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Let ` be a prime and let H(1,1) be the cohomologically rigid Q̄`-sheaf on A1
Q̄

of rank 7 which is given in Thm. 1.3.1 of the article (whose notation we adopt).
By loc. cit., the restriction of H(1,1) to A1

Q̄ \ {0, 1} is a lisse Q̄`-sheaf whose
monodromy is dense in the exceptional algebraic group G2(Q̄`) and whose local
monodromy at 0, 1,∞ is of the following type

(1) 13 ⊕ (−1)4, U(2)2 ⊕U(3), U(7), respectively.

By [5], Thm. 5.5.4, there exists a lisse Q`-sheaf G` on S` := A1
R`
\ {0, 1} (R` =

Z[ 1
2` ]) which, after the base change R` → Q̄ and the extension of scalars Q` →

Q̄` on the coefficients becomes the restriction of H(1,1) to A1
Q̄ \ {0, 1}. (The

construction of G` is given below.) The monodromy representation of the Tate
twisted sheaf G`(3) is denoted by

ρ` : π1(S`) −→ GL7(Q`).

Let s0 ∈ S`(Q). The morphism s0 → S` induces a homomorphism α : π1(s0, s̄0) →
π1(S`, s̄0). Since π1(s0, s̄0) is isomorphic to Gal(Q̄/Q) we can view α as a homo-
morphism Gal(Q̄/Q) → π1(S`, s̄0). The specialization of ρ` to s0 is then defined
as the composition

ρs0
` := ρ` ◦ α : Gal(Q̄/Q) −→ GL7(Q`).

Indeed, we may view s0 as a point of S` with values in the ring Z[ 1
2` ][s0,

1
s0

, 1
s0−1 ],

so that ρs0
` is in fact unramified except possibly at 2, `, and at those primes p such

that either s0 or s0− 1 fails to be a p-adic unit. Our main result is the following:

Theorem 1 (i) The representation ρ` has values in G2(Q`).

(ii) Let a, b be two coprime integers which each have an odd prime divisor which
is different from ` and let s0 := 1+ a

b . Then the image of ρs0
` is Zariski dense

in G2(Q`).

For s0 ∈ S`(Q), let Ms0 be the motive for motivated cycles which appears in
Thm. 3.3.1. By construction, the above Galois representation ρs0

` is the Galois
representation of Gal(Q̄/Q) on the `-adic realization of the motive Ms0 (see the
proof of Cor. 2 for this). As a corollary of Thm. 1, we obtain an explicit way to
obtain motives with motivic Galois group of type G2 :
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Corollary 2 (i) Let s0 = 1+a
b be as in Thm. 1. Then the motive for motivated

cycles Ms0 has a motivic Galois group of type G2.

(ii) Let (a, b) and (a′, b′) be pairs of squarefree odd coprime integers, each ≥ 3,
such that (a, b) 6= (a′, b′). Let s0 = 1 + a

b and s′0 = 1 + a′

b′ . For any prime `

not dividing the product aba′b′, the `-adic representations ρs0
` and ρ

s′
0

` are
not isomorphic. In particular, the motives Ms0 and Ms′

0
are not isomorphic.

(iii) There exist infinitely many non-isomorphic motives Ms0 whose motivic Ga-
lois group is of type G2.

The proof of Thm. 1 and Cor. 2 is given below. Let us first recall the construction
of G` : The group µ2(R`) of the second roots of unity of R` = Z[ 1

2` ] acts on the
étale covers f1, f2 of S` = A1

R`
\ {0, 1} which are defined by the equations y2 = x,

resp. y2 = x− 1. The covers f1 and f2 therefore define surjections

ηi : π1(S`) −→ µ2(R`) for i = 1, 2.

The composition of the embedding χ : µ2(R`) → Q` with ηi, i = 1, 2, define lisse
Q`-sheaves Lχ(x), resp. Lχ(x−1), on S`. Let j : S` → A1

R`
denote the tautological

inclusion and let

F3 = F5 = F7 := j∗(Lχ(x)) and F2 = F4 = F6 := j∗(Lχ(x−1)).

