
STRANGE CONGRUENCES

NICHOLAS M. KATZ AND YUTA NAKAYAMA

Abstract. We discuss some strange congruences, raise some questions, and give applications to
monodromy.
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1. Introduction

We did some computer experiments using Magma [BCP] which suggested some unexpected con-
gruences. For simplicity, here is the simplest case. We took an odd prime p, a power q of p, and a
finite extension k/Fq. We then considered the one parameter family, parameter t, of hyperelliptic
curves Ct given by the affine equation

y2 = xq + x2 + t,

which for each t 6= 0 is (the complement of a single point at∞ in) a projective, smooth, geometrically
connected curve of genus g = (q − 1)/2. For t ∈ k×, write

#Ct(k) = #k + 1− a(k, t).

In terms of the quadratic character χ2 of k× (extended to k by decreeing χ2(0) = 0), we have the
well known formula

a(k, t) = −
∑
x∈k

χ2(xq + x2 + t).

In fact, we also computed this sum when t = 0. What we found empirically was the congruence

a(k, t) ≡ 1 mod p

for every t ∈ k. In fact, we found, again empirically, the further congruence

a(k, t) ≡ 1 mod q

for every t ∈ k, provided that k was an extension of Fq. Of these congruences, only the case
q = 3 has a “classical” explanation: in characteristic 3, the Hasse invariant of an elliptic curve of
equation y2 = x3 + a2x

2 + a4x + a6 is the coefficient a2 of x2. In general, the congruence means
that precisely one of the 2g = q − 1 Frobenius eigenvalues (α1 . . . , α2g) is nonzero mod p, say α1,
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and that α1 is 1 mod p. On the one hand, we infer that #Ct(k) ≡ 0 mod p for each k/Fq and each
t ∈ k×, but we also infer that #JacCt(k) ≡ 0 mod p (because this cardinality is

∏
i(1 − αi)). But

only in the q = 3 case is the set of rational points on the curve, when viewed in the Jacobian by
P 7→ class of [P [−[∞], a subgroup.

We did further computer experiments of the following kind. We looked at “superelliptic” curves
of equation

ya = xq + xa + lower terms, say ya = xq + xa + g(x),deg(g) < a.

We took q to be 1 mod a, a finite extension k/Fq, and computed the mod p sum

−
∑
x∈k

(xq + xa + g(x))(#k−1)/a,

an element of k, and the “exact” sum

−
∑
x∈k

Teich((xq + xa + g(x))(#k−1)/a),

where we denote by Teich the Teichmüller lift from k to the ring of Witt vectors W (k). What we
found empirically was that the “exact” sum was again 1 mod p. We also found that once q was 1
mod a, then if we looked at

ya = xq
n

+ xa + g(x), deg(g) < a

over any finite extension k/Fqn , then the “exact” sum was 1 mod pn.
What we prove in this paper are the mod p congruences. The congruences mod higher powers of

p remain open. Also open is the “meaning”, if any, of these congruences. We also give applications
to the determination of some monodromy groups.

2. The basic set up

Given a field k of characteristic p > 0, and a proper, smooth, geometrically connected curve C/k,
of genus g ≥ 1, the (absolute) Cartier operator C is a p−1-linear endomorphism of the g-dimensional
k-vector space H0(C,Ω1

C/k). Given a strictly positive power q = pf of p, we denote by Cq the f -fold

iterate of C. It is thus a q−1-linear endomorphism of H0(C,Ω1
C/k).

Let us recall, in a simple case, how to compute Cq. For this, it is convenient to introduce the
Dwork-inspired q−1-linear operator Ψq on the polynomial ring k[x], defined by

Ψq(
∑
n

anx
n) :=

∑
n

(anq)
1/qxn.

Thus Ψq(x
n) vanishes unless q|n, in which case it is xn/q. Its relevance is the simple formula

Cq(xndx/x) = Ψq(x
n)dx/x, Cq(xndx/(xf q)) = Ψq(x

n)dx/(xf).

Consider a “superelliptic” curve C/k with affine equation of the form

ya = fd(x),

with a ≥ 2 prime to p, and f := fd ∈ k[x] a polynomial of degree d ≥ 2. We make the following
two assumptions:

gcd(f, f ′) = 1 and gcd(a, d) = 1.

