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Preface

These are the lecture notes for the first part of a one~term
course on differential geometry given at Princeton in the spring of
1967. They are an expository account of the formal slgebraic aspects
of tensor analysis using both modern and classical notations.

I gave the course primarily to teach myself. Omne difficulty
in learning differential geometry (as well as the source of its great
besuty) is the interplay of algebra, geometry, and analysis. In the
Pirst part of the course I presented the algebraic aspects of the
study of the most familiar kinds of structure on & differentiahile
menifold and in the second part of the course (not covered by these
notes) discussed some of the geometric and snalytic techniques.

These notes may be useful to other beginners in conjunction
with a book on differential geometry, such as that of Helgason [2,§1],
Nomizu [5,§5], De Rheam [7,§7], Sternberg [9,§8], or Lichnerowicz
[11,§9]. These books, together with the besutiful survey by S. S.
Chern of the topics of current interest in differential geometry
(Bull. Am. Math. Soc., vol. T2, pp. 167-219, 1966) were the main
sources for the course.

The principal object of interest in tensor analysis is the
module of C~ contravarient vector fields on a C~ manifold over
the algebra of C°° real functions on the manifold, the module being
equipped with the additional structure of the Lie product. The fact
thaet this module is "totelly reflexive" (i.e. that multilinear func-
tionals on it and its dual can be identified with elements of tensor

product modules) follows-for a finite-dimensional second-countable



ii.

¢® Hausdorff menifold - by the theorem that such & menifold hes e
covering by finitely many coordinste neighborhcods. See J. R. Munkres,
Elementary Differential Topology, p.18, Annals of Mathematics Studies
No. 54, Princeton University Press, 1963.

I wish to thenk the members of the class, particularly Barry
Simon, for many improvements, and Elizabeth Epstein for typing the

manuscript so beasutifully.
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§1. Multilinear algebra

1. The algebra of scalers

We make the permanent conventions that Fp is & field of charac-~
teristic O and that F is a commutative algebre with identity over P .
Elements of F will be called scalars and elements of F° will be called
constants.

The main exsmple we have in mind is F° the field IR of real
numbers and F the algebra of all real €. functions on a € manifold
M . TIn this example the set of all ¢® contraverient vector fields is a
module over F , with the additional structure that the contraveriant
vector fields act on the scalars via differentiation and on each other
via the Lie product. Tensor analysis is the study of this structure.

In this section we will consider only the module structure.

2. Modules
The term "module" will alweys mean & unitary module (1X =X) .
Thus an F module E i1s an Abelian group (written sdditively) with a

mepping of FXE intoc E (indicated by juxtaposition) such that

X+EY ,

£(X+Y)

(f+g)X = fX+gX ,

il

(fg)x = £(&X) ,

X=X,

for a1l X,Y in E and f,g in F .

If E is an F module, the dual module E' is the module of &ll
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F-linear mappings of E into F . If w ¢ E' we denote the value of w

on X in E by sny of the symbols
X) , X, <w,Xx>, <Xu>.
If A is an F-linear mepping of E into E its dual A' defined by
< A'w,X > = < w,AX >

is an F-linear mepping of E' into E! . There is a natural mepping

K: E —> E" defined by
(X)) =< w,x>, weER,

and E 1is called reflexive in case Kk is bijective. (The mepping k is
not in general injective. For example, if F is the algebra of all ¢
functions on & manifold M and E 1is the F module of all continuous
contravariant vector fields then E' =0 .)

The notions of submodule, F module homomorphism, and quotient

module are defined in the obvious way. If H and K are F modules and
T: H—> K is an F module homomorphism then the quotient module H/ker T
is canonically isomorphic to the image of T . See Bourbaki [1].

We will frequently refer to the elements X of an F module E as

contravariant vector fields or vector fields and to elements w of the dual

module E' as covarient vector fields or l-forms.

3. Tensor products

If H end K are two F modules, their tensor product HRK
(over F) is the F module whose Abelian group is the free Abelian group
generated by all pairs X®Y with X in H and Y in K modulo the sub-"

group generated by all elements of the form



§1. MULTILINEAR ALGEERA

(xl+x2)®y - X8Y - X8 ,

(1) )@(yfyg) - X8y, - X%V, ,
(X)®y - XR(fY)

where f is in F , and the action of F on HXK is given by
£(XRY) = (fX)®Y = W(£Y) .

Iet E be an F module. We define

0
Ei = ER...GHRE'Q®. . .QE' (E r times, E' s times).
. . er s 90 90 @
If r or s is O we sometimes omit it, and we set Eo =E = Eo =F.
. o] 1
Notice that B =, B'=E' . We also define
o) ® 0
Ey= Z E_,
r=0
o% ©
g =3 B,
r=0
o% © o
x= = E° ’
T
r,s=0

where the sums are weak direct sums (only finitely many components of any
element &re non-zero).
o) o%
Notice that E, and E are associative graded F algebras with

the tensor product ® as muiltiplication. We meke the identification

O ©» Og O
EGE" = B°GE
T r

o%
With this identificetion, E, 1s an associative bi-graded F-algebra.

4., Multilinear functionals

ILet E be an F-module. We define E: to be the get of all

F-multilinear mappings of

EX. . XEVXEX. . . XE (E* v times, B s times)
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into F . Thus if u € Ei )
uwlu.fx ceyX ) wl e B, X, ¢E
J > )1) )S > > .j >

is a scalar, and if all arguments but one are held fixed its value depends
in an F-linear way on the remaining argument. With the obvious definitions

of addition and scaler multiplication, E: is an F-module. If r or s

is 0 we sometimes omit it, and we set Eg = EO-= EO = F . DNotice that
E' = ' amd E1 = E" . We also define the weak direct sums
-]
E,= X E
E 2
r=0 T
E [
E = & E
r=0
¥ o0
E,= X E .
T
r,s=0
1
For u in Ef_ , v in Ei, we define #®v (this is a different use of the
. s+s't
symbol ® ) in E o1 DY
1 r+r!
(B ) (W) v enyw ,xl,...,xs+s,)
1 e r+1 4!
= u(W ... ,w ,xl,...,xs)v(w PR ,xs+l,...,xs+s,) .

* . *
Then E, and E are associative graded F algebras and E, 1is an &sso-

ciative bi-graded F algebra, all with ® as multiplication.

5. Two notions of tensor field
The preceding paragraphs suggest two different notions of a tensor
field: an element of ﬁ: or an element of E: . Happily, the two notions
coincide for finite dimensional differentisble manifolds (assumed to be para-
compact). The second notion is of greater importance, so that if E is an

*
F module we will refer to elements of E, as tensor fields or tensors.
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A tensor in Ei is said to- be contraveriant of renk r and covariant of

*
renk s , E, 1s the contraveriant tensor algebra, E the coveriant tensor

*
algebra, and E, the mixed tensor algebra.

There is a natural F algebra homomorphism

o¥% *
k: By —> By ,

preserving the bi-grading, defined by setting

(K(Xl®. - .@(I‘&ol®' * '@s))(nl) .. -)nr)Yl) . ')Ys)
= 1y () x (b)) 0B(x)

O%
end extending to all of E, by F Ilinearity. By the definition of tensor
product, K 1s well-defined. This agrees with our previous definition of

0
K &as a mapping of E =E  into E' =E We call the F module E

1 1

totally reflexive in case & 1is bijective. As mentioned before, the mod-

ule of all C° contraveriant vector fields on & finite dimensional péra=

compact manifold is totelly reflexive.

6. F-linear meppings of tensors

1
Theorem 1. ILet E be an F module. Then Ez:i, is cemonically

isomorphic to the F module

O _gf
HomF(Er, E )

] 4
of a1l F-linear mappings of Ei into Ei, . The isomorphism t=t{r,s,r?,s’)

is defined by setting

(2) (1) (X,8. . &K 8. . @) (e YY)

)

1 s 1 r!
= (W, ., e I SURERYS SP2 SPRRRYS ¥
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0
and extending to all of Ef.' by F-linearity. In particular, the dual module

o]
of Ej is canoniecally isomorphic to E: , o that if E is totally reflex-

. S . .
ive then each Er is reflexive.

Proof. The mapping ¢ 1is well-defined by the definition of tensor
product, and is an F module homomorphism. It is obviously injective and

surjective. QED.

Suppose that E 1is totally reflexive. A number of special cases
of Theorem 1 come up sufficiently often to warrant discussion. We identify
(Ei)‘ and Ez , and denote the pairing by any of the expressions < u,v>,

<wv,u>, ulv), v(u), as convenient. If A is in EL we use the seme

1

symbol A for the F-linear transformation ¢(1,0,1,0)A of E = E, into

itself, so that

< w,AX > = A(w,X) , AcE .

