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The claim of J. R. Lucas [7, 8], expounded by Roger Penrose in the section enti-
tled “The non-algorithmic nature of mathematical insight” in The Emperor’s New Mind
[9, Chap. 10], can be phrased as follows:

Gödel’s theorem shows that there is no algorithm producing
all statements of Arithmetic that mathematicians can see to
be true. Therefore consciousness acts non-algorithmically.

I shall analyze this claim and then present some contrasting thoughts.

What are statements of Arithmetic? Here there is no dispute. They are expressions
formed from symbols

∀ ∃ ¬ & ∨ → = 0 S + · ( ) x y z . . .

according to certain rules. For example,

∀x∃y(∃a x+ a = y & ∀m∀n(m · n = y ∨ m · n = y + SS0 → m = S0 ∨ n = S0))

is a statement of Arithmetic.

What does it mean for a statement of Arithmetic to be true? It depends on whom
you ask. Students of the foundations of mathematics fall into three schools: Platonists,
such as Gödel, intuitionists, such as Brouwer, and formalists, such as Hilbert. I shall first
explain the Platonic notion of truth in our example.

A lexicon helps:

∀ for all
∃ there exists
¬ not
& and
∨ or
→ implies
= equals
0 zero
S successor
+ plus
· times
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Think of the variables x y z . . . as ranging over the natural numbers

0, S0, SS0, SSS0, . . .

(i.e., 0, 1, 2, 3, . . . ). Then Platonists say that our formula is true in case for all numbers x,
there exists a larger number y (larger since x+a = y) such that both y and y+2 are primes
(if either one can be factored as m ·n, then one of the factors m or n is 1). This is a famous
unsolved problem of Arithmetic, the twin primes problem. So far, no mathematician can
prove it or disprove it.

Intuitionists demand an effective method for constructing the twin primes greater than
any given x before assenting to the truth of the formula. Our example is a very simple
statement for which it is easy to acquire an intuition, but a truth definition for statements
of Arithmetic must apply also to statements containing thousands of symbols and not
corresponding to any notions for which we have built up an intuition. The Platonic truth
definition for a statement ∃x1∀y1∃x2∀y2 . . . reads: there exists a number x1 such that for
all numbers y1 there exists a number x2 such that for all numbers y2 . . . This notion of
interleaved infinite searches and verifications makes sense only to Platonists; to intuitionists
and formalists the idea lacks coherence.

Kleene [5, §82] has made a deep analysis of the intuitionistic truth notion in terms
of recursive realizability. He shows that intuitionistic truth is not simply a restriction of
the Platonic truth notion but actually conflicts with it. That is, he exhibits a statement
of Arithmetic that is Platonically true and intuitionistically false, and another that is
Platonically false and intuitionistically true.

Formalists find Platonic truth for statements of Arithmetic both incoherent and ir-
relevant to the practice of mathematics. A solution, positive or negative, of the twin
primes problem would be a major event in mathematics, but no solution will depend on
philosophical truth notions.

Penrose, in footnote 2 to the last chapter of [9], says “As to the very dogmatic Gödel-
immune formalist who claims not even to recognize that there is such a thing as mathemat-
ical truth, I shall simply ignore him, since he apparently does not possess the truth-divining
quality that the discussion is all about!” He explicitly ignores formalists and tacitly ig-
nores intuitionists, thereby dismissing two of the century’s greatest mathematicians and
students of foundations.

Platonic truth is conceived to be an infinite, abstract structure that assigns to each
statement of Arithmetic a truth value, true or false. Platonists believe in the existence,
though not in the physical world, of this ideal object. Intuitionists believe in a differ-
ent ideal object, intuitionistic truth, and formalists believe in neither. These differing
philosophical views are unproblematic for mathematics—which is concerned with proof
(syntax) rather than truth (semantics)—but belief in Platonic truth is an essential part
of the Lucas argument. It is a truism that mathematics has many applications to science.
But an application to science of the philosophy of mathematics (or, more accurately, of
one philosophy of mathematics) would indeed be a novelty.