Let H0 := j∗
(
Lχ(x) ⊗ Lχ(x−1)

)
and define inductively

(2) Hi := j∗ (Fi+1 ⊗ j∗(MCχ(Hi−1))) , for i = 1, . . . , 6,

where MCχ(Hi) is as defined in [5], Section 4.3 (see also Rem. 5 below). We
remark that on each geometric fibre S̄` of S`, one has

(3) MCχ(Hi−1)|S̄`
= MCχ(Hi−1|S̄`

),

where on the right hand side, MCχ is the middle convolution functor defined in
[5], Chap. 5 (or in Section 1.1 of the article). We then define G` to be the lisse
sheaf H6|S`

. It follows from the construction of H(1,1) in the proof of Thm. 1.3.1
and from Formula (3) that

(4)
(
G` ⊗ Q̄`

)
|A1

Q̄\{0,1} = H(1,1)|A1
Q̄\{0,1}.

Remark 3 By [5], 5.5.4 part (3), the weight of G` is equal to 6, which implies that
the Tate twist G`(3) has weight zero. By loc cit., 5.5.4 part (2), the restriction of
H6 to any geometric fibre is irreducible and cohomologically rigid of the same type
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of local monodromy. Moreover, by the Specialization Theorem (cf. loc. cit. 4.2.4),
the geometric monodromy group (of the restriction of G`) on any geometric fibre
of S` is also Zariski dense in G2.

Proposition 4 Let s0 be a rational number, not 0 or 1, and let p be an odd
prime number different from `. Then the following holds:

(i) If ordp(s0) < 0, then the restriction of ρs0
` to the inertia subgroup Ip ≤

Gal(Q̄/Q) at p factors through the tame inertia group at p, Itame
p

∼= Ẑ(not p)(1),
and is an indecomposable unipotent block of length 7.

(ii) If ordp(s0−1) > 0, then the restriction of ρs0
` to Ip factors through the tame

inertia group Itame
p

∼= Ẑ(not p)(1) and is the direct sum of an indecomposable
unipotent block of length 3 and of two indecomposable unipotent blocks of
length 2.

(iii) If ordp(s0) > 0, then Ip acts tamely, by automorphisms of order at most 2.

(iv) If both s0 and s0 − 1 are p-adic units, then Ip acts trivially.

Proof of Proposition 4: We first prove (i). Let Wp denote the ring of Witt
vectors of an algebraic closure of Fp. Let t be the standard parameter on A1

R`
, let

z := 1
t denote the parameter at infinity, and consider the formal punctured disc

∆p := Spec (Wp[[z]][1z ]). Since Spec (Wp) is simply connected, one knows that
π1(∆p) is the group Ẑ(not p)(1) (this follows from Abhyankar’s Lemma, cf. [4],
Ex. on Page 120). In more concrete terms: all finite connected étale covers of ∆p

are obtained by taking the N -th root of z for some N prime to p. We can read the
effect of a topological generator of this group in our representation after extension
of scalars from Wp to the complex numbers, so we know a topological generator
gives a single unipotent block of size 7 (since this is the local monodromy of
G` around ∞ on every geometric fibre of S` over R`). If we specialize z to
a nonzero point z0 (here 1

s0
) in the maximal ideal pWp of Wp, the resulting

ring homomorphism Wp[[z]][1z ] → Kp := Frac(Wp) induces a homomorphism
of fundamental groups Ip → π1(∆p), which, in view of Abhyankar’s Lemma,
factors through Itame

p
∼= Ẑ(not p)(1). Identifying both source and target of this

map Itame
p → π1(∆p) with the group Ẑ(not p)(1), we see that this map is nonzero

(simply because in Wp, z0 does not have an N -th root for any N not dividing
ordp(z0)). So after pullback to such a point, the specialized representation of Itame

