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Introduction

In a remarkable numerical experiment, Odlyzko [Od]] found that the distribu-
tion of the (suitably normalized) spacings between successive zeroes of the Riemann
zeta function is (empirically) the same as the so-called GUE measure, a certain
probability measure on R arising in random matrix theory. His experiment was
inspired by work of Montgomery [Mon], who determined the pair correlation dis-
tribution between zeroes (in a restricted range), and who noted the compatibility
of what he found with the GUE prediction. Recent results of Rudnick and Sarnak
[Ru-Sar| are also compatible with the belief that the distribution of the spacings
between zeroes, not only of the Riemann zeta function, but also of quite general
automorphic L-functions over Q, are all given by the GUE measure, or, as we shall
say, all satisfy the Montgomery-Odlyzko Law. Unfortunately, proving this seems
well beyond range of existing techniques, and we have no results to offer in this
direction.

However, it is a long established principle that problems which seem inaccessible
in the number field case often have finite field analogues which are accessible. In
this book we establish the Montgomery-Odlyzko Law for wide classes of zeta and
L-functions over finite fields.

To fix idess, let us consider a special case, which none the less contains all
the essential phenomena, the case of curves over finite fields. Thus we consider a
finite field F,, and a proper, smooth, geometrically connected curve C/F, of genus
g. [For example, if we take a homogeneous form F(X,Y, Z) over F, of degree d in
three variables such that F' and its first partial derivatives have no common zeroes
in Fq, then the projective plane curve of equation ¥ = 0 in P2 is such a curve, of
genus g = (d — 1)(d — 1)/2.] The zeta function of C/Fg, denoted Z(C/Fq,T), was
first introduced by Artin [Artin] in his thesis. It is the basic diophantine invariant
of C/F,, constructed out of the numbers N, := Card(C(F,~)) of points on C with
coordinates in the unique field extension Fyn of F, of each degree n > 1. T As
a formal series over Q in one variable T, Z(C/¥,,T) is defined as the generating
series

Z(C/Fq,T) = exp Z N.T"/n
n>1
One knows that in fact Z(C/F,,T) is a rational function of T, of the form
P(T}/(1 -TX1 - qT),

where P(T) is a polynomial of degree 2g with Z-coefficients. By the Riemann
Hypothesis for curves over finite fields [Weil-CA], one knows that the reciprocal

1



2 INTRODUCTION

zeroes of P(T) all have complex absolute value Sqrt(q), i.e., we have

29
PT) = [[(1 — a;T), with |ajlc = Sart(g) for all ;.
i=1
We write
a; = Sqrt(g)e™, 0 < <2m.

Renumbering, we may assume that
0<p1 <2< Sy <27

The normalized spacings between the (reciprocal) zeroes of the zeta function of
C/F, are the following 2g real numbers. The first 2g — 1 are

(g/vr)(cpz - ‘Pl), (g/‘rr)(cps - <p2), iy (g/ﬂ')((ng - ‘P2g—l),
and the last is the “wraparound” spacing

(9/m)(p1 + 21 — pag).

The spacing measure g = pu{C/F,) attached to C/F, is the probability mea-
sure on R, supported in R>g, which gives mass 1/2g to each of the 2g normalized
spacings.

Before going on, we must first say what is the GUE measure on R, cf. 1.0-2.
For this, we first pick an integer N > 1, and consider the unitary group U(N) of
size N. Given an element A in U(N}, its N eigenvalues lie on the unit circle, and
we form the N normalized (to have mean 1) spacings between pairs of adjacent
eigenvalues, and out of these N spacings we form the probability measure on R
which gives mass 1/N to each of the N normalized spacings. This measure we
call u(A, U(N)), the spacing measure attached to an element A in U(N). We view
A p(A,U(N)) as a measure-valued function on U(N). One can make sense of
the integral of this function over U(N) against the total mass one Haar measure
dA on U(N): the result makes sense as a probability measure on R, denoted

WUNY) = /U o HA TN d

One then shows that as N grows, the measures u(U(N)) on R have a limit which
is again a probability measure on R, which we denote p(univ), and call the GUE
measure.! One shows that its cumulative distribution function
CDF ,(univ)(z) = / du(univ)
[0,z
is continuous on R. [In fact, this measure has a density, which vanishes outside
R, and is real analytic on R>g, cf. Appendix: Graphs for a picture.]

