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Classical Hamilton-Jacobi theory

N particles of various masses on a Euclidean
space.

Incorporate the masses in the flat Riemannian
metric mij , the mass tensor. Then if vi is a veloc-
ity, vi = mijv

j is a momentum.
Kinetic energy: 1

2v
ivi.

Potential energy: V .
Lagrangian: L = 1

2v
ivi − V .

Position at time t of the configuration: ξ(t).
Initial time: t.
Final time: t1.
Hamilton’s principal function:

S(x, t) = −
∫ t1

t

L
(
ξ(s)

)
ds.

Substantial derivative (derivative along trajec-
tories):

D =
∂

∂t
+ vi∇i.

Then DS = L.
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Vector field: v with
dξ

dt
= v.

Principle of least action in Hamilton-Jacobi
theory: v is a critical point for S, for unconstrained
variations.

That is, let v′ be another vector field, let
δv = v′ − v, and denote by a prime quantities with
v replaced by v′. Then

D(S′ − S) = D′S′ −DS + (D −D′)S′

= L′ − L− δvi∇iS
′

= L′ − L− δvi∇iS + o(δv).

Now

L′ − L = viδv
i + o(δv),

S′ − S = −
∫ t1

t

(vi −∇iS)δvi ds+ o(δv).

Since this is true for all variations, we have the
Hamilton-Jacobi condition:

vi = ∇iS.
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Together with DS = L; i.e.,

∂s

∂t
+ vi∇iS =

1
2
vivi − V,

this gives the Hamilton-Jacobi equation

∂S

∂t
+

1
2
∇i∇iS + V = 0.

If we take the gradient we obtain Newton’s
equation F = ma.
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Stochastic Hamilton-Jacobi theory

Following Guerra and Morato, construct a
conservative Markovian dynamics for a Markov
process ξ.

Wiener process (Brownian motion) w with

Edwi(t)dwi(t) = h̄dt.

Kinematics:

dξ(t) = b
(
ξ(t), t

)
dt+ dw(t).

Dynamics: δE
∫
Ldt = 0 (heuristically).

The trajectories are non-differentiable, so what
is the meaning of

1
2
dξi

dt

dξi
dt

in the Lagrangian L?
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Let dt > 0 and dξ(t) = ξ(t + dt) − ξ(t), so
dξ

dt
is a quotient, not a derivative.

Compute E
1
2
dξi

dt

dξi
dt

up to o(1).

dξi =
∫ t+dt

t

bi
(
ξ(r), r

)
dr + dwi.

Note: dw is of order dt1/2.

dξi =
∫ t+dt

t

bi
(
ξ(t) +

∫ r

t

b
(
ξ(s), s)ds+ w(r)− w(t), r

)
dr

+ dwi

= bidt+∇kb
iW k + dwi + O(dt2)

where

W k =
∫ t+dt

t

[wk(r)− wk(t)] dr.

Therefore
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1
2
dξidξi =

1
2
bibidt+ bidwidt+∇kb

iW kdwi

+
1
2
dwidwi + o(dt2).

Now

EW kdwi = h̄δk
i

∫ t+dt

t

(r − t)dt =
h̄

2
δk
i ,

so ∇kb
iW k = h̄

2∇ib
i.

The term bidwidt is singular, of order dt3/2,
but its expectation is 0.

Finally, Edwidwi = h̄
2ndt. Hence we have the

sought-for result:

E
1
2
dξi

dt

dξi
dt

=
1
2
bibi +

h̄

2
∇ib

i +
h̄

2
n

dt
+ o(1).
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The singular term
h̄

2
n

dt
is a constant, not de-

pending on the trajectory, and it drops out of the
variation.

Let

L+ =
1
2
bibi +

h̄

2
∇ib

i − V

and

I = E
∫ t1

t

L+

(
ξ(s)

)
ds.

Let δb be a vector field, b′ = b + δb, and as
before denote by primes quantities with b replaced
by b′. Let ξ′ satisfy

dξ′(t) = b′
(
ξ′(t), t

)
dt+ dw(t)

with ξ′(t) = ξ(t) for the initial time t.
Definition: ξ is critical for L in case

I ′ − I = o(δb).
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Stochastic Hamilton’s principal function:

S(x, t) = −Ex,t

∫ t1

t

L+

(
ξ(s), s

)
ds.

Then
DS = L+

where now D is the mean forward derivative:

Df = lim
dt→0+

Et

(
df(t)
dt

)
.

As before,

D(S′ − S) = D′S′ −DS + (D −D′)S′

= L′+ − L+ − δbi∇iS
′

= L′+ − L+ − δbi∇iS + o(δb).