p

remains unipotent and indecomposable (simply because in characteristic zero, if
A is a unipotent automorphism of a finite-dimensional vector space, then A and
any nonzero power of A have the same Jordan decomposition). To prove (ii) and
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(iii), we repeat these arguments, but now with z taken to be t− 1 (resp., z taken
to be t) and using the fact that for our sheaf G`, local monodromy around 1 (resp.,
around 0) is unipotent of the asserted shape (resp., involutory). Claim (iv) was
already noted at the beginning of the Appendix. 2

Proof of Theorem 1: For fields of cohomological dimension ≤ 2 (and hence for
`-adic fields) it is known that there exists only one form of the algebraic group
G2: the split form (see [8] and [6]). It follows thus from Thm. 1.3.1 of the article
and from Formula (4) that the geometric monodromy of G`(3) is Zariski dense
in the group G2(Q`). Poincaré duality, applied in each step of the convolution
construction of G` given in (2) implies that the sheaf G`(3) is orthogonally self
dual, and hence ρ` respects a nondegenerate orthogonal form. The normalizer of
G2(Q`) in the orthogonal group O7(Q`) consists of the scalars 〈±1〉 only. Since
the representation ρ` has degree 7, it follows therefore that there exists a character
ε` : π1(S`) → 〈±1〉 such that ρ` ⊗ ε` has values in G2(Q`).
We have to show that ε` is trivial. To see this we argue as follows: Because on each
fiber the geometric monodromy group is G2 by Rem. 3, the character ε` is actually
a character of π1(Z[ 1

2` ]). As ` varies, the characters ε` form a compatible system
(this follows from the compatibility of ρ` which follows from the compatibility
of MCχ which is proved in [5], 5.5.4 (4)). So taking ` to be 2, one sees that ε`

is a quadratic character whose conductor is a power of 2. Given the structure
of 2-adic units as the product of 〈±1〉 with the pro-cyclic group 1 + 4Z2, one
sees that any homomorphism from this group to 〈±1〉 actually factors through
the units modulo 8. Therefore it suffices to show that for p in a set of primes
whose reduction modulo 8 meets each nontrivial class of units mod 8 and for one
t ∈ Fp \ {0, 1}), the Frobenius element ρ`(Frobp,t) is contained in G2(Q`).
Since the weight of ρ` is 0 by Rem. 3, the eigenvalues of ρ`(Frobp,t) (p 6= 2, `)
are Weil numbers of complex absolute value equal to 1. Moreover, any Frobe-
nius element is contained either in G2(Q2) or in the coset −G2(Q`). Since any
semisimple element in G2(Q̄`) ≤ GL7(Q̄`) is conjugate to a diagonal matrix of
the form diag(x, y, xy, 1, (xy)−1, y−1, x−1), it follows (from elementary arguments
on trigonometric functions) that the trace of ρ`(Frobp,t) lies in the interval [−2, 7]
if ρ`(Frobp,t) is contained in G2(Q`), or it lies in the interval [−7, 2] if ρ`(Frobp,t)
is contained in −G2(Q`). By compatibility and the discussion above, it therefore
suffices to show that for p in a set of primes whose reduction modulo 8 meets each
nontrivial class of units mod 8 and for some t ∈ Fp\{0, 1}, the trace of ρ`(Frobp,t)
lies in the left open interval ]2, 7] if p 6= `. Using the computer system Mathemat-
ica, the authors have checked that in fact, for the primes p = 137, 139, 149, 151,
the trace of some ρ`(Frobp,t) is contained in ]2, 7] if ` 6= p. (Details of the actual
computation are discussed in Rem. 5 below.) This implies that ε` is trivial for all
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primes `, proving the first claim.
By Scholl [7], Prop. 3, a pure `-adic Galois representation ρ` of Gal(Q/Q) is
irreducible if the following conditions are satisfied: there exists a prime p 6= `
and an open subgroup I ≤ Ip such that the restriction of ρ` to I is unipotent
and indecomposable, and the restriction of ρ to Gal(Q`/Q`) is Hodge-Tate. By
Prop. 4 (i) and the assumption on s0 = 1+ a