For the application to curves that we have in mind, we need to know that we
can obtain the GUE measure not just from the series of unitary groups U{N), but
also from any of the series of compact classical groups. Indeed, suppose we are
given any compact subgroup K of a given unitary group U(N). We can, for each
element A in K, form the spacing measure attached to A thought of as an element
of U(N). To remind ourselves that we do this only for elements of K, we denote
this measure u(A, K). Then we view A — (A, K) as a measure-valued function
on K, and we integrate this function against the total mass one Haar measure dA

1In the physics literature, this measure often carries Wigner's name



INTRODUCTION 3

on the compact group K. The result, denoted p(K) := [, u(A, K)dA, is itself a
probability measure on R. .

We can perform this construction with K any of the compact classical groups,
U(N) or SU(N) or USp(2N) or SO(2N +1) or SO(2N) or O(2N +1) or O(2N) in
their standard representations. We show that for G(N) running over any of these
series of compact classical groups, the sequence of probability measures u(G(N))
on R converges, as N grows, to the same measure u(univ), the GUE measure, that
we obtained as the large N limit of the u(U(N)) measures. [The case which will
be relevant to curves over finite fields will turn out to be the compact symplectic
groups USp(2N).]

Now let us return to a curve C/F, over a finite field, of some genus g. Since
the spacing measure u{C/F,) gives each of 2¢g points mass 1/2g, its CDF is a step
function, with 2g jumps. So it cannot possibly be the case that u(C/F,) is equal to
the GUE measure, whose CDF is continuous. Moreover, as we shall see later in this
Introduction, over any finite field there are sequences of curves of increasing genus
whose spacing measures are arbitrarily close to the delta measure &p supported at
the origin. So it is simply not true that the spacing measures of all curves of
large genus are close to the GUE measure. What we show is that “most” curves
of large genus over a large finite field have their spacing measure quite close to the
GUE measure, or in other words that “most” curves of sufficiently large genus over
a sufficiently large finite field satisfy the Montgomery-Odlyzko Law to an arbitrary
degree of precision.

To make this more precise, we need a numerical measure of how close two
probability measures on R, say u and v, are. For this, we use the Kolmogorofi-
Smirnov discrepancy, defined as the greatest vertical distance between the graphs
of their CDF’s:

discrep(u, v) := Sup | CDF,(s) — CDF,(s)|.
sinR

Notice that discrep(y, v) is a number which always lies in the closed interval [0, 1],
just because CDF’s of probability measures take values in [0, 1].

Now let us denote by M,(F,) the set, known to be finite, consisting of all
F,-isomorphism classes of genus g curves over F,. Our essential result about the
spacing measures u(C/F,) attached to curves over finite fields, and their relation
to the GUE measure p(univ), is this:

Theorem (cf. 12.2.3). We have the double limit formula
lim tm (/Mp(F)) 3 discrep(u(unin), u(C/F,)) = 0.
gm0 C in My(F,)
More precisely, for any real € > 0, there exists an integer N(g) such that for any
genus g > N (&), we have the inequality
Jim (1/|Mg(F)) D discrep(u(unit), w(C/F,)) < g1/,
C in My(F,)
To see what this says concretely, pick a small € > 0, and fix a genus g > N(g).
Then for ¢ sufficiently large, say ¢ > M (e, g), we will have

(3%) (1/IM(F)l) ). discrep(u(univ), u(C/F,)) < 2¢°~'/°.
C in M, (Fy)
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To see what this last inequality means about “most” curves, pick any two positive
real numbers a and 3 with a + 3 =1/6 — €. Denote by

M (Fg)(discrep > g%} C My(Fy)
the set of those C in M,(F,) for which
discrep(u(univ), u(C/Fg)) > ¢~ °.
Then we easily infer from (¥*) above that
| Mg (Fy)(discrep > g7*)|/|IM,(Fy)| < 2977,

ie., the fraction of curves in My(F,) whose discrepancy exceeds g~ is at most
2¢~4, provided that g > N(¢) and provided that ¢ > M(e,g). In other words, if
g and then g are sufficiently large, then the probability is at least 1 — 2¢™# that
a randomly chosen curve in My(F;} has discrepancy < g=. This is the sense in
which most curves of sufficiently large genus over a sufficiently large finite field have
a spacing measure which is arbitrarily close to the GUE measure.

To explain how one proves such results, we must now return to a discussion
of the GUE measure u(univ) and its genesis from compact classical groups G{N).
Suppose we take a particular G(N}, and an element A in G(N). How close is the
spacing measure (A, G(N}) to the GUE measure? The answer is that “most”
elements A of a large G(N) have their spacing measures quite close to the GUE
measure, as the following “law of large numbers” shows.

