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Abstract
We study certain one-parameter families of exponential sums of Airy–Laurent type.
Their general theory was developed in Katz and Tiep (Airy sheaves of Laurent type: an
introduction, https://web.math.princeton.edu/~nmk/kt31_11sept.pdf). In the present
paper, we make use of that general theory to compute monodromy groups in some
particularly simple families (in the sense of “simple to remember"), realizing Weyl
groups of type E6 and E8.
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1 Introduction

In classical analysis, Airy functions are the Fourier transforms of exponentials eg(x)

of polynomials, (originally for the polynomial g(x) ..= x3/3) and Airy differential
equations are the linear differential equations
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(
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dt
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y + t y = 0

they satisfy. These differential equations have an irregular singularity at ∞, and have
quite interesting differential Galois groups. In the seminal paper [21] of Such, he
introduces their �-adic finite field analogues, the local systems whose trace functions
are of the form

t �→ −
∑

x

ψ(g(x) + t x).

The local systems we are concerned with here are generalizations of these Airy
local systems in several ways. We allow the “t term" t x to be replaced by t xa , we
allow the polynomial g(x) to be replaced by a Laurent polynomial f (1/x) + g(x),
and we allow an “outside factor" χ(x) in the sum. Here is a more detailed discussion.

We work in odd characteristic p > 0, and denote by Fp an algebraic closure of Fp.
We also fix a prime � �= p to be able to speak of Q�-adic cohomology. We fix integers

A � 1, a � 1

about which we assume

p � Aa.

We fix polynomials

f (x) ∈ k[x], deg( f ) = A, k some finite subfield of Fp,

g(x) ∈ k[x], deg(g) < a, k some finite subfield of Fp,

We make the assumption that f (x) is Artin–Schreier reduced: this means that in the
expression f (x) = ∑

i ci xi , we have ci = 0, if p | i . We define

gcddeg( f ) ..= gcd({i | ci �= 0})

the greatest common divisor of the degrees of the monomials appearing in f . We
suppose

gcd(a, gcddeg( f )) = 1.

We fix χ a (possibly trivial) multiplicative character of a finite extension k/Fp con-
taining the coefficients of f and g. We denote by ψ a chosen nontrivial additive
character of Fp. For L/k a finite extension, we denote by χL , respectively by ψL , the
composition of χ , respectively of ψ , with NormL/k , respectively with TraceL/Fp .

We denote by G( f , g, a, χ) the lisse sheaf on Gm/k whose trace function at time
t ∈ L×, for L/k a finite extension, is
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t �→ −
∑

x∈L×
ψL( f (1/x) + g(x) + t xa)χL(x).

We will mostly be concerned with the case when χ = χ2, the quadratic character.

2 Basic facts about G(f ,g, a,�)

The local system G( f , g, a, χ) is lisse of rank D = A + a on Gm , and pure of weight
one. We view it as being the Fourier transform

FTψ

([a]�
(
Lψ( f (1/x)+g(x)) ⊗Lχ (x)

))
.

Lemma 2.1 Let A � 1, a � 1, p � Aa, f be Artin–Schreier reduced, and
gcd(a, gcddeg( f )) = 1. Then the I (∞)-representation of G( f , g, a, χ) is irreducible.
It has rank A + a and all slopes A/(A + a).

Proof This is a straightforward application of Laumon’s results on the local mon-
odromy of FTψ . The input sheaf to FTψ is lisse on Gm of rank a, with I (0)-slopes
A/a. The hypothesis

gcd(a, gcddeg( f )) = 1

implies that the I (0)-representation of the input sheaf is irreducible, cf. the proof of
[19, Lemma 2.1].

Then the I (∞)-representationofG( f , g, a, χ) is FTloc(0,∞)(rank a, slopes A/a),
which has rank A + a and all slopes A/(A + a), cf. [10, 7.4.4 (4)]. The asserted irre-
ducibility result from the irreducibility of the input and the fact that FTloc(0,∞) is a
suitable equivalence of categories. 	

Lemma 2.2 Suppose that A = 1 and that p � (a + 1). Then the image of P(∞) in
the representation attached to G( f , g, a, χ) is isomorphic to the additive group of the
field Fp(μa+1).

Proof The I (∞)-representation is irreducible of prime to p rank a + 1 and has
Swan = 1.By [9, 1.14], the I (∞)-representation is theKummer direct image [a+1]�L
of some L with Swan = 1. Moreover, as a P(∞)-representation, the I (∞) represen-
tation is the direct sum of the multiplicative translates, by elements of μa+1, of L.
Because L has Swan = 1, it is of the form Lψ(ax) for some a �= 0 in Fp. Now repeat
the (end of) the proof of [14, Lemma 1.2]. 	

Lemma 2.3 If both f , g are odd polynomials and a is odd, the local system
G( f , g, a, χ2) is geometrically self-dual. Indeed, its constant field twist by
1/Gauss(ψ, χ2) is arithmetically self-dual.

Proof The local system G( f , g, a, χ2) is geometrically irreducible. The oddness of
f , g, a insures that its constant field twist by 1/Gauss(ψ, χ2), which is pure of weight
zero, has real traces, hence the asserted autoduality. 	
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Theorem 2.4 If both f , g are odd polynomials and a is odd, the geometric determinant
of G( f , g, a, χ2) is Lχ2 .

Proof We first explain the idea. For fixed data f , a, the local system G( f , g, a, χ2)

makes sense for any odd polynomial g of degree < a. Such g form an affine space
A

(a−1)/2, and indeed there is a local system on A
(a−1)/2×Gm , call it Guniv( f , a, χ),

whose trace function at a point (g, t) is

(g, t) �→ −
∑

x

ψ( f (1/x) + g(x) + t xa)χ2(x).

Because this local system is self-dual, its determinant, call it Luniv, is either triv-
ial or nontrivial of order 2. Viewing μ2 as Z/2Z, we view Luniv as an element of
H1((A(a−1)/2×Gm)/Fp, Z/2Z). Because we are in odd characteristic p, the groups
Hi (A(a−1)/2/Fp, Z/2Z) = 0 for all i > 0, and H0(A(a−1)/2/Fp, Z/2Z) = Z/2Z.

By the Kunneth formula [3, Corollary 1.11], the map

pr2 : A
(a−1)/2×Gm → Gm, (g, t) �→ t,

induces by pullback an isomorphism

H1(Gm/Fp, Z/2Z) ∼= H1((A(a−1)/2×Gm)/Fp, Z/2Z
)
.

For any fixed g0 ∈ A
(a−1)/2, pullback by the inclusion

inclg0 : Gm ⊂ A
(a−1)/2×Gm, t �→ (g0, t)

induces an isomorphism

H1((A(a−1)/2×Gm)/Fp, Z/2Z
) ∼= H1(Gm/Fp, Z/2Z).

The composition pr2◦ inclg0 is the identity map of Gm to itself. Therefore the compo-
sition of their pullbacks, incl�g0◦pr�2 is the identity on H1(Gm/Fp, Z/2Z).

On the one hand, if we view Luniv as the pullback by pr2 of a class L0 on Gm , then
for any g0 we have

incl�g0Luniv = L0.

The key point is that this pullback incl�g0Luniv is the determinant of the local system

G( f , g0, a, χ2) on Gm/Fp. What we must show is that L0 is Lχ2 . For this, it suffices
to check at the single point g0 = 0.

The local system G( f , g0 = 0, a, χ2) is the local system denoted by G( f , a, χ2) in
[20]. This local system has all∞-slopes A/(A +a) < 1, and hence its entire Ggeom is
the Zariski closure of all conjugates of the image of I (0). So its determinant is Lχ2 if
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and only if the determinant of its I (0)-representation isLχ2 . But its I (0)-representation
is the direct sum

⊕
ρ : ρa=χ2

Lρ ⊕(Q�)
A.

Because a is odd, its determinant is Lχ2 . Indeed, if we fix one ath root ρ0 of χ2, then
all the ath roots are ρ0� as � runs over the characters of order dividing a. So we have

∏
ρ : ρa=χ2

ρ = ρa
0 ×

∏
�∈Char(a)

� = χ2×1 = χ2. 	

Theorem 2.5 If f is an odd polynomial, a is odd, and a > 2 deg(g), the geometric
determinant of G( f , g, a, χ2) is Lχ2 .

Proof By [19, Corollary 2.2], the geometric determinant is either trivial or is Lχ2 .
Using the argument above, it first suffices to check for the specialization g = 0,
and then to observe that, again by the previous argument, this specialization has the
asserted determinant Lχ2 . 	


We will now consider the following local systems on G
3
m with trace functions

(r , s, t) �→ −
∑

x∈L×
ψL(r/x + sx B + t xa)χ2,L(x),

where
(B, a, p) = (3, 7, 5), (5, 7, 3), or (1, 7, 3), (2.5.1)

or
(B, a, p) = (1, 5, 3) or (2, 5, 3). (2.5.2)

We will deviate from our previous notation, and denote this system as Gr ,s as we
always let t vary. In particular, Gr0,s0 is the pullback of Gr ,s by r = r0 and s = s0 for
any (r0, s0) ∈ G

2
m .

Recall the conditions (S+) and (S-) defined in [17, Section 1.1]. A basic fact about
Gr ,s is the following

Proposition 2.6 For the three choices of (B, a, p) as in (2.5.1), and for any (r0, s0) ∈
G

2
m, Gr0,s0 , and hence Gr ,s , satisfies (S+).

