CHEBYSHEV INTERPOLATION

NICHOLAS F. MARSHALL

1. INTRODUCTION

1.1. Summary. In this note we state some key results about polynomial inter-
polation. In particular, we state the general remainder formula for polynomial
interpolation, and consider the example of Chebyshev nodes of the first kind.

1.2. Motivation. Before discussing interpolation, we recall the Weierstrass ap-
proximation theorem. Let f be a real-valued function defined on a compact interval
[a,b] of R. Then, for any £ > 0, there exists a polynomial p(z) such that

[f(z) —p(z)| <,

for all « € [a,b]. This result motivates the study of numerical methods to approxi-
mate functions by polynomials; interpolation is one such method.

1.3. Basic result. Let f : [a,b] = R, and 21 < -+ < x,, € [a,b] be given. Then,
there exists a unique polynomial of degree at most n — 1 that interpolates f at
Z1,...,Ty, in the sense that

p(z;) = f(z;),
for j =1,...,n. We call p the interpolating polynomial of f at z1,...,z,.

Proof. The interpolating polynomial p can be expressed explicitly in Lagrange form
by

p(z) = Z f(xj)g;(z),

where
n

g@) = [ il

kel kty U3 T Tk

If p and ¢ are two polynomials of degree at most n — 1 that interpolate f at
Z1,...,Ty, then w = p—gq, is a polynomial of degree at most n — 1 that vanishes at
n points x1,...,x,. It follows that w is identically zero, which implies p =¢q. O

2. INTERPOLATION ERROR AND IMPLEMENTATION

2.1. Remainder term. Let f be an m times continuously differentiable function
on a compact interval [a,b]. Suppose that p is the m — 1 degree polynomial that
interpolates f at x1,...,%, € [a,b]. Then,

(m)
R@) = @) -p@) = O - am),
1
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for some & € [a,b]. Tt follows that

(1) (@) = p@)] < 22 max |10 (y)

m! yea,b]

b

where ¢(z) = (x —21) -+ (x — z,,) is the monic polynomial of degree m with roots
at T1,...,Tm.

2.2. Chebyshev nodes. The points

(2k—17r>
T = COS =,
m 2

for k =1,...,m are called Chebyshev nodes (of the first kind). They are roots of
the degree m Chebyshev polynomial (of the first kind) defined by

T () = cos(m arccos x),

for z € [—1,1]. The Chebyshev polynomials satisfy the recursion formula Ty(x) = 1,
T (z) = x,

Tiy1(x) = 22Tk (z) — Tr—1(2),

for k > 1, and thus the leading coefficient of T}, is 2°~1. Moreover, observe that
| T (2)] = | cos(marccos(z)] <1

for x € [-1,1]. Thus, if z1,...,x,, are Chebyshev nodes (of the first kind), then

1

1
(@ —z1) - (2 —am)| = ’WTm(ﬂ?) S o1

for x € [-1,1]. If we define the map [ : [-1,1] — [a, b] by

_b—a b+a

I(x) 5 T+ 5

then it follows that
1 b—a\™
@) o=t o= tan) < s (45

for « € [a,b]. Combining and gives the following result.

Lemma 1. Suppose that f is an m times continuously differentiable function on the
compact interval [a,b], and let p be the (m — 1)-degree polynomial that interpolates

f at the points
v b—a cos 2k—1ﬁ +b+a
T2 m 2 2

fork=1,....m. Then,

m)! 4

(@) — pla)] < 25 (b‘“)m,

for x € [a,b] where Cy, := max,c(q4 | £ ().
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2.3. Implementation. See https://people.maths.ox.ac.uk/trefethen/barycentric.pdf.
% Example

f = @(x) exp(x); % function

m = 30; % number of interpolation points

ts = -1+1/m:2/m:1-1/m; xs = cos(pix*(ts+1)/2);

ys = f(xs);

x = linspace(-1,1,5000);

% Barycentric interpolation
c = (-1).7(0:m-1) .*sin(pi*(ts+1)/2);
numer = zeros(size(x));
denom = zeros(size(x));
exact = zeros(size(x));
for j = 1:m
xdiff = x-xs(j);
temp = c(j)./xdiff;
numer = numer + temp*ys(j);
denom = denom + temp;
exact (xdiff==0) = j;
end
y = numer./denom; jj = find(exact); y(jj) = ys(exact(jj));

% Check error
max(abs(y - £(x)))


https://people.maths.ox.ac.uk/trefethen/barycentric.pdf
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