RAMIFIED RECURSION AND INTUITIONISM

Edward Nelson
Department of Mathematics

Princeton University

Both Jean-Louis Callot and Georges Reeb had a strong interest in
the relationship between computers and nonstandard analysis, and Reeb
was a dedicated intuitionist. These are the themes of this talk given to
honor their memory. First I shall give a brief introduction to recent work
on ramified recursion, expressed in language familiar to nonstandard
analysts, and then I shall sketch an approach to a constructive logic of
the feasible.

I. Ramified recursion

The 1930s witnessed a flowering of mathematical logic. One of the
achievements of this period was the creation by Turing, Godel, and
Church of the theory of recursive functions, work that laid the theo-
retical foundations for the study of computers. With the advent of high-
speed computers, attention focused on feasible computations as opposed
to computations possible in principle.

The usual model for a feasible computation is that of polynomial
time functions, functions that can be evaluated in time that is bounded
by a polynomial in the lengths of their arguments. This notion is robust
under changes in the model of computation (Turing machine, register
machine, etc.). If a class of functions is characterized by time of eval-
uation, if it is closed under composition (and this is necessary to have
a sensible theory), and if it contains one function requiring time |z|'*¢
(where |z| is the length of the argument x and € > 0), then it contains
all polynomial time functions. On the other hand, a function that is
not polynomial time cannot be regarded as feasible for all arguments.
But is must be emphasized that the notion is an abstract one, not to be
confounded with the pragmatic notion of a function that is computable
in practice.

Let me observe that I am using the familiar word “function” when
“construction of a function” would be more precise. We are dealing not

http://www.math.princeton.edu/~nelson/papers.html is the URL for this paper.
It is in the public domain.



EDWARD NELSON

with Platonic functions, two of which are the same if they have the same
values (whatever that may mean), but with programs.

It is well known that there is no syntactical description of all (to-
tal) recursive functions. If there were a list of them all, then Cantor’s
diagonal argument would yield another. Goédel cut this Gordian knot by
giving a Platonic definition of recursive function. A recursive function
is a program that terminates for all inputs, and Turing showed that the
halting problem (to decide whether a program terminates for all inputs)
is undecidable.

But Cantor’s diagonal argument does not apply to the class of poly-
nomial time functions and this raises the question as to whether a syntac-
tical characterization of the class is possible. The answer is yes, as was
proved in a fundamental paper [1] by Stephen Bellantoni and Stephen
Cook. A complete account, together with related developments, is in
Bellantoni’s thesis [2]. Here I shall follow the beautiful treatment by
Daniel Leivant [3], with some changes in terminology derived from non-
standard analysis.

Let W be the free word algebra with the constant e (denoting the
empty string) and the unary functions 0 and 1. Thus W consists of all
strings of zeroes and ones. We call certain strings standard, with the
assumptions that e is standard and if x is standard, so are Ox and 1x.

Consider the smallest class of functions mapping W", for some n
depending on the function, to W, containing €, 0, and 1, closed under
composition, and closed under string recursion; i.e., such that if ge¢, go,
and gy are in the class then so is f defined by

f(evf) = g€<f),
f(oyaf) =90 (:%faf(y?f))a
f(lyaf) =0 (y7f7f(yvf))

This is the class of primitive recursive functions on W, and it contains
many infeasible functions.

Let us make a slight change. Consider functions f some of whose
arguments are required to be standard; we write them before a semicolon,
so that in f(Z;%) the Z are standard and the W are arbitrary. Such
functions are called sorted. Then we modify recursion by requiring that
f be defined only for standard y, but with the recursion arguments of gg
and g unrestricted. That is, ramified recursion is constructed as follows:



RAMIFIED RECURSION AND INTUITIONISM

Let P be the smallest class of functions containing €, 0, and 1 and closed
under composition and ramified recursion; then the main theorem is that
the functions in P all of whose arguments are standard is precisely the
class of polynomial time functions.

This is a beautiful and astonishing result. The proof is ingenious
and not very long. Notice that there is no arithmetic in the hypotheses
of the theorem; the polynomial bounds are a consequence of ramified
recursion. There are many related results and I urge you to read the
references.

II. Intuitionism

The results of Bellantoni, Cook, and Leivant concern functions. It
seems worthwhile to construct a full-fledged logic of the feasible, and I
shall sketch how this might be done. Such a logic must be constructive,
so I begin with a brief review of intuitionism.

Stephen Cole Kleene was the mathematician who saw most deeply
into the nature of intuitionism, with his notion of recursive realizabilility;
see [4] and [5]. I shall discuss realizability for formulas of arithmetic; the
modifications necessary to discuss the free word algebra W are minor;
for example, induction for VW should be formulated as

Ac(e) & Vx[A — Ai(0x) & Ai(lx)] — Al

The function symbols are 0, S (successor), +, and -. The logical opera-
tors are

- & — V VvV 3

We can eliminate — by regarding —A as an abbreviation for A — S0 = 0.
The intuitionistic semantics is epistemological, rather than ontological
like the classical semantics, and to an intuitionist a formula is an incom-
plete communication of knowledge.