Theorem (cf. 1.2.6). In any of the series of compact classical groups G(N) =
U(N) or SU(N) or USp(2N) or SO(2N +1) or SO(2N) or O(2N +1) or O(2N),
we haeve

lim discrep(u(A, G(N)), u{univ)) dA = 0.
More precisely, given ¢ > 0, there exists an integer N(g) such that for any
N > N(e), we have

f discrep{u(A, G(N)), u(univ)) dA < N1/6,
CLN)

We also remark that the integrand above,
A — discrep(u( A, G(N)), u(univ)),

is a continuous (cf. 1.0.12) central function on G(N). This remark will allow us
below to apply Deligne's equidistribution theorem {(cf. 9.2.6, 9.6.10, 9.7.10) in a
completely straightforward way.

The connection between Theorems 12.2.3 and 1.2.6 comes about through mon-
odromy, and Deligne’s equidistribution theorem (9.6.10). Recall that the zeta func-
tion of a genus g curve C/F, is of the form P(T)/(1—T)(1—¢T), for P a polynomial
of degree 2g with the property that the auxiliary polynomial P(T/Sqrt(g)) has all
its roots on the unit circle. However, the polynomial P(T'/ Sqrt(g)) has a bit more
structure; namely, its 29 roots on the unit circle can be partitioned into g pairs
of inverses (£,1/€) on the unit circle. One interpretation of this fact is that there
exists a conjugacy class 9(C/F,) in the compact group USp(2g) such that

P(T/Sart(q)) = det(1 - TO(C/F,)).
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Because conjugacy classes in USp{2g) are uniquely determined by their characteris-
tic polynomials, there is a unique such conjugacy class 3(C/F,)} in USp(2g), which
we call the unitarized Frobenius conjugacy class attached to C/Fg.

Now fix an integer N > 1 and a genus g > 1. Consider a proper smooth family
m:C — S of genus ¢ curves, parameterized by a scheme S which, for simplicity, we
assume to be smooth and surjective over Spec(Z[1/N]) with geometrically connected
fibres. We further assume that for every prime number p which does not divide N,
the geometric monodromy group of the family of curves

T@F,:CoF, - S®F,

in characteristic p is the full symplectic group Sp(2g). Once we have made this
assumption about the monodromy of the family, Deligne's equidistribution theorem
{cf. 9.6.10) says the following. For each finite field F, of characteristic not dividing
N, and each point s in the finite set S(F;) of Fg-valued points of S, look at the
curve C;/F, named by the point s, and look at its unitarized Frobenius conjugacy
classes ¥(C,/F,) in USp(2g). Then these unitarized Frobenius conjugacy classes
are equidistributed in the space USp(2g)* of conjugacy classes in U Sp(2g) for the
probability measure piya.r on USp(2¢)# which is the direct image from USp(2g) of
its normalized Haar measure, in the following sense: for any C-valued continuous
central function f on USp(2g), we have the limit formula

im  (/ISEM) D FI(C/Fy))

—00,q prime to N
¢ @ prim sin S(Fy)

= / f duHaar-
USp(2g)*

In order to apply this to study the discrepancy for the curves over finite fields
C;s/F4 which occur in our family, we have only to apply Deligne’s equidistribution
theorem above to the continuous central function f on USp(2g) given by

A — discrep(u(A, USp(2g)), p(univ)).

We know from Theorem 1.2.6 quoted above that, given £ > 0, there is an N{¢) such
that for g > N(e), we have, for this f, the estimate

_/ f dpttnar < g5~ V0.
USp(2g)#

So if our family C/S has g > N(c), and we use Deligne’s equidistribution
theorem to calculate this integral, we find the estimate

lim G (/ISE) 3 discrep(u(univ), u(Ca/Fy)) < ¢7°.

g—oo,prime

s in S(F,)
In particular, if ¢ is prime to N and sufficiently large, we will have
() (1/IS(FH) D discrep(u(univ), u(C./Fy)) < 2°7 /6.
s in S(Fq)

To see what this means about the discrepancy of “most” curves in the family C/S,
pick a pair of positive real numbers ¢, 8 with o + § = 1/6 — . Denote by

S(F,)(discrep > g~ ) C S(Fy)
the set of those s in S(F,) for which
discrep(u(univ), u(Cs/Fq)) > g7<.
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Then we easily infer from (%x) above that
|S(F,)(discrep > ¢~*)I/|S(F,)| < 2977,

provided that g > N(e) and that g is prime to N and sufficiently large (how large
depends on the particular family C/S).

To obtain Theorem 12.2.3 stated above about Mg, we need only replace S(F,)
in the above formulas by My(F,). There are some technical difficulties to be
overcome in justifying this formal replacement; cf. 10.6 and 10.7 for an exhaustive
discussion of these difficulties and their resolution.

