
G2 AND HYPERGEOMETRIC SHEAVES

NICHOLAS M. KATZ

Abstract. We determine, in every finite characteristic p, those
hypergeometric sheaves of type (7, m) with 7 ≥ m whose geo-
metric monodromy group Ggeom lies in G2, cf. Theorem 3.1 and
Theorem 6.1. For each of these we determine Ggeom exactly, cf.
Theorem 9.1. Each of the five primitive irreducible finite sub-
groups of G2, namely L2(8), U3(3), U3(3).2 = G2(2), L2(7).2 =
PGL2(7), L2(13) turns out to occur as Ggeom in a single char-
acteristic p, namely p = 2, 3, 7, 7, 13 for the groups as listed, and
for essentially just one hypergeometric sheaf in that characteristic.
It would be interesting to find conceptual, rather than classifica-
tional/computational, proofs of these results.

1. Introduction

That the exceptional group G2 occurs as the monodromy group at-
tached to certain families of exponential sums over finite fields has been
known for some time. Even now, it is striking that one can conseqently
obtain “random” elements of a compact form of G2(C) by looking over
finite fields, cf. [Ka-GKM, 11.4]. As one indication of how poorly we
undertand “why” G2 occurs in algebraic geometry over finite fields,
note that we do not know at present if any of the other exceptional
groups occur in this way.

In characteristic 2, we obtain G2 as the monodromy of a certain
Kloosterman sheaf, cf.[Ka-GKM, 11.1]. For sufficiently large charac-
teristics p, we obtain G2 as the monodromy of certain hypergeometric
sheaves, or of pullbacks of these, cf.[Ka-ESDE, 10.1.1 and 10.1.2 for
hypergeometric sheaves, and 9.1.1 and 9.2.1 for pullbacks]. At present,
no essentially different occurences of G2 as the monodromy group of a
lisse sheaf on an open curve over a finite field seem to be known.

The main results of this paper are, as stated in the abstract above,
the complete determination of exactly which hypergeometric sheaves in
which characteristics have their monodromy either G2 or a subgroup of
G2. It turns out, very much a posteriori, that each of the five primitive
irreducible finite subgroups of G2 occurs as the monodromy group of
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an essentially unique hypergeometric sheaf in one single characteristic.
It also turns out, again very much a posteriori, that four out of these
five groups occur in their “natural” characteristics: L2(8) occurs in
characteristic 2, U3(3) occurs in characteristic 3, L2(7).2 = PGL2(7)
occurs in characteristic 7, and L2(13) occurs in characteristic 13. The
remaining group is U3(3).2 = G2(2), but it does not occurs in charac-
teristic 2 or 3, but rather in characteristic 7. We do not understand
why the first four groups do occur in their “natural” characteristics,
but we understand even less why the fifth does not.

For G either G2 or a classical group, one general approach to the
problem of obtaining primitive irreducible finite subgroups of G as
monodromy groups is this. For a given G, one knows [Ka-ESDE, 8.11.2
and 8.11.3] the description, in large characteristic, of all those hyper-
geometric sheaves whose monodromy group is G. One then looks at
“the same sorts” of hypergeometric sheaves in low characteristic, and
asks which if any of the primitive irreducible finite subgroups of G will
occur as their monodromy groups. This is, grosso modo, the approach
we follow in analyzing the G2 case.

Let us now return to the subject matter proper of this paper. In
the course of proving our rather technical results, we bring to bear
ideas and techniques which are themselves of independent interest, and
which should be of use in other contexts as well. We have in mind in
particular Kubert’s beautiful but unpublished approach to questions
involving p-adic valuations of Gauss sums, which he explained to us in
lectures in 1987, and which we give an account of below, in 13.3. We
use it in implementing the integrality criterion (cf. Lemma 10.3) for
finite monodromy.

In analyzing the question of when the monodromy is finite, we find
some interesting questions which beg to be understood. It is striking
that in all cases considered here, whenever the integrality (of the trace
of Frobenius at every point over every finite extension E of the ground
field k) criterion fails, it already fails at a k-rational point. While
this is certainly not a general phenomenon, it would be interesting to
understand exactly when it does happen. Another aspect which we do
not understand properly is that of “erasing the characters that don’t
make sense”, cf. 14.3 and 14.6; it can sometimes be used to prove finite
monodromy, and as a heuristic it seems to have good predictive power,
but it remains mysterious.
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2. Review of hypergeometric sheaves

We begin by recalling [Ka-ESDE, Chapter 8] some basic facts about
hypergeometric sheaves (which include Kloosterman sheaves as a spe-
cial case). Denote by Qab the field Q(all roots of unity), say inside
C. Let k be a finite field of characteristic p and cardinality q, inside a
fixed Fp, and ψ a nontrivial Q×ab-valued additive character of k. Fix two
non-negative integers n and m, at least one of which is nonzero. Let
χ1, ..., χn be an unordered list of n Q×ab-valued multiplicative characters
of k×, some possibly trivial, and not necessarily distinct. Let ρ1, ..., ρm
be another such list, but of length m. For E/k a finite extension field
(inside the fixed Fp), denote by ψE the nontrivial additive character of
E obtained from ψ by composition with the trace map TraceE/k, and
denote by χi,E (resp. ρj,E) the multiplicative character of E obtained
from χi (resp. ρj) by composition with the norm map NormE/k. For
a ∈ E×, the hypergeometric sum Hyp(ψ;χ′is; ρ

′
js)(a,E) is the cyclo-

tomic integer defined as follows. Denote by V (n,m, a) the hypersurface
in (Gm)n × (Gm)m/E, with coordinates x1, ..., xn, y1, ..., ym, defined by
the equation ∏

i

xi = a
∏
j

yj.

Then

Hyp(ψ;χi
′s; ρj

′s)(a,E) :=
∑

V (n,m,a)(E)

ψE(
∑
i

xi−
∑
j

yj)
∏
i

χi,E(xi)
∏
j

ρj,E(yj).

These hypergeometric sums are closely related to monomials in Gauss
sums, by multiplicative Fourier transform. Recall that for Λ a multi-
plicative character of E×, the Gauss sum g(ψE,Λ) is defined by

g(ψE,Λ) :=
∑
x∈E×

ψE(x)Λ(x).

For E/k a finite extension field, and for any multiplicative character Λ
of E× we have the formula∑
a∈E×

Λ(a)Hyp(ψ;χi
′s; ρj

′s)(a,E) =
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ).

By Fourier inversion, for each a ∈ E× we have the formula∑
Λ

Λ(a)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ) = (#E−1)Hyp(ψ;χi
′s; ρj

′s)(a,E).

Now make the disjointness assumption that no χi is a ρj. Then for

every prime ` 6= p, and every embedding of Qab into Q`, there exists a
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geometrically irreducible middle extension Q`-sheaf

H(ψ;χi
′s; ρj

′s)

on Gm/k (i.e., this sheaf, placed in degree -1, is a geometrically ir-
reducible perverse Q`-sheaf on Gm/k), which is characterized by the
following properties. It is lisse on Gm− 1 of rank Max(n,m) and pure
of weight n+m− 1. If n 6= m, it is lisse on and pure on all of Gm. Its
trace function on Gm − 1 (or on Gm, if n 6= m) incarnates the above
hypergeometric sums, as follows. For any finite extension E/k and any
a ∈ E× − 1, (or, if n 6= m, for any a ∈ E×), we denote by Froba,E
the Frobenius conjugacy class in π1(Gm − 1) (or, if n 6= m, in π1(Gm))
attached to a as an E-valued point of Gm − 1 (or, if n 6= m, of Gm).
Concretely, Froba,E is the conjugacy class of the image in that π1 of the
geometric Frobenius generator FrobE of π1(Spec(E)) = Gal(Esep/E)
under “the” map of fundamental groups induced by the point a, viewed
as a morphism from Spec(E) to Gm− 1 (or to Gm if n 6= m). Then we
have

Trace(Froba,E|H(ψ;χi
′s; ρj

′s)) = (−1)n+m−1Hyp(ψ;χi
′s; ρj

′s)(a,E).

In the “missing” case when n = m and a = 1, this formula remains
valid if we interpret the left hand side to mean the trace of FrobE
on the stalk of H at 1, i.e., on the sheaf on Spec(E) which is the
pullback of H by the map 1 from Spec(E) to Gm. We call such an H a
hypergeometric sheaf of type (n,m). [A hypergeometric sheaf of type
(n, 0) is called a Kloosterman sheaf of rank n.]

If n = m, the local monodromy of H at 1, i.e., its restriction to
the inertia group I1 at the point 1, is a tame pseudoreflection, whose
determinant is (

∏
j ρj)/(

∏
i χi), viewed as a tame character of I1. Here

we view multiplicative characters of k× as characters of I tame1 as follows.
First we use additive translation to identify I1 with I0. Then we view
multiplicative characters of k× as characters of I tame0 in two steps, as
follows. First use the inclusion (which is in fact an isomorphism)

I tame0 ⊂ πtame1 (Gm ⊗ k),

and then use the isomorphism (given by the Lang torsor)

πtame1 (Gm ⊗ k) ∼= liminvE/k,NormE/k
E×.

Under multiplicative inversion, we have

inv?H(ψ;χi
′s; ρj

′s)) ∼= H(ψ; ρj
′s;χi

′s)).

The linear dual of H := H(ψ;χi
′s; ρj

′s) is given by

H(ψ;χi
′s; ρj

′s)∨ ∼= H(ψ;χi
′s; ρj

′s)(n+m− 1).
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If ((
∏

j ρj)/(
∏

i χi))(−1) = 1, a condition which always holds over the

quadratic extension of k, then multiplicative translation t 7→ (−1)n−mt
carries H(ψ;χi

′s; ρj
′s) into H(ψ;χi

′s; ρj
′s). More generally, for A

the constant

A := ((
∏
j

ρj)/(
∏
i

χi))(−1) = ±1,

and Adeg the corresponding geometrically constant lisse sheaf of rank
one, we have

[t 7→ (−1)n−mt]?H(ψ;χi
′s; ρj

′s) ∼= H(ψ;χi
′s; ρj

′s)
⊗

Adeg.

Let us now suppose in addition that n ≥ m, a situation we can
always achieve by multiplicative inversion. Then local monodromy at
0 is tame, and the action of a generator γ0 of I tame0 is the action of T
on the Q`[T ]-module Q`[T ]/(P (T )), for P (T ) the polynomial

P (T ) :=
∏
i

(T − χi(γ0)).

Here we view multiplicative characters χi of k× as characters of I tame0

as explained just above. We will use later the consequence of this
description that local monodromy at 0 is of finite order if and only if
the n characters χi are all distinct.

The local monodromy at ∞ is the direct sum of an m-dimensional
tame summand, say Tamem, and, if n > m, a totally wild summand,
say Wildn−m, of dimension n − m, Swan conductor 1, and all upper
numbering breaks equal to 1/(n−m). On Tamem, the action of a a gen-
erator γ∞ of I tame∞ is the action of T on the Q`[T ]-module Q`[T ]/(Q(T )),
for Q(T ) the polynomial

Q(T ) :=
∏
j

(T − ρj(γ∞)).

Here we use view multiplicative characters ρj of k× as characters of
I tame∞ via the inclusion, again an isomorphism,

I tame∞ ⊂ πtame1 (Gm ⊗ k).

If in addition n − m ≥ 2, then det(Wildn−m) is tame, equal to
the character (

∏
i χi)/(

∏
j ρj). Moreover, the isomorphism class of

Wildn−m as a represenation of I∞, indeed the isomorphism class of
any totally wild representation of I∞ with Swan conductor 1, is deter-
mined, up to multiplicative translation on Gm⊗k, by its rank n−m and
its determinant. It will be important later to have explicit incarnations
of such wild representations.
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For any d ≥ 2, we obtain a Wildd with given determinant, say α, as
the I∞-representation attached to any hypergeometric sheafH(ψ;χ1, ..., χd)
of type (d, 0) with

∏
i χi = α. If d is prime to the characteristic p, then

denoting by [d] : Gm → Gm the d’th power map, and by Lψ the Artin
Schreier sheaf, one knows [Ka-GKM, 5.6.2] that the direct image [d]?Lψ
is geometrically isomorphic to a multiplicative translate of the hyper-
geometric sheaf of type (d, 0), made with the d characters χi whose
d’th power is trivial. Its Wildd thus has trivial determinant if d is odd,
and has determinant the quadratic character if d is even.

When d is prime to the characteristic p, any multiplicative character
α has, over a possibly bigger finite field, a d’th root. So every totally
wild representation of rank d is, geometrically, a multiplicative trans-
late of the tensor product of some tame character with [d]?Lψ. As a
consequence of this, when d is prime to p, any totally wild represen-
tation of I∞ with Swan∞ = 1 and rank d has, up to multiplicative
translation, a known and explicit restriction to the wild inertia group
P∞: it is the restriction to P∞ of the direct sum of the Artin-Schreier
sheaves Lψ(ζx) over all ζ in the group µd(k) of roots of unity of order
dividing d.

3. Hypergeometric sheaves whose geometric monodromy
group lies in G2: Statement of the theorem

Given a hypergeometric sheaf H on Gm/k of type (n,m) with n > m
(resp. with n = m) its arithmetic and geometric monodromy groups
Garith BGgeom are the Q`-algebraic subgroups of GL(n) which are the

Zariski closures of π1(Gm/k) and of its normal subgroup π1(Gm ⊗ k)
(resp. of π1((Gm − 1)/k) and of its normal subgroup π1((Gm − 1)⊗ k)
in the n-dimensional Q`-representation which ”is” H.

Recall that G2 is the automorphism group of Cayley’s and Graves’
octonions, cf. [Adams, 15.16], [Spr, 17.4]. We view G2 as a subgroup of
SO(7) via its unique irreducible 7-dimensional representation (namely,
its action on the ”purely imaginary” octonions). We first determine all
hypergeometric sheaves of type (7,m) with 7 ≥ m whose Ggeom lies in
G2.

Theorem 3.1. The hypergeometric sheaves of type (7,m) with 7 ≥ m
whose Ggeom lies in G2 are the following.

(1) In characteristic p = 2, those hypergeometrics of type (7, 0) of
the form H(ψ; 1, α, β, αβ, α, β, αβ; ∅), for some finite field k of
characteristic 2, some nontrivial additive character ψ, and for
two (possibly trivial, possibly not distinct) multiplicative char-
acters α and β.
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(2) In odd characteristic p, those hypergeometrics of type (7, 1) of
the form H(ψ; 1, α, β, αβ, α, β, αβ;χquad), for some finite field
k of characteristic p, some nontrivial additive character ψ, and
for two (possibly trivial, possibly not distinct) multiplicative char-
acters α and β such that none of α, β, or αβ is the quadratic
character χquad.

4. First part of the proof of Theorem 3.1: no other
candidates can work

We first observe that no hypergeometric H of type (n, n) ever has
its Ggeom inside SO(n). Indeed, local monodromy at 1 is a pseudore-
flection. Now a pseudoreflection lies in an orthogonal group O(n) only
if it is a reflection, but in that case it has determinant −1, so does not
lie in SO(n). Taking n = 7, and remembering that G2 lies in SO(7),
we see that only the case 7 > m can occur.

We also recall that when p is odd, every geometrically self-dual hy-
pergeometric of type (n,m) has n − m even, cf. [Ka-ESDE, 8.8.1].
Thus for p odd, we must have m odd.

