denote the image of R in this projective representation. Note that
Z(R) acts as scalars on Vi, so using (5.2.12.4) we see that X is an elementary abelian 2-
group. Recall that g3

0 ∈ K. As R CK, we see that g3
0 normalizes X, and g3

0 has odd order.
By Lemma 5.2.11, g9

0 centralizes X, i.e. [g9
0, x] acts as a scalar on Vi for each x ∈ R. It follows

that [g9
0, x] acts as a scalar on V , and so belongs to Z(G). Thus we can find

f : R→ Z(G)

such that g9
0xg

−9
0 = xf(x) for all x ∈ R. Now for x, y ∈ R we have

xyf(xy) = g9
0xyg

−9
0 = g9

0xg
−9
0 · g9

0yg
−9
0 = xf(x) · yf(y) = xyf(x)f(y),

i.e. f ∈ Hom(R,Z(G)). In particular, if 2a denotes the exponent of R, then (f(x))2a =
f(x2a) = 1 for all x ∈ R. On the other hand, an induction on j ≥ 1 shows that

g9j
0 xg

−9j
0 = x(f(x))j.

In particular, if b denotes the odd order of g9
0, then

x = g9b
0 xg

−9b
0 = x(f(x))b.

Thus f(x)b = f(x)2a = 1, and so f(x) = 1 for all x ∈ R. We have shown that g9
0 centralizes

R. Hence, by Schur’s lemma, g9
0 acts as a scalar, and so ō(g0) divides 9. But this contradicts

Lemma 3.1.1, since D ≥ 16. �





CHAPTER 6

(Non-)existence results

6.1. Type A

We begin with an elementary fact and some lemmas about exotic behavior in low char-
acteristic.

Lemma 6.1.1. Let Q < Sp(V ) ∼= SL2(C) be a finite 2-subgroup which acts irreducibly on
V = C2 and has only integer traces. Then Q ∼= Q8, the quaternion group of order 8.

Proof. Certainly, Q is non-abelian, and so |Q| ≥ 8. Next, any involution x ∈ Q acts on
V as −Id, and thus is unique. Consider any y ∈ Q of order ≥ 4. Then y acts as diag(α, α−1)
with α ∈ C× of 2-power order ≥ 4 and α + α−1 ∈ Z, hence {α, α−1} = {1,−1}. Now, if ϕ
denotes the character of the Q-module V , then

|Q| = |Q| · [ϕ, ϕ]Q =
∑
y∈Q

|ϕ(y)|2 = 4 + 4,

i.e. Q ∼= D8 or Q8. As Q has a unique involution, we conclude that Q ∼= Q8. �

Lemma 6.1.2. Suppose p = 3. Let H be a Kloosterman sheaf K := Klψ(χ, χ) with Ggeom =
SL2 (e.g., take χ = 1, or take χ of prime order > 5). Then Sym3(K) is a hypergeometric
sheaf of type (4, 2), whose Ggeom is SL2 in its 4-dimensional irreducible representation.

Proof. The I(∞)-representation of any K := Klψ(χ, χ) is independent of which χ we
choose, cf. [Ka-ESDE, 8.6.4]. This allows us to compute the I(∞)-representation by choos-
ing a particular K. We take the particular choice of

K0 := Klψ(ξ4, ξ
3
4) ∼= Lξ4 ⊗Klψ(1, ξ2),

which by [Ka-GKM, 5.6.2] is geometrically the Kummer direct image

[2]?(Lξ2 ⊗ Lψ(2x)).

Thus the I(∞)-representation of [2]?(K) is the direct sum

Lξ2 ⊗ (Lψ(2x) ⊕ Lψ(−2x)).

So the I(∞)-representation of [2]?(Sym3(K) is

Lξ2 ⊗
(
Lψ(6x) ⊕ Lψ(2x) ⊕ Lψ(−2x) ⊕ Lψ(−6x)

)
.

Up to this point, the discussion has been valid in any odd characteristic. But when p = 3,
the two characters Lψ(±6x) become trivial, so the I(∞)-representation of [2]?(Sym3(K)) is
just

Lξ2 ⊗ (1⊕ 1⊕ Lψ(2x) ⊕ Lψ(−2x)).

99
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Therefore Swan∞
(
[2]?(Sym3(K))

)
= 2, and hence Swan∞(Sym3(K)) = 1. We also see that

the I(∞)-representation of any such K is the direct sum Wild2 ⊕ Tame2.
Thus Sym3(K)) is a lisse sheaf on Gm/F3 which is geometrically irreducible (its Ggeom

being SL2 in its 4-dimensional irreducible representation, which is tame at 0 becauseK is tame
at 0) and with Swan∞ = 1. By [Ka-ESDE, 8.5.3], it follows that Sym3(K) is hypergeometric
of type (4, 2). �

Lemma 6.1.3. Suppose p = 2. Let H be a Kloosterman sheaf K := Klψ(χ, χ) with Ggeom =
SL2 (e.g., take χ = 1, or take χ of prime order > 5). Then Sym4(K) is a hypergeometric sheaf
of type (5, 2), whose Ggeom is the image of SL2 in its 5-dimensional irreducible representation.

Proof. One knows [Ka-ESDE, 8.6.4] that the P (∞)-representation of K is independent
of the choice of χ. Take the particular choice of

K0 := Klψ(ξ3, ξ
2
3).

We now specialize to the case p = 2. Then P (∞) acts irreducibly, cf. [Ka-GKM, 1.15].
One knows that the Kummer pullback ]3]?(K0) on Gm/F4 is geometrically isomorphic to the
local system whose trace function at t ∈ F4d is t 7→ (1/2d)

∑
x ψ(x3 + tx). This local system

has its Ggeom a finite [KT1, 20.1] 2-group. All Frobenius traces are thus integers, and the
representation is symplectic. Thus the image of P (∞) is a finite 2-group inside SL2(C) which
is irreducible and has traces in Z. By Lemma 6.1.1, we see that the image of P (∞) is the
quaternion group Q8 in its irreducible 2-dimensional representation std2. From the character
table of Q8, one sees that Sym4(std2) is the direct sum of 2 copies of 1 and each of the three
linear characters of order 2. This shows that the P (∞) representation of [3]?(Sym4(K)) is
the direct sum of 2 copies of 1 and each of the three linear characters of order 2. Therefore
the I(∞)-representation of Sym4(K) is the direct sum of a 2-dimensional tame part and a
3-dimensional wild part, say Tame2⊕Wild3. But Sym4(K) has all∞-slopes ≤ 1/2, and hence
has Swan∞ ≤ 3/2. But Swan conductors are integers, so Swan∞ is 0 or 1. It cannot be 0
since the wild part is nonzero. We now conclude exactly as in the proof of Lemma 6.1.2
above. �

Lemma 6.1.4. Suppose p = 2. Let H be the hypergeometric sheaf Hypψ(1,1; ρ) with ρ 6=
1. Then Sym2(H) is geometrically isomorphic to the hypergeometric sheafHypψ(1,1,1; ρ2, ρ2)
of type (3, 2), whose Ggeom is O3.

Proof. The P (∞) representation of H is 1 ⊕ Lψ. Hence the P (∞) representation of
Sym2(H) is 1 ⊕ 1 ⊕ Lψ. More precisely, let us consider the I(∞)-representation of H. By
[Ka-ESDE, 8.12.2 (1)], det(H) ∼= Lψ geometrically. Therefore the I(∞)-representation
has det = Lψ, and Lρ is one summand. So the I(∞)-representation is the direct sum
Lρ
⊕
Lρ ⊗ Lψ. Thus the I(∞)-representation of Sym2(H) is

Lρ2 ⊕ Lρ2 ⊕ Lρ ⊗ Lψ.

Now H has G0
geom = SL2, because it is a semisimple subgroup of SL2 which contains a

nonsemisimple element (namely local monodromy at 0, which is a unipotent Jordan block of
size 2). Therefore Sym2(H) has G0

geom = SO3. Thus Sym2(H) is geometrically irreducible,

lisse on Gm, tame at 0 and has Swan∞ = 1. Thus Sym2(H) is hypergeometric of type
(3, 2). From its local monodromies, it is a multiplicative translate [Ka-ESDE, 8.5,5] of
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Hypψ(1,1,1; ρ2, ρ2). This sheaf is orthogonally self-dual, cf. [Ka-ESDE, 8.8.1], but its
determinant is Lψ, so its Ggeom contains but cannot be SO3, so its Ggeom is O3. In fact, there is
no multiplicative translate, because its determinant, Lψ, detects multiplicative translates. �

Theorem 6.1.5. Let H be a hypergeometric sheaf in characteristic p, of type (D,m) with
D > m and D ≥ 3, such that G◦geom is a simple algebraic group of type A1 acting irreducibly
on H. Then (D,m, p) = (5, 2, 2), (4, 2, 3), (3, 1, p > 2), (3, 0, 2), or (3, 2, 2). Conversely, all
the listed cases do occur.

Proof. (i) Writing G := Ggeom, we have Z(G◦) = Z(G) ∩ G◦ by Schur’s lemma, and
G = Z(G)G◦ since G◦ has no outer automorphisms. Hence G/Z(G) ∼= G◦/Z(G◦) ∼= PGL2

and so G admits an irreducible representation Λ : G→ GL3. Set e := 3 if p = 2 - D.
Assume in addition that 2|D, so that G◦ = SL2. If m := |Z(G)| is odd, then G =

Z(G) × SL2 admits an irreducible representation Λ : G → GL2 with kernel Z(G); set e = 2
in this case. If 2|m, then G = Z(G) ◦ SL2 is a central product, with Z(G) ∩ SL2 = 〈zm/2〉,
where Z(G) = 〈z〉. In this case, G admits a faithful irreducible representation Λ : G→ GL2,
with SL2 acts via its natural representation and z acts as the scalar ζm; again set e := 2.

Now consider the case p > 2 and 2 - D, so that G◦ = PSL2 and G = Z(G) × G◦.
Then G = Γ/〈j〉, where Γ := Z(G) × SL2 and Z(SL2) = 〈j〉 ∼= C2. Now Γ admits an
irreducible representation Λ : Γ→ GL2, with kernel Z(G) and with SL2 acting via its natural
representation. Set e := 2 in this case.

Applying [KT5, Theorem 4.14] to Λ, we obtain

(6.1.5.1) 1 ≤ w := D −m ≤ e ≤ 3.

Without any loss, we may assume that G◦ = SL(W ) ∼= SL2 acts on H via Symn(W ), where
n = D − 1.

(ii) Now we consider any element g 6= 1 in the image Q of P (∞) in G, and write g = zh
with z ∈ Z(G) and h is conjugate to diag

(
α, α−1

)
∈ G◦ for some α ∈ C× and

(6.1.5.2) α2 6= 1,

since g /∈ Z(G). Then z acts on H as a scalar β ∈ C×, whereas h acts on H as

(6.1.5.3) diag
(
αn, αn−2, . . . , α2−n, α−n

)
,

and D−w ≥ n− 2 of these eigenvalues occur on Tame and so are all equal to β−1 (as g acts
trivially on Tame). On the other hand, no two consecutive eigenvalues αj and αj−2 can be
equal, because otherwise α2 = 1, contrary to (6.1.5.2). Now, if D ≥ 8, then each of the four
pairs {αj, αj−2} with j = n, n − 4, n − 8, and n − 12 ≥ 2 − n, contains β−1 at most once,
forcing m = dimTame ≤ D − 4, contrary to (6.1.5.1).

(iii) Assume now that D = 6 or 7. Again, each of the three pairs {αj, αj−2} with j = n,
n − 4, n − 8 ≥ 2 − n, contains β−1 at most once. But dimTame ≥ D − 3 by (6.1.5.1), so
each of them contains β−1 exactly once, and furthermore w = 3. Since e = 2 when 2|D,
(6.1.5.1) implies that D = 7. Thus either αn = αn−4 = β−1, or αn−2 = αn−6 = β−1. In either
case we have α4 = 1, and so we may assume that α = ζ4 because of (6.1.5.2). Now g acts
as β · diag(−1, 1,−1, 1,−1, 1,−1). As 1 is an eigenvalue of multiplicity ≥ 4 for g, we have
β = −1, and g acts on Wild as the scalar −1. We have therefore shown that each nontrivial
element g ∈ Q acts on Wild as the scalar −1. But this is impossible since we also have w = 3.
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(iv) Suppose D = 5. Then h acts on H as diag(α4, α2, 1, α−2, α−4), see (6.1.5.3), and 1 is
an eigenvalue for g with multiplicity m ≥ 2. This implies that α8, or α6, or α4 = 1. Together
with (6.1.5.2), we have one of the following three situations.
• α8 = 1 but α4 6= 1. Then α4 = −1, and g acts as β ·diag

(
−1, ζ4, 1,−ζ4,−1

)
. As m ≥ 2,

we must have that β = −1, g is a 2-element and hence p = 2, and w = 3. As p - w, Q is
elementary abelian by [KT5, Proposition 4.10], and thus g2 = 1, which is a contradiction as
it has eigenvalue ζ4.
• α6 = 1 but α2 6= 1. Then we may assume that α2 = ζ3, and so g acts as β ·

diag
(
ζ2

3 , ζ3, 1, ζ
2
3 , ζ3

)
. As m ≥ 2, we must have that β = ζ3 or ζ2

3 , g is a 3-element and
hence p = 3, and w = 3. But this contradicts (6.1.5.1), since e = 2 in this case.
• α4 = 1 but α2 6= 1. Then α2 = −1, and g acts as β · diag

(
1,−1, 1,−1, 1

)
. If m ≥ 3,

then β = 1, and g acts on Wild as the scalar −1, a contradiction since w = 2. So m = 2,
w = 3, β = ±1, p = 2, as stated.

(iv) Suppose D = 4. Then h acts on H as diag(α3, α, α−1, α−3), see (6.1.5.3), and 1 is an
eigenvalue for g with multiplicity m ≥ 2. This implies that α4, or α6 = 1. Together with
(6.1.5.2), we have one of the following two situations.
• α4 = 1 but α2 6= 1. Then we may assume that α = ζ4, and g acts as β·diag

(
−ζ4, ζ4,−ζ4, ζ4

)
.

As m ≥ 2, we must have that β = ±ζ4, and g acts on Wild as the scalar −1, a contradiction
since w = 2.
• α6 = 1 but α2 6= 1. Then we may assume that α = ±ζ3, and so g acts as ±β ·

diag
(
1, ζ3, ζ

2
3 , 1
)
. As m ≥ 2, we must have that β = ±1, g is a 3-element and hence p = 3,

and w = 2, as stated.

(v) Now we consider the case D = 3. Assume first that p > 2. By (6.1.5.1), 1 ≤ w ≤ 2.
Assume in addition that w = 1. Now h acts on H as diag(α2, 1, α−2), see (6.1.5.3), and 1 is
an eigenvalue for g with multiplicity m = 2. This implies by (6.1.5.2) that α2 = −1, β = −1,
and g acts as diag(1,−1, 1), i.e. p = 2, a contradiction.

Assume now that p = 2 and w = 2. By [KT5, Proposition 4.8(iv)], Z(G) has odd order,
and recall that G = Z(G) × PSL2. Hence, Z(G) acts on H via a linear character χ of odd
order. Tensoring with Lχ, we get a hypergeometric sheaf H′ with Ggeom = PSL2, hence
self-dual. Now the set {χ1, χ2, χ3} of “upstairs” characters of H′ is stable under complex
conjugation, and so it contains 1. Similarly, the single “downstairs” character of H′ is
stable under complex conjugation, and so it equals to 1. But this violates the geometric
irreducibility of H′.

(vi) For the converse, as shown in Theorems 3.3 and 3.7 of [Ka-CC], there exist hyperge-
ometric sheaves, of type (3, 0) in characteristic p = 2 and of type (3, 1) in any characteristic
p > 2, with Ggeom realizing PSL2 in its irreducible 3-dimensional representation. The cases
(D,m, p) = (5, 2, 2), (4, 2, 3), and (3, 2, 2) are shown in Lemmas 6.1.3, 6.1.2, and 6.1.4, to
occur. �

To handle higher rank groups of type A, first we need a lifting lemma. For brevity, in
what follows we use Σk(V ) to denote Symk(V ) when k ∈ Z≥1 and Σ = Sym, and ∧k(V )
when Σ = ∧. In fact, we make the convention that the notation Σk(V ) when Σ = ∧ always
implies that 1 ≤ k ≤ dim(V ) − 1. Slightly abusing the terminology, we will call a character
of a finite group Q scalar, if it is a multiple of a linear character of Q.
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Lemma 6.1.6. Let k ∈ Z≥1, V = Cd, and Σ ∈ {Sym,∧}. Suppose H = CN and G ≤
GL(H) is a reductive group with finite center Z(G), such that G = Z(G)G◦ and G◦ acts
on H as SL(V ) acts on Σk(V ). Then we can find a reductive subgroup H < GL(V ) with
finite center Z(H) and a finite cyclic subgroup Z ≤ H ∩ Z(GL(V )) of order k, such that the
following conditions hold:

(a) H = Z(H)SL(V ).
(b) Let Ψ denote the natural action of GL(V ) on Σk(V ). Then Z is the kernel of Ψ|H .
(c) There is a surjective homomorphism π : H � G with Ker(π) = Z and Ψ|H = Φ ◦ π,

where Φ denotes the representation of G on H.

In other words, G acts on H as H acts on Σk(V ).

Proof. Since G◦ is irreducible on H, we have that Z(G) = 〈z〉, where z = ζn · IdH ∈
GL(H) for some n ∈ Z≥1. By assumption, Z(G◦) = Z(G) ∩ G◦ is the image of Z(SL(V )) =
〈j〉 ∼= Cd acting on Σk(V ). Choosing j = ζd · IdV ∈ GL(V ), we have that j acts on H as
ζkd · IdH. Since the latter belongs to Z(G), we have 1 = ζknd , i.e. d|kn. Set

t := ζkn · IdV ∈ GL(V ), H := 〈t〉SL(V ) < GL(V ), Z := 〈tn〉.
This ensures that (a) holds. Also, the kernel of GL(V ) acting on Σk(V ) is precisely 〈ζk ·IdV 〉 =
Z; in particular, (b) holds. Next, t acts on Σk(V ) as the scalar ζkkn = ζn, which is the same
as the action of z on H. Now we can define π : H → G by setting π(t) = z and π|SL(V ) to
be the natural projection SL(V )� SL(V )/(Z ∩ 〈SL(V )). �

Lemma 6.1.7. Let Q be a finite group, and let χ, ψ be complex characters of Q.

(i) Suppose that χψ is a multiple of some linear character τ . Then χ = χ(1)α and ψ =
ψ(1)β for some linear characters α, β of Q such that αβ = τ .

(ii) Suppose that ϕ = ϕ(1)λ for a linear character λ of Q, where either ϕ = Symk(χ) for
some k ≥ 1, or ϕ = ∧k(χ) for some 1 ≤ k ≤ d − 1. Then χ = χ(1)ν, where ν is a
linear character of Q with νk = λ.

(iii) Suppose that χ = IndQR(α) for some character α of a subgroup R ≤ Q and that χ is a
multiple of a linear character λ of Q. Then R = Q and α = χ.

(iv) Suppose Q acts on a finite non-empty set Ω, and suppose for some m, 1 ≤ m < |Ω|, Q
stabilizes every m-subset of Ω. Then Q acts trivially on Ω.

Proof. (i) First we consider the case τ = 1Q. Write χ =
∑m

i=1 χi and ψ =
∑n

i=1 ψj, with

χi, ψj ∈ Irr(Q). By assumption, Q = Ker(χiψj); in particular, 1 ≤ [χiψj, 1Q] = [χi, ψj]. As

χi and ψj are irreducible, it follows that χi = ψj. If moreover χi(1) > 1, then, as 1 = [[χi, ψj],
we see that χiψj must involve some nontrivial irreducible character of Q, a contradiction. We

have shown that, for any pair i, j, χi = ψj and has degree 1, whence the statement follows
in this case.

The general case then follows, if we replace ψ by ψ′ := ψτ and apply the previous case
to χψ′.

(ii) It suffices to show that, in a representation Φ affording χ, each g ∈ Q acts as
a scalar matrix. Assume the contrary, so that d ≥ 2. We may assume that Φ(g) =
diag(α1, α2, . . . , αχ(1)), but α1 6= α2. Now, if Σ = Sym, then Σk(Φ)(g) admits (at least)

two distinct eigenvalues αk1 and αk−1
1 α2. If 1 ≤ k ≤ χ(1) − 1 and Σ = ∧, then Σk(Φ)(g)



104 6. (NON-)EXISTENCE RESULTS

admits (at least) two distinct eigenvalues α1α3α4 . . . αk+1 and α2α3α4 . . . αk+1. We reach a
contradiction in both cases.

(iii) Assume the contrary: Q > R. By assumption, χ = χ(1)λ, so for any g ∈ Qr R we
have

χ(1) =
∣∣χ(g)λ(g)

∣∣ =

∣∣∣∣ 1

|R|
∑

x∈Q, xgx−1∈R

α(xgx−1)λ(g)

∣∣∣∣ ≤ (|Q| − 1)α(1)λ(1)

|R|
< [Q : R]α(1) = χ(1),

a contradiction.

(iv) Assume the contrary: there exists some ω ∈ Ω and g ∈ Q such that g(ω) 6= ω. Then
we can find an m-subset ∆ ⊆ Ω r {g(ω)} that contains ω. As ω ∈ ∆ but g(ω) /∈ g(∆),
g(∆) 6= ∆, a contradiction. �

Lemma 6.1.8. Let Cd = V = V1⊕V2⊕. . .⊕Vn, where dimVi = e = d/n. Let G := G1oSn,
with G1 =

∏n
i=1 GL(Vi), be the stabilizer of this decomposition in GL(V ). If k ∈ Z≥1 and

Σ ∈ {Sym,∧}, then there is an isomorphism of G1-modules

(6.1.8.1) φ : Σk(V ) ∼=
⊕

i1,...,in∈Z≥0, i1+i2+...+in=k

Σi1(V1)⊗ Σi2(V2)⊗ . . .⊗ Σin(Vn),

which is also an isomorphism of G-modules in the case Σ = Sym. If Σ = ∧, then φ needs
not be G-equivariant, but φ has the property that the permutation actions of G on the sets of
subspaces φ−1

(
Σi1(V1)⊗ Σi2(V2)⊗ . . .⊗ Σin(Vn)

)
(on the left) and Σi1(V1)⊗ Σi2(V2)⊗ . . .⊗

Σin(Vn) (on the right) are the same.

Proof. The existence of a vector space isomorphism φ is well known, see [FH, (B.1),
(B.2)]. Now assume Σ = Sym. By viewing V ∼= (V ∗)∗, we may identify Sk(V ) as the space of
homogeneous polynomials of degree k in d = en variables x1, . . . , xd, where Vi is spanned by
x(i−1)e+1, . . . , xie, and on which GL(V ) acts via linear substitutions. Identifying each Sj(Vi)
with the span of degree j homogeneous polynomials in variables x(i−1)e+1, . . . , xie, we get a
canonical isomorphism φ of G-modules.

Next assume that Σ = ∧. Recall that ∧k(V ) is the quotient of V ⊗k by the subspace X
spanned by all v1⊗ . . .⊗vk with two of the vectors equal. If π denotes the natural projection,
then v1 ∧ . . . ∧ vk = π(v1 ⊗ . . .⊗ vk). Furthermore, if W is another C-space, then there is a
canonical linear map from ∧a(V )⊗∧b(W ) into ∧a+b(V⊕W ), taking (v1∧. . .∧va)⊗(w1∧. . .∧wb)
to v1 ∧ . . . ∧ va ∧ w1 ∧ . . . ∧ wb. This determines an isomorphism

(6.1.8.2) ∧k (V ⊕W ) ∼=
⊕
a+b=k

∧a(V )⊗ ∧b(W ),

see [FH, (B.1)], which can easily be seen to be an isomorphism of GL(V )×GL(W )-modules.
Assume in addition that dim(W ) = dim(V ) and let τ ∈ GL(V ⊕ W ) be the involution
ei ↔ fi, for a fixed basis (e1, . . . , ed) of V and a fixed basis (f1, . . . , fd) of W . With vi ∈ V
and wj ∈ W as before, τ sends v1 ∧ . . . ∧ va ∧ w1 ∧ . . . ∧ wb to

τ(v1) ∧ . . . ∧ τ(va) ∧ τ(w1 ∧ . . . ∧ wb) = ±τ(w1) ∧ . . . ∧ τ(wb) ∧ τ(v1) ∧ . . . ∧ τ(va)

on the left-hand-side of (6.1.8.2), and (v1 ∧ . . . ∧ va)⊗ (w1 ∧ . . . ∧ wb) to

(τ(v1) ∧ . . . ∧ τ(va))⊗ (τ(w1) ∧ . . . ∧ τ(wb)) = (τ(w1) ∧ . . . ∧ τ(wb))⊗ (τ(v1) ∧ . . . ∧ τ(va))
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on the right-hand-side of (6.1.8.2). Taking vi among e1, . . . , ed and wj among f1, . . . , fd,
we see that the actions of σ on the basis vectors of the two spaces in (6.1.8.2) agree with
the indicated isomorphism up to a sign. This proves the case n = 2 for ∧k. The general
case then follows by iterating the isomorphism in (6.1.8.2), noting that Sn is generated by
transpositions. �

The heart of the proof for type A groups relies on the analysis of the following situation:

Hypothesis 6.1.9. Let V = Cd with d ≥ 3, k ∈ Z≥2, Σ ∈ {Sym,∧}, p a prime, and
2 ≤ k ≤ d − 2 when Σ = ∧. Let J < GL(V ) be a finite subgroup with the following
properties:

(a) J = Qo C, where Q is a normal p-subgroup, and C = 〈Z,σ〉 is a p′-subgroup for some
Z < Z(GL(V )) and some σ ∈ J ;

(b) There exists a linear character γ of Q such that the character of the J-module Σk(V ) is

ϕ+
m∑
i=1

θi,

where ϕ ∈ Irr(J), ϕ(1) > 1, and [ϕ|Q, γ]Q = 0. Furthermore, either m = 0, or θi ∈ Irr(J)
and θi|Q = θi(1)γ for all 1 ≤ i ≤ m.

Note that in the case Σ = ∧ we may, and will always, assume further that

(6.1.9.1) 2 ≤ k ≤ d/2.

Indeed, it is well known that ∧d−k(χ) = ∧k(χ) det(χ). Now, if J satisfies 6.1.9 for ∧k(V ),
then it also satisfies 6.1.9 for ∧d−k(V ), but with γ replaced by γ · det(χ)|Q. Replacing k by
d− k, we can therefore ensure (6.1.9.1).

Proposition 6.1.10. Assume Hypothesis 6.1.9, and assume in addition that d ≥ 5 if
Σ = ∧. Then J acts irreducibly on V .

Proof. (i) Assume the contrary: J satisfies 6.1.9 but the J-character χ afforded by V
is reducible: χ = α + β for some characters α and β of J , where a := α(1) ≥ β(1) =: b ≥ 1.
In particular, 2a ≥ a+ b = d. We note furthermore that

(6.1.10.1) ϕ|Q is not scalar.

For, otherwise we would have ϕ|QZ = ϕ(1)ν for some linear character ν of QZ (since Z acts
via scalars on Σk(V )). Then ν is J-invariant. But J/QZ is cyclic, so ν extends to J , and, by
Gallagher’s theorem [Is, (6.17)], any irreducible character of J that lies above ν is of degree
ν(1) = 1. Thus ϕ(1) = 1, contradicting 6.1.9(b).

(ii) By Lemma 6.1.8 we can write

(6.1.10.2) ϕ+
m∑
i=1

θi = Σk(α + β) =
k∑
l=0

Σk−l(α)Σl(β).

Here, some summands Σk−l(α)Σl(β) may be zero in the case Σ = ∧. We will call the
summand Σk−l(α)Σl(β) admissible, if either Σ = Sym, or Σk−l(α)Σl(β) 6= 0 and Σ = ∧.
Since ϕ 6= θi by hypothesis, there always exists a unique j such that ϕ is a constituent of
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an admissible summand Σk−j(α)Σj(β) in (6.1.10.2). Moreover, any admissible Σk−l(α)Σl(β)
with l 6= j is a sum of some θi and hence is a multiple of γ on restriction to Q.

Consider the case j 6= 1. By the above,
(
Σk−1(α)β

)
|Q is a multiple of γ, and 1 ≤ k− 1 <

d/2 ≤ a in the case Σ = ∧, see (6.1.9.1). By Lemma 6.1.7, both α|Q and β|Q are scalars:
α|Q = aλ and β|Q = bν for some linear characters λ, ν of Q. In this case,

(
Σk−j(α)Σj(β)

)
|Q

is a multiple of λk−jνj, and so is ϕ|Q, contrary to (6.1.10.1).

(iii) We have shown that j = 1. In the case Σ = ∧, k ≤ a by (6.1.9.1), hence Σk(α)
is always admissible and so is scalar on Q. Assume in addition b = 1. If Σ = ∧, (6.1.9.1)
implies 4 ≤ 2k ≤ a + 1, and so k ≤ a − 1. Hence α|Q = α(1)λ is scalar by Lemma 6.1.7.
It follows that

(
Σk−1(α)β

)
|Q is a multiple of the linear character λk−1 · β|Q, whence ϕ|Q is

scalar, contradicting (6.1.10.1).
Next suppose b = 2. If Σ = ∧, then d ≥ 5 by assumption, whence k < a by (6.1.9.1).

Hence we can apply Lemma 6.1.7 to Σk(α) to see that α|Q is scalar, and so, as Z acts via
scalars on V , α|QZ = aλ for some linear λ ∈ Irr(QZ). It follows that

(
Σk−1(α)β

)
|QZ is

a multiple of λk−1 · β|QZ . Consider the case β|QZ ∈ Irr(QZ). Then ϕ|QZ is a multiple of
the irreducible character λk−1 · β|QZ , whence the latter is J-invariant, and so, J/QZ being
cyclic implies by Gallagher’s theorem that ϕ|QZ = λk−1 · β|QZ . Note that Σk−1(α)(1) > 1,
so Σk−1(α)β − ϕ is a true character, whose restriction to Q is still a multiple of λk−1 · β|Q,
contradicting (6.1.10.2). Assume now that β|QZ is reducible. Then

(
Σk−1(α)β

)
|QZ is a

multiple of λk−1 · β|QZ = β1 + β2 with βi ∈ Irr(QZ) of degree 1. Without loss, we may
assume ϕ|QZ contains β1. As J/QZ is cyclic, StabJ(β1) is cyclic over QZ and has index ≤ 2
in J . Again by Gallagher’s theorem, either ϕ is of degree 1 and ϕ|QZ = β1, or ϕ is of degree
2 and ϕ|QZ = β1 + β2. However, as Σk−1(α)(1) > 1, Σk−1(α)β − ϕ is again a true character,
whose restriction to Q contains (β1 + β2)|Q, contradicting (6.1.10.2).

We have shown that b ≥ 3. Consider the case k ≥ 3. Then we can apply Lemma 6.1.7
to Σk−2(α)Σ2(β) to see that α|Q = aλ and β|Q = bν for some linear λ, ν ∈ Irr(Q). In this
case,

(
Σk−1(α)β

)
|Q is a multiple of λk−1ν, whence so is ϕ|Q, contrary to (6.1.10.1). Finally,

assume that k = 2. Applying Lemma 6.1.7 to Σ2(α) and Σ2(β), we again see that α|Q = aλ
and β|Q = bν for some linear λ, ν ∈ Irr(Q), and arrive at a contradiction as in the previous
case. �

Proposition 6.1.11. Under Hypothesis 6.1.9, suppose that J acts transitively on the
summands of a decomposition V = V1 ⊕ V2 ⊕ . . .⊕ Vn with dimVi =: t = d/n < d. Then one
of the following statements holds.

(A) Q stabilizes each Vi.
(B) Σ = ∧, t = 1, and one of the following possibilities occurs:

(a) p = 2, d = 4, and k = 2.
(b) p = 3, d = 6, and k = 3.
(c) p = 2, d = 8, k = 3, J is irreducible on ∧3(V ), and σ has at most 14 distinct

eigenvalues on ∧3(V ).
(d) d = pe, k = 2, J is irreducible on ∧2(V ), and σ has at most κ(d − 1)/2 distinct

eigenvalues on ∧2(V ), where either κ = 4, or d ≡ 3(mod4) and κ = 5.

Proof. Let χ denote the character of J acting on V , and ε := + or − according as Σ =
Sym or ∧. Note that J is contained in the stabilizer

∏n
i=1 GL(Vi)o Sn of the decomposition.
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Hence we can use Lemma 6.1.8 and the isomorphism φ in (6.1.8.1) to replace Σk(V ) by the
direct sum in the right-hand-side of (6.1.8.1); in particular, we will identify each φ−1

(
Σi1(V1)⊗

Σi2(V2)⊗ . . .⊗Σin(Vn)
)

with Σi1(V1)⊗Σi2(V2)⊗ . . .⊗Σin(Vn). We will assume that (A) does
not hold, that is, Q acts nontrivially on Ω := {V1, V2, . . . , Vn}, and let D denote the kernel
of the action of J on Ω.

(i) First we consider the case where either Σ = Sym, or Σ = ∧ but k ≤ t. Then
we use (6.1.8.1) to write Σk(V ) = A ⊕ B as a direct sum of two J-submodules, where
A = Σk(V1)⊕ . . .⊕ Σk(Vn) and B is the direct sum of all remaining summands.

Suppose that ϕ is a constituent of the character of B. Then the character of the Q-module
A is scalar. Now, for any Q-orbit on Ω, say {V1, . . . , Vm}, the submodule ⊕mi=1Σk(Vi) of A is
an induced Q-module. It follows from Lemma 6.1.7(iii) that m = 1, and thus Q acts trivially
on Ω.

We have shown that ϕ is a constituent of the character of A, whence the character of the
Q-module B is scalar. Since Q permutes the summands in B, applying Lemma 6.1.7(iii) as
above, we see that Q fixes each summand occurring in B. In particular, if k ≥ 3, or if k = 2
but n ≥ 3, then Q must fix each of the summands Σk−1(Vi)⊗ Vj with 1 ≤ i 6= j ≤ n, and so
it again acts trivially on Ω. It follows that

k = n = 2, V = V1 ⊕ V2, Σ2(V ) ∼=
(
Σ2(V1)⊕ Σ2(V2)

)
⊕ V1 ⊗ V2.

As Q acts nontrivially on Ω, we have Q = 〈Q1, g〉, where Q1, of index 2 in Q, fixes each
of V1 and V2, and g : V1 ↔ V2; in particular, χ(g) = 0. Fix a basis (e1, . . . , et) for V1, so that
(fi := g(ei) | 1 ≤ i ≤ t) is a basis for V2. As Q1 < G1 = GL(V1)× GL(V2), by Lemma 6.1.8
the Q1-modules B and V1 ⊗ V2 are isomorphic. But Q|B is scalar, so Q1 is scalar on both V1

and V2 by Lemma 6.1.7(i). As g2 ∈ Q1, it follows that

(6.1.11.1) g2 : ei 7→ αei, fi = g(ei) 7→ g3(ei) = g(g2(ei)) = g(αei) = αfi, 1 ≤ i ≤ t

for some root of unity α ∈ C×. Also note that g : Σ2(V1)↔ Σ2(V2), so

Tr(g|B) = Tr(g|Σ2(V )) = Σ2(χ)(g) =
χ(g)2 + εχ(g2)

2
= tα

by (6.1.11.1). On the other hand, dim(B) = t2, and t = d/2 > 1. It follows that g|B is not a
scalar, a contradiction.

(ii) We have shown that Σ = ∧ and k > t = dim(Vi). Since 2 ≤ k ≤ d/2, we can write
k = at+ b, with a ≤ n/2 and 0 ≤ b ≤ t− 1. Here we consider the case t ≥ 2. Write ∧k(V ) =
A⊕B, where A is the sum of summands ∧i1(V1)⊗ . . .⊗∧in(Vn) subject to the condition that
exactly a of the ij take value t, one of the remaining takes value b, and all the others equal
0; in particular, A contains the summand A1 := ∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Va)⊗ ∧b(Va+1).

Consider the case ϕ is a constituent of B. Then Q|A is scalar. It follows from Lemma
6.1.7(iii) that Q stabilizes every summand in B (as any nontrivial Q-orbit would lead to a non-
scalar imprimitive Q-module). Let ∆ := {V1, . . . , Va} if b = 0 and ∆ := {V1, . . . , Va, Va+1} if
b > 0. As Q fixes A1, Q fixes ∆. If b = 0, then |∆| = a = k/t ≤ d/2t = n/2 ≤ n − 1. If
b > 0, then tn = d ≥ 2k = 2at + 2b > 2at, whence n ≥ 2a + 1 and |∆| = a + 1 ≤ n − 1.
Thus ∆ 6= Ω. The same argument applied to any Sn-conjugate of ∆ shows that Q fixes any
|∆|-subset of Ω. By Lemma 6.1.7(iv), Q must act trivially on Ω, i.e. (A) holds.
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Next assume that ϕ is a constituent of A. Then Q|B is scalar, and so, by Lemma 6.1.7(iii),
Q stabilizes every summand in B. Assume in addition that 0 ≤ b ≤ t− 2. Then B contains
the summand

B1 := ∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Va−1)⊗ ∧t−1(Va)⊗ ∧b+1(Va+1),

whence Q fixes ∆1 := {V1, V2, . . . , Va+1}. If a ≤ n − 2, then ∆′ 6= Ω. The same argument
applied to any (a + 1)-subset of Ω, and so Q acts trivially on Ω by Lemma 6.1.7(iv). So
n/2 ≥ a ≥ n − 1, whence n = 2, a = 1, and b = 0 as k ≤ d/2. Hence k = t, which is
impossible by (i).

Assume now that b = t − 1. Then tn = d ≥ 2k = 2at + 2t − 2 ≥ t(2a + 1), i.e.
n ≥ 2a+ 1 ≥ a+ 2. Suppose in addition that a ≤ n− 3. Then B contains the summand

B2 := ∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Va−1)⊗ ∧t−1(Va)⊗ ∧t−1(Va+1)⊗ Va+2,

whence Q fixes ∆2 := {V1, V2, . . . , Va+1, Va+2}, a proper subset of Ω. The same argument
applied to any (a + 2)-subset of Ω, and so Q acts trivially on Ω by Lemma 6.1.7(iv). So
a = n − 2, whence a = 1, n = 3, 3t = d ≥ 2k = 2(2t − 1), and so t = 2. In this case, J
acts transitively on Ω = {V1, V2, V3}, and the normal p-subgroup Q acts nontrivially on it.
It follows that Q = 〈Q2, h〉, where Q2, a normal subgroup of index 3 in Q, fixes each of Vi,
and h : V1 7→ V2 7→ V3 7→ V1; in particular, χ(h) = 0. Fix a basis (u1, u2) for V1, so that
(vi := h(ui) | i = 1, 2) is a basis for V2, and (wi := h2(ui) | i = 1, 2) is a basis for V3. As
Q2 < G1 = GL(V1)×GL(V2)×GL(V3), by Lemma 6.1.8 the Q2-modules B and V1⊗ V2⊗ V3

are isomorphic. But B|Q is scalar, so Q2 is scalar on each Vi by Lemma 6.1.7(i). As h3 ∈ Q2,
it follows that
(6.1.11.2)
h3 : ui 7→ βui, vi 7→ h4(ui) = h(h3(ui)) = βvi, wi 7→ h5(ui) = h2(h3(ui)) = βwi, i = 1, 2

for some root of unity β ∈ C×. One can check that the trace of h on A is 0, so

Tr(h|B) = Tr(h|∧3(V )) = ∧3(χ)(h) =
χ(h)3 − 3χ(h2)χ(h) + 2χ(h3)

6
= 2β

by (6.1.11.2). On the other hand, dim(B) = 8, whence h|B is not a scalar, a contradiction.

(iii) It remains to handle the case t = dim(Vi) = 1. Let Ω(k) denote the set of all k-subsets
of Ω. By Lemma 6.1.7(iii), any nontrivial Q-orbit on Ω(k) leads to a non-scalar Q-module.
A J-orbit on Ω(k) will be called Q-nontrivial if Q acts nontrivially on it. It follows from
6.1.9(b) that

(6.1.11.3) J has at most one Q-nontrivial orbit on Ω(k).

Here we aim to show that J acts k-homogeneously on Ω, i.e.

(6.1.11.4) J acts transitively on Ω(k).

Since J acts transitively on Ω and QC J acts nontrivially on Ω, all Q-orbits on Ω have the
same length s > 1. If s - k, then any ∆ ∈ Ω(k) cannot be stabilized by Q, whence Q acts
nontrivially on the J-orbit of ∆, and so this orbit is the entire Ω(k) by (6.1.11.3), and thus
(6.1.11.4) holds. Hence, we may write k = as for some a ∈ Z≥1. Since Q acts nontrivially
on Ω, we may assume that g(V1) = V2 for some g ∈ Q. Also recall that |Ω| = n ≥ 2k = 2as.
So we can find distinct Q-orbits Ω1, . . . ,Ωa, . . . ,Ω2a (all of length s). We may assume Ωa

contains V1, hence also V2 = g(V1).
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Consider the case s ≥ 3. Then we may assume V3 ∈ Ωa, and take the k-subset

X := Ω1 t Ω2 t . . . t Ωa−1 t (Ωa r {V2}) t {Vi0},

with Vi0 contained in Ωa+1. As g(V1) = V2 /∈ X, g(X) 6= X. Now if n/s ≥ a+ 2, then we can
find Vj0 contained in Ωa+2, and set

Y := Ω1 t Ω2 t . . . t Ωa−1 t (Ωa r {V2, V3}) t {Vi0} t {Vj0}.

Again, g(V1) = V2 /∈ Y , so g(Y ) 6= Y . Thus the J-orbits of X and of Y are both Q-
nontrivial. However, these two orbits are distinct (since X intersects exactly a + 1 Q-orbits
and Y intersects exactly a+ 2 Q-orbits), and this contradicts (6.1.11.3). If n/s ≤ a+ 1, then
in fact (a, k, n) = (1, s, 2s). Note that if s = 3, then p = 3 as Q has orbits of length s, and
we arrive at (B)(b). So we may assume s ≥ 4 and choose a k-subset Y1 of Ω = Ω1 t Ω2

with {|Y1 ∩Ω1|, |Y1 ∩Ω2|} = {s− 2, 2}. Clearly, Y1 is not Q-invariant, so its J-orbit is again
Q-nontrivial, and distinct from the J-orbit of X, since {|X ∩ Ω1|, |X ∩ Ω2|} = {s − 1, 1},
again contradicting (6.1.11.3).

Next suppose that s = 2, so that k = 2a and p = 2, but (B)(a) does not hold. Now we
have n = d ≥ max(5, 2k), and so n/s ≥ a + 2. Choose X as before, and take a k-subset Y2

of Ω with Y2 ⊃ Ω1 t . . . t Ωa−2 and |Y2 ∩ Ωj| = 1 for a − 1 ≤ j ≤ a + 2. Clearly, Y2 is not
Q-invariant, so its J-orbit is again Q-nontrivial, and distinct from the J-orbit of X (since X
intersects exactly a+1 Q-orbits and Y2 intersects exactly a+2 Q-orbits), again contradicting
(6.1.11.3).

(iv) We may now assume that J is k-homogeneous on Ω, see (6.1.11.4). Let J̄ = J/D ≤
S(Ω) denote the permutation group induced by this action, and let Q̄ denote the image of
Q, which is a nontrivial p-subgroup by assumption. We claim that Ω can be identified with
some W = Fep, e ∈ Z≥1, such that the action of J̄ on Ω is realized by a subgroup of the group

AGL(W ) =
{
w 7→ f(w) + v | f ∈ GL(W ), v ∈ W

} ∼= AGLe(p)

of affine transformations of W . Since Op(J̄) ≥ Q̄ > 1, the claim follows if J̄ is 2-transitive,
see [Cam, Theorem 4.1]. Assume J̄ is not 2-transitive. Then it cannot be k-transitive, and
such groups are classified in [Kan2, Theorem 1]. As J̄ is solvable, we can easily check that
the claim holds in these cases as well; in fact, we can verify that k = 2 and n ≡ 3(mod 4).

Note that in all cases, J̄ is a primitive subgroup of S(Ω). Now we can write J̄ = W̄ o J̄0,
where W̄ consists of translations w 7→ v + w and it is the unique minimal normal subgroup
of J̄ , see [Cam, Theorem 4.1], and J̄0 ≤ GL(W ) is the stabilizer of 0 in J̄ . We can now write
(6.1.11.5)

V =
⊕
x∈W

Vx with Vx = 〈ex〉C, and ∀h ∈ Q, there is v ∈ W such that h(ex) ∈ Vx+v.

Next we aim to show that k = 2. Assume the contrary: k ≥ 3. If p > 2, then J̄0 ≤ GL(W )
cannot act 2-transitively on W r {0} (indeed, it acts imprimitively, preserving the sets of
nonzero points on Fp-lines of W ), whence J̄ is not k-transitive on W with k ≥ 3. The latter
cannot happen by [Kan2, Theorem 1], since n = pe is odd and J̄ is solvable.

If p = 2, then n = 2e ≥ 8, and J̄0 ≤ GL(W ) cannot act 3-transitively on W r {0}
(indeed, it acts on the sets of nonzero points {x, y, x + y} on F2-planes of W ), whence J̄ is
not k-transitive on W . If k ≥ 4, then the latter cannot happen by [Kan2, Theorem 1], since
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J̄ is solvable. So assume k = 3. Again applying [Kan2, Theorem 1], we see that J̄ is still
2-transitive, and thus J̄0 is transitive on W r {0}. As J̄ B Q̄ 6= 1, we must have W̄ ≤ Q̄.
Now, if Q̄ > W̄ , then 1 6= Q̄/W̄ ≤ Op(J̄0), and so J̄0 fixes the Op(J̄0)-fixed point subspace
in W , which is nonzero and proper, contradicting its transitivity on W r {0}. So Q̄ = W̄ ,
and so J̄0

∼= J̄/Q̄ is a cyclic 2′-subgroup of GL(W ). Any odd-order subgroup cannot be
2-transitive, so J̄ is 3-homogeneous but not 3-transitive on n = 2e ≥ 8 points of W , with
socle W̄ and cyclic J̄0. Applying [Kan2, Theorem 1] once more, we conclude that n = 8
and J̄ ∼= AGL1(8) ∼= 23 o 7. In this case, consider the action of h ∈ Q on the decomposition
(6.1.11.5). For any three distinct x, y, z ∈ W ,

h(ex ∧ ey ∧ ez) ∈ 〈ex+v ∧ ey+v ∧ ez+v〉C
can be a multiple of ex ∧ ey ∧ ez only when {x, y, z} = {x + v, y + v, z + v}, in which case
3v = 0 and v = 0, i.e. h ∈ D. It follows that Q acts on Ω(3) with 7 orbits, of length 8 each.

Hence the restriction of ∧3(χ) to Q is the sum of seven characters of the form IndQQ∩D(λ),
with λ being linear. As γ is linear,

(6.1.11.6) [IndQQ∩D(λ), γ]Q = [λ, γ|Q∩D]Q∩D ≤ 1,

whence [∧3(χ)|Q, γ]Q ≤ 7, and so ϕ(1) ≥ ∧3(χ)(1) − 7 = 49 by (6.1.9)(b). Since D is an
abelian normal subgroup of J , ϕ(1) divides |J/D| = 56 by Ito’s theorem [Is, (6.15)]. Thus
ϕ(1) = 56, i.e. J is irreducible on ∧3(V ). Next, σ induces a generator t of J̄0

∼= C7 and
so permutes cyclically the set W r {0}. Note that σ7 fixes each Vx in the decomposition
(6.1.11.5), and commutes with σ that permutes the 7 spaces Vx with x 6= 0 cyclically. Hence
we can find α, β ∈ C× such that

σ7 : e0 7→ αe0, ex 7→ βex, ∀x 6= 0.

Thus σ7 has only 2 eigenvalues αβ2, β3 on ∧3(V ), and so σ has at most 14 distinct eigenvalues
on ∧3(V ), and we arrive at (B)(c).

(v) It remains to deal with Σk(V ) = ∧2(V ). We now show that

(6.1.11.7) d = pe, Q̄ = W̄ , and |J/D| ∈ {d(d− 1), d(d− 1)/2}.
First, d = pe by (6.1.11.5). Next, as mentioned above, if J̄ is 2-transitive, then W̄ = Q̄, and
so J̄0

∼= J̄/Q̄ ∼= J/QD is a cyclic p′-subgroup of GL(W ) ∼= GLe(p). Any such subgroup is
contained in a maximal torus of GLe(p), hence has order N ≤ pe − 1. The transitivity of J̄0

on W r {0} implies that N = pe − 1, and so |J̄ | = N · |W̄ | = d(d − 1). Next, σ induces a
generator t of J̄0 and so permutes cyclically the set W r {0}. Note that σN fixes each Vx
in the decomposition (6.1.11.5), and commutes with σ that permutes the N spaces Vx with
x 6= 0 cyclically. Hence we can find α, β ∈ C× such that

σN : e0 7→ αe0, ex 7→ βex, ∀x 6= 0.

Thus σN has only 2 eigenvalues αβ, β2 on ∧2(V ), and so σ has at most 2N = 2(d − 1)
distinct eigenvalues on ∧2(V ).

Suppose J̄ is not 2-transitive, whence it has odd order and d = n = pe ≡ 3(mod 4). One
can identify W with the field Fpe such that J̄0 has 2 orbits on W r{0}: the set W+ of squares
and the set W− of non-squares of F×pe , and is contained in the subgroup ΓL1(pe) of the semi-
linear transformations of Fpe , see [Kan1, Proposition 3.1]. If W̄ < Q̄ in this case, then J̄0



6.1. TYPE A 111

would stabilize a nonzero proper subspace of W , hence a subset of size 2 ≤ pe
′−1 < (pe−1)/2

of W r {0}, which is impossible. Thus we again have Q̄ = W̄ , and so J̄0
∼= J̄/Q̄ is a cyclic

p′-subgroup of GL(W ) ∼= GLe(p), of order N ≤ pe − 1 as above. As J̄0 has two orbits of
length (pe − 1)/2 on W r {0}, we must have that N = d− 1 or (d− 1)/2, and (6.1.11.7) is
proved. Next, σ induces a generator t of J̄0 and so permutes cyclically each of the sets W+

and W−. Now σ(d−1)/2 fixes each Vx in the decomposition (6.1.11.5), and commutes with σ
that permutes the (d − 1)/2 spaces Vx with x ∈ W+, respectively with x ∈ V−, cyclically.
Hence we can find α, β+, β− ∈ C× such that

σ(d−1)/2 : e0 7→ αe0, ex 7→ β+ex, ∀x ∈ W+, ey 7→ β−ey, ∀y ∈ W−.
Thus σ(d−1)/2 has only 5 eigenvalues αβ+, αβ−, β

2
+, β

2
−, β+β− on ∧2(V ), and so σ has at most

5(d− 1)/2 distinct eigenvalues on ∧2(V ).
We again consider the action of any h ∈ Q on the decomposition (6.1.11.5). For any x 6=

y ∈ W , h(ex∧ey) ∈ 〈ex+v∧ey+v〉C can be a multiple of ex∧ey only when {x, y} = {x+v, y+v}.
If p > 2, we then have 2v = 0 and v = 0, i.e. h ∈ D. It follows that Q acts on Ω(2) with
(d − 1)/2 orbits, of length d each. Hence ∧2(χ)|Q is the sum of (d − 1)/2 characters of the

form IndQQ∩D(λ), with λ being linear. Using (6.1.11.6), we see that [∧2(χ)|Q, γ]Q ≤ (d− 1)/2,
and thus

(6.1.11.8) ϕ(1) ≥ ∧2(χ)(1)− (d− 1)/2 = (d− 1)2/2

by (6.1.9)(b).
If p = 2, then we have either v = 0, or v = x + y. It follows that Q acts on Ω(2) with

d − 1 orbits, of length d/2 each. Hence ∧2(χ)|Q is the sum of d − 1 characters of the form

IndQQ1
(λ), with λ being linear and |Q1/(Q ∩ D)| = 2. Again using (6.1.11.6), we see that

[∧2(χ)|Q, γ]Q ≤ d− 1, and so

(6.1.11.9) ϕ(1) ≥ ∧2(χ)(1)− (d− 1)/2 = (d− 1)(d− 2)/2

by (6.1.9)(b).
In both cases, D is an abelian normal subgroup of J , so ϕ(1) divides |J/D| by Ito’s

theorem, and |J/D| divides d(d − 1) = 2(dim∧2(V )) by (6.1.11.7). Noting 2 = k ≤ d/2
and assuming (B)(a) does not hold, we conclude from (6.1.11.8) and (6.1.11.9) that ϕ(1) =
d(d− 1)/2, i.e. J is irreducible on ∧2(V ), establishing (B)(d). �

Proposition 6.1.12. Under Hypothesis 6.1.9, suppose that J acts irreducibly on V . Then
either Q acts irreducibly on V , or one of the following holds.

(a) Σk = Sym2, d = 3, and V |Q is a sum of 3 irreducible submodules of dimension 1.
(b) Σ = ∧, k = 2, 3, d = 6, and V |Q is a sum of d/k irreducible submodules of dimension k.
(c) Σ = ∧, k = 2, 3, d ≤ 2k, and V |Q is a sum of d irreducible submodules of dimension 1.

Proof. Assume that Q is reducible on V . Then QZ is also reducible on V , and since
J/QZ is cyclic but J is irreducible, we can decompose

V |QZ = V1 ⊕ V2 ⊕ . . .⊕ Vm,
where Vi ∈ Irr(QZ), dimVi =: t = d/m and m ≥ 2. Since σ generates J/QZ, we may also
write

(6.1.12.1) σ : V1 7→ V2 7→ . . . 7→ Vm 7→ V1,
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in particular, R := 〈σm, QZ〉 fixes each Vi. Since RCJ , if a subspace U ⊆ Σk(V ) is R-stable,
then so is σi(U), and 〈σ〉(U) =

∑m−1
i=0 σ

i(U) is a G-submodule. In what follows, we will
choose U to be some summand in the decomposition (6.1.8.1).

(ii) First we consider the case Σ = Sym. Using Lemma 6.1.8 we can write Symk(V ) =
A ⊕ B, where A = ⊕mi=1Symk(Vi) and B, the sum of the remaining summands, are both J-
invariant. If the J-character of A contains ϕ, then Q is scalar on summands Symk−1(Vi)⊗Vj
(with i 6= j), and so Q|Vi is scalar by Lemma 6.1.7, say Vi affords the Q-character λi. By
(6.1.9)(b), λk−1

i λj = γ for all i 6= j, and n = d ≥ 3. It follows that λi = λ1 and λk1 = γ.
But in this case, Q acts on A via the character dim(A)γ, and so [ϕ|Q, γ]Q > 0, violating
(6.1.9)(b).

Hence the J-character of B contains ϕ, and so Q|A is scalar and Q|Vi is again scalar by
Lemma 6.1.7(ii). Again let λi be the Q-character of Vi, and we also have n = d ≥ 3 and
λki = γ. Note that the λi are pairwise distinct, since J is irreducible on V . If k ≥ 3, then B
contains the direct sum of two proper J-submodules B1 ⊕B2, where

B1 := Symk−1(V1)⊗ V2 ⊕ Symk−1(V2)⊗ V3 ⊕ . . .⊕ Symk−1(Vm)⊗ V1,

B2 := V1 ⊗ Symk−1(V2)⊕ V2 ⊗ Symk−1(V3)⊕ . . .⊕ Vn ⊗ Symk−1(Vm).

If moreover the character of B2 contains ϕ, then Q|B1 is scalar, and in fact λk−1
1 λ2 = γ = λk1,

whence λ1 = λ2, a contradiction. Otherwise Q|B2 is scalar, and in fact λ1λ
k−1
2 = γ = λk2,

whence λ1 = λ2, again a contradiction. If k = 2 and d ≥ 4, then B contains the direct sum
of two proper J-submodules B1 ⊕B3, with

B1 := 〈σ〉(V1 ⊗ V2) = V1 ⊗ V2 ⊕ V2 ⊗ V3 ⊕ . . .⊕ Vm−1 ⊗ Vm ⊕ Vm ⊗ V1,

B3 := 〈σ〉(V1 ⊗ V3) = V1 ⊗ V3 ⊕ V2 ⊗ V4 ⊕ . . .⊕ Vm−1 ⊗ V1 ⊕ Vm ⊗ V2.

Now we can repeat the previous argument to reach a contradiction.

(ii) From now on we may assume Σ = ∧ and 2 ≤ k ≤ d/2, see (6.1.9.1). We also write

k = qt+ r,

where q, r ∈ Z≥0 and 0 ≤ r ≤ t− 1. Here we consider the case t ≥ 3.
First assume that r ≥ 2. If q = 0, then m ≥ q + 2. If q ≥ 1, then mt = d ≥ 2k =

2qt + 2r > 2qt, and so m ≥ 2q + 1 ≥ q + 2 as well. Hence, (6.1.12.1) implies that ∧k(V )
contains the direct sum 〈σ〉(X)⊕ 〈σ〉(Y ) of G-modules, where

X = ∧t(V1)⊗∧t(V2)⊗. . .⊗∧t(Vq)⊗∧r(Vq+1), Y = ∧t(V1)⊗∧t(V2)⊗. . .⊗∧t(Vq)⊗∧r−1(Vq+1)⊗Vq+2.

By (6.1.9)(b), the character of at least one of them, say 〈σ〉(X), does not contain ϕ. It
follows from Lemma 6.1.7 that Q|Vq+1 is scalar, and so 1 = dim(Vq+1) = t by irreducibility, a
contradiction.

Next assume that r = 1. Then we still have mt = d > 2qt and m ≥ q + 2; also q ≥ 1 as
2 ≤ k = qt+1. Hence, (6.1.12.1) implies that ∧k(V ) contains the direct sum 〈σ〉(X)⊕〈σ〉(Y1)
of G-modules, where X is as above, and

Y1 = ∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Vq−1)⊗ ∧t−1(Vq)⊗ ∧2(Vq+1).

By (6.1.9)(b), the character of at least one of them, say 〈σ〉(Y1), does not contain ϕ. It
follows from Lemma 6.1.7 that Q|Vq is scalar, and so 1 = dim(Vq) = t, again a contradiction.
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Assume now that r = 0. Then q ≥ 1 as 2 ≤ k = qt, and mt = d ≥ 2qt implies m ≥ q+ 1.
If moreover (m, t) = (q + 1, 3), then (d, k) = (6, 3). Hence we may assume m ≥ q + 2 when
t = 3. Now, (6.1.12.1) implies that ∧k(V ) contains the direct sum 〈σ〉(X2) ⊕ 〈σ〉(Y2) of
G-modules, where

X2 = ∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Vq−1)⊗ ∧t−1(Vq)⊗ Vq+1,

Y2 =

{
∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Vq−1)⊗ ∧t−2(Vq)⊗ ∧2(Vq+1), if t ≥ 4,
∧t(V1)⊗ ∧t(V2)⊗ . . .⊗ ∧t(Vq−1)⊗ Vq ⊗ Vq+1 ⊗ Vq+2, if t = 3.

By (6.1.9)(b), the character of at least one of them, say 〈σ〉(X2), does not contain ϕ. It
follows from Lemma 6.1.7 that Q|Vq is scalar, and so 1 = dim(Vq) = t, again a contradiction.

(iii) Now we consider the case t = 2. We will use the same arguments as in (ii), by
exhibiting a direct sum of two G-submodules 〈σ〉(X) ⊕ 〈σ〉(Y ). Since at least one of them
does not contain ϕ in its character, Lemma 6.1.7 will imply that Q is scalar on tensor factors
of X or Y , leading to the contradiction that dim(Vi) = t = 1.

Suppose k = 2q + 1 ≥ 3. As n = 2m ≥ 2k, we have m ≥ q + 2, and can choose

X = ∧2(V1)⊗∧2(V2)⊗. . .⊗∧2(Vq)⊗Vq+1, Y = ∧2(V1)⊗∧2(V2)⊗. . .⊗∧2(Vq−1)⊗Vq⊗Vq+1⊗Vq+2.

Next, suppose that k = 2q ≥ 4. As n = 2m ≥ 2k, we have m ≥ q + 2, and can choose

X = ∧2(V1)⊗ ∧2(V2)⊗ . . .⊗ ∧2(Vq−1)⊗ Vq ⊗ Vq+1,

Y = ∧2(V1)⊗ ∧2(V2)⊗ . . .⊗ ∧2(Vq−2)⊗ Vq−1 ⊗ Vq ⊗ Vq+1 ⊗ Vq+2.

If k = 2 and d = 2m ≥ 8, then we choose X = V1 ⊗ V2 ans Y = V1 ⊗ V3, so that

〈σ〉(X) = V1 ⊗ V2 ⊕ V2 ⊗ V3 ⊕ . . . Vm ⊗ V1, 〈σ〉(Y ) = V1 ⊗ V3 ⊕ V2 ⊗ V4 ⊕ . . . ,
(note that dim〈σ〉(X) = 2m, dim〈σ〉(Y ) = 2m if 2 - m and dim〈σ〉(Y ) = m if 2|m).

(iv) Finally, we consider the case t = 1, so that d = m, and write Vi = 〈ei〉C. Now, for
any k-subset {i1, . . . , ik} of {1, 2, . . . , d}, 〈σ〉(〈ei1 ∧ei2 ∧ . . .〉C) is a J-submodule of dimension
≤ d, and ∧k(V ) is a direct sum of such submodules. By 6.1.9(b), one of them contains ϕ in
its character, in particular,

(6.1.12.2) ϕ(1) ≤ d,

and Q acts via a multiple of γ on all others. Let λi denote the Q-character of Vi. Since J/QZ
is cyclic and J is irreducible on V , the d characters λ1, λ2, . . . , λd are pairwise distinct.

Suppose k ≥ 3 and d ≥ 7, and there exists a (k − 1)-subset S = {j1, . . . , jk−1} of
{3, 4, . . . , d} such that Q acts on both e1 ∧ ej1 ∧ ej2 ∧ . . .∧ ejk−1

and e2 ∧ ej1 ∧ ej2 ∧ . . .∧ ejk−1

via the same character γ. It follows that γ = λ1

∏k−1
i=1 λji = λ2

∏k−1
i=1 λji , and so λ1 = λ2, a

contradiction. Thus, for each such S, the character of Q on at least one of e1 ∧ ej1 ∧ ej2 ∧
. . . ∧ ejk−1

and e2 ∧ ej1 ∧ ej2 ∧ . . . ∧ ejk−1
differs from ϕ. It follows that

ϕ(1) ≥
(
d− 2

k − 1

)
≥
(
d− 2

2

)
> d

(as 3 ≤ k ≤ d/2 and d ≥ 7), and this contradicts (6.1.12.2).
So we have k = 2 and d ≥ 5. Suppose ϕ is contained in the character of

M := 〈σ〉(〈e1 ∧ e2〉C) = 〈e1 ∧ e2, e2 ∧ e3, . . . , ed−1 ∧ ed, ed ∧ e1〉C.
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In this case, Q acts via γ on e1 ∧ e3 and e1 ∧ e4, whence λ1λ3 = γ = λ1λ4, and so λ3 = λ4,
again a contradiction. Hence Q acts via the character dγ on M , and so γ = λ1λ2 = λ2λ3,
leading again to the contradiction that λ2 = λ3. �

Lemma 6.1.13. LetH be a hypergeometric sheaf of type (6,m) with m < 6 in characteristic
p. Suppose that G◦geom realizes the image of SL3 on its representation L(2$1). Then p = 2.

Proof. We will show that if p > 2, no such H exists. In view of Theorem 4.1.1, we
know w > 1. Because G0

geom has no nontrivial outer automorphism which preserves the given
representation, Lemma 6.2.2 tells us that after replacing H by some Lχ ⊗ H, χ some tame
character, we may assume that Ggeom = SL3/µ2. View H as giving a homomorphism Ψ0 :
πgeom

1 (Gm)→ SL3/µ2, and use the vanishing of H2(πgeom
1 , µ2) to lift Ψ0 to a homomorphism

Ψ : πgeom
1 (Gm)→ SL3. Then view Ψ as giving a rank 3 lisse sheaf on Gm/Fp with Sym2(F) ∼=

H. Because p 6= 2, the fact that H is tame at 0 and has highest ∞-slope 1/w tells us that
F is tame at 0 and has highest ∞-slope 1/w. Then w ≤ 3, because F is not tame at ∞ but
has Swan ≤ rank(F)(1/w) = 3/2.

Suppose first that p ≥ 5. Then w 6= 2 by [Ka-ESDE, 7.2.7], applied to H. [For w = 2,
the only bad primes are 2, 3, so if w = 2 then H would have its G0,der

geom either SL6 or SO6 or
Sp6.] Therefore w = 3. This in turn implies that F is Kloosterman of rank 3. So its P (∞)
representation is the direct sum of three linear characters⊕

ζ∈µ3(Fp)

Lψ(3ζx).

If we arbitrarily label the three elements of µ3(Fp) as ζ1, ζ2, ζ3, then Sym2(F) has P (∞)
representation the direct sum of the six linear characters

⊕3
i=1Lψ(6ζix)

⊕
⊕1≤i<j≤3Lψ(3(ζi+ζj)x).

Because p ≥ 5, each of these characters of P (∞) is nontrivial (i.e. each of ζi and ζi + ζj is

nonzero in Fp), and thus Sym2(F) ∼= H is totally wild, contradicting the fact H has w ≤ 3.
It remains to treat the case p = 3. If w = 3, then F is Kloosterman of rank 3, the image

Q of P (∞) is 31+2 in one of its irreducible representations of dimension 3. So on F , the center
of Q acts as 3ξ for some nontrivial character of the center, i.e. a nontrivial additive character
of C3. Then the center acts on Sym2(F) ∼= H as 6ξ2. Thus H is totally wild, contradicting
the fact that H has w ≤ 3. Suppose now w = 2. Then the P (∞) representation of F is
W2 ⊕ 1, with W2 the sum of two linear characters Lψ(x) ⊕ Lψ(−x). Then Sym2(F) ∼= H has
P (∞) representation given by

Lψ(2x) ⊕ Lψ(−2x) ⊕ 1⊕ 1⊕ Lψ(x) ⊕ Lψ(−x).

Then m = 2, i.e. H has w = 4, contradiction. �

Lemma 6.1.14. Let H be a hypergeometric sheaf of type (15,m) with m < 15 in charac-
teristic p. Suppose that G◦geom realizes the image of SL6 on its representation L($2). Then
p = 2.

Proof. (i) We will show that if p > 2, then no such H exists. In view of Theorem
4.1.1, we know w := 15 − m > 1. Because G0

geom has no nontrivial outer automorphism
which preserves the given representation, Lemma 6.2.2 tells us that after replacing H by
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some Lχ ⊗ H, χ some tame character, we may assume that Ggeom = SL6/µ2. View H as
giving a homomorphism Ψ0 : πgeom

1 (Gm)→ SL6/µ2, and use the vanishing of H2(πgeom
1 , µ2) to

lift Ψ0 to a homomorphism Ψ : πgeom
1 (Gm)→ SL6. Then view Ψ as giving a rank 6 lisse sheaf

on Gm/Fp with ∧2(F) ∼= H. Because p 6= 2, the fact that H is tame at 0 and has highest
∞-slope 1/w tells us that F is tame at 0 and has highest ∞-slope 1/w. Now F cannot be
tame at ∞ (simply because H is not). But Swan∞(F) ≤ (rank(F))(highest slope) = 6/w
must be ≥ 1 (otherwise F is tame at ∞), hence w ≤ 6, i.e.

(6.1.14.1) m ≥ 9.

(i) Suppose first p - w. Then Q, the image of P (∞) on H, is an abelian group of exponent
p by [KT5, Proposition 4.10]. Because p is odd, Q lifts uniquely from SL6/µ2 to SL6. Thus
Q < SL6 = SL(V ); let

∑6
i=1 αi denote the Q-character of V , so that Q acts on H with the

character
∑

i<j αiαj. Consider first the case where the αi’s are pairwise distinct. Then each of

the following five sets of characters {α1α2, α1α3, α1α4, α1α5, α1α6}, {α2α3, α2α4, α2α5, α2α6},
{α3α4, α3α5, α3α6}, {α4α5, α4α6}, {α5α6} consists of pairwise distinct characters, and so 1Q
can occur at most five times, contradicting (6.1.14.1).

Suppose instead that α1 = α2 =: α. Then for each i ∈ {3, 4, 5, 6}, α1αi = α2αi. But 1Q
is the only character in H|Q occurring more than once. Thus α3 = α4 = α5 = α6 =: β, and
the character of H|Q is α2 + 8αβ+ 6β2. Since only 1Q occurs more than once, αβ = β2 = 1Q,
whence α = β = 1Q as p > 2, and so Q acts trivially in H, which is nonsense because w > 0.

(iii) It remains to treat the cases when 2 < p | w. As 2 ≤ w ≤ 6 by (6.1.14.1), the
only cases of (p, w) to consider are (5, 5), (3, 3), (3, 6). We first treat the case p = 5 = w,
so Q is non-abelian by [KT5, Proposition 4.10]. In this case, the Q-module V decomposes
as X ⊕ Y with X, Y irreducible of dimension 5 and 1. Hence the Q-module H breaks as
∧2(X) ⊕ X ⊗ Y . Let QX denote the kernel of Q on X and let 5ξ denote the character of
Z(Q/QX) on X. Then Z(Q/QX) acts on ∧2(X) with character 10ξ2; in particular ∧2(X) is
totally wild, contradicting w = 5.

In the case p = 3, the Q-module V decomposes as X⊕Y with X irreducible of dimension
3 and Y either irreducible of dimension 3, or a sum of three irreducible submodules 1. In the
latter case, the Q-module H breaks as ∧2(X)⊕X ⊗ Y ⊕∧2(Y ), with ∧2(X) totally wild (by
a similar argument as in the case p = 5) and X ⊗ Y a sum of three irreducible modules each
of dimension 3 and so totally wild as well, yielding the contradiction w ≥ 12. In the former
case, both ∧2(X) and ∧2(Y ) are again totally wild, and so, as w ≤ 6, X ⊗ Y must be tame.
By Lemma 6.1.7(i), Q acts via scalars on X, contradicting its irreducibility. �

Lemma 6.1.15. Let H be a hypergeometric sheaf of type (20,m) with m < 20 in charac-
teristic p. Suppose that G◦geom realizes the image of SL6 on its representation L($3). Then
p ≤ 3.

Proof. (i) Arguing by contradiction, assume p ≥ 5. Since Out(SL6) ∼= C2, the subgroup
G1 of G := Ggeom that induces only inner automorphisms of G◦ has index ≤ 2 in G. Moreover,
since G◦ is irreducible on the underlying representation VH, CG(G◦) = Z(G), and G1 =
Z(G)G◦. If G = G1, set H1 := H. In this case, H1 has largest ∞-slope 1/w.

If G > G1, then G/G1
∼= C2. The composite map

πgeom
1 (Gm)→ G→ G/G1

∼= C2
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is then trivialized by the unique (because p 6= 2) étale double covering of Gm/Fp, namely the
Kummer double covering. Thus the Kummer pullback H1 := [2]?H has G1 as its geometric
monodromy group. In this case, H1 has largest ∞-slope 2/w.

In both cases, H1 has G1 as its geometric monodromy group and has largest ∞-slope
≤ 2/w.

Applying Lemma 6.1.6, we obtain a reductive subgroup H ≤ GL6 = GL(V ) which admits
a surjection σ : H � G1 with kernel C3, and such that G1 acts on VH as H acts on
∧3(V ). The homomorphism Ψ0 : πgeom

1 → G1 given by H1 can be lifted to a homomorphism
Ψ : πgeom

1 → H (by the vanishing of H2(πgeom
1 , C3)). We view Ψ as giving us a rank 6 lisse

sheaf F on Gm/Fp with ∧3(F) ∼= H1. Because p 6= 3, F and H1 have the same highest
∞-slope, which is ≤ 2/w. Thus F has Swan∞ ≤ rank(F)(2/w) = 12/w. As F is not tame
at ∞, we must have w ≤ 12, or equivalently

(6.1.15.1) m ≥ 8.

(ii) Let Q denote the image of P (∞) in G. Since p 6= 2, Q ≤ G1. Next, since p 6= 3,
Q embeds in H as a finite p-subgroup. Note that Q acts on the tame part TameH of H via
the character m · 1Q with m ≥ 8, and the Q-module WildH of H is multiplicity-free. Because
p 6= 2, the action of Q on WildH1 = [2]?WildH is isomorphic to its action on WildH, so is
multiplicity free, and its action on TameH1 remains trivial of rank m. We now exploit the
fact that ∧3(F) ∼= H1.

Assume first that Q is abelian. Then Q acts on F via a sum
∑6

i=1 αi of six linear
characters, and acts on H1 via the character

∑
i<j<k αiαjαk. Suppose that αi 6= αj whenever

i 6= j. Then each of the 6 collections

{αiαjαk | (i, j, k) = (123), (124), (125), (126)}, {αiαjαk | (i, j, k) = (134), (135), (136)},
{αiαjαk | (i, j, k) = (234), (235), (236)}, {αiαjαk | (i, j, k) = (145), (245), (345)},
{αiαjαk | (i, j, k) = (156), (256), (356), (456)}, {αiαjαk | (i, j, k) = (146), (246), (346)}

contains 1Q at most once, and thus m ≤ 6, a contradiction. Hence we may assume α1 =
α2 =: α. Now, for each 3 ≤ i < j ≤ 6, α1αiαj and α2αiαj coincide, hence cannot be among
Q-characters on Wild, and so α1αiαj = α2αiαj. It follows that α3 = α4 = α5 = α6 =: β. In
this case, we see that the character of Q on H1 is 12αβ2 + 4α2β + 4β3. This contradicts the
fact that every irreducible Q-character on Wild occurs exactly once in the Q-character of H1.

(iii) It remains to treat the case when Q is non-abelian, whence p|w by [KT5, Proposition
4.10]; moreover Q∩Z(G) = 1 by [KT5, Proposition 4.8(i)]. Since p 6= 3 = |Ker(σ)|, σ injects
Q ∩ Z(H) into Q ∩ Z(G), hence Q ∩ Z(H) = 1. On the other hand, Q ↪→ H = Z(H)SL6,
so Q embeds in H/Z(H), a quotient of SL6 by Z(H) ∩ SL6 and so semisimple. By [Bor,
E-44, II.5.16], Q embeds in the normalizer of some maximal torus T of H/Z(H), which has
Weyl group S6. Now, if p ≥ 7, then p - |S6|, and so Q ↪→ T would be abelian. As w ≤ 12
and p ≥ 5, it therefore remains to consider the case p = 5|w, i.e. w ∈ {5, 10}. Now FQ is
a faithful module for the non-abelian 5-subgroup Q, so it decomposes as X ⊕ Y with X, Y
irreducible of dimension 5 and 1. Hence the Q-module H1 breaks as ∧3(X) ⊕ ∧2(X) ⊗ Y .
Let QX denote the kernel of Q on X and let 5ξ denote the character of Z(Q/QX) on X.
Then Z(Q/QX) acts on ∧3(X) with character 10ξ3; in particular ∧3(X) is totally wild of
dimension 10. As w ≤ 10, this implies that ∧2(X) ⊗ Y is tame, whence Q acts via scalars
on X by Lemma 6.1.7(ii), contradicting its irreducibility. �



6.1. TYPE A 117

Now we can prove the main result of this section:

Theorem 6.1.16. Suppose that H is a hypergeometric sheaf in characteristic p, of type
(D,m) with D > m, such that G◦geom is a simple algebraic group of type Ad−1 for some d ≥ 3
and acts irreducibly on H. Then one of the following statements holds.

(a) d = D and SLD CGgeom < GLD.
(b) (p, d,D) = (2, 3, 6), and G◦geom acts on H as SL3 = SL(V ) acts on Sym2(V ) or Sym2(V ∗).
(c) (d,D) = (3, 8), and G◦geom acts on H as SL3 = SL(V ) acts on the adjoint module.

(d) d = 4, 6, and G◦geom acts on H as SLd = SL(V ) acts on ∧k(V ) or ∧k(V ∗) for some
2 ≤ k ≤ d/2. Moreover, if d = 6 then p ≤ k.

Proof. (i) Recall that a (topological) generator g0 of the image of I(0) in G := Ggeom has
a regular spectrum on the representation VH underlying H. Staying aside from exceptions
listed in (c) and (d), as well as the main case (a), we may apply Theorem 3.3.4 to conclude
that g0 ∈ Z(G)G◦, and G◦ acts on VH as SL(V ) ∼= SLd acts on Σk(V ) with Σ = Sym or ∧,
k ≥ 2, and 2 ≤ k ≤ d− 2 if Σ = ∧.

Let G0 denote the Zariski closure of the normal closure of 〈g0〉 in G. Then G0 ≤ Z(G)G◦.
If m ≤ D − 2, then G = G0 by Theorem 1.2.2. If m = D − 1, then G/G0

∼= Cp by
[KRLT4, Theorem 5.2]. Since G◦ is irreducible on VH, G/Z(G)G◦ can only induce outer
automorphisms of G◦, and we conclude that G = Z(G)G◦ if p > 2. If p = 2, then by Theorem
4.1.5 we arrive at (a) or (d) (the latter being the case if d = 4 and G◦ = SO6). We also note
that, in the case of (d) with d = 6, the conclusion p ≤ k follows from Lemmas 6.1.14 and
6.1.15, and p = 2 in the case of (b) by Lemma 6.1.13.

(ii) From now, we will assume that none of (a)–(d) holds, and so G = Z(G)G◦. By
Lemma 6.1.6, there is a reductive subgroup H ≤ GL(V ) with finite center and a finite
subgroup Z ≤ H ∩ Z(GL(V )), such that G ∼= H/Z and G acts on VH as H acts on Σk(V ).
Let Φ denote the representation of I(∞) on the wild part Wild of VH. Also, let J∞ denote the
image of I(∞) in G, and let Q∞ denote the image of P (∞) in G. One knows by Proposition
2.4.2 that the I(∞)-representation H is Wild ⊕ Tame, and Φ(I(∞)) is a finite subgroup of
GL(Wild), with Φ(P (∞)) as a normal subgroup with cyclic p′-quotient. Hence we can find
an element g∞ ∈ J∞ such that Φ(g∞) has finite p′-order and generates Φ(I(∞)) modulo
Φ(P (∞)). Since o(Φ(g∞)) is finite, the unipotent part u∞ of g∞ acts trivially on Wild, and
Φ(g∞) = Φ(s∞) for the semisimple part s∞ of g∞. The finite subgroup Q∞ is closed in G,
and so is its normalizer NG(Q∞), which must then act on Tame, the fixed point subspace
for Q∞ on H. As s∞ belongs to the Zariski closure in G of J∞ ≤ NG(Q∞), s∞ also acts
on Tame and normalizes Q∞. Recall that the “downstairs” characters of H determine the
action of 〈s∞〉 on Tame. It follows that s∞ is an element of finite p′-order in G, and by the
construction, Φ(s∞) still generates Φ(I(∞)) modulo Φ(P (∞)).

Now we let J be the full inverse image in H of the finite subgroup 〈Q∞, s∞〉; in particular,
J < GL(V ) is finite. Then RCJ for the full inverse image R of Q∞ in H. Now R/Z ∼= Q∞ is
a finite p-group and Z ≤ Z(J), so R = Q×Op′(Z) for a Sylow p-subgroup Q of R, and QCJ .
Since 〈Q∞, s∞〉/Q∞ is a cyclic p′-group, by the Schur-Zassenhaus theorem [KS, 6.2.1] we can
write J = Q o C for a p′-subgroup C, and C = 〈Op′(Z),σ〉 for some element σ ∈ J . Since
J is solvable, by Hall’s theorem [KS, 6.4.6] we can choose σ such that it projects onto s∞
under H � G. The action of 〈Q∞, s∞〉 on Wild, which is the same as the action of I(∞), is
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described in Propositions 4.8 and 4.9 of [KRLT4], and recall that Z acts trivially on Σk(V ).
Also, Q acts trivially on Tame. Switching from ∧k(V ) to ∧d−k(V ) to ensure (6.1.9.1) in the
case Σk = ∧k with k > d/2, we still have that the Q-character afforded by Tame is a multiple
of a linear character γ. Hence Hypothesis 6.1.9 holds, with ϕ being the J-character of Wild.
Again using Propositions 4.8 and 4.9 of [KRLT4], we note that

(6.1.16.1) σ has simple spectrum in a representation affording ϕ.

Indeed, write ϕ(1) = dimWild = D −m = paW0 with p - W0. If a = 0, then by [KRLT4,
Proposition 4.8] the spectrum of σ on Wild consists of all W th

0 roots of some ζ ∈ C×. If a > 0,
then by [KRLT4, Proposition 4.9] the spectrum of σ on Wild consists of all W th

0 roots of all
elements in the set ζ · (µpa+1 r {1}) for some ζ ∈ C×.

(iii) If Σ = ∧, then d ≥ 4 as k ≥ 2. As (d) does not hold, we may assume d > 4 when
Σ = ∧. Hence, by Proposition 6.1.10, J is irreducible on V . Now, since we are not in (b) nor
in (d), we have by Proposition 6.1.12 that Q is irreducible on V .

Let A be any characteristic abelian subgroup of Q. Then A C J , and so J preserves a
decomposition V = V1 ⊕ V2 ⊕ . . .⊕ Vn of V into A-isotypic components. By irreducibility, J
acts transitively on its summands, and we can apply Proposition 6.1.11. Note that, in the
cases (c) and (d) of 6.1.11(B), Σ = ∧, and ϕ(1) = D equals 56, respectively d(d− 1)/2 with
d = pe, whereas σ has at most 14, respectively κ(d−1)/2 < D = d(d−1)/2 (note that κ ≤ 5,
and κ = 4 when d = 5). Hence (6.1.16.1) rules out these possibilities, and we conclude that
Q fixes each summand Vi. However, Q is irreducible on V , so n = 1. As A is abelian, it
follows that A acts via scalars on V , and so it is central.

We have shown that every characteristic abelian subgroup of Q is central; also Q < GL(V )
is irreducible on V ; in particular, d = pm. Hence Proposition 1.1.10 applies to Q. Consider
the case p - k. By Proposition 1.1.10(iii), the Q-character afforded by W = Σk(V ) is a
multiple of a single irreducible character of degree pm = d of Q. Hypothesis 6.1.9 now
implies that ϕ(1) = D, i.e. H is Kloosterman and p|D. Also, ϕ|Q is multiplicity-free by

[KRLT4, Proposition 4.9], so d = pm = D ≥
(
d
2

)
, a contradiction.

Finally, assume that p|k. By Proposition 1.1.10(iv), the Q-character afforded by W =
Σk(V ) contains at least N distinct linear characters of Q, where N := p2m − 1 if p > 2,
N := 2m−1(2m + 1) if p = 2 and Σ = Sym, and N := 2m−1(2m − 1) if p = 2 and Σ = ∧.
Hypothesis 6.1.9 now implies that ϕ|Q contains at least N − 1 distinct linear characters of
Q, and all these must be permuted transitively by σ. On the other hand, by Proposition
1.1.10(ii), the order M of the automorphism f of Q induced by σ is less than pm+1/(p− 1).
As d = pm ≥ 3, we arrive at the contradiction that N − 1 > M , unless d = 4. In the case
d = 4, we may assume Σ = Sym, whence N = 10, whereas M ≤ 8 (in fact M ≤ 5), again a
contradiction. �

For later use, we will prove some more statements about case (d) of Theorem 6.1.16.

Lemma 6.1.17. In case (d) of Theorem 6.1.16, if d = 6 and p = k = 3 then m 6= 1.

Proof. Assume that d = 6 and p = k = 3 in Theorem 6.1.16(d), but m = 1, so that
w = 19. By [KRLT4, Proposition 4.8], Q is elementary abelian of order 318, and it is
normalized by a 3′-element g∞ that permutes the 19 characters of Q on Wild cyclically. Since
p - D = 20, p - |Z(G)| by [KT5, Proposition 4.8(iv)]. So we have that Q ≤ G◦ = G/Z, where
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G = Ggeom and G = SL(V ) ∼= SL6, Z ∼= C3; moreover, g2
∞ ∈ Z(G)G◦ acts irreducibly on Q.

Let R be the full inverse image of Q in G, so that Z(R) ≥ Z ≥ [R,R]. The irreducible action
of g2

∞ on R/Z shows that either Z(R) = R, or Z(R) = Z. Suppose we are in the former
case. Then R is abelian of exponent ≤ 9 and order 319. Hence Ω1(R) := {x ∈ R | x3 = 1}
is an elementary abelian 3-subgroup of SL6 of order ≥ 310, a contradiction. In the latter
case, [R,R] = Z = Z(R) and the Frattini subgroup Φ(R) is also Z since exp(Q) = 3, whence
R is extraspecial 3-group 31+18

± . In such a case, any complex representation of R which is
nontrivial on Z must be of dimension ≥ 39, too big for dim(V ) = 6. �

Lemma 6.1.18. In case (d) of Theorem 6.1.16, if (d, k) = (6, 2) then the set of “upstairs”
characters cannot be µ15.

Proof. Assume that 6.1.16(d) occurs with (d, k) = (6, 2) and µ15 as the set of “upstairs”
characters. Since G = Z(G)G◦ with G = Ggeom and G◦ = SL6/C2, we see that there exist
c ∈ C× and A ∈ SL6 such that the spectrum of g0 = c · ∧2(A) is µ15. It follows that
1 = det(g0) = c15 det(∧2(A)) = c15, i.e. c ∈ µ15 and so we can replace g0 by c−1g0 to achieve
g0 = ∧2(A). Since ∧2 maps SL6 into SL15 with kernel C2 and o(g0) = 15, we can choose a
unique A of order 15. Now write A = diag(a1, . . . , a6) with ai ∈ µ15. The simple spectrum µ15

of g0 shows that all ai are pairwise distinct. A computation on Mathematica shows however
that no such (a1, . . . , a6) can yield the spectrum µ15 for g0. �

6.2. Other types

We will now work with spin representations of SpinN . When 2 - N = 2n + 1 ≥ 3, SpinN
has center C2 and a unique spin representation of degree 2n. When N = 2n ≥ 10 is even,
SpinN has two half-spin representations, of degree 2n−1 and fused by any outer automorphism
of SpinN . If 2 - n, then Z(SpinN) = 〈z〉 ∼= C4, and the half-spin representations are faithful,
see [Lu, Appendix A.2]. If 2|n, then Z(SpinN) = 〈z1, z2〉 ∼= C2

2 with SpinN/〈z1z2〉 ∼= SON ,
and the two half-spin representations factor through the two half-spin groups HSpinN =
SpinN/〈zi〉 with i = 1, 2, again see [Lu, Appendix A.2].

Lemma 6.2.1. Let N ≥ 9, and H a hypergeometric sheaf of type (D,m) with D > m in
characteristic p. Consider the following three situations.

(a) N = 2n+ 1 is odd, and G0
geom for H is SpinN in its 2n-dimensional spin representation.

(b) N = 2n+ 2 ≡ 2( mod 4) and G0
geom for H is SpinN in one of its 2n-dimensional half-spin

representations.
(c) 4|N = 2n+ 2 and G0

geom for H is one of the two half-spin groups HSpinN , i.e. the image
of SpinN in one of its 2n-dimensional half-spin representations.

Then we have the following results.

(i) If N is odd, then there exists a tame character χ such that Ggeom for the hypergeometric
sheaf Lχ ⊗H is SpinN . Moreover, if p > 2 then w := D −m is even.

(ii) If N ≡ 2(mod 4), then there exists a tame character χ such that Ggeom for the hyper-
geometric sheaf Lχ ⊗H is SpinN .

(iii) If 4|N , then there exists a tame character χ such that Ggeom for the hypergeometric
sheaf Lχ ⊗H is HSpinN . Moreover, if p > 2 then w := D −m is even.
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Proof. When N = 2n + 1 is odd or N = 2n + 2 ≡ 2(mod 4), the normalizer of SpinN
in the ambient GL2n is GL1 ∗ SpinN , and hence Ggeom is of the form (a finite group Λ of
scalars)∗SpinN . The center of SpinN is cyclic of order 2 when N is odd, and cyclic of order
4 when N ≡ 2(mod 4). When 4|N = 2n+ 2, the normalizer of HSpinN in the ambient GL2n

is GL1 ∗HSpinN , and hence Ggeom is of the form (a finite group Λ of scalars)∗HSpinN . When
4|N , the center of HSpinN is cyclic of order 2. To keep track of orders of centers, let us define

c(N) := 2 if N is odd or if 4|N, c(N) := 4 if N ≡ 2(mod 4).

Thus when we write any element g ∈ Ggeom as λ(g)h with λ(g) ∈ Λ and h ∈ SpinN
(respectively in HSpinN), the map

g 7→ λ(g)c(N)

is a well-defined homomorphism from Ggeom to Λ, so in particular a linear character of Ggeom,
call it ρ. We claim that ρ is a tame character. To see this, view ρ as a character of πgeom

1

which factors through the homomorphism to Ggeom given by H. Thus ρ is tame at 0, and its
∞ slope is ≤ 1/w. Admit for a moment that w ≥ 2. Then ρ is also tame at∞ (because Swan
conductors are integers, cf. [Ka-GKM, 1.9] or, for this linear case, [Se, Thm. (Hasse-Arf),
p.82]). Whatever the characteristic p, a tame character always has a tame square root and
a tame fourth root (the latter unique if p = 2, four in odd characteristic). Choose a tame χ
so that χc(N) = 1/ρ, and then we indeed have Ggeom for Lχ ⊗ H being SpinN (respectively
HSpinN).

To show that w > 1, we argue as follows. Because its Ggeom is not finite, if w = 1 then
by Theorems 4.1.1 and 4.1.5 its G0

geom is either SL2n or SO2n (recall D = 2n is the rank of
H), and 2n > N since N ≥ 9.

We now turn to the discussion of w, which is unchanged when replacing H by Lχ ⊗ H.
The key point is that when N is odd, the spin representation is self-dual, and when 4|N each
of the half-spin representations is self-dual (indeed, they have different kernels in SpinN).
So in both these cases, once we replace H by Lχ ⊗ H so that Ggeom is SpinN , respectively
HSpinN , our (new) H is self-dual. This autoduality forces pw to be even, by [Ka-ESDE,
8.8.1]. [In the case when N is even but is 2 mod 4, the half-spin representations are duals of
each other.] �

For ease of later reference, we give a more general version of the above lemma.

Lemma 6.2.2. Let H be a hypergeometric sheaf of type (D,m) with w := D −m ≥ 2 in
characteristic p. Suppose that G := G0

geom,H is an irreducible subgroup of GLD which has no
nontrivial outer automorphism that preserves the given D-dimensional representation. Then
there exists a tame character χ such that Lχ ⊗H has Ggeom,Lχ⊗H = G.

Proof. The group Ggeom,H normalizes its identity component, which is irreducible, hence
Ggeom,H lies in GL1 ∗G. Thus Ggeom,H is of the form (a finite group Λ of scalars)∗G. Thus
each element g ∈ Ggeom,H can be written as λ(g)h with λ(g) ∈ Λ and h ∈ G. For c the order
of the center, the map

g 7→ λ(g)c

is a well-defined homomorphism, call it ρ, from Ggeom,H to Λ. Exactly as in the proof of
Lemma 6.2.1, we view ρ as a linear character of πgeom

1 , whose slope is ≥ 1/w for w := D−m.
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Thus ρ is tame because w ≥ 2 by hypothesis. Then we take for χ any tame character with
χc = ρ−1. �

Remark 6.2.3. In the above Lemma 6.2.1 we take N ≥ 9 because for N ≤ 8 all the
spin and half-spin groups are known to occur hypergeometrically. For N = 3, Spin3 = SL2,
which occurs from Kl(1,1) in every characteristic p, cf. [Ka-GKM, 11.1]. For N = 4, the
two half-spin groups are again SL2. For N = 5, the spin group is Sp4, which occurs from
Kl(1,1,1,1) in every characteristic p, again by [Ka-GKM, 11.1]. For N = 6, the spin group
is SL4, which occurs from H(ξ2, ξ2, ξ2, ξ2;1) in every odd characteristic p (use [Ka-GKM,
11.6] and the fact that w = 3 is odd to rule out the other cases, all of which are self-dual).
For N = 7, see [Ka-ESDE, 10.1.3] for examples in all sufficiently large characteristics. For
N = 8, the half-spin groups are all isomorphic to SO8. Quite generally, we obtain OD for
any even D ≥ 4 in characteristic p = 2 from hypergeometric sheaves of type (D,D − 1)
with upstairs any collection of D/2 nontrivial characters and their inverses, and downstairs
1 repeated D− 1 times, cf. Theorem 4.1.5, the infinitude of Ggeom from the unipotent block
of size D − 1 given by the tame part of the I(∞)-representation.

In characteristic p ≥ 5, one can use [Ka-ESDE, 7.2.7] to show that, again with D ≥ 8
even, the hypergeometric sheaf of type (D,D − 2) with upstairs characters ξ4 repeated D/2
times and ξ3

4 repeated D/2 times, and downstairs characters 1 repeated D − 3 times and ξ2

repeated once will have Ggeom = SOD. To see this, let us admit for a moment that this sheaf
H is Lie-irreducible. Then [Ka-ESDE, 7.2.7], applied with b there our w = 2, for which the
only excluded primes are 2, 3, says that G0

geom is one of SLD, SOD, SpD. But by the duality
recognition theorems [Ka-ESDE, 8.8.1-2], our H is orthogonally self-dual, and has trivial
geometric determinant (because w > 1), and hence its Ggeom must be SOD.

It remains to explain why this H is Lie-irreducible. After Kummer pullback by [4], the
I(0) representation is the sum of two unipotent blocks of size D/2. At the same time, the
I(∞)-representation of this pullback is the direct sum of a unipotent block of size D−3 > D/2
with a three dimensional piece. So if some further finite pullback of [4]?H were reducible,
it would have to break into two irreducible pieces of dimension D/2, neither of which can
contain the unipotent block of size D − 3.

Lemma 6.2.4. There is no hypergeometric sheaf H of type (D,m) in characteristic p > 2
with D = 2k +m, k ∈ Z≥2, m ∈ Z≥1 in which every nontrivial element g in the image Q of
P (∞) in Ggeom acts on the underlying module VH with Jordan canonical form diag

(
Idm, α ·

Idk, α
−1 · Idk

)
, for some α ∈ C× depending on g.

Proof. Take 1 6= z ∈ Z(Q) of order p. Then z acts on W as diag
(
ζ · Idk, ζ−1 · Idk

)
for a

pth root of unity ζ 6= 1. Then each g ∈ Qr{1, z−1} must act on W+ := Ker(z|W − ζ · Id) and
on W− := Ker(z|W−ζ−1 ·Id), and it acts on W as diag

(
α ·Idk, α−1 ·Idk

)
for some 1 6= α ∈ C×,

and the same holds for gz 6= 1. If g affords both eigenvalues α and α−1 on W+, then the two
eigenvalues of gz are ζα and ζα−1, forcing 1 = (ζα)(ζα−1) = ζ2, a contradiction as p > 2.
Hence g acts as a scalar on W+. It follows that the Q-module W+ is a sum of k ≥ 2 copies
of a simple module, contradicting [KRLT4, Proposition 4.8]. �

Proposition 6.2.5. There is no hypergeometric sheaf H of type (16,m) in character-
istic p, with m = 8 or (m, p) = (7, 2), and with Ggeom realizing G := Spin9 in its spin
representation.
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Proof. (i) Assume the contrary, and let Q 6= 1 be the (finite) image of P (∞) in G. The
first step of the proof is to find the spectrum of any element 1 6= g ∈ Q on the underlying
representation VH. We can embed g in a maximal torus T of G. Choose an orthonormal
basis (e1, . . . , e4) of R4 and realize the set of all T -weights of the G-module VH as

∑4
i=1 aiei/2

with ai = ±1 (written additively). In fact, we will write any such weight as

µ = µJ = −
4∑
i=1

ei/2 +
∑
i∈J

ei =
∑
i∈J

ei/2−
∑
i∈∆rJ

ei/2

with J ⊆ ∆ := {1, 2, 3, 4}. Let

F = F(g) := {J ⊆ ∆ | µJ(g) = 1},

(recall weights are elements of Hom(T ,C×)). Note that µJ(g) · µ∆rJ(g) = 1, so

(6.2.5.1) J ∈ F if and only if (∆ r J) ∈ F ,

in particular, #F is even. But m = dimTame is 7 or 8, so we conclude that

(6.2.5.2) #F ≥ 8.

(ii) First we consider the case

(6.2.5.3) ei(g) 6= 1 for all 1 ≤ i ≤ 4.

Suppose first that ∅ ∈ F , whence ∆ := {1, 2, 3, 4} ∈ F by (6.2.5.1). Then µ{i}(g) =
µ∅(g)ei(g) 6= 1, so F contains no 1-subset, hence also no 3-subset, of ∆. Now (6.2.5.2) implies
that F consists of all even-size subsets of ∆. In particular, 1 = µ{i,j}(g) = µ∅(g)ei(g)ej(g)
for all i 6= j. It follows that ei(g) has some constant value α for all i, and moreover α2 = 1.
Condition (6.2.5.3) implies α = −1, and evaluating all weights of VH at g, we see that

(6.2.5.4) g acts on VH as diag
(
−Id8, Id8

)
.

Suppose now that ∅ /∈ F , so that ∆ /∈ F . Then (6.2.5.2) and (6.2.5.1) show that we may
assume F contains some 1-subset, say {1}, hence {2, 3, 4} ∈ F . Now (6.2.5.3) implies that
none of {2, 3}, {2, 4}, and {3, 4} belongs to F , whence F contains none of {1, 4}, {1, 3}, and
{1, 2} as well. In this case, (6.2.5.2) shows that F consists of all odd-size subsets of ∆. In
particular, µ{i}(g) = 1, and 1 = µ{i,j,k}(g) = µ{i}(g)ej(g)ek(g) for all 3-set {i, j, k}. It follows
that ei(g) = α for all i, and α2 = 1. Condition (6.2.5.3) again implies α = −1, and we again
arrive at (6.2.5.4).

(iii) Next we consider the case

(6.2.5.5) e4(g) = 1, but β := e1(g) 6= 1.

Write α := µ∅(g), γ := e2(g), δ := e3(g). Condition (6.2.5.5) implies that X ⊆ {1, 2, 3}
belongs to F if and only X t {4} ∈ F , but F cannot contain both Y and Y t {1} for any
Y ⊆ {2, 3}. It follows from (6.2.5.2) that F contains exactly one subset from the four pairs
{Y, Y t {1}} with Y ⊆ {2, 3}. The corresponding weights take values

{α, αβ}, {αγ, αβγ}, {αδ, αβδ}, {αγδ, αβγδ},

at g, respectively; and each pair (as a multi-set) contains 1 once.
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Suppose γ = δ = 1. Then each of α and αβ is an eigenvalue for g on VH with multiplicity
8. Exactly one of them is 1 (because m > 0), and self-duality of V implies that the other
one is −1, whence (6.2.5.4) holds.

Suppose now that γ 6= 1 = δ. Then exactly one among α, αβ and exactly one among
αγ, αβγ is 1. If α = 1, then 1 6= αγ by assumption, hence 1 = αβγ, i.e. γ = β−1. Evaluating
the weights at g, we see that

(6.2.5.6) g acts on VH as diag
(
Id8, β · Id4, β

−1 · Id4

)
.

If α 6= 1, then αβ = 1 and 1 6= αβγ by assumption, hence 1 = αγ, i.e. γ = β = α−1.
Evaluating the weights at g, we see that (6.2.5.6) holds (with β replaced by α).

Next suppose that γ 6= 1 6= δ. First consider the case α = 1. Then αγ, αδ 6= 1 by
assumption, hence αβγ = αβδ = 1, i.e. γ = δ = β−1. Now {αγδ, αβγδ} = {β−2, β−1}
contains 1 once, whence β = −1, and we arrive at (6.2.5.4). Assume now that α 6= 1, forcing
αβ = 1. Then αβγ, αβδ 6= 1 by assumption, hence αγ = αδ = 1, i.e. β = γ = δ = α−1. Now
{αγδ, αβγδ} = {α−1, α−2} contains 1 once, whence α = −1, and we again arrive at (6.2.5.4).

(iv) Note that if ei(g) = 1 for all i, then g acts on VH via the scalar µ∅(g), forcing g = 1
since m > 0. Thus we have shown that any 1 6= g ∈ Q must act on V as in (6.2.5.4) or
(6.2.5.6).

Consider the case p > 2, so that m = 8 by assumption, and any 1 6= g ∈ Q acts on VH as
diag

(
Id8, β · Id4, β

−1 · Id4

)
for some 1 6= β ∈ C× by (6.2.5.6). This is impossible by Lemma

6.2.4.
We may now assume p = 2. First suppose m = 7. Then W := Wild has dimension 9, so

Q ∼= 26 by [KRLT4, Proposition 4.8]. Now (6.2.5.4) and (6.2.5.6), together with exp(Q) = 2,
imply that (6.2.5.4) holds for any 1 6= g ∈ Q, and that g has trace 0 on VH. Counting the
dimension of the fixed point subspace Tame, we get 7 = 16/|Q|, a contradiction.

(v) We may now assume p = 2 and m = 8. By [KRLT4, Proposition 4.9], Q acts
faithfully and irreducibly on W := Wild of dimension 8; in particular, |Q| ≥ 27. By (6.2.5.4)
and (6.2.5.6), any 1 6= g ∈ Q acts on W as −Id8 or diag

(
β ·Id4, β

−1 ·Id4

)
for some 1 6= β ∈ C×.

In particular, Z(Q) = 〈z〉 ∼= C2, and z is the unique involution in Q. Now Q/Z(Q) contains
a central subgroup C/Z(Q) ∼= C2, so that R is (abelian) of order 4. But z is the only
involution in Q, so C = 〈t〉 ∼= C4. It follows that W = W+ ⊕W−, where t acts on W+ via
the scalar ζ4 and on W− via ζ−1

4 . As C C Q and Q is irreducible on W , Q must permute
W+ and W−, with kernel R of index 2. Consider any g ∈ R r Z(Q), which then acts on
W as diag

(
β · Id4, β

−1 · Id4

)
for some ±1 6= β ∈ C×. If g affords both eigenvalues β and

β−1, then gt has distinct eigenvalues ζ4β, ζ4β
−1 on W+, forcing 1 = (ζ4β)(ζ4β

−1) = ζ2
4 = −1,

a contradiction. Hence R acts on W4 via scalars. It is now easy to check that for any
0 6= v ∈ W+ and h ∈ Qr R, Q stabilizes the 2-dimensional subspace 〈v, hv〉C, contradicting
its irreducibility on W . �

Lemma 6.2.6. Suppose H is a hypergeometric sheaf of type (16,m) with m ∈ {6, 7, 8} in
characteristic p > 2 whose Ggeom is Spin10 in one of its half-spin representations. Then any
element γ of order p in the image Q of P (∞) in Ggeom has a spectrum in the underlying rep-
resentation VH of the following form, where the superscript [m] indicates that the multiplicity
is m.

(a) p = 3, spectrum is (1[8], ζ
[4]
3 , ζ̄3

[4]
) or (1[6], ζ

[5]
3 , ζ̄3

[5]
).
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(b) p ≥ 5, spectrum is (1[8], ζ
[4]
p , ζ̄p

[4]
).

(c) p ≥ 5, spectrum is (1[6], ζ
[4]
p , ζ̄p

[4]
, ζ2
p , ζ̄p

2
).

Proof. We first apply [Ka-ESDE, 7.2] to show that for any given imposed value of
w := D −m ∈ {8, 9, 10}, there are only finitely many characteristics p for which Ggeom can
fail to be one of SL16, SO16, Sp16. Let us explain this. Our H has its Ggeom a connected
semisimple group, irreducible inside SL16. Thus our H is Lie-irreducible, and is its own
derived group. For each imposed value of w, the highest ∞ slope is 1/w. According to
[Ka-ESDE, 7.2], if p does not divide the product denoted 2N1(w)N2(w) there, then any
hypergeometric in characteristic p of type (16, 16 − w) has Ggeom one of SL16, SO16, Sp16.
The construction of N1(w) and N2(w), explained in [Ka-ESDE, 7.1.1] is to take

N1(w) :=
∏

a,b,c,d∈µw(C) with a−b−c+d 6=0

(a− b− c+ d), N2(w) :=
∏

a,b,c∈µw(C) with a−b−c 6=0

(a− b− c),

Galois invariance shows that both N1(w) and N2(w) are (visibly nonzero) integers.
Somewhat surprisingly, the primes dividing 2N1(w)N2(w) for each w ∈ {8, 9, 10} are not

too large. Here they are.

(6.2.6.1)
w = 10 : p = 2, 3, 5, 11, 31, 41, 61,
w = 9 : p = 2, 3, 5, 7, 19, 37, 73, 109, 127,
w = 8 : p = 2, 3, 5, 17, 41.

Now we consider the 16 weights which occur in the half spin representation whose highest
weight is (1/2)(x1 +x2 +x3 +x4−x5). [The other half-spin representation is the dual of this
one.] So the lowest weight is −(1/2)

∑5
i=1 xi, and the weights of the representation are

−(1/2)
5∑
i=1

xi + sum of evenly many of the xi.

Now let γ be an element of order p in Spin10. It lies in a maximal torus, so its spectrum is
the list of its images under the 16 weights of the representation. Each xi(γ) is some element
of µp(C), and the lowest weight assigns to γ the unique element of µp(C) whose square is

1/
∏5

i=1 xi(γ). We cannot assign all xi(γ) := 1, for then γ has order 1, not p. Renumbering
the xi, we may assume that x1(γ) = ζp, a primitive pth root of unity. Thus we may write

xi(γ) = ζaip , ai ∈ Fp,
(
−1

2

5∑
i=1

xi
)
(γ) = ζfp , f ∈ Fp, f =

p− 1

2

5∑
i=1

ai.

The eigenvalues of γ are then the following 16 powers of ζp, where we write a = 1, b, c, d, e
for a1, a2, a3, a4, a5, and where f = ((p− 1)/2)(a+ b+ c+ d+ e):

f, f+a+b, f+a+c, f+a+d, f+a+e, f+b+c, f+b+d, f+b+e, f+c+d, f+c+e, f+d+e,

−f − a,−f − b,−f − c,−f − d,−f − e.
From the assumption that the wild part has dimension w ≤ 10, our element γ must have at
least 6 eigenvalues 1, or equivalently the number 0 ∈ Fp must occur at least 6 times in the
above list of length 16 of elements of Fp.



6.2. OTHER TYPES 125

For a given odd prime p, it is a simple matter to tabulate the lists of length 16 which arise
having 0 at least 6 times. We did this calculation using the Magma program in Appendix
A1 for each odd prime which divides 2N1(w)N2(w) for each of w = 8, 9, 10. In all cases, the
spectrum was as asserted. �

Proposition 6.2.7. Let H be a hypergeometric sheaf of type (16,m) in characteristic p,
with 6 ≤ m ≤ 15 and with Ggeom realizing G := Spin10 in a half-spin representation. Then
p = 2 and 6 ≤ m ≤ 8.

Proof. (i) Let Q be the (finite) image of P (∞) in G. First we consider the case m ≥ 9.
By [KT5, Proposition 4.8], we can find g ∈ Q r Z(G), and embed g in a maximal torus T
of G. Choose an orthonormal basis (e1, . . . , e5) of R5 and realize the set of all weights of the
underlying module VH as

∑5
i=1 aiei/2 with ai = ±1 and

∏5
i=1 ai = 1. Again write any such

weight as

µ = µJ = −
5∑
i=1

ei/2 +
∑
i∈J

ei

with J ⊆ ∆ := {1, 2, . . . , 5} of even size, and let

F = F(g) := {J ⊆ ∆ | µJ(g) = 1}, α := µ∅(g).

Suppose that (e1 + κe2)(g) 6= 1 for both κ = +1 and κ = −1. Then, for each choice of κ
and each choice of (a3, . . . , a5) ∈ {±1}3 with a3a4a5 = κ, at most one of the two weights∑5

i=3 aiei/2 ± (e1 + κe2)/2 can take value 1 at g. It follows that m ≤ #F ≤ 2 · 22 = 8, a
contradiction.

Repeating this argument, we see that for each pair i ≤ j there is exists some κij = ±1
such that (ei+κijej)(g) = 1. Conjugating g using the Weyl group, i.e. using an even number
of sign changes on ei, we may therefore assume that there is some κ = ±1 such that

β := e1(g) = e2(g) = e3(g) = e4(g) = e5(g)κ.

Consider the case κ = +1. Then µJ(g) = αβ|J | for any J ⊆ ∆. So among the even-size
subsets J of ∆, µJ(g) yields α, αβ2, and αβ4 with frequency 1, 10, and 5, respectively. Hence,
if αβ2 6= 1 then #F ≤ 6 < m, a contradiction. It follows that αβ2 = 1. Also, note that
1 = µ∅(g)µ∆(g) = α2β5. Hence α = β = 1, i.e. g = Id, again a contradiction.

Assume now that κ = −1. Then µK(g) = αβ|K| and µKt{5}(g) = αβ|K|−1 for any
K ⊆ {1, 2, 3, 4}. So among the even-size subsets K of {1, 2, 3, 4}, µK(g) yields α, αβ2, and
αβ4 with frequency 1, 6, and 1, respectively. Among the odd-size subsets K of {1, 2, 3, 4},
µKt{5}(g) yields α and αβ2 with frequency 4 each. Thus the weights of VH take values α, αβ2,
and αβ4 at g, with frequency 5, 10, and 1, respectively. Hence, if αβ2 6= 1, then #F ≤ 6 < m,
a contradiction. Thus αβ2 = 1. Also, note that 1 = µ∅(g)µ∆(g) = α2β3. Hence α = β = 1,
i.e. g = Id, again a contradiction.

(ii) It remains to consider the case 6 ≤ m ≤ 8 and p > 2; in particular, Q ∩ Z(G) = 1.
First suppose that m = 8, i.e. w := D − m = 8. By [KRLT4, Proposition 4.8], Q is
elementary abelian. Applying Lemma 6.2.6, we see that any element 1 6= g ∈ Q acts on VH
as diag

(
Id8, α · Id4, α

−1 · Id4

)
for some α ∈ C× depending on g. But this is impossible by

Lemma 6.2.4.
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Suppose m = 7, so that w = 9. If p = 3, then Q acts irreducibly and faithfully on Wild
by [KRLT4, Proposition 4.9]. Hence any element 1 6= z ∈ Z(Q) of order 3 has an eigenvalue
ζ 6= 1 with multiplicity ≥ w = 9, contradicting Lemma 6.2.6. Thus we may assume p > 3
in this case, and so Q is elementary abelian by [KRLT4, Proposition 4.8]. By Lemma 6.2.6,
any g ∈ Q has real trace on VH, i.e. ϕ(g) ∈ R for the character ϕ of Q afforded by VH. In
particular, for 1Q 6= ν ∈ Irr(Q), ν and ν have the same multiplicity in ϕ. This implies that
w must be even, a contradiction.

We may now assume that m = 6, i.e. w = 10. If 10|(p − 1), then Q is cyclic of order p
by [KRLT4, Proposition 4.8], but then Lemma 6.2.6 shows that the Q-module Wild is not
multiplicity-free, a contradiction. Suppose p = 3. Then Q is elementary abelian of order 34

by [KRLT4, Proposition 4.8], and any 1 6= g ∈ Q acts on H as diag(Id8, ζ · Id4, ζ̄ · Id4

)
(say

with frequency a) and diag(Id6, ζ · Id5, ζ̄ · Id5

)
(with frequency b) for a cubic root ζ 6= 1 of

unity; in particular, ϕ(g) = 4 or 1, respectively. It follows that

6 = m = [ϕ, 1Q]Q = (16 + 4a+ b · 4)/81, a+ b = 80,

yielding (a, b) = (130,−50), a contradiction. The only remaining bad prime is p = 5, see
(6.2.6.1). By [KRLT4, Proposition 4.9], the Q-module Wild is faithful and is a sum of two
simple submodules of dimension 5 each. Hence, any 1 6= z ∈ Z(Q) of order 5 must have an
eigenvalue ζ 6= 1 with multiplicity at least 5, which is again impossible by Lemma 6.2.6. �

Proposition 6.2.8. There is no hypergeometric sheaf H of type (32,m) in characteristic
p with 31 ≥ m ≥ 20 and with Ggeom realizing G := Spin12 in a half-spin representation.

Proof. (i) Assume the contrary, and let Q be the (finite) image of P (∞) in G. By
[KT5, Proposition 4.8], we can find g ∈ Q r Z(G), and embed g in a maximal torus T of
G. Choose an orthonormal basis (e1, . . . , e6) of R6 and realize the set of all weights of the
underlying module VH as

∑6
i=1 aiei/2 with ai = ±1 and

∏6
i=1 ai = 1. Write any such weight

as

µ = µJ = −
6∑
i=1

ei/2 +
∑
i∈J

ei

with J ⊆ ∆ := {1, 2, . . . , 6} of even size, and let

F = F(g) := {J ⊆ ∆ | µJ(g) = 1}, α := µ∅(g).

Suppose that (e1 + κe2)(g) 6= 1 for both κ = +1 and κ = −1. Then, for each choice of κ
and each choice of (a3, . . . , a6) ∈ {±1}4 with

∏6
i=3 ai = κ, at most one of the two weights∑6

i=3 aiei/2 ± (e1 + κe2)/2 can take value 1 at g. It follows that m ≤ #F ≤ 2 · 23 = 16, a
contradiction.

Repeating this argument, we see that for each pair i ≤ j there is exists some κij = ±1
such that (ei+κijej)(g) = 1. Conjugating g using the Weyl group, i.e. using an even number
of sign changes on ei, we may therefore assume that there is some κ = ±1 such that

β := e1(g) = e2(g) = . . . = e5(g) = e6(g)κ.

(ii) Consider the case κ = +1. Then µJ(g) = αβ|J | for any J ⊆ ∆. So among the
even-size subsets J of ∆, µJ(g) yields α, αβ2, αβ4, and αβ6 with frequency 1, 15, 15, and 1,
respectively. Hence, if αβ2 6= 1 or αβ4 6= 1, then #F ≤ 32− 15 < 20 ≤ m, a contradiction.
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It follows that 1 = αβ2 = αβ4, i.e. β2 = 1, and thus g|VH = α · Id, i.e. g ∈ Z(G), again a
contradiction.

(iii) Finally, we consider the case κ = −1. Then µK(g) = αβ|K| and µKt{6}(g) = αβ|K|−1

for any K ⊆ ∆ r {6}. So among the even-size subsets K of ∆ r {6}, µK(g) yields α, αβ2,
and αβ4 with frequency 1, 10, and 5, respectively. Among the odd-size subsets K of ∆r{6},
µKt{6}(g) yields α, αβ2, and αβ4 with frequency 5, 10, and 1, respectively. Thus the weights
of VH take values α, αβ2, and αβ4 at g, with frequency 6, 20, and 6, respectively. Hence, if
αβ2 6= 1, then #F ≤ 32− 20 < 20 ≤ m, a contradiction. Thus αβ2 = 1, i.e. α = β−2. Now,
if β2 = 1, then g|VH = α · Id and g ∈ Z(G), again a contradiction.

Hence α 6= 1, and g|VH has eigenvalues 1, α, α−1 with multiplicity 20, 6, and 6, respec-
tively. But dimTame = m ≥ 20, so g acts on W := Wild as diag

(
α · Id6, α

−1 · Id6

)
for any

1 6= g ∈ Q. This is impossible by Lemma 6.2.4. �

Proposition 6.2.9. There is no hypergeometric sheaf H of type (512,m) in characteristic
p with 511 ≥ m ≥ 322 and with Ggeom realizing G := Spin20 in a half-spin representation.

Proof. (i) Assume the contrary, and let Q be the (finite) image of P (∞) in G. By
[KT5, Proposition 4.8], we can find g ∈ Q r Z(G), and embed g in a maximal torus T of
G. Choose an orthonormal basis (e1, . . . , e10) of R10 and realize the set of all weights of the
underlying module VH as

∑10
i=1 aiei/2 with ai = ±1 and

∏10
i=1 ai = 1; in particular it has the

lowest weight −
∑10

i=1 ei/2. Write any such weight as

(6.2.9.1) µ = µJ = −
10∑
i=1

ei/2 +
∑
i∈J

ei

with J ⊆ ∆ := {1, 2, . . . , 10} of even size, and let

F = F(g) := {J ⊆ ∆ | µJ(g) = 1}, α := µ∅(g).

Suppose that (e1 + κe2)(g) 6= 1 for both κ = +1 and κ = −1. Then, for each choice of κ
and each choice of (a3, . . . , a10) ∈ {±1}8 with

∏10
i=3 ai = κ, at most one of the two weights∑10

i=3 aiei/2 ± (e1 + κe2)/2 can take value 1 at g. It follows that m ≤ #F ≤ 2 · 27 = 256, a
contradiction.

Repeating this argument, we see that for each pair i ≤ j there is exists some κij = ±1
such that (ei+κijej)(g) = 1. Conjugating g using the Weyl group, i.e. using an even number
of sign changes on ei, we may therefore assume that there is some κ = ±1 such that

(6.2.9.2) β := e1(g) = e2(g) = . . . = e9(g) = e10(g)κ.

(ii) Consider the case κ = +1. Then µJ(g) = αβ|J | for any J ⊆ ∆. So among the even-size
subsets J of ∆, µJ(g) yields α, αβ2, αβ4, αβ6, αβ8, and αβ10 with frequency 1, 45, 210, 210,
45, and 1, respectively. Hence, if αβ4 6= 1 or αβ6 6= 1, then #F ≤ 512 − 210 < 322 ≤ m,
a contradiction. It follows that 1 = αβ4 = αβ6, i.e. β2 = 1, and thus g|VH = α · Id, i.e.
g ∈ Z(G), again a contradiction.

Next we consider the case κ = −1. Then µK(g) = αβ|K| and µKt{10}(g) = αβ|K|−1 for
any K ⊆ ∆ r {10}. So among the even-size subsets K of ∆ r {10}, µK(g) yields α, αβ2,
αβ4, αβ6, and αβ8 with frequency 1, 36, 126, 84, and 9, respectively. Among the odd-size
subsets K of ∆ r {10}, µKt{10}(g) yields α, αβ2, αβ4, αβ6, and αβ8 with frequency 9, 84,
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126, 36, and 1, respectively. Thus the weights of VH take values α, αβ2, αβ4, αβ6, and
αβ8 at g, with frequency 10, 120, 252, 120, and 10, respectively. Hence, if αβ4 6= 1, then
#F ≤ 512− 252 < 322 ≤ m, a contradiction. Thus αβ4 = 1. Now, if αβ2 6= 1 6= αβ6, then
#F ≤ 512 − 240 < 322 ≤ m, again a contradiction. Hence either αβ2 = 1 or αβ6 = 1. We
conclude that β2 = 1, and thus g|VH = α · Id, i.e. g ∈ Z(G), again a contradiction. �

Theorem 6.2.10. Let p be a prime and N ≥ 9. Suppose that there exists a hypergeometric
sheaf H in characteristic p, of type (D,m) with D > m, such that G◦geom realizes SpinN with
2 - N in its spin representation, or the image of SpinN with 2|N in one of its half-spin
representations. Then p = 2 and N ∈ {10, 12, 16}.

Proof. (i) Assume that such an H exists. By Lemma 6.2.1, we may assume that Ggeom

is G := SpinN when 4 - N and G = HSpinN when 4|N . Now we construct a group homomor-
phism Λ : G→ GLs with Λ and s as follows. First, if 2 - N , then we choose s := N and Λ to
be the natural projection SpinN � SON , with kernel equal to Z(G) ∼= C2. If 2|N but 4 - N ,
then we choose s := N and Λ to be the natural projection SpinN � SON , with kernel equal
to 〈z2〉 ∼= C2. Suppose 4|N . Then SpinN acts on L($2) = ∧2(L($1)) with kernel 〈z1, z2〉;
so we choose s := dimL($2) = n(2n− 1) and Λ the action of G on L($2), with kernel equal
to Z(G). Applying [KT5, Theorem 4.14], we obtain that w ≤ s. It follows that

(6.2.10.1) m = D − w ≥ D − s.
In fact, we observe that if p > 2 and 4|N then (6.2.10.1) also holds with s := N . Indeed, in

this case we may assume G = Ĝ/〈z2〉, where Ĝ := SpinN . Consider the natural projections

π : Ĝ � G with kernel 〈z2〉, and Θ : Ĝ � SON with kernel 〈z1z2〉. Now we can apply
[KT5, Theorem 4.14] to conclude that w ≤ N , as stated.

(ii) By [KT5, Proposition 4.8], the image Q of P (∞) in G = Ggeom contains an element
g /∈ Z(G). We may put the semisimple element g in a maximal torus T of G. The condition
(6.2.10.1) now implies that there is a subset F of weights of the module V = CD, of cardinality
at least D − s, such that all weights µ ∈ F take the same value 1 at g.

Consider the case N = 2n + 1. Then we can choose an orthonormal basis (e1, . . . , en) of
Rn and realize the set of all weights (written additively) of the G-module V as

∑n
i=1 aiei/2

with ai = ±1. Recall that Z(G) is the common kernel of all weights that belong to the root
lattice 〈e1, . . . , en〉Z, and that g /∈ Z(G). Hence we may assume that

(6.2.10.2) e1(g) 6= 1.