Notice that the F-linear transformation L(O,l,O,l)A of El into El is
the dual A' of A . If A and B are in Ei we write AB for their
product as F-linesr meppings of E into itself and similarly for A" .
The identity mepping of E 1into itself is denoted 1.

If E is totally reflexive then t(2,0,1,0) identifies Ei with
the set of all structures of F algebra (not necessarily associative) on E.
If B is in E?_ we write B(X,Y) or BXY for the product in this sense
of the two vector fields X and Y , so that

< @B, YD = < 6,BY > = B(w,X,¥) , Bef .

Also, L(l,O,O,l) identifies E2 with the set of all F-linear mappings of

B, into Bl , so that

< u(X),Y > = ulx,Y) , weE .



§1. MULTILINEAR ALGEERA 7.

Similarly, ¢(0,1,1,0) identifies E2 with the set of all F-linear mappings
of E:L into E1 » 80 that

<, v(w)y> = v(w,m) , v eER

7. Contractions

let E be sn F module, and let I< pr, 1<w<s . We define the

contraction
B, Os ; Os=-1
Cv' Er Er-l
by

1 s
ch(x,®.. .@cr@w1®. . w°)

= X ()X.®. . & ®... 8 QWB...Q0'8. ..a° ,
[ 1 o) T

where the circumflex denotes omission, and by extending CS to all of Ei
by F-linearity. By the definition of tensor product, this is well-defined,
and it is a module homomorphism. The Encyclopsedia Britamnica calls it an
operation of almost magical efficiency. (See the interesting article on
tensor analysis in the 1lth edition.)

If A e Ei then CiA is denoted tr A , and called the trace of A.

8. The symmetric tensor algebra

Iet E be en F module and let G;(r) be the symmetric group on

r letters. For u in B  and o in G (r) define up(o) by
1 gl g i 1

(up(a)) (™, .. oyw’) = u(w ( ),...,u (r)), w' e BT .
Then p 1s a right representation of G;(r) on Er ; that is,

(3) up(at) = up(o)e(r) .

Define Sym on Er by
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i

Sym u = = Z up(o) .
Tl g

(Since FF is a field of characteristic zero, l/r! mekes sense.) Extend
Sym to the contraverient tensor algebra Ey; by additivity. A contrevariant
tensor u is celled symmetric in case Symu=u . Thus u in Er is
symmetric if and only if u(wl,...,wr) is invariant under the transposition
of any pair of w's . The set of all symmetric teisors in Er is denoted

Sr and the set of all symmetric tensors in E, is denoted S, , so that

o0
Sy = T S
r=0 r
where of course SO =F .
Theorem 2.  Sym is F-linear and is a projection (Sym? = Sym) with

range S, . Consequently Sy may be identified with the quotient of Eg

by the kernel of Sym . The kernel of Sym is a two-sided ideal in Eg .

Consequently the multiplication

(%) uv = Sym WB8v

makes S, into an associative commutative graded algebra over F .

Proof. Sym 1is clearly F-linear. That it is a projection follows
from (3) - it is ea&sily checked that the average over a group representation
is a projection. The range of Sym 1s S, by definition, so that we may
identify S, with the quotient of Eg by the kernel of Sym .

By the definitions of ® and Sym , if u € Er and Vv € ES then

(5) (sym w®v)(u’, ..., *5)

1 5 u(wc(l) wc(r))v(o(rﬂ.) . w’d(r+s))
T+s)T & yeeey IXERE)

where ¢ ranges over (35(r+s) . If Symu or Sym v is O this is clearly
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0 , so that the kernel of Sym is a two-sided ideal, and the quotient alge-
bra is an associative commutative graded F algebra. QED.

The algebra S, is called the (contraveriant) symmetric tensor

*
algebra. One may also construct the covariant symmetric tensor algebra S .

9. The Grassmenn algebra

The discussion of the (cova.ria.nt) Grassmann algebra, given an F
module E , proceeds along similar lines. For & in E' and o in @(r);

define ap(o) by

(ag(d))(xl,---,xr) = (sgn U)Q(Xo.(l):"')xc(r)) » Xi €k

where sgn o is 1 for o an even permutation and -1 for o¢ an odd per-

T . Define

mutation. Then ?5' is a right representation of G(r) on E
At on EX by

1 ~
Alt o=y c}: ap(o)

* *
and extend Alt by esdditivity tc E . An element & of E such that

Alt @ = 1is called alternate or antisymmetric and is alsoc called an

exterior form. The set of alternate tensors in Er is denoted AT , and
*
elements of Ar are called r-~forms. The set of all alternate tensors in E

*
is denoted A , so that

Notice that AO = F and Al = E:L . A covariasnt tensor & of rank r is

alternate if and only if a(Xl, e .,Xr) changes sign under the transposition

of awy two X's .

*
Theorem 3. Alt 1is F-linear and is & projection with range A

* *
QonseQuently A may be identified with the quotient of E by the kernel
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*
of Alt . The kernel of Alt is a two-sided ideal in E and the multi-

plication
a~p = Alt QB

*
mekes A  into an associative graded algebre over F satisfying

(6) B = (-1)7° auB , aechA’, pea®.

Proof. The proof is quite analogous to the proof of Theorem 2.

Instead of (5) we have, for @ in E° and B in E° ,

(7 (Alt @) (X, .. -,X )

r+s

1
= ST g: (sgn o)a(xc(l),...,xc(r))fs(xc(rﬂ),...,xc(r+s)) .

QED.

*
The elgebra A  is called the (covariant) Grassmann algebra. One

can also coustruct the contravariant Grassmann algebra A, .

Warning: As we have defined the notion, an r-form is simply & co-
variant tensor of rank r vwhich is alternate. However it is customsry in
the literature, and we will follow the custom because it is convenient, to
make from time to time conventions about r-forms which differ from conven-
tions already made sbout tensors. These special conventions have the pur-
pose of ridding the notation of factors r! , etec.

If o dis an exterior form we denote by Otk the exterior product of
@ with itself %k times, of = Qneven® « If k>1 this is 0 for o in
Al or for O an exterior product of l~forms, but not for general elements
of AT . Notice that fud =0af =0 for £ in F=4" and @ in A" .

A graded slgebra whose multiplication satisfies (6) is sometimes

called "commutative,™ but this miserable terminology will not be used here.
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10. Interior multiplication

Iet X be in the F module E and let & be an r-form. We define

X la by
(8) (X 1 @)yresX,) = 2allyXy, oo sX,)

XJda=0 if aeAO, end we define X { @ by additivity if a is a

* .
general element of A . The mapping @ —= X J @ is F-linear from AT to

r-1

*
A , and it follows from (7) that it is an antiderivation of A" ; that is,

(9) X1 (0aB) = (X1 Q)aB+(-1)Tan(X 1 B), @ch¥, pecA .

11. Free modules of finite type

An F module E 1is free of finite type if there exist X ,...,X
: 1’ n

in E , called a basis, such that every element Y in E has a unique
expression of the form

Y=2YX 1 Y eF.
(Unless indicated otherwise, X always denotes summation over all repeated
indices.)

Theorem 4. Iet E be free of finite type, with a basis b SPRERYS 48

Then E 1is totally reflexive. The dusl module has a unique basis

n
wl,...,& (called the dual basis) such that

i i
< W L,X, > =05,
’J J}

where 63‘ is 1 if i =) end O otherwise. The

d J
X, ®. .., Q 1®...Q0 °
ll lr

are a basis of ES‘ » E0 that every u in Ef‘ has a unique expression of
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the form

.1 3 P
u=Zu jnxi&..@ci@nl@...@ws

179 M1 T

The coefficients in this expression (called the components of u with res-

pect to the given basis of E ) are given by

il...ir i1 ir
LI =u(w T, .,w ,Xj,...,Xj)
1 s 1 s
The
il ir
(10) W Ao aa® T, 1.<...<q

1 T

are a basis of Ar , so that every r-form & has a unique expression of the

form

a = Z o w lA...Aw

The coefficients in this expression (called the components of O &s an r-

form or simply the components of a) are given by

a, . o=riaX, ,..X, ),
ll...lr ll lr

so that the components of a as an r-form are r! times the components of

a regerded as an element of Er . E{ r >n then AT = 0.