There are two key facts we will exploit. The first is that the seven
eigenvalues of any element of G2(Q`) (viewed in its 7-dimensional rep-
resentation) are of the form (1, x, y, xy, 1/x, 1/y, 1/(xy)), for some x

and y in Q×` . The second [Asch, Theorem 5, parts (2) and (5) on page
196], [Co-Wa, page 449] is that an irreducible subgroup G of O(7) over
Q` lies in (some O(7)-conjugate of) G2 if and only if G has a nonzero
invariant in the third exterior power Λ3 of the given 7-dimensional
representation (in which case the space of G-invariants in Λ3 is one-
dimensional, and the fixer in O(7) of this one-dimensional space is the
G2 in question).

It follows from the first key fact that if a hypergeometric H of type
(7,m) with 7 > m has Ggeom inside G2, then it must be of the form

H(ψ; 1, α, β, αβ, α, β, αβ; ρ1, ..., ρm) for two (possibly trivial, possibly
not distinct) multiplicative characters α and β, and for some list of
m < 7 multiplicative characters (ρ1, ..., ρm), none of which is on the
list (1, α, β, αβ, α, β, αβ). If such an H has Ggeom inside G2, and hence
inside SO(7), it is geometrically self-dual, and hence the list (ρ1, ..., ρm)
must be stable under complex conjugation. As none of the ρi is trivial,
either m is even, say m = 2d, and our list consists of d pairs of inverse
characters, or m is odd, say m = 2d+ 1, and our list consists d pairs of
inverse characters together with a single real-valued character which is
non-trivial. Such a character exists only if p is odd, in which case it is
the quadratic character χquad.
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Suppose first that p = 2. Then m is even. We will show that m = 0.
We proceed case by case.

Suppose first that m = 6. Then the wild part Wild1 of the I∞-
representation is a non-tame character. So there exists an element γwild
in the wild interia group P∞ on which Wild1 is non-trivial. Replacing
γwild by a power of itself, and remembering that p = 2, we may assume
that Wild1 takes the value −1 on γwild. As the six ρj are all tame,
they are trivial on γwild. So the seven eigenvalues of γwild in the I∞-
representation are (1, 1, 1, 1, 1, 1,−1), and hence γwild has determinant
−1, which is not possible for an element of G2.

Suppose next that m = 4. Then the wild part Wild3 of the I∞-
representation is, on the wild interia group P∞, isomorphic to the direct
sum over the cube roots of unity, i.e., over element ζ ∈ F×4 , of the Artin
Schrier sheaves Lψ(ζx). Since F2(ζ3) = F22 , the cyclotomic polynomial
1 +X +X2 is irreducible over F2. In other words,∑

ζ∈F×4

ζ = 0,

but any two are linearly independent over F2. So the Lψ(ζx) are three
nontrivial characters of P∞, whose product is trivial, but no product
of two of them is trivial. So any two of them map P∞ onto the product
group (±1) × (±1). Taking an element γwild ∈ P∞ which maps to
(−1,−1) this way, we see that its eigenvalues in Wild3 are (−1,−1, 1).
As the four ρj are all tame, they are trivial on γwild. So its seven
eigenvalues in the I∞-representation are (1, 1, 1, 1, 1,−1,−1). But this

eigenvalue pattern does not occur in G2: indeed, for any z 6= 1 in Q×` ,
the eigenvalue pattern (1, 1, 1, 1, 1, z, 1/z) does not occur in G2.

Suppose finally that m = 2. Then the wild part Wild5 of the I∞-
representation is, on the wild interia group P∞, isomorphic to the direct
sum over the fifth roots of unity in F24 of the Artin Schrier sheaves
Lψ(ζx). Since F2(ζ5) = F24 ,the cyclotomic polynomial 1 + X + X2 +
X3 + x4 is irreducible over F2. In other words,∑

ζ∈µ5(F16)

ζ = 0,

but any four are linearly independent over F2. So any four of them
map P∞ onto the product group (±1) × (±1) × (±1) × (±1). Taking
an element γwild ∈ P∞ which maps to (−1,−1, 1, 1) this way, we see
that its eigenvalues in Wild5 are (−1,−1, 1, 1, 1). As the two ρj are
both tame, they are trivial on γwild. So its seven eigenvalues in the I∞-
representation are (1, 1, 1, 1, 1,−1,−1). As noted above, this eigenvalue
pattern does not occur in G2.
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We next show that if p is odd, then m = 1. We have already noted
that m is odd, and that m < 7. Once again, we argue case by case.

Suppose first that m = 5. Then the wild part Wild2 of the I∞- repre-
sentation is, on the wild interia group P∞, isomorphic to the direct sum
Lψ(x)

⊕
Lψ(−x). So for an element γwild ∈ P∞ on which Lψ(2x) is non-

trivial, its eigenvalues in Wild2 are (ζp, 1/ζp), for some nontrivial p’th
root of unity ζp. As the five ρj are all tame, they are trivial on γwild. So
its seven eigenvalues in the I∞-representation are (1, 1, 1, 1, 1, ζp, 1/ζp).
As noted above, this eigenvalue pattern does not occur in G2.

Suppose next that m = 3. Then the wild part Wild4 of the I∞-
representation is, on the wild interia group P∞, isomorphic to the di-
rect sum Lψ(x)

⊕
Lψ(ix)

⊕
Lψ(−x)

⊕
Lψ(−ix), where i denotes a chosen

primitive fourth root of unity in Fp.
Suppose first that 1 and i are linearly independent over Fp, i.e.,

suppose that p ≡ 3 mod 4. Then the direct sum Lψ(x)

⊕
Lψ(ix) maps

P∞ onto the product group µp(Q`) × µp(Q`). Pick an element γwild ∈
P∞ which maps to (ζp, 1) this way, for some nontrivial p’th root of
unity ζp. Then its eigenvalues in Wild4 are (ζp, 1, 1/ζp, 1). As the three
ρj are all tame, they are trivial on γwild. So its seven eigenvalues in
the I∞-representation are (1, 1, 1, 1, 1, ζp, 1/ζp). As noted above, this
eigenvalue pattern does not occur in G2.

Suppose next that i lies in Fp, i.e., suppose that p ≡ 1 mod 4.
Let us pick a more neutral name, say a, for an element of order 4
in F×p . Then for an element γwild ∈ P∞ on which Wild4 is nontriv-
ial, its eigenvalues in Wild4 are (ζp, ζ

a
p , 1/ζp, 1/ζ

a
p ), and so its seven

eigenvalues in the I∞-representation are (1, 1, 1, ζp, ζ
a
p , 1/ζp, 1/ζ

a
p ). Be-

cause a is neither 1 nor −1, this eigenvalue pattern does not occur
in G2. Indeed, if (1, 1, 1, ζp, ζ

a
p , 1/ζp, 1/ζ

a
p ) as unordered list is of the

form (1, x, y, xy, 1/x, 1/y, 1/(xy)), then at least two of the six ele-
ments (x, y, xy, 1/x, 1/y, 1/(xy)) must be 1. If xy (or, equivalently
1/xy) is 1, our list is of the form (1, , 1, 1, x, x, 1/x, 1/x). Otherwise
at least one of x or y is 1, say y = 1. Again our list is of the
form (1, , 1, 1, x, x, 1/x, 1/x). But (1, 1, 1, ζp, ζ

a
p , 1/ζp, 1/ζ

a
p ) is not of this

form, precisely because a is neither 1 nor −1.
Thus for p odd, we must have m = 1. By autoduality, the single

ρ must be equal to its complex conjugate, so must be either trivial or
the quadratic character χquad. It cannot be trivial, since the trivial

character already occurs on the list (1, α, β, αβ, α, β, αβ).
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5. Final part of the proof of Theorem 3.1: all our
candidates do work

To show that all of our candidates work, we use the second key
fact. Each candidate H is geometrically irreducible and geometrically
self-dual of rank 7, so its Ggeom is certainly an irreducible subgroup
of O(7). [In fact, each Ggeom lies in SO(7). Indeed, since n −m ≥ 2
in each case, det(H) is lisse of rank 1 on Gm and tame at both 0
and ∞, so geometrically isomorphic to a Kummer sheaf Lχ. Looking
at the I0-representation, we see that χ is trivial.] So to show that
Ggeom lies in G2, it suffices to show that Ggeom has a nonzero invariant

in Λ3 of its given 7-dimensional representation, i.e., that π1(Gm ⊗ k)
acting on Λ3 of the 7-dimensional representation which ”is” H, has a
nonzero invariant, or equivalently that H0(Gm ⊗ k,Λ3(H)) is nonzero.
Since H is π1(Gm ⊗ k)-irreducible, Λ3(H) is completely reducible as a
π1(Gm⊗k)-representation, so it suffices to show instead that the space
of π1(Gm ⊗ k)-coinvariants is nonzero, or equivalently that the group
H2
c (Gm ⊗ k,Λ3(H)) is nonzero. Denote by

j : Gm → P1

the inclusion. Then we have natural isomorphisms

H0(Gm ⊗ k,Λ3(H)) ∼= H0(P1 ⊗ k, j?Λ3(H))

and

H2
c (Gm ⊗ k,Λ3(H)) ∼= H2(P1 ⊗ k, j?Λ3(H)).

[The first is tautological, the second is the birational invariance of H2
c .]

Thus it suffices finally to show the dimension inequality

h0(P1 ⊗ k, j?Λ3(H)) + h2(P1 ⊗ k, j?Λ3(H)) > 0.

We will show something stronger, namely that the Euler-Poincare
characteristic satisfies the inequality

χ(P1 ⊗ k, j?Λ3(H)) > 0.

For this, we argue as follows. The sheaf H is lisse on Gm, and tame at
0, so also the sheaf Λ3(H). By the Euler- Poincare formula, we have

χ(P1⊗k, j?Λ3(H)) = dim((Λ3(H))I0)+dim((Λ3(H))I∞)−Swan∞(Λ3(H)).

From the shape of the I0-representation, one sees easily that

dim((Λ3(H))I0) ≥ 5,

cf. [Ka-ESDE, page 125].
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To conclude the proof when p = 2, it suffices to show that we have
the equality

Swan∞(Λ3(H)) = 4.

To see this, we use the fact that Wild7 is geometrically isomorphic to
a multiplicative translate of the direct image [7]?Lψ of Lψ by the 7-th
power endomorphism [7] of Gm. Since 7 is prime to the characteristic
p = 2, it is the same to show that

Swan∞([7]?Λ3(H)) = 28.

But we have

[7]?Λ3(H) ∼= Λ3([7]?(H)) ∼= Λ3([7]?[7]?Lψ) ∼= Λ3(
⊕

ζ∈µ7(F2)

Lψ(ζx)).

But µ7(F2) is just F×8 , so this last object is

Λ3(
⊕
a∈F×8

Lψ(ax))

∼=
⊕

unordered triples (a1,a2,a3) of distinct elements ∈F×8

Lψ((a1+a2+a3)x).

So Swan∞([7]?Λ3(H)) is the number of unordered triples (a1, a2, a3) of
distinct elements of F×8 whose sum is nonzero, simply because Swan∞Lψ(bx)

is 1 if b 6= 0 , and is 0 if b = 0. So it is equivalent to see that there
are precisely 7 unordered triples (a1, a2, a3) of distinct elements of F×8
whose sum is zero. Such a triple is simply the list of the nonzero el-
ements in a 2-dimensional F2-subspace of the 3-dimensional F2-space
F8. These 2-dimensional subspaces are just the F2-rational points of
P2, of which there are 1 + 2 + 22 = 7. This concludes the proof in
characteristic p = 2 that

χ(P1 ⊗ k, j?Λ3(H)) > 0.

We now turn to proving this inequality when p is odd. We first
observe that we have the upper bound

Swan∞(Λ3(H)) ≤ 5.

Indeed, all the ∞-slopes of H are either 1/6 or 0, so all are ≤ 1/6.
Therefore all the∞-slopes of Λ3(H) are ≤ 1/6, so we have the inequal-
ity

Swan∞(Λ3(H)) ≤ (1/6)rank(Λ3(H)) = 35/6.

But Swan conductors are integers, so we have the asserted upper bound.
To conclude the proof for p odd, it suffices to establish the inequality

dim((Λ3(H))I∞) ≥ 1.
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As I∞-representation, H is the direct sum Wild6

⊕
Lχquad

, and Wild6

has determinant χquad. So as I∞-representation, Λ3(H) is the direct
sum

Λ3(H) ∼= Λ3(Wild6)
⊕
Lχquad

⊗ Λ2(Wild6).

So it suffices to establish the inequality

dim((Λ3(Wild6)I∞) ≥ 1.

We will do this by a global argument. Namely, we will construct
a hypergeometric sheaf G of type (6, 0) whose I∞-representation is a
multiplicative translate of Wild6, and show that Λ3(G), as a repre-
sentation of the entire geometric fundamental group π1(Gm ⊗ k), has
a nonzero invariant. We know that Wild6 has determinant χquad as
an I∞-representation, so any G of type (6, 0) whose characters satisfy∏

i χi = χquad has the desired I∞-representation. We will choose a
particular G as follows. Choose a multiplicative character α which is
nontrivial and of odd order, e.g. of order an odd prime different from
p. This is always possible after enlarging the finite field k. Then take

G := H(ψ; 1, χquad, α, α, χquadα, χquadα).

The key virtue of this choice of G is that the six characters

(1, χquad, α, α, χquadα, χquadα)

are all distinct, and among them are four subsets of three, namely
(1, α, α), (1, χquadα, χquadα), (χquad, α, χquadα), and (χquad, χquadα, α),
where the product of the named characters is trivial.

Exactly as above, to show that Λ3(G), as a representation of the en-
tire geometric fundamental group π1(Gm⊗k), has a nonzero invariant,
it suffices to establish the inequality

χ(P1 ⊗ k, j?Λ3(G)) > 0.

As G is lisse on Gm and tame at ∞, we have

χ(P1⊗k, j?Λ3(G)) = dim((Λ3(G))I0)+dim((Λ3(G))I∞)−Swan∞(Λ3(G)).

From the shape of the I0-representation, it is obvious that

dim((Λ3(G))I0) ≥ 4.

So to conclude the proof, it suffices to observe that we have the in-
equality

Swan∞(Λ3(G)) ≤ 3.

But this is obvious, as all the∞-slopes of G are 1/6, and Λ3(G) has rank
20. Thus Swan∞(Λ3(G)) ≤ 20/6, but Swan conductors are integers.
This concludes the proof in the case when p is odd.
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6. Exact determination of Ggeom; statement of a
preliminary result

We need to recall some basic terminology before we state the pre-
liminary result we have in mind. An irreducible, finite-dimensional
Q`-representation (V, π) of an algebraic group G over Q` is said to be
Lie-irreducible if Lie(G) acts irreducibly on V , or equivalently if the
identity component G0 acts irreducibly on V . It is said to be imprim-
itive, or induced, if there exists a direct sum decomposition of V as
a direct sum of at least 2 nonzero subspaces, say V =

⊕
i Vi, which

are permuted by G. It is said to be primitive, or non-induced, if there
exists no such direct sum decomposition.