Proof We already proved in Lemma 2.1 that the underlying representation V is I (∞)-
irreducible. Next, primitivity of Gr0,s0 is proved for (B, a, p) = (3, 7, 5), (5, 7, 3)
in [19, Theorem 2.10 (d)], and for (B, a, p) = (1, 7, 3) in [19, Theorem 2.11]. An
application of [19, Proposition 2.8] shows that V is tensor indecomposable over I (0).
Finally, for thefirst twochoices of (B, a, p),V is not tensor inducedby [19, Proposition
2.9 (d)]. The same conclusion holds for the third choice by [19, Lemma 3.9], for in
this case, D = 8 = 23, so the only possible n is 3, which is not prime to p = 3. 	
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Proposition 2.7 For the two choices of (B, a, p) as in (2.5.2), and for any (r0, s0) ∈
G

2
m, Gr0,s0 , and hence Gr ,s , satisfies (S+).

Proof This is [19, Corollary 2.13]. 	

A natural question is what we can say about these local systems after specializing

s = 0.

Proposition 2.8 In any odd characteristic p, for any integer a � 4 with p � a,
and any multiplicative character � of order N prime to p, the local system on
(Gm ×Gm)/Fp(μaN ) whose trace function is

(r , t) �→ −
∑
x �=0

ψ(r/x + t xa)�(x)

satisfies (S+). In fact, its specialization r = 1 satisfies (S+) and has Ggeom containing
a scalar multiple of a complex reflection if � �= 1.

Proof Choose an ath root χ of �, i.e., a character χ of Fp(μaN )× with χa = �.
[Concretely, in terms of a generator ω of Fp(μaN )×, �(ω) has order N , and the
choice of χ is the choice of an ath root of �(ω) in μaN . One then takes χ(ω) to be
this choice of ath root.] We first prove that the r = 1 specialization, namely the local
system on Gm/Fp(μaN ) whose trace function is

t �→ −
∑
x �=0

ψ(1/x + t xa)χa(x)

is geometrically isomorphic to the Kloosterman sheafK l (1, {χρ}ρ∈Char(a)). Indeed,
this r = 1, s = 0 local system is geometrically calculated in terms of hypergeometric
sheaves H as being

FTψ

([a]�(Lψ(1/x)⊗Lχa(x))
) = FTψ(Lχ ⊗[a]�H(∅;1))

∼= FTψ(Lχ ⊗H(∅;Char(a))

= FTψ(H(∅;χChar(a))) = K l ψ(1, χChar(a)),

cf. [10, 8.1.12 & 8.4.2]. Now, if � has order e > 1 then the ath power of a generator
g0 of I (0) of this Kloosterman sheaf has spectrum {1, ζe, . . . , ζe} and thus it is the
ζe-multiple of a complex reflection.

We next check that this Kloosterman sheaf is primitive. It suffices to show it is not
Kummer induced, by Pink’s result [8, Lemmas 11, 12]. We argue by contradiction.
Suppose it is Kummer induced of some degree d � 2, d | (a + 1). Choose a prime
divisor r of d. Then it is Kummer induced of degree r , and its characters are cosets of
Char(r). If r = a + 1, then its characters are precisely Char(r). But if we take two
distinct elements of χChar(a), their ratio is a nontrivial element of Char(a), so has
order dividing a, so cannot be an element of Char(r) (simply because gcd(r , a) = 1).
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If r < a + 1, then r � (a + 1)/2, hence outside the Char(r) coset of 1, there are two
distinct elements of χChar(a), and their ratio again gives a contradiction.

Because this Kloosterman sheaf is primitive, it has (S+) by [16, 1.7]. Once this
r = 1 pullback local system has (S+), then so does the (r , t) local system. 	

Corollary 2.9 For any odd prime p, any integer a � 4 with p � a, any integer 1 �
B < a, and any multiplicative character � of order N prime to p, the local system
on (Gm ×A

1×Gm)/Fp(μaN ) whose trace function is

(r , s, t) �→ −
∑
x �=0

ψ(r/x + sx B + t xa)�(x)

satisfies (S+).

Proof Indeed, its s = 0 pullback satisfies (S+). 	

Next we study the moment M2,2 of G(1/x, x B, a, χ) for B = 1, 2. See [11, 1.16,

1.17] or [17, Section 2.6] for a discussion of the moments of pure local systems, and
for their computation as a limsup.

Lemma 2.10 For any prime p, any integer a � 2 with p � a, and any multiplica-
tive character χ of order prime to p, consider the local system G(1/x, x, a, χ) on
G

3
m/Fp(values of χ)whose trace function at points of Gm(L)3, for L/Fp(values of χ)

a finite extension, is

(r , s, t) �→ −1√
# L

∑
x∈L×

ψL(r/x + sx + t xa)χL(x).

Then M2,2 � 3, with equality precisely when a is odd and χ is either 1 or χ2, this
second case allowed only for p odd.

Proof Since M2,2 only decreases as Ggeom grows, it suffices to prove M2,2 � 3 when
we freeze t = 1, and consider the two parameter local system on Gm ×Gm whose
trace function is

(r , s) �→ −1√
# L

∑
x∈L×

ψL(r/x + sx + xa)χL(x).

By [18, 2.1], we may calculate its M2,2 as the limsup, over finite extensions
Fq/Fp(values of χ) of

1

q2(q − 1)2
∑

r ,s∈F×
q

∑
x,y,z,w∈F×

q

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x + y − z − w)

+ xa + ya − za − wa
)

χ(xy)χ(zw).
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We first show that this limsup does not change if, instead of summing over (r , s) ∈
(F×

q )2, we sum over (r , s) ∈ (Fq)2. An individual summand with r = 0, any s, is

∑
x,y,z,w∈F×

q

ψFq

(
s(x + y − z − w) + xa + ya − za − wa)

χ(xy)χ(zw)

=
∣∣∣∣
∑

x∈F×
q

ψFq (sx + xa)χ(x))

∣∣∣∣
4

,

which is � (a
√

q)4, hence is O(q2). Similarly, an individual summand with s = 0,
any r , is � (a

√
q)4, hence is O(q2). The total number of (r , s) ∈ (Fq)2 with rs = 0

is 2q − 1, so we are only changing the inner sum by O(q3), while we are dividing by
1/q2(q − 1)2.

We now examine

1

q2(q − 1)2
∑

r ,s∈Fq

∑
x,y,z,w∈F×

q

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x + y − z − w)

+ xa + ya − za − wa
)

χ(xy)χ(zw)

= 1

q2(q − 1)2
∑

x,y,z,w∈F×
q

ψFq (xa + ya − za − wa)χ(xy)χ(zw)

×
∑

r ,s∈Fq

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x + y − z − w)

)

= 1

(q − 1)2
∑

x,y,z,w∈F×
q

1/x+1/y=1/z+1/w, x+y=z+w

ψFq (xa + ya − za − wa)χ(xy)χ(zw).

We now examine the two equations in x, y, z, w with xyzw �= 0 given by

1/x + 1/y = 1/z + 1/w, x + y = z + w,

which we rewrite as

(x + y)/xy = (z + w)/zw, x + y = z + w.

If x + y = z +w = 0, we have the plane y = −x , z = −w. If x + y = z +w �= 0,
then we divide by them and get 1/xy = 1/zw. Thus we have x + y = z + w and
xy = zw, and hence the two sets {x, y} and {z, w} coincide. So we have the two
planes x = z, y = w and x = w, y = z. On each of these last two planes, the function
xa + ya − za − wa vanishes, so ψ(xa + ya − za − wa) = 1, and χ(xy)χ(zw) = 1.

On the first plane y = −x , z = −w, the sum xa + ya − za −wa vanishes precisely
when a is odd, and χ(xy)χ(zw) = χ(x2/w2).
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Thus if both a is odd and χ2 = 1, then the first plane also contributes 1 to M2,2. In
general its contribution is

1

(q − 1)2
∑

x,w∈F×
q

ψFq

(
xa + (−x)a − wa − (−w)a)

χ(−x2)χ(−w2)

= 1

(q − 1)2

∣∣∣∣
∑

x∈F×
q

ψFq (xa + (−x)a)χ(−x2)

∣∣∣∣
2

,

which is O(1/q) unless both a is odd and χ2 = 1.
Now we return to G(1/x, x, a, χ) on G

3
m . We have proven that for its t = 1 special-

ization, we have M2,2 � 3, with equality precisely when both a is odd and χ2 = 1.
Whenwe do not have equality, we have M2,2 = 2. As M2,2 can only decrease for a big-
ger group,we certainly have M2,2 � 2, and hence M2,2 = 2, forG(1, x, x, a, χ) unless
both a is add and χ2 = 1. In the case when a is odd and χ2 = 1, then G(1, x, x, a, χ)

is self dual, hence has M2,2 � 3, and thus has the asserted M2,2 = 3. 	

Lemma 2.11 For any odd prime p, any integer a � 3 with p � a, and any multiplica-
tive character χ of order prime to p, consider the local system G(1/x, x2, a, χ) on
G

3
m/Fp(values of χ) whose trace function at points of Gm(L)3, for L/Fp(values of χ)

a finite extension, is

(r , s, t) �→ −1√
# L

∑
x∈L×

ψL(r/x + sx2 + t xa)χL(x).