We can represent any µ ∈ F as

(6.2.10.3) µ = µJ = −
n∑
i=1

ei/2 +
∑
i∈J

ei

with J ⊆ {1, 2, . . . , n}. Consider any subset J ′ ⊆ {2, 3, . . . , n}. If both µJ ′ and µJ ′∪{1} belong
to F , then we get

1 = µJ ′∪{1}(g)/µJ ′(g) = e1(g),

contradicting (6.2.10.2). It follows that #F is at most the number of subsets of {2, 3, . . . , n},
and so

2n − (2n+ 1) = D − s ≤ #F ≤ 2n−1,
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a contradiction when n ≥ 5. Assume n = 4. The previous inequality now shows #F ≤ 8,
and #F ≥ m ≥ 7 by (6.2.10.1), whence m ∈ {7, 8}. Moreover, if p > 2 then 2|m by Lemma
6.2.1. Applying Proposition 6.2.5, we arrive at a contradiction.

(iii) Now assume that N = 2n. Then we can choose an orthonormal basis (e1, . . . , en) of
Rn and realize the set of all weights of the G-module V as

∑n
i=1 aiei/2 with ai = ±1 and∏n

i=1 ai = 1; in particular it has the lowest weight −
∑n

i=1 ei/2. Again recall that Z(G) is the
common kernel of all weights that belong to the root lattice 〈ei ± ej | 1 ≤ i 6= j ≤ n〉Z, and
that g /∈ Z(G). Hence, we may assume that (e1 +κe2)(g) 6= 1 for some κ = ±1. Conjugating
g using some element in the Weyl group that fixes the weight ei with i 6= 2, n and changes
the sign of each e2 and en, we may assume that

(6.2.10.4) (e1 + e2)(g) 6= 1.

We can again represent µ = µJ as in (6.2.10.3), but with the additional proviso that #J is
even. Consider any subset J ′ ⊆ {3, 4, . . . , n} of even size, and suppose that both weights µJ ′
and µJ ′∪{1,2} belong to F . Then we get

1 = µJ ′∪{1,2}(g)/µJ ′(g) = (e1 + e2)(g),

contradicting (6.2.10.4). It follows that F has to miss at least one of these two weights for
each even-size subset J ′ ⊆ {3, 4, . . . , n}, and so

2n−1 − s = D − s ≤ #F ≤ 2n−1 − 2n−3.

This is a contradiction when n ≥ 7 and either 2 - n or p > 2 (since s = 2n in these cases),
and when 2|n ≥ 12 and p = 2 (since s = n(2n− 1)).

If N = 20, then m ≥ 322 by (6.2.10.1), and this case is ruled out by Proposition 6.2.9.
If N = 12 and p > 2, then m ≥ 20 by (6.2.10.1), and this case is ruled out by Proposition
6.2.8. If N = 10, then m ≥ 6 by (6.2.10.1), and the subcase p > 2 is ruled out by Proposition
6.2.7. �

Proposition 6.2.11. There is no hypergeometric sheaf H of type (14,m) in characteristic
p, with m < 14 and with G◦geom realizing G := Sp6 in its representation L($3).

Proof. Assume the contrary that such a sheaf H exists. By Theorems 4.1.1 and 4.1.5 we
have m ≤ 12, and so, by Lemma 6.2.2, tensoring H with a suitable Lχ we may assume that
Ggeom = G = Sp(V ); in particular, H is symplectically self-dual. Applying [KT5, Theorem
4.14] to the natural representation of G on V = C6, we get 6 ≥ w := 14 − m, and thus
m ≥ 8.

Consider any element 1 6= g in the image Q of P (∞) in G. Then g ∈ Sp(V ) is conjugate
to diag(a, b, c, a−1, b−1, c−1) for some a, b, c ∈ C×. It is well known, see e.g. [OV, Table
5] that ∧3(V ) ∼= V ⊕ L($3) as G-modules. Hence the spectrum of g on the underlying
representation VH is the (multi)set of a±1, b±1, c±1, and a±1b±1c±1, among which at least
m ≥ 8 are equal to 1. Suppose for instance a2 6= 1. Then 1 is not in {a, a−1}, and each of
the 4 pairs {abicj, a−1bicj} with i, j = ±1 contains 1 at most once. It follows that b = c = 1,
in which case no akbicj with i, j, k = ±1 can be 1, and thus 1 is an eigenvalue of g on VH
of multiplicity 4 only, a contradiction. We have therefore shown that a2 = b2 = c2 = 1 and
so g2 = 1. It follows that Q is an elementary abelian 2-group, whence p = 2 and 2 - w by
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[KRLT4, Proposition 4.9]. But the oddness of w contradicts the fact that, geometrically, H
is symplectically self-dual, see [Ka-ESDE, 8.8.2]. �

Theorem 6.2.12. Let p be a prime, and suppose that there exists a hypergeometric sheaf
H in characteristic p, of type (56,m) with D > m, such that G := G◦geom is of type E7. Then
p ≤ 3. Moreover, m 6= 1.

Proof. (i) Theorems 4.1.1 and 4.1.5 show that w := D −m ≥ 2. Since G has no outer
automorphism, Lemma 6.2.2 allows us to assume that Ggeom = G.

We argue by contradiction, relying on [KT5, Theorem 4.17]. Assume that either p > 7
(so p is coprime to the order of the Weyl group W (G)), or p ∈ {5, 7} (so p is not a torsion
prime for G). Since VH is self-dual, the Q-characters on Wild have to occur in pairs (θ, θ)
with equal multiplicity, hence 2|w in the latter case. Postponing the case where p ∈ {5, 7}
and 2p|w until (iv), we have that either p > 7, or p ∈ {5, 7} and p - w. Applying [KT5,
Theorem 4.17], we see that w divides the order of some element in W (G) = Sp6(2)×2, hence
either w = 30 or w ≤ 18, see [CCNPW]; also, its proof shows that Q is abelian.

Suppose w = 30. We work with the finite group 〈Q, γss〉 of G constructed in [KT5,
Proposition 4.11], where Q is the image of P (∞) in G. As shown in the proof of [KT5,
Theorem 4.17], γss has order 30 in NQ(Q)/CG(Q), and transitively permutes the 30 distinct
linear characters of Q on Wild. Furthermore, Q is contained in a maximal torus T of G, and
we can find c ∈ CG(Q) such that γssc normalizes T and induces an element ω ∈ W (G) of
order divisible by 30. It follows that o(ω) = 30, ω is unique up to conjugacy in W (G), and
it has a unique orbit O of length 30 on the set Ω of 56 T -weights of VH. Note that γss and
γssc have the same action on the 30 Q-characters afforded by Wild. As Q ≤ T , it follows that
these 30 characters are obtained by restricting the T -weights in O. A computer calculation
done by F. Lübeck shows that if t ∈ T and α(t) = 1 for all 26 weights α ∈ ΩrO, then t = 1.
As Q acts trivially on Tame of dimension 26, we conclude that Q = 1, a contradiction.

(ii) Now we assume that w ≤ 18, and so m = dimTame ≥ 38. Consider any element
1 6= g ∈ Q of order p, and we aim to find the spectrum of g on VH. Let

F := F(g) := {α ∈ Ω | α(g) = 1},

so that

(6.2.12.1) #F ≥ m ≥ 38.

It is convenient for us to realize the set Ω as follows. Consider a 3-dimensional F2-vector
space U with basis (a, b, c), and an orthogonal basis (eu | u ∈ U) of the Euclidean space R8

with (eu, eu) = 1/2. Then the root system of type E8 can be realized as

{±2eu,±ex ± ey ± ez ± et | x, y, z, t ∈ U, x+ y + z + t = 0, x, y, z, t pairwise distinct} .

Imposing the condition u 6= 0 on the roots, one obtains the root system of type E7, and
moreover the set Ω of the 56 T -weights of VH is given by

(6.2.12.2) Ω := {±ex ± ey ± ez | x, y, z ∈ U, x+ y + z = 0, x, y, z pairwise distinct} .

For brevity, we will label elements of U by {0̄, 1̄, . . . , 7̄} as follows:

0 7→ 0̄, a 7→ 1̄, b 7→ 2̄, a+ b 7→ 3̄, c 7→ 4̄, a+ c 7→ 5̄, b+ c 7→ 6̄, a+ b+ c 7→ 7̄.
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Then the seven (unordered) triples (x, y, z) occuring in (6.2.12.2) are

(1̄, 2̄, 3̄), (1̄, 4̄, 5̄), (1̄, 6̄, 7̄), (2̄, 4̄, 6̄), (2̄, 5̄, 7̄), (3̄, 5̄, 6̄), (3̄, 4̄, 7̄).

(iii) Note that, since p > 2, the weight 2eī takes value 1 at g if and only if eī does. Suppose
first that eī(g) 6= 1 for at least two different values of i, 1 ≤ i ≤ 7. Since SL(U) ∼= SL3(2)
embeds in W (G) and acts doubly transitively on U r {0̄}, we may assume that e1̄(g) 6= 1
and e2̄(g) 6= 1. Then for each choice of (κ2, κ3) = (±1,±1), each pair ±e1̄ + κ2e2̄ + κ3e3̄ can
contain at most one weight from F , and thus the triple (1̄, 2̄, 3̄) yields at most 4 weights in
F . The same is true for (1̄, 4̄, 5̄) and (1̄, 6̄, 7̄). Repeating the argument for e2̄, we see that the
same holds for (2̄, 4̄, 6̄) and (2̄, 5̄, 7̄). Thus #F ≤ 4 · 5 + 2 · 8 = 36, contradicting (6.2.12.1).

We may therefore assume that eī(g) = 1 for 1 ≤ i ≤ 6. Setting e7̄(g) = β, we now see
that the weights in (6.2.12.2) take values 1, β, and β−1, at g, with frequency 32, 12, and 12.
But then (6.2.12.1) implies that β = 1, and thus g = 1, a contradiction.

(iv) As promised, we now return to the case where p ∈ {5, 7} and 2p|w. By [KRLT4,
Proposition 4.9], this implies that Q is non-abelian. Since Q is nilpotent, it is supersolvable
and so embeds in NG(T ) for some maximal torus T of G, see [Bor, E-44, II.5.16]. Now
the nontrivial p-group Q/QT , with QT := Q ∩ T , embeds in W (G) = Sp6(2) × 2, so in
fact Q/QT has order p, and we may assume it is generated by an element η of order p
in W (G). If Z(Q) 6≤ QT , then Q = Z(Q)QT would be abelian, a contradiction. Hence
1 6= Z(Q) ≤ QT ; in particular, QT contains an element z ∈ Z(Q) of order p. Note that if
β 6= 1 is an arbitrary eigenvalue for z on VH, then the corresponding eigenspace is a sum of
wild simple Q-submodules, hence all of dimension divisible by p.

Suppose now that p = 7. The above condition on z implies by [CG, Table 6] that 1 is not
an eigenvalue for z on VH. Thus Tame = 0, i.e. H is Kloosterman of rank 56. By [KRLT4,
Proposition 4.9], the Q-module VH is the sum of 8 simple submodules, Vl, 1 ≤ l ≤ 7, permuted
transitively by γss. Next, h := γ8

ss fixes each Vl, and the spectrum of h on one, hence on every
by γss-action, submodule Vl is ξ · (µ8 r {1}) for some root of unity ξ ∈ C×. In particular,
the trace of h on VH is −8ξ. As VH is self-dual, we must have that ξ = ±1, which implies
o(h) = 8. Since the central involution z of G acts as −Id on VH, replacing h by δz, we may
assume that ξ = 1, and thus h is an element in G of order 8, whose eigenvalues on VH are
the 7 nontrivial 8th roots of unity, each with multiplicity 7. It follows that h2 is an element
of order 4 in G that has eigenvalues 1, ζ4, −1, and ζ3

4 , with multiplicity 8, 16, 16, and 16,
respectively. However, such an element does not exist in G, see [CG, Table 6].

Suppose now that p = 5 and 10|w. The above condition imposed in on z implies by [CG,
Table 6] that 1 is an eigenvalue of z of multiplicity 6 or 16; in particular m ≤ 16, and so
w = 50 or w = 40. Since Q/QT = 〈η〉 ∼= C5 and QT is abelian, Ito’s theorem [Is, (6.15)]
implies that any simple Q-module has dimension dividing 5, ruling out the case w = 50.
Consider the case w = 40, in which z is an element of type 5J in [CG, Table 6], that is,
(6.2.12.3)

the multiplicity of ζj5 as an eigenvalue of z on VH is 16 if j = 0 and 10 if 1 ≤ j ≤ 4.

Recall that z ∈ G is centralized by the element η ∈ W (G) of order 5. It is now convenient to
use yet another realization of the weight system of type E7 given in [OV, Table 1]. Namely,
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in the Euclidean space R8 one can find f1, . . . , f8 with (fi, fj) = δi,j − 1/8 and

(6.2.12.4)
8∑
i=1

fi = 0,

so that Ω = {±(fi+fj) | 1 ≤ i < j ≤ 8}. This construction exhibits the action of the natural
subgroup S8 of W (G) (permuting f1, . . . , f8), and we may assume that η permutes f1, . . . , f5

cyclically and fixes each of f6, f7, f8. Taking (6.2.12.4) and o(z) = 5 into account, we now
have

f1(z) = f2(z) = . . . = f5(z) = α, f6(z) = β, f7(z) = γ, f8(z) = δ = (βγ)−1,

where α, β, γ ∈ C× and α5 = β5 = γ5 = 1. Now, if α = 1, then all 20 weights ±(fi + fj) with
1 ≤ i < j ≤ 5 take value 1 at z, contradicting (6.2.12.3). Hence

(6.2.12.5) α 6= 1,

and (fi + fj)(z) with 1 ≤ i < j ≤ 5 yield α2 with frequency 10, and (−fi − fj)(z) for these
i, j yield α−2 with frequency 10, and, by (6.2.12.3), the remaining 36 weights of Ω must take
value 1 at z 16 times. If, however, none of αβ, αγ, αδ is 1, then 1 can be achieved only by
the 6 weights ±(fi + fj)(z), 6 ≤ j ≤ 8, a contradiction. Using an element (6, 7, 8) ∈ S8 that
centralizes η, we may assume αβ = 1. Now, if none of αγ, αδ is 1, then 1 can be achieved
only by the 10 weights ±(fi + f6), 1 ≤ i ≤ 5, and the 6 weights ±(f6 + fj)(z), j = 7, 8, and
±(f7 + f8). It follows from (6.2.12.3) that all the latter 6 weights take value 1 at z, i.e.

βγ = βδ = γδ = 1,

yielding β2 = 1, and so α = β−1 = 1, contradicting (6.2.12.5). Using the action of (7, 8) ∈ S8

if needed, we may assume αγ = 1. But then the 20 weights ±(fi + f6) and ±(fi + f7) with
1 ≤ i ≤ 5 all take value 1 at z, again contradicting (6.2.12.3).

(v) Suppose now that m = 1, so that w = 55. By the above results, p = 2 or 3. Hence,
[KRLT4, Proposition 4.8] implies that Q is elementary abelian of order 220 or 310, which is
impossible for subgroups in G by the main result of [CS]. �

Theorem 6.2.13. Let p be a prime, and suppose that there exists a hypergeometric sheaf
H in characteristic p, of type (27,m) with D > m, such that G := G◦geom is of type E6. Then
p ≤ 3. Moreover, either m > 1, or (m, p) = (0, 3).

Proof. (i) Theorems 4.1.1 and 4.1.5 show that w := D−m ≥ 2. Since any automorphism
ofG which preserves the isomorphism class of the underlying representation VH forG is inner,
Lemma 6.2.2 allows us to assume that Ggeom = G.

We argue by contradiction, again relying on [KT5, Theorem 4.17]. Assume that either
p > 5 (so p is coprime to the order of the Weyl group W (G)), or p = 5 (so p is not a torsion
prime for G). Postponing the case where p = 5 and p|w until (v), we have that either p > 5,
or 5 = p - w. Applying [KT5, Theorem 4.17], we see that w divides the order of some
element in W (G) = SU4(2) o 2, hence w ≤ 12, see [CCNPW]; also, its proof shows that Q
is contained in a maximal torus T and so is abelian. In particular, m = dimTame ≥ 15.

It is convenient to use the following realization of the weight system of type E6 given in
[OV, Table 1]. Namely, in the Euclidean space R6 one can find f, e1, . . . , e6 with (ei, ej) =
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δi,j − 1/6, (f, ei) = 0, (f, f) = 1/2, and

(6.2.13.1)
6∑
i=1

ei = 0,

so that the set Ω of 27 T -weights of VH is

Ω = {ei ± f, eij := −ei − ej | 1 ≤ i < j ≤ 6}.

This construction exhibits the action of the natural subgroup S6 × C2 ∈ W (G) (with S6

permuting e1, . . . , e6 and fixing f and C2 fixing e1, . . . , e6 and changing sign of f).

(ii) Consider any element 1 6= g ∈ Q of order p. Note that, since p > 3, the weight 6ei
takes value 1 at g if and only if ei does. Call a weight ω ∈ Ω good (for g) if ω(g) = 1, and
bad otherwise. As m ≥ 15, we have that

(6.2.13.2) the number of bad weights (for a fixed g) is at most 12.

We show that the action of g on VH is conjugate to

(6.2.13.3) diag
(
Id15, ζ · Id6, ζ

−1 · Id6

)
for a primitive pth root ζ of unity.

Here we consider the case f(g) 6= 1. Then each pair ei ± f , 1 ≤ i ≤ 6, must contain at
least one bad weight. Now, if e1(g) = e2(g) = . . . = e6(g) =: ξ, then (6.2.13.1) implies that
ξ6 = 1 and so ξ = 1, in which case (6.2.13.3) holds with ζ := f(g). So, using the S6-action,
we may assume that e1(g) 6= e2(g).

Suppose first that e3(g) 6= e4(g). Then each of the 6 pairs (e13, e23), (e14, e24), (e15, e25),
(e16, e26), (e35, e45), (e36, e46) also contains at least one bad weight from F . Hence (6.2.13.2)
implies that there are no more bad weights among the remaining 3 weights e12, e34, and e56,
and so

e1(g) = α, e2(g) = α−1, e3(g) = β, e4(g) = β−1, e5(g) = γ, e6(g) = γ−1

for some α, β, γ ∈ C×. It also follows that each of the aforementioned 12 pairs contains
exactly one bad weight and one good weight. Applying this to (e13, e23), we see that 1 = αβ
or 1 = α−1β. Conjugating by (3, 4) ∈ S6 if necessary, we may assume β = α. Applying this
argument to (e15, e25) and e1 ± f , we may also assume that f(g) = γ = α. Thus, at g the
27 weights in Ω take value 1, α2, and α−2, with frequency 15, 6 and 6, respectively, and thus
(6.2.13.3) holds with ζ := α2.

Now we consider the case α := e1(g) 6= β := e2(g) but e3(g) = e4(g) = e5(g) = e6(g) =: γ.
Suppose in addition that γ 6= 1. Then all 6 weights eij, 3 ≤ i < j ≤ 6 are bad. Hence
(6.2.13.2) implies that the remaining weights are all good, including e13, and e23. In this
case, αγ = 1 = βγ, contradicting the assumption α 6= β. Thus γ = 1. If in addition
α 6= 1 6= β, then the 8 weights eij with i = 1, 2 and 3 ≤ j ≤ 6 are all bad, contradicting
(6.2.13.2). Hence 1 ∈ {α, β}, which then implies by (6.2.13.1) that α = 1 = β, again a
contradiction.

(iii) Now we consider the case f(g) = 1. Suppose that ei(g) 6= 1 for all 1 ≤ i ≤ 6. Then
the 12 weights ei ± f are all bad, hence by (6.2.13.2), all the 15 weights eij are good. It
follows that 1 6= e1(g) = . . . = e6(g) =: α but α2 = 1, a contradiction.
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So we may assume that e1(g) = 1. Suppose that ei(g) 6= 1 for all 2 ≤ i ≤ 5. Then the
12 weights ei ± f and e1i with 2 ≤ i ≤ 5 are all bad. Hence by (6.2.13.2), all the other 15
weights, including e23, e24, e34, are good. It follows that 1 6= e2(g) = e3(g) = e4(g) =: α but
α2 = 1, again a contradiction.

Hence we may assume that e1(g) = e2(g) = e3(g) = 1. If ei(g) 6= 1 for all 4 ≤ i ≤ 6, then
the 15 weights ei ± f and eij with 4 ≤ i ≤ 6, 1 ≤ i ≤ 3 are all bad, contradicting (6.2.13.2).
We may now assume that e1(g) = e2(g) = e3(g) = e4(g) = 1. In this case, (6.2.13.1) implies
that e5(g) = α and e6(g) = α−1, showing that (6.2.13.3) holds for ζ := α.

(iv) Now that we have established (6.2.13.3), the condition m ≥ 15 implies that in fact
m = 15 and w = 12. As 5 ≤ p - w, [KRLT4, Proposition 4.8] shows that Q is elementary
abelian of order pa for some a ∈ {1, 2}, and the Q-module Wild is multiplicifty-free. If a = 1,
then (6.2.13.3) shows that Q = 〈g〉 has a simple submodule of dimension 1 with multiplicity
6 on Wild, a contradiction. So we can write Q = 〈g, h〉 ∼= C2

p . By (6.2.13.3), the g-module
Wild is the sum of two g-eigenspaces Wζ and Wζ−1 , each of dimension 6. The Q-module Wild
being multiplicity-free forces h to act on Wζ with 6 distinct eigenvalues, and this contradicts
(6.2.13.3) applied to h.

(v) As promised, we now return to the case where 5 = p|w. By [KRLT4, Proposition 4.9],
this implies that Q is non-abelian. Since Q is nilpotent, it is supersolvable and so embeds in
NG(T ) for some maximal torus T of G, see [Bor, E-45, II.5.16]. Now the nontrivial p-group
Q/QT , with QT := Q∩T , embeds in W (G) = SU4(2)o 2, so in fact Q/QT has order 5, and
we may assume it is generated by an element η of order 5 in W (G). If Z(Q) 6≤ QT , then
Q = Z(Q)QT would be abelian, a contradiction. Hence 1 6= Z(Q) ≤ QT ; in particular, QT
contains an element z ∈ Z(Q) of order 5. Note that if β 6= 1 is an arbitrary eigenvalue for z
on VH, then the corresponding eigenspace is a sum of wild simple Q-submodules, hence all
of dimension divisible by 5. This implies by [CW, Table 2] that 1 is an eigenvalue of z of
multiplicity 2 or 7; in particular m ≤ 7, and so w = 25 or w = 20. Since Q/QT = 〈η〉 ∼= C5

and QT is abelian, Ito’s theorem [Is, (6.15)] implies that any simple Q-module has dimension
dividing 5, ruling out the case w = 25.

Consider the case w = 20, in which z is an element of type 5E in [CW, Table 2], that is,
(6.2.13.4)

the multiplicity of ζj5 as an eigenvalue of z on VH is 7 if j = 0 and 5 if 1 ≤ j ≤ 4.

Recall that z ∈ G is centralized by the element η ∈ W (G) of order 5, and we may assume
that η permutes e1, . . . , e5 cyclically and fixes each of e6 and f . Taking (6.2.13.1) and o(z) = 5
into account, we now have

e1(z) = e2(z) = . . . = e5(z) = α, e6(z) = 1, f(z) = β,

where α, β ∈ C× and α5 = 1. Now the 10 weights eij, 1 ≤ i < j ≤ 5, all take value α−2 at z,
violating (6.2.13.4).

(vi) Assume now that m ≤ 1. By the previous results, we may now assume that p = 2
or 3. Suppose m = 0 but p = 2. As w = 27, by [KRLT4, Proposition 4.8], Q is elementary
abelian of order 218, but G does not possess such a subgroup by the main result of [CS].

Suppose m = 1, so that w = 26. If p = 3, then [KRLT4, Proposition 4.8] implies that
g13
∞ has spectrum

(
1[13], (−1)[13]

)
on Wild. Then the 2-part h of g13

∞ has the same spectrum on

Wild, and {β} on Tame for some β ∈ C× of finite order 2b. If b ≤ 1, then h is an involution,
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and [CW, Theorem 3.1] shows that G cannot have an involution with such a spectrum. If

b ≥ 2, then h2b−1
has spectrum

(
1[26], (−1)

)
, which is again ruled out by [CW, Theorem 3.1].

If p = 2, then [KRLT4, Proposition 4.9] implies that g13
∞ has spectrum

(
ξ[13], ξζ

[13]
3

)
on

Wild, for some ξ ∈ C×. Then the 3-part h of g13
∞ has spectrum

(
α[13], αζ

[13]
3

)
on Wild and

{β} on Tame for some α, β ∈ C× of finite order 2a and 2b. Replacing ζ3 by ζ3 and α by
αζ3, we may assume that o(α) ≥ o(αζ3) and thus a ≥ 1. Now, if b > a or if a > max(b, 1),
then hmax(a,b)−1 is an element of order 3 with some ζ ∈ µ3 as an eigenvalue of multiplicity 26,
which contradicts [CW, Theorem 3.1]. If a = 1 ≥ b, then two of 1, ζ3, ζ3 are eigenvalues of
multiplicity ≥ 13, which is again impossible by [CW, Theorem 3.1]. In the remaining case

a = b ≥ 2, h3a−1
acts as multiplication by α3a−1 ∈ µ3r{1} on Wild and β3a−1

on Tame. Using

[CW, Theorem 3.1], we see that β3a−1
= α3a−1

. Replacing h by α−1h, we see that h has

spectrum
(
ζ

[13]
3 , 1[13]

)
on Wild and an eigenvalue of order 3a−1 ≥ 3 on Tame, which is ruled

by the argument for the b ≥ a = 1 case. �

Now we can formulate one of the main results of the book:

Theorem 6.2.14. Suppose H is a hypergeometric sheaf in characteristic p, of type (D,m)
with D > m and D ≥ 2 such that Ggeom is primitive and infinite. If D = 4, 8, 9, suppose
in addition that H satisfies (S+). Then G := G◦geom is a simple algebraic group that acts
irreducibly on H, and one of the following statements holds.

(i) G is SLD, SOD, or, SpD with even D, acting on H via the natural representation or its
dual.

(ii) D = 4, p = 3, and G is the image of SL2 = SL(V ) acting on Sym3(V ).
(iii) D = 5, p = 2, and G is the image of SL2 = SL(V ) acting on Sym4(V ).
(iv) D = 6, p = 2, and G = SL3 = SL(V ) acting on H as on Sym2(V ) or Sym2(V ∗).
(v) D = 7 and G is G2.

(vi) D = 8, and G acts on H as SL3 = SL(V ) acts on the adjoint module.
(vii) D = 8, and G acts on H as Spin7 acts on its spin module.

(viii) G is the image of SL6 = SL(V ) acting on ∧k(V ) or ∧k(V ∗) for 2 ≤ k ≤ 3 and 2 ≤ p ≤ k.
(ix) p = 2, D = 2N/2−1 with N ∈ {10, 12, 16}, and G = HSpinN .
(x) 2 ≤ p ≤ 3, and (D,G) = (27, E6) or (56, E7).

Moreover, if w := D −m ≥ 2 in addition, then we have the following more precise informa-
tion.

(a) In case (i), there exists a tame character χ such that the geometric monodromy group of
Lχ ⊗H is either G, or OD with 2|D.

(b) In cases (ii)–(v), (ix), and (x), there exists a tame character χ such that Lχ ⊗ H has
Ggeom = G.

Proof. By Theorem 5.2.9, the primitivity of H implies (S+) when D 6= 4, 8, 9. Hence,
(S+) holds in all cases, and soG = G◦geom is a simple algebraic group acting irreducibly in the
underlying representation VH. Next, recall that a (topological) generator g0 of the image of
I(0) in Ggeom has a regular spectrum on VH, and so we can apply Theorem 3.3.4 to recognize
VH. In the case G is of type Ar, the statement now follows from Theorem 6.1.5 when r = 1
(note that the image of SL2 = SL(V ) on Sym2(V ) is just SO3 on its natural module), and
Theorem 6.1.16 when r > 1 (again note the image of SL4 = SL(V ) on ∧2(V ) is just SO6 on



136 6. (NON-)EXISTENCE RESULTS

its natural module). If G is of type Cr, the statement follows from Proposition 6.2.11. For
the remaining types Br, Dr and E6, E7, the statement follows from Theorems 6.2.10, 6.2.13,
and 6.2.12.

The “moreover” statement results from Lemma 6.2.2, together with the fact that for
D > 4 even, the normalizer of SOD in GLD is the central product GL1 ∗OD. �

Remark 6.2.15. The requirement that w := D − m ≥ 2 in the “moreover” statement
of Theorem 6.2.14 is essential. For if w = 1, then in any odd characteristic p, we have
G0

geom = SLD, cf. Theorem 4.1.1, but (because w = 1) det(H) has order divisible by p. So

we would need to twist by a character whose Dth power has order divisible by p, and no such
character is tame. The best we could do is twist by a tame character so that the “upstairs”
characters have product 1, in which case Ggeom will be the group {g ∈ GLD| det(g)p = 1}.



CHAPTER 7

Extraspecial normalizers and local systems in odd characteristics

7.1. A supersingularity result

Given an integer n ≥ 1, and a power q of p, consider the universal family of polynomials
of the form

n∑
i=0

six
1+qi + s−1x

over the space (Gm × An+1)/Fp, with coordinates (sn, sn−1, . . . , s−1). On (Gm × An+1)/Fp,
we have a local system Un,q of rank qn whose trace function is as follows: for k/Fp a finite
extension, and (sn, sn−1, . . . , s−1) ∈ k× × kn+1,

Trace(Frob(sn,sn−1,...,s−1),k|Un,q) = −
∑
x∈k

ψk
( n∑
i=0

six
1+qi + s−1x

)
.

Theorem 7.1.1. Over Fp2, the Tate twisted local system Un,q(1/2) is geometricallly irre-
ducible, and has finite arithmetic and geometric monodromy groups.

Proof. To see the geometric irreducibility, notice that pulled back to the line (1, 0, . . . , 0, s−1)
it is the Fourier transform of the lisse rank one sheaf Lψ(x1+qn ), so already this pullback is
geometrically irreducible. It is proven in [Ka-MMP, 3.8.6] that each curve

yp − y =
n∑
i=0

six
1+qi + s−1x

is supersingular. For such a curve over Fq/Fp2 , each Frobenius eigenvalue is of the form q1/2

times a root of unity (where we write q1/2 := pdeg(Fq/Fp2 )). In particular, each eigenvalue
of Frobk,(sn,sn−1,...,s−1)|Un is of this form. Thus Un(1/2) is pure of weight zero, and all of its
Frobenius eigenvalues are roots of unity. This implies the asserted finiteness, cf. [KRLT1,
2.1]. �

Theorem 7.1.2. For k a finite extension of Fp, q a power of p, n ≥ 1, and (sn, sn−1, . . . , s0, s−1) ∈
k× × kn+1, define

S(s−1, s0, . . . , sn; k) :=
−1√
#k

∑
x∈k

ψk
( n∑
i=0

six
1+qi + s−1x

)
.

Then we have the following results.

(a) If k is an extension of Fq, then |S(s−1, s0, . . . , sn; k)|2 is either 0 or a power qν of q
with 0 ≤ ν ≤ 2n. If s−1 = 0 and q is odd, the value 0 does not occur.

137
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(b) If k is a subfield of Fq and p is odd, then |S(s−1, s0, . . . , sn; k)|2 is either 0 or 1 or
#k, and all three are attained as we range over all possible (sn, sn−1, . . . , s0, s−1) ∈
k× × kn+1. If s−1 = 0 and q is odd, the value 0 does not occur.

(c) If k is a subfield of Fq and p = 2, then |S(s−1, s0, . . . , sn; k)|2 is either 0 or #k, and
both are attained as we range over all possible (sn, sn−1, . . . , s0, s−1) ∈ k× × kn+1.

(d) If n is odd, and if si = 0 for all even i, and if k is a finite extension of Fq2, then
|S(s−1, s0, . . . , sn; k)| is either 0 or a power of q. If s−1 = 0 and q is odd, the value
0 does not occur.

Proof. This is a variation of the argument of [vdG-vdV, Section 5].
We first prove (b). Suppose now k is a subfield of Fq. Then for x ∈ k each term

six
1+qi = six

2, so our raw sum

−
∑
x∈k

ψk
( n∑
i=0

six
1+qi + s−1x

)
= −

∑
x∈k

ψk
(
(
n∑
i=0

si)x
2 + s−1x

)
is either 0 (if

∑n
i=0 si = 0 and s−1 6= 0) or a quadratic Gauss sum over k (if (

∑n
i=0 si 6= 0) or

−#k (if
∑n

i=0 si = 0 = s−1).

For (c), we use the fact for x ∈ k, six
1+qi = six

2 has the same Trk/Fp as s
1/2
i x, and hence

our raw sum is ψk applied to a multiple of x (the multiple being s−1 +
∑

i≥0 s
1/2
1 ), so the raw

sum is either 0 or #k, and both are attained.

We now turn to the proof of (a). Denote by R(x) the q-linear polynomial

R(x) :=
n∑
i=0

six
qi .

Then the square absolute value of the sum in question is

(1/#k)
∑
x,y∈k

ψk
(
R(x)x+ s−1x−R(y)y − s−1y

)
= (1/#k)

∑
x,y∈k

ψk
(
R(x+ y)(x+ y)−R(y)y + s−1x

)
= (1/#k)

∑
x∈k

ψk
(
R(x)x+ s−1x

)∑
y∈k

ψk
(
R(x)y +R(y)x

)
.

The inner sum is ψ applied to

Trk/Fp
(
R(x)y +R(y)x

)
,

which is an Fp-valued symmetric bilinear form on k, viewed as vector space over Fp: let us
denote it as

〈x, y〉R := Trk/Fp
(
R(x)y +R(y)x

)
,
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More precisely, we have

Trk/Fp
(
R(x)y +R(y)x

)
= Trk/Fp

(
R(x)y + x

n∑
i=0

siy
qi
)

= Trk/Fp(R(x)y +
n∑
i=0

(six)1/qiy)

= Trk/Fp
(
y(R(x) +

n∑
i=0

(six)1/qi)
)
.

So by nondegeneracy of the Trace, the inner sum over y vanishes unless x satisfies

R(x) +
n∑
i=0

(six)1/qi = 0,

i.e.
n∑
i=0

six
qi +

n∑
i=0

(six)1/qi = 0,

or equivalently, applying the qn power map,
n∑
i=0

sq
n

i x
qi+n +

n∑
i=0

(six)q
n−i

= 0,

in which case the inner sum is #k. Let us denote by

WR :=

{
x ∈ k :

n∑
i=0

sq
n

i x
qi+n +

n∑
i=0

(six)q
n−i

= 0

}
.

On the one hand, this is visibly an Fq vector space, of dimension ≤ 2n. On the other
hand, it is set of elements in k which are orthogonal to every element y ∈ k for 〈x, y〉R. From
this second interpretation, we see that the map

WR → Fp : x 7→ Trk/Fp(xR(x))

is additive. Indeed, for x, y both in WR, using the additivity of x 7→ R(x), we have

(x+ y)R(x+ y) = xR(x) + yR(y) + xR(y) + yR(x),

and we take Trk/Fp . Thus x 7→ Trk/Fp(xR(x) + s−1x) is an additive map from WR to Fp.
Recall that we have

|S(s−1, s0, . . . , sn; k)|2 =
∑
x∈WR

ψ(Trk/Fp(xR(x) + s−1x)).

If x 7→ Trk/Fp(xR(x) + s−1x) is the zero map, then we get |S(s−1, s0, . . . , sn; k)|2 = #WR.
Otherwise we get 0. Because WR is an Fq vector space of Fq-dimension ≤ 2n, its cardinality
is the asserted power of q.

To prove (d), we observe that if n is odd and the only nonzero si have i odd, then in the
equation defining WR, only even powers of q appear as exponents, so in this case WR is an
Fq2 vector space. So its cardinality is a power of q2, and hence |S(s−1, s0, . . . , sn; k)| itself is
a power of q. �



140 7. EXTRASPECIAL NORMALIZERS AND LOCAL SYSTEMS IN ODD CHARACTERISTICS

Corollary 7.1.3. Let k be a subfield of Fq, say #k = q0 and q = qf0 for some integer
f ≥ 1. Let L/k be a finite extension. For (sn, sn−1, . . . , s0, s−1) ∈ L× × Ln+1, the square
absolute value of

(−1/
√

#L)
∑
x∈L

ψL
( n∑
i=0

six
1+qi + s−1x

)
.

is either 0 or a power qν0 of q0 with 0 ≤ ν ≤ 2nf . If s−1 = 0 and q is odd, the value zero does
not occur.

Proof. View the situation as lying over Fq0 , and apply Theorem 7.1.2. �

We will need the following, quite surprising, congruence result for certain trace functions:

Theorem 7.1.4. Let p be a prime, ` 6= p,
√
p ∈ Q` a chosen square root of p, q a power

of p, n ≥ 2 an integer, and let a1 > a2 > . . . > an > 0 be odd integers. Consider the local
system G on Gm × An over Fp whose trace function is

(s1, . . . , sn, t) ∈ k× × kn 7→
−1√
#k

∑
x∈k

ψk
( n∑
i=1

six
qai+1 + tx

)
,

in which we understand
√

#k to mean
√
pdeg(k/Fp). Denote by Garith the (finite, by Theorem

7.1.1) arithmetic monodromy group of F .
If p = 2, let k be a finite extension of Fq2. If p is odd, let k be a finite extension of Fq4.

Given a point
(s, t) := (s1, . . . , sn, t) ∈ k× × kn,

denote by F(s,t),k the image of Frob(s,t),k in Garith. Let K/k be a finite extension field whose

degree N is 1(mod p). Then the traces of F(s,t),k and of
(
F(s,t),k

)N
= F(s,t),K are related by

the congruence

Trace
(
(F(s,t),k)

N
)
≡ Trace(F(s,t),k) (mod (q + 1)Z[ζp]).

Proof. We first remark that over extensions of Fp2 , the “clearing factor”
√

#k is an
integer, and hence over such extensions all Frobenius traces lie in Z[ζp]. We now turn to our
particular k containing µq+1 (and containing Fq4 if p is odd) and its extension K/k of degree
N which is 1 (mod p). The first key point is that p|(N − 1) implies for all y ∈ k that

(7.1.4.1) TrK/k(y) = Ny = y.

Thus every element x ∈ K can be written uniquely in the form

(7.1.4.2) x = y + z, with y ∈ k, z ∈ K, and TrK/k(z) = 0.

Indeed, taking y := TrK/k(x) ∈ k and z := x− y, we have

TrK/k(z) = TrK/k(x)− TrK/k(y) = 0,

giving such a writing. The writing is unique because k ∩Ker(TrK/k) = {0}.
Having fixed (s1, . . . , sn, t) ∈ k× × kn, let us write

f(x) :=
n∑
i=1

six
qai+1 + tx.
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Then, given (7.1.4.2), we readily compute

f(y + z) =
n∑
i=1

si(y + z)q
ai+1 + t(y + z)

= t(y + z) +
n∑
i=1

si(y + z)(yq
ai + zq

ai )

= f(y) + f(z) +
n∑
i=1

si(yz
qai + yq

aiz).

The second key point is that because Gal(Fp/Fp) is abelian, Ker(TrK/k) is mapped to itself
by any power of FrobFp . Therefore not only z but each zq

ai lies in Ker(TrK/k). By definition,
ψK = ψk ◦ TrK/k, and hence

(7.1.4.3) ψK
(
f(y + z)

)
= ψK

(
f(y) + f(z) + elements with TrK/k = 0

)
= ψK

(
f(y) + f(z)

)
.

The clearing factor
√

#k is a power of ±q if p = 2, and a power of q2 if p is odd. As N is

odd for p = 2, the two clearing factors
√

#k and
√

#k
N

are congruent to each other modulo
q+1. For p odd, each of the clearing factors is a power of q2, so each is 1 modulo q+1. Thus
it suffices to show the asserted congruence for the

∑
x ψ sums without their clearing factors.

By (7.1.4.3), we have∑
x∈K

ψK(f(x)) =
∑

y∈k, z∈Ker(TrK/k)

ψK(f(y) + f(z)) =
(∑
y∈k

ψK(f(y))
)( ∑
z∈Ker(TrK/k)

ψK(f(z))
)
.

The first factor is ∑
y∈k

ψK(f(y)) =
∑
y∈k

ψk(f(y)),

simply because f(y) lies in k, so is its own TrK/k, see (7.1.4.1). We write the second factor
as

1 +
∑

06=z∈Ker(TrK/k)

ψK(f(z)).

So it suffices to show that

Σ :=
∑

06=z∈Ker(TrK/k)

ψK(f(z)) ≡ 0 (mod (q + 1)Z[ζp]).

Because k× contains µq+1, the set S := Ker(TrK/k)r {0} is stable by homothety by µq+1. So
if we pick a set of representatives zi ∈ S of the quotient space S/µq+1, then∑

06=z∈Ker(TrK/k)

ψK(f(z)) =
∑
i

∑
ζ∈µq+1

ψK(f(ζzi)).

If we write f(x) = g(x) + tx with g(x) :=
∑n

i=1 six
qai+1, then g(x) is a polynomial in xq+1

(because the ai are odd). Hence f(ζzi) = g(zi) + ζtzi, and our sum Σ becomes∑
i

ψK(g(zi))
( ∑
ζ∈µq+1

ψK(ζtzi)
)
.
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By the choice of zi, TrK/k(ζtzi) = 0 for all ζ ∈ µq+1. Hence the inner sum is∑
ζ∈µq+1

ψK(ζtzi) =
∑

ζ∈µq+1

ψk
(
TrK/k(ζtzi)

)
=
∑

ζ∈µq+1

ψk(0) = q + 1,

completing the proof. �

Corollary 7.1.5. Hypotheses and notations as in Theorem 7.1.4 above, suppose F(s,t),k ∈
Garith is an element of order prime to p. Then every power (F(s,t),k)

d of F(s,t),k has

Trace((F(s,t),k)
d) ≡ −1 (mod (q + 1)Z[ζp]).

Proof. If (F(s,t),k)
M = Id with M prime to p, then after replacing M by N := Mp−1, we

have (F(s,t),k)
N = Id with N ≡ 1 (mod p). Then

Trace((F(s,t),k)
N) = Trace(Id) = qa1 ≡ (−1)a1 = −1(mod (q + 1)Z[ζp]).

So by Theorem 7.1.4, applied with N , we get Trace((F(s,t),k)) ≡ −1 (mod(q + 1)Z[ζp]). But
each power (F(s,t),k)

d also has trivial N th power, so this same argument gives the asserted
congruence. �

7.2. Linear groups in characteristic p > 2

Let p be a prime. Recall that an extraspecial p-group is any finite p-group E such that
Z(E) = [E,E] = Φ(E) is cyclic of order p. Any such group has order p1+2N for some
N ∈ Z≥1, in which case it has p− 1 faithful, irreducible irreducible representations of degree
pN . For such a group E, the following statement is extracted from [GT1, Lemma 2.4] and
its proof.

Lemma 7.2.1. Let p be a prime and let E an extraspecial p-subgroup of order p1+2N .
Suppose X is a finite group with a normal subgroup R = Z(R)E. Suppose that ψ is an
irreducible complex character of X of degree pN such that ψ|R ∈ Irr(R). Then for any
g ∈ X, |ψ(g)|2 = |CR/Z(R)(g)| if g acts trivially on the complete inverse image of CR/Z(R)(g)
in R, and ψ(g) = 0 otherwise. In fact, for any g ∈ X, the coset gR contains at least p
elements h with |ψ(h)|2 = |CR/Z(R)(g)|.

In the rest of this section, we fix an odd prime p and prove some recognition results
for finite subgroups of GLpN (C). We will consider the extraspecial p-group E = p1+2N

+ with

exponent p, embedded in GLpN (C) via one of its faithful irreducible representation V = CpN

of degree pN . It is well known, see e.g. [Gr], that this embedding extends to a larger group
that induce all automorphisms of E which are trivial on Z(E) ∼= Cp, and in fact

Γ(p,N) := NGL(V )(E) = Z(GL(V ))E o Sp2N(p), Γ(p,N)(∞) = E o Sp2N(p).

For any divisor e of N , we have a standard subgroup Sp2N/e(p
e) o Ce of Sp2N(p), obtained

by base change the natural module F2N
p to F2N/e

pe , see [KT2, §4].

Theorem 7.2.2. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, N := nf , and
let qn ≥ 11. Let G < GL(V ) ∼= GLpN (C) be a finite irreducible subgroup that contains a

subgroup G1
∼= Sp2n(q). Then there exist an irreducible subgroup E ∼= p1+2N

+ < GL(V ),
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a divisor e of f , a divisor d of e, and a standard subgroup L := Sp2N/e(p
e) o Cd inside

Sp2N/e(p
e) o Ce ≤ Sp2N(p) such that

G(∞) = E o Sp2N/e(p
e), and Z(GL(V ))G = Z(GL(V ))(E o L).

More precisely, any element in G can be written as αh with α ∈ C× a root of unity and
h ∈ E o L, and vice versa, any element in E o L can be written as βg with β ∈ C× a root
of unity and g ∈ G.

Proof. (i) By assumption, G ≥ G1 acts irreducibly on V = CpN . Next, by [TZ1,
Theorem 1.1], any nontrivial projective representation of PSp2n(q) has degree at least (pN −
1)/2. We also observe that G1 cannot be irreducible on V . Indeed, if n ≥ 2, then since
qn ≥ 11, [TZ1, Theorem 5.2] implies that G1 has no irreducible C-representation of degree
qn. If n = 1 (and so q ≥ 11), then the only irreducible C-representation of G1 = SL2(q) of
degree q is the Steinberg representation, which is however trivial on Z(G1) = 〈j〉C2, and this
contradicts the faithfulness of G1 on V . Hence, the G1-module V is reducible, and each of
its irreducible summands has dimension 1 or at least (pN − 1)/2.

We also recall the fact that the smallest index P (G1) of proper subgroups of G1 is at least
qn = pN (with equality only when qn = 11), see [KlL, Table 5.2.A].

(ii) Suppose that G fixes an imprimitive decomposition V = ⊕mi=1Vi with m > 1. If
m < P (G1), then G1 has to fix each of the Vi’s. On the other hand, dim(Vi) is a proper
divisor of dim(V ) = pN , whence dim(Vi) ≤ pN−1 < (pN − 1)/2. Given the shape described
in (i) of the G1-module V , this can happen only when dim(Vi) = 1, which implies that G1

acts trivially on V , a contradiction. Thus m ≥ P (G1), and by (i) this is possible only when
qn = 11 and dim(Vi) = 1. We have also shown that G1 = SL2(11) permutes the 11 subspaces
Vi transitively. Let G11 denote the stabilizer of V1 in G1. According to [CCNPW], G11

is a subgroup of type 2 · A5 in G1. In fact, since G1 has only one involution, namely the
central involution j, we must have that G11

∼= SL2(5). Now the action of the perfect group
G11 on the 1-dimensional space V1 must be trivial; in particular j acts trivially on V1. As
G1 permutes the Vi’s transitively and j ∈ Z(G1), j acts trivially on every Vi and so on V ,
contradicting the faithfulness.

We have shown that G acts primitively on V . Suppose G fixes a tensor decomposition
V = A⊗CB, that is, G ≤ GL(A)⊗GL(B), with 1 < dim(A), dim(B). This induces projective
representations of G1 on A and B, which have dimensions at most pN/3 < (pN − 1)/2. By
(i), this is possible only when these projective representations are trivial, that is, G1 acts via
scalars on A and on B. This implies that G1 acts via scalars on V , whence this action is
trivial since G1 is perfect, again contradiction.

Assume now that G fixes a tensor induced decomposition V = U⊗m for some m > 1.
Then dim(U) > 1 is a power of p, whence m ≤ N < pN = qn ≤ P (G1). This shows that
the action of G1 on the m tensor factors is trivial, and so G1 fixes a tensor decomposition
V = U1 ⊗ U2 ⊗ . . . ⊗ Um with dim(Ui) = dim(U). But this is impossible by the preceding
case.

(iii) We have shown that the finite group G satisfies condition (S) of [GT3] and so can
apply [GT3, Proposition 2.8] to conclude that either

(a) G is almost quasisimple with G(∞) acting irreducibly on V , or
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(b) E C G < NGL(V )(E) for some extraspecial p-group E of order p1+2N acting irreducibly
on V .

Here we consider the second possibility (b). First we note that

(7.2.2.1) G1 ∩ Z(GL(V ))E = 1.

Indeed, the quasisimple group G1 normalizes the nilpotent subgroup X := G1∩Z(GL(V ))E,
hence X = 1 or X = Z(G1) = 〈j〉. In the latter case, if j /∈ Z(GL(V )), then it is a scalar
multiple of a non-central element in E, whence it has trace 0 on V . On the other hand, the
involution j has only eigenvalues 1 and −1 on V = CpN of odd dimension, and so its trace
must be nonzero, a contradiction. So j ∈ Z(GL(V )), whence it acts as scalar −1 and so has
determinant −1 on V . This is again a contradiction, as G1 is perfect and so lies in SL(V ).

Next, we consider the conjugation action of G1 on E. The kernel of this action is
G1 ∩ Z(GL(V )) = 1 by (7.2.2.1), so the action embeds G1 in the group Aut1(E) of all auto-
morphisms of E that act trivially on Z(E), which is equal to F2N

p o Sp2N(p) if exp(E) = p

and F2N
p o (p2N−1

+ o Sp2N−2(p)) if exp(E) > p, see [Wi, Theorem 1]. Now, if N = 1 then
|G1| = |Sp2N(p)|. If N > 1, using [Zs], we can find a primitive prime divisor ` = ppd(p, 2N)
of p2N − 1 which then divides |G1|. In either case, G1 cannot embed in the subgroup
F2N
p o (p2N−1

+ o Sp2N−2(p)) of Aut1(E). This implies that exp(E) = p, i.e. E ∼= p1+2N
+ .

(iv) We have shown that E C G in the possibility (b). Now, if f = 1, then, by
(7.2.2.1), G1

∼= Sp2N(p) embeds in G/Z(G)E ↪→ Γ(p,N)/Z(GL(V ))E ∼= Sp2N(p), and so
Z(GL(V ))G = Γ(p,N). In this case,

G ≥ G(∞) = (Z(GL(V ))G)(∞) = Γ(p,N)(∞) = E o Sp2N(p).

The statements now follow; indeed, if X and Y are two finite subgroups of GL(V ) that agree
modulo Z(GL(V )), then any element x in X can be written as αy with α ∈ C× and y ∈ Y ;
taking determinants we see that α is a root of unity.

Consider the remaining case f > 1 and write Γ(p,N) = E∆, where ∆ := Z(GL(V ))Sp2n(p).
[Here, we have chosen a fixed conjugate of Sp2n(p) in Γ(p,N), equivalently, a fixed central
involution of Sp2n(p).] As G ≥ E, we can also write G = EH, and G1 ↪→ H := G ∩ ∆ by
(7.2.2.1). Without loss, we will identify G1 with a subgroup of H. Recall that Sp2n(p) acts
on V with two irreducible summands Vε of dimension (pN − ε)/2, ε = ±, each affording an

irreducible Weil character with values in Q(
√

(−1)(p−1)/2p) and having trivial determinant.
Assume now thatH(∞) ≥ G1 acts reducibly on the summand Vε of even dimension. Recall

that any irreducible C-representation of Sp2n(q) has dimension at least (qn−1)/2 = (pN−1)/2
by [TZ1, Theorem 1.1]. First suppose that pN ≡ 3(mod 4). Then V+ has odd dimension
(pN − 1)/2 = (qn − 1)/2 and so the central involution j of G1 acts trivially on V+. As
G1 ≤ H(∞) acts reducibly on V−, each of it irreducible summands on V− has dimension
1 or (qn − 1)/2, which is always odd and so forces j to act trivially on all of them, i.e.
j acts trivially on V , a contradiction. In the other case pN ≡ 1(mod 4), by assumption
each irreducible G1-summand on V+ has dimension 1, so j acts trivially on V+. If G1 acts
irreducibly on V− which now has odd dimension (qn+1)/2, then j acts trivially on it as well,
a contradiction. Hence G1 acts reducibly on V−, and so V− splits off as a trivial module V0,
on which j is trivial, and another submodule V ′ of dimension (qn − 1)/2 on which j acts
nontrivially. It follows that V ′ is irreducible over G1, and thus j acts as −1 on V ′ and 1 on
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V0 and on V+. On the other hand, the central involution j ′ of Sp2N(p) acts as −1 on V+ and
1 on V− = V0⊕ V ′. Thus the involution jj ′ of ∆ has trace 2− pN on V , and this contradicts
Lemma 7.2.1 (applied to E o 〈jj ′〉).

We have shown that H(∞) ≤ Sp2N(p) acts irreducibly at least on the even-dimension
summand Vε, and so the same holds for H; also, Sp2N(p) acts faithfully on Vε. Now, applying
Theorems 4.1 and 4.2 of [KT2] to the faithful action of H(∞) ≥ Sp2n(q) on Vε we conclude
that H(∞) is a standard subgroup Sp2N/e(p

e) for some divisor e of f . Furthermore, H ≤ ∆

acting on H(∞) can induce only a subgroup of

NSp2N (p)(Sp2N/e(p
e)) = Sp2N/e(p

e) o Ce.

It follows that we can find a standard subgroup L := Sp2N/e(p
e)oCd inside Sp2N/e(p

e)oCe,
for some d|e, such that Z(GL(V ))H = Z(GL(V ))L. As G = EH, the statement follows.

(v) Now we handle the possibility (a), and recall that L := G(∞) acts irreducibly on V .
As G is almost quasisimple, L is a cover of a simple group S; furthermore, L ≥ G1 = Sp2n(q)
as G1 is perfect.

First we consider the case S = Am for some m ≥ 5. Then m ≥ P (G1) ≥ qn ≥ 11. Since
dim(V ) = pN , we can apply [BBOO, Theorem 2.4] to deduce that m = pN + 1 and L = Am;
in particular, P (G1) ≤ qn + 1. This in turn implies by [KlL, Table 5.2.A] that n = 1.
According to [BHR, Table 8.1], G1 = Sp2(q) has only conjugacy class of proper subgroups
of index ≤ q + 1, and any such subgroup contains the central involution j. Thus G1 cannot
embed in L = Am, a contradiction.

From now on we may assume S 6= Am, and apply [MZ, Theorem 1.1]. We will rule out
the arising possibilities case-by-case.
• L = S is a simple group of Lie type in characteristic p, and V |L is the Steinberg

representation. In this case qn = dim(V ) is the order of a Sylow p-subgroup P of S ≥ G1.

On the other hand, a Sylow p-subgroup of G1 = Sp2n(q) has order qn
2
, hence n = 1, and P

is elementary abelian of order q. As S is of Lie type in characteristic p, this can happen only
when S is of (untwisted) Lie rank 1 and thus S = PSL2(q). But then G1 = Sp2(q) cannot
embed in L = S, a contradiction.
• L is a cover of PSL2(r) for some prime power r, and qn = dim(V ) ∈ {r± 1, (r± 1)/2}.

As qn ≥ 11, L is a quotient of SL2(r), and so L admits a faithful irreducible representation of
degree 2 or 3 over Fr. But this contradicts the Landazuri-Seitz-Zalesskii bound [KlL, Table
5.3.A]

(7.2.2.2) d(PSp2n(q)) ≥ (qn − 1)/2

for the smallest degree d(PSp2n(q)) of nontrivial projective representations of PSp2n(q) over
fields of characteristic 6= p.
• (S, dim(V )) is (PSLm(r), (rm−1)/(r−1)) or (PSUm(r), (rm+1)/(r+1)) with 2 - m > 2,

or (PSpm(r), (rm/2±1)/2) with 2|m ≥ 4, and r a prime power. In any of these cases, S has a
faithful projective representation of degree m over Fr, hence m ≥ (qn−1)/2 ≥ 5 by (7.2.2.2).
If qn > 13, then this forces dim(V ) ≥ 2m+ 2 ≥ pN + 1, a contradiction. When 11 ≤ qn ≤ 13,
the only possible cases are (L, qn) = (SU5(2), 11) or (PSp6(3), 13), which are then ruled out
for the reason that G1 = SL2(q) cannot embed in L by [CCNPW].
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• Either dim(V ) = 11 and L = M11,M12, or dim(V ) = 23 and L = M24,Co2,Co3. By
[CCNPW], G1 = SL2(11) cannot embed in L, a contradiction.
• dim(V ) = 27, and L = Sp6(2), 3 ·Ω7(3), 3 ·G2(3), 2F4(2)′. By [CCNPW], G1 ≥ SL2(27)

cannot embed in L, a contradiction.
• Either dim(V ) = 36 and L = 3 · PSU4(3), 3 · G2(3), or (dim(V ) = 39, 3 · Ω7(3)). By

[CCNPW], G1 ≥ SL2(qn) cannot embed in L, again a contradiction. �

7.3. Local systems in characteristic p > 2

Definition 7.3.1. Given any prime p ≥ 2, any integers A > B > 0 coprime to p, a
finite extension k/Fp, and a character χ of k×, we denote by F(A,B, χ) the arithmetically
semisimple local system on A1/k whose trace function is given as follows: for L/k a finite
extension and s ∈ L,

Trace(Frobs,L|F(A,B, χ)) = −
∑
x∈L

ψL(xA + sxB)χL(x).

Its constant field twist by (−Gaussk)− deg /k is denoted G(A,B, χ):

Trace(Frobs,L|G(A,B, χ)) =
1

Gauss(ψL, χ2)

∑
x∈L

ψL(xA + sxB)χL(x).

When gcd(A,B) is not explicitly assumed to be 1, these local systems will be denoted

Fnngcd(A,B, χ) and Gnngcd(A,B, χ),

the subscript nngcd standing for ”not necessarily gcd = 1”.

Fix a prime p > 2 and N ∈ Z≥1. In this section, when N ≥ 2 we will work with the local
system

(7.3.1.1) Gr,s,t = G(pN + 1, p+ 1, 2, 1,1)

on A3/Fp whose trace function is given as follows: for k/Fp a finite extension, and (r, s, t) ∈ k3,

(r, s, t) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xp

N+1 + rxp+1 + sx2 + tx
)
.

The notation Gr,s,t is included for convenience in working with various specializations. In
particular, the specialization r = t = 0 is just Gnngcd(pN + 1, 2,1):

G0,s,0 = Gnngcd(pN + 1, 2,1).

For completeness, for N = 1 we consider the local system

(7.3.1.2) Gs,t = G(p+ 1, 2, 1,1)

on A2/Fp whose trace function is given as follows: for k/Fp a finite extension, and (s, t) ∈ k2,

(s, t) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xp+1 + sx2 + tx

)
.

First we need some preliminary results.

Lemma 7.3.2. Let q ≥ 5 be a power of an odd prime p. Then the local system Gnngcd(q +
1, 2,1) in characteristic p has Ggeom = Sp2(q) in a total Weil representation.
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Proof. This system is the direct sum of the two systems, Godd with geometric mon-
odromy group PSp2(q), and Geven with geometric monodromy group Sp2(q), in respective
irreducible constituents W1 and W2 of a total Weil representation W of degree q of Sp2(q),
see [KT1, Theorem 17.2]. By Lemma 2.2.5, Ggeom is a subgroup of Sp2(q) × PSp2(q) that
maps onto each of the factors. Since 2 - q > 3, Sp2(q) is quasisimple, with center C2. So, by
Goursat’s lemma, Ggeom is either PSp2(q)×Sp2(q) acting onW1⊕W2, or Ggeom = Sp2(q) act-
ing in a total Weil representation. In the former case, by Burnside’s theorem we can find an
element g = (g1, g2) of Ggeom, with g1 ∈ PSp2(q) having trace 0 onW1 and g2 ∈ Sp2(q) having
trace 0 on W2, whence g has trace 0 in the underlying representation for Fnngcd(q + 1, 2,1).
However the squared absolute value of the trace of any element in Ggeom is a power of q by
[KT6, Theorem 2.8(i)]. Hence we are in the latter case, and the statement follows. �

Lemma 7.3.3. The local system Gnngcd(4, 2,1) in characteristic 3 has Ggeom = Sp2(3) in
a total Weil representation, with the convention that both the linear characters of order 3 are
to be considered “Weil representations” of Sp2(3) = 21+2

− o 3.

Proof. Its trace function is

t ∈ k/F3 7→
1

Gaussk

∑
x∈k

ψk(x
4 + tx2).

This is the direct sum of two local systems G(2, 1,1)⊕G(2, 1, χ2), whose trace functions are
respectively

t ∈ k/F3 7→
1

Gaussk

∑
x∈k

ψk(x
2 + tx), t ∈ k/F3 7→

1

Gaussk

∑
x∈k

ψk(x
2 + tx)χ2(x).

It is visible that for the first of these, namely G(2, 1,1), we have Ggeom,1 = Garith,1 = µ3. For
the second, namely G(2, 1, χ2), it was proven in the first paragraph of the proof of Theorem
10.2.7 that Ggeom,2 = Garith,2 = SL2(3) ∼= Sp2(3). Thus Ggeom of Gnngcd(4, 2,1) is a subgroup
of Sp2(3)× µ3 which maps onto each factor. Since it maps onto Sp2(3), its order is divisible
by |Sp2(3)| = 24, but as a subgroup of the product its order divides 3 × 24 = 72. So either
the order is 24, and Ggeom is Sp2(3) in a total Weil representation, or its order is 72.

We now appeal to a Magma calculation, which shows that for Gnngcd(4, 2,1), over both
F33 and F34 there are Frobenii with trace 3. So by Lemma 2.5.1, we conclude that for
Gnngcd(4, 2,1), we have Ggeom = Garith. We now invoke Lemma 2.5.4, applied to Gnngcd(4, 2,1).
Each of its two summands has Swan∞ = 2, so we may take S∞ = 2 in that lemma. Then we
have the inequality, for each finite extension Fq/F3,∣∣∣∣#{x ∈ Fq|Trace(Frobx,Fq |Gnngcd(4, 2,1)) = 3}

q
− 1

|Ggeom|

∣∣∣∣ ≤ 1
√
q
.

According to another Magma calculation, over F39 there are 820 Frobenii with trace 3. Thus

|820/39 − 1/|Ggeom|| ≤ 1/140.296,

hence
820/39 − 1/140.296 ≤ 1/|Ggeom| ≤ 820/39 + 1/140.296,

which is to say
0.0245 ≤ 1/|Ggeom| ≤ 0.0488,



148 7. EXTRASPECIAL NORMALIZERS AND LOCAL SYSTEMS IN ODD CHARACTERISTICS

which gives

20.49 ≤ |Ggeom| ≤ 40.82,

Since the only possible orders of Ggeom are 24 or 72, we conclude that |Ggeom| = 24, and
hence Ggeom = Sp2(3) as asserted. �

Theorem 7.3.4. Suppose pN ≥ 11. If N ≥ 2, then the geometric monodromy group
Gr,s,t

geom of the local system Gr,s,t defined in (7.3.1.1) is isomorphic to the group

Γ(p,N)(∞) = p1+2N
+ o Sp2N(p).

When N = 1, the geometric monodromy group Gs,t
geom of the local system Gs,t defined in

(7.3.1.2) is isomorphic to the group

Γ(p, 1)(∞) = p1+2
+ o Sp2(p).

Proof. We can choose k to contain Fp2 , so that any element of F×p is a square in k.
In this case, Gauss(ψk, χ2) = Gauss((ψa)k, χ2) for any ψa : t 7→ ψ(at) with a ∈ F×p . First

assume that N ≥ 2. Then Gr,s,0 is the local system W2-param(ψ,N, p) introduced in [KT3,
§4] when 2 - N and in [KT3, §9] when 2|N . Hence Gr,s,0 has geometric monodromy group
Gr,s,0

geom = L := Sp2N(p) by Theorem 4.3 and Theorem 10.3 of [KT3]. Similarly, when 2|N ,

Gr,0,0 has geometric monodromy group Gr,0,0
geom = L by [KT3, Theorem 10.6]. On the other

hand, G0,0,t is the Fourier transform of the lisse rank one sheaf Lψ(x1+pN ), so is geometrically

irreducible, hence its geometric monodromy group G0,0,t
geom is irreducible and finite by Theorem

7.1.1. It follows that G := Gr,s,t
geom is a finite irreducible subgroup of GLpN (C) that contains

L = Sp2N(p).
Next we show that when N = 1, Gs,t

geom is also an irreducible subgroup of GLp(C) that
contains L := Sp2(p). First, the irreducibility is established by the same argument as above,
but applied to G0,t. Next, Gs,0 is the direct sum of two irreducible local systems of rank
(p − ε)/2 and (p + ε)/2, with p ≡ ε(mod 4), which were shown in [KT1, Theorem 17.2] to
have geometric monodromy groups SL2(p), respectively PSL2(p), when p ≥ 5. Now the à
la Goursat proof of [KT2, Proposition 6.6] can be repeated verbatim, see Lemma 7.3.2, to
show that the geometric monodromy group L of Gs,0 is isomorphic to SL2(p), again provided
that p ≥ 5. The same statement holds for p = 3, see Lemma 7.3.3.

In the rest of the proof, slightly abusing the notation, we use Gr,s,t and G = Gr,s,t
geom to

denote Gs,t and Gs,t
geom when N = 1. By Theorem 7.1.1, G is finite. Applying Theorem 7.2.2,

we deduce that

G = Z(G)Γ(p,N)(∞) ≤ Γ(p,N).

Furthermore, the trace function takes values only in Q(ζp). Hence Z(G) ≥ Z(E) ∼= Cp can
contain only scalars α · Id, where E = Op(Γ(p,N)(∞)) = p1+2N

+ and α ∈ Q(ζp) is a root of
unity; in particular, α2p = 1 and |Z(G)| divides 2p. Now, if Z(G) > Z(E), then Z(G) = C2p

contains −1·Id, and so G ∼= C2×Γ(p,N)(∞) would have C2 quotient, which is impossible since
H1(An/Fp, µd) = 0 if p - d. It follows that Z(G) = Z(E), and the statement is proved. �

Next we prove a full generalization of Theorem 7.3.4:
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Theorem 7.3.5. Let q = pf be a power of an odd prime p, n, l ∈ Z≥1, and qn ≥ 11.
Consider any sequence

n > m1 > m2 > . . . > ml ≥ 0

with l ≥ 1, 2|nm1 . . .ml, and gcd(n,m1, . . . ,ml) = 1, and the local system

Gs1,...,sl,t = G(qn + 1, qm1 + 1, . . . , qml + 1, 1,1)

on Al+1/Fp whose trace function is given as follows: for k/Fp a finite extension, and (s1, . . . , sl, t) ∈
kl+1,

(s1, . . . , sl, t) 7→
1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 + s1x
qm1+1 + . . .+ slq

qml+1 + tx
)
.

(a) Then the geometric monodromy group Ggeom of Gs1,...,sl,t is a standard subgroup p1+2N
+ o

Sp2n(q) of Γ(p,N)(∞) = p1+2N
+ o Sp2N(p), where N := nf .

(b) For any k a finite extension of Fp, there exists a scalar subgroup Carith,k of order at most
2 such that the arithmetic monodromy group Garith,k of Gs1,...,sl,t over k is Carith,k×Ggeom

if k ⊇ Fq, and (Carith,k ×Ggeom) ·Gal(Fq/k) if k ⊆ Fq.

Proof. (i) First we aim to show that Ggeom contains a subgroup isomorphic to Sp2N(q)
(acting on Gs1,...,sl,t via a total Weil representation). When N = 1, Gs1,...,sl,t is the system
Gs1,t considered in Theorem 7.3.4, hence Ggeom = Γ(p,N)(∞). So we will assume N > 1. As
explained in the proof of Theorem 7.3.4, specializing s1 = . . . = sl = 0, we see that Ggeom

is a finite irreducible subgroup of GLpN (C). Furthermore, while working over extensions of
Fq2 , it does not matter what choice of Gauss sums is taken, and moreover

(7.3.5.1) |ϕ(g)|2 is either zero or a q-power

by Theorem 7.1.2(a), if ϕ(g) denotes the trace of any g ∈ Ggeom (or even for any g ∈ Garith,Fq).
Consider the case where there exists an index j such that m := mj is coprime to n and

2|mn. Then the system Gs1,...,sl,t, where all si with i 6= j and also t are specialized to be
0, is the local system W(ψ, n,m, q) on A1/Fp defined in [KT6, (9.0.4)], whose geometric
monodromy group is shown in [KT6, Theorem 9.2] to contain Sp2n(q), as stated. (As shown
in Theorem 7.3.11, the assumptionm < n/2 in Theorems 9.2 and 10.2 of [KT6] is redundant.)
In particular, we are done if l = 1. If n = 2 but l > 1, then (m1,m2) = (1, 0) and so we are
also done by taking m := m1. So we may assume that l > 1 and n ≥ 3. We may also assume
that

(7.3.5.2) (m1,m2) 6= (1, 0) when (f, l) = (1, 2),

since the case (f, l,m1,m2) = (1, 2, 1, 0) is precisely the one considered in Theorem 7.3.4.

(ii) For any 1 ≤ j ≤ l, write dj := gcd(n,mj), so that gcd(n/dj,mj/dj) = 1. By
assumption, (qdj)n/dj = qn = pN ≥ 11; also, if mj > 0 then dj ≤ n/2 as mj < n.

First suppose 2|(nmj/d
2
j) for a given j. Then the system Gs1,...,sl,t, where all si with i 6= j

and also t are specialized to be 0, is the local systemW(ψ, n/dj,mj/dj, q
dj) on A1/Fp defined

in [KT6, (9.0.4)], whose geometric monodromy group is shown in [KT6, Theorem 9.2] to
contain Sp2n/dj

(qdj).

We also note that 2|(nmi0/d
2
i0

) for at least one i0. (Indeed, assume 2 - (nmj/d
2
j) for

all j. If 2|n, then since 2 - (n/dj), we have that 2|dj and so 2|mj for all j and thus
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2| gcd(n,m1, . . . ,ml), a contradiction. So 2 - n, forcing 2 - dj, and so, as 2 - (mj/dj),
we have 2 - mj for all j and thus 2 - nm1 . . .ml, again a contradiction.) As we explained
above, this implies that Ggeom contains Sp2n/di0

(qdi0 ). By Theorem 7.2.2, modulo Z(GL(V ))

the subgroup Ggeom is E o L, with E = p1+2N
+ and Sp2N/e′(p

e′) C L ≤ Sp2N/e′(p
e′) o Ce′ for

some e′|di0f , and V is the underlying representation. Since Sp2N/e′(p
e′) is a standard sub-

group of Sp2N(p) acting in a total Weil representation, |ϕ(h)|2 = pe
′
for some h ∈ Sp2N/e′(p

e′)
by [KT3, Theorem 3.5]. It follows from (7.3.5.1) that e′ = ef for some e|di0 .

If e = 1, then we have Sp2n(q) ↪→ Ggeom as desired. So we will assume e > 1. This
argument also shows that

(7.3.5.3) e|dj whenever 2|(nmj/d
2
j).

Next we show that we may also assume that

(7.3.5.4) e|dj whenever 2 - (nmj/d
2
j).

Consider any such j; in particular dj ≤ n/3 (since mj ≥ 1). Then over Fq2dj the system

Gs1,...,sl,t, where all si with i 6= j and also t are specialized to be 0, is the pullback by
the map sj 7→ −sj of the local system Wn/dj ,mj/dj defined in [KT6, §10], whose geometric
monodromy group is shown in [KT6, Theorem 10.2] to contain SUn/dj(q

dj) (acting in the
total Weil representation) and hence contains a maximal torus of order

(qdj)n/dj−1 − 1 = qn−dj − 1 = pf(n−dj) − 1.

Note that f(n− dj) ≥ 2N/3 ≥ 2, with equality only when (n, f) = (3, 1) and dj = 1. In the
latter case, by (7.3.5.2), we have (f, l,m1,m2) 6= (1, 2, 1, 0), so mi′ = 2 for some i′ and we are
done by (i). Hence we may assume that f(n−dj) ≥ 3, and so pf(n−dj)− 1 admits a primitive
prime divisor `j ≥ f(n − dj) + 1 ≥ 2N/3 + 1 by [Zs], and Ggeom contains some non-scalar
element gj of order `j. As gj is non-scalar and of order coprime to p, |gj| = `j divides |L|.
We next note that `j in fact divides |Sp2n/e(q

e)|. (Indeed, if `j > 2N/3 divides e′ = ef , then,
as e′|N we must have `j = e′ = N is prime and so dj = 1, e = e′ (as e > 1), and f = 1. In
this case, PSUN(p) embeds in Z(GL(V ))EGgeom/(Z(GL(V ))E) ∼= L ≤ Sp2(pN)oCN , which
is impossible since N ≥ 3.) It therefore follows that, there is some 1 ≤ cj ≤ n/e such that `j
divides q2ecj − 1. By the choice of `j, we have that (n− dj)|2ecj ≤ 2n ≤ 3(n− dj). Hence,

either n− dj = 2ecj, or n− dj = ecj, or 3n− 3dj = 2ecj = 2n and dj = n/3 = mj.

Since e|n, (7.3.5.4) holds in the first two cases. So if e - dj, we must be in the third case.
Then PSU3(qn/3) embeds in Z(GL(V ))EGgeom/(Z(GL(V ))E) ∼= L ≤ Sp2n/e(q

e) o Ce′ . As

mentioned above, a Sylow `j-subgroup of PSU3(qn/3) embeds in Sp2n/e(q
e) for `j a primitive

prime divisor of p2N/3 − 1 = q2n/3 − 1, and this Sylow subgroup is non-cyclic. However, the
Sylow `j-subgroup of Cq2n−1 is of course cyclic. So there exists another 1 ≤ c′j < n/e = cj
such that `j divides q2ec′j − 1. Using e - dj and repeating the previous argument for c′j in
place of cj, we obtain that 3n− 3dj = 2ec′j = 2n and thus c′j = n/e = cj, a contradiction.

We have therefore shown in (7.3.5.3) and (7.3.5.4) that e|dj for all j, and thus e|mj for
all j. As e > 1 and e|n, we get gcd(n,m1, . . . ,ml) > 1, a contradiction.

(iii) Thus Ggeom contains Sp2n(q). Again applying Theorem 7.2.2, we see that, modulo
Z(GL(V )) the subgroup G := Ggeom is E o L, with E = p1+2N

+ and L = Sp2N/c(p
c) o Cd a
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standard subgroup of Sp2N(p) for some c|f and some d|c; moreover, G(∞) = E o Sp2N/c(p
c).

By [KT3, Theorem 3.5], |ϕ(h′)|2 = pc/d for some scalar multiple h′ of an element in L. It
follows from (7.3.5.1) that f divides c/d, and so c = f , d = 1 and thus L = Sp2n(q) ≤ G(∞).
It follows that G = Z(G)(EoL). Now, the same arguments as in the proof of Theorem 7.3.4
show that G = E o L.

The same arguments as in the proof of Theorem 7.3.4, but applied to Garith,k, also show
that Z(Garith,k) = Z(E)× Carith,k for some central scalar subgroup Carith,k of order ≤ 2, and
moreover when k ⊇ Fq we have Garith,k = Carith,k ×Ggeom.

Consider the case k = Fpf/r ⊆ Fq for some r|f . We first observe that #k = q1/r is attained
as a value of |ϕ(v)|2 for some v ∈ Garith,k. One need simply take the image of Frobenius at
the k-point s1 = −1, other si = 0, t = 0, where the trace is

1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − xqm1+1
)

=
1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
x2 − x2

)
=

#k

Gauss(ψk, χ2)
,

which indeed has the asserted square absolute value #k, cf. the proof of Theorem 7.1.2.
Together with Theorem 7.1.2(b), instead of (7.3.5.1) now we have that |ϕ(v)|2 is 0 or a
power of q1/r, with q1/r attained. Using H := Garith,k B Ggeom and applying Theorem 7.2.2,
we have that

E o Sp2n(q) = Ggeom = H(∞), Z(GL(V ))H = Z(GL(V ))E o (Sp2n(q) o Cs)

for some s|f . Since Sp2n(q)oCs is a standard subgroup of Sp2ns(q
1/s) ≤ Sp2N(p), by Lemma

7.2.1 applied to E o Sp2ns(q
1/s) we have that |ϕ(g)|2 is either 0 or a power of q1/s for all

g ∈ Garith,k. As q1/r is attained, we have that r|s. On the other hand, [KT3, Theorem 3.5]
shows that |ϕ(u)|2 = q1/s for some u ∈ Sp2n(q) oCs, showing q1/s is a power of q1/r, i.e. s|r.
We conclude that s = r, and the subgroup Cs of field automorphisms of Sp2n(q) can then be
identified with Gal(Fq/k), as stated. �

Remark 7.3.6. In some cases, Carith,k in Theorem 7.3.5 can have order 2. For instance, if
2 - n ≥ 3, q = p ≡ 3(mod 4), and k 6⊇ Fp2 , then Garith,k contains −1 · Id by [KT6, Theorem
9.4(iii)], whence Carith,k

∼= C2.

Remark 7.3.7. In contrast to Theorems 7.3.4 and 7.3.5, it was shown in [KT5, Theorem
9.19] that the only hypergeometric sheaves H in odd prime-power dimension rn ≥ 11 that
can have extraspecial normalizers as their geometric monodromy groups are the Pink-Sawin
Kloosterman sheaves

H = Kl(Char(rn + 1) r {1})
in characteristic p = r, which has Ggeom = r1+2n

+ o Crn+1.
The situation when r = 2 is completely different, and will be addressed in the following

chapters. We now improve some results of [KT1], [KT3, Theorem 5.2], and [KT6, Theorem
10.2] on arithmetic monodromy groups of local systems for SUn(q) with qn odd, as well as
determine the arithmetic monodromy groups of the Pink-Sawin sheaves in any characteristic
p.

We start with the Pink-Sawin sheaves:
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Theorem 7.3.8. Let q = pf with f ∈ Z≥1, and consider the Pink-Sawin local system G
on A1/Fp with trace function

t ∈ k 7→ −1√
#k

∑
x∈k

ψk(x
q+1 + tx).

Set κ := 1 if p = 2 and κ := 2 if p > 2. Then, over any finite extension k of Fq2κ, G has

arithmetic and geometric monodromy groups Garith,k = Ggeom = E where E = p1+2f
+ is the

extraspecial p-group of order pq2 and exponent p when p > 2, and E = 21+2f
− , the extraspecial

2-group of type − and order 2q2 when p = 2. Over any subfield k of Fq2κ, G has arithmetic
monodromy group Garith,k = Ggeom ·Gal(Fq2κ/k).

Proof. (i) Consider the images hi of Frobi,Fp for i = 0, 1 in G := Garith,Fp . First we show
that

(7.3.8.1) h2f
0 6= Id = h4f

0 .

Indeed, note that ϕ(h2f
0 ) = (−1/q)

∑
x∈Fq2

ψFq2 (xq+1). Assume p = 2. Then for any x ∈ Fq2 ,
we have TrFq2/Fq(x

q+1) = xq+1 + xq
2+q = 2xq+1 = 0, so

ψFq2 (xq+1) = ψ
(
TrFq2/F2(x

q+1)
)

= ψ
(
TrFq/F2

(
TrFq2/Fq(x

q+1)
))

= ψ(0) = 1.

Hence ϕ(h2f
0 ) = −q, yielding h2f

0 = −Id and h4f
0 = Id.

Suppose p > 2. Then

ϕ(h2f
0 ) =

−1

q

∑
x∈Fq2

ψFq2 (xq+1)) =
−1

q

∑
16=χ∈Char(q+1)

GaussFq2 (ψ, χ).

By Stickelberger’s theorem [BEW, 11.6.1], we have

1

q
GaussFq2 (ψ, χ) = (−1)(q+1)/r for r the order of χ.

These signs are not all the same as χ varies: they are −1 when r = q + 1, but are 1 if either
r is odd (always possible unless q+ 1 is a power of 2) or if r = 2 in this last case. So we have

some cancellation, and hence |ϕ(h2f
0 )| < q, i.e. h2f

0 6= Id, in fact,

(7.3.8.2) h2f
0 /∈ Z(G).

On the other hand

ϕ(h4f
0 ) =

−1

q2

∑
x∈Fq4

ψFq4 (xq+1)) =
−1

q2

∑
16=χ∈Char(q+1)

GaussFq4 (ψ, χ).

But we have the identity

−GaussFq4 (ψ, χ) = (−GaussFq2 (ψ, χ))2 = (±q)2 = q2,

and hence ϕ(h4f
0 ) = q, i.e. h4f

0 = Id, proving (7.3.8.1).
Now, for any divisor j|4f with 1 ≤ j ≤ 4f/3,

|ϕ(hj0)| =
∣∣ −1

pj/2

∑
x∈F

pj

ψF
pj

(xq+1)
∣∣ ≤ pj/2 ≤ p2f/3 < q,
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showing hj0 6= Id. Together with (7.3.8.1), this implies that

(7.3.8.3) |h0| = 4f.

(ii) Next we observe that G := Ggeom is G = 21+2f
− when p = 2 and G = p1+2n

+ when
p > 2. The case p > 2 is [KT1, Theorem 21.1]. Assume p = 2. Then G is a 2-group and
G/Z(G) is elementary abelian of order q2 by [KT1, Corollary 20.3]; in particular, Z(G) 6= 1.
Next, F is of symplectic type [Ka-MMP, 3.10.1–3], implying Z(G) ∼= C2. It follows that
Φ(G) = [G,G] = Z(G), and so G is extraspecial. Finally, F being symplectic implies that

G ∼= 21+2f
− .

Now suppose that k ⊇ Fq2κ . Then the proofs of (7.3.8.1) and (7.3.8.3) shows that h2κf
0 ∈

E. By [KRLT4, Lemma 4.1], Garith,F
p2κf

= 〈E, h2κf
0 〉 = E. It follows that Ggeom = Garith,k.

We also show that

(7.3.8.4) [Garith,Fq2 : E] = 2 when p > 2.

Indeed, (7.3.8.2) and (7.3.8.3) imply that h2f
0 is a non-central involution, and there is no such

element in E, so Garith,Fq2 > E = Garith,Fq4 .

(iii) By [KRLT4, Lemma 4.1] and the results of (ii), it suffices to show that G/E ∼= C2κf ,
where G = Garith,Fp and E = Garith,Fq2κ . Denoting m := |G/E|, we have that hm0 ∈ E. As

G/E ∼= Cm embeds in Gal(Fq2κf/F2) ∼= C2κf , we have that m|2κf .

Suppose that p = 2, so that κ = 1. Then any element in E = 21+2f
− has order dividing 4.

In particular, h4m
0 = 1. As h0 has order 4f by (7.3.8.3), we must have that f |m. As m|2f ,

we are done if m > f . Consider the remaining possibility m = f . In this case, hf1 ∈ E,

and so |ϕ(hf1)| = 0 or q. On the other hand, for any x ∈ Fq, xq+1 + x = x2 + x, and so
TrFq/F2(x

q+1 + x) = TrFq/F2(x
2 + x) = 0, and thus ψFq(x

q+1 + x) = 1. It follows that

ϕ(hf1) =
−1

q1/2

∑
x∈Fq

ψFq(x
q+1 + x) = −q1/2,

a contradiction.
Assume now that p > 2, so that κ = 2. By (7.3.8.4), E < Garith,Fq2 = 〈E, h2f

0 〉, whence

h2f
0 /∈ E and m 6= 2f . To show that the divisor m of 4f equals to 4f , we must exclude the

divisors of 4f/(2j − 1) with j ∈ Z≥2. So assume that h
4f/(2j−1)
0 ∈ E for some j ∈ Z≥2 and

set r := p4f/(2j−1) = s4 with s := pf/(2j−1). Then rj = pf+(2j−1)f/(2j+1) = qs2j+1. Hence, for
any x ∈ Fr we have

ψFr(x
q+1) = ψ

(
TrFr/Fp(x

q+1)
))

= ψ
(
TrFr/Fp

(
x(q+1)s2j+1))

= ψ
(
TrFr/Fp(x

s2j+1+1)
)

= ψFr(x
s2j+1+1).

As r = s4, applying Theorem 7.1.2(d) to
∑

x∈Fr ψFr(x
s2j+1+1), we see that ϕ(h

4f/(2j−1)
0 ) 6= 0,

and so the element h
4f/(2j−1)
0 ∈ E must then belong to Z(E) ≤ Z(G). In such a case,

pf = q = |ϕ(h
4f/(2j−1)
0 )| ≤ r1/2 = p2f/(2j−1),

i.e 2j − 1 ≤ 2, a contradiction as j ≥ 2. �
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Lemma 7.3.9. Let q = pf be any odd prime power, n > m ≥ 1, gcd(n,m) = 1, and
2 - nm. Consider the local system G on A1/Fq with trace function

r ∈ k 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
x(qn+1)/(q+1) − rx(qm+1)/(q+1)

)
χ2(x)

as introduced in [KT6, §10]. If g denotes the image of Frob0,Fq in Garith,Fq , then g2n = Id
and Trace(gn) = 1. In fact, all odd powers of g have Trace = 1. If (n, q) = (3, 3) in addition,
then Trace(g) = Trace(g2) = 1.

Proof. For any integer d ≥ 1, gd is the image of Frob0,F
qd

in Garith,Fq . Its trace is thus

1

Gauss(ψF
qd
, χ2)

∑
x∈k

ψF
qd

(
x(qn+1)/(q+1)

)
χ2(x).

If d is odd, we observe that the numerator is equal to the denominator, i.e. that as x
runs over Fqd , x(qn+1)/(q+1) runs over Fqd , i.e. that

gcd((qn + 1)/(q + 1), qd − 1) = 1.

To see this, compute it as

gcd((qn + 1)/(q + 1), qn + 1, qd − 1) = gcd((qn + 1)/(q + 1), gcd(qn + 1, qd − 1)).

We first observe that M := gcd(qn + 1, qd − 1) = 2. Indeed, it is obvious that 2 divides this
M . In Z/MZ, we have qd = 1, qn = −1. Thus we have qnd = (−1)d = −1 (because d is odd),
and we also have qnd = (1)n = 1. Thus 1 = −1 in Z/MZ, and hence M divides 2. Thus
M = 2. Thus gcd((qn + 1)/(q + 1), qd − 1) = gcd((qn + 1)/(q + 1), 2) = 1, the last equality
because

(qn + 1)/(q + 1) = 1 + q(q − 1)(1 + q2 + . . .+ qn−3)

is odd.
We next show that g2n = Id, or equivalently (because we are in a finite group) that

Trace(g2n) = (qn + 1)/(q + 1). Once again, we examine the formula for this trace. It is

1

Gauss(ψFq2n , χ2)

∑
x∈Fq2n

ψFq2n
(
x(qn+1)/(q+1)

)
χ2(x).

Here we have

gcd((qn + 1)/(q + 1), q2n − 1) = ((qn + 1)/(q + 1),

simply because (qn + 1)/(q + 1) divides qn + 1, which divides q2n − 1. Let us write

D := (qn + 1)/(q + 1).
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Because D is odd, the numerator of the formula for Trace(g2n) is∑
x∈Fq2n

ψFq2n
(
xD
)
χ2(x) =

∑
x∈Fq2n

ψFq2n
(
xD
)
χ2(xD)

=
∑
u∈F×

q2n

ψFq2n (u)χ2(u)(#{x ∈ FqD , xD = u})

=
∑
u∈F×

q2n

ψFq2n (u)χ2(u)
∑

ρ∈char(D)

ρ(u)

=
∑

ρ∈char(D)

Gauss(ψFq2n , χ2ρ).

We now apply Stickelberger’s theorem [BEW, 11.6.1], that for Q a power of p and Λ a
nontrivial character of order m dividing Q+ 1, we have the identity

Gauss(ψFQ2 ,Λ) = (−1)(Q+1)/mQ.

We apply this with Q := qn, and each of the characters χ2ρ. Each has order dividing 2D,
so dividing qn + 1, each is nontrivial because each ρ has odd order, and the order of each is
2×odd. Thus the numerator is simply (−1)(qn+1)/2Dqn, while the denominator is, again by
Stickelberger, (−1)(qn+1)/2qn.

The final assertion, that Trace(Frob2
0,F3

) = 1 when q = n = 3, holds because gcd(33+1
3+1

, 32−
1) = gcd(7, 8) = 1. �

Lemma 7.3.10. Let q = pf be any odd prime power, n > m ≥ 1, gcd(n,m) = 1, and
2 - nm. Consider the local system Wn,m on A1/Fp with trace function

r ∈ k 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − rxqm+1
)
,

and its two summands Wn,m,j(q+1)/2, j ∈ {0, 1}, with trace functions

r ∈ k 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
x(qn+1)/(q+1) − rx(qm+1)/(q+1)

)
χj2(x),

as introduced in [KT6, §10]. Then we have the following results.

(a) For any subfield k of Fq, and any a ∈ k, |Trace(Froba,k|Wn,m)|2 is a power of #k.
(b) For any subfield k of Fq, |Trace(Frob1,k|Wn,m)|2 = #k.
(c) For any subfield k of Fq, |Trace(Frob1,k|Wn,m,0)|2 = #k and Trace(Frob1,k|Wn,m,(q+1)/2) =

0.

Proof. The first statement was proven in Theorem 7.1.2. For the second, notice that for
k a subfield of Fq and x ∈ k, the summand xq

n+1 − xqm+1 = x2 − x2 vanishes, so the trace is
just #k/Gauss(ψk, χ2), which indeed has square absolute value #k as asserted. For the third,
again notice that for k a subfield of Fq and x ∈ k, the summand x(qn+1)/(q+1)−x(qm+1)/(q+1) =
x− x vanishes, so the first trace is #k/Gauss(ψk, χ2), which has square absolute value #k as
asserted, and the second trace is a multiple of

∑
x∈k χ2(x) = 0. �
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More generally, we can consider the system Wn,m, introduced in [KT6] for any two
coprime integers n > m, which is also denoted by Fnngcd(qn + 1, qm + 1,1), see Definition
7.3.1.

Theorem 7.3.11. Let p > 2 be a prime, q = pf , n > m ≥ 1 be any two coprime integers,
and let qn > 9. Then Theorems 9.2–9.4 of [KT6] hold when 2|mn, and Theorems 10.2, 10.3,
and 10.5 of [KT6] hold when 2 - nm. In particular, the geometric monodromy group of

Wn,m = Fnngcd(qn + 1, qm + 1,1)

is

(i) Sp2n(q) in its total Weil representation of degree qn, if 2|nm; and
(ii) SUn(q) in its total Weil representation of degree qn, if 2 - nm.

Proof. We first note that the treatment of unitary groups in [KT6, §10] does not need
the assumption m < n/2 made in [KT6, (10.0.1)], and hence its main results Theorems 10.2,
10.3, and 10.5 all hold, implying our statement, whenever 2 - nm.

We next turn our attention to the case 2|nm and first show that Theorem 9.1 of [KT6]
holds for (n,m). The only place where the condition m < n/2 made in [KT6, (9.0.1)] was
needed is to show that the parameter d in [KT6, (9.1.5)] is 1 in the case n ≥ 4, in part
(iii) of the proof of [KT6, Theorem 9.1]. We now prove that the same conclusion holds if
2 ≤ n/2 < m. In the notation of that proof, consider a p′-generator h of the image of I(δ)
modulo the image of P (δ), and note that its spectrum on the tame part of H(n,m, ε) with
ε = ± is a scalar multiple of µB or µB r {1}, with B := (qm + 1)/2. Since m ≥ 3, we have
B ≥ 14 and the central order of h is divisible by B. Also, by [Zs], we can find a primitive
prime divisor ` of p2mf − 1, which then divides B. Letting h0 be the `-part of h, we have
that `|ō(h0) and ` ≥ 2mf + 1.

Recall that the parameter d in [KT6, (9.0.1)] satisfies d|n, and a scalar multiple of h0

belongs to Sp2n/d(q
d) oCdf . Since ` > 2mf > nf ≥ df , in fact we have that h0 ∈ Sp2n/d(q

d).

Hence there exists an integer i, 1 ≤ i ≤ n/d, such that `|(q2di − 1). By the primitivity of `,
2mf divides 2dif , and so mf divides dif , which is at most d(n/d)f = nf < 2mf . It follows
that dif = mf and thus d divides both m and n. Since gcd(m,n) = 1 by hypothesis, we
conclude that d = 1. Thus Theorem 9.1 of [KT6] holds for (n,m).

The proofs of Theorems 9.2–9.4 of [KT6] rely only on Theorem 9.1 of [KT6] and again
do not use the assumption m < n/2 made in [KT6, (9.0.1)]. �

Lemma 7.3.12. Let q = pf be an odd prime power, 2 - n ≥ 3, and let θ denote the

restriction ζ(q+1)/2,n of the Weil character ζ̃(q+1)/2,n of GUn(q), as defined in [KT3, (3.1.2)],
to SUn(q). Let G be a finite group containing S = PSUn(q) as a normal subgroup of index
≤ 2, and with an irreducible character ϕ such that ϕ|S is equal to θ viewed as an S-character.
Suppose that there exists an element g ∈ Gr S such that either

(a) (n, q) 6= (3, 3), ϕ(gn) = 1 and g2n = Id, or
(b) ϕ(g) = ϕ(g2) = 1, g /∈ S, and g2 is a p-element.

Then G ∼= S o 〈τ〉 ∼= S · 2, where τ is the field automorphism of S induced by the map
(xij) 7→ (xqij) on SUn(q), and g /∈ S.

Proof. Note that Z(SUn(q)) ∼= Cgcd(n,q+1) has odd order, so θ is trivial at Z(SUn(q))
and so can indeed be viewed as an H-character.
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First assume that either CG(S) 6= 1 or g ∈ S. Since [G : H] ≤ 2, it follows in the
former case that CG(S) = 〈z〉 ∼= C2 and G = CG(S)× S, where z acts as the scalar −1 in a
representation affording ϕ. In either case, we may write g = zjs with s ∈ S and j ∈ {0, 1}.

In the case of (a) we have (n, q) 6= (3, 3) and

(7.3.12.1) θ(sn) = ϕ(zjgn) = (−1)j = ±1.

In particular, sn 6= 1, but s2n = g2n = Id, so |sn| = 2. We can therefore view sn as represented
by

diag
(
1, . . . , 1︸ ︷︷ ︸

a

,−1, . . . ,−1︸ ︷︷ ︸
2b

)
in SUn(q) with a, b ∈ Z≥1 and a+ 2b = n. Using [KT3, (3.1.2)], we have that

θ(sn) = −((−q)a − 1) + (−1)(q+1)2/4((−q)2b − 1)

q + 1
=

{
(qa + q2b)/(q + 1), q ≡ 1(mod 4),
−(q2b − qa − 2)/(q + 1), q ≡ 3(mod 4).

Now, if q ≡ 1(mod 4), then q|θ(sn), contradicting (7.3.12.1). Hence q ≡ 3(mod 4). If
moreover j = 0, then q2b−qa+q = 1, again a contradiction. So j = 1 and q2b−qa−2 = q+1,
whence 3 = q2b − qa − q is divisible by q and so q = 3. Now q + 3 = q2b − qa and b ≥ 1, so
comparing the 3-part we have that a = 1. Thus 2q+3 = q2b, forcing b = 1 and (n, q) = (3, 3),
a contradiction.

In the case of (b), j = 1 as g /∈ S, g2 = s2 is a p-element, and θ(s2) = ϕ(g2) = 1. We will
again view s as an element in SUn(q). Using [KT3, (3.1.2)], we have that

1 = θ(s2) =
1− (−q)e

q + 1

where e := dimFq2 Ker(s2 − 1). It follows that e = 1, i.e. s2 is a regular unipotent element of

SUn(q). In particular, CS(s2) is a p-group, so s ∈ CS(s2) is also a p-element. Again using
[KT3, (3.1.2)], we have that

1 = ϕ(g) = −θ(s) =
(−q)e′ − 1

q + 1

where e′ := dimFq2 Ker(s− 1) ≥ 1. This is impossible, since |(−q)e′ − 1| ≥ q2 − 1 > q + 1 if

e′ ≥ 2, and ((−q)− 1)/(q + 1) = −1.

We have shown that CG(S) = 1 and g /∈ S. Thus G/S ∼= C2, and it embeds in Out(S) =
Cgcd(n,q+1) o C2f . Since 2 - n, all subgroups of index 2 in Out(S) are conjugate to 〈τ〉. It
follows that G is conjugate to S o 〈τ〉 in Aut(S). �

Proposition 7.3.13. Let q = pf be any odd prime power, n > m ≥ 1, gcd(n,m) = 1,
and 2 - nm. Consider the local system W(q+1)/2 :=Wn,m,(q+1)/2 on A1/Fq with trace function

r ∈ k 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
x(qn+1)/(q+1) − rx(qm+1)/(q+1)

)
χ2(x)

as introduced in [KT6, §10]. Then the arithmetic monodromy group Garith,Fq of the system
on Fq is isomorphic to PSUn(q) o 〈τ〉 ∼= PSUn(q) · 2, where τ is the field automorphism of
PSUn(q) induced by the map (xij) 7→ (xqij) on SUn(q).
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Proof. As shown in Theorem 7.3.11, Theorem 10.2 of [KT6] holds not only when m <
n/2 but for any m < n; in particular, W(q+1)/2 has Garith,Fq4 = Ggeom = S := PSUn(q), the

image of SUn(q) in the Weil representation with character ζ(q+1)/2,n. Moreover, if m = 1,
then, as shown in [KT3, Theorem 5.2(b)], over Fq2 we have Garith,Fq2 = S as well. Next, if

m = 1 and q ≡ 3(mod 4), then [KT1, Theorem 2.3(4)] shows that W(q+1)/2 has arithmetic
determinant (−1)deg over Fq, and so [Garith,Fq : S] = 2.

For general m < n, [KT6, Theorem 10.2] shows that S C Garith,Fq2 ≤ S × 〈j〉 for some

central involution j (which acts trivially on the Weil representation of GUn(q) with character

χ̃2ζ̃(q+1)/2,n). By [KT6, Corollary 5.8], over Fq2 the system W(q+1)/2 has trivial arithmetic

determinant. Since W(q+1)/2 has odd rank, this implies that j acts trivially on W(q+1)/2 and
thus Garith,Fq2 = S. In particular, [Garith,Fq : S] ≤ 2.

Now we consider the element g ∈ Garith,Fq constructed in Lemma 7.3.9. The above
considerations imply that g /∈ S when (n, q) = (3, 3). Applying Lemma 7.3.12, we conclude
that Garith,Fq

∼= S o 〈τ〉. �

Theorem 7.3.14. Let q = pf be any odd prime power, n > m ≥ 1, gcd(n,m) = 1, and
2 - nm. Consider the local system W :=Wn,m on A1/Fp with trace function

r ∈ k 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − rxqm+1
)

as introduced in [KT6, §10]. Then, for any subfield k ⊆ Fq2, the arithmetic monodromy
group Garith,k of the system on k is isomorphic to (C2 × SUn(q)) ·Gal(Fq2/k), which induces
the subgroup PSUn(q) o Gal(Fq2/k) of automorphisms of SUn(q), and C2 may be identified
with the central subgroup of order 2 of GUn(q).

Proof. (i) Consider H := GUn(q), acting in its total Weil representation Φ = ⊕qi=0Φi

with character ζ̃n, see [KT3, Theorem 3.1], and let z denote a generator of Z(H), so that z
acts as the scalar ρi on Φi for some (q + 1)th root ρ of unity. It is well known that Φ(q+1)/2

is orthogonal of dimension D := (qn + 1)/(q + 1), and Φ0 is symplectic of dimension D − 1,
see [KT3, Lemma 3.2]. In fact, if σ denotes the Galois automorphism x 7→ xp of Fp, then
we can embed GUn(q) o 〈σ〉 into Sp2n(q) o 〈σ〉 ≤ Sp2nf (p), and extend Φ to a total Weil
representation of Sp2nf (p).

In the case k = Fq2 , the statement also holds by [KT6, Theorem 10.2]: Garith,Fq2 = C2 ×
L ≤ H, with L := SUn(q) acting in its total Weil representation, and C2 = 〈j〉 = 〈z(q+1)/2〉.
Also recall [KT6, §10] that W = ⊕qi=0W i, where W i := Wn,m,i is geometrically orthogonal
of rank D if and only if i = (q+1)/2, andW i is geometrically symplectic of rank D−1 if and
only if i = 0. It follows that Garith,Fq2 and L act onW0 via restrictions of Φ0, and onW(q+1)/2

via restrictions of Φ(q+1)/2. Moreover, since L = [Garith,Fq2 , Garith,Fq2 ]CGarith,k, it follows from

Clifford’s theorem that Garith,k stabilizes each of W0 and W(q+1)/2 (but may permute the
other subsheaves). Let Ψ = ⊕qi=0Ψi denote the representation of G := Garith,Fp on W , with
Ψi denoting the resulting representation on W i. Then we have shown that Ψi|L = Φi|L for
i = 0 and i = (q + 1)/2.

(ii) Consider the case k = Fq. Then Garith,Fq contains Garith,Fq2 = 2 × L as a subgroup

of index ≤ 2. On the other hand, by Proposition 7.3.13, the arithmetic monodromy group
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Ψ(q+1)/2(Garith,Fq) ofW(q+1)/2 is PSUn(q)o〈τ〉, and thus it contains Ψ(q+1)/2(2×L) = PSUn(q)
with index 2 (and induces the outer automorphism τ on the latter). It follows that Garith,Fq =
(2× L) · 〈τ〉, and we can identify 〈τ〉 with Gal(Fq2/k) in this case.

(iii) To prove the statement for any proper subfield k of Fq2 , it suffices to prove it for
k = Fp (using the facts that [Garith,k′ : Garith,Fq2 ] divides c = [Fq2 : k′], [Garith,Fp ] : Garith,k′ ]

divides 2f/c = [k′ : Fp] for any subfield k′ = Fp2f/c of Fq2 , and that Gal(Fq2/Fp) is cyclic of
order 2f).

Let g denote the image of Frob1,Fp in G = Garith,Fp . Then gf is the image of Frob1,Fq in G,
and so it lies in Garith,Fq = (2 × L) · 〈τ〉, but not in its proper subgroup Garith,Fq2 . It follows

that, modulo Inn(L) ∼= S = PSUn(q), gf induces the outer automorphism τ . Since Inn(L) is
a normal subgroup of odd index gcd(n, q+ 1) in Inndiag(L) ∼= PGUn(q), modulo Inndiag(L)
the element gf still induces the involutive outer automorphism τ = σf . Hence the order of
g in Aut(L)/Inndiag(L) ∼= Gal(Fq2/Fp) ∼= C2f is some even integer 2f/j with j|f . In other
words, we can find an element h ∈ GUn(q) o 〈σj〉 such that g and h induce the same action
on L, and moreover 〈g〉, 〈h〉 and 〈σj〉 are all the same modulo Inndiag(L).

Recall that Φ|L = Ψ|L is a sum of pairwise inequivalent Weil representations. It follows
that

Φ(h)Φ(x)Φ(h)−1 = Φ(hxh−1) = Ψ(hxh−1) = Ψ(gxg−1) = Ψ(g)Φ(x)Ψ(g)−1

for all x ∈ L, and thus Φ(h)−1Ψ(g) commutes with all Φ(x), x ∈ L. By Schur’s lemma,
Φ(h)−1Ψ(g) fixes each of the summands W i and in fact acts via some scalar ci on W i, with
ci ∈ C×. As g and h both fix Φi|L for i = 0, (q + 1)/2, we have

(7.3.14.1) Ψi(g) = ciΦ
i(h), i = 0, (q + 1)/2,

where for i = 0, (q + 1)/2, Φi(h) is the action of Φ(h) on the representation space of Φi|L
and similarly for Ψi(g). Since both g and h have finite order, det(Ψi(g)) and det(Φi(h)) have
finite order, and so (7.3.14.1) implies that c0 and c(q+1)/2 are roots of unity.

We already noted that each Φi|L = Ψi|L is stable under GUn(q), and that g and h both
stabilize Φ0|L and Φ(q+1)/2|L. On the other hand, (σj)f/j = σf = τ acts as inversion on
Z(H) = 〈z〉 and hence swaps Φi|L and Φq+1−i|L for i 6= 0, (q + 1)/2. It follows that the
traces of Φ(g) and Ψ(h) on the representation space of ⊕i 6=0,(q+1)/2Φi|L are both zero. Next,

Ψ(q+1)/2(g) has trace 0 by Lemma 7.3.10(c), whence Φ(q+1)/2(h) also has trace 0 by (7.3.14.1).
It now follows from (7.3.14.1) that

|Trace(Ψ(g))| = |Trace(Ψ0(g))| = |c0Trace(Φ0(h))| = |Trace(Φ0(h))| = |Trace(Φ(h))|.
By Lemma 7.3.10(b), |Trace(Ψ(g))|2 = p. On the other hand, we already mentioned in (i) that
the representation Φ of GUn(q) o 〈σj〉 is obtained by restricting a total Weil representation
of Sp2n(q) o 〈σj〉. Applying [KT3, Theorem 3.5], we see that |Trace(Φ(h))|2 is a power of
pj. It follows that j = 1.

We have shown that, modulo Inndiag(L) ∼= PGUn(q), g induces an outer automorphism
of order 2f . Recall that gf , the image of Frob1,Fq in G, induces τ = σf modulo Inn(L).
Clearly g centralizes gf , so the image of g in Out(L) ∼= Cgcd(n,q+1) o C2f is contained in the
centralizer of τ . Next, τ centralizes the subgroup C2f = 〈σ〉 of Out(L), but acts as inversion
on the odd-order subgroup Cgcd(n,q+1). It follows that the image of g in Out(L) belongs to this
subgroup C2f and so has order dividing 2f . As the order of g modulo Inndiag(L) is 2f , we
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conclude that, modulo Inn(L), g generates the subgroup C2f = 〈σ〉. Since Garith,Fq2 = 2× L
has index dividing 2f in G, we have that G = 〈2×L, g〉 ∼= (2×L) ·Gal(Fq2/Fp), as stated. �

Corollary 7.3.15. Let k be a subfield of Fq2. In the notation of Lemma 7.3.10, we have
the following results.

(a) The arithmetic monodromy group of Wn,m,0 is (2× PSUn(q)) ·Gal(Fq2/k) if q ≡ 1(mod
4), and PSUn(q) o Gal(Fq2/k) if q ≡ 3(mod 4).

(b) The arithmetic monodromy group of Wn,m,(q+1)/2 is PSUn(q) o Gal(Fq2/k).
(c) If any other summand Wn,m,i of Wn,m, with i 6= 0, (q + 1)/2, is defined over k, then its

arithmetic monodromy group Garith,i,k over k is the image of (2 × SUn(q)) · Gal(Fq2/k)
in a representation whose restriction to SUn(q) affords a Weil character ζi′,n for some
i′ 6= 0, (q+1)/2; in particular, it has the full index [Fq2 : k] over the arithmetic monodromy
group Garith,i,Fq2 over Fq2.

Proof. We apply Theorem 7.3.14, and observe that the central involution j = z(q+1)/2

in 2×SUn(q) acts as (−1)(q+1)/2 onWn,m,0 and as 1 onWn,m,(q+1)/2, see [KT3, (3.2.1)]. The
image of (2×L) ·Gal(Fq2/k) in Aut(L) is conjugate to SoGal(Fq2/k), as shown in the proof
of Theorem 7.3.14. It follows that the kernel of the action of (2×L) ·Gal(Fq2/k) onWn,m,i is
contained in 2×Z(L) for any i, and contains Z(L) for i = 0, (q+ 1)/2. Hence the statements
follow. �



CHAPTER 8

Extraspecial normalizers and local systems in characteristic 2

8.1. Squared traces in characteristic 2

Fix a power q of p = 2, and an integer n ≥ 2. Fix a choice of α :=
√

2. For K/F2 a finite
extension, define αK := αdeg(K/F2). Denote by ψ the unique nontrivial additive character of
F2. For K/F2 a finite extension, define ψK := ψ ◦ TrK/F2 . Given an integer n ≥ 1, form the
n+1-parameter local system (parameters (r0, . . . , rn)) on (An×Gm)/F2 whose trace function
at a point (r0, . . . , rn) ∈ Kn ×K×, K/F2 a finite extension, is

(r0, . . . , rn) 7→ (−1/αK)
∑
x∈K

ψ
( n∑
i=0

rix
1+qi
)
.

Theorem 8.1.1. For K a finite extension of Fq, and (r0, . . . , rn) ∈ Kn×K×, the square
absolute value of

(−1/αK)
∑
x∈K

ψ
( n∑
i=0

rix
1+qi
)

is either 0 or a power qν of q with 0 ≤ ν ≤ 2n. For K a subfield of Fq, the square absolute
value is either 0 or #K.

Proof. This is proven in [vdG-vdV, Section 5]. For the reader’s convenience, we recall
the proof. Fix (r0, . . . , rn) ∈ Kn ×K×, and denote by R(x) the q-linear polynomial

R(x) :=
n∑
i=0

rix
qi .

Then the square absolute value of the sum in question is

(1/#K)
∑
x,y∈K

ψK
(
R(x)x+R(y)y

)
= (1/#K)

∑
x,y∈K

ψK
(
R(x+ y)(x+ y) +R(y)y

)
= (1/#K)

∑
x∈K

ψK
(
R(x)x

)∑
y∈K

ψK
(
R(x)y +R(y)x

)
.

The inner sum is ψFq applied to the TrK/Fq of a sum of two products:

R(x)y +R(y)x = (
n∑
i=0

rix
qi)y + (

n∑
i=0

riy
qi)x.

161
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Each term riy
qix in the second product has the same trace to Fq as (rix)q

−i
y. So the inner

sum is ψK applied to

(
n∑
i=0

rix
qi +

n∑
i=0

(rix)q
−i

)y.

By orthogonality of characters, the inner sum vanishes unless x ∈ K satisfies
n∑
i=0

rix
qi +

n∑
i=0

(rix)q
−i

= 0,

or equivalently, raising to the qn power,
n∑
i=0

rq
n

i x
qi+n +

n∑
i=0

(rix)q
n−i

= 0,

in which case the inner sum is #K. Denote by WR(K) the set of x ∈ K for which
n∑
i=0

rq
n

i x
qi+n +

n∑
i=0

(rix)q
n−i

= 0.

So the square absolute value of our sum is∑
x∈WR(K)

ψK
(
R(x)x

)
.

The set WR(K) is an Fq-vector space (under addition and scalar multiplication by Fq), of
dimension ≤ 2n. But we can also describe WR(K) as the set of those x ∈ K such that for
any y ∈ K, we have

TrK/Fq
(
R(x)y +R(y)x

)
= 0.

We then infer that the function on WR(K) given by

x ∈ WR(K) 7→ TrK/Fq
(
R(x)x

)
is additive on WR(K). Thus the function x ∈ WR(K) 7→ ψK

(
R(x)x

)
is an additive character

of the Fq-space WR(K), with values in ±1. The sum∑
x∈WR(K)

ψK
(
R(x)x

)
is thus the sum of an additive character of an Fq-space over that space. If the character is

nontrivial, the sum vanishes. If the character is trivial, the sum is #WR(K) = qdimFq WR(K).

When K is a subfield of Fq, every term x1+qi with x ∈ K is equal to x2, so the sum in
question is

(−1/αK)
∑
x∈K

ψ
(
(
n∑
i=0

ri)x
2
)
.

If
∑n

i=0 ri = 0, the sum is #K/
√

#K. If
∑n

i=0 ri 6= 0, then the sum vanishes (simply because∑
x∈K

ψK(ax2) =
∑
x∈K

ψK(a2−1

x),

which vanishes if a 6= 0). �
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Corollary 8.1.2. For K a finite extension of Fq of even (respectively odd) degree, and
for any point (r0, . . . , rn) ∈ Kn ×K×, the square absolute value of

(−1/αK)
∑
x∈K

ψ
( n∑
i=0

rix
1+qi
)

is either 0 or an even (respectively odd) power of q.

Proof. View K as an Fq-vector space. Because we are in characteristic 2, the Fq-bilinear
form

(x, y) := TrK/Fq
(
R(x)y + xR(y)

)
has (x, x) = 0; in other words it is a symplectic form. The Fq-space WR(K) is the kernel of
this form: it is the set of vectors y ∈ K such that (x, y) = 0 for all x ∈ K. One then knows
that the dimensions over Fq of WR(K) and of K have the same parity. [Recall the argument:
pick any Fq-subspace U ⊆ K which is an Fq-complement to WR(K). Then the restriction of
the symplectic form to U is non-degenerate, and hence U has even Fq dimension.]

As explained in the proof of Theorem 8.1.1, the square absolute value of the trace is either
0 or #WR(K) = qdimFq WR(K); hence the statement follows. �

Remark 8.1.3. Because the character ψK takes values ±1, and the clearing factor αK is
real, each “square absolute value” of a trace is just the square of that trace. Thus Corollary
8.1.2 could be restated as follows. For K/Fq an extension of even degree, each trace is
either 0 or ±(a power of q). For K/Fq an extension of odd degree, each trace is either 0 or

±(an odd power of
√
q).

Corollary 8.1.4. Let K be a subfield of Fq, say #K = q0 and q = qν0 for some integer
ν ≥ 1. Let L/K be a finite extension of even (respectively odd) degree, and and (r0, . . . , rn) ∈
Ln × L×. Then the square absolute value of

(−1/αL)
∑
x∈L

ψ
( n∑
i=0

rix
1+qi
)

is either 0 or an even (respectively odd) power of q0.

Proof. View the situation as lying over Fq0 , and apply the previous Corollary 8.1.2. �

Corollary 8.1.5. If throughout we consider instead the n + 2 parameter system on
(An+1×Gm)/F2, parameters (r−1, r0, . . . , rn), whose trace function at a point (r−1, r0, . . . , rn) ∈
Kn+1 ×K×, K/F2 a finite extension, is

(r−1, r0, . . . , rn) 7→ (−1/αK)
∑
x∈K

ψ
( n∑
i=0

rix
1+qi + r−1x

)
,

then all of the results of this section, namely Theorem 8.1.1, Corollary 8.1.2, Remark 8.1.3
and Corollaty 8.1.4, remain valid as stated.

Proof. Because we are in characteristic 2, the linear term r−1x is Artin-Schreier equiv-
alent to

r2
−1x

2 = r2
−1x

1+q0 .

So the trace at (r−1, r0, . . . , rn1) is simply the previous trace at (r0 + r2
−1, . . . , rn).
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We can also give an alternative argument, along the lines of the proof of Theorem 7.1.2,
as follows. With

R(x) :=
n∑
i=0

rix
qi ,

our sum is

(−1/αK)
∑
x∈K

ψ
(
R(x)x+ r−1x

)
.

The square absolute value of this sum is

= (1/#K)
∑
x,y∈K

ψK
(
R(x+ y)(x+ y) +R(y)y + r−1x

)
,

which, just as in the proof of Theorem 8.1.1, is equal to∑
x∈WR(K)

ψK
(
R(x)x+ r−1x

)
.

As already noted,

x ∈ WR(K) 7→ TrK/Fq
(
R(x)x

)
is an additive character on WR(K), and hence so also is

x ∈ WR(K) 7→ TrK/Fq
(
R(x)x+ r−1x

)
.

The proof now concludes exactly as the proof of Theorem 8.1.1, the only difference being
that a different additive character is being summed over WR(K). �

8.2. Traces of elements in normalizers of extraspecial 2-groups

In the case p = 2, there exist precisely two non-isomorphic extraspecial groups of order 8,
namely the dihedral group D8 = 21+2

+ and Q8 = 21+2
− . More generally, for any N ∈ Z≥1, there

exist precisely two non-isomorphic extraspecial groups of order 21+2N , namely the central
products

21+2N
+ = D8 ∗D8 ∗ . . . ∗D8︸ ︷︷ ︸

N times

, 21+2N
− = D8 ∗D8 ∗ . . . ∗D8︸ ︷︷ ︸

(N−1) times

∗Q8.

Fixed ε = ±, E = 21+2N
ε , and identify the elementary abelian E/Z(E) with V := F2N

2 and
Z(E) with F2. Then the commutator map

(·, ·) = (·, ·)1 : (xZ(E), yZ(E)) 7→ [x, y] ∈ Z(E)

defines a non-degenerate symplectic form on V , and the map

Q = Q1 : xZ(E) 7→ x2 ∈ Z(E)

defines a quadratic form on V , associated to (·, ·) and of type ε. Clearly, Aut(E) preserves
Q and so one has a homomorphism Aut(E)/Inn(E) → O(V ) ∼= Oε

2N(2). When N ≥ 3, the
map is an isomorphism and Aut(E) is a non-split extension of Inn(E) ∼= E/Z(E) by O(V ),
see [Gri, Theorem 1]. Furthermore, the unique (up to isomorphism) complex irreducible
representation of degree 2N of E gives rise to a non-split extension 21+2N

ε ·Oε
2N(2):
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Theorem 8.2.1. Let N ≥ 3 and ε = ±. There exists a finite irreducible subgroup

Γ(2, N, ε) := Hε
1 < GL2N (C)

such that O2(Hε
1) = E ∼= 21+2N

ε , Z(Hε
1) = Z(E), Hε

1/E
∼= Oε

2N(2), and Hε
1/Z(Hε

1) ∼= Aut(E).
Furthermore, H+

1 < G := O2N (C), and H−1 < G := Sp2N (C). In either case, Hε
1 = NG(E).

Proof. The first statement is [Gri, Theorem 5(a)]. If ε = +, then an explicit con-
struction of Hε

1 inside O2N (R) is given in [NRS, Theorem 2.2]. To show that Hε
1 preserves

a non-degenerate symplectic form on C2N when ε = −, first note that this is true for the
subgroup E of H−1 . Next, we can embed a central product

H−1 ∗Q8 = 21+2N
− ·O−2N(2) ∗ 21+2

− ↪→ H̃+
1 := 2

1+(2N+2)
+ ·O+

2N+2(2),

where H̃+
1 < O2N+1(C) by the previous case. Now if ϕ denotes the character of H̃+

1 acting

on the orthogonal module C2N+1
and ψ denotes the character of H−1 acting on C2N , then ϕ

is real-valued and ϕ|H = 2ψ. Thus ψ is real-valued, but ψ|E is of type −, so ψ is of type −
and H−1 ↪→ Sp2N (C).

For the third statement, first we note that CG(E) = Z(G) = Z(E) by Schur’s Lemma.
Now consider any x ∈ NG(E). Since Hε

1/Z(E) ∼= Aut(E), we can find h ∈ Hε
1 such that

conjugations by x and by h induce the same automorphism of E. Thus h−1x ∈ CG(E) =
Z(E) < Hε

1, and so x ∈ Hε
1. �

Lemma 8.2.2. In the notation of Theorem 8.2.1, consider a subgroup P BE of Hε
1, with

P/E a cyclic maximal torus of order 2N − ε of Oε
2N(2). Then P = E o 〈c〉 for some element

c of order 2N − ε, and the action of C := 〈c〉 on C2N affords the character regC + ε · 1C.

Proof. Note that E is a normal subgroup of P , of index coprime to its order. Hence, by
the Schur-Zassenhaus theorem, E has a complement C, with C ∼= P/E, and so C = 〈c〉 ∼=
C2N−ε. The image of c in Oε

2N(2) acts on E/Z(E) = F2N
2 with eigenvalues ζ, ζ2, . . . , ζ2N−1

, ζ−1, ζ−2, . . . , ζ−2N−1
,

where ζ ∈ F2
×

has order 2N − ε. It follows that the image of cj, with 1 ≤ j < 2N − ε, acts on
E/Z(E) with no eigenvalue 1. Hence, if ϕ denotes the character of C acting on C2N , then
|ϕ(cj)| = 1 by Lemma 7.2.1. On the other hand, ϕ is real-valued by Theorem 8.2.1, hence

ϕ(cj) = ±1. It follows that Σ :=
∑2N−ε−1

j=1 ϕ(cj) is an even integer of absolute value at most

2N − ε− 1. Also note that

Z 3 [ϕ|C , 1C ]C = (2N + Σ)/(2N − ε),

whence Σ + ε is divisible by 2N − ε.
Now, if ε = +, then we must have that Σ+1 = 2N−1, i.e. ϕ(cj) = 1 for all 1 ≤ j < 2N−ε,

and so ϕ|C = regC + 1C . If ε = −, then we must have that Σ− 1 = −2N − 1, i.e. ϕ(cj) = −1
for all 1 ≤ j < 2N − ε, and so ϕ|C = regC − 1C . �

Now consider any 2-power q = 2f and n ∈ Z≥1 such that N = nf ≥ 3. Also consider
a 2n-dimensional space U := F2n

q , endowed with a non-degenerate symplectic form (·, ·)f :
U × U → Fq and a quadratic form Qf : U → Fq of type − associated to (·, ·)f . Then,
choosing E = 21+2n

− , by base change we can identify the F2-space U with V , TrFq/F2((·, ·)f )



166 8. EXTRASPECIAL NORMALIZERS AND LOCAL SYSTEMS IN CHARACTERISTIC 2

with (·, ·)1, and TrFq/F2(Qf ) with Q1. This gives rise to an embedding of O(U) ∼= O−2n(q) into
O(V ) ∼= O−2N(2), and by Theorem 8.2.1 we obtain
(8.2.2.1)

H−f = E ·O−2n(q) ≤ H−1 , H
◦
f := [H−f , H

−
f ] ∼= E · Ω−2n(q), with E := O2(H−f ) ∼= 21+2nf

− .