1
If ue ES, v e E , then v heas components
—_— r r! —_— et At durula

( )ll"'lrkl"'kr' ~ ull"'lr&§l°"§f'
@“j...jz...z,“ Jaeerd Ao 8,
1 sl 8 1 s "1 s

If Iu<r, 1<wWs and ue Ej then Csu has components

~
ii...i ... 1 ij...1 ai ... 1
) 1T g 1T e el

(c Rl I
Jqoerdyeedg Jy e edy1®yyy e dg
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r+st 8 . st
If ue Es+r' end v € Er then (tu)v in Er' hes companents
ek, ik ook, Jieeld
((Lu)v)j‘l‘ .zr =¥ ujl J‘Sﬁl zr v 1 T
1" st A RS L T 1
1 5
E u € Er then Sym u has components
i ...1 L PR A R,
(Symu)l r=-§rze.l J-rul r
H Jl... T
vwhere the € is 1 if the j's are a permutation of the i's and is O

otherwise. If O € EX +then Alt O has components as an

element of Er

given by
Jovend
(a1t @), =G net oy
10ip ! SRRk U AR
where the & is 1 if the Jj's are an even permutation of the

i's , is ~1

if the Jj's are an odd permutation of the 1i's , and is

0 otherwise. If

& is an r-form and £ is an s-form then the (r+s)-form

(a“s)il...iﬁs

0.B hes components

s
J

If Xe¢E and O is en r-form, the (r-1)-form X J a has components
(x J a)i i = zxiaii 1 .
SERRE S SRERE A
21
ILet Xl,,...,X : be another basis of E , and define 79" eng
by
- 3!
X, =23 %,
X., =I5, .
3 3%
Then
gtk _ ok j k' _ k!
535 =8y, ZJi,Jg.‘ = 35,
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I ue Ei the components of n with respect to the new basis are

i "ir' ll Zs kl...kr i ir'
uj . =X JJ "'Jj u, P Jk ...Jk
1t st 1 st 7177 7s 1 T
Proof. The proof is trivial. QED.

Notice that the primed indices do not take values in the set
(1,...,n} but in a disjoint set {1',...,n'} of the same cardinality.
This notation is wvery convenient, as it mekes 1t impossible to meke a mis-

teke in writing the transformation laws.

12. Classical tensor notation

Despite the profusion of indices, the classical tensor notation is
frequently quite useful, especially in computations involving contractions.
The vector fields over a coordinsate neighborhood in a finite dimensional
manifold are a free module of finite type, but the module of all wvector
fields does not in general have a basis. (If it does, the manifold is called
parellelizable.) However, it is possible to use the classical tensor nota-
tion globally, without eny choice of local coordinates, if we make the fol-

lowing conventions.

Iet E be an F module, and let u e Ei . Consider an expression
of the form
i ...
(11) wl F
Jl.. JS

Instead of "il",...,"js" we may use any other r+s indices, provided they

are distinct indices. The upper indices are called contravariant indices,

the lower indices are covariant indices. Next we suppose that the contra-

variant indiceg are coveriant vector fields and the covaeriant indices are

contravariant vector fields. Then we define (11) to be the scalar
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i ...ir
w T = u{dy, sl dqseeesd ) -
Jl---Js 1 r’v1 s

(It would perhaps be better to write Jjv...3° , but we don't.) Notice that
although the indices are required to be distinct indices, the mathematical

objects they denote need not be distinet. (Thus we mey have il = i2

' .} However, for an

as
t

covariant vector fields although obviously "i," # "1,

r-form & we meke the special convention that

(12) o oy o=rtefi, i) aceA” .
1 iy

Now suppose that E 1is totally reflexive, so that contractions of
tensor fields are meaningful. If u e Ei we define
ic..i oami..li “

(13) uJiJi::lLaJt:iJ: = (C:u)(il,...,’:fu,...,ir,jl,...,jv,...,js)
Instead of "a" we may use any other index, provided it is distinet from
the other indices occurring. An index which occurs precisely twice, once
as an upper index and once as a lower index, is called a dummy index.
Notice that there is no summation sign in (13). This is because nothing is
being summed. (When dealing with components with respect to a basis of a
free module of finite type, we will continue to write summation signs when
summations oceur.) We mey have more than one dummy index, provided they are
all distinct from each other and the remasining indices, to indicate repeated
contractions. The notation is unambiguous because, from the definition of
contraction, the order in which the contractions are performed is immaterial.
Here are some examples of the use of this notation. In all but the
first example we assume that E 1is totally reflexive. If u € Ei and

S’
Ve Er' then

(ugv)ll...lrkl...kr, _ ull°"lrv¥l"°kr'
Javend £ooeit T 50003 :
1 s 1 st 1 s £....2
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If 1u<r, 1¥<s end uw e B then

>

N 11"'lu°°'lr ~ ll"'lu-laiu+l'°'ir
Oy 5 s, =% sy 8 S
10 oy dg FEELT MR LONRREE
1
If ueE':Is‘,, veEIs‘ and t = t(r,s,r',s') then
cokly  dieeil ko aeaky, doee.d
(lll-) ((Lu)v)ﬁl zr __ul s 1 by 1 r
10

= u, s v
gt Jl...grzl...zs, il"'is

The notation here is sbusive. The right hend side of (14) is not the product
of two scalars but is written instead of

RS Sk SRS Y FEPRE N

(uBv) 8
Byeeed Ayt

el
s'71 8

We will indulge freely in this abuse of notation. Now let Symr be the
restriction of Sym to E . Since Sym is F-linear, ! Sym, = 1{r,0,r,0)e
for a unique tensor £ in E; , and if u ¢ Er then

i

fpeel, g djeeed dpeeedy
(sym u) = 3T & u .

1eeed

The tensor € mey be computed explicitly, and one finds
i .. 'ir o
831' . ‘jr. = perm < Ju’l‘v >,
where perm denotes the permanent. (The permanent of a square arrey of

scalars 1s defined in the same way as the determinant except that there are

no minus signs.) Similarly, if & € E* then

Jaeeed
1 1 r
(a1t o), = =3 8, a,
ll.-.ir ri 11"'11' Jl...;)r
for a unique tensor & in Ei‘ , and
dyreed )
Si i —det<1u,jv>
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where det denotes the determinant. If « e AT and B e A® then (recall

(12))

(caB). ) =8, . fa, . B
11... . 1 . k....k

and if X € E then

xJa), = X% . .
1" -1 1" el

13. Tensor fields on manifolds

Iet p be a point in the ¢® menifold M . A tangent vector at p
is an equivalence class of differentisble meppings x: IR — M with
x(0) =p , vhere x and y are equivelent in case the coordinates of x(t)
and y(t) differ by; o(t) . One verifies that this condition is independ-
ent of the choice of local coordinates, and that addition and multiplication
by constents are well~defined on tangent vectors. Thus the set of all tan-
gent vectors at p forms a real vector space M.p , called the tangent space
at p . A cotangent vector at p 1is the dual notion: an equivalence class
of differentisble meppings f: M—> R with f(p) = 0, where f end g
are equivalent if g(q) and g{q) differ by little o of the difference
in coordinates of ¢ and p . Again, the condition is independent of the
choice of local coordinates, and the cotangent vectors form a vector space
M% which is in & natural way the dual vector space to Mp

The set T(M) of all tangent vectors at all points of M has a
natural structure of C° manifold as does the set T*(M) of all cotangent
wvectors. They are called the tangent bundle and cotangent bundle. They are
equipped with netural projections onto M , the projections which assignh to
each vector the point p at which it lives. A ¢® section of the tangent

bundle is called a contravariant vector field or vector field and a Cm
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QA

0
-5

Figure 1. Pictures of a tangent vector Xp and a cotangent
vector wp . A tangent vector gives a direction and speed of
motion, & cotangent vector is a linesasr approximation to a
scalar. The tangent vector 2Xp would be indicated by an
arrow twice as long, 2wp would be indicated a relabeling
of the hyperplanes (twice as dense). In the figure xP

and wp look as if they are in some sense the same, but
this hes no meaning unless the tangent space is equipped
with additional structure, such as a pseudo-Riemannian

metric or symplectic structure.
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section of the cotangent bundle is called a covarisnt vector field or l-form.
They form modules E and E' over the algebra F of all scalars (Cw real
functions on M). Therefore we have the notions of tensor fields on M eand
tensors at a point p.