Once we know that “most” curves over finite fields have their spacing measure
close to the GUE measure, it is natural to ask if, given a finite field F,;, we can
exhibit a single explicit sequence of curves {C,/F,}, with C, of genus g, whose
spacing measures u(Cgy/F,) approach the GUE measure p(univ) as g — oo, in the
sense that limg_, o discrep(p(Cy /Fg), pt(univ)) = 0. We do not know how to do this
at present.

To the extent that we can write down families (of varieties, of exponential
sums, of ...) over finite fields whose geometric monodromy groups are large clas-
sical groups, we will get results similar to those for curves for the behavior of the
discrepancy in these families as well. We work this out explicitly for universal fam-
ilies of abelian varieties (where the group is again Sp), of smooth hypersurfaces in
projective space (where the group is either Sp or O), and for multi-variable Kloos-
terman sums (where the group is either Sp, SL or SO(odd)). Again in these more
general cases we do not know how to write down explicit sequences of objects of
the type considered whose spacing measures approach the GUE measure.

In the case of the Kloosterman sums Kl, (3, e in F) there is a plausible can-
didate for such a sequence.

Conjecture. Fiz a finite field ¥y, fir any choice of @ in FY and fiz any choice
of the nontrivial additive character ¥ of Fq. Then the spacing measure

p(Klp (¥, a in Ff))

attached to Kl (v, a in FX), or more precisely to its L-function, tends to the GUE
measure as n — 00 in the sense that

lim discrep(u(Kl,. (¥, a in Fy)), p(univ)) = 0.
n—oo

Suppose now that we fix an integer N > 1, and a large integer g. Suppose
that we are given a curve C/Z[1/N] which is proper and smooth with geometrically
connected fibres of genus g. For any prime p not dividing N, the reduction mod p of
our curve C/Z[1/N] is a curve C ® F,/F, of genus g, which has a spacing measure
4(C ® F,/F,). When is it reasonable to expect that for most primes p which
are prime to N, the spacing measure u(C ® F,,/F,) is close to the GUE measure
#(univ}? When should we expect some other behaviour?

Given C/Z[1/N] as above, for every prime p not dividing N, we obtain a uni-
tarized Frobenius conjugacy class 3(C @ F,/F,) in USp(2g). When is it reasonable
to expect that these classes 9(C ® F,/F,) are equidistributed in USp(2g)#, in the
sense that for any C-valued continuous central function f on USp(2g) we have

/USp(2g) f(A)dA = Xll_l.nm(l/'rr(X)) Z FO(C & F,/F,))?

p<X prime to N
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The Generalized Sato-Tate Conjecture is that this equidistribution {of
the classes 9(C ® F,,/F,) in USp(2g)#) holds whenever C/Z[1/N] has big arith-
metic monodromy, in the sense that for every prime I, the action of Gal(Q/Q) on
HY(C ® Q,Q;) has image which is open in the group GSp(2g,Q:) of symplectic
similitudes. As an immediate application of Theorem 12.2.3, we find:

Theorem. In the notations of Theorem 1.2.6, letc > 0 and g > N(e). Suppose
C/Z[1/N] is a curve of genus g as above, which has big arithmetic monodromy.
Suppose the generalized Sato-Tate conjecture holds. Then we have the inequality

xhlnoo(l/vr(x)) }: discrep{u(d(C @ Fy,/F,)), u(univ)) < gemMe,

p<X prime to N

Corollary. Suppose for each integer g; in an infinite subset ' of Z>,, we
are given an integer N; > 1 and o curve Cy, /Z{1/N;] of genus g; which has big
arithmetic monodromy. Suppose the generalized Sato-Tate conjecture holds. Then
the double limit im;_,o, limy_,. of

(/n(X)) 3 discrep(u(3(Cy, ® Fy/F,)), u(univ)

p<X prime to N;

vanishes.

Question. Notations and hypotheses as in the corollary, suppose that all N;
have a common value N, cf. pages 12-13 of this Introduction for examples of such
gituations. What is the density of the set of primes p not dividing N for which

lim dlscrep(p.(ﬂ(C @ Fy/Fp)), p(univ}) = 07

g—ooin

Presumably this need not hold for every prime p not dividing N.

Now let us turn to the opposite extreme, cases in which either we can prove or
we expect that the spacing measure is far from the GUE measure.

We first give, for every odd prime p, a sequence of curves over the prime field
F, whose genera go to infinity and whose spacing measures converge to the delta
measure &y supported at the origin. For each power ¢ = p! of p, we consider the
hyperelliptic curve C,/F, of equation

Cp: Y =X?_X.

