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Abstract. We formulate some conjectures about the precise de-
termination of the monodromy groups of certain rigid local systems
on A1 whose monodromy groups are known, by results of Kubert,
to be finite. We prove some of them.
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1. Introduction

The solution [Ray] of Abhyankar’s Conjecture for the affine line in
finite characteristic p tells us that any finite group which is generated
by its Sylow p-subgroups occurs as a quotient of the geometric fun-
damental group. In a series of papers, Abhyankar has written down
explicit equations which realize many finite groups of Lie type as such
quotients. Here our concern is with certain local systems which arise
as very simple one-parameter families of exponential sums.

Namely, we start with a finite field Fq of characteristic p, a prime

number ` 6= p, a nontrivial Q`-valued additive character ψ of Fq, and a

Q`
×

-valued multiplicative character χ of F×q (with the convention that
for χ the trivial character 1, 1(0) = 1, otherwise χ(0) = 0), and an
integer D ≥ 3. Then we form the local system F(Fq, ψ, χ,D) on A1/Fq
whose trace function(at Fq-valued points t ∈ Fq = A1(Fq)) is given by

t 7→ −
∑
x∈Fq

χ(x)ψ(xD + tx),

with an analogous formula for the trace at k-valued points t ∈ k, for
k/Fq a finite extension.

As we recall in Theorem 3.1, these local systems have long been
known to have huge geometric monodromy groups when the charac-
teristic p is large compared to D. In our earlier work, we had also
encountered some situations where p was small compared to D and
where we showed that the geometric monodromy group was a finite
group. Here are some of them.

(1) F(F2, ψ,1, 3).
(2) F(F2, ψ,1, 5).
(3) F(F3, ψ,1, 4).
(4) F(F3, ψ,1, 5).
(5) F(F5, ψ,1, 3).
(6) F(F3, ψ, χ2, 5), Ggeom = A5.
(7) F(F13, ψ, χ2, 7), Ggeom = PSL(3, 13).
(8) F(F3, ψ, χ2, 7), Ggeom = SU(3, 3).

Theorems of Kubert [Kubert] from May, 1986 gave whole families of
local systems F(Fq, ψ, χ,D) with finite geometric monodromy groups.
The numerology of some of the Kubert families matches the numerology
of the representation theory of the groups SL(2, q) for q ≥ 5 a power
of an odd prime p. The numerology of other Kubert families matches
the numerology of the representation theory of the groups SU(n, q) for
n ≥ 3 odd and q any power of p (with the proviso that q ≥ 3 if n = 3).
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In section 9, we formulate the natural conjectures which arise from this
agreement of numerology.

We were led to formulate these conjectures when we realized, only
recently, that all of the eight examples of finite geometric monodromy
listed above fit into the framework of Kubert’s theorems. One of his
results (Theorem 4.1) was that for q any power of p, F(Fq, ψ,1, q + 1)
has finite geometric monodomy, which Pink [Pink] the next week (!)
showed to be a p-group, see the Appendix for Pink’s proof. Sawin has
recently shown that when q is odd, this group is in fact a Heisenberg
group of order pq2 and exponent p. See the second appendix for Sawin’s
proof. This explains examples (1) through (4) above. Item (5) results
from the Kubert theorem (Theorem 4.2 (1)) that F(Fq, ψ,1, (q+ 1)/2)
has finite geometric monodromy, which we conjecture to be the image
of SL(2, q) in one of its irreducible representations of dimension (q −
1)/2, so long as q ≥ 5 is odd. Items (6) and (7) result from the
Kubert theorem (Theorem 4.2,(2)) that F(Fq, ψ, χ2, (q+1)/2) has finite
geometric monodromy, which we conjecture always to be the image of
SL(2, q) in one of its irreducible representations of dimension (q+1)/2,
so long as q ≥ 5 is odd. Item (6) falls under this rubric with q = 9 if we
remember that A5 is also PSL(2, 5). Item (7) is the case q = p = 13.
The final case results from yet another Kubert result (Theorem 4.3,(2)),
that for n ≥ 3 odd, F(Fq, ψ, χ2, (q

n + 1)/(q + 1)) has finite geometric
monodromy, which we conjecture to be the image of SU(n, q) in its
unique orthogonal representation of dimension (qn+1)/(q+1), so long
as q ≥ 3 is odd. Item (8) confirms this to be the case for n = q = 3.

We prove these conjectures in the case of SL(2, p) using classical
group theory results of Brauer [Brauer], [Brauer2], Feit [Feit] and Tuan
[Tuan]. We then treat all cases of the conjectures for SL(2, q) and
many (but not all) for SU(3, q) by using the beautiful work of Dick
Gross [Gross] and the ideas underlying that work, which Gross gen-
erously explained to us. We identify the local systems in question as
Kummer pullbacks of local systems on Gm/Fq, respectively on Gm/Fq2 ,
which are themselves pushouts of G-torsors when G is PSL(2, q), re-
spectively PU(3, q). These G-torsors are themselves certain Deligne-
Lusztig curves, which Gross explains how to view as G-torsors for G
either PSL(2, q) or PU(3, q).

It is a pleasure to acknowledge Dick Gross’s essential contribution to
this work. It is a pleasure to thank Ron Evans, for providing the proofs
of Theorem 16.3 and of Theorem 19.4, Richard Pink for providing, in
1986, the proof of Theorem 20.1 and its corollaries, and Will Sawin
for providing the proof of Theorem 21.1. We also thank the referee,
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who showed how to simplify and unite the proofs of Theorems 16.2 and
16.3.

In a first version of this paper, the SU(3, q) discussion required q to
be odd, because it used explicit facts about the representation theory
of finite Heisenberg groups, which for q odd occur as certain unipo-
tent radicals. Pham Huu Tiep explained that in the q even case, the
representation theory of these unipotent radicals was no different, and
kindly added an appendix showing this.

2. The local systems

Fix a prime p, a finite field Fq of characteristic p, and a nontrivial
additive character

ψ : (Fq,+)→ µp(Z[ζp]).

Denote by χ a nontrivial multiplicative character

χ : F×q → µq−1(Z[ζq−1]).

We extend χ to a function on all of Fq by defining χ(0) = 0.

We choose a prime number ` 6= p, and an embedding of Q, say
viewed as the algebraic closure of Q in C, into an algebraic closure Q`

of Q`. This allows us to speak of the lisse, rank one Q` Artin-Schreier
sheaf Lψ on A1/Fq and of the lisse, rank one Q` Kummer sheaf Lχ on
Gm/Fq. For j : Gm ⊂ A1 the inclusion, the extension by zero j!Lχ on
A1 will also be denoted Lχ when no ambiguity can result. We denote
by 1 the trivial multiplicative character, and adopt the convention that
L1 is the constant sheaf Q` on A1. We write FT for FTψ, the Fourier
Transform using Lψ(xy) as the kernel.

Given an integer D ≥ 2 which is prime to p, we denote by

F(Fq, ψ,1, D) := FT (Lψ(xD)),

and, for each nontrvial χ,

F(Fq, ψ, χ,D) := FT (Lχ(x) ⊗ Lψ(xD)).

These Fourier Transform sheaves are lisse on A1/Fq, pure of weight
one, and geometrically irreducible. They are cohomologically rigid,
being the Fourier Transforms of rank one objects, cf. [Ka-RLS, 3.0.2].
Their ranks are

rank(F(Fq, ψ,1, D)) = D − 1,

rank(F(Fq, ψ, χ,D) = D for χ 6= 1.

Their trace functions are given as follows. For k/Fq a finite extension,
define

ψk/Fq := ψ ◦ Tracek/Fq , χk/Fq := χ ◦ Normk/Fq .
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Then for t ∈ k, we have

Trace(Frobt,k|F(Fq, ψ,1, D)) = −
∑
x∈k

ψk/Fq(x
D + tx),

Trace(Frobt,k|F(Fq, ψ, χ,D)) = −
∑
x∈k×

χk/Fq(x)ψk/Fq(x
D + tx).

When D is odd, F(Fq, ψ,1, D) is symplectically self-dual toward

Q`(−1). When D is even, F(Fq, ψ,1, D) has no autoduality.
When D is odd, p is odd, and χ is the quadratic character χ2,

then F(Fq, ψ, χ2, D) is orthogonally self-dual toward Q`(−1). No other
F(Fq, ψ, χ,D) with nontrivial χ is autodual.

Given a lisse Q`-sheaf F on A1/Fq of rank r, we choose a geometric
point η of A1 and view F as a representation of the fundamental group

πarith1 (A1/Fq, η) := π1(A1/Fq, η),

ρF : πarith1 (A1/Fq, η)→ GL(Fη) ∼= GL(r,Q`).

The Zariski closure of the image of πarith1 is the arithmetic monodromy
group Garith,F of F . The Zariski closure of the image of its normal
subroup

πgeom1 (A1/Fq, η) := π1(A1/Fq, η)

is the geometric monodromy group Ggeom,F of F .

For F a lisse Q`-sheaf on A1/Fq of rank r which is geometrically
irreducible, if p > 2r + 1, then F is Lie-irreducible, i.e., the identity
componentG0

geom ofGgeom acts irreducibly, cf [Ka-MG, Prop. 5]. Below
we will be interested in situations where p ≤ 2r + 1.

Geometrically, i.e. on A1/Fq, the (restrictions to Gm of the) local
systems F(Fq, ψ,1, D) and F(Fq, ψ, χ,D)) are Kummer pullbacks, by
the D’th power map, of certain Kloosterman, respectively hypergeo-
metric, sheaves, cf.[Ka-ESDE, 9.2.3 and 9.2.2]. The precise statement
is this.

Theorem 2.1. We have the following results.

(1) Denote by ρ1, ..., ρD−1 all but one of the multiplicative characters
of order dividing D (of a suitably large extension of Fq, say
Fq[µD]). Then F(Fq, ψ,1, D)|Gm is geometrically isomorphic
to a multiplicative translate of

[D]?Kl(!, ψ; ρ1, ..., ρD−1) = [D]?H(!, ψ; ρ1, ..., ρD−1; ∅).

(2) Denote by ρ1, ..., ρD all the multipicative characters of order
dividing D (of a suitably large extension of Fq, say Fq[µD]).
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Choose a multiplicative character Λ (of a suitably large exten-
sion of Fq) such that

ΛD = χ.

Then F(Fq, ψ, χ,D)|Gm is geometrically isomorphic to a mul-
tiplicative translate of

[D]?H(!, ψ; ρ1, ..., ρD; Λ).

Corollary 2.2. We have the following results.

(1) For D ≥ 3, the determinants det(F(Fq, ψ,1, D)) and det(F(Fq, ψ, χ,D))
are everywhere tame, hence geometrically constant on A1/Fq.

(2) The I∞ representation of F(Fq, ψ,1, D) is totally wild, with all
slopes D/(D − 1). The I∞ representation of F(Fq, ψ, χ,D) is
the direct sum of a totally wild summand of rank D − 1 with
all slopes D/(D − 1) and a rank one summand which is the
restriction to I∞ of the Kummer sheaf Lχ.

(3) For j : A1 ⊂ P1 the inclusion, we have

j!F(Fq, ψ,1, D) ∼= j?F(Fq, ψ,1, D),

j!F(Fq, ψ, χ,D) ∼= j?F(Fq, ψ, χ,D).

(4) For F either F(Fq, ψ,1, D) or F(Fq, ψ, χ,D), and i 6= 1, we
have

H i
c(A1/Fq,F) = H i(P1/Fq, j?F) = 0.

(5) We have

H1
c (A1/Fq,F(Fq, ψ,1, D)) = H1(P1/Fq, j?F(Fq, ψ,1, D)) = Q`(−1).

(6) For χ nontrivial, we have

H1
c (A1/Fq,F(Fq, ψ, χ,D)) = H1(P1/Fq, j?F(Fq, ψ, χ,D)) = 0.

Proof. Assertion (1) results from the corresponding fact for the hyper-
geometric sheaves in question. They are tame at 0, and at ∞ all their
nonzero∞ slopes are 1/(D−1) < 1 (because D ≥ 3), so their determi-
nants are tame at both 0 and ∞. The pullbacks of their determinants
by [D] are lisse on A1 and tame at∞, so geometrically constant. Asser-
tion (2) results by pullback from the corresponding facts about hyper-
gemetric sheaves. Assertion (3) is then immediate from (2), according
to which both F(Fq, ψ,1, D) and F(Fq, ψ, χ,D) are totally ramified at
∞. Assertion (4) results from (3) and the fact that the F ’s in question
are geometrically irreducible of rank ≥ 2. Assertions (5) and (6) result
from Fourier inversion. �

We have the following more precise information about determinants.
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Theorem 2.3. For D ≥ 3, both F(Fq, ψ,1, D) and F(Fq, ψ, χ,D) have
geometrically trivial determinants, so of the form αdeg for some scalar

α(Fq, ψ, χ,D) ∈ Q`
×

. The scalar α(Fq, ψ, χ,D) is given as follows,
where for m ∈ Fq we write ψm for the additive character x 7→ ψ(mx).

(1) If D = 2d is even, then for F(Fq, ψ,1, 2d) we have

α(Fq, ψ,1, D) = (−g(ψd, χ2))qd−1.

(2) If D = 2d is even, then for F(Fq, ψ, χ, 2d) with χ nontrivial we
have

α(Fq, ψ, χ,D) = (−g(ψ−D, χ))(−g(ψd, χ2))qd−1.

(3) If D = 2d+ 1 is odd, then for F(Fq, ψ,1, 2d+ 1) we have

α(Fq, ψ,1, 2d+ 1) = qd.

(4) If D = 2d+1 is odd, then for F(Fq, ψ, χ, 2d+1) with χ nontrivial
we have

α(Fq, ψ, χ, 2d+ 1) = (−g(ψD, χ))qd.

Proof. As shown in 2.2 part(1), the determinants in question are geo-

metrically trivial, so each is of the form αdeg for some scalar α ∈ Q`
×

.
This scalar is then the common value of det(FrobFq ,t|F) at points
t ∈ Fq. Taking t = 0, the scalar is

det(FrobFq |H1
c (A1/Fq,Lχ(x) ⊗ Lψ(xD))),

for χ either 1 or nontrivial.
Here is a simple trick which “unites” these cases. When χ is the

trivial character 1, replace it by j! of itself; in other words, consider
instead the cohomology group H1

c (Gm/Fq,Lχ(x) ⊗ Lψ(xD)). When χ is
nontrivial, this is the same group as before; when χ = 1, the cohomol-
ogy group grows in dimension by one, adding an eigenvalue 1. So in
both cases the determinant does not change.

To compute the determinant, we use the Hasse-Davenport method,
cf. [Ka-MG, page 53] and [Ka-NG2, 2.2-2.3]. In terms of the elementary
symmetric functions Si, the Newton symmetric functions Ni are Z-
polynomials in the Sj. Then

det(−FrobFq |H1
c (Gm/Fq,Lχ(x) ⊗ Lψ(xD))) =

=
∑

S1,...,SD∈Fq ,SD 6=0

χ(SD)ψ(ND(S1, ..., SD)).
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The polynomial ND(S1, ..., SD) is of the form

ND = (−1)D+1DSD + (−1)D
D−1∑
i=1

iSiSD−i +R,

where R is a polynomial in the Si which is isobaric of degree D and in
which every monomial has usual degree at least 3.

[To see this, begin with the identity

log(1/(1− S1T + S2T
2 + ...)) =

∑
i≥1

NiT
i/i,

apply Td/dT to get∑
i≥1(−1)i+1iSiT

i

1− S1T + S2T 2 + ..
=

∑
i≥1

NiT
i,

and expand the denominator by the geometric series.]
When D = 2d+ 1 is odd, this expression is of the form

ND = DSD −D
d∑
i=1

SiS2d+1−i +R.

When D = 2d is even, it is of the form

ND = −DSD + dS2
d +D

d−1∑
i=1

SiS2d−i +R.

Exactly as in [Ka-NG2, 2.2-2.3], using this expression for ND we see
that when D = 2d+ 1 is odd, then det(−Frob) is equal to

g(ψD, χ)qd,

and that when D = 2d is even, then det(−Frob) is equal to

g(ψ−D, χ)g(ψd, χ2)qd−1.

Thus when D = 2d+ 1 is odd, det(Frob) is given by

−g(ψD, χ)qd,

and when D = 2d, det(Frob) is given by

(−g(ψ−D, χ))(−g(ψd, χ2))qd−1

With our j! convention, −g(ψD,1) = 1. �

Remark 2.4. The attentive reader may be disturbed by the presence
of the quadratic Gauss sum in the statements of parts (1) and (2) of
the previous theorem, as they make no sense in characteristic 2. But
these cases concern D even, which is not allowed in characteristic 2.
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3. Review of the situation in large characteristic

Suppose we fix an integer D ≥ 3. In large (compared to D) char-
acteristic p, the local systems F(Fq, ψ, χ,D) have very large geometric
monodromy groups Garith. Here is a precise statement.

Theorem 3.1. Fix D ≥ 3. We have the following results.

(1) If p > 2D − 1, then for any finite field Fq of characteristic p
and any nontrivial additive character ψ of Fq, the local system

F(Fq, ψ,1, D) has Ggeom = Sp(D − 1,Q`) if D is odd, and it

has Ggeom = SL(D − 1,Q`) if D is even.
(2) There is an explicit integer M(D) (the integer 2DN1(D−1)N2(D−

1) in [Ka-ESDE, 7.1.1]) such that if p > M(D), then for any
finite field Fq of characteristic p, any nontrivial additive charac-
ter ψ of Fq, and any nontrivial character χ of F×q , the local sys-

tem F(Fq, ψ, χ,D) has Ggeom either SO(D,Q`) or SL(D,Q`)

or, if D = 7, the group G2(Q`) in its 7-dimensional irreducible
representation.

