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1. Introduction

The use of exponential sum techniques is one of the cornerstones of modern analytic
number theory. The proof of the Riemann hypothesis by Weil for curves, by Deligne for
general varieties, provides fantastic tools to solve problems from number theory. However
controlling the size of exponential sums in a large number of variables remains very diffi-
cult, since certain geometric conditions are almost impossible to check before applying the
corresponding theorem. The work of Katz and Laumon [K-L] is very illuminating, since
it describes how a natural exponential sum over a given variety (even very complicated)
behaves generically. In the applications to number theory, the effect of large values of the
exponential sums can be well controlled this way. The aim of this paper is to give more
general and more precise results than [K-L] and [Fo2] (which gave an improvement already
implicitly contained in [K-L]). As applications we have given statements which can be
easily applied by number theorists (Theorems 1.1 and 1.2), and we have given three appli-
cations (Corollaries 1.3, 1.4 and 1.5) which concern divisibility properties of class numbers
of real quadratic fields, the equidistribution of values of polynomials in intervals and equi-
distribution of points of varieties in small boxes.

The following theorem is a less general statement than Corollary 3.2, from which it is
easily deduced (see the proof after the statement of that corollary). It is written in a way
more adapted to applications to number theory. As usual, we reserve the letter p for prime
numbers.

Theorem 1.1. Let d and n be integers (n = 1,d = 1). Let V be a locally closed sub-
scheme of A, such that dim(V¢) < d. Let f(X) be a polynomial in Z[ X\, . .., X,].

Then there exists a constant C, depending only on (n, d, V, and f), closed subschemes of
A7 called X; (j =1,...,n) of relative dimension <n — j, A} > X; 2 X, > -+ 2 X, such
that for any invertible function g on V, any prime p, any h € A"(F,) — X;(F,), we have

Z X(Q(X))‘P(f(xh. .. ,Xn) -+ (h1x1 N +hnxn))‘ < Cp%+77

xeV(F,)
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for every non trivial additive character  of F,, and for every multiplicative character ( pos-
sibly trivial) y of F .

(Notice here the trivial inequality

S ’ < #V(F,) < C'p?, so the above state-
xeV(F,)

ment has only interest for j < d.) The interest of this theorem is that it requires almost
no assumption on V. For f =0 and j = 1, we recover the result of [K-L], and for f = 0,
g = 1 and any j the result of [Fo], Prop. 1.0. The purpose of the next theorem is to decrease
by one the dimension of the set of the (4,...,4,) where the exponential sum in question
has given size. It requires an extra condition on ¥ (smoothness) and the nonvanishing of
the “A-number” associated to the situation. This number will be defined precisely in section
4; roughly speaking, the A-number is zero if and only if the exponential sum is generically 0
(see Lemma 4.3). Theorem 1.2 is an easy consequence of Corollary 4.6. We have

Theorem 1.2.  Let d, n and D be integers 2 1. Let V be a closed subscheme of Ay, py,
such that Ve is irreducible and smooth of dimension d. Suppose also that A(V ,k,y) = 1 for

all finite fields k of sufficiently large characteristic and for all Q) -valued non-trivial additive
characters  of k.

Then:
1) There exists a constant C, depending only on V, closed subschemes of Ay, called

X, (j=1,...,n), A%WD] > X o X; o -+ 2 X, of relative dimension < n — j, such that
Sfor h e A"(F,) — X;(F,) we have

S WX+ -+ hx)| < CpURETE)
xeV(Fp)

for every p ¥ D and for every non trivial additive character y of T,.

2) Moreover, we may choose the closed subschemes X; to be homogeneous, i.e. defined
by the vanishing of homogeneous forms.

(Again, this is trivial for j = d + 2, since

> ‘ < #V(F,) < C'p?.) It remains
xeV(Fy)

to give criteria to ensure that the A-number is non-zero, in order to apply Theorem 1.2.
This question has been already partly treated in [KA-PES] and [KA-PESII]. In sections 5,
6, 7 and 8, we give new situations where 4 = 1. This is done by comparison with another
invariant, the “B-number”, and establishing links between these two numbers for hyper-
surfaces defined by F(x) = o, where F is a homogeneous polynomial. We give very simple
criteria for the non vanishing of these numbers.

For the polynomial A3(x) defined in section 6, as the discriminant of a binary cubic
form, the A-number attached to the hypersurface defined by As(x) = «, o % 0, is non-zero.
We can then apply Theorem 1.2, from which we deduce, via the theory of Davenport-
Heilbronn and sieve techniques, the following result concerning divisibility properties
of class numbers of real quadratic fields. If A is a discriminant of a quadratic field, we
denote by i(A) the cardinality of the ideal class group of the ring of the integers of the field

Q(VA).
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Corollary 1.3. There exists co > 0 and xq, such that, for x > xo we have

X

#{p < x;p=1(mod4), p + 4 squarefree, 3 ¥ h(p+4)} = cologx'

This result improves [Fol], Théoréme, where the lower bound of Corollary 1.3 was
proved to be true, but with the prime variable p replaced by positive fundamental dis-
criminants A such that /(A) is odd. Recall that this last condition is equivalent, for positive
A, to the fact that A has either one prime divisor or two prime divisors, one of which is
congruent to 3 modulo 4. The fact that we gain 1 in the dimension of the Xj is crucial to
getting Corollary 1.3 (see Lemma 9.3 below). We do not see how to use sieve techniques
alone to affect this passage from products of at most two primes to primes themselves.

Our second application concerns the equidistribution of the values of quite general
polynomials. In section 10, we will deduce from Theorem 1.1

Corollary 1.4. Let n=1 and r=1 be integers. Let P|(X),...,P,(X) be r
polynomials in ZX,,...,X,], such that the total degree of any linear combination
ayPy + - - - + a,P, (with coefficients (ai,...,a,) € Z" —{0}) is at least two. Let P(X) be the
vector P(X) = (P1(X),...,P,(X)).

Let w: Rt — R be any function of the form w(x) = \/x - logx - §(x), with ¢(x) — o0
as x — oo.

Then, for p tending to infinity, the sequence of vectors

P sy Xp
{%;0 S X1, S W(P)}

is equidistributed modulo 1. In other words, if we denote by {t} the fractional part of the real
number t, we have, for every o = (o, ...,0,) € R" and every f = (p,...,p,) € R" satisfying
0o <p<l(1<j<r),

#{(xl,---,xn)EZ";Oéxiéwov) (I=si<n)

A

and o; < {w} SB (1)< r)} ~ lf[l(ﬂi —a)w(p)”

for p tending to infinity.

We wish to emphasize that no geometric hypothesis is imposed on the P;, or on their
linear combinations, except the degree = 2 hypothesis. Corollary 1.4 is quite standard
for n = 1: it is an easy consequence of Weyl’s criterion (see section 7) and of Weil’s bound
for exponential sums of a polynomial in one variable. In the same order of ideas, it is
now not difficult to prove Corollary 1.4, if one makes the extra assumption that the
projective variety defined by the vanishing of the homogeneous part of highest degree
of aiPy +---+a,P,, is non singular for (a,...,a,) * (0,...,0), because we can use
[De-WI], Théoreme 8.4, p. 302. Finally, note that the condition concerning the degree of
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ai Py +---+ a,P, cannot be avoided and that the lower bound for the growth of w(x) is
almost optimal (think of the polynomial P;(X;) = X?).

Our last application deals with another problem of equidistribution. We are con-
cerned with the equidistribution on points of V'(F,) in small boxes, where V' is a closed
subscheme of Aj. We identify F, with the set of the integers of the interval [0, p[, choose an
integer x satisfying 1 < x < p and want to have a precise evaluation of #V([F,,x) where
V(F,,x) is the set of points of V(F,) with all their coordinates x; (1 <i <) satisfying
0 < x; < x. If some natural hypotheses concerning V are satisfied, heuristic considerations
lead to the estimation

(1) Y (Fpox) ~ #V(F,) (Z)

for p and x — oo. The question is to find an inequality between p and x to ensure the
uniformity of (1.1). In [Fo2], Theorem, for a quite general V, (1.1) was proved to be true
uniformly for

(12) X = pl_z(s—tlﬂ) . logp . ¢(p),

where d is the dimension of V" and where ¢ is any function tending to infinity. This result
was deduced from a theorem similar to Theorem 1.1.

Here we improve the lower bound (1.2), by adding extra hypotheses on ¥ in order to
apply Theorem 1.2.

Corollary 1.5. Let d and s be integers (s = d = 2). Let V be a closed subscheme of
A5. Suppose that V¢ is smooth and irreducible of dimension d and suppose further that Ve
does not lie in a hyperplane of A{. Suppose also that A(V,k,y) =1 for all finite fields k of
sufficiently large characteristic and for all Q) -valued non-trivial additive characters \ over k.
Then for every x satisfying 1 < x < p, we have

+V (Fpx) = #V(F,) - (g) +0(pi(log p)* {1 + x7p~F (log p) }).

The proof of this corollary is given in section 11. In sections 7 and 8 we give examples
of V satisfying the hypotheses of this corollary. For example, we can take the hypersurface
defined by the equation

ap s —
xoox =1,

with ay, ..., a, positive, relatively prime integers. (See also [Ka-SE], section 5.5 for a direct
approach of this particular case.) In [Ka-PES], Corollary 6.5, one finds other examples of
smooth V' such that 4 = 1, for which this corollary applies. These examples are built with
weighted homogeneous polynomials. All these examples deal with hypersurfaces. Also in
section 8, we give a less obvious example of a V satisfying the hypotheses of Corollary 1.5,
but with codimension 2.
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Let ¥ be as in Corollary 1.5. By Lang-Weil we know that #V(F,) = p?(1 + o(1)).
Corollary 1.5 implies that (1.1) holds as soon as we have

1

(1.3) x = max(p' %, p' =) - log p - $(p)

with ¢(¢) tending to oo as ¢ tends to oco. This improves (1.1) in a very interesting manner
particularly for hypersurfaces (s — d = 1). For hypersurfaces, (1.3) reduces to

op—

(1.4) x> prlogp- d(p),

instead of x = pi-logp- #(p) as given by (1.2). By the technique described in section
11, we would not get a better result if all the sums S(V;h, p) satisfied the optimal
inequality S(V;h, p) = O(p?) (h = 0). To give another illustration, we consider the variety
V defined by
X1...Xg — 1.

The sums S(V; 4, p) are then Kloosterman sums, for which purity is well known. However,
for the moment, nothing better than (1.4) can be proved even in this case. In conclusion,
Theorem 1.2 is strong enough to annihilate the effect of large values of S(V;4, p) in the
particular case of hypersurfaces.

Acknowledgement. This work was done when both authors were at the Institute for
Advanced Study (Princeton). They thank the Institute for its hospitality and for providing a
marvelous venue for collaboration. They also thank Cécile Dartyge for pointing out an
error in an earlier version of this paper, cf. the paragraph following (9.12).

2. The general stratification theorem

We first consider the following general situation. We are given

1) an affine scheme 7" = Spec(R) with R a finitely generated Z-algebra,

2) a T-scheme n: X — T which is separated and of finite type,

3) a function f on X, i.e. a T-morphism f: X — AIT,

4) a prime number /, and an object K in D’(X[1//],Q,).

For each finite field & of characteristic p & ¢, we can make the base change Z — k
and form the k-schemes

X®kZ:X®Zk, T®k:T®Zk,
and the k-morphisms

Tk X®k—>T®k [f®kX®k— ALy,
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We denote by K ® k in D?(X ® k, Q,) the restriction of K to X ® k.

For each non trivial Q-valued character y of k, we have the Artin-Schreier sheaf
gl[/(f@k) on X ® k.

The exponential sums we have in mind depend on auxiliary data (k,,?):
k: a finite field of characteristic not /,
¥, a non trivial @/X -valued additive character of k,
tin T(k) = (T ® k)(k) i.e. a ring homomorphism ¢: R — k.
Given such auxiliary data, we form the scheme X,/k := (f @ k)"'(r). On X,, we have

the pullback K, of K, and the function f,. We denote by S(X/T, f,K, k,\,t) the expo-
nential sum

S(X/T, [, K, k1) = Z( ) ¥ (fi(x)) Trace(Froby, x|K)).
xeX,(k

The cohomological genesis of this sum is this. On X ® k, we have the object
(K ®k)®q, Ly(rek in D’(X ® k,Q/). We form the object

R(n®k),(K®k) ®q, %y(ren)
in Df(T ® k,Q,). We have

S(X/T, f,K, k,,t) = Trace(Frob |R(r ® k), (K @ k) ®q, Ly(renr))

= Z(—l)iTrace(Frobk,,|Ri(n k) (K®k) ®a, Lyren))-

In order to state the first result, we need to recall the notion of a stratification % of a
scheme Y. It is simply a set-theoretic partition of Y™ into finitely many reduced, locally
closed subschemes Y; of Y. Given any morphism p: Z — Y, the stratification p*% of Z
is defined as {p~'(Y;)™}.