Tensors are of great importance in differential geometry beceuse
they are invariatitly defined geometrical objects (independent of sny coor-
dinate system) which live at points. Both characteristics are necessary in
order for an object to be a tensor. Suppose for example we attempt to de-~

fine a tensor u , contraveriant of rank 2, by requiring, in local coordi~

nates,
i
U-(“),T]) = Z 5 jwiﬂj 2
where 9 is 1 if i=J sand O otherwise. This lives at points but
1] 1
is not invariantly defined, since in new coordinates xl ,...,xn it would

have components

Kt 3 o)

P

(On the other hend, 83‘ are in each coordinste system, the components of
a certain tensor.) As another example, let X %be a fixed contravariant
vector field other than O and define 6 on E by 6(Y) = [X,Y] , where
[X,Y] is the Lie product of X and Y (§2). This is invariantly defined
but it does not live at points, because in order to know G(Y) at & point
p we need to know something sbout Y in a neighborhood of p in order to
differentiate it. In fact, 6 is IR-linear but not F-linear, since

o(fyY) = £o(Y)+(X-£)Y , so that 6 is not a tensor field. The condition of
F-linearity is in fact the condition that an IR-multilinear objeet live at
points. If for example w is a 1l-form and xp = Yp then (w(X))(p) =

(w(¥))(p) , since we may write X-Y = fZ with f(p) = 0 , and so
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(w(x))(2)-(w(¥))(p) = (w(£2))(p) = 2(p)(w(z))(p) = 0 .

The example of the Lie product shows that not all dnteresting geo-
metrical objects are tensors. Affine connections are another example of
second-order geometrical objects. Tensor fields are first-order geometrical

objects since the notion of tangent vector involves one derivative.

14. Tensors and meppings

Suppose we have two g algebras F and ¥ , an F module E
with dual E' , and an ¥ module ¥ with dual ' . We shall use the word

homomorphism for any of the following:

(15) p: F—> T,

an Fo algebrea homomorphism;

(26) p: E—> ¥,

a group homomorphism (and similarly for p: E' — E') ;
() p: (F,E) —> (KE)

where p: F —> ¥ and p: E —> ¥ are homomorphisms satisfying the compat-

ability condition

(18) p(£X) = o(£)p(X) , feF,Xek,
(and similarly for p: (F,E') — (¥,2')) ; and finally for

(19) p: (F,E,E') —> (F,E,I)

where p: F 43‘, p: E — ﬁ, p: B —> ¥ are homomorphisms satisfying

the compatebility conditions (18) and

(20) p(fw) = p(£)p(w) , feF, weE,
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(21) o< 0, X >) = < p(w),p(X)>, WeEB',XekE.

Now let

o: M—> N
be a 7 mepping of the manifold M into the manifold M. fThen
(D*: ¥—rF
defined by (Q*f)(p) = £(¢(p)) 1is a homomorphism. If we recall what a

tengent vector at a point p in M is, we see that ¢ induces a vector

space homomorphism (linesr transformetion)
a : M — M .
PP ¢(p)
It is called the differential of ¢ at p . By duality,
ae )r . Mt — M! .
( p) ®(p) P
If we define
¥, n
P W) ,X>=<w ae (X >
( )p’ P o(p)’ p( p)
then
*
o (B,X') —> (F,E")
is & homomorphism. In the same way we obtain & homomorphism
* *
o Y — (5,E)

of the covarient tensor algebras, which preserves the grading add products
® , and sends the Grassmann algebra 'K* into A* . However, it is imme-
dlately clear to elmost anyone that we do not in genersl obtain a homomore-
phism (F,E) — (},¥) since ¢ is not necessarily onto, we may not have
dqap(xp) = dcbq(xq) whenever ®(p) = ¢(q) , and even if these difficulties
do not arise we msy not get & C° section of T(M) (see Exercise A.lL on

p.83 of Helgason [2]). The mapping ¢ induces C° maps
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o, T(M) —> (M) ,

¢ TM) — T (M)

but @, does not in general induce a mapping on C sections of T(M) .
Suppose now that ¢ is a diffeomorphism of M onto M . Then we

obtain a homomorphism ( in. fact, an isomorphism)
*
(22) o : (FE¥) — (F,E,E")

[ * . .
as follows. On ¥ and E » ® is as defined above. For ¥ in ¥ we

define
(‘D*i)(P) = d(0-1)¢(p)g¢(P) .

This homomorphism extends in a natural way to the mixed tensor algebras.
In the seme way we obtain & homomorphism (22) if ¢ is an imbedding of M
in ¥.

It is unfortunate that covariant tensor fields transform contra-
variantly under point mappings of manifolds, but it is too late to change
the terminoclogy. Early geometers were more concerned with coordinate
changes than point mappings, and coordinates are scalars, which transform
the same way as covariant tensor fields.

Notice that we have used the notation E* for covaeriant tensor
fields in keeping with the fact thet they transform the opposite way to
point mappings. For example, the cohomology ring is formed from the Grass-
mann algebra A* and it is universally denoted H* .

In our study of tensor analysis we shall meke no use of points
except at one point in the discussion of harmonic forms (§7), where we will

need the following notion.
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Definition. The F module E is punctual if there exists a sepa-

rating family of homomorphisms of the form

pP: (F:E,E') — (FP,EP’EI”)

o}

where Fp =F and E_ is a finite dimensional F° vector space.

The module of contravariant vector fields on a manifold is punctual:
take pP to be evaluation at the point p and Ep to be the tangent

space at p .

References
{1] N. Bourbeki, Eléments de mathématique, Hermann, Paris. See especisally
Book 2, Algdbre, Chaps. 2 and 3.

[2] Sigurdur Helgeson, Differential Geometry and Symmetric Spaces,

Academic Press, New York, 1962.
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§2. Derivations on scalars

1. Lie products

A derivation of F is an F°-linear mapping X: F —> F such that
X(fg) = (Xf)g+£(Xg) , f,g eF.

(See §1.1 for the assumptions on FO and F .)

If X and Y are derivations then so is X+Y defined by
(X+Y)f = XT+ Y,
and if h is in F +then hX defined by
(nx)f = n(xs)

is also a derivation. Thus the set of all derivations of P is an F
module. Tt is denoted D .

If X €D then X1 =X1+X1l, so that X1 =0 . By Fo-linearity,
Xa =0 for all & in F° .

If X and Y are in D, we define their Lie product [X,Y] by
[X,Y]f = XYf-¥XF .
This is again & derivation:

[x,¥1(fe) = xy(fg) - X(fg)
= X{(¥£)g + £(¥e)} - Y((X£)g+ £(Xg))
= (x1£)g+(¥£)(Xg) + (X£)(Yg) + £(XYg)
- (xf)g - (x£)(Ye) - (Y£)(Xg) - £(1Xg)

= (Ix,Y)f)g + £([X,Y]e) -

The set of all Fo-linear mappings of F into itself forms an
associative ring, and D 1is a subset of it. In any associative ring we

define the Lie product of any two elements X and Y +to be [X,YJ =XY-¥X .
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A simple computation shows that the Jacobi identity

(1) [[x,¥],2] + [[y,2],X] + [[2,x],Y] =0

holds in any associative ring. Since D is closed under the formation of
Lie products, the Jacobi identity holds in it. (However, with respect to
the Lie product as multiplication D is not in general associative.) The

Jacobi identity may be rewritten as

(2) [x,[y,z}] - [v,[x,21] = [[X,¥],2] .
Define 9X on D by
(3) exy = [x,Y] .

Then the Jacobi identity (2) is
(&) (6y,6y) = ®rx,v1

More generally, if Y is an iterated Lie product of n elements
Xl""’xn , assoclated in any way, then by induction %fx is the sum of n

terms, in the p~th of which Xu is replaced by eWXu . For example,
(5) w,[[x,¥],2] = [[Iw,x],¥),2] + [[x, [w,Y]],2] + [[X,Y], [W,2]] .

If X and Y are in D then clearly
(6) [v,x] = -[x,¥] .

The Lie product is Fo-hilinear, so that with the Lie product as multipli-

cation D 1s an F° algebra (not in general associative). An o

algebra
satisfying (6) and (1) is called a Lie algebra, so that D 1is a Lie algebra
over Fo .

However, the Lie product is not F-bilinear. In fact,

(7 [£X,gY] = fg[X,¥] + £(Xe)Y - g(YE)X .
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2. Ide modules

Definition. A Lie module is an F module E together with an

F-linear mapping X — X+ of E into derivations of F and a mepping
(X,Y) —> [X,Y] of EX& into E such that with respect to it E is a ILie

algebra over F  and

(8) [X,£Y] = £[X,¥]+ (X-£)Y ,
(9) [X,Y)f = X-Y-£ -YX-F
for a1 £ in F and X,Y in E .