Proof. Case (1) is proven in [Ka-MG, Thm. 19]. For case (2), we
argue as follows. Because p > 2D, F on A1/Fq is geometrically Lie-
irreducible. Because its determinant is geometrically trivial, its Ggeom

is connected, cf. [Ka-MG, Prop. 5]. Because F is pure of weight one,
its Ggeom is a semisimple group. Therefore

Ggeom = G0
geom = (G0

geom)der.

Its highest∞-slope is D/(D−1), which occurs with multiplicty D−1.
Applying [Ka-ESDE, 7.2.7], which lists the possible (G0

geom)der, we see
that Ggeom is one of the listed groups, except that we must show that
if D is even, we cannot have Sp. In fact, when D is even, no F is self
dual. Indeed, the dual of a Fourier Transform is given geometrically
by

(FT (A))∨ ∼= FT ([x 7→ −x]?((A)∨)).

So by Fourier inversion, FT (A) is geometrically self dual if and only if
there is a geometrtic isomorphism

A ∼= [x 7→ −x]?((A)∨).

Here our A is Lχ(x) ⊗ Lψ(xD), so the requirement is

Lχ(x) ⊗ Lψ(xD)
∼= Lχ−1(−x) ⊗ Lψ(−(−x)D),

which is equivalent to having

Lχ(x) ⊗ Lψ(xD+(−x)D)
∼= Lχ−1(−x).
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This is nonsense, because D is even and p > D > 2, so the left side has
Swan∞ = D, while the right side is tame at ∞. �

4. Kubert’s finiteness theorems: statements

In the Spring of 1986, Kubert lectured in my graduate course, prov-
ing that various Kloosterman and hypergeometric sheaves had finite
geometric monodromy.

Theorem 4.1. For any prime power q, F(Fq, ψ,1, q + 1) has finite
geometric monodromy.

Theorem 4.2. Suppose q is odd. Then we have the following results.

(1) F(Fq, ψ,1, (q + 1)/2) has finite geometric monodromy.
(2) F(Fq, ψ, χ2, (q + 1)/2) has finite geometric monodromy.

Theorem 4.3. Let n ≥ 3 be odd, q an arbitrary prime power. Then
we have the following results.

(1) F(Fq, ψ,1, (qn + 1)/(q + 1)) has finite geometric monodromy.
(2) For any nontrivial multiplicative character χ of F×q2 of order

dividing q+1, F(Fq2 , ψ, χ, (qn+1)/(q+1)) has finite geometric
monodromy.

5. Proofs of Kubert’s theorems

As explained in 2.1 above, each local system F on A1 in question is
geometrically, when restricted to Gm, the pullback by the D’th power
map of an explicit hypergeometric sheaf. So to prove the theorems, it
suffices to show in each case that the relevant hypergeometric sheaf has
finite Ggeom.

The proofs of Theorem 4.1 and part (1) of 4.2 are given in [Ka-G2hyper,
13.3]. To give the remaining proofs, we will make use of Kubert’s V
function [Ka-G2hyper, & 13]

V : (Q/Z)prime to p → [0, 1),

giving the suitably normalized p-adic ord’s of gauss sums. As explained
in [Ka-G2hyper, & 13], this function has the following properties.

(1) V (x) = 0 if and only if x = 0 in (Q/Z)prime to p.
(2) For x nonzero in (Q/Z)prime to p, V (x) + V (−x) = 1.
(3) V (1/2) = 1/2.
(4) For any x in (Q/Z)prime to p, V (x) = V (px).
(5) For any x and y in (Q/Z)prime to p, V (x) + V (y) ≥ V (x+ y).
(6) For any x in (Q/Z)prime to p, and any integer N ≥ 1 prime to p,∑

i mod N V (x+ i/N) = V (Nx) + (N − 1)/2.
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The application of this V function to showing that a hypergeometric
sheaf H has finite geometric monodromy (or equivalently [Ka-ESDE,
8.14.4] that after a constant αdeg twist to produce an F whose determi-
nant is arithmetically of finite order, the resulting F has finite Garith)
is given by the following proposition, quoted from [Ka-G2hyper, 13.2].

Proposition 5.1. Given the hypergeometric sheafH := H(ψ;χi
′s; ρj

′s)
on Gm/k and its twist F , pick any multiplicative character Teichk of
k× which is faithful, i.e., has order #k − 1. Define a list of n+m
elements (a1, ..., an, b1, ..., bm) of (1/(#k − 1))Z/Z by

χi = Teich
−ai(#k−1)
k , ρj = Teich

−bj(#k−1)
k .

Then F has finite Garith if and only if the following conditions hold.
For every N ∈ (Z/(#k − 1)Z)×, and for every x ∈ (Q/Z)prime to p, we
have the inequality∑
i

V (Nai+x)+
∑
j

V (−Nbj−x) ≥ (n−1)/2+(1/n)
∑
i,j

V (Nai−Nbj).

When H is a Kloosterman sheaf of the form

Kl(ψ; all nontrivial χ of order dividing D)

for some prime to p integerD, the criterion is that for all x ∈ (Q/Z)prime to p,
we have

V (Dx) + 1/2 ≥ V (x).

When H is a hypergeometric sheaf of the form

H(ψ; all χ of order dividing D; a single ρ of order M)

for D and M prime to p integers such that V (aD/M) = 1/2 for all
integers a prime to M , the criterion is that

V (Dx) + V (a/M − x) ≥ 1/2

for every integer a prime to M .
To prove part (2) of 4.2, we take D = (q+1)/2 and M = q+1. Here

D/M = 1/2, so the condition V (D/M) = 1/2 is met. We have

V ((q + 1)/2)x) + V (a/(q + 1)− x) ≥ V ((q − 1)/2)x+ a/(q + 1)),

by property (5) of V . Using property (4), we have

V (a/(q + 1)− x) = V (aq/(q + 1)− qx) = V (−a/(q + 1)− qx),

the second equality because q is −1 mod q + 1. So we also have the
inequality

V (((q+1)/2)x)+V (a/(q+1)−x) = V (((q+1)/2)x)+V (−a/(q+1)−qx)

≥ V (((1− q)/2)x− a/(q + 1)).
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Adding these inequalities, we get

2(V ((q + 1)/2)x) + V (a/(q + 1)− x))

≥ V (((q − 1)/2)x+ a/(q + 1)) + V (((1− q)/2)x− a/(q + 1)).

For x such that ((q− 1)/2)x+ a/(q+ 1) 6= 0 in (Q/Z)prime to p, the two
arguments are nonzero negatives of each other, and by property (2) of
V , they sum to 1 and we are done.

In the remaining case,

((q + 1)/2)x = x+ ((q − 1)/2)x = x− a/(q + 1),

and hence

V ((q+1)/2)x)+V (a/(q+1)−x) = V (x−a/(q+1))+V (a/(q+1)−x),

which is ≥ 1 unless x = a/(q + 1). In that case ((q + 1)/2)x = 0 in
(Q/Z)prime to p, but this is impossible, since a/(q + 1) has full order
q + 1 in (Q/Z)prime to p.

To prove part (1) of 4.3, we take D = (qn + 1)/(q + 1) with n ≥ 3
odd. We must show

V (((qn + 1)/(q + 1))x) + 1/2 ≥ V (x).

This trivially holds for x = 0. For x 6= 0, use V (x) = 1 − V (−x) to
write the criterion as

V (((qn + 1)/(q + 1))x) + V (−x) ≥ 1/2, for all x 6= 0.

This sum is

≥ V (((qn + 1)/(q + 1)− 1)x).

Replacing V (((qn + 1)/(q + 1))x) by V (q((qn + 1)/(q + 1))x), and
replacing V (−x) by V (−qnx), this same sum is

≥ V ((q(qn + 1)/(q + 1)− qn)x).

The two quantities ((qn+ 1)/(q+ 1)−1)x and (q(qn+ 1)/(q+ 1)− qn)x
are negative of each other, i.e. they sum to

((q + 1)(qn + 1)/(q + 1)− 1− qn)x = 0.

So we are done, unless x is such that ((qn + 1)/(q + 1))x = x in
(Q/Z)prime to p. In that case,

V (((qn + 1)/(q + 1))x) + V (−x) = V (x) + V (−x) = 1,

as x 6= 0.
To prove part (2) of 4.3, we take D = (qn + 1)/(q + 1) and we

take M = D(q + 1)/m, for m some proper divisor m of q + 1. Then
D/M = m/(q + 1). For any a prime to M , we have V (aD/M) =
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V (am/(q + 1)) = 1/2, thanks to the Stickelberger identity [Be-Ev-Wi,
11.6.1]. We must show that

V (Dx) + V (a/M − x) ≥ 1/2

for all a prime to M . This sum is

≥ V ((D − 1)x+ a/M).

Replacing V (Dx) by V (qDx) and V (a/M − x) by V (qna/M − qnx),
this same sum is

≥ V ((qD − qn)x+ qna/M).

The two quantities (D − 1)x + a/M and (qD − qn)x + qna/M are
negatives of each other; they sum to

((q + 1)D − 1− qn)x+ (qn + 1)a/M = (qn + 1)a/M

= (qn + 1)am/(D(q + 1)) = am = 0 in (Q/Z)prime to p.

So we are done unless x is such that Dx = x−a/M in (Q/Z)prime to p.
In that case,

V (Dx) = V (x− a/M),

and thus

V (Dx) + V (a/M − x) = V (x− a/M) + V (a/M − x).

So we are done unless x = a/M . But Dx − a/M , so Dx = 0, i.e.,
D(a/M) = 0. But

D(a/M) = D(am/(D(q + 1))) = am/(q + 1)

is nonzero.
This completes the proofs of Kubert’s theorems.

6. Some numerology for SL(2,Fq)

Suppose q ≥ 5 is odd. The group PSL(2, q) := PSL(2,Fq) is simple,
and, with the exception of q = 9, its Schur cover group is the double
cover SL(2, q) := SL(2,Fq). The group SL(2, q) has two irreducible
representations of degree (q − 1)/2, and two of degree (q + 1)/2. The
characters of these four representations all take values in the (ring of
integers of the) field Q(

√
εq), with ε = (−1)(q−1)/2. When q is an odd

power of p, the characters of the two representations of each of the
degrees (q ± 1)/2 are algebraically conjugate, by the galois group of
Q(
√
εq)/Q.

If q is 1 mod 4, the two representations of even degree (q − 1)/2
are both symplectically self-dual, and the two of odd degree (q + 1)/2
are both orthogonally self-dual. Those of odd degree (q + 1)/2 factor
through PSL(2, q), but not those of even degree (q − 1)/2
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If q is 3 mod 4, none of these four representations is self-dual. Those
of odd degree (q−1)/2 factor through PSL(2, q), but not those of even
degree (q + 1)/2.

7. Some numerology for SU(odd n,Fq)

In this SU discussion, we assume throughout that n ≥ 3 is odd. We
assume further that either q > 2 or n > 3, i.e., we rule out the case of
SU(3,F2). The group PSU(n, q) := PSU(n,Fq) is simple.

The group SU(n, q) := SU(n,Fq) has one representation of degree
(qn+1)/(q+1)−1, and it has q representations of degree (qn+1)/(q+1),
cf. [Hiss-Malle, Thm. 16]. The representation of degree

(qn + 1)/(q + 1)− 1

is symplectically self-dual. When q is odd, precisely one of the q rep-
resentations of degree (qn + 1)/(q + 1) is self-dual, and its autoduality
is orthogonal. If q is even, none of the q representations of degree
(qn + 1)/(q + 1) is self-dual.

The representation of degree (qn + 1)/(q + 1) − 1 factors through
PSU(n, q). When q is odd, the unique self-dual representation of de-
gree (qn + 1)/(q + 1) also factors through PSU(n, q).

The order of the center of SU(n, q) is gcd(n, q + 1). Of the q + 1
representations of degree either (qn + 1)/(q+ 1)− 1 or (qn + 1)/(q+ 1),
precisely (q+1)/gcd(n, q+1) of them factor through PSU(n, q). [Notice
that if n = q + 1, then q must be even (as n is odd), and none of the q
representations of degree (qn + 1)/(q + 1) factors through PSU(n, q).]

8. The conjectures: preparations

In this section, we refine our determinant calculations for the local
systems which will figure in the conjectures.

We begin with the SL(2) case.

Lemma 8.1. Suppose q is odd. Denote by ψ−2 the additive character
ψ−2 : x 7→ ψ(−2x), and define

β := β(Fq, ψ, (q + 1)/2) := −g(ψ−2, χ2).

(1) Suppose q is 1 mod 4. Then the twisted local system

G(Fq, ψ,1, (q + 1)/2) := (F(Fq, ψ,1, (q + 1)/2)⊗ β−deg

has
Ggeom ⊂ Garith ⊂ Sp((q − 1)/2,Q`),

and the twisted local system

G(Fq, ψ, χ2, (q + 1)/2) := F(Fq, ψ, χ2, (q + 1)/2)⊗ β−deg
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has
Ggeom ⊂ Garith ⊂ SO((q + 1)/2,Q`).

(2) Suppose q is 3 mod 4. Then the twisted local system

G(Fq, ψ,1, (q + 1)/2) := F(Fq, ψ,1, (q + 1)/2)⊗ β−deg

has
Ggeom ⊂ Garith ⊂ SL((q − 1)/2,Q`),

and the twisted local system

G(Fq, ψ, χ2, (q + 1)/2) := F(Fq, ψ, χ2, (q + 1)/2)⊗ β−deg

has
Ggeom ⊂ Garith ⊂ SL((q + 1)/2,Q`).

Proof. That the G’s have arithmetically trivial determinants results
from the determinant calculation, using the quadratic character of 2 to
simplify the expressions.

When q is 1 mod 4, the G’s have real traces (see the lemma below)
and, being pure of weight zero, are self-dual. As the G are irreducible,
the autoduality is unique up to a scalar factor, so its sign may be read
from that of its restriction to F , its pullback to A1/Fp. As explained
in [Ka-MMP, 3.10.3] and [Ka-ESDE, pp. 242-243] respectively, the
autoduality is symplectic for F(Fq, ψ,1, (q+1)/2), and it is orthogonal
for F(Fq, ψ, χ2, (q+1)/2). Hence for G(Fq, ψ,1, (q+1)/2), its Garith lies
in the symplectic group Sp, and for G(Fq, ψ, χ2, (q+1)/2), its Garith lies
in the orthogonal group O. In this latter case, because the determinant
is arithmetically trivial, Garith lies in the special orthogonal group SO.

�

Lemma 8.2. The trace functions of the above local systems G take
values in Q(

√
εqq) for εq = (−1)(q−1)/2.

Proof. For p the characteristic of Fq, all traces a priori lie in Q(ζp). The
galois group of Q(ζp)/Q is F×p , and the galois group of Q(ζp)/Q(

√
εpp)

is the subgroup of squares in F×p . For χ either 1 or χ2, and k/Fq a
finite extension, the trace at t ∈ k is

(1/g)
∑
x∈k

χ(x)ψ(x(q+1)/2 + tx),

with g the gauss sum g := g(ψ−2, χ2). Each of these sums is invariant
under the effect of a2, for any a ∈ F×p , the “trick” being that a2 =

(a2)(q+1)/2. Indeed, the effect of a2 is to map this sum to

(1/g)
∑
x∈k

χ(x)ψ(a2x(q+1)/2+ta2x) = (1/g)
∑
x∈k

χ(x)ψ((a2x)(q+1)/2+ta2x) =
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= (1/g)
∑
x∈k

χ(a2x)ψ((a2x)(q+1)/2+ta2x) = (1/g)
∑
x∈k

χ(x)ψ(x(q+1)/2+tx).

When q is an even power of p, then any a ∈ F×p becomes a square

b2 for some b ∈ F×q , and then each sum is invariant under a, by the

substitution x 7→ b2x (now because b2 = (b2)(q+1)/2). �

We now turn to the SU(odd n) case. We assume that n ≥ 3 is odd,
and that either q > 2 or n > 3.

Lemma 8.3. Let ψ be a nontrivial additive character of Fq2 which is
obtained from a nontrivial additive character of Fq by composition with
TraceFq2/Fq .

(1) With

β := −q,
the twisted local system

G(Fq2 , ψ,1, (qn + 1)/(q + 1)) := F(Fq2 , ψ,1, (qn + 1)/(q + 1))⊗ β−deg

has

Ggeom ⊂ Garith ⊂ Sp((qn + 1)/(q + 1)− 1,Q`).

(2) Let χ be a nontrivial multiplicative character of F×q2 whose order
m divides q + 1. Then for

β := −q if q is even , β := −(−1)(q+1)/mq if q is odd,

the twisted local system

G(Fq2 , ψ, χ, (qn + 1)/(q + 1)) := F(Fq2 , ψ, χ, (qn + 1)/(q + 1))⊗ β−deg

has

Ggeom ⊂ Garith ⊂ SL((qn + 1)/(q + 1),Q`).

(3) In the special case when q is odd and χ is χ2, then β is −(−1)(q+1)/2q
and the twisted local system

G(Fq2 , ψ, χ2, (q
n + 1)/(q+ 1)) := F(Fq2 , ψ, χ2, (q

n + 1)/(q+ 1))⊗ β−deg

has

Ggeom ⊂ Garith ⊂ SO((qn + 1)/(q + 1),Q`).

Proof. Parts (1) and (3) result from the D odd case of the determinant
lemma. Here

D = (qn + 1)/(q + 1) = 1 + q(q − 1)

(n−3)/2∑
i=0

q2i
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is odd, and D is 1 mod p. In both cases, the trace function of G has
real (in fact, integer, because aD = a for a ∈ F×p and such an a is a
square, indeed a q + 1’st power, in Fq2) values. As G is pure of weight
zero, it is self-dual, and we argue as in the proof of Lemma 8.1.