The first assumption, that f has d distinct zeroes in k, is that this affine curve is smooth over k.
The second, that gcd(a, d) = 1, is that the complete nonsingular model of this affine curve has a
single point at ∞. At ∞, the function x has a pole of order a, and the function y has a pole of
order d. Thus dx has a pole of order a+ 1 at ∞, i.e., dx/x has a simple pole at ∞.
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The space H0(C,Ω1
C/k) has dimension (a− 1)(d− 1)/2, and a k-basis is given by the differentials

xi−1dx/yj = xidx/(xyj), with 1 ≤ j ≤ a− 1, 1 ≤ i such that jd− ia− 1 ≥ 0,

the inequalities being the condition of holomorphy at ∞.

Lemma 2.1. Choose q = pf so that q ≡ 1 mod a. Then

Cq(xidx/(xyj)) = Ψq(x
if(x)j(q−1)/a)dx/xyj .

Proof. Indeed,

xidx/(xyj) = xi(dx/(xyjq))yj(q−1) = xi(dx/(xyjq))f(x)j(q−1)/a = (xif(x)j(q−1)/a)dx/(xyjq),

whose image under Cq is visibly Ψq(x
if(x)j(q−1)/a)dx/(xyj). �

Remark 2.2. Suppose q ≡ 1 mod a. Then the group µa(Fq) acts on the curve C, with ζ ∈ µa
mapping (x, y) to (x, ζy), and Cq commutes with this action. The decomposition of H0(C,Ω1

C/k)

into eigenspaces for the action of µa is the decomposition by the power 1 ≤ j ≤ a − 1 of y in the
denominator of xidx/(xyj), on which µa acts by the −j’th power of the “identical” character ζ 7→ ζ.
Each of these eigenspaces is stable by Cq. For each j with 1 ≤ j ≤ a − 1, let us the corresponding
eigenspace as

H0(C,Ω1
C/k)j := the span of the xidx/(xyj), 1 ≤ i such that jd− ia− 1 ≥ 0.

Notice that this eigenspace vanishes unless jd ≥ a+ 1, i.e., unless j ≥ (a+ 1)/d. As a/d is not an
integer (because gcd(a, d) = 1), it is equivalent to say that this eigenspace vanishes unless j ≥ a/d.

Lemma 2.3. Suppose q ≡ 1 mod a and C is defined over Fq, i.e. the defining equation ya = fd(x)
has fd ∈ Fq[x]. Then Cq is an Fq-linear endomorphism of H0(C,Ω1

C/Fq
), stable on each H0(C,Ω1

C/k)j
subspace, and for each 1 ≤ j ≤ a− 1 we have the identity

Trace(Cq|H0(C,Ω1
C/k)j) = −

∑
x∈Fq

(fd(x))j(q−1)/a, equality in Fq.

Proof. First we deal with the case when j < a/d. Then the j-eigenspace vanishes, and (fd(x))j(q−1)/a

has degree ≤ jd(q − 1)/a < q − 1, in which case the asserted sum over x vanishes as well, cf. the
next paragraph.

The key point is that for g(x) := xn, −
∑

x∈Fq
g(x) in Fq vanishes unless n ≥ 1 and (q − 1)|n, in

which case the sum is 1. So −
∑

x∈Fq
(fd(x))j(q−1)/a can be calculated as follows. Write

(fd(x))j(q−1)/a =
∑
n

Anx
n.

Then by the key point we have

−
∑
x∈Fq

(fd(x))j(q−1)/a =
∑
n≥1

An(q−1).

It suffices to treat the case when j > a/d, so that the space H0(C,Ω1
C/k)j is nonzero. Let

us see how this sum is related to the asserted Trace. In the basis of H0(C,Ω1
C/k)j given by the

xidx/(xyj), 1 ≤ i such that jd−ia−1 ≥ 0, the diagonal entries of the matrix of Cq are as follows. For

each integer i with i ≥ 1, ia+1 ≤ jd, the (i, i) entry is the coefficient of xi in Ψq((x
if(x)j(q−1)/a), or

equivalently the coefficient of xiq in xif(x)j(q−1)/a, or equivalently the coefficient of xiq−i = xi(q−1)

in f(x)j(q−1)/a, which is the coefficient Ai(q−1). So it remains only to see that the indices n with