If Yis a Z-scheme of finite type (or more generally a “good’ scheme, cf. [K-L], 1.0),
we say that an object L in D’(Y[1//],Q,) is adapted to % if each of its cohomology
sheaves #(L) is lisse on each Y;[1/¢]. We say that L is y-adapted to % if it is adapted to %
and if, in addition, the function y — > (—1)'dim #’ (L), is constant on each Y;[1//]. We

denote by ||L|| the Z-valued function on the geometric points of Y defined by
ILI(y) := > dim #(L),.
l

We now have the general stratification theorem:
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Theorem 2.1. Hypotheses and notations as above, suppose given a stratification X
of X. There exists an integer N =1, an integer C =1, a stratification 7 = {T;} of
T[1/N] := Spec(R[1/N]) and a map

(7, f),: { functions [ X — Z, constant on X'}

— {functions f: T[1/N] — Z, constant on 7 }

with the following properties:

1) Each strat T; is smooth and surjective over Z[1/N], and all the geometric fibres of
T;/Z[1/N] are equidimensional of some common dimension ;.

2) For any flat morphism ¢. S — T of finite type, put Xs:= X X1 S, ns: Xs — S
the structural morphism, fg: Xs — NS the function deduced from f on X. For any prime /,
any object K in Df(XS[l//], Q) which is adapted to the inverse image stratification Z's of
Xg, any finite field k of characteristic p not dividing (N, any direct factor L of K ® k in
Df.’ (Xs ® k, Q) and any choice of Q) -valued non-trivial additive character \y of k, the object
R(ns ® k),(L ®a, Ly(f® k)) on S ® k is adapted to the stratification

0 (7 ®k):= {9 (T, ®k)}.
For any geometric point s of S ® k, with image t = ¢(s) in T ® k, we have

IR(ms ® k), (L ®a, Zys00)lI(s) = sup [|L](x),

xeX;

the sup taken over all geometric points x of the fibre X,. Moreover, if L is y-adapted to
Zs @k on Xs ® k, then R(ns ® k), (L ®aq, DSP.,,(‘;-S@;()) is y-adapted to 7 ® k on T ® k, and
their locally constant y-functions are related by

2(R(ns ® k)\(L ®a, Ly(0n)) = (1. /) (2(L)).

Proof. Factorm: X — T as f: X — AIT followed by the projection pr, of NT onto
T. Then R(ns ® k)!(L ®@/ gz//(fs(@k)) iS

R(pr, ® k)!(ffw ®a, (R(fs ® k)[L))-

One first applies [K-L], 3.1.2 to the morphism f: X — NT and the stratification %'. This
produces an integer N; = 1 and a stratification .o/ of Alﬂl V] such that RfiK is adapted

to /5. Then R(fy ® k),L is a direct factor R(fs ® k),(K ® k) = (Rfs:1K) ® k. So we are
reduced to the case when X is AIT“ /vy]» With stratification .7, and function the identity. In
this case, we first apply [K-L], 3.4.1.1 and then [K-L], 4.3.2 to produce an integer N, = 2
and a stratification 71 = {T; 1} of T[1/N;N] which satisfies 2), in which each strat 7} is
normal, connected, and flat over Z. We then apply [Ka-PES], 1.4.4 to produce an integer
N3 = 1 and a stratification 7 of T'[1/N|N,N3| which refines 7[1/N3] and which satisfies
1), with N := NN, N3. (Since 7 refines a stratification which already satisfies 2), 7 sat-
isfies 2) automatically.) QED
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Remark. In the application of this theorem in the next section, the only flat base
changes ¢: S — T occuring will be the inclusions of open sets T[1/M] < T for various
integers M = 1.

3. First application to estimates for exponential sums

We fix an integer n = 1, and work in affine n-space A7 over Spec(Z), with coor-
dinates xi, ..., x,. We give ourselves a locally closed subscheme V of A%, (i.e. V'is a Zariski
open set of a closed subscheme of A7), and an integer d such that all geometric fibres of
V' /Z have dimension < d. We also give ourselves a function f on V, i.e. a morphism
V- Aé. We further give ourselves a stratification ¥~ of V, a prime number 7, and an
object K in D?(V'[1/¢],@,) which is adapted to ¥ [1//]. We make two further assumptions:

1) The object K on V'[1//] is fibrewise semiperverse: for each finite field & of charac-
teristic p & /, and each integer 7, the cohomology sheaf #'(K ® k) on V® k satisfies

dim Supp(#*(K ® k)) < —i.

2) The object K on V[1//] is fibrewise mixed of weight < d: for each finite field k of
characteristic p + /, and each integer 7, the cohomology sheaf #'(K ® k) on V® k is
mixed of weight < d + 4.

We are interested in the following exponential sums, which depend on auxiliary data

(s, h):
k: a finite field of characteristic p % 7,
y: a non trivial @) -valued additive character of k,
h: an n-tuple (hy, ..., h,) in k".

Given such data, we consider the exponential sum

SV, f,K,k,y,h):= > Trace(Frobk7U|K)t//<f(v) + Z hixl-(v)>.

veV (k)

Before going on, let us give the basic example we have in mind. We take for ¥~ the strati-
fication {V'}. We take K := Q/[d], the constant sheaf on V, placed in degree —d. (This
object K is adapted to 7, because the only non vanishing #(K) is #~¢(K), which is the
constant sheaf on V. It is fibrewise semiperverse and mixed of weight < d, because the only
non vanishing #/(K ® k) is # (K ® k), which is the constant sheaf on V'® k. Thus
#~4(K ® k) has support V® k, whose dimension is <d by hypothesis, and # ¢ (K ® k)
is trivially mixed of weight < —d + d = 0.) In this case, the sum we are considering is

SOV f ko) = (1) 5 (04 5 (o)),

veV (k)
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Theorem 3.1. Denote by H the n-dimensional affine space over Z with coordinates
hi,..., h,. Given data (n,V < A}, f,77) as above, there exists an integer N = 1, an integer
C = 1, a stratification H# of H[1/N| and a map

(V, f): { functions f: V — Z, constant on ¥}
— {functions f: H[1/N| — Z, constant on A}

with the following properties:

1) Each strat H; is smooth and surjective over Z[1/N] and all the geometric fibres of
H;/Z[1/N] are equidimensional of some common dimension ;.

2) For any integer M =1, any prime number ¢, any object K in DY (V[1/M/], Q)
which is adapted to V'[1/M/], fibrewise semiperverse and fibrewise mixed of weight < d,
any finite field k of characteristic p not dividing {NM, any direct factor L of K ® k in
Df,’ (V® k,Qy), any choice of Q) -valued nontrivial additive character \y of k, the Fourier
Transform FT, (i[(L ® Ly f))) is adapted to the stratification # ® k. If L is y-adapted to
the stratification V" @ k, then FT, (ig (L® fl/,(f))) is y-adapted to the stratification # @ k,
and their locally constant y-functions are related by

x(FTy (i(L® ZLy(s)) = (V, ) (x(L)).

For any point h in H(k), we have the following estimate. Suppose that h lies in the strat H;.
Then after any field embedding of Q, into C, we have the estimate

> Trace(Frobk7U|L)[p(f(U) + ; hixi(v)>‘ <Cx ( sup ||L||(v)) x (VAk) T

veV(k) veV®k

Proof. We wish to apply Theorem 2.1 to produce (N, C, #). In that theorem, take
the input as follows: T'is H, X is the product V' x H := V Xgpee(z) H, 2" 1s the stratifica-
tion v" x H={V;x H} of V x H, © is the projection of V' x H onto H, and f is the
function on V' x H given by F(v,h) := f(v) + > hix;(v). We must explain why the output

(N, C, ) of that theorem works in the theorem being proven.

The key point is this. Fix data (4, K, k, L, h) as in the assertion 1). Then the sum

> Trace(Frobkw\L)lp(f(v) + Zl: h;xl»(v)>

veV (k)
has a simple interpretation in terms of Fourier transform on A}, as follows.
On V® k, we have the object L, which is semiperverse and mixed of weight < d.

Form the tensor product L ® fw(f) =L ®q, Lyry on V@ k. It is still semiperverse of
weight < d (because &) is lisse on V'® k, and pure of weight zero). Denote by

i VQk— Al

the inclusion. Then (L ® £ r)) is semiperverse on A} and mixed of weight <d. Its
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Fourier Transform FTy (ii(L ® %ys))) on # ® k is semiperverse, and mixed of weight
< n+d. (That FT, preserves semiperversity results from the equality FT, , = FT, ;, and
the 7-left-exactness of Rg. for an affine morphism g, cf. [SGA 4], XIV, 3.1.) The effect of
FTy = FT, ; on weights is immediate from Deligne’s main theorem in Weil II [De-WII],
3.3.1.) By the Lefschetz trace formula, we have

Trace (Froby, s FTy (i (L ® Zy(1))))

—(-D)" ¥ Trace(Frobk,xliz(L ® Ly(s)) @ DZ/,(ZZQ hfxi))

xeA"(k)

= (—1)" ye;(k) Trace(Frobk.,v!L ® Ly ® ,%(; hixi))

— (—1)n EVZ(M Trace(Frobk,U|L ® $w<f+zhixi))
ve i

— 1) Y Trace(Frobk,v\L)lp(f(vHZh,»x,-(u)).

velV (k)

How is the Fourier transform related to the function F on V' x H and the projection 7 of
V' x H onto H? We can describe FT,, (ii(L ® %)) as follows. On (V x H) ® k, we have
the object pry(L ® Z(s)), and it is tautological that

FTy (i(L ® Zy(y)) = R(r @ k), (prT(L ® Zy(r) ® Zy ( Zl? hfxz')) ]
= R(n ® k), (pri (L) ® Zyr))[n].

Now consider what we know about R(z ® k),(pri(L) ® Lyr))ln] on H® k. Its trace
function at 4 in H (k) is the sum we are trying to estimate. It is adapted to the stratification
H @k on H® k. (These results come from Theorem 2.1, applicable because prj(L) is a
direct factor of (prj(K)) ® k and pr;(K) on (V @ H)[1/M/] is adapted to the stratifica-
tion (¥~ ® H)[1/M/].) Being equal to FTy, (is(L ® Zy(s))), it is semiperverse, and mixed of
weight < d + n.

Let us denote by #“:= #“(R(x @ k), (prj (L) ® ZLyr))[n]) the a’th cohomology
sheaf of R(m ® k), (prj (L) ® Zyr))[n). We know that #“ is mixed of weight < d +n + a,
and that the dimension of its support is at most —a. What about the restriction of #“ to a
strat H; ® k of # ® k? Well, this restriction is a lisse sheaf on H; ® k, and H; ® k is

equidimensional and smooth of dimension #;. So if this restriction is non-zero, then 5 has
support of dimension = #;. But #“ has its support of dimension at most —a. Therefore

HNHQk=0 ifn; > —a,
Le.
HYNH @k +0=a= -y,

On the other hand, #“ is mixed of weight < d +n + a. So
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HNH @k +0= 4 ismixed of weight <d +n—7,.

So for 4 in H;(k), we have

> Trace(Froby L)y (f(v) + 5 hixi(v) )|

veV (k)

Z(_l)"Trace(FrObk,h|%a))

> (—1)" Trace(Froby,; -
as-—n;

lIA

> |Trace(Froby | #%)|
as-—n;

(since #“ is mixed of weight < d +n + a)

< Y dim (), x (VER)TH

as-n;

lIA

(z dim (), ) x (VER) """

— HR(E ® k), (pri (L) ® g‘P(F))[”m(h) % (M>d+n7ﬂ’

< Cx (sup |LI(@®) x (VER) . QED

velV®k

Corollary 3.2. Hypotheses and notations as in Theorem 3.1, suppose we are given also
an invertible function g on V. For any finite field k of characteristic p not dividing /N, any
(possibly trivial) Q) -valued multiplicative character y of k*, any choice of Q) -valued non-
trivial additive character \y of k, and any point h in H(k), we have the following estimate.
Suppose that h lies in the strat H;. Then after any field embedding of Q, into C, we have the
estimate

5 a0 (F0)+ 3 ()| < € x (VEBT

veV(k

Proof:  We take for 7 the stratification {V'} consisting of V" alone. Denote by M the
order of the character y. Over Z[1/M], consider the M-th power endomorphism

[M]: Gp[l/M] — Gy [1/M].

It is a finite etale morphism, so the sheaf [M], Q, on G,,[1/M/] is lisse of rank M, and pure
of weight zero. Form the pullback sheaf

L(M,g) :=g*([M],Q/)

on V[1/M/]. It is lisse, i.e. adapted to #'[1/M], and punctually pure of weight zero. The
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finite field k£ has order #k = 1 mod M, because k™ has a character y of order M. So after
pullback to V'® k, we have a direct sum decomposition

L (M,q)®k = D Lpgek)

characters p of k*
of order| M

of #(M,g) ® k as a direct sum of Kummer sheaves.

We take for K on V[1/M/] the semiperverse object ¥ (M,g)[d], which is mixed
of weight < d and adapted to 7". We take the shifted Kummer sheaf %, g [d] as the
direct factor L of K ® k. Because ;@) is lisse of rank one on V'® k, the function ||L||
on V® k is identically one. So the assertion is indeed a special case of the previous
theorem. QED

Proof of Theorem 1.1. Theorem 1.1 concerns only fields k& with sufficiently large
prime cardinality (what happens when p is small is absorbed by increasing the value of C).
Given V' < AJ as in Theorem 1.1, with dim(V¢) < d, we have dim(V ® F,) < d for all p
sufficiently large say for all p > M So we may apply Corollary 3.2 to V[l /M| = A, to
get a stratification of H[1/N] by strats H;. We define the closed subschemes X; as follows.
We first define X7 as the closure in H[1/N] of the (finite) union of the strats H;, with
dimension 7; < n — j. We then define X; to be the schematic closure of X7 in H. Note that
the X; form a decreasing sequence of closed subschemes of relative d1mens1on <n-j.
If p > N and if 4 in A"(F,) does not belong to Xj, it means that it belongs to some H; of
dimension #;, =2 n—j + 1 (because the H; form of a partition). Corollary 3.2 at once gives
the claimed upper bound for the trigonometric sum. QED

4. Second application to estimates for exponential sums: the role of A-numbers

We continue to work in the general setting of the previous section. Thus we are given
(V locally closed in AL, d, f,7",/,M = 1,K on V[1//M]).