This curve has genus g given by 2g = g — 1. Over F,, this curve admits the Artin-
Schreier action X — X+¢,Y — Y of the additive group of F,. If we pick any prime
{ # p, and decompose the cohomology group H'(C, ® F,,Q;) under this action,
each of the ¢ — 1 nontrivial additive characters ¥ of Fy occurs with multiplicity
one. On the corresponding one-dimensional eigenspace, the Frobenius with respect
to Fy, Frobg, necessarily acts as a scalar, and that scalar is none other than minus
the quadratic Gauss sum over F:

Gy, x2) =~ Y, d(@xalz
z in FY

where we have written X for the quadratic character of Fy. Now it is elementary
that the quadratic Gauss sum G,(3, x2) with any nontrivial ¥ satisfies

(Gq(¥, x2))* = x2(—1)g.
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Moreover, both square roots occur as ¥ varies. Thus Frob, has precisely 2 distinct
eigenvalues on H!. To see what this means for Frob,, write ¢ = pf. Then Frob,
is the f'th power of Frob,, and hence Frob, has at most 2f distinct eigenvalues on
H'. This means that among the ¢ — 1 = pf — 1 normalized spacings between the
reciprocal zeroes of the zeta function of C,;/Fp, all but at most 2f of the spacings
are equal to zero. Since 2f/(p — 1) — 0 as f — oo, we see that the spacing
measures u(C1/F,) approach & as f — 0o. Since the GUE measure is absolutely
continuous with respect to Lebesgue measure, it gives the origin mass zero. Hence
we have

discrep((Cy /Fy), w(univ)) > 1 - 2f/(p” — 1),

a crude quantification of the statement that 1(C,/F,) is far from the GUE measure.

Here is another example, valid for any prime p > 0, of a sequence of curves
over F, whose genera go to infinity and whose spacing measures converge to &g.
For each power ¢ := p/ of p, consider the degree ¢ + 1 Fermat curve over F,, say,
Fermat(g + 1)/F,, of homogeneous equation

Xl pyet! = zo+l,

This curve has genus g given by 2¢g = g(¢ — 1). It is elementary that over F 2, this
curve has 1 + ¢° points. [Hint: for z in Fg2, %+! is its norm to Fy, and the norm
map is surjective.] But we readily compute that

1+¢°=14¢* +2g9¢ =1+ g% — 2¢(—q).

Thus the Weil bound is attained, and hence every eigenvalue of Frob,z on H! is
—g.  Therefore Frob, has at most 2f distinct eigenvalues on H', while
dim H'! = p/(pf — 1), and we conclude as in the previous example that the spacing
measure u(Fermat(g + 1)/F,) tends to dy as f — 0o, and that

discrep (p(Fermat(g + 1)/F,), u(univ)) > 1 ~ 2f/(p! (p/ — 1)).

We now turn to a case in which we expect the spacing measure to be far from
the GUE measure. For each prime [, consider the modular curve Xo(l)/Z[1/1],
whose genus ¢, is approximately (! — 1)/12. Choose any prime /. When we de-
compose H! := H'(Xy(!) ® Q,Q;) under the Hecke operators, we find a direct
sum of g; two-dimensional subspaces, corresponding to the g; different weight two
normalized (a;(f) = 1) Hecke-eigenforms f = 3" . an(f)g”® on Xo(l). For each
such eigenform f, and each prime p with p # ! and p # U', the characteristic poly-
nomial of Frob, on the two-dimensional Hecke eigenspace in H' named by f is
X? —a,(f)X + p. We know by Deligne that |a,{f)| < 2Sqrt(p), so the two eigen-
values of Frob, here are Sqrt(p)et?»(/) where ¥p(f) is the unique angle in [0, ]
such that a,(f) = 2Sqrt(p) cos(Jp(f)). We denote by 9, in [0, 7]% the g;-tuple of
angles ¥, (f) indexed by eigenforms f, and we view 9, as a conjugacy class in the
product group USp(2)% = SU{2)%.