0 < n(q − 1) ≤ dj(q − 1)/a



4 NICHOLAS M. KATZ AND YUTA NAKAYAMA

are precisely those with n > 0 and jd − na − 1 ≥ 0, or equivalently with jd − 1 ≥ na > 0.
The first inequality is 0 < n ≤ dj/a. But dj/a cannot be an integer: indeed, if a|dj, then because
gcd(d, a) = 1 we would have a|j, which is impossible because 1 ≤ j ≤ a−1. Thus the first inequality
is 0 < n < dj/a, i.e., 0 < na < dj, which we rewrite as 0 < na ≤ dj − 1. Thus the (i, i) diagonal
entry of the matrix of Cq|H0(C,Ω1

C/k)j is precisely the coefficient Ai(q−1), and the allowed i > 0 run

over the possible n > 0 for which An(q−1) occurs in (fd(x))j(q−1)/a. �

3. The congruence formula for the L-function mod p

In fact, the trace formula of Lemma 2.3 is a consequence of an identity of characteristic polynomi-
als. For a fixed character χj : ζ 7→ ζj of µa, denote by H1(C,OC)(χj) the corresponding eigenspace
in H1(C,OC). One knows [Ka-Int, 3.1] that the action of Frobq on H1(C,OC) is the linear dual of
the action of Cq on H0(C,Ω1

C/Fq
). Passing to χ-components, the action of Frobq on H1(C,OC)(χj)

is the linear dual of the action of Cq on the χ−j eigenspace H0(C,Ω1
C/Fq

)j of H0(C,Ω1
C/Fq

). Consider

now the L-function of C, with the Teichmüller lifting Teich(χj) : µa(Fq)→ µa(W (Fq)). One knows
that by using crystalline comology H1

cris(C/W ), one has

L(C/Fq,Teich(χj)) = det(1− TFrobq|H1
cris(C/W )(Teich(χj)),

an identity in W (Fq)[T ]. Reducing mod p, we have an identity

L(C/Fq, χj) = det(1− TFrobq|H1
DR(C/Fq)(χj)), equality in Fq[T ].

In the χj piece of Hodge filtration short exact sequence

0→ H0(C,Ω1
C/Fq

)−j → H1
DR(C/Fq)(χj)→ H1(C,OC)(χj)→ 0,

the map Frobq kills the first term H0(C,Ω1
C/Fq

)−j , so

det(1− TFrobq|H1
DR(C/Fq)(χj)) = det(1− TFrobq|H1(C,OC)(χj) = det(1− TCq|H0(C,Ω1

C/Fq
)j),

the final equality by duality.
Thus we have the congruence formula:

Theorem 3.1. Suppose q ≡ 1 mod a and C is defined over Fq, i.e. the defining equation ya = fd(x)
has fd ∈ Fq[x]. Then Cq is an Fq-linear endomorphism of H0(C,Ω1

C/Fq
), stable on each H0(C,Ω1

C/k)j
subspace, and for each 1 ≤ j ≤ a− 1 we have the identity

L(C/Fq,Teich(χj)) mod p = det(1− TCq|H0(C,Ω1
C/Fq

)j).

Remark 3.2. The coefficient of −T in L(C/Fq,Teich(χj)) is the sum

−
∑
x∈Fq

Teich(f(x)j(q−1)/a),

whose reduction mod p is precisely the sum

−
∑
x∈Fq

f(x)j(q−1)/a

which was obtained in Lemma 2.3 as Trace(Cq|H0(C,Ω1
C/Fq

)j).
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4. Some special curves

In this section, we fix an integer a ≥ 2 which is prime to p, a strictly positive power q of p which
has q ≡ 1 mod a, a finite extension k/Fq, and a superelliptic curve C defined over k with affine
equation of the special form

ya = fq, fq := xq + xa + g(x), deg(g) < a.

Theorem 4.1. For j = 1, we have

Trace(C#k|H0(C,Ω1
C/k)1) = 1, equality in k,

or, equivalently,

−
∑
x∈k

(fq(x))(#k−1)/a = 1.

Furthermore, we have the mod p identity

L(C/k,Teich(χ1)) mod p = 1− T.

Proof. Let us write #k = qf , so that C#k = Cqf is the f -fold interate of Cq. [Remember that Cq
is q−1-linear, but its f -fold iterate is k-linear.] We will use the basis of H0(C,Ω1

C/k)1 given by the

xidx/(xy), 1 ≤ i such that q − ia− 1 ≥ 0, which is to say 1 ≤ i ≤ (q − 1)/a.
We next define an increasing filtration

W1 ⊂W2 . . . ⊂W(q−1)/a = H0(C,Ω1
C/k)1

as follows: Wr is the subspace spanned by the basis elements xidx/(xy) with i ≤ r.
We will establish the following three statements.
1)The “matrix” of Cq in this basis is upper triangular, in the sense that each Wr is Cq-stable.
2)For r > 1, Cq maps Wr to Wr−1.
3)The only nonzero diagonal entry in this matrix, namely the (1, 1) entry, is 1.
Once these points are established, any iterate of Cq on H0(C,Ω1

C/k)1 in this same basis also has

properties 1), 2), 3). Applying this to the f -fold iterate, we get the assertion, as a consequence of
Lemma 2.3.