To prove (2), for ψ a nontrivial additive character of Fq and χ a
nontrivial multiplicative character of F×q2 of order m dividing q + 1,

we have the Stickelberger determination [Be-Ev-Wi, Thm. 11.6.1] of
g(ψ, χ) over Fq2 ; it is equal to q if q is even, and to (−1)(q+1)/mq if q
is odd. [In the cited reference, the ψ is a Ψ that comes from Fp. So
our ψ is of the form Ψλ for some λ ∈ F×q . But any such λ is a q + 1’st
power in Fq2 (surjectivity of the norm), so g(ψ, χ) = g(Ψ, χ).] �

9. The conjectures

Conjecture 9.1. Suppose q ≥ 5 is odd. Then

(1) For

G := G(Fq, ψ,1, (q + 1)/2)

we have Ggeom = Garith, and this group is the image 1 of SL(2, q)
in one of its irreducible representations of degree (q−1)/2. If we
choose a nonsquare λ ∈ F×q , and replace ψ by ψλ : x 7→ ψ(λx),
then the group Ggeom for

G(Fq, ψλ,1, (q + 1)/2)

is the image of SL(2, q) in its other representation of degree
(q − 1)/2.

(2) For

G := G(Fq, ψ, χ2, (q + 1)/2)

we have Ggeom = Garith, and this group is the image 2 of SL(2, q)
in one of its irreducible representations of degree (q+1)/2, If we
choose a nonsquare λ ∈ F×q , and replace ψ by ψλ : x 7→ ψ(λx),
then the group Ggeom for

G(Fq, ψλ, χ2, (q + 1)/2)

is the image of SL(2, q) in its other irreducible representation
of degree (q + 1)/2.

Conjecture 9.2. Suppose n ≥ 3 is odd. Then

1This image is PSL(2, q) if the dimension (q − 1)/2 is odd, otherwise it is
SL(2, q).

2This image is PSL(2, q) if the dimenision (q + 1)/2 is odd, otherwise it is
SL(2, q).
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(1) For
G := G(Fq2 , ψ,1, (qn + 1)/(q + 1))

we have Ggeom = Garith, and this group is the image3 of SU(n, q)
in its unique irreducible representation of degree

(qn + 1)/(q + 1)− 1.

(2) If q is odd, then for

G := G(Fq2 , ψ, χ2, (q
n + 1)/(q + 1))

we have Ggeom = Garith, and this group is the image PSU(n, q)
of SU(n, q) in its unique self-dual irreducible representation of
degree

(qn + 1)/(q + 1).

(3) Let χ be one of the q nontrivial characters χ of F×q2 of order
dividing q + 1. For

G := G(Fq2 , ψ, χ, (qn + 1)/(q + 1))

we have Ggeom = Garith, and this group is the image 4 of SU(n, q)
in precisely one of its q irreducible representations of degree

(qn + 1)/(q + 1).

10. Comments on the conjectures

Suppose we use a nontrivial additive character ψ of Fq which comes
(by composition with the trace) from a character of the prime field Fp.
Then both the local systems

F(Fq, ψ,1, (q + 1)/2) and F(Fq, ψ, χ2, (q + 1)/2)

on A1/Fq come, by extension of scalars, from the local systems

F(Fp, ψ,1, (q + 1)/2) and F(Fp, ψ, χ2, (q + 1)/2)

on A1/Fp. Moreover, if we use the gauss sum −g(ψ−2, χ2) over Fp as
the twisting factor, we get descents

G(Fp, ψ,1, (q + 1)/2) and G(Fp, ψ, χ2, (q + 1)/2)

3Except in the case of SU(3, 2), the image group is the simple group PSU(n, q).
In the case of SU(3, 2), the group PSU(3, 2) is not simple, and has a quotient Q8,
the quaternion group of order eight, which is the image group.

4If gcd(n, q + 1) = 1, then SU(n, q) = PSU(n, q) is simple, so this image is
PSU(n, q). When gcd(n, q + 1) = N > 1, so that PSU(n, q) = SU(n, q)/µN ,
we conjecture the following exact determination of this image: for M the largest
divisor of N for which the order of χ divides (q + 1)/M , this image is the quotient
SU(n, q)/µM .
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to A1/Fp of the corresponding G’s on A1/Fq. The Ggeom groups for the
descents do not change, but their Garith groups can grow. A natural
guess for what they are is the following. The galois group of Fq/Fp
acts coefficientwise on the group SL(2, q) and fixes the isomorphism
classes of both representations of degree (q − 1)/2 and of both repre-
sentations of degree (q+ 1)/2 (because the galois action preserves each
of the two conjugacy classes of unipotent elements, which are distin-
guished by whether the upper right entry is a square or not). So each
of these representations extends to the semidirect product of SL(2, q)
with Gal(Fq/Fp). The natural guess is that Garith for the descended G
is the image of this semidirect product in the corresponding represen-
tation.

Similarly, when ψ starts life over Fp, for each odd n ≥ 3 the local
system

F(Fq2 , ψ,1, (qn + 1)/(q + 1))

and, if q is odd, the local system

F(Fq2 , ψ, χ2, (q
n + 1)/(q + 1))

descend to A1/Fp; just replace Fq2 by Fp in the name. In the q odd
case, using −g(ψ(−1)(n−1)/2 , χ2) over Fp as the twisting factor, we get a

descent G(Fp, ψ, χ2, (q
n + 1)/(q + 1)) to A1/Fp of the corresponding G.

When q is 3 mod 4, this same twisting factor (or any quadratic gauss
sum over Fp) gives a descent G(Fp, ψ,1, (qn + 1)/(q + 1)). We do not
know the “right”5 twisting factor to use when q is not 3 mod 4. Just
as in the paragraph above, the Ggeom groups for the descents do not
change, but their Garith groups can grow. The galois group of Fq2/Fp
acts coefficientwise on the group SU(n, q) and fixes the isomorphism
class of its unique irreducible representation of degree

(qn + 1)/(q + 1)− 1

(precisely by the uniqueness). When q is odd, the galois action also
fixes the isomorphism class of the unique orthogonal irreducible rep-
resentation of degree (qn + 1)/(q + 1) (again by uniqueness). So each
of these representations extends to the semidirect product of SU(n, q)
with Gal(Fq/Fp). The natural guess is that Garith for the descended G
is the image of this semidirect product in the corresponding represen-
tation.

Once we think in terms of these descents, the following question
arises. Suppose we are in a given characteristic p, and are told that one

5If q is pa, we can use any 2a’th root of −q as the twisting factor, but this seems
ad hoc at best.
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of the conjectures applies to F(Fp,1, D) (in which case it also applies
to F(Fp, χ2, D) when p is odd). Can we be sure which conjecture?

Can there be more than one way of writing D as (qn + 1)/(q + 1)
for q some power of p and n some odd integer ≥ 3? The answer is no.
Begin with the identity

(qn + 1)/(q+ 1) = 1− q+ q2...+ qn−1 = 1 + q(q− 1)[1 + q2 + ...+ qn−3].

When q is pr, the base p expansion of q − 1 is a sequence of r digits,
each p − 1. So the base p digit expression of (qn + 1)/(q + 1) − 1 is
(n − 1)/2 successive strings, each consisting of r digits p − 1 followed
by r digits 0. For example, in base p we have

(p15 + 1)/(p3 + 1)− 1 = XXX000XXX000 with X = p− 1.

So both r and n are determined by the base p expression of D − 1.
When p is odd, we must also distinquish (qn + 1)/(q + 1), q some

power of p and n ≥ 3 odd, from (pa + 1)/2, a ≥ 1. If p ≥ 5, two
such expressions can never be equal, because the first is 1 mod p and
the second is 1/2 mod p. To do the general case, subtract 1 from
each and compare the base p expressions. That of (pa − 1)/2 consists
of a sequence of a digits, each (p − 1)/2. We must also note that if
D = (pa + 1/2, then pa is determined, it is 2D − 1.

A slight variant on this question is this. Still in a fixed characteristic
p, can there be more than one local system of a given rank R to which
one of the conjectures applies? If R is to be either (qn + 1)/(q + 1)
or (qm1 + 1)/(q1 + 1) − 1, we can tell which of the two, because the
first is 1 mod p and the second is 0 mod p. Then looking at the base p
expansion of R tells the rest. Similarly, looking at the base p expansions
of (pa + 1)/2 = (pa − 1)/2 + 1 and of (pa − 1)/2/ allows us to separate
these cases from each other and from the SU cases.

On the other hand, for a given rank, different characteristics can give
rise to cases of the conjectures. For example, any time we have twin
primes or twin prime powers (e.g. 9, 11 or 23, 25 or 27, 29 or 79, 81 or
81, 83), say q2 = q1 + 2, then F(Fq1 , ψ, χ2, (q1 + 1)/2) in characteristic
p1 and F(Fq2 , ψ,1, (q2 + 1)/2 in characteristic p2 are local systems of
the same rank (q1 + 1)/2 = (q2 − 1)/2.

More interesting examples involve ranks having SL conjectures in
some characteristics and SU conjectures in others. For example, with
rank 6 we have

F(F3, ψ,1, (3
3 + 1)/(3 + 1))

in characteristic 3, and the two SL cases for the twin primes 11, 13.
For rank 7, we have

F(F3, ψ, χ2, (3
3 + 1)/(3 + 1)),
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which has Ggeom the image of SU(3, 3) in its unique orthogonal irre-
ducible representation of degree 7, cf. [Ka-NG2, 4.15], and we have

F(F13, ψ, χ2, (13 + 1)/2)

which has Ggeom = PSL(2, 13), cf. [Ka-NG2, 4.13]. In both of these
rank 7 cases, Ggeom is a subgroup of the exceptional group G2.

For rank 10, we have

F(F2, ψ,1, (2
5 + 1)/(2 + 1))

in characteristic 2, and we have

F(F19, ψ, χ2, (19 + 1)/2).

in characteristic 19.
For rank 11, we have

F(F2, ψ, χ3, (2
5 + 1)/(2 + 1))

in characteristic 2, with χ3 either of the two characters of F×4 of order
3, and we have

F(F23, ψ,1, (23 + 1)/2)

in characteristic 23.
For rank 12 we have

F(F2, ψ,1, (4
3 + 1)/(4 + 1))

in characteristic 2, and the two SL cases for the twin prime powers
23, 25.

For rank 13 we have

F(F2, ψ, χ5, (4
3 + 1)/(4 + 1))

in characteristic 2, with χ5 any of the four characters of order 5 of F×42 ,
and the two SL cases for the twin prime powers 25, 27.

For rank 20 we have

F(F5, ψ,1, (5
3 + 1)/(5 + 1))

in characteristic 5, and we have

F(F41, ψ,1, (41 + 1)/2)

in characteristic 41.
For rank 21, we have

F(F5, ψ, χ2, (5
3 + 1)/(5 + 1))

in characteristic 5, and the two SL cases for the twin primes 41, 43.
For rank 993, we have

F(F2, ψ, χ2, (2
15 + 1)/(25 + 1))
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in characteristic 2, and we have

F(F1987, ψ,1, (1987 + 1)/2)

in characteristic 1987.

11. Verification, for SL(2, p)

Theorem 11.1. Suppose q is an odd prime p ≥ 5. Then Conjecture
9.1 for p is correct.

Proof. Let G be one of the local systems in question, i.e., either

G(Fp, ψ,1, (p+ 1)/2) or G(Fp, ψ, χ2, (p+ 1)/2).

Its Ggeom has order divisible by p (the wild inertia group P∞ acts non-
trivially on G), its determinant is trivial, and it is a primitive irreducible
subgroup of SL(n,Q`) with n one of (p±1)/2. [It is primitive because if
the representation were induced, G would be, geometrically, the direct
image of a local system on a finite etale connected covering of A1/Fp
of some degree d > 1 dividing n. But n < p, hence d < p, and A1/Fp
has no finite etale connected covers of degree 1 < d < p.] The larger
group Garith has the same properties.

We have already seen that the trace functions of both these local
systems take values in Q(

√
εp) for ε = (−1)(p−1)/2. Because p ≥ 5,

the only roots of unity in this field are ±1. So the only scalars which
can possibly lie in Ggeom or Garith are among ±1. As these groups are

irreducible subgroups of the ambient SL(n,Q`), we conclude that

Z(Garith) = Z(Ggeom) = {1}, if n is odd,

Z(Garith) ⊂ Z(Ggeom) ⊂ ±1, , if n is even.

Consider first the case of G := G(Fp, ψ,1, (p+ 1)/2). Here the repre-
sentation has dimension n = (p− 1)/2, and so p = 2n+ 1. By [Brauer,
(2B),(2C)], both Ggeom/Z(Ggeom) and Garith/Z(Garith) are isomorphic
to PSL(2, p). If n = (p − 1)/2 is odd, then the centers are trivial,
and we are done. If n = (p − 1)/2 is even, then neither center can
be trivial, since PSL(2, p) has no irreducible representation of degree
n = (p − 1)/2. Thus both Ggeom and Garith contain ±1, and their
quotients by ±1 are PSL(2, p). Neither Ggeom or Garith can be isomor-
phic to the product ±1 × PSL(2, p), again because PSL(2, p) has no
irreducible representation of degree n = (p− 1)/2. So both Ggeom and
Garith are isomorphic to the Schur double cover of PSL(2, p), which is
SL(2, p), and again we are done.

In the case of G := G(Fp, ψ, χ2, (p+ 1)/2), the representation dimen-
sion is n = (p+ 1)/2. In this case p = 2n− 1 > n+ 1 (because p ≥ 5),
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and Brauer, cf. [Brauer, (2B)] and [Brauer2], tells us that, by a the-
orem of Feit [Feit], only the first power of p divides #Garith/Z(Garith)
or divides #Ggeom/Z(Ggeom). As the centers have order dividing 2,
only the first power of p divides either #Garith or divides #Ggeom. Fur-
thermore, the p-Sylow sugroups of Ggeom are not normal subgroups.
Otherwise the quotient of Ggeom by the p-Sylow subgroup would be a

prime to p quotient of π1(A1/Fp), so trivial, hence Ggeom would be a
p-group, in fact of order p, which is nonsense, as it has an irreducible
representation of degree 1 < n < p. Because p only divides #Garith to
the first power, its p-Sylows are conjugate to p-Sylows of of Ggeom, so
they are certainly not normal subgroups of Garith.

This information allows us to apply a theorem of Tuan [Tuan, p. 111,
first four paragraphs], which tells us that for p > 7, bothGgeom/Z(Ggeom)
and Garith/Z(Garith) are isomorphic to PSL(2, p). For p = 5 (respec-
tively p = 7) we could also have the alternating group A6 (respectively
A7) in addition to PSL(2, p).

In the case p = 5, we have shown in [Ka-NG2, 3.9] that Ggeom is

PSL(2, 5) = A5. The group A5 is its own normalizer in SO(3,Q`),
hence we have Garith = A5 as well.

In the case p = 7, we invoke an extraordinary isomorphism 6, where
we exploit the fact that for the rank three local system

G3 := G(F7, ψ,1, 4),

we already know that Ggeom = Garith = PSL(2, 7). We wish to prove
that for

G4 := G(F7, ψ, χ2, 4),

bothGgeom/Z(Ggeom) andGarith/Z(Garith) are isomorphic to PSL(2, 7).
The extraordinary isomorphism is

Sym2(G3) ∼= Λ2(G4).

Granting this, which we will prove below, we argue as follows. The
images of both πgeom1 (A1/F7) and of πarith1 (A1/F7) acting on G3 are
PSL(2, 7), so this is also their image acting on Sym2(G3) (the homo-
morphism

Sym2 : SL(3,Q`)→ SL(6,Q`)

is injective). Therefore their images acting on Λ2(G4) are also PSL(2).
The homomorphism

Λ2 : SL(4,Q`)→ SO(6,Q`)

6We will see later, in Theorem 16.4, that this isomorphism is one a panoply of
such isomorphisms
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(which is the spin double cover of SO(6)) has kernel ±1, so the im-
ages of both πgeom1 (A1/F7) and of πarith1 (A1/F7) acting on G4 have
Ggeom/Z(Ggeom) = Garith/Z(Garith) = PSL(2, 7).

Once we know that both Ggeom/Z(Ggeom) and Garith/Z(Garith) are
isomorphic to PSL(2, p), we argue as follows.

If p is 1 mod 4, then (p+1)/2 is odd, and the ambient group SO((p+
1)/2,Q`) contains no scalars other than 1. So in this case the centers
Z(Ggeom) and Z(Garith) are trivial, and we conclude that Ggeom =
Garith = PSL(2, p.

If p is 3 mod 4, then (p + 1)/2 is even, and PSL(2, p) has no ir-
reducible representation of dimension (p + 1)/2. Therefore neither of
the groups Ggeom or Garith can be either PSL(2, p) or the product
±1 × PSL(2, p). Therefore each of these groups is the Schur double
cover of PSL(2, p), which is SL(2, p).

It remains to show that when we choose a nonsquare λ ∈ F×p , and
replace ψ by ψλ : x 7→ ψ(λx), then in both cases we replace Ggeom by
the image of SL(2, p) in its other representation of the same dimension.
In both cases the trace functions of the two representations of the
given dimension (either (p− 1)/2 or (p+ 1)/2) are known to be galois
conjugates of each other, by Gal(Q(

√
εp)/Q). The replacement of ψ

by ψλ performs the conjugation by the nontrivial element in this galois
group. �

12. Existence of the extraordinary isomorphism

We first show the existence of a geometric isomorphism between
Sym2(G3) and Λ2(G4). For this, we use the following.

Lemma 12.1. Suppose A and B are Q` local systems on A1/Fq which
are both pure of weight zero, and of the same rank r. Let λ ∈ R be an
upper bound for the ∞ slopes which occur in either A or B. Suppose
that A is geometrically irreducible. Denote by A the dual of A. Then
we have the following results.