Then M2,2 = 2.

Proof By [18, 2.1], we may calculate the M2,2 as the limsup, over finite extensions
Fq/Fp(values of χ) of

1

q2(q − 1)3
∑

r ,s,t∈F×
q

∑
x,y,z,w∈F×

q

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x2 + y2 − z2 − w2)

+ t(xa + ya − za − wa)

)
χ(xy)χ(zw).

We will refer to

∑
r ,s,t∈F×

q

∑
x,y,z,w∈F×

q

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x2 + y2 − z2 − w2)

+ t(xa + ya − za − wa)

)
χ(xy)χ(zw)

as “a summand".
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Wefirst show that this limsup does not change if, instead of summing over (r , s, t) ∈
(F×

q )3, we sum over (r , s, t) ∈ (Fq)3. The summand with (r , s, t) = (0, 0, 0) is

∑
x,y,z,w∈F×

q

χ(xy)χ(zw) =
∣∣∣∣
∑

x∈F×
q

χ(x)

∣∣∣∣
4

,

which vanishes if χ �= 1, and is (q − 1)4 if χ = 1.
An individual summand with r = 0, any (s, t) �= (0, 0), is

∑
x,y,z,w∈F×

q

ψFq

(
s(x2 + y2 − z2 − w2) + t(xa + ya − za − wa)

)
χ(xy)χ(zw)

=
∣∣∣∣
∑

x∈F×
q

ψFq (sx2 + t xa)χ(x)

∣∣∣∣
4

,

which is � ((a + 1)
√

q)4, hence is O(q2). Similarly, an individual summand with
s = 0, any (r , t) �= (0, 0), is � ((a + 1)

√
q)4, hence is O(q2). Finally, an individual

summand with t = 0, any (r , s) �= (0, 0), is � (3
√

q)4, hence is O(q2). The total
number of (r , s, t) ∈ (Fq)3 with (r , s, t) �= (0, 0, 0) but rst = 0 is O(q2), so those
terms are only changing the inner sum by O(q4), and the (0, 0, 0) term is either 0 or
(q − 1)4, while we are dividing by q2(q − 1)3.

We now examine

1

q2(q − 1)3
∑

r ,s,t∈Fq , x,y,z,w∈F×
q

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)
+ s(x2 + y2 − z2 − w2)

+ t(xa + ya − za − wa)

)
χ(xy)χ(zw)

= 1

q2(q − 1)3
∑

x,y,z,w∈F×
q

χ(xy)χ(zw)
∑
t∈Fq

ψFq

(
t(xa + ya − za − wa)

)

×
∑
r∈Fq

ψFq

(
r

(
1

x
+ 1

y
− 1

z
− 1

w

)) ∑
s∈Fq

ψFq

(
s(x2 + y2 − z2 − w2)

)

= q

(q − 1)3
∑

x,y,z,w∈F×
q

(x,y,z,w)∈


χ(xy)χ(zw),

where the locus 
 is defined by the equations

1/x + 1/y = 1/z + 1/w, x2 + y2 = z2 + w2, xa + ya = za + wa .

We first look at the intersection of 
 with x + y = z + w. If x + y = z + w = 0,
then as p �= 2 the second equation x2 + y2 = z2 + w2 gives the two lines y = −x ,
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z = −w = ±x . If x + y = z + w �= 0, then we divide the first equation by them and
get 1/xy = 1/zw. Thus we have x + y = z + w and xy = zw, and hence the two
sets {x, y} and {z, w} coincide. So we have the two planes x = z, y = w and x = w,
y = z. On each of these two planes, xa + ya − za − wa = 0 and χ(xy)χ(zw) = 1.
So the contribution of this intersection to the limsup is 2 + O(1/q).

It remains to show that the number of points (x, y, z, w) ∈ 
(F×
q ) with x + y �=

z + w is O(q). Note that if x + y = 0 then 1/z + 1/w = 1/x + 1/y = 0 and hence
z + w = 0 = x + y. So we may assume x + y �= 0, z + w �= 0, and introduce new
variables

u = x + y, v = z + w, t = xy/(x + y),

so that

s ..= xy = tu, zw = tv, but u �= v.

Now

u2 − 2tu = x2 + y2 = z2 + w2 = v2 − 2tv,

and so

u + v = 2t, i.e. v = 2t − u.

An easy induction on odd a � 3 shows that there are some integers c0 = 1, c1, . . . ,
c(a−1)/2 such that xa + ya = ∑(a−1)/2

i=0 ci un−2i si ; in fact, ci = n
n−i

(n−i
i

)
. It follows

that xa + ya = ∑(a−1)/2
i=0 ci un−i t i , and so the condition xa + ya − za − wa = 0 is

equivalent to the vanishing of

(a−1)/2∑
i=0

ci u
n−i t i −

(a−1)/2∑
i=0

ci (2t − u)n−i t i ,

a homogeneous polynomial in u, t of degree a with the coefficient for ua being 1 −
(−1)a = 2. As p �= 2, given any t ∈ Fq there are at most a values for u that satisfy
this last condition. For each (u, t), there are at most two pairs (x, y) with x + y = u,
xy = tu, and there are at most two pairs (z, w) with z + w = 2t − u, xy = t(2t − u).
It follows that the number of points (x, y, z, w) ∈ 
(F×

q ) with x + y �= z + w is at
most 4aq, as stated. 	


3 Preliminaries on specializations ofGgeom

We first quote verbatim from [18, Section 11, Theorem 11.1], cf. [10, 8.17, 8.18].
“The situation we consider is the following.We are given a normal connected affine

noetherian scheme S = Spec(A) with A a noetherian normal integral domain with
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fraction field K , and a chosen algebraic closure K of K . Thus Spec(K ) is a generic
point η of S, and Spec(K ) is a geometric point η of S. We are given X/S a smooth
S-scheme of relative dimension D, with geometrically connected fibres, andφ ∈ X(S)

a section of X/S. Then φ(η) is a geometric point of X . We are given a finite group G
and a surjective homomorphism

π1(X , φ(η)) � G.

For each geometric point s of S, φ(s) is a geometric point of Xs (and also of X ). We
have a continuous group homomorphism

π1(Xs, φ(s)) → π1(X , φ(s)) ∼= π1(X , φ(η)).

This last isomorphism is only canonical up to inner automorphism of the target group
π1(X , φ(η)). By composition, we get a group homomorphism

π1(Xs, φ(s)) → G

which is well defined up to inner automorphism of G. This applies in particular with
s taken to be η. We are interested in how the image of π1(Xs, φ(s)) in G compares
with the image of π1(Xη, φ(η)) in G: when are these two subgroups of G conjugate
in G? Let us denote these image groups Gs and Gη.

Theorem 3.1 ([18, 11.1]) There exists a dense open set U ⊂ S such that for any
geometric point s ∈ U, Gs and Gη are conjugate subgroups of G. Moreover, for any
geometric point s ∈ S, Gs is conjugate to a subgroup of Gη."

Because G is a finite group, this theorem has the following more precise corollary.

Corollary 3.2 The set of points s ∈ S at which Gs is conjugate to Gη in G is open in S.

Proof The group Gη is finite (because it is a subgroup of the finite group G). Therefore
it has only finitelymany subgroups, say Gη = H0, H1, . . . , Hr . The proof of [10, 8.17,
8.18] shows that each of the sets

Zi
..= {s ∈ S | Gs is conjugate to Hi }

and each of the sets

Wi
..= {s ∈ S | Gs is conjugate to a subgroup of Hi }

is constructible (a finite union of sets of the form (open set)∩ (closed set)). But each
set Wi is stable by specialization, hence is closed, cf. [5, Chapter II, 3.18]. Therefore⋃

i�1 Wi is closed. Then its open complement is precisely the set Z0. 	
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4 Finiteness theorems

We denote by q the cardinality of k, and by kr the unique extension of k of degree r
in Fq . V : (Q/Z)prime to p → [0, 1) will denote Kubert’s V -function for the prime p
(cf. [14]).

Theorem 4.1 Let d1 > d2 > · · · > dn > 0 be prime to p integers, d = (d1, . . . , dn)

and F the local system on G
n+1
m,k whose trace function is given by

F(kr ; s, t1, . . . , tn) = − 1√|kr |
∑
x∈k×

r

ψkr

(
s/x + t1xd1 + · · · + tn xdn

)
χ2,kr (x).

Then F has finite (geometric and arithmetic) monodromy group if and only if

V

(
d1x1 + · · · + dn xn + 1

2

)
+ V (x1) + · · · + V (xn) � 1

2

for every (x1, . . . , xn) ∈ (Q/Z)n
prime to p.