Fix an index i with 1 ≤ i ≤ (q − 1)/a. We ask which basis elements xndx/(xy) can occur with
nonzero coefficient in Cq(xidx/(xy)). This is equivalent to asking which powers xn can occur in

Ψq(x
i(fq)

(q−1)/a), or equivalently which powers xnq occur in xi(fq)
(q−1)/a, or, finally, which powers

xqn−i occur in (fq)
(q−1)/a.

The monomials that can possibly appear in (fq)
(q−1)/a can be described as follows. Write out

fq = xq +
∑
m≤a

Amx
m,

where we temporarily forget that Aa = 1. If a monomial xqn−i occur in (fq)
(q−1)/a, then for some

expression

(q − 1)/a = α+
∑
m≤a

βm

with nonnegative integers (α, β0, . . . , βa) we must have

qn− i = qα+
∑

1≤m≤a
mβm,
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as the degree zero term β0 does not contribute to the degree. The second term
∑

1≤m≤amβm is

bounded by a
∑

1≤m≤a βm ≤ a((q − 1)/a) = q − 1. Thus

qn− i = qα+ ( a nonnegative term ≤ q − 1).

We next show that α = n− 1. To see this, first write this last equality in the crude form

q(α− n) = −i− nonnegative,

to infer that α < n. Then write

q(n− α) = i+ ( a nonnegative term ≤ q − 1).

Here i ≤ (q − 1)/a, so we have the inequality

q(n− α) ≤ (q − 1)/a+ (q − 1),

so trivially q(n − α) < 2q. Thus n − α is a strictly positive integer which is < 2, hence is 1, and
n− α = 1.

Using that α = n− 1, we then have

qn− i = q(n− 1) +
∑

1≤m≤a
mβm,

which we rewrite as

q−i =
∑

1≤m≤a
mβm ≤ a(

∑
1≤m≤a

βm) ≤ a(
∑

0≤m≤a
βm) ≤ a((q−1)/a−α) = (q−1)−aα = (q−1)−a(n−1),

giving
−i ≤ −1− a(n− 1),

i.e.,
a(n− 1) ≤ i− 1.

Recalling that a ≥ 2, we see that if i = 1, then n = 1, while if i ≥ 2, then n− 1 ≤ (i− 1)/a < i− 1,
in which case n < i.

It remains to show that the monomial xq−1 occurs with coefficient 1 in (xq+xa+
∑

m<aAmx
m)(q−1)/a.

For any expression

(q − 1)/a = α+
∑
m≤a

βm

with nonnegative integers (α, β0, . . . , βm) we must have

q − 1 = qα+
∑

0≤m≤a
mβm.

Thus α = 0 and
(q − 1)/a =

∑
m≤a

βm.

But
q − 1 =

∑
0≤m≤a

mβm ≤ a(
∑

0≤m≤a
βm) = (q − 1),

hence we have the equality ∑
0≤m≤a

mβm = a(
∑

0≤m≤a
βm) = q − 1,

and thus ∑
m≤a

(m− a)βm = 0.



STRANGE CONGRUENCES 7

But each m − a ≤ 0, and each βm ≥ 0. So each summand (m − a)βm ≤ 0, hence each summand
(m− a)βm = 0. For m < a, this forces βm = 0. Thus βa = (q − 1)/a, all other βm vanish, as does
α. So our xq−1 occurs entirely as the (q − 1)/a power of xa, with coefficient 1.

From the upper triangular shape of the “matrix” of Cq, and hence of C#k as well, with zeros on
the diagonal except for an entry 1 in the (1, 1) position, the congruence for the L function results
from Theorem 3.1.

�

5. Nonsingularity often does not matter

Let k be a field of characteristic p, and C0/k the affine curve of equation

ya = fd(x),

with a ≥ 2 prime to p, and f := fd ∈ k[x] a polynomial of degree d. We assume that

gcd(a, d) = 1.