The notion of realizability is most simply expressed by introducing
some additional function symbols. Listed with variables to show the
placement of arguments, these are

(,y) max mazx ~(z,y,2) z{y} pz,y) Azxy.

A code is a term formed with these function symbols and the func-
tion symbols of arithmetic such that the first argument of each occur-
rence of A is a variable. I have called A a function symbol, but in many
respects it is similar to a quantifier symbol. An occurrence of the vari-
able x in the code c is A-free in case it is not in a part of ¢ of the form



EDWARD NELSON

Axb. We use the abbreviation cy(b) for the code obtained by substitut-
ing b for all A-free occurrences of x in ¢, with the tacit understanding
that b is A-substitutable for x in ¢ (meaning that there is no A-free oc-
currence of x in any part Ayd of ¢ where y occurs in b), and similarly
for cx, . x,(b1...by).

We use n to stand for a variable-free term of arithmetic. A code is
reduced by making the following replacements as long as possible, say in
the order listed:

replace: by:

(R1) m1(a,b) a

(R2) ma(a, b) b

(R3)  ~(a,b,(1,¢))  a{c}

(R4)  7(a;b,(2,¢))  b{c}

(R5)  p(n+0,c) p(n, c)

(R6)  p(n+Sm,c)  p(S(n+m),c)

(R7)  p(n-0,c) p(0,¢)

(RR) p(n - Sm,c) p(n-m+n,c)

(R9) p(0,¢c) T1C
(R10)  p(Sn,c) (ma0){u}) {p(n, )}
(R11) (Axa){b} ax(b)

Notice that with incorrect code, such as

(Axx{xp){Axx{x}},
this process may never terminate. We use
c=c

to indicate that the code ¢ reduces to c’.

The reduction rules (R1)—(R11) express the intended meaning of the
additional function symbols. The ordered pair (a, b) has first and second
projections 7w and ms. The value of the function a on the argument b
is a{b}. These are not necessarily numerical-valued functions, but code-
valued functions where the code may itself be a function. Since the
reduction rules are given explicitly, these are recursive functions, but
since the process may not terminate, they are partial functions. We use y
to choose which of two functions a and b to apply to the argument c.
We use p for recursion: the rules (R5)—(R8) convert n to a numeral,
(R9) gives the beginning of the recursion, and (R10) gives the recursion
step. By (R11), Axa is the partial function taking b to what (if anything)
ax(b) reduces to.



RAMIFIED RECURSION AND INTUITIONISM

Now we can define “c realizes C”, where ¢ is a A-closed code and
C is a closed formula:

(C1) if C is atomic, c realizes C in case C is true;

(C2) if C is A & B, c realizes C in case mic realizes A and myc
realizes B;

(C3) if Cis A — B, c realizes C in case for all a, if a realizes A,
then c{a} realizes B;

(C4) if C is VxA, c realizes C in case for all n, c{n} realizes Ax(n);

(C5) if Cis A Vv B, c realizes C in case ¢ = (1,a) (for some a) and
a realizes A, or ¢ = (2,b) (for some b) and b realizes B;

(C6) if C is yA, c realizes C in case ¢ = (n,a) (for some n and a)
and a realizes Ay (n).

For a formula D whose free variables are x1, ..., x,,, d realizes D in case
Ax; ... Ax,d realizes the closure of D.

Kleene formulated recursive realizability so as to ensure that the
theorems of intuitionistic arithmetic would all be realizable. David Nel-
son undertook to establish that this is the case, and did so in [6]. Here
are the realization codes for the axioms (nonlogical and logical) of intu-
itionistic arithmetic. (Note that — is associated from right to left.)

1. =Sz=0 0
2. Sx=Sy—x=y 0
3. z+0=x 0
4. =+ Sy=S(z+y) 0
5. z-0=0 0
6. x-Sy=x-y+x 0
7. Ax(0) & Vx[A — A (Sx)] — A Abp(x,b)
8. x==z 0
9. z=y— Sx =Sy 0
10 mi=y1—mx2=y2—ax1+x2=9y1+y2 O
1. zy=y1 = 22=yY2 = X1 -T2 =Y1 " Yo 0
12. =y 2=y —>ax1 =22 >y1=y2 0O

13. A—-B—=A AaAba

4. [A-B-[A-B—(C—-A—=C ApAgAag{a}{p{a}}
15, A—-—B—-A&B AaAb(a,b)

16. A&B— A Acmic

17 A&&B—B Acmac

18. A—-AVB Aa(1,a)

19. B—AVB AD(2,b)

20. [A—-C]—[B—-C —-AVB—C ApAqAry(p,q,7)



EDWARD NELSON

21. [A—B]—[A— -B]— A ApAgAag{a}{p{a}}
22. " A—-A—-B 0

23. Ax(a) — IxA Ay(a,y)

24. VxA — Ay(a) Ayy{a}

As an example, let us verify that the code given for the propositional
axiom scheme (14) does realize it. (This axiom scheme justifies the use
of deduction in mathematical reasoning: one introduces a hypothesis A,
proves B and B — C and thereby C on the basis of it, and then discharges
the hypothesis by concluding A — C.) Let D be

[A—-B —-[A—-B—-C|—-A—-C

and let d be
ApAgAag{a}{p{a}}.