(1) There exists a geometric isomorphism between A and B if and
only the cohomology group

H2
c (A1/Fq,A⊗ B)

is nonzero, in which case it is of dimension one.
(2) If this H2

c vanishes, then

dim(H1
c (A1/Fq,A⊗ B)) ≤ (λ− 1)r2,
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and for every finite extension field k of Fq, we have the estimate

|
∑
t∈k

Trace(Frobt,k|A)Trace(Frobt,k|B)| ≤ (λ− 1)r2
√

#k.

Proof. Because A and B and A ⊗ B are pure, they are geometrically
semisimple, hence the H2

c in question is the group Homgeom(A,B). Be-
cause A is geometrically irreducible and of the same rank as B, any
nonzero hom is automatically an isomorphism. So if this H2

c is nonzero,
B is also geometrically irreducible. The one-dimensionality then follows
from Schur’s lemma.

If the H2
c vanishes, then the Euler-Poincaré formula gives

dimH1
c = −χc(A1/Fq,A⊗ B) = Swan(A⊗ B)− rank(A⊗ B)

≤ λr2 − r2 = (λ− 1)r2.

The sum of traces∑
t∈k

Trace(Frobt,k|A)Trace(Frobt,k|B)

is minus the trace of Frobk on the H1
c , so by Deligne’s Weil II estimate,

its absolute value is bounded by dim(H1
c )
√

#k. �

We now apply this lemma, withA = Sym2(G3) and with B = Λ2(G4).
Both are of rank 6, pure of weight zero, and with∞-slopes ≤ 4/3. The
quantity (λ− 1)r2 is thus 12.

To see that Sym2(G3) is geometrically irreducible, we argue as fol-
lows. We already know that Ggeom for G3 is PSL(2, 7) in one of its
three-dimensional irreducible representations, call it ρ3. The charac-
ter table of PSL(2, 7) shows that Sym2(ρ3) is the unique irreducible
six-dimensional representation of PSL(2, 7).

Calculation in Magma shows that the sum of traces over the field
k = GF (73) is approximately

18.4662642527365302439092364832
√

73.

This shows that the H2
c cannot vanish, and hence we have the as-

serted geometric isomorphism. Because both sides are geometrically
irreducible, there exists a lisse rank one L on A1/F7 for which there
exists an arithmetic isomorphism of Sym2(G3) with L ⊗ Λ2(G4). The
Swan conductor at ∞ of L is ≤ 4/3, hence either 0 or 1. Thus L is of

the form αdegree⊗Lψ(at) for some scalar α ∈ Q`
×

, and some a ∈ F7. At
both the points t = 0 and t = 1, Sym2(G3) and Λ2(G4) have equal F7

traces, namely 2 and −1 respectively. So we have two equalities

αψ(0) = 1, αψ(a) = 1.
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Thus α = 1 and a = 0, i.e., L is arithmetically trivial.Thus there exists
an arithmetic isomorphism of Sym2(G3) with Λ2(G4).

13. PGL(2, q) d’apres Gross, and hypergeometric sheaves

We write PGL(2,Fq) := PGL(2, q), q any prime power, though later
we will specialize to the case q odd. In [Gross], Gross, using results
of Lusztig [Lusztig], explains how to view the Deligne-Lusztig curve as
a PGL(2, q) torsor T on Gm/Fq. On T , the inertia and wild inertia
groups at 0 and ∞ are given explicitly in terms of the Borel B, its
unipotent radical U , the split torus Tspl, of order q−1, and the nonsplit
torus Tnspl, of order q + 1. We have

I∞ = B B P∞ = U, I∞/P∞ = Tspl,

I0 = Tnspl, P0 = {1}.
[Concretely, the complete Deligne-Lusztig curve in this case is P1/Fq,

on which PGL(2, q) acts in the usual way by fractional linear trans-
formation. This action is free on P1 \ P1(Fq2). The quotient of P1/Fq
by PGL(2, q) is P1/Fq. The map to the quotient is given explicitly, in
terms of a coordinate x upstairs, by

x 7→ ((xq
2 − x)/(xq − x))q+1

(xq − x)q(q−1)
=

((xq − x)q−1 + 1)q+1

(xq − x)q(q−1)
.

It maps P1(Fq) to∞, and it maps P1(Fq2) \P1(Fq) to 0. Using the fact
that PGL(2, q) is generated by the transformations x 7→ ax, a ∈ F×q ,
x 7→ 1/x, and by the translations x 7→ x + b, b ∈ Fq, one checks that
the map is PGL(2, q)-equivariant. For t in an overfield of Fq, the fibre
over t consists of the roots of the polynomial

f(x) := ((xq − x)q−1 + 1)q+1 − t(xq − x)q(q−1).

Its derivative is easily computed to be

f ′(x) = [(xq − x)q−1 + 1)]q(xq − x)q−2,

whose only zeroes lie in Fq2 , all points of which map to either ∞ (for
x ∈ Fq) or to 0 (for x ∈ Fq2 \Fq). Thus the map makes P1\P1(Fq2) into
a finite étale covering of Gm/Fq of degree q(q−1)(q+1) = #PGL(2, q).
As the map is PGL(2, q)-equivariant, it must be the quotient map.]

Now take an irreducible Q`-representation

ρ : PGL(2, q)→ GL(dim(ρ),Q`),

of dimension > 1, and denote by Wρ the local system on Gm/Fq ob-
tained by “pushing out” the torsor T by ρ. Thanks to [Gross, Corol-
lary page 2537], we have a great deal of information. First of all,
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Swan∞(Wρ) = 1. This fact implies that Wρ is, geometrically (i.e.

on Gm/Fq), a multiplicative translate of a hypergeometric sheaf, cf.
[Ka-ESDE, 8.5.3.1].

In what follows, we fix a choice of additive character ψ of Fq, and
write simply

H(character data)

for the hypergeometric sheaf

Hyp(!, ψ, the same character data)

in the notation of [Ka-ESDE, 8.2.2].
For the Steinberg representation, St of dimension q, we have dim((WSt)

I∞) =
1 and dim((WSt)

I0) = 0. For all other irreducibles ρ of dimension > 1,
we have dim((Wρ)

I∞) = 0 and dim((Wρ)
I0) = 1.

The irreducible ρ of dimension > 1 have dimension either q − 1, q,
or q + 1. Looking at the character table of PGL(2, q), we see that the
trace of a nontrivial unipotent element in one of these representations
is

−1, if dim(ρ) = q − 1,

0, if dim(ρ) = q,

1, if dim(ρ) = q + 1.

This means that, writing Reg for the regular representation of P∞, the
action of ρ|P∞ is given by

Reg − 1, if dim(ρ) = q − 1,

Reg, if dim(ρ) = q,

Reg + 1, if dim(ρ) = q + 1.

This in turn means that the I∞-representation is of the form

Wildq−1, if dim(ρ) = q − 1,

Wildq−1 ⊕ (1 dim tame),

if dim(ρ) = q,

Wildq−1 ⊕ (2 dim tame), if dim(ρ) = q + 1,

where we write Wildq−1 for a totally wild I∞-representation of dimen-
sion q − 1 and Swan 1.

The I0-representation, being tame, consists of various characters of
order dividing q+1. No character can occur more than once, otherwise
the local monodromy at 0 will not be of finite order, cf. [Ka-ESDE,
8.4.5 (5)]. Thus our hypergeometric must be a multiplicative translate
of

H(all but two char.′s of order dividing q + 1; ∅),
if dim(ρ) = q − 1,
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H(all but one char. of order dividing q+1; one char. of order dividing q−1),

if dim(ρ) = q,

H(all char.′s of order dividing q+1; two char.′s of order dividing q−1),

if dim(ρ) = q + 1.

These facts, together with what we already know about WSt, show
that WSt is, geometrically, a multiplicative translate of

H(all nontriv. char.′s of order dividing q + 1;1).

We now bring to bear the fact that every irreducible ρ is orthogonally
self-dual. Then from [Ka-ESDE, 8.8.1 and 8.8.2] we see that for any
other (i.e., other than Steinberg) irreducible ρ of dimension > 1, its H
must have

(1) In dimension q − 1, the two omitted characters are χ, χ with
χ 6= χ, and χ of order dividing q + 1.

(2) in dimension q, with q odd, the omitted character is the qua-
dratic character χ2, and the bottom character is χ2. [If q is
even, St is the only irreducble of dimension q.]

(3) In dimension q + 1, the two “downstairs” characters must be
χ, χ with χ 6= χ and χ of order dividing q − 1.

When q is odd, there are precisely (q− 1)/2 unordered pairs χ, χ as
in [(1)] above, and there are precisely (q − 3)/2 unordered pairs χ, χ
as in [(3)] above. When q is even, there are q/2 unordered pairs χ, χ
as in [(1)] above, and there are precisely (q − 2)/2 unordered pairs
χ, χ as in [(3)] above. These are precisely the number of irreducible
ρ of dimensions q − 1 and q + 1 respectively. So each Wρ with ρ an
irreducible of dimension > 1 is, geometrically, a multiplicative translate
of a hypergeometric of specified form, and every hypergeometric of that
specified form is, geometrically, a multiplicative translate of a Wρ.

14. Descent of hypergeometric sheaves

Let us denote by
Hρ−data

the hypergeometric sheaf

Hyp(!, ψ, character data determined by ρ)

which occurs geometrically as a multiplicative translate of Wρ. Each
such has a canonical descent to Gm/Fq, the point being that in all
cases both the “upstairs” characters and the “downstairs” characters
are Gal(Fq/Fq)-stable sets of characters. Let us call any such hyper-
geometric “descendable to Fq”. In the description [Ka-ESDE, 8.2] of
a hypergeometric as the multiplicative convolution of a Kloosterman
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sheaf Klup with the “upstairs” characters with the [x 7→ 1/x] pullback
of a Kloosterman sheaf Kldown with the inverses of the “downstairs”
characters (and the additive character ψ), both factors have canonical
descents, cf. [Ka-GKM, 8.8], and the convolution of these descents is
the desired descent

Hρ−data,desc

of our Hρ−data.

Lemma 14.1. Given a hypergeometric H on Gm/Fq which is descend-
able to Fq and a character χ of F×q , the formation of the canonical
descent commutes with the operation of tensoring with Lχ:

(H⊗Lχ)desc ∼= Hdesc ⊗ Lχ on Gm/Fq.
In particular, if H is geometrically isomorphic to H⊗Lχ, then

Hdesc
∼= Hdesc ⊗ Lχ on Gm/Fq.,

Proof. The second assertion is a special case of the first. The first is
clear from the explicit description of the canonical descent of a descend-
able H, which separately breaks the upstairs and downstairs characters
into orbits under Gal(Fq/Fq), and then reduces to the case of Kloost-
erman sheaves formed on single orbit, i.e., those of the form

Kl(Λ,Λq, ...,Λqr−1

)

for some r ≥ 1 and some character Λ of Fqr which has r distinct galois
conjugates under the action of Gal(Fqr/Fq). �

At the same time, we have the local systemWρ on Gm/Fq with which
we began. It is geometrically isomorphic to a multiplicative translate of
Hρ−data,desc. Recall from [Ka-ESDE, 8.5.4] that a hypergeometric sheaf
is isomorphic to no nontrivial translate of itself. That the translation
is by a point of Gm(Fq) results from the following rationality lemma.

Lemma 14.2. Let k be a perfect field, G/k a smooth, geometrically
connected group scheme, ` a prime invertible in k, and A and B two
Q` local systems on G which are both geometrically irreducible. Suppose
that

(1) The local system B is not geometrically isomorphic to any non-
trivial (i.e. by a point of G(k) other than the identity) translate
of itself.

(2) The local system A is geometrically isomorphic to a translate
of B.

Then there is a unique point γ ∈ G(k) such A is geometrically isomor-
phic to the translate [g 7→ γg]?(B), and this point γ lies in G(k).
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Proof. The uniqueness is obvious, from condition (1). Now consider
the local system C on G×k G, coordinates (t, g), given by

C(t, g) = (A(g))∨ ⊗ B(tg).

In fancier terms, we have the multiplication map m : G ×k G →
G, (t, g) 7→ tg, and our C is

C := pr?2(A∨)⊗m?(B).

For d the relative dimension of G over k, the sheaf R2d(pr1)!(C) on G
is supported at γ. Therefore γ is rational over the perfection of k. As
k is perfect, γ lies in G(k). �

Thus there exists a unique aρ ∈ k× such that there exists a geometric
isomorphism

Wρ
∼= [x 7→ aρx]?Hρ−data,desc := Haρ,ρ−data,desc.

As both are geometrically isomorphic, there exists a unique αρ ∈ Q`
×

such that on Gm/Fq we have an arithmetic isomorphism

Wρ
∼= Haρ,ρ−data,desc ⊗ αdegρ .

Theorem 14.3. For each irreducible representation ρ of PGL(2, q) of
dimension > 1, the local system

Hρ := Haρ,ρ−data,desc ⊗ αdegρ

on Gm/Fq has Ggeom = Garith = the image of PGL(2, q) in the corre-
sponding representation ρ.

Proof. The statement is tautologically true for the local systemWρ. �

15. Pulling back from PGL(2, q) to PSL(2, q)

In this section, we assume that q is odd. Then PSL(2, q) is a sub-
group of index two in PGL(2, q). If we think of the Galois theory
diagram of the geometric covering T → Gm/Fq as a finite etale cover-
ing with group PGL(2, q), then we have a diagram

T → S → Gm/Fq
in which T → S is a PSL(2, q) torsor, and S → Gm/Fq is a finite
etale covering of degree two. As Gross explains in [Gross, bottom of p.
2537], this last covering is the squaring map

[2] : x 7→ x2

of Gm/Fq as a covering of itself. What this means concretely is that
for ρ an irreducible representation of PGL(2, q) of dimension > 1, its
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restriction to PSL(2, q) is given by the local system on Gm/Fq which
is the pullback [2]?Wρ.

Let us recall the following irreducibility lemma, which we will apply
both with k = Fq and with k = Fq.

Lemma 15.1. Let ` 6= p, p odd, k a field of characteristic p, and H a
lisse Q`-sheaf on Gm/k which is irreducible. Then

(1) [2]?H is irreducible if and only if H is not isomorphic to H⊗Lχ2.
(2) If H is isomorphic to H ⊗ Lχ2, then [2]?H is isomorphic to a

direct sum A⊕ B, with B = [x 7→ −x]?A.

Proof. We use Frobenius reciprocity to compute

< [2]?H, [2]?H >=< H, [2]?[2]?H >=< H,H⊗ [2]?Q` >=

=< H,H⊗ (Q` ⊕ Lχ2) >=< H,H > + < H,H⊗Lχ2 > .

This makes (1) obvious. If we are in situation (2), then< [2]?H, [2]?H >=
2, hence [2]?H is A⊕ B with A not isomorphic to B (otherwise [2]?H
is A ⊕ A, in which case < [2]?H, [2]?H > would be 4). Let A have
rank(A) ≤ rank(B). Then

< H, [2]?A >=< [2]?H,A >= 1,

so H occurs in [2]?A. But as rank(A) ≤ rank(B), we have rank(H) ≥
rank([2]?A). Therefore we have H ∼= [2]?A. In particular, H has even
rank and A has rank half that of H. [The same argument then applies
to B, and so H ∼= [2]?B.] Then

[2]?H ∼= [2]?[2]?A ∼= A⊕ [x 7→ −x]?A.
�

We now apply this to the hypergeometric sheaves

Hρ := Haρ,ρ−data,desc ⊗ αdegρ ,

which give the Wρ.
Those of rank q − 1 are, geometrically,

Haρ(all char.′s of order dividing q + 1 save χ, χ)

with χ 6= χ of order dividing q + 1. This will have its [2] pullback
irreducible unless the unordered pair {χ, χ} is equal to the unordered
pair {χχ2, χχ2}. This equality can only hold if χ has order 4, which is
only allowed if q is 3 mod 4.

Those of rank q + 1 are, geometrically,

Haρ(all char.′s of order dividing q + 1;χ, χ)

with χ 6= χ of order dividing q − 1. This will have its [2] pullback
irreducible unless the unordered pair {χ, χ} is equal to the unordered
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pair {χχ2, χχ2}. This equality can only hold if χ has order 4, which is
only allowed if q is 1 mod 4.

Thus we have the following theorem.

Theorem 15.2. For q odd, we have the following results.

(1a) Suppose q is 1 mod 4. Then the [2] pullback of

Haρ,desc(all char.′s of order dividing q + 1;χ4, χ4)⊗ αdegρ

on Gm/Fq is the direct sum A⊕ [x 7→ −x]?A with A geometri-
cally a unique multiplicative translate (necessarily by a point of
Gm(Fq), cf. 14.2) of the hypergeometric sheaf

H(all char.′s of order dividing (q + 1)/2;χ2).

A and [x 7→ −x]?A are local systems on Gm/Fq giving the two
representations of PSL(2, q) of dimension (q + 1)/2. Each has
Ggeom = Garith = PSL(2, q).

(1b) Suppose q is 1 mod 4. Then every other Wρ of rank > 1 pulls
back by [2] to an irreducible local system. Of these, Wρ and
Wρ⊗Lχ2 have the same pullback. So we get (q−5)/4 irreducible
pullbacks of rank q + 1, we get (q − 1)/4 irreducible pullbacks
of rank q − 1, and we get one irreducible pullback of rank q.
These local systems give all the irreducible representations of
PSL(2, q) of dimension q + 1, q − 1, or q.