(Note that H◦f is perfect if n ≥ 2. Indeed, the faithful irreducible action of the simple group

Ω−2n(q) on E/Z(E) implies that Z(E)X = H◦f for X := (H◦f )(∞), and thus [H◦f : X] ≤ 2.
Hence, if X < H◦f , then H◦f = X × Z(E) and so E = Z(E) × (E ∩ X) splits over Z(E), a
contradiction.)

In what follows, by H−f and H◦f we mean the subgroups as defined in (8.2.2.1), where

the embedding H−f /E ↪→ H−1 /E is obtained via base change as described above, and H−1 =

21+2nf
− ·O−2nf (2) < GL2nf (C) is constructed in Theorem 8.2.1.

Proposition 8.2.3. In the above notation, assume n ≥ 2 and nf ≥ 3. Then there is an
element σ ∈ O(V ) = O−2nf (2) of order 2f such that the following statements hold:

(i) σ induces an outer automorphism of order 2f of Ω(U) = Ω−2n(2f ).
(ii) NO(V )(Ω(U)) = 〈Ω(U), σ〉 ∼= Aut(Ω(U)) ∼= Ω(U) o C2f

∼= O(U) · Cf .

(iii) If f = ab for some a, b ∈ Z≥1, then 〈Ω(U), σb〉 ≤ O−2na(q
1/a), 〈Ω(U), σ2b〉 ≤ Ω−2na(q

1/a),
and |CV (σb)| = 2(2n−1)b. Furthermore, if b > 1 then there exists an element σ′ ∈
〈Ω(U), σb〉 such that |CV (σ′)| = 2(2n−3)b. If b = 1 and 2 - f , then there exists an
element σ′ ∈ 〈Ω(U), σb〉 such that |CV (σ′)| = 2(2n−2)b.

(iv) Suppose f = ab for some a, b ∈ Z≥1 with 2 - a ≥ 3. Then there exists an element
τ ∈ 〈Ω(U), σ2b〉 such that |CV (τ)| = 22b if b > 1 and |CV (τ)| = 22n if b = 1. If in
addition b = 1 and n ≥ 3, then there exists an element τ ′ ∈ 〈Ω(U), σ2b〉 such that
|CV (τ ′)| = 22n−2.

Proof. (a) We will follow the proof of [KlL, Proposition 2.8.2]. Fix an element ζ ∈ Fq
such that the polynomial t2 + t+ ζ ∈ Fq[t] is irreducible over Fq. Note that

(8.2.3.1) TrFq/F2(ζ) = 1.

(Indeed, the map π : x 7→ x2 + x on Fq is F2-linear with kernel {0, 1}, hence |Im(π)| = q/2.
Next, if y = x2 + x ∈ Im(π), then TrFq/F2(y) = x+ xq = 0. Since the equation TrFq/F2(y) = 0
can have at most q/2 roots in Fq, we see that its roots are exactly the elements of Im(π). As
ζ /∈ Im(π), (8.2.3.1) follows.)

Now we can choose a basis (u1, . . . , un, v1, . . . , vn) of U = F2n
q in which (·, ·)f has Gram

matrix

(
0 In
In 0

)
and furthermore

Qf (ui) = Qf (vi) = 0, 1 ≤ i ≤ n− 1, Qf (un) = 1,Qf (vn) = ζ.

Define

(8.2.3.2) σ :
n∑
i=1

(xiui + yivi) 7→
n−1∑
i=1

(x2
iui + y2

i vi) + x2
nun + y2

n(ζun + vn), ∀xi, yi ∈ Fq.

In particular, σ is F2-linear, and

(8.2.3.3) Qf (σv) = Qf (v)2, ∀v ∈ U.



8.2. TRACES OF ELEMENTS IN NORMALIZERS OF EXTRASPECIAL 2-GROUPS 167

It follows that σ preserves Q1, whence σ ∈ O(V ). Also, (8.2.3.3) implies that σ normalizes
O(U) and Ω(U), i.e. σ ∈ NO(V )(Ω(U)).

Suppose in addition that f = ab for some a, b ∈ Z≥1. Then we can view U as an F2b-
vector space, and endow it with the following non-degenerate symplectic form and associated
quadratic form

(u, v)b := TrFq/F2b
((u, v)f ), Qb(v) := TrFq/F2b

(Qf (v)).

Writing r := 2b and

(8.2.3.4) η := ζ + ζ2 + . . .+ ζ2b−1

,

from (8.2.3.2) we obtain that

(8.2.3.5) σb :
n∑
i=1

(xiui + yivi) 7→
n−1∑
i=1

(xriui + yri vi) + xrnun + yrn(ηun + vn).

In particular, σb is Fr-linear, and, using (8.2.3.1) we see that

(8.2.3.6) σf (v) = v + (un, v)fun, ∀v ∈ U,
that is, σf is the reflection ρun corresponding to un and so 〈Ω(U), σf〉 = O(U). Furthermore,
(8.2.3.3) shows that σi /∈ O(U) when 1 ≤ i ≤ f − 1, and so

(8.2.3.7) 〈Ω(U), σ〉 ∼= Ω(U) o C2f .

We also note from (8.2.3.3) that

Qb

(
σb(v)

)
= TrFq/Fr

(
Qf (σ

b(v))
)

= TrFq/Fr
(
(Qf (v))r

)
= TrFq/Fr

(
Qf (v)

)
= Qb(v)

for all v ∈ U , i.e. σb preserves Qb. Since the same obviously holds for Ω(U), we have shown
that 〈Ω(U), σb〉 ≤ O−2na(q

1/a). As Ω(U) = Ω−2n(q) is perfect and Ω−2na(q
1/a) has index 2 in

O−2na(q
1/a), it follows that 〈Ω(U), σ2b〉 ≤ Ω−2na(q

1/a).

(b) Note that Ω(U) acts irreducibly on V = F2N
2 . Therefore E := CEnd(V )(Ω(U)) is a

division ring by Schur’s lemma, hence a finite field by Wedderburn’s theorem. Next, since
Ω(U) is centralized by Z(GL(U)) ∪ {0}, a field of size q, we have that E is an extension of
Fq, say of degree e ≥ 1. Now, considered as Ω(U)-module over E, V is absolutely irreducible,
and dimE V = 2n/e. When n ≥ 3, applying [KlL, Proposition 5.4.11], we see that e = 1 and
Er{0} = Z(GL(U)). This also holds when n = 2, see [KlL, Proposition 2.9.1(v)]. It follows
that CGL(V )(Ω(U)) = Z(GL(U)).

Next we show that CO(V )(Ω(U)) = 1. In fact we will show that

(8.2.3.8) CSp(V )(Ω(U) = 1.

By the previous result, it suffices to show that if λ ∈ F×q is such that (λu, λv)1 = (u, v)1

for all u, v ∈ U , then λ = 1. Assume the contrary: λ 6= 1. We apply the given identity to
(u, v) = (u1, ζ/(λ

2 − 1)v1), so that (u, v)f = ζ/(λ2 − 1). For such (u, v) we now have

(λu, λv)1 − (u, v)1 = TrFq/F2

(
(λu, λv)f − (u, v)f

)
= TrFq/F2

(
(λ2 − 1)(u, v)f

)
= TrFq/F2(ζ) = 1,

a contradiction.
We have shown that NO(V )(Ω(U)) ↪→ Aut(Ω(U)), and the latter is isomorphic to Ω(U)o

C2f by [GLS, Theorem 2.5.12]. Together with (8.2.3.7), this implies that NO(V )(Ω(U)) =
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〈Ω(U), σ〉 and that σ is an outer automorphism of order 2s of Ω(U). As 〈Ω(U), σf〉 = O(U),
we also obtain that 〈Ω(U), σ〉 ∼= O(U) ·Cf , the latter being a split extension only when 2 - f .

(c) To prove statement (iii), note that any σb-fixed point v ∈ V is also σf -fixed, and so
belongs to

u⊥n = 〈u1, . . . , un, v1, . . . , vn−1〉Fq
by (8.2.3.6). Applying (8.2.3.5), we then see that

CV (σb) = 〈u1, . . . , un, v1, . . . , vn−1〉F
2b
,

and so |CV (σb)| = 2(2n−1)b.

Assume b > 1. Then there exists β ∈ Fq r {z2b−1 | z ∈ Fq}. Then we take σ′ := hσb,
where h ∈ O(〈u1, v1〉Fq) sends u1 to βu1 and v1 to β−1v1. The condition on β implies that
the system

x = βx2b , y = β−1y2b , x, y ∈ Fq
has only one solution (0, 0). This means that σ′ fixes only the zero vector in 〈u1, v1〉Fq . The

previous case shows that σ′ fixes exactly 2(2n−3)b vectors in 〈u2, . . . , un, v2, . . . , vn〉Fq , and so

|CV (σ′)| = 2(2n−3)b.
Next, consider the case b = 1 but 2 - f . Then we take σ′ := hσ, where h ∈ O(〈u1, v1〉Fq)

sends u1 to v1 and v1 to u1. As 2 - f , the system

x = y2, y = x2, x, y ∈ Fq
has exactly two solutions x = y ∈ F2. This means that σ′ fixes exactly 2 vectors in 〈u1, v1〉Fq .
As before, σ′ fixes exactly 2(2n−3)b vectors in 〈u2, . . . , un, v2, . . . , vn〉Fq . Hence |CV (σ′)| =

2(2n−2)b.

(d) Finally, we prove statement (iv). Again write r := 2b, so that q = ra, and choose
ζ ′ ∈ Fr such that t2 + t+ ζ ′ ∈ Fr[t] is irreducible over Fr. Then, for any root ξ of t2 + t+ ζ ′

we have ξ ∈ Fr2 r Fr. But a is odd, so ξ ∈ Fq2 r Fq, which means that t2 + t + ζ ′ ∈ Fq[t]
is irreducible over Fq. Hence, in what follows we may assume that the element ζ in (a) is
chosen to be equal to ζ ′ and thus

ζ ∈ Fr.
For the element η defined in (8.2.3.4), the proof of (8.2.3.1) now shows that

η = ζ + ζ2 + . . .+ ζ2b−1

= TrFr/F2(ζ) = 1.

Together with (8.2.3.5), this implies that

(8.2.3.9) σ2b :
n∑
i=1

(xiui + yivi) 7→
n∑
i=1

(xr
2

i ui + yr
2

i vi).

We also note that

(8.2.3.10) gcd(r2 − 1, q − 1) = gcd(22b − 1, 2ab − 1) = 2b − 1

since a is odd.
Assume first that b > 1. Fix a generator γ of F×q , of order q − 1 = ra − 1, and consider

t ∈ Ω(U) : ui 7→ γui, vi 7→ γ−1vi, 1 ≤ i ≤ n− 1, un 7→ un, vn 7→ vn.



8.2. TRACES OF ELEMENTS IN NORMALIZERS OF EXTRASPECIAL 2-GROUPS 169

We claim that x = 0 is the only solution of the equation γxr
2

= x over Fq. (Indeed, if x ∈ F×q
is any such solution, then γ = x1−r2 , and so

γ(q−1)/(r−1) = x(−1−r)(q−1) = 1.

Since r− 1 = 2b − 1 > 1 and (r− 1)|(q− 1), this contradicts the choice of γ.) Together with
(8.2.3.9) and (8.2.3.10), this implies that

∑n
i=1(xiui + yivi) ∈ U can be fixed by tσ2b exactly

when xn, yn ∈ Fr and xi = yi = 0 for 1 ≤ i ≤ n− 1, showing |CV (tσ2b)| = 22b. Thus we can
take τ := tσ2b in this case.

Assume now that b = 1. Then (8.2.3.9) and (8.2.3.10) show that
∑n

i=1(xiui + yivi) ∈ U
can be fixed by σ2b exactly when xi, yi ∈ Fr for 1 ≤ i ≤ n, yielding |CV (τ)| = 22n for τ := σ2b.

Finally, assume that b = 1 and n ≥ 3. Then U ′ := 〈u1, u2, v1, v2〉Fq is a quadratic space of
type +, and so Ω(U ′) ∼= Ω+

4 (q). Recalling that q = 2ab ≥ 8 and 〈u1, u2〉Fq is a totally singular
plane in U ′, we can find an element

t′ := diag
((

1 1
0 1

)
,

(
1 0
1 1

))
∈ GL2(q) < Ω(U ′)

(written in the basis (u1, u2, v1, v2)). Letting t′ acting trivially on (U ′)⊥, we obtain an element
in Ω(U) which we denote by the same letter t′.

We claim that (x, y) = (0, 0), (1, 0) are the only two solutions of the system

x4 + y4 = x, y4 = y

over Fq. (Indeed, y4 = y implies that y ∈ F4 ∩ F2f = F2 (as 2 - a = f). If y = 0, then x4 = x
implies that x ∈ F4 ∩ F2f = F2, giving rise to the two indicated solutions. Assume y = 1.
Then

x16 = (x+ 1)4 = x4 + 1 = x,

and so x ∈ F16∩F2f = F2, for the same reason that f is odd. But in this case, x4+x = 0 6= y4,
a contradiction.) Together with (8.2.3.9) and (8.2.3.10), this implies that

∑n
i=1(xiui+yivi) ∈

U can be fixed by τ ′ := t′σ2b exactly when

(x1, x2) ∈ {(0, 0), (1, 0)}, (y1, y2) ∈ {(0, 0), (0, 1)}, xi, yi ∈ F2, 3 ≤ i ≤ n.

Thus |CV (τ ′)| = 22n−2, as stated. �

The next result is concerned with orthogonal groups of both types + and −.

Proposition 8.2.4. Let q = 2f , n ≥ 1, and let U = F2n
q be endowed with a non-

degenerate Fq-valued quadratic form Qf of type ε = ±. View U as a 2nf -dimensional vector

space V = F2nf
2 , endowed with the F2-valued quadratic form Q1(v) = TrFq/F2(Qf (v)), which

naturally embeds O(U) in O(V ). Then the following statements hold.

(i) If ε = −, then NO(V )(Ω(U)) contains a subgroup A ∼= Ω(U)oC2f and an element τ ∈ A
such that |CV (τ)| = 2.

(ii) Suppose ε = + and 2 - f . Then NO(V )(Ω(U)) contains a subgroup A ∼= Ω(U)oC2f and
an element τ ∈ A such that |CV (τ)| = 2 if 2 - n, |CV (τ)| = 4 if 2|n. In the latter case
when 2|n, A also contains τ ′ such that |CV (τ ′)| = 22n−1.

(iii) If ε = + and 2|f , then NΩ(V )(Ω(U)) contains a subgroup A ∼= Ω(U) o (C2 × Cf ) and
an element τ ∈ A such that |CV (τ)| = 4. Furthermore, |CV (g)| is a power of 4 for all
g ∈ A.
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Proof. (a) In the case ε = −, part (a) of the proof of Proposition 8.2.3, which was
formulated with the conditions n ≥ 2 and nf ≥ 3, also works for n = 1 and for n = 2, and
we can take A = 〈Ω(U), σ〉.

Consider the case n = 1. Then part (c) of the proof of Proposition 8.2.3 also works when
n = 1 = b and shows that |CV (σ)| = 2.

For the general case of any n, we apply the preceding remark to Ω−2 (2nf ) = Ω(Qnf ) to get

(8.2.4.1) |CV (σ)| = 2,

where σ is induced by the field automorphism x 7→ x2, and Qnf is the quadratic form of type
− on W := F2

2nf
specified in part (a) of the proof of Proposition 8.2.3. As mentioned there,

σf is then Fq-linear. Now we view W as U = F2n
q with the Fq-valued quadratic form

Q′(v) = TrFqn/Fq(Qnf (v)),

which is invariant under Ω(W ) and σf . In particular, Ω(U1) ∼= Cqn+1 embeds in O(U).
Furthermore, (8.2.3.3) applied to W shows that

Qnf (σ(v)) = Qnf (v)2

for all v ∈ W . Now, for any g ∈ O(U), writing u := σ−1(v) we have

Q′
(
σgσ−1(v)

)
= Q′

(
σ(g(u))

)
= TrFqn/Fq

(
Qnf

(
σ(g(u))

))
= TrFqn/Fq

(
Qnf

(
g(u)

)2
)

=
(

TrFqn/Fq
(
Qnf

(
g(u)

)))2

=
(
Q′
(
g(u)

))2

=
(
Q′(u)

)2

=
(

TrFqn/Fq
(
Qnf

(
σ−1(v)

)))2

= TrFqn/Fq

(
Qnf

(
σ−1(v)

)2
)

= TrFqn/Fq
(
Qnf (v)

)
= Q′(v)

,

showing that σ normalizes O(U), and hence Ω(U) = [O(U),O(U)] as well.
Claim that O(U) has type −. It suffices to prove it for n ≥ 2. If (n, f) 6= (3, 1), then

22nf − 1 admits a primitive prime divisor ` by [Zs], which divides qn + 1 but not |O+
2n(q)|,

whence the claim follows. If (n, f) = (3, 1), then Ω(W ) ∼= C9, whereas O+
6 (2) ∼= S8 has no

element of order 9, so we are also done.
Hence we can identify Q′ with Qf . Now σ fixes

TrFqn/F2(Qnf ) = TrFq/F2(Q
′) = TrFq/F2(Qf ) = Q1,

and so σ ∈ O(V ). We have shown above that σf ∈ O(U) and σ ∈ NO(V )(Ω(U)); furthermore,
σ is induced by the field automorphism x 7→ x2 (in a suitable basis of U). Hence (8.2.4.1)
yields the desired property for the element σ in A.

(b) Now assume that ε = +. Then we consider U = F2n
q = 〈u1, . . . un, v1, . . . , vn〉Fq with

the Fq-valued quadratic form Qf (
∑

i(xiui + yivi) =
∑

i xiyi of type +. Also consider the
endomorphism

(8.2.4.2) σ(
∑
i

(xiui + yivi) =
∑
i

(x2
iui + y2

i vi)

of U , induced by the field automorphism x 7→ x2, and the involution

(8.2.4.3) j : u1 ↔ v1, ui 7→ ui, vi 7→ vi, ∀i ≥ 2



8.2. TRACES OF ELEMENTS IN NORMALIZERS OF EXTRASPECIAL 2-GROUPS 171

in O(U). Arguing as in (a), we see that σ ∈ O(V ), σ has order f and normalizes Ω(U), and
we can take A := Ω(U) o 〈j, σ〉. Note that |CV (σ)| = 22n, so σ has quasideterminant 1 in
O(V ). Furthermore, |CV (j)| = q2n−1. If 2|f , then j has quasideterminant 1 in O(V ), and
so A ≤ Ω(V ); in particular, |CV (g)| is a power of 4 for any g ∈ A. If 2 - f , then j has
quasideterminant −1 in O(V ).

Direct computation shows that |CV (σj)| equals 22n−1 if 2 - f and 22n if 2|f . In particular,
we are done if n = 1.

(c) Assume now that ε = + but n > 1. Then we consider W = F2
2nf

= 〈u, v〉 with the
Fqn-valued quadratic form Qnf (xu+ yv) = xy of type +. Also consider the endomorphism

σ(xu+ yv) = x2u+ y2v

of W , induced by the field automorphism x 7→ x2, and the involution j : u ↔ v in O(W ).
Then W can be considered as a 2n-dimensional vector space U = F2n

q , endowed with the
Fq-quadratic form

Q′(v) = TrFqn/Fq(Qnf (v)).

In turn, U can be considered as a 2nf -dimensional vector space V = F2nf
2 , endowed with the

F2-quadratic form

Q′1(v) = TrFq/F2(Q
′(v)).

Under this identification, 〈u〉Fqn turns into a totally singular subspace of size qn, showing
that Q′ and Q′1 are of type +. Hence we may assume Qf = Q′ and Q1 = Q′1. The same com-
putations as in part (a) then show that σf , j ∈ O(U) and σ, j ∈ NO(V )(Ω(U)). Furthermore,
the last sentence in (b) applied to σj then shows that |CV (σj)| equals 2 if 2 - nf and 4 if
2|nf . �

Theorem 8.2.5. In the notation of (8.2.2.1), the following statements hold when nf ≥ 3.

(i) If g ∈ H◦f := E · Ω−2n(q) < H−f , then |Trace(g)|2 is either 0 or a power of q2 = 22f .

(ii) If g ∈ H−f , then |Trace(g)|2 is either 0 or a power of q = 2f . Moreover, there exists

some h ∈ H−f such that |Trace(h)|2 = q.

(iii) Assume that n ≥ 2 and embed H−1 in G := Sp2nf (C). Then there exists s ∈ NH−1
(H◦f )

such that sE induces an outer automorphism of order 2f of H◦f/E
∼= Ω−2n(q), H−f =

〈H◦f , sf〉, and NG(H◦f ) = 〈H◦f , s〉 ∼= H◦f · C2f . Furthermore, if H◦f C X ≤ G and [X :
H◦f ] = a1, then we have the following.

(a) a1|2f and X = 〈H◦f , s2f/a1〉.
(b) If a1 = 2a for some a|f , then X contains elements t, t′ with |Trace(t)|2 = q(2n−1)/a,
|Trace(t′)|2 = q(2n−3)/a if a < f , and |Trace(t′)|2 = q(2n−2)/a if 2 - a = f .

(c) If 2 - a1, then X ≤ H◦f/a1 = E · Ω−2na1(q
1/a1). If 2 - a1 ≥ 3, then X contains an

element t with |Trace(t)|2 = q2/a1 when a1 < f and |Trace(t)|2 = 22n when a1 = f .
If 2 - a1 = f ≥ 3 and n ≥ 3, then X contains an element t′ with |Trace(t′)|2 = 22n−2.

Proof. (i) It is well known, cf. [GT1, Lemma 5.8], that dimFq CU(g) is even, i.e. |CU(g)|
is a power of q2. Hence the statement follows from Lemma 7.2.1.

(ii) The first statement follows from Lemma 7.2.1 as in (i). For the second statement,
consider an involution j ∈ O+

2 (q) and a regular semisimple element x of order qn−1 + 1 in
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O−2n−2(q) and set
ȳ := jx ∈ O+

2 (q)×O−2n−2(q) < O−2n(q).

Then it is straightforward to check that |CU(ȳ)| = q. By Lemma 7.2.1, if y is an inverse
image of ȳ in H−f , then |Trace(h)|2 = q for some h ∈ yE.

(iii) We will choose s ∈ H−1 such that the coset sE in H−1 /E
∼= O(V ) corresponds

to the element σ constructed in Proposition 8.2.3. By its construction, s ∈ NH−1
(H◦f ),

sE induces an outer automorphism of order 2f of H◦f/E
∼= Ω−2n(q), H−f = 〈H◦f , sf〉, and

NH−1
(H◦f ) ≥ 〈H◦f , s〉 ∼= H◦f · C2f . Next, since E = O2(H◦f ), we have by Theorem 8.2.1 that

NG(H◦f ) ≤ NG(E) = H−1 .

It follows that E CNG(H◦f ), and so by Proposition 8.2.3(ii) we obtain

NG(H◦f )/E = NO(V )(Ω(U)) = 〈Ω(U), σ〉 = 〈H◦f , s〉/E,
yielding the equality NG(H◦f ) = 〈H◦f , s〉.

Now consider any subgroup X ≤ G that contains H◦f as a normal subgroup. Then
X ≤ NG(H◦f ), and as NG(H◦f ) = 〈H◦f , s〉 ∼= H◦f · C2f , we must have that X/H◦f

∼= Ca1
for some a1|2f and X = 〈H◦f , s2f/a1〉. Assume in addition that a1 = 2a, so that a|f , and

write b := 2f/a1 = f/a. As |CU(σb)| = q(2n−1)/a by Proposition 8.2.3(iii), we can apply
Lemma 7.2.1 to find an element t ∈ X whose coset in H−1 /E corresponds to σb and such that
|Trace(t)|2 = q(2n−1)/a. Next, by suitably choosing t′ ∈ X whose coset in H−1 /E corresponds
to the element σ′ in Proposition 8.2.3(iii), we achieve that |Trace(t′)|2 equals q(2n−3)/a when
a < f , and equals q(2n−2)/a when 2 - a = f .

Assume now that a1 is odd. Then a1|f , and so by Proposition 8.2.3(iii) we have that

X/E = 〈Ω(U), σ2(f/a1)〉 ≤ Ω−2na1(q
1/a1) = H◦f/a1/E,

i.e. X ≤ H◦f/a1 . Assume in addition that a1 ≥ 3. Then we can choose b := f/a1 and repeat

the above arguments, but applying Proposition 8.2.3(iv). �

8.3. Linear groups in characteristic 2

First we prove the following group-theoretic result, which is a “p = 2” version of [KT2,
Theorem 4.6]. Recall, see [Zs], that for any integer m ≥ 2 and m 6= 6, 2m − 1 admits a
primitive prime divisor ppd(2,m), that is, a prime divisor that does not divide

∏m−1
i=1 (2i−1).

Furthermore, if in addition m 6= 2, 4, 10, 12, 18, then 2m − 1 admits a large primitive prime
divisor, i.e. a primitive prime divisor ` where either ` > m + 1 (whence ` ≥ 2m + 1), or
`2|(2m − 1), see [F2].

Theorem 8.3.1. Let q0 = 2f be a power of 2 and let d ≥ 2. Assume in addition that

df 6= 2, 4, 6, 10, 12, 18;

in particular, 2df − 1 admits a large primitive prime divisor `, and we choose such an ` to
maximize the `-part of 2df − 1. Let W = Fdq0 and let G be a subgroup of GL(W ) ∼= GLd(q0)

of order divisible by the `-part Q := (qd0 − 1)` of qd0 − 1. Then either L := O`′(G) is a cyclic
`-group of order Q, or there is a divisor j < d of d such that one of the following statements
holds.
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(i) L = SL(Wj) ∼= SLd/j(q
j
0), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional vec-

tor space over Fqj0. Furthermore, if 2|df ≥ 4 then L does not fix any F2-valued non-

degenerate quadratic form on W viewed over F2. Moreover, L does not fix any F2-valued
non-degenerate alternating form on W viewed over F2.

(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj0 endowed with a non-

degenerate symplectic form, and L = Sp(Wj) ∼= Spd/j(q
j
0). Furthermore, if 2|df ≥ 4

then L does not fix any F2-valued non-degenerate quadratic form on W viewed over F2.
(iii) 2|jf , 2 - (d/j), Wj is W viewed as a d/j-dimensional vector space over Fqj0 endowed

with a non-degenerate Hermitian form, and L = SU(Wj) ∼= SUd/j(q
j/2
0 ).

(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj0 endowed with

a non-degenerate quadratic form of type −, and L = Ω(Wj) ∼= Ω−d/j(q
j
0).

(v) (d, L) = (4j, 2B2(qj0)), (6j, G2(qj0)) for some j ∈ Z≥1. Furthermore, if jf > 1 then L
does not fix any F2-valued non-degenerate quadratic form on W viewed over F2.

(vi) (d, q0, `, L) = (8, 2, 17,PSL2(17)), (20, 2, 41,PSL2(41)). In the former case, L does not
fix any F2-valued non-degenerate quadratic form on W .

Proof. (a) We proceed by induction on d ≥ 2. For the induction base d = 2, note that
L ≤ G ∩ SL2(q0) and ` ≥ 11. The list of maximal subgroups of SL2(q0) is well known, see
e.g. Tables 8.1 and 8.2 of [BHR]. Using this list, one easily checks that either L ∼= CQ, or
(i) holds with j = 1.

(b) For the induction step d ≥ 3, we will assume that L 6∼= CQ, and apply the main result
of [GPPS] to see that G is one of the groups described in Examples 2.1–2.9 of [GPPS]. By
assumption,

(8.3.1.1) Either ` ≥ 2df + 1, or Q = (qd0 − 1)` ≥ `2 ≥ (df + 1)2.

If G is described in Example 2.1 of [GPPS], then a0 = 1 since ` = ppd(2, df). Further-
more, one of (i)–(iv) holds, with j = 1.

Next, as ` does not divide the order of any (maximal) parabolic subgroup of GL(W ) ∼=
GLd(q0), G must act irreducibly on W , and so cannot be any of the groups in Example 2.2
of [GPPS]. Likewise, the condition `||G| rules out all the groups listed in Example 2.3 of
[GPPS]. Next, Example 2.5 of [GPPS] does not occur in characteristic 2, which is our case.

(c) Suppose G is among the groups described in Example 2.4 of [GPPS]. Again, as
` > df , G can appear only in Example 2.4(b) of [GPPS]. Thus there is a divisor 1 < j|d
and W is endowed with the structure of a d/j-dimensional vector space Wj over Fqj0 , and

G ≤ GL(Wj) o Cj, where Cj is the group of field automorphisms of Fqj0 over Fq. Note

that j ≤ d ≤ df < `, so L is contained in GL(Wj) ∼= GLd/j(q
j
0) and has order divisible by

Q = ((qj0)d/j − 1)` = Q. If j = d, then L ∼= CQ, contrary to our assumption. If d/j = 2,
then the induction base implies that (i) holds with j = d/2. If d/j ≥ 3, then the induction
hypothesis then implies that one of (i)–(v) holds.

(d) In Examples 2.6–2.9 of [GPPS], S C G/(G ∩ Z) ≤ Aut(S) for some non-abelian
simple group S, where Z := Z(GLd(q0)) ∼= Cq0−1 and the full inverse image N of S in G acts
absolutely irreducibly on W . Moreover, G ≤ GLd(q1) ∗ Z for some root q1 of q0. If q1 < q0,
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then |G| is not divisible by ` = ppd(2, df). Hence q1 = q0, i.e. Fq0 is the smallest field over
which G is realizable modulo scalars (in the sense of [GPPS, p. 172]).

In Example 2.6 of [GPPS] we have S = An; in particular, ` ≤ n. First, in Example
2.6(a) of [GPPS] we have n − 2 ≤ d ≤ n − 1, and so ` ≥ d + 1 ≥ n − 1 > n/2, whence
`2 - |G|. As ` is a large primitive prime divisor, we then have ` ≥ 2d + 1 > n and so ` - |G|,
a contradiction. Example 2.6(b) of [GPPS] does not occur in characteristic 2. In Example
2.6(c) of [GPPS], we must have that ` = 7 and d = 4, but then ` cannot be a primitive
prime divisor of 2df − 1.

In Example 2.7 of [GPPS], S is a sporadic simple group. With ` being a primitive prime
divisor of 2df − 1, we are in one of the following cases:

(G′, d, `) = (M11, 10, 11), (M12, 10, 11), (M22, 10, 11), (Ru, 28, 29),

(M23, 11, 23), (M24, 11, 23), (3J3, 9, 19).

In the first four cases, we have ` = d+ 1 and `2 - |G|, contradicting the largeness of `. In the
next two cases with (d, `) = (11, 23), since `2 - |G| and ` = 2d+ 1, the largeness of ` implies
that f = 1. But in this situation, we can choose 89 as a primitive prime divisor of 2df − 1,
and this contradicts the maximality of Q. In the last case of (3J3, 9, 19), as 192 - |G| and
3J3 6↪→ SL9(2), we must have that f = 2, giving df = 18.

In Example 2.8 of [GPPS], S is a simple group of Lie type in the same characteristic 2.
The condition ` = ppd(2, df) leads to (d, L) = (4, 2B2(q1)), (6, G2(q1)) with q1 = q0, and we
arrive at possibility (v) with j = 1.

In Example 2.9 of [GPPS], S is a simple group of Lie type in characteristic 6= 2 and
appears in Tables 7 and 8 of [GPPS]. The only case in Table 7 that occurs in characteristic
2 is G2(3) with d = 14 which however does not permit the primitive prime divisor ` to
exist. Consider the case when S appears in Table 8 of [GPPS]. Using the fact that ` is a
large prime divisor of 2df − 1, we can again rule out all cases except for the case (d, `, S) =
((` − 1)/2, `,PSL2(`)). In this case, |G|` = ` = 2d + 1, and the largeness of ` forces f = 1.
To handle this last case, we use a strengthening [Tr, Theorem 3.2.2] of the main result of
[F2], proved by A. MacLaughlin and S. Trefethen. This result asserts that, ` can be chosen
so that (2d − 1)` > 2d + 1, unless d ∈ {2, 3, 4, 6, 8, 10, 12, 18, 20}. Given our assumptions on
(d, f) and the fact that PSL2(7) ∼= SL3(2), we are left with the two last possibilities in (vi).
Note that PSL2(17) is a maximal subgroup of Sp8(2) [CCNPW], so cannot embed in Ω±8 (2).

Suppose now that 2|df ≥ 4 and Q is any F2-valued non-degenerate quadratic form. Then
it takes both values 0 and 1 on W r{0}, and so any subgroup of O(Q) cannot act transitively
on W r{0}. Since the group L in (i) and (ii) are transitive on W r{0}, in none of these cases
G can fix Q. The same applies to the case L = G2(qj0) in (v), see [Li, Appendix 1]. Consider
the case L = 2B2(qj0) in (v), in which case L has two orbits, of length qj0(q2j

0 + 1)(qj0 − 1)
and (q2j

0 + 1)(qj0 − 1) on W r {0}, see [Li, Table 12]. These orbits must then match the
sets of (nonzero) Q-isotropic and Q-anisotropic vectors on W , which are however of size
(q2j

0 + 1)(q2j
0 /2− 1) and q2j

0 (q2j
0 + 1)/2, a contradiction.

Finally, suppose we are in case (i) and L fixes a non-degenerate symplectic form on Fdf2 ,
which implies L ↪→ Spdf (2). Then we can find an element g ∈ L of order |g| = (qd0 − 1)/(qj0−
1) = (2df−1)/(qj0−1) which is divisible by ` = ppd(2, df). Such an element g is irreducible on

Fdf2 , hence |g| divides 2df/2 + 1 by [Hup, Satz II.9.23], which is impossible since j ≤ d/3. �
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The case df = 6 is a real exception in Theorem 8.3.1, since 26 − 1 does not possess any
primitive prime divisor. Before dealing with the remaining exceptions in Theorem 8.3.1, we
record the following well-known facts:

Lemma 8.3.2. Let F be a finite field and W a finite-dimensional vector space over F. Let
G ≤ GL(W ) be an irreducible subgroup. Then the following statements hold.

(a) E := EndG(W ) is a finite field containing F. Moreover, W is endowed with a structure
of EG-module structure WE, compatible with the action of G on W , such that WE is
absolutely irreducible.

(b) Suppose that W can be endowed with a structure of LG-module structure WL, compatible
with the action of G on W , for some finite extension L of F, and that WL is absolutely
irreducible. Then E ∼= L; in fact, it is the set of scalar maps on WL.

Proof. (a) By Schur’s lemma, E is a finite division ring, hence a field in which F embeds
via α 7→ α · idW . Now for any β ∈ E we define

(8.3.2.1) β · v = β(v)

for all v ∈ W , and this turns W into an EG-module WE. If W1 is any nonzero EG-submodule
of WE, then it is also a submodule of W , whence W1 = WE and thus WE is irreducible.
Next, CEnd(WE)(G) contains E (by the definition of WE), and is contained in CEnd(W )(G) =
EndG(W ) = E, so

(8.3.2.2) CEnd(WE)(G) = E.
The latter implies by [Is, Theorem 9.2] that WE is absolutely irreducible.

(b) Since WL is absolutely irreducible, CEnd(WL)(G) ∼= L again by [Is, Theorem 9.2]. As
End(WL) ⊆ End(W ), we have that L ⊆ E. Now WE can be obtained from WL via (8.3.2.1),
and End(WE) ⊆ End(WL), so (8.3.2.2) implies that E ⊆ CEnd(WL)(G) = L. Thus E = L. �

Proposition 8.3.3. Let q0 = 2f be a power of 2 and let d ≥ 2. Assume in addition that

df ∈ {2, 4, 10, 12, 18};
in particular, 2df−1 admits a primitive prime divisor `. Let W = Fdq0 and let G be a subgroup

of GL(W ) ∼= GLd(q0) of order divisible by the `-part Q := (qd0 − 1)` of qd0 − 1. Then either
L := O`′(G) is a cyclic `-group of order Q, or one of the following statements holds.

(i) There is a divisor j < d of d such that one of the conclusions (i)–(v) of Theorem 8.3.1
holds.

(ii) (d, q0, `) = (4, 2, 5) and L ∼= A6 or A7.
(iii) (d, q0, `, L) = (5, 4, 11,PSL2(11)).
(iv) (d, q0, `, L) = (6, 4, 13,PSL2(13)).
(v) (d, q0, `) = (9, 4, 19), and L ∼= 3 · J3 or PSL2(19).

(vi) (d, q0, `) = (10, 2, 11) and L ∈ {PSL2(11),M11,M12,M22,A11,A12}.
(vii) (d, q0, `) = (12, 2, 13) and L ∈ {PSL2(13),PSL2(25), SL3(3),A13,A14}.

(viii) (d, q0, `) = (18, 2, 19) and L ∈ {3 · J3,PSL2(19),A19,A20}.

Proof. The case df = 2 is obvious, and the case df = 4 can be checked using [CCNPW].
So we will assume that df ≥ 10, so that ` ≥ 11, and that L 6∼= CQ. We also assume that
L 6= SLd(q0), as otherwise 8.3.1(i) holds with j = 1.
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(a) We will argue by a partial induction on d ≥ 2. First, part (a) of the proof of Theorem
8.3.1 already handles the case d = 2. Next assume that d = 3. As q ≥ 16 in this case,
L ≤ O`′(GL3(q0)) = SL3(q0). As L 6= SL3(q0), L ≤ M for some maximal subgroup M of
SL3(q0), whence L ≤ O`′(M). The list of maximal subgroups of SL3(q0) is given in Tables

8.3 and 8.4 of [BHR], and using the condition `|O`′(M)| we see that L ≤ SU3(q
1/2
0 ). Now

we can apply the same argument and use the list of maximal subgroups of SU3(q
1/2
0 ) [BHR,

Tables 8.5, 8.6] to conclude that L = SU3(q
1/2
0 ), i.e. 8.3.1(ii) holds with j = 1.

Next assume that d = 4, so that df = 12 and q0 = 8. As above we have that SL4(q0) 6=
L ≤ O`′(GL4(q0)) = SL4(q0), and so L ≤ O`′(M) for some maximal subgroup M of SL4(q0).
Inspecting the list of maximal subgroups of SL4(8) as given in [BHR, Tables 8.8, 8.9], we
have L is contained in (a natural subgroup) SL2(q2

0) or Sp4(q0). In the first case, the result
of the case d = 2 implies that L = SL2(q2

0), i.e. 8.3.1(i) holds with j = 2. If L = Sp4(q0) then
8.3.1(ii) holds with j = 1. If not, L ≤ O`′(N) for some maximal subgroup N of Sp4(q0), and
using the list of maximal subgroups of Sp4(q0) [BHR, Table 8.14], we obtain L is contained
in (a natural subgroup) Sp2(q2

0), Ω−4 (q0), or 2B2(q0). Now the results for d = 2 and the list
of maximal subgroups of 2B2(q0) [BHR, Table 8.16] shows that L = Sp2(q2

0), Ω−4 (q0), or
2B2(q0), i.e. 8.3.1(ii), (iv), or (v) holds.

Consider the case d = 5, so that df = 10 and q0 = 4. Then L ≤ O`′(GL5(q0)) = SL5(q0).
As L 6= SL5(q0), L ≤M for some maximal subgroup M of SL5(q0), whence L ≤ O`′(M). The
list of maximal subgroups of SL5(q0) is given in Tables 8.18 and 8.19 of [BHR], and using
the condition `|O`′(M)| we see that L ≤ SU5(2). Using the list of maximal subgroups of
SU5(2) and PSL2(11) [CCNPW], we see that L = SU5(2) or PSL2(11), i.e. either 8.3.1(iii)
holds or we arrive at (iii).

Now let d = 6, so that df = 12 or 18, and q0 = 4 or 8. As above we have SL6(q0) 6=
L ≤ O`′(GL6(q0)) = SL6(q0), and so L ≤ O`′(M) for some maximal subgroup M of SL6(q0).
Inspecting the list of maximal subgroups of SL6(q0) as given in [BHR, Tables 8.24, 8.25], we
have that L is contained in (a natural subgroup) SL2(q3

0), SL3(q2
0), or Sp6(q0). In the first

two cases, the results of the cases d = 2 and d = 3 imply that L = SL2(q3
0), SL3(q2

0), or
SU3(q0), i.e. either 8.3.1(i) holds with j = 2, 3, or 8.3.1(iii) holds with j = 2. If L = Sp6(q0)
then 8.3.1(ii) holds with j = 1. If not, L ≤ O`′(N) for some maximal subgroup N of Sp6(q0),
and using the list of maximal subgroups of Sp6(q0) [BHR, Tables 8.28, 8.29], we obtain L is
contained in (a natural subgroup) Sp2(q3

0), Ω−6 (q0), or G2(q0). Now the results for d = 2 and
the lists of maximal subgroups of Ω−6 (q0) and G2(q0) [BHR, Tables 8.33, 8.34, 8.30] show
that L = Sp2(q3

0), Ω−6 (q0), G2(q0), SU3(q0), i.e. 8.3.1(ii), (iii), (iv), or (v) holds, or q0 = 4
and L = PSL2(13).

Next we consider the case d = 9 and q0 = 4. Again, SL9(4) 6= L ≤ O`′(GL9(4)) = SL9(4),
and so L ≤ O`′(M) for some maximal subgroup M of SL9(4). Inspecting the list of maximal
subgroups of SL9(4) as given in [BHR, Tables 8.54, 8.55], we have that L is contained in (a
natural subgroup) SL3(q3

0) or SU9(2). In the first case, the result of the case d = 3 implies
that L = SL3(q3

0), i.e. 8.3.1(i) holds with j = 3. If L ≤ SU9(2) then, using the list of maximal
subgroups of SU9(2) [BHR, Tables 8.56, 8.57], we see that L = SU9(2), SU3(8), i.e. 8.3.1(iii)
holds with j = 1, 3, or L = 3 · J3 or PSL2(19), i.e. we are in (v).
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(b) It remains to consider the cases where f = 1 and d ∈ {10, 12, 18}. First we note that
L is irreducible on W = Fd2 since |L| is disivible by ` = d + 1. Now if the L-module V is
not absolutely irreducible, then E := EndL(W ) is a finite field of order 2j for some 2 ≤ j|d,
and W becomes an absolutely irreducible EL-module of dimension d/j by Lemma 8.3.2(i).
In this case, L ≤ GLd/j(2

j), and we are done by the results of (b). So we may assume L is
absolutely irreducible on W but L < SLd(2), and apply [KlL, Theorem 1.2.1] to L, to see
that either L = O`′(L) is simple, or L ≤ Spd(2). In the first case, using [HM] we arrive at
(vi)–(viii). Assuming L is not simple, we then have L < Spd(2) (as otherwise 8.3.1(ii) holds).
Applying [KlL, Theorem 1.2.1] we get L ≤ Ω−d (2). Applying [KlL, Theorem 1.2.1] one more
time, we obtain L = Ω−d (2), i.e. 8.3.1(iv) holds. �

Theorem 8.3.4. Let q = 2f be a power of 2 and let n > m ≥ 1 with 2|mn, gcd(m,n) = 1,

and nf ≥ 4. Let W = F2nf
2 and let Q be a non-degenerate F2-valued quadratic form on W .

Suppose G is a subgroup of GL(W ) ∼= GL2nf (2) of order divisible by lcm(qn+1, qm+1, qn−m−
1) that fixes Q. Then, with ` as chosen in Theorem 8.3.1 and Proposition 8.3.3, L := O`′(G)
is not cyclic.

Suppose in addition that the action of L on W carries an Fq-structure. Then one of the
following statements holds.

(a) L = Ω(Wf ) ∼= Ω−2n(q), where Wf is W viewed as a 2n-dimensional vector space over Fq
endowed with a non-degenerate quadratic form Qf of type −. Moreover, there is α ∈ F×q
such that Q(u) = TrFq/F2(α · Qf (u)) for all u ∈ Wf .

(b) (n,m, q) = (5, 2, 2) and L ∈ {A11,A12}.

Proof. (i) First we note that 2|mn and gcd(m,n) = 1 imply by Lemma 10.3.2 that

(8.3.4.1) gcd(qn + 1, qm + 1) = gcd(qn + 1, qn−m − 1) = gcd(qm + 1, qn−m − 1) = 1,

and so |G| is divisible by (qn + 1)(qm + 1)(qn−m − 1). By assumption, 22nf − 1 admits a
primitive prime divisor ` [Zs], which we can choose to be a large primitive prime divisor
when nf 6= 5, 6, 9 [F2]. Among such `, choose ` to maximize the `-part of 22nf − 1. Again
by hypothesis, |G| is divisible by Q := (q2n − 1)`, hence we can apply Theorem 8.3.1 and
Proposition 8.3.3, with q0 = 2, to the F2-vector space W to determine L. By the choice of `,
any element of order ` in O(Q) acts irreducibly on W , and is contained in a conjugate of a
fixed cyclic maximal torus T of order qn + 1 with normalizer T · C2nf in O(Q).

Suppose L ∼= CQ. Then we may assume L is the unique CQ-subgroup of T , whence
G ≤ T ·C2nf and so (qm + 1)(qn−m− 1) divides nf . Note that 2a− 1 > 2a whenever a ∈ Z≥3

and 2a + 1 > 2a whenever a ∈ Z≥1. Now, if m < n/2, then since 2 - (n − m) we have
n −m ≥ 3, whence qn−m − 1 > 2(n −m)f > nf , a contradiction. Now, if m ≥ n/2, then
qm + 1 > 2mf ≥ nf , again a contradiction.

We have shown that L 6∼= CQ. As mentioned above, any element of order ` in L is regular
semisimple in O(Q) and has centralizer conjugate to T ∼= Cqn+1. Hence, (8.3.4.1) implies
that the order of CG(L) ≤ CO(Q)(L) is coprime to (qm + 1)(qn−m − 1). As LCG, it follows
that

(8.3.4.2) (qm + 1)(qn−m − 1) divides |Aut(L)|.
Note that Q divides |L|. By Theorem 8.3.1 and Proposition 8.3.3, but now applied to W

viewed as an FqL-module, we have one of the following cases.
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(ii) There is some divisor j ∈ Z≥1 of n such that j < n, 2 - n/j, and L = SU(Wj) ∼=
SUn/j(q

j), where Wj is W viewed as an n/j-dimensional vector space over Fq2j endowed
with a non-degenerate Hermitian form. Note that m 6= n/2, because otherwise we have
(n,m, j) = (2, 1, 1) and so 2|(n/j).

First consider the case m < n/2. Then 2 - (n − m) ≥ 3. Assume in addition that
(n −m)f 6= 6. Then by [Zs] we can find a primitive prime divisor `1 of 2(n−m)f − 1 which
certainly divides qn−m − 1 and is at least (n − m)f + 1 ≥ max(3f + 1, n/2 + 1). On the
other hand, |Aut(L)| = |PGUn/j(q

j)| · 2jf , with j ≤ n/3. So (8.3.4.2) implies that `1 divides
|PGUn/j(q

j)|, and so there exists some i ≤ n/j such that `1|(qij− (−1)i). Hence `1|(q2ij−1),
and the primitivity of `1 implies that (n−m)|2ij. As 2 - (n−m), we have (n−m)|ij. But
ij ≤ n < 2(n−m), so ij = n−m and thus 2 - i, in which case `1 divides qij−(−1)i = qn−m+1,
a contradiction. Suppose now that (n − m)f = 6, i.e. (n − m, q) = (3, 4). Then we have
(n,m) = (4, 1) or (5, 2). Now we can take `1 = 7, which is a primitive prime divisor for
qn−m − 1, and repeat the preceding argument.

We have shown that m > n/2. Assume in addition that mf 6= 3. Then by [Zs] we
can find a primitive prime divisor `2 of 22mf − 1 which then divides qm + 1 and is at least
2mf + 1 > nf + 1. As j ≤ n/3, (8.3.4.2) implies that `2 divides |PGUn/j(q

j)|, and so there
exists some i ≤ n/j such that `2|(qij − (−1)i). Hence `2|(q2ij − 1), and the primitivity of `2

implies that m|ij ≤ n < 2m, and so ij = m. Now if 2 - n, then 2 - j and 2|m, so 2|i, and `2

divides qij − (−1)i = qm − 1, a contradiction. If 2|n, then 2 - m, whence 2 - j and so 2|n/j,
again a contradiction. Suppose now that mf = 3, i.e. (m, q) = (3, 2). As 2|n < 2m, we have
n = 4, in which case there is no divisor j < n of n with 2 - (n/j).

(iii) There is some divisor j ≤ n/2 of n such that L = Ω(Wjf ) ∼= Ω−2n/j(q
j), where Wjf

is W viewed as a 2n/j-dimensional vector space over Fqj endowed with a non-degenerate
quadratic form Qjf of type −. In this case, Aut(L) ∼= O−2n/j(q

j) · Cjf . We will show that

(8.3.4.3) j = 1.

First, if m = n/2, then (n,m) = (2, 1) and so j = 1. Next we consider the case m < n/2.
Then 2 - (n − m) ≥ 3. Assume in addition that (n − m)f 6= 6. Then by [Zs] we can
find a primitive prime divisor `1 of 2(n−m)f − 1 which then divides qn−m − 1 and is at least
(n−m)f+1 ≥ max(3f+1, n/2+1). As j ≤ n/2, (8.3.4.2) implies that `1 divides |O−2n/j(qj)|,
and so there exists some i ≤ n/j such that `1|(q2ij − 1). Hence the primitivity of `1 implies
that (n−m)|2ij. As 2 - (n−m), we have (n−m)|ij. But ij ≤ n < 2(n−m), so ij = n−m.
It follows that j divides both n and m, and hence j = 1, as stated in (8.3.4.3). Suppose now
that (n−m)f = 6, i.e. (n−m, q) = (3, 4). Then we have (n,m) = (4, 1) or (5, 2). Now we
can take `1 = 7, which is a primitive prime divisor for qn−m − 1, and repeat the preceding
argument.

Now suppose that m > n/2. Assume in addition that mf 6= 3. Then by [Zs] we can find a
primitive prime divisor `2 of 22mf−1 which then divides qm+1 and is at least 2mf+1 > nf+1.
As j ≤ n/3, (8.3.4.2) implies that `2 divides |O−2n/j(qj)|, and so there exists some i ≤ n/j

such that `2|(q2ij − 1). Hence the primitivity of `2 implies that m|ij ≤ n < 2m, and so
ij = m. It follows that j| gcd(n,m) = 1, as desired in (8.3.4.3). Suppose now that mf = 3,
i.e. (m, q) = (3, 2), but j > 1. As 2|n < 2m, we have n = 4 and j = 2. In this case, the
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order of Aut(L) = Aut(Ω−4 (q2)) = Aut(SL2(16)) ∼= SL2(16) · 4 is not divisible by 9 = q3 + 1,
contrary to (8.3.4.2).

With (8.3.4.3) established, consider the non-degenerate L-invariant Fq-valued alternating
form (·|·)f on Wf associated to Qf , which leads to the non-degenerate L-invariant F2-valued
alternating form (u|v)1 := TrFq/F2

(
(u|v)f

)
. Fix a basis of W as F2-vector space, and consider

the Gram matrices of (·|·)1 and of the form (·|·) associated to Q relative to this basis:

(u|v)1 = tuJ1v, (u|v) = tuJv

for any u, v ∈ W written as coordinate vectors in F2nf
2 with respect to this basis. For any

element of L written as a matrix X in this basis, the L-equivariance of the two forms implies
that

(tX)−1 = JXJ−1 = J1XJ
−1
1 ,

hence J−1
1 J ∈ GL(W ) commutes with all X ∈ L and thus J−1

1 J ∈ EndL(W ) ∼= Fq by Lemma
8.3.2(ii). It follows that there is a scalar α ∈ F×q such that J = J1Tα, where Tα is the matrix
of the transformation x 7→ αx on W written in the chosen basis, and so

(u|v) = tuJv = tuJ1Tαv = (u|Tαv)1.

Back to viewing u, v as vectors in W , we now have

(u|v) = (u|αv)1 = TrFq/F2

(
α(u|v)f

)
.

Rescaling (·|·)f by α, we may therefore assume that (u|v) = (u|v)1. Now L fixes quadratic
forms Q and Q1 := TrFq/F2(Qf ), which are both associated to (·|·). Hence L fixes Q − Q1, a
map in HomF2(W,F2), which can be identified with W using (·|·). Since L has no nonzero
fixed point on W , it follows that Q = Q1, and we arrive at (a).

(iv) (2n, q, L) = (8, 2,PSL2(17)), (20, 2,PSL2(41)). Here, (8.3.4.2) implies that (2m +
1)(2n−m − 1) divides 9, respectively 5 · 21, a contradiction.

(v) (2n, q) = (18, 2) and L ∈ {3 · J3,PSL2(19),A19,A20}. Here, m = 2, 4, or 8, hence
(2m+1)(2n−m−1) is divisible by 127, 31, or 257, respectively, and so cannot divide |Aut(L)|,
contrary to (8.3.4.2).

(vi) (2n, q) = (12, 2) and L ∈ {PSL2(13),PSL2(25), SL3(3),A13,A14}. Here, m = 1 or 5,
hence (2m+ 1)(2n−m−1) is divisible by 31 or 11, respectively, and so cannot divide |Aut(L)|,
contrary to (8.3.4.2).

(vii) (2n, q, `) = (10, 2, 11) and L ∈ {PSL2(11),M11,M12,M22,A11,A12}. Here, if m = 4,
then (2m+1)(2n−m−1) is divisible by 17, and so cannot divide |Aut(L)|, contrary to (8.3.4.2).
Thus m = 2, and (8.3.4.2) rules out L = PSL2(11), M11, and M12. Since M22 cannot embed
in Ω−10(2), we arrive at (b).

(viii) Since nf ≥ 4, we are left with one case (2n, q, L) = (6, 4,PSL2(13)). In this case,
m = 2, (4m + 1)(4n−m − 1) is divisible by 17, and so cannot divide |Aut(L)|, contrary to
(8.3.4.2). �

We will also need to classify another kind of linear groups in characteristic 2.

Theorem 8.3.5. Let q0 = 2f0 be a power of 2 and let a, b, f ∈ Z≥1 and d ∈ Z≥2 be such
that

gcd(a, b) = 1, 2|ab, a > b, df0 = 2(a+ b)f, af 6= 3, (a+ b)f 6= 3, 6.
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Let `1 = ppd(2, 2af) and `2 = ppd(2, (a + b)f) be primitive prime divisors of 22af − 1 and
2(a+b)f − 1, which exist by [Zs]. Let W = Fdq0 and let G be a subgroup of GL(W ) ∼= GLd(q0)

that contains elements h1 of order Q1 := (2af + 1)`1, and h2 of order Q2 := (2(a+b)f − 1)`2
with CW (h2) = 0. Then there exists a divisor j ≤ d/3 of d such that one of the following
statements holds for L := G{`1,`2}

′
, the normal subgroup of G generated by Sylow `1-subgroups

and Sylow `2-subgroups of G.

(i) L = SL(Wj) ∼= SLd/j(q
j
0), and Wj is W viewed as a d/j-dimensional vector space over

Fqj0. Moreover, G does not fix any F2-valued non-degenerate quadratic form on W viewed

over F2.
(ii) 2j|d, L = Sp(Wj) ∼= Spd/j(q

j
0), and Wj is W viewed as a d/j-dimensional vector space

over Fqj0 endowed with a non-degenerate symplectic form. Furthermore, G does not fix

any F2-valued non-degenerate quadratic form on W viewed over F2.

(iii) 2|jf0, L = SU(Wj) ∼= SUd/j(q
j/2
0 ), and Wj is W viewed as a d/j-dimensional vector

space over Fqj0 endowed with a non-degenerate Hermitian form.

(iv) 2j|d, d/j ≥ 4, L = Ω(Wj) ∼= Ωε
d/j(q

j
0), and Wj is W viewed as a d/j-dimensional vector

space over Fqj0 endowed with a non-degenerate quadratic form of type ε = ±.

(v) (d, q0, a, b, f, `1, `2, L) = (20, 2, 3, 2, 2, 13, 11,A22). Moreover, G does not fix any F2-
valued non-degenerate quadratic form on W .

Proof. (a) Since CW (h2) = 0 and

(8.3.5.1) o(h2) = `2 = ppd(2, df0/2) ≥ df0/2 + 1,

the semisimple 〈h2〉-module W is the direct sum of two simple modules, both of dimension
d/2. Hence, if 0 6= U 6= W is a simple L-submodule, then as h2 acts on both U and W/U ,
we have dimU = dim(W/U) = d/2 < 2af/f0. However, using

(8.3.5.2) o(h1) = `1 = ppd(2, 2af) ≥ 2af + 1 ≥ df0/2 + 2,

we can see that the semisimple 〈g1〉-module W contains a simple submodule of dimension
2af/f0, a contradiction. Thus L is irreducible on W . For future reference we note that

(8.3.5.3) af ≥ 4, `1 ≥ 11.

(Indeed, af ≥ 2 and af 6= 3 by hypothesis. If af = 2, then (a, f, b) = (2, 1, 1) and so
(a+ b)f = 3, a contradiction. So 2af ≥ 8 and `1 = ppd(2, 2af) ≥ 11.)

Suppose L is imprimitive: G permutes transitively t summands of a decomposition W =
⊕ti=1Wi with 1 < t|d. If t = d and q0 = 2, then dimF2 Wi = 1, so L permutes transitively an
F2-basis of W and so is reducible, a contradiction. Hence either 2 ≤ t ≤ d/2, or t = d but
f0 ≥ 2. In either case, we have df0/t ≤ df0/2 < 2af and t ≤ df0/2 < 2af . It follows that the
order of GLd/t(q0) oSt ≥ G is not divisible by `2 > 2af , a contradiction. Thus L is irreducible
and primitive on W .

(b) We proceed by induction on d ≥ 2. For the induction base d = 2, note from (8.3.5.2)
that `1 - (q0 − 1). Hence `1|(q0 + 1), and so 2af |2f0 by primitivity of `1, whence (8.3.5.2)
implies that 2af = 2f0 = 2(a+ b)f , i.e. b = 0, a contradiction.
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For the induction step d ≥ 3, we will apply the main result of [GPPS] to the prime `1

to see that G is one of the groups described in Examples 2.1–2.9 of [GPPS]. The choices of
`1,2 imply that `1, `2 - (q0 − 1).

Suppose G is described in Example 2.1 of [GPPS], in which `1 is a primitive prime divisor

of q
e/a0
0 − 1 for some e ≤ d and a0|f0, whence 2af divides ef0/a0 ≤ df0/a0 ≤ df0. If a0 > 1,

then df0/a0 ≤ df0/2 < 2af by (8.3.5.2), a contradiction. Hence a0 = 1, and we arrive at
(i)–(iv) with j = 1.

Next, the primitivity of G on V rules out the groups in Examples 2.2 and 2.3 of [GPPS];
also, Example 2.5 of [GPPS] does not occur in characteristic 2, which is our case.

Suppose G is among the groups described in Example 2.4 of [GPPS]. Thus for a divisor
1 < j|d, W is endowed with the structure of a d/j-dimensional vector space Wj over Fqj0 , and

G ≤ GL(Wj) o Cj, where Cj is the group of field automorphisms of Fqj0 over Fq0 . Suppose

j = d, i.e. G ≤ GL1(qd0)oCd. If `1|d, then (8.3.5.2) implies that f0 = 1 and `1 = d = 2(a+b)f ,
a contradiction. So `1|(qd0 − 1), which implies by primitivity of `1 that 2af > df0/2 divides
df0, whence 2af = df0 = 2(a + b)f , i.e. b = 0, a contradiction. Hence 2 ≤ j ≤ d/2, in
which case j ≤ df0/2 < min(`1, `2) by (8.3.5.1) and (8.3.5.2). It follows that L is contained
in GL(Wj) ∼= GLd/j(q

j). Since h1, h2 ∈ L, we can apply the induction base and the induction
hypothesis to see that one of (i)–(iv) holds.

(c) In Examples 2.6–2.9 of [GPPS], S C G/(G ∩ Z) ≤ Aut(S) for some non-abelian
simple group S, where Z := Z(GLd(q0)) ∼= Cq0−1 and the full inverse image N of S in G
acts absolutely irreducibly on W . Moreover, G ≤ GLd(q1) ∗ Z for some root q1 = 2f1 of q0.
If q1 < q0, then, since 2af > df0/2 ≥ df1, |G| is not divisible by `1 = ppd(2, 2af). Hence
q1 = q0, i.e. Fq0 is the smallest field over which G is realizable modulo scalars (in the sense
of [GPPS, p. 172]). As `i - (q0− 1), we have that Aut(S) contains elements of order Q1 and
Q2.

In Example 2.6 of [GPPS] we have S = An with n ≥ 5; in particular, `1, `2 ≤ n. First,
in Example 2.6(a) of [GPPS] we have n − 2 ≤ d ≤ n − 1, and so (8.3.5.2) implies that
`1 ≥ d/2 + 2 ≥ n/2 + 1, whence `2

1 - |G|. In fact, if f0 ≥ 2 then we have `1 ≥ d + 2 ≥ n,
whence n = `1 is odd, in which case d = n − 1 and `1 > n, a contradiction. So f0 = 1. If
moreover 2af /∈ {10, 12, 18}, then by [F2] we can choose `1 to be a large primitive prime
divisor of 22af −1, for which we have `1 ≥ 4af +1 ≥ d+3 > n and so ` - |G|, a contradiction.
Hence

(8.3.5.4) af ∈ {5, 6, 9}.
Suppose (a+ b)f /∈ {8, 10, 12, 18, 20}. By [Tr, Theorem 3.2.2] we can choose `2 to be a “very
large” primitive prime divisor of 2(a+b)f − 1, for which we either have `2 ≥ 3(a + b)f + 1 ≥
3d/2 + 1 > n, or `2 = (a + b)f + 1 = d/2 + 1 ≥ n/2 but Q2 ≥ `2

2. The former case is
impossible, and in the latter case Aut(An) cannot contain elements of order Q2. Hence

(8.3.5.5) (a+ b)f ∈ {8, 10, 12, 18, 20}.
By hypothesis, 2 - a+ b ≥ 3. Now if (a+ b)f ∈ {8, 12, 20}, then 4|f , contrary to (8.3.5.4). If
(a + b)f = 18, then 2|f , so af = 6 and (a, f) = (3, 2) by (8.3.5.4), but then a + b = 9 and
b = 6 > a, a contradiction. Hence (a + b)f = 10, f = 2, a = 3, b = 2, `1 = 13, `2 = 11,
d = 20, and n ∈ {21, 22}. If n = 21, then elements of order Q2 = 11 have nonzero fixed
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points on W = F20
2 , again a contradiction. So n = 22, and we arrive at (v). Note that

W can support a non-degenerate L-invariant alternating, but not quadratic, form, because
22 ≡ 2(mod 4), see [Ben, Lemma 6.2].

Example 2.6(b) of [GPPS] does not occur in characteristic 2. In Example 2.6(c) of
[GPPS], we have `1 ∈ {5, 7}, contrary to (8.3.5.3).

Example 2.7 of [GPPS] lists 11 cases with S being a sporadic simple group. In six
cases, we have d ≥ 10 and `1 = ppd(2, d). It follows that df0/2 < 2af = d, so f0 = 1,
but then d = df0 = 2(a + b)f > 2af , a contradiction. In another case we have d = 20
and `1 = ppd(2, d − 2) = 19. It follows that df0/2 < 2af = d − 2, so f0 = 1, whence
d = df0 = 2(a + b)f , whence (af, bf) = (9, 1) and 2 - ab, again a contradiction. In two
cases we have d = 11 and `1 = ppd(2, d − 1) = 11. It follows that df0/2 < 2af = d − 1,
so f0 = 1, but then d = df0 = 2(a + b)f is even, a contradiction. In another case we have
(d, L) = (9, 3J3), 2|f0, and `1 = ppd(2, 2d) = 19. It follows that df0/2 < 2af = 2d, so f0 = 2,
whence 2d = df0 = 2(a + b)f and b = 0, again a contradiction. In the final case we have
(d, L) = (6, 3M22), 2|f0, and `1 = ppd(2, 10) = 11. It follows that 3f0 < 2af = 10, so f0 = 2,
whence 12 = df0 = 2(a+ b)f , (af, bf) = (5, 1), and 2 - ab, a contradiction.

Example 2.8 of [GPPS] lists six examples with S a simple group of Lie type in the same
characteristic 2. In two of them, with (d, L) = (4, 2B2(q0)), (6, G2(q0)), `1 is a primitive prime
divisor of 2df0 − 1, so we get 2af = df0 = 2(a+ b)f and thus b = 0, a contradiction. In three
of them, we have d = 8 and `1 is a primitive prime divisor of both 26f0 − 1. Hence af = 3f0,
and 8f0 = 2(a + b)f , i.e. bf = f0. It follows that f = gcd(af, bf) = gcd(3f0, f0) = f0, so
(a, b) = (3, 1) and thus 2 - ab, a contradiction. In the remaining case, we have d = 9, L is
a quotient of SL3(q2

0), and `1 is a primitive prime divisor of 26f0 − 1. Hence af = 3f0, and
9f0 = 2(a+ b)f , i.e. 2bf = 3f0. It follows that 2f = gcd(2af, 2bf) = gcd(6f0, 3f0) = 3f0, so
2f = 3f0 and (a, b) = (2, 1). But now we can check that `2 = ppd(2, (a+b)f) = ppd(2, 9f0/2)
does not divide |L|, again a contradiction.

In Example 2.9 of [GPPS], S is a simple group of Lie type in characteristic 6= 2 and
appears in Tables 7 and 8 of [GPPS]. The only case in Table 7 that occurs in characteristic
2 is G2(3) with (d, `1) = (14, 13), in which case 12 = 2af > df0/2, whence f0 = 1, (af, bf) =
(6, 1), but then `2 = ppd(2, 7) = 127 does not divide |G|. In all but one example appearing
in Table 8 of [GPPS], we have d − 1 ≤ `1 ≤ d + 1, |S|`1 = `1, `1 is coprime to the order of
Out(S) and of the Schur multiplier of S. It follows that

(8.3.5.6) `2
1 - |G|.

Moreover, `1 is a primitive prime divisor ppd(q0, `1−1) of q`1−1
0 −1. As `1 divides 22af−1 and

(q2af
0 − 1), we have (`1 − 1)|2af and so 2af ≥ d− 2. If f0 ≥ 2, then `1 ≥ d+ 2 by (8.3.5.2),

a contradiction. So f0 = 1, d = 2af + 2bf , and therefore (af, bf) = (d/2− 1, 1), f = b = 1,
and `1 = d− 1 = 2af + 1. The latter conclusion, together with (8.3.5.6) implies that 22af − 1
does not possess large primitive prime divisors. Applying [F2, Theorem A] and (8.3.5.3),
we obtain af ∈ {5, 6, 9}. As 2|ab = a, it follows that af = 6 and thus `1 = 13. Using the
information from [GPPS, Table 8], we have S = PSp2m(s) for some odd prime power s,
and either V comes from a Weil representation of degree (sm + 1)/2, which is impossible in
characteristic 2, or s = `1 and m = 1. Thus S = PSL2(13). But then `2 = ppd(2, 7) = 127
does not divide |G|, a contradiction.
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In the remaining case of [GPPS, Table 8], (d, S) = ((`1 − 1)/2,PSL2(`1)), and `1 is

a primitive prime divisor ppd(q0, d) of qd0 − 1. As `1 divides 22af − 1 and q2af
0 − 1, we

have d|2af . Also, 2d + 1 = `1 ≥ df0/2 + 2 by (8.3.5.2), so f0 ≤ 3. On the other hand,
df0 = 2(a + b)f > 2af ≥ d, we have f0 > 1. If f0 = 2, then 2d = 2(a + b)f > 2af , whence
2af = d = 2bf and a = b, a contradiction. So f0 = 3, 3d = 2af+2bf > 2af and 3d/2 < 2af ,
whence (2af, 2bf) = (2d, d). In this case, we have 2f = gcd(2af, 2bf) = gcd(2d, d), so d = 2f
and (a, b) = (2, 1). But then `2 = ppd(2, 3f) = ppd(2, 3(`1 − 1)/4) ≥ (3`1 + 1)/4 > 8 (as
`1 ≥ 11 by (8.3.5.3)) cannot divide q0 − 1 = 7 and |Aut(S)| = |PGL2(`1)| and thus `2 - |G|,
a contradiction.

Finally, suppose 2|df ≥ 4 and Q is any F2-valued non-degenerate quadratic form. Then it
takes both values 0 and 1 on W r {0}, and so any subgroup of O(Q) cannot act transitively
on W r {0}. Since the group L in (i) and (ii) are transitive on W r {0}, in none of these
cases G can fix Q. �

Theorem 8.3.6. Let a, b, f ∈ Z≥1 be such that gcd(a, b) = 1, 2|ab, a > b. Set d :=
2(a + b)f and let W := Fd2 be endowed with a non-degenerate F2-valued symplectic form
Q of type +. Assume G is subgroup of O(W ) ∼= O+

d (2) that contains an element g1, a
generator of a maximal torus C2af+1 × C2bf+1, and an element g2 of order 2(a+b)f − 1 with
CW (g2) = 0, of O(W ). Then there exists a divisor j ≤ d/4 of d/2 such that L := G(∞) =
Ω(Wj) ∼= Ω+

d/j(2
j), where Wj is W viewed as a d/j-dimensional vector space over F2j endowed

with a non-degenerate quadratic form Qj of type +. Moreover, there is α ∈ F×
2j

such that
Q(u) = TrF

2j
/F2(α · Qj(u)) for all u ∈ Wj.

Proof. (a) First we consider the case (a+ b)f = 3, i.e. W = F6
2, but G 6≥ Ω(W ). In this

case, (a, b, f) = (2, 1, 1), o(g1) = 15, and o(g2) = 7. Then G ∩ Ω(W ) is a proper subgroup
of Ω+

6 (2) ∼= A8 that contains both g1 and g2. Checking maximal subgroups of A8 listed in
[CCNPW], we see that G ∩ Ω+

6 (2) is contained in A7, which is a contradiction since A7

contains no elements of order 15.
Next we consider the case d = 10, W = F10

2 , but G 6≥ Ω(W ). In this case, o(g1) = 45 or
51, and o(g2) = 31. Then G ∩ Ω(W ) is a proper subgroup of Ω+

10(2) that contains both g1

and g2, and this contradicts the list of maximal subgroups of Ω+
10(2) [CCNPW]. We also

note that if af = 3, then (a, f, b) = (3, 1, 2) and so d = 10.

Note that a+ b ≥ 3 is odd. In what follows we may assume that (a+ b)f ≥ 6 and af 6= 3.
Hence 22af − 1 has a primitive prime divisor `1 = ppd(2, 2af) [Zs], and Q1 := (22af − 1)`1
divides o(g1). Next we consider the case (a + b)f = 6. As 2 - (a + b) ≥ 3, we have
that (a, b, f) = (2, 1, 2). In this case, o(g1) = 85 and o(g2) = 63. Assuming G 6≥ Ω(W ),
and using the list of maximal subgroups of Ω+

12(2) [BHR, Table 8.83], we must then have
G∩Ω(W ) ≤ Ω+

6 (4) · 4. Again using the list of maximal subgroups of Ω+
6 (4) ∼= SL4(4) [BHR,

Table 8.8], we arrive at the conclusion with j = 2.

(b) From now on we may assume (a+b)f 6= 6, whence 2(a+b)f−1 admits a primitive prime
divisor `2 = ppd(2, (a+ b)f) [Zs], and Q2 := (2(a+b)f − 1)`2 divides o(g2). Since CW (g2) = 0,
we can apply Theorem 8.3.5 to G. Since G fixes Q, cases (i), (ii), and (v) of Theorem 8.3.5.

Suppose we are in the case of 8.3.5(iii). If 2 - d/j, then |L|, and hence |Ω+
2(a+b)f (2)|, is

divisible by (2j/2)d/j + 1 = 2(a+b)f + 1, which can be seen impossible by using a primitive
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prime divisor ppd(2, 2(a+ b)f) [Zs]. Hence 2j|d, and so

(8.3.6.1) j|(a+ b)f.

As L acts absolutely irreducibly on Wj, EndL(W ) ∼= F2j and thus CG(L) ↪→ C2j−1. Now
(8.3.6.1) implies that j < 2af , so `1 - |CG(L)|. It follows that `1 divides |G/CG(L)| and
Aut(L) ∼= PGUd/j(2

j/2) · Cj. As `1 ≥ 2af + 1 > j, we can find 1 ≤ i ≤ d/j such that `1

divides 2ij/2− (−1)i. In particular, `1|(2ij − 1), and the primitivity of `1 implies that 2af |ij.
Now 2af > d/2 and ij ≤ d, so ij = 2af . As `1 - (2af − 1) by primitivity, we have that 2 - i,
and so j is divisible by the 2-part of 2af . But this contradicts (8.3.6.1), since 2 - (a+ b).

Hence we are in the case of 8.3.5(iv). If ε = −, then |L|, and hence |Ω+
2(a+b)f (2)|, is

divisible by (2j)d/2j + 1 = 2(a+b)f + 1, which is impossible as mentioned above. Hence ε = +.
To link the quadratic form for L on Wj to Q, we can argue as in part (iii) of the proof of
Theorem 8.3.4. �

8.4. Unitary-type subgroups

Let q = pf be any power of a prime p and n ≥ 2. Throughout this and all the subsequent
sections, we will assume that (n, q) 6= (2, 2), (3, 2), so that G := SUn(q) is perfect.

It is well known, see e.g. [Ge, Theorem 4.9.2], that the function

(8.4.0.1) ζ̃n,q = ζ̃n : g 7→ (−1)n(−q)dimF
q2

Ker(g−1W )

defines a complex character, called the (reducible) Weil character, of the general unitary
group G̃ := GU(W ) ∼= GUn(q), where W = Fnq2 is a non-degenerate Hermitian space with

Hermitian product ◦. Fix some θ ∈ F×q2 with θq−1 = −1; if p = 2 we will take θ = 1. Then
the Fq-bilinear form

(u|v)f := TrFq2/Fq(θu ◦ v)

on W , viewed as an Fq-vector space Uf , is non-degenerate alternating. This leads to an
embedding

G̃ = GU(W ) ↪→ Sp(Uf ) ∼= Sp2n(q).

Similarly, the Fp-bilinear form

(8.4.0.2) (u|v)1 := TrFq/Fp
(
(u|v)f

)
= TrFq2/Fp(θu ◦ v)

on W , viewed as an Fp-vector space U1, is also non-degenerate alternating, and this leads to
an embedding

G̃ = GU(W ) ↪→ Sp(U1) ∼= Sp2nf (p).

If p = 2, then G̃ preserves the quadratic form Qf (u) = u ◦ u on Uf , and, since [G̃, G̃] =

SU(W ) = G has odd index q + 1 in G̃, this leads to an embedding

G̃ = GU(W ) ↪→ Ω(Uf ) ∼= Ω−2n(q).

In general, G̃ preserves the F2-valued quadratic form

(8.4.0.3) Q1 = TrFq/F2(u ◦ u)

on U1. When n is odd, the type of the quadratic form Qf is −, as one can see using the fact

that qn + 1 divides both |G̃| and |Ω(Uf )|, and this justifies the use of the same notation Qf
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for this quadratic form on Uf , cf. §8.2. Moreover, G̃, being embedded in Ω(U1), acts on the

extraspecial 2-group E = 21+2nf
− = O2(H−f ), with H−f constructed in (8.2.2.1). We also fix

the generator z = ρ · 1W of Z(G̃) ∼= Cq+1.

We start with a general fact for any prime p:

Proposition 8.4.1. Given the above notation for any prime p and any n ≥ 3 with
(n, q) 6= (3, 2), the following statements hold.

(a) Let G1 be any subgroup of Sp(Uf ) = Sp2n(q). Assume that G1 is isomorphic to SUn(q).
Then Uf = F2n

q can be endowed with an Fq2-vector space structure W1 (compatible with
Fq-vector space structure on Uf) such that G1 = SU(W1).

(b) Let G1 be any subgroup of Sp(U1) = Sp2nf (p). Assume that U1 = F2nf
p can be endowed

with an Fq2-vector space structure W1 (compatible with Fp-vector space structure on U1)
such that G1 = SU(W1). Then the following statements hold.
(b1) There is some α ∈ F×q such that the symplectic form (·|·) on U1 and the Hermitian

form ◦ on W1 satisfy (u|v) = TrFq2/Fp(αθu ◦ v) for all u, v ∈ W1.

(b2) Assume in addition that p = 2 and G1 preserves a quadratic form Q on U1 that is
associated to the symplectic form (·|·). Then Q(u) = TrFq/F2(αu ◦ u), with α chosen
in (b1). Moreover, if nf ≥ 4 then NO(Q)(G1) ∼= GU(W1) o Gal(Fq2/F2).

Proof. (a) By assumption, p2nf − 1 admits a primitive prime divisor ` [Zs], and G1

contains an element of order `. Any such element acts irreducibly on Uf (in fact also on
U1), so the 2n-dimensional Fq-representation of G1 on Uf is irreducible. This representation
becomes absolutely irreducible (and still nontrivial) over E := EndG1(Uf ) ⊇ Fq, of dimension
dividing 2n ≤ n(n + 1)/2. By [KlL, Proposition 5.4.11], up to an isomorphism of G1 and
taking the dual when n = 3 if necessary, the E-representation is just the natural n-dimensional
representation of G1 and E ∼= Fq2 , giving the desired structure of W1.

(b1) As shown in (a), the Fp-representation of G1 on U1 is irreducible, so E := EndG1(U1)
is a finite field. By assumption,

(8.4.1.1) E = EndG1(W1) = Fq2 .

Now using the G1-invariant Hermitian form ◦ on W1, we can define a non-degenerate G1-
invariant alternating form (·|·)1 as in (8.4.0.2). Fix a basis of U1 as Fp-vector space, and
consider the Gram matrices of (·|·) and (·|·)1 relative to this basis:

(u|v) = tuJv, (u|v)1 = tuJ1v

for any u, v ∈ U1 written as coordinate vectors in F2nf
p with respect to this basis. For any

element of G1 written as a matrix X in this basis, the invariance of the two forms implies
that (tX)−1 = JXJ−1 = J1XJ

−1
1 , hence J−1

1 J ∈ GL(U1) commutes with all X ∈ G1 and thus
J−1

1 J ∈ E. It follows from (8.4.1.1) that there is a scalar α ∈ F×q2 such that J = J1Tα, where
Tα is the matrix of the transformation x 7→ αx on W1 written in the chosen basis, and so

(u|v) = tuJv = tuJ1Tαv = (u|Tαv)1.

Back to viewing u, v as vectors in W1 and using (8.4.0.2), we now have

(u|v) = (u|αv)1 = TrFq2/Fp(θu ◦ αv).
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Recalling that (·|·) is alternating and u ◦ u ∈ Fq, we have

(8.4.1.2) 0 = (u|u) = TrFq/Fp
(
(θαq + θqα)(u ◦ u)

)
for all u ∈ W1. Since TrFq/Fp maps Fq onto Fp, we can find λ ∈ Fq with TrFq/Fp(λ) = 1. Now,
if θαq + θqα 6= 0, then we can find u ∈ W1 with u ◦ u = (θαq + θqα)−1λ, and (8.4.1.2) shows
that (u|u) = 1, a contradiction. Thus θαq + θqα = 0, and so, since θq−1 = −1, we get α ∈ Fq,
proving the statement.

(b2) Applying (b1) and changing u ◦ v to αu ◦ v on W1, we may assume that (·|·) = (·|·)1.
Thus both Q and Q1 are G1-invariant, and associated to the same symplectic form (·|·). It
follows that G1 stabilizes Q − Q1, a map in HomF2(U1,F2), which can be identified with U1

using (·|·). Since G1 acts irreducibly on U1, we conclude that Q = Q1.
The Hermitian Fq2-structure onW1 shows that NO(Q)(G1) contains GU(W1)oGal(Fq2/F2).

Under the assumptions nf ≥ 4 and n ≥ 3, the latter group induces (via conjugation) the full
automorphism group of G1 = SU(W1). So, to prove the last statement in (b2), it suffices to
show that CO(Q)(G1) ≤ Z(GU(W1)) ∼= Cq+1. In fact we will show the stronger statement

(8.4.1.3) CSp(U1)(SU(W1)) = Z(GU(W1)) ∼= Cq+1.

Assume the contrary. As F×q2 = µq+1F×q for p = 2, it then follows from (8.4.1.1) that

CSp(U1)(G1) contains a scalar map z := u 7→ λu on W1 for some 1 6= λ ∈ F×q . The in-
clusion z ∈ Sp(U1) implies that

TrFq2/F2(λu ◦ λv) = (λu|λv) = (u|v) = TrFq2/F2(u ◦ v),

i.e. TrFq/F2

(
(λ2 − 1)(u ◦ v + v ◦ u)

)
= 0, for all u, v ∈ W1. Since u ◦ v + v ◦ u covers Fq, this

identity shows that λ2 = 1, i.e. λ = 1, a contradiction. �

From now on, we will assume p = 2.

Proposition 8.4.2. Assume n ≥ 3 is odd, p = 2, and (n, q) 6= (3, 2). Let ẑ be an
inverse image of odd order of a generator z of the center of G̃ < Ω(Uf ) in H−f ≤ H−1 . Then

CH−1
(ẑ) = CH−f

(ẑ) ∼= G̃× C2, where C2 can be identified with Z(E). Furthermore, if

ψ(x) := Trace(x)

for any x ∈ H−f < GLqn(C), then the restriction of ψ to G̃ ∼= GUn(q) is the total Weil

character ζ̃n in (8.4.0.1), if we identify G̃ with G̃1 := O2(CH−f
(ẑ)). Moreover, if G is a

subgroup of H−1 that centralizes z modulo E and G ∼= SUn(q), then G is conjugate in EG̃1 to
[G̃1, G̃1].

Proof. Clearly, |ẑ| = q + 1 as E is a 2-group. Thus the coset Eẑ contains elements ẑ of
order q+ 1, and jẑ of order 2(q+ 1), where Z(E) = 〈j〉. Next, z fixes no no-identify element
in E/Z(E), and so

(8.4.2.1) CE(ẑ) = Z(E).

It follows that exactly half of Eẑ is E-conjugate to ẑ, and the other half is E-conjugate to jẑ.
(Indeed, note that xẑx−1 ∈ Eẑ as E CH−f . Next, when x, y ∈ E, then xẑx−1 = yẑy−1 if and

only if y−1x ∈ CE(ẑ) = Z(E). It follows that ẑ has exactly |E|/|Z(E)| = |E|/2 E-conjugates
in Eẑ.)
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Now note that CO−2nf (2)(z) = G̃ = CO(Uf )(z), whence the full inverse image X of G̃ in H−1

fixes Eẑ and contains C := CH−1
(ẑ). Hence ẑX = ẑX ∩ Eẑ = ẑE, it follows from the above

result that

|C| = |CX(ẑ)| = |X|
|ẑX |

=
|X|
|ẑE|

=
|X|
|E|/2

= 2 · |G̃|.

Since C ∩ E = Z(E) by (8.4.2.1), this implies that

X/Z(E) = (E/Z(E)) o (C/Z(E)),

and so

(8.4.2.2) C/Z(E) ∼= X/E ∼= G̃.

The same arguments show that (8.4.2.2) also for CH−f
(ẑ), whence C = CH−f

(ẑ). Next, the

assumptions on (n, q) imply by [KlL, Theorem 5.1.4] that SUn(q) is perfect and has trivial
Schur multiplier. Hence we see from (8.4.2.2) that the last term D := C(∞) of the derived
series of C satisfies

D/(D ∩ Z(E)) ∼= DZ(E)/Z(E) = (C/Z(E))(∞) ∼= G ∼= SUn(q),

whence D ∩ Z(E) = 1 and D ∼= SUn(q). As G̃/G ∼= Cq+1, (8.4.2.2) now implies that
C/DZ(E) ∼= Cq+1 and C/D ∼= C2 o Cq+1 = C2 × Cq+1. Since D is perfect, it follows
that O2(C) contains D and has index 2 in C, and in fact C = Z(E) × O2(C). Now,
O2(C) ∼= C/Z(E) ∼= G̃ by (8.4.2.2), and so we can identify G̃ with G̃1 := O2(C).

The statement about ψ|G̃1
follows from Theorems 3.3 and 4.9.2 of [Ge].

To prove the last statement, note that G ≤ EG̃1 since CH−1 /E
(z) = EG̃1/E. First we

work in X̄ := X/Z(E) = (E/Z(E)) o G̃ and recall that E/Z(E) can be identified with
the natural module for G̃ = GUn(q). Since G is perfect and O2(G) = 1, G embeds in
[X̄, X̄] ∼= Fnq2 o SUn(q), and in fact we have (E/Z(E)) o G = (E/Z(E)) o [G̃, G̃]. Since

H1(SUn(q),Fnq2) = 0, see [CPS, Table 4.3], G is conjugate to [G̃, G̃] in X̄. Conjugating G in

E suitably, we may assume that GZ(E) = [G̃1, G̃1]Z(E). Taking the derived subgroup, we
obtain G = [G̃1, G̃1]. �

In view of Proposition 8.4.2, we will now fix a subgroup C := CH−f
(ẑ) = G̃ × Z(E) in

H−f . Fix a generator σ of F×q2 and set ρ := σq−1. We also fix a primitive (q2 − 1)th root of

unity σ ∈ C× and let ρ = σq−1. By [TZ2, Lemma 4.1],

(8.4.2.3) ζ̃n =

q∑
i=0

ζ̃i,n

decomposes as the sum of q + 1 characters of G̃, where

(8.4.2.4) ζ̃i,n(g) =
(−1)n

q + 1

q∑
l=0

ρil(−q)dim Ker(g−ρl·1W ).

In particular, ζ̃i,n has degree (qn− (−1)n)/(q+ 1) if i > 0 and (qn + (−1)nq)/(q+ 1) if i = 0.
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We will let ζi,n denote the restriction of ζ̃i,n to G = SUn(q), for 0 ≤ i ≤ q. By [TZ2,
Lemma 4.7], these q + 1 characters are all irreducible and distinct. Formula (7.2.1) implies
that Weil characters ζi,n enjoy the following branching rule while restricting to the natural
subgroup H := StabG(w) ∼= SUn−1(q) (w ∈ W any anisotropic vector):

(8.4.2.5) ζi,n|H =

q∑
j=0, j 6=i

ζj,n−1.

Furthermore, complex conjugation fixes ζ̃0,n and sends ζ̃j,n to ζ̃q+1−j,n when 1 ≤ j ≤ q. As

n ≥ 3 is odd, it is also known that ζ̃0,n is of symplectic type. Let

Ψ0 : C → Sp(V )

be a complex representation affording this character on restriction to G̃ and being faithful
on Z(E). For the remaining 1 ≤ i ≤ q, also let

Ψi : C → GL(V )

be a complex representation affording the character ζ̃i,n on restriction to G̃ and again being
faithful on Z(E).

Lemma 8.4.3. Assume n ≥ 3 is odd and (n, q) 6= (3, 2).

(i) Ψ0(GUn(q)) ∼= PGUn(q) is contained in Sp(V ) and contains Ψ0(SUn(q)) ∼= PSUn(q)
with index d, where d := gcd(n, q + 1).

(ii) If 1 ≤ i ≤ q, then Ker(Ψi) is a central subgroup of order gcd(i, q+1), and Ker(Ψi|SUn(q))
is a central subgroup of order gcd(i, n, q+1). Furthermore, Ψi(GUn(q))∩SL(V ) contains
Ψi(SUn(q)) with index gcd(i, n, q + 1).

(iii) Suppose H ≤ GUn(q). Then Ψi(H) ≤ SL(V ) for all 0 ≤ i ≤ q if and only if H ≤
SUn(q).

(iv) Suppose H ≤ C = G̃ × Z(E). Then Ψi(H) ≤ SL(V ) for all 0 ≤ i ≤ q if and only if
H ≤ SUn(q).

Proof. According to [TZ2, §4], one can label Ψi in such a way that

(8.4.3.1) Ψi(z) = ρi · 1V
for the generator z = ρ · 1W of Z(G̃). In particular, Ker(Ψ0) ∩ Z(G̃) = 〈z〉, and (i) follows.

Now we can assume 1 ≤ i ≤ q. By (8.4.3.1), zj ∈ Ker(Ψi) if and only if j is divisible by
(q + 1)/ gcd(i, q + 1). Furthermore, zj(q+1)/d ∈ Ker(Ψi|SUn(q)) if and only if j is divisible by
d/ gcd(i, d) = d/ gcd(i, n, q + 1) for d = gcd(n, q + 1), equivalently, if j(q + 1)/d is divisible
by (q + 1)/ gcd(i, n, q + 1). Hence (ii) follows.

Consider the element g := diag(ρ, 1, 1, . . . , 1) ∈ G̃; note that G̃ = 〈G, g〉. Then (8.4.2.4)
implies that

ζ̃i,n(gk) = −q
n−1 − 1

q + 1
+ ρik

when 1 ≤ k ≤ q. It follows that Ψi(g) has eigenvalues ρj, 1 ≤ j ≤ q, with multiplicity
(qn−1 − 1)/(q + 1) if j 6= i and 1 + (qn−1 − 1)/(q + 1) if j = i, and so

det(Ψi(g)) = ρi.



8.4. UNITARY-TYPE SUBGROUPS 189

In particular, Ψi(g
j) ∈ SL(V ) if and only if j is divisible by (q + 1)/ gcd(i, q + 1). Since

SUn(q) is perfect, (ii) and the “if” directions of (iii), (iv) follow.
For the “only if” direction of (iii), assume that Ψ1(H) ≤ SL(V ), and consider any h ∈ H.

If det(h) = ρj for 0 ≤ j ≤ q, then hg−j ∈ SUn(q) and so Ψ1(hg−j) ∈ SL(V ) by the previous
statement. It follows that

1 = det(Ψ1(h)) = det(Ψ1(hg−j)) det(Ψ1(gj)) = det(Ψ1(gj)) = ρj,

whence j = 0 and det(h) = 1, as stated.
For the “only if” direction of (iv), again assume that Ψ1(H) ≤ SL(V ). If H ≤ G̃ =

GUn(q), then we are done by (iii). Suppose H 6≤ G̃, and consider any h ∈ H r G̃. Then
hq+1 = jh1 for some h1 ∈ SUn(q). Since Ψ1(j) = −1V and dimV is odd, we have that

det(Ψ1(h))q+1 = det(Ψ1(j)) det(Ψ1(h1)) = −1,

a contradiction. �

The first main result of this section is the following theorem:

Theorem 8.4.4. Let q = 2f and let n ≥ 3 be an odd integer, with (n, q) 6= (3, 2). Consider

the subgroup H−1 = 21+2nf
− ·O−2nf (2) < GL2nf (C) constructed in Theorem 8.2.1 and its natural

representation Φ on V := C2nf . Suppose that G ≤ H−1 is a subgroup such that Φ|G = ⊕qj=0Φj

is a sum of q + 1 irreducible summands, Φ0 of degree (qn − q)/(q + 1) and Φj of degree

(qn + 1)/(q+ 1) for 1 ≤ j ≤ q. Then G is conjugate to a subgroup of C2× G̃ ∼= C2×GUn(q)
identified in Proposition 8.4.2, where GUn(q) is acting on V via the total Weil representation

with character ζ̃n in (8.4.0.1). Moreover, SUn(q) C G ≤ C2 × GUn(q), with one exception
GB L1 ∈ {PSL2(11), SL2(11)} when (n, q) = (5, 2).

Proof. (a) The assumption n ≥ 3 and (n, q) 6= (3, 2) implies that 22nf − 1 admits a
primitive prime divisor `1. Furthermore, since Φ1 is irreducible of degree (qn + 1)/(q + 1),

` divides |G|, and so G admits an element g of order `1. Next, G normalizes E := 21+2nf
−

and U1 := E/Z(E) ∼= F2nf
2 , and CH−1

(E/Z(E)) = E, so G acts faithfully on E/Z(E); in

particular, g induces an element of order `1 in H−1 /E. The choice of `1 ensures that any
such element acts irreducibly on E/Z(E). Hence, if Z(E)G ∩ E 6= Z(E), then Z(E)G ≥ E,
and so Z(E)G acts irreducibly on V . Since Z(E) acts via scalars on V , this contradicts the
reducible action of G on V . We have shown that Z(E)G ∩ E = Z(E), and so

Ḡ := Z(E)G/Z(E) ∼= G/(G ∩ Z(E)) ∼= G/(G ∩ E)

embeds in H−1 /E = O(U1) ∼= O−2nf (2). The main bulk of the proof is to identify this subgroup

Ḡ inside O(U1) < GL(U1).

(b) First we assume that nf 6= 5, 6, 9; in particular,

nf ≥ 7,

so that 22nf − 1 admits a large primitive prime divisor `, in which case we choose such an `
to maximize the `-part of 22nf − 1. Note the assumptions imply that |Ḡ| is divisible by both
(qn − q)/(q + 1) and (qn + 1)/(q + 1). In particular, Ḡ < GL(U1) has order divisible by

(8.4.4.1) qQ := q(22nf − 1)`.



190 8. EXTRASPECIAL NORMALIZERS AND LOCAL SYSTEMS IN CHARACTERISTIC 2

Let L := O`′(Ḡ), M denote the full inverse image of L in G so that

(8.4.4.2) either M = L, or Z(G) ≥ Z(E) = C2 and M/Z(E) = L,

and let d(L) denote the smallest degree of nontrivial complex projective irreducible repre-
sentations of L. Note that

(8.4.4.3) d(L) ≤ (qn + 1)/(q + 1) ≤ (qn + 1)/3.

(Otherwise Φ1 induces a trivial projective representation of L. Then Φ1(M) is a scalar, hence
cyclic central subgroup of Φ1(G), and Φ1(G)/Φ1(M) has order dividing 2|Ḡ/L|, a prime to
` integer. It follows from Ito’s theorem [Is, (6.15)] that deg(Φ1) is also coprime to `, a
contradiction.) Similarly, if L is cyclic of order Q, then M = C ×M1, where M1 is cyclic
of order Q and |C| ≤ 2. In this case, again by Ito’s theorem, the degree of any irreducible
character of G divides |G/M1|, an integer prime to `, and so again G cannot be irreducible on
Φ1. Now we can apply Theorem 8.3.1 with (q0, d) = (2, 2nf) to arrive at one of the following
cases (note that 8.3.1(i), (ii) cannot occur since Ḡ fixes Q1).

(b1) L ∼= Ω−2nf/j(2
j) for some divisor 1 ≤ j ≤ nf/2 of nf . If j ≤ nf/3, then by

[TZ1, Theorem 1.1] we have d(L) > (qn + 1)/3, contradicting (8.4.4.3). If j = nf/2, then
L ∼= SL2(qn) with qn ≥ 27, and so by [TZ1, Theorem 1.1] we have d(L) = qn−1 > (qn+1)/3,
again contradicting (8.4.4.3).

(b2) There is some even divisor j = 2k of 2nf with k|nf and 2 - nf/k > 1, such that

U1 = F2nf
2 can be viewed as a nf/k-dimensional vector space over Fqj endowed with a non-

degenerate Hermitian form and L = SU(U1) ∼= SUnf/k(2
k). Now if k ≤ f − 1, then by [TZ1,

Theorem 1.1] we have

d(L) > (2k)nf/k−1/2 = qn/2k+1 ≥ qn−1 > (qn + 1)/(q + 1),

contradicting (8.4.4.3). Suppose k > f , and let ψ be an irreducible constituent of the M -
character afforded by Φ0, so that ψ(1)|(qn − q)/(q + 1). By [TZ1, Theorem 4.1],

ψ(1) ∈
{

1,
qn + 1

2k + 1
,
qn − 2k

2k + 1

}
.

Note that ψ(1) 6= (qn− 2k)/(2k + 1) as k > f . The possibility ψ(1) = (qn + 1)/(2k + 1) is
also ruled out since ` - dim Φ0. Hence ψ(1) = 1. Note that L contains an element of order `,
and so by (8.4.4.2), this has an inverse image h ∈M of same order ` which then acts trivially
in Φ0. As |G/M | is coprime to `, each irreducible constituent of (Φi)|M with i > 0 has `-defect
0 and so h has trace 0 on it. It follows that Trace(Φ(h)) = dim Φ0 = (qn − q)/(q + 1) > 1,
which is a contradiction since h has no nonzero fixed point on U1 and so |Trace(Φ(h))| ≤ 1
by Lemma 7.2.1. [We take this opportunity to mention that this same argument shows that
ψ(1) 6= 1 in part (iii) of the proof of [KT3, Theorem 3.4], fixing an inaccuracy therein.]

We have shown that k = f , i.e. L = SU(U1) ∼= SUn(q). As 2 - n ≥ 3 and (n, q) 6= (3, 2),
SUn(q) has trivial Schur multiplier, whence M = C ×L1 with C ≤ C2 and L1

∼= L. Also, U1

carries the structure of the natural module W1 = Fnq2 for L, and L < O−2nf (2) preserves the F2-

valued quadratic form Q1 on U1. Hence L satisfies the hypothesis of Proposition 8.4.1(b), and
so, after a suitable rescaling of the Hermitian form ◦ onW1, Q1 is obtained from ◦ via (8.4.0.3),
i.e Q1(u) = TrFq/F2(u ◦ u) and L = SU(W1) < Ω(Uf ) ≤ Ω(U1). In particular, L centralizes
a generator z of the center of GU(W1) ∼= GUn(q). Applying Proposition 8.4.2, we conclude
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that L1 = [G̃1, G̃1] ∼= SUn(q) after a suitable conjugation in H−1 (where G̃1
∼= GUn(q) is

constructed in Proposition 8.4.2). We also know that the restriction of Φ to G̃1 is a total
Weil representation of G̃1, and so the restriction Φ|L1 is the total Weil representation of L1.
As LC Ḡ,

Ḡ ≤ NH−1 /E
(L) ∼= GU(W1) o 〈σ〉,

where σ is an involutive automorphism of GU(W1) that sends z to z−1. Recall the decompo-
sition Φ|G̃1

= ⊕qi=0Ψi, where Ψ0 of degree (qn − q)/(q + 1) and Ψi of degree (qn + 1)/(q + 1)

for 1 ≤ i ≤ q, and Ψi(ẑ) is the multiplication by ξi for a primitive (q + 1)th root of unity
ξ ∈ C×. In particular, σ fuses Ψ1 and Ψq. Since L1 = [M,M ] C G, the assumption on Φ|G
now implies that Ḡ ≤ GU(W1), and so L1 CG ≤ CH−1

(ẑ) = Z(E)× G̃1, as stated.

(b3) (2nf, L) = (6j,G2(r)) with r = 2nf/3 = qn/3, or (2nf, L) = (6j, 2B2(r)) with
r = 2nf/2 = qn/2. In the former case, d(L) ≥ r(r2 − 1) > qn/2 (see e.g [TZ1, Table 1]),
contradicting (8.4.4.3). In the latter case, let ψ be an irreducible constituent of the M -
character afforded by Φ0, so that ψ(1)|(qn − q)/(q + 1) < r2/2. It follows from [Bur] that

ψ(1) = 1 or ψ(1) =
√
r/2(r − 1). The same arguments as in (b2) rules out the possibility

ψ(1) = 1. So ψ(1) =
√
r/2(r − 1), and so, by comparing 2-parts, we have r ≤ 2q2 and

so either n = 3 or (n, q) = (5, 4). Now, if n = 3 then r − 1 = q3/2 − 1 does not divide
(dim Φ0)/q = q − 1, and if (n, q) = (5, 4) then r − 1 = q5/2 − 1 = 31 does not divide
(dim Φ0)/q = 51, a contradiction.

(b4) (f, nf, L) = (1, 10,PSL2(41)) or (1, 8,PSL2(17)). These cases are excluded since
2 - n.

(c) It remains to consider the cases nf = 5, 6, 9. Then, aside from cases already handled
in (b), by Proposition 8.3.3 we need to consider the following possibilities.

(c1) (f, nf) = (1, 6). This case is excluded since 2 - n.

(c2) (f, nf) = (1, 9) and L is one of 3J3, A19, A20, or PSL2(19). In all these cases, L acts
irreducibly on U1 = F18

2 , and so CO(U1)(L) embeds in a finite extension of F2, hence a cyclic
group of odd order. Next, |Out(L)| ≤ 2 and L C Ḡ, so we see that Ḡ has index at most 2
over CḠ(L)L. It follows that L1 C G ≤ (AL1) · 2, where L1 is a cover of L and M = AL1

and A an abelian group centralizing L1, see (8.4.4.2). Restricting Φi to L1, we see that L1

admits irreducible representations of degree 171, and also either 85 or 170. This rules out
the last three cases, see [GAP]. Note that 3J3 < SU9(2), see [BHR, Table 8.57]. However,
3J3 does not have an irreducible representation of degree 170, and 3J3 · 2 does not have an
irreducible representation of degree 171, see [GAP].

(c3) (f, nf) = (1, 5) and L is one of M11, M12, M22, A11, A12, or PSL2(11). In all these
cases, L acts irreducibly on U1 = F10

2 , and so CO(U1)(L) embeds in a finite extension of F2,
hence a cyclic group of odd order. Next, |Out(L)| ≤ 2 and L C Ḡ, so we see that Ḡ has
index at most 2 over CḠ(L)L. It follows that L1 C G ≤ (AL1) · 2, where L1 is a cover of
L and M = AL1 with A an abelian group centralizing L1 of order at most 2, see (8.4.4.2).
Restricting Φi to L1, we see that L1 admits irreducible representations of degree 11, and
also either 5 or 10. This rules out the cases L = M22, A11 and A12, see [GAP]. In the case
L = M11 or M12, we see that Trace(Φi(g)) equals 1 for i = 0 and 2 for i = 1, 2, if g belongs
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to class 3a in [GAP], and thus Trace(Φ(g)) = 5, contradicting Lemma 7.2.1. [Note that
PSL2(11) < SU5(2), see [CCNPW].] �

The next result will be used frequently in “going-up” situations:

Theorem 8.4.5. Let N ≥ 4 be an integer and consider the subgroup H−1 = 21+2N
− ·O−2N(2)

of Sp2N (C) constructed in Theorem 8.2.1.

(a) Let G < GL(V ) ∼= GL2N (C) be a finite subgroup that satisfies (S+) and contains an
ssp-element of central order 2N + 1. Then either G is in the extraspecial normalizer
case of [KT5, Lemma 1.1], or PSL2(q) ≤ G ≤ Aut(PSL2(q)) for some prime power
2N ≤ q ≤ 2N+1 + 1. Suppose in addition that G < Sp(V ) ∼= Sp2N (C). Then one of the
following statements holds.
(α) Up to conjugation, O2(H−1 )CG ≤ H−1 .
(β) q := 2N+1 + 1 is a Fermat prime and G = SL2(q).

(b) Let G < GL(V ) ∼= GL2N (C) be any finite irreducible subgroup that contains a subgroup

G1
∼= SUn(q) with qn = N and 2 - n ≥ 3. Suppose G1 acts on V = C2N via its total Weil

representation. Then G satisfies (S+) on V .
(c) If 2 - N , then H−1 is a maximal finite subgroup of Sp2N (C). If 2|N and H−1 satisfies

(S+), then H−1 is a maximal finite subgroup of Sp2N (C). [It will be shown in Theorem
8.5.5 that H−1 always satisfies (S+).]

Proof. (a) Since G satisfies (S+), we can apply [KT5, Lemma 1.1] to G. First suppose
that G is almost quasisimple, and let S be the unique non-abelian composition factor of G.
By [KT5, Lemma 1.4], V is irreducible over L := G(∞), a cover of S. By hypothesis, V is
an irreducible CG-module of dimension 2N ≥ 16 and G admits an ssp-element g of central
order ō(g) = 2N + 1. This excludes the case S = An with n ≥ 8 by [KT5, Theorem 6.2]. The
cases S = An with 5 ≤ n ≤ 7 are also excluded because G/Z(G) ↪→ Aut(S) would contain
elements of central order only ≤ 12 [GAP]. Next, the cases where S is a sporadic group are
excluded by [KT5, Theorem 6.4]. This leaves only the case S is a simple group of Lie type
in characteristic p. Now we can apply [KT5, Theorem 6.6] to see that either

(a1) V comes from a Weil module of a finite classical group G with S = PSLn(q) with
n ≥ 3, PSUn(q) with n ≥ 3, or PSp2n(q) with n ≥ 2, or

(a2) S = PSL2(q) and dim(V ) ≤ ō(g) ≤ q + 1.

If S = PSLn(q) with n ≥ 3, then since dim(V ) + 1 = ō(g), by [KT5, Theorem 8.1] we
must have that 2N = dim(V ) = q(qn−1 − 1)/(q − 1), which is impossible. If S = PSpn(q)
with n ≥ 2, then since dim(V ) + 1 = ō(g), by [KT5, Theorem 8.2] we must have that

(8.4.5.1) 2N = dim(V ) = (qn − 1)/2,

i.e. qn − 1 = 2N+1. This implies that n is a 2-power (otherwise qn − 1 would have an odd
divisor > 1), and in fact n = 2 (otherwise (qn/2 + 1)/2 > 1 is again an odd divisor of qn− 1),
in which case q = 3 and 2N+1 = 8 (otherwise one of (q− 1)/2 > 1 and (q + 1)/2 > 1 is odd),
again a contradiction. Suppose S = PSUn(q) with n ≥ 3. Since dim(V ) + 1 = ō(g), checking
the cases

(n, q) = (3, 3), (3, 4), (4, 2), (4, 3), (5, 2), (6, 2)

directly using [GAP], we may apply [KT5, Theorem 8.1] to see that 2 - n and 2N =
dim(V ) = q(qn−1 − 1)/(q + 1), which is again impossible.
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Thus we must be in (a2). Then 2N = dim(V ) = ō(g) − 1 ≤ q. Thus S = PSL2(q) and
q ≥ 17, and so 2N = dim(V ) ≥ (q − 1)/2, i.e. q ≤ 2N+1 + 1.

Assume in addition that G < Sp(V ). Then V is irreducible over L, a cover of S, so
the symplectic type of V rules out the case 2N = q. Since 2N ≥ 16, this leaves only
2N = (q ± 1)/2. If 2N = (q + 1)/2, and thus G/Z(G) ↪→ Aut(PSL2(q)) admits an element of
odd order (q+3)/2 ≥ 17, a contradiction. So 2N = (q−1)/2, and so, the analysis of (8.4.5.1)
shows that q = 2N+1 + 1 is a Fermat prime. It is easy to see in this case that L = SL2(q),
CSp(V )(L) = Z(L), and so G = L, leading to possibility (β).

The remaining case is that G is an extraspecial normalizer. Applying [KT5, Theorem
8.5], we see that G B R, where R = Z(R)E with E = 21+2N

ε and Z(R) ↪→ C4. Assuming
G < Sp(V ), we then have Z(R) = Z(E), R = E, and ε = −. Up to conjugation, we now
have E = O2(H−1 ) and G ≤ H−1 , as stated in (α).

(b) Since N ≥ 4 and qn = 2N with 2 - n ≥ 3, we either have n ≥ 5, or n = 3 or q ≥ 4.
Hence, if P (G1) denotes the smallest index of proper subgroups of G1, then

(8.4.5.2) P (G1) > qn,

see [KlL, Table 5.2.A]. By assumption, G is irreducible on V . Suppose the G-module V
is imprimitive: G permutes transitively the t > 1 summands of some decomposition V =
⊕ti=1Vi. Since t ≤ dim(V ) = qn, (8.4.5.2) implies that G1 fixes every summand Vi, and hence
each Vi is a direct sum of some irreducible Weil modules of G1. As V |G1 is a total Weil
module, we may assume that

qn − q
q + 1

+ a
qn + 1

q + 1
= dim(V1) = dim(V2) = b

qn + 1

q + 1

for some integers a ≥ 0 and b ≥ 1, whence (a + 1− b)(qn + 1)/(q + 1) = 1, a contradiction.
Hence V is primitive.

Suppose the action of G1 on V preserves some tensor decomposition V = A ⊗C B with
dim(A) ≥ dim(B) > 1. Then B yields a projective G1-representation of dimension ≤ qn/2

(see part (i) of the proof of [KRLT3, Theorem 2.4]). Since G1 is perfect and the dimension of
any nontrivial irreducible projective representation of G1 is at least (qn−q)/(q+1), cf. [TZ1,
Theorem 1.1], the action of G1 is linearized as a trivial representation, whence the projective
action of G1 on A is actually linear. Thus the G1-module V is a direct sum of dim(B) copies
of the G1-module A, contradicting the prescribed action of G1 on V . In particular, G does
not fix any tensor decomposition structure on V .

Finally, suppose that the action of G on V preserves some tensor induced decomposition
V = V ⊗t1 with t > 1. Then t ≤ log2 q

n < qn. As G1 permutes the t tensor factors of this
decomposition, (8.4.5.2) now implies that this permutation action is trivial, i.e. G1 preserves
a tensor decomposition V = V1 ⊗ . . . ⊗ Vt with Vi ∼= V1. This however contradicts the
preceding conclusion. Hence (G, V ) satisfies (S+).

(c) Suppose H−1 ≤ G < Sp2N (C) for some finite subgroup G. If 2 - N , then by Proposition
8.4.2, H−1 contains a subgroup G1

∼= GUN(2) that acts on V via a total Weil representation.
It follow from (b) that G satisfies (S+) on V . So we may now assume that H−1 satisfies
(S+) for all N . Next, any generator of a cyclic maximal torus C2N+1 of Ω−2N(2) gives rise
to an ssp-element on V of central order 2N + 1, cf. Lemma 8.2.2. By (a), G must either
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satisfy (α) or (β). In the former case, |G| ≤ |H−1 |, and so G = H−1 . In the latter case,
SL2(2N+1 + 1) = G ≥ H−1 = 21+2N

− ·O−2N(2), a contradiction. �

Note that it was shown in [NRS, Theorem 5.6] that Γ(2, N,+) = H+
1 is a maximal finite

subgroup of GL2N (R) if N ≥ 2. Also, it will be shown in Theorem 8.5.5 that Γ(2, N,−) = H−1
satisfies (S+) when 2|N .

8.5. Local systems in characteristic p = 2

In this section, we fix a power q = 2f , and work with the local system

(8.5.0.1) G(n,m1, . . . ,mr; q) = G(qn + 1, qm1 + 1, . . . , qmr−1 + 1, κ,1)

on Ar/F2 whose trace function is given as follows: for k/F2 a finite extension, and (s1, . . . , sr) ∈
kr,

(s1, . . . , sr) 7→
−1√
#k

∑
x∈k

ψk
(
xq

n+1 + s1x
qm1+1 + . . .+ sr−1x

qmr−1+1 + srx
κ
)
,

where r ≥ 1 and n > m1 > . . . > mr ≥ 0; furthermore, κ := qmr + 1 if mr ≥ 1 and κ := 1 if
mr = 0. [The first notation in (8.5.0.1) is chosen for brevity, whereas the second follows our
general notational scheme in the book.]

For future reference, we state the following general fact:

Lemma 8.5.1. Let p be a prime, k ≥ 1, and let A > B1 > . . . > Bk ≥ 1 be integers
with p - AB1 . . . Bk. Consider the local system F = F(A,B1, . . . , Bk, θ) over Ak with trace
function for any finite extension L/Fp

(t1, . . . , tk) ∈ Lk 7→ −
∑
x

ψL
(
xA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),

and the local system F ] = F ](A,B1, . . . , Bk, θ) over Gm × Ak with trace function

(s, t1, . . . , tk) ∈ L× × Lk 7→ −
∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),

Denote by N the order of θ. Then the geometric monodromy group H of F ] contains the
geometric monodromy group G of F as a normal subgroup, with cyclic quotient of order
dividing AN .

Proof. Consider the local system F∗ over Gm × Ak with trace function

(s, t1, . . . , tk) 7→ −
∑
x

ψL
(
sANxA + t1x

B1 + . . .+ tkx
Bk
)
θ(x)

and geometric monodromy group K. Then F∗ is the [s 7→ sAN ] × IdAk partial Kummer
pullback of F ], so H contains the geometric monodromy group K of F∗ as a normal subgroup,
with cyclic quotient of order dividing AN . Next, the change of variable x 7→ x/sN , followed
by the reparameterization s 7→ s, ti 7→ tis

NBi makes F∗ geometrically isomorphic to the
tensor product of the constant sheaf on Gm and F , whence K ∼= G. �
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We also consider the local system

(8.5.1.1) G](n,m1, . . . ,mr; q) = G](qn + 1, qm1 + 1, . . . , qmr−1 + 1, κ,1)

on (Gm × Ar)/F2 whose trace function is given as follows: for k/F2 a finite extension, and
any point (s0, s1, . . . , sr) ∈ k× × kr,

(s0, s1, . . . , sr) 7→
−1√
#k

∑
x∈k

ψk
(
s0x

qn+1 + s1x
qm1+1 + . . .+ sr−1x

qmr−1+1 + srx
κ
)
,

with κ as defined above. One knows [Ka-MMP, Theorem 3.10.6] that both the local systems
G(n,m1, . . . ,mr; q) and G](n,m1, . . . ,mr; q) are symplectically self-dual. Furthermore, by
Lemma 8.5.1, the geometric monodromy group G of G(n,m1, . . . ,mr; q) is a normal subgroup
of the geometric monodromy group G] of G](n,m1, . . . ,mr; q), with G]/G ↪→ Cqn+1.

For later use, we record the following lemma.

Lemma 8.5.2. For k a subfield of Fq,

Trace
(
Frob(0,...,0,1),k|G(n,m1, . . . ,mr−1,mr; q)

)
= −

√
#k.

Proof. Without the clearing factor −1√
#k

, the “raw trace” is the sum over x ∈ k of

ψk(x
1+qn +xj), where j = 1 if mr = 0 and j = qmr + 1 otherwise. But for k ⊆ Fq, each x ∈ k

satisfies x1+ql = x2 for any l ∈ Z≥1. Also, x is Artin-Schreier equivalent to x2 (because of the
characteristic p = 2). So each summand is ψk(x

2 + x2) = ψk(0) = 1. Thus the “raw trace”
is #k, and hence the trace is −

√
#k. �

We next give some technical lemmas.

Lemma 8.5.3. Let n ≥ 2 and q = 2f be a power of 2 such that nf ≥ 4. Let 2N = qn,
E = 21+2N

ε an extraspecial 2-group of type ε = ±, R = Z(R)E a finite 2-group, embedded
as a normal irreducible subgroup of a finite subgroup G of GL(V ) ∼= GL2N (C). Set q0 := 2,
d := 2N , and suppose that L := O`′(G/Z(G)R) is perfect and satisfies one of the conclusions
(i)–(v) of Theorem 8.3.1, or (i)–(iii), (vi) of Proposition 8.3.3. Suppose that

(a) |Trace(g)|2 is 0 or a power of q for any g ∈ G.
(b) In the cases (iii), (iv) of Theorem 8.3.1, |Trace(g)| is 0 or a power of q for any g ∈ G.

Then W := R/Z(R) carries an FqL-module structure.

Proof. It suffices to prove the statement for q = 2f ≥ 4.
In the case of 8.3.1(i), there is a proper divisor j of d = 2nf such that 3 ≤ 2nf/j and

L = SL(Wj) ∼= SLd/j(2
j), where Wj is W = Fd2 viewed as a d/j-dimensional vector space

over F2j . Here, L is perfect. We consider an R-coset in G which corresponds to a regular
unipotent element in L, whose fixed point subspace in W has size 2j. By Lemma 7.2.1, this
coset contains an element h with |Trace(h)|2 = 2j. By hypothesis, 2j is a power of q.

In the case of 8.3.1(ii), there is a divisor j of d/2 = nf such that L = Sp(Wj) ∼= Spd/j(2
j),

where Wj is W = Fd2 viewed as a d/j-dimensional symplectic space over F2j . Here, L is perfect
as nf ≥ 4. We can consider an R-coset in G which corresponds to a regular unipotent element
in L, whose fixed point subspace in W has size 2j. By Lemma 7.2.1, this coset contains an
element h with |Trace(h)|2 = 2j. By hypothesis, 2j is a power of q. The same argument
applies to the case L = 2B2(2j) < Sp4(2j) of Theorem 8.3.1(v) (where j = nf/2 > 1),
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since any element of order 4 in L must have one Jordan block of size 4 on F4
2j and hence is

regular unipotent in Sp4(2j). Suppose we are in the case L = G2(2j) < Sp6(2j) of Theorem
8.3.1(v). Here j ≥ nf/3 > 1, so L is perfect. Also, L > G2(2) contains an element of
order 8 [CCNPW], which must have one Jordan block of size 6 on F6

2j and hence is regular
unipotent in Sp6(2j). So we can repeat the same argument as before to see 2j is a power of
q.

In the case of 8.3.1(iii), there is a proper divisor j of nf such that 2 - (nf/j) and
L = SU(W2j) ∼= SUnf/j(2

j), where W2j is W viewed as an nf/j-dimensional vector space
over F22j endowed with a non-degenerate Hermitian form. If j = 1, then nf/j ≥ 4; in general,
nf/j ≥ 3. Hence in all cases L is perfect. We consider an R-coset in G which corresponds to
a regular unipotent element in L, whose fixed point subspace in W has size 22j. By Lemma
7.2.1, this coset contains an element h with |Trace(h)| = 2j. By hypothesis, 2j is a power of
q.

In the case of 8.3.1(iv), there is a divisor j of nf such that nf/j ≥ 2 and L = Ω(Wj) ∼=
Ω−2nf/j(q

j), where Wj is W viewed as a 2nf/j-dimensional vector space over F2j endowed

with a non-degenerate quadratic form of type −. Here L is perfect. We consider an R-coset
in G which corresponds to some element in L, whose fixed point subspace in W has size 22j.
By Lemma 7.2.1, this coset contains an element h with |Trace(h)| = 2j. By hypothesis, 2j is
a power of q.

In the cases (ii), (iii), (vi) of 8.3.3, we have qn = 22, 25, and 25. Since n ≥ 2, we must
have q = 2, and so we are done. �

Lemma 8.5.4. Suppose n > m1 > . . . > mr ≥ 0, n ≥ 2, and q = 2f a power of 2 are such
that qd ≥ 24 and G(n,m1, . . . ,mr; q) is geometrically irreducible, with geometric monodromy
group G.

(a) For any g ∈ G, |Trace(g)| is zero or a power of q.
(b) Suppose that E := O2(H−1 ) C G ≤ H−1 , with H−1 defined in Theorem 8.2.1 for 2N = qn.

Set q0 := 2, d := 2N , and suppose that L := O`′(G/E) is perfect and satisfies one of
the conclusions (i)–(v) of Theorem 8.3.1, or (i)–(iii), (vi) of Proposition 8.3.3. Then
W = E/Z(E) carries an FqL-module structure.

Proof. (a) follows from Corollaries 8.1.2 and 8.1.5, working over finite extensions of Fq2 .
(b) follows from (a) and Lemma 8.5.3; note that W (viewed over F2) carries an F2-valued

L-invariant non-degenerate quadratic form induced by the map x 7→ x2 on E. �

For coprime positive integers A 6= B, we will consider the hypergeometric sheaf

(8.5.4.1) Hsmall,A,B := Hypψ(Char(A) r {1};Char(B) r {1}),

of type (A − 1, B − 1) and rank max(A,B) − 1. It is pure of weight A + B − 3. For each
multiplicative character χ with χA 6= 1, we consider the hypergeometric sheaf

(8.5.4.2) Hbig,A,B,χ := Hypψ(Char(A);Char(B,χ)),

of rank max(A,B). These sheaves have been studied in [KT6, §3].

Theorem 8.5.5. Assume q = 2f and n > m ≥ 1 are integers such that N := nf ≥ 4,
2|nm, and gcd(n,m) = 1. Then the following statements hold.
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(i) The geometric monodromy group G = Ggeom of the local system G(n,m; q) defined in
(8.5.0.1) is isomorphic to the subgroup H◦f

∼= 21+2N
− · Ω−2n(q) of the group Γ(2, N,−) =

H−1 , as defined in (8.2.2.1).
(ii) The hypergeometric sheaf Hsmall,qn+1,qm+1 defined in (8.5.4.1) has geometric monodromy

group equal to G ∼= H◦f .
(iii) If f = 1, then over any finite extension k of F2, for the arithmetic monodromy group

Garith,k of G over k we have Garith,k = G = H◦1 if k ⊇ F4, and Garith,k
∼= H−1 otherwise.

(iv) Furthermore, both H◦1 and H−1 satisfy (S+).

Proof. (a) By [KT6, Corollary 3.10(i)], G(n,m; q) is geometrically isomorphic to the
[A]? Kummer pullback of the hypergeometric sheaf H := Hsmall,A,B defined in (8.5.4.1) with
A := qn + 1 and B := qm + 1. The integrality result Theorem 8.1.1 and [KT2, Lemma 5.1]
show that both G and the geometric monodromy group H of H are finite, with GCH and
H/G ↪→ CA.