This Hecke-eigenvalue decomposition of H! is respected by Gal(Q/Q), and
forces the image of Gal(Q/Q) to land in the subgroup of the g;-fold self product
GL(2,Qy)% of GL(2,Qy) with itself consisting of elements (A;,...,Aq) all of
which have equal determinants. According to Ribet [Rib, 7.18], the image of
Gal(Q/Q) is Zariski dense in this group. In view of Ribet’s result, the natural
Sato-Tate conjecture for Xo(l) is the assertion that the conjugacy classes {9, }p:s
in the product group SU(2)% are equidistributed with respect to Haar measure
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in the sense that for any C-valued continuous central function £ on SU(2)%, the
integral

N
= z ) sin(z; i

=1

can be computed as the limit

Jim (1/7(X)) D7 h(By).
PLX,pH#l
Let us admit the truth of this Sato-Tate conjecture for Xy(!). We denote by

F(x):= (2/7) ./[0 ]sing(t)dt = (2z — sin(2z)) /27

the bijection from [0, 7] to [0, 1] which carries the measure (2/7) sin?(t) dt = dF on
[0, 7] to uniform measure dz on [0,1]. [We call F the straightening function for the
measure in question.] Given an element ¢ in [0, 7]%, we denote by F(#) in [0, 1]%
the result of applying F component by component. The Sato-Tate conjecture for
Xo(l) says precisely that the g;-tuples {F(d;)}p in [0,1]9 are equidistributed
in [0,1]% for uniform measure. Arrange the components of F(¥,) in increasing
numerical order, say

0< F(dy)1 S F(Wp)a < - S F(¥,)g < 1.

The F-straightened spacing measure pr(Xy(l) ® F,/F,) attached to Xo(I1) @ F, /F,
is the measure of total mass 1 — 1/¢; on R which gives each of the g; — 1 normal-
ized spacings &; := @i(F(¥p)i+1 — F(9,);) the mass 1/g;. An elementary analysis
of spacings between points in an interval which are randomly chosen for Lebesgue
measure shows that in this kind of question, the limiting answer is not the rather
exotic GUE, but rather the much more elementary and familiar exponential distri-
bution u(Poisson), the measure on R supported in R>q and given there by e~* dx.

Theorem. Assume the Sato-Tate conjecture above for all the modular curves
Xo(1)/Z[1/1],1 any prime. Then the F-straightened spacing measures

pr(Xo(l) ® ]Fp/]Fp)

are, for large 1, very near the Poisson measure p(Poisson) for most primes p # L.
More precisely, the double limit limy_.o. imy o of

(1/7(X)) Z discrep{pir (Xo(l) ® F, /F;), u(Poisson))
p<X p#l
vanishes.

Question. Is it true that for each prime p, we have

lim discrep(ur(Xo(l) ® Fp/F,), u(Poisson)) = 07
{—oo,l#p
We now discuss another aspect of our work, the distribution in families of “low-
lying zeroes”. [This terminology “low-lying zeroes” is inspired by the number field
picture, where we expect all the nontrivial zeroes to lie on a single vertical line, and
we measure height from the real axis. In the finite field case, where the normalized
zeroes lie on the unit circle, it would be more accurate to speak of “zeroes near 1”.]
For simplicity, we will discuss only the case of curves. Recall that the zeta function
of a genus g curve C/F, is of the form P(T")/(1 — T)(1 — ¢T), for P & polynomial
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of degree 2g with the property that the auxiliary polynomial P{T/Sqrt(q)) has all
its 2¢ roots on the unit circle, and its 2g roots can be partitioned into ¢ pairs of
inverses (£,1/£). So we may write P(T) as

g
P(T) = [[(1 - &sT)(1 - a;7T),
j=1
with
a_j =aj, aj_; =q.
If we pick the a; (rather than the a_j) to le in the upper half plane, we have
a; = Sart{g)e®,  0<p; <,

and with suitable renumbering the g angles y; in [0, 7] may be assumed to be in
increasing order:

0Sp1<p2<-- <y, <m.

With this numbering, we refer to (g/m)y; as the j’th normalized angle attached to
the curve C/Fy, or, if we like, attached to the unitarized Frobenius conjugacy class
Y(C/Fy).

More generally, given any element A in USp(2g), we have

g
det(1 — TA) = [J(1 - Te*3)(1 — Te5)
=1
for a unique sequence of angles 0 < ¢; < 3 < --- < @y < 7. For each integer
1 < j < g, the function on USp(2g) defined by

A g5 = p;(A)

is a continuous central function from USp(2g) to [0, 7]. We refer to (g/m)p;(A) as
the j’th normalized angle attached to the conjugacy class of the element A. The
function

A (g/m)p;(A)

is & continuous central function from USp(2g) to Ryq.

If we take the direct image of normalized Haar measure piya,, on USp(2g) by
the map A — (g/m)yp;(A), we obtain a probability measure on R supported in Rxg,
which we denote v(j, USp(2g)).

There are analogous constructions for the other classical groups, cf. 6.9 for the
details, which give rise to probability measures v(j, G(N)) for 1 < 7 < N and
G(N) any of U(N),USp(2N),SO(2N +1),SO(2N),O_(2N +1),0_(2N +2), all
on the real line and all supported in Rxo. Now unlike the spacing measures, which
were “universal” in the sense that the large NV limit existed and was independent
of which sequence of G(N)’s we ran through, these v measures do depend on the
sequence of G(N)’s chosen.