This condition ensures that C0 is geometrically irreducible, whatever the polynomial fd. As noted
in our earlier discussion, if fd has d distinct zeroes in k, then C0 is the complement of a single point
at ∞ in a projective, smooth, geometrically connected curve C of genus (a− 1)(d− 1)/2. But, for
example, in the extreme case when fd = xd, C0 is a rational curve, with C0 r (0, 0) the group Gm,
by t 7→ (x = ta, y = td).

Lemma 5.1. For C0 as above, and any ` 6= p, the compact cohomology groups

H i
c(C0) := H i

c(C0 ⊗k k,Q`)

are given by H0
c = 0, H2

c = Q`(−1), and H i
c = 0 for i > 2.

Proof. The only nonobvious point is that H0
c (C0) = 0. To see this, denote by C the projective

closure in P2 of C0, i.e., the curve of equation Zd−aY a = Fd(X,Z) if d > a, or the curve of equation
Y a = Za−dFd(X,Z) if a > d. In either case, there is precisely one point at ∞, i.e., one point with
Z = 0, simply because a 6= d. Then C is geometrically irreducible, so its H0

c (C) is Q`. The excision
sequence for the inclusion C0 ⊂ C begins with

0→ H0
c (C0)→ H0

c (C)→ H0
c (the single point ∞),

in which the final arrow is an isomorphism. �

Suppose now that the field k is a finite field containing the ath roots of unity. Then we compute
#C0(k) as the sum ∑

x∈k
(the number of ath roots of fd(x) in k).

For any element z ∈ k, the number of its ath roots in k is the sum

1 +
∑

nontrivial characters χ of k× with χa=1

χ(z),

with the usual convention that for χ 6= 1, χ(0) = 0. Thus if we denote by Charnontriv(a) the set of
χ being summed over, we have

#C0(k) = #k +
∑

χ∈Charnontriv(a)

∑
x∈k

χ(fd(x)).
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When we view the same χ as a character of the group µa, by precomposing with z 7→ z(#k−1)/a,
then under the µa action on C0 given by ζ : (x, y) 7→ (x, ζy), we can break H1

c (C0) into eigenspaces
under Char(a). For each χ ∈ Charnontriv(a), the Lefschetz trace formula then gives

Trace(Frobk|H1
c (C0)χ) = −

∑
x∈k

χ(fd(x)),

while H1
c (C0)1 = 0 and H2

c (C0) has trivial µa action, and Frobenius trace #k.
The summands χ(fd(x)) lie in the cyclotomic ring Z[ζa], which we may embed in the Witt vector

ring W (k). Viewed in the Witt vector ring, it makes sense to ask about p-adic congruences for the
sums −

∑
x∈k χ(fd(x)).

Lemma 5.2. Suppose that k := Fq contains the ath roots of unity. For each j with 1 ≤ j ≤ a− 1,
denote by W (k)j the k-span of the monomials xi, with exponents i ≥ 1 for which ia ≤ jd − 1.

Denote by Ψq ◦ fd(x)j(q−1)/d Then the Fq linear endomorphism of Fq[x] given by

g 7→ Ψq(g(x)fd(x)j(q−1)/a)

maps W (k)j to itself, and we have the trace formula

Trace(Ψq ◦ fd(x)j(q−1)/d|W (k)j) = −
∑
x∈Fq

(fd(x))j(q−1)/a, equality in Fq.

Proof. Repeat verbatim the Ψq part of the proof of Lemma 2.3. �

Lemma 5.3. Suppose that Fq contains the ath roots of unity, and k = Fqn. Then the Fqn-linear
endomorphism

Ψqn ◦ fd(x)j(q
n−1)/a|W (k)j

is the n-fold iterate of the q−1-linear endomorphism

Ψq ◦ fd(x)j(q−1)/a|W (k)j .

Proof. Indeed, as additive endomorphisms of k[x], we have the composition rule

Ψqa ◦ h(x) ◦Ψq ◦ k(x) = Ψqa+1 ◦ (h(x)qk(x)).

The assertion then results by inductively applying this composition rule, since

fd(x)j(q
n−1)/d =

n−1∏
i=0

(fd(x)j(q−1)/d)q
i
.

�

Consider now the following special case of the situation above. We have the integer a ≥ 2 which
is prime to p, a strictly positive power q of p which has q ≡ 1 mod a, a finite extension Fqn/Fq, and
an affine curve C0/Fqn defined by an affine equation of the special form

ya = fq, fq := xq + xa + g(x), deg(g) < a.