Notice that from (8) and the fact that [Y¥,X] = -[X,¥Y] (since E

is a Lie algebra over Fo) the more general relation
(10) [£X,8Y] = £gIX,¥] +£(X-g)Y - g(¥-£)X
holds. We have the following.

Theorem 1. Iet D be the module of all derivations of F , with

X-f =Xf and [X,Y] = XY~YX . Then D is & Iie module.

The main example of interest is the Lie module E of all derivations
of the algebra F of ¢® functions on a manifold, which may be identified
with the set of 811 contravariant vector fields. TIn the definition of Lie
module we did not assume that the mapping X — X- 1is injective. Other

examples of a Lie module are a Lie algebra over F° when F =

, and the
set of all vector fields on & manifold invariant under some C action of
e Lie group over the algebra F of all invariant scalars.

Roughly speaking, a Lie module is like & Lie algebra except that

the elements of the module act on the coefficients by derivations in a

natural way.
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Definition. Iet E be & Lie module, f a scaler. The differential

of f£, af , is defined by
(af)(xX) = X-f , XekE.

Since X —» X+ 1is F-linear, the differential of f is a l-form

(§1.2).

3. Coordinate ILie modules

Definition. A Lie module E dis called a coordinate Lie module in

case there exist scalars xl,...,xn (called coordinates) whose differentials

are a basis for the module of l-forms.
Iet E be a coordinate Lie module with coordinates xl,...,xn .

Then El , and consequently E = E, , is free of finite type (§1.11) and

1
therefore totally reflexive (§1.5). The

(11) axt, ... ,ax

are a basls of E1 . The dual basls, which is a basis of E , is denoted

o o
(12) =1 ;-°‘:“?;
ox x
so that
<dxi,—i>=81.
dxY J

Observe that the elements of the basis (12) commute (i.e. their Ide

products are O) since

ko o d 93 k 0 o k
<ax,[—, —P =% - — =X
’ T o ix*t oxY 3x% ax*
o k o o) Xk 9 0 .k o .k
= <X, D e e <Xy —r D> = —r B, - —= 8. =0,
L Tad T % Tad T ad o ad
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due to the fact that the slj‘, 81; are constents (1 or 0). Notice that the

symbol a/axl , for example, has meaning only if the entire coordinate sys-

tem xl,...,xn is given (in contrast to axt > which is simply the differ-

l) 1.2 it 1

ential of the scalar x Thus if x7,X  s&are coordinates so are x =x,

] A 4 ]
X? = x2+xl and a/axl # a/axl even though xl = xl .
Iet f be a scalar, let X be a vector field with components Xl,

and let Y be a vector field with components Y' . Then df has com-

ponents
of
—_,
axl
X-f is the scalar
leé-f—i,
x

and [X,Y] has components

>:(x8“-§5L Yi-Yag%Xi) .

ox
1t nt - J*
If x ,...,x are also coordinates then the Jacobian matrix Ji
of §1.11 is

s1

‘1 J

Jg =axi

x

and similarly for its inverse, so that we have the familier formulaes

i!
dxlt—z:xj ax? ,
>4
3 Jad »
O .z 9
axt 3t oxY
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L. Vector fields and flows

Let us discuss heuristically but in some detail why contraveriant
vector fields on a manifold are the same as derivafions of the algebrs of
scalars, and what the geometricel meaning of sceler multiples, sums, and
Lie products is.

Iet X be a (contravarient) vector field on & menifold M, every-
thing being assumed to be of class ¢ . Thus X is an assignment of
velocities at each point p of the manifold. The fundamental existence
theorem for differential equations shows how to integrate to obtain the
motion of a particle starting at any point. In this way we obtain (&t
least if M is compact) a one-parameter family of diffeomorphisms ®(t)
of M onto itself such that &(t+s) = ®(t)e(s) . We call this a flow,
and in this discussion we shall ignore the fact that in general o(t)
is only defined locally if M is not compact. Thus o(t)p 1is the
position of a particle at time t if it starts at Q(O)p =p at timeO.
As diséussed in §1.14, if f is a scalar (C” function) we have ¢(t)*f
given by (¢(t)*f)(p) = f(®(t)p . But &(t)p is a representative of
the tangent vector xp at p (see §1.13), so that the derivative of

* R
(2(£) £)(p) & +t =0 is known if xp is known. We 1lét

(x£)(p) = lim (2(£) ") (p) - £(p) _
-0 t

This gives the action of vector fields on scalars. It is perhsps worth

recalling why this is a derivation:

(X(fe))(p) = lim
t -0

- um (£0)R)-£(p) g(0(t)p)velp) | £(2(t)p) + £(p) g(2(t)p)-g(p),
T 50 t 2 2 t

(fg)(‘l’(t)g) - (£fg)(p)

{((x£)g + £(Xg)}(p) - -
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Conversely, if X 1s a derivation on the scelsrs and p is a point then
the f(p)+t(X£)(p) , where f is allowed to be X ,...,x" for & set of
local coordinates at p , determines a curve whose equivalence class (the
tangent vector &t p ) 1s independent of the choice of local coordinates.
Consequently we ldentify the vector fields on a manifold with the deri-
vations of the algebra of scelers. Notice that the assumption that every-
thing is of clegs C is necessary for this identification.

Now we shall discuss the meaning of scalar multiplication, addi-~
tion, and Lie products in terms of flows.

Iet X generate the flow ¢ , let h be a scalar, and let hX
gener;.te the flow Y . Then ¥ is the same as ¢ except for a change
of time scale. The new velocity is hX , so we have (letting s be the

new time parameter)

& = ne(s)p) -
Thus

¥(s)p = ¢(t)p
where

s = ft 1 dr .
BACIEI)
If h(p) =0 then ¥(s)p =1p .
Now let X generate ¢ , Y generate ¥ , and X+Y generate &.
If X and Y commte (i.e., if [X,Y] = 0) then ¢ and ¥ commute
(locally) and & is given by
a(t)p = o(£)¥(t)p .

The general case is more complicated, and

(13) a(t)p = iigm(Q(%)y(%))n ] ]
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Roughly speaking, the flow @ 1is the simultaneous sction of the flows @

and ¥ . To see (13) formally, notice that formally
*
o(t)" = %,
* *
since ®(t+s) = ®(t) ¢(s)* and

a * _
d_t<1>(t) |t=o—x .

t, &
e e

in powers of t is the same as the expansion of e

Then the expansion of

(x+Y) in powers of

t , except for a fraction of terms in each order such that the fraction
tends to O & n — o . The product formule (13) in the very general
setting of semigroups on Banach spaces is due to Trotter [3].

Finally, let X generate the flow ® , Y generate the flow ¥,

and IX,¥] generate the flow ® . Then

() o(e)p = 11m (x(- /Dot Dy [Ty /20 -
n—o

To see (14) formally, we make a formal computation to second order in t;

X Y -tX -tY
e e"e e

(1+4X + gﬁ X2)(24+4Y + 3_2 ) (1-tX + *23_2 X2 )(1-tY + gf ¥) + of+?)

T i o e O s O o I (N T

1+42[X, Y] + o(t?) .

If we replace t- by +t this gives, formally,

ST etheJ'tYetheJtY + o(t)

t t t t n
. (/%X JEx < fEx -fEn
lim |e e e e .
n-—oo
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This computation concerns the action of the flows on scalars, and the
result is equivalent to (14) for the point flows. Helgason essentially
gives a proof of (lh) for the case when X and Y are in the Lie
slgebra of a Iie group (see pages 96, 97 and 105 of [2, §1]). It should
not be difficult to establish (14) in the general case of vector fields
on & manifold.

We coneclude with an example. Consider a car. The configuration

space of & car is the four dimensional manifold
M= I@ xI‘2

perameterized by (x,y,9,8) , where (x,y) are the Cartesian coordinsates
of the center of the front axle, the angle ¢ measures the direction in
which the car is headed, snd € is the angle made by the front wheels
with the car. (More realistically, the configuration space is the open
submenifold ~6 < @< 6 .) See Figure 2.

There are two distinguished vector fields, called Steer and
Drive, on M corresponding to the two ways in which we can change the

configuration of a car. Clearly

(15) Steer = -aa—e

since in the corresponding flow 6 changes at a uniform rate while
X,y and ¢ remain the same. To compute Drive, suppose that the car,
starting in the configuration (x,y,cp,e) , moves an infinitesimal dis-
tance h 1in the direction in which the front wheels are pointing. In

the notation of Figure 3,
D = (x+h cos(p+8) +o(n), y+h sin(p+8) +o(h)) .