As in the previous section, we denote by H the n-dimensional affine space over Z with co-
ordinates Ay, ..., h,. The proof of Theorem 3.1, produced an integer N = 1, a constant C
and a stratification # of H|[1/N], which will also be used in this section.

We now impose additional conditions on this data.

4.0.1. There is an integer D = 1 such that V'[1/D] is a closed subscheme of A7,

and V[1/D]/Z[1/D] is smooth and surjective of relative dimension d, with geometrically
connected fibres.

4.0.2. The object K on V[1//M] is adapted to 7, is fibrewise semiperverse, and is
fibrewise mixed of weight < d.

4.0.3. K on V[1//MD] is fibrewise perverse, geometrically irreducible, and pure
of weight d: for every finite field k of characteristic not dividing /MD, K® k on V® k
is perverse, geometrically irreducible (i.e. remains irreducible on V ® k), and pure of
weight d.
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For each pair (k,y) consisting of a finite field k of characteristic not dividing
DM/, and a Q; -valued non-trivial additive character i of k, we have on V® k the geo-
metrically irreducible perverse sheaf (K ® k) ® Z(,). Its extension by zero to A" ® k,
i!((K ® k) ® Ly f)), is perverse, geometrically irreducible and pure of weight d. So
its Fourier Transform FT, (i;((K ® k) ® Ly f))) on H ® k is perverse, geometrically
irreducible, and pure of weight n+d. So on a dense open set U of H®HKk,
FTy (i (K ® k) ® Ly(p))) is of the form ZF[n], for # a lisse sheaf on U which is geo-
metrically irreducible and pure of weight d.

In what follows, the question of whether or not the sheaf % is identically zero or not
will be essential. With that in mind, we define the A-number of the data (V, f, K, k, ) to
be the rank of %, and denote it A(V, f, K, k, ). In the special case when the function f is
identically zero, we write simply A(V, K, k, ). If in addition K is Q/[d], we write simply
AV, k).

Lemma 4.1 (Uniformity Lemma for 4-numbers). Hypotheses and notations as in
4.0.1-3 above, as (k,\) varies over all pairs with char(k) prime to DMN/, the A-number
AV, f, K, k, ) has a constant value. Moreover, this constant value depends on the object K
only through its y-function y(K) on V[1/DNM/].

Proof.  For any such (k, ), FT,(i((K ® k) ® %,s))) is z-adapted to the stratifi-
cation # ® k. On the unique strat Hy,x ® k& which has maximal dimension 7,

FT, (i((K®k) ® Ly(s)))

is 7 [n] for a lisse sheaf, whose rank is the A-number A(V, f, K, k, ). The object K is, by
hypothesis, y-adapted to 7°[1//]. Therefore FT, (ii((K ® k) ® Zs))) is yz-adapted to
A @ k, and its y-function is related to that of K by

2(FTy(i(K®K) ® Zy(p))) = (V. ) (x(K)).

On the strat Hpmax ® k the function y(FTy (ii((K ® k) ® Zy(s)))) is constant, with value
(=1)"A(V, f,K, k). But the value of x(FT, (ii((K ® k) ® Z(s)))) at any point of any
strat of #[1/DMN/] is the constant value of the #-adapted function (V, f),(x(K)) on
that strat. QED

Lemma 4.2. Hypotheses and notations as in 4.0.1-3 above, for a given pair (k, V), the
A-number AV, f, K, k, ) is the common value of the Euler characteristic

1V ®kK® gxp(f+2h,~x,-))

for h in a dense open set of H® k.

Proof. At every hin H®k, (—1)"x(V ®k,K® Ly(siynx) is the local Euler
characteristic of FTy (i (K @ k) ® Z(s)))- So for & in any dense'open set U of H ® k on
which FT, (ii(K ® k) ® Zy(s))) is 7 [n] for a lisse sheaf 7, y.(V @ k, K & Ly 45 hy) 18
the rank of #. QED i
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Lemma 4.3. Hypotheses and notations as in 4.0.1-3 above, for a given pair (k, V), the
following conditions are equivalent:

1) AV, f, K, k, ) =0.

2) There exists a dense open set Uy in H ® k such that, for any finite extension E of k
and any E-valued point h in U, (E), denoting by i the additive character s o Traceg ;. of E,
the exponential sum

S Trace(Frobg .| L) ( AOEDY hixi(v)>

veV(E)
vanishes.

3) There exists a dense open set Uy in H®k on which the trace function of
FT, (i! ((K Rk)® ,Zp(f))) vanishes identically.

Proof. Assertions 2) and 3) are trivially equivalent, since the sum in 2) is the value at
hin U;(E) of the trace function. To show 1) = 3), we argue as follows. If

A(V,f,K,k,lﬁ) = 07

then there is a dense open set in Uin H ® k on which FT,, (i; ((K Rk)® Ly f))) vanishes.
If this is the case, then its trace function vanishes on U as well. Conversely, suppose the
trace function of FTy (i (K ® k) ® %)) vanishes identically on some dense open set U,
of H® k. We know there is a dense open set U in H ® k on which

FT, (i((K®k) ® ZLy(s)))

is # [n] for # a single lisse sheaf. So on some dense open set U n Uj, the trace function of
Z vanishes identically. By Chebotarev, # as representation of 7; (U n Uj, base point) has
identically vanishing trace function. But its trace at the identity is the rank of %, which is in
turn the 4-number A(v, f, K, k, ). QED

We will prove

Theorem 4.4. Hypotheses and notations as in 4.0.1-3 above, suppose in addition that
AV, f, K, k, ) & 0 whenever the characteristic of the finite field k does not divide DMN/ .
Then for any finite field k of characteristic p not dividing / MN, any QJ-valued nontrivial
additive character \y of k, and any point h in H(k), we have the following estimate. Suppose
that h lies in the strat H;. Then after any field embedding of Q, into C, we have the estimate

> Trace(Frobk,UIK)lﬁ(f(U) + ZI: hixi(v))‘

veV (k)

< Cx (sup [IK[|(0)) x (VR

sup
veV®k

Proof. The key point is that the object FT, (i!(K ®k)) on H® k is on the one
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hand, perverse, geometrically irreducible, pure of weight n+ d, and on the other hand
it is adapted to the stratification # ® k. Denote by #“ its a’th cohomology sheaf
AH(FTy (i (K ® k) @ Zy(s))))- Just as is the proof of the general estimate, we have

HHQk+0=a=—p,.
What we must show here is the extra vanishing
H T H; @ k=0 whenever #; < n.

Because #"|H; ® k is lisse, and H; ® k is equidimensional of dimension #;, this vanishing
in turn results from the following statement:

fora<n, dimSupp#=<a-—1.

This support condition is satisfied by the cohomology sheaves of any geometrically irre-
ducible perverse object L on any geometrically connected smooth Y /k of dimension 7 (here
A" ® k) such that L is generically non-zero. The point is that such an L has the following
simple structure, cf. [BBD], 4.3.1. There is a dense affine open set U in Y, with inclusion
map j: U — Y, such that L|U is # [n], for a lisse, geometrically irreducible lisse sheaf # on
U, and L is the middle extension j,, (Z [n]). For any lisse sheaf % on a dense affine open U
in Y, its middle extension j, (% [n]) satisfies the support condition

fora <n, dimSupp#“(j, (F[n])) <a—1,
¢f. [BBD], 2.1.11. QED

Corollary 4.5. Hypotheses and notations as in 4.0.1-3 above, suppose in addition that
AV, f,k, ) & 0 whenever the characteristic of the field k does not divide DMN/{. Then for
any finite field k of characteristic p not dividing {NM, any QJ-valued non-trivial additive
character \y of k, and any point h in H(k), we have the following estimate. Suppose that h lies
in the strat H;. Then after any field embedding of Q, into C, we have the estimate

> y(rw+ > ()| = € x (VIR

velV (k)
Proof. Take K to be Q/[d] on V in Theorem 4.4. QED

Corollary 4.6. Hypotheses and notations as in 4.0.1-3 above, suppose in addition that
AV, k, ) & 0 whenever the characteristic of the field k does not divide DMN/. Then for any
finite field k of characteristic p not dividing /NM, any QJ -valued non-trivial additive char-
acter \ of k, and any point h in H(k), we have following estimate. Suppose that h lies in the
strat H;. Then after any field embedding of Q, into C, we have the estimate

> (3 h))| < € x (VERRI),
%) 7

veV(

Proof. Take f =0 in Corollary 4.5. QED
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Remarks. 1) The strats H; ® k form a partition of A" ® k into a finite disjoint union
of smooth locally closed equidimensional subschemes, so there is precisely one strat whose
dimension #; is #. On this strat, there is no improvement in the estimate we get here over the
general estimate obtained in Theorem 3.1. But on every other strat, we have an improve-
ment by a factor v/#k over the general estimate.

2) What happens in the theorem if, for a given (k,y) such that char(k) does not
divide DMN/, we have A(V,f,K,k,\y) =0, i.e. when FTl/,(ig((K®k) ®$¢(f))) has
dimension of support r < n? In this case, there is a geometrically irreducible closed sub-
scheme Z in H ® k of dimension r, and a dense affine open set U in Z which is smooth
over k and such that FTy, (ii(K ® k) ® Z1)))|U is of the form Z[r] for a geometrically
irreducible Q/-sheaf % on U which is pure of weight d + n — r. Moreover, denoting by
j:U—Z and i Z— H®k the inclusions, FTy(i((K®k) ® Lys))) is iju(F[r]).
Therefore we have

H =0 fora>r,
dim Supp # " =r,

dimSupp #* " <r—1—k fork=1.

But nonetheless, FT, (il (K ® k) ® %,s))) is adapted to the stratification # ® k, i.e. each
H Y\ H; ® k is lisse. So for 4 in a strat H; ® k of dimension #; > r, we have

3 Trace(Frobk,v\K)l,b(f(v) +> hix[(v)> =0 ifn>r
veV (k) i

For 4 in a strat H; ® k of dimension #; < r, we have the estimate

> Trace(Frobk’v|K)n,b<f(v) + ; h,-xi(v)> ‘

veV (k)

=Cx ( sup ||K||(U)> X (\/ﬂ)sup(djtnfr,dﬂ,,]im).
velV®k

Thus on strats of dimension r, we have the general estimate of Theorem 3.1, and on strats
of dimension < r we have an improvement by a factor v/ #k over the general estimate.

For example, suppose V is a linear subspace of A" of dimension d > 0 and codi-
mension 7 := n — d. Suppose K is Q/[d] on V, and f = 0. Denote by V' the r-dimensional
annihilator of ¥ in H. Then FTy (ii((K ® k) ® %y(s))) is the constant sheaf Q,[r](r — n)
on '+, extended by 0.

Proof of Theorem 1.2. Because V¢ is smooth and irreducible of dimension d,
there exists an integer D; = 2 such that V[1/D,], is smooth over Z[1/DD,], with geomet-
rically connected fibres of dimension d. We first prove part 1) of Theorem 1.2 for
V[1/Di] = A7y pp,;> deducing it from Corollary 4.6 in exactly the same way we deduced

Theorem 1.1 from Corollary 3.2, with the same definition of the closed sets X; = AZ; pp -

To prove 2), we argue as follows.
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For each j=1,...,n, pick generators F,;(X) for the ideals /; defining X; in
A% /pp,- Write each F, ;(X) as the sum of its homogeneous part

Foc,j(X) = ; Fo«,,j,k(X)a

with F, ; (X)) a homogeneous form of degree k.

Let K be an upper bound for the integers k, such that some F, ; ; is non-zero. Denote
by D, the non-zero integer defined by

D, = Q<K((Dl)a_(Dl)b)'

0=
Denote by
ijroJ cXjc A%[1/131)1]
the closed subscheme of X; defined by the vanishing of all the homogeneous components
F,j i of all the chosen generators F, ; of the ideal [;. Then extend the X P to homogeneous
closed subschemes of Agz(/p by taking schematlc closure. It suffices to show that for

p ¥ DD D, y any non trivial additive character of [F,, and any / ¢ X, prOJ( »), we have

d ¢I+/ )

(%); S (x4 -+ hyxy)| S CpTUPE

xeV(Fp)

(Then we increase C to absorb what happens at the finitely many primes p 4 D which divide
D1 D))

To see this, we argue as follows. We know that (x); holds for / ¢ X;(F,), for any non-
trivial . So for any fixed o € [/, (x); holds if «/ € X;(F,) for any non-trivial y. (The point
is that 4 — a/h has the same effect in the sum as /(x) — (ax).) Take o to be successively
(D1)* fora=0,...,K. Then (x); holds for 1 € A"(F,) (and all non-trivial /) if there exists
some integer « in [0 K] such that (D1)h ¢ X;(F,). In other words, (); holds for 1 € A"(F,)
unless /2 is an [,-valued zero of all the polynomlals

Fx,j((Dl)aX)a

all o, alla =0, ..., K. Write these in terms of homogeneous components

Foi((D1)“X) = ]zwl)“"Fa.j,k(X).