A geometrically irreducible lisse Q`-sheaf F , say of rank n, on an
open smooth connected curve V over an algebraically closed field k in
which ` is invertible, is said to be Lie-irreducible, or induced, or primi-
tive, if the corresponding n-dimensional representation of its Ggeom has
that property. To say that F as above is induced is to say that it is of
the form f?G for f : U → V a finite etale k-map of degree d ≥ 2 with
connected source U , and G a lisse sheaf on U .

An irreducible subgroup G of GL(n,Q`) is said to be Lie-irreducible,
or induced, or primitive, if the given n-dimensional representation of
G has that property.

Theorem 6.1. Let H be a hypergeometric of type (7,m), 7 > m, whose
Ggeom lies in G2. Then we have the following results.

(1) If either p > 13 or if p is 11 or 5, then Ggeom = G2.
(2) If p is 3, 7, or 13, then Ggeom is either G2 or it is a finite

irreducible primitive (viewed in the ambient GL(7)) subgroup of
G2.

(3) If p is 2, then with one exception Ggeom is either G2 or it is a
finite irreducible primitive subgroup of G2. The exceptional case
is when H is geometrically isomorphic to [7]?Lψ for some ψ, in
which case Ggeom is isomorphic to the ax+ b group of the field
F8. In fact, for the sheaf [7]?Lψ on Gm over a field containing
F8, both Ggeom and Garith are this ax+ b group.

7. proof of Theorem 6.1

Let us recall [Ka-MG] the following fundamental trichotomy for a
geometrically irreducible lisse Q`-sheaf F , say of rank n, on an open
smooth connected curve V over an algebraically closed field k in which
` is invertible. Either F is Lie-irreducible, or it is induced, or there
exists a divisor d ≥ 2 of n such that F is the tensor product of a Lie
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irreducible lisse sheaf of rank n/d and an irreducible lisse sheaf of rank
d whose Ggeom is finite and primitive. In the special case when n is
prime and when det(F) is of finite order, the third case means precisely
that the Ggeom of F is finite and primitive.

Let us apply this to a hypergeometric H of type (7,m), m ≤ 1,
whose Ggeom lies in G2. Suppose first that H is Lie-irreducible. Then
we claim that Ggeom = G2. To see this, we argue as follows. We have
Ggeom ⊂ G2 ⊂ SO(7) ⊂ SL(7), so G0

geom is a connected irreducible sub-
group of SL(7), hence is semisimple, cf. [Ka-GKM, 11.5.2.2]. By the
classification of prime-dimensional representations [Ka-ESDE, Theo-
rem 1.6], the only connected irreducible semi-simple subgroups of G2

are G2 itself and SL(2)/± 1 (acting in Sym6 of the standard represen-
tation of SL(2)). If G0

geom is G2, then we trivially have Ggeom = G2. If

G0
geom is SL(2)/ ± 1, then we observe first that Ggeom is SL(2)/ ± 1,

because SL(2)/± 1 is its own normalizer in G2 (indeed in SO(7), sim-
ply because every automorphism of SL(2)/ ± 1 is inner, and SO(7)
contains no nontrivial scalars), while Ggeom lies in this normalizer. But
SL(2)/ ± 1 ∼= SO(3) has a faithful 3-dimensional representation, say
π, so the ”pushout” π(H) is a geometrically irreducible lisse sheaf on
Gm of rank 3 which is tame at 0 (indeed, H is tame at 0, so the wild
inertia subgroup P0 of I0 dies in Ggeom, so it dies in any homomorphic
image), and all of whose ∞-slopes are at most 1/6 (indeed, H has all
its nonzero∞-slopes either 1/7, if p = 2, or 1/6 otherwise, so always at
most 1/6, so for any real y > 1/6, the upper numbering subgroup Iy∞
of I∞ dies in Ggeom, so dies in any homomorphic image). Thus π(H)
is tame at both 0 and ∞ ( its Swan conductor at ∞ is at most 3/6,
but is an integer), yet is geometrically irreducible of rank 3: this is
impossible, because πtame1 (Gm ⊗ k) is abelian.

Now suppose that H is induced. We apply to it the following propo-
sition.

Proposition 7.1. Let F be a geometrically irreducible lisse Q`-sheaf
F of rank n on Gm over an algebraically closed field k, of positive
characteristic p, in which ` is invertible. Suppose that F is tame at 0
and that Swan∞(F) = 1. Suppose that F is induced. Then we are in
one of the following three cases.

(1) F is Kummer induced, i.e., of the form [d]?G for some divisor
d ≥ 2 of n which is invertible in k, and some lisse G on Gm

of rank n/d, which is itself geometrically irreducible, tame at 0,
and has Swan∞(G) = 1.

(2) We have p|n, and F is Belyi induced from an everywhere tame,
lisse sheaf G on P1 − {0, 1,∞} of rank one. More precisely, F
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is f?G for a finite etale map

f : P1 − {0, 1,∞} → Gm

given by a Belyi polynomial

f(X) = λXa(1−X)b

with λ ∈ k
×

and with a and b strictly positive, prime to p,
integers with a+ b = n.

(3) We have p 6 |n, and F is inverse-Belyi induced from an every-
where tame, lisse sheaf G on P1 − {0, 1,∞} of rank one. More
precisely, F is f?G for a finite etale map

f : P1 − {0, 1,∞} → Gm

given by the reciprocal of a Belyi polynomial

f(X) = 1/(λXa(1−X)b)

with λ ∈ k
×

and with a and b strictly positive integers with
a+ b = n, such that precisely one of a or b is divisible by p.

Proof. As F is induced, it is of the form f?G for f : U → Gm a finite
etale k-morphism of degree d ≥ 2 with connected source U , and G a
lisse sheaf on U . We have

χ(U,G) = χ(Gm, f?G) = χ(Gm,F) = −1,

the last equality by the Euler-Poincare formula on Gm. Denote by X
the complete nonsingular model of U . Then f : U → Gm extends to a
finite flat map f : X → P1, which is f over Gm. Denote by X0 and X∞
the fibres of f over 0 and ∞ respectively, and define d0 := #X0(k),
d∞ := #X∞(k). The Euler-Poincare formula on U gives

χ(U,G) = χ(U,Q`)rank(G)−
∑

x0∈X0(k)

Swanx0(G)−
∑

x∞∈X∞(k)

Swanx∞(G).

Thus we have

−1 = χ(U,Q`)rank(G)−
∑

x0∈X0(k)

Swanx0(G)−
∑

x∞∈X∞(k)

Swanx∞(G).

Both d0 and d∞ are strictly positive integers, so we have the inequality

χ(U,Q`) = χ(X,Q`)− d0 − d∞ ≤ χ(X,Q`)− 2 ≤ 0,

with equality only in the case when X = P1 and d0 = d∞ = 1.
Suppose first that χ(U,Q`) = 0, i.e., suppose that X = P1 and

d0 = d∞ = 1. Then we may take coordinates on X = P1 so that 0
is the unique point over 0, and ∞ is the unique point over ∞. Then
f maps X − {0} = A1 to A1, so f is a polynomial of degree d. As
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this polynomial f has 0 as its unique zero, we have f = axd for some

a ∈ k×. Making a multiplicative translation on the source, i.e. rescaling
x, we have f = xd. As f is finite etale over Gm, d is is invertible in
k. This is precisely the Kummer-induced case. Because [d]?G = F
is geometrically irreducible, G must itself be geometrically irreducible.
Since Swan0 and Swan∞ are preserved by [d]?, we see that G is tame
at 0, and has Swan∞(G) = 1. This is case (1).

Suppose now that χ(U,Q`) ≤ −1. Then χ(U,Q`)rank(G) is a strictly
negative integer. But Swan conductors are non-negative integers, so
from the formula

−1 = χ(U,Q`)rank(G)−
∑

x0∈X0(k)

Swanx0(G)−
∑

x∞∈X∞(k)

Swanx∞(G)

we infer that χ(U,Q`) = −1, that rank(G) = 1, and that G is tamely
ramified at each point of X − U . Once we know that rank(G) = 1, we
see that f is finite etale of degree n. Since χ(U,Q`) = −1, either X is
an elliptic curve E and U is E − {a single point}, or X = P1 and U is
P1−{3 points}. The elliptic curve case is impossible, because there are
d0 + d∞ ≥ 2 missing points. Thus X = P1, and U is P1 − {3 points}.
[That such a U be a finite etale covering of Gm is possible because we
are in positive characteristic p, otherwise it would violate Riemann-
Hurwitz.]

The three missing points are all the points in the disjoint union of the
two nonempty sets X0(k) tX∞(k). Suppose first that precisely one of
the missing points lies in X∞(k). Then we may choose coordinates on
P1 so that X∞(k) = {∞} and X0(k) = {0, 1}. Then f is a polynomial,
whose only zeros are {0, 1}. So we have

f(X) = λXa(1−X)b

with λ ∈ k× and with a and b strictly positive integers with a+ b = n.
Since G is tame at ∞, n cannot be prime to p, otherwise f?G would be
tame at∞. Thus p|n. Since f is finite etale, it cannot be a p’th power,
hence both a and b are prime to p. This is case (2).

Suppose finally that precisely two of the missing points lie in X∞(k).
Then may choose coordinates on P1 so that X∞(k) = {0, 1} and
X0(k) = {∞}. In this case, 1/f is a polynomial whose only zeros
are {0, 1}. So we have

1/f(X) = λXa(1−X)b

with λ ∈ k× and with a and b strictly positive integers with a+ b = n.
Since f?G is tame at 0, and ∞ is the only point lying over 0, n must
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be prime to p. At least one of a or b must be divisible by p, otherwise
f?G would be tame at ∞. Since a + b = n is prime to p, precisely one
of a or b is divisible by p. This is case (3). �

We now return to the proof of the theorem. Thus H is a hyper-
geometric of type (7,m), 7 > m, whose Ggeom lies in G2. In view of
Theorem 3.1, H has type (7, 0) if we are in characteristic 2, and it has
type (7, 1) if we are in odd characteristic.

We first show that we cannot be in case (3) of Proposition 7.1, i.e.
that H cannot be inverse-Belyi induced from an everywhere tame, rank
one lisse sheaf G on such P1−{0, 1,∞}. Indeed no hypergeometric sheaf
of type (n,m) with n > m and m ≤ 1 can be so induced. To see this,
we argue as follows. The sheaf G is (geometrically) of the form

G ∼= Lχ0(x) ⊗ Lχ1(1−x),

for some multiplicative characters χ0 and χ1, and

f(x) := 1/(λxa(1− x)b).

But from the projection formula applied locally we see that the I∞-
representation of f?G at ∞ contains all the a’th roots of 1/χ0 and all
the b’th roots of 1/χ1, and so contains a tame part of dimension at
least two, which is impossible because m ≤ 1.

We next show that we cannot be in case (2) of Proposition 7.1.
Suppose not. Then we are in characteristic p = 7, H is of the form

H = H(ψ; 1, α, β, αβ, α, β, αβ;χquad),

and there exist strictly positive integers a and b, a + b = 7, λ ∈ k
×

,
and an everywhere tame, lisse rank 1 sheaf G on such P1 − {0, 1,∞}
such that putting

f(x) := λxa(1− x)b

we have a geometric isomorphism

H ∼= f?G.
The sheaf G is (geometrically) of the form

G ∼= Lχ0(x) ⊗ Lχ1(1−x),

for some multiplicative characters χ0 and χ1. Put

χ∞ := χ0χ1.

We first claim that
χ∞ = χquad.

Indeed, as I∞-representation, G agrees with Lχ∞(x). Denote by Λ the
unique (remember p = 7) multiplicative character whose 7’th power
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is χ∞ . Then f ?(LΛ(x)) gives the I∞-representation of G. By the
projection formula, the I∞-representation of H is

f?f
?(LΛ(x)) ∼= LΛ(x) ⊗ f?(Q`).

But f?(Q`) contains Q` as a direct factor, and hence LΛ(x) occurs as a
direct factor of the I∞-representation of H. As H is

H = H(ψ; 1, α, β, αβ, α, β, αβ;χquad),

we indeed have
χ∞ = χquad.

We next claim that either {χ0 = 1 and χ1 = χquad} or {χ0 =
χquad and χ1 = 1}. The point is that the local monodromy at 0 of
H ∼= f?(Lχ0(x) ⊗ Lχ1(1−x)) consists of all the a’th roots of χ0, together
will all the b’th roots of χ1. But the local monodromy of H at 0 con-
tains the trivial character 1, which is therefore either an a’th root of
χ0 or a b’th root of χ1. So either χ0 or χ1 is trivial. As their product
is χ∞ = χquad, the claim is established.

Therefore the local monodromy of H at 0 consists either of

{all a′th roots of 1} ∪ {all b′th roots of χquad}
or of

{all a′th roots of χquad} ∪ {all b′th roots of 1}.
We will arrive at a contradiction. Interchanging a and b, it suffices to

deal with the first case, when the local monodromy of H at 0 consists
of

{all a′th roots of 1} ∪ {all b′th roots of χquad}.
None of these characters can be χquad (which occurs at ∞). Therefore
a must odd, and b must be even. But one checks easily that none of
the three resulting lists of eigenvalues

(1, all sixth roots of − 1); the case a = 1, b = 6,

(all cube roots of 1, all fourth roots of − 1); the case a = 3, b = 4,

(all fifth roots of 1, both square roots of − 1); the case a = 5, b = 2,

are the list of eigenvalues of an element of G2. Thus the Belyi-induced
case does not occur for hypergeometrics whose Ggeom lies in G2.

Suppose now that we are in case (1) of Proposition 7.1. Thus H is
a hypergeometric of type (7,m), 7 > m, whose Ggeom lies in G2, and
which is Kummer induced. So we are not in characteristic 7, and we
have a geometric isomorphism H ∼= [7]?G, with G lisse of rank 1 on Gm,
tame at 0 and with Swan∞(G) = 1. Any such G is geometrically of the
form Lχ ⊗ Lψ7 for some multiplicative character χ and some additive
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character ψ, where we put ψ7(x) := ψ(7x). Then H is geometrically
isomorphic to

H(ψ; all seventh roots of χ; ∅),
of type (7, 0). Therefore p = 2. Since the trivial character occurs at 0
in H, χ must be trivial. So we are dealing with

H ∼= [7]?Lψ7
∼= H(ψ; all characters of order dividing 7; ∅).

In fact, for this H, we have an arithmetic isomorphism

H(3) ∼= [7]?Lψ7 ,

cf. [Ka-GKM, 5.6.2]. Now

[7]?H ∼=
⊕
ζ∈F×8

Lψ(7ζx).

The characters of π1 given by the various Lψ(7ζx) are all the nonzero
elements in an F8 of (±1)-valued characters of π1, and the covering
group µ7(F8) = F×8 acts on this F8 by multiplicative translation. So in
characteristic p = 2, Ggeom and Garith for [7]?Lψ7 are both the ax + b
group over F8, as asserted.

Having now dealt with the induced cases, we turn to the remaining
case, that in which Ggeom is a finite irreducible primitive subgroup of
G2. Fortunately, such groups have been classified, by Cohen and Wales,
cf. [Co-Wa]. There are five possible groups. Two of these groups
have more than one faithful, irreducible 7-dimensional representations
which lands it in G2, but in both cases all such representations happen
to be Galois-conjugate. Here is a list giving the group (in ATLAS
[CCNPW-Atlas] notation), its order, the number of Galois-conjugate
representations into G2, and the field of character values of any such
representation.