Iet # = AB be the length of the tie rod (if that is the name of the
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Figure 2. A car

Figure 3. A cer in motion
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thing connecting the front and rear axles). Then CD = £ too siﬁce the
tie rod does not change length (1n non-relativistic mechanics), It is

readily seen that CE = #+o(h) , and since DE = h sin 6+o(h) the angle
BCD (which is the increment im @) is h sin 6/¢ , while € remains the

same. ILet us choose units so that £=1 . Then

d . d )
(16) Drive = cos(p+8) =4 sin(p+8) 57 sin 6 35
By (15) end (16),

(1n [Steer, Drivel = -sin(o+6) Ea;{ + cos(p+6) % + cos 6 %

ILet

Slide = -sin cp% + cos (p% 3

Rotate = '6% .

Then the Lie product of Steer and Drive is equal to Slide + Rotate on
6=0 , and generates & flow which is the simultaneocus action of sliding
and rotating. This motion is just what is needed to get out of & tight
parking spot. By formula (14) this motion may be approximated arbitrar-
ily closely, even with a restriction -0 mex <8< eme.x with ema.x
arbitrarily small, in the following way: steer, drive, reverse steer,
reverse drive, steer, drive, reverse steer,... . What makes the process
so laborious is the square roots in (1h4).

let us denote the Iie product (17) of Steer and Drive by Wriggle.

Then further simple computations show that we have the commutation

relations
[Steer, Drive] = Wriggle,
[Steer, Wriggle] = ~Drive,
[Wriggle, Drive] = Slide,
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and the commutetor of Slide with Steer, Drive, and Wriggle is zero. Thus
the four vector fields span a four dimensional solveble Lie algebrea over
R.

To get out of an extremely tight parking spot, Wriggle is insuf-
ficlent because it may produce too much rotation. The last commutation
relstion shows, however, that one may get out of an arbitrerily tight
parking spot in the following way: wriggle, drive, reverse wriggle (this
requires a cool head), reverse drive, wriggle, drive,...

The example illustrates a phenomenon of frequent occurrence in
differential geometry, namely holonomy, or rather the lack of holonomy.
The vector flelds Steer and Drive, which at first sight give the only
possible motions of a car, span a module over the scalars which is not
clogsed under the formstion of Lie products. That is, the field of two
dimensional planes in the tangent bundle is not integrable {not involu-
tive, not holonomic) and so is not the field of tangent planes to a
family of two dimensional surfaces. Motions which at first sight are
impossible cen in fact be spproximated arbitrarily closely (in the @

topology but not the Cl topology) by possible motions.

Reference

[3] H. F. Trotter, On the product of semi-groups of operators, Pro-

ceedings of the Americen Mathematical Society 10(1959), 545-551.
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1. Algebra derivations

et K be an F algebra, not necessarily commutative or asso-
ciative. A derivation X of K is an F°-lineer mepping of K into
itself such that X(uv) = (Xu)v+u(Xv) for ell w end v in K . The
computation in §2.1 used neither commutativity nor asscciativity, so if
X and Y are derivations of K so is [X,Y] . The derivations lie in
the associative algebre of endomorphisms of K as an Fo vector space,
so the Jacobl identity holds. Thus the derivations of K form & Lie
algebra over F° .

Now suppose that K 1is & graded algebra. That is, K 1is the

weak direct sum

[-:]
K= Z K
o
r=-c0

where each KX C K., - The K  with r<0 are usually but not

necessarily O . An F° linear mepping X of X into itself is homo-

geneous of degree a if each X.Kr C Kr +8 ? and homogeneous if it is

homogeneous of degree & for some & . The notions of & bi-graded alge-
bre, and bi-homogeneous mappings of bl-degree (a,b) , are defined simi-
larly. An antiderivation of a graded algebra K is an Fo-linear mapping

of K into itself guch that
X(uv) = xu)v + (-1)%u(xv) , uek, vek.

The anticommutator of X and Y is XY +YX . A simple calculation

establishes the following theorem.

Theorem 1. Iet X and Y be antiderivetions on the graded

algebra K , homogeneous of odd degrees e and b respectively. Then

the anticommutator XY+ YX is a derivation of K , homogeneous of de-

gree &tb .
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2. Module derivations

Iet E be an F module. In §1.14 we defined the notion of a
homomorphism of (F,E) and consequently we have the notion of an auto-
morphism of (F,E) . Formally, let p(t) be a one-parameter group of
automorphisms of (F,E) and let ¢ be the derivetive of p &t t=0 .

*
(For example, p(t) mey be ®(t) where &(t) is a flow on a meni-

fold.) By the product rule for differentiation we obtain, formslly,
(1) o(fX) = fo(X) + o(£)X , feF, Xek.
This motivates the following definition.

Definition. Iet E be an F module. A derivation ¢ of
(F,E) 1is a derivation @ of F eand an FO-linear mepping ¢: E —> E
such that (1) holds. A derivation ¢ of (F,E,E') is a derivation ¢

of (F,E) eand an FO-linear mapping @: E' —= E' such that in addition

(2) o(fw) = fp(w) + @(£w , feF, wekE",

(3) P<WX> = <0 X> + <w,qX> , wekE',, XeE.

The motivation for (2) and (3) is again the product rule for
differentiation, as it is of course the motivation for the definition of
derivation of an I algebra. We shall find it convenient to indicate
derivations of & number of different F modules by the same symbol @ .
This is legitimete, provided of course they &1l give the same derivation
of F , since we may regard @ as defined on the disjoint union of F

and the various F modules.

Theorem 2. Iet E be an F module and let ¢ be a derivation

of (F,E} . Then:

(a) @ has a unique extension to a derivation ¢ of (F,E,E').
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(b) If we extend ¢ to E" then o(kX) = kp(X) for all X

in E , where K 1is the natural mepping of E into E" .

(¢) ¢ on (F,E,E') has a unique extension which is a derive-

Ox Q
tion @ of E, as an FO algebra, and ¢ is a derivation on (F,Eg)

for a1l r &and s .

)
(@) If we extend ¢ to be a derivation on (F,Ef_,E:) and

* *
define ¢ on 8ll of E, by additivity, then ¢ is a derivation of Eg

as an b e.lEbra. For all u _i_n Ezs. 3

X.)

(%) UCTCLRTNES SN SN CHICLRPRRTS SN 4

r
1 T
+ Sulw, ...t ., ,xl,...,xs)
M=l

8.
1 r
+ Zu{uw,...,w ,xl,...,q:xp,...,xs) .
p=l

Proof. We define ¢ on E' by (3). Then each @ 1is a
1-form since if we replace X by £X +the additional terms @(f)<w,X>
on the two sides of (3) cemcél. Similarly, (2) holds, so that ¢ is a
derivetion of (F,E,E') . The uniqueness is clear.

By (a) we do have a uniqué extension of @ to E" (such that

it is a derivation of (F,E',E")) . For all X in E,
P<W,KL> = <Qu,KK> + <w,p(KK)>

By definition of Kk , K may be dropped from the first two terms of
this, and by comparison with (3) we see that <w,@(kX)> = <w,@X> =
<w,xk(@X)> for all w in E', so that o(kX) = k(@) .

The uniqueness assertion in (e¢) is clear since F, E, and E!

ox%
generate E, as an 'FO algebra. To prove exlstence, we need only show
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thet if H and K are F modules, ¢ a derivation on (F,H) and ¢

a derivation on (F,K) (agreeing on F), then
(5) P(X®Y) = X®Y + X®¢Y

is well-defined on H®K and extends by additivity to & derivetion of
(F,HZK) . To see this, notice that (5) is obviously well-defined on the
free Abelisn group used in the definition of tensor product (§1.3) and
that @ sends (fX)®Y-XR(fY) into the subgroup generated by the re=-
lations imposed in §1.3, and so is well-defined on HRK . It is then
clear that ¢ is a derivation on (F,HSK) .

Q
By (a) and (c) and the fact (§1.6) that E’; is the dusl of Ei,

0
@ has a unigue extension as a derivation of (F,Ei,E:) . We extend @

. . * s st Or Or!
by additivity to E, - Iet ue Er’ v e Er" y € Es’ Z € Es' . Then,
by (3):

P<WIV, Yz > = <p(udv),y®z> + < Bv,eySz +yRpz> ,

so that

((eu)(¥))v(z) + u(ey)v(z) + uly) ((ev)(z)) +u(y)v(ez)

< of®v),y®z > + u(oy)v(z) + u(y)v(ez) .