Proof By [14, Proposition 2.1],weneed to show that F(kr ; s, t1, . . . , tn) is an algebraic
integer or, equivalently, that

ordqr

( ∑
x∈k×

r

ψkr

(
s/x + t1xd1 + · · · + tn xdn

)
χ2,kr (x)

)
� 1

2

for every r � 1 and (s, t1, . . . , tn) ∈ (k×
r )n+1. Taking the Mellin transform on G

n+1
m ,

this is equivalent to

∑
s,t1,...,tn∈k×

r

η(s)ξ1(t1) · · · ξn(tn)
∑
x∈k×

r

ψkr

(
s/x + t1xd1 + · · · + tn xdn

)
χ2,kr (x)

=
∑
x∈k×

r

χ2,kr (x)

(∑
s∈k×

r

ψkr (s/x)η(s)

)( ∑
t1∈k×

r

ψkr (t1xd1)ξ1(t1))

)

· · ·
( ∑

tn∈k×
r

ψkr (tn xdn )ξn(tn)

)

=
∑
x∈k×

r

χ2,kr (x)η(x)Gr (η)ξ̄
d1
1 (x)Gr (ξ1) · · · ξ̄dn

n (x)Gr (ξn)

= Gr (η)Gr (ξ1) · · · Gr (ξn)
∑
x∈k×

r

(
χ2,kr ηξ̄

d1
1 · · · ξ̄dn

n

)
(x)

=
{
0 if χ2,kr ηξ̄

d1
1 · · · ξ̄dn

n �= 1,
(qr − 1)Gr (η)Gr (ξ1) · · · Gr (ξn) if χ2,kr ηξ̄

d1
1 · · · ξ̄dn

n = 1
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has ordqr � 1/2 for every η, ξ1, . . . , ξn ∈ k̂×
r , where Gr (χ) denotes the Gauss sum

associated to the multiplicative character χ on kr . This reduces to

ordqr
(
Gr

(
χ2,kr ξ

d1
1 · · · ξdn

n

)
Gr (ξ1) · · · Gr (ξn)

)
� 1

2

for every ξ1, . . . , ξn ∈ k̂×
r which, by Stickelberger, is equivalent to the given

condition. 	

If d1x1 + · · · + dn xn + 1/2 �= 0, using that V (y) + V (−y) = 1 for y �= 0, we can

rewrite the condition as

V

(
d1x1 + · · · + dn xn + 1

2

)
� V (−x1) + · · · + V (−xn) + 1

2
,

which trivially holds for d1x1 + · · · + dn xn + 1/2 = 0. So we have

Corollary 4.2 The local system F has finite monodromy if and only if the following two
conditions hold:

(i) V (d1x1 + · · · + dn xn + 1/2) � V (−x1) + · · · + V (−xn) + 1/2 for every
(x1, . . . , xn) ∈ (Q/Z)n

prime to p.
(ii) V (x1)+V (x2)+· · ·+V (xn) � 1/2 for every (x1, . . . , xn) ∈ (Q/Z)n

prime to p with∑n
i=1 di xi = 1/2.

Note that the second condition is the criterion for the local system on G
n
m with trace

function

F(kr ; t1, . . . , tn) = − 1√|kr |
∑
x∈k×

r

ψkr

(
t1xd1 + · · · + tn xdn

)
χ2,kr (x)

to have finite monodromy. In terms of the sum-of-digits function [−]p,r ,− defined in
[13, Appendix], the first condition becomes

[
d1x1 + · · · + dn xn + pr − 1

2

]
p,r ,−

� [pr − 1 − x1]p,r ,− + · · · + [pr − 1 − xn]p,r ,− + r(p − 1)

2

for every r � 1 and every 0 < x1, . . . , xn < pr such that pr − 1 does not divide
d1x1 + · · · + dn xn + (pr − 1)/2. An argument similar to [14, Theorem 2.12] then
shows

Proposition 4.3 Suppose that there exists some real A � 0 such that

[
d1x1 + · · · + dn xn + pr − 1

2

]
p

� [pr − 1 − x1]p + · · · + [pr − 1 − xn]p + r(p − 1)

2
+ A
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for every r � 1 and every 0 � x1, . . . , xn � pr − 1, where [x]p denotes the sum of
the p-adic digits of x. Then condition (i) in Corollary 4.2 holds.

For r � 1 and an n-tuple (x1, . . . , xn) with 0 � xi � pr − 1, let

C(r; x1, . . . , xn) =
[ n∑

i=1

di xi + pr − 1

2

]
p
−

n∑
i=1

[pr − 1 − xi ]p − r(p − 1)

2
.

For s � 1 we say that the n-tuple (z1, . . . , zn)with 0 � z1, . . . , zn � ps −1 is s-good
if one of these conditions holds:

(a) C(s; z1, . . . , zn) � 0.
(b) There exist an s′ < s and an n-tuple (z′

1, . . . , z′
n) with 0 � z′

i � ps′ − 1 such that
C(s′; z′

1, . . . , z′
n) � C(s; z1, . . . , zn) and for every j > 0 the (s + j)-th digit in

the p-adic expansion of
∑n

i=1 di zi + (ps − 1)/2 is greater than or equal to the
(s′ + j)-th digit in the p-adic expansion of

∑n
i=1 di z′

i + (ps′ − 1)/2 (counting the
digits from right to left).

We say that the n-tuple (x1, . . . , xn) with 0 � x1, . . . , xn � pr − 1 has good termi-
nation if, for some 1 � s < r , the n-tuple (z1, . . . , zn) whose i-th coordinate is the
number formed by the last s p-adic digits of xi (i.e. the remainder of the division of
xi by ps) is s-good.

Proposition 4.4 Suppose that there exists some r0 � 1 such that all n-tuples
(x1, . . . , xn) with 0 � x1, . . . , xn � pr0− 1 have good termination. Then the hypoth-
esis of Proposition 4.3 holds.

Proof Let

A = max
1�r�r0

max
1�x1,...,xn�pr −1

C(r; x1, . . . , xn).

We will prove by induction on r that

C(r; x1, . . . , xn) � A

for every r � 1 and every 0 � x1, . . . , xn � pr − 1. For r � r0 this is obvious by
definition of A. Fix r > r0 and assume that the inequality holds for all smaller r .
Let (x1, . . . , xn) be an n-tuple with 0 � x1, . . . , xn � pr − 1. By hypothesis it has
good termination, since every s < r0 is also < r . Hence there is some 1 � s < r0
such that the n-tuple (z1, . . . , zn) whose i-th coordinate is the number formed by
the last s p-adic digits of xi is s-good. Let yi = p−s(xi − zi ), that is, the number
obtained from xi by removing its last s p-adic digits. Then 0 � yi � pr−s − 1,
[pr − 1 − xi ] = [pr−s − 1 − yi ] + [ps − 1 − zi ] and
[ n∑

i=1

di xi + pr − 1

2

]
=

[ n∑
i=1

di yi + pr−s − 1

2

]
+

[ n∑
i=1

di zi + ps − 1

2

]
− δ(p − 1)
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where δ is the number of digit carries in the (outer) sum

n∑
i=1

di xi + pr − 1

2
= ps

( n∑
i=1

di yi + pr−s − 1

2

)
+

( n∑
i=1

di zi + ps − 1

2

)
.

In particular, C(r; x1, . . . , xn) = C(r − s; y1, . . . , yn)+C(s; z1, . . . , zn)− δ(p −1).
We now have two options according to the definition of s-good.

(a) C(s; z1, . . . , zn) � 0. Then

C(r; x1, . . . , xn) � C(r − s; y1, . . . , yn) + C(s; z1, . . . , zn)

� C(r − s; y1, . . . , yn) � A

by induction.

(b) There exist an s′ < s and an n-tuple (z′
1, . . . , z′

n) with 0 � z′
i � ps′ − 1 such that

C(s′; z′
1, . . . , z′

n) � C(s; z1, . . . , zn) and for every j > 0 the (s + j)-th digit in the
p-adic expansion of

∑n
i=1 di zi + (ps − 1)/2 is greater than or equal to the (s′ + j)-th

digit in the p-adic expansion of
∑n

i=1 di z′
i + (ps′ − 1)/2 (counting from the right).

Let x ′
i = ps′

yi + z′
i for i = 1, . . . , n. Then

C(r − s + s′; x ′
1, . . . , x ′

n) = C(r − s; y1, . . . , yn) + C(s′; z′
1, . . . , z′

n) − ε(p − 1),

where ε is the number of digit carries in the (outer) sum

n∑
i=1

di x ′
i + pr−s+s′− 1

2
= ps′

( n∑
i=1

di yi + pr−s− 1

2

)
+

( n∑
i=1

di z
′
i + ps′− 1

2

)
.

The hypothesis on the digits of
∑n

i=1 di zi + (ps − 1)/2 and
∑n

i=1 di z′
i + (ps′− 1)/2

implies that ε � δ. Therefore

C(r; x1, . . . , xn) = C(r − s; y1, . . . , yn) + C(s; z1, . . . , zn) − δ(p − 1)

� C(r − s; y1, . . . , yn) + C(s′; z′
1, . . . , z′

n) − ε(p − 1)

= C(r − s + s′; x ′
1, . . . , x ′

n) � A

by induction. 	

Theorem 4.5 The local system on G

3
m,F3

whose trace function is given by

(F3r ; s, t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (s/x + t x + ux7)χ2,F3r (x)

has finite monodromy.

Proof By Corollary 4.2, we need to show
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(i) V (x1 + 7x2 + 1/2) � V (−x1) + V (−x2) + 1/2 for every (x1, x2) ∈
(Q/Z)2prime to 3.

(ii) V (x) + V (−7x + 1/2) � 1/2 for every x ∈ (Q/Z)prime to 3.