Over Z[1/DD\D,], the linear span of these is precisely the same as the linear span of
the homogeneous components F, ; i, all o, all k, thanks to the Vandermonde determl-
nant. And these homogeneous components define X Pl Thus (x ); holds for /1 ¢ X proj,
required. QED
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5. Lower bounds for A-numbers of level sets of homogeneous forms, via B-numbers

In the previous section, we worked over Z and our emphasis was on uniformity
results for exponential sums over [, as p varied. We needed to see if the A-number
AV, f,K, k,) was non-zero for all (k,y) with char(k) sufficiently large. For a given
(k, ), this A-number, the generic rank of FTy (iy((K ® k) ® Z(s))) is an invariant of the
data (VR®k<cA"®k,f @k, K ® k, ).

In this section, we work over a finite field k, and pick a prime / invertible in k. We fix
an integer n = 1, and a non-zero homogeneous form over k in n variables,

F(x1,...,x,) Inklxy,...,x,]
We make the following two hypotheses:
1) The degree of F, deg(F), is invertible in k.

~ 2) For any integer r = 2 which divides deg(F), F is not an r’th power in the ring
klx1,...,x].

It results from these two hypotheses that for any f in k*, the hypersurface
Vg; F=B inA"®k

of equation F = f8 over k is smooth of dimension n — 1 and geometrically irreducible, cf.
[Ka-PES], proof of 6.5.

Denote by ig: V3 — A" ® k the inclusion. We are interested in the A-number of V.
We take K the perverse sheaf Q/[n — 1] on Vj, f the function 0, y any nontrivial Q; -valued
additive character of k, and look at FTy (is(Q/[n — 1])) on the dual affine space H ® k. We
know that on some dense open set Uin H ® k, FTy (ip(Q/[n — 1])) is of the form F[n] for
Fy a lisse, geometrically irreducible Q/-sheaf on U which is pure of weight n — 1, and we
define

A(Vp) := the rank of F;.

Lemma 5.1. Hypotheses and notations as above, for any B in k*, we have
A(Vp) = A(WN).

Proof. Pick a deg(F)’th root of f8, say ode¥) = g with o in k*. Because F is
homogeneous, the homothety x — ax defines an isomorphism from V; to Vj. So the
object FTy (in(Q/[n—1])) on H®k is the pullback by the homothety h+— ah of
FTy (ip(Q/[n — 1])). Pick a dense open set U; in H ® k on which FT, (is(Q/[n — 1])) is
F1(n] for a lisse #,. Then on Up: [h— och]fl(Ul),FTw(iﬁy(@/[n —1])) is F[n], with F
the lisse sheaf [h— ah]"(F). QED

Given any hypersurface in A" ® k, with inclusion iy, Q/[n — 1] on X is perverse
[Ka-PESII], Lemma 2.1, and mixed of weight < n — 1. Its extension by zero to A" ® k,
iy (Qs[n—1])), is perverse on A" ® k. So FTy (ixi(Q/[n — 1])) is perverse on the dual



Fouvry and Katz, Stratification theorem for exponential sums 133

affine space H ® k. Hence there is some dense open set Uy in H®k on which
FT, (ix1(Q/[n — 1])) is of the form Zx[n — 1], for some lisse @,-sheaf Fy on Uy which is
mixed of weight < n — 1. We define

B(X) := the rank of Fy.

If X is smooth over &, and geometrically irreducible, then its B-number B(X) is equal to its
A-number A(X). In [Ka-PES] and [PESII], we defined the 4-number of X to be the rank of
the pure of weight n — 1 quotient of Zy. With this definition of A(X) for a possibly sin-
gular hypersurface X we have an a priori inequality

B(X) = A(X).

In what follows, we will apply these considerations to X := V, the hypersurface of equa-
tion F = 0.

Theorem 5.2. Hypotheses and notations as above, for any B in k* we have the
inequality

A(Vy) =z B(Vy).
Proof. Replacing F by f~'F, we reduce to proving

A(N) =z B(V)).
Given f in k, we say that a point & in H (k) computes the A-number of Vj if there is an
open neighborhood of /2 in H ® k over which FTy (is(Q/[n — 1])) is of the form (a lisse
sheaf) [n]. In particular, if # computes the A-number of V, then the stalks of the cohomolgy
sheaves of FTy, (in(Q/[n — 1])) at i vanish for a + —n:

A (FTy (ix)(Qsfn —1]))), =0 fora + —n.

In more down to earth terms, we have

H (Vg ) k, f.p(zh,xl.>) =0 forb+n-—1.

It is proven in [Ka-PESII], 8.2 that given any finite set S of §’s in k, we can pick an & =+ 0
in H (k) which computes the 4-number of Vy for all § in S, and which also computes the
A-number of V7 for all but finitely many values of § in k. We take for S the set {0,1}, and

fix a choice_of hin H (k) which computes the 4-numbers of Vy, V; and Vy for all but finitely
many £ in k, say for all § outside the finite set 7.

Now view the homogeneous form F as a map from A” ® k to A! ® k, and endow the
source with the lisse sheaf Z (v, ... Consider the Leray spectral sequence

It is proven in [Ka-PESII], 8.3 and 8.4 that
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1) the sheaves R”F\.% s, vanish for b +n — 1,
2) the sheaf # := R"'F. %y, has H} (A' ® k, #) = 0,

3) for j: U — Al the inclusion of any dense open set in A! on which
R = Rn_lF!gnﬁ(Zh,-x,-) is lisse, we have # =~ j,j* 4.

We claim that # := R”*IFgffl/,(z hx;) 18 lisse at the point f = 1. To see this, we argue

as follows. According to 3) above, R~ J«j R, so the points  at which % is lisse are
precisely the points at which the stalk %5 has maximum dimension. There are finitely many
points in A!(k) at which the stalk has less than the maximum dimension. So to show
that dim %, is the maximum, it suffices to show that for all but finitely many f’s in k*,
dim,@ﬁ = dim%l.

For this, we use the homogeneity of F. Let us denote by d the degree of F. For ¢in k*,
the homothety x — 7x of A" induces an isomorphism

]7] = td -

And this same isomorphism carries ,fwz hix) O0 V1 10 L3y on V. So we have an
isomorphism 7 i

C

%td = Hn—l(Vt,, ®k([f‘1) E, $¢(Zhixi))

~ HCTH(Vl ®y k, g’w(tzh,-x,))-

We claim that the point #4 in H (k) computes the A-number of ¥} for all but finitely many ¢
in k. (If this is true, then

dim Z,. = A(N)
for all but finitely many ¢ in k, and consequently Z is lisse at # = 1.) Pick an open neigh-

borhood U of /1 in H ® k on which FTy, (i1,(Q[n — 1])) is of the form (a lisse sheaf) [n].
Consider the map

p: Al ®l€—>H®/€, t— th.
Then p~'(U) is an open set in A! ® k, and it is nonempty because it contains the point
t = 1. Therefore p~!( U) is a dense open set of A ® k, so the complement of a finite set.
For any ¢ in p~!(U)(k), th computes the A-number of V.
Now that we know that £ is lisse at t = 1, we have

A(V1) = generic rank of Z.

On the other hand, & computes the 4-number of V), so we have
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B(Vo) = dil’nH:fil(V() ®k l;, glﬁ(zhixi))'

But

H! (Vo @ k, Lyaynx)) =R = (" A)g = ")

Thus A(17) is the generic rank of #, and B(V)) is the dimension of the inertial invariants at
t =0 in Z. So we have asserted inequality 4(V;) = B(Vy). QED

Remark. In [Ka-PESII], 7.1, (1), we related the A-number of ¥} to the A-number of
Vo. In the application of Theorem 5.2 in the next section (Theorem 6.2) we cannot make do
with [Ka-PESII], 7.1, (1) because Vj has A-number zero in that application.

6. Calculation of a B-number

In this section, we take for F' the homogeneous form of degree four in four variables
a,b,c,d

(6.1) As(a,b,c,d) = b*c* + 18abed — 27a>d* — 4b3d — 4c3a,
the discriminant of the binary cubic form aX? + bX?Y + cXY? +dY?3.

Over any field k in which 2 is invertible, Az is not a square in the polynomial ring
kla, b, c,d]. Indeed, if we put b = d = 0, the resulting form A3(a,0,c,0) = —4c*a is not a
square. So for any f in £*, the equation A; = f§ defines a smooth, geometrically irreducible
hypersurface

Ve: Ay =f in A*® k.

Theorem 6.1.  Over any finite field k of odd characteristic, B(Vy) = 1, and for any f in
k* we have A(Vg) = 2.

Proof. We will show that on a dense open set Uy of H ® k, the lisse sheaf %, whose
rank is the B-number B(V;) is Q/(—1). Once we have this result, then in the notation of the
proof of Theorem 5.2, we have #'(¥) = Q,(—1), which is pure of weight 2. But £ is, on any
dense open set where it is lisse, pure of weight 3. By [De-WII], 1.8.4, we may infer that the
local monodromy of # at 0 contains a unipotent Jordan block of dimension two. Therefore
2 has generic rank = 2, which means precisely that A(}]) = 2. Replacing A3 by ﬂ_1A3 and
repeating the argument, we get A(Vy) = 2 for any f in k*.

Consider now any dense open set Uy in H ® k over which FT (ip(Q/[3])) is of the
form Z[4] for a lisse sheaf %, on Uj. In order to show that % is Q,(—1) on Uj, it suffices
to show that for some dense open set U = U, we have Z)|U = @;(—1) (just because
71 (U) maps onto 7;(Up)). To show that Fy|U = Q,(—1), it suffices, by Chebotarev, to
show that for all finite extensions E/k, and for all E-valued points / in U(E), we have
Trace(Frobg ;| #y) = #E. At any point /& in U(E), we have
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Hca(V() ®k E, g‘//(tzhixi)) =0 fora=+ 3,

HE(VO ®k Ea Z//(ch,-xi)) = (970)]1-
Thus we find

Trace(Frobg 4| 7) = Trace(Frobg|H (Vo ® k, Lys )
= _ Z(—l)“Trace(FrobﬂHﬁ(Vo ®y k, f,,,(,z,,ixi)))
a i

= % (S ),

‘CEVO E)

for Y the nontrivial additive character s o Traceg ;. of E.

So what we must show is that there exists a dense open set U in H ® k such that for
any finite extension E/k, and any 4 in U(E), we have

S (b ) = —#E.

xeVy(E)

Because Vj is defined by the vanishing of a homogeneous form, Vy(E) is stable by E*-
homotheties of the ambient A*(E). So the sum is independent of the nontrivial character:
we have

=1 -l-ijO;/O( 5 l//E(Z hx,)

FU/HE) S S (15 hiw)

teE x+0eVy(E)

FU/HE) 5 (14 T (15 o))

x+0eVy(E) teE

—/#E( T D+EER/HE) T 1
x+£0eVy(E) x+£0eVy(E)

Zh;x,-:()
— (1/4E*) (#Vo(E) — 1) + (#E/#EX)<# (VO(E) A (z hix; = o)) - 1).

Let us rewrite this in terms of the projective variety V) " in P? defined by the vanishing of
A3, and its hyperplane section > &;x; = 0.

> wE(thl)_l $VEIE) + (#E) 4 (V5 (;hix,:o))w).

xeVy(E)
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So what we must show is that
$E + 1+ ($E) 4 (V5 0 (32 hixi = 0) ) (B) = #V5(E),

for / in some dense open set.
Now a point of V2" (E) is a nonzero binary cubic form (up to homothety) with at
least a double root. Such a double root must be E-rational, so the form in question can be

written

(X +BY)*(yX +07Y),
for an ordered pair of nonzero linear forms (¢X + fY) and (yX +0Y) over E. This
ordered pair of forms is unique up to the action of E* x E* defined by having (s,?) in
E* x E* act as
X + Y, yX +0Y — t(aX +BY), st (yX +0Y).
So we may view this ordered pair as an E-valued point in P! x P!. Thus we have
+VIOE) = (#E +1)%.

What happens if we look at the intersection VprOJ A D hixi = 0) in terms of this identifi-
cation of V™ with P! x P'? If we multiply out i

(X +BY)(yX +0Y) = o®yX> + (20fy + 020) XY + (205 + f29) XY + 20 Y3,
then a point of V™ A (Zh,-x,- = O) is a point ((o, )(7,0)) in P! x P! which also satisfies

Iy (0%y) + hy 20y 4 020) + h3 (2040 + y) + ha(20) = 0.