L2(13), 22 · 3 · 7 · 13 = 1092, 2, Q(
√

13),

L2(8), 23 · 32 · 7 = 504, 3, Q(ζ9)+ := the real subfield of Q(ζ9),

L2(7).2 = L3(2).2, 24 · 3 · 7 = 336, 1, Q,
U3(3), 25 · 33 · 7 = 6048, 1, Q,

U3(3).2 = G2(2), 26 · 33 · 7 = 12096, 1, Q.
The relevant observation is that in characteristic p, Ggeom for any hyper-
geometric of any type (n,m) with n > m contains elements of order p,
because Swan∞ = 1 > 0, and hence P∞ has image a nontrivial p-group
in Ggeom. Therefore the case when Ggeom is a finite irreducible prim-
itive subgroup of G2 can arise only in characteristic p a prime which
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divides the order of one of the five listed groups, i.e., only possibly in
characteristics 2, 3, 7, or 13. This concludes the proof of Theorem 6.1.

8. Interlude: an arithmetic determinant lemma

Lemma 8.1. Let k be a finite field, and H a hypergeometric sheaf on
Gm/k of type (7,m) with 7 > m, formed using the additive character
ψ of k, whose Ggeom lies in G2.

(1) If p := char(k) is 2, the Tate-twisted sheaf F := H(3), whose
trace function is related to that of H by

Trace(Froba,E|H(3)) = (#E)−3Trace(Froba,E|H),

has Garith in G2. If Ggeom is finite (resp. primitive), then so is
Garith.

(2) If p is odd, denote by A the constant in Q(ζp) given by the
negative of the quadratic Gauss sum:

A := −g(ψ, χquad) := −
∑
x∈k×

ψ(x)χquad(x).

Then the A−7-twisted sheaf F := H ⊗ (A−7)deg, whose trace
function is related to that of H by

Trace(Froba,E|(H⊗ (A−7)deg) = (A−7)deg(E/k)Trace(Froba,E|H),

has Garith in G2. If Ggeom is finite (resp. primitive), then so is
Garith.

Proof. In both cases, the twisted sheaf in question is pure of weight 0,
and it results from [Ka-ESDE, 8.12.2] that its determinant is arithmeti-
cally trivial. From the explicit formula for the traces of H in terms of
hypergeometric sums, one sees easily that the twisted sheaf in question
has real-valued traces, so is self-dual. As the rank is odd, the autod-
uality is orthogonal. Thus we have an inclusion Garith ⊂ SO(7), and
so Garith lies in the normalizer of Ggeom in SO(7). The proof is then
completed by the following lemma. �

Lemma 8.2. Over Q`, let G be an irreducible subgroup of G2. Then
the normalizer of G in SO(7) lies in G2. If in addition G is finite
(resp. primitive), then so is the normalizer of G in SO(7).

Proof. Denote by V the 7-dimensional orthogonally self-dual space of
our SO(7). Because G is an irreducible subgroup of G2, we know
([Asch, Theorem 5, parts (2) and (5) on page 196], [Co-Wa, page
449]) that when we decompose Λ3(V ), the space (Λ3(V ))G is one-
dimensional. But Λ3(V ) is an orthogonally self-dual space, and G acts
orthogonally on it, so its decomposition into G-isotypical components
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is an orthogonal direct sum decomposition. In particular, the inner
product is nondegenerate on the one-dimensional space (Λ3(V ))G. So
any element of SO(7) = SO(V ) that, acting on Λ3(V ), maps (Λ3(V ))G

to itself, acts on (Λ3(V ))G orthogonally, hence by a scalar which is
±1. Now any g ∈ SO(V ) that normalizes G maps (Λ3(V ))G to itself.
We must show that any such g acts by the scalar +1 rather than −1
on this space, for then it lies in G2, which is the fixer of (Λ3(V ))G in
O(V ) ([Asch, Theorem 5, parts (2) and (5) on page 196], [Co-Wa, page
449]). But if g acts on (Λ3(V ))G by the scalar −1, then the element −g
fixes (Λ3(V ))G and lies in O(V ), hence lies in G2. But this is impossi-
ble, since det(−g) = −1, and every element of G2 has determinant 1.
Therefore g acts on (Λ3(V ))G by the scalar +1, as required.

If G is primitive, the larger group NSO(7)(G) which is its normalizer
in SO(7) is all the more primitive. If G is finite, and γ ∈ SO(7)
normalizes G, then putting C := #Aut(G), γC centralizes G, so by
Schur’s Lemma is a scalar in SO(7), so γC = 1. So NSO(7)(G) is an

algebraic group over Q` whose Lie algebra Lie(NSO(7)(G)) is killed by
C, hence vanishes, and so NSO(7)(G) is a finite group. �

9. Exact determination of Ggeom; Statement of the result

Theorem 9.1. Let k be a finite field, and H a hypergeometric sheaf on
Gm/k of type (7,m) with 7 > m, formed using the additive character
ψ of k, whose Ggeom lies in G2. Form the sheaf F as in Lemma 8.1 of
the last section. Consider the groups Ggeom and Garith for F . We have

Ggeom = Garith = G2,

except in the following six cases.

(1) p = 13, and

H = H(ψ; all char′s of order dividing 7;χquad).

In this case, F has Ggeom = Garith = L2(13).
(2) p = 3, and

H = H(ψ; all char′s of order dividing 7;χquad).

In this case, F has Ggeom = Garith = U3(3).
(3) p = 2, and

H = H(ψ; all char′s of order dividing 7; ∅).
In this case, F has Ggeom = Garith = the ax+ b group over F8.

(4) p = 7, and

H = H(ψ; all char′s of order dividing 8 except χquad;χquad).

In this case, F has Ggeom = Garith = L2(7).2.
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(5) p = 2, and

H = H(ψ; all char′s of order dividing 9 except two inverse char′s of order 9;χquad).

In this case, F has Ggeom = Garith = L2(8).
(6) p = 7, and

H = H(ψ; all characters of orders 12, 3, and 1;χquad).

In this case, F has Ggeom = Garith = U3(3).2 = G2(2).

10. Exact determination of Ggeom; first steps in the proof
of Theorem 9.1

Consider a hypergeometricH of type (7,m), m ≤ 1, whose Ggeom lies
in G2. We have seen that with the exception of the single case p = 2
and H = H(ψ; all characters of order dividing 7; ∅), Ggeom is either G2

or it is a finite irreducible primitive subgroup of G2, and that the latter
case can arise only in characteristic 2, 3, 7 or 13. The only remaining
question is to determine, in each of these characteristics, exactly when
the finite primitive irreducible case occurs. We have already remarked
that Ggeom contains elements of order p. So when p = 13, the only
possibility is L2(13). But for p = 2, p = 3, and p = 7, all of the five
groups L2(13), L2(8), L2(7).2 = L3(2).2, U3(3), and U3(3).2 = G2(2)
have order divisible by p.

The first step is to make a (short, finite) list of all H in each charac-
teristic that could possibly have Ggeom one of these five groups. Begin
with an H of the form

H(ψ; 1, α, β, αβ, α, β, αβ;χ2), p odd,

H(ψ; 1, α, β, αβ, α, β, αβ; ∅), p = 2.

for some α and β. If its Ggeom is one of the five listed groups, then
the action of local monodromy at 0, i.e., the action of a generator γ0

of I tame0 , is of finite order N , and N is both prime to p and is the order
of an element in one of the five groups. Hence the seven characters
(1, α, β, αβ, α, β, αβ) are all distinct, none of them is χquad when p is
odd, and the l.c.m. of their orders, namely N , is the order of an element
in at least one of the five groups. So we have an a priori inequality

N ≥ 7,

simply because we cannot have seven distinct characters all of whose
orders divide any smaller integer. To exploit the fact that N must be
the order of an element in one of the five groups, and prime to p, here
is a table giving for each group the list of the orders of its elements.

L2(13), {1, 2, 3, 6, 7, 13}
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L2(8), {1, 2, 3, 7, 9}

L2(7).2 = L3(2).2, {1, 2, 3, 4, 6, 7, 8}

U3(3), {1, 2, 3, 4, 6, 7, 8, 12}

U3(3).2 = G2(2), {1, 2, 3, 4, 6, 7, 8, 12}.
Thus we have the following list of possible N in each characteristic

p:

p = 13, N = 7, only L2(13) is possible,

p = 7, N = 13, 12, 9, 8,

p = 3, N = 13, 8, 7,

p = 2, N = 13, 9, 7.

We then get the desired short, finite list of all possible candidates
by listing, in each allowed characteristic p = 13, 7, 3, 2 and for each
allowed N in that characteristic, all unordered lists of 6 distinct non-
trivial characters (χ1, χ2, ..., χ6), none of which is χquad if p is odd, all
of which have order dividing N and such that N is the l.c.m. of their
orders, such that the unordered 7-tuple (1, χ1, χ2, ..., χ6) is of the form
(1, α, β, αβ, α, β, αβ) for some pair (α, β) of characters.

Before continuing with the general analysis, let us first treat the
case of characteristic p = 13, where, as we have noted above, the only
possible finite group is L2(13), and the only possible N is 7. Since
(1, α, β, αβ, α, β, αβ) are all distinct, and all have order dividing 7, the
only possible candidate is

H := H(ψ; all characters of order dividing 7;χquad).

Of course, this H makes sense in any characteristic p other than 2 or
7. One knows [Ka-ESDE, 9.2.2] that in any such characteristic p, its
Kummer pullback [7]?H is geometrically isomorphic to a multiplicative
translate of (the restriction to Gm of)

F7 := NFT (Lχquad
⊗ Lψ(x7)),

the lisse sheaf on A1/k whose trace function is given as follows: for any
finite extension E/k, and for any t ∈ A1(E),

Trace(Frobt,E|F7) = −
∑

x∈A1(E)

χquad,E(x)ψE(x7 + tx).

It is proven in [Ka-NG2, 4.13] that F7 has Ggeom = L2(13) in charac-
teristic p = 13, and that it has Ggeom = U3(3) in characteristic p = 3.
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Lemma 10.1. Let k be a finite field of characteristic p = 13 which
contains the 7’th roots of unity (i.e., k is an even degree extension of

F13), and ψ a nontrivial Q×-valued additive character of k. For any
prime ` 6= 13, and for any embedding of Q into Q`, consider the lisse
Q`-sheaf

H := H(ψ; all characters of order dividing 7;χquad)

on Gm/k, and the twisted sheaf

F := H⊗ (A−7)deg,

for A the constant

A := −g(ψ, χquad).

Then F has Ggeom = Garith = L2(13).

Proof. Since [7]?H has Ggeom = L2(13), and [7] is a Galois covering of

Gm ⊗ k by itself, the Ggeom for H (lies in G2 and) contains L2(13) as
a normal subgroup. But L2(13) is its own normalizer in G2; indeed,
its normalizer is a finite primitive irreducible subgroup of G2 which
contains L2(13), so has order divisible by 13, so by classification must
be L2(13). Thus H has Ggeom = L2(13). So also the twist F has
Ggeom = L2(13). Its Garith, which lies in SO(7) and normalizes Garith,
is then a finite primitive subgroup of G2 which contains L2(13), so
again by classification must itself be L2(13). �

We also have an analogous result in characteristic 3.

Lemma 10.2. Let k be a finite field of characteristic p = 3 which
contains the 7’th roots of unity (i.e., k is extension of F36), and ψ a

nontrivial Q×-valued additive character of k. For any prime ` 6= 3, and
for any embedding of Q into Q`, consider the lisse Q`-sheaf

H := H(ψ; all characters of order dividing 7;χquad)

on Gm/k, and the twisted sheaf

F := H⊗ (A−7)deg,

for A the constant

A := −g(ψ, χquad).

Then F has Ggeom = Garith = U3(3).

Proof. Since [7]?H has Ggeom = U3(3), and [7] is a Galois covering of

Gm ⊗ k by itself, the Ggeom for H (lies in G2 and) contains U3(3) as
a normal subgroup of index dividing 7. But the normalizer of U3(3)
in G2 is U3(3).2; indeed, the normalizer is a finite primitive irreducible
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subgroup of G2 which certainly contains U3(3).2, so by classification
must be U3(3).2. Thus we have

U3(3) ⊂ Ggeom ⊂ U3(3).2.

As the index of U3(3) in Ggeom divides 7, it follows that Ggeom = U3(3).
So also the twist F has Ggeom = U3(3). Its Garith, which lies in SO(7)
and normalizes Ggeom, is then a finite primitive subgroup of G2 which
contains U3(3), hence has order divisible by 6048, and so by classifica-
tion must itself be either U3(3) or U3(3).2. To prove that Garith is in
fact U3(3), we resort to the following ad hoc argument. We first observe
that Garith is independent of the choice of the additive character ψ of
k used to define H, A := −g(ψ, χquad), and F . Indeed, temporarily
denote them Hψ, Aψ, and Fψ. Now any other nontrivial additive char-
acter of k is of the form ψa(x) := ψ(ax), for some a ∈ k×. One checks
easily that on Frobenius elements we have, for any finite extension E/k,
and for any t ∈ Gm(E),

Trace(Frobt,E|Fψa) = Trace(Froba6t,E|Fψ).

Thus by Chebotarev we have an arithmetic isomorphism

Fψa
∼= [t 7→ a6t]?Fψ,

and hence Fψa and Fψ have the same Ggeom as each other, and the
same Garith as each other.

So it suffices to treat the case when the additive character ψ of k
”comes from the prime field F3”, i.e., is of the form ψ = ψ1 ◦Tracek/F3

for some nontrivial additive character ψ1 of F3. In that case, the re-
sulting H has a natural descent to a lisse sheaf, say H1, on Gm/F3.
[First take the obvious descent to F36 = F3(ζ7), where all characters
of order dividing 7 are defined, using the additive character ψ1,6 :=
ψ1 ◦TraceF36/F3 . To descend from F36 to F3, we apply [Ka-GKM, 8.8.7]
to descend the auxiliary sheaf

H(ψ1,6; all nontrivial characters of order dividing 7; ∅)

from F36 to F3, and then form its ! multiplicative convolution, on
Gm/F3, with H(ψ1; 1;χquad) to obtain H1.] Since H1 becomes isomor-
phic to H after extension of scalars from F3 to k, the two sheaves have
the same Ggeom, which we already know to be U3(3).

We next claim that there is a unique scalar twist F1 := H1 ⊗ Bdeg

whose Garith lies in U3(3).2. Indeed, every automorphism of U3(3) is
induced by conjugation by an element of U3(3).2. Since U3(3).2, viewed
in G2 ⊂ SO(7) ⊂ GL(7), contains no nontrivial scalars, it follows that
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the normalizer of U3(3) in GL(7) is the product group Gm × U3(3).2.
Now Garith for H1 lies in this normalizer, so we have an inclusion

Garith ⊂ Gm × U3(3).2.