(2a) Suppose q is 3 mod 4. Then the [2] pullback of

Haρ,desc(all char.′s of order dividing q + 1 save χ4, χ4)⊗ αdegρ

on Gm/Fq is the direct sum A⊕ [x 7→ −x]?A with A geometri-
cally a unique multiplicative translate (necessarily by a point of
Gm(Fq), cf. 14.2) of the hypergeometric sheaf

H(all char.′s of order dividing (q + 1)/2 save χ2).

A and [x 7→ −x]?A are local systems giving the two represen-
tations of PSL(2, q) of dimension (q − 1)/2 Each has Ggeom =
Garith = PSL(2, q)..

(2b) Suppose q is 3 mod 4. Then every other Wρ of rank > 1 pulls
back by [2] to an irreducible local system. Of these, Wρ and
Wρ⊗Lχ2 have the same pullback. So we get (q−3)/4 irreducible
pullbacks of rank q + 1, we get (q − 3)/4 irreducible pullbacks
of rank q − 1, and we get one irreducible pullback of rank q.
These local systems give all the irreducible representations of
PSL(2, q) of dimension q + 1, q − 1, or q.

Taking into account [Ka-ESDE, 9.3.2], we get the following theorem.
Let us write Kl(χ, χ) for the Kloosterman sheaf Kl(!, ψ;χ, χ)
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Theorem 15.3. Suppose q > 3 (so that PSL(2, q) is a simple group).
We have the following results.

(1) Let χ 6= χ be characters of order dividing q + 1, with χ4 6= 1.
Then

FT ([q + 1]?Kl(χ, χ))

is an irreducible rigid local system of rank q−1 on A1/Fq whose

Ggeom is the group PSL(2, q). For a unique αρ ∈ Q`
×

, the local
system

FT ([q + 1]?Kl(χ, χ)desc)⊗ αdegρ

on Gm/Fq has Ggeom = Garith = PSL(2, q).

(2) The irreducible rigid local system of rank q on A1/Fq given by

FT ([q + 1]?Kl(1,1))

has Ggeom the group PSL(2, q) in the Steinberg representation.

For s unique αSt ∈ Q`
×

, the local system

FT ([q + 1]?Kl(1,1)desc)⊗ αdegSt

on Gm/Fq has Ggeom = Garith = PSL(2, q).
(3) Let χ 6= χ be characters of order dividing q − 1, with χ4 6= 1.

Then
FT ([q + 1]?Kl(χ, χ))

is an irreducible rigid local system of rank q+1 on A1/Fq whose

Ggeom is the group PSL(2, q). For s unique αρ ∈ Q`
×

, the local
system

FT ([q + 1]?Kl(χ, χ))desc)⊗ αdegρ

on Gm/Fq has Ggeom = Garith = PSL(2, q).
(4) If q is 1 mod 4, then

FT ([(q + 1)/2]?Kl(χ2)) = FT (Lχ2(x) ⊗ Lψ(x(q+1)/2))

is an irreducible rigid local system of rank (q + 1)/2 on A1/Fq
whose Ggeom is the group PSL(2, q). For s unique αρ ∈ Q`

×
,

the local system

FT (Lχ2(x) ⊗ Lψ(x(q+1)/2))⊗ αdegρ

on Gm/Fq has Ggeom = Garith = PSL(2, q).
(5) If q is 3 mod 4, so that (q + 1)/2 is even and hence

[(q + 1)/2]?Kl(χ2) = [(q + 1)/2]?Kl(1),

then

FT ([(q + 1)/2]?Kl(χ2)) = FT ([(q + 1)/2]?Kl(1)) = FT (Lψ(x(q+1)/2))
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is an irreducible rigid local system of rank (q − 1)/2 on A1/Fq
whose Ggeom is the group PSL(2, q). For s unique αρ ∈ Q`

×
,

the local system

FT (Lψ(x(q+1)/2))⊗ αdegρ

on Gm/Fq has Ggeom = Garith = PSL(2, q).
(6) If in (4) and (5) we replace ψ by ψa : x 7→ ψ(ax) with a ∈ F×q

a non-square, then we obtain a local system whose monodromy
representation is the other irreducible of dimension (q+ 1)/2 if
q is 1 mod 4 (respectively of dimension (q − 1)/2 if q is 3 mod
4).

(7) The monodromy representations of the aforementioned local sys-
tems provide all the irreducible representations of PSL(2, q) of
dimension > 1.

Proof. If we translate a local system on Gm/Fq by a point of Gm(Fq),
we change neither Ggeom nor Garith. This allows us to ignore the the
unique translations by points of Gm(Fq) in the statement of the pre-
vious theorem. Assertions (1) through (5), and (7), then result from
the previous theorem, together with [Ka-ESDE, 9.3.2 (1)], according
to which

FT ([q + 1]?Kl(χ, χ))

is a multiplicative translate (by a point of Gm(Fp)) of

[q + 1]?Cancel(H(all char.′s of order divding q + 1;χ, χ)),

and, when q is odd,

FT ([(q + 1)/2]?Kl(χ2))

is a multiplicative translate (by a point of Gm(Fp)) of

[(q + 1)/2]?Cancel(H(all char.′s of order divding (q + 1)/2;χ2)).

When q is even, the groups PGL(2, q), PSL(2, q), and SL(2, q) all
coincide, and the pullback by [q+1]? can only shrink Ggeom to a normal
subgroup of itself of index dividing q + 1. But for q ≥ 4, PGL(2, q) is
simple, of order (q − 1)q(q + 1) > q + 1.

When q is odd, then already in the first case

[2]?Cancel(H(all char.′s of order divding q + 1;χ, χ))

has PSL(2, q) as its Ggeom, and its further pullback by [(q+1)/2] can
only shrink Ggeom to a normal subgroup of PSL(2, q) of index dividing
(q+1)/2. But for q > 3, PSL(2, q) is simple, of order (q−1)q(q+1)/2 >
(q + 1)/2. In the second case, we know that

Cancel(H(all char.′s of order divding (q + 1)/2;χ2))
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has Ggeom = PSL(2, q), and just as above the pullback by [(q+1)/2]
can shrink it no more.

It remains to explain, in (6), why replacing ψ by ψa : x 7→ ψ(ax) with
a ∈ F×q a non-square provides the other representation of dimension
equal to whichever of (q ± 1)/2 is odd. For this, we may suppose ψ is
a character of Fp.

Suppose first that q is not a square, i.e., that q is an odd power of
p. Then we may take for a a nonsquare in F×p . In this case, the trace
function using ψa will be the galois conjugate, by the nontrivial element
of Gal(Q(

√
(−1)(p−1)/2p)/Q) of the trace function using ψ. One knows

that this galois conjugation interchanges the two representations of
dimension equal to whichever of (q ± 1)/2 is odd.

Suppose now that q is a square. Then (q + 1)/2 is odd, and both
representations of dimension (q + 1)/2 have Z-valued trace functions,
so galois conjugation is not available. But recall that the two represen-
tations of this dimension are given by the local systems

A ∼= H(all char.′s of order dividing (q + 1)/2;χ2)

and [x 7→ −x]?A. Because (q+1)/2 is odd, the two pullbacks [(q+1)/2]?

and [x 7→ −x]? commute with each other, i.e.,

(−x)(q+1)/2 = −x(q+1)/2.

Consider now the local systems

K := FTψ(Lχ2(x) ⊗ Lψ(x(q+1)/2)) = [(q + 1)/2]?A
and

Ka := FTψa(Lχ2(x) ⊗ Lψa(x(q+1)/2)).

Over extension fields k/Fq in which a is a square, the trace function of
K is given by

t 7→ −
∑
x∈k×

χ2(x)ψ(x(q+1)/2 + tx).

The trace function of Ka is given by

t 7→ −
∑
x∈k×

χ2(x)ψ(ax(q+1)/2 + tax) =

(making the substitution x 7→ x/a, which turns ax(q+1)/2 into−x(q+1)/2)

= −
∑
x∈k×

χ2(x)ψ(−x(q+1)/2 + tx) =

(making the substitution x 7→ −x)

= −
∑
x∈k×

χ2(x)ψ(x(q+1)/2 − tx),
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which is the trace function of

[t 7→ −t]?[(q + 1)/2]?A = [(q + 1)/2]?[x 7→ −x]?A,

the pullback by [(q + 1)/2] of the other representation of the same
dimension. �

16. Transition from PSL(2, q) to SL(2, q)

In this section, we return to our focus on the local systems

G(Fq, ψ,1, (q + 1)/2) and G(Fq, ψ, χ2, (q + 1)/2)

on A1/Fq. We begin by applying the relevant result of the previous
section.

Theorem 16.1. Suppose q > 3. Then we have the following results.

(1) If q is 1 mod 4, the local system G(Fq, ψ, χ2, (q + 1)/2) has

Ggeom = Garith = PSL(2, q)

in one of the irreducible representations of PSL(2, q) of dimen-
sion (q + 1)/2. If we replace ψ by ψa for a ∈ F×q a nonsquare,
we get the other irreducible representations of PSL(2, q) of di-
mension (q + 1)/2.

(2) If q is 3 mod 4, the local system G(Fq, ψ,1, (q + 1)/2) has

Ggeom = Garith = PSL(2, q).

in one of the irreducible representations of PSL(2, q) of dimen-
sion (q − 1)/2. If we replace ψ by ψa for a ∈ F×q a nonsquare,
we get the other irreducible representations of PSL(2, q) of di-
mension (q − 1)/2.

Proof. The statements about Ggeom were proven in 15.3, parts (4) and
(5), as are the statements about the effect on Ggeom of replacing ψ by
ψa. What remains to show is that the scaling factor αρ in the statement
of 15.3 is the same scaling factor used in defining G(Fq, ψ,1, (q+ 1)/2)
and G(Fq, ψ, χ2, (q + 1)/2). In other words, we know that, in each of
(1) and (2), there is a unique scalar α such that G ⊗ αdeg has Ggeom =
Garith = PSL(2, q). What we must show is that in each case that scalar
is 1.

We begin with case (1). Here Garith for G lies in SO((q + 1)/2,Q`),
as does Garith = PSL(2, q) for G ⊗ αdeg in either of its irreducible
representations of dimension (q + 1)/2. Therefore the scalar α itself
lies in SO((q+ 1)/2,Q`). But as (q+ 1)/2 is odd in this case, the only
such scalar is 1.
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In case (2), Garith for G lies in SL((q − 1)/2,Q`), as does Garith =
PSL(2, q) for G⊗αdeg in one of its irreducible representations of dimen-
sion (q − 1)/2. Therefore the scalar α itself lies in SL((q + 1)/2,Q`).
The only such scalars are roots of unity of order dividing the odd in-
teger (q − 1)/2. The only scalar in (the image of ) Garith = PSL(2, q)
for G ⊗ αdeg (in either of the irreducible representations of dimension
(q − 1)/2 of PSL(2, q)) is 1.Therefore α lies in the image of Garith for
G.

Because q is 3 mod 4, q is an odd power of a prime p which is 3 mod
4. The representation for G has its character with values in Q(

√
−p),

so the only scalars in the image of Garith for G are roots of unity in this
field. If p ≥ 5, the only roots of unity in this field are ±1. Of these,
only 1 has order dividing the odd integer (q − 1)/2, If p = 3, the roots
of unity in this field are µ6. For q = 32k+1 (with k ≥ 1 because q > 3
by hypothesis), we have gcd(6, (q − 1)/2) = 1. �

The situation now is that for each odd q > 3, we have proven the
SL(2, q) conjecture for whichever of the two local systems

G(Fq, ψ,1, (q + 1)/2) and G(Fq, ψ, χ2, (q + 1)/2)

has odd rank. However, there is a simple relation between these two
local systems, which will, in the next section, allow us to prove the
SL(2, q) conjecture for the one of even rank. We state this relation
in the following two theorems. The proof of the second is due to Ron
Evans. The referee kindly explained to us how, by making use of a
key idea Evans introduced in his proof, and by thinking systemati-
cally about quadratic polynomials (!), we could unify and simplify the
original proofs of these theorems, and that is the method we employ
below.

Theorem 16.2. Let q be odd. Suppose q is ±1 mod 8, i.e., that 2 is a
square in F×q . Then for any square a ∈ Fq, there exists an isomorphism
of local systems on Gm/Fq

Sym2(G(Fq, ψa,1, (q + 1)/2)) ∼= Λ2(G(Fq, ψ, χ2, (q + 1)/2)).

Theorem 16.3. (Evans)Let q be odd. Suppose 2 is not a square in F×q .
Then for any nonsquare a ∈ F×q , there exists an isomorphism of local
systems on Gm/Fq

Sym2(G(Fq, ψa,1, (q + 1)/2)) ∼= Λ2(G(Fq, ψ, χ2, (q + 1)/2)).

Remark 16.4. The formulation of the above theorems is motivated by
the following facts. The group SL(2, q), q > 3 odd, has two irreducible
representations of dimension (q − 1)/2, Small1 and Small2, and two
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irreducible representations of dimension (q + 1)/2, Large1 and Large2.
They can be numbered so that on nontrivial unipotent elements g ∈
SL(2, q), we have

Trace(Small1(g)) = −Trace(Large1(g)),

Trace(Small2(g)) = −Trace(Large2(g)).

With this numbering, it is easy to see from the character table that
there exist isomorphisms of representations

Sym2(Smalli) ∼= Λ2(Largei)

for i = 1 and for i = 2. Moreover, if 2 is a square in F×q , so that squaring
maps each of the two unipotent conjugacy classes to itself (rather than
to the other one), then there exist isomorphisms of representations

Sym2(Smalli) ∼= Λ2(Largej)

for any choices of i, j in {1, 2}. In all these cases, the isomorphism exists
(only) because the characters coincide. A beautiful generalization of
this result to Sp(2n, q) is due to Guralnick, Maagard, and Tiep [GMT].

Proof of Theorem 16.2 Let us recall the statement. Suppose q is
±1 mod 8, and a ∈ k× is a square. Then there exists an isomorphism
of local systems on Gm/Fq

Sym2(G(Fq, ψa,1, (q + 1)/2)) ∼= Λ2(G(Fq, ψ, χ2, (q + 1)/2)).

Proof. Because both inputs are irreducible, their Λ2 and Sym2 are
semisimple, so by Chebotarev it suffices to show that both sides have
the same trace function. We first reduce to the case a = 1. Because
a ∈ F×q is a square, for any nontrivial additive character of Fq and for
any finite extension k/Fq, we have the identity∑

x∈k

ψk(ax
(q+1)/2 + atx) =

∑
x∈k

ψk(x
(q+1)/2 + tx);

simply use the fact that a = a(q+1)/2 and make the substitution x 7→
x/a.

Thus k is a finite extension of Fq, and k2/k is its quadratic extension.
Let us denote

Gsm := (G(Fq, ψ,1, (q + 1)/2)), Glg := G(Fq, ψ, χ2, (q + 1)/2).

Then for t ∈ k,

2×Trace(Frobk,t|Sym2(Gsm)) = (Trace(Frobk,t|Gsm))2+Trace(Frobk2,t|Gsm),

2×Trace(Frobk,t|Λ2(Glg)) = (Trace(Frobk,t|Glg))2−Trace(Frobk2,t|Glg).
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The local systems Gsm and Glg have the same twisting factor β =
−g(ψ−2, χ2) in their definitions, so it suffices to prove this equality
with Gsm replaced by

Fsm := FTψ(Lψ(x(q+1)/2))

and with Glg replaced by

Flg := FTψ(Lχ2(x) ⊗ Lψ(x(q+1)/2)).

Thus we must show that

(−
∑
x∈k

ψk(x
(q+1)/2 + tx))2 + (−

∑
x∈k2

ψk2(x
(q+1)/2 + tx)) =

= (−
∑
x∈k

χ2,k(x)ψk(x
(q+1)/2 + tx))2− (−

∑
x∈k2

χ2,k2(x)ψk2(x
(q+1)/2 + tx)).

Let us write

n := (q + 1)/2.

Expanding out the squares, this alleged identity has the form

A = B

, with

A :=
∑

(x,y)∈k×k

ψk(x
n+yn+t(x+y))−

∑
x∈k2

ψk(Tracek2/k(x
n)+tTracek2/k(x)),

B :=
∑

(x,y)∈k×k

χ2,k(xy)ψk(x
n + yn + t(x+ y))+

+
∑
x∈k2

χ2,k(Normk2/k(x))ψk(Tracek2/k(x
n) + tTracek2/k(x)),

We break these sums up as follows. For each monic quadratic poly-
nomial

X2 − bX + c

in k[X], its two roots are either

(1) a repeated root (x, x) ∈ k × k, when b2 − 4c = 0,
(2) a pair of roots (x, y) ∈ k × k with x 6= y, when b2 − 4c is a

nonzero square in k,
(3) a pair of Gal(k2/k)-conjugate roots u 6= u with u ∈ k2 \k, when

b2 − 4c is a nonzero nonsquare in k.
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View the coefficients b, c of X2−bX+c as the elementary symmetric
functions of its roots. The n’th Newton symmetric function Nn(b, c)
is, in cases (1) and (2), xn + yn, and in case (3) it is Tracek2/k(u

n) =
Tracek2/k(u

n). Similarly, c = x2 in case (1), c = xy in case (2), and
c = Normk2/k(u) = Normk2/k(u) in case (3), and b = 2x in case (1),
b = xy in case (2), and b = Tracek2/k(u) = Tracek2/k(u) in case (3).

On the A side, the (x, x) terms in k × k in the first sum match
identically match the terms x ∈ k2 with x ∈ k. And the quadratic
character χ2,k(b

2 − 4c) is 1 if we are in case (2), and it is −1 if we are
in case (3). So

A = 2×
∑

(b,c)∈k×k,b2 6=4c

χ2,k(b
2 − 4c)ψk(Nn(b, c) + tb) =

= 2×
∑

(b,c)∈k×k

χ2,k(b
2 − 4c)ψk(Nn(b, c) + tb),

the last equality because we add back terms with χ2,k(b
2 − 4c) = 0.