¥*
That is, Qudv+u®pv = @(uv) , so that @ is a derivation of E, as
an F° algebra. The final formula (4) is simply (3) for u in Efj and

w1®...®uf®xl®...®xs

[o]
in Ez . QED.
Notice that by (b) if E is totally reflexive, so that we may
identify ﬁi and Ei s the two definitions of ¢ agree. The various

derivations given by Theorem 2 will be called the derivations induced
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by the derivetion ¢ of (F,R) .

Theorem 3. Iet E be an F module and let <p1,cp2 be deri-

vations of (F,E) . Then the commutator [cpl,q>2] of @ &and 9, isa

derivation of (F,E) . The commutators of the derivations induced by q)l

and ¢, ere the derivations induced by [g,®,] .

Proof. We have

1]

P19, (£X) = @, (£9,(X) + 9, (£)X}

29,9, (X) + 0y (£)0, (%) + 9, (£ (X) + @, (9, (£))X
and similerly for q>2cpl(fx) , so that

Lo, 1(£X) = £lo,9,1(X) + ([9,9,)0)X ,

and we know that [CPl,cPZ] is & derivation of F . The last statement
of the theorem is an immediate consequence of the uniqueness assertions

in Theorem 2. QED.

By Theorem 2 and §1.6, if @ is & derivation of (F,E) ,

t
ue s+:" , and t = t{r,s,r',s') we have the following diagram:

o t
ES Lu > E]S:,

2]

In genersl it does not commute, end [@,tul = @o(Lu) - (tu)ep is not 0.

Theorem 4. Iet E be sn F module, ¢ & derivation of (F,E),

1
ue€ E:;:i, ,and t = t(r,s,r',s') . Then

(6) [@,tul = pu .
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0 o
Proof. By the definition (§1.6) of ¢, if y ¢ E:, , zZ € Els", R

and v = (w)(y) then v(z) =.u(y®) . Therefore, by (L),

(ov)(z)

o(v(z)) - v(pz)
Hu(y®2)) -u(y®9z)

(pu)(y®z) +u(ey ®z)

so that (6) holds. QED.

3. Lie derivatives

Suppose that E 1is a Lie module (§2.2). By the definition of

Lie module, if X € E and we let

6 f = X-f , feF,
GxY=[X,Y], YekE,
then 6y is a derivation of (F,E) . The induced derivation 6y on
the mixed tensor elgebra is called the Lie derivative. Thus GX is

defined on l-forms w by (3), which gives

(7 X-<w,Y> = <0W,Y> + <w,[X,Y]>, YekE

and for tensors u contravariant of rank r and covariant of rank s
by

X )

(8) Xou(why ey 05,K X ) = (QXu)(wl,...,wr,Xl,..., .

B
+ 5 u(wl,...,exwu,...,wr,

X))
p=1 S

1
s 1
+ Zulw ,...,wr,xl,...,[X,X 1,...,x) .
7 s
p=l
If X is a vector field on a menifold, generating the flov (%),

then for any temsor field u, 6,u is the derivative at t=0 of

X
o(+)*a  (see [41).
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4, F-linear derivetions

Iet E be an F module and let A be an F-linear trensforma-
tion of E into itself. (If E 4s reflexive the set of F-linear
transformations of E into itself can be identified with Ei » by §1.6).

Define @, on (F,E) by

q)Af=0, fePF,
PpX = KX, XeE.

Then ¢, is clearly a derivation of (F,E) , and every derivation of (F,E
which is F-linear and O on ¥ is of this type. The induced derive-
tions are also demoted @, . By (3), 9 on E' is -A', where A'

is the dusl of A . By (&) we have for u in Ei,

(9) (CPAU) (“’1) ces :“’r:xl: e ’xs)

r
= Tu(wh,...Aw, .. .,wr,xl, X))
p=1

8
1
- Z‘.lu(w ,...,wr,xl,...,Axu,...,xs) .
“:

We shall have occasion later (§7) to use & related notion.

Theorem 5. ILet E be & totally reflexive F module. There

is a unique F-linear mapping ¢ of Eé into the F module of all

‘ *
F-linear mappings of the mixed tensor algebra E, into itself such that

for e11 B and C in Ei,
(10) Oon = P -

For each A in Eg » °A maps each E: into itself and each AT into

itself, and 0, 1s O om F. If @ isin A" then
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(11) (3,0) E (-1 ate
11 o o = 2 (=l A [0 ~
A il...ir v=1 iv'b a‘il"'iv"'ir
ba
+ 2% (-1)“+VA a ~ ~ .
v<u ip.i‘v abil"'iv"'iu'”ir

Proof. Since E is totally reflexive, % = Ei@Ei . The map-

ping

1
1

EJl' XEY —> HomF(E:E:)
which sends (B,0) to (pB-q)c is F-hilinear and so (by the definition
of tenspr product) has & unigue F-lineer extension ¢ to E}_@E}_ .
Since q)B for B in E% sends each E; and AT into itself emd is
0O on F, °A has the same properties.

The notation in (11) is that of §1.12. To prove (11) it suf-

fices to consider the emse A = B®C . By (9),

CeES, aehT,

I
= (-1 c )
=l l

(12) (CP ) = aa * ]
(o et T T R

where we have mede use of the fact that @ is dlternating. If we use

(12) to compute PP 5 We find (11) for the cese A = B®C . QED.

5. Deriveticns on modules which are free of finite type

Theorem 6. Iet E be an F module, free of finite type with

X . let © be a derivation of (F,E) and define 731

basis Xl""’ n

by
= 5ol
<p(Xi) = z:*,vixJ .

If ue Ei the components of ¢Qu are
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i ...1 i...d
1 1
CO R C)
1 1" "Ys
r i ...i ai PRI, S §
+ ZZul He=1""t+1l r,yp.
u=l 917 Jg 8
s 1,...1
- ZZ‘yaul r .

e i FERPS ML S UREPRr

If X,,-.-,X_, 15 another basis and J) and J, ere defined ss in

i - 73

st
§1.11, and if 7‘;, is defined by

o(xy,) = =X,

then

AR R R

Iet E be a coordinate Lie module with coordinates xl, . .,xn

and let the vector field X have components Xi . Then the ‘7;1) corre-

sponding to the Lie derivative GX are

y_ X
i! 1! n
E X has components X with respect to new coordinates x™ ,...,X
then
3t k 3 £ ad
(13) aXiT=zaxi'§l["Eaxl *”{z—gz[x-?ik
ox ¥~ " Ox A Ox  Ox
where we use the notation 82 to mean o C
YA T == it
"ot Q axt

Proof. The proof is trivial. QED.

Formule (13) shows the basic fact that the partial derivatives

of the components of a tensor do not in general form the components of
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a tensor. This was what led Christoffel to the notion of covariant

differentistion (§5).

Reference

[4] R. s. Palais, A definition of the exterior derivative in terms

of Lie derivetives, Proceedings of the American Mathematical Society

5(1954), 902-908. 1In the definition on p.908, & should be identified

with (k+1)d® rather than with 4@ itself.
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1. The exterior derivative in local coordinates

*
Iet E be an F module, A the Grassmeann algebra (§1.9).

. .
By an exterior derivative we mean an FO-linear mepping 4 of A ‘into

itself such that

[D1] a: AF — > AT
{re] a(anB) = anp + (-1)%cndsp , a A, Beat,
[p3] Z=0.

Theorem 1. ILet E be a coordinste Lie module. Then there is

8 unique exterior derivetive d such that for all scalars f , df _1£

the differential of f .

Proof. Iet xl,... ,xn be coordinates. Then each & in AT

is uniquely of the form

Q= z e idxl,....,.d.xr.
il<"'<ir 1 b ol
If [p2) and [D3] hold then we must have
i i
o = 3 zi,ai idxiAdxl,....Adxr.
i<o.<i b 1tttte
1 r
That is, the components of d& are
r+l
(1) (aa) ; =% (-0 2 % f i
el pe > < Rt TR ¥ |

This proves uniqueness.

To prove existence, choose coordinates and define 4 by (1),
extending to all of A* by additivity. Then d 1is Fo-linear, and [D1]
holds. The relation [D3] holds since the 3/ and 3/3" commute.

To prove [D2], let a ¢ Ar, B e A%, By the explicit formula in §1.11
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for the components of aaf and by (1), [D2] holds. QED.