Then projection to the first factor defines a homomorphism

ρ : Garith → Gm,

which is trivial on Ggeom. So viewed as a character of πarith1 , ρ is

geometrically trivial, so of the form Bdeg
0 . Taking B := 1/B0 gives

the desired twist (which is unique because U3(3).2, viewed in GL(7),
contains no nontrivial scalars). This uniqueness, applied after extension
of scalars from F3 to k, shows that Bdeg(k/F3) = A−7

ψ , i.e., that F1

becomes Fψ after this extension of scalars.
Now we consider Garith for F1 on Gm/F3. It is either U3(3) or

U3(3).2, and it is the former if and only if a certain geometrically triv-
ial character of order dividing 2, namely the canonical map of πarith1

to Garith/Ggeom, is trivial. This character, viewed as having values in
the group ±1, is of the form εdeg, for an ε which is either 1 or −1. In
either case, this character becomes trivial if we extend scalars to any
even degree extension of F3. As k is such an extension, having degree
divisible by 6, we obtain the asserted equality Ggeom = Garith = U3(3)
for F . �

Having dealt entirely with the situation in characteristic p = 13, we
now return to some general considerations which will be particularly
useful in characteristics 7, 3, and 2. We can further shorten the list of
candidate 7-tuples by taking into account Gal(Q/Q)-conjugation. We
first recall the relevant general fact, cf. [Ka-ESDE, 8.14.5], which we
will apply to H(3) if p = 2, and to H⊗ (A−7)deg if p is odd.

Lemma 10.3. Suppose we are given a middle extension Q`-sheaf F
on a smooth, geometrically connected curve C/k, k a finite field of
characteristic p 6= `. Suppose that F is lisse on a dense open set
U ⊂ C, and that F|U is geometrically irreducible. Suppose further that
det(F|U) is arithmetically of finite order, and that, for every embedding
of Q` into C, F|U is pure of weight zero. Then the following conditions
on F are equivalent.

(1) Ggeom is finite.
(2) Garith is finite.
(3) For every finite extension E/k, and for every point t ∈ C(E),

Trace(Frobt,E|F) is an algebraic integer.
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To apply this result, let us first record explicitly the effect of Galois
conjugation on hypergeometric sums. The proof, entirely straightfor-
ward, is left to the reader.

Lemma 10.4. Given a hypergeometric H := H(ψ;χi
′s; ρj

′s) on Gm/k

of type (n,m), and given σ ∈ Gal(Q/Q), let us define the hypergeomet-
ric Hσ by

Hσ := H(ψ;χσi
′s; ρσj

′s),

formed with the same ψ but with the Q×-valued characters χσi := σ ◦χi
and ρσj := σ◦ρj. The trace functions of these two sheaves are related as
follows. Denote by a = aσ ∈ F×p the scalar such that ψσ = ψa := [x 7→
ψ(ax)]. For every finite extension E/k, and for every point t ∈ Gm(E),

σ(Trace(Frobt,E|H)) = Trace(Froban−mt,E|Hσ)·σ(
∏
j

ρj,E(a)/
∏
i

χi,E(a)).

Applying this lemma to the twisted hypergeometric sheaves we are
interested in, we find the following.

Lemma 10.5. Let k be a finite field, and H a hypergeometric sheaf on
Gm/k of type (7,m) with 7 > m, formed using the additive character
ψ of k, whose Ggeom lies in G2. For any σ ∈ Gal(Q/Q), with auxiliary
constant a = aσ ∈ F×p , we have the following results.

(1) If p := char(k) is 2, consider the Tate-twisted sheaf H(3). For
every finite extension E/k, and for every point t ∈ Gm(E), we
have

σ(Trace(Frobt,E|H(3))) = Trace(Froba7t,E|Hσ(3)).

(2) If p is odd, consider the A−7-twisted sheaf H ⊗ (A−7)deg. For
every finite extension E/k, and for every point t ∈ Gm(E), we
have

σ(Trace(Frobt,E|H ⊗ (A−7)deg)) = Trace(Froba6t,E|Hσ ⊗ (A−7)deg)).

Proof. Whatever the value of p,
∏

i χi is trivial. If p = 2, there are
no ρj, and the Tate twist is invariant under σ, so the assertion is
clear. If p is odd, then

∏
i χi is trivial,

∏
j ρj = χquad, and the factor

σ(
∏

j ρj,E(a)/
∏

i χi,E(a)), which reduces to χquad,E(a) = ±1, is exactly
cancelled by its seventh power, which comes from the effect of σ on
the quadratic Gauss sum A. So the assertion is clear in this case as
well. �

Corollary 10.6. In the situation of the above lemma, suppose in addi-
tion that p is 2, 3, or 7. For any σ ∈ Gal(Q/Q), we have the following
results.
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(1) If p = 2, the trace function of Hσ(3) on Frobenius elements is
obtained from that of H(3) by applying σ.

(2) If p = 3 or p = 7, the trace function of Hσ ⊗ (A−7)deg on
Frobenius elements is obtained from that of H ⊗ (A−7)deg by
applying σ.

Proof. Indeed, if p = 2, then a = 1, so a7 = 1. If p is 3 or 7, then
a6 = 1 for every ∈ F×p . �

This result in turn has the following corollary.

Corollary 10.7. Let k be a finite field whose characteristic p is 2, 3, or
7, and H a hypergeometric sheaf on Gm/k of type (7,m) with 7 > m,
formed using the additive character ψ of k, whose Ggeom lies in G2. Let

K/Q be a finite extension K of Q (inside Q).

(1) If p = 2, consider the Tate-twisted sheaf H(3).
(1a) Suppose the trace function of H(3) takes values, on all

Frobenius elements, in K. Then for every σ ∈ Gal(Q/K),
the sheaves Hσ(3) and H(3) are isomorphic on Gm/k.

(1b) Conversely, if for every σ ∈ Gal(Q/K), the sheaves Hσ(3)
and H(3) are isomorphic on Gm/k, then their common
trace function takes values, on all Frobenius elements, in
K.

(2) If p is 3 or 7, consider the A−7-twisted sheaf H⊗ (A−7)deg.
(2a) Suppose the trace function of H ⊗ (A−7)deg takes values,

on all Frobenius elements, in K. Then for every σ ∈
Gal(Q/K), the sheaves Hσ ⊗ (A−7)deg and H ⊗ (A−7)deg

are isomorphic on Gm/k.
(2b) Conversely, if for every σ ∈ Gal(Q/K), the two sheaves

Hσ ⊗ (A−7)deg and H⊗ (A−7)deg are isomorphic on Gm/k,
then their common trace function takes values, on all Frobe-
nius elements, in K.

Proof. To prove (1a) and (2a), fix σ ∈ Gal(Q/K). By the previous
corollary, the two sheaves in question have the same trace on every
Frobenius. As both are geometrically and hence arithmetically irre-
ducible, they are isomorphic by Chebotarev. Assertions (1b) and (2b)
are immediate from the previous corollary, together with Galois theory
applied to the trace of each Frobenius element. �

This last result gives very strong restrictions on the possible can-
didates for finite monodromy in characteristics 2, 3 and 7, the only
characteristics we have yet to treat.
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Corollary 10.8. Let k be a finite field whose characteristic p is 2, 3, or
7, and H a hypergeometric sheaf on Gm/k of type (7,m) with 7 > m.
formed using the additive character ψ of k, whose Ggeom is a finite
primitive irreducible subgroup of G2. Write H explicitly as

H(ψ; 1, χ1, χ2, ..., χ6), if p = 2,

H(ψ; 1, χ1, χ2, ..., χ6;χquad), if p = 3 or 7.

Then we have the following results.

(1) If Ggeom is one of the groups L2(7).2, U3(3), or U3(3).2, then
the undordered list of the six characters χi is fixed by every
σ ∈ Gal(Q/Q).

(2) If Ggeom is the group L2(13), then the undordered list of the six

characters χi is fixed by every element σ ∈ Gal(Q/Q(
√

13)),
and by no other element in Gal(Q/Q).

(3) If Ggeom is the group L2(8), then the undordered list of the six

characters χi is fixed by every element σ ∈ Gal(Q/Q(ζ9)+), and
by no other element in Gal(Q/Q).

Proof. Put F := H(3) if p = 2, and put F := H ⊗ (A−7)deg oth-
erwise. Then F has finite primitive irreducible Garith in G2 which
normalizes Ggeom. The normalizers of the possible Ggeom’s in G2 are
just themselves, except for U3(3), whose normalizer is U3(3).2. Now for
the groups L2(7).2, U3(3), or U3(3).2, there is a unique 7-dimensional
irreducible representation which puts it in G2, and the trace of that rep-
resentation has values in Q. For the group L2(13), there are precisely
two 7-dimensional irreducible representations which put it in G2, their
trace have values in Q(

√
13), and their traces are Gal(Q(

√
13)/Q)-

conjugate. For the group L2(8), there are precisely three 7-dimensional
irreducible representations which put it in G2, their trace have values
in Q(ζ9)+, and their traces are Gal(Q(ζ9)+/Q)- conjugate. With this
group-theoretic information at hand, the result is immediate from the
previous result, applied to F , since by Chebotarev every conjugacy
class in the finite group Garith is the image of a Frobenius class, so all
traces of elements of Garith occur as traces of Frobenius elements. �

We now return to the general case, and give another corollary of the
previous lemma.

Corollary 10.9. Let k be a finite field, and let H a hypergeometric
sheaf on Gm/k of type (7,m) with 7 > m, formed using the additive
character ψ of k, whose Ggeom lies in G2. Suppose that H has finite

Ggeom, say the finite group G. Then for every σ ∈ Gal(Q/Q), Hσ
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has finite Ggeom, which as an abstract group is isomorphic to G. In
addition, we have the following more precise results.

(1) If p := char(k) is 2, consider the Tate-twisted sheaf H(3). Then
for every σ ∈ Gal(Q/Q), Hσ(3) has finite Garith, whose isomor-
phism class as an abstract group is independent of σ.

(2) If p is odd, consider the A−7-twisted sheaf H⊗ (A−7)deg. Then
for every σ ∈ Gal(Q/Q), Hσ⊗ (A−7)deg has finite Garith, whose
isomorphism class as an abstract group is independent of σ.

Proof. We first prove the finiteness statements. The twisted sheafH(3),
if p = 2, [respectivelyH⊗(A−7)deg, if p is odd], which has the same finite
Ggeom as H, is geometrically irreducible, pure of weight zero for every

embedding of Q` into C, and its determinant is arithmetically trivial.
By Lemma 10.3 above, the twisted sheaf has finite Garith (because it has
finite Ggeom). Therefore the twisted sheaf has algebraic integer traces,
again by Lemma 10.3. This property is invariant under conjugation
by any σ ∈ Gal(Q/Q). So by the previous lemma, the sheaf Hσ(3),
if p = 2 [respectively Hσ ⊗ (A−7)deg, if p is odd] has algebraic integer
traces, and hence (again by Lemma 10.3) has finite Garith, and so finite
Ggeom as well. We next prove that the isomorphism class of Garith as
a finite group is independent of σ. Fix one σ, and consider the two
sheaves

F1 := H(3),F2 := Hσ(3), if p = 2,

F1 := H⊗ (A−7)deg,F2 := Hσ ⊗ (A−7)deg, if p is odd.

Then F1 and F2 are two lisse sheaves of the same rank, here 7, with
finite Garith’s, say G1 and G2, whose trace functions, which take alge-
braic integer values on all Frobenius elements, are Gal(Q/Q)-conjugate
on Frobenius elements.

Denote by ρ1 and ρ2 the representations of π1(Gm/k) in GL(7,Q`)
corresponding to F1 and F2 respectively. We have, for i = 1, 2, a
tautological isomorphism of finite groups,

Gi
∼= π1(Gm/k)/Ker(ρi).

So it suffices to show that Ker(ρ1) = Ker(ρ2). But in a finite subgroup
of GL(7,Q`), the identity is the unique element whose trace is 7. So
to conclude it suffices to show that the traces of the representations ρ1

and ρ2 are related by

Trace(ρ2(γ)) = σ(Trace(ρ1(γ)))

for all elements γ ∈ π1(Gm/k), and not just for Frobenius elements.
But as the direct sum representation ρ1 ⊕ ρ2 also has finite image,
say Γ ⊂ G1 × G2, it follows by Chebotarev that for any chosen γ ∈
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π1(Gm/k), its image under ρ1 ⊕ ρ2 is conjugate in Γ, and hence in
G1 ×G2, to the image of a Frobenius element, say F . Projecting onto
each factor Gi of G1×G2, we see that ρi(γ) is conjugate in Gi to ρi(F ).
Thus we have

Trace(ρ2(γ)) = Trace(ρ2(F )) = σ(Trace(ρ1(F ))) = σ(Trace(ρ1(γ))),

as required, and so G1 and G2 are isomorphic.
Once we know that

Trace(ρ2(γ)) = σ(Trace(ρ1(γ)))

for all elements γ ∈ π1(Gm/k), we can show that the groups Ggeom

for F1 and for F2 are isomorphic. Indeed, these finite groups are, for
i = 1, 2 respectively, the quotient groups πgeom1 /Ker(ρi|πgeom1 ). Just
as above the two representations ρi|πgeom1 for i = 1, 2 have the same
kernel, namely the elements in πgeom1 with trace 7. �

11. The final list of candidates

In the previous section, we compiled the list of possible N for each
p. We also completely analyzed two cases: the case p = 13, where only
N = 7 (with its unique list of characters of order dividing 7) and the
group L2(13) were possible, and the case N = 7, with its unique list
of characters, which led to the group L2(13) for p = 13, to the group
U3(3) for p = 3, and to the (imprimitive, but irreducible) ax+ b group
over F8 for p = 2.

The remaining cases are

N = 13, in characteristic 2, 3, 7

N = 12, in characteristic 7

N = 9, in characteristic 2, 7

N = 8, in characteristic 3, 7.

If N = 13, p is any of 2, 3, or 7, and the only possible group is L2(13).
So we are looking for unordered lists (χ1, ..., χ6) of distinct nontrivial
characters of order 13 which are fixed, as unordered lists, by precisely
the elements of Gal(Q/Q(

√
13)), and which are of the correct form

(α, β, αβ, α, β, αβ).

The Galois action factors through Gal(Q(ζ13)/Q(
√

13)), the subgroup
of squares in F×13. The squares are (1, 3, 4, 9, 10, 12) in F×13, and the non-
squares are (2, 5, 6, 7, 8, 11). So the unordered lists we have to consider
are those of the form

(χ, χ3, χ4, χ9, χ10, χ12),
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for some choice of nontrivial character χ of order 13. There are exactly
two such: for a fixed choice of χ, the other, obtained by choosing χ2

instead of χ, is

(χ2, χ5, χ6, χ7, χ8, χ11).

These lists are conjugate by Gal(Q(
√

13)/Q). Both are of the correct
form

(α, β, αβ, α, β, αβ),

with (α, β) = (χ, χ3) and (α, β) = (χ2, χ6) respectively.
If N = 12, then p is 7, and the only possible groups are U3(3) and

U3(3).2. So we are looking for unordered lists (χ1, ..., χ6) of distinct
nontrivial characters of order dividing 12, none of order 2, which are
fixed, as unordered lists, by Gal(Q/Q), and which are of the correct
form

(α, β, αβ, α, β, αβ).

The Gal(Q/Q)-orbits in the set of all characters of order dividing 12
but not dividing 2 are the sets of those characters having orders 3, 4,
6, and 12. So the only Gal(Q/Q)-fixed lists are

(orders 3, 4, 6),

(orders 3, 12),

(orders 4, 12),

(orders 6, 12).

Of these, one easily checks that only the last is of the correct form

(α, β, αβ, α, β, αβ).