On the B side, the (x, x) terms in k× k match identically the terms
x ∈ k2 with x ∈ k. Each such singleton term occurs twice in B, so we
find that

B = 2×
∑

(b,c)∈k×k

χ2,k(c)ψk(Nn(b, c) + tb).

Our next step is to show that the sum of the b = 0 terms in A is
equal to the sum of the b = 0 terms in B, i.e., to show that∑

c∈k

χ2,k(−4c)ψk(Nn(0, c)) =
∑
c∈k

χ2,k(c)ψk(Nn(0, c)).

The two roots of X2 + c are negatives of each other,
If n is odd the sum of their n’th powers vanishes; Nn(0, c) = 0 if n

is odd. So in the n odd case, the equality to prove is that∑
c∈k

χ2,k(−4c) =
∑
c∈k

χ2,k(c),

which holds because both sides vanish.
If n is even, then for each root α of X2 + c, we have α2 = −c, so

αn = (−c)n/2, and Nn(0, c) = 2(−c)n/2. Thus the equality to prove in
the n even case is∑

c∈k

χ2,k(−4c)ψk(2(−c)n/2) =
∑
c∈k

χ2,k(c)ψk(2(−c)n/2),

If −1 is a square in k, the equality obviously holds. If −1 is a nonsquare
in k, then both sides vanish. Indeed, −1 must then be a nonsquare in
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Fq, hence q is 3 mod 4. But q is ±1 mod 8, so in fact q is 7 mod 8,
hence n/2 = (q + 1)/4 is even. The first side of the desired equality is∑

c∈k

χ2,k(−4c)ψk(2(−c)n/2) =
∑
c∈k

χ2,k(4c)ψk(2(c)n/2),

simply by the substitution c 7→ −c, while, because n/2 is even, it is
also equal to∑

c∈k

χ2,k(−4c)ψk(2(−c)n/2) =
∑
c∈k

χ2,k(−4c)ψk(2(c)n/2),

hance the first side is minus itself, so vanishes. Same for the second
side.

Having taken case of the b = 0 terms, we are left with proving the
following equality;∑
(b,c)∈k××k

χ2,k(b
2−4c)ψk(Nn(b, c)+tb) =

∑
(b,c)∈k××k

χ2,k(c)ψk(Nn(b, c)+tb).

Interlude: The miracle lemma of Evans
Consider a quadratic polynomial X2 − bX + c, with two roots α, β,

and b = α + β invertible. Then

Nn(b, c) = αn + βn = (
b+ (α− β)

2
)n + (

b− (α− β)

2
)n =

= (b/2)n × [(1 +
α− β
b

)n + (1− α− β
b

)n].

The polynomial

(1 +X)n + (1−X)n ∈ Fq[X]

is visibly invariant under X 7→ −X, so is in fact a polynomial in X2.
Thus there is a unique polynomial fn(X) ∈ Fq[X] such that

fn(X2) = (1 +X)n + (1−X)n.

Referring back to the above identity for Nn(b, c) when b is invertible,
we get

Nn(b, c) = (b/2)nfn(
(α− β)2

b2
) = (b/2)nfn(

b2 − 4c

b2
) = (b/2)nfn(1− 4c

b2
).

Using this identity, the equality we need to prove is∑
(b,c)∈k××k

χ2,k(b
2 − 4c)ψk((b/2)nfn(1− 4c

b2
) + tb) =

=
∑

(b,c)∈k××k

χ2,k(c)ψk((b/2)nfn(1− 4c

b2
) + tb).
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For this, it suffices to show that for each fixed value of b ∈ k×, we
have ∑

c∈k

χ2,k(b
2 − 4c)ψk((b/2)nfn(1− 4c

b2
)) =

=
∑
c∈k

χ2,k(c)ψk((b/2)nfn(1− 4c

b2
)).

Equivalently, we must show that for each b ∈ k×, we have∑
c∈k

χ2,k(1−
4c

b2
)ψk((b/2)nfn(1− 4c

b2
)) =

=
∑
c∈k

χ2,k(
4c

b2
)ψk((b/2)nfn(1− 4c

b2
)).

Lemma 16.5. (Evans)Let p be an odd prime, Fq a finite extension of
Fp, n := (q + 1)/2, and f(X) := fn(X) ∈ Fq[X] the unique polynomial
such that

f(X2) = (1 +X)n + (1−X)n.

Then we have the identity

f(1−X) = χ2,Fq(2)f(X).

Proof. The polynomial f(X) has degree [n/2].
We first claim that f(X)2 = f(1 −X)2. Each of these polynomials

has degree 2[n/2] ≤ n < q, so it suffices to show that f(x)2 = f(1−x)2

for every x ∈ Fq. For x = 0, f(0) = f(02) = 2 and f(1) = f(12) = 2n =
χ2,Fq(2)2 (because n := (q + 1)/2). So we do have f(x)2 = f(1 − x)2

for x either 0 or 1. For x 6= 0, choose a square root of x in Fq2 , call it√
x. Then

f(x) = f((
√
x)2) = (1 +

√
x)n + (1−

√
x)n.

Thus for x 6= 0, we have

f(x)2 = 2(1− x)n + (1 +
√
x)q+1 + (1−

√
x)q+1 =

= 2(1− x)n + (1 +
√
x
q
)(1 +

√
x) + (1−

√
x
q
)(1−

√
x) =

= 2(1− x)n + 2 + 2xn.

This expression is visibly invariant under x 7→ 1−x. Thus we have the
polynomial identity f(X)2 = f(1 − X)2 in Fq[X]. Therefore f(X) =
εf(1 −X) for some ε ∈ {±1}. Evaluating at X = 0, as we have done
above, we see that the sign is χ2,Fq(2). �
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With this key lemma at hand, the asserted identity, that for b ∈ k×
we have ∑

c∈k

χ2,k(1−
4c

b2
)ψk((b/2)nfn(1− 4c

b2
)) =

=
∑
c∈k

χ2,k(
4c

b2
)ψk((b/2)nfn(1− 4c

b2
)),

is obvious from the substitution c 7→ b2/4− c, i.e. 4c
b2
7→ 1− 4c

b2
when 2

is a square in k. This concludes the proof of Theorem 16.2.
Proof of Theorem 16.3
Although G(Fq, ψa,1, n) has a quadratic Gauss sum clearing factor β

which differs by a sign from that of G(Fq, ψ,1, n) when a is a nonsquare
in Fq, only its square enters in Sym2. So just as in the proof of Theorem
16.2, we may ignore the clearing factors.

When a ∈ F×q is a nonsquare, for any nontrivial additive character
of Fq and for any finite extension k/Fq, we have the identity∑

x∈k

ψk(ax
(q+1)/2 + atx) =

∑
x∈k

ψk(−x(q+1)/2 + tx);

simply use the fact that a = −a(q+1)/2 and make the substitution x 7→
x/a.

Exactly as in the start of the proof of Theorem 16.2, we must prove
an equality of the form A = B, with

A = 2×
∑

(b,c)∈k×k

χ2,k(b
2 − 4c)ψk(−Nn(b, c) + tb),

B = 2×
∑

(b,c)∈k×k

χ2,k(c)ψk(Nn(b, c) + tb).

We first must show that the sum of the b = 0 terms in A is equal to
that sum in B, i.e that∑

c∈k

χ2,k(−4c)ψk(−Nn(0, c)) =
∑
c∈k

χ2,k(c)ψk(Nn(0, c)).

If n is odd, then Nn(0, c) = 0, and both sides vanish.
If n = (q + 1)/2 is even, then q is 3 mod 4. But 2 is a nonsquare in

Fq, so q is ±3 mod 8, hence q is 3 mod 8, and thus n/2 = (q + 1)/4 is
odd. Thus Nn(0, c) = (−c)n/2 = −cn/2, and the asserted equality is∑

c∈k

χ2,k(−4c)ψk(c
n/2) =

∑
c∈k

χ2,k(c)ψk(−cn/2).

Because n/2 is odd, the substitution c 7→ −c interchanges the two
sides.
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It remains to treat the case when b is invertible. In this case, just as
in the proof of Theorem 16.2, we reduce to showing that for each fixed
b ∈ k×, we have∑

c∈k

χ2,k(1−
4c

b2
)ψk(−(b/2)nfn(1− 4c

b2
)) =

=
∑
c∈k

χ2,k(
4c

b2
)ψk((b/2)nfn(1− 4c

b2
)).

Once again, the substitution c 7→ b2/4 − c, i.e. 4c
b2
7→ 1 − 4c

b2
inter-

changes the two sides, because when 2 is a nonsquare in Fq we have
fn(4c

b2
) = −fn(1− 4c

b2
). This concludes the proof of Theorem 16.3. �

For ease of reference, we combine the statements of Theorems 16.2
and 16.3.

Theorem 16.6. (joint with Evans) Let q be odd. For any nontriv-
ial additive character ψ of Fq, with ψ2(x) := ψ(2x), there exists an
isomorphism of local systems on Gm/Fq

Sym2(G(Fq, ψ2,1, (q + 1)/2)) ∼= Λ2(G(Fq, ψ, χ2, (q + 1)/2)).

17. The situation for SL(2, q)

Theorem 17.1. Suppose q > 3. Then we have the following results.

(1) If q is 1 mod 4, the local system G(Fq, ψ,1, (q + 1)/2) has

Ggeom = Garith = SL(2, q)

in one of the irreducible representations of SL(2, q) of dimen-
sion (q − 1)/2. If we replace ψ by ψa for a ∈ F×q a nonsquare,
we get the other irreducible representations of SL(2, q) of di-
mension (q − 1)/2.

(2) If q is 3 mod 4, the local system G(Fq, ψ, χ2, (q + 1)/2) has

Ggeom = Garith = SL(2, q)

in one of the irreducible representations of SL(2, q) of dimen-
sion (q + 1)/2. If we replace ψ by ψa for a ∈ F×q a nonsquare,
we get the other irreducible representations of SL(2, q) of di-
mension (q + 1)/2.

Proof. When q is 1 mod 4, G(Fq, ψ, χ2, (q+1)/2) has odd rank (q+1)/2
and G(Fq, ψ2,1, (q+1)/2) have even rank (q−1)/2. When q is 3 mod 4,
G(Fq, ψ2,1, (q+1)/2) has odd rank (q−1)/2 and G(Fq, ψ, χ2, (q+1)/2)
has even rank (q + 1)/2. Let us denote these local systems

Godd and Geven
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respectively.
We have proven that Godd has Ggeom = Garith = PSL(2, q) for all

odd q > 3. Therefore we have

Ggeom = Garith = PSL(2, q)

for

Λ2(Godd), when q is 1 mod 4,

and for

Sym2(Godd), when q is 3 mod 4.

We have proven the existence of isomorphisms

Λ2(Godd) ∼= Sym2(Geven), when q is 1 mod 4,

Sym2(Godd) ∼= Λ2(Geven), when q is 3 mod 4.

Therefore we know that

Ggeom = Garith = PSL(2, q)

for

Sym2(Geven), when q is 1 mod 4,

and for

Λ2(Geven), when q is 3 mod 4.

Passing from Geven to either Λ2(Geven) or to Sym(Geven) either leaves
Ggeom (respectively Garith) unchanged, or it divides that group by ±1.
These groups cannot remain unchanged, because PSL(2, q) does not
have an irreducible representation of this degree. Therefore both Ggeom

and Garith are double covers of PSL(2, q). Neither can be the prod-
uct of ±1 with PSL(2, q), again because PSL(2, q) does not have an
irreducible representation of this degree. Therefore each is the Schur
double cover of PSL(2, q), which is SL(2, q). �

For ease of later reference, we combine the statements of this last
theorem and of Theorem 16.1.

Theorem 17.2. Suppose q > 3 is odd. In the notation Godd and Geven
of the proof of the theorem above, we have the following results.

(1) For every odd q > 3, Godd has Garith = Ggeom = PSL(2, q).
(2) For every odd q > 3, Geven has Garith = Ggeom = SL(2, q).
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18. Representations of PU(3, q), d’apres Gross

Gross has constructed a PU(3, q)-torsor T on Gm/Fq2 with the fol-
lowing properties. On T , the inertia and wild inertia groups at 0 and
∞ are given explicitly in terms of the Borel B, its unipotent radical
Ru, the quasisplit torus Tqspl, cyclic of order q2 − 1, and the Coxeter
torus Tcxt, cyclic of order q2 − q + 1. We have

I∞ = B B P∞ = Ru, I∞/P∞ = Tqspl,

I0 = Tcxt, P0 = {1}.
[Over finite fields, there is only one isomorphism class of nondegen-

erate hermitian form in each dimension, cf. [Grove, Thm. 10.3]. The
complete Deligne-Lusztig curve for PU(3, q) can therefore be seen ei-
ther as the Hermitian curve

XY q +XqY = Zq+1,

or as the Fermat curve of degree q + 1,

Xq+1 + Y q+1 + Zq+1 = 0.

The action of PU(3, q) on the Fermat curve is perhaps most visible.
The quotient is P1/Fq2 , and the torsor T is the restriction to Gm of the
projection to P1/Fq2 of the Fermat curve onto its quotient.]

When q is odd, the group Ru is a Heisenberg group of exponent p
and order q3, whose center Z(Ru), which is also its derived group, is
noncanonically the additive group of Fq. When p is odd, one knows
(Stone-von Neumann theorem, cf. [Ga]) that the irreducible represen-
tations of Ru are as follows.

(1) Those trivial on Z(Ru); the quotient Ru/Z(Ru) is abelian of
order q2, and hence has q2 linear characters.

(2) For each nontrivial character ψ of Z(Ru), there is an irreducible
representation Hψ of dimension q having ψ as its central char-
acter. The character of Hψ vanishes on Ru\Z(Ru), and is equal
to qψ on Z(Ru).

In the Appendix, Tiep shows (Theorem 22.2) that for any prime power
q, the irreducible representations of Ru are as described in (1) and (2)
above.

As I learned from Dick Gross, the action of B/Ru on Z(Ru) by con-
jugation cyclically permutes the q − 1 nontrivial characters of Z(Ru).
Indeed, in the matrix picture given by Ennola [Enn, bottom of page 30],
B is the subgroup c = 1, Ru is the subgroup a = c = 1, its center Z(Ru)
is the further subgroup b = e = 0, with parameter d, the lowermost left
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corner, which is any element of Fq2 with TraceFq2/Fq(d) = 0. The quo-

tient B/Ru = Tqspl is the F×q2 of diagonal matrices Diag(a, 1, 1/aq), a ∈
F×q2 , which acts on Z(Ru) by multiplication by 1/NormFq2/Fq(a).

Lemma 18.1. Suppose q ≥ 3. The group PU(3, q) has gcd(3, q + 1)
irreducible representations of dimension q(q − 1), and it has q + 1 −
gcd(3, q + 1) irreducible representations of dimension 1 + q(q − 1).

Proof. This is most easily seen from the character table of U(3, q) due to
Ennola [Enn, pp. 29-31]. In that table, the irreducible representations

of dimension q(q − 1) are denoted χ
(t)

q2−q, with t an integer mod q +

1; those trivial on the center of U(3, q) are those whose parameter
t satisfies 3t = 0 in Z/(q + 1)Z. The irreducible representations of

dimension 1 + q(q − 1) are denoted χ
(t,u)

q2−q+1, with t, u mod q + 1 and

t 6= u. Those trivial on the center of U(3, q) are those of the form

χ
(−2u,u)

q2−q+1 with 3u 6= 0 mod q + 1. �

Remark 18.2. When q = 2, the group PU(3, 2) has gcd(q + 1, 3) =
3 irreducible representations of dimension q(q − 1) = 2, but rather
than having q + 1 − gcd(3, q + 1) = 0 irreducible representations of
dimension 1 + q(q − 1) = 3, it has one such. This “exotic” one is

the representation labeled χ
(t,u,v)

(q−1)(q2−q+1) in Ennola’s table, with (t, u, v)

taken to be (1, 2, 3).

Theorem 18.3. (Gross) We have the following results.

(1) In each of the irreducible representations of PU(3, q) of dimen-
sion q(q − 1), the action of Ru is by the direct sum⊕

nontriv. ψ

Hψ

of the (q − 1) irreducible representations of Ru with nontrivial
central character. These q−1 summands are cyclically permuted
by a generator of B/Ru = Tqspl.

(2) In each of the irreducible representations of PU(3, q) of dimen-
sion q(q − 1), the group Tcxt acts by

Reg − ρ,

with Reg the regular representation and ρ a character of order
dividing q + 1 having ρ3 trivial. [Unless q ≡ 2 mod 3, the only
such ρ is 1. If q ≡ 2 mod 3, then 3|q2 − q + 1, and there are 3
such ρ.]
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(3) Suppose q 6= 2. In each of the irreducible representations of
PU(3, q) of dimension 1 + q(q − 1), the action of Ru is by the
direct sum

1⊕
⊕

nontriv. ψ

Hψ.

The q − 1 summands Hψ are cyclically permuted by a gener-
ator of B/Ru = Tqspl. The group B/Ru acts on the line of
Ru-invariants by a character ρ of order dividing q + 1 with ρ3

nontrivial.
(4) Suppose q 6= 2. In each of the irreducible representations of

PU(3, q) of dimension 1 + q(q − 1), the group Tcxt acts by the
regular representation.

Proof. (1) In the tables of Ennola, nontrivial elements of the center

Z(Ru) lie in the conjugacy class C
(q+1)
2 , and these elements all have

trace −q in each of the ireducible representations of PU(3, q) of di-
mension q(q − 1). Elements of Ru \ Z(Ru) lie in the conjugacy class

C
(q+1)
3 , and have trace 0 in each of these representationa. In other

words, the character of Z(Ru) is equal to q times the sum of the q − 1
nontrivial linear characters of Z(Ru), and the character of Ru is equal
to the sum of the characters of the q − 1 distinct q-dimensional irre-
ducible representations Hψ of Ru. Because the nontrivial characters
of Z(Ru) are cyclically permuted by a generator of B/Ru = Tqspl, the
summands Hψ must themselves be cyclically permuted by a generator
of B/Ru = Tqspl.