For fixed A, this is the vanishing of a bihomogeneous form of bidegree (2,1) in P! x P!,
namely

y(ho® + 2hyof 4 haf?) + 0(hyo® + 2hzaff + haff?) =
Unless the two quadrics
hyo® 4 2hoaf + h3ff? and  hyo® + 2h3of + haf?

have a common zero in P!, we can solve uniquely for (y,d), in which case projecting onto
(o, B) is a bijection

(Vg“’j A (Z hix; = O))(E) ~ P!(E).
So for & such that the two binary quadrics

ho® 4 2hoaf + h3ff? and  hyo® + 2h3af + haf?
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have no common zero in P!, we find
$E+ 1+ ($E) 4 (V5 0 (3 hixi = 0) ) (B) = #E + 1+ ($E)($E + 1)

— (#E+1)* = #VP™(E)
as required. It remains to see that for general £, the two binary quadrics

o 4 2hoaf + hsff? and  hyo® + 2h3af + haf?

have no common zero in P!, This condition defines an open set in H ® k. The particular
point & := (1,0,0, 1) shows it is a non-empty and hence dense open set. QED

Remarks. This computation is already in [Be-Fo], 3.a.1-2, pp. 235-236, where we
find a precise description of the closed set where the two quadrics have a common zero: it is
defined by As(h1,3ha,3h3,ha) = 0.

7. Nonvanishing of B-numbers by congruence considerations

In this section, we work over a finite field k& and pick a prime ¢ invertible in k. We fix
an integer n = 1 and a non-zero homogeneous form over & in 7 variables,

F(x1,...,xn) €k[x1,..., %],
about which we assume, for the moment, nothing.

We denote by X = A" ® k the affine hypersurface of equation F = 0, and by XPro
the projective hypersurface in P"~! ® k defined by F = 0. We are interested in criteria
which will guarantee that B(X) is non-zero.

Recall that for any finite extension E of k, any non-trivial Q-valued character i of
E, and any point /2 in H(E)

S w(X ) = 1 (HE) 4 (X7 A (- x = 0) — 4XPI(E).

xeX(E) i

On the other hand, we know that there is a dense open set U in H ® k, and a lisse sheaf
on U, such that for 4 in U(E), we have

Trace(Frobg 4| #y) = (~1)"" 3 w(z h,-x,-).

xeX(E)

The rank of Zy is the B-number B(X). If B(X) = 0, then Fy is the zero sheaf, and its trace
function vanishes. Thus we find

Lemma 7.1. If B(X) = 0, then there exists a dense open set U in H ® k, such that for
any finite extension E [k, and any point h in U(E), we have
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$XPOU(E) = 1+ (4E) % (X7 A (7 - x = 0)) (E).

Corollary 7.2. If B(X) =0, then for every finite extension E/k of sufficiently high
degree, we have the congruence

#XPOI(E) = 1 mod #E.
Proof. The set U(E) is nonempty for #F sufficiently large.

Corollary 7.3. If B(X) =0, then for every finite extension E/k, we have the
congruence

#XP(E) = 1 mod (chark).

Proof. Let us denote by p the characteristic of k. Given a finite extension E/k, and
an integer r = 1, denote by E,-/E the extension of E of degree p”. Then for any separated
E-scheme V/E of finite type, we have

#V(E,) = #V(E) mod p.
Indeed, when Gal(E,-/E) = Z/p"Z acts on V(E}), each orbit has size 1 or size p“ for some

a = 1. The orbits of size 1 are exactly the points of V(E). But for r > 0, the previous
corollary gives

#XP(E,) =1 mod #E,. QED
Thus we find the following criterion:
Theorem 7.4. Notations as above, if for some finite extension E [k we have
#XP(E) = 1 mod (chark)
then B(X) + 0.

We can be slightly more precise. The trace function of the sheaf %y takes values in Z.
For any finite extension E/k, and any point /2 in U(E), the characteristic polynomial

det(1 — T Frobg 4| Zx)

has coefficients in Z. Thus it makes sense to speak of the reduction modp of
det(l — T'Frobg 4| Zx) as an element of 1 + T'F,[T].

Fix hin U(E). Denote by E,/E the extension of degree r. For each r > 1, we have the
identity

(—1)" Trace((Frobg,4)'|Zx) = #XP(E,) — 1 — (#E,) # (X A (h- x = 0))(E,).

So we get an identity of power series in 1 + TZ[[T]]:
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n—1

det(1 — TFrobE_,h\?X)(fl)
=(1-T)Zeta((X?™ ®, E/E,T))/Zeta(X? ~ (h-x=0)/E, (#E)T).

Since Zeta(XP A (h-x =0)/E,T) lies in 1 + TZ[[T]], we may reduce mod p and get a
congruence

det(1 — T Frobg 4| #x) """ = (1 — T) Zeta(X""™ ®, E/E, T) mod* 1 + TZ[|T]).

On the other hand, there is a mod p congruence formula for the zeta function of any pro-
jective variety, say V over a finite field £ of characteristic p, in terms of the action of the
#E’th power map Frobg on the coherent cohomology groups H'(V, ). One has

dim V' . it
Zeta(V/E, T) = T[] det(l— TFrobE\H’(V,(QV))( 2
i=0
in 1 + TF,[[T]], cf. [SGA 7], XXII, 3.1.1.

If V is a projective hypersurface in P"~!, of degree d = 1, the cohomology groups
H(V,0y) vanish unless i is 0 or n — 2. Suppose now n = 3. Then for i = 0,

HO( V7 (QV) =F
and Frobg acts as the identity. So the congruence above becomes
det(1 — T'Frobg 4| Zx) = det(l — TFrobE|H”*2(Xpr°j, @Xpmj))

in F,[T]. Now consider the degrees of the polynomials in this congruence. As a
Z-polynomial det(1 — T Frobg 4| #y) has degree equal to the rank of #y, i.e. equal to the
B-number B(X). The degree of its reduction mod p can only be lower, so we get

Theorem 7.5. Suppose n = 3. We have the inequality
B(X) Z degree of the F,[T] polynomial det(1 — T Frobg|H" (X, 0 ).

This inequality is useless if either H"~2(XP™ () = 0 or if Frobg is nilpotent on
H"2(XP (O y). Let us discuss these questions. In homogeneous coordinates xi, ..., X,
XPr is defined by the equation F = 0, with F homogeneous of degree denoted d. On the
ambient P := P"~!, with i := XP — [P the inclusion, we have the short exact sequence

0— Op(—d) 25 Op — 1,0y — 0.

Since H'(P"~!, ©) vanishes for all i > 0, we get (remember 1 > 3)
H" (X" Oypo) = H' (P, Op(—d)).

Now H"! ([F]’7 (Qp(—d)) has a simple description. It is the k-span of those Laurent mono-
mials x" := [](x;)""" which satisfy the two conditions

1
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Yw(i) = —d, foralli,w(i)<D0.

We view this space as the quotient space of the k-span of all Laurent polynomials of degree

—d by the subspace spanned by those Laurent monomials x" of degree —d which, for some
i, have w(i) = 0, cf. [Ha], p. 226, 2™ par. This description shows that

Hn—Z(XpI‘Oj, @Xproj) :': O =4 d g n.
Using the above isomorphism, how do we describe the action of Frobg on
Hn_2 (Xproj, (OXproj )?
Write #E as p*. The p’th power map (“absolute Frobenius”) induces a p-linear endo-
morphism Frob,ps of the k-space H"2(XP™ (O ), the Hasse-Witt map, and its v’th iter-
ate is the k-linear endomorphism Frobg. The action of Frob,,s becomes the p-linear action
on H"'(P, Op(—d)) induced by the p-linear action
G+ FPIGr

on the space of all Laurent forms G of degree —d.

A projective hypersurface XP of dimension n —2 >1 and degree d is called
ordinary i_f d =2n and if Frobus (or equivalently Frobg) is an automorphism of
H"2(XP™ (O ymi), and it is called non-special if d =n and if Frob,ys (or equivalently

Frobg) is not nilpotent on H" 2(XP (O ). Thus XP is non-special if and only if for
some (or equivalently for every) finite extension E/k, the polynomial

det(1 — T Frobg|H" (X, 0 )
is not identically 1. In general (cf. [SGA 7], XXII, 1.0), there is a direct sum decomposition

Hn_2 (Xproj, (QXproj) = Hn_2 (Xpl‘Ojv (QXproj )SS @ Hn—2(Xpr0j, (QXproj )l'lllp

into Frob,ps-stable summands, such that Frob,y is invertible on the first summand, and
nilpotent on the second.

The dimension of the first summand is called the “stable rank™ of X projt Thus the
stable rank is equal to the degree of the polynomial det(l — T Frobg|H"2(XP™ Xpmj)).

Thus a restatement of the previous inequality is
Theorem 7.6. We have the inequality
B(X) = stable rank of XP™.
In particular, B(X) is non-zero if XP™ is non-special.

Unfortunately, given a homogeneous form F of degree d = n, there is no fast algo-
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rithm to compute the stable rank of XP™ or even to tell if the stable rank is non-zero. One
has only

Lemma 7.7. Supposed =n = 3.
1) If for some finite extension E [k, we have
#XP(E) £ 1 mod p,
then XP™I s non-special.

2) If d = nand dim H"2(XP%, Oyno) < p then XP™ is non-special if and only if there
exists a finite extension E [k for which

#XPO(E) £ 1 (mod p).

3) Suppose d = n. Then the following equations are equivalent:

3a) XP js non-special.

3b) #XPi(k) £ 1 (mod p).

3¢) The coefficient of (x1x3...x,)" " in F(xi,...,x,)" " is non-zero.

Proof. 1) Indeed the congruence formula gives

#XPO(E) — 1 = (—1)" Trace(Frobg| H">(XP™, O y)).

If the trace is non-zero, Frobg cannot be nilpotent.

2) Suppose Frob,ps is not nilpotent on H "=2(XP (). Then the linear operator
Froby is not nilpotent so in k its eigenvalues 4i, . .., Agim are not all zero. Since every non-
zero element of k™ is a root of unity, for some finite extension E/k the eigenvalues of

Frobg := (Frobk)deg(E/ k) are all 0 or 1, and the number of eigenvalues 1 is the stable rank,
say s. Thus we get a congruence

#XPO(E) — 1= (—1)""% x s mod p.
Since s < dim H"2(XP™ O ywi) < p, and s # 0 by hypothesis, we get
#XP(E) % 1 mod p.
3) If d = n, then H" 2(XP O yny) is one dimensional, with basis (x1x3...x,) .
The coefficient, say HW, of (x1x;...x,)" ~!in Fr1 is the matrix of the p-linear map

Frob,ps in this basis, the Hasse invariant, cf. [Ka-ASDE], 2.3.7.17. The matrix of the linear
map Froby is Normyr,(HW). By the congruence formula, we have

HXPOIE) — 1 = (—1)"? Normy ¢, (HW). QED
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Examples. We will give some examples of forms F of degree # in n variables whose
Hasse invariant

HW := the coefficient of (x1x;.. .x,,)"”1 in Fr-!

1S non-zero.
1) F=x1x...x,. Here HW= 1.

2) Take any finite separable k-algebra E/k of degree n and any k-basis ey, ...,e,.
Take F the norm form

F(xy,...,x,) = Norm[E/k<Z eixi).
1

Indeed over a finite extension E/k, E ®; E becomes E X E x --- x E and so after a linear
change of variable over E, F becomes x1x; ... X;,.

3) For F the Fermat form > (x;)", HW is nonzero if and only if p = 1 modn, in

n

1
which case, writing p — 1 = an, HW is (an)!/(a!)".

8. Nonvanishing of A-numbers by congruence considerations

We now return to the setting of section 4. Thus V' is a closed subscheme of A’, and
there exists an integer D = 1 such that V[1/D]/Z[1/D] is smooth and surjective of relative
dimension d, with geometrically connected fibres. We take for K the object Q/[d] on
V[1//]. It is adapted to 7~ (7~ := the stratification of V consisting of V alone), it is fibrewise
semiperverse, and is fibrewise mixed of weight < d. On V[1//D], Q,[d] is fibrewise per-
verse, geometrically irreducible, and pure of weight d. We also take an arbitrary function f
on V.

With this data, Theorem 3.1 produces an integer N = 1, a stratification # of H[1/N]
and a map

(V, f),: {functions f: V' — Z,constant on 7"}
— {functions f: H[1/N] — Z, constant on J#}.

For each pair (k, ) consisting of a finite field k of characteristic not dividing D/, and a
QJ-valued nontrivial additive character  of k, we have the A-number A(V, f,k.}y). We
have seen (Lemma 4.1) that this 4-number is constant as k varies over finite fields of
characteristic prime to DN/.

Theorem 8.1. Suppose that for an infinite set P of primes p, there exists a finite field E
of characteristic p such that %V (E) is prime to p. Then the A-number AV, f,k, ) is non-
zero for all finite field k of characteristic prime to DN/ .

Proof. Denote by Hy.x the unique strat of # which is of relative dimension n over
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Z[1/N]. We know that Hp,x[1/N] is smooth over Z[1/N] with geometrically irreducible
factors. So by Lang-Weil, for all sufficiently large primes p, Hpmax(F,) is non-empty.