What is Gödel’s theorem? As already described, statements of Arithmetic are simply
symbols combined according to certain rules. Arithmetic is a powerful language and the
syntactical rules for forming statements can be expressed, or encoded, within Arithmetic.
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To obtain a theory of Arithmetic, call it A, a mathematician selects certain state-
ments of Arithmetic as axioms and postulates certain rules of deduction. A statement of
Arithmetic is provable in A in case it follows from the axioms by the rules of deduction.
This is a syntactical notion on which there is no dispute, and it too can be expressed in
Arithmetic. But the choice of axioms and rules of deduction varies according to one’s
semantic notion of truth and one’s personal aesthetics. It is essential that A be consistent,
since otherwise every statement of Arithmetic could be proved in A, and A would be of
no interest. One much studied theory A has come to be known as Peano Arithmetic.

The liar paradox, famous from antiquity, can be formulated as

this statement is not true.

The liar paradox plays no role in Gödel’s theorem. The notion of Platonic truth is semantic,
not syntactical, and cannot be expressed within Arithmetic. (This was proved by Tarski
[10].) Gödel does something different. He constructs a statement of Arithmetic, call it G,
expressing

this statement is not provable in A.

Using many abbreviations, the construction of G takes a fair number of pages. The modern
form of Gödel’s first incompleteness theorem [3] is

if A is consistent, then G is not provable in A.

This is a theorem, and there is no dispute about it. Notice that Gödel’s theorem says
nothing whatever about consciousness or the mind.

The Lucas argument, endorsed by Penrose, can now be phrased as follows:

Mathematicians, by their consciousness, see that A is consistent and
therefore know that G is not provable in A, and therefore know that G is
true. Thus mathematicians, by their consciousness, have insight—going
beyond proof—into mathematical truth. Hence consciousness produces
truth by non-algorithmic means.

The claim is not that mathematicians have direct insight into the extremely complicated
statement G; rather it is that they follow the proof of Gödel’s theorem, have direct insight
into the hypothesis that A is consistent, and so conclude that G is true even though
unprovable in A.

But can mathematicians see, without proof, that certain statements of mathematics
are true? A look at the history of mathematics shows that this belief has invariably been a
delusion. Mathematicians thought they could see that cubic equations could only be solved
geometrically, using conic sections—until del Ferro, Tartaglia, and Cardano solved them
algebraically; they thought they could see that Euclid’s parallel postulate was true—until
Lobachevsky and Bolyai constructed non-Euclidean geometry.

Today we are beginning (some of us) to learn caution. The fact of the matter is
that serious students of the foundations of mathematics are divided about the status of
the hypothesis that Peano Arithmetic is consistent. Platonists claim to see it directly;
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intuitionists can be convinced by another, much less cited, theorem of Gödel [4] combined
with their claimed insight into their own notion of truth; some formalists regard it as a
genuinely open question. And the problem becomes more acute when, as required by the
Lucas argument, we study general theories A and general algorithms.

What is an algorithm? Although important specific algorithms date from antiquity,
and the word itself comes from the name of the ninth century algebraist al-Khwarizmi, the
general nature of an algorithm was not elucidated until the 1930s, primarily by Turing [11].
Today we can express the notion succinctly by saying that an algorithm is a computer pro-
gram that, for any input, eventually halts, producing an output. This is another Platonic
notion, presupposing an infinite search over all inputs and all numbers (the number of
steps required for the computer to halt, if it does halt). Turing proved that there is no
algorithm to decide whether any given computer program is an algorithm (undecidability
of the halting problem).

A closely related result is that there is no algorithm that decides whether any given
theory A is consistent. Lucas and Penrose state that mathematicians have direct insight
into the consistency of some theories A, but they do not specify on which A this faculty
of insight operates correctly.

Now we have at hand all the ingredients of the Lucas-Penrose argument. They postu-
late belief in an infinite ideal object known as Platonic truth and they postulate a faculty
of consciousness to perceive by direct insight the consistency of certain unspecified theo-
ries A. They dismiss those mathematicians who hold different views and conclude that
they have uncovered a general and fundamental feature of consciousness.