In terms of a chosen character χ having order 12, this last list is

(χ, χ4, χ5, χ7, χ8, χ11),

for which we can take (α, β) = (χ, χ4).
If N = 9, then p is 2 or 7, and the only possible group is L2(8). So we

are looking for unordered lists (χ1, ..., χ6) of distinct nontrivial charac-
ters of order dividing 9, which are fixed, as unordered lists, by complex
conjugation (the effect on Q(ζ9) of any element ofGal(Q/Q(ζ9)+) which
acts nontrivially on Q(ζ9)), but which are not fixed by Gal(Q/Q), and
which are of the correct form

(α, β, αβ, α, β, αβ).

The Gal(Q/Q)-orbits in the set of all characters of order dividing 9 are
the sets of those characters of orders 1, 3 and 9. The set of characters
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of order 9 breaks into 3 orbits under {1, complex conjugation}. So
the only Galois-allowed lists are the three lists of the form

(order 3, all but 2 complex conjugate characters of order 9).

These three lists are Gal(Q(ζ9)+/Q)-conjugate to each other. If we
choose a character χ having order 9, these three lists are

(χ, χ2, χ3, χ6, χ7, χ8),

(χ2, χ3, χ4, χ5, χ6, χ7),

(χ, χ3, χ4, χ5, χ6, χ8).

Each is of the correct form, with (α, β) successively (χ, χ2), (χ2, χ4),
and (χ4, χ8). We obtain the second and third lists from the first by
choosing successively χ2 and χ4 instead of χ as our character having
order 9.

If N = 8, then p is 3 or 7, and the only possible groups are L2(7).2,
U3(3), or U3(3).2. So so we are looking for unordered lists (χ1, ..., χ6)
of distinct nontrivial characters of order dividing 8, none of order 2,
which are fixed, as unordered lists, by Gal(Q/Q), and which are of the
correct form

(α, β, αβ, α, β, αβ).

The Gal(Q/Q)-orbits in the set of all characters of order dividing 8
but not dividing 2 are the sets of those characters having orders 4 and
8. So the only Galois-allowed list is

(orders 4, 8).

If we choose a character χ having order 8, this list is

(χ, χ2, χ3, χ5, χ6, χ7),

which is of the correct form, with (α, β) = (χ, χ2).

12. Case by case analysis of the candidates: preparations

We have already seen that Galois-conjugate lists (χ1, ..., χ6) give rise
to the same Ggeom as each other, and the same Garith as each other.
For each of the 8 allowed (N, p), namely

(N, p) = (13, 7), (13, 3), (13, 2), (12, 7), (9, 7), (9, 2), (8, 7), (8, 3),

there is either only one possible list, or all the possible lists are Galois-
conjugate. So for each listed (N, p), it suffices to choose just one list,
and treat it. Its characters all begin life as characters of Fp(ζN)×. Using
a nontrivial additive character ψ of Fp(ζN) which is obtained from a
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nontrivial additive character of Fp by composition with the trace, we
form the relevant hypergeometric sheaf

H := H(ψ; 1, χ1, ..., χ6; ∅) if p = 2,

H := H(ψ; 1, χ1, ..., χ6;χquad) if p = 3, 7,

and the corresponding twist

F := H(3) if p = 2,

F := H⊗ (A−7)deg if p = 3, 7.

We know that Ggeom for H is finite if and only if Garith for F is finite,
otherwise both groups are G2. In the finite case, we know further that
Ggeom C Garith, that each is one of the groups L2(7).2, U3(3), U3(3).2,
L2(8), or L2(13), viewed inside G2, and that the order of Ggeom is
divisible by the characteristic p.

The main task, then, is to decide in each case whether or not Ggeom

is finite. We will do this by using the p-adic criterion for finite mon-
odromy in its Stickelberger incarnation [Ka-ESDE, 8.16.8], and a beau-
tiful result of Kubert. We will find that, of our eight cases,

(N, p) = (13, 7), (13, 3), (13, 2), (12, 7), (9, 7), (9, 2), (8, 7), (8, 3),

it is only the three cases

(N, p) = (12, 7), (9, 2), (8, 7)

which have finite Ggeom.

13. Interlude: review of the Stickelberger criterion for
finite monodromy of hypergeometrics, and a result of

Kubert

Consider a hypergeometric H := H(ψ;χi
′s; ρj

′s) of type (n,m),
n ≥ m, on Gm/k. For A satisfying

An := qn(n−1)/2
∏
i,j

(−g(ψ, ρj/χi),

the twisted sheaf

F := H⊗ A−deg

is pure of weight zero, and its determinant is arithmetically of finite
order, cf. [Ka-ESDE, 8.12.2]. As recalled in Lemma 10.3 above, H has
finite Ggeom if and only if F has finite Garith, if and only if all the traces
of F are algebraic integers.
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Proposition 13.1. All traces of F are algebraic integers if and only
if the following conditions are satisfied. For every field embedding of Q
into Qp, for every finite extension field E/k, and for every multiplica-
tive character Λ of E×, we have

ord(A−deg(E/k)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ)) ≥ 0.

More precisely, for each finite extension field E/k, the following con-
ditions are equivalent.

(1) For every a ∈ E×, Trace(Froba,E|F) is an algebraic integer.

(2) For every field embedding of Q into Qp, and for every multi-
plicative character Λ of E×, we have

ord(A−deg(E/k)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ)) ≥ 0.

Proof. The traces of

F := H⊗ A−deg

are given by

Trace(Froba,E|F) = A−deg(E/k)(−1)n+m−1Hyp(ψ;χi
′s; ρj

′s)(a,E).

The hypergeometric sums are cyclotomic integers. The quantity A is
an algebraic integer which, being a product of Gauss sums, is a unit at
all finite places not lying over the characteristic p. So the traces of F
are, a priori, integers except possibly at places over p. The relation of
hypergeometric sums to monomials in Gauss sums gives, for each Λ,

−
∑
a∈E×

Λ(a)Trace(Froba,E|F)

= (−1)n+mA−deg(E/k)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ).

Thus if F has integral traces, the quantities

A−deg(E/k)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ)

are algebraic integers, so have non-negative ord’s. Conversely, if all
the ord conditions are satisfied, then multiplicative Fourier inversion
shows that (#E − 1)Trace(Froba,E|F) is integral at all places over p.
But (#E − 1) is a unit at places over p, so Trace(Froba,E|F) is itself
integral at all places over p. Since this trace is always integral outside
of p, it is an algebraic integer. �
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Fix a field embedding of Q into Qp, and an isomorphism of our fixed

Fp with the residue field of Qp. Then for each finite subfield E of Fp,
we have isomorphisms of character groups

Hom(E×,Q×) ∼= Hom(E×, µ#E−1(Q))

∼= Hom(E×, µ#E−1(Qp)) ∼= Hom(E×, E×),

the last map being reduction to the residue field. Thus the character
group has a canonical generator, the Teichmuller character TeichE,
corresponding to the identity map x 7→ x of E×. Using this canonical
generator, we get a (slightly nonstandard) isomorphism

(1/(#E − 1))Z/Z ∼= Hom(E×,Q×),

x 7→ Λx,E := Teich
−x(#E−1)
E .

These isomorphisms are ”norm-compatible” in the sense that if E/k is a
finite extension, the inclusion of (1/(#k−1))Z/Z into (1/(#E−1))Z/Z
is the inclusion of Hom(k×,Q×) into Hom(E×,Q×) given by χ 7→ χE.
We define a (“valuation of the corresponding Gauss sum”) function on
(1/(#E − 1))Z/Z with values in the interval [0, 1),

x 7→ V (x),

as follows. Denote by ord#E the ord function on Qp, normalized by
ord#E(#E) = 1. Pick any nontrivial additive character ψE of E. Then
we define

V (x) := ord#E(g(ψE,Λx,E)).

This function does not depend on the auxiliary choice of ψE, because
changing that choice only changes the Gauss sum by multiplication by
a root of unity. For L/E a finite extension, and x ∈ (1/(#E− 1))Z/Z,
the Hasse-Davenport relation [Dav-Ha]

(−g(ψE,Λx,E))deg(L/E) = −g(ψEL,Λx,L)

shows that these functions are the restrictions to finite subgroups of
the source of a single function, still denoted x 7→ V (x), on the group
(Q/Z)prime to p of elements of prime-to-p order in Q/Z,

V : (Q/Z)prime to p → [0, 1).

This function does not depend on the particular isomorphism we
choose between our fixed Fp and the residue field of Qp. Indeed, the
choices are principal homogeneous under the automorphism group of
the residue field. But all such automorphisms are induced by auto-
morphisms of Qp, and all of these are isometries, and so leave the ord
function invariant.
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What happens if we change the field embedding of Q into Qp? From
the definition, we see that () depends only on the restriction of this
embedding to the field Q(all ζN , N prime to p), which is Galois over Q
with group Aut((Q/Z)prime to p) =

∏
` not p Z×` . As the embeddings of

this field into Qp are principal homogeneous under this Galois group,
we see that the effect of changing the embedding is to replace the
function x 7→ V (x) by a function of the form x 7→ V (αx), for some
α ∈

∏
` not p Z×` .

Following Kubert, the standard properties of Gauss sums lead to the
following properties of this function.

(1) V (x) = 0 if and only if x = 0 in (Q/Z)prime to p.
(2) For x nonzero in (Q/Z)prime to p, V (x) + V (−x) = 1.
(3) V (1/2) = 1/2.
(4) For any x in (Q/Z)prime to p, V (x) = V (px).
(5) For any x and y in (Q/Z)prime to p, V (x) + V (y) ≥ V (x+ y).
(6) For any x in (Q/Z)prime to p, and any integer N ≥ 1 prime to p,∑

i mod N V (x+ i/N) = V (Nx) + (N − 1)/2.

The first two of these properties reflect the known absolute value of
Gauss sums, and the third is the special case x = 1/2 of the second.
The fourth is obvious if we use an additive character coming from
the prime field, for then the two Gauss sums in question are equal.
[Alternatively, one can see the fourth as an incarnation of the fact that
any automorphism of Qp, in particular any that induces the absolute
Frobenius automorphism x 7→ xp of the residue field, leaves the ord
function invariant.] The fifth is the integrality of Jacobi sums. The
sixth is the following Hasse-Davenport relation. Pick E so that N
divides #E − 1, pick a nontrivial ψE, and put ψE,N := t 7→ ψE(Nt).
Then for any multiplicative character χ of E, we have

−g(ψE,N , χ
N) =

∏
ρ of order dividing N

(−g(ψE, ρχ)/− g(ψE, ρ)).

It is now a simple matter to restate the previous proposition in terms
of the function x 7→ V (x).

Proposition 13.2. Given the hypergeometric sheafH := H(ψ;χi
′s; ρj

′s)
on Gm/k and its twist F , pick any multiplicative character Teichk of
k× which is faithful, i.e., has order #k − 1. Define a list of n+m
elements (a1, ..., an, b1, ..., bm) of (1/(#k − 1))Z/Z by

χi = Teich
−ai(#k−1)
k , ρj = Teich

−bj(#k−1)
k .

Then F has finite Garith if and only if the following conditions hold.
For every N ∈ (Z/(#k − 1)Z)×, and for every x ∈ (Q/Z)prime to p, we
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have the inequality∑
i

V (Nai+x)+
∑
j

V (−Nbj−x) ≥ (n−1)/2+(1/n)
∑
i,j

V (Nai−Nbj).

Proof. For some embedding of Q(ζ#k−1) into Qp, and some embedding
of k into the residue field, our chosen Teichk is indeed the Teichmuller
character. So the condition of p-integrality for (any embedding of Q
extending) this embedding is that for every x ∈ (Q/Z)prime to p, we
have the inequality∑

i

V (ai + x) +
∑
j

V (−bj − x) ≥ (n− 1)/2 + (1/n)
∑
i,j

V (ai − bj).

The condition of p-integrality for an arbitrary embedding is that for
every fixed α ∈

∏
` not p Z×` , and for every x ∈ (Q/Z)prime to p, we have

the inequality∑
i

V (αai+αx)+
∑
j

V (−αbj−αx) ≥ (n−1)/2+(1/n)
∑
i,j

V (αai−αbj).

For fixed α, we make the change of variable x 7→ αx, and the condition
becomes∑
i

V (αai+x)+
∑
j

V (−αbj−x) ≥ (n−1)/2+(1/n)
∑
i,j

V (αai−αbj).

Since the ai, bj all have denominator cleared by #k − 1, α only enters
through its value mod #k − 1. �

We now give a beautiful unpublished result of Kubert [Ku].

Theorem 13.3. Consider the function x 7→ V (x) on (Q/Z)prime to p.
Let q be a power of p.

(1) Let (a1, ..., aq) be all but one of the fractions {n/(q+1)}n mod q+1.
Then for any x ∈ (Q/Z)prime to p, we have the inequality∑

i

V (ai + x) ≥ (q − 1)/2.

(2) Let (a1, ..., aq−1) be all but two of the fractions {n/(q+1)}n mod q+1.
Then for any x ∈ (Q/Z)prime to p, we have the inequality∑

i

V (ai + x) ≥ (q − 2)/2.
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(3) Suppose p is odd. Let (b1, ..., b(q−1)/2) be all but one of the frac-
tions {n/((q+1)/2)}n mod (q+1)/2. Then for any x ∈ (Q/Z)prime to p,
we have the inequality∑

i

V (bi + x) ≥ (q − 3)/4.

Proof. For the first assertion, we argue as follows. By an additive
translation, we reduce to the case when the missing fraction is 0. Then
we we use property (6) of the V function to write∑
i

V (ai+x) =
∑

n mod q+1

V (x+n/(q+1))−V (x) = V ((q+1)x)+q/2−V (x).

Thus we must show that

V ((q + 1)x) + 1/2 ≥ V (x).

If x = 0, or indeed if V (x) ≤ 1/2, we are done. Suppose now that
V (x) > 1/2. Add V (−x) to both sides, so the assertion becomes

V ((q + 1)x) + V (−x) + 1/2 ≥ V (x) + V (−x).

But V (x) + V (−x) = 1 (remember x 6= 0, since V (x) > 1/2), so we
must show

V ((q + 1)x) + V (−x) ≥ 1/2.

By properties (5) and (4) of the V function, we have

V ((q + 1)x) + V (−x) ≥ V (qx) = V (x),

and by assumption V (x) > 1/2.
For the second assertion, denote by aq and aq+1 the two missing

fractions. Fix an x. At least one of aq + x or aq+1 + x is nonzero, since
they are different. So at least one of the values V (aq+x) or V (aq+1 +x)
is nonzero. So if

V (aq + x) ≥ V (aq+1 + x),

as we may assume by renumbering, then certainly aq + x is nonzero.
Now write

q−1∑
i=1

V (ai + x) =

q+1∑
i=1

V (ai + x)− V (aq + x)− V (aq+1 + x)

= V ((q + 1)x) + q/2− V (aq + x)− V (aq+1 + x)

= V ((q + 1)(aq + x)) + q/2− V (aq + x)− V (aq+1 + x).

We must show that

V ((q + 1)(aq + x)) + 1 ≥ V (aq + x) + V (aq+1 + x).
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Now add V (−aq − x) to both sides, to find the equivalent inequality

V ((q + 1)(aq + x)) + V (−aq − x) + 1 ≥ 1 + V (aq+1 + x),

i.e.,
V ((q + 1)(aq + x)) + V (−aq − x) ≥ V (aq+1 + x).