We know by Lemma 4.1, that as (k,) varies with char(k) prime to DN/, the A-
number A(V, f,k, ) is constant. Take a prime in our infinite set P which is prime to
DN/ and sufficiently large that Hp,y(F,) is non-empty. Pick a point / in Hpax(F,) and a
non-trivial additive character y on F,. On Hpax ® Fy, FTy (ii(:Zy(1)[d])) is 7 [n] for a lisse
sheaf, whose rank is the A-number A(V, f,[F,,¥). We must show that .# is non-zero. For
this it suffices to show that, for E/[F, the finite field for which #4V'(E) is prime to p, we have
Trace(Frobg,;|7) + 0. But #[n] is equal to FTy (ii(Zy1)[d])) on all of Hyax, so at i we
have

Trace(Frobg | 7) = (=) 3 (f(v) +2 hixi(v)).

veV(E)

The sum on the right hand side is (—l)d times a sum of p’th roots of unity in @,. So it lies
in Z[(,] after any embedding of @, into C. Fix one such embedding. Modulo the unique
maximal ideal p in Z[(,] lying over p, namely p = ({, — 1), each p’th root of unity is 1
mod p. Thus we obtain a congruence

> (/) + X hi(v)) = 4V (E) modyp.

veV(E)

But E was chosen so that #V/(E) is prime to p, so nonzero modp. Therefore

S Y ( f)+>] hixi(v)) must itself be non-zero, since it is non-zero mod p. Thus
veV(E) i
Trace(Frobg ;%) is non-zero, whence # is non-zero. QED

Examples. We give now examples of ’s in A"/Z to which this theorem applies.
The most striking is perhaps the n — 1 torus, of equation

X1Xy...x, = 1.
Or a translated n — 1-torus
Ax1xy...x, = B,
with 4 and B non-zero integers which are relatively prime, or more generally

Ax" ... x" = B,

"n

with any integers @; = 1, such that ged(ay,...,a,) = 1. For then some ¢; is odd; for any p

such that p — 1 is relatively prime to this @; (e.g. p =2 moda;), X — X% is a bijection on
[ so we can solve for x;, and #V(F,) is (p — ™

Or we could take a number field K/Q of degree n, an order ¢ in K, a Z-basis
el,...,e, of @ and the norm equation

Norm@/z(z e,-x,-) =1,
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or more generally a translated norm equation
A X NOM(Q/Z(Z e,-xi) = B,
i

for A and B non-zero integers which are relatively prime.

Here is a less obvious example. Fix n = 3 odd and d = 1 odd. In A7, consider the
closed subscheme defined by the two equations

H Xi = 17
1<i<n
Z aixlf’ =0
1<i<n
with g.c.d.(aj,...,a,) = 1. We claim that all geometric fibres of V'/Z have dimension
< n — 2. Indeed in the n — 1-torus (CG,,LZ)"*1 over Z with coordinates xi, ..., x,_1, which is

smooth over Z, everywhere of relative dimension n — 1, V' is defined by one equation

> aixl-d +ay/(x1x3. . .xn_l)d =0

1<ign—1

or equivalently by one equation

d d
( I x,-) X ( > aixl-> = —a,.
1<i<n-1 1<iz=n-1

Because g.c.d.(ay,...,a,) = 1, this equation is non-zero modulo every prime p. So V'is flat
over Z, and everywhere of relative dimension < n — 2.

We next claim that if we put D:=nxd x [[ a;, then V[1/D] is smooth over

1<i<n
Z[1/D], with geometrically connected fibres. We first show that these fibres are all geo-
metrically irreducible. Over any algebraically closed field £ in which D is invertible, V' ® k
is the closed subscheme of the n — 1-torus (Gmk)”*1 defined by one equation

F = —dy,

for

We must show that F' + g, is irreducible in the ring of Laurent polynomials

k[xl,. .. ,xn,l}/[l/xlxz. . .xn,l].

For this, it suffices to show that F + a, is irreducible in the polynomial ring k[xy, ..., x,_1].
But F is homogeneous of degree nd, and a, is non-zero. So F + a, is irreducible unless F'is
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an r’th power in k[xy,...,x,_1] for some r = 2. We claim F is not such a power. This
is obvious from the given factorization of F. For n > 3 the form Y  a;x? is itself irre-
1<i=n-1

ducible and F'is divisible just once by it. If n = 3, then F'is (xy)*(ax? 4 by?) with ab non-
zero. Since abd is non-zero in k = k, ax? 4+ by is the product of d distinct linear forms
involving both variables, and each of these linear forms is an irreducible which occurs in F

to the first power.

To see that V' ® k is smooth over any algebraically closed field k& in which

D:=dx T[] aisinvertible, go back to viewing V" as defined in A} by the two equations
1<izn

H xi:17

1Z5i<n

> ax? = 0.

1<i<n

A singular point in ¥ ® k with values in & is a point x in A" (k) where the gradients of the
two functions

fi Il x and g¢g: > a,-xl.d

1<i<n 1<i<n

are proportional, and where f =1 and g=0. The gradient of f is the vector
(....f/xi,...), that of g is the vector (..., a;x?/x;,...). The two are proportional at points
where for all 1 < i < j < n the determinant of the 2 x 2 matrix

( flxi flx )

ax [x;  ax{ /x;

vanishes. At any point of V' ® k, all the x; are invertible, and f = 1, so Sing(V ® k) is the
intersection of V' ® k with the locus
d {l

= da;jX

a;X; X7 foralll i< j<n

Butas > ax?=0on V, and n is invertible in k, we infer that at any singular point of
1<5i<n

V ® k, we have aixl-d =0 for all i. As all a; are non-zero in k, we find x; = 0 in k. But the
point (0, ...,0) does not lic on V.

We next exhibit an infinite set of primes P such that for p in P, #V'([F,) is prime to p.
We take

P:={p;pkD,p=2modnd}.
(Remember that both » and d are odd, so P is indeed infinite.) For p in P, p — 1 is relatively
prime to d and it is relatively prime to n. Therefore on [, the map X — X7 is bijective, and

on [} the map X — X" is bijective.

To see that #V/(F,) is prime to p for p in P, we argue as follows. Regard n and the
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coefficients ay, . .., a, as fixed, and denote by };; the subscheme of A} we have been calling
V. In this notation, V] is then the closed subscheme of A’ defined by the two equations

H xizla

1<i<n

Z aix; = 0.

15in

The endomorphism
[d]: (xtyex) = () (o))

of A7 maps V; to V;. We claim that for p in P, this map induces a bijection from V;(F,) to
V1(F,). Indeed, this map induces a bijection of A"([F,) with itself, so it certainly induces an
injective map from V;(F,) to Vi(F,). To see that this map from V;(F,) to Vi(F,) is surjec-
tive, we argue as follows. Given a point (yy,...,»,) in Vi(F,), consider the unique point
(x1,...,x,) in A"(F,) with x¢ = y, for every i. Because (yy,...,»,) is in Vi(F,), the point
(x1,...,x,) satisfies

But x,(F,) = {1}, so from the first equation we infer that

H X[ZI,

1<i<n
and hence the point (x,...,x,) lies in V;(F,).

So now, we are reduced to showing that for p in P, #V;(F,) is prime to p. To see
this, we consider, for each f in [F,, the closed subscheme V| g of A[’F’p defined by the two
equations

H xi:ﬁa

1<i<n

Z a;xX; = 0.

1<i<n

So Vi is V1,1 in this notation. We view all the Vj g’s as subschemes of the hyperplane
H c A[ﬁp of equation > a;x; = 0. In this hyperplane, they are exactly the fibres over the

1<i<n
F, valued points in A! of the map H — A! defined by the function [] x;. So the V; 4(F,)
form a partition of H(F,) and thus we have I=izn

ﬂX[:F #V15(Fp) = #H(F,) = p" .

We next claim that for any non-zero f, we have
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#V1 5(F,) = #V1,1(Fp).

To see this, use the fact that X — X" is bijective on [ to write our non-zero f3 as o" for
some o« in [F;. Then the homothety « on the ambient space H induces an isomorphism
V1,1 = V1. So we can rewrite the above sum formula as

#V10(F) + (p — D #V11(F,) = p" .
Thus we find a congruence
#VL()([FP) = #V]J(U:p) modp.

Recalling that ¥/ ; is 7}, we see that we are reduced to proving that 4V ¢(F,) is prime to
p. We will show this is true for any prime p = n modulo of which all the @; are non-zero.

Now Vg is defined over [F, by the two equations

H xi:()a

1<isn

Z a;xX; = 0.

1gisn

Making the change of variables y; := a;x;, V1 o becomes the zero locus of the two equations

H Xi = 07
1<izn
Z X = 0.
1<ign
In the hyperplane H of equation > x; =0, with coordinates x,. .., x,_1, V1o becomes

1<i<n
the hypersurface in A"~ over [, of equation

Fe(x W) 0 w)=o

1<i<n—1 1<i<n—1

We first give a cohomological proof that #V ([F,) is prime to p. Let us denote by
X < P"? the projective hypersurface over [, of the same equation F = 0. We have

#V10(F,) =14 (p— D#X(F,) =1 — #X(F,) mod p.
By the congruence formula [SGA 7], XXII, 3.1.1 for the hypersurface X, we have
#X(F) =1+ (-1)"" Trace(Frobg, |H" (X, Ox)).
So we have
#V1,0(F,) = (—1)" Trace(Frobg, | H" (X, 0x)) mod p.

As we have seen in section 7, in the discussion of the Hasse-Witt invariant, for X a hyper-
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surface of degree n, H" (X, 0y) is the span of the monomials x™" in n — 1 variables x;,
1 <i<n-—1, with all w; =1 and > w; = n. There are precisely n — 1 such monomials,
namely i

e(j):zl/xj< I xi>, forl<j<n-1.

1<ign-1

In this basis, the Hasse-Witt matrix, i.e. the matrix of Frobg, on H "=3(X,0y) is given as
follows:

Froby, (e(a)) = > HWie(b),

HW,, j, := the coefficient of e(b) in F”~'e(a)?

:thecoef.ofl/x;,< I1 Xi)

1<i<n-1

o[ 0] )

p—1
= the coef. of 1/xp in ( > x,») /xh

1<5i<n-1

-1
= the coef. of x?/x; in ( > 1 x,)p

1<ign—
=0q,b-
Thus Frobs, on H" (X, Ux) is the identity on this n — 1 dimensional space. So
Trace(Froby, |[H" (X, 0x)) =n — 1.
Thus we get
#V10(F,) = (=1)"(n—1) mod p.

Since p = n, #V7 o(F,) is prime to p as required.

There is an elementary way to prove this same congruence. As above, Vg is the
affine hypersurface F =0 in A"!, and F is the product of n linear forms, any n — 1 of

which are linearly independent. Thus ¥ o([F,) is the union of n hyperplanes H;(F,),
i=1,...,n, any n — 1 of which are in general position. So by inclusion-exclusion

#V10(F,) = #(u Hl»([m) = X #HI(F,) — S #(Hi(F,) n Hy(F,) + -

i<j

=np"? — (Z>pn3 + <}31>pn4+"'+ (_1)n<ni1>1 - (_1)”+1<Z>1

= (—-1)"(n—1) mod p. QED
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9. Proof of Corollary 1.3

This proof follows the proof of [Fol], so we will only sketch the proof, referring to
[Fol] or to [Be-Fo] for details. For A a fundamental positive discriminant, we denote by
A (A) the quantity

314

H(A) .

where r3(A) is the 3-rank of the ideal class group of the ring of integers of Q(v/A). Note the
inequality #'(A) = 0 and the equivalence

H(A) =0 & 3 4 h(A).

We owe to Davenport and Heilbronn [Da-Hel], 2, a complete interpretation of #'(A) in
terms of classes of binary cubic forms, under the action of GI(2, Z). From their work, we
will first recall the

Lemma 9.1. Let As(a,b, c,d) be defined by (6.1). Then for any positive fundamental
A, we have

H(A) :%#{(a,b, c,d) eV ;aX> +bX?Y + cXY? +dY? irreducible As(a, b, c,d) = A},

where ¥ is the subset of R* defined as the set of quadruples (a,b,c,d) satisfying

eitherr —A<B=<A<C
>1 = ’
”—am{m 0<B<A=C,
with A, B and C defined by
A=0b*—3ac, B=bc—9ad, C=c*—3bd.

This is Proposition 3.1 of [Fol]. We extend the definition of # by setting #'(n) = 0 if
n = 1 is not a fundamental discriminant. Now we enlarge the set ¥~ to the set ¥, where

v ={(a,b,c,d);a=1,|B| < A=< C}.
Let g(n) be the function
g(n) = #{(a,b,c,d) e V';A3(a,b,c,d) =n}, fornz=1

(note the inequality #'(n) < Eg(n)) We introduce an auxiliary integer P = 3, which later

will be taken arbitrarily large and will be used to ensure that p + 4 is squarefree. We define
the function gp(n) by

® gp(n) =0if nis not congruent to 1, 5, 8,9, 12 or 13 modulo 16, or if n is divisible
by the square of an odd prime number less than P,

® gp(n) = g(n) otherwise.
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Note that the above congruence classes modulo 16 correspond to the congruence

classes to which a fundamental discriminant belongs and that the following inequality
holds for every n and every P = 3:

9.1) H(n) < = gp(n).

As usual the Mobius function is denoted by u.

Proposition 9.2.  For every positive ¢ and for every P = 3, we have the estimate

@) S arln+4) D S g0n)| = 0.l Tog > )
g<XT nq§|nX n<X
with
) — 77 P24 ~ (2,4,p)"
P(Q) _15‘[1 p3 *Pl/;(lé) )(1 é(p)p((l(],p),4)>’

with & and p the multiplicative functions defined by

21
. f(P):?—Ffm’Piz
* p(2,4) =10 and p(p,4) = p* — p for p 2 3.