Now

L′+ − L+ = biδb
i +

h̄

2
∇iδb

i + o(δb)

and

(∗)

I ′ − I = E
∫ t1

t

(
bi −∇iS +

h̄

2
∇i

)
δbi ds+ o(δb).
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Digression on Markovian kinematics:
Markov process: given the present, past and

future are independent.
The two directions of time are on an equal

footing.
In addition to the forward drift b there is the

backward drift b∗.

v =
b+ b∗

2
current velocity,

u =
b− b∗

2
osmotic velocity.

Let ρ be the probability density of ξ. Then

∂v

∂t
= −∇(vρ) current equation,

∂u

∂t
=
h̄

2
∇ρ
ρ

osmotic equation.

End of digression.
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The equation (*), namely

I ′ − I = E
∫ t1

t

(
bi −∇iS +

h̄

2
∇i

)
δbi ds+ o(δb),

is awkward because it involves ∇iδb
i. Integrate by

parts:

E
h̄

2
∇iδb

i
(
ξ(s), s

)
=

∫
Rn

h̄

2
(
∇iδb

i
)
ρ dx

= −
∫
Rn

δbiuiρ dx.

Since b− u = v,

I ′ − I = E
∫ t1

t

(vi −∇iS)δbi ds+ o(δb).

This is true for all variations, so ξ is critical
for L if and only if the stochastic Hamilton-Jacobi
condition holds:

vi = ∇iS.
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Let
R =

h̄

2
log ρ,

so
∇iR = ui.

If we write out DS = L+ and express every-
thing in terms of R and S, we obtain the stochastic
Hamilton-Jacobi equation:

(1)
∂S

∂t
+

1
2
∇iS∇iS + V − 1

2
∇iR∇iR− h̄

2
∆R = 0.

Expressing the current equation
∂v

∂t
= −∇(vρ)

in terms of R and S we obtain:

(2)
∂R

∂t
+∇iR∇iS +

h̄

2
∆S = 0.

These two equations are a system of coupled
nonlinear partial differential equations expressing
necessary and sufficient conditions for a Markov
process to be critical.

How can we solve them?
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Let

ψ = e
1
h̄ (R+iS).

Then the system is equivalent to the Schrödinger
equation

∂ψ

∂t
= − i

h̄

[
− h̄

2
∆ + V

]
ψ.
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magnetic fields

Riemannian manifolds

spin

Bose-Einstein and Fermi-Dirac statistics

existence of finite-energy Markov processes

momentum

interference
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Non-locality

Consider two particles on R1 with initial wave
function

ψ(0) =
1√
2π
e−

1
4 σ−1(0)x·x

where

σ−1(0) =
(

1 −1
−1 2

)
and

x =
(
x1

x2

)
.

The x1 and x2 axes are unrelated; the par-
ticles may be separated by an arbitrarily large
amount a.

At time 0, turn on a linear restoring force
(harmonic oscillator with circular frequency ω) for
the second particle. Then the particles are dynami-
cally uncoupled.
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Since the particles are very widely separated
and dynamically uncoupled, we should expect that

Eξ1(t)ξ1(0)

does not depend on ω.
In fact it does not to fourth order in t, but

nevertheless the trajectory of the first particle is
immediately affected by the choice of ω in a far
distant place.

For me this is unphysical, especially since the
effect does not depend on the separation a.
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A wrong prediction

Consider two harmonic oscillators, about two
widely separated points a1 and a2, with circular
frequency 1, and let Xi be the Heisenberg position
operator, in units of distance from ai, with Heisen-
berg momentum operator Pi.

Then

Xi(t) = cos tXi(0) + sin t Pi(0)
Pi(t) = − sin tXi(0) + cos t Pi(0)

for i = 1, 2.
Let the Heisenberg state vector ψ0 be a real

Gaussian centered at (0, 0), and write 〈A〉 = (ψ0, Aψ0).
Then 〈Xi(t)〉 = 〈Pi(t)〉 = 0 since this is true for
t = 0. The operators X1(t) and X2(s) commute.

Choose ψ0 so that the correlation 〈X1(0)X2(0)〉
is 90%. Thus the oscillators are entangled but dy-
namically uncoupled. The quantum mechanical
correlation function 〈X1(t)X2(0)〉 is periodic of pe-
riod 2π since X1(t) is.

Hence 〈X1(t)X2(0)〉 = .9 whenever t is a mul-
tiple of 2π.
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But let (ξ1, ξ2) be the corresponding Markov
process of stochastic mechanics.

This is a diffusion process and it eventually
loses all memory of where it started.

Thus

lim
n→∞

E
(
ξ1(2πn)ξ2(0)

)
= 0

whereas

〈X1(2πn)X2(0)〉 = .9.

Here we have an empirical difference between
the predictions of quantum mechanics and sto-
chastic mechanics. Measurements of the position
of the first particle at time t and of the second par-
ticle at time 0 do not interfere with each other, and
the two theories predict totally different statistics.

Does anyone doubt that quantum mechanics is
right and stochastic mechanics is wrong?
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