The choice of n,m ensures that gcd(A,B) = 1, see Lemma 10.3.2, and A ≥ 17, hence H
satisfies (S+) by Corollary 10.1.9. Moreover, H is symplectically self-dual by [Ka-ESDE,
8.8.1-2], whence H < Sp2N (C). Now, a generator g0 of the image of I(0) in H is an ssp-
element of central order A = 2N + 1, since the “upstairs” characters of H are Charntriv(A).
Next, the wild part Wild of H has dimension A − B = qm(qn−m − 1), and the “downstairs”
character of H are Charntriv(B). Hence, a generator g∞ of the image of I(∞) modulo the
image of P (∞) in H permutes transitively the qn−m − 1 simple P (∞)-summands on Wild,
and has spectrum µB r {1} on Tame, see [KRLT4, Proposition 5.9]. In particular,

(8.5.5.1) |H| is divisible by lcm(qn + 1, qm + 1, qn−m − 1).

Now we can apply Theorem 8.4.5(a) to H. In the case of 8.4.5(a)(β), we have that q1 :=
2N+1 + 1 is a Fermat prime and H = SL2(q1), so 2 - N = nf and hence 2|m. Also, by
[KRLT4, Proposition 5.9], when mf ≥ 4, the image of P (∞) in H has order at least

(qn−m − 1)q2m = qn+m − q2m ≥ qn+m − qn+m−1 ≥ qn+m−1 ≥ 2N+3,

whereas the Sylow 2-subgroups of SL2(q1) have order 2N+2, a contradiction. So mf = 2,
q = 2, m = 2. Now H = SL2(q1) has order divisible by qm + 1 = 5 by (8.5.5.1), which is
impossible since q1 ≡ 2(mod 5). So E := O2(H−1 ) C H ≤ H−1 . Since H/G ↪→ CA, we also
have that

(8.5.5.2) E CG ≤ H−1 .

(b) We will now identify H̄ := H/E ≤ O(W ), where W = E/Z(E), a quadratic space
of type − and dimension 2N over F2, with quadratic form Q(xZ(E)) = x2 ∈ Z(E) (and
we have identified Z(E) with F2). Clearly, (8.5.5.1) implies that |H̄| is still divisible by
lcm(qn + 1, qm + 1, qn−m − 1), and moreover

(8.5.5.3) H̄ contains an element of order 2N + 1.

By the first part of Theorem 8.3.4,

L := O`′(H̄)

is not cyclic (where ` is as chosen in Theorem 8.3.1 and Proposition 8.3.3). In order to be able
to apply the second part of Theorem 8.3.4, we need to show that the L-module W carries an
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Fq-structure. To show this, we will assume q > 2 and apply Theorem 8.3.1 and Proposition
8.3.3, with q0 = 2 and thus viewing H̄ ≤ O2N(2). We will use the observation that if L is
perfect, then G ≥ [H,H] and (8.5.5.2) imply that G ≥ EL. Now Lemma 8.5.4 shows that
W carries an FqL-module structure in the cases (i)–(v) of 8.3.1, and (i)–(iii), (vi) of 8.3.3.

Assume we are in the cases (vii), (viii) of 8.3.3 and L = Al. Then L acts absolutely
irreducibly on W = F2N

2 , whence CH̄(L) ≤ CGL(W )(L) = 1 and so H̄ ↪→ Sl. In particular, H̄
cannot satisfy (8.5.5.3), a contradiction.

In the remaining cases (vi) of 8.3.1, and (iv), (v), (vii), (viii) of 8.3.3 (with L 6∼= Al in the
last two cases), we can check directly that |Aut(L)| is not divisible by (qm + 1)(qn−m − 1).
The arguments used in deducing (8.3.4.2) show that this contradicts (8.5.5.1).

(c) Now we can apply the second part of Theorem 8.3.4, viewing L ≤ GL2n(q), to arrive
at one of the following two possibilities for L .

(c1) (n,m, q) = (5, 2, 2) and L = A11 or A12. In this case, the action of L on W is
absolutely irreducible, so EndL(W ) ∼= F2; in particular, CO(W )(L) = 1. On the other hand,
the action of H̄ on L induces a subgroup of Aut(L) = L · 2. It follows that A11 ≤ L ≤ H̄ ≤
Aut(L) ≤ S12; in particular, H̄ = H/E contains no element of order 33. But this contradicts
the fact that g0 has order 33.

(c2) L = Ω(Wf ) ∼= Ω−2n(q), where Wf is W viewed as a 2n-dimensional vector space over
Fq endowed with a non-degenerate quadratic form Qf of type −. Moreover, there is α ∈ F×q
such that Q(u) = TrFq/F2(α · Qf (u)) for all u ∈ Wf .

Rescaling Qf suitably (without any effect on L), we may assume that Q(u) = TrFq/F2(Qf (u))
for all u ∈ Wf , whence H◦f CH ≤ H−1 . As [H,H] ≤ G ≤ H, we also have H◦f CG ≤ H−1 ; let
a1 := |G/H◦f |. If a1 = 1, then G = H◦f as stated.

Assume that a1 > 1. Since G(n,m; q) lives over A1, G = O2′(G) and so 2|a1. Now we
can apply Theorem 8.2.5(iii) to see that G ≥ H−f . Hence, by Theorem 8.2.5(ii), G contains

an element h ∈ H−f with |Trace(h)| = √q, contrary to Corollary 8.1.2.
When q = 2 (so that f = 1), we also note that, since H/G has odd order and G = H◦1 ≤

H ≤ H−1 , we have shown that H = H◦1 . As H satisfies (S+), we conclude that both H◦1 and
H−1 satisfy (S+).

(d) Here we will show that H = G. Since N ≥ 4, 22N − 1 has a primitive prime divisor
s by [Zs], which then divides qn + 1. Recall that G/E = H◦f/E = Ω−2n(q) contains a cyclic
torus 〈t̄〉 of order qn + 1. An inverse image t of t̄ in G has order divisible by qn + 1, and so
for some power g1 of t that has order s, we have

(8.5.5.4) qn + 1 divides |CG(g1)|.
It is clear that the Sylow s-subgroups in Sp2n(2) are cyclic, hence the same holds for Sylow
s-subgroups in H. As a consequence, all cyclic subgroups of order s in H are conjugate. As
mentioned above, the element g0 of H has order divisible by qn + 1, so some power g′1 of it
has order s. Conjugating g0 suitably, we may assume that 〈g1〉 = 〈g′1〉. Replacing g1 by an
s′-power of it it, we may in fact assume that g′1 = g1. Since H/G ↪→ CA, we also have

(8.5.5.5) e := [CH(g1) : CG(g1)] divides qn + 1.

By the choice of s, the element g1, which acts nontrivially on W = F2N
2 , acts irreducibly

on W . By Lemma 8.3.2(i), E := CEnd(W )(g1) is a finite extension of F2, and W considered
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as an E〈g1〉-module is absolutely irreducible. Any such module is of dimension 1 as 〈g1〉 is
cyclic. It follows that 1 = dimEW , i.e. |E| = |W | = 22N = q2n. In particular, |CSp2n(2)(g1)|
divides q2n − 1, and so CH(g1) has order dividing |E|(q2n − 1) = 2q2n(q2n − 1). Writing
|CG(g1)| = a(qn + 1) for some a ∈ Z using (8.5.5.4), we then have

|CH(g1)| = ae(qn + 1)

divides 2q2n(q2n−1); in particular e divides 2q2n(qn−1), which is coprime to qn+1. Together
with (8.5.5.5), this implies that e = 1. Thus CH(g1) ≤ G. Since g0 obviously centralizes
g′1 = g1, we have therefore shown that g0 ∈ G. On the other hand, the wild part of H has
dimension qn − qm ≥ 2, so by [KT5, Theorem 4.1], H is the normal closure of 〈g0〉, and
GCH. Consequently, H = G.

(e) Now we determine Garith,k when f = 1. Over F2, G is symplectically self-dual by
[Ka-MMP, Theorem 3.10.6], hence Garith,F2 ≤ Sp2N (C). As Garith,F2 normalizes Ggeom = H◦1 ,
it also normalizes E := O2(H◦1 ), so by Theorem 8.2.1, Garith,F2 ≤ NSp

2N
(C) = H−1 , and thus

H◦1 ≤ Garith,F2 ≤ H−1 . Observe that the trace of Frob1,F2 is −
√

2. On the other hand,
|Trace(g)| is an integer for any g ∈ H◦1 by Theorem 8.2.5(i). Hence Garith,F2 = H−1 . �

Corollary 8.5.6. Let n ∈ Z≥4. Then the geometric monodromy group Ggeom of the
local system G](n, n − 1, . . . , 0; 2) defined in (8.5.1.1) is isomorphic to H◦1

∼= 21+2n
− · Ω−2n(2).

Furthermore, its arithmetic monodromy group Garith,k over any finite extension k/F2 is H−1 =
21+2n
− ·O−2n(2) if k 6⊇ F4, and H◦1 = Ggeom if k ⊇ F4.

Proof. The integrality result Theorem 8.1.1 (applied with a change of variable x 7→
x/s0) and [KT2, Lemma 5.1] show that both Ggeom and Garith,k are finite subgroups of
Sp2n(C). Next, a pullback of G](n, n − 1, . . . , 0; 2) yields the sheaf G(n, n − 1; 2) which has
geometric monodromy group Hgeom = H◦1 , and arithmetic monodromy group Harith,k = Hgeom

if k ⊇ F4 and H−1 otherwise, according to Theorem 8.5.5. Thus Garith,F2 is a finite subgroup
of Sp2n(C) which contains H−1 , and H−1 satisfies (S+). Applying Theorem 8.4.5(c), we obtain
Garith,F2 = H−1 . Now, |Trace(g)| is an integer for any g ∈ Garith,F4 by Theorem 8.1.1, and

H−1 ≥ Garith,F4 ≥ Harith,F4 = Hgeom = H◦1 .

As H−1 = Harith,F2 admits elements h with |Trace(h)|2 = 2 (e.g. Frob1,F2), and has index 2
over H◦1 , we conclude that Garith,F4 = H◦1 . Finally,

H◦1 = Garith,F4 ≥ Ggeom ≥ Hgeom = H◦1 ,

so Ggeom = H◦1 . �

Theorem 8.5.7. Assume q = 2f , r ≥ 1, and n > m1 > . . . > mr ≥ 1 are integers
such that nf ≥ 4, 2 - nm1 . . .mr, and gcd(n,m1, . . . ,mr) = 1. Then the local system
G := G(n,m1, . . . ,mr; q) over Ar/F2, defined in (8.5.0.1), has geometric monodromy group
G = Ggeom

∼= SUn(q) acting in its total Weil representation. Over any finite extension k of
F2, for the arithmetic monodromy group Garith,k of G over k we have Garith,k = G if k ⊇ Fq4
and Garith,k

∼= (C2×G)·Gal(Fq2/k) if k ⊆ Fq2. In the latter case, Gal(Fq2/k) may be identified
with the subgroup Gal(Fq2/k) of outer field automorphisms in Out(G) ∼= Cgcd(n,q+1) o C2f ,
and C2 is the scalar subgroup of order 2.
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Proof. (a) Let N := nf , and define mr+1 := 1 if 2|f and mr+1 := 2 if 2 - f . Then G is
the specialization sr+1 = 0 of the local system G̃ := G(nf,m1f, . . . ,mrf,mr+1; 2) on Ar+1/F2.
Again by Theorem 8.1.1 and [KT2, Lemma 5.1], G̃ has finite geometric monodromy group
G̃ that contains G. On the other hand, the specialization s1 = . . . = sr = 0 of G̃ is the
local system G(nf,mr+1; 2) on A1/F2 considered in Theorem 8.5.5. Hence G̃ contains the
geometric monodromy group H◦1 of the latter, which was shown to satisfy (S+) and contains
an ssp-element of central order 2N + 1. Also, G̃ is symplectically self-dual by [Ka-MMP,
Theorem 3.10.6], so that G̃ ≤ Sp2N (C). Hence we can apply Theorem 8.4.5(a) to G̃ and
conclude (since H◦1 6≤ SL2(2N+1 + 1)) that G̃ ≤ H−1 , and thus G ≤ H−1 .

Note that 2 - nm1 . . .mr and gcd(n,m1, . . . ,mr) = 1 imply by Lemma 10.3.2(iii) that

gcd(qn + 1, qm1 + 1, . . . , qmr+1 + 1) = q + 1.

Applying [KT6, Corollary 2.7], we see that G is geometrically isomorphic to the direct sum
of q + 1 pairwise non-isomorphic sheaves, one G0 of rank (qn − q)/(q + 1) and q of rank
(qn + 1)/(q + 1), say Gi with 1 ≤ i ≤ q. Now we can apply Theorem 8.4.4 to arrive at one of
the following two cases.

(a1) SUn(q)CG ≤ C2 ×GUn(q), with SUn(q) and GUn(q) acting in total Weil represen-
tations. In this case, [G,G] ∼= SUn(q), and G/[G,G] ↪→ C2 × Cq+1. However, G lives over
Ar/F2, so G = O2′(G) by Theorem 1.3.4, and therefore G = SUn(q) or C2 × SUn(q). In the
latter case, C2 = Z(E) = 〈j〉, with j acting as the scalar −1 on G. In particular, j has
determinant −1 on each of the q subsheaves Gi with i > 0, of odd rank (qn + 1)/(q+ 1), and
this contradicts Corollary 2.3.8(iii-bis). Hence G = SUn(q), as stated.

(a2) (n, q) = (5, 2) and GBL1 ∈ {PSL2(11), SL2(11)}; in particular, m1, . . . ,mr ∈ {1, 3}.
As shown in part (c3) of the proof of Theorem 8.4.4, G ≤ (AL1) · 2, with |A| ≤ 2, whence
the Sylow 2-subgroups of G have order at most 25. Now, if mr = 1, then by applying
Theorem 10.2.7 to the specialization m1 = . . . = mr−1 = 0 of G, we see that the image of the
geometric monodromy group of the specialization, which is a subgroup of G, on each of the
three subsheaves of the specialization is (the image of) SU5(2) on a Weil representation. This
clearly violates the indicated upper bound on G. Hence we must have that (r,m1) = (1, 3).
In this case, each of Gi has wild part of dimension 8, so by [KRLT4, Proposition 5.9], the
Sylow 2-subgroups of G have irreducible representations of degree ≥ 8 and hence of order at
least 27, again a contradiction.

(b) Over F2, we know that G̃ is symplectically self-dual by [Ka-MMP, Theorem 3.10.6].
Next, by Theorem 8.5.5 (and its proof), over F2 the arithmetic monodromy group of G(nf,mr+1; 2)
is H−1 and satisfies (S+). Hence H−1 is a maximal finite subgroup of Sp2N (C) by Theo-

rem 8.4.5(c). As the arithmetic monodromy group of G̃ over F2 is finite, contains that of
G(nf,mr+1; 2) (which is H−1 ), and is contained in Sp2N (C), the maximality of H−1 implies
that it is H−1 . Specializing back to G, we see that Garith,F2 ≤ H−1 .

Now, over Fq2 the system G is still a direct sum of q+1 irreducible subsheaves Gi, see [KT6,
Corollary 2.7]. Hence we can apply Theorem 8.4.4 to Garith,Fq2 ≤ Garith,F2 ≤ H−1 , and using

Garith,Fq4 BGgeom = SUn(q), we now see that SUn(q)CGarith,Fq4 ≤ Garith,Fq2 ≤ C2 ×GUn(q),

with both SUn(q) and GUn(q) acting in their total Weil representations. Furthermore, each
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Gi has trivial arithmetic determinant by Corollary 2.3.8(iii-ter). Applying Lemma 8.4.3(iv),
we conclude that Garith,Fq4 = Ggeom.

Next, over Fq2 , the determinant of the subsheaves Gi is trivial for the unique one of even
rank (qn − q)/(q + 1), and −1 for all other q of odd rank (qn + 1)/(q + 1) by Corollary
2.3.8(iii-ter). As Garith,Fq4 = SUn(q) is perfect, it follows that Garith,Fq2 = 〈Ggeom, h〉, of index

2 over Ggeom. Using perfectness again, the determinant of Ggeom on each Gi is trivial, so the
determinant of h on Gi must be −1 for odd-rank subsheaves, and 1 for the even-rank one.
Recalling C2 = Z(E) = 〈j〉, with the central involution j acting via −1, we have that jh has
determinant 1 on every Gi. By Lemma 8.4.3(iv), this implies that jh ∈ SUn(q) ≤ Garith,Fq2 .

It follows that j ∈ Garith,Fq2 , and so Garith,Fq2 = C2 × SUn(q).

Let g denote the image of Frob(1,0,...,0),F2 in Garith,F2 , so that Garith,F2 = 〈Garith,Fq2 , g〉. We

will now show that Garith,F2/Garith,Fq2
∼= C2f

∼= Gal(Fq2/F2), and moreover, the conjugation by

g induces an element of order 2f modulo Inndiag(G) ∼= PGUn(q) in Aut(G) for G = SUn(q).
First, the construction ofG insideH−1 in Proposition 8.4.2 shows thatGCD := C2×GUn(q) ≤
H−1 , whence C ≥ CD(G) = Z(D) = C2 × Z(GUn(q)) for C := CH−1

(G). In fact, we have

(8.5.7.1) C = CD(G).

Indeed, since the action of G on G splits it into q + 1 pairwise inequivalent irreducible
subsheaves Gi, C preserves each of the summands Gi. Hence, Theorem 8.4.4 applied to CG
shows that CG ≤ D, and so C ≤ CD(G) = C2 × Z(GUn(q)).

Now let j denote the order modulo Inndiag(G) of the automorphism of G induced by the
conjugation by g; in particular, j|2f as g2f ∈ Garith,Fq2 = C2×G. By (8.5.7.1), D induces the

subgroup D/C ∼= Inndiag(G) of Aut(G). Hence we can find c ∈ CH−1
(G) and d ∈ D such that

gj = cd and thus gj ∈ D = C2 × GUn(q). As GUn(q) acts via its total Weil representation,
it follows that |Trace(gj)|2 is a power of q2 = 22f . On the other hand, since 2 - nm1, for any
x ∈ F2j we have xq

n+1 = xq+1 = xq
m1+1, and so ψF

2j
(xq

n+1 + xq
m1+1) = ψF

2j
(0) = 1. As gj

is the image of Frob(1,0,...,0),F
2j

in Garith,F2 , it follows that |Trace(gj)|2 = | − 2j/2|2 = 2j. Thus
2f |j, and so j = 2f as stated; in particular, Garith,F2/Garith,Fq2

∼= C2f .

Recall that Out(G) ∼= Cgcd(n,q+1) o C2f , with C2f generated by the field automorphism
σ : y 7→ yp. As 2|q, any involution in this group is conjugate to τ := σf . But gf has order
2 in Out(G), so we may assume that gf induces τ modulo Inn(G). Clearly g centralizes gf ,
so the image of g in Out(G) is contained in the centralizer of τ . Next, τ centralizes the
subgroup C2f = 〈σ〉 of Out(L), but acts as inversion on the odd-order subgroup Cgcd(n,q+1) =
Inndiag(G)/Inn(G). It follows that the image of g in Out(G) belongs to this subgroup C2f .
As the order of g modulo Inndiag(G) is 2f , we conclude that, modulo Inn(G), g generates
the subgroup C2f = 〈σ〉. Thus Garith,F2 = (2×G) ·Gal(Fq2/F2), completing the proof of the
theorem. �

Theorem 8.5.8. Assume q = 2f , r ≥ 1, and n > m1 > . . . > mr ≥ 1 are integers
such that nf ≥ 4, 2 - nm1 . . .mr, and gcd(n,m1, . . . ,mr) = 1. Then the local system
G := G(n,m1, . . . ,mr, 0; q) over Ar+1/F2, defined in (8.5.0.1), has geometric monodromy

group G = E o SUn(q) < H◦f ≤ H◦1 , with E := O2(H−1 ) = 21+2nf
− and with SUn(q) acting in

its total Weil representation. Over any finite extension k of F2, for the arithmetic monodromy
group Garith,k of G over k we have Garith,k = G if k ⊇ Fq2 and Garith,k

∼= G · Gal(Fq2/k) if
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k ⊆ Fq2. In the latter case, Gal(Fq2/k) may be identified with the subgroup Gal(Fq2/k) of
outer field automorphisms of SUn(q).

Proof. (a) As 2 - n and nf ≥ 4, in fact we have nf ≥ 5. Define mr+1 := 1 if 2|f
and mr+1 := 2 if 2 - f . Then G is the specialization sr+1 = 0 of the local system G̃ :=
G(nf,m1f, . . . ,mrf,mr+1, 0; 2) on Ar+2/F2, which, by Theorem 7.1.2 and [KT2, Lemma
5.1], has finite geometric monodromy group G̃ that contains G. Next, the specialization
s1 = . . . = sr = sr+2 = 0 of G̃ is the local system G(nf,m2; 2) on A1/F2 considered in
Theorem 8.5.5. Hence G̃ contains the geometric monodromy group H◦1 of the latter, which
is shown to satisfy (S+) and contains an ssp-element of central order 2N + 1. As mentioned
above, G̃ is symplectically self-dual, so that G̃ ≤ Sp2N (C). Hence we can apply Theorem
8.4.5(a) to G̃ and conclude (since H◦1 6≤ SL2(2N+1 + 1)) that G̃ ≤ H◦1 , and thus G ≤ H◦1 ; in
particular, G normalizes E := O2(H−1 ).

On the other hand, the specialization s1 = 0 of G is the irreducible Pink-Sawin local
system considered in Theorem 7.3.8, so G is irreducible and contains E1 := 21+2N

− . Yet

another specialization sr+1 = 0 of G (which is also the specialization sr+1 = sr+2 = 0 of G̃)
is the sheaf G(n,m1, . . . ,mr; q) over Ar/F2 considered in Theorem 8.5.7. This shows that G
contains S := SUn(q) acting in its total Weil representation. The rest of the proof is to show
that G = E o S.

(b) We aim to show that GB E and to determine

Ḡ := EG/G ≤ H◦1/E = Ω−2N(2),

a subgroup of Ω(W ) that preserves the natural quadratic form Q(xZ(E)) = x2 on W :=
E/Z(E). As G ≥ S and E ∩ S ≤ O2(S) = 1, S ↪→ Ḡ; in particular, |Ḡ| is divisible by a
primitive prime divisor ` of q2n − 1 = 22N − 1, as chosen in 8.3.1 and 8.3.3. We can now
apply Theorem 8.3.1 and Proposition 8.3.3 (with q0 = 2 and thus viewing Ḡ ≤ GL2N(2)) to
determine L := O`′(Ḡ). Note that O`′(S) = S, so S ↪→ L; in particular, L is not cyclic.

In the case of 8.3.1(vi), qn = 210, so (n, q) = (5, 4), but then S = SU5(4) cannot embed
in L = PSL2(41).

Case 8.3.3(ii) cannot occur, since qn = 2nf ≥ 24.
In the cases (iii) and (vi) of 8.3.3, qn = 25, so (n, q) = (5, 2), but then S = SU5(2) cannot

embed in any L ∈ {PSL2(11),M11,M12,M22,A11,A12} (since the smallest index of proper
subgroups of S is 165, see [CCNPW]).

In the cases (iv) and (vii) of 8.3.3, qn = 26, so (n, q) = (3, 4), but then S = SU3(4) cannot
embed in any L ∈ {PSL2(13),PSL2(25), SL3(3),A13,A14} (since the smallest index of proper
subgroups of S is 65, see [CCNPW]).

In the cases (v) and (viii) of 8.3.3, qn = 29, so (n, q) = (3, 8) or (9, 2), but then S ≥ SU3(8)
cannot embed in any L ∈ {3 · J3,PSL2(19),A19,A20} (since 7||S| and the smallest index of
proper subgroups of S is ≥ 513, see [CCNPW]).

We have therefore shown that either (iii) or (iv) of Theorem 8.3.1 occurs; in particular,
L = SUc(2

d) with c ≥ 3 and cd = N , or Ω−2c(2
d) with c ≥ 2 and cd = N ; in both cases c

divides nf ≥ 5. As L acts irreducibly on W , we note that CḠ(L) embeds in the finite field
EndL(W ) and so is cyclic; on the other hand L is quasisimple. Hence Ḡ/LCḠ(L) is solvable,
and so Ḡ(∞) = L.
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Note that G ≥ Z(E1) = Z(E). Next, any element of order ` of O(W ) acts irreducibly on
W . The same is true for G, so either G∩E = Z(E), or G ≥ E. Suppose we are in the former
case. Then Ḡ = EG/E ∼= G/(G ∩ E) = G/Z(E). Hence G(∞) has order either |L| = |Ḡ(∞)|
or 2|L|, and G(∞) is a cover of PSUc(2

d) or Ω−2c(2
d), which contains the perfect subgroup S

as S ↪→ G. As mentioned above, G acts irreducibly on G of dimension 2N . It follows that
every irreducible G(∞)-summand on G has dimension dividing 2cd. Applying [TZ1, Theorem
1.1], we see that this is possible only when c = 2 and G(∞) = Ω−4 (2d) ∼= SL2(2N). However in
this case the G(∞)-module G is irreducible and orthogonally self-dual, a contradiction.

Therefore we are in the latter case: G ≥ E, and so GB E.

(c) Now we can apply Lemma 8.5.4 to see that W carries an FqL-module structure. As
|L| is still divisible by `, we can again apply Theorem 8.3.1 and Proposition 8.3.3, now with
q0 = q and thus viewing L ≤ GL2n(q), to determine L = O`′(L). The arguments in (b) show
that, in fact, we have one of the cases (iii) and (iv) of Theorem 8.3.1.

In the case of 8.3.1(iv), there is a divisor j of n such that n/j ≥ 2 and L = Ω(Wfj) ∼=
Ω−2n/j(q

j), where Wfj is W viewed as a 2n/j-dimensional vector space over Fqj endowed with

a non-degenerate quadratic form of type −. In fact, since 2 - n, we have that 2 - j ≤ n/3;
also nf ≥ 5. In particular, (2n− 2j)f ≥ 4nf/3 > 6. Hence by [Zs] we can find a primitive
prime divisor `1 of 22(n−j)f − 1, which then divides both (qj)n/j−1 + 1 and |L|.

Certainly, L contains an element of order `1, which lifts to an element g ∈ G of (odd) order
`1. Now, a := Trace(g) is an integer, so Trace(gi) = a for 1 ≤ i ≤ `1 − 1 (by Galois action).
On the other hand, Trace(Id) = qn. Computing the multiplicity of the trivial character in
the character of 〈g〉 acting on G, we get Z 3 (qn + a(`1 − 1))/`1, i.e.

(8.5.8.1) a ≡ qn(mod `1);

in particular, a 6= 0. By Theorem 7.1.2(d), a = ±qk < qn for some 0 ≤ k ≤ n. Suppose
a = qk, so that 0 ≤ k < n. Then (8.5.8.1) implies that `1|(qn−k − 1), so by primitivity of `1

we have (2n−2j)|(n−k), a contradiction since 2n−2j ≥ 4n/3 > n−k > 0. Hence a = −qk,
in which case (8.5.8.1) implies that `1|(qn−k+1). By primitivity of `1 we have (n−j)|(n−k).
Note that k 6= n as g has order `1 > 2, so 0 < n − k < 4n/3 ≤ 2(n − j). It follows that
n − k = n − j, i.e. a = −qj. As 2 - j, we now have that Trace(g) = −qj ≡ 1(mod (q + 1)).
But this contradicts Corollary 7.1.5, according to which Trace(g) ≡ −1(mod (q + 1)).

(d) We have shown that L satisfies 8.3.1(iii), i.e. there is a proper divisor j of n such that
2 - (n/j) and L = SU(W2fj) ∼= SUn/j(q

j), where W2fj is W viewed as an n/j-dimensional
vector space over Fq2j endowed with a non-degenerate Hermitian form. Since SUn(q) ↪→ L,
we have j = 1 (by order consideration). Thus L = SUn(q). By Proposition 8.4.1(b2), we
now have that

LC Ḡ = G/E ≤ GUn(q) o C2f .

Suppose that Ḡ/L has even order. As L ∼= SUn(q), we may assume thatG contains an element
h, whose image in Ḡ is tσ, where t := diag(1, . . . , 1, λ) in some orthonormal basis (e1, . . . , en)
of the Hermitian Fq2-space W2f = Fnq2 , λ

q+1 = 1, and σ acts via
∑

i xiei 7→ xqi ei. Since the

equation xq−1 = λ has q−1 roots in Fq2 for any such λ, we see that |CWf
(tσ)| = qn. It follows

from Lemma 7.2.1 that the coset hE in G contains some element h1 with |Trace(h1)|2 = qn.
On the other hand, working over extensions of Fq2 , we have |Trace(h1)|2 = 0 or an even power
of q by Corollary 8.1.5, and this is a contradiction since 2 - n.
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We have shown that Ḡ/L has odd order. Since G lives over Ar+1, G = O2′(G) by Theorem
1.3.4. It follows that Ḡ = L, G = E ·L, and so G = EoS. We also note that G < H◦f , since

L < Ω−2n(q) by Proposition 8.4.1(b2).

(e) To determine Garith,k, let H = Hgeom = SUn(q) and Harith,k denote the geometric
monodromy group and the arithmetic monodromy group over k of the specialization sr+1 = 0
of G, which is the sheaf G(n,m1, . . . ,mr; q) over Ar/F2 considered in Theorem 8.5.7. By
[KRLT4, Lemma 4.1], Garith,F2 = 〈Ggeom, g〉 for the image g of any element Frob(s1,s2,...,sr+1),F2

in Garith,F2 with si ∈ F2. Choosing sr+1 = 0, we can identify g := Frob(s1,s2,...,ssr ,0),F2 , which
tautologically lies in the subgroup Harith,F2 of Garith,F2 , with the element Frob(s1,s2,...,sr),F2 in
Harith,F2 . In particular, by Theorem 8.5.7, g2f ∈ Harith,Fq2 = C2 × H, with C2 acting as the

scalar subgroup of order 2 and thus C2 = Z(E). As G = E oH, we conclude that g2f ∈ G
and thus Garith,F2/G ↪→ C2f . It follows that the order j of g modulo G divides 2f , and
Garith,Fq2 = G.

We next observe that

(8.5.8.2) NG(H) = Z(E)×H.

Indeed, NG(H) certainly contains Z(E)H. If NG(H) > Z(E)H, then NG(H)∩E > Z(E) as
G = EH. It follows that 1 6= (NG(H) ∩ E)/Z(E) is normalized by NG(H) > H. As H acts
irreducibly on E/Z(E), we must have that NG(H) ≥ E and thus NG(H) = G, i.e. H C G.
As G = EH, E CG, and E ∩H = 1, we then have that G = E ×H, a contradiction.

Now, g ∈ Harith,F2 normalizes H, so gj ∈ NG(H). Hence (8.5.8.2) implies that gj ∈
Harith,Fq2 , and so 2f |j since Harith,F2 = 〈H, g〉 has quotient C2f over Harith,Fq2 . Thus j =

2f and Garith,F2/G
∼= C2f . By Theorem 8.5.7, g induces the subgroup C2f of outer field

automorphisms of H, and so we are done. �

Theorem 8.5.9. Assume q = 2f , r ≥ 1, and n > m1 > . . . > mr ≥ 0 are integers with
nf ≥ 4. If mr ≥ 1, we assume that 2|nm1 . . .mr and gcd(n,m1, . . . ,mr) = 1. If mr = 0, we
assume r ≥ 2, 2|nm1 . . .mr−1 and gcd(n,m1, . . . ,mr−1) = 1. Then the geometric monodromy
group G of the local system G := G(n,m1, . . . ,mr; q), defined in (8.5.0.1), is isomorphic to

the subgroup H◦f
∼= 21+2nf

− · Ω−2n(q) of the group Γ(2, nf,−) = H−1 , as defined in (8.2.2.1).
Over any finite extension k of F2, for the arithmetic monodromy group Garith,k of G over k
we have Garith,k = G if k ⊇ Fq2 and Garith,k

∼= G · Gal(Fq2/k) if k ⊆ Fq2. In the latter case,
Gal(Fq2/k) may be identified with the subgroup Gal(Fq2/k) of outer automorphisms of Ω−2n(q).

Proof. (a) Define mr+1 := 1 if 2|N := nf and mr+1 := 2 if 2 - N . Then G is the
specialization sr+1 = 0 of the local system G̃ := G(nf,m1f, . . . ,mrf,mr+1; 2) on Ar+1/F2.
Again by Theorem 8.1.1 and [KT2, Lemma 5.1], G̃ has finite geometric monodromy group
G̃ that contains G. On the other hand, the specialization s1 = . . . = sr = 0 of G̃ is the
local system G(nf,mr+1; 2) on A1/F2 considered in Theorem 8.5.5. Hence G̃ contains the
geometric monodromy group H◦1 of the latter, which was shown to satisfy (S+) and contains
an ssp-element of central order 2N + 1. Also, G̃ is symplectically self-dual by [Ka-MMP,
Theorem 3.10.6], so that G̃ ≤ Sp2N (C). Hence we can apply Theorem 8.4.5(a) to G̃ and
conclude (since H◦1 6≤ SL2(2N+1 + 1)) that G̃ ≤ H−1 , and thus G ≤ H◦1 ; in particular, G
normalizes E := O2(H−1 ).
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Write

ei := gcd(n,mi), ni := n/ei, and ki := mi/ei

for all i such that mi > 0. Suppose that niki = nmi/e
2
i is odd for all such i. Now if n is odd,

then ei|n is odd, whence 2 - mi for all such i, and thus n
∏

i:mi>0mi is odd, a contradiction.
Hence n is even, forcing 2|ei, whence 2|mi for all such i, and thus gcd(n,mi | mi > 0) is even,
a contradiction. Therefore, we can find i0 ≥ 1 such that

2 - ni0ki0 , gcd(ni0 , ki0) = 1.

Now the specialization si = 0 for all i 6= i0 of G is the sheaf G(ni0 , ki0 ; q
ei0 ) over A1/F2

considered in Theorem 8.5.5, hence G is irreducible and contains

H0 := H◦fei0 = E0 · S0, where E0
∼= E and S0 := Ω−2ni0 (qei0 ).

Note that both Z(E0) and Z(E) is generated by the central involution j (acting as the scalar
−1 on G), so G ≥ Z(E0) = Z(E).

(b) We aim to show that E = E0, so that GB E, and to determine

Ḡ := EG/G ≤ H◦1/E = Ω−2N(2),

a subgroup of Ω(W ) that preserves the natural quadratic form Q(xZ(E)) = x2 on W :=
E/Z(E). As |G| is divisible by the order of the simple group S0; |Ḡ| is divisible by a primitive
prime divisor ` of q2n − 1 = 22N − 1, as chosen in 8.3.1 and 8.3.3. Note that any element
of order ` of O(W ) acts irreducibly on W . The same is true for H0 ≥ Z(E0) = Z(E). This
irreducible action shows that O2(H0) must act trivially on W . On the other hand, H0 ≤ H−1
and H−1 /E = O(W ) acts faithfully on W . Hence E0 = O2(H0) ≤ E, and so E0 = E by order
comparison, and GB E.

Now we apply Theorem 8.3.1 and Proposition 8.3.3 (with q0 = 2 and thus viewing Ḡ ≤
GL2N(2)) to determine L := O`′(Ḡ). Note that O`′(S0) = S0, so S0 = H0/E ↪→ L; in
particular, L is not cyclic. To rule out various cases, we note that S0 contains an element of
order (qei0 )ni0 + 1 = qn + 1.

Case 8.3.1(vi) is ruled out since PSL2(41) does not contain an element of order qn + 1 =
1025.

Case 8.3.3(ii) cannot occur, since qn = 2nf ≥ 24.
Cases (iii) and (vi) of 8.3.3 are ruled out since none of the groups PSL2(11), M11, M12,

M22, A11, A12 can contain elements of order qn + 1 = 33, see [CCNPW]).
Cases (iv) and (vii) of 8.3.3 cannot occur since none of the groups PSL2(13), PSL2(25),

SL3(3), A13, A14 can contain elements of order qn + 1 = 65, see [CCNPW]).
Cases (v) and (viii) of 8.3.3 are also ruled out since none of the groups 3 · J3, PSL2(19),

A19, A20 can contain elements of order qn + 1 = 513, see [CCNPW]).

We have therefore shown that either (iii) or (iv) of Theorem 8.3.1 occurs; in particular,
L = SUc(2

d) with 2 - c ≥ 3 and cd = N , or Ω−2c(2
d) with c ≥ 2 and cd = N . As L acts

irreducibly on W , we note that CḠ(L) embeds in the finite field EndL(W ) and so is cyclic;
on the other hand L is quasisimple. Hence Ḡ/LCḠ(L) is solvable, and so Ḡ(∞) = L.

(c) Now we can apply Lemma 8.5.4 to see that W carries an FqL-module structure. As
|L| is still divisible by `, we can again apply Theorem 8.3.1 and Proposition 8.3.3, now with
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(q0, d) = (q, 2n) and thus viewing L ≤ GL2n(q), to determine L = O`′(L). The arguments in
(b) show that, in fact, we have one of the cases (iii) and (iv) of Theorem 8.3.1.

In the case of 8.3.1(iii), there is a proper divisor j of n such that 2 - (n/j) and L =
SU(W2fj) ∼= SUn/j(q

j), where W2fj is W viewed as an n/j-dimensional vector space over
Fq2j endowed with a non-degenerate Hermitian form. Let d(X) denote the smallest degree
of nontrivial complex representations of the quasisimple group S0. Then, according to [TZ1,
Theorem 1.1], d(S0) = qn − 1 when ni0 = 2 (and so S0 = Ω−4 (qn/2) ∼= SL2(qn)), d(S0) =
(q4n/3 − 1)/(qn/3 + 1) > qn/2 when ni0 = 3 (and so S0 = Ω−6 (qn/3) ∼= SU4(qn/3)), and
d(S0) > qei0 (2ni0−3) > qn when ni0 ≥ 4. On the other hand, d(L) = (qn− qj)/(qj + 1) < qn/2,
and this contradicts the embedding S0 ↪→ L.

(d) Hence we must be in the case of 8.3.1(iv), i.e. there is a divisor j of n such that
n/j ≥ 2 and L = Ω(Wfj) ∼= Ω−2n/j(q

j), where Wfj is W viewed as a 2n/j-dimensional vector

space over Fqj endowed with a non-degenerate quadratic form Qfj of type −.
We will show that j = 1. Since

gcd(ei | mi > 0) divides gcd(n,mi | mi > 0) = 1,

it suffices to show that

(8.5.9.1) j|ei for all i with mi > 0.

Consider any such i. Then the specialization si′ = 0 for all i′ 6= i of G is the sheaf
G(ni, ki; q

ei) over A1/F2 considered in Theorem 8.5.5 when 2|niki and in Theorem 8.5.7 when
2 - niki.

(d1) When 2|niki, Theorem 8.5.5 shows that G contains

Hi := Ei · Si, where Ei ∼= E and Si := Ω−2ni(q
ei).

The arguments in (b) show that Ei = E and thus Si ↪→ L as Si is simple. First suppose that
ni ≥ 3, so that (ni− 1)ei > niei/2 = n/2. Now, if ((ni− 1)ei, q) 6= (3, 2), then (qei)2(ni−1)− 1
has a primitive prime divisor `i [Zs], which then divides both |Si| and |L|. It follows that
there is some 1 ≤ t ≤ n/j such that `i divides q2tj − 1. Note that tj ≤ n < 2ei(ni − 1), so
by primitivity of `i we have tj = ei(ni − 1) = n− ei. Since j|n, (8.5.9.1) follows. In the case
((ni − 1)ei, q) = (3, 2), as ni ≥ 3 we have ei = 1, ni = 4, n = 4, and Si = Ω−8 (2) ↪→ Ω−8/j(2

j),

implying j = 1.
Next suppose that ni = 2, i.e. Si = Ω−4 (qn/2) ∼= SL2(qn). Now, if (n, q) 6= (6, 2), then, as

n ≥ 2 and 2|q, qn − 1 has a primitive prime divisor `i [Zs], which then divides both |Si| and
|L|. Since `i - (qn + 1), it follows that there is some 1 ≤ t < n/j such that `i divides q2tj − 1.
Note that 2tj < 2n, so by primitivity of `i we have 2tj = n, i.e j|(n/2) = ei, and (8.5.9.1)
follows. In the case (n, q) = (6, 2), as j|n and j ≤ n/2 we have j ∈ {1, 2, 3}. If j 6= 2, then
j|(n/2) = 3 and (8.5.9.1) follows. If j = 2, then SL2(q6) = Si ↪→ L = Ω−6 (q2) = SU4(q2),
which is a contradiction since d(L) = (q8 − 1)/(q2 + 1) < q6 − 1 = d(Si) in such a case, see
[TZ1, Theorem 1.1].

(d2) When 2 - niki, Theorem 8.5.7 shows that G contains Si := SUni(q
ei). Since O2(Si) =

1, Si ↪→ L. In the case ((ni − 1)ei, q) = (6, 2), as 2 - ni ≥ 3 we have (ei, ni, n) = (3, 3, 9) or
(1, 7, 7). As j|n and j < n, j|ei and (8.5.9.1) follows in both cases.
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So we may assume that ((ni − 1)ei, q) 6= (6, 2). Then (qei)ni−1 − 1 has a primitive
prime divisor `i [Zs], which then divides both |Si| and |L|. Now suppose that there is some
1 ≤ t < n/j such that `i divides q2tj − 1. Since ni ≥ 3, 2tj < 2n < 3ei(ni − 1). So by
primitivity of `i we either have tj = ei(ni−1) = n−ei or 2tj = ei(ni−1) = n−ei. Since j|n,

(8.5.9.1) follows in both cases. In the remaining case, `i is coprime to
∏n/j−1

t′=1 (q2t′j−1). Hence
the divisor `i of |L| must divide (qj)n/j + 1 = (qei)ni + 1. By the choice of `i, it follows that
`i|(qei + 1) and so (ni, ei) = (3, n/3). In particular, the Sylow `i-subgroups of Si = SU3(qn/3)
are not cyclic, whereas the Sylow `i-subgroups of L are contained in maximal tori of order
qn + 1 and are cyclic. This again contradicts the embedding Si ↪→ L.

(e) We have shown that L = Ω(Wf ) ∼= Ω−2n(q), where Wf is W viewed as a 2n-dimensional
vector space of Fq with quadratic form Qf . Now, the arguments in part (iii) of the proof of
Theorem 8.3.4 show that there is α ∈ F×q such that Q(u) = TrFq/F2(α ·Qf (u)) for all u ∈ Wf .
Rescaling Qf suitably (without any effect on L), we may assume that Q(u) = TrFq/F2(Qf (u))
for all u ∈ Wf , whence H◦f C G ≤ H−1 . Suppose that a1 := |G/H◦f | > 1. By Theorem 1.3.4,

G = O2′(G), and so 2|a1. Now we can apply Theorem 8.2.5(iii) to see that G ≥ H−f . Hence,

by Theorem 8.2.5(ii), G contains an element h ∈ H−f with |Trace(h)| =
√
q, contrary to

Corollary 8.1.2 when mr > 0 and Corollary 8.1.5 when mr = 0. Hence a1 = 1, i.e. G = H◦f
as stated.

(f) Now we determine Garith,k. Over F2, we know that G is symplectically self-dual by
[Ka-MMP, Theorem 8.10.6]. Also, Garith,F2 BG = H◦f . Hence, by Theorem 8.2.5(iii),

GCGarith,F2 ≤ NSp
2N

(C)(G) = G · C2f ;

in particular, Garith,F2/G ↪→ C2f and Garith,Fq2 = G.

Let g denote the image of Frob(1,0,...,0),F2 in Garith,F2 , so that Garith,F2 = 〈G, g〉. Then
b1 := |Garith,F2/G| is the order of g modulo G, and b1|2f . For any x ∈ F2 we have xq

n+1 =
x2 = xq

m1+1, and so ψF2(x
qn+1 + xq

m1+1) = ψF2(0) = 1. It follows that |Trace(g)|2 = 2. Now,
if 2 - b1, then b1|f , and statements (iii)(b) and (i) of Theorem 8.2.5 imply that |Trace(g)|2
is either 0 or a power of 22f/b1 , which is a power of 4, a contradiction. Hence 2|b1, and
b1 = 2b with b|f . In the notation of Proposition 8.2.3(iii) and Theorem 8.2.5(iii), Garith,F2 =
〈H◦f , sf/b〉 ≤ H−f/b. It follows from Theorem 8.2.5(ii) that 2 = |Trace(g)|2 is either 0 or a

power of 2f/b, whence b = f .
We have shown that Garith,F2/G

∼= C2f
∼= Gal(Fq2/F2), and

(8.5.9.2) Garith,F2 = NSp
2N

(C)(H
◦
f ).

In particular, Garith,F2 contains the element s constructed in Theorem 8.2.5(iii) which cor-
responds to the automorphism σ of S := Ω−2n(q), constructed in Proposition 8.2.5 so that
Aut(S) = 〈S, σ〉 ∼= S o C2f . The proof is now completed, since for any subfield k ⊆ Fq2 ,
[Garith,k : Garith,Fq2 ] divides [Fq2 : k] and [Garith,F2 : Garith,k] divides [k : F2]. �

Remark 8.5.10. It is shown in [KT8, Theorem 4.4(i), (ii)] that the assumption nf ≥ 4 in
both Theorems 8.5.5 and 8.5.9 can be removed. Similarly, in the excluded case (n, f) = (3, 1)
of Theorem 8.5.8, it is shown in [KT8, Theorem 4.4(iii)] that, over any extensions k of F4,
G = G(3, 1, 0; 2) hasGarith,k = Ggeom = 21+6

− ·SU3(2), whereas over F2 it hasGarith,F2 = Ggeom·2.





CHAPTER 9

Two further kinds of local systems in characteristic 2

9.1. Another kind of hypergeometric sheaf in characteristic 2

In the paper [KRLT3, §4], we considered the following situation, in arbitrary character-
istic p > 0. We were given two integers A,B, each ≥ 3 and prime to p, with gcd(A,B) = 1.
We formed the hypergeometric sheaf

Hypψ(A×B;1),

whose “upstairs” characters are the (A − 1)(B − 1) characters of the form χρ with χ 6=
1, χA = 1 and ρ 6= 1, ρB = 1, and whose “downstairs” character is the single character 1.
It is defined on Gm/Fq for any finite extension of Fp containing the ABth roots of unity.
One knows [Ka-ESDE, 8.4.2(4)] that Hypψ(A × B;1) is pure of weight (A − 1)(B − 1),
and geometrically irreducible. We showed [KRLT3, 4.1, 4.2] that Hypψ(A × B;1) has
geometrically trivial determinant, and that in chararcteristic p = 2, it is orthogonally self-
dual. We also gave the criterion for the Tate twist

Hypψ(A×B;1)((A− 1)(B − 1)/2),

to have finite arithmetic and geometric monodromy in terms of Kubert’s V -function. The
criterion is that for all x ∈ (Q/Z)prime to p, we have

V (ABx) + V (x) + V (−x) ≥ V (Ax) + V (Bx).

Equivalently, since this trivially holds for x = 0, the criterion is that for all nonzero x ∈
(Q/Z)prime to p, we have

V (ABx) + 1 ≥ V (Ax) + V (Bx).

Theorem 9.1.1. Let a, b be positive integers such that gcd(2a + 1, 2b + 1) = 1. Then in
characteristic p = 2, with

A := 2a + 1, B := 2b + 1,

the sheaf

H0 := Hypψ(A×B;1)((A− 1)(B − 1)/2)

has finite arithmetic and geometric monodromy.

Proof. The criterion in terms of Kubert’s V -function is that for all nonzero x ∈ (Q/Z)prime to 2,
we have

V ((2a + 1)(2b + 1)x) + 1 ≥ V ((2a + 1)x) + V ((2b + 1)x).

In fact, this inequality is the p = 2 case of the following Theorem 9.1.2. [But notice that
Theorem 9.1.2 can only be relevant to a Hyp(A×B,1) situation when p = 2.] �

209
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Theorem 9.1.2. Let p be a prime, a, b positive integers. Then for all nonzero x ∈
(Q/Z)prime to p, we have

V ((pa + 1)(pb + 1)x) + 1 ≥ V ((pa + 1)x) + V ((pb + 1)x).

To give the proof, we need the following lemma.

Lemma 9.1.3. Let p be a prime and c a non-negative integer. Then for all x ∈ (Q/Z)prime to p,
we have the inequality

1 + V (x+ pcx) ≥ 2V (x).

Proof. If x = 0, this trivially holds. Because V (pcx) = V (x), we may rewrite this as

1 + V (x+ pcx) ≥ V (x) + V (pcx).

If x is nonzero, then this is a special case of the assertion that for x, y both nonzero in
(Q/Z)prime to p, we have

1 + V (x+ y) ≥ V (x) + V (y).

To see this, use again the relation V (z) = 1− V (−z) for nonzero z, and rewrite this as

1 + 1− V (−x− y) ≥ 1− V (−x) + 1− V (−y),

i.e.,
V (−x) + V (−y) ≥ V (−x− y).

That this last inequality holds, in fact for all x, y, is one of the fundamental inequalities
of Kubert’s V -function. It trivially holds if any of x, y or x + y vanishes. If they are all
nonzero, it reflects the fact that a Jacobi sum is an algebraic integer, so has nonnegative
p-adic order. �

Equipped with this Lemma 9.1.3, we now give the proof of Theorem 9.1.2.

Proof. We must show that

1 + V ((pa + 1)(pb + 1)x) ≥ V ((pa + 1)x) + V ((pb + 1)x).

We expand the first argument to get

1 + V ((pa + 1)(pb + 1)x) = 1 + V (pa(pb + 1)x+ (pb + 1)x),

which by Lemma 9.1.3, applied with c = a, and x there taken to be (pb + 1)x, is at least
2V ((pb + 1)x). Interchanging the two factors pa + 1 and pb + 1, we get the inequality

1 + V ((pa + 1)(pb + 1)x) ≥ 2V ((pa + 1)x).

Adding these two inequalities, we get

2
(
1 + V ((pa + 1)(pb + 1)x)

)
≥ 2
(
V ((pa + 1)x) + V ((pb + 1)x)

)
,

which is two times the asserted inequality. �

Proposition 9.1.4. Let a, b be positive integers such that gcd(2a + 1, 2b + 1) = 1 and
a + b ≥ 3. Then in characteristic p = 2, with A := 2a + 1, B := 2b + 1, the sheaf H(a, b) :=
Hypψ(A×B;1) is primitive and tensor indecomposable. If a+b ≥ 4, then H satisfies (S+). If
a+b = 3, then H is either in the almost quasisimple case (i)(b) or the extraspecial normalizer
case (i)(c) of [KT5, Lemma 1.1].
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Proof. First we show that H is primitive. As H has only one character downstairs,
it is visibly not Kummer induced. Suppose that it is Belyi induced and apply [KRLT3,
Proposition 1.2]. Again because the tame part Tame of H has dimension 1, H can only be
in case (ii)(a) of [KRLT3, Proposition 1.2], that is, there are positive odd integers C,D and
a multiplicative characters Λ such that C +D = 2a+b and the “upstairs” characters of H are
all of the Cth roots of Λ and all of the Dth roots of σ := Λ−1. Now, the given set of “upstairs”
characters in H is stable under complex conjugation, so C = D and thus C = 2a+b−1 is even,
a contradiction.

Note that H has finite monodromy by Theorem 9.1.1. Now, if a + b ≥ 4, then H has
rank 2a+b ≥ 16, and so H satisfies (S+) by Theorem 5.2.9. Consider the case a+ b = 3. By
[KT5, Proposition 4.10], the image J of I(∞) in the geometric monodromy group G of H
acts irreducibly on Wild of dimension 7. Applying Theorem 1.3.1, we see that H is tensor
indecomposable. Recall by Theorem 9.1.1 that G is finite; in particular, 7 divides |J | and
|G|. Assume H is not in the case (b) or (c) of [KT5, Lemma 1.1(i)(c)]. By Lemma 1.1.7
(and its proof), E(G) = L1 ∗ L2 ∗ L3 is a central product of 3 copies L1

∼= . . . ∼= Ln of a
finite quasisimple group, which are transitively permuted by G, and E(G) is irreducible on H
(and in fact H is 3-tensor induced). By Schur’s lemma, CG(E(G)) ≤ Z(G), and Z(G) ≤ C2

since H is self-dual. It follows that 7 divides |E(G)| and |L1|. On the other hand, the only
quasisimple group that can have a nontrivial 2-dimensional representation over C is SL2(5)
(see e.g. [HM]), a contradiction. �

The next key observation is that the sheaf H(af, bf) = Hypψ(A × B;1), with q := 2f ,
A := qa+1, B := qb+1, and gcd(A,B) = 1, is the same as the sheaf Total(1, A,B) considered
in [KT7, §6], with M = 1; it is geometrically isomorphic to the local system whose trace
function is given in [KT7, Theorem 6.1]: for any finite extension E of F2, the trace at t ∈ E×
is given (recalling that both A,B are odd) by

(9.1.4.1) t 7→ ϕE(t) :=
1

#E

∑
x,w∈E

ψE
(
xw − t−αxqb+1 − tβwqa+1

)
,

for some fixed α, β ∈ Z such that αA−βB = 1. (Recall that ψ is the non-principal character
of (F2,+), and ψE(x) = ψ(TrE/F2(x)). By [KT7, Theorem 12.1] (and its proof), the [AB]?

pullback of Total(1, A,B) admits the trace function

(9.1.4.2) t 7→ ϕ?E(t) :=
1

#E

∑
x,w∈E

ψE
(
txw − xqb+1 − wqa+1

)
,

Now we describe some integrality properties of the trace function ϕE, which holds even
without the assumption gcd(A,B) = 1. For any finite extension E of F2, and any s, t ∈ E×,
we denote by ϕE(s, t) the function

(9.1.4.3) (s, t) 7→ ϕE(s, t) :=
1

#E

∑
x,w∈E

ψE
(
xw − sxqb+1 − twqa+1

)
.

Theorem 9.1.5. For any a, b, f ∈ Z≥1, the following statement holds for the function ϕE
in (9.1.4.3). Let K be a subfield of Fq. If E ⊇ K and s, t ∈ E×, then ϕE(s, t) is either 0, or
± a power of #K.
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Proof. Set

FK(v) := FK(x,w) := TrE/K
(
xw− sxqb+1− twqa+1

)
, 〈u, v〉K := FK(u+ v)−FK(u)−FK(v),

F (v) := F (x,w) := TrK/F2

(
FK(x,w)

)
, 〈u, v〉 = TrK/F2

(
〈u, v〉K

)
,

for any u ∈ E × E and v = (x,w) ∈ E × E. As shown in 11.8.2 of the proof of [KT7,
Theorem 11.8], |ϕE(s, t)|2 is either 0, or #Null(E), where

Null(E) := {v ∈ E × E | 〈u, v〉 = 0, ∀u ∈ E × E};
furthermore, Null(E) is a K vector space, via λ · (x,w) = (λx, λw).

Note that 〈u, v〉K is a K-bilinear form on E × E; moreover, it is alternating as the
characteristic is 2. Set

NullK(E) := {v ∈ E × E | 〈u, v〉K = 0, ∀u ∈ E × E}.
Clearly, if v ∈ NullK(E) then v ∈ Null(E). Conversely, assume that v ∈ Null(E). Then for
any λ ∈ K, λv ∈ Null(E). Also, FK(λu) = λ2 · FK(u). Hence, for any u ∈ E × E we have

0 = 〈λu, λv〉 = TrK/F2

(
FK(λ(u+ v))− FK(λu)− FK(λv)

)
= TrK/F2

(
λ2 · 〈u, v〉K

)
.

Since this is true for all λ ∈ K, we must have that 〈u, v〉K = 0, i.e. v ∈ NullK(E).
We have shown that Null(E) = NullK(E). If d := [E : K], then dimK(E × E) = 2d. On

the other hand, 〈u, v〉K is a non-degenerate alternating K-bilinear form on (E×E)/Null(E),
so the latter quotient has even dimension 2e over K, for some e ∈ Z. Thus #Null(E) =
(#K)2(d−e), and so either ϕE(t) = 0, or |ϕE(t)|2 = (#K)2(d−e). Since we also know that
ϕE(t) ∈ Z, in the latter case we have ϕE(t) = ±(#K)d−e, and the statement follows. �

Before treating the “generic” case (a + b)f ≥ 4, we analyze the special case a + b = 3,
q = p = 2. First we recall the following theorem, which is proven but not stated(!) in
[KRLT4, Theorem 6.5].

Theorem 9.1.6. Let F be a lisse Q`-sheaf on Gm/k, k a finite field of characteristic
p 6= `, which is pure of weight zero and tame at 0. Denote

h2
c := dim(H2

c (Gm/k,F)).

Define the constants

C := dimension of the space of I(0)-invariants in F .

B := Swan∞(F) + h2
c .

A := B − C.
Then we have the following estimate, for Fq/k a finite extension.∣∣∣∣ 1

q − 1

∑
u∈F×q

Trace(FrobFq ,u|F)

∣∣∣∣ ≤ q

q − 1
h2
c +

A
√
q

q − 1
+

B

q − 1
.

Consider the hypergeometric sheaf

(9.1.6.1) H := Hyp(Char×(15),1) = Hypψ(A×B;1),

with A = 2 + 1, B = 22 + 1.
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Theorem 9.1.7. The M2,2 moment of the sheaf H defined in (9.1.6.1) satisfies M2,2(H) ≥
4.

Proof. The hypergeometric sheaf H is of type (8, 1). By [Ka-ESDE, 8.8.1-2], H is
(geometrically) orthogonally self-dual. Therefore M2,2(H) ≥ 3, with equality if and only if
in the natural decomposition

H⊗H = (S2(H)/1) ⊕ 1 ⊕ ∧2(H)

each of these constituents, of ranks 35, 1, 28 respectively, is geometrically irreducible.
To show that M2,2(H) ≥ 4, we will show that the rank 7 Kloosterman sheaf

Kl := Klψ(Char×(3) ∪ Char(5))

is a constituent of H⊗H. By [Ka-ESDE, 8.8.1-2], Kl is (geometrically) orthogonally self-
dual. Because both Kl and H are pure, each is geometrically semisimple, cf. [De2, 3.4.1(iii)].
Thus it is equivalent to show that

Homπgeom
1

(Kl,H⊗H) = H2
c (Gm/F2,H⊗H⊗Kl)

is nonzero.
The question is geometric, so we may replace H by the lisse sheaf H0 on Gm/F2 which

is pure of weight zero and whose trace function is given at points t ∈ E× for E/F2 a finite
extension by (9.1.4.1) in the special case q = 2, a = 1, b = 2, A = 3, B = 5, (α, β) = (2, 1).
Thus the trace function of H0 is

(9.1.7.1) t 7→ ϕE(t) :=
1

#E

∑
x,w∈E

ψE
(
xw − t−2x5 − tw3

)
,

Similarly, we may replace Kl by the pure of weight zero Pink-Sawin sheaf Kl0 on Gm/F2,
cf. [KRLT3, 1.2] which is

Kl0 := f?(Q`)/Q` for f : x 7→ x3(x− 1)5.

Its trace function is given, at points t ∈ E× for E/F2 a finite extension by

t 7→ −1 + #{x ∈ E|x3(x− 1)5 = t}.
With these explicit formulas for the trace functions of H0 and for Kl0, we thus have

explicit formulas for the trace function of the sheaf

F := H0 ⊗H0 ⊗Kl0,
which is lisse of rank 827 = 448 and pure of weight zero on Gm/F2. A calculation in Magma
gives

(9.1.7.2)
∑
t∈F×

212

Trace(FrobF212 ,t
|F) = 4286.

We now apply Theorem 9.1.6 to F , with q = 212. The sheaf H is of type (8, 1), so its
nonzero ∞-slopes are all 1/7. The sheaf Kl is Kloosterman of rank 7, so all of its ∞-slopes
are 1/7. Therefore F has all its ∞-slopes ≤ 1/7, and hence

Swan∞(F) ≤ 64.
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In terms of a character χ ot I(0) of order 15, the character of the I(0)-representation of H is

χ+ χ2 + χ4 + χ7 + χ8 + χ11 + χ13 + χ14,

and the character of the I(0)-representation of Kl is

χ5 + χ10 + χ3 + χ6 + χ9 + χ12 + χ0.

Each of these I(0)-representations is semisimple, because each is the sum of pairwise distinct
linear characters. Checking in Mathematica, by the command,

PolynomialMod([x+x2+x4+x7+x8+x11+x13+x14)2∗(x5+x10+x3+x6+x9+x12+1), x15−1],

one finds that
40 = dimension of the space of I(0)-invariants in F .

We now argue by contradiction. Suppose that h2
c = 0, i.e., that Kl is not a constituent

of H ⊗H. Then in Theorem 9.1.6, we have C = 40, B ≤ 64, A ≤ 24, and hence, over the
field F212 , we have the estimate∣∣∣ 1

4095

∑
t∈F×

212

Trace(FrobF212 ,t
|F)
∣∣∣ ≤ 24 · 64

4095
+

64

4095
= 0.39072 < 1.

But this sum of traces is 4286 by (9.1.7.2), and 4286/4095 > 1, the desired contradiction.
In fact, a faster calculation in Magma over the field of 210 elements shows that∑

t∈F×
210

Trace(FrobF210 ,t
|F) = 1099.

By Theorem 9.1.6 if h2
c were zero, we would have the estimate∣∣∣ 1

1023

∑
t∈F×

210

Trace(FrobF210 ,t
|F)
∣∣∣ ≤ 24 · 32

1023
+

64

1023
= 0.813294 < 1.

But 1099/1023 > 1, again giving the desired contradiction. �

Theorem 9.1.8. Over any finite extension k/F2, the local system H0 defined in (9.1.7.1)
has

Ggeom = Garith,k = 2A8.

Proof. As mentioned in the proof of Theorem 9.1.7, H0 is orthogonally self-dual; fur-
thermore, the character ϕ of the corresponding representation of H := Garith,F2 takes integer
values by (9.1.4.1), in particular,

Z(G) ≤ Z(H) ≤ C2

for G := Ggeom. Since H is of type (8, 1) in characteristic 2, the wild part has dimension 7,
and so G contains elements g∞ of order 7, as well as g0 of order 15 (because of the “upstairs”
characters). Now we can apply Proposition 9.1.4 to G and H.

First we consider the extraspecial normalizer case: G = EX, with E = 21+6
+ and X ≤

O+
6 (2) ∼= S8. In fact X ≤ A8 as G = O2′(G) by [KT5, Theorem 4.1]. The existence of g∞

and g0 implies (using [CCNPW]) that X = A8. But in this case it is easy to check (see also
[GT2, Theorem 1.5]) that M2,2 = 3, contradicting Theorem 9.1.7.
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Hence we are in the almost quasisimple case: S C G/Z(G) ≤ H/Z(H) ≤ Aut(H), with
E(G) = E(H) acting irreducibly on H. Again using the aforementioned information on ϕ,
Z(H), and g0, g∞, and inspecting the list of linear groups in dimension 8 [HM], we see that

E(G) ∈ {2A8,A9, 2A9, 2Ω+
8 (2)}.

The last two cases E(G) = 2A9 and 2Ω+
8 (2) are ruled out by Theorem 9.1.7. In the case

E(G) = A9, ϕ|E(G) would be the character of the deleted permutation module and hence take
value 5 on a 3-cycle, which violates Theorem 9.1.5.

This leaves only the possibility E(G) = 2A8, and hence 2A8 ≤ G ≤ H ≤ 2S8. Since
G = O2′(G), we must have that G = 2A8. Now, if H 6= G, then H = 2S8 (the one in
which 2-cycles lift to elements of order 4), and FrobF2,1 must be in H r G. However, direct
calculation of the traces on H0 of the first eight powers of FrobF2,1, i.e. the traces of FrobF2n ,1

for n ≤ 8, shows that its eigenvalues are the primitive 30th roots of unity, Hence FrobF2,1 has
order 30, and any such element in 2S8 lies in 2A8. Therefore H = 2A8, as stated. �

Proposition 9.1.9. Let a, b be positive integers such that gcd(2a + 1, 2b + 1) = 1 and
a + b ≥ 4. Then in characteristic p = 2, with A := 2a + 1, B := 2b + 1, the sheaf H(a, b) :=
Hypψ(A× B;1) is in the extraspecial normalizer case (i)(c) of [KT5, Lemma 1.1]. In fact,

GB E with E ∼= 2
1+2(a+b)
+ acting irreducibly.

Proof. By Proposition 9.1.4, the (finite) geometric monodromy group G of H(a, b) sat-
isfies (S+) and is either in case (i)(b) or case (i)(c) of [KT5, Lemma 1.1]. Suppose we are in
the former case: G is almost quasisimple with S the unique non-abelian composition factor.
Let g0 be a generator of the image of I(0) in G. By Proposition 2.4.3(i), g0 has simple
spectrum on the underlying representation V of G, and thus G satisfies the hypothesis (?)
of [KT5, §6]. Hence we can apply the classification results of [KT5, §6] to determine S and
E(G), which is also irreducible on V by [KT5, Lemma 1.4].

Note that

(9.1.9.1) dim(V ) = 2a+b ≥ 16

and

(9.1.9.2) ō(g0) = (2a + 1)(2b + 1).

Hence S is not a sporadic group or A7 by [KT5, Theorem 6.4]. Suppose S = An with n 6= 7.
Using [GAP] we can check that in fact n ≥ 8. Hence [KT5, Theorem 6.2] applies and implies
from (9.1.9.1) that n = 2a+b + 1, and ō(g0) = n or k(n − k) with 1 ≤ k ≤ n − 1, whence
ōg0 ≤ n or ō(g0) ≥ 2(n− 2). On the other hand, a+ b ≥ 4 implies that (2a − 1)(2b − 1) ≥ 7,
and so n < ō(g0) < 2(n− 2) by (9.1.9.2), a contradiction.

We conclude that S is a finite simple group of Lie type in characteristic r. Applying
Theorem 3.1.10, we get r = 2. Next we can apply Theorem 3.1.5 to deduce from (9.1.9.1)
that S = SL2(q) with q = 2a+b and ō(g0) ≤ q + 1. The latter however contradicts (9.1.9.2).

Hence we are in the extraspecial normalizer case. Since the sheaf is orthogonally self-dual
of rank 2a+b, we are done by [KT5, Theorem 9.19]. �

Lemma 9.1.10. Let r ∈ {3, 5, 7, 11, 13} and suppose that r - abf . If r 6= 5, then the trace
function ϕ?E in (9.1.4.2) attains the value 2 or −2 for E = F2r . If r = 5 and E = F5

2, then ϕ?E
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attains the value 2 or −2 when abf 2 ≡ ±1(mod 5), and it attains the value 4 or −4 when
abf 2 ≡ ±2(mod 5).

Proof. Note that when x ∈ E and af ≡ e( mod r) we have x1+2af = x1+2e ; furthermore,

ψE
(
x1+2af

)
= ψE

(
x1+2e

)
= ψE

(
(x1+2e)2r−e

)
= ψE

(
x1+2r−e

)
.

Hence, when we compute ϕ?E we can replace af by e′ with 1 ≤ e′ ≤ (r − 1)/2 and af ≡
±e′(mod r), and similarly for b. The computation is then done using Magma. �

Theorem 9.1.11. Let a, b, f be positive integers such that gcd(a, b) = 1, 2|ab, and (a +
b)f ≥ 4. Then in characteristic p = 2, with A := 2af + 1, B := 2bf + 1, the following
statements hold for the sheaf H := Hypψ(A×B;1).

(i) H has geometric monodromy group G ∼= 21+2nf
+ · Ω+

2n(q), with n := a+ b and q := 2f .
(ii) The arithmetic monodromy group Garith,k of the sheaf H0 := H((A− 1)(B − 1)/2) over

any finite extension k ⊇ Fq is equal to G.
(iii) Suppose that some Frobenius has trace ±2, or that 2 - f and some Frobenius has trace
±4 on H0. Then for any subfield k ⊆ Fq we have Garith,k

∼= G ·Gal(Fq/k).
(iv) Suppose that f = 1, or that abf is coprime to some r ∈ {3, 7, 11, 13}, or that 2 - f and

abf is coprime to 5. Then for any subfield k ⊆ Fq we have Garith,k
∼= G ·Gal(Fq/k).

Proof. (a) By Proposition 9.1.9, G is finite and in fact in the extraspecial normalizer

case: G B E with E = 21+2nf
+ that acts irreducibly on the underlying representation V . It

follows that

E CG ≤ NO(V )(E) ∼= E ·O(Q) ∼= E ·O+
2nf (2),

see [NRS, §2], where Q(xZ(E)) = x2 is the quadratic form on W := E/Z(E) ∼= F2nf
2 . Thus

G/E ↪→ O(W ). The definition of H tells us that a generator g0 of the image of I(0) in G
has simple spectrum

{αβ | 1 6= α ∈ µA, 1 6= β ∈ µB}
on V . As shown in [KT5, Theorem 8.5] (whose proof uses Theorem 8.2.1 and Lemma 8.2.2),
the coset g0E can be identified with a generator ḡ0 of a maximal torus C2af+1 × C2bf+1 of
Ω(W ).

Next, some power g′ of a generator g∞ of the image of I(∞) modulo the image of P (∞)
in G has spectrum µ2(a+b)f−1 on the wild part Wild and eigenvalue 1 on the tame part Tame.
Hence, ō(g′) = 2nf − 1 and ϕ(g′) = 1, if ϕ denotes the character of G on V . It follows from
Lemma 7.2.1 that CW (ḡ′) = 0, if ḡ′ denotes the coset g′E. Now we can apply Theorem 8.3.6
to Ḡ := G/E to see that L := Ḡ(∞) is Ω(Wj) ∼= Ω+

2nf/j(2
j) for some

(9.1.11.1) j|nf, and j ≤ nf/2.

(b) We will now show that j = f and Ḡ = Ω(Wf ), so that G = 21+2nf
+ · Ω+

2n(q).
First, Ω(Wj) = Ω+

2nf/j(2
j) contains an element h̄ with a 2-dimensional fixed point subspace

on Wj, and hence |CW (h̄)| = 22j. By Lemma 7.2.1, the coset h̄ in G/E contains an element
h with |ϕ(h)| = 2j. Applying Theorem 9.1.5, we see that 2j is a power of q = 2f , and thus

(9.1.11.2) f |j.
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Recall that a > b ≥ 1. Consider the case af = 3. Then (a, b, f) = (3, 2, 1) and n = 5, in
which case (9.1.11.1) implies that j = 1 = f . It follows that Ω+

10(2)C Ḡ ≤ O(W ) = O+
10(2).

Since [O(W ) : Ω(W )] = 2 and G = O2(G) by [KT5, Theorem 4.1], we have G = E · Ω(W )
as stated.

Assume now that af 6= 3, in which case one can find a primitive prime divisor `1 =
ppd(2, 2af), which divides ō(g0). Then `1 > 2af ≥ 4 and 2af > nf , so `1 - (2j−1). As L acts
absolutely irreducibly on Wj, |EndL(W )| = 2j by Lemma 8.3.2(ii), and so CḠ(L) ↪→ C2j−1.
It follows that `1 divides |Ḡ/CḠ(L)| and |Aut(L)| = |Aut(Ω+

2nf/j(2
j))|, which in turn implies

the existence of some 1 ≤ i ≤ nf/j such that `1|(22ij − 1). The primitivity of `1 now shows
that af |ij. Since ij ≤ nf < 2af , we must have that af = ij, and bf = (a+b)f−af = nf−ij.
Since j|nf by (9.1.11.1) and gcd(a, b) = 1, it follows that j divides gcd(af, bf) = f . Using
(9.1.11.2), we can now deduce that j = f and thus L = Ω+

2n(q).
As n = a + b ≥ 3 is odd, Aut(L) = O+

2n(q) · Cf (see [KlL, Table 5.1.A]), and this group
certainly embeds in O(W ). We claim that

CO(W )(L) = 1.

Indeed, Lemma 8.3.2 shows that EndL(W ) consists of the scalar maps on Wf . On the other
hand, the form Qf on Wf links to the form Q on W via Q(v) = TrFq/F2(α · Qf (v)) for some
α ∈ F×q . Suppose that the map v 7→ λv belongs to CO(W )(L) for some λ ∈ F×q . Then for all
v ∈ Wf we have

TrFq/F2(α · Qf (v)) = Q(v) = Q(λv) = TrFq/F2(α · Qf (λv)) = TrFq/F2(αλ
2 · Qf (v)).

Since n ≥ 3, Qf takes all values in Fq. Hence the previous equality implies that λ = 1, and
the claim follows. We have therefore shown that

(9.1.11.3) Ω+
2n(q) = LC Ḡ ≤ O+

2n(q) · Cf .
As mentioned above, ḡ0 = diag(ḡ1, ḡ2) is a generator of a cyclic torus Cqa+1×Cqb+1 < Ω(W ).
We may assume that ḡ1 generates the Cqa+1 factor of a maximal torus T ∼= Cqa+1×Cqb+1 < L.
Now ḡ0 belongs to

CO+
2n(q)·Cf (Cqa+1) = Cqa+1 ×O−2b(q) < O+

2n(q)

(since Cf acts on Cqa+1 via field automorphisms), whence ḡ0 ∈ O+
2n(q). In fact, as o(g0) is

odd, ḡ0 ∈ L. Again using G = O2(G), we conclude that G = E · Ω(Wf ).

(e) The rest of the proof is to deal with the arithmetic monodromy group H := Garith,F2

of H0. Clearly, H normalizes G = E ·L and E = O2(G). Since the underlying representation
V is orthogonal, we now have

E CH ≤ NO(V )(E) ∼= E ·O(Q) ∼= E ·O+
2nf (2).

The proof of (9.1.11.3), together with Proposition 8.2.4, then shows that

(9.1.11.4) Ω+
2n(q) = LCH/E ≤ A ∼= O+

2n(q) · Cf .
Here, A/L ∼= C2f if 2 - f and A/L ∼= C2 × Cf if 2|f .

Suppose 2|f . Then exp(A/L) = f , so hf ∈ G for any h ∈ H. As H = 〈G,FrobF2,1〉,
it follows that FrobF

2f
,1 = FrobfF2,1

∈ G. Since Garith,Fq = 〈G,FrobF
2f
,1〉, we conclude that

Garith,Fq = G. We have also shown that |H/G| divides f .
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(f) Here we consider the case f is odd.
Suppose H/G has even order. As A ∼= C2f , it follows from (9.1.11.4) that H/G ∼=

(H/E)/L contains the central involution of A/L, and hence H ≥ E · O+
2n(q). Thus H/E

contains a reflection ρ of O(Wf ), which has a fixed point subspace of size q = 2f on W .
Lemma 7.2.1 applied to ρ then yields an element ρ1 ∈ H with |ϕ(ρ1)| = 2f/2, where ϕ is the
character of V . But this means ϕ(ρ1) /∈ Z, contrary to Theorem 9.1.5.

We have shown that H/G has odd order, and hence H/G ↪→ Cf . So we again have
hf ∈ G for all h ∈ G. The final argument in (e) can be repeated to show that Garith,Fq = G.
In particular, we are done if f = 1.

By Lemma 9.1.10, we may now assume that |ϕ(h0)| ∈ {2, 4} for some h0 ∈ H, and need
to show that e := |H/G| equals to f . Part (b) of the proof of Proposition 8.2.4 shows that
H/G = 〈σf/e〉, with σ defined in (8.2.4.2). The fixed point subspace of σf/e acting on W
has size 22nf/e, of even dimension over F2f/e . It follows that H/E = 〈L, σf/e〉 ≤ Ω+

2ne(2
f/e).

In particular, the fixed point subspace of any element h ∈ H while acting on W has even
dimension over F2f/e . This implies by Lemma 7.2.1 that |ϕ(h)| is a power of 2f/e. Applying
this to h0, we see that e = f , as desired.

(g) Finally we complete the case 2|f . By Lemma 9.1.10, we may assume that

(9.1.11.5) |ϕ(h0)| = 2

for some h0 ∈ H, and need to show that e := |H/G| equals to f . As shown in (e), e|f .
Assume the contrary that e < f ; in particular e ≤ f/2.

Recall from the proof of Proposition 8.2.4 that H/G ≤ A/L = 〈j, σ〉 ∼= C2 × Cf , with
σ defined in (8.2.4.2) and j defined in (8.2.4.2). Now if H/G ≤ 〈σ〉, then H/G = 〈σf/e〉,
and the last paragraph of (f) shows that |ϕ(h)| is a power of 2f/e for any h ∈ H. But this
contradicts (9.1.11.5).

Hence H/G = 〈jσk〉 for some k ∈ Z. As jσk has order e, we must have that 2|e and
f |(ke), i.e.

(9.1.11.6) 2|e, e|f, e ≤ f

2
,
f

e
divides k.

Note that

j ∈ O+
2n(q) = O+

2n(2f ) < Ω+
4n(2f/2) ≤ Ω+

2ne(2
f/e).

Furthermore, σf/e is F2f/e-linear, and |CW (σf/e)| = 22f/e, so σf/e ∈ Ω+
2ne(2

f/e). Using
(9.1.11.6) we then have that σk ∈ Ω+

2ne(2
f/e), and so

jσk ∈ Ω+
2ne(2

f/e) ≥ Ω+
2n(q).

It follows that the fixed point subspace of any element h ∈ H while acting on W has even
dimension over F2f/e . Again, this implies by Lemma 7.2.1 that |ϕ(h)| is a power of 2f/e for
any h ∈ H. But this contradicts (9.1.11.5) since e ≤ f/2. �

The Pink–Sawin sheaf Kl(Charntriv(pn + 1)), and the local systems in Theorem 8.5.5 and
Theorem 9.1.11 are hypergeometric sheaves in characteristic p with finite monodromy groups
which are extraspecial p-normalizers. The converse of this statement is settled in [Y].
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9.2. Local systems in characteristic 2 with Witt vectors: The F2 story

Fix a primitive 4th root of unity i ∈ C. Given an integer n ≥ 2 and a list of odd integers

A1 > A2 > . . . > An ≥ 1,

we consider the local system

(9.2.0.1) G](A1, . . . , An)

on Gm × An−1/F2 of rank A1 − 1 whose trace function is given as follows: for k/F2 a finite
extension, and (t1, . . . , tn) ∈ k× × kn−1,

Trace
(
Frob(t1,...,tn),k|G](A1, . . . , An)

)
=

−1

(1 + i)deg(k/F2)

∑
x∈k

ψk(t
A1
1 xA1 +

n∑
j=2

tjx
Aj).

[Up to the half Tate twist, this is the trace function of R1f!Lψ(t
A1
1 xA1+

∑n
j=2 tjx

Aj )
for f the

projection (x, t1, . . . , tn) 7→ (t1, . . . , tn).] We also consider the local system

(9.2.0.2) G(A1, . . . , An)

on An−1/F2 of rank A1−1 whose trace function is given as follows: for k/F2 a finite extension,
and (t2, . . . , tn) ∈ kn−1,

(9.2.0.3) Trace
(
Frob(t2,...,tn),k|G(A1, . . . , An)

)
=

−1

(1 + i)deg(k/F2)

∑
x∈k

ψk(x
A1 +

n∑
j=2

tjx
Aj).

By means of the change of variables (x, t1, . . . , tn) 7→ (x/t1, 1, t2/t
A2
1 , . . . , tn/t

An
1 ), we see

that the local system G](A1, . . . , An) on Gm × An−1/F2 is isomorphic to the pullback, by

pr2 : Gm × An−1 → An−1, (t1, . . . , tn) 7→ (t2, . . . , tn),

of the local system G(A1, . . . , An) on An−1/F2. In other words, G](A1, . . . , An) on Gm ×
An−1/F2 is the external tensor product of the constant sheaf Q` on Gm/F2 with the local
system G(A1, . . . , An) on An−1/F2. In particular, the two local systems

G](A1, . . . , An) and G(A1, . . . , An)

have the same Garith as each other, and the same Ggeom as each other.

We next consider some local systems built out of Witt vectors of length 2 in characteristic
2 and the aforementioned local systems G(A1, . . . , An) and G](A1, . . . , An).

We fix the isomorphism W2(F2) ∼= Z/4Z given by the map

[a, b] 7→ a2 + 2b (mod 4),

and denote by ψ2 the additive character of W2(F2) given by n 7→ in. For k/F2 a finite
extension, we denote by ψ2,k the additive character of W2(k) given by composition with

Tracek/F2 : W2(k)→ W2(F2).

The first is the local system

(9.2.0.4) W(A1, . . . , An)



220 9. FURTHER KINDS OF LOCAL SYSTEMS IN CHARACTERISTIC 2

of rank A1 − 1 on An/F2, with coordinates (s, t2, . . . , tn), whose trace function is given as
follows. For k/F2 a finite extension, and (s, t2, . . . , tn) ∈ kn,

Trace
(
Frob(s,t2,...,tn),k|W(A1, . . . , An)

)
=

−1

(1 + i)deg(k/F2)

∑
x∈k

ψ2,k([sx, x
A1 +

n∑
j=2

tjx
Aj ]).

The second is the local system

(9.2.0.5) W](A1, . . . , An)

of rank A1 − 1 on Gm × An−1/F2 whose trace function is given as follows: for k/F2 a finite
extension, and (t1, . . . , tn) ∈ k× × kn−1,

Trace
(
Frob(t1,...,tn),k|W](A1, . . . , An)

)
=

−1

(1 + i)deg(k/F2)

∑
x∈k

ψ2,k([x, t
A1
1 xA1 +

n∑
j=2

tjx
Aj ]).

The third is the local system

(9.2.0.6) W]
0(A1, . . . , An)

of rank A1−1 on An−1/F2 whose trace function is given as follows: for k/F2 a finite extension,
and (t2, . . . , tn) ∈ kn−1,

Trace
(
Frob(t2,...,tn),k|W]

0(A1, . . . , An)
)

=
−1

(1 + i)deg(k/F2)

∑
x∈k

ψ2,k([x, x
A1 +

n∑
j=2

tjx
Aj ]).

Thus W]
0 is lisse on An−1, obtained from W by pullback to s = 1, or obtained from W] by

pullback to t1 = 1.

Lemma 9.2.1. Let k/F2 be a finite extension, f(x) ∈ k[x] a polynomial of odd degree
A ≥ 3, B an odd integer with 1 ≤ B < A. Consider the local system T (f,B) of rank A− 1
on A1/k whose trace function is given as follows: for L/k a finite extension, and t ∈ L,

Trace
(
Frobt,L|T (f,B)) =

−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([x, f(x) + txB]).

Then T (f,B) is pure of weight zero and is geometrically irreducible.

Proof. The purity goes back to Weil and is immediate from the fact that, for each t,

Lψ2,L([x,f(x)+txB ])

is pure of weight zero and lisse of rank one on the affine x-line, and is (totally) wildly ramified
at∞ (indeed with Swan∞ = A1). To see the geometric irreducibility, we compute the second
absolute moment M1,1, cf. [KT6, Prop. 2.1]. Over a fixed finite extension L/k, the empirical
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M1,1 is the sum

1

(#L)2

∑
x,y,t∈L

ψ2,L([x, f(x) + txB])ψ2,L(−[y, f(y) + tyB])

=
1

(#L)2

∑
x,y,t∈L

ψ2,L([x, f(x) + txB]− [y, f(y) + tyB])

=
1

(#L)2

∑
x,y,t∈L

ψ2,L([x, f(x) + txB] + [y, y2 + f(y) + tyB])

=
1

#L

∑
x,y∈L

ψ2,L([x+ y, xy + y2 + f(x) + f(y)])
( 1

#L

∑
t∈L

ψL(t(xB + yB))
)
.

The second factor is 1 if xB = yB and 0 otherwise. Thus over a field L which contains the
Bth roots of unity, the empirical M1,1 is

1

#L

(
−(B − 1) +

∑
ζ∈µB

∑
x,y=ζx∈L

ψ2,L([x+ y, xy + y2 + f(x) + f(y)])
)
,

the initial −(B−1) to compensate for overcounting the B pairs (x, y) = (0, 0). The summand
for ζ = 1, i.e. x = y, is identically #L. Each of the other summands is∑

x∈L

ψ2,L([(1 + ζ)x, ζx2 + ζ2x2 + f(x) + f(ζx)]).

The key point is that, when 1 + ζ 6= 0, this last sum has absolute value ≤ (A− 1)
√

#L. To
see this, note that any lisse sheaf Lψ2,L([(1+ζ)x, any polynomial]) is lisse of rank one, pure of weight
zero. So it suffices to note that it is geometrically nonconstant, because its tensor square is

Lψ((ζ+1)2x2)
∼= Lψ((ζ+1)x),

which is geometrically non-constant, having Swan∞ = 1. �

Corollary 9.2.2. Each of the local systems

W(A1, . . . , An), W](A1, . . . , An), and W]
0(A1, . . . , An),

see (9.2.0.4), (9.2.0.5), (9.2.0.6), is geometrically irreducible.

Proof. Indeed, each has a geometrically irreducible pullback. �

Lemma 9.2.3. None of the local systems T (f,B) of Lemma 9.2.1 is geometrically self-
dual.

Proof. The claim here is that Homπgeom
1

(T (f,B)∨, T (f,B)) = 0. This in turn amounts
to the statement that the literal second moment M2,0 = 0, i.e. that as L/F16 grows, the
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empirical M2,0, which is the sum

1

(#L)2

∑
x,y,t∈L

ψ2,L([x, f(x) + txB])ψ2,L([y, f(y) + tyB])

=
1

(#L)2

∑
x,y,t∈L

ψ2,L([x, f(x) + txB] + [y, f(y) + tyB])

=
1

#L

∑
x,y∈L

ψ2,L([x+ y, xy + f(x) + f(y)])
( 1

#L

∑
t∈L

ψL(t(xB + yB))
)
.

Exactly as in the proof of Lemma 9.2.1, over a field L/F16 which contains the Bth roots of
unity, the empirical M2,0 is

1

#L

(
−(B − 1) +

∑
ζ∈µB

∑
x,y=ζx∈L

ψ2,L([x+ y, xy + f(x) + f(y)])
)
.

The summand for ζ = 1 is∑
x∈L

ψ2,L([0, x2]) =
∑
x∈L

ψL(x2) =
∑
x∈L

ψL(x) = 0.

For each ζ with ζ + 1 6= 0, the summand for ζ has absolute value ≤ (A− 1)
√

#L, just as in
the proof of Lemma 9.2.1. �

Corollary 9.2.4. None of the local systemsW(A1, . . . , An),W](A1, . . . , An), orW]
0(A1, . . . , An)

is geometrically self-dual.

Proof. Indeed, each has a pullback which is not geometrically self-dual. �

When we restrict W(A1, . . . , An) to the open set where s is invertible, which changes
neither its Garith nor its Ggeom, the change of variable x 7→ x/s gives an equality of trace
functions

Trace
(
Frob(s,t2,...,tn),k|W(A1, . . . , An)

)
= Trace

(
Frob(1/s,t2/sA2 ,...,tn/sAn ),k|W](A1, . . . , An)

)
.

Thus the automorphism Φ : (s, t2, . . . , tn) 7→ (1/s, t2/s
A2 , . . . , tn/s

An) of Gm×An−1/F2, gives
an isomorphism of local systems

W(A1, . . . , An)|Gm×An−1
∼= Φ?W](A1, . . . , An).

On the other hand, we recover G(A1, . . . , An) on An−1/F2 as the pullback ofW(A1, . . . , An)
to the hyperplane s = 0. Thus we have equalities and inclusions of monodromy groups as
follows:

(9.2.4.1)
Garith,W](A1,...,An) = Garith,W(A1,...,An) ≥ Garith,G(A1,...,An) = Garith,G](A1,...,An),

Ggeom,W](A1,...,An) = Ggeom,W(A1,...,An) ≥ Ggeom,G(A1,...,An) = Ggeom,G](A1,...,An).

Now, for any odd integers

A1 > A2 > . . . Am ≥ 1,
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we consider one more local system W∗(A1, . . . , Am) on A1 × Gm × (A1)m−1, whose trace
formula is given by

(9.2.4.2) (s, t1, . . . , tm) 7→ −1

(1 + i)deg(k/F2)

∑
x∈k

ψ2,k([sx,
m∑
j=1

tjx
Aj ]).

Proposition 9.2.5. For any n,m ∈ Z≥2 and any q = 2f , let

A1 = qn + 1, A2 = qn2 + 1, . . . , Am−1 = qnm−1 + 1,

and either Am = qnm + 1 with n > n2 > . . . > nm ≥ 1, or n > n2 > . . . > nm−1 ≥ 1 and
Am = 1. Then each of the local systems W∗(A1, . . . , Am), W(A1, . . . , Am), W](A1, . . . , Am),

and W]
0(A1, . . . , Am) is geometrically irreducible of rank 2n, has finite arithmetic monodromy

groups, and is geometrically non-self-dual. Furthermore, all the arithmetic traces are Gauss-
ian integers. Moreover, over any finite extension k ⊇ F2, the square absolute values of
arithmetic traces are either 0 or a 2-power; and in fact they are either 0 or a power of q if
k ⊇ Fq.

Proof. The geometric irreducibility and geometric non-self-duality are special cases of
Corollaries 9.2.2 and 9.2.4. It is visible from the formula for Frobenius traces that these
traces all lie in Q(i). The van der Geer–van der Vlugt argument, cf. [vdG-vdV, §5] and the
proof of [AKNOT, Proposition 9.9] then shows that these traces lie in Z[i].

To prove the last statement for any of the listed local systems, it suffices to work with
the more general trace formula (9.2.4.2) for W := W∗(A1, . . . , Am). If Am = qnm + 1 with
nm ≥ 1, then we rewrite the input Witt vector at (s, t1, . . . , tm) as

(9.2.5.1) V (x) := [sx, xR(x)] with R(x) :=
m∑
i=1

tix
qni .

When Am = 1, then we define nm = 0 and note that the term tmx is Artin-Schreier equivalent
to t2mx

2
m = t2mx

qnm+1
m , and can use the same formula (9.2.5.1) with tm suitable adjusted. With

this rewriting, we apply the idea of van der Geer-van der Vlugt, cf. [vdG-vdV, §5], as follows.
In Witt vector addition in F2-algebras, using the fact that R(x) is an additive polynomial,
we get

V (x+ y)− V (x)− V (y) = [s(x+ y), (x+ y)(R(x) +R(y))] + [sx, xR(x) + s2x2] + [sy, yR(y) + s2y2]

= [sy, s2(x+ y)x+ (x+ y)(R(x) +R(y)) + xR(x) + s2x2] + [sy, yR(y) + s2y2]

= [0, s2y2 + s2(x+ y)x+ (x+ y)(R(x) +R(y)) + xR(x) + s2x2 + yR(y) + s2y2]

= [0, s2xy + xR(y) + yR(x)]

= [0, 〈x, y〉]
for

〈x, y〉 := s2xy + xR(y) + yR(x).

The key point is that 〈x, y〉 on k×k is a symmetric F2-bilinear map to k, and Tracek/F2(〈x, y〉)
is a symmetric F2-bilinear form on k × k as F2 vector space. Then

|Trace(Frob(s,t1,...,tm),k|W)|2 = (1/#k)
∑
x,y∈k

ψ2

(
Tracek/F2(V (x)− V (y))

)
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(by the shearing transformation (x, y) 7→ (x+ y, y))

= (1/#k)
∑
x,y∈k

ψ2

(
Tracek/F2(V (x+ y)− V (y))

)
= (1/#k)

∑
x,y∈k

ψ2

(
Tracek/F2(V (x) + [0, 〈x, y〉])

)
=
∑
x∈k

ψ2

(
Tracek/F2(V (x))

)(
(1/#k)

∑
y∈k

ψ
(
Tracek/F2(〈x, y〉)

))
.

The second summand vanishes unless the given x ∈ k has Tracek/F2(〈x, y〉) = 0 for all y ∈ k,
in which case it is 1.

Note that for x, y ∈ k,

〈x, y〉 = s2xy + xR(y) + yR(x) = s2xy +
m∑
i=1

tixy
qni +

m∑
i=1

ytix
qni

has the same Tracek/F2 as
(
s2x+

∑m
i=1(tix)1/qni +

∑m
i=1 tix

qni
)
y. So by nondegeneracy of the

trace, x ∈ k has Tracek/F2(〈x, y〉) = 0 for all y ∈ k if and only if
(9.2.5.2)

s2x+
m∑
i=1

(tix)1/qni +
m∑
i=1

tix
qni = 0, equivalently, s2qnxq

n

+
m∑
i=1

tq
n−ni
i xq

n−ni +
m∑
i=1

tq
n

i x
qn+ni = 0.

Note that the set Kers,t1,...,tm(k) of all x ∈ k satisfying (9.2.5.2) is a vector space over F2, and
we have ∣∣Trace(Frob(s,t1,...,tm),k|W)

∣∣2 =
∑

x∈Kers,t1,...,tm (k)

ψ2

(
Tracek/F2(V (x))

)
.

Now, on Kers,t1,...,tm(k), the map x 7→ Tracek/F2(V (x)) is additive, i.e. a linear form. If it
is nontrivial, the sum giving |Trace(Frob(s,t1,...,tm),k|W)|2 vanishes. If it is trivial, this sum is
#Kers,t1,...,tm(k), and hence a 2-power. If in addition k ⊇ Fq, then Kers,t1,...,tm(k) is a vector
space over Fq, and hence |Trace(Frob(s,t1,...,tm),k|W)|2 is either 0 or a power of q. �

Theorem 9.2.6. Let k/F2 be a finite extension and f(x) ∈ k[x] a polynomial of odd
degree A ≥ 5. Consider the local system T (f, 3, 1) on A2/k whose trace function is given as
follows. For L/k a finite extension, and (s, t) ∈ L2,

Trace
(
Frob(s,t),L|T (f, 3, 1)

)
=

−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([x, f(x) + sx3 + tx]).

Then T (f, 3, 1) is pure of weight zero and has M2,2 = 2.

Proof. The purity goes back to Weil. For L/k a finite extension, the empirical M2,2(L)
is the sum

1

(#L)2

∑
s,t∈L

|Trace(Frob(s,t),L|T (f, 3, 1))|4 =
1

(#L)4

∑
s,t∈L

∑
x,y,z,w∈L

ψ2,L([x, f(x) + sx3 + tx] + [y, f(y) + sy3 + ty]− [z, f(z) + sz3 + tz]− [w, f(w) + sw3 + tw]).
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The argument of ψ2,L is thus the Witt vector sum

[x, f(x) + sx3 + tx] + [y, f(y) + sy3 + ty]

+ [z, z2 + f(z) + sz3 + tz] + [w,w2 + f(w) + sw3 + tw]

= [x+ y, xy + f(x) + f(y) + s(x3 + y3) + t(x+ y)]

+ [z + w, zw + z2 + w2 + f(z) + f(w) + s(z3 + w3) + t(z + w)]

=
[x+ y + z + w, (x+ y)(z + w) + xy + zw + z2 + w2+
f(x) + f(y) + f(z) + f(w) + s(x3 + y3 + z3 + w3) + t(x+ y + z + w)],

which we write as the sum of the two Witt vectors

[x+ y + z + w, (x+ y)(z + w) + xy + zw + z2 + w2 + f(x) + f(y) + f(z) + f(w)]+

+[0, s(x3 + y3 + z3 + w3) + t(x+ y + z + w)].

Denoting f̃(x, y, z, w) := (x + y)(z + w) + xy + zw + z2 + w2 + f(x) + f(y) + f(z) + f(w),
the empirical M2,2(L) is the sum

1

(#L)2

∑
x,y,z,w∈L

ψ2,L([x+y+z+w, f̃(x, y, z, w)])· 1

(#L)2

∑
s,t∈L

ψL
(
s(x3+y3+z3+w3)+t(x+y+z+w)

)
.

This last sum over s, t vanishes unless both x3 + y3 + z3 + w3 = 0 and x+ y + z + w = 0.
One knows, cf. [Ka-MMP, Sublemma 3.11.4] that in L the only simultaneous solutions

of the two equations x3 + y3 + z3 + w3 = x+ y + z + w = 0 are given by the three planes

P1 : x = y, z = w, P2 : x = z, y = w, and P3 : x = w, y = z.

Let us recall the argument. Substituting for w as x+ y + z, we get the single equation

x3 + y3 + z3 + (x+ y + z)3 = 0.

Over F2, this cubic form factors as (x+y)(x+z)(y+z), and we are done. The intersection of
any two of these planes is the line D : x = y = z = w. On any of these planes, the quantities
x, y, z, w agree in pairs, so whatever the polynomial f , we have f(x)+f(y)+f(z)+f(w) = 0,
and also x+ y + z + w = 0. So our empirical M2,2(L) is the sum∑

i=1,2,3

1

(#L)2

∑
(x,y,z,w)∈Pi(L)

ψL((x+ y)(z + w) + xy + zw + z2 + w2)

minus twice the sum over D, namely

1

(#L)2

∑
x=y=z=w∈L

ψL((x+ y)(z + w) + xy + zw + z2 + w2) =
1

(#L)2

∑
x=y=z=w∈L

ψL(0) =
1

#L
.

The sum over P1 vanishes, because it is

1

(#L)2

∑
x,z∈L

ψL((x+x)(z+z)+x2+z2+z2+z2) =
1

(#L)2

∑
x,z∈L

ψL(x2+z2) =
1

(#L)2

∑
x,z∈L

ψL(x+z) = 0.

The sum over each of P2, P3 is identically 1, because the argument (x+y)(z+w)+xy+zw+z2+
w2 vanishes: when, for example, x = w and y = w, the argument is (x+y)2+xy+xy+x2+y2.
Thus the empirical M2,2(L) is 2− 2/#L. Its “large L limit” is thus 2. �
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Fix any n ∈ Z≥2. As shown in [Gri, Theorem 5(b)], there is a 2-group Ẽ of order 22n+2,
which is a central product E ∗〈z〉 of the extraspecial 2-group E = 21+2n

− with the cyclic group
〈z〉 of order 4, so that Z(E) = 〈z2〉 and

Aut+(Ẽ) = Ẽ/Z(Ẽ) · Sp2n(2),

where Aut+(Ẽ) = {σ ∈ Aut(Ẽ) | σ(z) = z} has index 2 in Aut(Ẽ). Note that, up to
equivalence, Ẽ has two (dual to each other) faithful irreducible complex representations of
degree 2n, which restrict to the unique irreducible representation of degree 2n of E. Each of
them is invariant under Aut+(E) and extends to yield a finite irreducible subgroup

(9.2.6.1) Γ̃(2, n) ∼= Ẽ · Sp2n(2) < GL2n(C)

(that induces Aut+(Ẽ) while acting via conjugation on Ẽ); moreover,

(9.2.6.2) NGL2n (C)(Ẽ) = Z(GL2n(C))Γ̃(2, n).

Suppose now n = bs ≥ 3 with b, s ∈ Z≥1. By a standard subgroup Sp2b(2
s) of Sp2n(2) we mean

a subgroup Sp(Us) with Us = F2b
2s equipped with a non-degenerate F2s-valued alternating

form (·, ·)s, and then embedded in Sp(U1) ∼= Sp2n(2) with U1 = F2n
2 equipped with the

non-degenerate F2-valued alternating form TrF2s/F2

(
(·, ·)s

)
. Note that the normalizer of such

subgroup in Sp(U1) is the semidirect product Sp(Us)oCs of Sp(Us) by a cyclic group of order
s induced by the absolute Frobenius x 7→ x2. Let Γ̃◦(2s, b) = Ẽ · Sp2b(2

s) denote the full
inverse of such a standard subgroup Sp2b(2

s) in Γ̃(2, n), and let Γ̃(2s, b) = Ẽ · (Sp2b(2
s)oCs)

denote the full inverse of Sp2b(2
s) o Cs in Γ̃(2, n).

Lemma 9.2.7. (i) If n ≥ 3 then Γ̃(2, n) = Ẽ · Sp2n(2) is perfect.
(ii) Suppose n = bs ≥ 3 with b, s ∈ Z≥1. Then Γ̃◦(2s, b) = Ẽ · Sp2b(2

s) is perfect.

(iii) Suppose n = 3s with s ∈ Z≥2. Then the full inverse image Ẽ · G2(2s) of G2(2s) in the

subgroup Γ̃◦(2s, 3) = Ẽ · Sp6(2s) is perfect.

Proof. (i) Since Γ := Γ̃(2, n) contains H◦1 = 21+2n
− ·Ω−2n(2) which is perfect (as mentioned

after (8.2.2.1)), we see that Z[Γ,Γ] ≥ Ẽ and Z ∩ [Γ,Γ] ≥ 〈z2〉 for Z := Z(Ẽ) = 〈z〉. But
Sp2n(2) is simple when n ≥ 3, so Z[Γ,Γ] = Γ.

If [Γ,Γ] ≥ Z, then [Γ,Γ] = Γ as stated. Otherwise for F := [Γ,Γ]∩ẼCΓ we have FZ = Ẽ,
Z ∩ F = 〈z2〉 =: Z1, and |F | = 22n+1. In this case, Z1 = [Ẽ, Ẽ] = [FZ, FZ] = [F, F ]. Next,
F/Z1 = F/(F ∩ Z) ∼= FZ/Z = Ẽ/Z is elementary abelian, so Φ(F ) = Z1. Since FZ = Ẽ is
centralized by Z(F ), we also have Z(F ) = Z(Ẽ)∩F = Z∩F = Z1. Thus F is an extraspecial
2-group of type ε = ±: F ∼= 21+2n

ε . Since F acts faithfully on C2n , this action is irreducible,
and F C Γ now implies that Γ embeds in NGL2n (C)(F ) = Z(GL2n(C))F · Oε

2n(2), which is
impossible.

(ii) Denote X := Γ̃◦(2s, b) and Y := X(∞). Since the simple group Sp2b(2
s) acts faithfully

and irreducibly on Ẽ/Z(Ẽ), we have that Z(Ẽ)Y = X and so [X : Y ] divides 4. If [X : Y ] = 4,
then X = Z(Ẽ)×Y and so Ẽ = Z(Ẽ)× (Ẽ∩Y ) splits over Z(E), a contradiction. It remains
to consider the case [X : Y ] = 2, whence z2 ∈ Y and Y ∩ Z(Ẽ) = 〈z2〉. In this case, the
arguments in (i) again show that F := Y ∩ Ẽ is extraspecial of order 21+2n, and X embeds
in NGL2n (C)(F ) = Z(GL2n(C))F ·Oε

2n(2). This gives rise to an embedding Sp2b(2
s) ↪→ Oε

2n(2)
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and so Sp2b(2
s) supports a non-degenerate F2-valued quadratic form on Us = F2b

2s , which is
impossible, see Theorem 8.3.1 and its proof.

(iii) Argue as in (ii), using the fact that G2(2s) cannot support a non-degenerate F2-valued
quadratic form on Us = F6

2s when s ≥ 2. �

The main result of this section is the following theorem, which, for the first time, produces
explicit local systems with geometric monodromy groups of shape (4 ∗ 21+2n

± ) · Sp2n(2):

Theorem 9.2.8. Let n ∈ Z≥4 and A1 = 2n + 1. If 2|n, let r = 3, A2 = 3, A3 = 1. If
2 - n, let r = 4, A2 = 5, A3 = 3, A4 = 1. Then each of the local systems W(A1, . . . , Ar)
and W](A1, . . . , Ar), introduced in (9.2.0.4), (9.2.0.5), has both arithmetic and geometric
monodromy groups equal to the group Γ̃(2, n) defined in (9.2.6.1).

Proof. (a) By (9.2.4.1), it suffices to prove the statement for W := W(A1, . . . , Ar).
Let G = Ggeom, respectively G̃ = Garith,F2 , denote the geometric, respectively arithmetic,

monodromy group of W . Let V = C2n denote the underlying representation for G̃ and G.
By (9.2.4.1), we have

G ≥ Ggeom,G(A1,...,Ar), G̃ ≥ Garith,G(A1,...,Ar),F2 .

Let us also set m1 := 1 if 2|n, and (m1,m2) := (2, 1) if 2 - n. The trace formula (9.2.0.3)
shows that G(A1, . . . , Am) is the same as the local system G(n,m1, . . . ,mr−2, 0; 2) considered
in §8.5, but with a different clearing factor. Note that a change of clearing factor does
not affect the geometric monodromy group, and also preserves the image of the arithmetic
monodromy group in PGL(V ). It then follows from Theorem 8.5.9 (and its proof) that

(9.2.8.1) ZG ≥ H◦1 = E · Ω−2n(2), ZG̃ ≥ H−1 = Γ(2, n,−) = E ·O−2n(2)

where Z := Z(GL(V )), and H◦1 satisfies (S+); in particular, both G and G̃ satisfy (S+).
Moreover, Lemma 8.2.2 shows that a cyclic torus C2n+1 in Ω−2n(2) gives rise to an ssp-element
of order 2n + 1 in G. As G̃ is finite by Proposition 9.2.5, we can apply Theorem 8.4.5(a) to
G and G̃. Taking derived subgroups in (9.2.8.1) we obtain

(9.2.8.2) [G̃, G̃] ≥ [G,G] ≥ [H◦1 , H
◦
1 ] = H◦1 = E · Ω−2n(2).

It follows that
|G/Z(G)| ≥ 22n|Ω−2n(2)| > 2n(2n+1)−2 > (2n+1 + 1)4,

so the case PSL2(q) ≤ G/Z(G) ≤ Aut(PSL2(q)) with q ≤ 2n+1 + 1 is impossible. Hence G
and G̃ must be in the extraspecial normalizer case of [KT5, Lemma 1.1], i.e.

RCGC G̃,

where R = Z(R)E1 with E1 = 21+2n
ε and Z(R) ↪→ C4.

(b) Consider the case R = E1. Then G̃ ≤ NGL(V )(E1) = ZE1 ·Oε
2n(2) = ZH−1 . Together

with (9.2.8.1), this implies that ε = −. The key observation now is that, in this situation, G̃
and G have

(9.2.8.3) M2,2(V ) = 3.

(Indeed, G̃ and H−1 have the same image in PGL(V ), so they share the same decomposition of
V⊗V ∗ into simple submodules. By [GT2, Theorem 1.5], H−1 andH◦1 haveM2,2(V ) = 3, so the
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H−1 -module V ⊗V ∗ is the sum of three simple submodules. This implies M2,2(G̃, V ) ≥ 3. On

the other hand, M2,2(G̃, V ) ≤ M2,2(G, V ) ≤ M2,2(H◦1 , V ) = 3. It follows that M2,2(G̃, V ) =
M2,2(G, V ) = 3.) But (9.2.8.3) contradicts Theorem 9.2.6.

(c) We have shown that Z(R) = C4, and hence Z ∩ G̃ = Z(G̃) = Z(G) = Z(R). In
this case we can identify R with Ẽ, and obtain G̃/Ẽ ∼= ZG̃/ZẼ ↪→ Sp2n(2) from (9.2.6.2).
Now the subgroup H◦1 = E · Ω−2n(2) acts on Ẽ via conjugation, see (9.2.8.2), and this action
induces a subgroup H̄ of Sp(W ) ∼= Sp2n(2) where W := Ẽ/Z(Ẽ) ∼= F2n

2 . Suppose that the
image Ē of E in H̄ is nontrivial. Then O2(H̄) 6= 1 and hence it has a nonzero proper fixed
point subspace W1 on W . In this case, Ω−2n(2) also acts on W1, and as 1 ≤ dimF2 W1 < 2n,
this action is trivial, and thus H̄ acts trivially on W1. We can apply the same argument
to the action of H̄ on the fixed point subspace of Ē on W/W1. Repeating this process,
we see that H̄ is a unitriangular subgroup of Sp(W ) and hence it is solvable. But H◦1 is
perfect, so H◦1 acts trivially on W . By (9.2.6.1) and (9.2.6.2), this means that H◦1 induces
only inner automorphisms of Ẽ, and hence injects into a solvable subgroup of NGL(V )(Ẽ), a
contradiction.

We have shown that E has trivial image in H̄, which means E only induces inner auto-
morphisms of Ẽ, i.e. E ≤ ZẼ. In particular, ZẼ ∩ H−1 ≥ E, and [E,ZẼ] ≤ [ZẼ,ZẼ] =
C2 = Z(E), whence

(9.2.8.4) E C ZẼ.

Since ZẼ is nilpotent and Ω−2n(2) is simple, ZẼ ∩ H◦1 = E. Now, if ZẼ ∩ H−1 > E, then,
since ZẼ ∩H−1 CH−1 , we must have O−2n(2) = H−1 /E

∼= Ω−2n × C2, a contradiction.
Thus ZẼ ∩ H−1 = E. Now we observe from(9.2.8.1) that ZG̃ contains the subgroup

X := ZẼH−1 , with X/ZẼ ∼= H−1 /(ZẼ ∩H−1 ) = H−1 /E
∼= O−2n(2). It follows that O−2n(2) is a

subgroup of ZG̃/ZẼ ∼= Sp2n(2), of index 2n−1(2n − 1), which is the smallest index of proper
subgroups in Sp2n(2), see [KlL, Table 5.3.A]. Hence either ZG̃ = X, or ZG̃/ZẼ ∼= Sp2n(2).
In the former case, by (9.2.8.2) and (9.2.8.4) we have E C G̃, but this contradicts the result
of (b).

We have shown that ZG̃/ZẼ ∼= Sp2n(2); in particular, ZG̃ = ZΓ̃(2, n) by (9.2.6.1).
Taking the derived subgroups, we see by Lemma 9.2.7(i) that [G̃, G̃] ≥ Γ̃(2, n). On the other
hand, CG̃(Ẽ) = Z(G̃) = Z(Ẽ) ∼= C4 and |G̃/CG̃(Ẽ)| ≤ |Aut+(Ẽ)| = |Γ̃(2, n)/Z(Ẽ)|. Hence

G̃ = Γ̃(2, n). As GC G̃ and G̃/G is cyclic, we conclude from Lemma 9.2.7 that G = G̃. �

As a consequence of Theorem 9.2.8, we deduce the following result about a certain om-
nibus sheaf:

Theorem 9.2.9. For any n ≥ 4, consider the local system

Ŵ := Ŵ(2n + 1, 2n−1 + 1, . . . , 22 + 1, 3, 1)

on (A1×Gm×An)/F2 whose trace function for any (s, t1, . . . , tn+1) ∈ k×k××kn is given by

Trace
(
Frob(s,t1,...,tn+1),k|Ŵ

)
=

−1

(1 + i)deg(k/F2)

∑
x∈k

ψ2,k([sx,
n∑
j=1

tjx
2n−j+1+1 + tn+1x]).

Then Ŵ has its geometric and arithmetic monodromy group equal to Γ̃(2, n).
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Proof. Suitable specializations of Ŵ yield the sheaf W(2n + 1, 3, 1) when 2|n, and the
sheaf W(2n + 1, 5, 3, 1) when 2 - N , both considered in Theorem 9.2.8. Hence it follows from

Theorem 9.2.8 that the arithmetic (over F2) and geometric monodromy groups of Ŵ satisfy

(9.2.9.1) Garith,Ŵ,F2
BGgeom,Ŵ ≥ Γ̃(2, n) = R · Sp2n(2),

where R = C4 ∗ E with E = 21+2n
− . These containments show that Garith,Ŵ,F2

and Ggeom,Ŵ
both satisfy (S+) and contain an ssp-element of order 2n + 1; on the other hand, both of
them are finite and have center of order dividing 4 by Proposition 9.2.5. Arguing as in part
(a) of the proof of Theorem 9.2.8, we see that either one of these groups, call it G, must
be in the extraspecial normalizer case of [KT5, Lemma 1.1]. Letting V be the underlying
representation, we then have

R2 CG ≤ NGL(V )(R2) ≤ ZR2 · Sp2n(2) ≤ Γ̃(2, n)Z,

where R2 = Z(R2)E2, Z := Z(GL(V )), and E2 = 21+2n
± . Taking the derived subgroup, we

get [G,G] ↪→ Γ̃(2, n); note that Γ̃(2, n) is perfect by Lemma 9.2.7. Together with (9.2.9.1),
this shows that [G,G] = Γ̃(2, n) and hence G contains R = O2([R,R]) as a normal subgroup.
In turn, this implies that G ≤ NGL(V )(R) = ZΓ̃(2, n), and so

G = (Z ∩G)Γ̃(2, n) = Z(G)Γ̃(2, n) = Γ̃(2, n)

(since Z(G) ≤ C4 = Z(R)). We have therefore shown that Garith,Ŵ,F2
= Ggeom,Ŵ = Γ̃(2, n).

�

9.3. Local systems with Witt vectors: The Fq story

Local systems in characteristic 2 with Witt vectors: The Fq story
We now turn to the “q situation”. We will need an elementary case of Lang–Weil esti-

mates:

Lemma 9.3.1. Let n > m ≥ 1 be odd integers. Then the number N of Fq-points in the
intersection of the Fermat hypersurfaces Hm and Hn, where

Hn := {(x, y, z, t) ∈ A4 | xn+yn+zn+wn = 0}, Hm := {x, y, z, t) ∈ A4 | xm+ym+zm+wm = 0},

is at most m2nq2.

Proof. In A4/F2, Hm is irreducible, and lisse outside the origin, of degree m. Now, the
hypersurfaces Hm and Hn intersect properly, with every irreducible component of Hm ∩Hn

of dimension ≤ 2. By [LW, Lemma 1], we have an estimate N ≤ O(1)((#L)2) for some
constant O(1) depending only on m and n.

Alternatively, we give an elementary proof giving the explicit upper bound m2nq2. First
we fix a, b ∈ Fq and bound the number N(a, b) of common solutions to xn+yn = a, xm+ym =
b. Then

(b− xm)n = ymn = (a− xn)m,

and so fa,b(x) = 0 for fa,b(t) := (b − xm)n − (a − xn)m ∈ Fq[t]. Note that f has degree
m(n − 1) if b 6= 0, n(m − 1) < m(n − 1) if b = 0 but a 6= 0, and identically 0 if a = b = 0.
So unless a = b = 0, the number of roots x ∈ Fq of fa,b is at most m(n− 1), and for each x
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there are at most m possibilities for y such that xm + ym = b. Thus unless a = b = 0, we
have N(a, b) ≤ m2(n− 1). On the other hand, N(0, 0) ≤ mq, since ym = −xm in this case.

Now for any (z, w) ∈ F2
q, take a = −zn − wn and b = −ym − zm. Then the number of

(x, y) ∈ F2
q such that (x, y, z, w) ∈ Hm ∩ Hn is N(a, b), and N(a, b) ≤ m2(n − 1) as shown

above if (a, b) 6= (0, 0). On the other hand, the number of (z, w) ∈ F2
q such that a = b = 0 is

at most mq, and then the number of corresponding points (x, y, z, w) ∈ Hm ∩Hn is at most
mq, as shown above. Hence N ≤ q2m2(n− 1) +m2q2 = m2nq2. �

Now we can prove a full generalization of Theorem 9.2.6:

Theorem 9.3.2. Let q = 2e and let k/Fq be a finite extension. Let f(x) ∈ k[x] be an odd
polynomial (in the sense that it only has terms of odd degree) of degree N . Let a > b ≥ 1
be odd integers, and suppose that N > a. Consider the local system T = T (f, a, b) on A2/k
of rank N − 1, whose trace function is given as follows: for L/k a finite extension, and
(s, t) ∈ L2, given by

Trace(Frob(s,t),L|T (f, a, b)) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([x, f(x) + sxa + txb]).

Then T is pure of weight zero and has M2,2 = 2.

Proof. The purity goes back to Weil. Let us denote by Trace(s, t, L) this trace. Then
the empirical M2,2(L) is given by

1

(#L)2

∑
s,t∈L

|Trace(s, t, L)|4.

Expanding this out, we get that M2,2(L) is

1

(#L)4

∑
s,t∈L

∑
x,y,z,w∈L

ψ2,L([x, f(x) + sxa + txb] + [y, f(y) + sya + tyb]

−[z, f(z) + sza + tzb]− [w, f(w) + swa + twb]).

The argument of ψ2,L is thus the Witt vector sum

[x, f(x) + sxa + txb] + [y, f(y) + sya + tyb]

+ [z, z2 + f(z) + sza + tzb] + [w,w2 + f(w) + swa + twb]

= [x+ y, xy + f(x) + f(y) + s(xa + ya) + t(xb + yb)]

+ [z + w, zw + z2 + w2 + f(z) + f(w) + s(za + wa) + t(zb + wb)]

= [x+ y + z + w, ((x+ y)(z + w) + xy + zw + z2 + w2) + s(xa + ya + za + wa)

+ t(xb + yb + zb + wb) + f(x) + f(y) + f(z) + f(w)],

which we write as the sum of the two Witt vectors

[x+ y + z + w, ((x+ y)(z + w) + xy + zw + z2 + w2) + f(x) + f(y) + f(z) + f(w)]+

+[0, s(xa + ya + za + wa) + t(xb + yb + zb + wb)].

Denoting

f̃(x, y, z, w) := ((x+ y)(z + w) + xy + zw + z2 + w2) + f(x) + f(y) + f(z) + f(w),
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and by

Σa := xa + ya + za + wa, Σb := xb + yb + zb + wb,

the empirical M2,2(L) is thus

1

(#L)4

∑
x,y,z,w∈L

ψ2,L([x+ y + z + w, f̃(x, y, z, w)])
∑
s,t∈L

ψL
(
sΣa + tΣb

)
.

The sum over s, t vanishes unless Σa = Σb = 0, i.e., unless (x, y, z, w) lies in the intersection

H := Ha ∩Hb

of Fermat hypersurfaces Ha and Hb (as defined in Lemma 9.3.1), in which case it is (#L)2.
So the empirical M2,2(L) is

(9.3.2.1)
1

(#L)2

∑
(x,y,z,w)∈H(L)

ψ2,L([x+ y + z + w, f̃(x, y, z, w)]).

The idea now is to compute, for any given A ∈ L and any given polynomial h(x) ∈ L[x],
the sum ∑

r∈L

ψ2,L([rA, h(r)]).

Suppose first that A 6= 0. Then Lψ2([rA,h(r)]) is lisse on A1 of rank one, with Swan∞ ≤
max(2, deg(h)) (with equality if h(x) has odd degree). By Weil, this exponential sum is pure
of weight one and of rank Swan∞ − 1 ≤ max(1, deg(h)− 1) ≤ 1 + deg(h). Hence we have

(9.3.2.2)
∣∣∑
r∈L

ψ2,L([rA, h(r)])
∣∣ ≤ (1 + deg(h))

√
#L if A 6= 0.

Suppose now that A = 0 and that h(x) is not Artin-Schreier trivial (i.e., not of the form
g(x)2 − g(x) for any g(x) ∈ k[x]), then by Weil

(9.3.2.3)
∣∣∑
r∈L

ψ2,L([rA, h(r)])
∣∣ =

∣∣∑
r∈L

ψL(h(r))
∣∣ ≤ (deg(h)− 1))

√
#L.

The next key observation is that H(L) is homogeneous, and H(L) is a union of one-
dimensional vector spaces over L, the sets of whose nonzero points are disjoint. Consider any
such line Ω(v), generated by v := (x0, y0, z0, w0), and parametrize the points in Ω(v) as rv
with r ∈ L. Then set

A := x0 + y0 + z0 + w0, h(r) := f̃(rx0, ry0, rz0, rw0).

(so that A and h depend on v). By Lemma 9.3.1, H(L) is the union of O(#L) such lines
Ω(v). According to (9.3.2.2) and (9.3.2.3),∣∣ ∑

(0,0,0,0)6=(x,y,z,w)∈Ω(v)

ψ2,L([x+ y + z + w, f̃(x, y, z, w)])
∣∣ =

∣∣∑
r∈L

ψ2,L([rA, h(r)])− 1
∣∣

is O((#L)1/2), unless A = 0 and h(x) is Artin-Schreier trivial. Thus the total contribution
to (9.3.2.1) of the nonzero points of the lines Ω(v) ⊂ H(L), for which either A 6= 0 or h(x)
is not Artin-Schreier trivial, is at most O((#L)3/2)/(#L)2 = O(1/

√
#L), which dies in the

large L limit.
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Now we consider the lines Ω(v) for which A = 0 and h(x) is Artin-Schreier trivial. Since f
is 0 or odd, the coefficient c2 of x2 in h(x) is Q(v) = (x0 +y0)(z0 +w0)+x0y0 +z0w0 +z2

0 +w2
0,

and the linear and constant terms of h(x) vanish. And all terms, if any, of degree ≥ 3 in h(x)
have odd degree (because f has only terms of odd degree). Thus if h(x) is Artin-Schreier
trivial, then in fact h(x) = 0. [Indeed, suppose

N∑
i=0

cix
i = h(r) = g(x)2 − g(x)

for some g(x) =
∑M

i=0 aix
i ∈ k[x]. Then ci = ai if 2 - i and ci = ai − a2

i/2 if 2|i > 0. As

c1 = 0, we have a1 = 0, and c2 = a2. As c2j = 0 for j ≥ 3, we have a2j = a2
2j−1 , which shows

a2j = a2j−1

2 . Taking j so that 2j > M , we get a2j = 0, and hence a2 = 0 and c2 = 0 as stated.]
Considering the quadric

Q := {(x, y, z, w) | (x+ y)(z + w) + xy + zw + z2 + w2 = 0},
and recalling that A = 0 is the equation of H1, and Q(v) is the coefficient for r2 in h(r), we
see that v belongs to H1 ∩Q. Now note that if (x, y, z, w) ∈ H1 ∩Q, then w = x+ y+ z and
0 = z2 + xz + yz + xy = (x+ z)(y+ z). Hence H(L)∩H1(L)∩Q(L) is just the union of the
two planes

P0 : x = z, y = w, and P∞ : x = w, y = z

in L4. Thus the large L limit of the sum in (9.3.2.1) becomes∑
α=0,∞

1

(#L)2

∑
(x,y,z,w)∈Pα

ψL(f̃(x, y, z, w)).