Theorem 5.4. For j = 1, we have

Trace(Ψqn ◦ fq(x)(q−1)/a|W 1
k ) = 1, equality in k,

or, equivalently,

−
∑
x∈Fqn

(fq(x))(qn−1)/a = 1.

Proof. Repeat verbatim the Ψ#k part of the proof of Theorem 4.1. �
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Remark 5.5. The main casualty of not requiring nonsingularity is that we lose thee congruence
formula given by Theorem 3.1. To see what the problem is, consider what is arguably the worst
case, when we take a to be q − 1, and the curve

yq−1 = xq + xq−1,

which, after the change of variable (x, y) 7→ (x, y/x) is just the rational curve yq−1 = x+ 1, whose
H1 = 0, while ⊕1≤j≤q−2W

j has dimension (q − 1)(q − 2)/2.

6. Some open questions, in the nonsingular case

In the context of Theorem 4.1, for each nontrivial power χj , the χj component of H1
cris has

dimension q − 1, so each L function is a polynomial of that degree, and one can ask what is its
Newton polygon. In the case of χ1, we have seen that the Newton polygon has a single slope 0, all
other slopes are strictly positive. [We might remark in passing that knowing this requires the full
congruence formula for the L function, otherwise we might have had, say p + 1 unit eigenvalues,
each of which was 1 mod p, instead of a single one. Of course this possible ambiguity can only arise
when q − 1 ≥ p, i.e., when q > p.]

By general semicontinuity, when we look at nonsingular curves of the form ya = xq + xa + g(x)
with deg(g) < a, on an open dense set of g’s the Newton polygon of the L function for each χj is
constant. What is it, especially for χ1, where we know the Newton polygon has a single slope 0?

Another question: in this χ1 case, where there is a single “unit root”, give a limit formula for it,
along the lines of [Ka-Int, Section 8].

7. Applications to monodromy

Let k be a field. We say that a polynomial f(x) ∈ k[x] is “very weakly supermorse”, compare
[Ka-ACT, 5.5.2], if it satisfied the following three conditions.

(1) The second derivative f ′′(x) is not identically zero.
(2) The derivative f ′(x), of degree denoted δ, has δ distinct zeroes (in k), say α1, . . . , αδ.
(3) If δ > 1, f separates the zeroes of f ′: if 1 ≤ i < j ≤ δ, then f(αi) 6= f(αj).

Equivalently, f is very weakly supermorse if, for all but finitely many λ ∈ k, the polynomial f(x)−λ
has d := deg(f) distinct zeroes, while for a finite nonempty set Λ ⊂ k, and for λ ∈ Λ, f(x)− λ has
d−1 distinct zeroes, i.e., d−2 simple roots and one double root. The notion of “weakly supermorse”
defined in [Ka-ACT, 5.5.2] required in addition that d := deg(f) be prime to p, so that δ is d − 1
there.

The proof of [Ka-ACT, Lemma 5.15] may be repeated verbatim to prove the following lemma.

Lemma 7.1. Let k be a field, and f(x) ∈ k[x] a polynomial whose second derivative f ′′ is not
identically zero. Then there exists a nonzero polynomial R(t) ∈ k[t] such that for any extension
field K/k, and and a ∈ K with R(a) 6= 0, the polynomial f(x) + ax is very weakly supermorse.

Suppose now that f(x) is very weakly supermorse. Denote by S := CritVal(f) ⊂ A1 the finite
set of critical values of f , i.e., the values of f on the δ zeroes of f ′. Then

F := f?Q`/Q`,

for any ` invertible in k, is lisse on A1rS, and at each critical value s ∈ S, the local monodromy is a
transposition in Ggeom, viewed as a transitive subgroup of the symmetric group Sd, for d := deg(f).
If d were invertible in k, then F would be tame at∞, in which case Ggeom would be generated by all
conjugates of all local monodromies at points in S, so would be a transitive subgroup of Sd generated
by transpositions, and hence Ggeom would be Sd in its deleted permutation representation. As this
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representation of Sd is irreducible, we recover the fact, cf. [Ka-ACT, 5.5], that F is geometrically
irreducible.

However, in the case of interest, f has degree d = q := pf , and we are in characteristic p. In
this case F is no longer tame at ∞. [In fact it is totally wild.] How, then, can we exploit having
transpositions as the monodromies at finite distance (i.e., in S), or find some other way, to prove
that F is geometrically irreducible?