.. .\ . 1
This is the statement of Proposition 4.1 of [Fol] but with the exponent 3 ¢ replaced
2 .. . .
by ke This improvement of the exponent is the key point of the proof. Note that any

exponent > 3 would be sufficient to prove Corollary 1.3.

9.a. First reduction of the proof of Proposition 9.2. The first reductions follow
exactly what was done in [Fol], 4.a and b. Recall only that we treat on average the con-
tribution of the cusp of ¥, and we divide the remaining volume into a certain number of
hypercubes %;, with i € .#. Each side of these four dimensional hypercubes has length

0= X1,

with # a small positive constant, which will be chosen to be

&

=100

The contribution of points of ¥~ which are not in |J %; is also negligible, by taking
iet

advantage of the summation over ¢. In other words, to prove Proposition 9.2, it is sufficient

to prove a result of equidistribution not in ¥~ but in each %;, of the form
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p(p,4 N N
92) > 1=T122Y [[e(p) 5 140,470 og* X)
Me B, A3(M)=0 (modr?) g P plr Me%;
A3(M)—4=0 (mod q)

for all squarefree ¢ < X 52, all positive ¢, and all squarefree r coprime with ¢. This is ex-

actly [Fol], (4.6) (however in that formula, “As;(M) + 4 should have been “A3(M) —4”).

We suppose now that #; = % = [b;b; + Q] X - -+ X [bs; bs + Q] and we suppose also
that

(9.3) Q < qr.
The case gr? < Q is easier and will be treated at §9.e.

We develop in Fourier series the characteristic function of each interval [b;; b; + Q] in
terms of additive characters modulo ¢r?, which means that the sum

1 > > exp(27zih(nqr_2 x))

qrz hmodgr? b=x<b+Q
is 1 or 0 according to whether n(mod gr?) belongs to {x(mod ¢r?); b < x < b + Q} or not.
The left hand side of (9.2) becomes

04) —= X > exp(—2m’ hixy + hoxy + haxs + haxy
: 8

1
4y
q hmodgr? xe#

)S(h; q,r%),

qr?

with h = (h],/’lz,/’l3,h4), X = (xl,xZ,X3,X4) and

o= T enl:
)

i ahy + bhy + chy + dh4>
(a,b,c,d

qr?
where the sum is taken over the (a, b, ¢, d) modulo gr* such that
As(a,b,c,d) —4=0 (modg) and As(a,b,c,d) =0 (modr?).
This trigonometric sum satisfies a cross multiplicativity property
95)  S(hiq192,7%) = S(q1r b; g2, 1)S(q2r? b g1, 1) S(@iqz b 1,17),

for (q1,92) = (q1,7) = (¢q2,r) = 1. The notation 7 means that we take the multiplicative
inverse of n modulo ¢», ¢; and r? respectively.

Here appears the crucial role of the sum

S(h,\, p) = ) W(ahy + bhy + chs + dhy)

(a,h,c,d)e[F;‘

As(a,b,c,d)—4=0 (mod p)
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(with  a non trivial additive character of F,) to which we may apply Theorem 1.2. The
fact the 4-number is non-zero is proved in Theorem 6.1. The smoothness and geometric
irreducibility were noted in section 6.

Lemma 9.3. There exists an absolute C and closed subschemes X; (j=1,2,3),
X1 o X, 0 X5={0},in A% of dimension <3 — j, such that, for every p, for every nontrivial
additive character  on [, we have

(9.6) |S(h, 1, p)| < Cp?
for b ¢ X (Fy),

(9.7) IS(h,, p)| < Cp?
for h ¢ X5(F),

9:8) |S(h, s, p)| < Cp?,
for h ¢ X3(F,).

The equality X3 = {0} is a consequence of homogeneity and also a consequence
of [Fol], Lemme 2.4.i. This lemma improves [Fol], Lemme 2.4, by decreasing by 1 the
dimensions of the exceptional sets X;. The contribution to (9.4) of the term & = 0 is exactly
the main term appearing in (9.2). So to prove (9.2) for ¢ = Qr~2, it remains to prove that

hix1 + hoxy + haxs + haxy
qr?

9.9) 5 > > exp (—2711'

1
4 ,
47" h+0modgr? xeB

)stha.r
= 0,,(q"'Q*log™ X),
under the condition ¢ squarefree < X e

We will now follow the proof of [Fol], Prop. 2.5. We recall the classical upper bound
for geometric progressions

> exp(Zni;E):O E<ﬁ> ,
b<x=b+0Q q q

valid for any b, with Z(a) = min(Q, ||of| "), where ||| denotes the distance of « to the
nearest integer. We see that the left hand side of (9.9) is « K(Q; ¢.r?), with

0.00)  K(Q:qr?) = ST E(%)w(h;q,ﬂn.

1
4.8
47" h+0modgr? 1<i<4

The proof of (9.9) is reduced to the proof of

(9.11) K(Q;¢,1*) = 0,,(¢" ' Q*log 3 X),
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for any squarefree ¢, any integer r coprime with ¢, satisfying Or2 < ¢ < X5
We use the multiplicativity (9.5), Lemma 9.3 (noticing that the closed subsets JX; are

independent of the non trivial character ) and the trivial bound |S(k; 1,r2)| < r® to write
the inequality

Dl
ol
o=

Sth:q )| =C¢ T p+ 11 » I »-

pla prla pla
hmod peX((F,) hmodpeXs(F,) hmodpeX;(F,)

In the above formula, s is the number of prime factors of ¢, so we have C*= O(¢").
Inserting this bound into (9.10), inverting summation and using the inclusion

X3 = Xz [ Xl,
we finally get the inequality
s 111 h h h3 N
(9.12) K(Q;q,1%) < q3C* 91030 E()E()E( 2( %),
i 05 =2 )2 ) F 2
where the last sum is made over the A modulo ¢r?, satisfying & + 0 modulo ¢r?, and

SJorall 1 i <3, forall p|o;, we have h mod p € X;(F,).

(Note that (9.12) is a corrected version of [Fol], (2.1) which is incorrect (though it is
correct when ¢ is prime, and its right hand side contains enough of the essential terms that
[Fol], Prop. 2.5 remains correct). We thank Cécile Dartyge for pointing out a similar error
in an earlier version of this paper.)

One of the difficulties is that ¢ is not necessarily prime. Nevertheless we first treat the
prime case in order to give lemmas which will be useful in sections 9.c, 10 and 11 and
illustrate the situation.

9.b. The particular case when ¢ is prime. The first lemma recalls some general facts
about varieties. This is Lemma 2.1 of [Fo2].

Lemma 9.4. Let V" a closed subscheme of A’ of relative dimension < d. Let m,_, be
the projection of A on A;fl defined by m,_1(z1,...,24) = (21, .., 2u—1). Then

i) 7, 1(7") is contained in a closed subscheme of AZ™' of relative dimension < d,
called @, (V"),

ii) the set of points M in A%~ such that the fiber @' (M) is contained in ¥ (or in
other words such that the fiber has an infinite number of points of intersection with V") is

contained in a closed subscheme ®,_1(7") of A4~ of relative dimension < d — 1.
Now we deal with a more general question, already treated in [Fo2], 2.6.

Lemma 9.5. Let N be an integer = 1, x be a positive real number and let V" be a
closed subscheme of A}, of relative dimension < d. Let V(7",x,N,d,s) be the sum
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V(7" ,x,N,d,s) « (Np)‘x*(log Np)*

h

Np

S

V(v',x,N,d,s) := min (| x,
( )= % )( ( =

hev (F,

Then we have the inequality

for every x < Np.

Proof. The proof proceeds by induction on s. There exists an integer, say K, such
that, for every p, every line of A*([F,) which is parallel to one of the coordinate axis is either
contained in #"([F,) or has at most K points with ¥". Summing first over 4, and using the
notations of Lemma 9.4, we get

—1 > )

(9.13) V(77,x,N,d,s)

<Kx Y min | x,
hen, ((1)(F,)

+0 (Np log(Np) > min (x,

he®,_; ('V)([Fp)
1))

X X [ min( x E
) Np

In the right hand side of (9.13), the dimensions of both the ambient space and of the variety

have decreased. So (9.13) gives

I
Np

)

h
Np

(9.14) V(¥",x,N,d,s) « KxV(7+”,x,N,min(d,s — 1),s — 1)

+ pNlog(pN)V(+" x,N,d — 1,5 — 1),
where 7"/ and 7" are the varieties in A*~! given by 7,_;(7") and ®,_;(7") respectively.

For s = 1, Lemma 9.5 is trivial, since we have V(7", x, N, 1,1) = O(Nplog(Np)) and
V(77,x,N,0,1) = O(x). Also for d = s, we have

V(7" ,x,N,s,s) < (V(Al,x, N,d, s))s < (Nplog(Np))S,

so Lemma 9.5 is true also in that case. To pass from the value s — 1 to the value s of the
dimension of the ambient space, we use (9.14) and the hypothesis of induction, giving
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V(7" ,x,N,d,s) < Kx(Np)mi“(”l’S*l)x“l*mi“(d"“w(log(Np))min(d’s_1>
+ Np - log(Np) - (Np)*'x* (log(Np)) "'
< (Np)dxs_d(log(Np))d. QED

It is now easy to deduce the proof of (9.11) in the particular case ¢ prime and r = 1.
Indeed, in this case, the values of the different sums over A, on the right hand side of (9.12)
are respectively

«qg*logtq  when 0, =0,=0=1,
« ¢*0*log’q when 6, =¢q,0,=03=1,
< qQ°logg when J; =d, =¢,03 =1,
=0 when 0, =0, =d3 =q.

Summing these upper bounds, by (9.12) we get, when ¢ is prime

K(0;q,1) <. ¢"(¢* + O + ¢ Q).

which implies (9.11) in that particular case. The proof of (9.11) in the general case is much
more delicate in its combinatorial aspects. However, the main ideas are the same.

9.c. A recursive bound. In this section, we give a general bound, which, when
applied, will lead to the treatment of K(Q; ¢, r?), by reducing step by step the dimension of
the ambient space. This reduction will be made by the functions ®,_; and 7,,_; of Lemma
9.4. In some sense, it generalizes the proof of Lemma 9.5, but for a modulus not necessarily
prime.

Let s and n be integers with n > 1. Let y,...,d, be integers such that J; ...d;|q. Let
V1,..., Vs be closed subschemes of A7, satisfying

dim I/l é ai,

where the ¢; are given integers satisfying —1 < a; < n with the convention that the empty
set has dimension —1. We consider the sum X, defined by

¥, 0= >, minjy -+ > min,_

hy mod gr? h,_1 mod gr?
X 6(//117 cee ahn—la (I/l>5l7al)7 ceey (V57(537a3))7

where

and
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6(hla oo 7hn717 (Vl7517a1)7 . "7(VY75S7aS>) = Emlnn
h"

where the sum is over 4, mod gr? satisfying the extra condition
VI<i=<s, Vploi(hi,...,h,) € Vi(Fy).

(Note that if ¢; = —1 and J; > 1 then & = 0.) Actually, we want to give an expression of %,
in terms of sums in spaces of lower dimension.

By Lemma 9.4 we know that the closed subscheme ®,_;(V;) of A?l has dimension
< a; — 1, and that the closed subscheme 7,_;(V;) of A%‘l has dimension < min(n — 1, a;).
We must take into account all the possibilities. So we factor J; into 6; = y;;. We see that if
for all i

s (hla cee ,hn—l) € (Dn—l(Vl)([Fp) for all p|yi>
b (hlu cee >hn71) € ﬁnfl(Vi)(U:p) - (anl(Vt)(”:p) for all p’yzl:

then, by the Chinese Remainder Theorem, /4, in the definition of &, can be written in the
form

where v takes O(g?) values between 0 and []y/ — 1 and 4 is any integer between 0 and
(¢r*/T17!) — 1. Summing the function min, over the /, of the form (9.15), we get

v+ AL Iy -
S min, « Y > 0+ > —

2
Iy v a=0or (/7)1 voo<a<(erqra)-) 4

< g (Q + > ar’ )

1 !/
1=2=qr? 2117} /“H Vi

2
< q'7 (Q + l—q[ry{) .

In conclusion, the sum X, is bounded by

ylyl,:(sl ysys’:(ss

9.16)  T,<q’ ¥ ... 3 (Q+%)

X Yy, ming... Yy,

hy mod ¢r? hy_» mod gr?

X minn—Z Cs(hlv cee 7hn—27 (%1)7 (%i)a ceey (QBS)7 (%;))7
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where (2B;) and (2W;) are the triples
(QB,):(VI/,,V”CZ,—1>, (%D: (VVl/ayll)mln(alvn_l)) (1 élés)u

with W; and W/ closed subschemes of A%!. Note that in (9.16), the number of varieties
has doubled, but the ambient space dimension has decreased by one.

9.d. Proof of (9.11). Let M(J;,5,,03) be the sum over & on the right hand side of
(9.12). So this inequality can be written as

9.17) K(@:gr) sqic ) SRS (S1,0,55).
3]021011q

Since we have the inclusions X3 < X, < X, since ¢ is squarefree (so the numbers d3, d2/03
and 0; /0, are coprime) we can write M in the form

M(51,52,53) = Z min1 Z minz Z min3
hy mod ¢r? hy mod ¢r? h3 mod ¢r?
X &(h1, hy, by, (X1,01/02,2), (X2,02/93, 1), (X3,63,0)),
where we use the notations of §9.c. We factor d; /0, and 0, /03 into y,y| and p,y5 (it is useless
to factorize d3) and use the recursive formula (9.16) to write
(9.18) M (61,02,03)
2

qr . .
<q" 3 > (Q+ s > min; ), min
NPI=01/02 pryi=02/33 717293/ by mod gr? hy mod gr?