The intersection P0 ∩ P∞ is the locus x = y = z = w, so the sum over this intersection is
trivially bounded by

(number of summands = (#L))

(#L)2
=

1

#L
,

and hence this intersection does not contribute to the large L limit. On the other hand,

f̃(x, y, z, w) = ((x+ y)(z + w) + xy + zw + z2 + w2) + f(x) + f(y) + f(z) + f(w)

is identically zero on P0 and on P∞, since f is an odd polynomial. Thus each of the sums
over P0 and P∞ equals 1. Consequently, the large L limit of M2,2 is indeed 2. �

Next we give a degenerate variant of Theorem 9.3.2:

Theorem 9.3.3. Let q = 2e and let k/Fq be a finite extension. Let f(x) ∈ k[x] be an odd
polynomial (in the sense that is either 0 or only has terms of odd degree) of degree N . Let
a > b ≥ 1 be odd integers, and suppose that N < a. Consider the local system T = T (f, a, b)
on (Gm × A1)/k of rank a − 1, whose trace function is given as follows: for L/k a finite
extension, and s ∈ L×, t ∈ L,

Trace(Frob(s,t),L|T (f, a, b)) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([x, f(x) + sxa + txb]).

Then T is pure of weight zero and has M2,2 = 2.
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Proof. For every (s, t) ∈ L2, let us define Trace(s, t, L) by the formula

Trace(s, t, L) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([x, f(x) + sxa + txb]).

The proof of Theorem 9.3.2, which makes no explicit reference to the degree of f , shows
that as L runs over extensions of Fq, the large L limit of

1

(#L)2

∑
s,t∈L

|Trace(s, t, L)|4

is 2. Now M2,2 for our W is the large L limit of

1

(#L)(#L− 1)

∑
t∈L,s∈L×

|Trace(s, t, L)|4.

But the ratio (#L)(#L−1)
(#L)

tends to 1 as L grows, so it suffices to show that the large L limit of

1

(#L)2

∑
r,t∈L,s∈L×

|Trace(s, t, L)|4

is 2. Thus we must show that the large L limit of

1

(#L)2

∑
r,t∈L

|Trace(0, t, L)|4

vanishes. In fact, we will show that it is O(1/#L), i.e., that∑
t∈L

|Trace(0, t, L)|4 = O(#L).

Each individual sum

Trace(0, t, L) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψL(f(x) + txb])

is bounded in absolute value by (max(deg(f), b)− 1), with the possible exception of a single
t0 for which f(x) + t0x

b = 0, in which the sum is trivially bounded by
√

#L. Thus∑
t∈L

|Trace(0, t, L)|4 ≤ (#L)(max(deg(f), b)− 1) +
√

#L.

�

Remark 9.3.4. In Theorem 9.3.3, the case when f has degree equal to a can also be
included, just do an additive translation of the parameter s to first replace f by f− its
leading term to reduce to the situation of the theorem.

We now turn to discussion of the local system Rq on (A1 × Gm × A1)/F2 whose trace
function is given as follows: for L/F2 a finite extension, and (r, s, t) ∈ L3, s 6= 0,

(9.3.4.1) Trace(Frob(r,s,t),L|Rq) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([rx, sxq+1 + tx]),
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and its Kummer pullback R◦q by [s 7→ sq+1], whose trace function is given as follows: for

L/F2 a finite extension, and (r, s, t) ∈ L3, s 6= 0,

(9.3.4.2) Trace(Frob(r,s,t),L|R◦q) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([rx, sq+1xq+1 + tx]).

We next relate R◦q to the sheaf W(q + 1, 1) of (9.2.0.4).

Lemma 9.3.5. (i) The sheaf Rq as defined in (9.3.4.1) is lisse of rank q, pure of weight
zero, geometrically irreducible, and all its Frobenius traces lie in Z[i]. Moreover, it has
M2,2 = 2.

(ii) The sheaves W(q + 1, 1) of (9.2.0.4) and R◦q as defined in (9.3.4.2) have the same
geometric, respectively arithmetic, monodromy groups.

Proof. (i) For L/F2 a finite extension, and (r, s, t) ∈ L×L××L, the rank one lisse sheaf
Lψ2([rx,sx1+q+tx]) on the x line has Swan∞ = q + 1 (because s 6= 0) and is pure of weight zero.
That Rq is lisse on (A1 ×Gm × A1)/F2 of rank q then results from Deligne’s semicontinuity
theorem cf. [Lau] or [Ka-Scont, Proposition 11]. That it is pure of weight zero goes back to
Weil. It is geometrically irreducible because it has a geometrically irreducible pullback, e.g.
take r = 0, s = 1 and we obtain the Fourier transform of Lψ([x1+q ]) on the t-line. Finally the
traces lie in Z[i] by the van der Geer–van der Vlugt argument as in the proof of Proposition
9.2.5. That M2,2 = 2 for Rq results from the fact that already its pullback to (Gm ×A1)/F2

obtained by fixing r = 1 has M2,2 = 2 by Theorem 9.3.3. But M2,2 can only increase under
pullback, and is always ≥ 2 in any rank ≥ 2.

(ii) The change of variable x 7→ x/s shows that R◦q on (A1 ×Gm × A1)/F2 has the same

trace function as the pullback of W on (A1 × A1)/F2 by the map

Φ : A1 ×Gm × A1 → A1 × A1 : (r, s, t) 7→ (r/s, t/s).

Notice that R◦q is geometrically irreducible, because already its pullback to the locus r =
0, s = 1 is geometrically irreducible, being the Fourier transform FTψ(Lψ(xq+1)). In particu-
lar, R◦q is arithmetically irreducible. By Chebotarev, it follows that we have an arithmetic
isomorphism

R◦q ∼= Φ?W ,

as their arithmetic semisimplifications are isomorphic, and the source is arithmetically irre-
ducible. Thus we have isomorphisms

Garith,R◦q
∼= Garith,Φ?W , Ggeom,R◦q

∼= Ggeom,Φ?W .

The map Φ has a retraction

Ψ : A1 × A1 → A1 ×Gm × A1 : (r, t) 7→ (r, 1, t).

Thus Ψ?(Φ?W) = W , and hence W and Φ?W have the same Garith as each other and the
same Ggeom as each other, because each of these two local systems is the pullback of the
other. Thus we have

Garith,R◦q
∼= Garith,W , Ggeom,R◦q

∼= Ggeom,W .

�
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Lemma 9.3.6. Write q = 2f . The geometric monodromy group Ggeom,Rq of Rq contains

as a subgroup the group E oCq+1 with E = 21+2f
− , and Cq+1 acting on Rq via the sum of its

nontrivial irreducible representations.

Proof. This results from the fact that the pullback of Rq to the one-parameter system
Kq on Gm/F2 obtained by fixing r = 0, t = 1 has E o Cq+1 as its Ggeom. This pullback Kq
has trace function given as follows. For L/F2 a finite extension, and s ∈ L×,

Trace(Frobs,L|Kq) =
−1

(1 + i)deg(L/F2)

∑
x∈L

ψL(sxq+1 + x).

As explained in [KRLT2, Lemma 1.2], we have a geometric isomorphism

[inv]?Kq ∼= Klψ(Charnontriv(q + 1)).

We also have (by x 7→ xs) a geometric isomorphism

[q + 1]?[inv]?Kq ∼= FTψ(Lψ(xq+1)).

The local system Fq := FTψ(Lψ(x1+q)) is geometrically irreducible, and its Ggeom,Fq is E =

21+2f
− , see Theorem 7.3.8. Thus

E = Ggeom,Fq CGgeom,[inv]?Kq

is a normal 2-subgroup of index dividing q + 1.
In the terminology of [Ka-LGE, 1.5], [inv]?Kq ∼= Klψ(Charnontriv(q + 1)) is a canonical

extension. Note that the local monodromy at 0 of Klψ(Charnontriv(q + 1)) is cyclic of order
q+ 1 and acts on Kq via the sum of its nontrivial irreducible representations. It results from
[Ka-LGE, 1.4.12] that we have

Ggeom,[inv]?Kq = Ggeom,Klψ(Charnontriv(q+1))
∼= Ggeom,Fq o Cq+1.

�

Our next result is concerned with the Pink-Sawin-Witt local systems:

Theorem 9.3.7. Let q = 2n ≥ 16. The following statements hold for the geometric
monodromy group G and the arithmetic monodromy group Garith,k of each of the local systems
W(q + 1, 1) of (9.2.0.4), W](q + 1, 1) of (9.2.0.5), and Rq of (9.3.4.1).

(i) G = Γ̃◦(q, 1) ∼= (4 ∗ 21+2n
− ) · Sp2(q).

(ii) Over any finite extension k of F2, for the arithmetic monodromy group Garith,k of either
system over k we have Garith,k = G if k ⊇ Fq and Garith,k

∼= G ·Gal(Fq/k) if k ⊆ Fq.

Proof. (a) By (9.2.4.1), it suffices to prove the statement for W := W(q + 1, 1) and
Rq. Let G = Ggeom, respectively G̃ = Garith,F2 , denote the geometric, respectively arithmetic,

monodromy group of W . Let H = Ggeom,Rq , respectively H̃ = Garith,Rq ,F2 , denote the geo-
metric, respectively arithmetic, monodromy group of Rq. The specialization s = 1 of Rq

yields W , showing G ≤ H and G̃ ≤ H̃. Let V = C2nf denote the underlying representation
for H̃, with character say ϕ. By (9.2.4.1), we now have

(9.3.7.1) H ≥ G ≥ Ggeom,G(q+1,1), H̃ ≥ G̃ ≥ Garith,G(q+1,1),F2 .
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It then follows from Lemma 9.3.6 that

(9.3.7.2) H ≥ K := E o 〈g∗〉
where E = 21+2n

− and 〈g∗〉 ∼= Cq+1. Note that H̃ is finite and |Z(H̃)| divides 4 by Proposition
9.2.5. By assumption n ≥ 4, hence 22n − 1 admits a primitive prime divisor ` = ppd(2, 2n)
which divides q + 1.

Another consequence of the containments (9.3.7.1) is that we get an element g ∈ G̃ with

(9.3.7.3) |Trace(gj)|2 = 2j, for any j|f,
namely the element of Garith,G(2n+1,1),F2 given by the action of of Frob1,F2 on the sheaf G(n, 0; 2),
cf. Lemma 8.5.2.

Now consider the local system

Ŵ := Ŵ(2n + 1, 2n−1 + 1, . . . , 22 + 1, 3, 1)

of Theorem 9.2.9. A suitable specialization of Ŵ yields R. This shows that

(9.3.7.4) H C H̃ ≤ Γ̃(2, n) = R · Sp2n(2)

with R = 4 ∗ 21+2n
± .

(b) Here we show that ZR = ZE with E = 21+2n
− from (9.3.7.2) and Z = Z(GL(V )). To

this end, we use (9.3.7.4) and the resulting action of G via conjugation on R which gives rise
to the inclusion Z(R)G/R ↪→ Out+(R) ∼= Sp(W ) ∼= Sp2n(2), where W := R/Z(R) ∼= F2n

2 .
Now the action of the subgroup K = E o 〈g∗〉 induces a subgroup K̄ of Sp(W ). Suppose
that the image Ē of E in K̄ is nontrivial. Then O2(K̄) 6= 1 and hence it has a nonzero
proper fixed point subspace W1 on W . In this case, the cyclic subgroup 〈g∗〉 of K also acts
on W1, and as ` = ppd(2, 2n), this action is trivial. By Lemma 7.2.1 applied to RC Γ̃(2, n),
|ϕ(g∗)|2 is either 0 or at least |W1| ≥ 2. On the other hand, |ϕ(g∗)| = 1 by Lemma 9.3.6, a
contradiction.

We have shown that E has trivial image in K̄, which means E only induces inner auto-
morphisms of R, i.e. E ≤ ZR. Now, Z ∩ E = Z(E), so

ZE/Z ∼= E/Z(E) ∼= W ∼= R/Z(R) ∼= ZR/Z,
whence ZE = ZR.

(c) With the result of (b) and using (9.3.7.2) and (9.3.7.4), we see that ZH ≥ ZR and
H̄ := ZH/ZR injects as a subgroup of Out+(R) ∼= Sp2n(2). At this point, we invoke Lemma
9.3.5 to conclude that M2,2(H) = M2,2(ZH) = 2. As explained in [GT2, Lemma 5.1], the
latter equality implies that the induced action of H̄ on the nonzero vectors of W = ZR/Z is
transitive. Since n ≥ 4, applying [BNRT, Theorem 5] we arrive at one of the following two
possibilities:

(α) n = bs for some integers b, s ≥ 1, and Sp2b(2
s)C H̄ ≤ Sp2b(2

s) o Cs.
(β) n = 3s for some integer s ≥ 2; and G2(2s)C H̄ ≤ G2(2s) o Cs.

In either case, as explained in the proof of Lemma 8.5.3, Ḡ contains a regular unipotent
element h̄ of Sp2b(2

s) while acting on W considered as F2b
2s , i.e. h̄ has 2s fixed points on W .

Applying Lemma 7.2.1, we see that the coset h̄ in H̄ = ZH/ZR contains an element h ∈ H
with |Trace(h)|2 = 2s. On the other hand, as h ∈ H = Garith,Rq ,k for some large enough
extension k ⊇ Fq, Proposition 9.2.5 applied to k ⊇ Fq ensures that |Trace(h)|2 is either 0 or
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a power of q. We have therefore shown that 2s is a power of q = 2n. Since s|n, we must have
that s = n, and we are in (α) with Sp2(q)C H̄ ≤ Sp2(q) o Cn.

Taking the derived subgroup and using Lemma 9.2.7(ii), we see that H ≥ [ZH,ZH]
contains the perfect subgroup Γ̃◦(q, 1) = Ẽ · Sp2(q), and Ẽ = R = Z(R)E.

The same arguments apply to H̃ since M2,2(H̃) = 2. Recall that H C H̃ and Γ̃(2, n) =

Ẽ · Sp2n(2). Together with preceding results and (9.3.7.4), we have shown that

Γ̃◦(q, 1) = Ẽ · Sp2(q)CH C H̃ ≤ Ẽ · (Sp2(q) o Gal(Fq/F2)).

In particular, H̃/H ↪→ Cn, which implies that Garith,Rq ,k = H whenever k ⊇ Fq. Next

we make use of the element g in (9.3.7.3). We note that H̃ = 〈H, g〉, simply because g ∈
Garith,Rq ,F2 is an F2-Frobenius. Denoting d := |H̃/H|, we then have d|n and gd ∈ H =
Garith,Rq ,Fq . By Proposition 9.2.5 applied to k = Fq, |Trace(gd)|2 is 0 or a power of q. But
|Trace(gd)|2 = 2d, hence 2d is a power of q = 2n, hence n|d, and thus d = n. We have shown
that H̃/H ∼= Cn, and hence H = Γ̃◦(q, 1) and H̃ = Ẽ · (Sp2(q) o Cn).

(d) As R◦q is the Kummer pullback of Rq by [s 7→ sq+1], the geometric monodromy group
H◦ of R◦q is a normal subgroup of H, with H/H◦ being cyclic. But H = R · Sp2(q) is
perfect, so H◦ = H. Applying Lemma 9.3.5, we then get G = H. On the other hand,
GC G̃ ≤ H̃ = H · Cn, so |G̃/G| divides n and G = Garith,W,Fq . Again using the element g of

(9.3.7.3) and arguing as above, we conclude |G̃/G| = n and thus G̃ = H̃. �

For later use, we need to consider some analogues of Rq and R◦q. Fix q = 2f and odd

integers n > m ≥ 1. Consider the local system R(n,m; q) on (A1×Gm×A1)/F2 whose trace
function is given as follows: for L/F2 a finite extension, and (r, s, t) ∈ L3, s 6= 0,

(9.3.7.5) Trace(Frob(r,s,t),L|R(n,m; q)) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([rx, sxq
n+1 + txq

m+1]),

and its Kummer pullback R◦(n,m; q) by [s 7→ sq
n+1], whose trace function is given as follows:

for L/F2 a finite extension, and (r, s, t) ∈ L3, s 6= 0,
(9.3.7.6)

Trace(Frob(r,s,t),L|R◦(n,m; q)) :=
−1

(1 + i)deg(L/F2)

∑
x∈L

ψ2,L([rx, sq
n+1xq

n+1 + txq
m+1]).

Under the additional proviso that gcd(m, q + 1) = 1 (e.g. m = 1), we will also consider the
pullback G(n,m; q)bis of of R(n,m; q) by r = 0, t = 1, which is a local system on Gm whose
trace function is given as follows: for L/F2 a finite extension, and s ∈ L×,

(9.3.7.7) Trace(Frob(s,L)|G(n,m; q)bis) :=
−1√
#L

∑
x∈L

ψL(sxq
n+1 + xq

m+1).

Note that this is the p = 2 analogue of the sheavesWn,m
bis considered in [KT6, Theorem 10.6]

for odd characteristics.

Lemma 9.3.8. Suppose the sheaf R◦(n,m; q) of (9.3.7.6) is geometrically irreducible.
Then the sheaves W(qn + 1, qm + 1) as defined in (9.2.0.4) and R◦(n,m; q) have the same
geometric, respectively arithmetic, monodromy groups.
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Proof. The change of variable x 7→ x/s shows that R◦(n,m; q) on (A1 ×Gm × A1)/F2

has the same trace function as the pullback of W :=W(qn + 1, qm + 1) on (A1 × A1)/F2 by
the map

Φ : A1 ×Gm × A1 → A1 × A1 : (r, s, t) 7→ (r/s, t/s).

By hypothesis, R◦(n,m; q) is geometrically irreducible, and so arithmetically irreducible. By
Chebotarev, it follows that we have an arithmetic isomorphism

R◦(n,m; q) ∼= Φ?W ,

as their arithmetic semisimplifications are isomorphic, and the source is arithmetically irre-
ducible. Thus we have isomorphisms

Garith,R◦(n,m;q)
∼= Garith,Φ?W , Ggeom,R◦(n,m;q)

∼= Ggeom,Φ?W .

The map Φ has a retraction

Ψ : A1 × A1 → A1 ×Gm × A1 : (r, t) 7→ (r, 1, t).

Thus Ψ?(Φ?W) = W , and hence W and Φ?W have the same Garith as each other and the
same Ggeom as each other, because each of these two local systems is the pullback of the
other. Thus we have

Garith,R◦(n,m;q)
∼= Garith,W , Ggeom,R◦(n,m;q)

∼= Ggeom,W .

�

Now we can prove the main result of this section, which, again for the first time, produces
explicit local systems with geometric monodromy groups of shape (4 ∗ 21+2nf

− ) · Sp2n(2f ).

Theorem 9.3.9. Assume q = 2f , r ≥ 1, and n > m1 > . . . > mr ≥ 0 are integers with
nf ≥ 4. Set

A0 := qn + 1, and Ai := qmi + 1 for 1 ≤ i ≤ r − 1.

If mr ≥ 1, we assume gcd(n,m1, . . . ,mr) = 1 and set Ar := qmr + 1. If mr = 0, we assume
that r ≥ 2 and gcd(n,m1, . . . ,mr−1) = 1, and set Ar := 1. Then the following statements
hold for the geometric monodromy group Ggeom and the arithmetic monodromy group Garith,k

of each of the local systems W(A0, A1, . . . , Ar), W](A0, A1, . . . , Ar), and W∗(A0, A1, . . . , Ar),
introduced in (9.2.0.4), (9.2.0.5), and (9.2.4.2).

(i) Ggeom = Γ̃◦(q, n) ∼= (4 ∗ 21+2nf
− ) · Sp2n(q), with the possible exception of the case n = 3,

f > 1, r = 1, m1 = 1, where we might instead have Ggeom = (4 ∗ 21+6f
− ) · G2(q). [This

possible exception will be ruled out in Theorem 9.3.10.]
(ii) Over any finite extension k of F2, for the arithmetic monodromy group Garith,k of either

system over k we have Garith,k = Ggeom if k ⊇ Fq and Garith,k
∼= Ggeom · Gal(Fq/k) if

k ⊆ Fq.

Proof. (a) By (9.2.4.1), it suffices to prove the statement for

W :=W(A0, A1, . . . , Ar) or W∗(A0, A1, . . . , Ar).

If r > 1, let G = Ggeom, respectively G̃ = Garith,F2 , denote the geometric, respectively
arithmetic, monodromy group of W (the latter over F2).

In the case r = 1 (and so m1 ≥ 1), we also need to consider the sheaf R := R(n,m1; q)
on (A1 × Gm × A1)/F2 and its Kummer pullback R◦ := R◦(n,m1; q) by [s 7→ sq

n+1]. Let
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G = Ggeom,R, respectively G̃ = Garith,R,F2 , denote the geometric, respectively arithmetic,
monodromy group of R.

Let V = C2nf denote the underlying representation for G̃ and G. A key observation for
G is that

(9.3.9.1) M2,2(G, V ) = 2.

Indeed, if r ≥ 2, this is a consequence of Theorems 9.3.2 applied to the pullback s = 1 of the
sheaf W(A0, . . . , Ar). If r = 1, this is a consequence of Theorem 9.3.3 applied to (a pullback
of) R.

(b) By (9.2.4.1), we have

(9.3.9.2) G ≥ Ggeom,G(A0,A1,...,Ar), G̃ ≥ Garith,G(A0,A1,...,Ar),F2 .

The trace formula (9.2.0.3) shows that the local system G(A0, A1, . . . , Ar) is the same as
the local system G(n,m1, . . . ,mr; q) considered in §8.5, but with a different clearing factor
(though one of the same absolute value). Note that a change of clearing factor does not affect
the geometric monodromy group, nor does it affect the square absolute values of traces, and
it preserves the image of the arithmetic monodromy group in PGL(V ).

Note that G̃ is finite and |Z(G̃)| divides 4 by Proposition 9.2.5. Assume for the moment
that 2|nm1 . . .mr. It then follows from Theorems 8.5.8 and 8.5.9 that

(9.3.9.3) ZG ≥ H◦ := E · S;

where Z := Z(GL(V )), E = 21+2nf
− , and furthermore,

S := Ω−2n(q)

if mr ≥ 1, or if mr = 0 and 2|nm1 . . .mr−1, and

S := SUn(q)

if mr = 0 and 2 - nm1 . . .mr−1. By assumption nf ≥ 4, hence 22nf − 1 admits a primitive
prime divisor ` = ppd(2, 2nf). Now observe that S contains a cyclic subgroup, of order qn+1
in the case S = Ω−2n(q), and of order (qn + 1)/(q + 1) in the case S = SUn(q), which gives
rise to a cyclic subgroup 〈g∗〉 of the same order in H; note that ` divides ō(g∗).

We now show that (9.3.9.3) (and hence the existence of the element g∗) also holds in the
case 2 - nm1 . . .mr with

S ∼= SUn(q)

and with E ∈ {E1, 4 ∗ E1} where E1 = 21+2nf
± . Indeed, applying Theorem 8.5.7 to the

pullback r = 0, we see that ZG contains a subgroup S ∼= SUn(q) acting in its total Weil
representation. Since G is irreducible, it follows from Theorem 8.4.5(b) that G satisfies (S+)
on V . Now, (9.3.9.1) allows us to apply [GT2, Theorem 1.5], see also [BNRT, Theorem
3], to G. However, since dimV = qn, the almost quasisimple case cannot occur. (Indeed,
in such a case, either dimV = (2a − (−1)a)/3 for some a ≥ Z≥1 which is absurd, or 16 ≤
2nf = dimV = (3a ± 1)/2 for some a ∈ Z≥4. If 2nf = (3a + 1)/2, then a is odd, in which
case 2nf has an odd divisor (3a + 1)/4 > 1, a contradiction. Hence 2nf = (3a− 1)/2 and 2|a.
If 4|a, then (3a − 1)/2 is divisible by 5, a contradiction. If a ≡ 2 (mod 4), then 2nf has an
odd divisor (3a/2−1)/2, again a contradiction.) Hence the extraspecial case must occur, and

therefore G admits a normal subgroup E with E = E1 or E = 4 ∗E1, where E1 = 21+2nf
± . To
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complete the proof, we observe that E ∩ S = 1. For, E ∩ S ≤ O2(S) and so E ∩ S ≤ Z(S).
But any nontrivial elementz of Z(S) has |Trace(z)| = 1, whereas |Trace(y)| = 0 or qn for any
y ∈ E. Thus G ≥ E o S.

(c) Another consequence of the containments (9.3.9.2) is that we get an element g ∈ G̃
with

(9.3.9.4) |Trace(gj)|2 = 2j, for any j|f,
namely the element of Garith,G(A0,A1,...,Ar),F2 given by the action of of Frob(0,0,...,1),F2 on the sheaf
G(n,m1, . . . ,mr; q), cf. Lemma 8.5.2.

Set N := nf , and consider the local system

Ŵ :=W(2N + 1, 2N−1 + 1, . . . , 22 + 1, 3, 1).

A suitable specialization of Ŵ yieldsW , respectively S, and so, by Theorem 9.2.9, this shows
that

(9.3.9.5) GC G̃ ≤ Γ̃(2, N) = R · Sp2N(2)

with R = 4 ∗ 21+2N
± .

(d) Here we show that ZR ∩ ZH◦ = ZR = ZE with E = O2(H◦) from (9.3.9.3). To
this end, we use (9.3.9.5) and the resulting action of G via conjugation on R which gives rise
to the inclusion Z(R)G/R ↪→ Out+(R) ∼= Sp(W ) ∼= Sp2N(2), where W := R/Z(R) ∼= F2N

2 .
Now the action of the subgroup H◦ = E · S induces a subgroup H̄ of Sp(W ). Suppose that
the image Ē of E in H̄ is nontrivial. Then O2(H̄) 6= 1 and hence it has a nonzero proper
fixed point subspace W1 on W . In this case, the cyclic subgroup 〈g∗〉 from (b) also acts on
W1, and as ` = ppd(2, 2N), this action is trivial. But S is the normal closure of 〈g∗〉 in it, so
S acts trivially on W1, and thus H̄ acts trivially on W1. We can apply the same argument
to the action of H̄ on the fixed point subspace of Ē on W/W1. Repeating this process, we
see that H̄ is a unitriangular subgroup of Sp(W ) and hence it is solvable. In particular, the
perfect group (H◦)(∞), which has S/Z(S) as its composition factor, acts trivially on W . By
(9.2.6.1) and (9.2.6.2), this means that (H◦)(∞) induces only inner automorphisms of R, and
hence injects into a solvable subgroup of NGL(V )(R), a contradiction.

We have shown that E has trivial image in H̄, which means E induces only inner auto-
morphisms of R, i.e. E ≤ ZR. Now, Z ∩ E = Z(E), so

ZE/Z ∼= E/Z(E) ∼= W ∼= R/Z(R) ∼= ZR/Z,
whence ZE = ZR. Since S is quasisimple and ZR is solvable, we now have ZH◦∩ZR = ZR,
as stated.

(e) With the result of (d) and using (9.3.9.3), we see that Ḡ := ZG/ZR injects as a
subgroup of Out+(R) ∼= Sp2N(2) that contains S. At this point, we again use (9.3.9.1) which
says that M2,2(G, V ) = M2,2(ZG, V ) = 2. As explained in [GT2, Lemma 5.1], the latter
equality implies that the induced action of Ḡ on the nonzero vectors of W is transitive. Since
N = nf ≥ 4, applying [BNRT, Theorem 5] we arrive at one of the following two possibilities:

(α) N = bs for some integers b, s ≥ 1, and Sp2b(2
s)C Ḡ ≤ Sp2b(2

s) o Cs.
(β) N = 3s for some integer s ≥ 2; and G2(2s) C Ḡ ≤ G2(2s) o Cs; set b := 3 in this

case.
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In either case, as explained in the proof of Lemma 8.5.3, Ḡ contains a regular unipotent
element h̄ of Sp2b(2

s) while acting on W considered as F2b
2s , i.e. h̄ has 2s fixed points on

W . Applying Lemma 7.2.1, we see that the coset h̄ in Ḡ = ZG/ZR contains an element
h ∈ G with |Trace(h)|2 = 2s. On the other hand, as h ∈ G = Garith,k for some large enough
extension k ⊇ Fq, Proposition 9.2.5 (and its proof) applied to k ⊇ Fq ensures that |Trace(h)|2
is either 0 or a power of q. We have therefore shown that 2s is a power of q, i.e. s = tf for
some t ∈ Z≥1, 2s = qt, and 2 ≤ n = bt.

Recalling S ↪→ Ḡ, we see that the quasisimple group SUbt(q) embeds in Sp2b(q
t) in (α),

and in G2(qt) in (β). Comparing order, in the case of (α) we have

qb
2t2−2 < |SUbt(q)| ≤ |Sp2b(q

t)| < q2b2t+bt,

whence b2t2 ≤ 2b2t+bt+1, showing that t ≤ 2 or (b, t) = (1, 3). However, when (b, t) = (1, 3)
the Sylow 2-subgroups of Sp2b(q

t) = Sp2(q3) are abelian, so SUbt(q) = SU3(q) cannot embed
in Sp2b(q

t). Consider the case t = 2. Then n = bt is even, hence in fact S = Ω−4b(q) embeds
in Sp2b(q

2), and this is impossible by order comparison, unless (b, n) = (1, 2) in which case
we have S = [Ḡ, Ḡ]. In such a case, ZH◦ = Z[G,G], whence

H◦ = [ZH◦,ZH◦] = [[G,G], [G,G]]CG.

But then, since H◦ is symplectically self-dual on V , G fixes the 1-dimensional fixed point
subspace of H◦ on ∧2(V ), and this contradicts M2,2(G) = 2. Thus t = 1 in this case. Taking
the derived subgroup and using Lemma 9.2.7(ii), we see that G ≥ [ZG,ZG] contains the
perfect subgroup Γ̃◦(q, n) = Ẽ · Sp2n(q), and Ẽ = R = Z(R)E.

In the case of (β) we have

q9t2−2 < |SU3t(q)| ≤ |G2(q)| < q14t,

whence 9t2 ≤ 14t + 1, and so again t = 1, and n = 3. Since Ω−6 (q) cannot embed in G2(q),
in this case we must have that 2 - nm1 . . .mr, i.e. r = m1 = 1. Taking the derived subgroup
and using Lemma 9.2.7(iii), we again see that G ≥ [ZG,ZG] contains the perfect Ẽ ·G2(q),
and Ẽ = R = Z(R)E; and in fact G(∞) = Ẽ · G2(q). Assume in addition that r ≥ 2.
Then we observe that a pullback of W yields W(q3 + 1, 1), which has (perfect by Lemma

9.2.7(ii)) geometric monodromy group (4 ∗ 21+6f
− ) · Sp2(q3) by Theorem 9.3.7. It follows that

an extension of Sp2(q3) by a 2-group embeds in G2(q). In particular, G2(q) contains a cyclic
subgroup Cq3+1, which is impossible (indeed, the largest order of semisimple elements in
G2(q) is q2 + q + 1). We have therefore ruled out (β) unless n = 3 and r = m1 = 1.

(f) Assume now that (n, r,m1) 6= (3, 1, 1). The arguments in (e) also apply to G̃, since
we also have M2,2(G̃, V ) = 2. Recall that GC G̃ and Γ̃(2, N) = Ẽ · Sp2N(2). Together with
the results of (e) and (9.3.9.5), we have shown that

Γ̃◦(q, n) = Ẽ · Sp2n(q)CGC G̃ ≤ Ẽ · (Sp2n(q) o Cf ).

In particular, G̃/G ↪→ Cf , which implies that Garith,k = G whenever k ⊇ Fq.
Next we make use of the element g in (9.3.9.4). We note that G̃ = 〈G, g〉, simply

because g ∈ Garith,W,F2 is an F2-Frobenius. Denoting d := |G̃/G|, we then have d|f and
gd ∈ G = Garith,Fq . By Proposition 9.2.5 applied to k = Fq, |Trace(gd)|2 is 0 or a power of q.
But |Trace(gd)|2 = 2d, hence 2d is a power of q = 2f , hence f |d, and thus d = f . We have
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shown that G̃/G ∼= Cf , and hence G = Γ̃◦(q, n), G̃ = Ẽ · (Sp2n(q) o Cf ). In particular, we
are done if r > 1.

It remains to consider the case r = 1, still with m1 > 1. As R◦ is the Kummer pullback of
R by [s 7→ sq

n+1], the geometric monodromy group Ggeom,R◦ of R◦ is a normal subgroup of G,

with G/Ggeom,R◦ being cyclic. But G = Γ̃◦(q, n) is perfect, so Ggeom,R◦ = G; in particular, R◦
is geometrically irreducible. Applying Lemma 9.3.8, we then get Ggeom,W = Ggeom,R◦ = G.
Now,

G = Ggeom,W CGarith,W,F2 ≤ G̃ = G · Cf ,
so |Garith,W,F2/Ggeom,W | divides f and Ggeom,W = Garith,W,Fq . Again using the element g of
(9.3.9.4) and arguing as above, we conclude |Garith,W,F2/Ggeom,W | = f and thus Garith,W,F2 =

G̃.
In the case of (β), which can possibly occur only when (n, r,m1) = (3, 1, 1), the same

arguments using (9.3.9.4) as above first show that G = Ẽ ·G2(q) and G̃ = Ẽ · (G2(q) o Cf ),

and then that Ggeom,W = G and Garith,W,F2 = G̃. �

As promised, we will now rule out the possible exception listed in Theorem 9.3.9(ii).

Theorem 9.3.10. Let q = 2f and let n > m ≥ 1 be odd integers such that gcd(n,m) = 1
and (n, q) 6= (3, 2).

(i) Suppose gcd(m, q+1) = 1. Then the local system G(n,m; q)bis of (9.3.7.7) has geometric
monodromy group isomorphic to GUn(q), acting via its total Weil representation with

character ζ̃n defined in (8.4.0.1).
(ii) Each of the local systems R(n,m; q) of (9.3.7.5), R◦(n,m; q) of (9.3.7.6),W(qn+1, qm+

1) as defined in (9.2.0.4), and W](qn+1, qm+1) as defined in (9.2.0.5), have geometric

monodromy group Γ̃◦(q, n) = (4 ∗ 21+2nf
− ) · Sp2n(q).

Proof. (i) Let V denote the underlying representation. Note that the Kummer pullback
K = [qm + 1]?G(n,m; q) of G := G(n,m; q) has trace function at s ∈ k×

s 7→ −1√
#k

∑
x∈L

ψk
(
xq

n+1 + (sx)q
m+1
)

=
−1√
#k

∑
x∈k

ψk
(
(s−1x)q

n+1 + xq
m+1
)

on Gm/k. We will consider only extensions k of F28 , and so the clearing factors −1/
√

#k
and −1/(1 + i)deg(k/F2) are the same. Then the pullback K′ by [s 7→ s−1] of the Kummer
pullback [qn + 1]?G(n,m; q)bis of G(n,m; q)bis has trace function at u ∈ L×

s 7→ −1√
#k

∑
x∈k

ψk
(
(s−1x)q

n+1 + xq
m+1
)
.

Thus K′ and K have equal trace functions. So their geometric monodromy groups are the
same Kgeom = K ′geom by Theorem 1.3.3.

The aforementioned pullback relationships imply that Kgeom is a normal subgroup of
Ggeom,G with cyclic quotient of order dividing qm + 1. By Theorem 8.5.7, Ggeom,G ∼= SUn(q),
acting on V by its total Weil representation. Therefore, K ′geom = Kgeom

∼= SUn(q). On the
other hand, K := K ′geom is a normal subgroup of

L := Ggeom,G(n,m;q)bis
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with cyclic quotient of order dividing qn + 1, so we also have

(9.3.10.1) K := [L,L] ∼= SUn(q) and |L/K| divides qn + 1;

with K acting on V via its total Weil representation.
Our next observation is that G(n,m; q)bis is also a pullback of the system

Ĝ := G](nf, nf − 1, . . . , 0; 2)

of Corollary 8.5.6, whence

(9.3.10.2) L ≤ Ggeom,Ĝ = H◦1 = 21+2nf
− · Ω−2nf (2) < GL(V ).

Now we define
A = (qn + 1)/(q + 1), B = (qm + 1)/(q + 1),

which are coprime integers since n,m are coprime odd integers, and make use of the addi-
tional condition that gcd(m, q + 1) = 1. In this case, as explained in [KT6, Remark 5.12],
G(n,m; q)bis is the pullback by [s 7→ s−1] of the [B]? Kummer pullback of the sheaf Hn,m

bis ,
which itself is the direct sum of q+ 1 hypergeometric sheaves, 1 of rank (qn− q)/(q+ 1) and
q of rank (qn + 1)/(q + 1) each, see [KT6, (5.12.1)]. Again, clearing factors do not matter,
since we work with geometric monodromy groups. A fortiori, this implies that L acts on V
with q + 1 summands, one of dimension (qn − q)/(q + 1) and q of dimension (qn + 1)/(q + 1)
each. On the other hand, as stated in (9.3.10.1), the subgroup K of L acts on V via its
total Weil representation, whose irreducible summands have exactly these q + 1 dimensions.
Applying Theorem 8.4.4, we obtain that

L ≤ C2 ×M for some subgroup M ∼= GUn(q) of GL(V ),

and furthermore M acts on V via its total Weil representation with character ζ̃n defined
in (8.4.0.1). In particular, SUn(q) ∼= K = [L,L] ≤ [M,M ] ∼= SUn(q). It follows that
K = [M,M ], and now we see that L/K ≤ C2 ×M/K with M/K ∼= Cq+1. On the other
hand, |L/K| is odd by (9.3.10.1), so L/K ≤M/K. We have shown that

(9.3.10.3) SUn(q) ∼= K ≤ L ≤M ∼= GUn(q).

Now, if R denotes the geometric monodromy group of Hn,m
bis , then

(9.3.10.4) LCR, with R/L ∼= Ce for some e dividing B = (qm + 1)/(q + 1).

In particular, we again have [R,R] = [L,L] = K.
By our choice, A − B ≥ 2, and moreover B is coprime to q + 1 as gcd(m, q + 1) = 1.

Hence, if we choose χ to be a multiplicative character of k ⊇ Fq2 of order q+ 1, then χB 6= 1.

For such χ, the summand H]
big,A,χ,B of Hn,m

bis , cf. [KT6, (5.12.1)], has geometric determinant
Lχ by [KT6, Lemma 3.2]. It follows that the action of R on this summand has determinant
of order q + 1, and hence

q + 1 divides |R/K|.
Together with (9.3.10.4) and gcd(B, q + 1) = 1, this implies that |L/K| is divisible by q + 1.
Using (9.3.10.3), we can now conclude that L = M ∼= GUn(q).

(ii) For n > 3, the statement has already been proved in Theorem 9.3.9. So, using
Theorem 9.3.9 we may assume that n = 3 (so that m = 1) and that R := R(n,m; q) has

geometric monodromy group Ggeom,R = (4∗21+6f
− )·G2(q). Note that the pullback r = 0, t = 1
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of R is precisely G(3, 1; q)bis, which has geometric monodromy group GU3(q) by the result of
(i). It follows that GU3(q) embeds in G2(q); in particular, G2(q) contains a cyclic subgroup
of order q3 + 1, which is impossible. �

Our second main result in this section shows that the Witt local systems in Theorems
9.3.7 and 9.3.9 are the only ones among W(A0, . . . , Ar) and W](A0, . . . , Ar) that have finite
monodromy.

Theorem 9.3.11. Let r ≥ 1 and let A0 > A1 > . . . > Ar ≥ 1 be odd integers with A0 ≥
7. Suppose that at least one (equivalently both) of the local systems W(A0, A1, . . . , Ar) and
W](A0, A1, . . . , Ar) in characteristic 2, as defined in (9.2.0.4), (9.2.0.5), has finite geometric
monodromy group. Then W(A0, . . . , Ar) and W](A0, . . . , Ar) are as described in Theorems
9.3.7 and 9.3.9. More precisely, there exist integers q = 2f and n > m1 > . . . > mr ≥ 0 such
that

A0 = qn + 1, A1 = qm1 + 1, . . . , Ar−1 = qmr−1 + 1,

and either

(i) mr ≥ 1, Ar = qmr + 1, and gcd(n,m1, . . . ,mr) = 1, or
(ii) r ≥ 2, mr = 0, Ar = 1, and gcd(n,m1, . . . ,mr−1) = 1, or
(iii) r = 1, m1 = 0, and A1 = 1.

Proof. (a) According to (9.2.4.1), bothW :=W(A0, . . . , Ar) andW] :=W](A0, . . . , Ar)
have the same geometric monodromy group G, which is finite by hypothesis, and contains
the geometric monodromy group H of G(A0, . . . , Ar); in particular, H is also finite. Let
V = CA0−1 denote the underlying representation.

First suppose that r ≥ 2. Then by Theorem 9.3.2 the pullback s = 1, t3 = t4 = . . . =
tr = 0 of W has M2,2 = 2. It follows that

(9.3.11.1) M2,2(G, V ) = 2.

Suppose now that r = 1. Then note that W] is the [A0] Kummer pullback of the local
system T (0, A0, A1), which has M2,2 = 2 by Theorem 9.3.3. Letting G̃ denote the geometric
monodromy group of T (0, A0, A1), we then have

(9.3.11.2) M2,2(G̃, V ) = 2, GC G̃, G̃/G is cyclic of order dividing A0.

Since we deal with geometric monodromy groups, we have that

(9.3.11.3) Q(ϕ) ⊆ Q(i)

for the character ϕ of G acting on V . Note that G̃(∞) = G(∞) ≤ G in the case r = 1, so
(9.3.11.3) also applies to Q(ϕ|G̃(∞)). Now we will use (9.3.11.1), respectively (9.3.11.2), to

apply [GT2, Theorem 1.5] and [BNRT, Theorem 3], to G, respectively to G̃, and arrive at
one of the following three cases, for L := G(∞). Recall that W has rank D = A0 − 1, which
is even.

(a1) The Lie-type case. Here, L is quasisimple, and L is a central quotient of Sp2n(3) or
SUn(2), acting on a Weil representation of dimension D = (3n±1)/2 or D = (2n− (−1)n)/3.
In either case, Q(ϕ|L) = Q(ζ3), contradicting (9.3.11.3) (also, D is odd in the latter case as
well).
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(a2) The extraspecial case. Here, D = 2N , and RCG < NGL(V )(R) for some R = Z(R)E

and E = 21+2N
± acting irreducibly on V .

(a3) The sporadic case. Here L is a cover of some sporadic simple group that acts irre-
ducibly on V . Using (9.3.11.3), among all the possibilities listed in [BNRT, Table I], we can
rule out all but two possibilities

(9.3.11.4) (L,D) = (2Ru, 28), (2B2(8), 14).

(b) Now we will make use of the finiteness of H. Over extensions of F28 , G(A0, . . . , Ar)
has the same trace function as the local system F(A0, . . . , Ar,1) of Theorem 11.2.4. We can
therefore apply Theorem 11.2.4 to the local system F(A0, . . . , Ar,1) in characteristic 2, and
arrive at one of the following possibilities.

(b1) We are in case (ii) of Theorem 11.2.3. This means that we are also in (a2), and
arrive at one of the conclusions (i)–(iii).

(b2) We are in case (iv) of Theorem 11.2.3. Then (L,D) = (2G2(4), 12). But this does
not fit in either (a2) or (a3).

(b3) We are in case (iv) of Theorem 11.2.3 or case (iii) of Theorem 11.2.4. Here, there
is some q = 2f , so that d | (q + 1) for d := gcd(A0, A1, . . . , Ar), A0 = d(qn + 1)/(q + 1),
Ai = d(qmi + 1)/(q + 1), 1 ≤ i ≤ r, where n > m1 > . . . > mr ≥ 1 are odd integers with
gcd(n,m1, . . . ,mr) = 1. Moreover, H is the image of SUn(q) in a sub-representation of degree
D = A0 − 1 of the total Weil representation.

Assume in addition that we are in the case of (a3), so that (9.3.11.4) holds. Now we have
that (qn + 1)/(q+ 1) divides D+ 1 and D+ 1 divides qn + 1 for D = 14 or 28. As n ≥ 3, the
first condition first implies that (q, n) = (4, 3) or (2, 5) or (2, 3), none of which fits with the
second condition.

It remains to consider the case of (a2), so that D = 2N . Again we have that (qn+1)/(q+1)
divides D + 1 = 2N + 1 and 2N + 1 divides qn + 1; furthermore, D = A0 − 1 ≥ 6 implies
that N ≥ 3. If N = 3, then since 2 - n ≥ 3, we have q = 2, n = 3, d = 3, and so we arrive
at (i). We may now assume that N ≥ 4, and so 22N − 1 admits a primitive prime divisor
`1 = ppd(2, 2N) by [Zs], which then divides 2N + 1. Hence `1 divides qn + 1 = 2nf + 1, which
implies that 2N |2nf and that N |nf ; in particular, nf ≥ 4. This in turn implies that q2n− 1
admits a primitive prime divisor `2 = ppd(2, 2nf) by [Zs], which then divides (qn+1)/(q+1).
Hence `2 divides 2N + 1, which implies that 2nf |2N and that nf |N . It follows that N = nf ,
and d(qn + 1)/(q + 1) = A0 = 2N + 1 = qn + 1, whence d = q + 1, and we again arrive at
(i). �





CHAPTER 10

One-parameter families of exponential sums

10.1. Generalities

In this section and the next two sections, we fix a nontrivial additive character ψ of Fp,
a pair of integers A > B > 0 with p - AB, gcd(A,B) = 1. We consider the local systems

F(A,B) = Fψ(A,B,1) = F(A,B,1)

and
Fψ(A,B, χ) = F(A,B, χ)

introduced in Definition 7.3.1. These local systems are closely related to hypergeometric
sheaves, cf. [KT6, 3.10]. Recall that Char(A) is the set of all characters of order dividing
A, Charntriv(A) = Char(A) r {1}, and Char(A,χ) is the set of characters ρ with ρa = χ. We
defined

Hsmall,A,B := Hyp
(
Charntriv(A),Charntriv(B)

)
, Hbig,A,B,χ := Hyp

(
Char(A);Char(B,χ)

)
,

(see also (8.5.4.1), (8.5.4.2)). Recall the following result.

Theorem 10.1.1. ([KT6, 3.10]) We have geometric isomorphisms

[A]?Hsmall,A,B
∼= [t 7→ −At/B]?F(ψ−B, A,B)

and, for χA 6= 1,
[A]?Hbig,A,B,χ

∼= [t 7→ −At/B]?F(ψ−B, A,B, χ
A).

Theorem 10.1.2. Suppose the local system F(A,B, χ) on A1/Fq2 has finite geometric
monodromy group Ggeom. Then the“half Tate twist”

G(A,B, χ) := F(A,B, χ)(1/2) := F(A,B, χ)⊗
(
q− deg /Fq2

)
has finite arithmetic monodromy group Garith.

Proof. The statement is invariant under finite extension of scalars, so we may work over
an extension E of Fq2 over which the hypergeometric sheaves of Theorem 10.1.1 are defined.
One then checks that the constant field twists which (implicitly) occur in its proof are ±1
times powers of

√
#E. This fact results from the Hasse-Davenport identity via [Ka-GKM,

5.6.2]. See [KT3, 7.1,7.2, 8.1, 8.2] and [KRLT2, 1.1,1.2] for complete details. Once we have
this, the theorem then follows from [KT7, Corollary 14.15], applied to the hypergeometric
sheaves of Theorem 10.1.1. �

Lemma 10.1.3. Suppose F(A,B, θ) is Lie irreducible and Lie self-dual. Then F(A,B, θ)
is self-dual.

Proof. In view of Theorem 10.1.1, this results from Corollary 2.4.8, applied to either
Hsmall,A,B or to Hbig,A,B,χ. �

247
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Lemma 10.1.4. Suppose A−B ≥ 2 and F(A,B, θ) has G◦geom = SLD (for D := the rank
of F(A,B, θ)). Then F(A,B, θ) has Ggeom = SLD.

Proof. In view of Theorem 10.1.1, this results from Corollary 2.4.10, applied to either
Hsmall,A,B or to Hbig,A,B,χ. �

Theorem 10.1.5. Suppose A− B = 1 and F(A,B, θ) has infinite Ggeom. Then G◦geom =
SLD (for D := the rank of F(A,B, θ)), and F(A,B, θ) has Ggeom = {γ ∈ GLD| det(γ)p = 1}.

Proof. In view of Theorem 10.1.1, this results from Theorem 4.1.1, which asserts that
G◦geom = SLD, together with Remark 2.4.11, applied to either Hsmall,A,B or to Hbig,A,B,χ. �

Theorem 10.1.6. Let A > B > 0 with gcd(A,B) = 1 and p - AB, and θ a (possibly
trivial) multiplicative character. Then we have the following results about the possible self-
duality of F(A,B, θ).

(i) If AB is even, then F(A,B, θ) is not geometrically self-dual.
(ii) If AB is odd and θ has order > 2, then F(A,B, θ) is not geometrically self-dual.

(iii) If AB is odd, then F(A,B,1) is geometrically self-dual, and the self-duality is symplec-
tic.

(iv) If AB is odd and p 6= 2, then F(A,B, χ2) is geometrically self-dual, and the self-duality
is orthogonal.

Proof. We first note that statements (iii) and (iv) hold because when AB is odd,
Hsmall,A,B andHbig,A,B,χ2 are themselves self-dual of the asserted type, as results from [Ka-ESDE,
Theorems 8.8.1 and 8.8.2].

We now turn to proving (i) and (ii). In general, for a lisse, geometrically irreducible F
on A1/Fq which is pure of weight one, F is self-dual if and only if the cohomology group

H2
c (A1/Fp,F ⊗ F) is nonzero (in which case it is automatically of dimension one). This

cohomology group is pure of weight 4, whereas H1
c (A1/Fp,F ⊗ F) is mixed of weight ≤ 3.

So we use the Lefschetz trace formula to compute the dimension of the H2
c as the limsup

over growing finite extensions k/Fq0 (for any choice of q0 such that θ began life over Fq0 and
which contains the Bth roots of ±1) of the quantity

(1/#k)2
∑
t∈k

(−
∑
x∈k

ψk(x
A + txB)θk(x))2 =

= (1/#k)2
∑
t∈k

∑
x,y∈k

ψk(x
A + yA + t(xB + yB))θk(xy) =

(1/#k)
∑

x,y∈k with xB+yB=0

ψk(x
A + yA)θk(xy).

Suppose first that B is odd. Then the sum is over (x, y) with yB = (−x)B, so with the
exception of the single point (0, 0), we have y = −ζx for ζ ∈ µB(Fp). So up to an error of at
most (B + 1)/#k, our sum is

(1/#k)
∑
ζ∈µB

∑
x∈k

ψk(x
A + (−ζx)A)θk(−ζx2).
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If A is even, then p 6= 2, and xA + (−ζx)A = (1 + ζA)xA. Here ζA is a root of unity of odd
order (a divisor of B), so is not = 1. Hence each ζ summand is of the form

θk(−ζ)
∑
x

ψk((nonzero coeff.)xA)θ2
k(x),

which by Weil is bounded in absolute value by A
√

#k. So the limsup vanishes.
Still with B odd, suppose also that A is odd, but that θ2 6= 1. Then in the calculation of

the last paragraph, the coefficient 1+(−ζ)A = 1− ζA will vanish precisely for ζ = 1 (because
gcd(A,B) = 1). Thus each of the B − 1 terms with ζ 6= 1 is bounded in absolute value by
A
√

#k, and the term with ζ = 1 is

θk(−ζ)
∑
x

θ2
k(x) = 0,

and again the limsup vanishes.
Finally we must treat the case when B is even and A is odd. Here we first choose γ

with γB = −1. Then xB + yB = 0 leads to y = ζγx, with ζ ∈ µB. Here each coefficient
1 + ζAγA of xA inside the ψ is nonzero; indeed, if ζAγA = −1, then taking Bth powers gives
ζABγAB = (γB)A = (−1)A = −1, whereas (−1)B = 1. So each individual summand is again
bounded in absolute value by A

√
#k, and so the limsup vanishes. �

We now analyze the primitivity of the systems F(A, 1, χ). We do more than primitivity,
but not for F , rather for H. Strictly speaking, in Lemmas 10.1.7 and 10.1.8 we do not
address the question of (S+) for the geometric monodromy group G of F(A,B, χ), but only
for the geometric monodromy group H of the hypergeometric sheaf of which it is a Kummer
pullback. It is true that this is all that is needed in the proofs later, where we work with
the group H and never require that G has (S+); in the subsequent cases, it follows from
our determination of G that G indeed satisfies (S+). Nonetheless, it seems like a natural
question to study (S+) for G directly.

Lemma 10.1.7. (i) Suppose A ≥ 2 and p - A. Then any geometrically irreducible hy-
pergeometric sheaf H of type (A, 1), in particular any Hbig,A,1,χ with χ 6= 1, satisfies
(S+).

(ii) Suppose A ≥ 3, p - A. Then the local system Hsmall,A,1 satisfies (S+) except possibly
when (A, p) = (9, 2), (5, 2), (5, 3), in which cases it is primitive and has finite mon-
odromy. If A = 5 and p ≥ 7, it has Ggeom = Sp4.

Proof. (i) It is obvious that such an H cannot be Kummer induced. If it were Belyi
induced, then A would be a power of p, as one sees from checking the cases in [KRLT3,
Proposition 1.2]. Thus H is primitive. Then by Theorem 5.2.9, H has (S+) if A is none of
4, 8, 9. Now apply [KT5, Theorem 1.9]. The cases A = 4, 8 have (S+) because p 6= 2 when
A = 4, 8, and the case A = 9 has (S+) because p 6= 3 when A = 9.

(ii) It is visible that K = Hsmall,A,1 is not Kummer induced, and no Kloosterman sheaf is
Belyi induced. Hence K is primitive of rank A− 1. Now apply Theorem 1.2.1, which omits
the case (A, p) = (9, 2) and the case A = 5. In the (9, 2) case, A = q + 1 for q = 23, which
is a Pink–Sawin case [KT1, 20.3]. Suppose now A = 5. For p = 2, we have a Pink–Sawin
case, and for p = 3 we have an A = (q + 1)/2 case, finite by the van der Geer–van der Vlugt
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argument. It remains to show that for p ≥ 7, we have Ggeom = Sp4 (which automatically has
(S+)).

For this, we argue as follows. K = Hsmall,A,1 is symplectic by [Ka-ESDE, 8.8.1-2]. So
it suffices to show that its Kummer pullback [5]?Hsmall,A,1 = F(A, 1,1) has Ggeom = Sp4.
F(A, 1,1) is lisse on A1 of rank 4. So F(5, 1,1) is primitive, because in characteristic p ≥ 5,
the affine line has no nontrivial finite étale coverings of degree dividing 4. By [Ka-MG,
Prop.1], either F(5, 1,1) is Lie-irreducible, or it is a tensor product A ⊗ B of local systems
on A1 with A Lie-irreducible and B irreducible with finite monodromy group Γ. We cannot
have B of rank 4, because F has geometrically trivial determinant, which would force A
to be of finite order. If B has rank 2, then its Sylow p-subgroups are normal and abelian
by Feit-Thompson. Then the quotient Γ/Γp−Sylow is a prime to p quotient of π1(A1), so
trivial. Thus Γ is an abelian p-group, again impossible since it has a 2-dimensional irreducible
representation. Thus F(5, 1,1) is Lie-irreducible. So its Ggeom is a subgroup of Sp4 whose
identity component is irreducible. The only possibilities for G◦geom are either Sp4 itself or

the image of SL(V ) ∼= SL2 on Sym3(V ). The second case is ruled out by Theorem 6.1.5.
Therefore F(5, 1,1) has Ggeom = Sp4 in characteristic p ≥ 7 and hence also (S+). �

The following lemma is the (A,B) counterpart of Lemma 10.1.7.

Lemma 10.1.8. Let A > B ≥ 2, gcd(A,B) = 1, and p - AB. Then we have the following
results.

(i) Hsmall,A,B is primitive.
(ii) For all tame χ with χA 6= 1, Hbig,A,B,χ is primitive.

Proof. (a) We first show that neither Hsmall,A,B nor Hbig,A,B,χ is Kummer induced. In
the case of Hbig,A,B,χ this is obvious, because it has type (A,B) with gcd(A,B) = 1. If
Hsmall,A,B were Kummer induced, necessarily by [d]? for some d > 1 a prime to p divisor
of gcd(A− 1, B − 1), then the “upstairs” characters would be stable by multiplication by a
character ρd of order d. Thus if σ is an “upstairs” character, so also is ρdσ, and thus ρd is
a ratio of two “upstairs” characters. But any ratio of two “upstairs” characters has order
dividing A, hence d|A. But Hsmall,A,B has type (A−1, B−1), so ρd has order dividing A−1.
Hence ρd has order dividing gcd(A,A− 1) = 1.

(b) We now must show that neitherHsmall,A,B norHbig,A,B,χ is Belyi induced. We argue by
contradiction. From [KRLT3, Proposition 1.2], we see that if Belyi induced, it is f?(Lσ(x)⊗
Lρ(1−x)) for f either xa(1−x)b or 1/xa(1−x)b, some tame characters σ, ρ, with the following
extra information. Of the three quantities a, b, a+ b, precisely one of them is divisible by p.
If p|(a+ b), then we use f = xa(1− x)b, otherwise we use f = 1/xa(1− x)b. We may assume
d := gcd(a, b) = 1, otherwise f = gd with p - d, hence f? = [d]?f?, and we would be Kummer
induced by [d]?.

We must consider four cases: whether or not p|(a+b), and whetherHsmall,A,B orHbig,A,B,χ.

(b1) If p|(a+ b), say a+ b = pnc with p - c and n ≥ 1, then the upstairs characters are the
ath roots of σ together with the bth roots of ρ. The downstairs characters are all the cth roots
of (σρ)1/pn . If this is Hbig,A,B,χ, then c = B and a+ b = A. But then A = pnB, contradicting
the fact that p - A.

If this is Hsmall,A,B, then we look at ratios of pairs of distinct upstairs characters. If a > 1,
these ratios include all characters of order dividing a, but all such ratios have order dividing
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A, hence a|A if a > 1. It is trivially true that a|A if a = 1. Thus in all cases a|A. Similarly,
b|A. Because gcd(a, b) = 1, we have ab|A, say A = Mab for some integer M ≥ 1. But for
Hsmall,A,B, we have a+ b = A− 1. Thus we have

Mab = a+ b+ 1, gcd(a, b) = 1,

which we rewrite as

(M + 1)ab = (a+ 1)(b+ 1).

Since a divides (M + 1)ab, it divides (a + 1)(b + 1). But gcd(a, a + 1) = 1, so a|(b + 1).
Similarly b|(a+ 1). Thus a ≤ b+ 1 and b ≤ a+ 1, hence a ≤ b+ 1 ≤ a+ 2, i.e.

a− 1 ≤ b ≤ a+ 1.

Thus b is one of a− 1, a, a+ 1.
If b = a, then b = a = 1, because gcd(a, b) = 1.
If b = a − 1, then Ma(a − 1) = 1 + a + a − 1 = 2a, hence M(a − 1) = 2. So either

M = 2, a = 2 and b = 1 or M = 1, a = 3 and b = 2.
If b = a + 1, then Ma(a + 1) = 1 + a + a + 1 = 2(a + 1), hence Ma = 2. So either

M = 2, a = 1 and b = 2 or M = 1, a = 2 and b = 3.
Thus the cases we must rule out are (a, b) = (1, 1), (2, 1), (3, 2), (1, 2), (2, 3).
When (a, b) = (1, 1) and p|(a + b) then p = 2, our Hsmall,A,B has type (2, 1), so it

is Hsmall,3,2, but this is not allowed in characteristic 2 as p|B here. When (a, b) is (1, 2)
or (2, 1), then p = 3, our Hsmall,A,B has type (3, 1), so it is Hsmall,4,2. Here the upstairs
characters are χ4, χ4χ2, χ2, and they are (up to interchanging a, b) the character σ together
with both square roots α, β of ρ. The character ρ, being α2, has order 1 or 2. It cannot be
trivial, otherwise 1 is among its square roots. Therefore ρ = χ2, whose square roots are the
characters of order 4. Then σ must be χ2. But then σρ = 1, and so the downstairs character
is 1. But the downstairs character of Hsmall,4,2 is χ2, not 1. Finally, if (a, b) is (2, 3) or
(3, 2), then p = 5, the upstairs characters are the square roots of σ together with the cube
roots of ρ. But these characters are also the nontrivial characters of order dividing 6, namely
χ2, χ3, χ

2
3, χ3χ2, χ

2
3χ2. Then ρ, whose cube roots have order dividing 6, has order dividing 2.

It cannot be trivial, otherwise 1 is among its cube roots. Therefore ρ = χ2, whose cube roots
are χ2, , χ3χ2, χ

2
3χ2. Then the square roots of σ are the two characters of order 3. But this is

nonsense, as their ratio is not χ2. This completes the proof in the case p|(a+ b).

(b2) If p - (a+ b), then either p|a or p|b. Interchanging 0, 1 by x 7→ 1−x, we may assume
p|a, say a = pnc with p - c and n ≥ 1. The upstairs characters are the (a + b)th roots of σρ.
The downstairs characters are the cth roots of σ1/pn together with the bth roots of ρ. Ratios
of pairs of distinct upstairs characters give all nontrivial characters of order dividing (a+ b).
But the upstairs characters of either Hsmall,A,B or Hbig,A,B,χ are all of order dividing A, hence
(a + b)|A. In the case of Hsmall,A,B, we have a + b = A − 1, so that (A − 1)|A, nonsense
because A ≥ 3.

We now treat the case of Hbig,A,B,χ. By the same “ratios of pairs of distinct characters”,
applied to the downstairs characters, we see that c|B and b|B. As gcd(a, b) = 1, we have
gcd(c, b) = 1, and hence bc|B. Thus B = Mbc for some integer M ≥ 1. But B = b+ c, thus

Mbc = b+ c, gcd(b, c) = 1.
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Because b divides Mbc, we get b|c. Similarly, we get c|b. Thus b = c and B = 2b. This forces
p 6= 2. But A = a + b = pnc + b = (pn + 1)b = (p

n+1
2

)B. Thus B|A, and B ≥ 2, and so the
condition gcd(A,B) = 1 is violated. �

Corollary 10.1.9. Let A > B ≥ 2, gcd(A,B) = 1, and p - AB. Then we have the
following results.

(i) If A 6= 5, 9, 10, then Hsmall,A,B satisfies (S+).
(ii) If A 6= 4, 8, 9, then for all tame χ with χA 6= 1, Hbig,A,B,χ satisfies (S+).

(iii) For each of (A,B) = (5, 2), (9, 2), (9, 4), (10, 3), in any characteristic p - AB, Hsmall,A,B

satisfies (S+).
(iv) For each of (A,B) = (8, 3), (9, 2) in any characteristic p - AB and for any χ 6= 1,
Hbig,A,B,χ satisfies (S+).

Proof. For (i) and (ii), primitivity is given by Lemma 10.1.8. Then apply Theorem
5.2.9. For (iii) and (iv), apply [KT5, Theorem 1.11]. �

Recall that an element γ of a finite subgroup G of GLn(C), n ≥ 2, is called quadratic if
it has precisely two distinct eigenvalues. If the eigenvalue 1 occurs in γ, the codimension of
the 1-eigenspace is called the drop of γ. [Thus a quadratic element of drop 1 is a complex
reflection (:= a pseudoreflection of nontrivial determinant).

Recall also the following well-known theorem.

Theorem 10.1.10. Suppose G < GLn(C), n ≥ 2, is a finite primitive subgroup. Let
γ ∈ G be a quadratic element of drop r ≥ 1 and order d. Then d ≤ 5, and we have the
following results.

(i) If d = 4 or d = 5, then n = 2r.
(ii) If d = 3, then n ≤ 4r.

Proof. The non-existence when d ≥ 6 is Blichfeldt [Bl, Thm. 8]. The case d = 5 is due
to Zalesski [Za1, 11.2], cf. [Ka-TLFM, AZ.1]. The cases d = 4, 3 are due to Wales [Wa,
Thm.1, Thm. 2 and Remark after Thm. 2]. �

Theorem 10.1.11. Suppose A−B ≥ 2, p - AB, gcd(A,B) = 1, and χ is a tame character
with χA 6= 1. Then we have the following results about the group Ggeom for Hbig,A,B,χ.

(i) Suppose p - w := A − B. If χA 6= χB2 , then Ggeom contains a scalar multiple of a
quadratic element γ of drop B with eigenvalues 1, χAχB2 . The order of this quadratic
element is the order of the nontrivial character χAχB2 .

(ii) Suppose p | w := A − B. Write w = w0q with q = pe, e ≥ 1 and p - w0. If
χA(q+1) 6= 1, then Ggeom contains a scalar multiple of a quadratic element γ of drop
B with eigenvalues 1, χA(q+1). The order of this element is the order of the nontrivial
character χA(q+1).

Proof. Denote by Wild the wild part of the I(∞)-representation. The I(∞)-representation
is thus

⊕ρ∈Char(B,χ)Lρ ⊕Wild.

We also note that
det(⊕ρ∈Char(B,χ)Lρ) = χχB−1

2 .
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(i) Consider first the case when p - w. We know [Ka-GKM, 1.14 (2)] that Wild is the

Kummer direct image [w]?L for some rank one L of rank one and Swan conductor one. Such
an L of the form Lσ ⊗ Lψ1 for some multiplicative character σ and some nontrivial additive
character ψ1. Geometrically, σ is a wth power, say σ = σw1 . Then

[w]?L = [w]?([w]?(Lσ1)⊗ Lψ1) = Lσ1 ⊗ [w]?Lψ1 .

Thus
det(Wild) = det([w]?L) = σw1 det([w]?Lψ1).

On the other hand, we have [Ka-GKM, 5.6.2] the global geometric isomorphism

[w]?Lψ1)
∼= Klψ2( all characters of order dividing w),

for ψ2(x) := ψ1(x/w). Because w ≥ 2, this Kloosterman sheaf has geometric determinant
the product of all its “upstairs” characters, namely the characters of order dividing w, whose
product is (χ2)w−1. Thus

det(Wild) = σw1 (χ2)w−1.

The determinant of the I(∞)-representation ofHbig,A,B,χ is then χχB−1
2 det(Wild)χχB−1

2 σw1 (χ2)w−1.
Again because w ≥ 2, this determinant is the product of the “upstairs” characters of
Hbig,A,B,χ, which is (χ2)A−1. Thus

χχB−1
2 σw1 (χ2)w−1 = (χ2)A−1,

i.e.,
χσw1 = χ2.

Now consider the Kummer pullback [w]? of the I(∞)-representation. It is the direct sum

⊕ρ∈Char(B,χ)Lρw
⊕

(σw1 ⊗ [w]?[w]?Lψ1).

But we have [w]?[w]?Lψ1 = ⊕ζ∈µwLψ1(ζx). Thus this Kummer pullback is

⊕ρ∈Char(B,χ)Lρw
⊕

(⊕ζ∈µwLσw1 ⊗ Lψ1(ζx)).

Now evaluate this on an element γ of I(∞) of profinite order prime to p which maps onto
a generator of I(∞)/P (∞). Because γ has order prime to p, each of the characters Lψ1(ζx)

takes the value 1 at γ, so its eigenvalues are

({ρw : ρB = χ}, σw1 repeated w times).

Then γB has eigenvalues

(χw repeated B times, σwB1 repeated w times).

Now use the determinant equation above, namely χσw1 = χ2, to get σwB1 = χB2 /χ
B. Thus the

image of γ in Ggeom has eigenvalues

(χw repeated B times, χB2 /χ
B repeated w times).

Notice that χw+B = χA. If χA 6= χB2 , then this element is the χB2 /χ
B multiple of the quadratic

element
(χAχB2 repeated B times,1 repeated w times).

Because χA is neither 1 nor χB2 , this is indeed a quadratic element of drop B. Its order is
the order of the character χAχB2 .
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(ii) We now turn to the case when p|w. Because w = w0q, we know [Ka-GKM, 1.14 (2)]
that Wild is [w0]?Wq for some q-dimensional irreducible I(∞)-representation with all slopes
1/q. According to [Ka-ESDE, 8.6.3], the isomorphism class of such a Wq is determined up
to translation by its determinant.

To exploit these facts, we introduce a particular Wq, which will play the role that Lψ
played in the case when w was prime to p. Namely, we define

Wq := the I(∞)-representation of Klψ(Char(q + 1) r {χ2}).
This Kloosterman sheaf has geometrically trivial determinant, so in particular det(Wq) = 1.
So “our” Wq is, up to a multiplicative translation, of the form Lρ⊗Wq for some multiplicative
character ρ, since as ρ varies we attain all possible determinants. We may further choose a
ρ1 with ρw0

1 = ρ. Then

[w0]?Wq = [w0]?([w0]?Lρ1 ⊗Wq) = Lρ1 ⊗ [w0]?(Wq).

At this point, we need to compute the determinant of [w0]?(Wq), which is the I(∞)-representation
of

[w0]?Klψ(Char(q + 1) r {χ2}) ∼= Klψ1(Char((w0(q + 1)) r Char(w0, χ2)),

whose geometric determinant is thus χ2/(χ2χ
w0−1
2 ) = χw0−1

2 . Thus det([w0]?(Wq)) = χw0−1
2 ,

and hence det(Wild) = ρw1 χ
w0−1
2 . Thus the determinant of the I(∞)-representation of ourH is

χχB−1
2 ρw1 χ

w0−1
2 . But the global determinant of H is χA−1

2 , so we have χχB−1
2 ρw1 χ

w0−1
2 = χA−1

2 .
Thus we have

(10.1.11.1) ρw1 = χw+1−w0
2 /χ.

Now consider the [w0] Kummer pullback of the I(∞)-representation of H. It is

⊕σ∈Char(B,χ)Lσw0

⊕
(⊕ζ∈µw0

Lρw0
1 ⊗Wq(ζx)).

Now consider its further [q + 1] Kummer pullback. It is

⊕σ∈Char(B,χ)Lσw0(q+1)

⊕
(⊕ζ∈µw0

L
ρ
w0(q+1)
1 ⊗[q+1]?Wq(ζx)

).

The key point here is that [q + 1]?Wq is the I(∞)-representation of

[q + 1]?Klψ(Char(q + 1) r {χ2}) ∼= FTψLψ(xq+1),

thanks to [Ka-ESDE, 9.2.3]. By a result of Pink [KT1, 20.3], one knows that Ggeom for
FTψLψ(xq+1) is a finite p-group (and by Sawin [KT1, 21.1] it is a known Heisenberg group,
at least for p odd). Thus this further [q + 1] Kummer pullback is

⊕σ∈Char(B,χ)Lσw0(q+1)

⊕
(⊕ζ∈µw0

ρ
w0(q+1)
1 ⊗ (dim = w, image of I(∞) = finite p-group)).

Now choose an element γ ∈ I(∞) which maps onto a generator of I(∞)/P (∞) and which has
profinite order prime to p. Such an element must map to the identity in any finite p-group.
Thus the image of such a γ has eigenvalues

({σw0(q+1) : σB = χ}, ρw0(q+1)
1 repeated w times).

The (qB)th power of γ then has eigenvalues

({σw(q+1)B : σB = χ}, ρw(q+1)B
1 repeated w times),



10.1. GENERALITIES 255

i.e.,

(χw(q+1) repeated B times, ρ
w(q+1)B
1 repeated w times).

By (10.1.11.1), ρ
w(q+1)B
1 = 1/χ(q+1)B. Thus the image of the (qB)th power of γ is 1/χ(q+1)B

times the element with eigenvalues

(χA(q+1) repeated B times,1 repeated w times),

which is the asserted complex reflection when χA(q+1) is nontrivial. �

Specializing B = 1 in Theorem 10.1.11 and recalling that a quadratic element of drop 1
is a complex reflection, we obtain:

Theorem 10.1.12. Suppose A ≥ 3, p - A, and χ is a tame character with χA 6= 1. Then
we have the following results about the group Ggeom for Hbig,A,1,χ.

(i) Suppose p - w := A − 1. If χA 6= χ2, then Ggeom contains a scalar multiple of a
complex reflection γ of determinant χAχ2. Moreover, the complex reflection γ has
order 3 if o(χA) = 6, 4 if o(χA) = 4, and otherwise γ has order ≥ 5. In particular,
o(γ) ≥ 4 if χ6A 6= 1.

(ii) Suppose p | w := A − 1. Write w = w0q with q = pe, e ≥ 1 and p - w0. If
χA(q+1) 6= 1, then Ggeom contains a scalar multiple of a complex reflection γ of
determinant χA(q+1). In particular, if χ2A(q+1) 6= 1 then o(γ) > 2, and if χ6A(q+1) 6= 1

then o(γ) ≥ 4.

Next we give an analogue of Theorem 10.1.12 for A = 2.

Lemma 10.1.13. Suppose A = 2, p > 2, and χ is a tame character with χ2 6= 1 and
χ2 6= χ2. Then the group Ggeom for Hbig,A,1,χ contains a scalar multiple of a complex reflection
of determinant χ2χ2.

Proof. The key point here is that we have a geometric isomorphism det(Hbig,2,1,χ) =
Lψ ⊗ Lχ2 , a special case of [Ka-ESDE, 8.8.12 (2)] in which the Λ there is χ2. The I(∞)-
representation is thus

Lχ ⊕ (Lψ ⊗ Lχχ2).

Now choose an element γ ∈ I(∞) of pro-order prime to p which generates the tame quotient
I(∞)/P (∞). Its eigenvalues are χ(γ) and χ(γ)χ2(γ), so it is a scalar multiple, by χ(γ)χ2(γ),
of the complex reflection with determinant (χ2χ2)(γ). �

Theorem 10.1.14. Suppose A ≥ 3, A−B ≥ 2, gcd(A,B) = 1, and p - AB. Suppose that
F(A,B, θ) has finite Ggeom. Then we have the following results.

(i) Suppose p - w := A− B. Then θχB2 has order ≤ 3. In particular, if B is even then
θ has order ≤ 3, while if B is odd then θ has order ≤ 6.

(ii) Suppose p|w := A−B. Write w = w0p
e with e ≥ 1 and p - w0. Then θp

e+1 has order
≤ 3. In particular, θ has order ≤ 3(pe + 1).

(iii) If in addition both B = 1 and A > 4, then θχ2, respectively θp
e+1, has order ≤ 2.

Proof. If θ = 1, we are saying nothing. If θ is nontrivial, pick a character ρ with
ρA = θ. In view of Theorem 10.1.1, Hbig,A,B,ρ has finite Ggeom, which by Lemma 10.1.7 and
10.1.8 is a finite primitive subgroup of GLn(C). If θχ2, respectively θp

e+1 has order ≥ 4, then
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by Theorem 10.1.11 this group contains a quadratic element of drop B and order ≥ 4. By
Theorem 10.1.10, this impossible if the order is ≥ 6, while if the order is 4 or 5, then A = 2B,
contradicting gcd(A,B) = 1. For assertion (iii), one knows [Mit, Theorem 1] that a finite
primitive group in > 4 variables contains no complex reflection of order > 2. �

We will also need the following extension of Proposition 2.4.3:

Lemma 10.1.15. Let A > B ≥ 1 be coprime integers, and let p - AB. Consider the local
system H = Hsmall,A,B or Hbig,A,B,χ in characteristic p, with geometric monodromy group G
and wild part of dimension w = A− B, and let g∞ be a p′-element that generates the image
J of I(∞) in G modulo the image Q of P (∞). Then g∞ is an m2sp-element of finite order
acting on the underlying representation V = VH. Moreover, the following statements hold.

(i) Suppose p - w. Then ō(g∞) is divisible by w; in fact it is divisible by (A − B)B unless
possibly when B = 2 and H = Hsmall,A,2. In all cases, the total multiplicity of repeated
eigenvalues of g∞ on V is at most 2, i.e. g∞ is an asp-element.

(ii) Suppose w = w0p
e with e ≥ 1. Then ō(g∞) is divisible by C := w0(pe + 1); in fact

it is divisible by lcm(B,C) unless possibly when B = 2 and H = Hsmall,A,2. In all
cases, the total multiplicity of repeated eigenvalues of g∞ on V is at most 2d, where
d := gcd(B,C) = gcd(B, pe + 1), and the ratio between any two repeated eigenvalues is
a dth root of unity.

Proof. Applying Proposition 2.4.3 to G, we obtain that g∞ is m2sp on V , and it is ssp
on Wild and on Tame. Excluding the case H = Hsmall,A,2, we have that the spectrum of g∞
on Tame contains two eigenvalues who ratio is ζB if B ≥ 2, whence the central order of g∞
on Tame is always divisible by B, which implies the statements about ō(g∞).

Assume that α is a repeated eigenvalue on V for g∞. Since g∞ is ssp on both Wild and
Tame, it must be the case that α has multiplicity 1 on Wild and multiplicity 1 on Tame, and
so its total multiplicity is 2. Now assume that α′ 6= α is another repeated eigenvalue for g∞
on V . Then α and α′ are distinct eigenvalues for g∞ on Wild and on Tame; in particular,
1 6= α′/α is a Bth root of unity, and this shows H 6= Hsmall,A,2. If p - w, then by [KRLT4,
Proposition 4.8], α′/α is a wth root of unity, whence α = α′ since gcd(w,B) = gcd(A,B) = 1,
a contradiction. Suppose now that p|w = w0p

e. By [KRLT4, Proposition 4.9], α′/α is a Cth

root of unity, whence it is a dth root of unity. Thus there exist at most d possibilities for
repeated eigenvalues of g∞, and each has multiplicity 2. Also note that gcd(w0, B) divides
gcd(w,B) = gcd(A−B,B) = 1, so d = gcd(B, pe + 1). �

We give the following lemma for later use:

Lemma 10.1.16. Suppose W is a totally wild I(∞)-representation of odd dimension D,
with all slopes 1/D. If p is odd, then W |P (∞) is not self-dual as P (∞)-representation.

Proof. Suppose first that D = pa for some a ≥ 0. Then W is P (∞)-irreducible by
[Ka-GKM, 1.14(2)]. If W and its I(∞)-dual W∨ are P (∞)-isomorphic, then we have
an I(∞)-isomorphism W∨ ∼= W ⊗ χ for some character χ of I(∞)/P (∞) (simply because
P (∞)CI(∞)). Because p is odd, there exists a character ρ of I(∞)/P (∞) with ρ2 = χ. But
then W ⊗ ρ is I(∞)-self-dual, which for p odd is impossible by [Ka-ESDE, 8.8.3] because
its rank pa is odd.
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Suppose now that D = n0p
a with a ≥ 0 and p - n0. Then as I(∞)-representation, W is

the Kummer direct image [n0]?V for some V an I(∞) of rank pa with all slopes 1/pa. Then
the Kummer pullback [n0]?W is the direct sum

[n0]?W ∼=
⊕

ζ∈µn0 (Fp)

Mult.Translζ(V ).

The Kummer pullback does not change the P (∞)-representation, hence

WP (∞)
∼=

⊕
ζ∈µn0 (Fp)

Mult.Translζ(VP (∞)).

By [Ka-GKM, 1.14(4)], these n0 multiplicative translates are pairwise nonisomorphic as ir-
reducible P (∞)-representations. By the argument above, none of these multiplicative trans-
lates is P (∞)-self-dual. So if W is to be P (∞)-self-dual, these n0 multiplicative translates
must fall into pairs of P (∞)-duals. But this is impossible, as n0 is odd. �

Lemma 10.1.17. Let X/Fq be smooth and geometrically connected, ` 6= p, and F a lisse

Q`-adic sheaf on X which is pure of weight zero. Suppose Garith is finite. Suppose there exists
a point x0 ∈ X(Fq) such that Trace(Frobx0,Fq |F) = rank(F). Then Ggeom = Garith.

Proof. Indeed the quotient Garith/Ggeom is a quotient of Gal(Fq/Fq), so generated by
the image in Garith/Ggeom of any Frobx,Fq for any x ∈ X(Fq). The image of Frobx0,Fq in Garith

is the identity element idGarith
of Garith, simply because in a finite group G < GLrank(F)(C),

only the identity has trace equal to the dimension. But idGarith
lies in Ggeom. �

We now given a “rationality” result for multiplicative characters. Recall that a nonzero
one-variable polynomial f(x) over an Fp-algebra is said to be Artin-Schreier reduced if it has
no constant term, and if any monomial appearing with a nonzero coefficient has degree prime
to p. Given a nonzero Artin-Schreier reduced polynomial f(x), we denote by

gcddeg(f)

the greatest common divisor of the degrees of the monomials appearing in f .

Theorem 10.1.18. Let Fq/Fp2 be a finite extension, f(x) ∈ Fq[x] a nonzero Artin-Schreier
reduced polynomial. Let B ≥ 1 be an integer with p - B and B < deg(f). Suppose F×q contains

µB(Fq), i.e. that q ≡ 1(mod B). Suppose that

gcd(B, gcddeg(f)) = 1.

Let θ be a nontrivial multiplicative character of F×q . Consider the lisse sheaf G(f,B, θ) on

A1/Fq whose trace function is given as follows: for k/Fq a finite extension,

t ∈ A1(k) = k 7→ −1√
#k

∑
x∈k×

ψk(f(x) + txB)θk(x).

Then we have the following results.

(i) G(f,B, θ) is geometrically irreducible, and pure of weight zero.
(ii) Suppose ρ is a nontrivial multiplicative character of F×q . If ρ 6= θ, then G(f,B, θ)

and G(f,B, ρ) are not geometrically isomorphic.
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(iii) Suppose G(f,B, θ) has finite Garith. Let K/Q(ζp) be a finite extension such that the
field of traces of Ggeom lies in K. Then θ takes values in K.

Proof. The first assertion is proven in [KT6, Proposition 2.6]. The second assertion
implies the third. Indeed, If θ does not have values in K, then K(θ) is a nontrivial galois
extension of K. If we apply a nontrivial element σ ∈ Gal(K(θ)/K) to the trace function
of G(f,B, θ), we get the trace function of G(f,B, θσ). Therefore G(f,B, θσ) also has finite
Garith (by the integrality of its traces), and hence has finite Ggeom. Because Garith is finite,
the element Frob0,Fq has finite order. So replacing Fq by a finite extension k, e.g. by Fqn for
n the order of Frob0,Fq , we may assume that Frob0,k|G(f,B, θ) is the identity, or equivalently
that Trace(Frob0,k|G(f,B, θ)) = deg(f). Because the integer deg(f) is fixed by σ, we get
Trace(Frob0,k|G(f,B, θσ)) = deg(f), i.e. that Frob0,k|F(f,B, θσ) is the identity. It then
follows by Lemma 10.1.17 that for both G(f,B, θ)) and G(f,B, θσ), when pulled back to
A1/k, each has Ggeom = Garith. Therefore for G(f,B, θ), the trace field of its Garith lies in
K. But σ fixes K, therefore G(f,B, θσ) has the same Frobenius traces over extensions of
k as G(f,B, θ). By Chebotarev, G(f,B, θ) and G(f,B, θσ) are arithmetically isomorphic
(both being geomerically, and hence arithmetically, irreducible). Therefore G(f,B, θ) and
G(f,B, θσ) are geometrically isomorphic. By assertion (ii), this implies that θ = θσ. Thus θ
is fixed by Gal(K(θ)/K), hence has values in K.

It remains to prove (ii). We argue by contradiction. If ρ 6= θ but G(f,B, θ) and G(f,B, ρ)
are geometrically isomorphic, then the cohomology group

H2
c (A1/Fq,G(f,B, θ)⊗ G(f,B, ρ)∨)

has dimension one, and is pure of weight two. On the other hand, the H1
c is mixed of weight

≤ 1, so by the Lefschetz trace formula we would recover 1 as lim sup over larger and larger
extensions k/Fq of

1

#k

∑
t∈k

Trace(Frobt,k|G(f,B, θ))Trace(Frobt,k|G(f,B, ρ)∨)

=
( 1

#k

)2
∑
t∈k

∑
x,y∈k×

ψk(f(x)− f(y) + t(xB − yB))θ(x)ρ(y)

=
1

#k

∑
x,y∈k×,xB=yB

ψk(f(x)− f(y))θ(x)ρ(y)

=
1

#k

∑
ζ∈µB

∑
x∈k×

ψk(f(x)− f(ζx))θ(x)ρ(ζx).

The hypothesis that gcd(B, gcddeg(f)) = 1 means precisely that for ζ ∈ µB and ζ 6= 1,
f(x)− f(ζx) is a nonzero Artin-Schreier reduced polynomial. The sum∑

x∈k×
ψk(f(x)− f(ζx))θ(x)ρ(ζx)
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is then of absolute value ≤ deg(f)
√

#k by Weil, so it contributes 0 to the lim sup. For ζ = 1,
the sum is ∑

x∈k×
ψk(f(x)− f(x))θ(x)ρ(ζx) =

∑
x∈k×

θ(x)ρ(ζx) = 0,

the last equality because θρ is nontrivial. Thus the lim sup is 0, not 1, a contradiction. �

10.2. The (A, 1)-case

In this section, we completely determine the geometric monodromy groups of the local
systems F(A, 1, χ). We begin with a group-theoretic observation.

Lemma 10.2.1. Let p be a prime, m ∈ Z≥1, and let G ≤ GLm(p). Suppose ` is a primitive
prime divisor of pm − 1, cf. [Zs]. If a p-subgroup R of G is normalized by an element g ∈ G
of order `, then R = 1.

Proof. By the choice of `, g acts irreducibly on the natural module V = Fmp . Since
g fixes the (nonzero) fixed point subspace U of R on V , it follows that R = V , and so
R = 1. �

Lemma 10.2.2. Let 2 - N ≥ 3, and let Ggeom be the geometric monodromy group of the
Kloosterman sheaf K := Kl(Charntriv(N)) in characteristic p = 2. If Ggeom is infinite, then
Ggeom = SpN−1. Similarly, if Ggeom denotes the geometric monodromy group of F(57, B,1)
in characteristic p = 2, for any odd 1 ≤ B ≤ 55, then G◦geom 6∼= E7.

Proof. By Lemma 10.1.7, K satisfies (S+). Its Ggeom is infinite, so it is Lie irreducible,
and symplectic by [Ka-ESDE, 8.8.1–2] (in fact, it is symplectic for any odd N ≥ 3 in any
characteristic p - N). Its Kummer pullback [N ]?Kl(Charntriv(N)) is the Fourier transform
FT (Lψ(xN ), which is an Airy sheaf in the terminology of [Such]. So the result is a special
case of [Such, Proposition 11.7], unless N = 57 and G◦geom = E7. In this case, g0 has

spectrum µ57 r {1}, so g19
0 has order 3 and spectrum

(
1[18], ζ

[19]
3 , ζ

[19]

3

)
, which is impossible by

[CG, Proposition 4.1]. The same argument applies to F(57, B,1). �

Lemma 10.2.3. Let F = F(A,B, θ) in characteristic p - AB with A > B ≥ 1 coprime, of
dimension D and with G = Ggeom. Then none of the following cases can occur.

(a) (p,D) = (2, 6), and G◦ acts on H as SL3 = SL(V ) acts on Sym2(V ) or Sym2(V ∗).
(b) D = 8 and G◦ = Spin7 acts on H as on its spin module.
(c) D = 8, and G◦ acts on H as SL3 = SL(V ) acts on the adjoint module.
(d) D = 4, 5 and G◦ is SL2 or PSL2.

Proof. In each case, we argue by contradiction.
Suppose we are in case (a). Since p = 2 - AB, we have A = 7, θ = 1. In this case, F is

symplectic by Theorem 10.1.6(iii), hence it is symplectic over G◦, whereas it is not self-dual
over SL3.

Suppose we are in case (b). Note that the spin module is orthogonal over Spin7, cf.
[Bour, Table 1, p. 213]. Hence F is orthogonally self-dual by Lemma 10.1.3. By Theorem
10.1.6, the latter implies that 2 - AB, whence A = 9, θ = 1, but in this case F would be
symplectically self-dual, a contradiction.
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Suppose we are in case (c). Note that the adjoint module of SL3 is orthogonal over SL3,
so F is orthogonally self-dual by Lemma 10.1.3. By Theorem 10.1.6, the latter implies that
2 - AB, whence A = 9, θ = 1, but in this case F would be symplectically self-dual, a
contradiction.

In case (d), the SL2-module is self-dual, of orthogonal type if D = 5 and of symplectic
type if D = 4. By Lemma 10.1.3, F is self-dual, of the same type, so 2 - AB by Theorem
10.1.6; in particular, A − 5. Now, if D = 4, then the symplectic type tells us that θ = 1;
also, p = 3 and m = 2 by Theorem 6.1.5, but then p|B = 3, a contradiction. If D = 5, then
the orthogonal type tells us that p > 2, and this is impossible by Theorem 6.1.5. �

Theorem 10.2.4. Let p be a prime and let A ∈ Z≥3 be coprime to p. Consider the local
system F(A, 1, θ) in characteristic p, of rank D = A− 1 if θ = 1 and D = A otherwise, with
geometric monodromy group Ggeom. Assume in addition that D ≥ 3 and Ggeom is infinite.
Then we have the following results.

(i) If A is even, then for every θ, F(A, 1, θ) has Ggeom = SLD.
(ii) If A is odd and θ 6= 1, χ2, then Ggeom = SLD.
(iii) If A is odd and θ = 1, then Ggeom = SpD.
(iv) If A is odd, A 6= 7, p 6= 2, and θ = χ2, then Ggeom = SOD.
(v) If A = 7, p 6= 2, and θ = χ2, then Ggeom = G2.

Proof. (A) We first show that G := G◦geom must be either G2 in rank 7 or one of the
classical groups SLD with D ≥ 2, SOD with D ≥ 3, D 6= 4, or SpD with 2|D. [Sometimes SL2

will occur naturally as itself, other times as Sp2. And the image of SL2 = SL(V ) in Sym2(V )
will occur as SO3.]

Consider H = Hsmall,A,1 if θ = 1 and consider H = Hbig,A,1,β with βA = θ if θ 6= 1. Let
H denote the geometric monodromy group of H. By Theorem 10.1.1, G := Ggeom is finite
if and only if H is finite; indeed, G has index dividing A in H. Furthermore, since D ≥ 2,
either H is known to be finite (the cases (A = 9, θ = 1, p = 2) and (A = 5, p = 2, 3)) or
H satisfies (S+) by Lemma 10.1.7, and so we can apply Lemmas 1.1.3 and 1.1.6 to H. By
Proposition 2.4.3(i), a generator g0 of the image of I(0) is an ssp-element on the underlying
representation V of H; more precisely, its spectrum is µA r {1} if θ = 1 and µA otherwise,
and so ō(g0) = A.

(b) Since G is infinite, G◦ = H◦ is a simple algebraic group by Lemma 1.1.3. Hence we
can apply Theorem 3.3.4 and arrive at one of the following possibilities.

(b1) H◦ is a classical group SLD, SpD, or SOD, or D = 7 and H◦ = G2.

(b2) One of (a)–(d) listed in Lemma 10.2.3, and so they are all ruled out.

(b3) p = 2, H◦ = HSpinN with N ∈ {10, 12, 16} and D = 2N/2−1. As p - A, in this case
we must have A = q + 1, leading to finite Ggeom by Pink–Sawin, a contradiction.

(b4) k = 2, 3, H◦ is the image of SL6 = SL(V ) in the representation ∧k(V ), and 2 ≤ p ≤ k.
If k = 2, then p = 2 rules out A = 16, and the case A = 15 is impossible by Lemma 6.1.18.
If (k, p) = (3, 2), then p = 2 rules out A = 20, and the case A = 21 is impossible by Lemma
10.2.2. If (k, p) = (3, 3), then p = 3 rules out A = 21, and the case A = 20 is impossible by
Lemma 6.1.17.
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(b5) p = 2, 3 and (H◦, D) = (E6, 27) or (E7, 56). Here, m = 0 by Theorems 6.2.12 and
6.2.13. Moreover, if D = 27, then p = 3, A = 28, again leading to the Pink–Sawin sheaf with
finite monodromy, cf. Theorem 10.2.7(iv). If D = 56, then A = 57, so p = 2, and this case
is ruled out by Lemma 10.2.2. [Note that it will be shown in Theorem 10.2.7(ii) that in fact
F(57, 1,1) has Ggeom = PSU3(8).]

(B) We have shown that G is either G2 in rank 7 or one of the classical groups in its
standard (or dual of standard) representation. Because A ≥ 3, in all cases we have wild part
w = A − 1 ≥ 2 for both H := Hsmall,A,1 if θ = 1 and for H := H = Hbig,A,1,β with βA 6= 1.
We first compute the groups Ggeom for these H. We will use the fact that if H is Lie self-dual,
meaning that its G◦geom is SO or Sp, then for some tame character χ, Lχ⊗H will be self-dual.

Consider first the case of H = Hsmall,A,1 with A odd. This H is itself symplectic, so
by the paucity of choice it has Ggeom = SpA−1. Similarly, if A is odd and p is odd, then
H := Hbig,A,1,χ2 is orthogonally self-dual and has geometrically trivial determinant, so by the
paucity of choice it has Ggeom = SOA except possibly if A = 7. In this A = 7 case, it results
from [Ka-G2, 3.1 and 6.1] that when Ggeom is infinite (as it in fact is for p > 3), it is G2.

Now consider that case of H := Hbig,A,1,χ when A is odd and χA 6= 1, χ2 6= 1. If it
were Lie self-dual, then some Lρ ⊗ H would be self-dual. Its upstairs characters would be
ρChar(A), which would need to be stable by complex conjugation. The set Char(A) is stable,
so we would have ρChar(A) = ρChar(A), so ρ2Char(A) = Char(A), so ρ2 ∈ Char(A). Because
A is odd, either ρ ∈ Char(A), or, if p is odd, ρ ∈ χ2Char(A). In the first case, at the expense
of multiplying χ by a character of order dividing A, we arrive at a self-dual H := Hbig,A,1,χ

still with χA 6= 1, χ2 6= 1. In the second case, we have Lχ2 times such anH := Hbig,A,1,χ being
self-dual, and hence with H := Hbig,A,1,χ itself being self-dual. But this self-duality forces the
downstairs character χ to be fixed by complex conjugation, which it is not. Thus if A is odd
but χ2 6= 1, we are not Lie self-dual. By the paucity of choice, we have G◦geom = SLA. As
det(H) is geometrically trivial, we have Ggeom = SLA.

Next consider the case ofH = Hsmall,A,1 with A even. Then pmust be odd, and any Lχ⊗H
is still a Kloosterman sheaf of odd rank A− 1, so cannot be self-dual, cf. [Ka-ESDE, 8.8.1].
Thus here we have G◦geom = SLA−1. Here det(H) = Lχ2 , so H = {γ ∈ GLA−1| det(γ) = ±1}.

Finally consider the case of H := Hbig,A,1,χ with A even. Here we must have p odd. Any
Lχ ⊗ H still have wild part of odd dimension A − 1, so cannot be self-dual. Just as in the
preceding case, we have H = {γ ∈ GLA| det(γ) = ±1}.

When we form the [A]? pullbacks, we get the asserted values of Ggeom for the F(A, 1, χ)
(remembering that when A is even, this pullback kills the Lχ2 determinant). �

Remark 10.2.5. In Theorem 10.2.4 above, we omitted the case D = 2. For H :=
Hsmall,3,1, H is symplectic, so when its Ggeom is infinite, it must be Sp2 = SL2, and so
F(3, 1,1) will have the same Ggeom = Sp2 when infinite. By Theorem 2.4.4, Ggeom will be
infinite for p > 2w + 1 = 5. For p = 5 and for p = 2, Ggeom is finite: for p = 5 it is a case
of A = (q + 1)/2, and for p = 2 it is Pink-Sawin. For H := Hbig,2,1,θ, we have p odd, and its
determinant is Lψ ⊗ Lχ2 , so when its Ggeom is infinite, it must be {γ ∈ GL2| det(γ)2p = 1}.
Thus F(2, 1, θ) will have Ggeom = {γ ∈ GL2| det(γ)p = 1}. Again by Theorem 2.4.4, Ggeom

for F(2, 1, χ) will be infinite for p > 5. In fact for p = 3, Ggeom is finite precisely when
χ = χ2, and for p = 5 Ggeom is infinite for all nontrivial χ. This “in fact” statement is an
instance of the computer calculation used for low D in Theorem 10.2.6 below.
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Now we can prove the main result of the section, which determines which F(A, 1, χ) have
finite monodromy.

Theorem 10.2.6. Let p be a prime and let A ∈ Z≥2 be coprime to p. Consider the local
system F(A, 1, χ) in characteristic p, of rank D = A−1 if χ = 1 and D = A otherwise, with
geometric monodromy group G = Ggeom. Assume in addition that D ≥ 2. Then G is finite if
and only if one of the following condition holds.

(i) p > 2, A = (q + 1)/2 for some power q = pf , and χ = 1 or χ = χ2.
(ii) p arbitrary, q = pf , A = (qn + 1)/(q + 1) for some odd integer n ≥ 3, and χq+1 = 1.
(iii) p > 2, A = 2q − 1 for some power q = pf , and χ = χ2.
(iv) q = pf , A = q + 1, and χ = 1.
(v) p = 3, A = 23, and χ = χ2.

(vi) p = 5, A = 7, and χ = 1.

Proof. (a) The fact that F := F(A, 1, χ) has finite monodromy in the cases (i)–(vi) is
known. In cases (i) and (ii), finiteness results from the van der Geer-van der Vlugt argument,
cf [KT1, Theorems 4.2 and 4.3]. For case (iii), cf. [GKT, Theorem 3.1]. Case (iv) is the
Pink–Sawin case, cf. [KT1, 4.1 and 20.3]. Case (v) is Co3, cf. [KRLT1, Theorem 4.2], and
case (vi) is 2.J2, cf. [KRL, Theorem 3.4].

We will keep the same notations H, H, g0 and the opening arguments in part (a) of the
proof of Theorem 10.2.4. From now on we assume that G is finite. Leaving aside the cases
of F(9, 1,1) and F(5, 1,1) with p = 2 included in (iv), and F(5, 1,1) with p = 3 included in
(i), we may assume by Lemma 10.1.7 that H is (S+). Since G is finite, H is finite, and we
can apply Lemma 1.1.3 to H.

(b) Note that for A ≥ 3, the dimension of the wild part of H is w = A − 1 ≥ 2; let
q0 denote the p-part of w. By Mitchell’s theorem [Mit], for D > 4, no finite primitive
subgroup of GLD contains a complex reflection of order ≥ 3, and for D = 3, 4, no finite
primitive subgroup of GLD contains a complex reflection of order ≥ 4. Combining this with
Theorem 2.4.4 and Theorem 10.1.12, we see that F(A, 1, χ) with nontrivial χ can have finite
monodromy in given characteristic p only for p ≤ 2A − 1 and for an explicit finite list of
possible χ for each pair (p,A = D), namely χ2(q0+1) = 1 if D > 4 and χ6(q0+1) = 1 if D = 3, 4.
And for F(A, 1,1) of rank D = A− 1, we must check each of these, again for p ≤ 2A− 1.

In the case A = 2, no finite primitive subgroup of GLA contains a complex reflection of
order ≥ 6. (Indeed, any such group satisfies (S+) by Lemma 1.1.2, and so is either almost
quasisimple, or an extraspecial normalizer by Lemma 1.1.3. In dimension A = 2 and up to
extension by a group of scalars, any group of the first kind is SL2(5), and any (primitive)
group of the second kind is either 2A4

∼= SL2(3) or isoclinic to 2S4
∼= GL2(3), see e.g. Lemma

1.1 and Theorem 1.2 of [DZ]. For these groups, the statement can be checked using [GAP].)
By Theorem 2.4.4, Ggeom must be infinite for p ≥ 7. As p is odd for Hbig,2,1,ρ, we need
only check finiteness in characteristics p = 3, 5. By Lemma 10.1.13, Ggeom contains a scalar
multiple of a complex reflection of determinant ρ2χ2 if ρ2 6= χ2, hence ρ2χ2 must have order
≤ 5 if Ggeom is possibly finite. Thus χ = ρ2 must have order ≤ 10, so the only cases we need
examine for finiteness are F(2, 1, χ) with χ of order ≤ 10 in characteristics p = 3, 5.

A computer check of the V -criterion for finiteness run on Mathematica shows that for
2 ≤ D ≤ 28, one of (i)–(vi) holds whenever the monodromy is finite. [More precisely, the
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V -test fails except in these cases, and as noted above we know that these cases indeed have
finite monodromy.] Hence, from here on we may assume that D ≥ 29.

First consider the case H is an extraspecial normalizer in characteristic r; in particular,
D = q is a power of r. Since D ≥ 11, we have p = r by [KT5, Theorem 9.19]. This rules out
the cases χ 6= 1, as otherwise we would have p|D = A. Hence χ = 1, A = D + 1 = q + 1,
and we arrive at the Pink–Sawin case (iv).

We may henceforth assume that H is almost quasisimple; let S denote the non-abelian
composition factor of H, and recall that g0 is ssp on V and that (3.1.0.1) holds. Then
L := H(∞) is a quasisimple cover of S and acts irreducibly on V by Lemma 1.1.6.

By Theorem 3.1.3, the assumption D ≥ 29 rules out the case S is a sporadic simple
group. We will now analyze the remaining possibilities for S. Note that, in the case S is of
Lie type, since D ≥ 15, by Theorem 3.1.10 we have that the defining characteristic of S is p,
and will apply Theorem 3.1.5 to H. Let Q denote the image of P (∞) in H, and let g∞ be a
p′-element that generates the image of I(∞) modulo Q, cf. Proposition 2.4.3(ii).

(c) Here we consider the case S = PSL2(q), with q = pf , and 13 ≤ D ≤ q + 1. Then
q ≥ 13, and so L is a quotient of SL2(q). As L is irreducible on V , we see that D = q, q ± 1,
or p > 2 and D = (q ± 1)/2.

Suppose D = (q− 1)/2. If χ 6= 1, then ō(g0) = A = (q− 1)/2, and this case is impossible
by [KT5, Theorem 9.11]. If χ = 1, then A = (q + 1)/2, leading to (i).

Suppose D = (q + 1)/2. If χ 6= 1, then A = (q + 1)/2, w = (q − 1)/2, and q0 = 1. Now,
the case χ = χ2 is included in (i), whereas χ2 6= 1 is impossible since it would yield a scalar
multiple of a complex reflection in H by Theorem 10.1.12. Assume now that χ = 1, so that
w = (q + 1)/2. As p - D, p - |Z(H)| by [KT5, Proposition 4.8(iv)], whence Q embeds in the
subgroup PSL2(q) oCf of Aut(S). Since q = pf ≥ 27, by [Zs] we can find a primitive prime
divisor ` of p2f − 1, so that `|(q + 1) and ` ≥ 2f + 1. By [KRLT4, Proposition 4.8], some
power h of g∞ has central order `, hence h ∈ Z(H)L. Now, h normalizes Q1 := Q ∩ Z(H)L,
which can be viewed as a p-subgroup of SL2(q). By Lemma 10.2.1, Q1 = 1. This in turn
imply that Q ↪→ H/Z(H)L, and so |Q| ≤ f < (q + 1)/2. This is impossible, since Q has
(q + 1)/2 distinct linear characters on Wild by [KRLT4, Proposition 4.8].

Suppose D = q. As p - A, we have A = D + 1 and χ = 1, leading to (iv).
Suppose D = q + 1. If χ = 1, then w = q + 1, and we can repeat the above arguments

of (D,χ) = ((q + 1)/2,1) verbatim to rule it out. So χ 6= 1, w = q, and |Q| ≥ q2 by
[KRLT4, Proposition 4.9]. On the other hand, as p - Z(H) by [KT5, Proposition 4.8(iv)],
Q ↪→ PSL2(q) o Cf and so |Q| ≤ qf < q2, a contradiction.

Finally, assume that D = q − 1 ≥ 29. As p - A, we have A = D, and so χ 6= 1 and
w = q − 2. Suppose p > 2. Then, by Proposition 2.4.3(ii), q − 2 divides ō(g∞), hence also
|Aut(S)| = 2fq(q2 − 1). It follows that pf − 2 ≤ 3f , which is impossible. Suppose p = 2.
Then, by Proposition 2.4.3(ii), q/2 − 1 divides ō(g∞), hence also |Aut(S)| = fq(q2 − 1). It
follows that 2f−1 − 1 ≤ 3f , which is impossible unless q = 25. In the latter case, p - D, so
p - |Z(H)| by [KT5, Proposition 4.8(iv)], and so Q embeds in SL2(q) o C5. In particular, Q
is abelian, which is impossible by [KRLT4, Proposition 4.9] since 2|w.

(d) Here we consider the case S = PSLn(q) with q = pf and n ≥ 3. As D ≥ 29,
by Theorem 3.1.5 we have that L is a quotient of SLn(q) and D = (qn − q)/(q − 1) or
(qn − 1)/(q − 1).
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Suppose D = (qn − q)/(q − 1). As p - A, we must have that A = D + 1, whence χ = 1

and w = D. In this case, Proposition 2.4.3 shows that ō(g∞) is divisible by (q + 1)(qn−1 −
1)/(q − 1) > (qn − 1)/(q − 1), contradicting the equality

(10.2.6.1) meo(Aut(S)) = (qn − 1)/(q − 1)

of [GMPS, Theorem 2.16].
Suppose D = (qn − 1)/(q − 1); in particular q > 2. If χ 6= 1, then w = D − 1 =

(qn−q)/(q−1). In this case, Proposition 2.4.3 shows that ō(g∞) is divisible by (q+1)(qn−1−
1)/(q−1) > (qn−1)/(q−1), contradicting (10.2.6.1). Hence χ = 1, and w = D. By Theorem
3.1.8, H/Z(H) ∼= PGLn(q). As p - D, p - |Z(H)| by [KT5, Proposition 4.8(iv)], whence Q
embeds in PSLn(q). Since D ≥ 29 and q > 2, by [Zs] we can find a primitive prime divisor `
of pnf − 1, so that `|w and ` is coprime to q − 1 and |H/Z(H)L|. By [KRLT4, Proposition
4.8], some power h of g∞ has central order `, hence h ∈ Z(H)L. Now, h normalizes Q, which
can be viewed as an elementary abelian of SLn(q). By Lemma 10.2.1, Q = 1, a contradiction.

(e) Next assume that S = PSp2n(q) with q = pf , p > 2, and n ≥ 2. As D ≥ 29, by
Theorem 3.1.5 we have that L is a quotient of Sp2n(q) and D = (qn ± 1)/2.

Suppose D = (qn−1)/2. If χ 6= 1, then ō(g0) = A = (qn−1)/2, and this case is impossible
by [KT5, Theorem 9.11]. If χ = 1, then A = (qn + 1)/2, leading to (i).

Suppose D = (qn + 1)/2. If χ 6= 1, then A = D, w = (qn − 1)/2, and q0 = 1. Now,
the case χ = χ2 is included in (i), whereas χ2 6= 1 is impossible since it would yield a scalar
multiple of a complex reflection in H by Theorem 10.1.12. Assume now that χ = 1, so that
w = (qn + 1)/2. By Theorem 3.1.8, H/Z(H) ∼= S, so H = Z(H)L. As p - D, p - |Z(H)|
by [KT5, Proposition 4.8(iv)], whence Q embeds in S. Since n ≥ 2, by [Zs] we can find a
primitive prime divisor ` of p2nf − 1, so that `|w. By [KRLT4, Proposition 4.8], some power
h of g∞ has central order `. Now, h normalizes Q, which can be viewed as an elementary
abelian of Sp2n(q). By Lemma 10.2.1, Q = 1, a contradiction.

(f) Next assume that S = PSUn(q) with q = pf , 2 - n ≥ 3. As D ≥ 29, by Theorem 3.1.5
we have that L is a quotient of SUn(q), D = (qn − q)/(q + 1) or D = (qn + 1)/(q + 1), and
H/Z(H) ∼= PGUn(q) by Theorem 3.1.8.

Suppose D = (qn− q)/(q+ 1). As p - A, we must have A = D+ 1 = (qn + 1)/(q+ 1) and
χ = 1, leading to (ii).

Suppose D = (qn + 1)/(q + 1). If χ 6= 1, then A = D, w = (qn − q)/(q + 1), and q0 = q.
Now, the case χq+1 = 1 is included in (ii), whereas χq+1 6= 1 is impossible since it would
yield a scalar multiple of a complex reflection in H by Theorem 10.1.12. Assume now that
χ = 1, so that w = (qn + 1)/(q + 1). As p - D, p - |Z(H)| by [KT5, Proposition 4.8(iv)],
whence Q embeds in S. Since n ≥ 3 and D ≥ 29, by [Zs] we can find a primitive prime
divisor ` of p2nf − 1, so that `|w and ` is coprime to q + 1 and |H/Z(H)L|. By [KRLT4,
Proposition 4.8], some power h of g∞ has central order `, and so h belongs to Z(H)L. Now,
h normalizes Q, which can be viewed as an elementary abelian of SUn(q). By Lemma 10.2.1,
Q = 1, a contradiction.

(g) Now we consider the case S = PSUn(q) with q = pf , 2 | n ≥ 4. As D ≥ 29,
by Theorem 3.1.5 we have that L is a quotient of SUn(q), D = (qn − 1)/(q + 1) or D =
(qn + q)/(q + 1), and H/Z(H) ∼= PGUn(q) by Theorem 3.1.8.
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Suppose D = (qn − 1)/(q + 1). As p - A, we must have A = D, χ 6= 1, and ō(g0) = D.
This is however impossible by [KT5, Theorem 9.17].

Suppose D = (qn + q)/(q + 1). As p - A, we must have that A = D + 1 and χ = 1. By
Proposition 2.4.3(i), g0 is an ssp-element of central order D + 1. Applying [KT5, Theorem
8.13], we must have that D + 1 = (qa + 1)(qb + 1)/(q + 1) for some a, b ≥ 1 with n = a + b,
which is impossible.

(h) Finally, we consider the case S = An for some n ≥ 5. In fact, the assumption
D ≥ 29 together with Theorem 10.3.5 and [KT5, Lemma 9.1] show that n ≥ 10, D = n− 1
and L = S = An acts on V as on the deleted permutation module Cn−1; in particular,
Aut(S) ∼= Sn.

(h1) First suppose that χ 6= 1, so that p - A = D = n−1. Consider the case 2 - n, whence
p > 2 and Q ≤ Z(H)S. In fact, as p - D, p - |Z(H)| by [KT5, Proposition 4.8(iv)], whence
Q ≤ S and so the Q-module V , which is Wild ⊕ Tame, is self-dual. It follows that Wild, of
odd dimension n − 2, is self-dual over Q, contradicting Lemma 10.1.16. Hence 2|n. Now,
the spectrum of g0 on Cn−1 is just µn−1, which shows by Theorem 10.3.5 that g0 induces an
(n − 1)-cycle in Sn. As 2|n, Theorem 1.2.2 that H = Z(H)S. Again using p - D we get
p - |Z(H)|, and so Q ≤ S. Recalling dimTame = 1, we see in that case that the p-subgroup
Q < An acting on the natural permutation module Cn has 2-dimensional fixed point subspace,
which means that Q has precisely two orbits while acting on Ω := {1, 2, . . . , n} and so, using
n > 2 and p - (n− 1),

n = pa + pb with a ≥ b ≥ 1.

Suppose that a > b. Then NSn(Q) must preserve these two orbits of length pa and pb on Ω,
and so it acts on Cn−1 with at least 3 simple summands. On the other hand, the image J of
I(∞) acts irreducibly on both Wild and Tame, a contradiction. We have shown that

(10.2.6.2) n = 2pa.

Assume in addition that p - w = n − 2, so that q0 = 1 and p > 2. If χ 6= χ2, then Theorem
10.1.12 implies that H contains a scalar multiple of a complex reflection of order > 2, whereas
H can contain only a scalar multiple of a true reflection, a contradiction. Hence χ = χ2, and
we can use (10.2.6.2). If a = b we arrive at (iii).

Now suppose that w = n− 2 = w0p
e with p - w0 and e ≥ 1, whence p = 2 by (10.2.6.2).

Then g∞ has odd order but still normalizes Q, so it stabilizes each of the two Q-orbits on Ω.
This again contradicts the prescribed action of J = Qo 〈g∞〉 on V .

(h2) Finally, we consider the case χ = 1, so that A = n. If 2 - n, then H is symplectic,
cf. [Ka-MMP, 3.10.2-3], whereas the S-module V is orthogonal, a contradiction. So 2|n
and p > 2. Assume in addition that p - (n − 1) = D. Then we again have p - |Z(H)|, and
so Q ≤ S and the Q-module V = Wild is self-dual of odd dimension n − 1, contradicting
Lemma 10.1.16. Hence p|(n − 1); write w = n − 1 = w0p

e with p - w0 and e ≥ 1. By
Proposition 2.4.3 (and [KRLT4, Proposition 4.9]), g∞ is an ssp-element of central order
w0(pe + 1) ≤ (4/3)(n − 1). Now, if w0 = 1, then we arrive at (iv). Suppose w0 ≥ 2. Then
w0(pe + 1) = n− 1 +w0 > n, so the permutation π ∈ Sn induced by g∞ cannot be an n-cycle
or an (n−1)-cycle. Hence ō(g∞) = k(n−k) for some 1 < k < n/2 coprime to n, by Theorem
10.3.5. It follows that ō(g∞) ≥ 2(n− 2) > (4/3)(n− 1), a contradiction. �
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The next result determines the geometric monodromy group of F(A, 1, χ) when it is finite
(recall the infinite case has been treated in Theorem 10.2.4).

Theorem 10.2.7. Let p be a prime and let A ∈ Z≥2 be coprime to p. Consider the
local system F(A, 1, χ) in characteristic p of rank D ≥ 2 with geometric monodromy group
G = Ggeom. Then, in the cases where G is finite, as listed in Theorem 10.2.6, G is as follows.

(i) Suppose that p > 2, A = (q + 1)/2 for some power q = pf , and χ = 1 or χ = χ2. Then
G is the image of SL2(q) in a Weil representation of degree D = A− 1 when χ = 1 and
of degree D = A when χ = χ2.

(ii) Suppose p arbitrary, q = pf , A = (qn + 1)/(q + 1) for some odd integer n ≥ 3, and
χq+1 = 1. If (n, q) 6= (3, 2), then G is the image of SUn(q) in a Weil representation of
degree D = A− 1 when χ = 1 and of degree D = A when χ 6= 1. If (n, q) = (3, 2), then
G ∼= 21+2

− if χ = 1 and G ∼= 31+2
+ o 21+2

− if χ 6= 1.
(iii) Suppose p > 2, A = 2q − 1 for some power q = pf , and χ = χ2. Then G = A2q in the

deleted permutation module of dimension 2q − 1.
(iv) Suppose q = pf , A = q + 1, and χ = 1. If p > 2, G is the Heisenberg group p1+2f

+ of

order pq2 and exponent p. If p = 2, G is the extraspecial 2-group 21+2f
− .

(v) Suppose p = 3, A = 23 and χ = χ2. Then G = Co3.
(vi) Suppose p = 5, A = 7, and χ = 1. Then G = 2.J2.

Proof. (i) This is [KT1, Theorem 17.2] when q > 3; note that G is SL2(q) when 2|D,
and PSL2(q) when 2 - D. Suppose that q = 3, and so χ = χ2 as D ≥ 2. By Lemma 10.1.7,
H = Hbig,3,1,χ is (S+), and has traces in Q(ζ12). We can apply Lemma 1.1.3 to its geometric
monodromy group H and use [HM] to rule out the case H is almost quasisimple. So H
contains a normal subgroup R ∼= 21+2

ε for some ε = ±. As the image Q ∼= C3 of P (∞) in
both G and H injects in H/Z(H) by [KT5, Proposition 4.8(i)], we have that ε = −, and thus
H/Z(H) ≤ Aut(R) has order 3 or 6. In particular, G = O3′(G) ≤ O3′(H) ≤ Z(H)R · C3.
Since Q ≤ G, we have that Z(H)GR = Z(H)R ·C3. Note that Q acts irreducibly on R/Z(R)
and Z(H) ≤ Z(G) ≤ Z(H). Now, if Z(H)G 6≥ R, then Z(H)G = Z(H) · C3 and so by Ito’s
theorem [Is, (6.15)] cannot act irreducibly on H. So Z(H)G = Z(H)R · C3. Comparing the
order and using Z(H) ∩G = Z(G), we then have that |G| = 3|Z(G)| · |R|/2 = 12|Z(G)|. On
the other hand, any z ∈ Z(G) acts on F(2, 1, χ2) as ζ · Id, with trace belonging to Q(ζ3), so
ζ6 = 1 and so a := |Z(G)| divides 6. Also, b := |H/G| ≤ 2, so we see that |H| divides 144.
Now, some element 1 6= h ∈ Q acts as diag(1, ζ3) and a generator g0 of the image of I(0) in
H acts as diag(1,−1). As H is generated by the normal closure of g0 and h, see [KRLT4,
Theorems 4.2 and 4.3], it follows that H is generated by (and contain) complex reflections
of order 2 and 3, and primitive. Using the classification result of [ST], we then see that
|H| = 48 or 144, in fact it is either C4 ∗ SL2(3), C12 ∗ SL2(3), or C6 ∗ 2S4.

Solving the equation |H| = 12ab, we obtain b = 2 and a = 2 or 6. Since G = O3′(G)
and b = 2, we get G = SL2(3) or C3 × SL2(3). We will show that in fact G = SL2(3) as
follows. A computation using Magma over F9 shows that Frob0,F9 has trace 2 (using the
clearing factor 3f over F9f ), and hence by Lemma 10.1.17 we have G := Ggeom = Garith. A
second computation using Magma over F94 shows, by Lemma 2.5.4, whose S∞ = 2, that∣∣ 1

|G|
− 253

94

∣∣ ≤ 1

34
,
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hence 1
|G| lies in the interval [253

94
− 1

34
, 253

94
+ 1

34
] = [0.0262 . . . , 0.0509 . . .], and hence

19.6 ≤ |G| ≤ 38.2,

hence G = SL2(3). Note that SL2(3) has three irreducible representations of degree 2, two
non-self-dual Weil representations and one self-dual. Since F is not self-dual, G acts on F
via a Weil representation.

(ii) For 2 - q, this is [KT3, Theorem 4.4].
Suppose 2|q and A = (qn + 1)/(q + 1) > 3; in particular, F has rank D ≥ 10. Then,

as mentioned in part (a) of the proof of Theorem 10.2.6, the geometric monodromy group
H of the corresponding hypergeometric sheaf H is (S+), and we can apply Lemma 1.1.3 to
the finite group H. Now, if H is an extraspecial normalizer, then p = 2 forces D to be a 2-
power, a contradiction. Hence, H is almost quasisimple. Let S denote the unique non-abelian
composition factor of H, which is also for G. Note that the case A = 13, i.e. (n, q) = (3, 4) is
[KT1, Theorem 19.1]. Assume in addition that (n, q) 6= (5, 2), so that D ≥ 42. By Theorems
10.3.5, 3.1.3, and 3.1.5, S = AD+1 in the deleted permutation module, or else S is of Lie type
in characteristic r, in which case r = 2 by Theorem 3.1.10. Now Theorem 10.2.6 and its
proof rules out the former case, and shows that in the latter case S = PSUm(q′) for some odd
m ≥ 3 and some 2-power s, and A = (sm + 1)/(s + 1); in particular, the 2-part of A − 1 is
s. Since we also have A = (qn + 1)/(q + 1), the 2-part of A− 1 is q, hence s = q and m = n.
By Theorem 3.1.5(iii), E(H) is the image of SUn(q) in a Weil representation of degree D.
Moreover, H/Z(H) ∼= PGUn(q) by [KT5, Corollary 8.4]. Now, as H/G is cyclic and G is
generated by its Sylow p-subgroups but [PGUn(q) : S] is p′, we have that G/Z(G) ∼= S and
that G = Z(G)E(G) with E(G) = E(H). If χ 6= 1, then D = A is p′, and so p - |Z(G)|, so
G = Op′(G) forces G = E(G). Suppose χ = 1; in particular E(G) = E(H) = S. Then H is
of symplectic type [Ka-ESDE, 8.8.1–2], implying Z(H) ≤ C2. If Z(G) = 1, then G = E(G)
as stated. Otherwise we have Z(H) = Z(G) ∼= C2. In such a case,

(H/S)/(Z(H)S/S) ∼= H/Z(H)S ∼= (H/Z(H))/(Z(H)S/Z(H)) ∼= PGUn(q)/S

is cyclic of 2′-order e := gcd(n, q + 1) and Z(H/S) ≥ Z(H)S ∼= C2, whence H/S is abelian
of order 2e and so H has a normal subgroup H1 of index 2. But note that a generator g0 of
the image of I(0) in H has odd order, so h0 ∈ H1, and Theorem 1.2.2 shows that H = H1, a
contradiction.

Consider the case A = 11. If S = SU5(2), then the above arguments show that G ∼=
SU5(2) in a Weil representation. Suppose S 6= SU5(2). The proof of Theorem 10.2.6 already
showed that S is not an alternating group or a group of Lie type. Applying [HM] and using
the symplectic type of F(11, 1,1), we see S = SU5(2) when χ = 1. So χ 6= 1, of order 3,
and E(H) = S ∼= M11 or E(H) = S ∼= M12 by [HM]. Using [CCNPW], we also see that
H = S×Z(H). Since D = 11 is 2′, 2 - |Z(H)|. Recalling that H/G is cyclic and G = O2′(G),
we must have that G = S. Since the 11-dimensional representations of S are self-dual, this
means that F is self-dual, which is however not the case.