There are two standard methods. The first is to show that the two variable polynomial

f(x)− f(y)

x− y

is geometrically irreducible (i.e., irreducible in k[x, y]).
The second is to show that Ggeom is a primitive subgroup of Sd, since by Jordan’s theorem

[Wielandt, Theorem 13.9], a primitive subgroup of Sd which contains an r-cycle for some prime
r ≤ d− 3 is either Ad or Sd. In particular, a primitive subgroup of Sd with d ≥ 5 which contains a
transposition must be Sd.

To show that Ggeom is primitive, it is equivalent to show that the polynomial f is indecomposable,

meaning that in k[x], it cannot be written as a composition g(h(x)) of polynomials g, h, both of
degree ≥ 2.

Remark 7.2. When f has degree p, it is trivially indecomposable. In this case, we “recover” the
fact that a transitive subgroup of Sp, p ≥ 5, which contains a transposition must be Sp. [Of course
this is also true for p = 3.]

When f(x) = xq +x2, and p is odd, then f(x)−f(y)
x−y is geometrically irreducible, being (x−y)q−1 +

2(x+ y), which in coordinates u := x− y, v := x+ y is uq−1 + 2v in k[u, v].

We also have the following case.

Lemma 7.3. Over Fp, suppose f(x) = xp
2
+xa+g(x) with a ≥ 2, p2 > a > deg(g) and gcd(a, p) = 1,

is very weakly supermorse. Then f is indecomposable.

Proof. The proof depends on the following lemma.

Lemma 7.4. Suppose f is very weakly supermorse and is decomposable, f(x) = g(h(x)). Then
x 7→ g(x) is finite étale.

Proof. We argue by contradiction. If g is not finite étale, then for some scalar α, g(x) − α has a
multiple root, so when we factor it, we get

g(x)− α = Cα
∏
j

(x− βj)nj

with Cα 6= 0 and some nj ≥ 2. Then

f(x)− α = g(h(x))− α = Cα
∏
j

(h(x)− βj)nj .

So f(x)−α is divisible by some (h(x)−βj)2, so has either more than one double root (if (h(x)−βj
has at least two distinct roots), or it has root of multiplicity at least 4 (if (h(x) − βj has only one
root, necessarily of multiplicity deg(h) ≥ 2). �

This lemma shows that in characteristic zero, no very weakly supermorse polynomial is decom-
posable, and that in any characteristic, no weakly supermorse polynomial is decomposable.
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With this lemma at hand, we argue as follows. As the degree is p2, if f is decomposable as
g(h(x)), then both g, h have degree p, and g is finite étale, so necessarily of the form

g(x) = cpx
p + a1x+ c0, cpc1 6= 0,

and

h(x) =

p∑
n=0

bnx
n, bp 6= 0.

Then

f(x) = g(h(x)) = cp(

p∑
n=0

bpnx
pn) + c1(

p∑
n=0

bnx
n) + c0.

Suppose first that xa occurs in f with p < a < p2 and p - a. All monomials in f of degree > p come
from h(x)p, none of whose nonzero exponents is prime to p, contradiction.

Suppose next that 2 ≤ a < p. Then the xa must be present in h, and hence h has the form

h(x) = bpx
p + bax

a + lower terms.

Then cph(x)p has the monomial xpa occurring, and (because a ≥ 2) this monomial does not occur in
h. Thus f(x) = g(h(x)) has the monomial xpa occurring, contrary to the assumed shape of f . �

Theorem 7.5. (compare [Ka-ACT, 5.4]) Let a ≥ 2 be a prime to p integer, q = pf a power of an
odd prime p with q ≡ 1 mod a, k/Fq a finite extension, and f ∈ k[x] a polynomial of the form

f(x) = xq + xa + lower terms,

which is very weakly supermorse and for which

F := f?Q`/Q`

is geometrically irreducible (see Remark 7.2 and Lemma 7.3 for examples). For ρ a multiplicative
character of (exact) order a, form the middle additive convolution

G := Gρ := F ?+,mid Lρ.

Then G is lisse and geometrically irreducible on

A1 r S, S := the critical values of f.

Its rank is q − 1, and at each critical value s ∈ S of f , its local monodromy is a pseudoreflection of
determinant χ2ρ. Its trace function is given as follows: For L/k a finite extension, and t ∈ L not
a critical value of f ,

Trace(Frobt,L|G) = −
∑
x∈L

ρL(t− f(x)).