The similarity to religious belief, with appeal to authority, is inescapable. Here is
a close analogue of the Lucas argument: Catholics know that when the Pope speaks ex
cathedra on matters of faith or morals, he speaks the truth; they then know those truths
without proof; therefore consciousness acts non-algorithmically. (I hasten to say, sincerely,
that I offer this analogy simply to clarify my view of the Lucas argument. I respect
Catholics and Catholic beliefs, and I respect Platonists.)

I conclude that Gödel’s theorem, and the general Platonic notion of an algorithm, are
simply irrelevant to the study of the mind. But can the study of algorithms offer anything
of relevance to a science of consciousness? I am not a student of consciousness, but it
does seem safe to say that natural selection has produced in us conscious awareness that
can perform certain computations very rapidly and efficiently. Therefore it is plausible
that a mathematical study, not of Platonic algorithms in general but of rapid and efficient
algorithms, might have some relevance to a science of consciousness.

Such a study is a relatively new field, more developed in computer science departments
than in mathematics departments. The usual way of making precise the notion of a rapid
algorithm is to say that the computer program always halts after a number of steps bounded
by a given polynomial in the length of the input. There is still a Platonic element here:
the bound is simply said to exist. But Bellantoni and Cook [1, 2] and Leivant [6] have
produced a purely syntactical notion and demonstrated that it is equivalent to the notion
of a polynomial-time algorithm, This is a surprising result. It is in sharp contrast to the
Turing result on the undecidability of the halting problem for general algorithms. There
are no arithmetic hypotheses in their characterization; rather, their idea expresses the
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Aristotelian notion of an object coming into being, as opposed to the Platonic notion of a
pre-existing ideal object.

The study of the similarities and differences between polynomial-time algorithms and
the functioning of the mind is a concrete matter, not just philosophical speculation, and
it will repay the serious attention it is receiving.

Here is a vision that I expect to become a reality early in the twenty-first century.
Mathematicians write articles with precisely structured statements of theorems and proofs.
The proofs refer to the database of previously proved theorems, a database that lives in
a decentralized fashion on the Web. The proof is automatically checked for correctness
by a polynomial-time algorithm, and if correct becomes a part of the database. Such an
article requires no refereeing for correctness. The system is used interactively to help find
proofs. For mathematics that deals with concrete, syntactical objects—numbers, graphs,
anything that can be encoded by a string of bits—and for proofs that are constructive, the
system automatically constructs from the proof a program that produces the existentially
quantified objects as functions of the relevant universally quantified objects, together with
a worst-case bound on time and memory requirements. This will be a polynomial-time
bound if the recursions in the proof satisfy the Bellantoni-Cook-Leivant constraint. Such
a program requires no debugging since it is a by-product of a proof that the objects have
the properties stated in the theorem whose constructive proof has been verified.

The difficulty in searching for a mathematical proof is the exponentially growing sea of
possibilities that opens up as one possible step among many follows another possible step.
What will be of interest to practicing mathematicians in such a system is the interactive
exploitation of the different search strategies of conscious human minds and computers.
What will be of interest to students of Artificial Intelligence, and possibly to a science of
consciousness, is that the system will provide a laboratory for testing whether human search
abilities—which are a marvel and a mystery—can be simulated by machine algorithms.
(My own hunch is that it will be centuries, if ever, before computers—or, more likely,
robots with a body and some experience of the world—can begin to do this.) This is a
modest question that concerns the functioning of the mind in one area, rather than the
fundamental nature of consciousness, but I expect it to be more fruitful than speculations
about Platonic truth and algorithms.
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[3] Kurt Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wanter Systeme I”, Monatshefte für Mathematik und Physik, 37, 173-198, 1931.

[4] —, “Zur intuitionistischen Aritmetik und Zahlentheorie”, Ergebnisse eines math. Koll.,
4, 34-38, 1933.

[5] Stephen Cole Kleene, “Introduction to Metamathematics”, North-Holland, 1952.

5



[6]Daniel Leivant, “Ramified recurrence and computational complexity I: Word recurrence
and poly-time”, in P. Clote and J. Remmel (eds.), Feasible Mathematics II, 320-343, 1994.
[7] J. R. Lucas, “Minds, machines and Gödel”, Philosophy, 36, 102-124, 1961.
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