By property (5), we have

V ((q + 1)(aq + x)) + V (−aq − x) ≥ V (q(aq + x)) = V (aq + x),

and by hypothesis we have V (aq + x) ≥ V (aq+1 + x).
The third assertion results immediately from the second one, by

means of property (6), applied in the form

V (x) + V (x+ 1/2) = V (2x) + 1/2.

Indeed, if (b1, ..., b(q−1)/2) are all but one of the fractions {n/((q +
1)/2)}n mod (q+1)/2, then (b1/2, b1/2+1/2, ..., b(q−1)/2/2, b(q−1)/2/2+1/2)
are all but two of the fractions {n/(q + 1)}n mod q+1. Since p is odd,
x 7→ 2x maps (Q/Z)prime to p onto itself. So it suffices to show that for
any x ∈ (Q/Z)prime to p, we have

(q−1)/2∑
i

V (2x+ bi) ≥ (q − 3)/4,

i.e.,

(q−1)/2∑
i

[V (x+ bi/2) + V (x+ bi/2 + 1/2)− 1/2] ≥ (q − 3)/4,

which is just a trivial rearrangement of the second assertion. �

To end this section, we recall that Stickelberger gives an exact for-
mula for the function V , in terms of the [0, 1)-valued ”fractional part”
function x 7→< x > on R/Z, which assigns to each x in the quotient
group R/Z its unique representative in [0, 1).

Theorem 13.4 (Stickelberger). Given x ∈ (Q/Z)prime to p, pick any
integer k ≥ 1 such that x lies in (1/(pk − 1))Z/Z. Then we have

V (x) = (1/k)
k−1∑
j=0

< pjx > .

Here is a concrete application of Stickelberger’s theorem.

Lemma 13.5. Suppose we are given a list (a1, ..., an, b1, ..., bm) of ele-
ments of (Q/Z)prime to p, a list of integers (N1, ..., Nn,M1, ...,Mn), and
a real number T ≥ 0. Let k ≥ 1 be the least integer such that pk − 1 is
a common denominator for all the ai and all the bj.
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(1) Suppose that for each integer e ∈ [0, k−1], we have the inequal-
ity∑

i

< peai +Nix > +
∑
j

< −pebj −Mjx > ≥ T,

for every x ∈ R/Z. Then for every x ∈ (Q/Z)prime to p, we have
the inequality∑

i

V (ai +Nix) +
∑
j

V (−bj −Mjx) ≥ T.

(2) Fix an integer e ∈ [0, k − 1]. The inequality∑
i

< peai +Nix > +
∑
j

< −pebj −Mjx > ≥ T

hods for every x ∈ R/Z if and only if it holds at the finitely
many points of R/Z at which one of the arguments peai + Nix
or −pebj −Mjx vanishes in R/Z.

Proof. For the first assertion, we argue as follows. Given x ∈ (Q/Z)prime to p,
pick a multiple f of k such that (pf − 1)x = 0. Then by Stickelberger
we have ∑

i

V (ai +Nix) +
∑
j

V (−bj −Mjx) =

(1/f)
∑

e mod f

[
∑
i

< pe(ai +Nix) > +
∑
j

< pe(−bj −Mjx) >].

By hypothesis, each of the terms in the
∑

e mod f summation is sepa-
rately ≥ T .

For the second assertion, notice that any function on R of the form
f(x) =< Ax + B >, with A a nonzero integer, is continuous precisely
on the complement in R of the points {−B/A + n/A}n∈Z where its
argument vanishes mod Z. In the open interval between two successive
discontinuities, it is linear. At any point x0 ∈ R, the one-sided limits
f−(x0) and f+(x0) both exist, and satisfy

f−(x0) ≥ f(x0), f+(x0) ≥ f(x0).

Therefore any finite sum F (x) of such functions, e.g.,

F (x) :=
∑
i

< peai +Nix > +
∑
j

< −pebj −Mjx >,

has the same properties, i.e., it is continuous on the complement in R
of the points where any of the arguments peai + Nix or −pebj −Mjx
vanishes mod Z, it is linear in the open interval between two successive
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discontinuities, and at any point x0 ∈ R, the one-sided limits f−(x0)
and f+(x0) both exist, and satisfy

f−(x0) ≥ f(x0), f+(x0) ≥ f(x0).

So an inequality∑
i

< peai +Nix > +
∑
j

< −pebj −Mjx > ≥ T

holds for all x ∈ R/Z if and only if it holds at the finitely many points
of discontinuity in R/Z. �

The following Theorem gives a very fast algorithm, via its condition
(6), for deciding if a hypergeometric sheafH defined over the prime field
Fp has finite Ggeom. Although it will not be used below, we include it
here for ease of future reference.

Theorem 13.6. Hypotheses and notations as in Proposition 13.2, sup-
pose in addition that k is the prime field Fp. Then the following con-
ditions are equivalent.

(1) For every finite extension E/Fp, and for every point a ∈ Gm(E),
Trace(Froba,E|F) is an algebraic integer.

(2) H has finite Ggeom.
(3) F has finite Garith.
(4) For every N ∈ (Z/(p−1)Z)×, and for every x ∈ (Q/Z)prime to p,

we have the inequality∑
i

V (Nai+x)+
∑
j

V (−Nbj−x) ≥ (n−1)/2+(1/n)
∑
i,j

V (Nai−Nbj).

(5) For every N ∈ (Z/(p−1)Z)×, and for every x ∈ (1/(p−1))Z/Z,
we have the inequality∑

i

< Nai+x > +
∑
j

< −Nbj−x > ≥ (n−1)/2+(1/n)
∑
i,j

< Nai−Nbj > .

(6) At every point a ∈ F×p , Trace(Froba,Fp |F) is an algebraic inte-
ger.

Proof. The equivalence of the first three conditions is Lemma 10.3.
That (3)⇔ (4) is Proposition 13.2. That (4)⇒ (5) is a special case of
Stickelberger’s Theorem 13.4: for x ∈ (1/(p−1))Z/Z, (x) =< x >. The
implication (5)⇒ (4) is given by the previous Lemma. That (5)⇔ (6)
is just Proposition 13.1, together with Stickelberger’s Theorem 13.4.

�
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14. Return to the case by case analysis of the candidates

14.1. The case N = 13. Here the allowed characteristics are 2, 3, 7,
and there are two Galois-conjugate candidates. For one, the six non-
trivial χi are the (1, 3, 4, 9, 10, 12)’th powers of a fixed character of order
13, and for the other they are the same powers of the square of that
character, or, what is the same, the (2, 5, 6, 7, 8, 11)’th powers of the
original character. Thus the criterion for finite Ggeom is as follows.

If p = 2, we are to have, for every x ∈ (Q/Z)prime to p, both

V (x) + V (x+ 1/13) + V (x+ 3/13) + V (x+ 4/13) + V (x+ 9/13)

+V (x+ 10/13) + V (x+ 12/13) ≥ 3

and

V (x) + V (x+ 2/13) + V (x+ 5/13) + V (x+ 6/13) + V (x+ 7/13)

+V (x+ 8/13) + V (x+ 11/13) ≥ 3.

Computer calculation shows that the first inequality fails to hold for
x = 5/(212 − 1), and hence this candidate does not have finite Ggeom.

If p = 3 or p = 7, we are to have, for every x ∈ (Q/Z)prime to p, both

V (x) + V (x+ 1/13) + V (x+ 3/13) + V (x+ 4/13) + V (x+ 9/13)

+V (x+ 10/13) + V (x+ 12/13) + V (1/2− x) ≥ 7/2

and

V (x) + V (x+ 2/13) + V (x+ 5/13) + V (x+ 6/13) + V (x+ 7/13)

+V (x+ 8/13) + V (x+ 11/13) + V (1/2− x) ≥ 7/2.

Hand calculation for p = 3 shows that the first inequality fails for
x = 1/26, and hence this candidate does not have finite Ggeom. And
computer calculation for p = 7 shows that the first inequality fails for
x = 212/(712−1), and hence this candidate does not have finite Ggeom.

14.2. The case N = 12. Here the only allowed characteristic is p = 7,
and there is just one candidate, whose six nontrivial χi are the four
characters of order 12 and the two characters of order 3. We will show
that in this case we have finite Ggeom. The criterion is that for every
x ∈ (Q/Z)prime to p, we are to have

V (x) + V (x+ 1/12) + V (x+ 4/12) + V (x+ 5/12) + V (x+ 7/12)

+V (x+ 8/12) + V (x+ 11/12) + V (1/2− x) ≥ 7/2.

Using the relations

V (x+ 1/12) + V (x+ 7/12) = V (2x+ 1/6) + 1/2,

V (x+ 5/12) + V (x+ 11/12) = V (2x+ 5/6) + 1/2
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and
V (x) + V (x+ 4/12) + V (x+ 8/12) = V (3x) + 1,

the inequality becomes

V (3x) + V (2x+ 1/6) + V (2x+ 5/6) + V (1/2− x) ≥ 3/2.

Because we are in characteristic p = 7, we have

V (1/2− x) = V (7/2− 7x) = V (1/2− 7x),

so we can rewrite the inequality as

V (3x) + V (2x+ 1/6) + V (2x+ 5/6) + V (1/2− 7x) ≥ 3/2.

We now apply Lemma 13.5 to this sum. As p = 7, we have k = 1 in the
notations of that lemma, so it suffices to show that for every x ∈ R/Z,
we have the inequality

< 3x > + < 2x+ 1/6 > + < 2x+ 5/6 > + < 1/2− 7x > ≥ 3/2.

For this, it suffices to check at each of the fourteen points of disconti-
nuity in R/Z, namely the points

0, 1/3, 2/3,

the points
−1/12,−1/12 + 1/2, 5/12, 5/12 + 1/2,

and the points

1/14, 3/14, 5/14, 7/14, 9/14, 11/14, 13/14.

We leave this verification to the patient reader.

14.3. Another approach to case N = 12; “erasing”. There is
another approach to this case, which is both more illuminating and
more mysterious. Let us return to the inequality

< 3x > + < 2x+ 1/6 > + < 2x+ 5/6 > + < 1/2− 7x > ≥ 3/2,

which we rewrite as

< 3x > + < 2(x+1/12) > + < 2(x+5/12) > + < 7(1/14−x) > ≥ 3/2,

For any integer d ≥ 1, the function < x > satisfies the identity∑
i mod d

< x+ i/d >=< dx > +(d− 1)/2.

[Translate x by a multiple of 1/d until x ∈ [0, 1/d), at which point the
identity is obvious.] Applying this to the the four terms on the left,
with d successively 3, 2, 2, 7, we may rewrite the needed inequality as

< x > + < x+1/12 > + < x+4/12 > + < x+5/12 > + < x+7/12 >



G2 AND HYPERGEOMETRIC SHEAVES 45

+ < x+8/12 > + < x+11/12 > +
∑

n mod 7

< 1/14+n/7−x > ≥ 13/2.

As explained in [Ka-ESDE, 8.17.2 and 8.17.2.1], this last inequality
holds because the two lists of fractions

(0, 1/12, 4/12, 5/12, 7/12, 8/12, 11/12)

and
(1/14, 3/14, 5/14, 7/14, 9/14, 11/14, 13/14)

give rise, by the map x 7→ e2πix, to Galois-stable sets of roots of unity
which are intertwined on the unit circle. Now this intertwining is pre-
cisely the condition that the hypergeometric differential equation of
type (7, 7) with these parameters has its differential Galois group Ggal

finite, cf. [B-H, 4.8] and [Ka-ESDE, 5.5.3]. And this intertwining im-
plies that in any characteristic p other than 2, 3, 7, the corresponding
hypergeometric sheaf of type (7, 7),

H(ψ, all char′s of order 1, 3, or 12; all char′s of order 2 or 14)

has finite Ggeom, cf.[Ka-ESDE, 8.17.15]. What is striking here is that
if, in the above prescription of the characters χi and ρj for this hy-
pergeometric, we simply erase those whose order is divisible by 7, we
obtain the hypergeometric sheaf

H(ψ, all char′s of order 1, 3, or 12;χquad)

with which we are concerned in characteristic p = 7.
What happens in characteristics 2 and 3 if we do this ”erasing of

characters that don’t make sense”? In characteristic 3, we will get

H(ψ, 1; all char′s of order 2 or 14) ∼=
Lχquad

⊗ [x 7→ 1/x]?H(ψ, all char′s of order dividing 7;χquad).

As we have seen in the earlier discussion of the N = 7 case, the sheaf

H(ψ, all char′s of order dividing 7;χquad)

in characteristic p = 3 has finite Ggeom = U3(3).
If we do the erasing in characteristic p = 2, we are left with Lψ, not

a very convincing case. But if we first tensor with Lχquad
, our input

sheaf of type (7, 7) becomes

H(ψ, all char′s of order 2, 6, or 12; all char′s of order dividing 7).

If we now erase all the characters which fail to have odd order, we are
left with

H(ψ, ∅; all char′s of order dividing 7) ∼=
[x 7→ 1/x]?H(ψ, all char′s of order dividing 7; ∅).



46 NICHOLAS M. KATZ

As we have seen in the earlier discussion of the N = 7 case, this last
sheaf in characteristic p = 2 has finite Ggeom the ax+ b group over F8.

14.4. The case N = 9. Here the allowed characteristics are 2, 7, 13.
In characteristic p = 2, we have 9 = q + 1 with q = 8, so it is

immediate from the “all but two” case of Kubert’s Theorem 13.3 above
that we have finite Ggeom in this case.

If p = 7 or p = 13, the criterion for finite Ggeom is that we are to
have, for every x ∈ (Q/Z)prime to p, all three of the inequalities

V (x) + V (x+ 1/9) + V (x+ 3/9) + V (x+ 4/9) + V (x+ 5/9)

+V (x+ 6/9) + V (x+ 8/9) + V (1/2− x) ≥ 7/2,

V (x) + V (x+ 1/9) + V (x+ 2/9) + V (x+ 3/9) + V (x+ 6/9)

+V (x+ 7/9) + V (x+ 8/9) + V (1/2− x) ≥ 7/2,

and

V (x) + V (x+ 2/9) + V (x+ 3/9) + V (x+ 4/9) + V (x+ 5/9)

+V (x+ 6/9) + V (x+ 7/9) + V (1/2− x) ≥ 7/2.

Computer calculation for p = 7 shows that the first inequality fails for
x = 66/(73 − 1), and hence this candidate does not have finite Ggeom.
And computer calculation for p = 13 shows that the first inequality
fails for x = 3/(136− 1), and hence this candidate does not have finite
Ggeom.

14.5. The case N = 8. Here the allowed characteristics p are 3, 7, 13.
For each, the criterion for finite Ggeom is that we are to have, for every
x ∈ (Q/Z)prime to p,

V (x) + V (x+ 1/8) + V (x+ 2/8) + V (x+ 3/8) + V (x+ 5/8)

+V (x+ 6/8) + V (x+ 7/8) + V (1/2− x) ≥ 7/2.

Hand calculation for p = 13 shows that the inequality fails for x =
5/168, and hence this candidate does not have finite Ggeom.

Hand calculation for p = 3 shows that the inequality fails for x = 1/8,
and hence this candidate does not have finite Ggeom.