(2) A generator of the group Tcxt is the image in PU(3, q) of an

element in the conjugacy class C
(1)
8 . Its k’th power, for 1 ≤ k <

q2− q+ 1, lies in the image in PU(3, q) of the conjugacy class C
(k)
8 . Its

trace in χ
(t)

q2−q is −εtk, ε being a chosen q+ 1’st root of unity. As 3t = 0
mod q + 1, the assertion follows.

(3) Again looking at the tables of Ennola, the nontrivial elements of
Z(Ru) all have trace 1 − q in any of the ireducible representations of
PU(3, q) of dimension 1 + q(q− 1), and the elements of Ru \Z(Ru) all
have trace 1 in any of these representations. Therefore the representa-
tion of Ru is

1⊕
⊕

nontriv. ψ

Hψ.

Because Ru is a normal subgroup of B, B/Ru acts on the line of Ru-
invariants by a linear character, call it ρ. A generator of B/Ru = Tqspl
permutes cyclically the Hψ, so it has trace zero on

⊕
nontriv. ψHψ, and

hence the value of ρ on a generator γ of Tqspl is the trace of γ in the



RIGID LOCAL SYSTEMS ON A1 WITH FINITE MONODROMY 49

representation. A generator of Tqspl is the image in PU(3, q) of an

element in the conjugacy class C
(q+1,1)
7 , and such an element has trace

ε−u in χ
(−2u,u)

q2−q+1. As 3u 6= 0 mod q + 1, the assertion follows.

(4) Exactly as in part (2), it suffices now to remark that the nontrivial

elements of Tcxt lie in the (images in PU(3, q) of) conjugacy classes C
(k)
8 ,

for 1 ≤ k < q2− q+ 1, and that all these classes have trace zero in any
of the irreducible representations of dimension 1 + q(q − 1). �

Corollary 18.4. (Gross) The pushout of the Gross PU(3, q)-torsor on
Gm/Fq2 by any of the irreducible representations of PU(3, q) of dimen-
sion either q(q − 1) or, if q 6= 2, of dimension 1 + q(q − 1) is tame at
0 and has Swan∞ = 1.

Proof. In all cases, the tameness at 0 is obvious, since I0 acts through
Tcxt, a group of order prime to p.

The irreducible representation χ
(q+1)
qq−q is the only one of the irreducible

representations of dimension q(q−1) whose character is R-valued, so is
the only one of them which is self dual. Therefore it is the irreducible
unipotent cuspidal representation of dimension q(q − 1), and for this
representation the statement is given in [Gross, Cor. part (c), top of
page 2537].

For V the pushout by any of the other representations, its L-function
is known to be the constant 1, of degree 0 [Gross, Cor. part (c), bottom
of page 2536], and we have the formula [Gross, middle of page 2536]

Swan∞(V ) = degree(L) + dim(V I0) + dim(V I∞).

[This is the Euler-Poincaré formula, applied to the geometrically irre-
ducible and nonconstant lisse sheaf V on Gm/Fq, the inclusion

j : Gm ⊂ P1,

the short exact sequence of sheaves on P1,

0→ j!V → j?V → V I0 ⊗ δ0

⊕
V I∞ ⊗ δ∞ → 0,

and the piece of the long exact cohomology sequence

0→ V I0 ⊕ V I∞ → H1
c (Gm/Fq, V )→ H1(P1/Fq, j?V )→ 0.

Because V is tame at 0, the middle term has dimesion Swan∞(V ), and
the last term has dimension equal to the degree of the L function.]

For the other, if any, irreducible representations of dimension q(q−1),
I0 acts as Reg− ρ with ρ nontrivial, so has a one-dimensional space of
invariants, while the I∞-representation is totally wild.

For the irreducible representations of dimension 1 + q(q − 1), we
suppose q 6= 2. Then I0 acts as the regular representation, so has
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a one-dimensional space of invariants. The I∞-representation is the
direct sum of a totally wild representation and a tame line on which
I∞/P∞ acts through a nontrivial character (one of order dividing q+ 1
whose cube is nontrivial). So again in this case there are no nonzero
I∞-invariants. �

It is known [Ka-ESDE, 8.5.3] that a geometrically irreducible local
system on Gm/Fq2 which is tame at 0 and has Swan∞ = 1 is, geometri-
cally, a hypergeometric sheaf, and is determined [Ka-ESDE, 8.5.6 (2)]
by the semisimplifications of its I0 and I∞ representations. So we get
the following, in which the subscript desc denotes the canonical descent
to Gm/Fq2 .

Corollary 18.5. We have the following results.

(1) There are gcd(3, q+1) irreducible representations of PU(3, q) of
dimension q(q− 1). Their pushouts of the Gross torsor are, ge-
ometrically, unique multiplicative translates of the Kloosterman
sheaves

Kldesc(!, ψ; all char.′s of order dividing q2 − q + 1 save ρ),

with ρ of order dividing q + 1 and having ρ3 = 1.
(2) Suppose q 6= 2. There are q+ 1− gcd(3, q+ 1) irreducible repre-

sentations of PU(3, q) of dimension 1+q(q−1). Their pushouts
of the Gross torsor are, geometrically, unique multiplicative
translates of the hypergeometric sheaves of type (1 + q(q− 1), 1)

Hdesc(!, ψ; all char.′s of order dividing q2 − q + 1; ρ),

with ρ a character of order dividing q + 1 with ρ3 nontrivial.

Remark 18.6. When q is not 2 mod 3, then the only ρ in part (1) is 1,
and all nontrivial ρ occur in (2). When q is 2 mod 3, then 3 also divides
q2 − q + 1, and there are three ρ in part (1) and q + 1− 3 = q − 2 ρ in
part (2).

If we now pay attention to rationality questions, we get

Corollary 18.7. We have the following results.

(1) For each character ρ of order dividing q+ 1 and having ρ3 = 1,

there exists aρ ∈ Gm(Fq2) and αρ ∈ Q`
×

such that the corre-
sponding pushout of the Gross torsor is arithmetically isomor-
phic to

Hρ :=

[x 7→ aρx]?Kldesc(!, ψ; all char.′s of order dividing q2−q+1 save ρ)⊗αdegρ .
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(2) Suppose q 6= 2. For each character ρ of order dividing q + 1
and having ρ3 nontrivial, there exists aρ ∈ Gm(Fq2) and αρ ∈
Q`
×

such that the corresponding pushout of the Gross torsor is
arithmetically isomorphic to

Hρ :=

[x 7→ aρx]?Hdesc(!, ψ; all char.′s of order dividing q2 − q + 1; ρ)⊗ αdegρ .

(3) These local systems Hρ in parts (1) and (2) have Ggeom =
Garith = the image of PU(3, q) in the corresponding represen-
tation.

19. Passage to PSU(3, q)

In general, PSU(3, q) is a subgroup of PU(3, q) and a quotient of
SU(3, q). When gcd(3, q + 1) = 1, all these groups coincide. When 3
divides q + 1, then PSU(3, q) has index 3 in PU(3, q), and SU(3, q)
has a center µ3 of order 3. In this latter case (which of course does
not occur when q is a power of 3), restricting one of the irreducible
representations of the previous section to PSU(3, q) is achieved by the
cubic pullback [t 7→ t3]? of the pushout local system, cf. [Gross, bottom
of page 2537], just as in the discussion of pullback from PGL(2, q) to
PSL(2, q), where it was the pullback by squaring of the local system.
From the identity

q2 − q + 1 = (q − 2)(q + 1) + 3

we see that 3 divides q + 1 if and only if it divides q2 − q + 1. So in all
cases, the [t 7→ tq

2−q+1]? pullback of any of the local systems Hρ of the
last section are then local systems with Ggeom = Garith = PSU(3, q).
Taking into account [Ka-ESDE, 9.3.2], we get the following theorems.

Theorem 19.1. Suppose that 3 does not divide q + 1. Then the local
system

G := G(Fq2 , ψ,1, (q3 + 1)/(q + 1))

on Gm/Fq2 has Ggeom = SU(3, q). When pulled back to Gm/Fq4, it has
Ggeom = Garith = SU(3, q) (= PSU(3, q)). For each of the q nontrivial
characters ρ of order dividing q + 1, the local system

G := G(Fq2 , ψ, ρ3, (q3 + 1)/(q + 1))

on Gm/Fq2 has Ggeom = Garith = SU(3, q) (= PSU(3, q)).
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Proof. By [Ka-ESDE, 9.3.2], for each character ρ of order dividing q+1,

the [t 7→ tq
2−q+1]? pullback of Hρ is geometrically isomorphic to a

Gm(Fq2)-translate (cf. 14.2) of

G := G(Fq2 , ψ, ρ−3, (q3 + 1)/(q + 1)).

Therefore there exists βρ ∈ Q`
×

such that this pullback is arithmetically
isomorphic to a Gm(Fq2)-translate of G ⊗ βdegρ . As translation by a
rational point does not affect either Garith or Ggeom, the local system

G ⊗ βdegρ

itself has Ggeom = Garith = SU(3, q) (= PSU(3, q)) and has the same

field of traces as [t 7→ tq
2−q+1]?Hρ.

It suffices to show βρ = 1 when ρ is nontrivial, and that β1 ∈ ±1.
As one sees from Ennola’s character table, the character of Hρ takes

values in the field Q(ρ), the field generated over Q by the values of ρ.
The character of

G := G(Fq2 , ψ, ρ−3, (q3 + 1)/(q + 1))

also takes values in this field. Therefore the scalar βρ must lie in Q(ρ).

Both G and Hρ have their Garith lying in Sp(q(q − 1),Q`) if ρ3 = 1

(respectively in SL(q2− q+ 1,Q`) if ρ3 is nontrivial). Therefore βρ is a
root of unity. The only roots of unity in Q(ρ) ⊂ Q(µq+1) lie in µ2(q+1).

If ρ is nontrivial, βρ lies in SL(q2 − q + 1,Q`), so is a root of unity
of order dividing gcd(2(q + 1), q2 − q + 1) = gcd(q + 1, q2 − q + 1) = 1
(the first equality because q2 − q + 1 is odd). If ρ = 1, β1 is a root of
unity in Q, so is ±1.

�

Theorem 19.2. Suppose that 3 divides q + 1. Then we have the fol-
lowing results.

(1) For q 6= 2, the local system

G := G(Fq2 , ψ,1, (q3 + 1)/(q + 1))

on Gm/Fq2 has Ggeom = PSU(3, q), and after pullback to Gm/Fq4
it has

Ggeom = Garith = PSU(3, q).

For q = 2, replace PSU(3, 2) in the above statement by its quo-
tient Q8, the quaternion group of order 8, which is the image of
PSU(3, 2) in its unique irreducible representation of dimension
two.
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(2) If q is odd, the local system

G := G(Fq2 , ψ, χ2, (q
3 + 1)/(q + 1))

on Gm/Fq2 has Ggeom = Garith = PSU(3, q)
(3) For any nontrivial character ρ of order dividing (q+1)/3 whose

order is prime to 3, the local system

G := G(Fq2 , ψ, ρ, (q3 + 1)/(q + 1))

on Gm/Fq2 has Ggeom = Garith = PSU(3, q).
(4) For any nontrivial character ρ of order dividing (q + 1)/3, the

local system

G := G(Fq2 , ψ, ρ, (q3 + 1)/(q + 1))

has Ggeom = PSU(3, q). After pullback to Gm/Fq6 it has

Ggeom = Garith = PSU(3, q).

Proof. Statement (2) is a special case of (3), but seems worth stating
separately.

Exactly as in the proof of the previous theorem, for each ρ of order

dividing q + 1, there exists βρ ∈ Q`
×

such that for

G := G(Fq2 , ψ, ρ−3, (q3 + 1)/(q + 1)),

the local system
G ⊗ βdegρ

itself has Ggeom = Garith = SU(3, q) (= PSU(3, q)) and has the same

field of traces as [t 7→ tq
2−q+1]?Hρ.

(1) In this case of ρ = 1, both G and G ⊗ βdeg1 have their Garith ⊂
Sp(q(q− 1),Q`). Therefore the scalar β1 lies in Sp(q(q− 1),Q`), hence
is ±1.

(2)In this case of ρ = χ2, both G and G ⊗ βdegχ2
have their Garith ⊂

SO(1 + q(q − 1),Q`). Therefore the scalar βχ2 = 1.
(3) If ρ is nontrivial of order dividing (q+ 1)/3 and prime to 3, then

we can write ρ = Λ−3 for a unique nontrivial character Λ of order
dividing (q + 1)/3 and prime to 3. Then for

G := G(Fq2 , ψ, ρ, (q3 + 1)/(q + 1)) = G(Fq2 , ψ,Λ−3, (q3 + 1)/(q + 1))

the local system
G ⊗ βdegΛ

has Ggeom = Garith = PSU(3, q). The field of traces of G ⊗ βdegΛ lies in
Q(Λ) = Q(ζd) for d the order of Λ. The field of traces of G also lies in
this field. Therefore the scalar βΛ must lie in Q(ζd). All roots of unity

in this field lie in µ2d. Both G and G ⊗ βdegΛ have their Garith lying in
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SL(1+q(q−1),Q`). Therefore the scalar βΛ lies in this SL group, so is a
root of unity of order dividing gcd(q2−q+1, 2d) = gcd(q2−q+1, d) = 1
(the first equality because q2−q+1 is odd, the second equality because
d|q + 1 and gcd(q2 − 1 + 1, q + 1) = 3 while d is prime to 3).

(4)In this case, write ρ as Λ−3 for some character Λ of order dividing
q + 1.The same sort of argument only shows that βΛ is a root of unity
of order dividing gcd(q2 − 1 + 1, q + 1) = 3. �

Remark 19.3. In part (1) of both Theorem 19.1 and 19.2, the possi-
bility is left open that for

G := G(Fq2 , ψ,1, (q3 + 1)/(q + 1)),

it is G⊗(−1)deg rather than G on Gm/Fq2 which has Garith = PSU(3, q).
Computer experiments suggested that it was indeed G which hasGarith =
PSU(3, q). The idea behind the experiments was to exploit the fact
that for any q > 3, the character of the irreducible representation of
PSU(3, q) of dimension q(q − 1) takes the value 2, but never takes
the value −2. [The reason q = 3 is an exception is that the value
1 − q is always taken. For q = 3, one can show that G has the cor-
rect Garith by checking that over the odd degree extension F36 of F32 ,
we have Trace(FrobF36 ,0

|G) = 6 (= q(q − 1)), another character value
whose negative does not occur as a character value. The reason q = 2
is an exception is that both 2 and −2 occur as traces equally often,
and the only other trace attained is 0.] Therefore to show that G has
Garith = PSU(3, q) for odd q > 3, it sufficed to exhibit a value t ∈ Fq2
at which

Trace(FrobFq2 ,t|G) = 2,

simply because for this t, Trace(FrobFq2 ,t|G ⊗ (−1)deg) = −2, a value

that does not occur as a character value.
Let us make explicit the simple formula for this trace. Here ψ is any

nontrivial additive character of Fq2 which comes from Fq by composi-
tion with the trace, and t ∈ Fq2 .

Trace(FrobFq2 ,t|G) = (1/q)
∑
x∈Fq2

ψ(x1+q(q−1) + tx).

Extensive computer experiments led us to conjecture the following
theorem, whose proof is due to Ron Evans.

Theorem 19.4. (Evans)We have the following determinations of the
trace when q is odd.

(1) If q ≡ 2 mod 3, then for t = 0 we have Trace(FrobFq2 ,0|G) = 2.

(2) If q ≡ 3 mod 4, then for t = 1 we have Trace(FrobFq2 ,1|G) = 2.
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(3) If q ≡ 1 mod 12 and q is a nonsquare mod 5, then for t = −2
we have Trace(FrobFq2 ,−2|G) = 2.

(4) For any odd q, there exists t ∈ Fq with Trace(FrobFq2 ,t|G) = 2.

(5) If q is an odd power of p, there exists t ∈ Fp with Trace(FrobFq2 ,t|G) =
2.

Proof. Because q is odd, we may view Fq2 as obtained from Fq by
adjoining

δ :=
√
A,

for A ∈ F×q a nonsquare. Thus

Fq2 = Fq[δ], δq = −δ.
For t ∈ Fq, we have

qTrace(FrobFq2 ,t|G) =
∑
x∈Fq2

ψ(x1+q(q−1) + tx) =

= 1+
∑
x∈F×

q2

ψ(x2−q+tx) = 1+
∑

(a,b)∈F2
q ,(a,b)6=(0,0)

ψ((a+bδ)2/(a−bδ)+t(a+bδ)).

Break the sum into two pieces, the first with a = 0. We get

= 1+
∑
b∈F×q

ψ((bδ)2/(−bδ)+tbδ)+
∑

a6=0,b∈Fq

ψ((a+bδ)2/(a−bδ)+t(a+bδ)) =

=
∑
b∈Fq

ψ((t− 1)bδ) +
∑

a6=0,b∈Fq

ψ((a+ bδ)2/(a− bδ) + t(a+ bδ)).

Remember that our ψ is of the form ψFq◦TraceFq2/Fq for ψFq a nontrivial

additive character of Fq. The first sum is q, because t, b both lie in Fq
and δ has TraceFq2/Fq(δ) = 0. Making the change of variable (a, b) 7→
(a, ab), the second sum becomes∑

a6=0,b∈Fq

ψ(a(1 + bδ)2/(1− bδ) + at(1 + bδ)) =

=
∑

a6=0,b∈Fq

ψ(a[(1 + bδ)2 + t(1− b2δ2)]/(1− bδ)) =

=
∑

a6=0,b∈Fq

ψ(a
[(1 + bδ)2 + t(1− b2δ2)](1 + bδ)

1− b2δ2
).