Theorem (7.5.5, 7.5.6). For each integer j > 1, there exist® three probability
measures v(j),v(—,j), and v(+,7) on R, supported in R>q and having continuous

21n fact, these measures all have densities, which for 7 = 1 are shown in Appendix: Graphs.
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CDF’s, such that we have the following large N limit statements for convergence in
the sense of uniform convergence of CDF’s:

v(i}, i G(N)=U(N),
Am v, G(N)) = {v(+.5), i G(N) = SO(2N} or O_(2N + 1),
v(—j), if G(N)=USp(2N),SO(2N +1),0_(2N + 2).

Here is a convenient mnemonic to remember which sign in v(&, j} is given hy
which orthogonal group series: the sign is the common sign of det(—A) for A in
either SO(2N) or O_(2N +1) or SO{(2N +1) or O_(2N +2). Experts will recognize
this sign as being the sign in the functional equation of P(T) := det(1 — T A)
under T — 1/T, which for orthogonal A is

TP p(1/T) = det(—A)P(T).

To see what this means concretely for curves, fix an integer N > 1, and sup-
pose for each genus g > 1 we are given a proper smooth family = : C; — Sy of
genus g curves, parameterized by a scheme S, which is smooth and surjective over
Spec(Z[1/N]) with geometrically connected fibres. We further assume that for ev-
ery prime number p which does not divide N, the geometric monodromy group of
the family of curves

T®F,:C,®F, - S5, ®F,

in characteristic p is the full symplectic group Sp(2g). For example, we might take
N =2, and for C;/S; the universal family of hyperelliptic curves Y? = Sag+1(X)
parameterized by the space Sy := Hgg41 of monic polynomials fog4; of degree
2g + 1 with invertible discriminant.

Let now h(z) be any C-valued continuous function on R. By Deligne’s equidis-
tribution theorem, for each integer j > 1, and each genus g > 7, we can compute
the integral

/ b dv(4,USp(29)) == / h{(g/7)p;(A)) dA
R USp(2g)

as the limit

lim  (1/IS(F)) D, hl({g/myes(9Cqus/Fa))).

g—00, prime to i
’ sin §(Fq)

Using the theorem above, about the large N limit of the measures (7, USp(2g))
being v(--, 7), we find that, for h(z) any bounded C-valued continuous function on
R, we can compute the integral

| hde)=5) = Jim h{(g/m)e;(A)) dA

9720 JU Sp(29)
as the double limit

lim lim (LS, (F)) Y A(9/m)es(3(Co,s/Fa)))-

9—00 g—ox, prime to
K P s in §(Fg)

If we look instead at universal families of hypersurfaces of even dimension, and
average over those whose functional equation (for the factor of its zeta function
corresponding to the primitive part of middle dimensional cohomology) has a fixed
sign ¢ = *1, we get double limit formulas for f; hdv(e,j). [Universal families
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of odd dimensional hypersurfaces have monodromy group Sp, so will lead only to
double limit formulas for f; hdv(—,j)}.]

We now leave the realm of what is proven, and discuss what might be true if, in
the double limit formulas above, we were to omit the inner limit over ¢. Again to fix
ideas, we return to the case of curves. Fix an integer N > 1, and an infinite subset
I' of Z»;. Suppose for each genus g in ' we are given a proper smooth family
7 : Cg — S, of genus g curves, parameterized by a scheme Sy which is smooth
and surjective over Spec(Z[1/N]) with geometrically connected fibres. We further
assume that for every prime number p which does not divide N, and for every g in
I', the geometric monodromy group of the family of curves

7®Fp: C,0F, — S, ®F,

in characteristic p is the full symplectic group Sp(2g). To further simplify matters,
we assume also that Sy(F,) is nonempty for every prime p not dividing N, and for
every genus g in I'.

We say that this collection of families {C4/Sg}4 in r weakly calculates the mea-
sure v(—, j) if, for every finite field IF, of characteristic prime to N, and for every
bounded continuous function A on R, we can calculate f, hdv(—,7) as

lim {1/ Y AS@EM| D Do Al{e/m@s(8(Co.e/Fo)))-

n—0oo .
g<n in 9<nin ' sin §,(F,)

We say that this collection of families {Cq4,Sg}ginr strongly calculates the
measure v(—, j) if, for every finite field F; of characteristic prime to IV, and for
every bounded continuous function h on R, we can calculate [ hdv(—,3) as

A8, ED) 3D k(a/mes(9Cos/FO))-

sin Sg(Fy)

It is elementary that if {C;/S;}, in r strongly calculates the measure v{—, j),
then {C;/S,}gin r weakly calculates it as well. If for every finite field Fq of char-
acteristic prime to N, the cardinalities |S,(F,)| grow fast enough that the ratios

(L/1Ss(F) D 184 (Fy)l

¥<gin

stay bounded (as g varies over T, ¢ fixed: the bound can vary with ¢), then the two
notions, strong and weak calculation of v{—, j), are equivalent.