Condition (ii) is the criterion for finite monodromy of the local system with trace
function

F(F3r ; t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (t x + ux7)χ2,F3r (x)

which holds by [12, Theorem 4.3] since 7 = (33 + 1)/(3 + 1). For the first condition,
following Proposition 4.4, we check by a computer search that all pairs (x1, x2) with
0 � x1, x2 � 34 − 1 have good termination.
For each s = 1, 2, 3, the following tables show the list of all pairs (z1, z2) with
0 � z1, z2 � 3s − 1 such that

(a) C(s; z1, z2) > 0, and
(b) do not have good termination (i.e. all their last-digits truncations appear in the

previous tables marked with •).
If condition (b) for being s-good can be applied to them, we show the possible

values of s′, z′
1, z′

2 on the table, otherwise we mark it with • and move it on to the next
s. All values of zi and z′

i are shown as their 3-adic expansion. The columns D and D′
show the result of removing the last s (respectively s′) digits of z1 + 7z2 + (3s − 1)/2
(resp. of z′

1+7z′
2+(3s′− 1)/2). Each digit of the number in column D must be greater

than or equal to the corresponding digit of the number in column D′.

s = 1

z1 z2 C(s; z1, z2) D

1 2 2 12 •
2 2 4 12 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

21 22 2 21 •
02 22 2 20 •
12 12 2 11 •
12 22 2 21 •
22 02 2 2 •
22 12 2 12 1 1 2 2 12
22 22 4 21 •
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s = 3

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

121 222 2 21 2 21 22 2 21
221 122 2 12 1 1 2 2 12
221 222 2 22 1 1 2 2 12
102 222 2 21 2 21 22 2 21
202 122 2 12 1 1 2 2 12
202 222 4 21 2 22 22 4 21
112 212 2 20 2 02 22 2 20
212 112 2 11 2 12 12 2 11
212 212 2 21 2 12 22 2 21
112 222 2 11 2 12 12 2 11
212 122 2 12 1 1 2 2 12
212 222 2 22 1 1 2 2 12
022 202 2 12 1 1 2 2 12
222 202 2 20 2 02 22 2 20
222 212 2 21 2 21 22 2 21
022 222 2 21 2 21 22 2 21
122 122 2 12 1 1 2 2 12
122 222 4 21 2 22 22 4 21
222 122 4 12 1 2 2 4 12
222 222 4 22 1 2 2 4 12

In the last table (for s = 3) there are no remaining cases left with •, so this finishes
the proof. 	

Theorem 4.6 The local system on G

3
m,F3

whose trace function is given by

(F3r ; s, t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (s/x + t x5 + ux7)χ2,F3r (x)

has finite monodromy.

Proof By Corollary 4.2, we need to show
(i) V (5x1+7x2+1/2) � V (−x1)+V (−x2)+1/2 for every (x1, x2) ∈ (Q/Z)2prime to 3.

(ii) V (x1) + V (x2) � 1/2 for every (x1, x2) ∈ (Q/Z)2prime to 3 such that 5x1 + 7x2 =
1/2.

Condition (ii) is the criterion for finite monodromy of the local system with trace
function

F(F3r ; t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (t x5 + ux7)χ2,F3r (x)

which holds by [17, Theorem 10.3.13 (vi)]. For the first condition, following Proposi-
tion 4.4, we check by a computer search that all pairs (x1, x2)with 0 � x1, x2 � 36−1
have good termination. For each s = 1, 2, 3, 4, 5, the following tables show the list of
all pairs (z1, z2) with 0 � z1, z2 � 3s − 1 such that
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(a) C(s; z1, z2) > 0, and
(b) do not have good termination (i.e. all their last-digits truncations appear in the

previous tables marked with •).
If condition (b) for being s-good can be applied to them, we show the possible values
of s′, z′

1, z′
2 on the table, otherwise we mark it with • and move it on to the next s. All

values of zi and z′
i are shown as their 3-adic expansion. The columns D and D′ show

the result of removing the last s (respectively s′) digits of 5z1+7z2+(3s − 1)/2 (resp.
of 5z′

1 + 7z′
2 + (3s′− 1)/2). Each digit of the number in column D must be greater

than or equal to the corresponding digit of the number in column D′.

s = 1

z1 z2 C(s; z1, z2) D

1 2 2 20 •
2 2 4 22 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

11 22 4 22 1 2 2 4 22
21 02 2 12 •
21 12 2 22 1 2 2 4 22
21 22 2 101 •
02 22 2 21 1 1 2 2 20
22 12 4 22 1 2 2 4 22
22 22 2 102 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

121 202 2 22 1 2 2 4 22
221 102 2 21 1 1 2 2 20
021 222 2 22 1 2 2 4 22
121 122 2 21 1 1 2 2 20
221 222 4 102 •
022 222 2 22 1 2 2 4 22
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s = 4

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

0221 2222 4 22 1 2 2 4 22
1221 0222 2 12 2 21 02 2 12
1221 1222 2 22 1 2 2 4 22
1221 2222 2 101 2 21 22 2 101
2221 0222 2 21 1 1 2 2 20
2221 1222 2 100 •
2221 2222 2 110 •

s = 5

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

02221 11222 2 12 2 21 02 2 12
02221 21222 2 22 1 2 2 4 22
12221 11222 2 21 1 1 2 2 20
12221 21222 2 100 4 2221 1222 2 100
22221 01222 2 20 1 1 2 2 20
22221 21222 4 102 3 221 222 4 102
12221 12222 2 22 1 2 2 4 22
12221 22222 2 101 2 21 22 2 101
22221 02222 2 21 1 1 2 2 20
22221 22222 2 110 4 2221 2222 2 110

In the last table (for s = 5) there are no remaining cases left with •, so this finishes
the proof. 	

Theorem 4.7 The local system on G

3
m,F5

whose trace function is given by

F(F5r ; s, t, u) �→ − 1

5r/2

∑
x∈F×

5r

ψF5r (s/x + t x3 + ux7)χ2,F5r (x)

has finite monodromy.

Proof By Corollary 4.2, we need to show
(i) V (3x1+7x2+1/2) � V (−x1)+V (−x2)+1/2 for every (x1, x2) ∈ (Q/Z)2prime to 5.

(ii) V (x1) + V (x2) � 1/2 for every (x1, x2) ∈ (Q/Z)2prime to 5 such that 3x1 + 7x2 =
1/2.

Condition (ii) is the criterion for finite monodromy of the local system with trace
function

F(F5r ; t, u) �→ − 1

5r/2

∑
x∈F×

5r

ψF5r (t x3 + ux7)χ2,F5r (x)

which holds by [17, Theorem 10.3.13 (ix)]. For the first condition, following Proposi-
tion 4.4, we check by a computer search that all pairs (x1, x2)with 0 � x1, x2 � 56−1
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have good termination. For each s = 1, 2, 3, 4, 5, the following tables show the list of
all pairs (z1, z2) with

0 � z1, z2 � 5s − 1

such that

(a) C(s; z1, z2) > 0, and
(b) do not have good termination (i.e. all their last-digits truncations appear in the

previous tables marked with •).
If condition (b) for being s-good can be applied to them, we show the possible values
of s′, z′

1, z′
2 on the table, otherwise we mark it with • and move it on to the next s. All

values of zi and z′
i are shown as their 5-adic expansion. The columns D and D′ show

the result of removing the last s (respectively s′) digits of 3z1+7z2+(5s − 1)/2 (resp.
of 3z′

1 + 7z′
2 + (5s′− 1)/2). Each digit of the number in column D must be greater

than or equal to the corresponding digit of the number in column D′.

s = 1

z1 z2 C(s; z1, z2) D

3 4 4 12 •
4 4 4 13 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

23 44 4 13 1 4 4 4 13
33 34 4 12 1 3 4 4 12
33 44 4 14 1 4 4 4 13
43 34 4 13 1 4 4 4 13
43 44 8 14 •
24 44 4 13 1 4 4 4 13
34 44 4 14 1 4 4 4 13
44 34 4 13 1 4 4 4 13

s = 3

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

043 444 4 12 1 3 4 4 12
143 444 4 13 1 4 4 4 13
243 144 4 4 •
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243 344 4 12 1 3 4 4 12
243 444 4 14 1 4 4 4 13
343 244 4 11 •
343 344 4 13 1 4 4 4 13
343 444 8 14 2 43 44 8 14
443 044 4 4 •
443 244 4 12 1 3 4 4 12
443 344 8 13 •
443 444 4 20 •

s = 4

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

3243 4144 4 13 1 4 4 4 13
4243 3144 4 12 1 3 4 4 12
4243 4144 4 14 1 4 4 4 13
1343 4244 4 12 1 3 4 4 12
2343 4244 4 13 1 4 4 4 13
3343 1244 4 4 3 443 044 4 4
3343 3244 4 12 1 3 4 4 12
3343 4244 4 14 1 4 4 4 13
4343 2244 4 11 3 343 244 4 11
4343 3244 4 13 1 4 4 4 13
4343 4244 8 14 2 43 44 8 14
3443 4044 4 13 1 4 4 4 13
4443 3044 4 12 1 3 4 4 12
4443 4044 4 14 1 4 4 4 13
0443 2344 4 4 3 443 044 4 4
0443 4344 4 12 1 3 4 4 12
1443 3344 4 11 3 343 244 4 11
1443 4344 4 13 1 4 4 4 13
2443 1344 4 4 3 443 044 4 4
2443 3344 4 12 1 3 4 4 12
2443 4344 8 13 3 443 344 8 13
3443 0344 4 3 •
3443 2344 4 11 3 343 244 4 11
3443 3344 4 13 1 4 4 4 13
3443 4344 8 14 2 43 44 8 14
4443 0344 4 4 3 443 044 4 4
4443 1344 4 10 •
4443 2344 4 12 1 3 4 4 12
4443 3344 8 13 3 443 344 8 13
4443 4344 4 20 3 443 444 4 20
1443 4444 4 13 1 4 4 4 13
2443 3444 4 12 1 3 4 4 12
2443 4444 4 14 1 4 4 4 13
3443 3444 4 13 1 4 4 4 13
3443 4444 8 14 2 43 44 8 14
4443 0444 4 4 3 443 044 4 4
4443 2444 4 12 1 3 4 4 12
4443 3444 4 14 1 4 4 4 13
4443 4444 4 20 3 443 444 4 20
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s = 5