Expanding out the numerator, this is

=
∑

a6=0,b∈Fq

ψ(a
Xbδ + 1 + t+ (3− t)b2δ2

1− b2δ2
),
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with X ∈ Fq. As TraceFq2/Fq(δ) = 0, this is∑
a6=0,b∈Fq

ψFq(2a
1 + t+ (3− t)b2δ2

1− b2δ2
).

The denominator 1 − b2δ2 = 1 − b2A never vanishes for b ∈ Fq, so
adding back the a = 0 terms this sum is

−q +
∑
a,b∈Fq

ψFq(2a
1 + t+ (3− t)b2δ2

1− b2δ2
).

Recalling that the first sum was q, we end up with the formula

qTrace(FrobFq2 ,t|G) =
∑
a,b∈Fq

ψFq(2a
1 + t+ (3− t)b2A

1− b2A
) =,

for t 6= 3,

=
∑
b∈Fq

∑
a∈Fq

ψFq(2a(
(3− t)A
1− b2A

)(b2 − t+ 1

(t− 3)A
)).

Suppose now that t 6= −1, 3 is chosen so that t+1
(t−3)A

is a nonzero

square in Fq. Then there are exactly 2 values of b for which the factor
b2 − 1+t

(t−3)A
vanishes. For each of these, the sum over a gives q. For

the other values of b, the sum over a vanishes. So for such a value of
t 6= −1, 3 in Fq, we have

Trace(FrobFq2 ,t|G) = 2.

Because A is a nonsquare, the requirement is that 1+t
t−3

be a nonzero
nonsquare. If q ≡ 2 mod 3, then by quadratic reciprocity −3 is a
nonsquare in Fq, and we take t = 0. This proves (1). If q ≡ 3 mod 4,
then −1 is a nonsquare in Fq, and we take t = 1, proving (2). If q is
a nonsquare mod 5, then by quadratic reciprocity 5 (and hence 1/5)
is nonsquare in Fq and we take t = −2, proving (3). In general, the
fraction 1+t

t−3
assumes q−2 nonzero values in Fq, so for q ≥ 5 at least one

of them is a nonsquare. The case q = 3 is handled by case (2), where
t = 1 “works”. This proves (4). If q is an odd power of p, the same
argument shows that there exists t ∈ Fp for which t+1

t−3
is a nonsquare

in Fp and hence in Fq. This proves (5). �

Corollary 19.5. For any odd q, the local system

G := G(Fq2 , ψ,1, (q3 + 1)/(q + 1))

on Gm/Fq2 has
Ggeom = Garith = PSU(3, q).
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20. Supplement: Proof of Pink’s theorem

Let us recall the situation. For q a power of p, Kubert proved (The-
orem 9.1) that

F := F(Fq, ψ,1, q + 1)

has finite Ggeom.

Theorem 20.1. (Pink) On A1/Fq4, we have an isomorphism

End(F) := F ⊗ F∨ ∼=
⊕

α∈Fq4 ,αq
2=−α

Lψ(αx).

Proof. Fix a choice of α ∈ Fq4 , αq
2

= −α. [So α ∈ Fq2 if q is even.] We
first construct an isomorphism

F ⊗ Lψ(αx)
∼= F

on A2/Fq4 . The target is the Fourier Transform of Lψ((x−α)q+1), so it is
equivalent to construct an isomorphism

Lψ((x−α)q+1)
∼= Lψ(xq+1)

on A2/Fq4 . For this, we use the identity

(x−α)q+1 = (x−α)q(x−α) = (xq−αq)(x−α) = xq+1−αxq−αqx+αq+1 =

= xq+1 + αq
2

xq − αxq + αq+1 = xq+1 + [(αxq)q − αxq] + +αq+1.

The bracketed term is visibly Artin-Schreir equivalent to zero. The
constant αq+1 is also of the form βq − β for some β ∈ Fq4 , simply
because TraceFq4/Fq(α

q+1) = 0, as one easily checks. [When q is even,

αq+1 ∈ Fq2 , so already TraceFq4/Fq2 (αq+1) = 0 in this q even case.]

Now we use the fact End(F) has a direct sum decomposition

End(F) = End0(F)⊕Q`,

with End0(F) the endomorphisms of trace zero.
Using the (inverse of the) isomorphism F ⊗Lψ(αx)

∼= F constructed
above, we get

End(F) ∼= End(F)⊗ Lψ(αx)
∼= (End0(F)⊕Q`)⊗ Lψ(αx),

which exhibits Lψ(αx) as a direct factor of End(F).
Using all the α together, we get a morphism of local systems on

A2/Fq4 ,
End(F)→

⊕
α∈Fq4 ,αq

2
=−α

Lψ(αx).
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This map is a geometric isomorphism. Indeed End(F) is geometri-
cally semisimple (by purity), the various Lψ(αx) are pairwise not ge-
ometrically isomorphic, and the number of them is q2, the rank of
End(F). Being πarith1 -equivariant, this map is an arithmetic isomor-
phism as well. �

Denote by Wq the one-dimensional Fq2-vector space

Wq := {α ∈ Fq4|α + αq
2

= 0}.

Corollary 20.2. (Pink) On A1/Fq4, the sheaf End(F) has Ggeom =
Garith = Wq.

Proof. Indeed, for

π : A1 → A1, t 7→ t+ tq
2

,

we have

π?Q`
∼=

⊕
α∈Wq

Lψ(αx)
∼= End(F).

�

Corollary 20.3. (Pink)The group Ggeom,F for F is a finite p-group.

Proof. As noted in Theorem 2.3, F has a geometrically trivial deter-
minant. Therefore Ggeom,F lies in SL(q,Q`). Passing to End(F) gives
an isomorphism

Ggeom,F/(scalars ∩Ggeom,F) ∼= Ggeom,End(F).

The target group is Wq. The group scalars ∩Ggeom,F is a subgroup of

µq, the scalars in the ambient SL(q,Q`). �

21. Second Supplement: Proof of Sawin’s theorem

Theorem 21.1. (Sawin) Suppose q is odd. The group Ggeom for

F := F(Fq, ψ,1, q + 1)

is “the” Heisenberg group of order pq2 and exponent p.

Proof. We exploit the fact (cf. Theorem 20.1) that for each α ∈ Wq,
we have

F ∼= F ⊗ Lψ(αx).

Hence for the q2 fold direct sum of F , which we denote q2F , we have

q2F ∼=
⊕
α∈W

F ⊗ Lψ(αx)
∼= F ⊗ π?Q`

∼= π?π
?F .
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We also know that π?End(F) is trivial, which implies that the action
of Ggeom on π?F is scalar. In other words, π?F is q copies of a one-
dimensional representation, thus we have

π?F ∼= qL
for some lisse, rank one sheaf L on the “upstairs” A1. Applying π?, we
get

qπ?L ∼= π?π
?F ∼= q2F ,

and hence

π?L ∼= qF ,
(here using Chebotarev, and the fact that F is geometrically and hence
arithmetically irreducible).

Using this, we next show that the Euler characteristic χc(A1/Fq4 ,L) =
−q. Indeed, we have

χc(A1/Fq4 ,L) = χc(A1/Fq4 , π?L) = qχc(A1/Fq4 ,F),

and

χc(A1/Fq4 ,F) = rank(F)− Swan∞(F) = q − (q + 1) = −1.

Therefore L, being lisse of rank one on A1, has Swan∞(L) = q + 1.
We next show that L is geometrically of the form Lψ(ctq+1) for some

nonzero constant c ∈ Fq. The morphism π is equivariant for the action
of µq+1 on A1 given by t 7→ ζt. The sheaf F is visibly isomorphic
to its pullback by any ζ ∈ µq+1, hence so is its pullback π?F ∼= qF ,
hence also L. The group µq+1 being cyclic, the restriction of L to Gm

descends through the q+ 1-power map, to a lisse rank one sheaf L1 on
Gm which is tame at 0 and whose Swan∞(L1) = 1. So geometrically
L1 is of the form Lχ(x)Lψ(cx) for some nonzero c ∈ Fq. Thus L, being
lisse at 0, is geometrically Lψ(ctq+1).

We next show that the constant c figuring in Lψ(ctq+1) lies in Fq.
For this, we use the fact that the morphism π is equivariant for the
translation action of Wq on A1. We know that F is isomorphic to its
additive pullback by any α ∈Wq. Therefore so its its pullback qL, and
hence L is isomorphic to any additive translate of itself by α ∈ Wq.
Thus

Lψ(c(t+α)q+1−ctq+1)

is geometrically trivial. Remembering that (x+y)q+1 = (xq+yq)(x+y),
we readily compute

c(t+ α)q+1 − ctq+1 = c(αqt+ αtq + αq+1) =

= c(αqt−αq2tq +αq+1) = (c− c1/q)αqt+ (c1/qαqt)− (c1/qαqt)q +αq+1).
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Thus we have a geometric isomorphism

Lψ(c(t+α)q+1−cxq+1)
∼= Lψ(c−c1/q)αqt).

Taking for α a nonzero element of Wq, this has Swan∞ = 1 unless
c = c1/q, i.e., unless c ∈ Fq.

In order to trivialize F , we must first pull back by π, in order to
trivialize End(F), and then we must further pull back to trivialize
L (or equivalently to trivialize π?F). Choose a nontrivial additive
character ψ1 of Fp, extend it to Fq by composition with the trace, and
write our chosen ψ as ψ1(ax) for some a ∈ F×q . So L is Lψ1(catq+1). Thus
the finite etale galois covering of the x-line which trivializes F is the
subscheme of A3 given by the two equations

t+ tq
2

= x, zp − z = catq+1,

and the Galois group of this covering is our Ggeom.
This Galois group consists of pairs

(α ∈Wq, λ ∈ Fq[t] such that λp − λ = ca(t+ α)q+1 − catq+1),

acting as

t 7→ t+ α, z 7→ z + λ.

Let us specify

q = pn.

In any Fp-algebra, we have the telescoping identity

Aq − A = (Ap − A) + (Ap − A)p + (Ap − A)p
2

+ ...(Ap − A)p
n−1

.

So in terms of the “mock trace” polynomial

T (X) :=
i=n−1∑
i=0

Xpi ,

which is an additive Fp-linear polynomial, we have

Aq − A = T (A)p − T (A).

We next observe that for α ∈Wq, we have

(αq+1)q = αq
2

αq = −αq+1.

Thus

(αq+1)q − αq+1 = −2αq+1,

(−caαq+1)q − caαq+1 = −2caαq+1,

and hence

T (−caαq+1/2)p − T (−caαq+1/2) = caαq+1.
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Expanding

ca(t+α)q+1−catq+1 = caαqt+caαtq+caαq+1 = caαqt−(caαqt)q+caαq+1 =

= T (−caαqt)p − T (−caαqt) + T (−caαq+1/2)p − T (−caαq+1/2) =

= T (−caαq+1/2− caαqt)p − T (−caαq+1/2− caαqt).
Thus for each element α ∈Wq, the pair

(α, T (−caαq+1/2− caαqt))

is an element of the Galois group, and the most general element of the
Galois group with first coordinate α is

(α, T (−caαq+1/2− caαqt) + r),

with r ∈ Fp. We denote this element as

[α, r] := (α, T (−caαq+1/2− caαqt) + r).

A straightforward calculation shows that under composition, we have

[β, s] ◦ [α, r] = [α + β, r + s+ T (−ca(αqβ − αβq))].

For α, β ∈Wq, one checks that

αqβ − αβq ∈ Fq,

and hence

T (−ca(αqβ − αβq)) = TraceFq/Fp(−ca(αqβ − αβq)).

To show that we have the asserted Heisenberg group, it remains only
to check that the alternating Fp-valued bilinear form on Wq given by

< α, β >:= TraceFq/Fp(−ca(αqβ − αβq)),

is a perfect pairing. If we note that αqβ ∈ Fq2 , and that αqβ − αβq is
its trace down to Fq, then

TraceFq/Fp(−ca(αqβ − αβq)) = TraceFq2/Fp(−caα
qβ).

If we choose a basis e of Wq as Fq2-vector space, and write α = Aqe, β =
Be, then our pairing is

TraceFq2/Fp(−caα
qβ) = TraceFq2/Fp(−caABe

q+1).

As −caeq+1 is a nonzero element of Fq2 , this is a perfect pairing, by
nondegeneracy of the trace. �
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22. Appendix, by Pham Huu Tiep7

Let q = pf be a power of a prime p. The unitary group U(3, q) is the
isometry group of a 3-dimensional Fq2-space W endowed with a non-
degenerate Hermitian form <,>. We work with the projective unitary
group PU(3, q) = U(3, q)/Z, for Z = Z(U(3, q)).

It is convenient to choose a basis (e1, e2, e3) of the space W with
respect to which the Hermitian form <,> is

< ei, ej >= δ4,i+j,

i.e., has the Gram matrix

0 0 1
0 1 0
1 0 0

. Ennola calls this the hyperbolic

basis, cf. [Enn, bottom of page 30]. Then the Borel subgroup B of
PU(3, q) is the group of matricesa 0 0

b 1 0
d e 1/aq


with entries a ∈ F×q2 , b, d, e ∈ Fq2 , satisfying

aeq + b = 0, adq + aqd+ bbq = 0.

The quasisplit torus Tqspl < B is the diagonal subgroupa 0 0
0 1 0
0 0 1/aq

 .

The unipotent radical Ru of B is the subgroup a = 1, i.e., the group of
matrices

(x, y) :=

1 0 0
x 1 0
y −xq 1

 , x, y ∈ Fq2 , y + yq + xq+1 = 0,

with the multiplication

(x, y)(X, Y ) = (x+X, y + Y − xqX).

It is now easy to check that the subgroup

Z(Ru) = [Ru, Ru] = {(0, y) | y ∈ Fq2 , y + yq = 0}
is (non-canonically, unless p = 2) isomorphic to the additive group
(Fq,+); in particular, it is an elementary abelian p-group of order q.

7Partially supported by the NSF grant DMS-1665014
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The quotient Ru/Z(Ru) is isomorphic to the additive group (Fq2 ,+)
and so it is elementary abelian of order q2. It follows that the Frattini
subgroup Φ(Ru) (i.e. the intersection of all maximal subgroups of Ru)
coincides with Z(Ru).

Lemma 22.1. For any g ∈ Ru r Z(Ru), one has

[g,Ru] = Z(Ru).

Proof. Indeed, any element of Z(Ru) is of the form (0, c− cq) for some
c ∈ Fq2 . For g = (a, b) with a 6= 0, the commutator [(a, b), (X, Y )] is
readily calculated to be (0, aXq − aqX), so we have only to take X =
(c/a)q and then choose Y ∈ Fq2 with TraceFq2/Fq(Y ) = −NormFq2/Fq(X),

a choice which is possible because TraceFq2/Fq is surjective. �

Theorem 22.2. Up to isomorphism, the group Ru has q2+q−1 complex
irreducible representations, namely

(a) q2 of degree 1, and
(b) q− 1 irreducible representations Hψ of degree q, one for each non-

trivial linear character ψ of Z(Ru).

Moreover, we have the following information about the representations
Hψ.

(c) The character χψ of Hψ vanishes on RurZ(Ru) and equals qψ on
Z(Ru).

(d) The characters {χψ}ψ of these q−1 irreducible representations Hψ

are transitively permuted by Tqspl.

Proof. As mentioned above, [Ru, Ru] = Z(Ru) has index q2 in Ru,
whence Irr(Ru) contains exactly q2 linear characters. Let H ∈ Irr(Ru)
be an irreducible representation H : Ru → GL(d,C) with d > 1. The
center Z(Ru) acts as scalars, and that action is nontrivial (otherwise H
would be a representation of the abelian group Ru/Z(Ru)). So there
is a nontrivial linear character ψ of Z(Ru) such that for all t ∈ Z(Ru)
and all g ∈ Ru we have

H(tg) = H(gt) = ψ(t)H(g).

In particular,

H(t) = ψ(t)H(1), i.e., H|Z(Ru) = dψ.

Because ψ is nontrivial, there exists an element z ∈ Z(Ru) with ψ(z) 6=
1. For any g ∈ Ru r Z(Ru), there exists (by Lemma 22.1 applied to
g−1) an element x ∈ Ru such that x−1gx = gz. Then

H(x−1gx) = H(gz) = ψ(z)H(g).
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Taking traces, we obtain χH(g) = ψ(z)χH(g), and so χH(g) = 0. Thus

χH = 0 on Ru r Z(Ru).

The orthogonality relation then gives

q3 =
∑
y∈Ru

|χH(y)|2 =
∑

y∈Z(Ru)

|χH(y)|2 = qd2,

and so d = q.
We have shown that each non-linear character χ of Ru has degree q,

whence there must be (q3− q2)/q2 = q−1 of them. The above analysis
shows that each of them is determined by its central character, which
is one of the q−1 nontrivial characters of Z(Ru). Therefore there exists
the asserted Hψ for each nontrivial character ψ of Z(Ru), and these Hψ

give all the non-linear irreducible representations of Ru.
To prove the last assertion (d), pick an element x ∈ F×q2 of full

order q2 − 1. Then Tqspl contains the element h := diag(x, 1, x−q)
of order q2 − 1. Since h(0, b)h−1 = (0, x−q−1b) = (0, b/NormFq2/Fq(x)),

we conclude that h acts a cyclic permutation of length q − 1 on both
the nontrivial elements of Z(Ru) and on the set of nontrivial characters
of Z(Ru). �
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