Conjecture. Fiz an integer N > 1, and an infinite subset I' of Z>,. Sup-
pose for each genus g in I' we are given a proper smooth family m : C; — S, of
genus g curves, parameterized by o scheme Sy which is smooth end surjective over
Spec(Z[1/N]) with geometrically connected fibres. Suppose that for every g in T
and for every prime number p which does not divide N, the geometric monodromy
group of the family of curves

T®F, :C,®F, -5, 8F,
in characteristic p 13 the full symplectic group Sp(2g). Suppose also that S (F,)
18 nonempty for every prime p not dividing N, and for every genus g in I'. Then

for every integer j > 1, the coliection of families {Cy/Sy}g in v weakly calculates
the measure v(—, ). Moreover, if in addition we have limg_.o0 in 1 |Sy(Fg)| = 00
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for every finite field F, of characteristic prime to N, then the collection of families
{C4/S4}¢ in r strongly calculates the measure v(—,j).

Let us give some examples of situations N,T', {C,/S,}4 in r which satisfy all of
the hypotheses imposed in the statement of the conjecture.

1) N =1,T = Z»1, My 3k, universal family of curves with 3K structure (cf.
10.6).

2) N =2,T' = Z51, Hags1 or Hagyr, family Y2 = foo,(X) (cf. 10.1.18.3-4).

2biS) N = 2, r'= Zzl,H29+2 or H29+2, family Y2 = f29+2(X) (Cf. 10.1.18.4—5).

3) N =2, = Z>,: write 2g to the base 2as )" 2%, and define F 54 (X)
as the corresponding product of cyclotomic polynomials ®ga+1(X) = (X2 +1):

Fpp9(X) = H (X* +1).

a in base 2 expansion of 2g

some a>1

Take for Cy/5, the one-parameter (“T”) family of hyperelliptic curves of equation
Y2 = (X — T)F4(X).

4) N = 2l for | a prime, I' = those integers g > 1 such that in the base !
expression of 2g, all the digits are either 0 or I — 1: write 2g to the base [ as
Y come a>olt — 1)1, and define Fyo,(X) as the corresponding product of cyclo-
tomic polynomials ®,a+1(X). Take for Cy/S, the one-parameter (“T”) family of
hyperelliptic curves of equation ¥2? = (X — T} F} 29(X). [Of course, if we take ! = 2
in this example, we find example 3).]

5) N = 2l for | a prime, I' = those g > 1 such that 2¢ = ({ — 1){* for some
integer o > 0. Take for C,/S, the one-parameter (“I™) family of hyperelliptic
curves of equation Y? = (X — T)®a+1 (X).

Notice that in examples 1), 2), and 2bis), we do have

lim - |S4{Fg)| = oo.
g—oo in T
But in examples 3) through 5), the parameter space S, is always a Zariski open
set in the affine line Al, so |S,(F,)| < ¢ is uniformly bounded. The relevant sets
S4(F;) are always nonempty, since both 0 and +1 are always allowed parameter
values. -

The conjecture in the examples 2) and 2bis) (H version) can be viewed as a
statement about the low-lying zeroes of the L-functions of all quadratic extensions
of Fy(X). So seen, it has an analogue for Dirichlet L-series with quadratic char-
acter, which we will now formulate. Thus we take a quadratic extension K/Q,
of diseriminant Dy, corresponding to the quadratic Dirichlet character xx. We
assume that L(s, xx) satisfies the Riemann Hypothesis. We write the nontrivial
zeroes of L(s,xk) (which by the (even!) functional equation occur in conjugate
pairs) as 1/2 £iyx; with 0 < yr1 <y Sk <o

Conjecture. The low-lyying zeroes of Dirichlet L-functions with guadratic char-
acter weakly calculote the measure v(—,7), in the following sense. For any integer
j 21, and for any compactly supported continuous C-valued function h on R, we
can calculate the integral [ hdv(—,j) as

(L/{K with Dk < X})) Y. hlyk;log(Dx)/2x).
K with Di<X

lim
X—oo

3This second part of the conjecture, about. strong calculation, seems to us more speculative
than the first part.





























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