Now we consider the case A = 3. If χ = 1, then it is (iv). Suppose χ 6= 1. We still
know that H = Hbig,3,1,χ is still (S+) and has traces in Q(ζ3). Using [HM] we can rule out
the case H is almost quasisimple. Hence, by Lemma 1.1.3, H contains a normal subgroup
R ∼= 31+2

ε acting irreducibly on H, with ε = ±. Since D = 3, we we have 2 - |Z(H)|.
But Z(H) ≥ Z(R) and has traces in Q(ζ3), so Z(H) = Z(R). In turn, this implies that
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H/R ↪→ Aut0(R)/Inn(R) ≤ SL2(3) ∼= Q8 o C3, in particular, a Sylow 2-subgroup T of H
has order ≤ 8. As w = 2, the image Q of P (∞) is non-abelian, forcing |T | = 8. Hence
H ∼= R o Q8 or R o SL2(3); in particular, O2′(H) = R × Q8 has index 1 or 3 in H. Now
G = O2′(G) ≤ O2′(H) and H/G ↪→ C3, and we readily check that G = RoQ8, which implies
ε = + by [Wi].

(iii) is [GKT, Theorem 3.1], (v) is [KRLT1, Theorem 4.2], and (vi) is [KRL, Theorem
3.4].

(iv) The case p > 2 is [KT1, Theorem 21.1]. Assume p = 2. Then G is a 2-group and
G/Z(G) is elementary abelian of order q2 by [KT1, Corollary 20.3]; in particular, Z(G) 6= 1.
Next, F is of symplectic type [Ka-MMP, 3.10.1–3], implying Z(G) ∼= C2. It follows that
Φ(G) = [G,G] = Z(G), and so G is extraspecial. Finally, F being symplectic implies that

G ∼= 21+2f
− . �

10.3. The (A,B)-case

The first result of the section shows that the main results of [KT6] can in fact be extended
to cover all possible parameters n > m ≥ 1, subject only to the natural condition gcd(n,m) =
1 and thus removing the condition m < n/2 made therein. Referring the reader to §§9, 10 of
[KT6] for precise formulations of the results alluded to, we restrict ourselves to the following
statement, which is needed for our intended treatment of the (A,B) exponential sums.

Recalling the sheaf Fnngcd(A,B,1) defined in Definition 7.3.1, for which we have the
following fact, which follows from [KT6, Lemma 2.3].

Lemma 10.3.1. Suppose A > B > 0 with p - AB. Let D := gcd(A,B). Then on
A1/Fp(µD) we have a direct sum decomposition

Fnngcd(A,B,1) ∼=
⊕

χ:χD=1

F(A/D,B/D, χ)

as the direct sum of D geometrically irreducible constituents which are pairwise geometrically
nonisomorphic.

Next we recall the following well-known facts:

Lemma 10.3.2. Let t, k ∈ Z≥2, and let n1, . . . , nk ≥ 0 be integers such that gcd(n1, . . . , nk) =
1.

(i) gcd(tn1 + 1, . . . , tnk + 1) = 1 if and only if 2|t and 2|n1 . . . nk.
(ii) Suppose 2 - t. Then gcd

(
(tn1 + 1)/2, . . . , (tnk + 1)/2

)
= 1 if and only if 2|n1 . . . nk.

(iii) Suppose 2 - n1 . . . nk. Then gcd
(
(tn1 + 1)/(t+ 1), . . . , (tnk + 1)/(t+ 1)

)
= 1.

Proof. (i) Write d := gcd(tn1 + 1, . . . , tnk + 1). If 2 - t then 2|d, and if 2 - n1 . . . nk then
(t+ 1)|d. Assume now that 2|t and 2|n1 . . . nk, say 2|n1. Note that d divides

gcd(t2n1 − 1, . . . , t2nk − 1) = tgcd(2n1,...,2nk) − 1 = t2 − 1.

As 2|n1, we have (t2 − 1)|(tn1 − 1), and so d = gcd(d, tn1 + 1) = gcd(d, 2) = 1.

(ii) In the notation of (i) we have gcd
(
(tn1 + 1)/2, . . . , (tnk + 1)/2

)
= d/2. If 2 - n1 . . . nk,

then (t+ 1)|d. Assume now that 2|n1 . . . nk, say 2|n1. As noted above, d divides t2− 1. Since
2|n1, we have (t2 − 1)|(tn1 − 1), and so d = gcd(d, tn1 + 1) = gcd(d, 2) = 2.
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(iii) In the notation of (i) we have gcd
(
(tn1 + 1)/(t+ 1), . . . , (tnk + 1)/(t+ 1)

)
= d/(t+ 1).

As noted above, we again have d|(t2 − 1). Since 2 - n1, we have (t2 − 1)|(tn1−1 − 1), and so
d = gcd(d, tn1 + 1) = gcd(d, t+ 1) = t+ 1. �

The next result completes the extraspecial normalizer case.

Theorem 10.3.3. Let A > B ≥ 3 be odd integers, gcd(A,B) = 1, and let A > 9. Suppose
that the system F(A,B, θ) in characteristic p = 2 has finite geometric monodromy group G,
which is in the extraspecial normalizer case of Lemma 1.1.3. Then θ = 1 and A = 2a + 1
and B = 2b + 1 for some integers a > b ≥ 1 such that

(10.3.3.1) 2
∣∣( a

gcd(a, b)
· b

gcd(a, b)

)
.

Proof. Let H = Hsmall,A,B or Hbig,A,B,χ, as defined in (8.5.4.1), (8.5.4.2), be the hyper-
geometric sheaf corresponding to F(A,B, θ). By Corollary 10.1.9, H has finite geometric
monodromy group H BG which satisfies (S+). Hence H is also in the extraspecial normal-
izer case of Lemma 1.1.3. By [KT5, Theorem 7.4], the characteristic of H is 2 and the rank
of H is a power of 2. As 2 - A, this implies that θ = 1 and A = 2a + 1 for some a ≥ 4.
In particular, H = Hsmall,A,B and so by [Ka-ESDE, Thm. 8.12.2] has trivial geometric
determinant. Suppose for the moment that B = 2b + 1 for some b ∈ Z≥1. Applying Lemma
10.3.2 to t := 2c with c := gcd(a, b), we see that the condition gcd(A,B) = 1 is equivalent to
2|(ab/c2), i.e. to (10.3.3.1).

The rest of the proof is to show that we indeed have B = 2b + 1 for some b ≥ 1.

Write the dimension w := A − B of the wild part as 2ew0 with 1 ≤ e ≤ a and 2 -
w0, and let g∞ be a 2′-element that generates the image of I(∞) in H modulo the image
of P (∞). By Proposition 2.4.3(ii), ō(g∞) is divisible by C := w0(2e + 1) on Wild, and
by B on Tame (since it has spectrum µB r {1} on Tame and B ≥ 3), and so ō(g∞) is
divisible by lcm(B,C). On the other hand, by Lemma 1.1.3(c), g∞ is an odd-order element
in NGL2a (C)(R) ≤ Z(GL2a(C))R · Sp2a(2). Hence, using [GMPS, Theorem 2.16] we have

ō(g∞) ≤ meo(Sp2a(2)) ≤ 2a+1 = 2A− 2.

Writing d := gcd(B,C), we then have

BC/d = lcm(B,C) ≤ ō(g∞) ≤ 2A− 2 < 2A = 2w + 2B < 2(B + C).

Thus BC < 2d(B +C), and so (B − 2d)(C − 2d) < 4d2. Recall that d|B,C, and 2 - B,C, in
particular, either B = d or B ≥ 3d, and either C = d or C ≥ 3d. Assuming in addition that
neither B|C nor C|B, we have 4d > min(B,C) ≥ 3d and thus {B,C} = {3d, 5d}. Thus we
have one of the following three cases.

Case 1: B|C = w0(2e+ 1). Note that gcd(B,w0) divides gcd(B,w) = gcd(B,A−B) = 1,
so in fact B|(2e + 1). Now, 2ew0 = w = A − B = 2a + 1 − B, hence B − 1 = 2a − 2ew0 is
divisible by 2e. As 2 - B ≥ 3, we conclude that B = 2e + 1, as stated.

Case 2: {B,C} = {3d, 5d}. As before, gcd(B,w0) = 1. Hence, d = gcd(B,C) =
gcd(B, 2e + 1), and so 5d ≥ C = w0(2e + 1) ≥ w0d, i.e. w0 ≤ 5.

Suppose w0 = 5. As gcd(B,w0) = 1, we must have B = 3d, 5(2e + 1) = C = 5d, whence
d = 2e + 1, and w = 5 · 2e. Now 2a + 1 = A = B + w = 8 · 2e + 3, i.e. 2 = 2e+3 − 2a, a
contradiction since a ≥ 4.
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Suppose w0 = 3. As gcd(B,w0) = 1, we must have B = 5d, 3(2e + 1) = C = 3d, whence
d = 2e + 1, and w = 3 · 2e. Now 2a + 1 = A = B + w = 8 · 2e + 5, i.e. 4 = 2e+3 − 2a, again a
contradiction since a ≥ 4.

The remaining case is that w0 = 1, i.e. B = A− w = 2a + 1− 2e = 2a−e + 1, as stated.

Case 3: C|B but B - C. Using gcd(B,w0) = 1 again, we see that w0 = 1, so w = 2e and
B = 2a − 2e + 1. Also, (2e + 1)|(2a + 2) = 2(2a−1 + 1) implies (a − 1)/e is an odd integer.
If e = a − 1, then B = 2a−1 + 1 = C. We will assume now that (a − 1)/e ≥ 3, so that
e ≤ a− 3. By [KRLT4, Proposition 4.9], there is some ξ ∈ C× such that Spec (g∞) on Wild
is ξ
(
µ2e+1 r {1}

)
and on Tame is µB r {1}; in particular, 1 = det(g∞) = ξ2e . But 2 - o(g∞),

so ξ = 1, and thus

(10.3.3.2) o(g∞) = ō(g∞) = B = 2a − 2e + 1 > 7 · 2a−3 > 2a−1.

Also,

(10.3.3.3) the total multiplicity of repeated eigenvalues of g∞ is at most 2e+1 ≤ 2a−2.

We will now explore the conditions (10.3.3.2) and (10.3.3.3). Recall that by [Ka-ESDE,
Theorems 8.8.1-2], H is symplectic, so Lemma 1.1.3(c) shows that Z(E) = Z(H) = CH(E)
and thus E CH ≤ E ·O−2a(2), where E = 21+2a

− . Now L = o(g∞) is the same as the order of
its image ḡ∞ in O−2a(2). As in [GMPS, §2], we can find

1 ≤ k1 ≤ k2 ≤ . . . ≤ kr, 1 ≤ kr+1 ≤ . . . ≤ kr+s, with a =
r+s∑
i=1

ki,

such that

ḡ∞ = diag
(
h1, . . . , hr+s

)
∈ O−2k1(2)× . . .×O−2kr(2)×O+

2kr+1
(2)× . . .×O+

2kr+s
(2),

o(ḡ∞) divides L := lcm(2k1 + 1, . . . , 2kr + 1, 2kr+1 − 1, . . . , 2kr+s − 1).

Set εi := −1 if i ≤ r and εi := +1 if i > r. Note that the element hr+i, 1 ≤ i ≤ s, has

order dividing 2kr+i − 1 and so its odd-order preimage in NGL
2
kr+i

(C)(2
1+2kr+i
+ ) admits some

eigenvalue αr+i with multiplicity ≥ 2. “Grouping” those eigenvalues together, we see that
if s ≥ 2 then some eigenvalue of g∞ has multiplicity ≥ 2s ≥ 4, whereas g∞ is m2sp by
Proposition 2.4.3(ii), a contradiction. So s ≤ 1. On the other hand, since E has type −, we
must have that 2 - r ≥ 1.

Suppose that ki = kj > 1 for some i < j ≤ r. By [GMPS, Lemma 2.9] we then have
L ≤ 2a+1−ki ≤ 2a−1, contrary to (10.3.3.2). Similarly, if k1 = k2 = k3 = 1, then we again
have by [GMPS, Lemma 2.9] that L ≤ 2a+1−k1−k2 ≤ 2a−1, a contradiction.

Suppose k1 = k2 = 1 < k3 < . . . < kr. Then the odd-order preimage in NGL
2ki

(C)(2
1+2ki
− )

of hi, 1 ≤ i ≤ 2, has spectrum {ωi, ω−1
i } with ω3

i = 1, and so the product of these two
preimages admits eigenvalue 1 with multiplicity≥ 2. If s ≥ 1, then “grouping” this eigenvalue
1 with αr+1, we see that some eigenvalue of g∞ has multiplicity ≥ 4, again a contradiction.
Suppose s = 0. Again “grouping” this eigenvalue 1 with other eigenvalues coming from hj
with j ≥ 3, we see that the repeated eigenvalues of g∞ have total multiplicity at least half of
2a = rank(H), violating (10.3.3.3).
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We have shown that k1 < k2 < . . . < kr. Now, if the order of some hi is less than 2ki − εi,
then it is at most (2ki − εi)/3, and so

o(g∞) ≤ 1

3
·

r∏
i=1

(2ki + 1) ·
r+s∏
j=r+1

(2kj − 1) <
2.4

3
· 2

∑r
i=1 ki · 2

∑r+s
j=r+1 kj =

4

5
· 2a,

contrary to (10.3.3.2). Thus each hi has order 2ki − εi. The same estimate shows that
o(g∞) < (4/5)2a if 2ki − εi, 1 ≤ i ≤ r + s, are not pairwise coprime. Thus

o(g∞) =
r∏
i=1

(2ki + 1) ·
r+s∏
j=r+1

(2kj − 1).

Now, if s = 0, then o(g∞) > 2a, violating (10.3.3.2). So s = 1. If kr+1 = 1, then hr+1 = 1,
and so all eigenvalues of g∞ are repeated, contradicting (10.3.3.3). Hence kr+1 ≥ 2. Now

2a − 2e + 1 = o(g∞) ≥ (2
∑r
i=1 ki + 1)(2kr+1 − 1) ≥ 2a − 2

∑r
i=1 ki + 3,

and so 2e < 2
∑r
i=1 ki , whence e <

∑r
i=1 ki. Now, the repeated eigenvalue αr+1 shows that

the total multiplicity of repeated eigenvalues of g∞ is at least 2 · 2
∑r
i=1 ki ≥ 2e+2, again

contradicting (10.3.3.3). �

Next we turn our attention to the alternating case. We will need the following result on
permutation groups.

Lemma 10.3.4. Let X = Q o C ≤ Sn is a double transitive subgroup, where Q 6= 1 is a
p-group acting transitively and C is a cyclic p′-group. Then n = pa, and C is generated by
an (n− 1)-cycle.

Proof. Since X is solvable, by Burnside’s theorem [Cam, Proposition 5.2], we have that
X has a unique minimal normal subgroup R, in particular, R ≤ Q and so R is elementary
abelian of order pa. As shown in [Cam, Remark 1], one can identity {1, 2, . . . , n} with the
point set of W := Fap, R with the subgroup of all translations on W , and X with R o X0,
where X0 ≤ GLa(p) is a subgroup that acts transitively on W r {0} and fixes 0. Now we
have Q = R o (X0 ∩ Q), and the p-subgroup X0 ∩ Q acts semi-transitively (i.e. with orbits
of same length) on W r {0}, hence trivially, and thus Q = R. Now |X0| = |X/Q| = |C| is
coprime to |Q, and so the complement C to Q is conjugate to X0 by the Schur-Zassenhaus
theorem, and so without loss we may assume X0 = C = 〈x〉. It follows that x fixes 0 and
acts transitively on W r {0}, i.e. it is an (n− 1)-cycle. �

Theorem 10.3.5. Let A,B ∈ Z≥2 be integers and p a prime with p - AB and gcd(A,B) =
1. Suppose 2 ≤ B ≤ A− 2 and A ≥ 12. Then no local system F(A,B, θ) in characteristic p
can have finite, almost quasisimple, geometric monodromy group G which has S = An with
n ≥ 5 as a non-abelian composition factor.

Proof. (a) We argue by contradiction.
Let H be a hypergeometric sheaf giving rise to F(A,B, θ). More precisely, if θ = 1, take

H := Hsmall,A,B. If θ 6= 1, take H := Hbig,A,B,χ for any choice of χ with χA = θ. Thus
H has rank D = A − δθ,1 ≥ 11. By Corollary 10.1.9, H has finite geometric monodromy
group H B G which satisfies (S+). Applying Lemma 1.1.3 to H B G, we see that S is the
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unique non-abelian composition factor, and, as usual, S C H/Z(H) ≤ Aut(S). Let g0 be a
generator of the image of I(0) in H, Q the image of P (∞) in H, and let g∞ be a p′-generator
for the image J of I(∞) in H modulo Q. By Proposition 2.4.3, g0 is ssp, and g∞ is m2sp.
In particular, 11 ≤ A = ō(g0) ≤ meo(Aut(S)), ruling out the case n ≤ 6. If n = 7, then
Theorem 3.1.3 shows that D ≤ 6, a contradiction. Hence n ≥ 8, and we can apply Theorem
3.1.2 to find possible candidates for (V, g0), where V = VH is the underlying representation
for H. Using the condition D ≥ 10 and [KT5, Lemma 9.1], we can rule out the spin cases
and obtain that E(G) = S.

Suppose we are in case (i)(b) of Theorem 3.1.2, i.e. S = A8, D = 14, and ō(g0) = 15.
Then A = 15 and θ = 1; moreover, H = Z(H)S by Theorem 1.2.2. Recall from Proposition
2.4.3(ii) that g∞ has simple spectrum on Wild and simple spectrum µB r {1} on Tame.
Checking [GAP] for m2sp-elements in S, we see that ō(g∞) = 15 or ō(g∞) = 7. As I(∞) is
irreducible on Wild of dimension w := A − B and |S| is coprime to 11 and 13, we see that
w 6= 11, 13, i.e. B 6= 2, 4. Also, B is coprime to A = 15, B|ō(g∞) and ō(g∞) is again to
coprime to 11 and 13, so we have B ∈ {7, 8}. Since µB r {1} is contained in Spec (g∞), we
see that ō(g∞) 6= 15, so ō(g∞) = 7 and B = 7. Writing g∞ = zh with z ∈ Z(H) and h ∈ S
(of order 7), we have that Spec (g∞) = αµ7tαµ7 (as a multiset), for some α ∈ C×. Again, it
contains µ7 r {1}, so α ∈ µ7 and we can take α = 1. This shows that g∞ has 1 as a repeated
eigenvalue on Tame, a contradiction.

We have therefore shown that Theorem 3.1.2(i)(a) holds, i.e. S = An with n = D+ 1 and
S acts on V via its deleted permutation representation. Moreover, either θ = 1 and g0 is a
multiple of an n-cycle, or θ 6= 1 and g0 is a multiple of an (n− 1)-cycle (this can be seen by
inspecting the spectrum on V of any disjoint product of a k-cycle and an (n− k)-cycle with
1 ≤ k ≤ n− 1 coprime to n). Let ρ denote the natural permutation character (of degree n)
of Sn, and let ϕ denote the character of the H-module V , so that ϕ|S = ρ|S − 1S.

(b) Note by [KT5, Proposition 4.8(i)] that Q ∩ Z(H) = 1. Next we aim to show that
Q is contained in S = An. First consider the case p - D. Then p - Z(H) by [KT5,
Proposition 4.8(iv)]; also, An CH/Z(H) ≤ Sn. If p > 2, then the p-subgroup Q is contained
in Op′(Z(H)S) = S, as desired. Suppose p = 2. Then the 2′-element g0 is contained in
Z(H)S, and so H = Z(H)S by Theorem 1.2.2, and we again have Q ≤ S as in the previous
case.

It remains to consider the case p|D. As p - A, we must have that n = A = D + 1,
and H = Hsmall,A,B. If 2 - AB, then H is symplectic by [Ka-ESDE, Theorems 8.8.1-2],
whereas V |S is orthogonal, a contradiction. Hence 2|AB, and so p > 2 and Q is contained in
Z(H)S = Z(H) × S. In particular, any element x ∈ Q is uniquely written as x = z(x)h(x)
with z(x) ∈ Z(H) and h(x) ∈ S. The map x 7→ h(x) is a group homomorphism Q → S,
with image R := {h(x) | x ∈ Q}, a p-subgroup, and Q ≤ Z(H)Q = Z(H)R. As Q 6≤ Z(H),
we have R 6= 1. By assumption, p - A = n, hence the nontrivial p-subgroup R cannot act
transitively on n points and so [ρ|R, 1R]R ≥ 2. It follows that the subspace U of R-fixed points
on V is nonzero. Note that J ≤ NH(Q) normalizes each of the subgroups Q, Z(H), and
Z(H)Q∩S = Z(H)R∩S = R. Hence U is J-invariant. On the other hand, x ∈ Q acts on U
via the scalar action of z(x) ∈ Z(H). Thus the Q-module U affords the character eλ for some
linear character λ ∈ Irr(Q) and with e := dimU , and λ is J-invariant. If λ occurs in Wild,
then the J-invariance of λ and the irreducibility of J on Wild imply by Clifford’s theorem



10.3. THE (A,B)-CASE 273

that Q acts on Wild via the character wλ, which in turn show w = A−B = 1 by Propositions
4.8 and 4.9 of [KRLT4], a contradiction. Hence λ occurs in Tame, i.e. z(x) ∈ Z(H) acts
trivially on U for all x ∈ Q. It follows that z(x) acts trivially on V as well (as Z(H) acts via
scalars on V ), and so z(x) = 1 for all x ∈ Q. Thus Q = R ≤ S, as stated.

(c) Recall that An ≤ H/Z(H) ≤ Sn and S = An acts on V via the character ρ|S − 1S.
Working in NGL(V )(S) = Z(GL(V ))Sn, we can write (the action on V of) g∞ as γh∞, with
h∞ ∈ Sn having trace ρ(h∞)− 1 on V and γ ∈ C×. (In general, the action of S on V extends
to Sn in two ways different from each other by the sign character sgn; changing γ to −γ in
the case g∞ /∈ Z(H)S, we achieve the designated trace for h∞.) Defining

J̃ := 〈Q, h∞〉 ≤ NSn(Q).

we can extend ϕ to J̃ by setting ϕ(h∞) = ρ(h∞) − 1, and thus ϕ|J̃ = ρ|J̃ − 1J̃ . Write
m := dimTame. We know that J acts irreducibly on Wild of dimension w = A−B = D−m
(and wild on Q), and the J-module Tame is the sum of m distinct 1-dimensional submodules
(tame on Q). By its construction, J̃ still acts irreducibly on Wild (which is wild on Q), and
the J̃-module Tame is the sum of m distinct 1-dimensional submodules (tame on Q). It
follows that

(10.3.5.1) m+ 1 = [ϕ|J , ϕ|J |J = [ϕ|J̃ , ϕ|J̃ ]J̃ = [ρ|J̃ − 1J̃ , ρ|J̃ − 1J̃ ]J̃ .

Also, [ϕ|J̃ , 1J̃ ]J̃ ≤ 1, so [ρ|J̃ , 1J̃ ]J̃ ≤ 2, and thus J̃ has at most 2 orbits on {1, 2, . . . , n}. Write

the number of J̃-orbits as 1 + r, with r ∈ {0, 1}.
(d) Now we may assume J̃ = Qo 〈h∞〉 has 1 + r orbits, ∆, and Ω if r = 1, on n points

1, 2, . . . , n. Since Q 6= 1 acts nontrivially on {1, 2, . . . , n}, we may assume that ∆ consists
of k ≥ 1 Q-orbits of length pa > 1 each, and Ω consists of l Q-orbits of length pb each with
pb ≤ pa if r = 1. Let α and β denote the permutation character of J̃ on ∆ and on Ω, with
the convention β = 0 if r = 0. Then

(10.3.5.2) [α, 1J̃ ]J̃ = 1, and [β, 1J̃ ]J̃ if r = 1, hence [α, β]J̃ ≥ r.

Next, the k orbits ∆i, 1 ≤ i ≤ k, of Q on ∆ are cyclically permuted by h∞, so hk∞ fixes each
∆i. Say 1 ∈ ∆1. Then J̃1 := StabJ̃(1) fixes ∆1; also is contained in 〈Q, hk∞〉 and thus fixing

each ∆i as well. As |∆1| = pa > 1, J̃1 fixes {1}, and has at least one more orbit on ∆1 r {1}
and at least one orbit on each ∆i with 2 ≤ i ≤ k. It follows that StabJ(1) has at least k + 1
orbits on ∆, i.e.

(10.3.5.3) [α, α]J̃ = k + s with s ≥ 1.

If r = 1 and pb > 1, then the same argument applied to Ω shows [β, β]J̃ ≥ l + 1. If pb = 1
and r = 1, i.e. Q acts trivially on Ω, then l = |Ω| and β is the sum of l linear characters,
and so [β, β]J̃ ≥ l. Thus we always have [β, β]J̃ = lr + t, where t ≥ 0, and in fact t ≥ 1 if
pb > 1 and r = 1.

From (10.3.5.2), and (10.3.5.3) and its variant for Ω we now obtain

[ρ|J̃ , ρJ̃ ]J̃ = [α + β, α + β]J̃ ≥ k + s+ lr + t+ 2r.

Also,

(10.3.5.4) m = dimTame = [ρQ − 1Q, 1Q]Q = k + lr − 1.
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Now using (10.3.5.1), we get

m+ 1 = [ρ|J̃ − 1J̃ , ρ|J̃ − 1J̃ ]J̃
= [ρ|J̃ , ρJ̃ ]J̃ + 1− 2[ρ|J̃ , 1J̃ ]J̃
≥ (k + s+ lr + t+ 2r) + 1− 2(r + 1)

= k + s+ t+ lr − 1

= m+ s+ t.

It follows that s = 1, i.e. [α, α]J̃ = k+ 1, and t = 0, i.e. pb = 1 if r = 1. Thus J̃1 has exactly
k+1 orbits on ∆, so they must be {1}, ∆1r{1}, and ∆i, 2 ≤ i ≤ k. As StabJ(1) ≤ 〈Q, hk∞〉,
we see that 〈Q, hk∞〉 acts doubly transitively on ∆1. Applying Lemma 10.3.4 to the image
of 〈Q, hk∞〉 in Sym(∆1), we see that hk∞ acts on ∆1 as a (pa − 1)-cycle, and hence we may
assume that hk∞ has orbits {1}, ∆1 r {1} on ∆1. But h∞ commutes with hk∞ and permutes
∆1, . . . ,∆k cyclically. Also, as Q acts trivially on Ω, Ω is a single h∞-orbit if r = 1. So we
have shown that h∞ has 2 + r orbits, one of length

k(pa − 1) = w = A−B,

another of length k, and one more of length l if r = 1, on {1, 2, . . . , n}.
Returning to g∞ = γh∞, we see that Spec (g∞) on V is

(10.3.5.5) γ · µw t γ ·
(
µk r {1}

)
t γ · µl︸ ︷︷ ︸

r

,

as a multiset. Now, if p|w = p(ka − 1), then since pa > 1 we have p|k, and so ō(g∞) is
divisible by k (see (10.3.5.5)) and by p, a contradiction. Hence p - w.

(e) Suppose H = Hbig,A,B,χ, so that m = B, and k + lr = B + 1 by (10.3.5.4). By
[KRLT4, Proposition 4.8], Spec (g∞) on V is

(10.3.5.6) δ · µw t ν · µB

for some δ, µ ∈ C×. This should of course match up with (10.3.5.5).
Assume first that δ ∈ γ ·µw. Then the two sets γ ·µw and δ ·µw are identically the same.

Matching up (10.3.5.5) with (10.3.5.6), we obtain

γ ·
(
µk r {1}

)
t γ · µl︸ ︷︷ ︸

r

= ν · µB.

If r = 0, then since B ≥ 2 we have k = B + 1 ≥ 3 by (10.3.5.4), and the left-hand-side
contains two roots with ratio ζB+1, a contradiction. [Note that the case (B, r) = (1, 0) led to
Theorem 10.2.7(iii).] So r = 1. Now, if k ≥ 2 then the left-hand-side contains two roots with
ratio ζk, and the right-hand-side then shows that k|B. But k divides k(pa − 1) = A− B, so
gcd(A,B) > 1, a contradiction. Hence k = 1, l = B, A = pa − 1 + B. Now if p = 2 then,
as pa > 1, 2|AB, a contradiction. If p > 2, then gcd(A,B) = 1 implies that both A,B are
odd. Here, D = A = n− 1, and g0 is a multiple of an A-cycle, so Theorem 1.2.2 implies that
H = Z(H)S. On the other hand, g∞ is a multiple of a disjoint product of an (A− B)-cycle
and a B-cycle, showing g∞ /∈ Z(H)S, a contradiction.
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Assume now that γ · µw and δ · µw are disjoint. Then γ · µw is contained in ν · µB. The
former contains two roots with ratio ζw, so w = A−B divides B, and thus 1 < w| gcd(A,B),
again a contradiction.

(f) Finally we consider the case H = Hsmall,A,B, so that m = B − 1, and k + lr = B by
(10.3.5.4). If r = 0, then A = n = kpa is divisible by p, a contradiction. Hence r = 1. By
[KRLT4, Proposition 4.8], Spec (g∞) on V is

(10.3.5.7) δ · µw t
(
µB r {1}

)
for some δ ∈ C×. We will now match this up with (10.3.5.5).

Assume first that δ ∈ γ ·µw. Then the two sets γ ·µw and δ ·µw are identically the same.
Matching up (10.3.5.7) with (10.3.5.6), we obtain

γ · µk ∪ γ · µl = µB r {1}.

(noting that we now have a union of two sets in the left-hand-side). In particular, if k ≥ 2
then the left-hand-side contains two roots with ratio ζk, and the right-hand-side then shows
that k|B. But k divides k(pa− 1) = A−B, so gcd(A,B) > 1, a contradiction. Hence k = 1,
l = B − 1, µB r {1} = γ · µl, which is possible only when B = 2. But in this case, p - B
implies p > 2, so A = pa + 1 and B = 2 are both even, a contradiction.

Assume now that γ ·µw and δ ·µw are disjoint. Then γ ·µw is contained in µB. The former
contains two roots with ratio ζw, so w = A−B divides B, and thus 1 < w| gcd(A,B), again
a contradiction. �

Next we classify semisimple m2sp-elements of finite general linear groups:

Proposition 10.3.6. Let n ∈ Z≥2, q a power of a prime p, (n, q) 6= (2, 2), and let G
be a finite group with PSLn(q) C G/Z(G) ∼= PGLn(q). Suppose G admits an irreducible
CG-module V of dimension D ≥ (qn − q)/(q − 1) on which a p′-element g ∈ G acts as an
m2sp-element. Then one of the following statements holds for the image ḡ of g in PGLn(q).

(i) 〈ḡ〉 is a subgroup of index at most 2 in a cyclic maximal torus T̄n ∼= C(qn−1)/(q−1) of
PGLn(q).

(ii) n = a+ b with a, b ∈ Z≥1, gcd(a, b) = 1, and 〈ḡ〉 is a cyclic maximal torus T̄a,b of order
(qa − 1)(qb − 1)/(q − 1) of PGLn(q).

Proof. Since g is m2sp on V ,

(10.3.6.1) ō(g) ≥ D/2 ≥ (qn − q)/2(q − 1).

We may assume that ḡ is the image of a semisimple element h ∈ GLn(q) in PGLn(q). We
may decompose W := Fnq into a direct sum ⊕si=1Wi of irreducible 〈h〉-submodules Vi ∼= Fniq ,
with n1 ≥ . . . ≥ ns ≥ 1, and write h = diag(h1, . . . , hs) with hi ∈ GL(Wi). Note that

o(hi)|(qni−1); in fact, h
(qni−1)/(q−1)
i ∈ Z(GL(Wi)), and so ō(g) = o(ḡ) divides (q−1)L, where

L := lcm

(
qn1 − 1

q − 1
, . . . ,

qns − 1

q − 1

)
.
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Now, if s = 1, then h = h1, and (10.3.6.1) implies that ō(g) > (qn − 1)/3(q − 1) but ō(g)
divides (qn − 1)/(q − 1), and so we arrive at (i). If s ≥ 3 and q ≥ 3, then

L ≤
s∏
i=4

qni − 1

q − 1
· (qn1 − 1)(qn2 − 1)(qn3 − 1)

(q − 1)3
≤ (qn−n1 − 1)(qn1 − 1)

(q − 1)3
<

qn − q
(q − 1)3

,

and so ō(g) < (qn − q)/2(q − 1), contrary to (10.3.6.1).
In the cases (n, q) = (3, 2), respectively (4, 2), (10.3.6.1) and [GAP] imply that o(h) ∈

{3, 7}, respectively o(h) ∈ {7, 15}, and we arrive at (i) or (ii). So we may assume n ≥ 5
when q = 2. Suppose s ≥ 3 and q = 2. Since ō(g) ≤ meo(SLn(2)) = 2n − 1 by [GMPS,
Theorem 2.16], (10.3.6.1) implies D ≤ 2(2n − 1). As V yields an irreducible projective
representation of SLn(2), applying [TZ1, Theorem 3.1] we see that D = 2n− 2 and V yields
a Weil representation of S := SLn(2), whose character τ is the permutation character of
SLn(2) on Fn2 minus 2 · 1S. One can now check that the restriction of τ to X := SLn1(2) ×
SLn2(2) × SLn−n1−n2(2) contains 6 · 1X . As h ∈ X, it follows that 1 is an h-eigenvalue with
multiplicity ≥ 6, a contradiction.

Finally, suppose s = 2. If d := gcd(n1, n2) ≥ 2, then

ō(g) ≤ (q − 1)L ≤ (q − 1)
(qn1 − 1)(qn2 − 1)

(qd − 1)(q − 1)
≤ qn − q
qd − 1

≤ qn − q
q2 − 1

,

contradicting (10.3.6.1). Thus gcd(n1, n2) = 1, and so ō(h) divides (q−1)L = (qn1−1)(qn2−
1)/(q − 1). Note that (q − 1)L/2 < (qn − q)/2(q − 1), so (10.3.6.1) forces ō(h) = (q − 1)L,
and we arrive at (ii). �

Theorem 10.3.7. Let A,B ∈ Z≥2 be integers with p - AB and gcd(A,B) = 1. Suppose
A ≥ 12 and 2 ≤ B ≤ A− 2. Then no local system F(A,B, θ) in characteristic p can have fi-
nite, almost quasisimple, geometric monodromy group G which has a non-abelian composition
factor S = PSLn(q) with n ≥ 2.

Proof. (a) We argue by contradiction. Let H = Hsmall,A,B or Hbig,A,B,χ be a hyperge-
ometric sheaf giving rise to F(A,B, θ). Then H has rank D ≥ A − 1 ≥ 11. By Corollary
10.1.9, H has finite geometric monodromy group H B G which satisfies (S+). Applying
Lemma 1.1.3 to H B G, we see that S is the unique non-abelian composition factor of H,
and, as usual, S C H/Z(H) ≤ Aut(S). Let g0 be a generator of the image of I(0) in H, Q
the image of P (∞) in H, and let g∞ be a p′-generator for the image J of I(∞) in H modulo
Q. By Proposition 2.4.3, g0 is ssp, and g∞ is m2sp. Furthermore, since D ≥ 11, Theorem
3.1.10 implies that q = pf is a power of p.

(b) First we consider the case n ≥ 3. The assumption D ≥ 11 rules out the cases
where either (n, q) = (3, 2), or (n, q) = (3, 4) but the representation does not come from a
Weil representation of SLn(q), by [KT5, Theorem 6.6]. Applying [KT5, Theorem 8.1] when
(n, q) 6= (3, 3), and using [GAP] when (n, q) = (3, 3), we see that ō(g0) = (qn − 1)/(q − 1)
and E(H) is the image of SLn(q) in a Weil representation of dimension D; in particular, the
latter representation extends to GLn(q). Moreover, w = A − B ≥ 2, so [KT5, Corollary
8.4] shows that H/Z(H) ∼= PGLn(q) and thus, up to scalar matrices, the image of H in
GLD(C) is the same as the image of GLn(q) in a Weil representation of dimension D. Hence,
if D = (qn−1)/(q−1), then these images realize imprimitive subgroups of GLD(C), contrary
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to H being (S+). So we must have that D = (qn−q)/(q−1), A = D+1, and H = Hsmall,A,B.
Now we apply Proposition 10.3.6 to g∞ and arrive at one of the following two possibilities.

(b1) ō(g∞) is either A or A/2. If B > 2, then B|ō(g∞) by Lemma 10.1.15, and so
gcd(A,B) = B > 1, a contradiction. So B = 2, whence 2 < w = A − B ≡ 1(mod p). Now
we have A − B divides ō(g∞) by Lemma 10.1.15(i), and so gcd(A,B) ≥ w > 2, again a
contradiction.

(b2) The image of g∞ in PGLn(q) generates a cyclic maximal torus of order (qa− 1)(qb−
1)/(q − 1), where a > b ≥ 1, n = a + b, and gcd(a, b) = 1. Say, this torus is generated by
the image of h ∈ GLa(q) × GLb(q) in GLn(q). Then the action of g∞ is a scalar multiple of
the action of h in the unipotent Weil representation (of degree (qn − q)/(q − 1)) of GLn(q).
Restricting this representation to GLa(q)×GLb(q), one sees that the spectrum of h contains
all elements of µ(qa−1)/(q−1) t

(
µ(qb−1)/(q−1) r {1}

)
as repeated eigenvalues. It follows that the

total N of multiplicities of eigenvalues of g∞ is

N ≥ 2
(
(qa − 1)/(q − 1) + (qb − 1)/(q − 1)− 1

)
> 2,

hence p|w = A− B by Lemma 10.1.15. In particular, B > 2 as otherwise p - (A− B). The
proof of Lemma 10.1.15 shows that the ratio between two distinct repeated eigenvalues of g∞
is a dth root of unity. Applying this to repeated eigenvalues 1, ζ(qa−1)/(q−1) and 1, ζ(qb−1)/(q−1)

of h, we see that d is divisible by

lcm
(qa − 1

q − 1
,
qb − 1

q − 1

)
=

(qa − 1)(qb − 1)

(q − 1)2
=: M.

Thus, in the notation of Lemma 10.1.15(ii), M divides both B and C/w0 = pe + 1, hence
also B + C = B + w + w0 = A+ w0. Thefefore,

(10.3.7.1) M |(A+ w0) but w0 =
C

pe + 1
≤ ō(g∞)

M
= q − 1.

Suppose b = 1. Then A− 1 = (qn − q)/(q − 1) = qM , so (10.3.7.1) implies that

w0 ≥M − 1 ≥ (q2 − 1)/(q − 1)− 1 = q,

and this violates (10.3.7.1). Hence a > b ≥ 2, and we now have A− (qa + qb − 2)/(q − 1) =
M(q − 1). So (10.3.7.1) implies that

w0 ≥M − q
a + qb − 2

q − 1
=

(qa − 1)(qb − 1)

(q − 1)2
− q

a + qb − 2

q − 1
>
qa − 1

q − 1
·
(
(q+ 1)− 2) = qa− 1 > q,

and this again violates (10.3.7.1).

(c) Now we consider the case S = PSL2(q). The bound 11 ≤ D ≤ meo(Aut(S)) implies
that q ≥ 11, whence the image of g0 lies in PGL2(q) by Theorem 3.1.5(i). Since w > 1,
Theorem 1.2.2 then shows that S C H/Z(H) ≤ PGL2(q). By [KT5, Proposition 4.8(i)],
Q ∩ Z(H) = 1, hence Q embeds in H/Z(H) and so Q is abelian. This implies by [KRLT4,
Proposition 4.8] that p - w.

Suppose that D ≥ q − 1. If H 6= Hsmall,A,2, then Lemma 10.1.15 implies that

ō(g∞) ≥ B(A−B) ≥ 2(A− 2) ≥ 2(q − 3) > q + 1 = meo(Aut(S)),

a contradiction. Hence H = Hsmall,A,2, in which case A = D + 1 ≥ q and p > 2. But p - A
and A ≤ ō(g0) ≤ q+ 1, hence A = q+ 1. Thus both A and B are even, again a contradiction.
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Now consider the case p > 2 and D = (q ± 1)/2. Since Weil representations of SL2(q)
fuse under diagonal automorphisms of S, this implies that H/Z(H) = PSL2(q), and so ō(g∞)
divides (q+ 1)/2 or (q− 1)/2; also q ≥ 23 as D ≥ 11. If H 6= Hsmall,A,2, then Lemma 10.1.15
implies that

ō(g∞) ≥ B(A−B) ≥ 2(A− 2) ≥ 2((q − 1)/2− 2) = q − 5 > (q + 1)/2,

a contradiction. Hence H = Hsmall,A,2, in which case A = D+ 1 = (q+ 1)/2 or (q+ 3)/2. As
A = ō(g0) ≤ (q + 1)/2, we must have that A = (q + 1)/2. But then w = A− 2 = (q − 3)/2
cannot divide ō(g∞), again a contradiction. �

The following result classifies semisimple m2sp-elements of finite symplectic groups:

Proposition 10.3.8. Let n ∈ Z≥2, q a power of a prime p > 2, and let G be a finite
group with G/Z(G) ∼= PSp2n(q). Suppose G admits an irreducible CG-module V of dimension
D ≥ (qn − 1)/2 on which a p′-element g ∈ G acts as an m2sp-element. Then one of the
following statements holds for the image ḡ of g in S := PSp2n(q).

(i) 〈ḡ〉 is of index at most 2 in a cyclic maximal torus T̄±n
∼= C(qn±1)/2 of PSp2(qn) ↪→ S.

(ii) n = a+b with a, b ∈ Z≥1, εa, εb = ±1, and ḡ is contained in the image in S of a maximal
torus T εa,εba,b

∼= Cqa−εa × Cqb−εb < Sp2a(q)× Sp2b(q) of Sp2n(q).
(iii) n = a + b + c with a, b, c ∈ Z≥1, εa, εb, εc = ±1, and ḡ is contained in the image in S

of a maximal torus T εa,εb,εca,b,c
∼= Cqa−εa × Cqb−εb × Cqc−εc < Sp2a(q)× Sp2b(q)× Sp2c(q) of

Sp2n(q). Moreover, ō(g) < 1.65qn/4.

Proof. Since g is m2sp on V ,

(10.3.8.1) ō(g) ≥ D/2 ≥ (qn − 1)/4.

We may assume that ḡ is the image of a semisimple element h ∈ Sp2n(q) in S. As described on
[GMPS, p. 7673], we may decompose W := F2n

q into an orthogonal sum ⊕si=1Wi of h-stable

non-degenerate subspaces Vi ∼= F2ni
q , with n1, . . . , ns ≥ 1, and write h = diag(h1, . . . , hs) with

hi contained in a cyclic maximal torus Cqni−εi < Sp2(qni) ↪→ Sp(Wi) for some εi = ±1. Note

that h
(qni−εi)/2
i = ±IdWi

for all i. Hence, ō(g) = o(ḡ) divides 2L, where

L := lcm

(
qn1 − ε1

2
, . . . ,

qns − εs
2

)
.

Now, if s = 1, then h = h1, and (10.3.8.1) implies that ō(g) > (qn + 1)/6 but ō(g) divides
(qn ± 1)/2, and so we arrive at (i). The case s = 2 is recorded in (ii), so we will now assume
s ≥ 3.

Rewrite the sequence (n1, n2, . . . , ns) so that the first r terms n1 ≤ n2 ≤ . . . ≤ nr have
εi = + and the last t terms nr+1 ≤ nr+2 ≤ . . . ≤ nr+t have εi = −, with s = r + t, so that

L := lcm

(
qn1 − 1

2
, . . . ,

qnr − 1

2
,
qnr+1 + 1

2
, . . . ,

qnr+s + 1

2

)
.

Suppose the sequence (n1, . . . , nr) contains exactly r0 distinct terms, and denote the sum of
these terms as

∑′
i ni. Then

(10.3.8.2) lcm

(
qn1 − 1

2
, . . . ,

qnr − 1

2

)
<
q
∑′
i ni

2r0
.
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Next, if 1 ≤ a1 < a2 < . . . < am are integers, then

log

( m∏
i=1

(1 + q−ai)

)
< log

( ∞∏
k=1

(1 + q−k)

)
<

∞∑
k=1

q−k = 1/(q − 1) ≤ 1/2,

whence
∏

i(1 + q−ai) < exp(1/2) < 1.65 and so
∏

i(q
ai + 1) < (1.65)q

∑
i ai . Now, suppose

the sequence (nr+1, . . . , nr+s) contains exactly t0 distinct terms, and denote the sum of these
terms as

∑′′
j nj, and correspondingly,

∏′′
j (q

nj +1) denotes the product over only those terms.
Then

(10.3.8.3) lcm

(
qnr+1 + 1

2
, . . . ,

qnr+s + 1

2

)
≤

′′∏
j

qnj + 1

2
<

(1.65)q
∑′′
j nj

2t0
.

Writing s0 := r0 +t0, note that
∑′

i ni+
∑′′

j nj misses the s−s0 repeated terms of the sequence

(n1, . . . , ns), hence
∑′

i ni +
∑′′

j nj ≤ n − (s − s0). Together with (10.3.8.2) and (10.3.8.3),
this implies that

L <
(1.65)q

∑′
i ni+

∑′′
j nj

2s0
≤ (1.65)qn−(s−s0)

2s0
≤ (1.65)qn

2s
.

Now, if s ≥ 4, then ō(g) ≤ 2L < (1.65qn)/8 < (qn − 1)/4, contradicting (10.3.8.1). Hence
s = 3, (n1, n2, n3) = (a, b, c), and we arrive at (iii). �

Theorem 10.3.9. Let p > 2 be a prime, A,B ∈ Z≥2 be integers with p - AB and
gcd(A,B) = 1. Suppose A ≥ 12, 2 ≤ B ≤ A − 2, and that the local system F(A,B, θ) in
characteristic p has a finite, almost quasisimple, geometric monodromy group G which has a
non-abelian composition factor S = PSp2n(q) with n ≥ 2. Then q = pf , o(θ) ≤ 2, and we
can find r, s ∈ Z≥1 with

(10.3.9.1) 2
∣∣( r

gcd(r, s)
· s

gcd(r, s)

)
such that A = (pr + 1)/2 and B = (ps + 1)/2.

Proof. (a) Let H = Hsmall,A,B or Hbig,A,B,χ be a hypergeometric sheaf giving rise to
F(A,B, θ). Then H has rank D ≥ A− 1 ≥ 11. By Corollary 10.1.9, H has finite geometric
monodromy group H B G which satisfies (S+). Applying Lemma 1.1.3 to H B G, we see
that S is the unique non-abelian composition factor of H. Let g0 be a generator of the image
of I(0) in H, Q the image of P (∞) in H, and let g∞ be a p′-generator for the image J of
I(∞) in H modulo Q. By Proposition 2.4.3, g0 is ssp, and g∞ is m2sp. Furthermore, since
D ≥ 11, Theorem 3.1.10 implies that q = pf is a power of p. Next, applying Theorems 3.1.5
and 3.1.8, we have that H/Z(H) ∼= S and D = (qn ± 1)/2; in particular,

(10.3.9.2) qn ≥ 23.

Recalling ō(g0) = A ∈ {D,D + 1} and applying Theorems 8.2 and 9.11 of [KT5], we obtain
that A = (qn + 1)/2. (Note that the assumption (n, q) 6= (3, 3) in [KT5, Theorem 9.11] was
used only to ensure that p|q, which is guaranteed by Theorem 3.1.10.) Thus A = (pr + 1)/2
with r := nf .

(b) Suppose for the moment that B = (ps + 1)/2 for some s ∈ Z≥1. Applying Lemma
10.3.2 to t := pv with v := gcd(r, s), we see that the assumption gcd(A,B) = 1 is equivalent
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to 2|(rs/v2), i.e. to to (10.3.9.1). We now show that o(θ) ≤ 2. Recall that D = (qn± 1)/2 is
coprime to p, hence p - |Z(H)| by [KT5, Proposition 4.8(iv)]. On the other hand, H/Z(H) ∼=
S and moreover E(H) is the image of Sp2n(q) in a Weil representation. It follows that
H = Z(H)E(H) and Op′(H) = E(H) = [H,H]. Next, F is the [A]? Kummer pullback of
H and F lives on A1. Hence G = Op′(G) and H/G is a cyclic p′-group. This implies that
G = E(H), and so the field of traces of F is contained in the field of values for a Weil
character of Sp2n(q), which is contained in Q(ζp). In view of Theorem 10.1.2, we may apply
Theorem 10.1.18 to F to conclude that θ takes values in Q(ζp). But o(θ) is coprime to p, so
we conclude that o(θ) ≤ 2, as claimed.

The rest of the proof is to show that we indeed have B = (ps + 1)/2 for some s ∈ Z≥1.

(c) Suppose B = 2. If p = 3, then B = (ps + 1)/2 with s := 1, and so we are done.
Suppose p 6= 3, so that w := A− B = (qn − 3)/2 is coprime to p. By [KRLT4, Proposition
4.8], ō(g∞) is divisible by w. The possibilities for g∞ are listed in Proposition 10.3.8. Since
1.65qn/4 < (qn − 3)/2 by (10.3.9.2), we are in case (i) or (ii) of Proposition 10.3.8. In case
(i), ō(g∞) divides (qn ± 1)/2, which is however not divisible by w, a contradiction. In case
(ii), we have

ō(g∞) ≤ 2 · q
a − εa

2
· q

b − εb
2

≤ 2 · q
a + 1

2
· q

b + 1

2
< qn − 4 < 2w

again because of (10.3.9.2). So the condition w|ō(g∞) implies that

(qa+b − 3)/2 = w = ō(g∞) = (qa − εa)(qb − εb)/2.

This is however impossible for any εa, εb = ±1.

(d) From now we may assume that 3 ≤ B ≤ A− 2. Hence, by Lemma 10.1.15, ō(g∞) is
divisible by lcm(B,C), where we set C := w if p - w and C = w0(pe + 1) if p|w = w0p

e. On
the other hand, note that
(10.3.9.3)

ō(g∞) < (3/4)(qn + 1) = 3A/2; in fact, ō(g∞) < (5/7)(qn + 1) = 10A/7 unless qn = 27.

Indeed, we can apply Proposition 10.3.8. In cases (i) and (iii), ō(g∞) ≤ A. In case (ii),

ō(g∞) ≤ (qa + 1)(qb + 1)/2 ≤ (qn−1 + 1)(q + 1)/2,

and the latter is less than (3/4)(qn+1) if qn = 27 and less than (5/7)(qn+1) if 23 ≤ qn 6= 27.
Write d := gcd(B,C). Now, if p - w, then ō(g∞) ≥ B(A − B) ≥ 2(A − 2) > (3/2)A,

contrary to (10.3.9.3). So we must have that

(10.3.9.4) p|w, and d|(pe + 1),

where the second claim follows from gcd(w0, B)| gcd(w,B) = 1. We also have

BC/d = lcm(B,C) ≤ ō(g∞) < (3/2)A = (3/2)(w +B) < (3/2)(B + C).

Thus 2BC < 3d(B+C), and so (2B−3d)(2C−3d) < 9d2. Recall that d|B,C; in particular,
either B = d, or B ≥ 2d in which case 2B − 3d ≥ d and so 2C − 3d ≤ 8d and thus C ≤ 5d.
The same argument applies to C. Assuming in addition that neither B|C nor C|B, we have
{B,C} = {2d, 3d} or {2d, 5d}. Thus we have one of the following three cases.
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Case 1: {B,C} = {2d, 5d}. In this case, ō(g∞) ≥ lcm(B,C) = 10d = (10/7)(B + C) ≥
(10/7)A, hence qn = 27 by (10.3.9.3), and so A = 14. By (10.3.9.4), 3 = p|w, 7d = B + C =
w0 + A > 14, i.e. d ≥ 3. Now we have

21 ≤ 7d = B + C = B + w0(3e + 1) < (4/3)(B + w03e) = (4/3)A = 56/3,

a contradiction.

Case 2: {B,C} = {2d, 3d}. In this case, ō(g∞) ≥ lcm(B,C) = 6d = (6/5)(B + C) ≥
(6/5)A. Hence, we must be in case (ii) of Proposition 10.3.8. If in addition q ≥ 11 or q = 7
but qn ≥ 73, then

ō(g∞) ≤ (qn−1 + 1)(q + 1)/2 < (3/5)(qn + 1) = (6/5)A,

a contradiction. Suppose q = 7 and qn < 73, i.e. S = PSp4(7), whence A = 25. By (10.3.9.4),
7 = p|w, 5d = B + C = w0 + A > 25, i.e. d ≥ 6. Now we have

30 ≤ 5d = B + C = B + w0(7e + 1) < (8/7)(B + w07e) = (8/7)A = 200/7,

a contradiction.
We have shown that q ≤ 5. On the other hand, both B and C = w0(pe + 1) are coprime

to p, so p 6= 3 and thus p = q = 5. Now,

10d = 2(B + C) = 2(w0 + A) = 2w0 + 5n + 1,

showing w0 ≡ 2(mod 5). By (10.3.9.4) we also have

3d ≥ C = w0(pe + 1) ≥ w0d.

Hence w0 = 2, 2d ≤ C = 2(pe + 1), and thus d = pe + 1, C = 2d, B = 3d. Now

(5n + 1)/2 = A = B + w = 3(5e + 1) + 2 · 5e,
yielding 5n − 2 · 5e+1 = 5, a contradiction.

Case 3: d = B|C = w0(pe + 1). Note that w0p
e = w < A < qn, so e < nf . On the other

hand, 2B−1 = (2A−1)−2w = qn−2w0p
e, so pe divides 2B−1. Writing 2B−1 = bpe for some

odd integer b ≥ 1, we see from (10.3.9.4) that 2(pe + 1) is a multiple of 2d = 2B = 1 + bpe,
which is possible only when b = 1. We conclude that B = (pe + 1)/2, as stated.

Case 4: w0(pe + 1) = C = d|B. Then w0 = 1 and d = pe + 1 by (10.3.9.4). As
B = (qn + 1)/2− pe is divisible by d, we see that

(10.3.9.5) 2(pe + 1)|(qn + 3);

in particular, e ≤ nf . Write nf = ke+ l, where k ∈ Z≥1 and 0 ≤ l < e. Then

qn = pnf ≡ (−1)kpl(mod (pe + 1)),

and so

(10.3.9.6) (pe + 1)|
(
(−1)kpl + 3

)
.

Case 4a: (−1)kpl + 3 = 0. Then we have 2 - k and p = 3. However, in this case,
qn + 3 = 3(3ke + 1) is however not divisible by 2(3e + 1), contrary to (10.3.9.5).

Case 4b: (−1)kpl + 3 6= 0. If 2 - k, then |(−1)kpl + 3| = pl − 3 < pl+1 + 1 ≤ pe + 1,
contradicting (10.3.9.6). So 2|k, and (10.3.9.6) implies pl + 3 ≥ pe + 1 ≥ pl+1 + 1, which is
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possible only when (l, e) = (0, 1) and p = 3. However, in this case qn + 3 = 3k + 3 is not
divisible by 2(3e + 1) = 8, contrary to (10.3.9.5). �

Next we classify semisimple m2sp-elements of finite unitary groups:

Proposition 10.3.10. Let n ∈ Z≥3, q a power of a prime p, (n, q) 6= (3, 2), (3, 3), (4, 2),
and let G be a finite group with PSUn(q) C G/Z(G) ∼= PGUn(q). Suppose G admits an
irreducible CG-module V of dimension D ≥ (qn − q)/(q + 1) on which a p′-element g ∈ G
acts as an m2sp-element. Then one of the following statements holds for the image ḡ of g in
PGUn(q).

(i) 〈ḡ〉 is of index at most 2 in a cyclic maximal torus T̄n ∼= C(qn−(−1)n)/(q+1) of PGUn(q).
(ii) n = a + b with a, b ∈ Z≥1, a 6= b, and ḡ is contained in the image in PGUn(q) of a

maximal torus Ta,b ∼= Cqa−(−1)a × Cqb−(−1)b < GUa(q) × GUb(q) of GUn(q). Moreover,
ō(g) < 1.69qn/(q + 1) if 2 - ab and ō(g) < qn−1 ≤ 1.5qn/(q + 1) if 2|ab.

(iii) n = a+ b+ c with a, b, c ∈ Z≥1, 2 - ab, q ≤ 3, and ḡ is contained in the image in GUn(q)
of a maximal torus Ta,b,c ∼= Cqa+1 × Cqb+1 × Cqc−(−1)c < GUa(q)× GUb(q)× GUc(q) of
GUn(q). Moreover, |{a, b, c}| ≥ 2, and ō(g) < 1.95qn−1/(q + 1). If a < b < c, then
ō(g) < 1.95qn/(q + 1)2.

Proof. (a) Since g is m2sp on V ,

(10.3.10.1) ō(g) ≥ D/2 ≥ (qn − q)/2(q + 1).

We may assume that ḡ is the image of a semisimple element h ∈ GUn(q) in S. As described on
[GMPS, p. 7673], we may decompose W := Fnq2 into an orthogonal sum ⊕si=1Wi of h-stable

non-degenerate subspaces Vi ∼= Fniq2 , with n1, . . . , ns ≥ 1, and write h = diag(h1, . . . , hs) with

hi contained in a cyclic maximal torus Cqni−(−1)ni ≤ GU(Wi). Note that h
(qni−(−1)ni )/(q+1)
i

acts as a scalar on Wi of order dividing q + 1 for all i. Hence, ō(g) = o(ḡ) divides (q + 1)L,
where

L := lcm

(
qn1 − (−1)n1

2
, . . . ,

qns − (−1)ns

q + 1

)
.

If s = 1, then h = h1, and (10.3.10.1) implies that ō(g) > (qn + 1)/3(q + 1) (as qn > 4q) but
ō(g) divides (qn − (−1)n)/(q + 1), and so we arrive at (i). We will henceforth assume that
s ≥ 2.

(b) Rewrite the sequence (n1, n2, . . . , ns) so that the first r terms n1 ≤ n2 ≤ . . . ≤ nr are
odd and the last t terms nr+1 ≤ nr+2 ≤ . . . ≤ nr+t are even, with s = r + t, so that

L := lcm

(
qn1 + 1

q + 1
, . . . ,

qnr + 1

q + 1
,
qnr+1 − 1

q + 1
, . . . ,

qnr+s − 1

q + 1

)
.

Suppose the sequence (nr+1, . . . , nr+t) contains exactly t0 distinct terms, and denote the sum
of these terms as

∑′′
j nj. Then

(10.3.10.2) lcm

(
qnr+1 − 1

q + 1
, . . . ,

qnr+t − 1

q + 1

)
<

q
∑′′
j nj

(q + 1)t0
.
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Next, if 1 ≤ a1 < a2 < . . . < am are odd integers, then

log

( m∏
i=1

(1 + q−ai)

)
< log

( ∞∏
k=1

(1 + q−(2k−1))

)
<

∞∑
k=1

q−(2k−1) = q/(q2 − 1) ≤ 2/3,

whence
∏

i(1 + q−ai) < exp(2/3) < 1.95 and so
∏

i(q
ai + 1) < (1.95)q

∑
i ai . Now, suppose the

sequence (n1, . . . , nr) contains exactly r0 distinct terms, and denote the sum of these terms
as
∑′

i ni, and correspondingly,
∏′

i(q
ni + 1) denotes the product over only those terms. Then

(10.3.10.3) lcm

(
qn1 + 1

q + 1
, . . . ,

qnr + 1

q + 1

)
≤

′∏
i

qni + 1

q + 1
<

(1.95)q
∑′
i ni

(q + 1)r0
.

Write s0 := r0 + t0 ≥ 1. First we consider the case s0 = 1, i.e n1 = . . . = ns = n/s,
L = (qn1 − (−1)n1)/(q + 1). If n = 3 or 5, then ni = 1, ō(g) ≤ q + 1 < (qn − q)/2(q + 1) (as
(n, q) 6= (3, 2), (3, 3)), contradicting (10.3.10.1). If n = 4, then q > 2, and either

ni = 1, ō(g) ≤ q + 1 < (q4 − q)/2(q + 1),

or

ni = 2, ō(g) ≤ q2 − 1 < (q4 − q)/2(q + 1),

contrary to (10.3.10.1). If n ≥ 6, then ō(g) ≤ qn/2 + 1 ≤ qn−3 + 1 < (qn − q)/2(q + 1), again
contradicting (10.3.10.1).

We have shown that s0 ≥ 2. Note that
∑′

i ni +
∑′′

j nj misses the s − s0 repeated terms

of the sequence (n1, . . . , ns), hence
∑′

i ni +
∑′′

j nj ≤ n− (s− s0). Together with (10.3.10.2)

and (10.3.10.3), this implies that

L <
1.95q

∑′
i ni+

∑′′
j nj

(q + 1)s0
≤ 1.95qn−(s−s0)

(q + 1)s0
=

1.95qn

(q + 1)s
·
(q + 1

q

)s−s0 ≤ 1.95qn

(q + 1)s
·
(q + 1

q

)s−2
=

1.95qn

qs−2(q + 1)2
.

Suppose s ≥ 4; in particular n ≥ 4. If q ≥ 3, or s ≥ 5, or (s, q) = (4, 2) but n ≥ 7, then

ō(g) ≤ (q + 1)L <
1.95qn

qs−2(q + 1)
<

qn − q
2(q + 1)

,

contradicting (10.3.10.1). If (s, q, n) = (4, 2, 6), then D ≥ 21, and we still have

ō(g) ≤ (q + 1)L < 1.95qn/q2(q + 1) < D/2,

a contradiction. If (s, q, n) = (4, 2, 5), then (n1, . . . , ns) = (1, 1, 1, 2), L = 1, D ≥ 10, and
again ō(g) ≤ 3 < D/2.

(c) Suppose s = 3; in particular, n ≥ 3. If q ≥ 5, or q = 4 but n ≥ 4, then

ō(g) ≤ (q + 1)L <
1.95qn

q(q + 1)
<

qn − q
2(q + 1)

,

contradicting (10.3.10.1). If (n, q) = (3, 4), then (n1, . . . , ns) = (1, 1, 1), L = 1, D ≥ 12, and
we still have ō(g) ≤ q + 1 < D/2. Hence q ≤ 3, and ō(g) ≤ (q + 1)L < 1.95qn−1/(q + 1). If
moreover s0 = 3, then ō(g) ≤ (q + 1)L < 1.95qn/(q + 1)2, as stated in (iii).

Next suppose that s = s0 = 2, i.e. {n1, n2} = {a, b} with a 6= b, and

ō(g) ≤ (q + 1)L ≤ (qa − (−1)a)(qb − (−1)b)/(q + 1).
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Now, instead of (10.3.10.2) and (10.3.10.3), we note that

(qa + 1)(qb + 1)

q + 1
≤ qn

q + 1
·
(
1 +

1

q

)
·
(
1 +

1

q3

)
<

1.69qn

q + 1

if 2 - ab, and
(qa + 1)(qb − 1)

q + 1
<

qn

q + 1
·
(
1 +

1

q

)
≤ 1.5qn

q + 1

if 2|a, yielding (ii).
It remains to show that when s = 3 the sequence (n1, . . . , ns) contains at most one even

member. Suppose for instance that a := ni ≤ nj =: b and a, b are even; in particular, n = 5 or
n ≥ 7 (since s0 ≥ 2). We have shown above that D ≤ 2ō(g) < 3.9qn−1/(q+ 1) < 2qn/(q+ 1).
This upper bound on D now implies by [TZ1, Theorem 4.1] that D ∈ {(qn + (−1)nq)/(q +
1), (qn−(−1)n)/(q+1)}, E(G) is a quotient of SUn(q) and acts on V via a Weil representation,
which extends to GUn(q). Hence, by Gallagher’s theorem [Is, (6.17)], the action of g on V
is a scalar multiple of the action of h on a Weil representation of GUn(q). Arguing as in
part (B2) of the proof of [KT5, Theorem 8.3], we see that the restriction of the latter to the
subgroup GUa(q) × GUb(q) contains the tensor product A ⊗ B, where A is a Weil module
for GUa(q) of dimension (qa + q)/(q + 1) > ō(hi) and B is a Weil module for GUb(q) of
dimension (qb + q)/(q + 1) > ō(hj). In particular, hi has a repeated eigenvalue α on A and
hj has a repeated eigenvalue β on B. It follows that αβ is an eigenvalue of multiplicity ≥ 4
for diag(hi, hj) on A⊗ B. Hence h has an eigenvalue with multiplicity at least 4 on V , and
so does g, a contradiction. �

We will also need an application of the Borel-Tits theorem:

Lemma 10.3.11. Let n ≥ 3 be an odd integer, q a power of a prime p, and let Q be a
p-subgroup of SUn(q). If n ≥ 5, let ` be a primitive prime divisor of (−q)n−1 − 1, (which
is a primitive prime divisor of qn−1 − 1 if 4|n and a primitive prime divisor of q(n−1)/2 − 1
if n ≡ 2(mod 4), cf. [Zs]), and assume in addition that Q is normalized by an element
s ∈ SUn(q) of order `. Then Q is contained in the unipotent radical of a Siegel parabolic
subgroup of SUn(q), and the dimension of any simple Q-module in any Weil representation
of SUn(q) is at most q.

Proof. The conclusion is vacuously true if Q = 1, so we will assume Q 6= 1. If n = 3,
then the radical R of a (Siegel) parabolic subgroup P of SU3(q) is a Sylow p-subgroup, and so
we may assume that Q ≤ R. Consider the case n ≥ 5. By assumption, the spectrum of s on
the natural space W = Fnq2 of SUn(q) contains a primitive `th root of unity. The condition on `

implies that the 〈s〉-moduleW is the direct sum of three irreducible submodulesW0⊕W1⊕W2,
where W0 is non-degenerate of dimension 1, acted on trivially by s, and W1 and W2 are totally
singular of dimension (n− 1)/2.

Since Q 6= 1 is a p-subgroup, its fixed point subspace U := CW (Q) is nonzero and proper
in W . Q also acts on U⊥ 6= 0 and has nonzero fixed points on it. It follows that U1 := U ∩U⊥
is nonzero and totally singular, of dimension d ≤ (n−1)/2. As s normalizes Q, it also acts on
U1, and the above described structure of W forces d = (n− 1)/2 and, say, U1 = W1. Hence
Q is contained in P := StabSUn(q)(W1), which is a Siegel parabolic subgroup. The radical R
of P is precisely {x ∈ P | x|W1 = IdW1}, and so it contains Q.
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We have shown that Q ≤ R. Now, as shown in the proofs of Lemmas 12.5 and 12.6 of
[GMST], the restriction of any Weil module of SUn(q) to R is the sum of (qn−1− 1)/(q+ 1)
irreducible modules of dimension q each, and possibly one more 1-dimensional module. Hence
the statements follow. �

Theorem 10.3.12. Let p be a prime, A,B ∈ Z≥2 be integers with p - AB and gcd(A,B) =
1. Suppose A ≥ 12, 2 ≤ B ≤ A − 2, and that the local system F(A,B, θ) in characteristic
p has a finite, almost quasisimple, geometric monodromy group G which has a non-abelian
composition factor S = PSUn(q) with n ≥ 3. Then q = pf , 2 - n, o(θ)|(q + 1), and we
can find an odd integer m ≥ 1 with gcd(n,m) = 1 such that A = (qn + 1)/(q + 1) and
B = (qm + 1)/(q + 1).

Proof. (a) Let H = Hsmall,A,B or Hbig,A,B,χ be a hypergeometric sheaf giving rise to
F(A,B, θ). Then H has rank D ≥ A− 1 ≥ 11. By Corollary 10.1.9, H has finite geometric
monodromy group HBG which satisfies (S+). Applying Lemma 1.1.3 to HBG, we see that
S is the unique non-abelian composition factor of H. Let g0 be a generator of the image of
I(0) in H, Q the image of P (∞) in H, and let g∞ be a p′-generator for the image J of I(∞)
in H modulo Q. By Proposition 2.4.3, g0 is ssp, and g∞ is m2sp. Furthermore, since D ≥ 11,
Theorem 3.1.10 implies that q = pf is a power of p, unless possibly when S = SU3(4), D = 12
and p = 5 or 13. We now show that this exception cannot occur. First suppose that p = 13.
Using [GAP] we see that any element x ∈ Q r Z(H) has eigenvalues of dimension at most
1, which shows that dimTame ≤ 1, whence A − B = w ≥ 11, which is impossible since
A ≤ D + 1 = 13, p - A, and B ≥ 2. Next suppose that p = 5. Using [GAP] we see that any
element x ∈ Q r Z(H) has eigenvalues of dimension at most 4, whence w ≥ 8. As D = 12,
we can apply [KT5, Proposition 4.8(iv)] to see that p - |Z(H)|, which in turn implies that
Q ≤ S since p - |Out(S)|; in particular, Q ∼= C5 or C2

5 . But w ≥ 8 rules out Q ∼= C5 and
thus Q ∼= C2

5 . As the trace of any element x ∈ Q r {1} is −3 or 2, we can apply (3.1.10.2)
with α := 1/4 to get w ≥ 9, and w = A − B ≤ (D + 1) − 2 = 11. Now, w 6= 9, 11 because
otherwise g∞ yields an element of order 9 or 11 in Aut(S) by [KRLT4, Proposition 4.8],
which is impossible. We also rule out w = 10 since Q is abelian.

(b) We have shown that q = pf . Next, applying Theorems 3.1.5 and 3.1.8 (and using the
condition D ≥ 11), we have that H/Z(H) ∼= PGUn(q) and E(G) acts as the image of SUn(q)
in a Weil representation of dimension D = (qn + (−1)nq)/(q + 1) or (qn − (−1)n)/(q + 1); in
particular,

(10.3.12.1) (n, q) 6= (3, 2), (3, 3), (4, 2), (5, 2).

(Note that if (n, q) = (5, 2), then A ≥ 12 and D ∈ {10, 11} imply that A = 12, which is
impossible since p = 2 - A.) Recalling the assumption ō(g0) = A ∈ {D,D + 1} and using
Theorems 8.3 and 9.17 of [KT5], we obtain that 2 - n and that A = (qn + 1)/(q + 1). Note
that the assumption (n, q) 6= (4, 3), (6, 2) in [KT5, Theorem 9.17] was used only to ensure
that p|q, which is guaranteed by Theorem 3.1.10, and that w 6= 1, which is automatic since
w = A−B ≥ 2.

(c) Suppose for the moment that B = (qm + 1)/(q + 1) for some integer m ≥ 1. Then
2 - m, and the assumption gcd(A,B) = 1 then implies that gcd(m,n) = 1.

We now show that o(θ)|(q + 1). Recall that H/Z(H) ∼= PGUn(q) and moreover E(H) is
the image of SUn(q) in a Weil representation. It follows that E(H)COp′(H) ≤ E(H)Z(H)
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and in fact Op′(H) = E(H) unless p|Z(H)|. Next, F is the [A]? Kummer pullback of H and
F lives on A1. Hence G = Op′(G) and H/G is a cyclic p′-group. Unless p||Z(H)|, we then
have that G = E(H), and so the field of traces of F is contained in the field of values for a
Weil character of SUn(q), which is contained in Q(ζq+1).

If D = (qn + 1)/(q + 1), then p - D, hence p - |Z(H)| by [KT5, Proposition 4.8(iv)].
Suppose D = (qn − q)/(q + 1), so that H = Hsmall,A,B. As 2 - AB, H is symplectic by
[Ka-ESDE, 8.8.1-2], and hence |Z(H)| ≤ 2; in particular, p - |Z(H)| if p > 2. In the
exceptional case where p = 2 and D = (qn− q)/(q+ 1), we still have SCG ≤ C2×S, and so
the field of traces of F is also contained in the field of values for a Weil character of SUn(q),
which in this case is Q. In view of Theorem 10.1.2, we may now apply Theorem 10.1.18 to
F to conclude that θ takes values in Q(ζp, ζq+1). But o(θ) is coprime to p, so we conclude
that o(θ)|(q + 1), as claimed.

The rest of the proof is to show that we indeed have B = (qm + 1)/(q + 1) for some
m ∈ Z≥1. Using (10.3.12.1), we can apply Proposition 10.3.10 to identify g∞; note that since
2 - n, we have 2 - a and 2|b in case (ii) and 2 - abc in case (iii) of Proposition 10.3.10.

(d) Suppose B = 2; in particular, p > 2. Then w := A − B = (qn − q)/(q + 1) − 1
is coprime to p. By Lemma 10.1.15(i), ō(g∞) is divisible by w. As mentioned above, the
possibilities for g∞ are listed in Proposition 10.3.10; in particular, ō(g∞) < 1.5A < 2w, and
so ō(g∞) = w = A − 2. As (A − 2) - A, this rules out case (i) of Proposition 10.3.10. Case
(iii) is also impossible, since in this case we have q = 3 and so ō(g∞) < 1.95qn−1/(q + 1) <
0.65A < A− 2. In case (ii), we have w = ō(g∞) divides (qa + 1)(qb − 1)/(q + 1) which is at
most qn−1 − 1 < 1.5w, hence

qa+b + 1

q + 1
− 2 = w = ō(g∞) =

(qa + 1)(qb − 1)

q + 1
.

It follows that qa = qb + 2q, where 2|b > 0 and 2 - a, which is possible only when p = 2 and
so p|B, a contradiction.

(e) From now we may assume that 3 ≤ B ≤ A− 2. Hence, by Lemma 10.1.15,

(10.3.12.2) ō(g∞) is divisible by lcm(B,C),

where we set C := w if p - w and C = w0(pe + 1) if p|w = w0p
e. By Proposition 10.3.10,

(10.3.12.3) ō(g∞) < qn−1 < 3A/2.

Write d := gcd(B,C). Now, if p - w, then ō(g∞) ≥ B(A − B) ≥ 2(A − 2) > (3/2)A,
contrary to (10.3.12.3). So we must have that

(10.3.12.4) p|w = w0p
e, p - BC, and d|(pe + 1),

where the third claim follows from gcd(w0, B)| gcd(w,B) = 1. We also have

BC/d = lcm(B,C) ≤ ō(g∞) < (3/2)A = (3/2)(w +B) < (3/2)(B + C).

Thus 2BC < 3d(B+C), and so (2B−3d)(2C−3d) < 9d2. Recall that d|B,C; in particular,
either B = d, or B ≥ 2d in which case 2B − 3d ≥ d and so 2C − 3d ≤ 8d and thus C ≤ 5d.
The same argument applies to C. Assuming in addition that neither B|C nor C|B, we have
{B,C} = {2d, 3d} or {2d, 5d}. First we rule out these two cases.
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(e1) Suppose {B,C} = {2d, 5d}. In this case, p ≥ 3 by (10.3.12.4), hence (10.3.12.3)
yields

ō(g∞) < (4/3)A < (4/3)(B + C) = 28d/3 < 10d = lcm(B,C),

contradicting (10.3.12.2).

(e2) Suppose {B,C} = {2d, 3d}. In this case, p ≥ 5 by (10.3.12.4), hence (10.3.12.3)
yields

ō(g∞) < (6/5)A < (6/5)(B + C) = 6d = lcm(B,C),

again a contradiction.

(f) Here we consider the case w0(pe+1) = C = d|B. Then w0 = 1, w = pe, and d = pe+1
by (10.3.12.4). As B = (qn + 1)/(q + 1)− pe is divisible by d, we see from (10.3.12.2) that

(10.3.12.5) ō(g∞) if divisible by B > A/2.

We again identify g∞ using Proposition 10.3.10. In case (i) of it, we then have ō(g∞)|A and
so B|A, a contradiction.

(f1) Suppose we are in case (ii) of Proposition 10.3.10. Then ō(g∞) divides (qa + 1)(qb −
1)/(q + 1), which is less than qn−1 < (3/2)A < 3B, so (10.3.12.5) implies that (qa + 1)(qb −
1)/(q + 1) is either B or 2B.

(f11) Suppose (qa + 1)(qb − 1)/(q + 1) = B, i.e. (qa + 1)(qb − 1) = qa+b + 1 − pe(q + 1).
Then

(10.3.12.6) pe(q + 1) = qa − qb + 2.

Recall that 2 - a and 2|b > 0, but e ≥ 1. Since p|(qa − qb + 2) by (10.3.12.6), we have p = 2.
Now, if a = 1, then qa − qb + 2 ≤ q2 − qb ≤ 0, contradicting (10.3.12.6). Hence a ≥ 3. In
this case, qa − qb + 2 ≡ 2(mod 4), and so (10.3.12.6) shows e = 1, whence 2q + qb = qa. If
moreover b ≥ 4, then 2q = qa − qb is divisible by q3, a contradiction. So b = 2, 2q + q2 = qa,
yielding (q, a) = (2, 3) and thus (n, q) = (5, 2), which is ruled out by (10.3.12.1).

(f12) Suppose (qa + 1)(qb− 1)/(q+ 1) = 2B, i.e. (qa + 1)(qb− 1) = 2qa+b + 2− 2pe(q+ 1).
Then

(10.3.12.7) 2pe(q + 1) = qa+b + qa − qb + 3.

Recall that 2 - a and 2|b > 0, but e ≥ 1. Since p|(qn + qa − qb + 3) by (10.3.12.6), we have
p = 3. Now, note that the 3-part of qn + qa − qb + 3 is 3. So (10.3.12.7) implies that e = 1,
whence 0 < qn − qb = −qa + 6q + 3, and so a = 1. In this case, q3 > 5q + 3 = qn − qb is
divisible by qb, showing b = 2, qn = q2 +5q+3, and thus (n, q) = (3, 3), which is ruled out by
(10.3.12.1). (Note that if we allow A < 12, then this exception is realized by Hsmall,7,4 which
has geometric monodromy group 61 · PSU4(3) by [KRLT4, Theorem 20.4]. Furthermore,
Hsmall,7,2 also has geometric monodromy group 61 · PSU4(3) by [KRLT4, Theorem 20.2].)

(f2) Suppose we are in case (iii) of Proposition 10.3.10. First we consider the case q ≥ 3.
If a < b < c, then ō(g∞) < 2qn/(q + 1)2 < A/2, contrary to (10.3.12.5). Hence we may
assume that a < b and c ∈ {a, b}. In the notation of the proof of Proposition 10.3.10,

(10.3.12.8) ō(g∞) ≤ (q + 1)L ≤ (qa + 1)(qb + 1)/(q + 1) ≤ qn−2 + 1

(since a+ b ≤ n− 1). Now, (10.3.12.1) shows that either n ≥ 5, or n = 3 but q ≥ 4, whence
qn−2 + 1 < A/2 and thus ō(g∞) < A/2, contradicting (10.3.12.5).
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So we must have that q = 2. In the notation of the proof of Proposition 10.3.10, ō(g∞)
divides 3L, and 3L|M with
(10.3.12.9)

M :=
(2a + 1)(2b + 1)(2c + 1)

9
≤ 2n

9

(
1 +

1

2

)
·
(
1 +

1

2

)
·
(
1 +

1

23

)
<

2.54 · 2n

9
< 0.85A < 1.7B.

In fact, if a ≥ 3, then

M ≤ 2n

9

(
1 +

1

23

)
·
(
1 +

1

23

)
·
(
1 +

1

25

)
<

1.31 · 2n

9
< 0.44A < 0.88B,

and thus ō(g∞) < B, contrary to (10.3.12.5). So a = 1, and (10.3.12.5) and (10.3.12.9) imply

(2n + 1)/3− 2e = B = ō(g∞) = M = (2b + 1)(2c + 1)/3,

and thus

(10.3.12.10) 2b + 2c + 2e+1 + 2e = 2b+c, where b < c and 2 - bc.
We claim that the only solution to (10.3.12.10) is that (b, c, e) = (1, 3, 1). Indeed, if e ≤ b−1,
then the 2-part of N := 2b+ 2c+ 2e+1 + 2e is 2e, hence N 6= 2b+c. If e ≥ b+ 1, then the 2-part
of N is 2b, and so N 6= 2b+c. So we get e = b, 2b+c = 2c + 2b+2, whence c = b+ 2 and b = 1,
as stated.) It follows that (n, q) = (5, 2), which is ruled out by (10.3.12.1).

(g) Finally, we consider the case d = B|C = w0(pe + 1). Note that w0p
e = w < A < qn−1,

so e < (n− 1)f .

(g1) First assume that q = 2. Then 3B − 1 = 3A − 3w − 1 = 2n − 3 · 2e is divisible by
2e, so we can write 3B = 1 + 2ek, where k ∈ Z≥1. Next, 3B = 1 + 2ek divides 3(2e + 1) by
(10.3.12.4), so either (k, e) = (4, 1) or k ≤ 3. If k = 1, then B = (2e + 1)/3, as desired. Also
3B = 1 + 2ek shows that k 6= 3.

Suppose (k, e) = (4, 1), i.e. B = 3. Then w = A − 3 = (2n − 8)/3, and so e = 3, a
contradiction.

Suppose k = 2. Then B = (2e+1 +1)/3 > (2e+1)/2 divides 2e+1, so (2e+1 +1)/3 = 2e+1,
and so 2e = −2, again a contradiction.

(g2) From now on we may assume q ≥ 3. Now, in case (i) of Proposition 10.3.10, ō(g∞)|A,
so B|A, a contradiction. We also note that, since B ≤ C and B +C = A+w0 we have from
(10.3.12.2) that

(10.3.12.11) ō(g∞) is divisible by C > A/2.

Suppose we are in case (iii) of Proposition 10.3.10. If a < b < c, then ō(g∞) < 2qn/(q+1)2 <
A/2, contradicting (10.3.12.11). If a < b and c ∈ {a, b}, then (10.3.12.8) holds, and again we
can use (10.3.12.1) to deduce that ō(g∞) < A/2, again a contradiction.

Hence case (ii) of Proposition 10.3.10 must hold, and thus the image of g∞ in PGUn(q) is
the image of some element h = diag(h1, h2) of the torus Ta,b ∼= CQa×CQb < GUa(q)×GUb(q)
in PGUn(q), n = a+b, 2 - a, 2|b, where we set Qa := (qa+1)/(q+1) and Qb := (qb−1)/(q+1).

(g3) Here we consider the case a ≥ 3; in particular, Qa ≥ q2 − q + 1 ≥ 7. Arguing as in
part (c) of the proof of Proposition 10.3.10, we see that E(H) is a quotient of SUn(q) and
acts on the underlying representation V = VH via a Weil representation, and the action of g
on V is a scalar multiple of the action of h on a Weil representation of GUn(q). Furthermore,
the restriction of the latter to the subgroup GUa(q) × GUb(q) contains the tensor product
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V1⊗V2, where V1 is a Weil module for GUa(q) and V2 is a Weil module for GUb(q) of dimension
Qb + 1 > ō(h2). In particular, h2 has a repeated eigenvalue β on V2. On the other hand, the
central order ō(h1) of h1 in GUa(q) divides Qa, which is odd. If ō(h1) < Qa, then arguing as
in part (b) of the proof of Proposition 10.3.10 we have

ō(g∞) ≤ 1

3
· (qa + 1)(qb − 1)

q + 1
≤ (qn−1 − 1)/3 < A/2,

contradicting (10.3.12.11). We have shown that ō(h1) = Qa. Similarly, if e1 := gcd(a, b) > 1,
then e1 ≥ 3, and so

ō(g∞) ≤ (q + 1) · (qa + 1)(qb − 1)

(qe1 + 1)(q + 1)
≤ (qa + 1)(qb − 1)

q3 + 1
< A/2,

again contradicting (10.3.12.11). Hence

(10.3.12.12) gcd(a, b) = 1.

Now, a direct calculation shows that the spectrum of h1 on V1 is α ·µQa if dim(V1) = Qa, and
α ·
(
µQa r {1}

)
if dim(V1) = Qa− 1, for some α ∈ C×. Hence, g admits repeated eigenvalues

on V whose ratio is ζQa . Applying Lemma 10.1.15(ii), we get that

(10.3.12.13) Qa|B.
Recall that q = pf > 2 and a ≥ 3. Hence q2a − 1 = p2af − 1 admits a primitive prime

divisor ` by [Zs], which then divides Qa. Since B|(pe+1), (10.3.12.13) implies that `|(p2e−1),
so af |e by the choice of `. Suppose that e > af . Then p2e − 1 admits a primitive prime
divisor `′ by [Zs], which then divides pe + 1 but not Qa nor q + 1. By (10.3.12.2), `′ divides
ō(g∞). On the other hand, ō(g∞) divides (qa+1)(qb−1)/(q+1) = (q+1)QaQb. Hence `′|Qb,
and so e|b by the choice of `′. It follows that af |b, contrary to (10.3.12.12). Hence e = af .
Using (10.3.12.13) and B|(pe + 1) = (q + 1)Qa, we can now write B = b0Qa with

(10.3.12.14) b0|(q + 1).

We also have

w0q
a = w0p

e = w = A−B =
qa+b + 1

q + 1
− b0

qa + 1

q + 1
= (qb − b0)Qa −Qb,

and so

(10.3.12.15) w0(qa + 1) +Qb − w0 = (qb − b0)Qa

is divisible by Qa. Thus we can write w0 = Qb − vQa for some v ∈ Z. Substituting this in
(10.3.12.15), we obtain that b0−1 = vqa. But |b0−1| = b0−1 ≤ q by (10.3.12.14) and a ≥ 3.
So we conclude that v = 0, b0 = 1, and thus B = (qa + 1)/(q + 1), as desired.

(g4) Finally, we consider the case a = 1, and thus b = n− 1 and so g∞ has central order
dividing qn−1 − 1. We first show that

(10.3.12.16) pe ≤ q.

Since H/Z(H) ∼= PGUn(q) has p′-index over S, we see that Q is contained in Z(H)E(H).
Thus Z(H)Q = Z(H)Q1 with Q1 := Z(H)Q ∩ E(H). Since Q is nilpotent, Q1 is nilpotent,
and so we can write Q1 = Q2 × Q3, where Q2 = Op(Q1) and Q3 = Op′(Q1). We also note
that for any x ∈ Q3, x|Q| ∈ Z(E(H)) but x is a p′-element, so x ∈ Z(E(H)) and thus
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Q3 ≤ Z(E(H)) ≤ Z(H). Recall that E(H) acts on V via a Weill representation of SUn(q);
in particular, Z(E(H)) is a p′-group, and so Q2 ∩Z(H) = Q2 ∩Z(E(H)) = 1. It follows that

Z(H)Q = Z(H)Q1 = Z(H)Q3Q2 = Z(H)Q2 = Z(H)×Q2.

Recall from [KRLT4, Proposition 4.9] that the irreducible summands of the Q-module Wild
all have dimension pe. Hence it suffices to show that the dimension of any simple Q2-
submodule of V is at most q. If n = 3, then the claim for Q2 follows from Lemma 10.3.11.
Consider the case n ≥ 5 and let ` be a primitive prime divisor of (−q)n−1−1; note that ` ≥ 5
and is coprime to q + 1. Since qn−1 − 1 < (4/3)A < (8/3)C, (10.3.12.11) implies that ō(g∞)
is either (qn−1− 1) or (qn−1− 1)/2; in particular it is divisible by `. Let g2 denote a power of
g∞, which has central order `. Since the index of H/Z(H) over S is gcd(n, q+ 1), we see that
g2 ∈ Z(H)E(H) and thus g2 = z2h2 for some z2 ∈ Z(H) and h2 ∈ E(H) of central order `.
Since g normalizes Q and E(H), g2 normalizes Q1 = Z(H)Q∩E(H) and also Q2 = Op(Q1).
Hence h2 normalizes Q2, and the claim for Q2 follows from Lemma 10.3.11. Thus we have
established (10.3.12.16).

Now we have

w0p
e = w = A−B = q

qn−1 − 1

q + 1
+ 1−B,

hence (10.3.12.16) implies that pe|(B − 1). On the other hand, B ≥ 2 and B|(pe + 1) by
(10.3.12.4), so 1 ≤ B − 1 ≤ pe. It follows that B = pe + 1, and so

(10.3.12.17) w0 = pf−eQn−1 − 1,

where Qn−1 = (qn−1 − 1)/(q + 1) as before. On the other hand, by (10.3.12.1) we have that
w0 divides ō(g∞), which divides

pf−e
(
qn−1 − 1

)
= (q + 1)pf−eQn−1 = (q + 1)w0 + (q + 1).

Hence, w0|(q + 1). Now, if n ≥ 5 then w0 > (q4 − 1)/(q + 1) − 1 > q + 1 by (10.3.12.17), a
contradiction. Thus n = 3. If f = e, then (10.3.12.17) yields w0 = q−2 divides q+1, so q = 5
(as q > 3 by (10.3.12.1)). But in this case C = w0(pe+1) = 18 does not divide qn−1−1 = 24,
contrary to (10.3.12.11). If pf−e ≥ 3, then (10.3.12.17) yields w0 ≥ 3(q − 1) − 1 > q + 1, a
contradiction.

If pf−e = 2, then (10.3.12.17) yields q + 1 ≥ w0 ≥ 2(q − 1)− 1, and so

q = 4, B = 3, A = 13, w = 10, pe = 2.

In this case, V , as a module over Q or Q2, is a direct sum of five 2-dimensional simple
submodules Xi, 1 ≤ i ≤ 5, and at most three submodules of dimension 1, and H = Z(H)S.
We again apply (the proof of) Lemma 10.3.11 to the subgroup Q2 which may be viewed as
a subgroup of R ∈ Syl2(S), and NS(R) = R o C15. As shown above, ō(g∞) = 15 and g∞
normalizes Q2 6= 1. Arguing as in the proof of Lemma 10.3.11, we again see that Q2 6= 1 fixes
a unique singular line in F3

16 (if it fixed two distinct lines, then the two lines would generated
a non-degenerate plane acted on trivially by Q2 and so Q2 = 1) whose stabilizer is NS(R).
Hence g∞ ∈ Z(H)NS(R) and thus we may assume that g∞ = z3h3 with z3 ∈ Z(H) and
NS(R) = Ro 〈h3〉. Now the R-module V is a direct sum of three 4-dimensional submodules
Yj, 1 ≤ j ≤ 3, transitively permuted by h3, and possibly a 1-dimensional submodule. We
may assume that Y1 = X1 ⊕ X2. As h3 normalizes Q2, we have similar decompositions for
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Y2 and Y3, which means that the Q2-module V is a direct sum of six 2-dimensional simple
submodules and possible one 1-dimensional. This contradiction completes the proof of the
theorem.

Here is an alternate way of attaining this last contradiction. By [KRLT4, Theorem 24.2],
the sheaf F(13, 3,1) in characteristic p = 2 has geometric monodromy group 2 · G2(4). By
Theorem 10.1.14, if F(13, 3, θ) in characteristic p = 2 has finite geometric monodromy group,
then θ3 has order 1 or 3 (it cannot have order 2 as it has order prime to p = 2). But for θ of
order 3 or 9, the V -test shows that Ggeom is not finite, so it is only for θ = 1 that F(13, 3, θ)
in characteristic p = 2 has finite geometric monodromy group, and this group is 2 ·G2(4). �

Now we can prove the main result of this section, which determines which F(A,B, θ)
have finite monodromy when A > B > 1; see Theorem 10.2.6 for the case B = 1.

Theorem 10.3.13. Let p be a prime and let A > B ≥ 2 be integers with gcd(A,B) = 1 and
p - AB. Consider the local system F(A,B, θ) in characteristic p, of rank D = A− 1 if θ = 1

and D = A otherwise, see Definition 7.3.1, with geometric monodromy group G = Ggeom.
Then G is finite if and only if one of the following conditions holds.

(i) p > 2, q = pf , A = (qn + 1)/2 and B = (qm + 1)/2 for some integers n > m ≥ 1 with
2|nm, gcd(m,n) = 1, and θ = 1 or θ = χ2. Moreover, G is the image of Sp2n(q) in a
Weil representation of degree D.

(ii) p arbitrary, q = pf , A = (qn+1)/(q+1) and B = (qm+1)/(q+1) for some odd integers
n > m ≥ 3, gcd(m,n) = 1, and θq+1 = 1. Moreover, G is the image of SUn(q) in a
Weil representation of degree D.

(iii) p = 2, q = 2f , A = qn + 1 and B = qm + 1 for some integers n > m ≥ 1 with 2|nm,

gcd(m,n) = 1, θ = 1. If nf ≥ 4 in addition, then G = 21+2nf
− · Ω−2n(q).

(iv) p = 2, A = 13, B = 3, θ = 1, and G = 2 ·G2(4).
(v) p = 3, A = 23, B = 5, θ = χ2, and G = Co3.
(vi) p = 3, A = 7, B = 5, θ = χ2, and G = Sp6(2).

(vii) p = 3, A = 7, B = 4 or B = 2, θ = 1, and G = 61 · PSU4(3).
(viii) p = 3, A = 5, B = 4, θ = 1, and G = Sp4(3)× 3.
(ix) p = 5, A = 7, B = 3, θ = χ2, and G = Sp6(2).
(x) p = 5, A = 3, B = 2, θ = 1, and G = SL2(5)× 5.

(xi) p = 7, A = 5, B = 2, θ = 1, and G = 2A7.

Proof. (a) First suppose that (A,B, θ) is one of the listed triples. In cases (i) and (ii),
we apply Lemma 10.3.1 to see that F(A,B, θ) is an irreducible summand of Fnngcd(qn +
1, qm + 1,1), hence the statement follows from Theorem 7.3.11, except for the structure of
G in case (ii) when p = 2, which will be determined at the end of (c) (below). In case
(iii), finiteness of G follows immediately from the supersingularity statement of [vdG-vdV,
Corollary 5.4] and G is identified in Theorem 8.5.5.

In case (v), G is determined in [KRLT1, Theorem 4.2(v)]. In cases (iv) and (vi)–(xi),
finiteness of G and its identification follow from Theorems 25.2, 31.6, 21.2 and 21.4, 30.7(iv),
31.2, 30.7(v), and 31.9 of [KRLT4], respectively.

(b) In the rest of the proof, we will assume G is finite, and show that (A,B, θ) must be one
of the listed triples. Let H = Hsmall,A,B or Hbig,A,B,χ be a hypergeometric sheaf whose [A]?
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Kummer pullback is F(A,B, θ). Then H has finite monodromy group H BG. By Corollary
4.1.3, finiteness of H implies A ≤ 5 in the case B = A− 1.

More generally, here we explain how to handle the case A ≤ 29. In all cases, H is primitive
by Lemma 10.1.8. Note that w := A − B ≥ 1 and D ≥ A − 1 ≥ 2. If (w, p,D) = (1, 5, 2),
then (A,B, θ) = (3, 2,1), leading to (x). So we will assume (w, p,D) 6= (1, 5, 2). Applying
Theorem 2.4.4 and using primitivity of H, we conclude that p ≤ 2w + 1. Theorem 10.1.14
allows us to bound o(θ) from above. Thus we have a (short) finite list of cases of (A,B, θ)
with A ≤ 29 and p ≤ 59 for which F(A,B, θ) in characteristic p can possibly have finite
Ggeom. We eliminate those not on the list given in the theorem by showing that they fail the
V -test for finiteness, done using Mathematica. Thus the only finite monodromy cases with
A ≤ 29 are those listed.

(c) Now we may assume that A ≥ 30 and 2 ≤ B ≤ A − 2. As A ≥ 11, H satisfies
(S+) by Corollary 10.1.9. By Lemma 1.1.3, H is either almost quasisimple, with a unique
non-abelian composition factor S, or an extraspecial normalizer. In the latter case, p = 2
by [KT5, Theorem 9.19]; hence, applying Theorem 10.3.3 we arrive at (iii). Suppose we are
in the almost quasisimple case. In this case, S is also the unique non-abelian composition
factor of G. By Theorem 10.3.5, S 6∼= An for any n ≥ 5. Let g0 be a generator of the image
of I(0) in H. Then g0 is an ssp-element by Proposition 2.4.3, and so we can apply Theorems
3.1.3 and 3.1.5 to identify S and the underlying representation V = VH for G, which is of
dimension D ≥ A − 1 ≥ 29. The bound D ≥ 29 rules out all the sporadic simple groups,
so S = PSLn(q) with n ≥ 2, PSp2n(q) with n ≥ 2, or PSUn(q) with n ≥ 3. Now, the case
S = PSLn(q) is ruled out by Theorem 10.3.7. The case S = PSp2n(q) leads to (i) by Theorem
10.3.9, and the case S = PSUn(q) leads to (ii) by Theorem 10.3.12.

As promised, we now return to case (ii) and determine the structure of G when p = 2. In
this case, A = (qn + 1)/(q + 1), so A is odd and the 2-part of A− 1 is exactly q and smaller
than A − 1 ≥ 29. Hence this case is disjoint from all other possibilities (i) and (iii)–(xi).
Therefore, our preceding analysis shows that G is almost quasisimple, with S = PSUm(r)
and A = (rm + 1)/(r + 1) for some 2-power r and 2 - r ≥ 3. Since q is the 2-part of
A − 1, we get r = q and so m = n. Again using Theorem 3.1.5 and [KT5, Corollary
8.4], we get H/Z(H) ∼= PGUn(q) and moreover E(G) = E(H) is the image of SUn(q) in a
Weil representation of degree D. If D = A, then, since A − B ≥ 2, by [KT5, Proposition
4.8(iv)] we have p - |Z(H)| and so H/E(H) is a p′-group. As H/G is a cyclic p′-group
and G = Op′(G), we have G = E(G) in this case. Finally, assume that D = A − 1, and
so H = Hsmall,A,B. In this case, as 2 - AB, H is symplectic by [Ka-ESDE, 8.8.1-2], and
hence |Z(H)| ≤ 2. Also, H/E(H) has a central subgroup Z(H)E(H)/E(H), with quotient
H/Z(H)E(H) ∼= PGUn(q)/S being cyclic of order gcd(n, q + 1). Hence H/E(H) is abelian,
of order dividing 2 gcd(n, q+1). On the other hand, H = O2(H) by Theorem 1.2.2. It follows
that H/E(H) has order dividing gcd(n, q + 1), and hence G = E(H) as stated in (ii). �

Note that Theorems 10.2.6 and 10.3.13 only deal with F(A,B, θ) when gcd(A,B) = 1.
Next we will remove this condition.

Theorem 10.3.14. Let p be a prime and let A > B ≥ 1 be integers with p - AB and
d := gcd(A,B). Consider the local system Fnngcd(A,B, θ) in characteristic p, of rank D =
A− 1 if θ = 1 and D = A otherwise, see Definition 7.3.1, with geometric monodromy group
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G = Ggeom. Assume in addition that D ≥ 2. Then G is finite if and only if one of the
following conditions holds.

(a) p > 2, q = pf , d|2, A = (qn + 1)/e and B = (qm + 1)/e for some integers n > m ≥ 0
with 2|nm, gcd(n,m) = 1, e := 2/d, and θe = 1.

(b) p arbitrary, q = pf , d|(q + 1), A = (qn + 1)/e and B = (qm + 1)/e for some odd integers
n > m ≥ 1, gcd(n,m) = 1, e := (q + 1)/d, and θe = 1.

(c) d = B = 1, and one of the possibilities (iii), (iv) of Theorem 10.2.6 occurs.
(d) d = 1 < B, and case (iii) of Theorem 10.3.13 occurs.
(e) d = B = 1, and one of the possibilities (v), (vi) of Theorem 10.2.6 occurs.
(f) d = 1 < B, and one of the possibilities (iv)–(xi) of Theorem 10.3.13 occurs.

Proof. If d = 1, then the statement follows from Theorems 10.2.6 and 10.3.13. So we
will assume that d > 1 and fix a character σ such that σd = θ. By [KT6, Proposition 2.6],

(10.3.14.1) Fnngcd(A,B, θ) ∼= ⊕χ∈Char(d)F(A/d,B/d, χσ),

where the sheaves F(A/d,B/d, χσ) are geometrically irreducible and pairwise non-isomorphic.
Working over fields over which all χσ are defined and using Lemma 2.2.5, we see that the
finiteness of Ggeom implies that each of the d sheaves F(A/d,B/d, χσ) also has finite Ggeom.
They all share the same exponents A/d and B/d, but have the characters χσ that differ by
a character of order dividing d.

First we consider the case B/d ≥ 2. The above observations then show by Theorem
10.3.13 that none of the possibilities (iii)–(xi) listed therein cannot occur since d > 1. Note
that in 10.3.13(i) we have p > 2 and A/d ≡ (p + 1)/2(mod p), whereas A/d ≡ 1(mod p)
in 10.3.13(ii). Hence, either all the sheaves F(A/d,B/d, χσ) satisfy 10.3.13(i), or all of
them satisfy 10.3.13(ii). In the former case of 10.3.13(i), we must have that p > 2, d = 2,
A/d = (qn + 1)/2, B/d = (qm + 1)/2 for some power q = pf and some coprime n > m ≥ 1
with 2|nm, and 1 = (χσ)2 = θ, and thus we arrive at (a). Suppose we are in the latter
case of 10.3.13(ii). Then there is some power q = pf such that A/d = (qn + 1)/(q + 1),
B/d = (qm + 1)/(q + 1) for some coprime n > m ≥ 1 with 2 - nm, and (χσ)q+1 = 1 for all
χ ∈ Char(d). In particular, taking χ = 1 we get σq+1 = 1. Now taking χ ∈ Char(d) of order
d, we get χq+1 = 1, and so d|(q + 1), 1 = σq+1 = θ(q+1)/d, and we arrive at (b).

Now we consider the case B = d. In the case A = 2d, assume in addition that θ 6= 1, so
that (χσ)d 6= 1 and so χσ 6= 1 for all χ ∈ Char(d). The above observations then show by
Theorem 10.2.6 that none of the possibilities (iii)–(vi) listed therein can occur since d > 1.
In the case of 10.2.6(i), we must have that p > 2, d = 2, A/d = (q + 1)/2 for some power
q = pf , and 1 = (χσ)2 = θ, and thus we arrive at (a) with (n,m) = (1, 0). Suppose we are in
the case of 10.2.6(ii). Then there is some power q = pf such that A/d = (qn + 1)/(q + 1) for
some odd n > 1, and (χσ)q+1 = 1 for all χ ∈ Char(d). Arguing as above, we obtain d|(q+ 1),
1 = σq+1 = θ(q+1)/d, and we arrive at (b) with m = 1.

Finally, assume that (A,B, θ) = (2B,B, θ). Here we can take σ = 1. Since D ≥ 2, we
have B ≥ 2. Applying Theorem 10.2.6 to any summand F(2, 1, χ) in (10.3.14.1) with χ 6= 1,
we see that p = 3 and χ2 = 1. Thus B = d = 2, A/2 = (3 + 1)/2, and we arrive at (a) with
(p, q, n,m) = (3, 3, 1, 0). �
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The finite geometric monodromy groups occurring in Theorem 10.3.14 are determined in
Theorems 10.2.6 and 10.3.13 when d = 1, and will be determined in Theorem 11.2.4(ii), (iii)
when d > 1.

Next we determine Ggeom for F(A,B, θ) when it is infinite.

Lemma 10.3.15. There exists no local system F(A,B, θ) in characteristic p - AB such
that G◦geom is the image of SL(V ) ∼= SL6 acting on the irreducible representation ∧k(V ) with
k = 2 or k = 3.

Proof. (a) Assume the contrary, and consider the corresponding hypergeometric sheaf
H, with geometric monodromy group H. Since H satisfies (S+) by Lemma 10.1.7 and
Corollary 10.1.9 and H B Ggeom, we have that H◦ = G◦geom is the image of SL6. Applying
Theorem 6.2.14, we have that 2 ≤ p ≤ k.

First we consider the case k = 2, so p = 2 and H has rank D = 15. As p - A, we must
then have A = 15, H = Hbig,15,B,χ. But this is impossible by Lemma 6.1.18.

(b) Hence k = 3 and H has rank D = 20. Consider the case p = 3. As p - A, we have
A = 20, H = Hbig,20,B,χ. Since the SL6-module ∧3(V ) is self-dual, Corollary 2.4.8 implies
that F(A,B, θ) is geometrically self-dual. But this contradicts Theorem 10.1.6(i), as A is
even.

We have shown that p = 2. As p - A, we have A = 21, H = Hsmall,21,B, 2 - B, w :=
A−B ≥ 2. Let g0 be a generator of the image of I(0) in H. Then g0 has spectrum µ21 r {1}
on the underlying module VH; in particular, o(g0) = 21. Note that H is symplectically self-
dual by [Ka-ESDE, 8.8.1-2], so Z(H) ≤ C2. On the other hand, H◦ is the image of SL6

on ∧3(V ), so its center is C2 and thus Z(H) = Z(H◦). It follows that [H : H◦] ≤ 2, and so
g0 ∈ H◦. Theorem 1.2.2 then implies that H = H◦ = SL6/C3.

Since SL6 � H with kernel C3, [KT5, Theorem 4.14] implies that w := A−B ≤ 6, hence
B ≥ 15. But p - B and the irreducibility of F(A,B, θ) implies by [KT6, Corollary 2.7] that
gcd(A,B) = 1. It follows that B = 17 or 19, respectively w = 4 or 2.

(c) Now we will deduce a contradiction by looking at the action of g∞, a p′-element that
generates the image of I(∞) in H modulo the image of P (∞). By [KRLT4, Proposition
4.9], g∞ acts on Wild with spectrum α ·

(
µw+1 r {1}

)
, and on Tame with spectrum µB r {1}.

In particular, 1 = det(g∞) = αw and so α ∈ µ4. But g∞ has odd order, so in fact α = 1.
Thus gB∞ = ∧3(X) has spectrum

(10.3.15.1)
(
µw+1 r {1}

)
t {1[B−1]}

on VH, where X = diag(a1, . . . , a6) ∈ SL6. Without any loss, we may assume by (10.3.15.1)
that

a1a2a3 = β, whence a4a5a6 = β−1

for some 1 6= β ∈ µw+1 (because det(X) = 1). If w = 2, then no other triple products differ
from 1. If w = 4, then two more triple products are not 1. Since the roles of {1, 2, 3} and
{4, 5, 6} are symmetric, we may assume that either

a1a2a4 = γ, whence a3a5a6 = γ−1,

with 1 6= γ ∈ µw+1. All other triple products are 1.
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Hence, for both w = 2 and w = 4, aiajak = 1 (at least) for the following triples ijk:

125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346.

Comparing the products for triples 134, 135, 136, we get a4 = a5 = a6. Using the triples
145, 245, 345, we get a1 = a2 = a3. Using the triples 134, 145, we get a3 = a5. Thus
X = a1 · Id, gB∞ = a3

1 · Id, contrary to (10.3.15.1). �

Lemma 10.3.16. Let n ∈ {5, 6, 8}. There exists no local system F(A,B, θ) in character-
istic p = 2 - AB such that G◦geom is HSpin2n acting on a half-spin representation.

Proof. Assume the contrary. Since p - AB and D = 2n−1, we have that B ≤ A − 2,
A = 2n−1 + 1, B is odd, and θ = 1. Hence, by Theorem 10.1.6(iii), the underlying module
V for Ggeom is symplectically self-dual. On the other hand, by [Bour, Table I, p. 213], the
G◦geom-module V is not self-dual if n = 5, symplectically self-dual if n = 6 and orthogonally
self-dual if n = 8. This takes care of the cases n = 5, 8. It remains to treat the case n = 6.

Consider the corresponding hypergeometric sheaf H = Hsmall,33,B and let H denote its
geometric monodromy group. Then H satisfies (S+) by Lemma 10.1.7 and Corollary 10.1.9.
Since H is symplectic by [Ka-ESDE, 8.8.1-2], we have that |Z(H)| ≤ 2. On the other
hand, H B G◦geom, G◦geom

∼= HSpin12 has center of order 2, and any outer automorphism
of HSpin12 fuses the two half-spin representations (each of degree 32 = A − 1). Hence
H = Ggeom = HSpin12. Consider a generator g0 of the image of I(0) in H and let h := g11

0 .
Then h has order 3 and its spectrum on V is

(10.3.16.1) {1[10], ζ [11], ζ̄ [11]},

where ζ := ζ3. Embed h in a maximal torus T , and let

Ω :=

{
1

2

6∑
i=1

εiei | εi = ±1,
6∏
i=1

εi = 1

}
be the set of T -weights on V , where {e1, . . . , e6} is an orthonormal basis of R6.

Suppose for instance that e1(h) = e2(h) = 1. Then, for any α = ±1 and for any
δ =

∑6
i=3 εiei with

∏6
i=3 εi = α, the weights (e1 + αe2 + δ)/2 and (−e1 − αe2 + δ)/2 belong

to Ω and take the same value at h. It follows that the multiplicity of any eigenvalue of h on
V is even, contrary to (10.3.16.1).

We have shown that ei(h) = 1 for at most one index i. It is well known, see e.g. [TZ3,
Proposition 3.1(ii)] that any semisimple element of H is real. Applying this to h, we see
that ei(h) 6= 1 for all i, and so we may assume that e1(h) = e2(h) = e3(h) = ζ and e4(h) =
e5(h) = e6(h) = ζ̄. Hence, the spectrum of h on V is {1[20], ζ [6], ζ̄ [6]}, again contradicting
(10.3.16.1). �

Lemma 10.3.17. There exists no local system F(A,B, θ) in characteristic p - AB such
that G◦geom is E6, acting on an irreducible representation of degree 27.

Proof. Assume the contrary, and consider the corresponding hypergeometric sheaf H,
with geometric monodromy group H. Since H satisfies (S+) by Lemma 10.1.7 and Corollary
10.1.9 and H B Ggeom, we have that H◦ = G◦geom = E6. Applying Theorem 6.2.14, we have
that p = 2 or p = 3. Also, since any outer automorphism of H◦ fuses the two irreducible
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representations of H◦ of degree 27, we have H = Z(H)H◦. Let g0 be a generator of the image
of I(0) in H.

Suppose p = 3. Then A = 28 since p - A, and H = Hsmall,28,B. Note that g0 has spectrum
µ28 r {1} on the underlying H-module VH. It follows that g7

0 has order 4 and spectrum
{1[6], ζ [7], (−1)[7], ζ̄ [7]}, where ζ := ζ4. Now write g7

0 = zh, where z ∈ Z(H) and h ∈ H◦. Then
Id = g28

0 = z4h4, whence

z4 = h−4 ∈ Z(H) ∩H◦ ≤ Z(H◦) ∼= C3

and so z12 = Id. We also note that det(h) = 1 as H◦ is perfect, and −1 = det(g7
0) =

det(z) det(h), so det(z) = −1. It follows that z acts as a scalar ξ ∈ C× on VH, where ξ12 = 1
and −1 = det(z) = ξ27; in particular, ξ6 = 1 and z6 = Id. Therefore, g42

0 = z6h6 = h6 is
an element of H◦ that has spectrum {1[13], (−1)[14]} on VH (and so is of order 2). However,
according to [CW, Table 2], H◦ contains no such element, a contradiction.

We have shown that p = 2, so A = 27, and θ 6= 1. Then g0 has spectrum µ27 on VH.
Write g0 = zh with z ∈ Z(H) and h ∈ H◦. Then 1 = det(g0) = det(z) det(h), but det(h) = 1
since H◦ is perfect. So, z acts as a scalar ξ ∈ C× on VH, where 1 = det(z) = ξ27, and thus
ξ ∈ µ27. It follows that the element h ∈ H◦ also has spectrum µ27 on VH. Now we put h in
a maximal torus T of H◦, and again adopt the realization of the set Ω of the T -weights on
VH that was used in the proof of Theorem 6.2.13. Then the eigenvalues of h on VH are

(ei ± f)(h), (−ei − ej)(h), 1 ≤ i < j ≤ 6.

In particular, e1(h)2 = (e1 + f)(h) · (e1− f)(h) ∈ µ27. Hence we can write e1(h) = εα1 = εζa127

for some a1 ∈ Z/27Z and some ε = ±. Writing ej(h) = εαj and f(h) = εβ with αj, β ∈ C×
for 2 ≤ j ≤ 6, we then have that

µ27 3 (−e1 − ej)(h) = (α1αj)
−1, µ27 3 (e1 + f)(h) = α1β,

and so αj = ζ
aj
27 and β = ζb27 for some aj, b ∈ Z/27Z. Keeping in mind (6.2.13.1), we then see

that 1 =
∏6

i=1 ei(h) = ζ
∑6
i=1 ai

27 and thus

(10.3.17.1)
6∑
i=1

ai = 0

and

(10.3.17.2) {ai ± b,−ai − aj | 1 ≤ i < j ≤ 6} = Z/27Z.
Note that (10.3.17.2) shows that a1, . . . , a6 are pairwise distinct. A Magma calculation (see
Appendix A2) shows however that there is no (a1, . . . , a6, b) ∈ (Z/27Z)7 that satisfies both
(10.3.17.1) and (10.3.17.2), again a contradiction. �

Lemma 10.3.18. There exists no local system F(A,B, θ) in characteristic p - AB such
that G◦geom is E7, acting on an irreducible representation of degree 56.

Proof. Assume the contrary, and consider the corresponding hypergeometric sheaf H,
with geometric monodromy group H. Since H satisfies (S+) by Lemma 10.1.7 and Corollary
10.1.9 and H B Ggeom, we have that H◦ = G◦geom = E7. Applying Theorem 6.2.14, we have
that p = 2 or p = 3. If p = 2, then A = 57 since p - A, and this case is ruled out by Lemma
10.2.2. So p = 3, A = 56, and θ 6= 1. Since the irreducible 56-dimensional E7-module
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VH is self-dual, Corollary 2.4.8 implies that F(A,B, θ) is geometrically self-dual. But this
contradicts Theorem 10.1.6(i), as A is even. �

Lemma 10.3.19. Consider the subgroup S = SL2 ⊗ SL2 ⊗ SL2 < SL8 and suppose that
h ∈ S has 1 as an eigenvalue with multiplicity m ≥ 4. Then the following statements hold.

(i) All eigenvalues of h have multiplicity ≥ 2.
(ii) If m > 4, then 1 is the only eigenvalue of h.

Proof. Write h = X ⊗ Y ⊗ Z, with X ∈ SL2 with spectrum {x, x−1}, Y ∈ SL2 with
spectrum {y, y−1}, and Z ∈ SL2 with spectrum {z, z−1}. As 1 is an eigenvalue of h, replacing
x or y or z by their inverses if necessary, we may assume z = xy. Then the spectrum of h is
{1[2], x2, x−2, y2, y−2, (xy)2, (xy)−2}. It follows that x2 or y2 or (xy)2 is 1. Using the symmetry
of x, y, z, we may assume that z = ±1. Replacing (X,Z) by (−X,−Z), we may assume that
z = 1. Now the spectrum of h is {xy[2], (xy−1)[2], (xy−1)[2], (x−1y−1)[2]}, yielding (i).

In the case of (ii), replacing x by x−1 if necessary, we may assume x = y, and so the
spectrum of h is {1[4], (x2)[2], (x−2)[2]}. As m > 4, we must have that x2 = 1 and thus 1 is
the only eigenvalue of h. �

Lemma 10.3.20. The system F(5, 3,1) in any characteristic p > 5 has geometric mon-
odromy group G = Ggeom = Sp4.

Proof. Consider the corresponding hypergeometric sheaf H = Hsmall,5,3, with geometric
monodromy group H. By [Ka-ESDE, 8.8.1-2], H is symplectically self-dual, so GCH ≤ Sp4

and Z(H) ≤ C2. By Lemma 10.1.8, H is primitive, hence, for any N C H, the underlying
module VH is homogeneous over N , i.e. a direct sum of some copies of a simple N -module.
Since w = 2 and p ≥ 7, H is infinite by Theorem 2.4.4, and thus G◦ = H◦ 6= 1.

By Grothendieck’s result “the radical is unipotent” [De2, 1.3.8, 1.3.9], one knows that H0

is a semisimple algebraic group. Thus H◦ is a (connected) semisimple subgroup of Sp4, so it
has rank 1 or 2. Suppose it has rank 2. If H◦ is of type C2, then we are done. Otherwise it has
type 2A1, and so H◦ is a quotient of SL2×SL2. But H◦ acts faithfully and homogeneously on
VH of dimension 4, so H◦ = SL(V1)⊗SL(V2) ∼= SL2∗SL2 and VH ∼= V1⊗V2 as an (irreducible)
H◦-module. It follows that V is orthogonally self-dual as an H◦-module, a contradiction.

Finally, consider the case H◦ is of type A1, i.e. H◦ is a quotient of SL(U) ∼= SL2. As
above, the H◦-module is the sum of t copies of a simple H◦-module M . The faithful action
of H◦ shows that dim(M) > 1, and so dim(M) = 4 or dim(M) = 2. If dim(M) = 4, then H◦

is irreducible on VH ∼= Sym3(U), contrary to Theorem 6.1.5.
Hence dim(M) = 2, H◦ = SL(U) and it has no outer automorphism, whence H = C ∗H◦

with C := CH(H◦). Here, C◦ ≤ C∩H◦ = Z(H◦) = C2, so C is a finite group. As H = C ∗H◦
is irreducible on VH and M ∼= U , VH decomposes as R ⊗ U , where R is an irreducible C-
module of dimension 2. Since H is primitive, R is primitive, whence it is (S+). Now we can
apply Lemma 1.1.3 to see that the image of C in PGL(R) ∼= PSL2 is either A5

∼= PSL2(5) or
Aut(E) ≤ S4 for E ∈ {D8, Q8, D8∗C4}. We will therefore achieve a contradiction by showing
that the image of C in PGL(R) contains an element of order p > 5. To do this, we consider
some element g of order p in the image Q of P (∞) in H. Then we may assume that g has
an eigenvalue ζ = ζp on Wild. But g ∈ Sp4 and w = 2, so g has spectrum

(10.3.20.1) {ζ, ζ̄, 1[2]}



298 10. ONE-PARAMETER FAMILIES OF EXPONENTIAL SUMS

on R ⊗ U . Now write g = X ⊗ Y , where X = diag(x, x−1) ∈ SL(U), and Y = diag(y, z)
in the image of C on R. As 1 is an eigenvalue of g, we may assume y = x and thus g has
spectrum {1, x2, xz, x−1z}. If x2 = 1, then g has spectrum {1[2], z[2]}, contrary to (10.3.20.1).
If x−1z = 1, then g has spectrum {1[2], (x2)[2]}, again contradicting (10.3.20.1). We conclude
that xz = 1, so {x2, x−2} = {ζ, ζ̄} and so o(x2) = p. Thus y/z = x2 has order p, and so Y
has central order p. As Y lies in the image of C on R, this shows that the image of C in
PGL(R) contains an element order p, as desired. �

Now we can prove the B > 1 counterpart of Theorem 10.2.4.

Theorem 10.3.21. Let p be a prime and let A > B ≥ 2 be integers coprime to p with
gcd(A,B) = 1. Consider the local system F(A,B, θ) in characteristic p, of rank D = A− 1
if θ = 1 and D = A otherwise, with geometric monodromy group Ggeom. Assume that Ggeom

is infinite. Then we have the following results.

(i) If AB is even, then for every θ, F(A,B, θ) has G◦geom = SLD. Moreover, if B 6= A− 1,
then Ggeom = SLD. If B = A− 1, then Ggeom = {x ∈ GLD | det(x)p = 1}.

(ii) If AB is odd and θ 6= 1, χ2, then Ggeom = SLD.
(iii) If AB is odd and χ = 1, then Ggeom = SpD.
(iv) If AB is odd and χ = χ2, then Ggeom = SOD.

Proof. (a) Consider H = Hsmall,A,B if θ = 1 and consider H = Hbig,A,B,χ with χA = θ if
θ 6= 1. Let H denote the geometric monodromy group of H. By Theorem 10.1.1, G := Ggeom

is finite if and only if H is finite; indeed, G has index dividing A in H. By our assumption,
both G and H are infinite.

First we consider the B = A − 1 case; in particular, p > 2. If A = 3, then we even
have p ≥ 5. If, in addition p ≥ 7 or θ 6= 1, then we arrive at (i) by Corollary 4.1.3 and
Remark 2.4.11. On the other hand, when p = 5 the sheaf F(3, 2,1) has finite monodromy by
Theorem 10.3.13(x). So we may assume that either A ≥ 5, or A = 4 but p ≥ 5 (as p - AB).
Note that when p = 3 the sheaf F(5, 4,1) has finite monodromy by Theorem 10.3.13(viii),
so when A = 5 we may also assume p ≥ 5. Applying Corollary 4.1.3 and Remark 2.4.11, we
again arrive at (i).

(b) Henceforth we will assume that 2 ≤ B ≤ A − 2. Since gcd(A,B) = 1, this rules out
the case A = 4. Next, H is primitive by Lemma 10.1.8. Furthermore, if D 6= 4, then H is
tensor indecomposable by [KT5, Lemma 2.4]. If D = 4, then since A ≥ 5, we have A = 5
and θ = 1. In this case, either B = 2 and so H is (S+) by Corollary 10.1.9, or (B, p) = (3, 2),
in which case H is finite by Theorem 10.3.13(iii), or B = 3 and p > 5, in which case G = Sp4

by Lemma 10.3.20. Thus we may assume henceforth that H is tensor indecomposable, and
hence that H satisfies (S−).

