THREE CORRECTIONS TO “G2 AND HYPERGEOMETRIC SHEAVES”

NICHOLAS M. KATZ

(1) In the statement of Theorem 9.1, the hypergeometric sheaf named in case 5), when \(p = 2 \), should be

\[\mathcal{H}(\psi; \text{all characters of order dividing 9 except two inverse characters of order nine}; \emptyset), \]

not

\[\mathcal{H}(\psi; \text{all characters of order dividing 9 except two inverse characters of order nine}; \chi_{\text{quad}}). \]

(2) Replace the proof of Lemma 10.1 by the following.

Proof. Since \([7] \ast \mathcal{H}\) has \(G_{\text{geom}} = L_2(13) \), and \([7]\) is a Galois covering of \(\mathbb{G}_m \otimes \overline{k} \) by itself, the \(G_{\text{geom}} \) for \(\mathcal{H} \) (lies in \(G_2 \) and) contains \(L_2(13) \) as a normal subgroup. But \(L_2(13) \) is its own normalizer in \(G_2 \): indeed, its normalizer is a finite primitive irreducible subgroup of \(G_2 \) which contains \(L_2(13) \), so has order divisible by 13, so by classification must be \(L_2(13) \). Thus \(\mathcal{H} \) has \(G_{\text{geom}} = L_2(13) \). So also the twist \(\mathcal{F} \) has \(G_{\text{geom}} = L_2(13) \). Its \(G_{\text{arith}} \), which lies in \(SO(7) \) and normalizes \(G_{\text{arith}} \), is then a finite primitive subgroup of \(G_2 \) which contains \(L_2(13) \), so again by classification must itself be \(L_2(13) \). \(\square \)

(3) Replace the first two sentences in the proof of Lemma 10.2 by the following.

Proof. Since \([7] \ast \mathcal{H}\) has \(G_{\text{geom}} = U_3(3) \), and \([7]\) is a Galois covering of \(\mathbb{G}_m \otimes \overline{k} \) by itself, the \(G_{\text{geom}} \) for \(\mathcal{H} \) (lies in \(G_2 \) and) contains \(U_3(3) \) as a normal subgroup of index dividing 7. But the normalizer of \(U_3(3) \) in \(G_2 \) is \(U_3(3).2 \); indeed, the normalizer is a finite primitive irreducible subgroup of \(G_2 \) which certainly contains \(U_3(3).2 \), so by classification must be \(U_3(3).2 \). Thus we have

\[U_3(3) \subset G_{\text{geom}} \subset U_3(3).2. \]

\(\text{Date: January 24, 2016.} \)
As the index of $U_3(3)$ in G_{geom} divides 7, it follows that $G_{\text{geom}} = U_3(3)$. So also the twist.... □

Princeton University, Mathematics, Fine Hall, NJ 08544-1000, USA
E-mail address: nmk@math.princeton.edu