If ρ has order 2, the geometric monodromy group Ggeom of G is Spq−1. If ρ has order ≥ 3, then

G◦geom = SLq−1, and for N the order of χ2ρ, Ggeom = {A ∈ GLq−1|det(A)N = 1}.

Proof. Our F has local monodromies at finite distance which are reflections. Then by [Ka-RLS, the
“tame on A1” part of the proof of Corollary 3.3.6, 1)], FT (F)(∞) is the direct sum

(slopes > 1)⊕ (the direct sum of the Lχ2(t−s) ⊗ Lψ(st) over the finite singularities s ∈ S)
and

G := F?+,midLρ
is lisse on A1 r S and (as F is geometrically irreducible) geometrically irreducible, and each local
mono at finite distance is a pseudoreflection of determinant χ2ρ. If we can prove that G is is not
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induced, then by the trichotomy of [Ka-MG, Proposition 1], G is either Lie-irreducible or a tensor
product

G = H⊗K
with H Lie-irreducible and K irreducible of rank ≥ 2 with finite Ggeom,K. We cannot have H of rank

one, otherwise det(G) is H⊗(q−1) ⊗ det(K); but det(G) is geometrically of finite order (because G
starts life over a finite field), and hence H would be geometrically of finite order, the very opposite
of being Lie-irreducible. But at any of the critical values of f , the local monodromy of G is a
pseudoreflection, and no pseudoreflection is nontrivially a tensor product. Thus, if G is not induced,
it is Lie-irreducible, and Lie(Ggeom,G) is an irreducible, semisimple lie subalgebra of Mq−1(Q`) which
is normalized by a pseudoreflection of determinant χ2ρ. The key result now is due to Kazhdan-
Margulis, Gabber, and Beukers-Heckman, see [Ka-ESDE, Theorem 1.5]. If ρ has order 2, then
G0

geom,G is either Spq−1 or SLq−1. In this order 2 case, we are dealing with the trace function of H1

of the family of hyperelliptic curves y2 = t − f(x), so we have an a priori inclusion of Ggeom,G in
Spq−1. In the case of ρ of order ≥ 3, χ2ρ also has order ≥ 3, and then G0

geom,G must be SLq−1.

To determine Ggeom,G exactly for ρ of order ≥ 3, we must show that det(G) is geometrically of
order N :=the order of χ2ρ. In fact, we have a geometric isomorphism

det(G) = L := LΛ(
∏

s∈S(t−s)), with Λ := χ2ρ.

To see this, use the fact that, on the one hand, det(G) geometrically takes values in the group of
roots of unity in Q(ρ) (by [De-Const, Theorem 9.8] or [Se-Ta, Theorem 2 (ii)] or [Ka-ACT, 5.2 bis
1)]), so has order prime to p, and hence is everywhere tame. At a finite singularity s ∈ S, det(G) is
LΛ(t−s). Thus det(G) ⊗ L−1 is lisse on A1 and tame at ∞, so geometrically trivial. Once we have
this determination of det(G), we see that det(G) has order dividing N (because Λ does), and that
the image of each inertia group I(s) is cyclic of order N .

So far, everything we have said about the determination of G0
geom,G holds for any very weakly

supermorse f whose
F := f?Q`/Q`

is geometrically irreducible. We now make use use of the special congruences of Theorem 4.1. View
the traces of G as lying in the cyclotomic ring Z[ζa], and pick a p-adic place P of Q(ζa). Then
precise one of the characters of order a of k is the Teichmüller lift of its reduction mod P, call it
ρ1. For this ρ1, over any extension L/k in which −1 is an ath power, all Frobenius traces of Gρ1 are
nonzero, because they are all 1 mod P. [For any L/k, they are ρ1L(−1) mod P, the −1 needed to
change t − f(x) into f(x) − t and apply Theorem 4.1.] But every ρ of order a is a Gal(Q(ζa)/Q)-
conjugate of ρ1, and trace of a given Frobenius on Gρ is the galois conjugate of the trace of the same
Frobenius on Gρ1 . Thus for every ρ of order a, Gρ has all Frobenius traces nonzero. By [Ka-Sar,
10.2] or [KT30, proof of Proposition 4.4], a geometrically irreducible local system on a smooth,
geometrically connected X/k with k a finite field, all of whose Frobenius traces are nonzero, is not
induced. �
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