Recall that H is infinite and H/G is a finite cyclic group. Applying Lemma 1.1.9, we
have that G◦ = H◦ is a central product L1 ∗ . . . ∗ Lt of t ≥ 1 simple algebraic groups that
are transitively permuted by H, and G◦ is irreducible on the underlying representation VH.
By Corollary 10.1.9, if D 6= 4, 8, 9 then H satisfies (S+), and so t = 1 by Lemma 1.1.3. By
Proposition 2.4.3(i), a generator g0 of the image of I(0) is an ssp-element on the underlying
representation V of H; more precisely, its spectrum is µA r {1} if θ = 1 and µA otherwise,
and so ō(g0) = A.
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(c) Here we consider the case t = 1, i.e. G◦ = H◦ is a simple algebraic group. Then we
can apply Theorem 6.2.14 and arrive at one of the following possibilities for the irreducible
action of H◦ on the underlying representation VH.

(c1) H◦ is a classical group SLD, SpD, or SOD, acting on VH via the natural representation
or its dual, or G2 with D = 7. Here, if 2|AB, or if 2 - AB but θ 6= 1, χ2, then F(A,B, θ) is
not self-dual by Theorem 10.1.6. In this case, Lemma 10.1.3 implies that the H◦-module VH
is not self-dual, so G◦ = H◦ = SLD. If moreover B 6= A−1, then the wild part has dimension
w = A−B ≥ 2, and Corollary 2.4.10 implies that G = SLD, leading to (i), respectively (ii).
If B = A− 1, then we arrive at (i) using Remark 2.4.11.

Assume now that 2 - AB and o(θ) ≤ 2. If θ = 1, then F(A,B, θ) is symplectically self-
dual by Theorem 10.1.6, whence Lemma 10.1.3 implies that the H◦-module VH is symplectic,
so G = H◦ = SpD, leading to (iii). Suppose p > 2 and θ = χ2. Then F(A,B, θ) is
orthogonally self-dual by Theorem 10.1.6, whence Lemma 10.1.3 implies that the H◦-module
VH is orthogonal; also G ≤ OD. In this case, we must have that G◦ = SOD, or D = 7 and
G◦ = G2. We will see below that this last case does not occur. We also note that g0 has
determinant 1 (as 2 - A), and w = A − B ≥ 2. Hence H ≤ SLD by Theorem 1.2.2, and
Z(G) ≤ Z(H) ∩OD = 1 (as D = A is odd). If G◦ = SOD, then we have G = SOD, as stated
in (iv). Suppose D = 7 and G◦ = G2, whence H◦ = G2. As H is of type (7, B) with B odd
and G2 has no outer automorphism, we apply Lemma 6.2.2 to infer that some tame twist
Lχ ⊗H has Ggeom,Lχ⊗H = G2. But this twist, Lχ ⊗H, is still of type (7, B). As B > 1, this
contradicts [Ka-G2, Theorem 3.1], according to which the only hypergeometric sheaves in
any odd characteristic with Ggeom = G2 are of type (7, 1).

(c2) One of (a)–(d) listed in Lemma 10.2.3, and so they are all ruled out.

(c3) One of the cases (viii)–(x) of Theorem 6.2.14. These cases are ruled out by Lemmas
10.3.15, 10.3.16, 10.3.17, and 10.3.18, respectively.

(d) The rest of the proof is to deal with the case t > 1. By Lemma 1.1.3, in this case H
is tensor induced. By Corollary 10.1.9, D ∈ {4, 8, 9}. In fact, as mentioned above, D = 4
would imply (A,B) = (5, 2) and θ = 1, and so H is (S+) and t = 1. So we have one of the
following possibilities.

(d1) D = A = 8 and so θ 6= 1. Here, if B = 3 then H is again (S+) by Corollary 10.1.9.
As 2 ≤ B ≤ A − 2 and gcd(A,B) = 1, we are left with B = 5. Since H is tensor induced
and t > 1, we must have that t = 3 and H◦ = SL2 ∗ SL2 ∗ SL2, whence the H◦-module VH is
self-dual. But this contradicts Lemma 10.1.3, since F is not self-dual by Theorem 10.1.6.

(d2) D = 8 and (A, θ) = (9,1). Here, if B = 2 or 4, then H is again (S+) by Corollary
10.1.9. As 2 ≤ B ≤ A − 2 and gcd(A,B) = 1, we are left with B = 5 and B = 7. In
both cases, H is symplectically self-dual by [Ka-ESDE, 8.8.1-2], so |Z(H)| ≤ 2. Since t > 1
and H is tensor induced, we must have that t = 3 and H◦ = SL2 ∗ SL2 ∗ SL2, so in fact
Z(H) = CH(H◦) = C2, and

(10.3.21.1) H/H◦ ↪→ S3.

Suppose (A,B) = (9, 5). Note that when p = 2, the sheaf F(9, 5,1) has finite monodromy
by Theorem 10.3.13(iii), so we have p > 2. Now we consider a p′-element g∞ ∈ H that
generates the image of I(∞) in H modulo the image of P (∞). Since w = 4, by [KRLT4,
Proposition 4.8], g∞ permutes the 4 simple P (∞)-summands on Wild transitively, and has
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spectrum µ5 r {1} on Tame. It follows from (10.3.21.1) that g12
∞ belongs to H◦ and has

spectrum {ε[4]} t
(
µ5 r {1}

)
for some ε ∈ C×. As g12

∞ ∈ Sp8 is real, ε = ε−1. Hence g24
∞ ∈ H◦

has spectrum {1[4]} t
(
µ5 r {1}

)
. Applying Lemma 10.3.19 to g24

∞, we get a contradiction.
Suppose (A,B) = (9, 7). First assume that p > 2, in which case we have p > 3, which

implies by (10.3.21.1) that the image Q of P (∞) lies in H◦ = SL2 ∗ SL2 ∗ SL2. Now any
p-element 1 6= h ∈ Q has 1 as an eigenvalue with multiplicity ≥ 6. Applying Lemma 10.3.19
to h, we again get a contradiction. Assume now that p = 2. As Q is irreducible on Wild of
dimension 2, Q is non-abelian, and so it contains an element g of order 4. Again (10.3.21.1)
implies that g2 ∈ H◦. Now applying Lemma 10.3.19 to g2, we see that the (semisimple)
element g2 is trivial, a contradiction.

(d3) D = A = 9 and so θ 6= 1. Here, if B = 2, then H is again (S+) by Corollary 10.1.9.
As 2 ≤ B ≤ A − 2 and gcd(A,B) = 1, we are left with B ∈ {4, 5, 7}. Since H is tensor
induced, we must have that H is 2-tensor induced. Now, if B = 4, then p > 2 and w = 5, so
H is not 2-tensor induced by Proposition 5.1.9. Similarly, if B = 5 or 7 and p > 2, then H is
not 2-tensor induced by Proposition 5.1.10. If B = 5 or 7 and p = 2, then H is not 2-tensor
induced by Lemma 5.1.4. In all cases, we arrive at a contradiction.

(d4) D = 9 and (A, θ) = (10,1). Here, if B = 3, then H is again (S+) by Corollary
10.1.9. As 2 ≤ B ≤ A − 2 and gcd(A,B) = 1, we are left with B = 7, in which case p > 2,
w = 3, so H is not 2-tensor induced by Proposition 5.1.9. As D = 9, this implies that H is
(S+) and t = 1, a contradiction. �

In the general case of local systems Fnngcd(A,B, θ) in characteristic p where A,B are not
necessarily coprime, Theorem 10.3.14 already determines all the possibilities of (p,A,B, θ)
that give rise to finite geometric monodromy groups.

We also note the following immediate consequence of Theorems 10.2.6 and 10.3.13 (com-
pare to Theorem 2.4.4).

Corollary 10.3.22. Let p be a prime and let A > B ≥ 1 be integers with gcd(A,B) = 1
and p - AB. Consider the local system F(A,B, θ) in characteristic p, of rank D = A − 1
if θ = 1 and D = A otherwise, see Definition 7.3.1, with geometric monodromy group
G = Ggeom. Suppose D ≥ 2 and G is finite. Then p ≤ 2A − 1, and one of the following
statements holds.

(i) p|(A− 1)(2A− 1) and p|(B − 1)(2B − 1).
(ii) θ = χ2, A = 2pf − 1, and B = 1. In particular, p|(A+ 1)/2 and p|(B − 1).
(iii) (p,A,B, θ) = (7, 5, 2,1), (5, 7, 1,1), (5, 3, 2,1), or (5, 7, 3, χ2). In particular, p|(2A −

1)(3A− 1).



CHAPTER 11

Multi-parameter families of exponential sums

11.1. Preliminaries

The results in this chapter determine the geometric monodromy groups for some “van der
Geer-van der Vlugt” local systems on Ak, which generalize various results of [KT1, KT3,
KT6]. First we need some preliminary statements.

Lemma 11.1.1. Let p be a prime, k ≥ 2, and let A > B1 > . . . > Bk ≥ 1 be integers with
p - AB1 . . . Bk. Consider the arithmetically semisimple local system F(A,B1, . . . , Bk, θ) over
Ak with trace function

(t1, . . . , tk) 7→ −
∑
x

ψ
(
xA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),

in characteristic p, of rank D = A − 1 if θ = 1 and D = A otherwise, cf. (0.0.0.2). Then
F(A,B1, . . . , Bk, θ) is geometrically irreducible if and only if gcd(A,B1, . . . , Bk) = 1.

Proof. This is a consequence of [KT6, Corollary 2.7]. �

We will need the following number-theoretic fact, which is a special case of a result due
to Erdös and György, cf. [Erd], [Gy]:

Lemma 11.1.2. For integers n > m ≥ 1,
(
n
m

)
can be a prime power pa exactly when

n = pa and m = 1, n− 1.

Proof. Suppose that
(
n
m

)
= pa for some prime p and 2 ≤ m ≤ n− 2. Without any loss

we may assume 2 ≤ m ≤ n/2. By Sylvester’s theorem [Syl2], at least one of the m integers
n, n− 1, . . . , n−m + 1 is divisible by a prime ` > m, say `|(n− i) for some 0 ≤ i ≤ m− 1.
In this case, ` divides

(
n
m

)
, so p = `. If ` also divides n− j for another 0 ≤ j ≤ m− 1, then `

divides i− j, but |i− j| < m < `, a contradiction. As `a(m!) =
∏m−1

j=0 (n− j), it follows that

n−i is divisible by `a. But this is impossible, since 0 < n−i ≤ n and `a =
(
n
m

)
≥
(
n
2

)
> n. �

Proposition 11.1.3. Let q = pf be a power of an odd prime p, n ∈ Z≥1, D = (qn±1)/2,
and let qn ≥ 5. Let G < GLD be a Zariski closed subgroup such that G/Z(G) is infinite and
G contains a subgroup G1 which is the image of Sp2n(q) in an irreducible Weil representation
of degree D. Then [G,G]◦ is a simple algebraic group acting irreducibly on CD. Assume in
addition that D is an odd prime power. Then one of the following statements holds.

(i) [G,G] = SLD.
(ii) q ≡ 1 (mod 4), D = (qn + 1)/2, and [G,G]◦ = SOD.

(iii) qn = 13, D = 7, and [G,G]◦ = G2.

Proof. (i) By assumption, G ≥ G1 acts irreducibly on V := CD. It is well known that
the Weil representation of G1 = E(G1) on V admits an ssp-element g1. Next, the smallest

301
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index P (G1) of proper subgroups of G1 is ≥ (qn + 3)/2 > D, see [KlL, Table 5.2.A]. It
follows that G1, and hence G, cannot fix any imprimitive decomposition V = ⊕mi=1Vi with
m > 1. Next suppose that G fixes a tensor decomposition V = V1 ⊗ V2 with dimVi > 1.
Certainly Z(G1) acts via scalars on both V1 and V2. Hence G1/Z(G1) ∼= PSp2n(q) admits
a nontrivial projective representation on some Vi, of dimension ≤ D/2 ≤ (qn + 1)/4. On
the other hand, according to [KlL, Table 5.3.A], the degree of any such representation is at
least (qn − 1)/2 if qn 6= 9 and 3 if (q, n) = (9, 1), a contradiction. Finally, if G fixes a tensor
induced decomposition V = V1 ⊗ . . .⊗ Vm ∼= V ⊗m1 with m ≥ 2, then

m ≤ log2(qn + 1)/2 < P (G1).

In such a case, G1 must fix every tensor factor Vi, and hence V |G1 is tensor decomposable,
contrary to the preceding result.

We have shown that (V,G) satisfies condition (S). [When D 6= 4, 6, this statement
also follows from Theorem 3.1.6.] Applying [GT3, Proposition 2.8], for the subgroup H =
SL(V ) ∩ ZG, where Z := Z(GL(V )), we have that ZG = ZH and either H◦ is a simple
algebraic group or H is finite. In the latter case, G ≤ ZH and Z ∩ G = Z(G), and so
G/Z(G) is finite, contrary to the hypothesis. So H◦ is a simple algebraic group. Next,
H C ZH = ZG and ZG satisfies (S), so by [GT3, Lemma 2.5], either H◦ is irreducible on
V or H◦ ≤ Z. As H/H◦ is finite, we again see that

G/Z(G) ∼= ZG/Z = ZH/Z = ZH/ZH◦

is finite, a contradiction. Thus H◦ acts irreducibly on V and H◦ = [H◦, H◦]. Now

H◦ ≤ [H,H] = [ZH,ZH] = [ZG,ZG] = [G,G],

and hence H◦ ≤ [G,G]◦. But we also have that [G,G]◦ = [H,H]◦ ≤ H◦. Therefore,
[G,G]◦ = H◦ is a simple algebraic group acting irreducibly on V .

By Schur’s lemma, CG([G,G]◦) = Z(G) is cyclic. Furthermore, Out([G,G]◦) is a subgroup
of S3, hence solvable. It follows that G/[G,G]◦ is solvable. But G1 is perfect, so G1 ≤ [G,G]◦.
In particular, [G,G]◦ contains the ssp-element g1. Hence we can apply Theorem 3.3.4(A) to
the action of [G,G]◦ on V .

(ii) Under the further assumption that D = pa is a power of an odd prime r, we now
arrive at one of the following cases of Theorem 3.3.4(A).

(a) [G,G]◦ is of type Ar with r ≥ 1, and V |[G,G]◦ = L(a$1) with a ≥ 1 or L(a$r), or L($i)
with 2 ≤ i ≤ r−1. Now, if V |[G,G]◦ = L($1) or L($r), then r+1 = D and [G,G]◦ = SLD.
Since G ≤ GLD, in such a case we have [G,G] = SLD. In all other cases, D = dimV is
a binomial coefficient

(
N
m

)
for some 2 ≤ m ≤ N − 2, and so D 6= pa by Lemma 11.1.2.

(b) [G,G]◦ is of type Br with r ≥ 1, and V |[G,G]◦ = L($1), the natural representation of
degree 2r + 1. In this case, [G,G]◦ ∼= SOD; moreover, V |[G,G]◦ is self-dual of type +, and
the same holds for V |G1 . This implies that q ≡ 1 (mod 4), and as 2 - D, we must have
that D = (qn + 1)/2.

(c) ([G,G]◦, dim(V )) = (G2, 7), or (E6, 27). In the former case, since (qn± 1)/2 = D = 7 we
must have that qn = 13. In the latter case, since (qn± 1)/2 = D = 27 we must have that
qn = 53. It follows that PSL2(53) projectively embeds in E6, which is impossible by the
main result of [GrR].

�
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Lemma 11.1.4. The following statements hold.

(i) The local system F(5, 4, 2, 1,1) of (0.0.0.2) in characteristic p = 3 has geometric mon-
odromy group G̃geom = Sp4(3)× 3, with Sp4(3) acting in a Weil representation of degree
4.

(ii) The local system F(5, 2, 1,1) of (0.0.0.2) in characteristic p = 3 has geometric mon-
odromy group Ggeom,1 = Sp4(3) in a Weil representation of degree 4.

(iii) The local system F(5, 2, 1, χ2) of (0.0.0.2) in characteristic p = 3 has geometric mon-
odromy group Ggeom,2 = PSp4(3) in a Weil representation of degree 5.

(iv) The local system F(10, 4, 2,1) of (0.0.0.2) in characteristic p = 3 has geometric mon-
odromy group Ggeom = Sp4(3) in a total Weil representation.

Proof. (i) is [KRLT4, Theorem 32.6].

(ii) Since the system F(5, 2, 1,1) on A2, with trace function

(t1, t2) 7→ −
∑
x

ψ
(
x5 + t1x

2 + t2x
)
,

is obtained from the system F(5, 4, 2, 1,1) on A3, with trace function

(t0, t1, t2) 7→ −
∑
x

ψ
(
x5 + t0x

4 + t1x
2 + t2x

)
,

by the specialization t0 = 0, we have Ggeom,1 ≤ Sp4(3) × 3. Applying [KT3, Theorem 10.7]
to the specialization t2 = 0 of F(5, 2, 1,1), we get Ggeom,1 ≥ Sp4(3). Moreover, Ggeom,1 has
trivial determinant by Corollary 2.3.4, which shows that Z(Ggeom,1) 6≥ C3, and so Ggeom,1 6=
Sp4(3)× 3. Hence Ggeom,1 = Sp4(3).

(iii) Note by [KT6, Corollary 2.7] that the system F(10, 4, 2,1) is the direct sum of the
two systems F(5, 2, 1,1) and F(5, 2, 1, χ2), the latter with trace function

(t1, t2) 7→ −
∑
x

ψ
(
x5 + t1x

2 + t2x
)
χ2(x),

and has finite geometric monodromy group by [KT6, Theorem 2.9]. It follows from Lemmas
2.2.5 and 11.1.1 that G := Ggeom,2 is a finite irreducible subgroup of GL5. Applying [KT3,
Theorem 10.7] to the specialization t2 = 0 of F(5, 2, 1, χ2), we get thatG contains PSp4(3) in a
Weil representation of degree 5; in particular, G satisfies (S+) (as its subgroup PSp4(3) does).
Next, the field of traces of elements in G is contained in Q(ζ3) by [KT6, Theorem 2.8(ii)],
whence Z(G) ≤ C6 by Schur’s lemma. Furthermore, by Corollary 2.3.4, both F(10, 4, 2,1)
and F(5, 2, 1,1) have geometrically trivial determinant. It follows that F(5, 2, 1, χ2) also has
geometrically trivial determinant. Since it has rank 5, this implies that

(11.1.4.1) Z(G) = 1.

Applying Lemma 1.1.3 to G and using (11.1.4.1), we now see that the extraspecial normalizer
case is ruled out, and G is almost simple: S C G ≤ Aut(S) for some finite simple group
S, which itself is an irreducible subgroup of GL5 and still contains PSp4(3). Using the
classification result of [HM], we can check that S = PSp4(3). But Aut(S) = S · 2 does not
have irreducible representations of degree 5. So we conclude that G = S, acting in a Weil
representation of degree 5.
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(iv) As mentioned above, F(10, 4, 2,1) ∼= F(5, 2, 1,1) ⊕ F(5, 2, 1, χ2). Using the results
of (ii) and (iii) and arguing by Goursat’s lemma, we can finish as in the proof of Lemma
7.3.2. �

Next we prove a low-dimensional analogue of Theorem 7.2.2:

Proposition 11.1.5. Let p be an odd prime, n ∈ Z≥1, and let pn ≤ 9. Let G < GL(V ) ∼=
GLpn(C) be a finite irreducible subgroup that contains a subgroup G1

∼= Sp2n(p) that acts via
a total Weil representation, with the convention in Lemma 7.3.3 for p = 3. If pn = 3, assume
in addition that the field of traces of elements in G is contained in Q(ζ3). Then there exist
an irreducible Heisenberg subgroup E ∼= p1+2n

+ < GL(V ) normalized by G1 such that

G = Z(G)(E oG1).

Proof. (i) By assumption, G ≥ G1 acts irreducibly on V = Cpn . Next, the smallest
index P (G1) of proper subgroups of G1 is 27 if pn = 9, and p otherwise, see [CCNPW].
Suppose that G fixes an imprimitive decomposition V = ⊕mi=1Vi with m > 1. If m < P (G1),
then G1 has to fix each of the Vi’s. As dim(Vi) is a proper divisor of dim(V ) = pn, we have
dim(Vi) ≤ pn−1 ≤ (pn− 1)/2. On the other hand, G1 acts on V with two simple submodules
of dimensions (pn − 1)/2 and (pn + 1)/2, a contradiction. Thus m ≥ P (G1), and so pn ≤ 7,
n = 1, m = p, and dim(Vi) = 1. We have also shown that G1 = Sp2(p) permutes the p
subspaces Vi transitively. Let G11 denote the stabilizer of V1 in G1. According to [GAP],
G11 is a subgroup of type 2 ·S4 if p = 7, SL2(3) if p = 5, and Q8 = 21+2

− if p = 3. In fact, since
G1 has only one involution, namely the central involution j, we must have that j ∈ G11.
Now the action of G11 on the 1-dimensional space V1 must be trivial on j. As G1 permutes
the Vi’s transitively and j ∈ Z(G1), j acts trivially on every Vi and so on V , contradicting
the faithfulness.

We have shown that G acts primitively on V . It follows that G satisfies (S+) if pn 6= 9.
Suppose that pn = 9 and G fixes a tensor decomposition V = A⊗CB, that is, G ≤ GL(A)⊗
GL(B), with 1 < dim(A), dim(B). This induces projective representations of G1 = Sp4(3)
on A and B, which have dimensions at most pn/3 = 3. By [CCNPW], this is possible only
when these projective representations are trivial, that is, G1 acts via scalars on A and on B.
This implies that G1 acts via scalars on V , whence this action is trivial since G1 is perfect,
again contradiction. Assume now that G fixes a tensor induced decomposition V = U⊗m for
some m > 1. Then m = 2, and so the action of G1 on the 2 tensor factors is trivial, i.e. G1

fixes a tensor decomposition V = U1⊗U2 with dim(Ui) = dim(U). But this is impossible by
the preceding case.

(ii) We have shown that the finite group G satisfies condition (S+) and so can apply
Lemmas 1.1.3 and 1.1.6 to conclude that either

(a) G is almost quasisimple with G(∞) acting irreducibly on V , or
(b) ECG < NGL(V )(E) for some extraspecial p-group E of order p1+2n acting irreducibly on

V .

Here we consider the second possibility (b). First we note that

(11.1.5.1) G1 ∩ Z(GL(V ))E = 1.

Indeed, G1 = Sp2n(p) normalizes the nilpotent subgroup X := G1 ∩ Z(GL(V ))E. If pn > 3,
then G1 is quasisimple, whence X = 1 or X = Z(G1) = 〈j〉. The same holds when pn = 3 as
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we have G1 = SL2(3) = Q8 o 3. Suppose X 6= 1. Now, if j /∈ Z(GL(V )), then it is a scalar
multiple of a non-central element in E, whence it has trace 0 on V . On the other hand, the
involution j has only eigenvalues 1 and −1 on V = Cpn of odd dimension, and so its trace
must be nonzero, a contradiction. So j ∈ Z(GL(V )), whence it acts as scalar −1 and so has
determinant −1 on V . This is again a contradiction, as j ∈ [G1, G1] and so it lies in SL(V ).

Next, consider the conjugation action of G1 on E. The kernel of this action is G1 ∩
Z(GL(V )) = 1 by (11.1.5.1), so the action embeds G1 in the group Aut1(E) of all automor-
phisms of E that act trivially on Z(E), which is equal to F2n

p o Sp2n(p) if exp(E) = p and

F2n
p o (p2n−1

+ o Sp2n−2(p)) if exp(E) > p, see [Wi, Theorem 1]. Note that G1
∼= Sp2n(p)

cannot embed in the subgroup F2n
p o (p2n−1

+ o Sp2n−2(p)) of Aut1(E). This implies that

exp(E1) = p, i.e. E ∼= p1+2n
+ , and Γ(p, n) := NGL(V )(E) = Z(GL(V ))(E o Sp2n(p)). By

(11.1.5.1), G1
∼= Sp2n(p) embeds in G/Z(G)E ↪→ Γ(p, n)/Z(GL(V ))E ∼= Sp2n(p), and so

G = Z(G)EG1 = Z(G)(E oG1) as stated.

(iii) Now we handle the possibility (a), and recall that L := G(∞) acts irreducibly on V .
As G is almost quasisimple, L is a cover of a simple group S, and the list of such groups is
given in [HM].

First suppose that pn > 3. Then L ≥ G1 = Sp2n(p) as G1 is perfect. If pn = 9, no such
group L can contain Sp4(3).

If pn = 7, then L contains G1 = Sp2(7) acting in a total Weil representation of de-
gree 7, so the field of traces of its elements contains Q(

√
−7). However, L = A8, SU3(3),

Sp6(2), PSL2(13), SL2(8), or PSL2(7) [HM]. The first four groups have fields of traces Q,
⊆ Q(i), Q, and Q(

√
13), a contradiction. The last two groups cannot contain SL2(7), again

a contradiction.
If pn = 5, then L contains G1 = Sp2(5) acting in a total Weil representation of degree

5, so the field of traces of its elements contains Q(
√

5). However, L = A5, A6, PSp4(3), or
PSL2(11), with fields of traces Q, Q, Q,Q(

√
−3), and Q(

√
−11), a contradiction.

Finally, assume that pn = 3, in which case L = A5, 3 · A6, or PSL2(7). Since the fields of
traces are Q(

√
5), Q(

√
−3,
√

5), and Q(
√
−7), none of these cases is possible. �

Proposition 11.1.6. (i) For p = 3, 5, and 7, the local system F(p + 1, 2, 1,1) of
(0.0.0.2) in characteristic p has geometric monodromy group Ggeom = p1+2

+ o Sp2(p).
(ii) The local systems F(10, 4, 2, 1,1) and F(10, 4, 1,1) of (0.0.0.2) in characteristic p = 3

each have geometric monodromy group Ggeom = 31+4
+ o Sp4(3).

(iii) The local system F(10, 2, 1,1) of (0.0.0.2) in characteristic p = 3 has geometric mon-
odromy group Ggeom = 31+4

+ o SL2(9).

Proof. (i) Let G denote Ggeom for the system F(p+ 1, 2, 1,1), which has trace function

(t1, t2) 7→ −
∑
x

ψ
(
xp+1 + t1x

2 + t2x
)
.

Specializing t2 = 0, we obtain the system F(p + 1, 2,1) which has geometric monodromy
group G1 = Sp2(p) acting in a total Weil representation, by Lemmas 7.3.2 and 7.3.3. Thus
G is an irreducible subgroup of GLp(C) containing G1. By Theorem 7.1.1, G is finite, with
field of traces contained in Q(ζp). Now we can apply Proposition 11.1.5 to see that G =
Z(G)(EoG1), with E = p1+2

+ . To finish the proof, it suffices to show that Z(G) = Z(E) ∼= Cp.
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The constraint on the field of traces shows that if Z(G) 6= Z(E) then Z(G) = C2×Z(E) and
so Z(G) contains an element z with determinant (−1)p = −1. However, if p > 3, then G has
trivial determinant by Corollary 2.3.4. Even when p = 3, since the system lives over A2, we
can still say that its geometric determinant, a system of rank 1 over A2, has order dividing
p, cf. Lemma 2.3.9, ruling out the existence of such z.

(ii) Let G denote Ggeom for the system F(10, 4, 2, 1,1), which has trace function

(t1, t2, t3) 7→ −
∑
x

ψ
(
x10 + t1x

4 + t2x
2 + t3x

)
.

Specializing t3 = 0, we obtain the system F(10, 4, 2,1) which has geometric monodromy
group G1 = Sp4(3) acting in a total Weil representation, by Lemma 11.1.4(iv). Thus G
is an irreducible subgroup of GL9(C) containing G1. As before, G is finite, with field of
traces contained in Q(ζ3). Applying Proposition 11.1.5 we obtain G = Z(G)(E o G1), with
E = 31+4

+ . Moreover, G has trivial determinant by Corollary 2.3.4, so we can conclude
Z(G) = Z(E) and G = E oG1 as above.

The same arguments apply to the system F(10, 4, 1,1), which has trace function

(t1, t2) 7→ −
∑
x

ψ
(
x10 + t1x

4 + t2x
)
,

since its specialization t2 = 0 has geometric monodromy group Sp4(3) acting in a total Weil
representation by [KT3, Theorem 10.6].

(iii) Let H denote Ggeom for the system F(10, 2, 1,1), which has trace function

(t2, t3) 7→ −
∑
x

ψ
(
x10 + t2x

2 + t3x
)
.

This is the specialization t1 = 0 of the system F(10, 4, 2, 1,1), so H ≤ E o G1 = 31+4
+ o

Sp4(3) by the result of (ii); in particular H ≤ SL9(C) and Z(H) ≤ Z(G) = Z(E) by
irreducibility. Specializing t2 = 0 we obtain the Pink–Sawin system F(10, 1,1) which has
geometric monodromy group E1

∼= E by Theorem 7.3.8, whence H ≥ E1. As Z(E1) and
Z(E) are both central cyclic subgroups of order 3, we get

(11.1.6.1) H ≥ Z(E1) = Z(E).

On the other hand, specializing t3 = 0, we obtain the system F(10, 4,1) which has geometric
monodromy group H1 = Sp2(9) acting in a total Weil representation by Lemma 7.3.2. Next,
if ϕ denotes the character of the underlying representation of H, then

(11.1.6.2) |ϕ(h)|2 = 0 or a power of 9 for all h ∈ H
by Theorem 7.1.2. Also note that E ∩H1 is a normal 3-subgroup of H1 = Sp2(9), so

(11.1.6.3) E ∩H1 = 1.

It follows that

H1
∼= EH1/E ≤ EH/E ≤ G/E = G1

∼= Sp4(3).

Checking the list of maximal subgroups of Sp4(3) [CCNPW], we see that

(11.1.6.4) EH/E = Sp4(3), SL2(9) · 2, or SL2(9).
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In fact, the middle case of (11.1.6.4) is impossible, since G(10, 2, 1,1) lives over A2 and so
H = O3′(H).

Suppose that H ≥ E. In the first case of (11.1.6.4), we obtain H = G > G1 = Sp4(3),
and since G1 acts via a total Weil representation, we get |ϕ(h1)| =

√
3 for some h1 ∈ G1, in

violation of (11.1.6.2). Hence H/E = SL2(9) ∼= H1, and so H = E oH1 by (11.1.6.3).
It remains to consider the case H 6≥ E. We still have by (11.1.6.4) that EH/E is a

subgroup of Sp4(3) that contains EH1/E ∼= H1, which is unique up to conjugacy [CCNPW];
in particular it acts irreducibly on E/Z(E) ∼= F4

3. On the other hand, by (11.1.6.1) we see
in this case that (H ∩ E)/Z(E) is a proper subgroup of E/Z(E), so H ∩ E = Z(E) by
irreducibility. It follows from (11.1.6.4) that

H/Z(E) = H/(H ∩ E) ∼= EH/E ↪→ Sp4(3).

But H/Z(E) ≥ E1/Z(E) ∼= 34, and we arrive at a contradiction since Sylow 3-subgroups of
Sp4(3) are non-abelian groups of order 34. �

11.2. The general case

Theorem 11.2.1. Let q = pf be a power of a prime p > 2, k ∈ Z≥1, and consider the
local system G(A,B1, . . . , Bk) over Ak/Fp of rank A− 1, with trace function

(t1, . . . , tk) ∈ Lk 7→
1

GaussL

∑
x

ψL
(
xA + t1x

B1 + . . .+ tkx
Bk
)

for any finite extension L/Fp and with geometric monodromy group G = Ggeom. Then the
following statements hold.

(a) Suppose k ≥ 2, A = qn+1, Bi = qmi+1 for 1 ≤ i ≤ k−1 with n > m1 > . . . > mk−1 ≥ 0,

Bk = 1, gcd(n,m1, . . . ,mk−1) = 1, and 2|nm1 . . .mk−1. Then G = p1+2nf
+ o Sp2n(q),

where p1+2nf
+ is the extraspecial p-group of order p1+2nf and exponent p, cf. §7.1.

(b) Suppose A = qn + 1, Bi = qmi + 1 for 1 ≤ i ≤ k with n > m1 > . . . > mk ≥ 0,
gcd(n,m1, . . . ,mk) = 1, and 2|nm1 . . .mk. Then G = Sp2n(q) acting in a total Weil
representation.

Proof. (a) is Theorem 7.3.5 if qn ≥ 11 and Proposition 11.1.6 if qn ≤ 9. The rest of the
proof is to establish (b).

The case k = 1 is already handled in Lemmas 7.3.2 and 7.3.3 when m1 = 0, and in
Theorem 7.3.11 when m1 ≥ 1. So we will assume k ≥ 2; in particular, n > m1 ≥ 1. If
qn ≤ 9, then we must have that (q, n) = (3, 2) and so (k,m1,m2) = (2, 1, 0), in which case
the statement follows from Lemma 11.1.4(iv). From now on we may assume that qn ≥ 11.

Note that G(A,B1, . . . , Bk) is just the specialization tk+1 = 0 of the system G(A,B1, . . . , Bk, 1)

considered in (a). Hence G embeds in Γ := E o S, where E = p1+2nf
+ is irreducible, and

S = Sp2n(q) acts in a total Weil representation, see Theorem 7.2.2. Similarly to the action
of S, by [KT6, Corollary 2.7], the underlying representation V for G on G(A,B1, . . . , Bk) is
also a direct sum of two irreducible summands, call them V1 and V2, which correspond to the
two local systems, G1 of rank (qn − 1)/2 with trace function

(t1, . . . , tk) 7→
1

GaussL

∑
x

ψL
(
x(qn+1)/2 + t1x

(qm1+1)/2 + . . .+ tkx
(qmk+1)/2

)
,
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and G2 of rank (qn + 1)/2 with trace function

(t1, . . . , tk) 7→
1

GaussL

∑
x

ψL
(
x(qn+1)/2 + t1x

(qm1+1)/2 + . . .+ tkx
(qmk+1)/2

)
χ2(x).

Since 1 ≤ m1 ≤ n− 1 and qn ≥ 11, we have

A− 2B1 =
qn + 1

2
− (qm1 + 1) ≥ qn−1(q − 2)− 1

2

is at least 7 if q ≥ 5 and at least 4 if q = 3; in particular B1 ≤ A/2−2 and so B1 ≤ bA/2c−2.
Hence we can apply Corollary 2.3.4 to G1 to see that

(11.2.1.1) G1 has geometrically trivial determinant.

This implies that

(11.2.1.2) G ∩ Z(E) = 1.

Indeed, if Z(E) ∩ G 6= 1, then G ≥ Z(E) = 〈z〉, with z acting on G(A,B1, . . . , Bk) as the

scalar ζp. In this case, z ∈ G acts on F1 with determinant ζ
(qn−1)/2
p 6= 1, and this contradicts

(11.2.1.1). Also, if ϕ denotes the character of this representation V , then

(11.2.1.3) |ϕ(g)|2 is either zero or a q-power

for any g ∈ G, in fact for any g ∈ Γ by Theorem 7.1.2(a).
For any 1 ≤ j ≤ l, write dj := gcd(n,mj), so that gcd(n/dj,mj/dj) = 1. By assumption,

(qdj)n/dj = qn = pN ≥ 11; also, if mj > 0 then dj ≤ n/2 as mj < n. Note that 2|(nmj/d
2
j)

for at least one j. (Indeed, assume 2 - (nmj/d
2
j) for all j. If 2|n, then since 2 - (n/dj), we

have that 2|dj and so 2|mj for all j and thus 2| gcd(n,m1, . . . ,mk), a contradiction. So 2 - n,
forcing 2 - dj, and so, as 2 - (mj/dj), we have 2 - mj for all j and thus 2 - nm1 . . .mk, again
a contradiction.)

Fix some j = j0 such that 2|(nmj/d
2
j). Then the system G(A,B1, . . . , Bk), where all

ti with i 6= j are specialized to be 0, is the local system W(ψ, n/dj,mj/dj, q
dj) on A1/Fp

defined in [KT6, (9.0.4)], whose geometric monodromy group is shown in [KT6, Theorem
9.2] to contain Lj0 := Sp2n/dj0

(qdj0 ), acting in a total Weil representation. In particular,

the L-module V splits as a direct sum of two Weil modules, hence they must be V1 and V2

(restricted to Lj). Next, the central involution j of Lj0 acts as 1 on the Vi of odd dimension
and as −1 on the V3−i of even dimension. Since G stabilizes both V1 and V2, it follows that
G centralizes j, and thus G ≤ CΓ(j). We also see that the trace of j on V is ±1, so [GT1,
Lemma 2.4] implies that j acts without nonzero fixed point on E/Z(E) ∼= F2nf

p . The same
is true for the central involution of S, and in fact this element and j belong to the same E-
coset in Γ. Since |E| is odd, it follows that these two elements are conjugate in E〈j〉 ∼= E · 2.
Conjugating S suitably, we may therefore assume that j is the central involution of S. Since
j centralizes Z(E)S and acts as inversion on E/Z(E), we now have that

(11.2.1.4) Lj0 ≤ G ≤ CΓ(j) = Z(E)S

In particular, G ∩ E ≤ Z(E)S ∩ E = Z(E). Hence

(11.2.1.5) G ∩ E = G ∩ Z(E) = 1
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by (11.2.1.2). We next show that it suffices to show

(11.2.1.6) |PSp2n(q)| divides |G|.

Indeed, assuming (11.2.1.6), we see from (11.2.1.2) that Z(E)G has order divisible by |Z(E)| ·
|S|/2 = |Z(E)S|/2. Since Z(E) ∼= Cp and S = Sp2n(q), any subgroup of Z(E)S of such order
is equal to Z(E)S. It follows from (11.2.1.4) that Z(E)G = Z(E)S, and so

G(∞) = (Z(E)G)(∞) = (Z(E)S)(∞) = S,

forcing G = (Z(E) ∩G)S, and so G = S by (11.2.1.2).

The rest of this proof is to prove (11.2.1.6). Now we apply Theorem 7.2.2 to the irreducible
subgroup EG > Lj0 = Sp2n/dj0

(qdj0 ) to see that, modulo Z(GL(V )) the subgroup EG is

E1 o L, with E1
∼= p1+2nf

+ and Sp2nf/e′(p
e′)C L ≤ Sp2nf/e′(p

e′) o Ce′ for some e′|dj0f . Since

Sp2nf/e′(p
e′) is a standard subgroup of Sp2nf (p) acting in a total Weil representation, |ϕ(h)|2 =

pe
′

for some h ∈ Sp2nf/e′(p
e′) by [KT3, Theorem 3.5]. It follows from (11.2.1.3) that e′ = ef

for some e|dj0 and

Sp2n/e(q
e)C L ≤ Sp2n/e(q

e) · Cef .
This argument also shows that

(11.2.1.7) e|dj whenever 2|(nmj/d
2
j).

Suppose e = 1. Then EG shares the non-abelian composition factor PSp2n(q) with E1oL.
As E ∩G = 1 by (11.2.1.5), G admits PSp2n(q) as a composition factor, proving (11.2.1.6).

So we will assume e > 1. Next we show that we may also assume that

(11.2.1.8) e|dj whenever 2 - (nmj/d
2
j).

Consider any such j; in particular dj ≤ n/3 (since mj ≥ 1). Then, over Fq2dj , the local

system G(A,B1, . . . , Bk), where all ti are specialized to be 0, is the pullback by the map
tj 7→ −tj of the local systemWn/dj ,mj/dj defined in [KT6, §10], whose geometric monodromy
group is shown in [KT6, Theorem 10.2] to contain SUn/dj(q

dj) (acting in the total Weil
representation), and hence contains a maximal torus of order

(qdj)n/dj−1 − 1 = qn−dj − 1 = pf(n−dj) − 1.

Note that f(n − dj) ≥ 2nf/3 ≥ 2, with equality only when (n, f) = (3, 1) and dj = 1.
Suppose we are in the latter case. If mi = 2 for some i, then di = 1 and e = 1, and so we are
done. Otherwise we must have k = 2, (m1,m2) = (1, 0), and (11.2.1.7) (with j = 2) shows
that e|3, whence e = 3 and L ≤ SL2(q3) · 3. But in this case E1L and EG cannot contain
SU3(q), a contradiction. Hence we may assume that f(n−dj) ≥ 3, and so pf(n−dj)−1 admits
a primitive prime divisor `j ≥ f(n− dj) + 1 ≥ 2nf/3 + 1 by [Zs], and G contains some non-
scalar element gj of order `j. As gj is non-scalar and of order coprime to p, |gj| = `j divides
|L|. We next note that `j in fact divides |Sp2n/e(q

e)|. (Indeed, if `j > 2nf/3 divides e′ = ef ,
then, as e′|nf we must have `j = e′ = nf is prime and so dj = 1, e = e′ (as e > 1), and
f = 1. In this case, PSUn(p) embeds in Z(GL(V ))EG/(Z(GL(V ))E) ∼= L ≤ Sp2(pn) o Cn,
which is impossible since n ≥ 3.) It therefore follows that, there is some 1 ≤ cj ≤ n/e such
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that `j divides q2ecj − 1. By the choice of `j, we have that (n − dj)|2ecj ≤ 2n ≤ 3(n − dj).
Hence,

either n− dj = 2ecj, or n− dj = ecj, or 3n− 3dj = 2ecj = 2n and dj = n/3 = mj.

Since e|n, (11.2.1.8) holds in the first two cases. So if e - dj, we must be in the third
case. Then PSU3(qn/3) embeds in Z(GL(V ))EG/(Z(GL(V ))E) ∼= L ≤ Sp2n/e(q

e) o Ce′ . As

mentioned above, a Sylow `j-subgroup of PSU3(qn/3) embeds in Sp2n/e(q
e) for `j a primitive

prime divisor of p2nf/3 − 1 = q2n/3 − 1, and this Sylow subgroup is non-cyclic. However, the
Sylow `j-subgroup of Cq2n−1 is of course cyclic. So there exists another 1 ≤ c′j < n/e = cj
such that `j divides q2ec′j − 1. Using e - dj and repeating the previous argument for c′j in
place of cj, we obtain that 3n− 3dj = 2ec′j = 2n and thus c′j = n/e = cj, a contradiction.

We have therefore shown in (11.2.1.7) and (11.2.1.8) that e|dj for all j, and thus e|mj for
all j. As e > 1 and e|n, we get gcd(n,m1, . . . ,mk) > 1, a contradiction. �

The next result is the odd-p analogue of Theorems 8.5.7 and Theorem 8.5.8.

Theorem 11.2.2. Let q = pf be a power of a prime p > 2, k ∈ Z≥1, and consider the
local system G(A,B1, . . . , Bk) over Ak/Fp of rank A− 1, with trace function

(t1, . . . , tk) ∈ Lk 7→
1

GaussL

∑
x

ψL
(
xA + t1x

B1 + . . .+ tkx
Bk
)

for any finite extension L/Fp and with geometric monodromy group G = Ggeom. Then the
following statements hold.

(a) Suppose A = qn + 1, Bi = qmi + 1 for 1 ≤ i ≤ k with n > m1 > . . . > mk ≥ 1,
gcd(n,m1, . . . ,mk) = 1, and 2 - nm1 . . .mk. Then G = SUn(q) acting in the total Weil
representation.

(b) Suppose k ≥ 2, A = qn+1, Bi = qmi+1 for 1 ≤ i ≤ k−1 with n > m1 > . . . > mk−1 ≥ 1,

Bk = 1, gcd(n,m1, . . . ,mk−1) = 1, and 2 - nm1 . . .mk−1. Then G = p1+2nf
+ o SUn(q).

Proof. Note that the assumptions imply qn ≥ 27.

(a) The case k = 1 is already handled in Theorem 7.3.11, so we will assume k ≥ 2; in
particular, n > m1 ≥ 1. Note that G(A,B1, . . . , Bk) is just the specialization tk+1 = 0 of
the system G(A,B1, . . . , Bk, Bk+1), with Bk+1 = q2 + 1. By Theorem 11.2.1(b), G embeds in
S := Sp2n(q) acting in a total Weil representation. By [KT6, Corollary 2.7], G(A,B1, . . . , Bk)
is the direct sum of q + 1 irreducible subsheaves, one of rank (qn − q)/(q + 1) and q of rank
(qn + 1)/(q + 1). Applying [KT3, Theorem 3.4] to the subgroup G of S, we obtain that
SUn(q) C G ≤ GUn(q), with SUn(q) a standard special unitary subgroup of Sp2n(q). Since
G(A,B1, . . . , Bk) lives over Ak, G has no nontrivial p′-quotient. Hence G = SUn(q).

(b) Note that G(A,B1, . . . , Bk) is just the specialization tk+1 = 0 of the system G(A,B1, . . . , Bk, 0).
By Theorem 11.2.1(a), G embeds in Γ = EoS. On the other hand, the specialization tk = 0
of G(A,B1, . . . , Bk) is the system G(A,B1, . . . , Bk−1). Hence, by (a), G contains R = SUn(q)
acting in its total Weil representation. Certainly R ∩ E = 1, so R injects in S. Also, G is
irreducible by Lemma 11.1.1.
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We next observe that R acts irreducibly on E/Z(E) ∼= F2nf
p . (Indeed, as 2 - nm1 . . .mk−1

and k ≥ 2, we have n ≥ 3. Therefore, L contains an element of order a primitive prime
divisor ` of p2nf − 1 [Zs], and any such element in S acts irreducibly on E/Z(E).)

Now assume that Z(E)G ∩ E = Z(E). Then Ḡ := Z(E)G/Z(E) embeds in Γ/E = S =
Sp2n(q). Under this embedding, the image R̄ of R is the standard subgroup SUn(q) in S. We
claim that the only proper subgroups X of S that contain R̄ are either between R̄ ∼= SUn(q)
and NS(R̄) ∼= GUn(q) · 2. (Indeed, any such X has order divisible by `, and we can apply
[KT2, Theorem 4.6] to determine the structure of Op′(X). Using the facts that X ≥ R̄ and
X ≤ S has a faithful irreducible representation of degree ≤ (qn + 1)/2, and arguing as in the
proof of [KT3, Theorem 3.4], we readily obtain that R̄CX.) Thus SUn(q)CḠ ≤ GUn(q)·2, or
Ḡ = S. In the former case, R(∞) = R ∼= SUn(q) is contained in G(∞) which is a central cover
of PSUn(q). It follows that G(∞) = R. By irreducibility of G, all R-irreducible summands in
G(A,B1, . . . , Bk) are of the same dimension that divides qn, and this contradicts the action
of R on the sheaf. In the latter case, G(∞) is a central over of PSp2n(q) with n ≥ 3, and this
again contradicts the irreducible action of G on G(A,B1, . . . , Bk) of rank qn.

We have shown that Z(E)G ∩ E > Z(E), which implies Z(E)G ≥ E by the irreducible
action of R on E/Z(E). Now, Z(E)G/E is a subgroup of S = Sp2n(q) that contains ER/E ∼=
R. As above, we have that Z(E)G/E = S, or SUn(q) C Z(E)G/E ≤ GUn(q) · 2. In
the former case, Z(E)G = ES = Γ. Since S acts via a total Weil representation, we
get an element in G with trace of absolute value

√
q. On the other hand, working over

extensions of Fq2 , we see by Theorem 7.1.2 that any such trace has absolute value 0 or a
q-power, a contradiction. So we are in the latter case. Since G(A,B1, . . . , Bk) lives over Ak,
G = Op′(G), and so Z(E)G/E = SUn(q) and thus Z(E)G = E o SUn(q). As G contains
G(∞) = (Z(E)G)(∞) = E o SUn(q), we conclude that G = E o SUn(q). �

Theorem 11.2.3. Let p be a prime, k ≥ 2, and let A > B1 > . . . > Bk ≥ 1 be integers
with gcd(A,B1, . . . , Bk) = 1 and p - AB1 . . . Bk. Consider the local system F(A,B1, . . . , Bk, θ)
over Ak with trace function for any finite extension L/Fp

(t1, . . . , tk) ∈ Lk 7→ −
∑
x

ψL
(
xA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),

in characteristic p, of rank D = A − 1 if θ = 1 and D = A otherwise, with geometric
monodromy group G = Ggeom. Then G is finite if and only if one of the following conditions
holds.

(i) p > 2, q = pf , A = (qn + 1)/2, Bi = (qmi + 1)/2, 1 ≤ i ≤ k, where n > m1 > . . . >
mk ≥ 0 are integers with 2|nm1 . . .mk, gcd(n,m1, . . . ,mk) = 1, and θ = 1 or θ = χ2.
Moreover, G is the image of Sp2n(q) in a Weil representation of degree D.

(i-bis) p > 2, q = pf , A = qn+1, Bi = qmi +1, 1 ≤ i ≤ k−1, where n > m1 > . . . > mk−1 ≥ 0
are integers with gcd(n,m1, . . . ,mk−1) = 1, Bk = 1, and θ = 1. Moreover, G is

p1+2nf
+ o Sp2n(q) if 2|nm1 . . .mk−1, and p1+2nf

+ o SUn(q) if 2 - nm1 . . .mk−1.
(ii) p = 2, q = 2f , A = qn + 1, Bi = qmi + 1, 1 ≤ i ≤ k − 1. Furthermore, Bk = qmk + 1

with mk ≥ 1, or Bk = 1, in which case we set mk = 0; n > m1 > . . . > mk ≥ 0 are
integers with 2|nm1 . . .mk, gcd(n,m1, . . . ,mk) = 1, and θ = 1. Assume in addition

that qn > 8. Then G ∼= 21+2nf
− · Ω−2n(q) if mk ≥ 1, or if mk = 0 but 2|nm1 . . .mk−1. If
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mk = 0 and 2 - nm1 . . .mk−1, then G ∼= 21+2nf
− o SUn(q), with SUn(q) acting in its total

Weil representation.
(iii) p arbitrary, q = pf , A = (qn + 1)/(q + 1), Bi = (qmi + 1)/(q + 1), 1 ≤ i ≤ k, where

n > m1 > . . . > mk ≥ 1 are odd integers with gcd(n,m1, . . . ,mk) = 1, and θq+1 = 1.
Moreover, G is the image of SUn(q) in a Weil representation of degree D.

(iv) p = 2, k = 2, A = 13, B1 = 3, B2 = 1, θ = 1, and G = 2 ·G2(4).
(v) p = 3, k = 2, A = 23, B1 = 5, B2 = 1, θ = χ2, and G = Co3.

(vi) p = 3, k = 2, A = 7, B1 = 5, B2 = 1, θ = χ2, and G = Sp6(2).
(vii) p = 3, k = 2, 3, A = 7, {B1, . . . , Bk} ⊆ {4, 2, 1}, θ = 1, and G = 61 · PSU4(3).
(viii) p = 3, k = 2, 3, A = 5, {B1, . . . , Bk} ⊆ {4, 2, 1}, θ = 1. Furthermore, G = Sp4(3) × 3

if some Bi is 4, and G = Sp4(3) otherwise.
(ix) p = 5, A = 3, B1 = 2, B2 = 1, θ = 1, and G = SL2(5)× 5.

Proof. (a) First we show that G is finite and has the indicated identification in each of
the listed cases.

Case (i-bis) follows from Theorems 11.2.1(a) and 11.2.2(b). Case (i) follows by applying
Theorem 11.2.1(b) and projecting the geometric monodromy group of G(A,B1, . . . , Bk) onto
each of its two irreducible subsheaves. Similarly, when p > 2 case (iii) follows by applying
Theorem 11.2.2(a) and projecting the geometric monodromy group of G(A,B1, . . . , Bk) onto
each of its q + 1 irreducible subsheaves. Case p = 2 of (iii) follows from Theorem 8.5.7 (note
that here we have qn ≥ 32 since k ≥ 2). Case (ii) is established in Theorem 8.5.9, respectively
Theorem 8.5.8.

Case (iv) is [KRLT4, Theorem 32.4]. Case (v) is [KRLT1, Theorem 4.2(ii)]. Case (vi) is
[KRLT4, Theorem 31.6(b)]. Suppose we are in case (vii). Then the case k = 3 is [KRLT4,
Theorem 32.2], which also shows that Ggeom ≤ 61 ·PSU4(3) when k = 2. On the other hand,
we have that Ggeom contains 61 · PSU4(3) when some Bi is 4 by [KRLT4, Theorem 21.4],
and when some Bi is 2 by [KRLT4, Theorem 21.4]. It follows that Ggeom = 61 · PSU4(3)
when k = 2.

Next, suppose we are in case (viii). Then the case k = 3 is Lemma 11.1.4(i), which also
shows that Ggeom ≤ Sp4(3)× 3 when k = 2. On the other hand, we have that Ggeom contains
Sp4(3) × 3 when some Bi is 4 by [KRLT4, Theorem 30.7(iv)]. It remains to consider the
case k = 2 and (B1, B2) = (2, 1), in which case the statement is Lemma 11.1.4(ii).

Finally, case (ix) is [KRLT4, Theorem 32.8].

The rest of the proof is to show that the only local systems F = F(A,B1, . . . , Bk, θ) that
have finite geometric monodromy group G = Ggeom are the ones listed in the theorem. The
proof uses the fact that the systems on A1 obtained by specializing k− 1 parameters ti to be
zero also have finite monodromy.

(b) Consider any 1 ≤ j ≤ k. Specializing tj = 0 for all i 6= j and applying Theorem
10.3.14, we obtain the possibilities for (p,A,Bj, θ) listed in Theorem 10.3.14. First we assume
that either the possibility (e) or (f) in Theorem 10.3.14 occurs for some j; in particular,
gcd(A,Bj) = 1 and θ is uniquely determined. Now we will make suitable specializations and
again apply Theorem 10.3.14 to determine candidates for any Bi with i 6= j. In the case of
10.3.13(iv) for j, A = 13, so gcd(A,Bi) = 1 and Theorem 10.3.14 shows that B1 = 3 and
B2 = 1, leading to conclusion (iv). Similarly, in the case of 10.3.13(v) or 10.2.6(v) for j, we
have A = 23, B1 = 5 and B2 = 1, leading to conclusion (v). In the case of 10.3.13(vi) for j,
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we have A = 7, B1 = 5 and B2 = 1, leading to conclusion (vi). Cases 10.3.13(vii) for j leads
to conclusion (vii). Case 10.3.13(viii) for j leads to conclusion (viii). Case 10.3.13(x) for j
leads to conclusion (ix). Cases 10.2.6(vi), 10.3.13(ix), and 10.3.13(xi) for j do not give rise
to any system with k ≥ 2.

(c) Henceforth we will assume that, for any i, only one of (a)–(d) of Theorem 10.3.14 can
hold for (p,A,Bi, θ). Write di := gcd(A,Bi).

Suppose we are in the case of 10.3.14(a) for (A,Bj) for some j, so that p > 2, dj|2,
θej = 1, and A = (pn + 1)/ej and Bj = (pmj + 1)/ej for some n > mj ≥ 0 and ej := 2/dj.
Consider any Bi with i 6= j. Then we can apply Theorem 10.3.14 to (A,Bi, θ). Note that,
whenever 10.3.14(c) occurs for some i, then θ is uniquely determined and di = 1. By our
assumption, we arrive at one of the following possibilities.

(c1) For all i 6= j, A = (pni + 1)/ei and Bi = (pmi + 1)/ei for some 0 ≤ mi < ni,
di|2, and ei := 2/di. In this case, if ei 6= ej for some i 6= j, then either (ej, ei) = (1, 2)
and 2pn − pni = −1, or (ej, ei) = (2, 1) and pn − 2pni = 1, which both are impossible. So
ei = ej for all i. Since p > 2 and gcd(A,B1, . . . , Bk) = 1, we have ej = 2. Now, setting
d := gcd(n,m1, . . . ,mk), q := pd, and applying Lemma 10.3.2(ii), we arrive at conclusion (i).

(c2) For some i 6= j, A = (qs + 1)/ei and Bi = (qt + 1)/ei for some q = pf , di|(q + 1),
ei := (q + 1)/di, and some odd integers s > t ≥ 1. Because of the preceding case (c1), we
may assume ei > 2. Since s ≥ 3 and p > 2, p2sf − 1 has a primitive prime divisor `1 by
[Zs], which will divide A = (qs + 1)/ei and so divide pn + 1 = ejA as well. It follows that
2n ≥ 2sf and so n ≥ 3. This in turn implies that p2n− 1 has a primitive prime divisor `2 by
[Zs], which will divide A = (pn + 1)/ej and so divide qs + 1 = eiA as well. Hence 2sf ≥ 2n,
and thus pn + 1 = qs + 1 and ei = ej ≤ 2, a contradiction.

(c3) For some i 6= j, di = 1, A = 2q − 1, Bi = 1, for some q = pf . In this case, if
ej = 1, then pn − 2q = −2, a contradiction. Hence ej = 2, pn − 4q = −3, so p = 3. Now,
pn − 3q = q − 3 is divisible by 32 since n ≥ 2, hence q = 3, A = 5, going back to (i).

(c4) For some i 6= j, di = 1, A = q+1, Bi = 1, for some q = pf , and θ = 1. In this case, if
ej = 2, then p|(A− 1) = (pn − 1)/2, a contradiction. Hence ej = 1, and Bi = Bk = 1 by our
ordering. We have shown that for any 1 ≤ l ≤ k − 1, A = (pnl + 1)/el and Bl = (pml + 1)/el
for some 0 ≤ ml < nl, dl|2, and el := 2/dl as in (c1). The arguments in (c1) show that
el = ej = 1, and we arrive at (i-bis).

(d) Now we may assume that, for any i, only (b) or (c) or (d) of Theorem 10.3.14 can
occur. Suppose we are in the case of 10.3.14(b) for (A,Bj, θ), so that dj|(q + 1), θej = 1,
A = (qn + 1)/ej and Bj = (qm1 + 1)/ej for some odd integers n > mj ≥ 1, ej := (q + 1)/dj,
and some power q = pf . By the result of (c), we may assume that ej ≥ 2 if p > 2. Consider
any Bi with i 6= j. Then we can apply Theorem 10.3.14 to (A,Bi, θ). By our assumption,
we arrive at one of the following possibilities.

(d1) For all i 6= j, A = (rnii + 1)/ei and Bi = (rmii + 1)/ei for some p-power ri = pfi ,
di|(ri + 1), ei := (ri + 1)/di, and some odd integers ni > mi ≥ 1. Assume in addition that
either (q, n) 6= (2, 3) or (ri, ni) 6= (2, 3), say (q, n) 6= (2, 3). Then p2nf − 1 has a primitive
prime divisor `1 by [Zs], which will divide A = (qn + 1)/ej and so divide rnii + 1 = eiA as
well. It follows that 2nifi ≥ 2nf , and so nifi ≥ 3 and (p, nifi) 6= (2, 3). This in turn implies
that p2nifi − 1 has a primitive prime divisor `2 by [Zs], which will divide A = (rnii + 1)/ei
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and so divide qn + 1 = ejA as well. Hence 2nf ≥ 2nifi, and thus qn + 1 = rnii + 1 and
ei = ej. Changing the notation, we may now write A = (qn + 1)/ej and Bi = (qmi + 1)/ej
for all i, where gcd(n,m1, . . . ,mk) = 1. Now, if ej > 2, then, by Lemma 10.3.2(i), (ii) we
have 2 - nm1 . . .mk. The condition gcd(A,B1, . . . , Bk) = 1 implies by Lemma 10.3.2(iii) that
ej = q + 1, and so we arrive at conclusion (iii). In particular, we are done if p > 2. If
p = 2 and ej = 1, then by Lemma 10.3.2(i), the condition gcd(A,B1, . . . , Bk) = 1 implies
that 2|nm1 . . .mk, and we arrive at (ii). Suppose now that (q, n) = (ri, ni) = (2, 3). Then
n = ni = 3, 9/ej = A = 9/ei, so ej = ei and Bj = 3/ej = 3/ei = Bi, contrary to i 6= j.

(d2) p > 2, for some i we have di = 1, A = 2r − 1, Bi = 1, for some p-power r. In this
case,

2r − 1 = A = (qn + 1)/ej ≥ q2 − q + 1 ≥ 2q + 1,

so r > q and hence r ≥ pq. Again using 2r − 1 = A = (qn + 1)/ej, we see ej + 1 = 2ejr − qn
is divisible by pq and thus ej ≥ pq − 1 > q + 1, contrary to ej|(q + 1).

(d3) p > 2, for some i we have di = 1, A = r+ 1, Bi = 1, for some p-power r, and θ = 1.
In this case,

r + 1 = A = (qn + 1)/ej ≥ q2 − q + 1 ≥ 2q + 1,

so r > q and hence r ≥ pq. Again using r + 1 = A = (qn + 1)/ej, we see ej − 1 = qn − ejr
is divisible by pq and thus ej = 1, since ej|(q + 1). By our ordering, Bi = Bk = 1. We have
therefore shown that for any 1 ≤ l ≤ k − 1, A = (rnll + 1)/el and Bl = (rmll + 1)/el for some
p-power rl = pfl , dl|(rl + 1), el := (rl + 1)/dl, and some odd integers nl > ml ≥ 1. The
arguments in (d1) show that in this case el = ej = 1. Hence we arrive at (i-bis).

(d4) p = 2, for some i 6= j we have di = 1, A = rnii + 1 for some power ri = 2fi , θ = 1,
and either Bi = rmii + 1 for some some integers ni > mi ≥ 1 with 2|nimi and gcd(ni,mi) = 1,
or Bi = 1. First suppose that (q, n) = (2, 3), so that A = 9/ej. If ej = 3, then A = 3 and so
k = 1, a contradiction. So ej = 1, (A,Bj) = (9, 3), and either Bi = 1 or Bi = 5. By Theorem
10.3.13, no Bi′ can be 7. So 2 ≤ k ≤ 3 and (A,B1, . . . , Bk) is one of (9, 3, 1), (9, 5, 3), or
(9, 5, 3, 1), and we arrive at (ii). Now we may assume that (q, n) 6= (2, 3). As n > 1 is odd,
22nf − 1 has a primitive prime divisor `1 by [Zs], which will divide A = (qn + 1)/ej and so
divide rnii + 1 = A as well. It follows that 2nifi ≥ 2nf , and so nifi > 3. This in turn implies
that 22nifi − 1 has a primitive prime divisor `2 by [Zs], which will divide A = rnii + 1 and so
divide qn + 1 = ejA as well. Hence 2nf ≥ 2nifi, and thus qn + 1 = rnii + 1 and ej = 1. We
have therefore shown that for any 1 ≤ l ≤ k, either this possibility (d4) occurs for (A,Bl), or
A = (rnll + 1)/el and Bl = (rmll + 1)/el for some 2-power rl = 2fl , dl|(rl + 1), el := (rl + 1)/dl,
and some odd integers nl > ml ≥ 1 as in (d1). The arguments in (a31) show that in the latter
case el = ej = 1. Changing the notation, we may now write A = qn + 1 and Bi = qmi + 1 for
all 1 ≤ i ≤ k − 1, and either Bk = qmk + 1, or (Bk,mk) = (1, 0), where q is a 2-power, and
gcd(n,m1, . . . ,mk) = 1. The condition gcd(A,B1, . . . , Bk) = 1 implies by Lemma 10.3.2(i)
that 2|nm1 . . .mk, and we arrive at (ii).

(e) Now we may assume that, for any i, only (c) or (d) of Theorem 10.3.14 can occur.
Since k > 1, we see that B1 > 1, and hence we are in the case of 10.3.13(ii) for (A,B1), so
that θ = 1, p = 2, A = 2n+1 and B1 = 2m+1 for some integers n > m1 ≥ 1. Consider any Bi

with i > 1. Then we can apply Theorem 10.3.14 to (A,Bi). Since p > 2, case (iii) of Theorem
10.2.6 cannot occur. By our assumption, for all i > 1, we have di = 1, and either Bi = 2mi +1
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for some n > mi ≥ 1, or i = k and (Bk,mk) = (1, 0). Let d := gcd(n,m1, . . . ,mk), and let
t := 2d. Applying Lemma 10.3.2(i), we arrive at conclusion (ii). �

Note that the restriction qn > 8 in Theorem 11.2.3(ii) has been relaxed in [KT8, Theorem
4.4].

The next result removes the assumption gcd(A,B1, . . . , Bk) = 1 in Theorem 11.2.3 (and
generalizes Theorem 10.3.14).

Theorem 11.2.4. Let p be a prime, k ≥ 2, and let A > B1 > . . . > Bk ≥ 1 be integers
with p - AB1 . . . Bk. Consider the local system F(A,B1, . . . , Bk, θ) over Ak with trace function
for any finite extension L/Fp

(t1, . . . , tk) ∈ Lk 7→ −
∑
x

ψL
(
xA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),

in characteristic p, of rank D = A − 1 if θ = 1 and D = A otherwise, with geometric
monodromy group G = Ggeom. Then G is finite if and only if one of the following conditions
holds.

(i) gcd(A,B1, . . . , Bk) = 1, and one of the conclusions (i)–(ix) of Theorem 11.2.3 holds.
(ii) p > 2, q = pf , A = qn + 1, Bi = qmi + 1, 1 ≤ i ≤ k, where n > m1 > . . . > mk ≥ 0 are

integers with 2|nm1 . . .mk, gcd(n,m1, . . . ,mk) = 1, and θ = 1. Moreover, G is Sp2n(q)
acting in a total Weil representation of degree D = qn, and this identification of G also
holds in the case k = 1.

(iii) p arbitrary, q = pf , 1 < d | (q + 1) for d := gcd(A,B1, . . . , Bk), A = d(qn + 1)/(q + 1),
Bi = d(qmi + 1)/(q + 1), 1 ≤ i ≤ k, where n > m1 > . . . > mk ≥ 1 are odd integers
with gcd(n,m1, . . . ,mk) = 1, and θ(q+1)/d = 1. Moreover, G is the image of SUn(q) in
a sub-representation of degree D of the total Weil representation, and this identification
of G also holds in the case k = 1.

Proof. In view of Theorem 11.2.3, we may assume that gcd(A,B1, . . . , Bk) =: d > 1.
Fix a character σ with σd = θ. By [KT6, Corollary 2.7], F is geometrically isomorphic to
the direct sum ⊕di=1Fi of geometrically irreducible and pairwise non-isomorphic sheaves Fi,
with trace function

(t1, . . . , tk) 7→ −
∑
x

ψ
(
xA/d + t1x

B1/d + . . .+ tkx
Bk/d

)
χi(x)σ(x),

where χ1, . . . , χd are the dth-roots of 1. Working over fields over which all χiσ are defined
and using Lemma 2.2.5, we see that the finiteness of Ggeom implies that each of the d sheaves
Fi also has finite geometric monodromy group Ggeom,i. They all share the same exponents
A/d and Bi/d, but have the characters χiσ that differ by a character of order dividing d.
Applying Theorem 11.2.3, we see that Fi must be in the case of 11.2.3(i) or 11.2.3(iii). Now
arguing as in the second paragraph of the proof of Theorem 10.3.14, we arrive at (ii) or (iii).

It remains to identify G in these two cases, for which we also allow the possibility k = 1.
In the case of (ii), we can just apply Theorem 11.2.1(b). Assume we are in (iii). If p > 2, then
F is a direct summand of the sheaf F̃ considered in Theorem 11.2.2(a), which has SUn(q) (in
its total Weil representation) as its geometric monodromy group. By Lemma 2.2.5, SUn(q)
maps onto G, and in fact G is the image of SUn(q) in a sub-representation of degree D of
the total Weil representation. If p = 2, we can argue similarly, using Theorem 8.5.7. �
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Using Lemma 8.5.1, we can now prove:

Corollary 11.2.5. Let q = pf be a power of a prime p > 2, k ∈ Z≥2, A = qn + 1, Bi =
qmi + 1 for 1 ≤ i ≤ k − 1 with n > m1 > . . . > mk−1 ≥ 0, Bk = 1, gcd(n,m1, . . . ,mk−1) = 1,
and 2|nm1 . . .mk−1.

(i) Consider the local system H] over (Gm × Ak)/Fp of rank A− 1, with trace function

(s, t1, . . . , tk) ∈ L× × Lk 7→
1

GaussL

∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk
)

and with geometric monodromy group H. Then H = p1+2nf
+ o Sp2n(q), where p1+2nf

+ is
the extraspecial p-group of order p1+2nf and exponent p.

(ii) Consider the local system G] over (Gm × Ak−1)/Fp of rank A− 1, with trace function

(s, t1, . . . , tk−1) ∈ L× × Lk−1 7→ 1

GaussL

∑
x

ψL
(
sxA + t1x

B1 + . . .+ tk−1x
Bk−1

)
and with geometric monodromy group K. Then K = Sp2n(q) acting in a total Weil
representation.

Proof. (i) By Theorem 11.2.1(a) and Lemma 8.5.1, H contains the normal subgroup

G = E o S, where E = p1+2nf
+ , acting irreducibly on the underlying representation V of

dimension qn, S ∼= Sp2n(q), acting on V via a total Weil representation, and H/G ↪→ Cqn+1.
If ϕ denotes the H-character afforded by V , then the trace formula shows that Q(ϕ) ⊆ Q(ζp),
which in turn implies that Z(H) = Z(G) = Z(E) ∼= Cp. Next, since E = Op(G) char GCH,
E CH, and so

H ≤ NGL(V )(E) = Z(GL(V ))E oR,

with R ∼= Sp2nf (p). Since E acts irreducibly on V , CH(E) = Z(H) = Z(E). It follows
that S C H/E embeds in the image R of NGL(V )(E)/E in Out(E). We also know that
S ∼= Sp2n(q) is a standard subgroup inside R, and NR(S) ∼= S o Cf , with Cf induced by
field automorphisms of S. Hence H/E = S ∼= Ce for some e|f . The proof of [KT3, Theorem
3.5] shows that H/E contains an element which fixes exactly q1/e vectors while acting on
E/Z(E) ∼= F2nf

p . It then follows from Lemma 7.2.1 that H contains an element h with

|ϕ(h)|2 = q1/e. On the other hand, by Theorem 7.1.2, |ϕ(h)|2 is either 0 or a power of q.
Hence we conclude that e = 1 and H/E = S, whence H = G as stated.

(ii) Keep the notation made in (i). By Theorem 11.2.1(b) and Lemma 8.5.1, K contains
the normal subgroup S ∼= Sp2n(q) acting on V via a total Weil representation of dimension
qn, and K/S ↪→ Cqn+1. Note that G] is obtained from the sheaf F ] by the specialization
tk = 0. Hence K is a subgroup of H = E o S by the result of (i). As [K : S] is coprime to p
and [H : K], which divides [H : S] = |E|, is a power of p, we conclude that K = S. �

More generally, we have

Corollary 11.2.6. Let p be a prime, k ≥ 2, and let A > B1 > . . . > Bk ≥ 1 be integers
with p - AB1 . . . Bk. Consider the local system F ](A,B1, . . . , Bk, θ) over Gm × Ak with trace
function for any finite extension L/Fp

(s, t1, . . . , tk) ∈ Lk 7→ −
∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk
)
θ(x),
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in characteristic p, of rank D = A − 1 if θ = 1 and D = A otherwise, with geometric
monodromy group G]. Then G] is finite if and only if one of the following conditions holds.

(i) gcd(A,B1, . . . , Bk) = 1, and one of the conclusions (i)–(ix) of Theorem 11.2.3 holds for
F(A,B1, . . . , Bk, θ).

(ii) p > 2, q = pf , A = qn + 1, Bi = qmi + 1, 1 ≤ i ≤ k, where n > m1 > . . . > mk ≥ 0 are
integers with 2|nm1 . . .mk, gcd(n,m1, . . . ,mk) = 1, and θ = 1.

(iii) p arbitrary, q = pf , 1 < d | (q + 1) for d := gcd(A,B1, . . . , Bk), A = d(qn + 1)/(q + 1),
Bi = d(qmi + 1)/(q+ 1), 1 ≤ i ≤ k, where n > m1 > . . . > mk ≥ 1 are odd integers with
gcd(n,m1, . . . ,mk) = 1, and θ(q+1)/d = 1.

Proof. Denote by N the order of θ. In the notation of Theorem 11.2.4, consider the
local system F(A,B1, . . . , Bk, θ) over Ak, with geometric monodromy group G. By Lemma
8.5.1, G injects in G] as a normal subgroup with cyclic quotient of order dividing AN . Hence
the statement follows from Theorem 11.2.4. �

When θ = 1, for some local systems F ](A,B1, . . . , Bk, θ) with finite monodromy, the
corresponding geometric monodromy group G]

geom has been determined in Corollary 11.2.5.

It would be of interest to determine G]
geom in the remaining cases.

Next we prove a p = 2 analogue of Corollary 11.2.5:

Corollary 11.2.7. Let q = 2f be a power of 2, k ∈ Z≥2, A = qn + 1, Bi = qmi + 1 for
1 ≤ i ≤ k−1. Furthermore, assume that Bk = qmk +1 with mk ≥ 1, or Bk = 1, in which case
we set mk := 0; n > m1 > . . . > mk ≥ 0, gcd(n,m1, . . . ,mk) = 1, and 2|nm1 . . .mk. Assume
in addition that 2|nm1 . . .mk−1 if mk = 0. Consider the local system H] over (Gm ×Ak)/Fp
of rank A− 1, with trace function

(s, t1, . . . , tk) ∈ L× × Lk 7→
1

GaussL

∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk
)

and with geometric monodromy group H. Then H = 21+2nf
− · Ω−2n(q).

Proof. The hypothesis implies that m1 ≥ 1 and so n ≥ 2. By Theorem 11.2.3(ii) for
qn > 8 and [KT8, Theorem 4.4] for qn ≤ 8, and Lemma 8.5.1, H contains the normal
subgroup

G = H◦f = E · S,
where E = 21+2nf

− , acting irreducibly on the underlying representation V of dimension qn,
S ∼= Ω−2n(q), and H/G ↪→ Cqn+1. Let ϕ denotes the H-character afforded by V . By Corollary
8.1.2 and Remark 8.1.3, working over even-degree extensions of Fq we have

(11.2.7.1) ∀h ∈ H, ϕ(h) ∈ Z and either ϕ(h) = 0 or |ϕ(h)| is a power of q.

In particular, ϕ is real-valued. But ϕ|E is of symplectic type and irreducible, hence ϕ is of
symplectic type. It follows from Theorem 8.2.5(iii) that

GCH ≤ NSpqn (C)(G) = 〈G, s〉 ∼= G · C2f .

Recall that a1 := |H/G| is odd, in particular, a1|f . If H = G, we are done. So we will assume
that

(11.2.7.2) f ≥ a1 ≥ 3.
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Suppose a1 < f . Applying Theorem 8.2.5(iii)(c) to X := H, we obtain an element t ∈ H
with |ϕ(t)|2 = q2/a1 . Since a1 ≥ 3, this contradicts (11.2.7.1).

Assume now that a1 = f . Again applying Theorem 8.2.5(iii)(c) to X := H, we obtain an
element t ∈ H with |ϕ(t)|2 = 22n. This implies by (11.2.7.1) that 2n is a power of q = 2f , so

(11.2.7.3) f |n.

As f = a1 ≥ 3, we have n ≥ 3. Again using Theorem 8.2.5(iii)(c), we obtain an element
t′ ∈ H with |ϕ(t′)|2 = 22n−2, which implies by (11.2.7.1) that 2n−1 is a power of q = 2f ,
whence

f |(n− 1).

Using this and (11.2.7.3), we conclude that f = 1, and so a1 = 1, contrary to (11.2.7.2). �

Next we prove extensions of Corollaries 11.2.5 and 11.2.7.

Corollary 11.2.8. Let p be any prime, q := pf , k ∈ Z≥1, and

n > m1 > . . . > mk ≥ 1

with gcd(n,m1, . . . ,mk) = 1, (n, q) 6= (3, 2), and 2 - n
∏

imi. Define

A := qn + 1, Bi = qmi + 1.

Consider the local system G] over (Gm × Ak)/Fp of rank A− 1, with trace function

(s, t1, . . . , tk) ∈ L× × Lk−1 7→ −
∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk
)

and with geometric monodromy group K. Then K = GUn(q) acting in a total Weil repre-
sentation.

Proof. (a) Here we assume that p > 2, and recall from Corollary 11.2.5(ii) the local
system F ] over (Gm × Ak+1)/Fp of rank A− 1, with trace function

(s, t1, . . . , tk−1) ∈ L× × Lk−1 7→ −
∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk + tk+1x

2
)

constructed with the sequence n > m1 > . . . > mk > mk+1 = 0 (so that Bk+1 = q0 + 1 = 2).
It is proved there that Ggeom,F] is Sp2n(q) in a total Weil representation. The local system
G] is the tk+1 = 0 pullback of F ]. Thus we have

K := Ggeom,G] ≤ Ggeom,H] = Sp2n(q)

in a total Weil representation Φ, and under the action of Ggeom,G] , we get a direct sum of
q+1 distinct irreducibles, one of dimension (qn−q)/(q+1) and the other q each of dimension
(qn + 1)/(q + 1). Then one knows [KT3, Theorem 3.4] that

(11.2.8.1) SUn(q) ≤ K ≤ GUn(q).

(b) Assume now that p = 2. Note that the specialization s = 1 of G] has geometric
monodromy group K1

∼= SUn(q) in a total Weil representation by Theorem 8.5.7. Now we
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recall from Corollary 8.5.6 the local system F ] over (Gm×Anf )/Fp of rank A− 1, with trace
function

(s0, s1, . . . , snf ) ∈ L× × Lnf 7→ −
1√
#L

∑
x

ψL
(
s0x

2nf+1 + s1x
2nf−1+1 + . . .+ snf−1x

3 + snfx
)
.

Since nf ≥ 5, it is proved there that Ggeom,F] is H◦1
∼= 21+2nf

− ·Ω−2nf (2) in a faithful irreducible

representation Φ of degree 2nf = qn. The local system G] is again a pullback of F ], and so
we have

K := Ggeom,G] ≤ Ggeom,H] = H◦1
in the representation Φ, and under the action of Ggeom,G] , we again get a direct sum of q + 1
distinct irreducibles, one of dimension (qn − q)/(q + 1) and the other q each of dimension
(qn + 1)/(q + 1). By Theorem 8.4.4, either

(11.2.8.2) SUn(q)CK ≤ C2 ×GUn(q)

with Φ|GUn(q) a total Weil representation, or (n, q) = (5, 2) andKBL1 with L1 ∈ {PSL2(11), SL2(11)}.
Suppose we are in the latter case. It follows that K ≥ K1L1

∼= K1×L1, where K1
∼= SU5(2),

and hence |H◦1 | has order divisible by 112, which is absurd. We have therefore shown that
(11.2.8.2) holds. In fact, by Lemma 8.5.1, K/K1 is cyclic of order dividing qn + 1. Since
p = 2, it now follows from (11.2.8.2) that (11.2.8.1) holds in this case as well.

(c) Now we return to the general case and show that K = Ggeom,G] is GUn(q), using the
fact that SUn(q) is a perfect subgroup of index q + 1 in GUn(q). Choose a character χ of
order q + 1. The χ-component of G] has trace function

(s, t1, . . . , tk) 7→ −
∑
x

ψ(sx(qn+1)/(q+1) +
k∑
i=1

tix
(qmi+1)/(q+1))χ(x).

The degree (qn + 1)/(q + 1) is odd, and is > 2(qn−2 + 1)/(q + 1). It then results from
Corollary 2.3.11 that this χ-component has geometric determinant Lχ(s), of full order q + 1.
Moreover, its specialization s = 1 has geometric monodromy group K1, the image of SUn(q)
in an irreducible Weil representation of degree (qn + 1)/(q+ 1). Note that K1 is contained in
the image of K in the χ-component of Φ. It follows that the quotient K/SUn(q) has order
divisible by q+ 1. As GUn(q)/SUn(q) has order q+ 1, it follows immediately from (11.2.8.1)
(which has been shown to hold for any prime p) that K = GUn(q). �

Corollary 11.2.9. Let p be any prime, q := pf , k ∈ Z≥1, and

n > m1 > . . . > mk ≥ 1

with gcd(n,m1, . . . ,mk) = 1, (n, q) 6= (3, 2), and 2 - n
∏

imi. Define

A := qn + 1, Bi = qmi + 1.

Consider the local system G] over (Gm × Ak+1)/Fp of rank A− 1, with trace function

(s, t1, . . . , tk+1) ∈ L× × Lk−1 7→ −
∑
x

ψL
(
sxA + t1x

B1 + . . .+ tkx
Bk + tk+1x

)
and with geometric monodromy group M . Then M = E oK, where K = GUn(q) acting in

a total Weil representation, and E = p1+2nf
+ if p > 2, K = 21+2nf

− if p = 2.
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Proof. (a) Note that the specialization tk+1 = 0 of G] has geometric monodromy group
K ∼= GUn(q) in a total Weil representation by Corollary 11.2.8 and hence K ↪→M .

Now we consider the local system F ] over (Gm × Ak+2)/Fp of rank A − 1, with trace
function

(s, r, t1, . . . , tk+1) ∈ L× × Lnf 7→ −
∑
x

ψL
(
sxA + rxq

n−1+1 + t1x
B1 + . . .+ tkx

Bk + tk+1x
)
.

By Corollary 11.2.5(i) when p > 2 and Corollary 11.2.7 when p = 2, Γ := Ggeom,F] has a

normal subgroup E, where E = p1+2nf
+ if p > 2 and E = 21+2nf

− if p = 2, in both cases acting
irreducibly in the underlying representation Φ of degree qn. Furthermore, Γ = E o R with
R = Sp2n(q) acting in a total Weil representation if p > 2, and Γ/E ∼= R := Ω−2n(q) if p = 2.
It follows that

K ≤M ≤ Γ = ER;

in particular,

(11.2.9.1) CΓ(E) = Z(E) ∼= Cp, CΓ(E/Z(E)) = E.

On the other hand, by Theorem 11.2.3 (i-bis), (ii), the specialization s = 1 of G] has
geometric monodromy group G = E1 oS, where E1

∼= E and S ∼= SUn(q). By Lemma 8.5.1,
G ↪→M as a normal subgroup and

(11.2.9.2) M/G ≤ Cqn+1.

We next show that

(11.2.9.3) E1 = E.

Indeed, by assumption, n ≥ 3 is odd and (n, q) 6= (3, 2). Hence by [Zs], pnf + 1 admits a
primitive prime divisor ` which then divides the order of S. Fix an element g ∈ S of order `
and note that the choice of ` and (11.2.9.1) shows that g acts irreducibly on W := E/Z(E) ∼=
F2nf
p . Now we consider the action of G = ES by conjugation on E. As E1 acts irreducibly on

Φ, we may identify Z(E1) with Z(E). As the p-group E1/Z(E1) acts on the Fp-space W , it
has a nonzero fixed point subspace W1, which is then stabilized by g. But g acts irreducibly
on W , so W1 = W and thus E1 centralizes E/Z(E). It then follows from (11.2.9.1) that
E1 ≤ E, and hence (11.2.9.3) holds by order consideration.

We also note that E ∩K ≤ Op(K) = 1 (as K ∼= GUn(q)), and so EK = E oK. Since
G = E1 o S CM , (11.2.9.2) now shows that

K ↪→M/E ≤ R, S CM/E ≤ R.

Now the arguments in the proof of Proposition 8.4.1 show that

(11.2.9.4) NR(S) ∼= GUn(q) · C2.

Note that M/E already contains K ∼= GUn(q). It follows from (11.2.9.2) that M/EK has
order dividing (qn + 1)/(q + 1), which is odd (since 2 - n). On the other hand, M/EK has
order dividing 2 by (11.2.9.4). We conclude that M = EK = E o GUn(q), as stated. �
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Remark 11.2.10. In fact, Corollary 11.2.9 also holds for k = 0. More precisely, for any
power q = pf of any prime p, consider the local system G] over (Gm ×A1)/Fp of rank A− 1,
with trace function

(s, t) ∈ L× × L 7→ −
∑
x

ψL
(
sxq+1 + tx

)
.

Then G] has geometric monodromy group P = E o C, where C ∼= Cq+1, E ∼= p1+2f
+ if p > 2

and E ∼= 21+2f
− if p = 2.

Indeed, the pullback s = 0 of G] is the Pink-Sawin sheaf which has geometric monodromy
group E by Theorem 7.3.8. By Lemma 8.5.1, E C P and P/E ↪→ Cq+1. On the other hand,
C = Cq+1 ↪→ P by Lemma 12.3.9(i) (below). It follows that P = E o C.

We also record the following immediate consequence of Theorems 10.2.6, 10.3.13, and
11.2.3:

Corollary 11.2.11. Let p be a prime, k ≥ 1, and let A > B1 > . . . > Bk ≥ 1 be integers
with gcd(A,B1, . . . , Bk) = 1 and p - AB1 . . . Bk. Suppose for some multiplicative character
θ of order d > 2, the local system F(A,B1, . . . , Bk, θ) over Ak in characteristic p has finite
geometric monodromy group Ggeom. Then the following statements hold.

(i) There is some power q = pf of p and odd integers n > m1 > . . . > mk ≥ 1 such that
A = (qn + 1)/(q + 1), Bi = (qmi + 1)/(q + 1), d|(q + 1), and Ggeom is the image of
SUn(q) in an irreducible Weil representation of degree A. In particular, p|(A − 1) and
2 - AB1 . . . Bk.

(ii) For any multiplicative character θ′ of order dividing d, the local system F(A,B1, . . . , Bk, θ
′)

also has finite geometric monodromy group, which is the image of SUn(q) in an irre-
ducible Weil representation of degree A− 1 when θ′ = 1 and degree A when θ′ 6= 1.





CHAPTER 12

Local systems with non-monomial coefficients

In this chapter, we consider some two-parameter families of exponential sums, some in
characteristic 2 using Witt vectors and ψ2, and some in arbitrary characteristic p, but only
using ψ. The major novelty is that the polynomial coefficient for some parameter is not just
a monomial.

12.1. Local systems of the first kind

We first look at the two-parameter family of polynomials in one variable x of the form

sx+ tf(x)

in which f(x) is of van der Geer–van der Vlugt form over some finite extension k/Fp. More
precisely, q is a power of p, q1 < q2 < . . . < qn are n ≥ 1 strictly positive powers of q, and

(12.1.0.1) f(x) = xR(x) where R(x) =
n∑
i=1

aix
qi , with coefficients ai ∈ k×.

Thus f(x) is not a monomial if n ≥ 2. Once we have fixed a choice of R, we define the
following finite (possibly empty) set of roots of unity in Fp:

(12.1.0.2) µtotal(R) :=
⋂

1≤i≤n

{ζ ∈ Fp|ζqi−1 = (−1)p}.

In the special case of characteristic p = 2, we have (−1)p = 1, and

µtotal(R) = µgcdni=1(qi−1).

The following observation is helpful in computing µtotal(R) for p > 2.

Lemma 12.1.1. Let n ≥ 2, p > 2, qi = qmi for 1 ≤ i ≤ n, and m1 < . . . < mn. Also let
e := gcd(m1, . . . ,mn). Then

#µtotal(R) =

{
0, 2|(mi/e) for some i,
qe − 1, 2 - (mi/e) for all i.

Proof. Replacing q by qe, we may assume that gcd(m1, . . . ,mn) = e = 1. Suppose 2|mi,
2 - mj, and ζ ∈ µtotal(R). Since ζq

mj−1 = −1 and mj is odd, we see that the 2-part 2f of the
order of ζ is 2(qmj − 1)2 = 2(q− 1)2, twice the 2-part of q− 1. As p > 2, 2f divides (q2− 1)2,
which in turn divides qmi − 1 because 2|mi, and this contradicts the equality ζq

mi−1 = −1.
Assume now that 2 - mi for all i, so that 2 - (qmi − 1)/(q − 1), and choose a primitive

2(q − 1)th root of unity θ ∈ Fp. Then −1 = θq−1 = θq
mi−1, and hence ζ ∈ µtotal(R) if and

only if (ζθ)q
mi−1 = 1 for all i. There are exactly

gcd
(
qm1 − 1, . . . , qmn − 1

)
= qgcd(m1,...,mn) − 1 = q − 1

323
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possibilities for such ζθ. �

We begin with a general irreducibility criterion for two-variable polynomials:

Theorem 12.1.2. Let F be an algebraically closed field and u, v be two independent
variables. Let m ∈ Z≥2 and let

f(u, v) :=
m∑
i=0

ai(u)vni ,

where ni ∈ Z≥0 and ai(u) ∈ F[u] is a nonzero polynomials for 0 ≤ i ≤ m. Suppose that

(a) gcd
(
a0(u), a1(u), . . . , am(u)

)
= 1,

(b) am(u) has no multiple roots,
(c) nm/2 > nm−1 > . . . > n1 > n0 = 0, and
(d) D := degu am(u) > max

(
degu ai(u), 0 ≤ i ≤ m− 1

)
.

Then f viewed as a polynomial in v with coefficients in F[u] is irreducible.

Proof. Assume the contrary:

(12.1.2.1) f(u, v) = g(u, v)h(u, v),

where g(u, v) =
∑r

i=0 bi(u)vi has degree r and h(u, v) =
∑s

i=0 ci(u)vi has degree s, with
r ≥ s ≥ 1, r + s = nm, bi(u), ci(u) ∈ F[u].

Let Z ⊂ F denote the set of D roots of the leading coefficient am(u), and consider any
ζ ∈ Z. By (a), there is some 0 ≤ j < m such that aj(ζ) 6= 0; choose the largest such j.
Then, after being reduced modulo u− ζ, the polynomial f in the variable v now has degree
nj < nm/2 ≤ r by (c). Hence (12.1.2.1) implies that g modulo u − ζ has degree < r (in v),
which means that ζ is a root of the leading coefficient br(u). This holds for all ζ ∈ Z, so
br(u) is divisible by am(u) by (b). In particular,

(12.1.2.2) degu br(u) ≥ degu am(u) = D.

On the other hand, degu f = D because of (d). Together with (12.1.2.1) and (12.1.2.2),
this implies that degu h = 0, i.e. all the coefficients ci(u) are constants and h = h(v) is a
polynomial of v only. Now, again using (d) and equating the coefficient for uD in (12.1.2.1),
we see that h divides vnm . As h = h(v) ∈ F[v], it follows that h = cvs, where c := cs(u);
in particular, v divides h, and so it divides f . But this is a contradiction, since f ≡ a0(u)
(mod v) and a0(u) 6= 0. �

Theorem 12.1.3. Consider the local system F on (A1×Gm)/k, k/Fp a finite extension,
of rank qn, whose trace function, at a point (s, t) ∈ L× L× for L/k a finite extension, given
by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx+ tf(x)),

with f(x) = xR(x) as in (12.1.0.1). Then

M2,2(F) =

{
2 + #µtotal(R), if n ≥ 2,
1 + #µtotal(R) = qn, if n = 1.
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Proof. The question is geometric, so we may assume that k contains all roots of unity
of order dividing 2

∏
i(qi − 1). Then M2,2 is the large L limit of the sums

1

(#L)3(#L− 1)

∑
s∈L, t∈L×

∑
x,y,z,w∈L

ψL
(
s(x+ y − z − w) + t(f(x) + f(y)− f(z)− f(w)

)
.

The “missing” sums, over (s, 0), are just

1

(#L)2(#L− 1)
#{(x, y, z, w) ∈ L4 | x+ y = z + w} =

#L

#L− 1
,

with large L limit 1. So M2,2 + 1 is the large L limit of the sums, but now extended over all
(s, t) ∈ L2. The large L limit is unchanged if we replace the 1/((#L)3(#L − 1)) factor by
1/(#L)4. Thus M2,2 + 1 is the large L limit of

1

(#L)2
#
{

(x, y, z, w) ∈ L4 | x− z = w − y and f(x)− f(z) = f(w)− f(y)
}
.

The locus defined by the two equations x− z = w − y and f(x)− f(z) = f(w)− f(y) in
the (x, y, z, w)-space is the locus in A3, coordinates x,w, v with v := z − x = y − w defined
by the single equation

f(x)− f(x+ v) = f(w)− f(w + v).

This is now
xR(x)− (x+ v)R(x+ v) = wR(w)− (w + v)R(w + v).

Because R is additive, this is just the equation

vR(x) + xR(v) = vR(w) + wR(v),

or equivalently
vR(x− w) + (x− w)R(v) = 0.

So in the new variable t := x− w, our locus is the product of A1 with the curve

vR(t) + tR(v) = 0

in the (t, v)-space, and hence M2,2 + 1 is the large L limit of

1

#L
#{v, t ∈ L|vR(t) + tR(v) = 0}.

By Weil’s estimates, this large L limit is just the number of distinct irreducible factors (i.e.,
not counting multiplicities) of the polynomial vR(t) + tR(v) in the polynomial ring k[t, v].

Recall that

R(x) =
n∑
i=1

aix
qi , with coefficients ai ∈ k×.

The polynomial vR(t) + tR(v) visibly vanishes if v = 0 or if t = 0. Thus

M2,2 + 1 = 2 + the number of irreducible factors different from v, t.

Thus we are looking for the number of irreducible factors of vR(t) + tR(v) in k[t, v, 1/v, 1/t].
Here we may make the change of variable

u = t/v
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and then factor the polynomial vR(uv) + uvR(v) in k[u, v, 1/v, 1/u]. Factoring out v, this is
the same as factoring R(uv) + uR(v). Both R(uv) and R(v) are divisible by vq1 . So we must
factor R(uv)/(uvq1) +R(v)/vq1 , i.e., we must factor

n∑
i=1

aiu
qi−1vqi−q1 +

n∑
i=1

aiv
qi−q1 =

n∑
i=1

ai(u
qi−1 + 1)vqi−q1 .

The content c(u) of this polynomial in v is c(u) =
∏

ζ∈µtotal(R)(u− ζ). Thus

M2,2(F) = 1 + #µtotal(R) + the number of irreducible factors of P (v),

for P (v) the polynomial

1

c(u)

n∑
i=1

ai(u
qi−1 + 1)vqi−q1

in Fp(u)[v]. If n ≥ 2, then by Theorem 12.1.2, P is irreducible, and so the theorem follows. If
n = 1, P (v) = 1, so has no irreducible factors, and, in this n = 1 case, #µtotal(R) = qn−1. �

We next examine the curve whose geometric irreducibility, established in Theorem 12.1.2,
played the key role in the proof above of Theorem 12.1.3.

Lemma 12.1.4. In the situation of (12.1.0.1), with R(x) =
∑n

i=1 aix
qi, suppose that n ≥ 2

and that µtotal(R) = ∅. Consider the geometrically irreducible curve C0 in A2/Fp, coordinates
(u, v), of equation

C0 :
n∑
i=1

ai(u
qi−1 + 1)vqi−q1 = 0.

Denote by C the complete nonsingular model of C0. View C over the projective v-line P1
v.

Then C has degree qn − 1 over P1
v, and over the point v = ∞ of P1

v, C has qn − 1 distinct
points (ζ,∞), with ζ a root of ζqn−1 + 1 = 0. At each such point of C, v has a simple pole
and the function u− ζ on C has a zero of order qn − qn−1.

Proof. Write the equation of C0, first as

n∑
i=1

aiv
qi−q1uqi−1 +

n∑
i=1

aiv
qi−q1 ,

then divide through by vqn−q1 to obtain

anu
qn−1 +

n−1∑
i=1

ai(1/v)qn−qiuqi−1 +
(
an +

n−1∑
i=1

ai(1/v)qn−qi
)
.

Modulo (1/v)qn−q1 , this is just the equation anu
qn−1 + an = 0. The iterative algorithm

(α 7→ −f(α)/f ′(α)) of Newton’s lemma shows that indeed u − ζ on C has a zero of order
qn− qn−1 at the point (ζ,∞). Because v =∞ has the full number qn− 1 of points lying over
it, the curve C is finite etale over P1

v near v = ∞, hence v has a simple pole at each such
point. �
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Remark 12.1.5. In the previous Lemma 12.1.4, still with n ≥ 2, we might consider the
more general case when µtotal(R) is non-empty, in which case the content c(u) has degree
#µtotal(R), and the equation for the geometrically irreducible curve C0 in A2/Fp, coordinates
(u, v), is

C0 :
1

c(u)

n∑
i=1

ai(u
qi−1 + 1)vqi−q1 = 0.

In this case, C has degree qn− 1−#µtotal(R) over P1
v, and over the point v =∞ of P1

v, C has
qn−1−#µtotal(R) distinct points (ζ,∞) with ζ a root of ζqn−1 + 1 = 0 but ζ not in µtotal(R)
. At each such point of C, v has a simple pole and the function u− ζ on C has a zero of order
qn − qn−1.

Remark 12.1.6. Suppose that in the sequence q1 < q2 < . . . < qn of powers of q, we
allow the case q1 = 1. If p is odd, then µtotal(R) is empty, and Theorem 12.1.3 remains valid
as stated, with the same proof.

If p = 2, then the polynomial equation R(uv) + uR(v) = 0 which occurs in the proof
of Theorem 12.1.3 has its linear term in v vanishing. In this q1 = 1 case, we must assume
n ≥ 3, and define

µtotal(R) :=
⋂

2≤i≤n

{ζ ∈ Fp|ζqi−1 = (−1)p}.

With this definition, Theorem 12.1.3 remains valid as stated, with the same proof.

In the next result, we determine, for the first time, the geometric monodromy groups of
an infinite series of non-monomial local systems.

Theorem 12.1.7. Let q = pf > 9 be a power of a prime p > 2 and fix some constants
a, b ∈ F×q . Consider the local system F on (A1 ×Gm)/k, k/Fq a finite extension, of rank q,
whose trace function, at a point (s, t) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=

1

GaussL

∑
x∈L

ψL
(
sx+ t(ax2 + bxq+1)

)
.

Then the geometric monodromy group of F is G = EoSp2(q), where E = p1+2f
+ is extraspecial

of order p1+2f and exponent p.

Proof. (a) By Theorem 12.1.3 and Remark 12.1.6, G has M2,2 = 2 on the underlying
representation V of dimension q. Next, F is the specialization u = t of the local system
F ] on (A2 × Gm)/k, k/Fq a finite extension, of rank q, whose trace function, at a point
(s, t, u) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t,u),L|F ]

)
=

1

GaussL

∑
x∈L

ψL(sx+ tax2 + ubxq+1).

By Corollary 11.2.5(i), F ] has geometric monodromy group H = E o S with S ∼= Sp2(q).

(b) The aforementioned specialization implies that G ≤ H. First we show that either
EG = H, or q = 11 and EG/E ∼= SL2(5) < S. Indeed, 2 ≤ M2,2(EG) ≤ M2,2(G) = 2, so
M2,2(EG) = 2. Since E C EG, it follows from [GT2, Theorem 1.5] and [BNRT, Theorem
3] that EG acts transitively on the q2 − 1 nonzero vectors of E/Z(E) ∼= F2f

p ; in particular,
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EG/E is a subgroup of H/E ∼= Sp2(q) of order divisible by q2− 1. When q ≥ 13, the largest
order of proper subgroups in Sp2(q) is q(q − 1), see e.g. [TZ1, Table VI], hence EG = H.
(Alternatively, one can also apply [BNRT, Theorem 5].) If q = 11 and EG < H, then
[BNRT, Theorem 5] shows that EG/E ∼= SL2(5).

In either case, we see that R := EG/E is perfect and has trivial Schur multiplier.

(c) Next we show that Z(E)G = EG. As mentioned above, EG acts transitively on the
set of q2− 1 nontrivial elements of E/Z(E) (via conjugation), but E centralizes E/Z(E). So
Z(E)G acts transitively on these q2 − 1 elements, and hence it acts irreducibly on E/Z(E).
It follows that Z(E)G∩E is either Z(E) or E. Suppose we are in the former case. Then we
have

R = EG/E = E(Z(E)G)/E ∼= Z(E)G/(Z(E)G ∩ E) = Z(E)G/Z(E).

As R is perfect and Z(E) ≤ Z(Z(E)G) ≥ R, (Z(E)G)(∞) is a central cover of R and hence
equal to R, since Mult(R) = 1. Thus R embeds in Z(E)G as a normal subgroup; in particular,
Z(R) ∼= C2 is normal and hence central in Z(E)G. On the other hand, Z(E)G acts irreducibly
and faithfully on V of odd dimension q. So we see that the central involution z of Z(R) acts
as scalar −1 on V , which is impossible since det(V ) is trivial on the perfect group R. Hence
we must be in the latter case, i.e. Z(E)G ≥ E, whence Z(E)G = EG.

As Z(E) < E < EG = Z(E)G, we can write E = Z(E)(E ∩ G). Taking the derived
subgroup, we get Z(E) = [E,E] is contained in E ∩ G. Thus G ≥ Z(E), and so G =
Z(E)G = EG, which means E CG.

(d) Now, if EG = H, then we conclude that G = H; in particular we are done if q ≥ 13.
The only remaining possibility is that q = 11 and G/E = R = SL2(5). In addition

to G, we also consider the arithmetic monodromy group G1 = Garith,F11 of F over F11. As
E = O11(G)CG1, we have E CG1, and hence

G1 ≤ NGL11(C)(E) = T (E o SL2(11)),

where T := Z(GL11(C). In particular, TG1/TE embeds in SL2(11). But TG1/TE contains
the normal subgroup TG/TE ∼= R = SL2(5) and SL2(5) is maximal in SL2(11). It follows
that TG1 = TG. In particular, for any h ∈ G1, we can write h = αg for some g ∈ G and
α ∈ C×. As G1 and G are finite, α is a root of unity, whence |ϕ(h)| = |ϕ(g)| if ϕ denotes the
character of G1 acting on F .

Note that R = SL2(5) acts on E/Z(E) ∼= F2
11 via its irreducible character of degree 2;

in particular, the dimension of the fixed point subspace of any element in R on E/Z(E) is
either 0 or 2. This implies by Lemma 7.2.1 that |ϕ(g)| ∈ {0, 1, 11} for any g ∈ G. The
preceding statement then shows that |ϕ(h)| ∈ {0, 1, 11} for any h ∈ G. However, a Magma
computation shows that, for any choice of a, b ∈ F×11, there is a Frobenius Frob(s,t),F114

that

has trace of absolute value
√

11, a contradiction. �

Next we prove a Witt analogue of Theorem 12.1.3:

Theorem 12.1.8. Consider the local system F on (A1×Gm)/k, k/F2 a finite extension,
whose trace function, at a point (s, t) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψ2,L([x, sx+ tf(x)]),
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with f(x) = xR(x) as in (12.1.0.1). Then

M2,2(F) = 2.

Proof. The question is geometric, so we may assume that k contains all roots of unity
of order dividing

∏
i(qi − 1). Then M2,2 is the large L limit of the sums

1

(#L)3(#L− 1)

∑
s∈L,t∈L×
x,y,z,w∈L

ψ2,L([x+y+z+w,Q(x, y, z, w)+s(x+y+z+w)+t(f(x)+f(y)+f(z)+f(w)]),

with
Q = (x+ y)(z + w) + xy + zw + z2 + w2.

The “missing” sum, over (s, 0), contributes zero to the large L limit. Indeed, it is

1

(#L)2(#L− 1)

∑
x,y,z,w∈L,x+y=z+w

ψ2,L([0, Q(x, y, z, w)])

=
1

(#L)2(#L− 1)

∑
x,y,z∈L

ψL((x+ z)(y + z))

=
1

(#L)(#L− 1)

∑
x,y∈L

ψL(xy)

=
#L

(#L)(#L− 1)
= O(1/#L).

[For a fixed x 6= 0, the sum of ψL(xy) over y vanishes, and for x = 0, this sum over y is #L.]
So M2,2 is the large L limit of the sums, but now extended over all (s, t) ∈ L2. The large

L limit is unchanged if we replace the 1/((#L)3(#L − 1)) factor by 1/(#L)4. Thus M2,2 is
the large L limit of

1

(#L)2

∑
x,y,z,w∈L
x−z=w−y

f(x)−f(z)=f(w)−f(y)

ψL(xy + zw).

Exactly as in the proof of Theorem 12.1.3, the locus defined by the two equations x−z =
w − y and f(x)− f(z) = f(w)− f(y) in the (x, y, z, w)-space is the locus in A3, coordinates
x,w, v with v := z − x = y − w, defined by the single equation

vR(x− w) + (x− w)R(v) = 0.

On this locus,
Q = xy + zw = x(v + w) + (v + x)w = (x+ w)v.

So in the new variable t := x− w = x + w (remember we are in characteristic 2), our locus
is the product of A1 with the curve

vR(t) + tR(v) = 0

and M2,2 is the large L limit of

1

#L

∑
v,t∈L

vR(t)+tR(v)=0

ψL(tv).
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The polynomial vR(t) + tR(v) is visibly divisible by both t and by v. The sum over each of
the loci (t = 0, v free) and (v = 0, t free) contributes 1. Thus M2,2 − 2 is the large L limit of
the sum

S(L) :=
1

#L

∑
v,t∈L×

vR(t)+tR(v)=0

ψL(tv).

Because we require v 6= 0, we may make the substitution t = uv, after which the function
being summed is ψ(uv2), and our equation becomes vR(uv) +uvR(v) = 0. But both u, v are
to be invertible, so our equation becomes first R(uv) + uR(v) = 0, then R(uv)/u = R(v),
then

R(uv)/(uvq1) = R(v)/vq1 .

Writing this out explicitly, it is

n∑
i=1

ai(u
qi−1 − 1)vqi−q1 = 0.

Viewed as a polynomial in v with coefficients in F2[u], its content is

c(u) =
∏

ζ∈µtotal(R)

(u− ζ).

Over each locus u = ζ ∈ µtotal(R), v free, the sum of ψL(ζv2) = ψL(
√
ζv) over v vanishes.

In the case n = 1, we are done. To treat the case n ≥ 2, we work on the locus C defined

1

c(u)

n∑
i=1

ai(u
qi−1 − 1)vqi−q1 = 0.

By Theorem 12.1.2, C is geometrically irreducible. We must show that Lψ(uv2) is geometrically
nontrivial on this curve. Because n ≥ 2, #µtotal(R) < qn− 1. By Lemma 12.1.4 and Remark
12.1.5, at each point P := (ζ,∞) with ζ a root of ζqn−1 = 1 but ζ not in µtotal(R), the
function u− ζ has a zero of order qn − q1. But qn − q1 ≥ qn − qn−1 ≥ qn−1 ≥ 2, and thus

uv2 = ζv2 + a holomorphic function at P .

Thus

SwanP(Lψ(uv2)) = SwanP(Lψ(ζv2)) = SwanP(Lψ(
√
ζv)) = 1,

the penultimate equality because we are in characteristic 2. Hence Lψ(uv2) is geometrically
nontrivial on C, and thus the sum

1

#L

∑
(u,v)∈C(L)

ψL(uv2)

is O((#L)−1/2), as desired. �

Remark 12.1.9. Remark 12.1.6 applies here as well. When q1 = 1 and n ≥ 3, Theorem
12.1.8 remains valid, with the identical proof, but with µtotal(R) modified as in Remark 12.1.6.
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12.2. Local systems of the second kind

Now we consider the case of a two-parameter family of polynomials in one variable x of
the form

sx+ tf(x) + g(x)

in which both f(x) and g(x) are of van der Geer–van der Vlugt form over some finite extension
k/Fp. More precisely, q and Q are (not necessarily different) powers of p,

q1 < q2 < . . . < qn

are n ≥ 1 non-negative powers of q,

Q1 < Q2 < . . . < Qm

are m ≥ 1 non-negative powers of Q. We make the assumption that if p = 2, then both
q1, Q1 are ≥ 2. [In odd characteristic p, we allow either q1 or Q1 to be 1.] We assume that

(12.2.0.1) f(x) = xR(x) where R(x) =
n∑
i=1

aix
qi , with coefficients ai ∈ k×.

(12.2.0.2) g(x) = xS(x) where S(x) =
m∑
i=1

bix
Qi , with coefficients bi ∈ k×.

In what follows, we will assume that

(12.2.0.3) k = Fpκ is the smallest field that contains all ai and bj.

Once we have fixed choices of R and S, we can define the finite, possibly empty, sets of roots
of unity

µtotal(R), µtotal(S)

as in (12.1.0.2).

Theorem 12.2.1. Suppose that Qm > qn. Consider the two-parameter local system F
on A2/k of rank Qm, whose trace function, at a point (s, t) ∈ L2 for L/k a finite extension,
given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx+ tf(x) + g(x)),

with f(x) = xR(x) and g(x) = xS(x) as in (12.2.0.1) and (12.2.0.2). Then

M2,2(F) = 2 + #
(
µtotal(R) ∩ µtotal(S)

)
.

Proof. As in the proof of Theorem 12.1.3, we readily calculate that M2,2 is the large L
limit of the sums

1

(#L)2

∑
x,y,z,w∈L
x−z=w−y

f(x)−f(z)=f(w)−f(y)

ψL(g(x)− g(z) + g(y)− g(w)).

The locus defined by the two equations x− z = w− y and f(x)− f(z) = f(w)− f(y) in the
(x, y, z, w)-space is the locus in A3, coordinates x,w, v with v := z − x = y − w, defined by
the single equation

vR(x− w) + (x− w)R(v) = 0.
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On this locus,
g(x)− g(z) + g(y)− g(w) = vS(x− w) + (x− w)S(v).

So in the new variable t := x− w, our locus is the product of A1 with the curve

vR(t) + tR(v) = 0,

the function inside the ψL is vS(t) + tS(v), and M2,2 is the large L limit of

1

#L

∑
v,t∈L

vR(t)+tR(v)=0

ψL(vS(t) + tS(v)).

The polynomial vR(t) + tR(v) is visibly divisible by both t and by v, as is the polynomial
vS(t) + tS(v). The sum over each of the loci (t = 0, v free) and (v = 0, t free) contributes 1.
Thus M2,2 − 2 is the large L limit of the sum

Σ(L) :=
1

#L

∑
v,t∈L×

vR(t)+tR(v)=0

ψL(vS(t) + tS(v)).

On the locus vS(t) + tS(v) = 0, tv 6= 0, we may make the change of variable t = uv, and
now the locus of summation is vR(uv) + uvR(v) = 0, uv 6= 0, or R(uv)/(uvq1) + R(v)/vq1 =
0, uv 6= 0. Over the L-points of this locus, what we are summing is ψL(vS(uv) + uvS(v)).
Written out explicitly,

vS(uv) + uvS(v) =
m∑
i=1

biu(uQi−1 + 1)v1+Qi .

When we regard R(uv)/(uvq1) +R(v)/vq1 as a polynomial in v with coefficients in Fp[u],
its content is

c(u) =
∏

ζ∈µtotal(R)

(u− ζ).

For fixed ζ ∈ µtotal(R), on the locus u = ζ 6= 0, v free, the polynomial vS(ζv) + ζvS(v))
either vanishes identically, which happens precisely when ζ ∈ µtotal(S) (in which case we get
a contribution of 1 to M2,2), or it is a sum of monomials in v whose degrees are all coprime to
p. In this second case, Lψ(vS(ζv)+ζvS(v)) is geometrically nontrivial (its Swan∞ is the coprime

to p degree of vS(ζv) + ζvS(v)) and the sum over v is O((#L)1/2). Thus the contribution of
the content is #(µtotal(R) ∩ µtotal(S)).

In the case n = 1, we are done. To treat the case n ≥ 2, it remains to show that the sum
of ψL(vS(uv) + uvS(v)) over the curve C defined by

1

c(u)

n∑
i=1

ai(u
qi−1 + 1)vqi−q1 = 0

is O((#L)1/2).
Because n ≥ 2, we may choose ζ with ζqn−1 + 1 = 0 but ζ not in µtotal(R). Then from

Lemma 12.1.4 and Remark 12.1.5, we know that at the point P := (ζ,∞), the function u− ζ
has a zero of order qn − q1. We must show that L

ψ
(∑m

i=1 u(uQi−1+1)biv1+Qi
) is geometrically

nontrivial on C. We will do this by showing that at the point P , the function
∑m

i=1 u(uQi−1 +
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1)biv
1+Qi has a pole of order prime to p. Suppose first that ζQm−1 +1 6= 0. Then the function

u(uQi−1 + 1) is a unit at P , and so the leading term has a pole of order 1 + Qm, while all
lower terms, if any, have poles of order ≤ 1 +Qm−1 < 1 +Qm.

Suppose next that ζQm−1+1 = 0. Then the leading term has a pole of order 1+Qm−qn+q1

at P . Notice that this pole order is prime to p (either each of Qm, qn, q1 is a strictly positive
power of 1, or p is odd, q1 = 1, and each of Qm, qn is a strictly positive power of q).

The lower terms, if m ≥ 2, have poles of order ≤ 1 + Qm−1. So it suffices to check that
1 +Qm − qn + q1 > 1 +Qm−1, or equivalently that

Qm −Qm−1 > qm − q1.

But Qm−1 ≤ (1/q)Qm, so Qm − Qm−1 ≥ Qm − (1/q)Qm, while qn − q1 < qn. So it suffices
to check that Qm(1 − 1/q) ≥ qn, or equivalently Qm(1 − 1/q)/qn ≥ 1. But Qm/qn ≥ q, and
trivially q(1 − 1/q) = q − 1 ≥ 1. So in this case as well, we have a pole of order prime to
p. �

Lemma 12.2.2. Let q = pν > 1 be a power of an odd prime p and let f(x) and g(x) as in
(12.2.0.1) and (12.2.0.2), with qi = qci for 1 ≤ i ≤ n, Qj = qdj for 1 ≤ j ≤ m, and k = Fpκ as
in (12.2.0.3). Consider the two-parameter local system F on A2/k of rank Qm = qN , whose
trace function, at a point (s, t) ∈ L2 for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx+ tf(x) + g(x)).

Suppose that for some t ∈ k× we have

(12.2.2.1) gcd(∆(x), xκN − 1) = x− 1,

for

∆(x) :=
n∑
i=1

(
(tai)

qNxN+ci + (tai)
qN−cixN−ci

)
+

m∑
j=1

(
bq
N

j xdj + bq
N−dj

j xN−dj
)
∈ k[x].

Then |Trace
(
Frob(0,t),F

qκN
|F
)
|2 = q.

Proof. We will follow the proof of Theorem 7.1.2 to compute the trace of g := Frob(0,t),F
qκN

on F for the given t ∈ k×. Here, the relevant function R(x) is

R(x) = t
n∑
i=1

aix
qci +

m∑
j=1

bjx
qdj .

Note that FqκN contains Fpκ = k, so t ∈ FqκN . Now the corresponding subspace WR of FqκN
is the zero locus over FqκN of the polynomial

n∑
i=1

(
(tai)

qNxq
N+ci + (tai)

qN−cixq
N−ci)+

m∑
j=1

(
bq
N

j xq
N+dj

+ bq
N−dj

j xq
N+dj )

.

Denoting by F the Frobenius map x 7→ xq on Fq, we see that WR is the set of x ∈ Fq
that is annihilated by F κN − 1 and by ∆(F ), hence by F − 1 because of (12.2.2.1). Thus
WR = Fq. Now using Theorem 7.1.2(a) (and the fact that q is odd), we conclude that
|Trace(g)|2 = #WR = q. �
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In Lemma 12.2.2, in the case f(1) =
∑n

i=1 ai 6= 0 and k ⊆ Fq, the natural choice for t is
−
∑m

j=1 bj/
∑n

i=1 ai (since we want ∆(1) = 0)).
Now we can prove a generalization of Theorem 12.1.7, which gives geometric monodromy

groups of infinite series of (non-monomial if n+m ≥ 3) local systems:

Theorem 12.2.3. Let q = pν > 1 be a power of an odd prime p and let f(x) = xR(x)
and g(x) = xS(x) as in (12.2.0.1) and (12.2.0.2), with qi = qci for 1 ≤ i ≤ n, Qj = qdj for
1 ≤ j ≤ m, and

gcd(c1, . . . , cn, d1, . . . , dm) = 1.

Suppose that Q1 > q1, Qm > qn, and that 2|(c1 . . . cnd1 . . . dm). Consider the two-parameter
local system F on A2/k of rank Qm, whose trace function, at a point (s, t) ∈ L2 for L/k a
finite extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx+ tf(x) + g(x))

with geometric monodromy group G = Ggeom. Under the extra conditions that p - N for
N := dm, qN 6= 9, and, in addition, (12.2.2.1) holds, we have G = p1+2Nν

+ o Sp2N(q).

Proof. First we note that when N = 1, both f and g are monomial, and hence we are
done by Theorem 11.2.1(a). So in what follows we will assume N > 1. Since qN 6= 9 and
1 < N is coprime to p, we now have that qN ≥ 25 and qN 6= 27.

(a) Note that µtotal(R) ∩ µtotal(S) = ∅ by Lemma 12.1.1. Hence by Theorem 12.2.1, G
has M2,2 = 2 on the underlying representation V of dimension Qm = qN . Next, F is the
specialization

t1 = a1t, t2 = a2t, . . . , tn = ant, u1 = b1, . . . , um = bm

of the local system F ] on (Am+n ×Gm)/k, k/Fq a finite extension, of rank Qm, whose trace
function, at a point

(s, t1, . . . , tn, u1, . . . , um) ∈ Lm+n × L×

for L/k a finite extension, given by

Trace
(
Frob(s,t1,...,tn,u1,...,um),L|F ]

)
=
−1√
#L

∑
x∈L

ψL
(
sx+

n∑
i=1

tix
qci+1 +

m∑
j=1

ujx
qdj+1

)
.

By Lemma 12.1.1(i), the condition µtotal(R)∩µtotal(S) = ∅ is equivalent to 2|c1 . . . cnd1 . . . dm.
Hence by Corollary 11.2.5(ii), F ] has geometric monodromy group H = E o S with E =
p1+2Nν

+ and S ∼= Sp2N(q). Moreover, by Corollary 2.3.8(ii), if we choose the clearing factor
suitably, we can achieve that F ] has trivial arithmetic determinant.

The aforementioned specialization implies that G ≤ H. Note that

2 ≤M2,2(EG) ≤M2,2(G) = 2,

so M2,2(EG) = 2. Since ECEG, it follows from [GT2, Theorem 1.5] and [BNRT, Theorem
3] that EG acts transitively on the q2N−1 nonzero vectors of E/Z(E) ∼= F2Nν

p . Now applying

[BNRT, Theorem 5] and invoking the conditions qN ≥ 25 and qN 6= 27, we see that there
are some integers b, e ≥ 1 such that Nν = be and

Sp2b(p
e)C EG/E ≤ Sp2b(p

e) o Ce ≤ S = Sp2N(pν).
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Let ϕ denote the H-character afforded by V . By Theorem 7.1.2(a), working over exten-
sions L that contain both k and Fq, we have that |ϕ(h)|2 is 0 or a power of q for any h ∈ H.
On the other hand, choosing an element g ∈ G such that the coset Eg in EG/E induces an
element of Sp2b(p

e) that has exactly pe fixed points on F2b
pe , we see by Lemma 7.2.1 that the

coset Eg contains an element g1 with |ϕ(g1)|2 = pe. It follows that ν|e. Writing e = νe1 with
e1 ∈ Z≥1, we now have that b = N/e1 and

Sp2N/e1(q
e1)C EG/E ≤ S = Sp2N(q).

Recall that Sp2N/e1(q
e1) is a standard subgroup of S, with normalizer Sp2N/e1(q

e1) o Ce1 in
S. It follows that

Sp2N/e1(q
e1)C EG/E ≤ Sp2N/e1(q

e1) o Ce1 .

We also have that e1, being a divisor of N , is coprime to p. On the other hand, since F lives
over A2, G has no nontrivial p′-quotient. Hence EG/E = Sp2N/e1(q

e1), and so EG = E oK,
for a suitable subgroup

K ∼= Sp2N/e1(q
e1)

of the subgroup S of H = E o S.

(b) Next we show that G = EK. By the previous result, EG acts transitively on the set
of q2N − 1 nontrivial elements of E/Z(E) (via conjugation), but E centralizes E/Z(E). So
Z(E)G acts transitively on these q2N − 1 elements, and hence it acts irreducibly on E/Z(E).
It follows that Z(E)G ∩ E is either Z(E) or E. Suppose we are in the former case. Then
EG = EK implies that

K = EK/E = EG/E = E(Z(E)G)/E ∼= Z(E)G/(Z(E)G ∩ E) = Z(E)G/Z(E).

As K is perfect and Z(E) ≤ Z(Z(E)G), (Z(E)G)(∞) is a central cover of K and hence equal
to K, since Mult(K) = 1. Thus K embeds in Z(E)G as a normal subgroup; in particular,
Z(K) ∼= C2 is normal and hence central in Z(E)G. On the other hand, Z(E)G acts irreducibly
and faithfully on V of odd dimension qN . So we see that the central involution z of Z(K)
acts as scalar −1 on V , which is impossible since det(V ) is trivial on the perfect group K.
Hence we must be in the latter case, i.e. Z(E)G ≥ E, whence Z(E)G = EK.

As Z(E) < E < Z(E)G, we can write E = Z(E)(E ∩ G). Taking the derived subgroup,
we get Z(E) = [E,E] is contained in E ∩G. Thus G ≥ Z(E), and so G = Z(E)G = EK.

(c) Recalling that E = Op(G) charG and G is normal with cyclic quotient in the (neces-

sarily finite by [KT6, Theorem 2.9]) arithmetic monodromy group G̃ := Garith,k of F over
k = Fpκ , we have

G̃ ≤ NGL(V )(E) = Z(GL(V ))E · Sp2Nν(p).

Here we assume that the clearing factor for F is the same one that makes the arithmetic
determinant of F ] trivial. As E acts irreducibly on V , any element z ∈ CG̃(E) acts as a
scalar ζ on V which is a root of unity, and its trace is in Q(ζp). It follows that ζ = εζjp for

some 0 ≤ j ≤ p − 1 and ε = ±1. But the arithmetic determinant of F ] is trivial and the
rank is D = qN , we must have that ε = 1 and hence z ∈ Z(E). This argument shows that
G̃/E embeds in the subgroup Sp2Nν(p) of outer automorphisms of E induced by NGL(V )(E).
It follows that

K = Sp2N/e1(q
e1) = G/E C G̃/E ≤ Sp2Nν(p).
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As the normalizer in Sp2Nν(p) of the standard subgroup K is K o Cνe1 , we conclude that
G̃/G ↪→ Cνe1 . In particular, G = Garith,F

qNκ
.