b , the restriction of ρs0
` : Gal(Q̄/Q) →

GL7(Q`) to Ip is unipotent and indecomposable, where p is any odd prime divisor
of b which is different from `. It follows from the motivic interpretation of G`

given in Cor. 2.4.2 of the article that ρs0
` is a Galois submodule of the 6-th

étale cohomology group of a smooth projective variety over Q. Since the étale
cohomology groups of a smooth projective variety over Q` are Hodge-Tate by
Faltings [3], the restriction of ρs0

` to Gal(Q`/Q`) has the Hodge-Tate property.
Since ρs0

` is pure of weight 0, Scholl’s result implies that the representation ρs0
` is

absolutely irreducible. Let q be an odd prime divisor of a which is different from `
and let Jq be the image of a topological generator of Itame

q under ρs0
` . By Prop. 4,

the Jordan canonical form of Jq has two Jordan blocks of length 2 and one of
length 3. By [2], Cor. 12, a Zariski closed proper maximal subgroup of G2(Q̄`)
is either reducible or G is isomorphic to the group PSL2(Q̄`). In the latter case,
the non-trivial unipotent elements of the image of PSL2(Q̄`) are conjugate in
GL7(Q̄`) to a Jordan block of length 7. Thus the existence of Jq implies that the
Zariski closure of Im(ρs0

` ) in G2(Q̄`) is equal to G2(Q̄`). It follows that Im(ρs0
` ) is

Zariski dense in G2(Q`), finishing the proof of the second claim of Thm. 1. 2

Proof of Corollary 2: By construction, the Galois representation ρs0
` : GQ →

GL7(Q`) is isomorphic to the Galois representation on the stalk (G`(3))s̄0 . More-
over, the stalk (G`(3))s̄0 is the `-adic realization of the motive Ms0 which appears
in Section 3.3 of the article. The motivic Galois group GMs0

of Ms0 can be char-
acterized as the stabilizer of the spaces of motivated cycles in the realizations
of every subobject of the Tannakian category 〈Ms0〉 generated by Ms0 (this can
be seen using the arguments in [1], Chap. 6.3). By Chevalley’s theorem, there
exists one object M ∈ 〈Ms0〉 such that the motivic Galois group GMs0

is char-
acterized as the stabilizer of a line in the realization of M which is spanned by
a motivated cycle. This line is fixed by an open subgroup of the absolute Ga-
lois group Gal(Q̄/Q). Therefore, the group GMs0

(Q`) contains the image of an
open subgroup of Gal(Q̄/Q) under ρs0

` . Since the group G2(Q`) is connected and
since the Zariski closure of ρs0

` (Gal(Q̄/Q)) is dense in G2(Q`) by Thm. 1 (ii),
the group G2(Q`) is contained in GMs0

(Q`). By construction, the motivic Galois
group GMs0

of Ms0 is contained in the group G2 (see the proof of Thm. 3.3.1 of
the article). With what was said before, one concludes that GMs0

(Q`) = G2(Q`),
so GMs0

(Q`) is of type G2, proving the first claim.
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To prove the second claim, we argue as follows: Fix a prime ` which does not
divide the product aba′b′. By Prop. 4, we recover the odd primes p which divide
a, resp. b, as those odd primes p where Itame

p acts unipotently with a block of
length 3 and two blocks of length 2, resp. where Itame

p acts unipotently with a
single block of length 7. Since (a, b) 6= (a′, b′), the Galois representations ρs0

` and

ρ
s′
0

` have a different ramification behaviour at at least one prime divisor p of a · b
or of a′ · b′. Thus the Galois representations ρs0