Let d; realize A — B. By (C3), to show that d realizes D we must show
that d{d;} realizes [B — C] — AV B — C. But by (R11),

d{d1} = AqAaq{a}{di{a}}.

Let ds realize A — B — C. We need to show that

(AqAag{a}{di{a}}){d2},

which reduces to Aada{a}{di{a}}, realizes A — C. Let d3 realize A. We
need to show that

(Aada{a}{di{a}}){ds},

which reduces to d2{ds}{di{ds}}, realizes C. But since d3 realizes A and
ds realizes A — B — C, d2{ds} realizes B — C, and since d; realizes
A — B, di{ds} realizes B; consequently, da{ds}{d1{ds}} does realize C.

We also have the following three rules of inference. (For rule (25),
let y1, ... y, be the variables occurring free in A but not in B; for rules
(26) and (27), let w be a variable that does not occur in A or B):

25. If a is code for A and c is code for A — B, then the code for B is
(C{a})ylmyu (0...0).

26. If ¢ is code for A — B and x is not free in B, then the code for IxA
— B is Aw((Axc){miw}){mw}.

27. If ¢ is code for A — B and x is not free in A, then the code for A
— VxB is AwAxc{w}.



RAMIFIED RECURSION AND INTUITIONISM

Then for any proof of a theorem in intuitionistic arithmetic, we have
an algorithm (a polynomial time algorithm!) for producing a realization
code for it, and Nelson proved that this code realizes the theorem.

Since SO = 0 is not realizable, a consequence of this argument is that
SO = 0 is not a theorem of intuitionistic arithmetic; that is, the theory
is consistent. The reason that conflict with Godel’s second theorem
is avoided is that the notion of realizability cannot itself be expressed
within arithmetic.

III. Logic of the feasible

How should this be modified for a logic of polynomial time com-
putation? For intuitionistic arithmetic, the realization codes are recur-
sive partial functions; for the feasible arithmetic of W, they should be
polynomial time functions. But we have a choice: to consider ordinary
functions or sorted functions. Let us choose the latter since this gives a
richer theory. Then in addition to (C4) we have

(C4') if C is Vo*xA, c realizes C in case for all standard n, c{n}
realizes Ax(n).

More interestingly, in addition to (C3) we have

(C3)if Cis A *% B, c realizes C in case for all standard a, if a
realizes A then c{a} realizes B.

Notice that V'xA is weaker than VxA but A =5 B is stronger than
A — B.

Now we can realize induction for W in the form
Acle) & Vx[A — A(0x) & Ac(1x)] — V'xA.

But there is one axiom that cannot be feasibly realized, and the prob-
lem comes in a surprising place: the logical axiom scheme (14) of the
propositional calculus. (Notice that (21) can be regarded as a special
case of (14) in which C is SO = 0.) This is because in the realization
code ApAgAag{a}{p{a}} the a appears in two places. When we replace
the variables p and ¢ by realization codes d; and ds, the function

a — dafa}{di{a}}

is not polynomial time. The ds{a} may reduce in polynomial time, but
there is no polynomial bound on the time it takes to evaluate a code
do{a} of a given length on an argument d;{a}.

The problem of constructing a propositional calculus suitable for
feasible reasoning demands investigation.



EDWARD NELSON

IV. A personal note

One of the most treasured experiences of my life is my friendship
with Georges Reeb. We had many strong discussions together, intuition-
ist versus formalist. What he created was unique in my experience. His
rare spirit, gentle but fiercely demanding of the highest standards, in-
spired a group of younger mathematicians with an unmatched ethos of
collegiality. And their discoveries are extraordinary.

Reeb found, and led others to find, not only knowledge and beauty
in mathematics, but also virtue. His insights into the nature of mathe-
matics will point the way towards the mathematics of the future.

References

[1] Stephen Bellantoni and Stephen Cook, “A new recursion-theoretic
characterization of the poly-time functions”, Computational Complezity,
2:97-110, 1992.

[2] Stephen Bellantoni, Predicative Recursion and Computational Com-
plexity, Ph.D. Thesis, University of Toronto, 1992. Available online,
ftp://ftp.cs.toronto.edu/pub/reports/theory/cs-92-264.ps.Z

[3] Daniel Leivant, Ramified recurrence and computational complexity I:
Word recurrence and poly-time, in Peter Cole and Jeffrey Remmel, edi-
tors, Feasible Mathematics II, Perspectives in Computer Science, pages
320-343, Birkhauser-Boston, New York, 1994.

[4] Stephen Cole Kleene, “On the interpretation of intuitionistic number
theory”, Journal of Symbolic Logic 10, 109-124, 1945.

[5] Stephen Cole Kleene, Introduction to Metamathematics, North-Hol-
land, Amsterdam, 1980 (originally published in 1952),

[6] David Nelson, “Recursive functions and intuitionistic number the-
ory”, Transactions of the American Mathematical Society 61, 307-368,
1947.

nelson@math.princeton.edu