X 6(h17h27 (Xl.,lvyh 1)7 (X1,27 V{>2)a (XZ.,lasz O)a (X2,27 yév 1)7 (X37537 O))
In this expression, we put together the varieties of the same dimension to write for

S, := > min; Y min; &(...)
hl ]12

the upper bound

(919) SZ é Z 1’ninl Z min2 6(1/117}127 (YO’V25370), (Y17y1yév 1)) (YZ)yivz))
111 hz

We follow the same technique: we factor y,7; and y| into 8] and 8,55 and put together
varieties of the same dimension to transform (9.19) into

2
(9.20) S<q’ Y% <Q + ‘1’) S min,
BiBi=nv} Bafr=v| BrB2r20s) 'y
X 6(/’11, (207[))1)/2537 0)7 (Zlvﬂ{ﬁb 1)7 (227ﬂ£; 2))

Since Z, is of dimension at most 2 in the ambient space of dimension 2, we can drop this
variety in S. We write for
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S] = Z min1 6( . )
n
the inequality

(921) Sl é Z min1 6(/11, (Zo,ﬁlyzég,O), (Zl,ﬂ;ﬂz, 1))
hy

We again apply the recursive formula in (9.21) giving

7'2
(9.22) S1 < q" %Iﬁ <Q+ ai[;]m&s)@(woa“1513’253,0))'
%19 =p 152

It is easy to obtain the inequality

qr’
(9.23) S((Vo, 011720,0)) < ¢" (Q M oc1/>’1V253> '

Inserting (9.23) in (9.22), and summing over «; and o] we get

2 2.4
qr-Q qr
9.24 S < g 0+ '
(0.24) ( Prids  Bi151305

We insert (9.24) into (9.20) and sum over 3, 3|, 3, and f3; to get

qr2Q2+ q2r4Q q3r6 )

(9.25) S, < ¢ 0* +
1203 p93vs03  vIivivRe3

Inserting (9.25) into (9.18), and summing over y;, 1, ¥, and yj, we finally obtain

23 2,402 3,6 4,8
9.6 M(8),05,83) < Tn 4+qu+qu+qu+ qr .
( ) (1 2 3) q (Q O3 0203 010203 5%5253

We use (9.26) in (9.17) to produce an upper bound for K(Q;¢q,r?), but we will only use it
when J; is not too large, 03 < Aj say. The value of A; will be fixed later. The remaining
03 > A; will be treated trivially. We have

L1 203 2402 3.6 4.8
K : ,}’2 « 7%+7’7C5 575555 4 + qr Q + qr Q + qr Q + qr
(i) «q 53|(52%51\q 2 3<Q J3 0203 010205 570203

035 A3

S 4 3 . .
+q2C (A_> Z 03 ), ~minj...ming
3/ g h=+0 mod gr?
03;A3 53‘(/11,...,/14)

which gives
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1
(9.27) K(Qiq,r") « ¢ 7(qO* A3 + ¢°r* Q° + ¢r* Q7 + ¢*r° 0 + ¢**)

+aic (L) s smr),
A3 d3lg
532 A

say. To evaluate M (d3), we separate the h according to the number of the 4; which are 0
modulo gr?. We get

woneo((E)e (5o (5o (2)
3 1 53 53 53 53
< q" ( 4

By inserting this bound into (9.27), we get
1
(9.28) K(Qiq,r") « g 7V(qQ* A3 + ¢°r* Q° + ¢ Q7 + ¢*r°Q + ¢*rY)
+q GO + g7 A,
We choose now
A3 — q171877
and (9.28) becomes
K(Q;q,r") < (g7 710 + g 7MQ + g0 + @10 + ¢ T) + 71T QR,

It is easy to see that (9.11) is proved for ¢ squarefree, satisfying Qr > < g < X g’s, if ¢ 18
sufficiently small.

9.e. The case ¢ < Qr 2. Coming back to (9.2), we see that the length of the sides of
4; is larger than the modulus gr?>. We decompose %; into a certain number of hypercubes

4
with sides of length ¢r* (we call them %, ;, their number is L]—%] ) and into O((Q/qr?)?)

incomplete hypercubes %;  (incomplete means that all the sides have length < ¢r? and at
least one has length < ¢r?). Since we have a complete set of residues we have the equality

9.29) > =172V e v 1

Me%; j,A3(M)=0 (mod r?) plq p plr Me % j
A3(M)—4=0 (mod q)

For the incomplete hypercubes % i, we develop in Fourier series the characteristic function
of each edge (which is of length < ¢r?). We get

p(p,4
9.30) > =220 1e) 3 1+ 0(K(aia. ),
Me%; 1,A3(M)=0 (mod r?) rlg plr Me®:
A3(M)—4=0 (mod g)
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with

1 (i
Kartiar) = s © T =/(2)istar
47" p+0modgr? 1<i<4 q

with Z'(x) = min(gr?, ||«]~"). We use Lemma 9.3(9.8), in the form

IS(h; q,17)| < C*r(h, q)*.

We get, for any positive #

to—

34y

h;
Kga,r?) < q —) h, )%,

':/
h+0modgr? 1<i<4 (CI

<gye Y] 3’@)

olg h+0modgr? 15i<4 q
Slh
«<g Tk gr) (g0 ).
olq
This gives
(9-31) K(gr¥; q,r%) < ¢tns,

Summing formula (9.29) over the j and using formula (9.30) with K bounded by (9.31),
we get

MGﬂ,uA3(
Az (M)-4

(mod r?) plg plr Me%;
(mod g)

o= PP ep) 5 14 0((0/q)° - 7).
o

This error term is O(¢~' Q*(log x) ), for every ¢ < Qr~2. This ends the proof of (9.2) in all
cases and so also ends the proof of Proposition 9.2.

9.f. End of the proof of Corollary 1.3. Let .o/ be the set .«/ = {g;1 < a < x}, each a
given the weight w(a) := #(a + 4) (recall that this weight is zero when a + 4 is not a fun-
damental discriminant). Let also P be an integer, which will be chosen larger and larger.
Instead of sieving .o, we will rather sieve ./ := {a;1 < a < x}, each a taken with weight

w(a) = lgp(a +4). The relation (9.1) implies
(9.32) w(a) < w(a).
Let us recall the classical notations of sieve theory

S(et,2,2)= 3 wla), S(Z,2,2)= 3 a).
asx asx
pla=pzz pla=pzz



162 Fouvry and Katz, Stratification theorem for exponential sums

Here 2 is the set of all the prime numbers. Let C(x) be defined by

X

#H{Vx < p<x,p=1(modd), 1> (p+4) =13 h(p+4)} = C(x)@.

We intend to prove the inequality C(x) = ¢, for x sufficiently large. Since the weight w(a)
takes values either 0 or greater than 1, we have the inequality

(9.33) S(t,2,x3) + C(x) > #{Vx < p<x;p=1(modd), i’ (p+4) =1},

log x

By [Fol], Lemme 5.1, we know that the right hand side of (9.31) is equal to

1 X
(9.34) <2+0(1)>F10gx,
where T is the infinite product I' = [T (1 — 1/p(p — 1)). Now (9.32) implies the inequality
p>2
(9.35) S(ot,2,x3) < S(A, P, x2).

Proposition 9.2 says that we can write

S grln+4)=2L 1 (1= &) (S o)) + (0

nsx q 2<p<P n=sx
qln
with
8 p(p,4)
w(q) =1]—= 1-¢p) [l ==
2lq 15 2<11:I§P( ),I,E, p?
plg

and where the error term satisfies

D 12(q)|r(x,q)| = O(xlog > x).

q=x5

We see that o satisfies the conditions of the linear sieve, and that .o7 has level of distribution
x57¢. It is time to apply the classical formula of the upper bound sieve [Iw], Thm.1. We get

030 S22 (340) Ve T1 (=) o)

2 2<p=P n=sx
log x2 5
- 2e’ — + O(xlog™“ x),
log x57¢

for any positive # and x > xy(#). An easy computation shows that the Euler product

V(xt):= ] (1 _a);p)) satisfies

1
P=x2
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1 eV

(9.37) V(x2) ~cp-T- T Togx’

where c¢p is some constant which tends to 1 as P tends to infinity (see [Fol], (5.6)). To
conclude, by [Da], Lemmas 4,5 we have

72
(9.38) né:xg(n) ~ 3
Inserting (9.37) and (9.38) into (9.36), we get
(9.39) S, 2y < (> 4y) T
A V) logx’

for every # > 0 and x > xo(). Inserting now (9.39) into (9.35) and then (9.34) into (9.33)
we see that C(x) satisfies the inequality

Cx) + <1—52+;7> Tz (%4—0(1)) T

for every # under the condition x > x((7). Hence we obtain the lower bound

r

C(x) z 33

for x sufficiently large. QED

10. Proof of Corollary 1.4

The method is absolutely classical. By Weyl’s criterion, it suffices to prove that,
for every non trivial additive character  of [, and for every fixed non-zero r-tuple

a=(ay,...,a,), the exponential sum S defined by
(10.1) S= Y ylaPi(x)+- +aP(x))
0=x; <w(p)
satisfies
(10.2) S = o(w(p)")

for p — co. We first prove (10.2) for 1 < w(p) < p. On the additive group [,, we develop
the characteristic function ¥ of the integers in [0, w(p)] in a finite Fourier series: the
function

(10.3) Y= %% y(h(m—n)

0<m=w(p) 0<h<p
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is equal to 1 for 0 < n < w(p), and 0 if w(p) < n < p. Inserting (10.3) into the definition
(10.1), we obtain

S = 2 > W(him) 2 yla-P(x)—h-x),
eA"(F,) m=w(p

1
P" ) xeAT(F,)

1<i<n 0<

where /1 - x is the usual scalar product in dimension n. If y is of the form

(1) = exp (27;.“)

with some » non divisible by p, we get

(104) S« ~ v ] min (w(p), [bhi/p ")

P" heAn(r,) 1<isn

> lﬁ(a~P(x)—h-x)’.

xeA"(F,)

For any a + 0 and for any % the function a- P(x) — - x is not = 0 by assumption. So
Weil’s bound for exponential sums over polynomial in several variables implies

(10.5) > y(a-P(x)—h-x) = 0(p"?)

xeA"(F,)
where the constant depends only on the P;. We apply Theorem 1.1 with f =a-P, g =1,

V= A7. So we introduce the varieties X; of dimension < n — j, and we define Xo = A7.
With these conventions and with the remark (10.5), we transforn (10.4) into

1 n nyJ=1 : -
S ST S T min(w(p), [kl ).
j=

heX;_1(F,) 1<i=n

By Lemma 9.5, we have

Z H min(w(p), ||bh,/p||_l) < pn_(.i—l)w(p)./—l(logp)n—(./—l)'
heX 1 (F,) 1Si<n

Hence we get

(10.6) S « p(log )"i<M)jl < prw(p)" " log
| PRSP (Vb togp PP P;

which proves (10.2) in the case w(p) < p.
When w(p) = p, we dissect the hypercube of summation over (xi,...,x,) into

« (w(p)/p)" hypercubes %; with all their sides with length < p. Let S(%,) be the
exponential sum

S(€) = > Y(aPi(x)+ -+ aPr(x)).

X€b;

Proving for S(%;) a formula similar to (10.4), and using (10.5), we get
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1
S(€:) « p"(logp)".

Summing over all the %;, we get also (10.2) in that case. QED

11. Proof of Corollary 1.5

As in (10.3) we develop in Fourier series the characteristic function of the interval
[0, x[. We get

#V(F,,x) = RIS exp(—2nith>-S(V;h,p)

1
P* (. ) eFS 15is 0Sm<x

where

S(Vih,p)= 5. exp <2nih1x1 * p + hsxs).

xeV(F,)

S
The term corresponding to 4 = 0 is the main term #V([,) <x> . The error term comes
from the contribution of the other terms. It is O(S), with P

S = > J] min (x,

1
P’ h+0eF; 15iss

%Hl>|s<v;h,p>|.

Since V¢ does not lie in a hyperplane, we have for any & # 0 the upper bound

(11.1) S(V;hyp)| = CPT,
see [Fo2], Prop 1.2 for instance. Let X3, X3, ..., Xy be the closed subschemes introduced in

Theorem 1.2 (note that (11.1) implies that X, can be taken to be equal to {0} and need
not be considered). So we have the inequality
i

2 b
p p

We know that the X; are of dimension < s — j, so Lemma 9.5 gives at once

1 a . - d +Jj— .
S« — pe > ]I minf x, —|—Zpd2 IZ [[ min{x,
p j=2 heX; 1<i<s

he[F,f I<iss

d+ j—
2

1 d - .
S« px (p% -p*(logp)’* + Z;p . x/p(log p)’ ’)-
j:

Summing over j we get

S « p%(logp)s{l +\/117 ((ﬁﬁ)gp)z " <\/l3i’gp>d> }

This ends the proof of Corollary 1.5.
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