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

23443 40344 4 12 1 3 4 4 12
33443 40344 4 13 1 4 4 4 13
43443 10344 4 4 3 443 044 4 4
43443 30344 4 12 1 3 4 4 12
43443 40344 4 14 1 4 4 4 13
14443 21344 4 4 3 443 044 4 4
14443 41344 4 12 1 3 4 4 12
24443 31344 4 11 3 343 244 4 11
24443 41344 4 13 1 4 4 4 13
34443 11344 4 4 3 443 044 4 4
34443 31344 4 12 1 3 4 4 12
34443 41344 8 13 3 443 344 8 13
44443 01344 4 3 4 3443 0344 4 3
44443 21344 4 11 3 343 244 4 11
44443 31344 4 13 1 4 4 4 13
44443 41344 8 14 2 43 44 8 14

In the last table (for s = 5) there are no remaining cases left with •, so this finishes
the proof.

Theorem 4.8 The local system on G
3
m,F3

whose trace function is given by

(F3r ; s, t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (s/x + t x + ux5)χ2,F3r (x)

has finite monodromy.

Proof By Corollary 4.2, we need to show
(i) V (x1+5x2+1/2) � V (−x1)+V (−x2)+1/2 for every (x1, x2) ∈ (Q/Z)2prime to 3.
(ii) V (x) + V (−5x + 1/2) � 1/2 for every x ∈ (Q/Z)prime to 3.

Condition (ii) is the criterion for finite monodromy of the local system with trace
function

F(F3r ; t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (t x + ux5)χ2,F3r (x)

which holds by [12, Theorem 4.2] since 5 = (32 + 1)/2. For the first condition,
following Proposition 4.4, we check by a computer search that all pairs (x1, x2) with
0 � x1, x2 � 35 − 1 have good termination. For each s = 1, 2, 3, 4, the following
tables show the list of all pairs (z1, z2) with 0 � z1, z2 � 3s − 1 such that

(a) C(s; z1, z2) > 0, and
(b) do not have good termination (i.e. all their last-digits truncations appear in the

previous tables marked with •).

123



   65 Page 24 of 34 N.M. Katz et al.

If condition (b) for being s-good can be applied to them, we show the possible values
of s′, z′

1, z′
2 on the table, otherwise we mark it with • and move it on to the next s. All

values of zi and z′
i are shown as their 3-adic expansion. The columns D and D′ show

the result of removing the last s (respectively s′) digits of z1 +5z2 + (3s − 1)/2 (resp.
of z′

1 + 5z′
2 + (3s′− 1)/2). Each digit of the number in column D must be greater than

or equal to the corresponding digit of the number in column D′.

s = 1

z1 z2 C(s; z1, z2) D

2 1 2 2 •
2 2 2 11 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

12 21 2 11 1 2 2 2 11
22 21 2 12 1 2 2 2 11
12 22 2 12 1 2 2 2 11
22 22 4 12 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

022 222 2 12 1 2 2 2 11
122 222 4 12 2 22 22 4 12
222 022 2 2 1 2 1 2 2
222 122 2 11 1 2 2 2 11
222 222 2 20 •

s = 4

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

0222 2222 2 12 1 2 2 2 11
2222 1222 2 11 1 2 2 2 11
2222 2222 2 20 3 222 222 2 20
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In the last table (for s = 4) there are no remaining cases left with •, so this finishes
the proof. 	

Theorem 4.9 The local system on G

3
m,F3

whose trace function is given by

(F3r ; s, t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (s/x + t x2 + ux5)χ2,F3r (x)

has finite monodromy.

Proof By Corollary 4.2, we need to show
(i) V (2x1+5x2+1/2) � V (−x1)+V (−x2)+1/2 for every (x1, x2) ∈ (Q/Z)2prime to 3.

(ii) V (x1) + V (x2) � 1/2 for every (x1, x2) ∈ (Q/Z)2prime to 3 such that 2x1 + 5x2 =
1/2.

Condition (ii) is the criterion for finite monodromy of the local system with trace
function

F(F3r ; t, u) �→ − 1

3r/2

∑
x∈F×

3r

ψF3r (t x2 + ux5)χ2,F3r (x)

which holds by [17, Theorem10.3.13 (i)]. For the first condition, following Proposition
4.4, we check by a computer search that all pairs (x1, x2) with 0 � x1, x2 � 36 − 1
have good termination. For each s = 1, 2, 3, 4, 5, the following tables show the list of
all pairs (z1, z2) with 0 � z1, z2 � 3s − 1 such that

(a) C(s; z1, z2) > 0 and
(b) do not have good termination (i.e. all their last-digits truncations appear in the

previous tables marked with •).
If condition (b) for being s-good can be applied to them, we show the possible values
of s′, z′

1, z′
2 on the table, otherwise we mark it with • and move it on to the next s. All

values of zi and z′
i are shown as their 3-adic expansion. The columns D and D′ show

the result of removing the last s (respectively s′) digits of 2z1+5z2+(3s − 1)/2 (resp.
of 2z′

1 + 5z′
2 + (3s′− 1)/2). Each digit of the number in column D must be greater

than or equal to the corresponding digit of the number in column D′.

s = 1

z1 z2 C(s; z1, z2) D

1 1 1 2 •
1 2 1 11 •
2 2 2 12 •

In the last table (for s = 5) there are no remaining cases left with •, so this finishes
the proof. 	
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s = 2

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

21 21 3 12 •
11 22 2 12 1 2 2 2 12
21 12 1 11 1 1 2 1 11
21 22 1 20 •
22 22 2 20 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

021 221 1 12 1 2 2 2 12
221 121 1 12 1 2 2 2 12
221 221 3 20 •
021 222 1 12 1 2 2 2 12
221 122 1 12 1 2 2 2 12
221 222 1 21 1 1 2 1 11
022 222 2 12 1 2 2 2 12
122 122 1 11 1 1 2 1 11
122 222 1 20 2 21 22 1 20
222 122 2 12 1 2 2 2 12
222 222 2 21 2 22 22 2 20

s = 4

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

0221 2221 3 12 2 21 21 3 12
1221 1221 2 11 •
1221 2221 2 20 3 221 221 3 20
2221 0221 1 10 •
2221 1221 3 12 2 21 21 3 12
2221 2221 3 21 3 221 221 3 20

s = 5

z1 z2 C(s; z1, z2) D s′ z′
1 z′

2 C(s′; z′
1, z′

2) D′

11221 21221 3 12 2 21 21 3 12
21221 11221 2 11 4 1221 1221 2 11
21221 21221 2 20 3 221 221 3 20
02221 20221 1 11 4 2221 0221 1 10
12221 20221 2 12 1 2 2 2 12
22221 00221 1 2 1 1 1 1 2
22221 10221 1 11 4 2221 0221 1 10
22221 20221 1 20 3 221 221 3 20
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5 Ggeom for local systems of rank 8

In this section, we will determine Ggeom,r ,s , the geometric monodromy group of Gr ,s ,
and Ggeom,r0,s0 , the geometric monodromy group of Gr0,s0 for any (r0, s0) ∈ G

2
m , of

rank 8. With (B, a, p) as in (2.5.1), it follows from Theorems 4.5, 4.7, and 4.6 that
Ggeom,r ,s is finite. [Those results show that the restriction of Gr ,s to the open dense
subsetG3

m ofG
1
m ×A

1×Gm has finite Ggeom. In general, for a local systemF on some
smooth, geometrically connected variety X , andU ⊂ X a dense open set, π1(U )maps
onto π1(X), so F on X and F|U on U have the same Ggeom (indeed have the same
image of π1).]

Theorem 5.1 Let (B, a, p) = (3, 7, 5). Then both Gr ,s , and Gr0,s0 for any (r0, s0) ∈
G

2
m, have Ggeom = W (E8), the Weyl group of type E8.

Proof By Theorem 4.7, G ..= Ggeom,r ,s is a finite subgroup of GL8(C), whence the
same holds for its subgroup H ..= Ggeom,r0,s0 . Next, H satisfies (S+) by Proposition
2.6, whence the same holds for G.