` and ρ
s′
0

` are not isomorphic, so
long as ` does not divide the product aba′b′. For any such `, the `-adic realizations
of Ms0 and Ms′

0
are not isomorphic as Galois representations, which implies that

the motives Ms0 and Ms′
0

are not isomorphic. This concludes the proof of (ii).
Assertion (iii) is an immediate consequence of (ii). 2

Remark 5 Let π : A1×A1 → A1 denote the addition map. For Hi, i = 0, . . . , 6,
and χ as above, the sheaf MCχ(Hi) is the image of the !-convolution

Hi ∗! j∗(Lχ) = Rπ!(Hi � j∗(Lχ))

in the ∗-convolution Rπ∗(Hi � j∗(Lχ)) under the forget supports map (cf. [5],
Section 4.3). In the case at hand, it happens that each of the sheaves Hi has
unipotent local monodromy at ∞ (in fact a single Jordan block of length i + 1).
It then results from [5], 2.9.4 part 3), that the canonical map

Hi ∗! j∗(Lχ) −→ Hi ∗mid j∗(Lχ) = MCχ(Hi)

is an isomorphism. At each Fp-rational point t ∈ S`(Fp), one may then use
the Grothendieck-Lefschetz Trace Formula to see that the trace of the Frobenius
Frobp,t at t on the stalk (Hi ∗! j∗(Lχ))t̄ is given by the convolution

(5) fi ∗ f2(t) := −
∑
x∈Fp

fi(x)f2(t− x), i = 1, . . . , 6,

where fi(x) gives the trace of Frobp,x on Hi and f2(x) gives the trace of Frobp,x

on Lχ. Using standard computer algebra systems, like Mathematica, it is easy to
derive from Formula (5) the trace of Frobp,t (for small primes p) for the sequence
H̃0 = H0, H̃1, . . . , H̃6 of constructible sheaves which is defined as follows: the
”middle tensor” operation

(6) j∗(Fi+1 ⊗ j∗(MCχ(Hi−1))), i = 1, . . . , 6,

on the right hand side of Formula (2) is replaced by literal tensor product

(7) H̃i = Fi+1 ⊗ (H̃i−1 ∗! j∗(Lχ)), i = 1, . . . , 6,
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of Fi+1 with the !-convolution H̃i−1∗! j∗(Lχ). We derive the traces of the following
Frobenius elements on H̃6(3) :

Trace(Frob137,85) Trace(Frob139,18) Trace(Frob149,59) Trace(Frob151,73)

2.88 . . . 3.59 . . . 3.51 . . . 3.03 . . .

How well do these traces of Frobenii on H̃6(3) approximate the traces of the
same Frobenii on H6(3)? Although the canonical map Hi ∗! j∗(Lχ) → Hi ∗mid

j∗(Lχ) = MCχ(Hi) is an isomorphism at each stage, the middle tensor product
in (6) may differ, by a δ-function at either 0 or 1, from the literal tensor product
used in (7). Keeping careful track of these δ-functions and their progeny under
later stages of the algorithmic construction of H6(3) and H̃6(3) leads to the
conclusion that the largest error in computing traces at Fp-points when working
with !-convolution and literal tensoring instead of middle convolution and middle
tensoring is bounded in absolute value by 8√

p + 4
p . Thus for p > 100, the largest

error in trace at an Fp-rational point of A1\{0, 1} is 0.84. So from the table above,
we see that for each p listed, the trace of Frobenius on H6(3) at the indicated
Fp-rational point does indeed lie in ]2, 7].
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Math. de France, 2004.

[2] M. Aschbacher. Chevalley groups of type G2 as the group of a trilinear form.
J. Algebra, 109:193–259, 1987.

[3] G. Faltings. p-adic Hodge theory. J. Am. Math. Soc., 1(1): 255–299, 1988.

[4] N.M. Katz. Sommes Exponentielles. Astérisque 79. Soc. Math. de France,
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