Now, assuming (12.2.2.1), we can use Lemma 12.2.2 to get an element g2 = Frob(0,t),F
qNκ
∈

G with |ϕ(g2)|2 = q. On the other hand, Lemma 7.2.1 guarantees that |ϕ(g2)|2 is either 0 or
a power of qe1 . Hence e1 = 1, K = S, and G = ES as stated. �

Example 12.2.4. We offer some examples of non-monomial systems to which Theorem
12.2.3 applies. Let a, b ∈ F×p and q = pν .

(i) Let 1 ≤ l < N , and consider F as in Theorem 12.2.3, with R(x) = ax + bxq
l

and

g(x) = xq
N

. Assume in addition that a + b 6= 0, p - N and gcd(l, N) = 1. Choose
t = −1/(a+ b) 6= 0. Modulo xN − 1, the polynomial ∆(x) is tb(xN−l + xl− 2), which in
turn reduces to tb(xl− 1)2. The assumptions imply that gcd((xl− 1)2, xN − 1) = x− 1,
and so Theorem 12.2.3 applies to show that Ggeom = p1+2Nν

+ o Sp2N(q).

(ii) Assume 1 ≤ l < N/2, and consider F as in Theorem 12.2.3, with R(x) = axq
l
+ bxq

N−l

and g(x) = xq
N

. Assume in addition that a + b 6= 0, p - N and gcd(l, N) = 1. Again
choose t = −1/(a+b) 6= 0. Modulo xN−1, the polynomial ∆(x) is xN−l+xl−2, which in
turn reduces to (xl−1)2. The assumptions again imply that gcd((xl−1)2, xN−1) = x−1,
and so Theorem 12.2.3 applies to show that Ggeom = p1+2Nν

+ o Sp2N(q).

(iii) Assume 1 ≤ l < N/2, and consider F as in Theorem 12.2.3, with R(x) = a(xq
l−x) and

g(x) = b(xq
N −xqN−l). Assume in addition that p - N and gcd(l, N) = 1. Choose t ∈ F×p

such that ta 6= b. Modulo xN−1, the polynomial ∆(x) is (ta−b)(xN−l+xl−2), which in
turn reduces to (ta− b)(xl− 1)2. The assumptions again imply that gcd((xl− 1)2, xN −
1) = x− 1, and so Theorem 12.2.3 applies to show that Ggeom = p1+2Nν

+ o Sp2N(q).

Now we prove a Witt analogue of Theorem 12.2.1:

Theorem 12.2.5. Suppose that p = 2 and Qm > qn. Consider the two-parameter local
system F on A2/k of rank Qm, whose trace function, at a point (s, t) ∈ L2 for L/k a finite
extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψ2,L

(
[x, sx+ tf(x) + g(x)]

)
,

with f(x) = xR(x) and g(x) = xS(x) as in (12.2.0.1) and (12.2.0.2). Then

M2,2(F) = 2.

Proof. Just as in the proof of Theorem 12.1.8, M2,2 − 2 is the large L limit of the sum

Σ(L) :=
1

#L

∑
v,t∈L×

vR(t)+tR(v)=0

ψL(vt+ vS(t) + tS(v)).

Because vt 6= 0, we may make the change of variables t = uv, and we are looking at

Σ(L) =
1

#L

∑
v,u∈L×

vR(uv)+uvR(v)=0

ψL(uv2 + vS(uv) + uvS(v)).
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The content of R(uv)/(uvq1) + R(v)/vq1 contributes 0 to the large L limit, because for any
fixed ζ 6= 0, the polynomial in F2[v] given by ζv2+vS(ζv)+ζvS(v) is Artin-Schreier nontrivial,
being equivalent to√

ζv + a polynomial, possibly zero,with all nonzero monomials of odd degree ≥ 3.

In the case n = 1, we are done. If n ≥ 2, it suffices to show that L
ψ
(
uv2+vS(uv)+uvS(v)

)
on C is geometrically nontrivial, so that its H2

c vanishes and M2,2 = 2. For this, we pick ζ
with ζqn−1 + 1 = 0 but ζ not in µtotal(R). By Lemma 12.1.4 and Remark 12.1.5, at the point
P := (ζ,∞), v has a simple pole and the function u− ζ has a zero of order qn− q1 at P . We
again examine the poles of

uv2 + vS(uv) + uvS(v) = uv2 +
m∑
i=1

u(uQi−1 + 1)biv
Qi+1

at the point P . We will show that this function has a pole of order prime to p at the point
P , which implies the needed geometric nontriviality.

At P , the leading term u(uQm−1 + 1)bmv
Qm+1 either has a pole of order Qm + 1, or a pole

of order Qm + 1 − (qn − q1), and the lower terms, if m ≥ 2 have poles of order ≤ 1 + Qm−1

(including the first term uv2, with a pole of order ≤ 2 < 1 +Qm−1). If m = 1, the uv2 term
at P is Artin-Schreier equivalent to

√
ζv + holomorphic. In the m ≥ 2 case, we observe that

Qm + 1− (qn − q1) > 1 +Qm−1, exactly as at the end of the proof of Theorem 12.2.1. In the
m = 1 case, we simply need Qm + 1− (qn − q1) > 1, which is obvious. �

Now we offer some Witt analogue of Theorem 12.2.3, which determines the geometric
monodromy group of some local systems with non-monomial Witt vectors:

Theorem 12.2.6. Let q = 2f , n > m ≥ 1, gcd(n,m) = 1, a, b ∈ F×q , and consider the

local system W on (A1)2 ×Gm with the trace function

(r, s, t) ∈ L2 × L× 7→
∑
x∈L

ψ2,L

(
[rx, sx+ t(axq

m+1 + bxq
n+1)]

)
for any finite extension L/Fq. Then W has geometric monodromy group G = (4 ∗ 21+2nf

+ ) ·
Sp2n(q).

Proof. Note that F is a specialization of the local system W∗(qn + 1, qm + 1, 1) in

Theorem 9.3.9, with geometric monodromy group H = R · S, where R = 4 ∗ 21+2nf
+ and

S ∼= Sp2n(q). It follows that G ≤ H.
We now compute Ggeom for a suitable pullback.
Rescaling t by t 7→ t/b, we reduce to the case b = 1. Then the (r, s, t) 7→ (r, s, tq

n+1)
partial Kummer pullback of F has trace function

(r, s, t) 7→
∑
x∈L

ψ2,L

(
[rx, sx+ tq

n+1(axq
m+1 + xq

n+1)]
)
,

which after the variable change x 7→ x/t becomes

(r, s, t) 7→
∑
x∈L

ψ2,L

(
[rx/t, sx/t+ tq

n−qmaxq
m+1 + xq

n+1]
)
.
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Pulling back by the automorphism (r, s, t) 7→ (rt, st, t), the trace function becomes

(r, s, t) 7→
∑
x∈L

ψ2,L

(
[rx, sx+ tq

n−qmaxq
m+1 + xq

n+1]
)
.

This is the pullback, by the universal homeomorphism (r, s, t) 7→ (r, s, tq
m

), of the local
system whose trace function is

(r, s, t) 7→
∑
x∈L

ψ2,L

(
[rx, sx+ tq

n−m−1axq
m+1 + xq

n+1]
)
.

This is the (r, s, t) 7→ (r, s, tq
n−m−1) partial Kummer pullback of the local system whose trace

function is
(r, s, t) 7→

∑
x∈L

ψ2,L

(
[rx, sx+ taxq

m+1 + xq
n+1]

)
,

which in turn is the pullback by the automorphism (r, s, t) 7→ (r, s, ta) ofW(qn+1, qm+1, 1).
By Theorem 9.3.9, W(qn + 1, qm + 1, 1) has geometric monodromy group ∼= H. Thus G
contains a subgroup isomorphic to H, and hence G = H. �

12.3. Local systems of the third kind

Theorem 12.3.1. Let p > 2, k/Fp a finite extension, and a, b ∈ k×. Consider the local
system F on (A1 × Gm)/k of rank q = pf , whose trace function, at a point (s, t) ∈ L × L×
for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx2 + t(ax+ bxq+1)).

Then M2,2(F) = 2.

Proof. Define Σm := xm + ym− zm−wm for any m ∈ Z≥1. First for any fixed c ∈ L we
show that

(12.3.1.1) #{(x, y, z, w) ∈ L4 | Σ1 = c, Σ2 = 0} =

{
#L(2#L− 1), if c = 0,

#L2, if c 6= 0.

Indeed, we can write x = w + (z − y + c). Then Σ2 = 0 yields

2w(z − y + c) + (z − y + c)2 + y2 − z2 = 0.

Now, if y 6= z + c, then this equation completely determines w (and z) in terms of z and
y 6= z + c, giving us #L2 −#L points. If y = z + c, then z2 = (z + c)2, i.e. 2cz + c2 = 0. If
c = 0, there are no extra constraints aside from y = z, x = w, and so we get #L2 points. If
c 6= 0, then z = −c/2, y = c/2, x = w, yielding #L points.

In particular, the quadric Σ2 = 0 has

(12.3.1.2) #L(2#L− 1) + #L2(#L− 1) = #L3 + #L2 −#L

points. [Here is another proof for the asymptotical bound (1 + o(1))#L3. This quadric is the
covering of the (y, z, w)-space A3 defined by taking the square root of −y2 + z2 + w2, which
is not a square. So the problematic cohomology group in question is the direct sum of

H6
c (A3,Q`)⊕H6

c (A3,Lχ2(−y2−z2−w2)).
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The first summand gives #L3, the second vanishes because Lχ2(−y2−z2−w2) is geometrically
nontrivial.]

As in the proof of Theorem 12.1.3, we have that M2,2 is the large L limit of the sums

1

(#L)3(#L− 1)

∑
s∈L,t∈L×

∑
x,y,z,w∈L

ψL
(
sΣ2 + t(aΣ1 + bΣq+1)

)
,

where Σm := xm + ym− zm−wm for any m ∈ Z≥1. The “missing” sums, over (s, 0), are just

1

(#L)2(#L− 1)
#{(x, y, z, w) ∈ L4 | Σ2 = 0} =

#L+ 1− 1/#L

#L− 1

by (12.3.1.2), with large L limit 1. So M2,2 + 1 is the large L limit of the sums, but now
extended over all (s, t) ∈ L2. The large L limit is unchanged if we replace the 1/((#L)3(#L−
1)) factor by 1/(#L)4. Thus M2,2 + 1 is the large L limit of

1

(#L)2
#{(x, y, z, w) ∈ L4 | Σ2 = 0 and aΣ1 + bΣq+1 = 0}.

Let us denote the locus defined by these two equations Σ2 = 0 and aΣ1 + bΣq+1 = 0 in the
(x, y, z, w)-space A4 by H, and its set of points over L by H(L).

First we look at the intersection of H(L) with the hyperplane Σ1 = 0. Using (12.3.1.1)
with c = 0, we see that this intersection contributes at most 2 to the large L limit.

Next, we look at the intersection of H(L) with the complement Σ1 6= 0. For any point
(x, y, z, w) in this intersection, we have c := x+y− z−w 6= 0, so this point is c(x0, y0, z0, w0)
with

(x0, y0, z0, w0) ∈ H1(L) := {(x, y, z, w) ∈ L4 | Σ1 = 1, Σ2 = 0}.
The condition aΣ1 + bΣq+1 = 0 now becomes

ac+ bcq+1
(
xq+1

0 + yq+1
0 − zq+1

0 − wq+1
0

)
= 0.

Since a, b, c 6= 0, we must have that xq+1
0 + yq+1

0 − zq+1
0 − wq+1

0 6= 0, and

c =
(
−a−1b(xq+1

0 + yq+1
0 − zq+1

0 − wq+1
0 ))−1/q.

Thus c is uniquely determined by the point (x0, y0, z0, w0) ∈ H1(L). We have shown that the
ray defined by each point (x0, y0, z0, w0) ∈ H1(L) contains at most one point (x, y, z, w) in
H(L) ∩ {Σ1 6= 0}. Since #H1(L) = #L2 by (12.3.1.1), H(L) ∩ {Σ1 6= 0} contains at most
#L2 points, contributing at most 1 to the large L limit. Hence M2,2 + 1 ≤ 3. Since M2,2 ≥ 2,
we conclude that M2,2 = 2. �

To generalize Theorem 12.3.1 from x2 to xq+1, we begin with an identity which will be
used to calculate M2,2. We consider the identities

x+ y = z + w, x1+q + y1+q = z1+q + w1+q.

We substitute w = x+ y − z into the second, to obtain

x1+q + y1+q − z1+q = (x+ y − z)1+q.

For the p = 2 case of the following lemma, cf. [JW, Theorem 4].
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Lemma 12.3.2. Let p be a prime, q ≥ 1 a power of p. If q > 1, then in Fq2 [x, y, z], we
have the identity

x1+q + y1+q − z1+q − (x+ y − z)1+q = −(y − z)
∏

A∈Fq2 , Aq=−A

(x+ Ay − (A+ 1)z).

If p is odd and q = 1, then in Fp[x, y, z], we have the identity

x1+q + y1+q − z1+q − (x+ y − z)1+q = −2(y − z)(x− z).

In the special case p = 2, q > 1, we get the identity in Fq[x, y, z]

x1+q + y1+q − z1+q − (x+ y − z)1+q = −(y − z)
∏
A∈Fq

(x+ Ay − (A+ 1)z).

Proof. In the case p = 2, the condition that A ∈ Fq2 satisfies Aq = −A is just the
condition that α ∈ Fq.

Suppose now that p is odd. The q = 1 case is left to the reader. In the q > 1 case, we
use the identity ∏

A∈Fq2 , Aq=−A

(T + A) = T q + T.

Then we see that∏
A∈Fq2 , Aq=−A

(x+ Ay − (A+ 1)z) =
∏

A∈Fq2 , Aq=−A

((x− z) + A(y − z))

= (y − z)q
∏

A∈Fq2 , Aq=−A

((x− z)/(y − z) + A)

= (y − z)q((x− z)q/(y − z)q + ((x− z)/(y − z))

= (x− z)q + (y − z)q−1(x− z).

Thus

−(y − z)
∏

A∈Fq2 , Aq=−A

(x+ Ay − (A+ 1)z) = −(y − z)(x− z)q − (y − z)q(x− z)

= −(y − z)(xq − zq)− (yq − zq)(x− z)

= −yxq + yzq + zxq − zq+1 − xyq + zyq + xzq − zq+1.

But

x1+q + y1+q − z1+q − (x+ y − z)1+q = x1+q + y1+q − z1+q − (x+ y − z)(xq + yq − zq)
= −xyq + xzq − yxq + yzq + zxq + zyq − 2z1+q.

�

Corollary 12.3.3. Let q be a power of an odd prime p, let 0 ≤ m 6= n be integers with
gcd(m,n) = 1, and let Q1 := qm, Q2 := qn. Suppose that 2|mn. Then in Fp[x, y, z], where
each of

fQ1 := x1+Q1 +y1+Q1−z1+Q1−(x+y−z)1+Q1 , fQ2 := x1+Q2 +y1+Q2−z1+Q2−(x+y−z)1+Q2
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is a product of pairwise distinct linear factors, their only factors in common are y − z and
x− z.

Proof. If both Aq
m

= −A and Aq
n

= −A but A 6= 0, then Aq
m−1 = −1 = Aq

n−1, which
is impossible when 2|mn and gcd(m,n) = 1, by Lemma 12.1.1(i). �

Theorem 12.3.4. Let q = pf be a power of an odd prime, and let m,n ∈ Z≥0 be such
that m 6= n, gcd(m,n) = 1 and 2|mn. Let k/Fp be a finite extension, and fix a, b ∈ k×. If
m < n, consider the local system on (A1 × Gm)/k whose trace function is given, for L/k a
finite extension and s ∈ L, t ∈ L×, by

(12.3.4.1) (s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
sxq

m+1 + t(ax+ bxq
n+1)

)
,

If m > n, consider the local system on (A1 × Gm)/k whose trace function is given, for L/k
a fintie extension and s ∈ L, t ∈ L×, by

(12.3.4.2) (s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
s(ax+ bxq

n+1) + txq
m+1
)
.

Each of these local systems has M2,2 = 2.

Proof. We follow the proof of Theorem 12.3.1. Our first task is to show that the “missing
sums” over s ∈ L, t = 0 in the L-approximation of M2,2 contribute 1. Its contribution is the
large L limit of

1

(#L)3(#L− 1)

∑
s∈L

∑
(x,y,z,w)∈L4

ψL
(
sΣqm+1(x, y, z, w)

)
for the first local system, and the large L limit of

1

(#L)3(#L− 1)

∑
s∈L

∑
(x,y,z,w)∈L4

ψL
(
s(aΣ1(x, y, z, w) + bΣqn+1(x, y, z, w))

)
for the second local system.

In both of these sums, the s = 0 term is

(#L)4

(#L)3(#L− 1)
,

whose large L limit is 1. The key observation now is that both of the polynomials Σqm+1(x, y, z, w)
and aΣ1(x, y, z, w) + bΣqn+1(x, y, z, w) are Deligne polynomials in four variables, cf. [De2,
8.4], of degrees qm + 1 and qn + 1 respectively. So for all s ∈ L×, we have the estimates∣∣∣∣ ∑

(x,y,z,w)∈L4

ψL
(
sΣqm+1(x, y, z, w)

)∣∣∣∣ ≤ q4m(#L)2,

∣∣∣ ∑
(x,y,z,w)∈L4

ψL
(
s(aΣ1(x, y, z, w) + bΣqn+1(x, y, z, w))

)∣∣∣ ≤ q4n(#L)2.

Then in each case the entire sum over s ∈ L× of these Deligne polynomial summands is
O((#L)3), so contributes 0 to the large L limit.
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Exactly as in the previous proofs, M2,2 + 1 is the number of geometrically irreducible
components highest dimension 2 in the affine scheme H in A4 defined by the two equations

aΣ1 + bΣQ1+1 = 0, ΣQ2+1 = 0,

where

Q1 := qn, Q2 := qm.

We first show that H0 := H ∩ (Σ1 = 0) has #H0(L) = 2(#L)2 +O(#L). Indeed, here we
are looking at the affine scheme H0 in A3 defined by the two equations

fQ1 = 0, fQ2 = 0.

By Lemma 12.3.2 and Corollary 12.3.3, this locus is the union of the two planes y = z and
x = z, and at most Q1Q2 lines.

It remains to show that H r H0 has (#L)2 + O(#L) points with values in each L/Fp.
Consider first, for each c ∈ L, the scheme Vc in A4 defined by the two equations

Σ1 = c, ΣQ2+1 = 0.

We first show that #Vc(L) = (#L)2 +O(#L) for each c ∈ L×. To see this, first notice that by
homothety, all the Vc with c 6= 0 are isomorphic to each other. But the Vc(L) with c ∈ L form
a partition of the L-points on the hypersurface ΣQ2+1 = 0. This affine hypersurface, call it X,
is the affine cone in A4 over a smooth hypersurface in P3. Hence #X(L) = (#L)3+O((#L)2).
Thus

#X(L) = #V0(L) + (#L− 1)#V1(L).

By the factorization lemma 12.3.2 for FQ2 , we see that #V0(L) ≤ (Q2 + 1)(#L)2. Thus we
have

(#L− 1)#V1(L) = (#L)3 +O((#L)2), hence #V1(L) = (#L)2 +O(#L).

Now partition the L-points of H r H0 into the L-points of the subschemes Hc := H ∩
(Σ1 = c) for c ∈ L×. Fix c ∈ L×. If Hc(L) is non-empty, and (x, y, z, w) ∈ Hc(L), then
write (x, y, z, w) = c(x0, y0, z0, w0). Then the point P := (x0, y0, z0, w0) has Σ1(P ) = 1,
ΣQ2+1(P ) = 0, and

ac+ bcQ1+1ΣQ1+1(P ) = 0.

Since a, b, c 6= 0, c is completely determined by P :

cQ1 = −a/bΣQ1+1(P ).

This construction maps each nonempty Hc(L) injectively to V1(L), where the images of two
different non-empty Hc1(L) and Hc2(L) with c1 6= c2, both nonzero, are disjoint in V1(L). In
other words, we have a bijection between H rH0 with the open set of V1 on which ΣQ1+1 is
invertible. So

#(H rH0)(L) ≤ (#L)2 +O(#L).

So we have shown that M2,2 + 1 ≤ 3. Since M2,2 ≥ 2 for any local system of rank > 1, it
follows that M2,2 = 2. �
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Theorem 12.3.5. Let q = pf > 9 be a power of a prime p > 2 and fix some constants
a, b ∈ F×q . Consider the local system F1 on (A1 ×Gm)/k, k/Fq a finite extension, of rank q,
whose trace function, at a point (s, t) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=

1

GaussL

∑
x∈L

ψL
(
sx2 + t(ax+ bxq+1)

)
,

and the local system F2 on (A1 × Gm)/k, k/Fq a finite extension, of rank q, whose trace
function, at a point (s, t) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=

1

GaussL

∑
x∈L

ψL
(
s(ax+ bx2) + txq+1

)
.

Then the geometric monodromy groups of F1 and F2 are both equal to G = EoSp2(q), where

E = p1+2f
+ is extraspecial of order p1+2f and exponent p.

Proof. For each of the two systems and with q = 11, a Magma computation shows that,
for any choice of a, b ∈ F×11, there is a Frobenius Frob(s,t),F114

that has trace of absolute value√
11. Now we can repeat the proof of Theorem 12.1.7 verbatim. �

Next we extend Theorem 12.3.5:

Theorem 12.3.6. Let p > 2 be a prime, q = pν, m,n ∈ Z≥0 with m 6= n, gcd(m,n) = 1,
2|mn, and let F be any of the sheaves defined in (12.3.4.1) and (12.3.4.2). Then the geometric
monodromy group G = Ggeom,F of F is E o Sp2N(q), where N = max(m,n) and E = p1+2Nv

+

is the extraspecial p-group of exponent p and order pq2N .

Proof. (a) When m < n, F is the specialization

t1 = at, t2 = s, t3 = bt

of the local system F ] on (A2 × Gm)/k, k/Fq a finite extension, of rank D, whose trace
function, at a point (t1, t2, t3) ∈ L2 × L× for L/k a finite extension, given by

Trace
(
Frob(t1,t2,t3),L|F ]

)
=

1

GaussL

∑
x∈L

ψL
(
t1x+ t2x

qm+1 + t3x
qn+1

)
.

When n < m, F is the specialization

t1 = as, t2 = bs, t3 = t

of the local system F ] on (A2 × Gm)/k, k/Fq a finite extension, of rank D, whose trace
function, at a point (t1, t2, t3) ∈ L2 × L× for L/k a finite extension, given by

Trace
(
Frob(t1,t2,t3),L|F ]

)
=

1

GaussL

∑
x∈L

ψL
(
t1x+ t2x

qn+1 + t3x
qm+1

)
.

Since gcd(m,n) = 1 and 2|mn, by Corollary 11.2.5(ii), F ] has geometric monodromy group
H = E o S with E = p1+2Nν

+ and S ∼= Sp2N(q).
The aforementioned specialization implies that G ≤ H.

(b) Assume now that m < n. The idea is to compute Ggeom for a suitable pullback.
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Rescaling t in (12.3.4.1) by t 7→ t/b, we reduce to the case b = 1. Then the (s, t) 7→
(s, tq

n+1) partial Kummer pullback of F has trace function

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
sxq

m+1 + tq
n+1(ax+ xq

n+1)
)
,

which after the variable change x 7→ x/t becomes

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
st−(qm+1)xq

m+1 + tq
n

ax+ xq
n+1
)
.

Pulling back by the automorphism (s, t) 7→ (stq
m+1, t), the trace function becomes

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
sxq

m+1 + tq
n

ax+ xq
n+1
)
.

This is the pullback, by the universal homeomorphism (s, t) 7→ (s, atq
n
), of the local system

whose trace function is

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
sxq

m+1 + tx+ xq
n+1
)
.

Because Ggeom is unchanged by such pullback, it suffices to treat this case. The corresponding
sheaf has geometric monodromy group ∼= H by Theorem 11.2.1(a). Thus G contains a
subgroup isomorphic to H, and hence G = H.

Similarly, assume that n < m. Rescaling s in (12.3.4.2) by s 7→ s/b, we reduce to the
case b = 1. Then the (s, t) 7→ (s, tq

m+1) partial Kummer pullback of F has trace function

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
s(ax+ xq

n+1) + tq
m+1xq

m+1
)
,

which after the variable change x 7→ x/t becomes

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
st−1ax+ st−(qn+1)xq

n+1 + xq
m+1
)
.

Pulling back by (s, t) 7→ (st, t), this becomes

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
sax+ st−q

n

xq
n+1 + xq

m+1
)
.

This is the pullback, by the automorphism (s, t) 7→ (stq
n
, t), of the local system whose trace

function is

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
stq

n

ax+ sxq
n+1 + xq

m+1
)
.

This in turn is the pullback, by the universal homeomorphism (s, t) 7→ (s, tq
n
), of the local

system whose trace function is

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
stax+ sxq

n+1 + xq
m+1
)
,
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which in turn is the pullback, by the automorphism (s, t) 7→ (s, t/as), of the local system
whose trace function is

(s, t) 7→ 1

GaussL

∑
x∈L

ψL
(
tx+ sxq

n+1 + xq
m+1
)
,

The corresponding sheaf has geometric monodromy group ∼= H by Theorem 11.2.1(a). Thus
G contains a subgroup isomorphic to H, and hence G = H. �

We also offer some twisted versions of Lemma 12.2.2, as well as some statements which
are independent of Theorem 12.3.6.

Lemma 12.3.7. Under the notation and hypothesis of Theorem 12.3.4, assume that a, b ∈
F×q and p - N := max(m,n). If F is any of the local systems in Theorem 12.3.4, then

|Trace
(
Frob(1/b,1),F

q2N
|F
)
|2 = q if m > n,

|Trace
(
Frob(1,1/b),F

q2N
|F
)
|2 = q if n > m.

Proof. We will follow the proof of Theorem 7.1.2 to compute the trace of g := Frob(1/b,1),F
q2N

if m > n, and g := Frob(1,1/b),F
q2N

if n > m, on F . Here, the relevant function R(x) is

R(x) = xq
n

+ xq
m

. Then the corresponding subspace WR of Fq2N is the zero locus over Fq2N
of the polynomial

xq
N+n

+ xq
N−n

+ xq
N+m

+ xq
N−m

.

Denoting by F the Frobenius map x 7→ xq on Fq, we see that WR is the set of x ∈ Fq that is
annihilated by F 2N − 1 and by ∆(F ) := FN+n + FN−n + FN+m + FN−m.

Without loss of generality, we may assume n > m, so that N = n. Setting l := n−m we
have

gcd(x2n − 1,∆(x)) = gcd(x2n − 1, xn+m + xn−m + 2)

= gcd(x2n − 1, xl(xn+m + xn−m + 2))

= gcd(x2n − 1, (xl + 1)2).

By assumption, gcd(n,m) = 1 and l := n−m is odd and coprime to n. In this case we have
gcd(x2n − 1, x2l − 1) = x2 − 1, but x − 1 does not divide xl + 1. Also, p - N implies that
(x+ 1)2 does not divide x2n − 1. Hence gcd(x2n − 1,∆(x)) = x+ 1.

Thus WR = {x ∈ Fq2N | xq + x = 0}; in particular, WR ⊂ Fq2 and #WR = q. For any
x ∈ WR, R(x) = xq

n
+ xq

m
= xq + x = 0 (because one of n,m is even and the other is odd).

So for any x ∈ WR and any s ∈ Fq, we have

TraceF
q2N

/Fq(xR(x) + sax) = TraceF
q2N

/Fq(sax)

= TraceFq2/Fq
(
TraceF

q2N
/Fq2 (sax)

)
= TraceFq2/Fq(Nsax)

= Nsa(xq + x) = 0.

We conclude that |Trace(g)|2 = #WR = q. �

Next we deal with the case p|max(m,n).
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Lemma 12.3.8. Under the notation and hypothesis of Theorem 12.3.4, assume that a, b ∈
F×q and that p|N := max(m,n). If F is any of the local systems in Theorem 12.3.4, then

there are s, t ∈ F×
qN

such that

|Trace
(
Frob(s,t),F

qN
|F
)
|2 = q.

Proof. (i) We again follow the proof of Theorem 7.1.2 to compute the trace of g :=
Frob(s,t),F

qN
on F . Interchanging s and t if necessary, we may write the relevant function

R(x) as R(x) = sbxq
n

+ txq
m

. Then, for s, t ∈ F×
qN

, the corresponding subspace WR of FqN is

the zero locus over FqN of the polynomial

sbxq
N+n

+ (sb)q
N−n

xq
N−n

+ txq
N+m

+ tq
N−m

xq
N−m

.

Denoting by F the Frobenius map x 7→ xq on Fq, we see that WR is the set of x ∈ Fq that is
annihilated by FN − 1 and by ∆(F ), with

∆(x) := sbxN+n + (sb)q
N−n

xN−n + txN+m + tq
N−m

xN−m.

(ii) As p|N , we have N ≥ 3. Claim that, for any 1 ≤ l ≤ N − 1 coprime to N , we can
find α ∈ F×

qN
such that

(12.3.8.1) αq
l

+ α 6= 0, αN(ql−1) 6= 1, TrF
qN
/Fq(α) = 0.

Indeed, there are qN−1 solutions in FqN to the equation TrF
qN
/Fq(α) = 0. If l ≤ N − 2, then

there are at most qN−2 solutions to the equation αql+α = 0. If l = N −1, then any common
solution y to the equations TrF

qN
/Fq(α) = 0 and αq

l
+ α = 0 also satisfies

αq
N−2

+ αq
N−3

+ . . .+ αq = 0,

and so there are most qN−2 such common solutions. Thus there are at least qN−1 − qN−2

elements α ∈ FqN such that αq
l
+ α 6= 0 and TrF

qN
/Fq(α) = 0.

Next suppose that α ∈ F×
qN

and αN(ql−1) = 1. As gcd(N, l) = 1 and p|N , we have that

the order of α divides

gcd(qN − 1, N(ql − 1)) which divides (N/p) gcd(qN − 1, ql − 1) = (q − 1)N/p.

Hence there are most (q − 1)N/p such elements y. Note that qN−2 ≥ 3N−2 > N/p as
N ≥ p ≥ 3, whence qN−1 − qN−2 > N(q − 1)/p, and the claim follows.

(iii) Now we consider the case m > n, so that N = m, and set l := m − n. Then we

choose s := α/b with α satisfying (12.3.8.1), and take t := −(α+αq
l
)/2. Note that s, t ∈ F×qm

because of (12.3.8.1). Then modulo xN − 1 we have

xl∆(x) ≡ xl
(
αxn + αq

l

xl + 2t
)
≡ αq

l

x2l + α− (αq
l

+ α)xl = αq
l

(xl − 1)(xl − α1−ql).

Suppose that x ∈ Fq is a common root of xl − α1−ql and xN − 1. Then 1 = xNl = αN(1−ql),
which contradicts (12.3.8.1). It follows that gcd(∆(x), xN−1) must divide gcd(xl−1, xm−1) =
x− 1, as gcd(m, l) = gcd(m,n) = 1
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Thus WR = {x ∈ FqN | xq = x} = Fq. For any x ∈ WR, TraceF
qN
/Fp(xR(x)) is half the

inner product of x with itself, and by definition x has inner product zero with everyone in
Fqm , so it is zero. Also, for any x ∈ WR and with s = α/b, a, b ∈ F×q , we have

TraceF
qN
/Fq(sax) = ab−1x

(
TraceF

qN
/Fq(α)

)
= 0.

It follows that TraceF
qN
/Fp(xR(x)+sax) = 0 for all x ∈ WR, and hence |Trace(g)|2 = #WR =

q.

(iv) Finally, we consider the case n > m, so that N = n, and set l := n −m. Then we

choose t := α with α satisfying (12.3.8.1), and take s := −(α+ αq
l
)/2b. Note that s, t ∈ F×qn

because of (12.3.8.1). Then modulo xN − 1 we have

xl∆(x) ≡ xl
(
αxm + αq

l

xl + 2sb
)
≡ αq

l

x2l + α− (αq
l

+ α)xl = αq
l

(xl − 1)(xl − α1−ql).

As in (iii), the choice (12.3.8.1) of α implies that gcd(∆(x), xN − 1) = x − 1, and hence
WR = Fq. Again, TraceF

qN
/Fp(xR(x)) = 0 for any x ∈ WR. Next, for any x ∈ WR, and with

a, b ∈ F×q we have

TraceF
qN
/Fq(sax) = (−ax/2b)

(
TraceF

qN
/Fq(α)

)
= 0.

Thus TraceF
qN
/Fp(xR(x) + sax) = 0 for all x ∈ WR, yielding |Trace(g)|2 = #WR = q. �

Lemma 12.3.9. Let p be prime, q > 1 a power of p, k/Fq2 a finite extension, and a ∈ k.

(i) Consider the local system on Gm/L whose trace function is given as follows: for L/k a
finite extension, and s ∈ L×,

s 7→ −
∑
x∈L

ψL(ax+ sxq+1).

Then its Ggeom contains the cyclic group µq+1(k) of order q + 1.
(ii) For any b, c ∈ k×, the conclusion of (i) holds for the local system on Gm/L whose trace

function is given as follows: for L/k a finite extension, and s ∈ L×,

s 7→ −
∑
x∈L

ψL
(
s(bx+ cxq+1)

)
.

Proof. (i) We first treat the case a = 0. Then our trace at time s ∈ L× is

−
∑
u∈L

ψL(su)#{x ∈ L|xq+1 = u} = −
∑
u∈L

ψL(su)
(
1 +

∑
χ∈Char(q+1),χ 6=1

χ(u)
)

= −
∑

χ∈Char(q+1),χ 6=1

∑
u∈L

ψL(u)χ(u/s)

=
∑

χ∈Char(q+1),χ 6=1

χ(s)(−GaussL(ψL, χ)).

So in this a = 0 case, our local system is geometrically the direct sum of the Kummer
sheaves Lχ as χ runs over the nontrivial characters of order dividing q + 1. In terms of a
chosen character χ1 of full order q + 1, our local system is, geometrically, the direct sum of
the nontrivial powerss of Lχ1 . So in this a = 0 case, the entire Ggeom is the cyclic group
µq+1(k) of order q + 1.
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Suppose now that a 6= 0. Then our sum at s ∈ L× is

−
∑
u∈L

ψL(s(ax+ xq+1) =

(making the change of variable x 7→ x/s)

−
∑
u∈L

ψL(ax+ xq+1/sq).

As pullback by any power of Frobenius does not alter Ggeom, it suffices treat the local system
on Gm/k whose trace function at s ∈ L× is given by

(12.3.9.1) s 7→ −
∑
x∈L

ψL(ax+ xq+1/s).

This local system is, up to multiplicative translation and change of ψk, isomorphic to the
Kloosterman sheaf

Kl(ψk; {χ ∈ Char(q + 1)|χ 6= 1}),
cf. [KRLT2, 1.2]. For this Kloosterman sheaf, the image of I(0) is the cyclic group µq+1(k)
of order q + 1.

(ii) After the change of variable x 7→ x/(sb), our trace function is

s 7→ −
∑
x∈L

ψL(x+ cb−q−1xq+1/sq).

This local system, after a change of ψk, is isomorphic to the local system with trace function
(12.3.9.1) (for a suitable chosen a ∈ k×. Hence the statement follows. �

Corollary 12.3.10. For F any of the sheaves considered in Theorem 12.3.4, both the
cyclic groups Cqn+1 and Cqm+1 are subquotients of Ggeom,F .

Proof. The general situation we are looking at is a local system F on A1×Gm obtained
as follows. We have a finite extension k/Fp, two polynomials f(x), g(x) ∈ k[x], each of degree
prime to p and with deg(g) > deg(f). For L/k a finite extension, and (s, t) ∈ L × L×, the
trace function of F is

(s, t) 7→ −
∑
x∈L

ψL
(
sf(x) + tg(x)

)
.

The s = 0 pullback to Gm, call it Fs=0 has Ggeom,Fs=0 a subgroup of Ggeom,F . The t = 0, s 6= 0
pullback to Gm, call it Ft=0, has Ggeom,Ft=0 a subquotient of Ggeom,F . This is a special case
of [Ka-Scont, Theorem 1], applied as follows. We start on A3, coordinates x, s, t, with the
lisse sheaf G := Lψk(s(fx)+tg(x)). Then G[3] is perverse on A3. So denoting by

π : A3 → A2, (x, s, t) 7→ (s, t),

the sheaf
H−2(Rπ!(G[3])) = R1π!G

on A2 is a “sheaf of perverse origin”, see [Ka-Scont, Lemma 6]. It is lisse outside the locus
t = 0, and its pullback to the open set of t = 0 where s is invertible is the local system
s 7→ −

∑
x ψ(sf(x)). The subquotient assertion is then just [Ka-Scont, Theorem 1].

In the cases of any of the sheaves F of Theorem 12.3.4, we have only to apply Lemma
12.3.9 to the s = 0 and to the t = 0 pullbacks to get the subquotient assertions. �
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Here is a more general result of the same type.

Lemma 12.3.11. Let k/Fp be a finite extension, f(x), g(x) ∈ k[x] be polynomials of prime
to p degrees (m,n) with 1 ≤ m < n. Consider the lisse sheaf F on (A1 ×Gm)/k whose trace
function is given as follows. For L/k a finite extension, and (s, t) ∈ L× L×,

Trace(Frob(s,t),L|F) = −
∑
x∈L

ψL(sf(x) + tg(x)).

Then both of the cyclic groups Cn and Cm are subquotients of Ggeom,F .

Proof. Exactly as in the proof of Corollary 12.3.10 above, it suffices to show

(a) The restriction to Gm of the s = 0 pullback of F , call it Fs=0, has Cn as a subquotient
of its Ggeom.

(b) If m ≥ 2, the restriction to Gm of the t = 0 pullback of F , call it Ft=0, has Cm as a
subquotient of its Ggeom.

[In (b), we omit the case m = 1, simply because C1 is a quotient of any group.] These
statements follow from the following lemma. �

Lemma 12.3.12. Let f(x) have prime to p degree n ≥ 2. Then the I(0)-representation
of the lisse sheaf H on Gm/k whose trace function is s 7→ −

∑
x ψ(sf(x)) is the group⊕

1 6=χ∈Char(n) Lχ (which is cyclic of order n).

Proof. The sheaf K := f?Q`/Q` is a middle extension sheaf (view it as a direct factor
of f?Q` and apply [Ka-ESDE, 7.3.2]). Because f has degree n prime to p, f as a map of P1

to P1 is totally ramified over ∞, the I(∞)-representation of K is
⊕

16=χ∈Char(n) Lχ. For any
nonzero a ∈ k, K ⊗Lψ(ax) is totally wild at ∞. Therefore K is an “elementary” sheaf in the
sense of [Ka-ESDE, 7.3.4]. By [Ka-ESDE, 7.3.8], its Fourier transform is also elementary.

Just as in the proof of Lemma 12.4.10, but with no circularity, one sees that H is the
restriction to Gm of the Fourier transform of K := f?Q`/Q`. By Laumon’s theory of local
Fourier transform, we have [Ka-ESDE, 7.4.3.1]

HI(0)/HI(0) ∼= FTloc(∞, 0)(KI(∞)).

Laumon also gives [Ka-ESDE, 7.4.4 (2)]

FTloc(∞, 0)Lχ ∼= Lχ.
Thus

⊕
1 6=χ∈Char(n) Lχ is a quotient of the I(0)-representation of H. But H has rank n − 1,

so HI(0) = 0 for dimension reasons. �

When gcd(n,m) = 1, we have the following extra information.

Lemma 12.3.13. Let k/Fp be a finite extension, f(x), g(x) ∈ k[x] be polynomials of prime
to p degrees (m,n) with 1 ≤ m < n. Consider the lisse sheaf F on (A1 ×Gm)/k whose trace
function is given as follows. For L/k a finite extension, and (s, t) ∈ L× L×,

Trace(Frob(s,t),L|F) = −
∑
x∈L

ψL(sf(x) + tg(x)).

Suppose that gcd(n,m) = 1. Then Ggeom,F admits a subquotient of order divisible by n−m.
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Proof. Exactly as in the proof of Corollary 12.3.10 above, it suffices to show that the
t = 1 pullback F|t=1 on A1, whose trace function is given by

t 7→ −
∑
x

ψ(g(x) + tf(x))

has its Ggeom,F|t=1 containing a finite subgroup of order divisible by n−m. This pullback is
geometrically isomorphic to the Fourier transform

FT(f?Lψ(g)).

The input f?Lψ(g) has all its ∞-slopes deg(g)/ deg(f) = n/m > 1. By Laumon’s theory of
local Fourier transform [Ka-ESDE, 7.4.1,(1)], the I(∞)-representation of FT(f?Lψ(g)) is of
the form A ⊕ B, with A having all slopes n/(n − m) and rank n − m, and with B having
all slopes ≤ 1. Because gcd(n,m) = 1, we also have gcd(n, n − m) = 1, and hence A is
I(∞)-irreducible (integrality of Swan conductors). Because we began over the finite field k,
each of A,B is stable by the decomposition group D(∞). By the local monodromy theorem,
the action of Γ is, on a normal open subgroup Γ1, unipotent [Ka-GKM, 7.0.5]. Because Γ
acts irreducibly, the action of Γ1 is completely reducible, and hence (being also unipotent)
is trivial. Thus Γ is finite. But the degree (here n−m) of an irreducible representation of a
finite group (here Γ) always divides the order of the group. �

Lemma 12.3.14. Let p > 2, k/Fp a finite extension, a, b ∈ k with (a, b) 6= (0, 0), and let
ci ∈ k× for 0 ≤ i ≤ t and (b, c0) 6= (0, 0). Let

0 ≤ m = n0 < n1 < n2 < . . . < nt

be integers, and set f(x) :=
∑t

i=1 cix
qni+1. For any d ∈ Z≥1, let Σd(x, y, z, w) = xd + yd −

zd − wd; also let Σf (x, y, z, w) := f(x) + f(y)− f(z)− f(w). Then the large L limit of

1

(#L)2
#
{

(x, y, z, w) ∈ L4 | Σ1 = Σqm+1 = Σf = 0
}

is 2 + #µtotal(f̃/x), where f̃ := f + xq
m+1 and

µtotal(f̃/x) =
t⋂
i=0

{x ∈ Fp | xq
ni−1 = −1},

cf. (12.1.0.2).

Proof. We will show that the number of L-points of the intersection of Σ := {Σ1 =

Σqm+1 = 0} with the surface Σf = 0 is (#µtotal(f̃) + 2)(#L)2 +O(#L). Certainly, the union
of the two planes (x = z, y = w) and (x = w, y = z) contributes 2(#L)2 −#L points.

So we have to count the points P = (x, y, z, w) ∈ (Σ ∩ {Σf = 0}) outside of these two
planes. For such a point, we have w = x + y − z. Setting Q0 = qm and Qi = qni , 1 ≤ i ≤ t,
we may assume that L ⊇ FQ2

i
for 0 ≤ i ≤ t. Since ΣQ0+1(P ) = 0 but y 6= z and x 6= z, by

Lemma 12.3.2 we can find some A ∈ F×
Q2

0
such that x = (A+ 1)z − Ay and

(12.3.14.1) AQ0−1 = −1.
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Now for any p-power q we have

Σq+1(P ) = ((A+ 1)z − Ay)q+1 + yq+1 − zq+1 − (Az − (A− 1)y)q+1

= ((Aq + 1)zq − Aqyq)(A+ 1)z − Ay) + yq+1 − zq+1 − (Aqzq − (Aq − 1)yq)(Az − (A− 1)y)

= (Aq + A)(zq+1 − yqz − yzq + yq+1) = (Aq + A)(z − y)q+1.

We record this identity for later use:

(12.3.14.2) ((A+ 1)z − Ay)q+1 + yq+1 − zq+1 = (Az − (A− 1)y)q+1 + (Aq + A)(z − y)q+1.

Since f(x) =
∑t

i=1 cix
Qi+1, it follows that

0 = f(x) + f(y)− f(z)− f(w) =
t∑
i=1

ci(A
Qi + A)(z − y)Qi+1,

and so
t∑
i=1

ci(A
Qi−1 + 1)(z − y)Qi = 0.

Given (12.3.14.1), unless A ∈ µtotal(f̃/x), this condition gives us a non-identically-zero poly-
nomial equation on z − y, yielding at most Qt values for z once y is given, and thus at most
QtL possibilities for P . On the other hand, when A ∈ µtotal(f̃/x), this condition is vacuously
true, and so the desired zero locus contains the plane w = x+ y− z, x = (A+ 1)z−Ay. The
intersection of any two aforementioned planes is a line, so accounts for #L points. Hence the
statement follows. �

Theorem 12.3.15. Let q > 1 be a power of an odd prime p, n ∈ Z≥1, qi := qmi, 1 ≤
i ≤ n, with 1 ≤ m1 < m2 < . . . < mn. For a finite extension k/Fp, let ci ∈ k× and set
f(x) = x +

∑n
i=1 cix

qi+1. Consider the local system F on (A1 × Gm)/k of rank qn, whose
trace function, at a point (s, t) ∈ L× L× for L/k a finite extension, given by

Trace
(
Frob(s,t),L|F

)
=
−1√
#L

∑
x∈L

ψL(sx2 + tf(x)).

Then M2,2(F) = 2.

Proof. The question is geometric, so we may assume that k contains all roots of unity
of order dividing 2

∏
i(qi − 1). Following the proof of Theorem 12.1.3, we see that M2,2 + 1

is the large L limit of #Σ(L)/#L2, where

Σ :=
{

(x, y, z, w) ∈ A4 | Σ2 := x2 + y2 − w2 − z2 = 0, Σf := f(x) + f(y)− f(z)− f(w) = 0
}
.

Applying Lemma 12.3.14 with m = 0, we see that the contribution of Σ ∩ (Σ1 = 0) to this
limit is 2; indeed it comes from the two planes (x = z, y = w) and (x = w, y = z).

It remains to count the number of L-points P = (x, y, z, w) of Σ ∩ (Σ1 6= 0). For such a
point P , assume that y = z. Then 0 = Σ2(P ) = x2−w2, whence x2 = w2 and so xqi+1 = wqi+1

for all i. It follows that 0 = Σf (P ) = x−w, and so x = w and P ∈ (Σ1 = 0), contrary to the
assumption. Similarly, if x = z, then we get y = w and Σ1(P ) = 0. So we may assume that

u := z − y 6= 0, x 6= z.
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Setting A := (x− z)/(z − y), we have

x = (A+ 1)z − Ay,
where A 6= 0 as x 6= z. Setting

v := x+ y − z = Az − (A− 1)y

and applying (12.3.14.2), we get

w2 = x2 + y2 − z2 = v2 + 2Au2.

Now, for any 1 ≤ i ≤ n, again applying (12.3.14.2) we obtain

Σqi+1(P ) = xqi+1 + yqi+1 − zqi+1 − wqi+1 = vqi+1 + (Aqi + A)uqi+1 − (v2 + 2Au2)(qi+1)/2.

The condition 0 = Σf (P ) = x+ y − z − w +
∑n

i=1 ciΣqi+1(P ) then yields

(12.3.15.1) w = v +
n∑
i=1

ci
(
vqi+1 + (Aqi + A)uqi+1 − (v2 + 2Au2)(qi+1)/2

)
;

in particular, w is completely determined by A, u, v. Hence P is completely determined by
(A, u, v), since x = u+ v, y = v − Au, and z = v − (A− 1)u. The condition Σ2(P ) = 0 now
becomes(

v +
n∑
i=1

ci
(
vqi+1 + (Aqi + A)uqi+1 − (v2 + 2Au2)(qi+1)/2

))2

− (v2 + 2Au2) = 0.

Modulo Au2, the left-hand-side of this equation is v2 − v2 = 0. Recalling A 6= 0 (as x 6= z)
and u 6= 0 (as y 6= z), the intersection in question satisfies the equation F (A, u, v) = 0, where

F :=
1

Au2

((
v +

n∑
i=1

ci(v
qi+1 + (Aqi + A)uqi+1 − (v2 + 2Au2)(qi+1)/2)

)2 − (v2 + 2Au2)

)
.

We will view F (A, u, v) as a polynomial in the variable u over k[A, v]. Modulo the ideal
(A− v), this polynomial is

G(u) :=
1

Au2

((
A+

n∑
i=1

ci(A
qi+1 + (Aqi + A)uqi+1 − (A2 + 2Au2)(qi+1)/2)

)2 − (A2 + 2Au2)

)
,

a polynomial in the variable v over k[A]. Since qi ≥ 3, modulo A2 the latter polynomial is

1

Au2

((
A+

n∑
i=1

ci(Au
qi+1 − (2Au2)(qi+1)/2)

)2 − (A2 + 2Au2)

)

≡ 1

Au2

(
A2
(
1 +

n∑
i=1

ciu
qi+1
)2 − (A2 + 2Au2)

)

≡− 2 + 2A
n∑
i=1

ciu
qi−1 + Au−2

( n∑
i=1

ciu
qi+1
)2

,

with the leading term congruent to Ac2
nu

2qn . ThusG(u) is a palindrome Eisenstein polynomial
over k[A], and so it is irreducible over k(A).
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Note that F is of degree 2qn in u, with leading coefficient

X(A) := c2
n

(
Aqn + A− (2A)(qn+1)/2

)2
/A,

a polynomial of degree 2qn − 1 in A, and constant term

Y (v) := −2
n∑
i=1

civ
qi ,

a polynomial of degree qn in v. Thus the content of F , as a polynomial in u over k̄[A, v]
is 1, and so F is irreducible in k̄[A, u, v]. [Indeed, if F factors as F1F2 in k̄[A, u, v] with
degu F1 ≥ degu F2, then the irreducibility of G(u) implies that F2 is constant in u. Now if
F11 is the leading coefficient in u of F1, then F11F2 = X(A), and so F2 dividesX(A). Similarly,
F2 divides Y (v) by equating the constant term in F = F1F2. Thus F2 is a constant.]

The irreducibility of F implies that the locus Σ ∩ (Σ1 6= 0), which is contained in
F (A, u, v) = 0, has at most #L2 +O(#L) points in L3, completing the proof. �

12.4. Another approach to M2,2

In this section, we indicate another approach to determine M2,2 for a general class of local
systems with non-monomial coefficients. This approach is based on resultants, whose basic
properties we now recall. For a commutative ring R and polynomials f(x), g(x) ∈ R[x] of
degrees n,m ≥ 1, both of whose leading coefficients lie in R×, the resultant Resx(f, g) is an
element of R defined as follows. Denote by R[x]<d ⊂ R[x] the R-span of the monomials xn

with n ≤ d− 1. The Sylvester map is

Sylf,g : R[x]<m ⊕R[x]<n → R[x]<n+m, (a, b) 7→ fa+ gb.

Both source and target are free R-modules of rank n+m.[ Its matrix is called the Sylvester
matrix.] One defines

Resx(f, g) := det(Sylf,g).

For any ring homomorphism φ : R → S, assuming the polynomials φ(f), φ(g) ∈ S[x],
obtained by applying φ to the coefficients of f, g, have the same degrees (n,m), we have

Resx(φ(f), φ(g)) = φ(Resx(f, g)).

[Simply view the resultant as the determinant of the Sylvester matrix, whose formation
commutes with arbitrary extension of scalars. Also see [KT8, Lemma 3.1] for a more general
statement.] When R is a field k, Resx(f, g) = 0 if and only if gcd(f, g) 6= 1, i.e., if and only
if f and g have a common zero in an algebraic closure of k.

We begin with the notion of “almost injectivity” of a map from A1 to A2. Let k be an
algebraically closed field, and

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ k[x],

be polynomials of strictly positive degrees m,n. We say that the map x 7→ (f(x), g(x)) of A1

to A2 is almost injective if its restriction to a dense open set U := A1r(a finite set Z of closed points)
is injective as a map from U(k) to A2(k). With no loss of generality, we may assume both
f, g are monic (simply because for a, b ∈ k×, the map (x, y) 7→ (ax, by) is bijective on A2(k)).
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If k has characteristic p > 0, then the map x 7→ (f(x), g(x)) is almost injective if and only
x 7→ (f(x)p, g(x)p) is almost injective (simply because (x, y) 7→ (xp, yp) is bijective on A2(k)).
So we may always reduce to the case when at least one of f(x), g(x) is not a pth power, if
we are in characteristic p > 0. Equivalently, we may always reduce to the case when at least
one of the derivatives f ′(x), g′(x) is nonzero.

In k[x, y], define

∆f :=
f(x)− f(y)

x− y
, ∆g :=

g(x)− g(y)

x− y
,

viewed as polynomials in x with coefficients in k[y]. Because f, g were monic of degrees m,n,
∆f and ∆g are monic of degrees m− 1 and n− 1 respectively.

Lemma 12.4.1. Suppose that f, g are both monic of strictly positive degrees m,n, and that
(f ′(x), g′(x)) 6= (0, 0) in k[x]2. Viewing ∆f and ∆g as monic polynomials in the ring A[x],
A := k[y], form their resultant as polynomials in x. This is an element

(12.4.1.1) R(y) := Resx(∆f ,∆g) ∈ k[y].

Then the map x 7→ (f(x), g(x)) is almost injective if and only if the polynomial R(y) is
nonzero.

Proof. (i) Suppose first that R(y) vanishes identically. For every y0 ∈ k, the specializa-
tion y 7→ y0 preserves the degree in x of ∆f . By [KT8, Lemma 3.1], R(y0) = 0 now means
that the two polynomials

f(x)− f(y0)

x− y0

,
g(x)− g(y0)

x− y0

have a common zero x0. If x0 = y0 in addition, then this vanishing means precisely that
f ′(y0) = g′(y0) = 0. Because at least one of f ′, g′ is a nonzero polynomial, there are only
finitely many such y0; let Z denote the finite set of such y0.

Now consider any point y1 ∈ A1 rZ, so that at least one of f ′(y1), g′(y1) is nonzero. The
above argument shows that the common zero x1 of

f(x)− f(y1)

x− y1

,
g(x)− g(y1)

x− y1

must satisfy x1 6= y1. Then the denominator x1−y1 is nonzero, and hence both f(x1) = f(y1)
and g(x1) = g(y1), i.e. we have (f(x1), g(x1)) = (f(y1), g(y1)) but x1 6= y1. This holds for all
y1 ∈ A1 r Z, whence the failure of almost injectivity.

(ii) Conversely, suppose that R(y) is nonzero in k[y]. For a point y0 with R(y0) 6= 0, an
application of [KT8, Lemma 3.1] as in (i) shows that there are no x0 which are common
zeroes of

f(x)− f(y0)

x− y0

,
g(x)− g(y0)

x− y0

.

In particular, there are no x0 6= y0 which are common zeroes, which is to say that there
are no x0 6= y0 with both f(x0) = f(y0) and g(x0) = g(y0). Thus, if R(y0) 6= 0, then
(f(x), g(x)) = (f(y0), g(y0)) implies x = y0. Since R(y) has only finitely many zeroes, almost
injectivity follows. �
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Corollary 12.4.2. Let k/Fp be a finite extension, f, g ∈ k[x] of degrees 1 ≤ n < m,
p - nm. Consider the local system F(k, f, g) on (A1 × Gm)/k whose trace function is given
as follows: for L/k a finite extension, and (s, t) ∈ L× L×,

Trace(Frob(s,t),L|F(k, f, g)) = −
∑
x∈L

ψL(sf(x) + tg(x)).

Then F(k, f, g) is geometrically irreducible if and only if the resultant Resx(∆f ,∆g) ∈ k[y] is
nonzero, i.e., if and only if the map x 7→ (f(x), g(x)) from A1 to A2 is almost injective.

Proof. The empirical M1,1 over a finite extension Fq/k is

1

q(q − 1)

∑
s∈L,t∈L×

1

q

∑
x,y∈L

ψL(s(f(x)− f(y)) + t(g(x)− g(y)).

This “missing” sum over s ∈ L, t = 0 is

1

q(q − 1)

∑
s∈L

1

q

∑
x,y∈L

ψL(s(f(x)− f(y)) =
#{(x, y) ∈ F2

q | f(x) = f(y)}
q(q − 1)

is O(1/q), simply because f(x) = f(y) is a curve, so has O(q) points over Fq. This missing
term does not alter the large L limit. So M1,1 is the large L limit of

1

q(q − 1)

∑
s,t∈L

1

q

∑
x,y∈L

ψL(s(f(x)−f(y))+t(g(x)−g(y)) =
#{(x, y) ∈ F2

q | f(x) = f(y), g(x) = g(y)}
(q − 1)

.

The solutions with x = y are q in number. The others are among the common zeroes of ∆f

and ∆g, This set of common zeroes over k is finite if and only if the resultant does not vanish
identically. �

In view of the previous Lemma 12.4.1, we now investigate some situations in which we
can show the resultant R(y) in (12.4.1.1) is nonzero.

Lemma 12.4.3. Suppose that f, g are both monic of strictly positive degrees m,n, and that
(f ′(x), g′(x)) 6= (0, 0) in k[x]2. If k has characteristic p > 0, suppose p - mn. Suppose ∆f is
absolutely irreducible in k[x, y], and deg(f) - deg(g). Then R(y) as defined in (12.4.1.1) is
nonzero in k[y].

Proof. It suffices to treat the case when k is algebraically closed. If R(y) vanishes
identically, then for every y0, there exists an x0 such that (x0, y0) is a zero of both ∆f and
∆g. In other words, the vanishing of R(y) implies that the two loci ∆f = 0 and ∆g = 0 have
infinite intersection.

Since ∆f is absolutely irreducible, ∆f = 0 is a geometrically irreducible curve. So it
suffices to show that the restriction of ∆g to this curve is a nonzero function, which is to say
that ∆g is not divisible by ∆f . If m > n, this is obvious, because ∆f has larger degree than
∆g.

If m < n, it suffices to observe that the highest degree term of ∆f does not divide the
highest degree term of ∆g. Indeed, the highest degree term of ∆f is the product∏

16=ζ∈µm(k)

(x− ζy),
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while the highest degree term of ∆g is the product∏
16=ζ∈µn(k)

(x− ζy).

Since m = deg(f) - deg(g) = n, m > 1 and no primitive mth root of unity lies in µn(k). �

We now give some cases where ∆f is absolutely irreducible.

Lemma 12.4.4. For a, b ∈ k× and an integer n ≥ 2 invertible in k, the polynomial
f(x) := ax+ bxn has ∆f absolutely irreducible.

Proof. We reduce to the case when k is algebraically closed and b = 1. For f(x) :=
ax+ xn, we have

∆f = a+
∏

16=ζ∈µn(k)

(x− ζy).

So it suffices to show that the curve in P2 defined by the vanishing of the homogenous form
in x, y, z given by

zn−1 + (1/a)
∏

1 6=ζ∈µn(k)

(x− ζy)

is absolutely irreducible (for then the dense open set where z is invertible is the locus ∆f = 0).
This is a monic polynomial in z, with coefficients in the unique factorization domain k[x, y],
so any factor of it is itself monic in z with coefficients in k[x, y]. Hence, it suffices to show
that after the specialization (x, y) 7→ (x, 1), the polynomial

zn−1 + (1/a)
∏

16=ζ∈µn(k)

(x− ζ)

is absolutely irreducible in k[x, z]. But this is clear, because as a polynomial in z with
coefficients in k[x], it is Eisenstein for any one of the linear factors x− ζ. �

Here is a variant of Lemma 12.4.4.

Lemma 12.4.5. Let q be a power of a prime p, k = k a field of characteristic p, a ∈ k×,
0 ≤ n1 < n2 < . . . < nr a sequence of integers, A1, . . . , Ar a sequence of elements of k×, and

f(x) = ax+
r∑
i=1

Aix
1+qni .

Suppose that either q is odd, or that q is even and each ni is odd. Then ∆f is absolutely
irreducible.

Proof. Here ∆f is the polynomial

a+
r∑
i=1

Ai
∏

1 6=ζ∈k, ζ1+qni=1

(x− ζy).
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Just as in the proof of the preceding lemma 12.4.4, it suffices to show that the homogenous
form in x, y, z given by

azq
nr

+
r∑
i=1

zq
nr−qniAi

∏
16=ζ∈k, ζ1+qni=1

(x− ζy)

is absolutely irreducible in k[x, y, z]. This polynomial is monic in z, so any factor of it will
be monic in z, with coefficients in k[x, y]. Hence, it suffices to show that after specializing
y 7→ 1, the resulting polynomial

azq
nr

+
r∑
i=1

zq
nr−qniAi

∏
16=ζ∈k, ζ1+qni=1

(x− ζ)

in k[x][z] is irreducible.
When q is odd, each each 1 + qni is even, so we have an Eisenstein polynomial for the

linear factor x+ 1.
When q is even, and each power ni is odd, each 1 + qni is divisible by 1 + q. So for any

nontrivial ζ ∈ µ1+q(k), we have an Eisenstein polynomial for the linear factor x− ζ. �

Example 12.4.6. (i) Trivially, if f(x) = f1(v(x)) and g(x) = g1(v(x)) for some f1, g1, v ∈
k[x] and deg(v) ≥ 2, then the map x 7→ (f(x), g(x)) is not almost injective.

(ii) Assume f(x) = axm ∈ k[x] is a monomial of degree m ≥ 1, and g(x) =
∑n

i=0 bix
i ∈ k[x]

is such that bi0 6= 0 for some i0 coprime to m. Then the map F : x 7→ (f(x), g(x)) is
almost injective. Indeed, suppose F (x) = F (y) for some x 6= y. Then x 6= 0 and y = εx
for some mth root of unity ε ∈ k. Now

0 = g(y)− g(x) =
n∑
i=0

bi(ε
i − 1)xi.

Since bi0(ε
i0 − 1) 6= 0, this equation in x can have only finitely many solutions. Thus F

can fail to be injective only at finitely many points x.
(iii) Assume that f(x) = ax+bxm with a, b ∈ k×, m ≥ 2 coprime to p = char(k), g(x) ∈ k[x]

of positive degree n coprime to p, and m - n. Then the map F : x 7→ (f(x), g(x)) is
almost injective. Indeed, ∆f is absolutely irreducible by Lemma 12.4.4, and the claim
then follows from Lemma 12.4.3.

Below is a somewhat different way to test almost-injectivity using resultants.

Lemma 12.4.7. Let k be an algebraically closed field of characteristic p ≥ 0, and let

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ k[x].

Then the question of whether the map F (x) = (f(x), g(x)) : A1 → A2 is almost injective can
be decided as follows.

(i) F is almost injective if and only if so is x 7→ (f(x) − a0, g(x) − b0). Hence we may
assume that f(x) =

∑m
i=r aix

i with 1 ≤ r ≤ m, aram 6= 0, and g(x) =
∑n

i=s bjx
j with

1 ≤ s ≤ n, bsbn 6= 0.
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(ii) Suppose p > 0 and ai = 0 whenever p - i, so that f(x) = f1(x)p where f1(x) =∑
0≤i≤m/p a

1/p
pi x

i. Then F is almost injective if and only if so is x 7→ (f1(x), g(x)).
Hence, regardless of p = 0 or p > 0, we may assume that there is some i0 with ai0i0 6= 0
and there is some j0 with bj0j0 6= 0.

(iii) Assume f and g are as in the conclusions of (i) and (ii), and set

f̃(x, u) :=
f(ux)− f(x)

xr(u− 1)
, g̃(x, u) =

g(ux)− g(x)

xs(u− 1)
.

Then f̃(x, u), g̃(x, u) ∈ k[x, u]; let R̃(x) denotes the resultant Res(f̃ , g̃) of two polynomi-
als in the variable u with coefficients in k[x]. Then F is almost injective if and only if
R̃(x) is not identically zero.

Proof. (i) is obvious as the translation z 7→ z − a on A1 is bijective.

(ii) follows since the Frobenius map z 7→ zp on A1 is bijective.

(iii) Note that

f̃(x, u) =
m∑
i=r

ai
ui − 1

u− 1
xi−r ∈ k[x, u],

and similarly

g̃(x, u) =
n∑
j=s

bj
uj − 1

u− 1
xj−s ∈ k[x, u].

By (ii), ai0i0 6= 0 for some r ≤ i0 ≤ n. Hence f̃(x, 1) =
∑m

i=r aiix
i−r is a nonzero polynomial

in x and so its zero locus is a finite set Z.
Suppose x ∈ k r (Z ∪ {0}) is such that R̃(x) 6= 0. We claim that F (x) = F (y) implies

x = y. If not, then since x 6= 0, we can write y = ux for some 1 6= u ∈ k. Then
F (x) = F (ux) implies that f̃(x, u) = 0 = g̃(x, u). Thus f̃ and g̃ have a common zero
at u, and so R̃(x) = 0, a contradiction. This argument shows that if R̃(x) 6≡ 0, then aside
from Z ∪ {0} ∪ {x : R̃(x) = 0}, F is injective, and hence it is almost injective on A1.

Suppose x ∈ k r (Z ∪ {0}) is such that R̃(x) = 0. We claim that F (x) = F (y) for some

y 6= x. Indeed, R̃(x) = 0 implies that f̃ and g̃ have a common zero at u. Now we have

f̃(x, u) = 0 = g̃(x, u), and so F (x) = F (ux). Note that f̃(x, 1) 6= 0 since x /∈ Z, so u 6= 1.
Since x 6= 0 and u 6= 1, ux 6= x, as desired. This argument shows that if R̃(x) ≡ 0, then
aside from Z ∪ {0}, F is at least two-to-one, and hence it is not almost injective on A1. �

We now recall the notion of a weakly superMorse polynomial f(x) ∈ k[x], cf. [Ka-ACT,
5.5]. We require the following three conditions.

(WSM1) n := deg(f) is invertible in k, and n ≥ 2.
(WSM2) The derivative f ′(x) has n− 1 distinct zeroes in k.
(WSM3) f separates the zeroes of f ′, i.e., if f ′(α) = f ′(β) = 0 and f(α) = f(β), then α = β.

Remark 12.4.8. The condition (WSM2) forces the characteristic p 6= 2, since (WSM2)
means precisely that (WSM1) holds and that gcd(f ′, f ′′) = 1, while f ′′ vanishes in charac-
teristic 2. When p - n(n − 1) and n ≥ 2, the polynomial xn + ax, for any a 6= 0, is weakly
superMorse. When n ≥ 3 is odd and p - n(n − 2), the polynomial xn + ax2, for any a 6= 0,
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is weakly superMorse. And for any f whose degree is prime to p, and for which f ′′ is not
identically zero, then f(x) +ax is weakly superMorse for all but at most finitely many a ∈ k,
cf. [Ka-ACT, 5.15].

We have the following result, which already appears in [BSD, Lemma 3].

Lemma 12.4.9. Suppose f(x) is weakly superMorse of degree n. Then the sheaf F :=
f?(Q`)/Q` on A1, lisse outside the critical values of f , is geometrically irreducible with geo-
metric monodromy group Sn in its deleted permutation representation.

Proof. Because deg(f) is prime to p, F is tame at∞, cf. [Ka-ACT, 5.5.4], from which
the result follows just as in the proof of [Ka-ESDE, 7.10.2.3]. �

Lemma 12.4.10. Suppose f is weakly superMorse, in k[x] for a finite field k. Then ∆f is
absolutely irreducible in k[x, y].

Proof. By Lemma 12.4.9, the sheaf F := f?(Q`)/Q` is geometrically irreducible. The
restriction to Gm of its Fourier transform H is geometrically isomorphic to the lisse sheaf on
Gm/k whose trace function is given as follows: for L/k a finite extension, and t ∈ L×,

Trace(Frobt,L|H) =
1

Gauss(ψL, χ2,L)

∑
x∈L

ψL(tf(x)).

To see this, write the raw sum as∑
u∈L

ψL(tu)#{x ∈ L : f(x) = u},

which is equal to the sum ∑
u∈L

ψL(tu)(#{x ∈ L : f(x) = u} − 1),

simply because the term being subtracted is, for each t 6= 0, the sum
∑

u∈L ψL(tu) = 0. This
sheaf H is geometrically irreducible, hence its M1,1 = 1. Its empirical M1,1 is then the sum

1

(#L)(#L− 1)

∑
t∈L×

∑
x,y∈L

ψL(t(f(x)− f(y))

The “missing term” for t = 0 is

(#L)2

(#L)(#L− 1)
= 1 +O(1/#L).

Thus 2 = 1 +M1,1 is the large L limit of

1

(#L)(#L− 1)

∑
t∈L

∑
x,y∈L

ψL(t(f(x)− f(y)) =
1

(#L− 1)
#{(x, y) ∈ L2 | f(x) = f(y)}.

Thus the polynomial f(x) − f(y) is, geometrically, the product of powers of two distinct
geometrically irreducible factors, one of which is visibly x− y. In the factorization

f(x)− f(y) = (x− y)∆f ,
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we must first show that ∆f is not divisible by x − y, and second that ∆f is not a proper
power. But the highest degree term of ∆f is a product of linear factors, none of which is
x− y, so x− y does not divide ∆f . As the highest degree term of ∆f is a product of pairwise
distinct linear factors, the highest degeree term is not a proper power, and hence ∆f is not
a proper power. �

We next recall some basic facts about Deligne polynomials. They arise naturally here,
as follows. Given a polynomial f(x) ∈ k[x] whose degree d is invertible in k, the polynomial
f(x) + f(y) − f(z) − f(w) is a Deligne polynomial in four variables, and the polynomial
f(x) + f(y)− f(z) is a Deligne polynomial in three variables,

Let k be a field, n ≥ 2 an integer, and F (x1, . . . , xn) ∈ k[x1, . . . , xn] a polynomial of
degree d ≥ 1, say F = Fd+Fd−1 + . . .+F0 with Fi homogeneous of degree i. Following [De1,
8.4], we say that F is a Deligne polynomial if its degree d is invertible in k and if the locus
Fd = 0 in Pn−1 is a non-singular hypersurface.

Lemma 12.4.11. Suppose F is a Deligne polynomial in n ≥ 3 variables. Then we have
the following results.

(i) The polynomial F ∈ k[x1, . . . , xn] is geometrically irreducible (i.e., for L any alge-
braically closed extension of k, F is irreducible in L[x1, . . . , xn]).

(ii) The affine hypersurface H defined by F = 0 in An, and its projective closure H0 in
Pn, defined by the vanishing of

FT := Fd + TFd−1 + . . .+ T dF0

each have at worst isolated singularities.
(iii) If k is finite, then the for Fq/k a finite extension we have

#H(Fq) = qn−1 +O(qn/2).

Proof. We first prove (i). For this, we may extend scalars, and reduce to the case when
k is algebraically closed. If F were reducible, say F = AB, with deg(A) = a, deg(B) = b,
then their higest degree terms give a factorization AaBb = Fd. But Fd is irreducible, because
it defines a smooth hypersurface in Pn−1. Recall why this is so. Any hypersurface Z in Pr
with r ≥ 2 is connected (“weak Lefschetz”: because Pr r Z is smooth and affine, we have
H i
c(PrrZ,Q`) = 0 for i < r, hence from the long exact excision sequence with Q`-coefficients

. . .→ H i
c(Pr r Z)→ H i(Pr)→ H i(Z)→ H i+1

c (Pr r Z)→ . . .

In particular, as H i
c(Pr r Z) = 0 for i = 0, 1 we get H0(Pr) ∼= H0(Z) so long as r ≥ 2,

hence H0(Z) has dimension one, i.e., Z is connected.) If Z is smooth in addition, then it is
irreducible (because smooth and connected).

To prove (ii), we argue as follows. We tack on a new variable T , and consider the
homogenous form

FT := Fd + TFd−1 + . . .+ T dF0

in n + 1 variables. We denote by H0 the projective hypersurface FT = 0 in Pn (with
X1, . . . , Xn, T as homogeneous coordinates). Then the affine hypersurface H is the open
set H0[1/T ] of H0, so it suffices to show that H0 has at worst isolated singularities. The key
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observation is that H0 ∩ (T = 0) is the smooth hypersurface Fd = 0 in Pn−1. On the one
hand, we have

Sing(H0) ∩ (T = 0) ⊂ Sing(H0 ∩ (T = 0)).

[This is the affine statement that if a polynomial f(y1, . . . , yn) only starts in degree ≥ 2
(meaning that the origin is a singular point of f = 0), then after putting yn to 0, the
resulting polynomial f(y1, . . . , yn−1, 0) in n − 1 variables only starts in degree ≥ 2.] On the
other hand, for any closed subscheme Z of Pn, we have [Hart, Prop. 7.2]

dim(Z ∩ (T = 0)) ≥ dim(Z)− 1.

Applied to Z := Sing(H0), we see that if Sing(H0) had dimension≥ 1, then Sing(H0∩(T = 0))
would be non-empty, a contradiction.

To prove (iiii), we argue as follows. Because H0 has at worst isolated singularities, one
knows [Hoo, Thm. 1] that

#H0(Fq) = #Pn−1(Fq) +O(qn/2),

while by Deligne one knows that the nonsingular hypersurface H0 ∩ (T = 0) has

#(H0 ∩ (T = 0))(Fq) = #Pn−2(Fq) +O(qn/2−1).

Subtracting, we get the the assertion (iii). �

Lemma 12.4.12. Suppose F and G are Deligne polynomials in n ≥ 3 variables over k
which are not multiple of each other. For the affine hypersurfaces H and J in An defined by
F = 0 and G = 0, we have dim(H ∩ J) ≤ n− 2.

Proof. If H ∩ J is empty, there is nothing to prove. If not, then dim(H ∩ J) ≥ n − 2,
cf. [Hart, Prop. 7.1]. On the other hand, it is obvious that dim(H ∩ J) ≤ dim(H) = n− 1.
If H ∩ J had an irreducible component of dimension n− 1, that component must be H, and
it must also be J , nonsense. �

Corollary 12.4.13. Suppose F and G are Deligne polynomials of different degrees in
n ≥ 3 variables over a finite field k. For α, β ∈ k, define the hypersurfaces Hα of equation
F = α and Jβ of equation G = β. Then for Fq/k a finite extension, we have #(Hα(Fq) ∩
Jβ(Fq)) = O(qn−2).

Proof. Each of F − α and G − β is a Deligne polynomial. Because their degrees are
different, they are not k× proportional, so the result is immediate from Lemma 12.4.12 and
Lang–Weil. �

With these preliminaries established, we now give the main result of this section.

Theorem 12.4.14. Let p be a a prime, k/Fp a finite extension, and let

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ k[x]

be polynomials of degree m, respectively n > m, with p - mn. Consider the local system F on
A1 ×Gm with the following trace function. For L/k a finite extension, and (s, t) ∈ L× L×,



362 12. LOCAL SYSTEMS WITH NON-MONOMIAL COEFFICIENTS

the trace function of F is

(s, t) 7→ −
∑
x∈L

ψL
(
sf(x) + tg(x)

)
.

Assume that the map x 7→ (f(x), g(x)) is almost injective. Then M2,2(F) + 1 is equal to the
number M of distinct geometrically irreducible factors of the polynomial

R(x, y, z) := Resw
(
f(w)− (f(x) + f(y)− f(z)), g(w)− (g(x) + g(y)− g(z))

)
.

Proof. Let Σf (x, y, z, w) := f(x) + f(y)− f(z)− f(w) and similarly for Σg. As in the
proof of Theorem 12.1.3, we may assume that k contains all roots of unity of order dividing
a sufficiently divisible integer, and then M2,2 is the large L limit of the sums

1

(#L)3(#L− 1)

∑
s∈L, t∈L×

∑
x,y,z,w∈L

ψL
(
sΣf + tΣg

)
=

1

(#L)3(#L− 1)

∑
x,y,z,w∈L

(∑
s∈L

ψL(sΣf )
)(∑
t∈L×

ψL(tΣg)
)

=
1

(#L)2(#L− 1)

∑
x,y,z,w∈L, Σf=0

(∑
t∈L

ψL(tΣg)− 1
)

The “correction term”

1

(#L)2(#L− 1)
#{(x, y, z, w) ∈ L4 | Σf = 0},

is 1 + o(1), by part (3) of Lemma 12.4.11. Hence M2,2 + 1 is the large L limit of

1

(#L)(#L− 1)
#{(x, y, z, w) ∈ L4 | Σf = 0 = Σg}.

Now we count the points P = (x0, y0, z0, w0) ∈ L4 that belong to Σf = 0 = Σg, i.e., solutions
of

(12.4.14.1) f(w)− (f(x) + f(y)− f(z)) = 0, g(w)− (g(x) + g(y)− g(z)) = 0.

First, being a solution means that (x0, y0, z0) is in the zero locus of R(x, y, z). Once (x0, y0, z0)
is a zero of R(x, y, z), this means the two polynomials in w

f(w)− (f(x0) + f(y0)− f(z0)), g(w)− (g(x0) + g(y0)− g(z0))

have a common zero. Because the map w 7→ (f(w), g(w)) is injective on A1 except possibly
at w1, . . . , wN , these two equations determine w, so long as w is not among w1, . . . , wN . For
each of these exceptional wi, the number of solutions in L3 of

f(wi) = f(x) + f(y)− f(z), g(wi) = g(x) + f(y − g(z)

is O(#L), by Corollary 12.4.13. Thus up to an O(#L) error, then number of L points in
Σf = 0 = Σg is the number of zeroes in L3 of the polynomial R(x, y, z).

Notice that the polynomial R(x, y, z) is nonzero. For if R(x, y, z) = 0 identically, then
the locus Σf = Σg = 0 maps onto the A3 of (x, y, z), so has dimension ≥ 3, contradicting
Lemma 12.4.12, according to which the locus Σf = Σg = 0 has dimension ≤ 2.



12.5. SOME APPLICATIONS OF ALMOST INJECTIVITY 363

At the expense of passing to a finite extension, we may assume that all irreducible factors
of R(x, y, z) are geometrically irreducible. Then for M the number of distinct geometrically
irreducible factors of R(x, y, z), Lang–Weil gives the number of L-points as

M(#L)2 +O((#L)3/2),

completing the proof. �

12.5. Some applications of almost injectivity

Recall [Zs] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) 6= (2, 6), (2k − 1, 2), then
an−1 has a primitive prime divisor, that is, a prime divisor ` that does not divide

∏n−1
i=1 (ai−1);

write ` = ppd(a, n) in this case. Furthermore, if in addition a, n ≥ 3 and (a, n) 6= (3, 4),
(3, 6), (5, 6), then an−1 admits a large primitive prime divisor, i.e. a primitive prime divisor
` where either ` > n + 1 (whence ` ≥ 2n + 1), or `2|(an − 1), see [F2]. We will need the
following recognition theorem.

Theorem 12.5.1. [KT2, Theorem 4.6] Let q = pf be a power of an odd prime p and let
d ≥ 2. If d = 2, suppose that pdf−1 admits a primitive prime divisor ` ≥ 5 with (pdf−1)` ≥ 7.
If d ≥ 3, suppose in addition that (p, df) 6= (3, 4), (3, 6), (5, 6), so that pdf − 1 admits a large
primitive prime divisor `. In either case, we choose such an ` to maximize the `-part of
pdf − 1. Let W = Fdq and let G be a subgroup of GL(W ) ∼= GLd(q) of order divisible by the

`-part Q := (qd − 1)` of qd − 1. Then either L := O`′(G) is a cyclic `-group of order Q, or
there is a divisor j < d of d such that one of the following statements holds.

(i) L = SL(Wj) ∼= SLd/j(q
j), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional vector

space over Fqj .
(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a non-

degenerate symplectic form, and L = Sp(Wj) ∼= Spd/j(q
j).

(iii) 2|jf , 2 - d/j, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with

a non-degenerate Hermitian form, and L = SU(Wj) ∼= SUd/j(q
j/2).

(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with
a non-degenerate quadratic form of type −, and L = Ω(Wj) ∼= Ω−d/j(q

j).

(v) (p, df, L/Z(L)) = (3, 18,PSL2(37)), (17, 6,PSL2(13)).

Theorem 12.5.2. Let q = pf be a power of an odd prime p, and let n > m ≥ 1 be integers
with m > n/2 and gcd(m,n) = 1, so that there exist primitive prime divisors ` = ppd(p, 2nf)
and `′ = ppd(p, 2mf). If (p, 2nf) 6= (3, 6), (5, 6), assume ` is chosen to be a large primitive
prime divisor of p2nf − 1. Let W = F2n

q and let G be a subgroup of Γ := Sp(W ) ∼= Sp2n(q)

of order divisible by Q`′, where Q := (q2n − 1)` is the `-part of q2n − 1. Then one of the
following statements holds.

(i) G = Sp(W ).
(ii) 2 - mn and SU(W ) C G ≤ GU(W ) o C2, where W viewed as an n-dimensional vector

space over Fq2 endowed with a non-degenerate Hermitian form.

Proof. (a) The conditions on m,n imply that m ≥ 2 and n ≥ 3. Assume furthermore
that (p, 2nf) = (3, 6) or (5, 6). Then (n.m) = (3, 2) and q = p is 3, respectively 5. Our
subgroup G now has order divisible by 35, respectively by 91. Inspecting the list of maximal
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subgroups of PSp6(p) [BHR, Tables 8.28, 8.29], we conclude that GZ(Γ) = Γ, and hence
G = Γ. Hence, in what follows, we may assume that

(p, 2nf) 6= (3, 6), (5, 6)

and thus ` is a large primitive prime divisor of p2nf − 1. Assume now that (p, 2nf) = (17, 6).
Then (n,m) = (3, 2), ` = 13, and `′ = 5 or 29. Again using the list of maximal subgroups
of PSp6(p) [BHR, Tables 8.28, 8.29], we see that the condition |G| is divisible by ``′ forces
G = Γ in this case. So we may assume

(p, 2nf) 6= (17, 6)

and apply Theorem 12.5.1 (with d = 2n) to L = O`′(G).
Suppose L = 〈g〉 is cyclic of order Q. Then L is a Sylow `-subgroup R of Γ, and acts

irreducibly on W (by the choice of `). Thus, by Lemma 8.3.2(i), W becomes an 1-dimensional
R-representation over EndR(W ), which implies that EndR(W ) ∼= Fq2n and so CGL(W )(R) has
order dividing q2n − 1. In fact, CΓ(R) already contains a maximal torus of order qn + 1, so
we must have that

(12.5.2.1) |CΓ(R)| = qn + 1.

By looking at the spectrum of g on W , we see that the action of NΓ(L) can induce only a
subgroup of order dividing 2n of Aut(L). Hence |G| divides 2n(qn + 1), and this contradicts
the assumption that `′ divides |G|, since

(12.5.2.2) `′ = ppd(p, 2mf) ≥ 2mf + 1 > nf > 2.

Suppose now that (p, 2nf, L/Z(L)) = (3, 18,PSL2(37)). Since the smallest dimension of
nontrivial projective representations of PSL2(37) in characteristic 3 is 18, we must have that
n = 9 and q = 3. It follows that m ∈ {5, 7, 8}, and so `′ ∈ {17, 61, 73, 193, 547}. In particular,
`′ does not divide |Aut(L)|, so any element h ∈ G of order `′ must centralize L. But L acts
absolutely irreducibly on W = F18

3 , so h ∈ Sp(W ) must be scalar and hence of order ≤ 2,
a contradiction. We have therefore shown that L satisfies one of the conclusions (i)–(iv) of
Theorem 12.5.1.

(b) Recall that GB L contains an element h of order `′. We now show that

(12.5.2.3) `′ divides |L|.

First, in (12.5.2.1) we have shown that the centralizer of any Sylow `-subgroup R of Γ has
order qn + 1, which is coprime to `′. The same is true for CΓ(L), so h must act nontrivially
on L. If `′ does not divide |L|, then h induces a coprime automorphism of L, a quasisimple
group of Lie type over Fpjf . Using [GLS, Theorem 2.5.12] we then have `′ divides jf , and
so `′|2nf , which is impossible because of (12.5.2.2).

Next suppose that we are in case (i) of Theorem 12.5.1. Then 2n/j ≥ 3, and L ∼=
SL2n/j(q

j) contains a maximal torus of order

q2n − 1

qj − 1
≥ q2n − 1

q2n/3 − 1
> qn + 1

which centralizes a Sylow `-subgroup R of L. But this contradicts (12.5.2.1).
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Suppose now that we are in case (ii) of Theorem 12.5.1. Then j|n and L ∼= Sp2n/j(q
j).

Hence (12.5.2.3) implies that there is some integer 1 ≤ i ≤ n/j such that `′ divides q2ij − 1.
The primitivity of `′ then implies that 2mf |2ijf , and so m|ij ≤ n < 2m. It follows that
ij = m, and thus j divides both m and n. But gcd(m,n) = 1, so j = 1. We have shown that
Γ = Sp2n(q) ≥ GB L ∼= Sp2n(q), whence G = Γ, as stated in conclusion (i).

Suppose next that we are in case (iv) of Theorem 12.5.1. Then j|n, j ≤ n/2, and
L ∼= Ω−2n/j(q

j). Using (12.5.2.3) and arguing as in the preceding case, we obtain that j = 1.

It follows that
Ω−2n(q) ∼= L ≤ Γ = Sp2n(q).

Moreover, as stated in Theorem 12.5.1(iv), W = F2n
q is a natural, hence absolutely irreducible,

L-module endowed with a non-degenerate quadratic form of type −. At the same time, L, as
a subgroup of Γ = Sp(W ), fixes a non-degenerate symplectic form on W . This is impossible
since p > 2.

Finally, assume that we are in case (iii) of Theorem 12.5.1. Then j|2n, but 2n/j is odd
and at least 3. So j = 2j0 with j0|n, and n/j0 is still odd and at least 3. Furthermore,
L ∼= SUn/j0(q

j0). Now (12.5.2.3) implies that there is some integer 1 ≤ i ≤ n/j0 such that `′

divides qij0−(−1)i. The primitivity of `′ then implies that 2mf |2ij0f , and som|ij0 ≤ n < 2m.
It follows that ij0 = m, and thus j divides both m and n. But gcd(m,n) = 1, so j0 = 1, n is
odd, andm = i. If 2|i in addition, then `′ divides qi−1 = qm−1, contrary to `′ = ppd(p, 2mf).
So m is odd. We have shown that 2 - mn, and Γ = Sp2n(q) ≥ G B L ∼= SUn(q). Moreover,
as stated in Theorem 12.5.1(iii), W viewed as an n-dimensional space over Fq2 is a natural
module for L. Since NΓ(L) ∼= GU(W ) o C2, we arrive at conclusion (ii). �

Remark 12.5.3. Note that Theorem 12.5.2 does not hold without the assumption that
m > n/2. For instance, the subgroup Sp8(q2) of Sp16(q) has order divisible by q12− 1, giving
a counterexample for (n,m) = (8, 3) or (8, 1). Furthermore, if m = n/2, then (n,m) = (2, 1)
(as gcd(m,n) = 1), in which case Sp2(q2) is a counterexample. More generally, if gcd(m,n) =
j > 1 then Sp2n/j(q

j) would be a counterexample.

Now we are in position to determine, for the first time, the geometric monodromy groups
of a large family of two-parameters local systems with non-monomial coefficients for both
parameters:

Theorem 12.5.4. Let q = pν be a power of an odd prime p, k/Fp a finite extension,
a, b ∈ k, 0 ≤ n1 < n2 < . . . < nr, 0 ≤ m1 < . . . < mu two sequences of integers, A1, . . . , Ar
and B1, . . . , Bu two sequences of elements of k×, and

f(x) = ax+
r∑
i=1

Aix
1+qni , g(x) = bx+

u∑
j=1

Bjx
1+qmj .

Assume that n := nr ≥ 1 and m := mu ≥ 1 are coprime, 2|mn, and n > m > n/2. Consider
the local system F = F(k, f, g) of rank qn on (Gm ×A1)/k, whose trace function is given as
follows: for L/k a finite extension, and (s, t) ∈ L× × L,

Trace(Frob(s,t),L|F(k, f, g)) = −
∑
x∈L

ψL(sf(x) + tg(x)).

Then the following statements hold for the geometric monodromy group G = Ggeom of F .
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(i) If (a, b) 6= (0, 0), then G = p1+2nν
+ o Sp2n(q); in particular, F has M2,2 = 2.

(ii) If (a, b) = (0, 0), then G = Sp2n(q) in its total Weil representation.

Proof. (a) Consider the local system H] whose trace function is given as follows: for
any finite extension L/k, the trace at (s0, s1, . . . , sr, t0, t1, . . . , tu) ∈ L× × Lt+u+1 is given by

−
∑
x∈L

ψL
(
s0x+

r∑
i=1

six
1+qni + t0x+

u∑
j=1

tjx
1+qmj

)
.

By Corollary 11.2.5(i), H] has geometric monodromy group

H = p1+2nν
+ o Sp2n(q) = E o Γ,

where E = p1+2nν
+ and Γ = Sp2n(q). Since F is obtained from H] by a suitable specialization,

we have G ≤ H. Moreover, H has M2,2 = 2. Hence, in the case (a, b) 6= (0, 0), it suffices to
prove that G = H.

(b) Assume that (a, b) 6= (0, 0). If a 6= 0 then ∆f is absolutely irreducible by Lemma
12.4.5. Similarly, if b 6= 0 then ∆g is absolutely irreducible. Hence, in this case at least one
of ∆f , ∆g is absolutely irreducible. Note that deg(f) = qn + 1 and deg(g) = qm + 1, with
gcd(m,n) = 1 and 2|mn. It follows that

gcd(deg(f), deg(g)) = 2

and so none of deg(f), deg(g) divides the other one. Hence f and g satisfy the hypothesis of
Lemma 12.4.3, and so R(y) as defined in (12.4.1.1) is nonzero in k[y]. In turn, this implies by
Lemma 12.4.1 that the map x 7→ (f(x), g(x) is almost injective, and hence F is irreducible
by Corollary 12.4.2. We have shown that G is an irreducible subgroup of H if (a, b) 6= (0, 0).

(c) Next, applying Lemma 12.3.11, we see that |G| is divisible by both qn + 1 and qm + 1.
Assume in addition that (a, b) = (0, 0). Applying Corollary 11.2.5(ii) to the specialization

s0 = t0 = 0 of H], we see that G is contained in the image of Sp2n(q) in its total Weil
representation. Applying Theorem 12.5.2 to G, we conclude that G = Sp2n(q), and the proof
of (ii) is completed.

In the rest of the proof we will assume that (a, b) 6= (0, 0). Then both qn + 1 and qm + 1
divide the order of EG/E, a subgroup of Γ = Sp2n(q). Applying Theorem 12.5.2 to EG/E,
we conclude that EG/E = Γ = H/E, and hence EG = H.

Now we note Z(E) ≤ Z(H), and work in EG/Z(E) = (E/Z(E))oΓ. Since Z(E)G/Z(E)
has order divisible by qn + 1, it acts irreducibly on E/Z(E). It follows that

Z(E)G ∩ E is either Z(E) or E.

In the former case, Z(E)G/Z(E) intersects E/Z(E) trivially but EG = H. In such a case,
Z(E)G/Z(E) is a complement to E/Z(E) in H/Z(E), whence Z(E)G/Z(E) ∼= H/E = Γ.
Thus Z(E)G/Z(E) is an extension of Z(E) ∼= Cp by Γ = Sp2n(q). As Γ is quasisimple and it
is the universal cover of PSp2N(q), we get (Z(E)G)(∞) ∼= Γ and thus Z(E)G ∼= Z(E)× Γ. In
particular, Z(E)G cannot have an irreducible representation of degree qn by [TZ1, Theorem
5.2]. Thus G cannot be irreducible on F , contrary to the conclusion of (b).

We have shown that Z(E)G ≥ E, and so Z(E)G = EG = H. Taking derived subgroups,
we have

[G,G] = [Z(E)G,Z(E)G] = [H,H] ≥ [E,E] = Z(E).



12.5. SOME APPLICATIONS OF ALMOST INJECTIVITY 367

Consequently, G = Z(E)G = H. �

The next result gives a p = 2 analogue of Theorem 12.5.4.

Theorem 12.5.5. Let q = 2ν ≥ 2, k/F2 a finite extension, a, b ∈ k, 1 ≤ n1 < n2 < . . . <
nr, 1 ≤ m1 < . . . < mu two sequences of integers, A1, . . . , Ar and B1, . . . , Bu two sequences
of elements of k×, and

f(x) = ax+
r∑
i=1

Aix
1+qni , g(x) = bx+

u∑
j=1

Bjx
1+qmj .

Assume that n := nr ≥ 1 and m := mu ≥ 1 are coprime, 2|mn, n > m, and nν ≥ 4.
Consider the local system F = F(k, f, g) of rank qn on (Gm × A1)/k, whose trace function
is given as follows: for L/k a finite extension and (s, t) ∈ L× × L,

Trace(Frob(s,t),L|F(k, f, g)) = −
∑
x∈L

ψL(sf(x) + tg(x)).

Then F has geometric monodromy group G = Ggeom = H◦ν = 21+2nν
− · Ω−2n(q), cf. (8.2.2.1).

Proof. Consider the local system H] whose trace function is given as follows: for any
finite extension L/k, the trace at (s0, s1, . . . , sr, t0, t1, . . . , tu) ∈ L× × Lt+u+1 is given by

−
∑
x∈L

ψL
(
s0x+

r∑
i=1

six
1+qni + t0x+

u∑
j=1

tjx
1+qmj

)
.

By Corollary 11.2.7, H] has geometric monodromy group

H = H◦ν = E · S = 21+2nν
− · Ω−2n(q),

where E = 21+2nν
− and S = Ω−2n(q). Since F is obtained from H] by a suitable specialization,

we have G ≤ H.

The hypothesis on n and m implies that gcd(qn + 1, qm + 1) = 1. Now, applying Lemmas
12.3.11 and 12.3.13, we see that |G| is divisible by all three integers qn + 1, qm + 1, and
qn − qm. Hence, EG/E is a subgroup of S = Ω−2n(q), of order divisible by

lcm(qn + 1, qm + 1, (qn−m − 1).

Applying Theorem 8.3.4 to EG/E, we obtain that EG/E = S, unless (n,m, q) = (5, 2, 2)
and L ∈ {A11,A12} for L := O11′(Ḡ) and Ḡ := EG/E ∼= G/(G ∩ E). In these exceptional
cases, by Lemma 12.3.11, G, and so Ḡ, admit an element g of order 25 + 1 = 33. Certainly,
the element g3 of order 11 is contained in L = O11′(Ḡ). But L does not have any element
of order 33, so g /∈ L. As L C Ḡ and |Out(L)| = 2, we conclude that 〈L, g〉 ∼= L × C3 is
a subgroup of S = Ω−10(2). The latter is however impossible, by an inspection of maximal
subgroups of Ω−10(2) [CCNPW].

We have shown that EG/E = S, and hence

EG = H.

Next we note Z(E) ≤ Z(H), and work in EG/Z(E) = (E/Z(E)) · S. Since Z(E)G/Z(E)
has order divisible by qn + 1 (and nν ≥ 4), it acts irreducibly on E/Z(E). It follows that

Z(E)G ∩ E is either Z(E) or E.
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In the former case, Z(E)G/Z(E) intersects E/Z(E) trivially but EG = H. In such a case,
Z(E)G/Z(E) is a complement to E/Z(E) in H/Z(E), whence Z(E)G/Z(E) ∼= H/E = S.
Thus Z(E)G/Z(E) is an extension of Z(E) ∼= C2 by Γ = Ω−2n(q). The hypothesis on m,n, q
implies that either n ≥ 4, or n = 3 but q ≥ 4. Hence Γ is simple and has trivial Schur
multiplier, see [KlL, Theorem 5.1.4]. It follows that (Z(E)G)(∞) ∼= S and thus Z(E)G ∼=
Z(E)× S. In particular, S embeds in H, and so admits a faithful complex representation Φ
of degree qn. If n ≥ 4, this however contradicts [TZ1, Theorem 1.1]. Hence n = 3, q ≥ 4,
and S ∼= SU4(q). Applying [TZ1, Theorem 4.1], we see that every nontrivial irreducible
constituents Φi of Φ is a Weil representation of degree d or d+ 1, where

d := (q4 − 1)/(q + 1).

Since 2d > q3 when q ≥ 4, we conclude that Φ has a unique nontrivial irreducible constituent,
say Φ1, and all others are trivial. As mentioned in the proof of Corollary 11.2.7, Φ is of
symplectic type. However, by [TZ1, Theorem 4.1], Φ1 is non-self-dual if it is of degree d,
whereas it is of quadratic type if it has degree d + 1 by Lemma 5.2 and Theorem 16.11 of
[KT7]. This is a contradiction in either case.

We have shown that Z(E)G ≥ E, and so

Z(E)G = EG = H.

Taking derived subgroups, we have

[G,G] = [Z(E)G,Z(E)G] = [H,H] ≥ [E,E] = Z(E).

Consequently, G = Z(E)G = H. �

Our next application of almost injectivity is concerned with the following local system

(12.5.5.1) F(p, n,m)

on (A1 ×Gm)/Fp, with 1 < n < m and p - nm, whose trace function is given as follows: for
L/Fp a finite extension, and (s, t) ∈ L× L×,

Trace
(
Frob(s,t),L|F(p, n,m)

)
= −

∑
x∈L

ψL
(
s(xn − x) + t(xm − x)

)
.

First we give an irreducibility criterion that is sometimes amenable to machine calculation.

Lemma 12.5.6. Let q be a power of a prime p, n ≥ 2 an integer, and f ∈ Fq[x1, . . . , xn]
a polynomial of total degree d ≥ 1. Then f is geometrically irreducible, i.e., irreducible in
Fq[x1, . . . , xn], if and only if it is irreducible in Fqd [x1, . . . , xn].

Proof. If f is reducible over Fq, it is not geometrically irreducible.
Suppose that f is irreducible over Fq, but that f is not geometrically irreducible. Choose

an irreducible factor g ∈ Fq[x1, . . . , xn] of f , scaled to have some coefficient 1. Denote by K
the field Fq(the coefficients of g). Then in K[x1, . . . , xn], we have g|f . Applying Gal(K/Fq)
to this divisibility, we see that gσ|f for every σ ∈ Gal(K/Fq). By the definition of K, we see
that the various gσ are pairwise distinct irreducible divisors of f ; none is a scalar multiple of
another, as all have a fixed coefficient 1. Then

∏
σ∈Gal(K/Fq) g

σ divides f . But this product

lies in Fq[x1, . . . , xn]. As f is irreducible over Fq, we have, up to an F×q factor, an equality of
f with this product. Thus d := deg(f) = deg(K/Fq) deg(g), hence K ⊂ Fqd , and f , being
reducible over K, is reducible over Fqd . �
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We first give a result which eliminates calculation when p is large compared to m.

Theorem 12.5.7. The following statements hold for the geometric monodromy group
Ggeom of the local system F(p, n,m) defined in (12.5.5.1).

(i) If p > 2m, and nm is odd, then Ggeom = Spm−1 (and hence M2,2 = 3).
(ii) If p > 2m, and m is even then Ggeom ≥ SLm−1 (and hence M2,2 = 2).
(iii) If p > 2m, m is odd, n is even, and gcd(n,m) = 1, then Ggeom ≥ SLm−1 (and hence

M2,2 = 2).

Proof. We first prove (i) and (ii). The specialization s 7→ 0 is the local system A whose
trace function is

t 7→ −
∑
x

ψ(t(xm − x)).

So Ggeom,A ≤ Ggeom,F is a subgroup. The further Kummer pullback [m]?A is the local system
B whose trace function is

t 7→ −
∑
x

ψ(tm(xm − x)),

which, after the change of variable x 7→ x/t for t 6= 0 becomes

t 7→ −
∑
x

ψ(xm − tx).

Thus Ggeom,B is a subgroup of Ggeom,F . One knows [Ka-MG, Theorem 19] that Ggeom,B =
Spm−1 if m is odd, is µp if m = 2, and is SLm−1 if m ≥ 4 is even. This proves (ii). If nm
is odd, then the original F(k, n,m) is symplectically self-dual, so its Ggeom ≤ Spm−1, but its
Ggeom contains that of B, which is Spm−1. This proves (i).

To prove (iii), we argue as follows. The specialization (s, t) 7→ (−t, t) is the local system
C whose trace function is

t 7→ −
∑
x

ψ(t(xm − xn)).

The Kummer pullback [m]?C is the local system D whose trace function is

t 7→ −
∑
x

ψ(tm(xm − xn)),

which after the change of variable x 7→ x/t for t nonzero becomes

t 7→ −
∑
x

ψ(xm − tm−nxn).

So far, we have Ggeom,D ≤ Ggeom,F . Now D is the Kummer [n − m]? pullback of the local
system E whose trace function is

t 7→ −
∑
x

ψ(xm − txn).

We now have Ggeom,D C Ggeom,E as a normal subgroup of finite index dividing the prime to
p part of m− n. Because gcd(n,m) = 1, one knows [KT6, Corollary 3.10(i)] that the local
system E is the Kummer [m]? pullback of the hypergeometric sheaf

H := Hsmall,m,n := Hyp(Char(m) r 1;Char(n) r 1).
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We next observe that H is primitive for p > 2m. Indeed, it cannot be Kummer induced
because gcd(n,m) = 1, and it cannot be Belyi induced because p− 1 does not divide m− n
(being too large), cf. [KT6, Proposition 5.15]. This sheaf H has wild part w = m− n, and
hence p > 2w + 1. By Theorem 2.4.4, we conclude that Ggeom,H is infinite. Therefore its
Kummer pullback E has Ggeom,E infinite. Then Ggeom,D is infinite, being a (normal) subgroup
of finite index in Ggeom,E . Then by Theorem 10.3.21, we find that Ggeom,D ≥ SLm−1. But
Ggeom,D ≤ Ggeom,F , so we are done. �

We now turn to the detailed examination of a few F(p, n,m).

Lemma 12.5.8. We have the following results.

(i) F(p, 3, 13) has M2,2 = 3 for all p 6= 3, 13, p ≤ 26.
(ii) F(p, 4, 7) has M2,2 = 2 for all p 6= 2, 7, p ≤ 14.

(iii) F(p, 2, 7) has M2,2 = 2 for all p 6= 2, 7, p ≤ 14.

Proof. In each case, we compute the relevant resultant R(y, z, w). In case (i), where
the representation is symplectic, we divide out the visible factors, and define

Rred := R/((z + w)(w − y)(z − y)).

Here the degree of Rred is nm− 3 = 36, and we use Magma to check the irreducibility of Rred

over Fp36 for the indicated p. In cases (ii) and (iii), where the representation has no visible
autoduality, we divide out the visible factors, and define

Rred := R/((w − y)(z − y)).

In case (i), the degee of Rred is nm− 2 = 26, and we use Magma to check the irreducibility
of Rred over Fp26 for the indicated p. In case (iii), the degree of Rred is nm− 2 = 12, we we
use Magma to check the irreducibility of Rred over Fp12 , for the indicated p. �

Theorem 12.5.9. We have the following results for the local system F(p, 3, 13) defined
in (12.5.5.1).

(i) For all p 6= 2, 3, 5, 13, F(p, 3, 13) has Ggeom = Sp12.
(ii) For p = 5, F(5, 3, 13) has Ggeom = Sp4(5).

(iii) For p = 2, F(2, 3, 13) has Ggeom = 2 ·G2(4).

Proof. The pullback of F(p, 3, 13) to Gm by (s, t) 7→ (−t, t) is the local system A on
Gm/Fp whose trace function is

t 7→ −
∑
x

ψ(t(x13 − x3)).

The further pullback of this local system A by t 7→ t13 is the local system B whose trace
function is, after the change of variable x 7→ x/t,

t 7→ −
∑
x

ψ(x13 − t10x3).

which is the t 7→ t10 pullback of the local system C with trace function

t 7→ −
∑
x

ψ(x13 − tx3).
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This last local system C has Ggeom,C = 2 ·G2(4) for p = 2, and has Ggeom,C = Sp4(5) for p = 5,
by Theorem 10.3.13(iv), and (i) with q = 5 and n = 1, m = 2.

We first prove (i). For p > 5, p 6= 13, Theorem 10.3.13(ii) shows that C has infinite Ggeom,
hence by Theorem 10.2.4 it has Ggeom,C = Sp12. In these cases, B is symplectic, so Ggeom,B ≤
Sp12, while Ggeom,BCGgeom,C is a normal subgroup of index dividing 10. Thus Ggeom,B = Sp12.
As B is a pullback of the symplectic F(p, 3, 13), we have Sp12 = Ggeom,B ≤ Ggeom,F ≤ Sp12.

We now prove (ii).
In the case p = 5, we have Ggeom,B C Ggeom,C = Sp4(5) of index dividing 2 (the prime to

5 part of 10). Since Sp4(5) is perfect, we have Ggeom,B = Sp4(5). But B was a pullback of
F(5, 3, 13), so we have the inclusion Sp4(5) ≤ Ggeom,F .

We continue with the case p = 5. The key fact here is that by Theorem 11.2.3(i) with
q = 5, the two parameter local system K on A2/F5 whose trace function is

(u, v) 7→ −
∑
x

ψ(x13 + ux3 + vx)

has Ggeom,K = Sp4(5) in a Weil representation. We can view K as living on Gm × A2 with
coordinates (w, u, v) simply by pulling back by the projection (w, u, v) 7→ (u, v). This sort
of “independent of w” pullback does not change Ggeom. Let us call this local system K1. By
the change of variable x 7→ xw, this becomes the local system K3 whose trace function is

(w, u, v) 7→ −
∑
x

ψ(w13x13 + uw3x3 + vwx).

By the automorphism (w, u, v) 7→ (w, u/w3, v/w) of Gm ×A2, this becomes the local system
K4 whose trace function is

(w, u, v) 7→ −
∑
x

ψ(w13x13 + ux3 + vx),

whose Ggeom,K4 is still Sp4(5). Now K4 is the Kummer pullback by w 7→ w13 of the local
system K5 whose trace function is

(w, u, v) 7→ −
∑
x

ψ(wx13 + ux3 + vx).

Thus Sp4(5) = Ggeom,K4 C Ggeom,K5 is a normal subgroup of index dividing 13. In fact,
Ggeom,K4 = Ggeom,K5 . To see this, we argue as follows. As K5 is itself symplectic, Ggeom,K5

lies in the normalizer of (the faithful image in Sp12 of) Sp4(5) in the ambient Sp12. The
outer automorphism of Sp4(5) fuses the two Weil representations of degree 12 of Sp4(5).
Therefore Ggeom,K5 must act by inner automorphisms on Sp4(5), and hence (as the only
scalars in Sp12 are ±1, which already lie in Sp4(5)) we have Ggeom,K4 = Ggeom,K5 , and hence
Ggeom,K5 = Sp4(5).

The local system F(5, 3, 13) is a pullback of K5, so Ggeom,F ≤ Sp4(5). But as we saw
above with the B, C analysis, Sp4(5) ≤ Ggeom,F .

We now prove (iii). Thus p = 2. In the A,B, C story, we have Ggeom,BCGgeom,C = 2 ·G2(4)
is a normal subgroup of index dividing 5 (the prime to 2 part of 10). But the perfect group
2 ·G2(4) has no C5-quotient, hence Ggeom,B = 2 ·G2(4). As Ggeom,B ≤ Ggeom,F (because B is
a pullback of F , we have 2 ·G2(4) ≤ Ggeom,F .
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Now repeat the arguments with K1, . . . ,K5 in this situation. We now have Ggeom,K4 =
2 · G2(4), and 2 · G2(4) = Ggeom,K4 C Ggeom,K5 is a normal subgroup of index dividing 13.
Therefore Ggeom,K5 , which itself lies in Sp12, normalizes (the faithful image in Sp12 of) 2·G2(4).
Since Out(2·G2(4)) has order two, Ggeom,K5 must act by inner automorphisms on 2·G2(4), and
hence (as the only scalars in Sp12 are ±1, which already lie in 2 ·G2(4)) we have Ggeom,K4 =
Ggeom,K5 , and hence Ggeom,K5 = 2 ·G2(4). The local system F(2, 3, 13) is a pullback of K5, so
Ggeom,F ≤ 2 ·G2(4). But as we saw above with the B, C analysis, 2 ·G2(4) ≤ Ggeom,F . �

Theorem 12.5.10. The following statements hold for the local systems F(p, 4, 7) and
F(p, 2, 7) defined in (12.5.5.1).

(i) For all p 6= 2, 3, 7, both F(p, 2, 7) and F(p, 4, 7) have Ggeom ≥ SL6.
(ii) For p = 3, both F(p, 2, 7) and F(p, 4, 7) have Ggeom = 61 · PSU4(3).

Proof. We first prove (i). The auxiliary sheaves C in the two cases are the local systems
t 7→ −

∑
x ψ(x7 + txd) for d = 4 and d = 2. For p 6= 2, 3, 7, Theorem 10.3.13(ii) shows that C

has infinite Ggeom, hence by Theorem 10.2.4 it has Ggeom,C ≥ SL6. As Ggeom,BCGgeom,C ≥ SL16

is a normal subgroup of finite index dividing 7. Thus Ggeom,B ≥ SL6, As Ggeom,B ≤ Ggeom,F ,
we have Ggeom,F ≥ SL6.

We now treat the case p = 3. Here C has Ggeom,C = 61 · PSU4(3), and Ggeom,B C Ggeom,C
is a normal subgroup of finite index dividing 7. But 61 · PSU4(3) is perfect, hence Ggeom,B =
61 · PSU4(3), and hence 61 · PSU4(3) ≤ Ggeom,F . We next run the K1, . . . ,K5 argument. At
the penultimate step, we have Ggeom,K4 = 61 · PSU4(3), and Ggeom,K4 C Ggeom,K5 is a normal
subgroup of index dividing the prime to 3 part of 7− 4 and of 7− 2 respectively.

In the case of F(3, 4, 7), this prime to 3 part is 1, hence Ggeom,K5 = 61 · PSU4(3). The
local system F(3, 4, 7) is a pullback of K5, so Ggeom,F ≤ 61 · PSU4(3).

In the case of F(3, 4, 7), this prime to 3 part is 5, but Out(61 · PSU4(3)) is a 2-group.
Hence Ggeom,K5 acts by inner automorphisms, hence lies in µ5 × 61 · PSU4(3) in the ambient
GL6. In fact, there can be no µ5 factor in Ggeom,K5 . To see this, use the fact that K4

has geometric determinant of finite order with values in Z]ζ3], so has determinant of order
dividing 6. One the other hand, 61 · PSU4(3) lies in SL6, so any scalar α ∈ µ5 reappears as
α6 = α in the determinant, which has order dividing 6. Therefore Ggeom,K5 = 61 · PSU4(3).
The local system F(3, 4, 7) is a pullback of K5, so Ggeom,F ≤ 61 · PSU4(3). �

We now give some cases for which we have a strengthening of Theorem 12.5.7.

Theorem 12.5.11. Consider the local system F(p,A,B) as defined in (12.5.5.1), where
A,B are given as follows. We take

q := 2f , f ≥ 1,

integers 1 ≤ a < b with gcd(a, b) = 1, 2|ab, and

A := qa + 1, B := qb + 1.

Then for p - 2AB, F(p,A,B) has Ggeom = Spqb. [Recall that by Theorem 12.5.5, F(2, A,B)

has Ggeom = 21+2bf
− · Ω−2b(q) provided that bf ≥ 4, and by van der Geer–van der Vlugt, this

group is finite whatever the value of bf .]
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Proof. Because only odd powers of x occur inside ψ, we have an a priori inclusion, for
any p - AB, Ggeom < Spqb . The s = −t pullback, call it A, is the local system on Gm whose
trace function is given as follows: for L/Fp a finite extension, and t ∈ L×,

Trace(Frobt,L|F(p,A,B)s=−t) = −
∑
x∈L

ψL(t(xq
b+1 − xqa+1)).

The Kummer pullback B of A by [qb + 1]?, rewritten after the change of variable x 7→ x/t
has trace function

−
∑
x∈L

ψL(xq
b+1 − tqb−qaxqa+1)).

This local system is in turn the Kummer pullback [qb − qa]? of the local system D whose
trace function is

−
∑
x∈L

ψL(xq
b+1 − txqa+1)).

So the Ggeom groups are related as follows:

Spqb > Ggeom,F(p,A,B) > Ggeom,A > Ggeom,B = Ggeom,C CGgeom,D,

with Ggeom,CCGgeom,D a normal subgroup of finite index with quotient cyclic of order dividing
the prime to p part of qb−qa (the prime to p part because Frobenius pullback does not change
Ggeom). So it suffices to prove that Ggeom,D = Spqb ; suffices simply because Spqb has no proper
normal subgroups of finite cyclic index (this last fact because Spqb is its own commutator
subgroup).

For this, we first invoke Theorem 10.3.13 (where the roles of A and B are reversed!). We
use it to show that in any odd characteristic p - AB, Ggeom,D is not finite. For if Ggeom,D were
finite for such a p, then we would be in one of two cases. The first is that for some power Q
of p, and some integer d ≥ 2, we have

qb + 1 = (Qd + 1)/2,

and moreover that for some integer 1 ≤ e < d with gcd(e, d) = 1, 2|ed, we also have

qa + 1 = (Qe + 1)/2,

in this case, we cross multiply and get

2qb + 1 = Qd, i.e., 21+bf = Qd,

q an equation of the form

2N + 1 = a prime power, but not a prime.

It is known that this special case of Catalan’s equation can hold only with 23 + 1 = 32.
[Indeed, suppose 2N + 1 = pc with N ≥ 3 and c ≥ 2. If c is odd, then 2N = pc − 1 has an
odd divisor (pc − 1)/p− 1), a contradiction. If c = 2s is even, then 2N = (ps − 1)(ps + 1), so
ps + 1 and ps− 1 are 2-powers differing by 2, and so ps = 3 and N = 3.] In our situation, the
exponent N = 1 + bf is ≥ 5 with the single exception q = 2, b = 2, in which case a = 1. So
the exceptional case is F(p, 3, 5) with p = 3, but p = 3 is excluded by the p - 2AB hypothesis.

The second case has

qb + 1 = (Qd + 1)/(Q+ 1), d ≥ 3 odd.
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But here we write

(Qd + 1)/(Q+ 1) = 1 +Q(−1 +Q− . . .+Qd−2).

So in this second case we would have qb = Q(−1 + Q − . . . + Qd−2) being divisible by Q, a
contradiction.

Once we know that Ggeom for D is not finite, Theorem 10.3.21(iii) yields Ggeom,D =
Spqb . �

Theorem 12.5.12. Consider the local system F(p,A,B) as defined in (12.5.5.1), where
A,B are given as follows. We take

q := pf0 , f ≥ 1, p0 an odd prime,

integers 1 ≤ a < b with gcd(a, b) = 1, 2|ab, and

A := qa + 1, B := qb + 1.

Then for p - p0AB, F(p,A,B) has infinite G = Ggeom with [G,G] = SLqb. [Recall that by

Theorem 12.5.4, F(p0, A,B) has Ggeom = p0
1+2bf
+ oSp2b(q) provided that in addition a > b/2,

and by van der Geer–van der Vlugt, this group is finite whatever the value of (a, b).]

Proof. (i) We first use Theorem 10.2.6 to show that with the possible exception of a
single prime p1 - p0AB, already the s = 0 pullback, call it A, has Ggeom,A = SLqb . This
pullback has trace function

t ∈ L× 7→ −
∑
x∈L

ψL(t(xq
b+1 − x)).

Its further Kummer pullback by [qb − 1], call it B, has trace function (after the change of
variable x 7→ x/t, given by

t ∈ L× 7→ −
∑
x∈L

ψL(xq
b+1 − tqbx).

Then B is the Kummer pullback by [qb] of the local system C whose trace function is

t ∈ L× 7→ −
∑
x∈L

ψL(xq
b+1 − tx).

We now examine Theorem 10.2.6 to see if C could have finite Ggeom. By our assumption,
none of the cases (iii)–(vi) is possible (recall p 6= p0). We cannot be in case (ii), which requires
qb + 1 to be of the form (Qn + 1)/(Q+ 1) with Q a power of an odd prime p and n ≥ 3 odd.
Just as in the proof of Theorem 12.5.11 above, this gives the contradiction that qb is divisible
by Q. Case (i) is potentially problematic. It arises if

qb + 1 = (Q+ 1)/2

for some prime power Q, or equivalently if

2qb + 1 = Q,

an equation of Sophie Germain type, which, if it holds, determines the prime p1 of which Q
is a power. In this case, by Theorem 10.2.7(i), C has geometric monodromy group the image
of SL2(Q) in a Weil representation of degree (Q − 1)/2. Since Q = 2qb + 1 ≥ 19, SL2(Q) is
perfect, and hence this image is also contained in Ggeom.
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(ii) Suppose, for the time being, that we look at F(p,A,B) for a prime p - p0p1AB.
Then C has infinite Ggeom, and then by Theorem 10.2.4(i), we have Ggeom,C = SLqb . Then
we must also have Ggeom,B = SLqb , as SLqb has no nontrivial cyclic quotients, and hence for
G = Ggeom,F(p,A,B) we have G ≥ SLqb . As G ≤ GLqb , this implies that [G,G] = SLqb .

If 2qb + 1 is a prime power, some power of the prime p1, we need a separate argument to
determine Ggeom for F(p1, A,B). We now show that if we have such a p1, then F(p1, A,B)
has infinite Ggeom. Consider the t = 0 pullback, call it G, of F(p1, A,B). By [Ka-Scont,
Theorem 1], Ggeom,G is a subquotient of Ggeom,F(p1,A,B). So it suffices to show that G has
infinite Ggeom. Exactly as in the proof of Theorem 12.5.11, up to normal subgroups of finite
cyclic index, its Ggeom agrees with that of the local system H whose trace function is

t ∈ L× 7→ −
∑
x∈L

ψL(xq
a+1 − tx).

So it suffices to show that H has infinite Ggeom, which is SLqa by Theorem 10.3.21(i) as above.
We now examine Theorem 10.2.6 to see if H could have finite Ggeom. As in (i), the only

problematic case is where qa + 1 is of the form (Q1 + 1)/2 for some power Q1 of p1. In this
case we have

(pβ1 − 1)/2 = qb, (pα1 − 1)/2 = qa

for some integers β > α ≥ 1.
Suppose β ≥ 3. Then, as p1 > 2, pβ1 −1 has a primitive prime divisor ` [Zs] which divides

qb, so ` = p0. But then ` divides qa = (pα1 − 1)/2, and this contradicts primitivity of `.
So β = 2 and α = 1. In this case, qβ−α = (p2

1 − 1)/(p1 − 1) = p1 + 1, so p0 > 2 divides
both p1 + 1 and p1 − 1, again a contradiction.

We have shown that G = Ggeom contains SLqa as a subquotient. As qa ≥ 3, this implies
that G/Z(G) is infinite. As mentioned at the end of (i), G contains the image of SL2(Q) in
a Weil representation of degree D = (Q − 1)/2 ≥ 9. Applying Proposition 11.1.3, (with its
p our p1, with its D our D, with its qn our Q, and with D = (Q − 1)/2) we conclude that
[G,G] = SLD = SLqb . �





Appendices

Appendix A1: the Magma program used in Lemma 6.2.6

Ncheck:=procedure(p);

R:=GF(p);

a:=1;

for b in R do

for c in R do

for d in R do

for e in R do

f:=((p-1) div 2)*(a+b+c+d+e);

F:={* f,f+a+b,f+a+c,f+a+d,f+a+e,f+b+c,f+b+d,f+b+e,f+c+d,f+c+e,

f+d+e,-f-a,-f-b,-f-c,-f-d, -f-e *};
if Multiplicity(F,0) ge 6 then

if Max(Multiplicity(F,i):i in [1..p-1]) le 10 then

print F;

end if;

end if;

end for;

end for;

end for;

end for;

end procedure;
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Appendix A2: the Magma program used in Lemma 10.3.17

E6check:=procedure(N);

for a in [0..26] do

for b in [a+1..26] do

for c in [b+1..26] do

for d in [c+1..26] do

for e in [d+1..26] do

ee:=-(a+b+c+d+e);

for g in [1..26] do

F:=[a+g,b+g,c+g,d+g,e+g,ee+g,a-g,b-g,c-g,d-g,e-g,ee-g, -a-b,-a-c,-a-d,

-a-e,-a-ee,-b-c,-b-d, -b-e,-b-ee,-c-d,-c-e,-c-ee,-d-e,-d-ee,-e-ee];

FF:=F[i] mod 27: i in [1..27];

if #FF eq 27 then print FF;

end if;

end for;

end for;

end for;

end for;

end for;

end for;

end procedure;
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d’Abhyankar, Invent. Math. 116 (1994), 425–462.

[Rob] Robinson, G. R., On elements with restricted eigenvalues in linear groups, J. Algebra 178
(1995), 635–642.

[R-L] Rojas-León, A., Finite monodromy of some families of exponential sums, J. Number. Theory
197 (2019), 37–48.

[Se] Serre, J.-P., Corps Locaux, Hermann, 1968.

[Seitz] Seitz, G. M., The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc.
no. 365, Amer. Math. Soc., Providence, 1987.

https://web.math.princeton.edu/~nmk/kt24_70.pdf.
http://www-math.univ-poitiers.fr/~maavl/LiE/form.html
http://www-math.univ-poitiers.fr/~maavl/LiE/form.html


386 BIBLIOGRAPHY
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