Let ϕ denote the G-character afforded by the underlying representation. By Lemma
2.3, ϕ takes real values for any specializations of (r , s), and hence ϕ is real-valued.
This implies that

Z(H) � Z(G) � C2. (5.1.1)

Next, by Lemma 2.2 the image of P(∞) in H is isomorphic to the additive group
of F5(μ8) = F52 , which is elementary abelian of order 52, whence (5.1.1) implies that

52 divides |H/Z(H)|. (5.1.2)

Now we can apply [16, Lemma 1.1] to both H and G. If either of them is an
extraspecial normalizer, then there is some ε = ± such that

H � 21+6
ε ·Oε

6(2),

which violates (5.1.2). So both H and G are almost quasisimple; in particular, L ..=
H (∞) is a quasisimple group with

S ..= L/Z(L)

being the unique non-abelian composition factor of H . The condition (S+) implies
that ϕ|L is irreducible, and so CH (L) = Z(H) by Schur’s lemma. It follows that

H/Z(H) ↪→ Aut(L),

and so 52 | |Aut(L)| by (5.1.2). Now we can inspect Table 2 in [6] to see that 2 ·�+
8 (2)

is the unique possibility for L . Note that ϕ|L is of type +, so

2 ·�+
8 (2) = L� H � NO8(C)(L) = W (E8) = L ·2.
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Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows
that H cannot be perfect. Hence H = W (E8).

The preceding arguments can also be repeated to show that G ∼= W (E8). As
H � G, we conclude that G = H . 	

Theorem 5.2 Let (B, a, p) = (5, 7, 3). Then Gr ,s has Ggeom = W (E8), the Weyl
group of type E8. Furthermore, there is a dense open set U ⊆ G

2
m that contains

(1, 1), such that Gr0,s0 has Ggeom equal to W (E8) when (r0, s0) ∈ U, and to S9 when
(r0, s0) /∈ U.

Proof By Theorem 4.6, G ..= Ggeom,r ,s is a finite subgroup of GL8(C), whence the
same holds for its subgroup H ..= Ggeom,r0,s0 . Next, H satisfies (S+) by Proposition
2.6, whence the same holds for G.

(a) Let ϕ denote the G-character afforded by the underlying representation V . By
Lemma 2.3, ϕ takes real values for any specializations of (r , s), and hence ϕ is real-
valued. This implies that

Z(H) � Z(G) � C2. (5.2.1)

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows
that ϕ|H cannot be of symplectic type, and

H � O(V ) but H � SO(V ). (5.2.2)

Next, the wild part of the I (0)-representation V has rank 2 and slopes 5/2, so
by [9, 1.14] it is the Kummer induction [2]�L of some L with Swan = 5, and the
P(0)-representation is the direct sum L⊕[x �→ − x]�L. Moreover, these two pieces
are permuted by any element g0 ∈ I (0) which is a generator of I (0) modulo P(0).
Thus g0 acts on V with spectrum (α,−α, 1, 1, . . . , 1) for some α ∈ C

×. Since the
image Q of P(0) is a 3-group, it is contained in SO(V ). Now, if the image of g0 is
contained in SO(V ), then so is the image J of I (0). By [16, 4.2], the fact that all
∞-slopes are < 1 implies that H is the normal closure of J , so we get H � SO(V ),
contrary to (5.2.2). Thus −α2 = −1, i.e. α = ±1 and g0 acts on V as a reflection.

The version of Mitchell’s theorem given in the proof of [17, Theorem 4.2.3] now
shows that H = Z(H)H0, where H0 = W (E8), or H0 is S9 acting in the deleted
natural permutation representation. In the former case, (5.2.1) implies that

H = W (E8).

Suppose we are in the latter case. First we consider the case Z(H) = C2. Then
note that L ..= H (∞) ∼= A9 and H/L ∼= C2

2 . In particular, Q � L , and J is contained
in 〈L, g0〉, a subgroup of index 2, whence normal, in H . Hence the normal closure of
J in H is contained in 〈L, g0〉, and so cannot be equal to H , a contradiction. We have
shown that, in the latter case, H = S9 in its deleted natural permutation representation.

Nowweapply the above consideration to (r0, s0) = (1, 1), and assume that H = S9.
We consider the weight zero twist of G by 1/Gauss(ψ, χ2), which is orthogonally self-
dual with integer Frobenius traces. Let us denote by Harith its arithmetic monodromy
group. Then Harith normalizes H , and hence we have H � Harith � NO(V )(H) =
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C2× H . In either case, over any even degree extension k/F3, we have Harith,k = H =
S9. So over any such k, all Frobenius traces lie in [−1, 8]. But a Magma calculation
shows that over F34 , both −3 and −2 (as well as 2 and 3) occur as Frobenius traces.
That H = W (E8) at (r0, s0) = (1, 1).

(b) The preceding arguments can also be repeated to show that either G ∼= W (E8) or
G � C2×S9. Since W (E8) = Ggeom,1,1 � G and |C2×S9| < |W (E8)|, we conclude
that G ∼= W (E8).

By Corollary 3.2, there is a dense open subset U of G
2
m containing (1, 1) such that

Ggeom,r0,s0 equals W (E8) for (r0, s0) ∈ U and Ggeom,r0,s0 = S9 for (r0, s0) /∈ U . 	

Theorem 5.3 Let (B, a, p) = (1, 7, 3). Then both Gr ,s , and Gr0,s0 for any (r0, s0) ∈
G

2
m, have Ggeom = W (E8), the Weyl group of type E8.

Proof (a) By Theorem 4.5, G ..= Ggeom,r ,s is a finite subgroup of GL8(C), whence
the same holds for its subgroup H ..= Ggeom,r0,s0 . Let ϕ denote the G-character
afforded by the underlying representation V . By Lemma 2.3, ϕ takes real values for
any specializations of (r , s), and hence ϕ is real-valued. This implies that

Z(H) � Z(G) � C2. (5.3.1)

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows
that ϕ|H cannot be of symplectic type, and

H � G � O(V ) but G, H � SO(V ). (5.3.2)

Next, the wild part of the I (0)-representation V has rank 6, and so the image Q of
P(0) is non-abelian, and hence is a 3-group of order at least 33. It follows that 33

divides |H | and |G|. On the other hand, G has M2,2 = 3 by Lemma 2.10. It follows
from [4, Theorem 1.5] and (5.3.2) that either

E = 21+6+ � G � NO(V )(E) = E ·O+
6 (2),

or G = 2 ·A9, or 2 ·�+
8 (2) � G � W (E8). The first possibility is ruled out since 33

divides |G|. Next, G is not perfect by (5.3.2), ruling out the groups 2 ·A9 and 2 ·�+
8 (2).

Hence we conclude that G = W (E8).

(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G = W (E8). By
Proposition 2.6, H satisfies condition (S+). Hence, by [16, Lemma 1.1], one of the
following two cases holds.

(b1) H is an extraspecial normalizer, i.e. R contains a normal 2-subgroup R = Z(R)E ,
with E = 21+6

ε acting irreducibly on V = C
8, ε = ±, and Z(R) = Z(E) or Z(R) =

C4. Now (5.3.2) implies that ε = + and Z(R) = Z(E). Thus R = E = 21+6+ and

H � NO(V )(E) = E ·O+
6 (2).

This is however impossible since 33 divides |H |.
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(b2) H is almost quasisimple, i.e. S� H/Z(H) � Aut(S) for a non-abelian simple
group S, and the quasisimple group L = E(H), with S = L/Z(L), acts irreducibly
on V . Furthermore, (5.3.1) implies that 33 divides |Aut(S)|. Now we analyze the
possibilities for (S, L) as listed in [6].

• S = L = SL2(8). In this case, H/Z(H) � Aut(S) = SL2(8) ·3 contains no
element of order 4, whereas a generator g∞ of I (∞) modulo P(∞) has order 8
in H/Z(H), a contradiction.

• (S, L) = (Sp6(2), 2 ·Sp6(2)). SinceAut(S) ∼= S, by (5.3.1)we have H = L . Let J
and Q denote the image of I (∞), respectively of P(∞) in H . Then Q is elementary
abelian of order 9 by Lemma 2.2. As J acts irreducibly on V , JZ(H) transitively
permutes the eight nontrivial irreducible characters of Q which all occur in V .
Identifying Q with QZ(H)/Z(H), we see that the subgroup JZ(H)/Z(H) of S
also permutes the eight nontrivial irreducible characters of Q transitively. Note that
S = Sp6(2) admits an irreducible complex character θ of degree 7, and certainly
θ |Q contains some irreducible constituent λ �= 1Q . But then all eight nontrivial
irreducible characters of Q must occur in θ |Q of degree 7, a contradiction.

• (S, L) = (A9, 2 ·A9). Since 2 ·S9 does not act on C
8, we must have H = L . In

particular, H/Z(H) contains no element of order 8, whereas g∞ has order 8 in
H/Z(H), a contradiction.

• S = L = A9. As in the previous case, the fact that g∞ has central order 8 implies
that H/Z(H) ∼= S9. It follows from (5.3.1) that H/L is a group of order 2 or 4,
whence the image P of P(0) in H is contained in L = S. Note that the restriction
of the character ϕ to L is just the character of the deleted permutation module of
A9. Now, ϕ|P = 2 ·1P + α + α for some irreducible character α of P of degree
3, using the fact that ϕ is real-valued. It follows that the 3-subgroup P of A9 acts
on {1, 2, . . . , 9} with exactly three orbits. The length of any of these orbits is a
power of 3. So we conclude that each of them has length 3; say they are {1, 2, 3},
{4, 5, 6}, and {7, 8, 9}. Now, as P fixes each of these three subsets, we see that
P � A3

3 and hence abelian, contrary to the fact that α has degree 3.
• (S, L) = (�+

8 (2), 2 ·�+
8 (2)). Here we have Z(H) = Z(L) = Z(G) = C2,

and S � H/Z(H) � S ·2. Again using the fact that Gr0,s0 having nontrivial
determinant we see that H > L . Hence we conclude that |H/Z(H)| = |S ·2| =
|G/Z(H)| and thus H = G. 	