The remaining case, p = 7, turns out to have finite Ggeom. Because
p = 7, we have

V (1/2− x) = V (7(1/2− x)) = V (1/2− 7x),

so we may rewrite the needed inequality as

V (x) + V (x+ 1/8) + V (x+ 2/8) + V (x+ 3/8) + V (x+ 5/8)

+V (x+ 6/8) + V (x+ 7/8) + V (1/2− 7x) ≥ 7/2.
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The unordered list (0, 1/8, 2/8, 3/8, 5/8, 6/8, 7/8) of elements of (Q/Z)prime to p
are all the elements of order dividing 8 save for the unique element of
order 2, so this list is invariant under multiplication by p = 7. So it
suffices to prove that for every x ∈ R/Z we have

< x > + < x+ 1/8 > + < x+ 2/8 > + < x+ 3/8 > + < x+ 5/8 >

+ < x+ 6/8 > + < x+ 7/8 > + < 1/2− 7x > ≥ 7/2.

Exactly as in the case N = 12, p = 7 above, we may now rewrite this
as

< x > + < x+ 1/8 > + < x+ 2/8 > + < x+ 3/8 > + < x+ 5/8 >

+ < x+ 6/8 > + < x+ 7/8 > +
∑

n mod 7

< 1/14 + n/7− x > ≥ 13/2.

And once again this holds because the two lists of fractions

(0, 1/8, 2/8, 3/8, 5/8, 6/8, 7/8)

and

(1/14, 3/14, 5/14, 7/14, 9/14, 11/14, 13/14)

give rise, by the map x 7→ e2πix, to Galois-stable sets of roots of unity
which are intertwined on the unit circle.

14.6. Another remark on “erasing”. Just as in the case N =
12, p = 7, the above intertwining implies that in any characteristic p
other than 2, 7, the corresponding hypergeometric sheaf of type (7, 7),

H(ψ, all char′s of order dividing 8 save χquad; all char
′s of order 2 or 14)

has finite Ggeom. And our sheaf in characteristic p = 7 is again obtained
from this one by ”erasing the characters that don’t make sense”.

In characteristic p = 2, this erasing again leaves us with Lψ. But if
we first tensor with Lχquad

, our input sheaf of type (7, 7) becomes

H(ψ, all nontriv, char′s of order dividing 8; all char′s of order dividing 7).

If we now erase all the characters which fail to have odd order, we are
again left in characteristic p = 2 with the finite-Ggeom sheaf

H(ψ, ∅; all char′s of order dividing 7) ∼=

[x 7→ 1/x]?H(ψ, all char′s of order dividing 7; ∅),
exactly as in the N = 12 discussion of erasing.
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14.7. Another approach to the case N = 7. Here the allowed char-
acteristics are 2, 3, 13. We will give proofs, not using [Ka-NG2], that
we have finite Ggeom here.

In characteristic p = 2, the criterion for finite monodromy is∑
i mod 7

V (x+ i/7) ≥ 3,

which is obvious, thanks to the identity∑
i mod 7

V (x+ i/7) = V (7x) + 3.

In characteristics p = 3 and p = 13, the criterion is∑
i mod 7

V (x+ i/7) + V (1/2− x) ≥ 7/2,

which in view of the above identity we may rewrite as

V (7x) + V (1/2− x) ≥ 1/2.

Suppose first p = 3. Then we have

V (7x) + V (1/2− x) ≥ V (1/2 + 6x) = V (1/2 + 2x),

the last equality because p = 3. Again because p = 3, we have the
equality V (1/2− x) = V (1/2− 9x), so we have

V (7x) + V (1/2− x) = V (7x) + V (1/2− 9x) ≥ V (1/2− 2x).

Adding these inequalities, we obtain

2[V (7x) + V (1/2− x)] ≥ V (1/2 + 2x) + V (1/2− 2x).

But 1/2− 2x and 1/2 + 2x are negatives of each other mod Z, so if x
is neither 1/4 nor 3/4 mod Z, then V (1/2 + 2x) + V (1/2 − 2x) = 1,
and we are done. For x either of the excluded values, we check directly
that

V (7x) + V (1/2− x) = V (1/4) + V (3/4) = 1 ≥ 1/2.

Suppose now p = 13. Then we have

V (7x) + V (1/2− x) ≥ V (1/2 + 6x).

Because p = 13, we have V (1/2− x) = V (1/2− 13x), so we have

V (7x) + V (1/2− x) = V (7x) + V (1/2− 13x) ≥ V (1/2− 6x).

Adding these inequalities, we obtain

2[V (7x) + V (1/2− x)] ≥ V (1/2 + 6x) + V (1/2− 6x).

But 1/2 − 6x and 1/2 + 6x are negatives of each other mod Z, so if
1/2− 6x is nonzero mod Z, then V (1/2 + 6x) + V (1/2− 6x) = 1, and
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we are done. If 1/2−6x = 0 mod Z, then 7x and 1/2−x are negatives
of each other mod Z, and neither lies in Z, so for these x we have

V (7x) + V (1/2− x) = V (7x) + V (−7x) = 1 ≥ 1/2.

15. Conclusion of the proof of Theorem 9.1: exact
results in the cases (N, p) = (12, 7), (9, 2), (8, 7)

In this section, we determine the groups Ggeom and Garith in the three
named cases, and thus finish the proof of Theorem 9.1.

15.1. The case (N, p) = (9, 2). Here we have Ggeom = Garith = L2(8),
simply because L2(8) is the only candidate group which contains an
element of order N = 9.

15.2. The case (N, p) = (12, 7). In this case, two of the candidate
groups, namely U3(3) and U3(3).2 = G2(2), have elements of order
N = 12. So we are in one of the following three cases.

(1) Ggeom = Garith = U3(2),
(2) Ggeom = U3(2), Garith = U3(2).2,
(3) Ggeom = Garith = U3(2).2.

We will show that we have the third case. Suppose not. Then we have
Ggeom = U3(2). We will show that this leads to a contradiction.

Recall that the sheaves in question live on Gm/F49. Choose a mul-
tiplicative character χ12 of order 12 of F×49, and choose a nontrivial
additive character ψ of F7. Then our sheaves are

H := H(ψF49 , 1, χ12, χ
4
12, χ

5
12, χ

7
12, χ

8
12, χ

11
12;χquad)

and

F := H⊗ (A−7)deg,

for A the negative of the quadratic Gauss sum over F49,

A := −g(ψF49 , χquad).

The key observation is that the sheaf H has a descent H0 to a lisse
sheaf on Gm/F7. To construct this descent, we recall from [Ka-ESDE,
8.2.3] that the hypergeometric sheaves are built out of simple ingredi-
ents by multiplicative convolution with compact support on Gm, which
we will denote here ?!. For us, the relevant convolution formula is

H(ψF49 , 1, χ12, χ
4
12, χ

5
12, χ

7
12, χ

8
12, χ

11
12;χquad) ∼=

H(ψF49 , χ12, χ
5
12, χ

7
12, χ

11
12; ∅) ?! H(ψF49 , 1, χ

4
12, χ

8
12;χquad).
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Denote by ψ2 the additive character x 7→ ψ(2x), denote by χ6 a multi-
plicative character of order 6 of F×7 , and denote by A0 the negative of
the quadratic Gauss sum over F7,

A0 := −g(ψ, χquad).

By the direct image formula [Ka-GKM, 5.6.2] for Kloosterman sheaves,
the first convolvee descends to Gm/F7 as

[2]?(H(ψ2, 1, χ6, χ
5
6; ∅))⊗ (A2

0)deg.

The second convolvee descends to Gm/F7 as

H(ψ, 1, χ2
6, χ

4
6;χquad).

The desired descent H0 is then given by

H0 := H(ψ, 1, χ2
6, χ

4
6;χquad) ?! [2]?(H(ψ2, 1, χ6, χ

5
6; ∅))⊗ (A2

0)deg.

We next descend the sheaf F to a lisse sheaf F0 on Gm/F7. As a
first attempt, consider the ”obvious” descent

F1 := H0 ⊗ (A−7
0 )deg.

Its traces are real, and it is pure of weight zero, so it is isomorphic to
its dual. Being irreducible, it is orthogonally self dual, i.e., its Garith

lies in O(7). After extension of scalars, we recover F , whose Garith lies
in G2 ⊂ SO(7). Therefore for some choice of sign ε = ±, the twisted
sheaf

F0 := F1 ⊗ (ε)deg

has its Garith, call it G0,arith lying in SO(7). Now F0 is a descent of
F , so its Ggeom, equal to that of H, is the finite primitive irreducible
subgroup U3(3) of G2. As G0,arith lies in the normalizer in SO(7) of
Ggeom, it follows from Lemma 7.2 that G0,arith is itself a finite primitive
irreducible subgroup of G2 which contains U3(3), and hence contains
an element of order N = 12. Therefore G0,arith is either U3(3) or
U3(3).2. In either case, the quotient G0,arith/Ggeom has order divid-
ing 2, so becomes trivial after the constant field extension of scalars
from Gm/F7 to Gm/F49. Therefore our original sheaf F on Gm/F49 has
Garith = Ggeom, and hence Garith = U3(3) (under the ongoing assump-
tion that Ggeom = U3(3)).

An examination of the ATLAS [CCNPW-Atlas] character tables of
U3(3) and of U3(3).2 shows that, in the unique seven-dimensional rep-
resentation that puts both groups inside G2, there are elements γ in
U3(3).2 with the property that

Trace(γ) = −1, T race(γ2) = 1.
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It also shows that all such elements lie in a single conjugacy class
(6B in ATLAS notation) of U3(3).2, and that no such elements lie
in U3(3). But computer calculation shows that there are eight points
a ∈ Gm(F49) for which the conjugacy class of Froba,F49|F in Garith

is precisely the class of such an element γ, i.e., for these eight points
a ∈ Gm(F49) we have

Trace(Froba,F49|F) = −1, T race(Froba,F492
|F) = 1.

[These eight points a are the roots of the following four irreducible
quadratic polynomials over F7:

X2 +X − 1, X2 −X − 1, X2 − 2X − 2, X2 −X − 4.]

This contradiction shows that in fact we have Ggeom = Garith = U3(2).2.

15.3. The case (N, p) = (8, 7). In this case, three of the candidate
groups, namely L2(7).2, U3(3), and U3(3).2 = G2(2), have elements of
order N = 8. So both Ggeom and Garith are among these three groups.
Now Ggeom is a normal subgroup of Garith, but L2(7).2 is not a normal
subgroup of either of the other groups. So we are in one of the following
four cases.

(1) Ggeom = Garith = L2(7).2,
(2) Ggeom = Garith = U3(2),
(3) Ggeom = U3(2), Garith = U3(2).2,
(4) Ggeom = Garith = U3(2).2.

We will show that we are in the first case. We will do this by a consid-
eration of higher moments.

Let us briefly review the general theory. Our sheaf F on Gm/k,
k = F49, is lisse, and pure of weight zero. It is geometrically irreducible,
and hence it is arithmetically irreducible. Thus it is irreducible repre-
sentation, say V , of the unknown group Garith, and its restriction to the
unknown normal subgroup Ggeom remains irreducible. The higher mo-
ments Mn, n ≥ 1, attached to this situation are defined as dimensions
of spaces of tensor invariants:

Mn := dim(V ⊗n)Ggeom = dimH0(Gm⊗kk,F⊗n) = dimH2
c (Gm⊗kk,F⊗n).

For any finite extension E/k, we have the ”empirical moments” Mn(E)
attached to this situation, defined as the sums

Mn(E) := (1/#Gm(E))
∑

a∈Gm(E)

Trace(Froba,E|F⊗n)

= (1/#Gm(E))
∑

a∈Gm(E)

(Trace(Froba,E|F))n.
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Lemma 15.1. In the general situation above, denote by λ0 and by λ∞
respectively the largest slopes of the I0 and I∞-representations of F .
We have the inequality

Mn ≥ |Mn(E)| − (λ0 + λ∞)rank(F)n/(
√

#E − 1/
√

#E).

Proof. The representation V of Garith is irreducible, so it is completely
reducible. Therefore all its tensor powers V ⊗n are completely reducible.
As Ggeom is a normal subgroup of Garith, the space (V ⊗n)Ggeom is a
Garith-subrepresentation of V ⊗n. By the complete reducibility of V ⊗n,
we have a direct sum decomposition of Garith-representations

V ⊗n = (V ⊗n)ginv
⊕

(V ⊗n)nginv,

in which

(V ⊗n)ginv := (V ⊗n)Ggeom

is the space of invariants under Ggeom (”ginv” for ”geometric invari-
ants”), and in which (V ⊗n)nginv has no nonzero Ggeom-invariants (”ng-
inv” for ”no geometric invariants”). In terms of lisse sheaves on Gm/k,
we have a direct sum decomposition

F⊗n = (F⊗n)ginv
⊕

(F⊗n)nginv,

in which (F⊗n)ginv is geometrically constant of rank Mn, and in which

H2
c (Gm ⊗k k, (F⊗n)nginv) = 0.

Each summand is pure of weight zero. In each summand, the largest
largest slopes of the I0 and I∞-representations are bounded above by
λ0 and λ∞ respectively, since this holds for F⊗n itself. Thus we have

Mn(E) = S1 + S2,

S1 = (1/#Gm(E))
∑

a∈Gm(E)

Trace(Froba,E|(F⊗n)ginv)

S2 = (1/#Gm(E))
∑

a∈Gm(E)

Trace(Froba,E|(F⊗n)nginv).

In S1, the fact that (F⊗n)ginv is pure of weight zero and has rank Mn

shows that for each summand we have the trivial estimate

|Trace(Froba,E|(F⊗n)ginv)| ≤Mn.

Thus for S1 we have the estimate

|S1| ≤Mn.
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For S2, we apply the Lefshetz Trace formula for (F⊗n)nginv. Since this
sheaf has vanishing H2

c , (and also vanishing H0
c , being lisse on an open

curve), we find

S2 = −(1/#Gm(E))Trace(FrobE|H1
c (Gm ⊗k k, (F⊗n)nginv)).

The sheaf (F⊗n)nginv is pure of weight zero, so by Deligne’s fundamental
result [De-Weil II, 3.3] we have

|S2| ≤ (1/#Gm(E))|χ(Gm ⊗k k, (F⊗n)nginv)|
√

#E.

By the Euler-Poincare formula on Gm, we have

−χ(Gm ⊗k k, (F⊗n)nginv) = Swan0((F⊗n)nginv) + Swan∞((F⊗n)nginv).

Since we have upper bounds for the biggest slopes at 0 and∞, we have

|χ(Gm⊗kk, (F⊗n)nginv)| ≤ (λ0+λ∞)rank((F⊗n)nginv) ≤ (λ0+λ∞)rank(F)n.

Thus we find

|S2| ≤ (λ0 + λ∞)rank(F)n/(
√

#E − 1/
√

#E).

Since Mn(E) = S1 + S2, with |S1| ≤ Mn and S2 estimated above, we
get the asserted inequality. �

We now apply this lemma to our F , which has λ0 = 0, λ∞ = 1/6.
Computer calculation over F76 gives M4(F76) = 7.99. So by the above
lemma, we have

M4 ≥ 7.99− (1/6)74/(73 − 1/73) = 6.82.

Using the ALTAS tables in GAP [GAP], we find that for the unique
seven-dimensional representation which puts each of our candidate
groups into G2, the fourth moment is 4 for U3(3), 4 for U3(3).2, and 8
for L2(7).2. Therefore we have Ggeom = Garith = L2(7).2, as asserted.
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