Remark 5.4 As we mentioned at the beginning of the section, the extension to Gr ,s

to Gm ×A
1×Gm does not change its Ggeom. Now, the specialization G1,0 of Gr ,s

in both Theorems 5.2 and 5.3 yield the Kloosterman sheaf K l (χ2,Char(7))⊗Lχ2

by the proof of Proposition 2.8. In particular, its geometric monodromy group G1,0
contains minus a reflection. Applying [16, Theorem 9.3 (b)], we see that G1,0 = S9,
acting on the tensor product of the deleted permutation representation with the sign
representation, i.e. on the non-reflection representation.
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6 Ggeom for local systems of rank 6

Theorem 6.1 Let (B, a, p) = (1, 5, 3). ThenGr ,s has Ggeom = W (E6)×2. Moreover,
for any (r0, s0) ∈ G

2
m, the geometric monodromy group of Gr0,s0 is W (E6), acting on

the non-reflection representation of degree 6.

Proof (a) By Theorem 4.8, G ..= Ggeom,r ,s is a finite subgroup of GL6(C), whence
the same holds for its subgroup H ..= Ggeom,r0,s0 for any (r0, s0) ∈ G

2
m . Let ϕ denote

the G-character afforded by the underlying representation V . Then

Q(ϕ) = Q, and so Z(H) � Z(G) � C2. (6.1.1)

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, and so it cannot
be of symplectic type, and

H � G � O(V ) and H � SO(V ). (6.1.2)

Nowwe apply Lemma 2.10 to get M2,2(G) = 3. Applying [4, Theorem 1.5] and using
(6.1.1), we see that G is almost quasisimple, and arrive at one of the following cases
for L = G(∞).

• L = SU3(3). In this case, L� G/Z(G) � L ·2. Using [22] one can check that
the rational-valued character ϕ|L does not have rational-valued extensions to L ·2.
Hence (6.1.1) implies that G = Z(G)× L . But in this case G < SO(V ), contra-
dicting (6.1.2).

• L = SU4(2). In this case, L� G/Z(G) � L ·2. Since G � SO(V ) by (6.1.2),
G must induce an outer automorphism of L , i.e. G/Z(G) = L ·2 ∼= W (E6).
Together with (6.1.1), this implies that W (E6) � G � W (E6)×2. The same
arguments applied to Garith,F3 show that Garith,F3 � W (E6)×2. In particular,
[Garith,F3 : G] � 2 and Garith,F9 = G. Now, a calculation with Magma [1] over
F38 shows that the Frobenius at the point (r , s, t) = (1, 1, w437) for w a primitive
element in F38 has trace −4. We also note that a change of variable x �→ r x in the
trace function sends the trace of the Frobenius at (1, 1, t) to χ2(r) times the trace
of the Frobenius at (1, r , tr5). Choosing r ∈ F38 with χ2(r) = −1, we then get
a trace 4, namely at (1, sr , tr5), in addition to trace −4. Since neither of the two
6-dimensional irreducible representations of W (E6) possesses both traces 4 and
−4, we conclude that G = W (E6)×2.

(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G = W (E6)×2.
By Proposition 2.7, H satisfies condition (S+). Hence, by [16, Lemma 1.1], H is
almost quasisimple: S� H/Z(H) � Aut(S) for a non-abelian simple group S, and
the quasisimple group K = E(H) with S = K/Z(K ), acts irreducibly on V . By
Lemma 2.1, the image of P(∞) in H is a non-abelian 3-group, so (6.1.1) implies
that 33 divides |Aut(S)|. Since K = K (∞) � G(∞) = SU4(2), the list of maximal
subgroups of SU4(2) in [2] shows that K = SU4(2) = L . Now Z(G)L has index 2
in G and Z(G)L � SO(V ). Hence (6.1.2) implies that

L < H � G = L �C2
2 . (6.1.3)
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Now we look at the image J of I (0) in H . Since H/L is a 2-group, the image Q of
P(0), a 3-subgroup, is contained in L . Next, J = 〈Q, h〉, where h is the image in H
of a generator g0 of I (0) modulo P(0). Since H/L has exponent 2, we have h2 ∈ L ,
and hence

[L J : L] � 2. (6.1.4)

Also, since G/L is abelian, L J is normal in G and hence also in H . But H is the
normal closure of J by [16, Proposition 4.2], so H � L J . Hence H = L J , and now
(6.1.3) and (6.1.4) imply that [H : L] = 2 = [G : H ]. Among the three subgroups
of index 2 in G, Z(G)× L is contained in SO(V ), and the other two are isomorphic
to W (E6), which act on V via the two irreducible 6-dimensional representations of
W (E6), the reflection and the non-reflection representation. Using (6.1.2), we obtain

H ∼= W (E6). (6.1.5)

By Theorem 3.1, there is a subgroup G η̄ of G and an open dense subset U of G
2
m such

that for all (r1, s1) ∈ U , Ggeom,r1,s1 is conjugate to G η̄ in G. Now (6.1.5) implies that
|Ggeom,r1,s1 | = |G η̄|. It follows that G η̄

∼= W (E6) and hence, being of index 2, that
G η̄ � G. Also by Theorem 3.1, for any (r2, s2) ∈ G

2
m , Ggeom,r2,s2 is conjugate in G

to a subgroup of G η̄� G, hence it is a subgroup G η̄. Again using (6.1.5), we obtain
that H = G η̄. In particular, Ggeom,1,1 = H , and the calculation in (a) shows that H
acts on V via the non-reflection representation. 	

Theorem 6.2 Let (B, a, p) = (2, 5, 3). Then both Gr ,s , and Gr0,s0 for any (r0, s0) ∈
G

2
m, have Ggeom = 61 ·PSU4(3) ·22, the Mitchell group.

Proof (a) By Theorem 4.9, G ..= Ggeom,r ,s is a finite subgroup of GL6(C), whence
the same holds for its subgroup H ..= Ggeom,r0,s0 for any (r0, s0) ∈ G

2
m . Let ϕ denote

the G-character afforded by the underlying representation V . Then

Q(ϕ) ⊆ Q(ζ3), and so Z(H) � Z(G) � C6. (6.2.1)

Also note from Theorem 2.5 that Gr ,s has geometric determinant χ2, and so

G � SL(V ), H � SL(V ). (6.2.2)

Nowwe apply Lemma 2.11 to get M2,2(G) = 2. Applying [4, Theorem 1.5] and using
(6.2.1), we see that G is almost quasisimple, and arrive at one of the following cases
for L = G(∞).

• L = SU4(2) or SU3(3). In this case, L� G/Z(G) � L ·2. Using [22] one can
check that M2,2 = 3, a contradiction.

• L = 6 ·PSL3(4). In this case, L� G � L ·21 (in the notation of [22]). The condi-
tion (6.2.1) now implies that G = L is perfect, which contradicts (6.2.2).

• L = 6 ·PSU4(3). In this case, L� G � L ·22 (in the notation of [22]). Since G is
not perfect by (6.2.2), we have that G = L ·22, the Mitchell group.
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(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G, the Mitchell
group. By Proposition 2.7, H satisfies condition (S+). Hence, by [16, Lemma 1.1], H
is almost quasisimple: S� H/Z(H) � Aut(S) for a non-abelian simple group S, and
the quasisimple group K = E(H) with S = K/Z(K ) acts irreducibly on V . We next
show that

Q(ϕ|K ) = Q(ζ3). (6.2.3)

By (6.2.1), it suffices to show that V |K is not self-dual. Assume the contrary. Then
V and V ∗ are two extensions of the absolutely irreducible module V |K to H . By
Gallagher’s theorem [7, (6.17)],V ∗ ∼= V ⊗U for someone-dimensional H/K -module
U . Applying [19, Corollary 2.7], we see thatU ∼= Q� is trivial, and thus V is self-dual.
But this is impossible by [19, Lemma 2.3]. Using [6] and (6.2.3), we arrive at one of
the following cases for K .

• K = 3 ·A6. Since the faithful module V |K is invariant only under the outer auto-
morphisms 23 of K (in the notation of [2]), we have H = KCH (K ) = KZ(H)

or H � Z(H)K ·23. In the former case, K is perfect and Z(H) � C6 has deter-
minant 1 on V , and so H � SL(V ), contrary to (6.2.2). In the latter case, one can
check using [2] thatQ(ϕ|H ) contains

√
2 or

√−2, contradicting (6.2.1). [Note that
the Mitchell group contains a subgroup 3 ·A6 ·23 which however acts reducibly on
the faithful irreducible representations of the Mitchell group — one can see it by
checking the character values at involutions insider 3 ·A6.]

• K = 3 ·A7. Since the faithful module V |K is not invariant under outer automor-
phisms of K , we have H = KCH (K ) = KZ(H). As K is perfect andZ(H) � C6
has determinant 1 on V , we get H � SL(V ), contradicting (6.2.2).

• K = 6 ·PSL3(4). As in part (a), this implies H = K is perfect, again contradicting
(6.2.2).

• K = 6 ·PSU4(3). As in part (a), using (6.2.2) we obtain that H = K ·22. Since
H � G and |H | = |G|, it follows that H = G. 	
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