The proof shows, of course, that (1) holds for any choice of
coordinates. This is certainly the quickest approach to the exterior
derivative on a menifold, for once d is known locally it is trivial
to define it globally. However, a coordinate-free treetment of the
exterior derivaetive is worthwhile for several reasons. For one, it
applies to Lie modules which do not have coordinates (even locally,
such as a Lie algebra over F=F°). The invariant expressions for 4
are useful. Finally, it deepen® one's understanding of the exterior
derivative and shows it to be the natural dqual object to the Lie pro-

duct.

2. The exterior derivative considered globally

Theorem 2. If E 1s & totally reflexive Lie module there is &

unique exterior derivative d such that for all scalars f , df E

the differential of f and for all l-forms ®w and vector fields X

and Y,
(2) 2dw(X,Y) = X-w(Y) - x-0(X) -w([X,¥Y]) .

*
If E is any Lie module and we define 4 on A by

r+l
- p+l o <
(3) (r+1)aalXy, ... ,X,,,) = u=1(.1) X, a(x.l,...,xu,...,xrﬂ)
+ = (-1)¥ a([xu,xv],xl,...,xu,...,xv,...,xﬁl) , e,

pu<v

*
and by extending d to all of A Dby additivity, then d 1is an exterior

derivative.
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Proof. For E totally reflexive, Ao end Al generate A*
as en F° algebra, so the uniqueness assertion is clear. (Notice thet
the requirements that df be the differentisl of f and (2) are the
special cases r=0 and r=1 of (3).) Therefore we need only prove
that da defined by (3) is an exterior derivative.

let B denote the set of all FO-multilinesar (not necesssrily
F multilinear) meppings of E X...XE (r times) into F . Thus
ErCEr . If 2= (zl,...,zr) is in E X...XE (r times), X is in
E, and @ is in i , we use the notation o[X,2]) as an abbrevi-

ation for
a([x,zl],za,...,zr) + a(zl,[x,z2],...,zr) Fo..+ a2 ,ze,...,[x,zr]) .

For a in ﬁr we define

(30)(%,2) = x-0(2) - § o([x,2])

and (d0)(X) =X-a if r=0 . Then O is in E'% and is not in

general in E5'1 even if @ is in E5 . Iet AX

be the set of all
alternating elements in & , 80 that ArCKr CF . For a in A®

we define da = Alt o ; thet is,

).

r+l 1 ~
(r+l)da(X1,...,Xr+l) = p.fl (-1) aoz(xu,xl,...,xu,...,xl_+l

For & in AT +this definition of d& agrees with (3). It is trivial

Ar+l

that 4: Kr — A , end & simple computation shows that

a(0nB) = A0uB + (-1)"0ndB , o e AT

r+1

We claim that d: AT —> A ; that is, if a is F-multilinear

s0 is d0 . To see this, let @ e A , f e F, and let
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B = (r+1)aa(fX,,X,, .+ ,X 1) »
7 = £(r+1)aa(X X5, -+ 0X ) s
S r+l w1 N
8= I (-1) (x“-f)a(xl,...,xu,...,xﬂl) .

k=1

We must show that B=9 . But

r+1
B = X, -oXy, e X ) - % ufza(XQ""’[ﬂl’xu]""’xﬁl)

r
+

+1
, |J.+1 . N 1 P
“52(-1) {xu a(rxl,...,xu,...,xwl) -5 a([xu,fxl],...,xu,...,xrﬂ)
1
-3 #i“ E1E2 PRRRHY 0.4 W FRORPS SHEP)
1
=7-§5+5-%s=7,

which proves the claim.

It remeins only to show that d2 =0 . A simple computation

ar
shows fhat for & in A" ,

2
(L) (r+2){(r+1)d a(xl, . .,Xr+2) =
MV (22 o s
uiv(-l) {0 a(xu,xv,xl,...,xu,...,xv,....,_xﬁe)
2 A ”
-0 a(xv,x“,xl,...,xu,...,xv,...,xr+2)] .

Let us therefore compute
2 2
FalX,Y,2) - Fa(Y,X,2)

for X and Y in E and Z in E X...XE (r times). Iet B(Y,Z) =

3(Y,2) , so thet a(X,Y,Z) = OB(X,Y,Z) . We have
B(v,2) = v'oz) - 5 oA[%,2]) ,

so that
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Pa(x,1,2) = X-v-o(2) - 31X, Y] o(2) - § T-o[X,2]) - 5 x-o([¥,2])
+  o(lx,¥,21) + F of[1,[%,2]1) .
Since X<Y-(2)-Y-X-(Z) = [X,¥]-a(Z) we find that

Pafx,1,2) - PoAY,X,2) =
F L%, ¥1,2]) + § ally, [%,211) -  o([[1,x],2]) - § of(x, [1,211)

= %:- d([[X,Y],Z]) 2

where we have used the Jacobi identity to cancel the first, second, and
fourth terms of the second line and the antisymmetry of the Lie product

to re-write the third term. -Consequently (l+) is equal to

i: T (-1 a(xl,...,ﬁu,...,ﬁv,...,[[xu,xv],x}\],...,xr+2).=

K<y M, v
1 +V VA 2 a a
by p,iv ('l)u 811 a( [[XM’X‘V]’XX]’X:L’ o -,Xu, s "XV’ s ’X)\.’ .. "XI‘+2) =

)‘i‘“: v

l v ”~ ~ ~
5, z M )‘a([[xu,xv],xx],xl,...,xu,...,xv,...,x)\,...,xr+2) s
¥
(_1)}":L s A<u<Y
ML ()M, LSA<Y
(-l)h-3 ’ p<v<r,
and "V = (c1)PVML 4r L v,A ere in their natural order, VN

VA

changes sign under tre.nspositioné, and . £ =0 if u,¥,A 8&are not

distinet. By the Jacobl identity again, the last sum is 0 , so that

@<0. Q.
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If E is any Lie module we shall call the operstor 4 defined

vy (3) the exterior derivative.

Theorem 3. E‘c_, E be a totally reflexive F module, d an

*
exterior derivative on A . Define X-f for X & vector field and T

a scalar by
(5) af(X) = X-f

and define [X,Y] for X and Y vector fields by

(6) 2dw(X,Y) = X-w(Y) - Y-u(X) - w([x,Y]) , weE" .

Then with respeot to these operations E i1s a Lie module. Thus for B

8 totelly reflexive F module there is & one-to-one correspondence be-

tween structures of Ide module on E and exterior derivatives on the

Grassmann algebre.

Proof. Recall the definition of Iie module in §2.2.

Since df is a l-form, X —— X+ is F-linear. Since
d(fg) = dfag + fAdg , esch X+ 1is a derivation of F . Next we need
to show that [X,Y] 4s in E ; that is, that ([X,Y]) is F-linear

in w . But

(£w) ([x,¥1) = X-((£w)(¥)) = Y- ((fw)(X)) =2(a(fw))(X,¥)

= fX-w(Y) + (X-£)(Y) - £Y w(X) - (Y- £)w(X) - 2(dfw) (X, Y) - f2du(X,Y) ,

and by definition of the exterior product, 2(df.w)(X,¥) = af(X)w(Y) +
W(X)ar(Y) = (X-£)w(¥) + (Y-£)o(¥) . Thus (£w)([X,¥]) = £(o([X,¥])),

and [X,Y] is in E . Also,

0

il

2d£(X,Y) = X-a£(Y) -Y-af(x) - ar([X,Y])

XY f - YX-f - [X,Y]-F .



§4. THE EXTERIOR DERTVATIVE 53.

Since 2daw(Y,X) = -2dw(X,Y) , we have [¥,X] = -[X,¥Y] . Since dw is
8 2~form,
f2dw(X,Y) = 2daw(X, £Y)
= X-o(£Y) - £Y-0(X) - w([X, £Y])

so that [X,fY] = £[X,¥] + (X-£)Y . Tt is clear that [X,Y] is F°-bi-
linear in X and Y , so it remsins only to prove the Jacobl ldentity.

Define & by formula (3), so that 4 equals d on scalars
and 1-forms. The proof given in Theorem 2 that & meps A® into AT'T
and that 4 1s an antiderivation did not use the Jacobi ddentity and

so remains valid under our present assumptions. $Since E 1is totally

o]

*
reflexive, A 1is generated as an i algebra by A~ and Al . Con-

sequently, 4 =d . Therefore we may use (3) to compute O = daw(x,I;Z)

for w a l-form. Let us use © to denote cyclic sums,
(1) G x(x,Y,2) = k(X,Y,2) + k(¥,2,X) + K(Z,X,Y) ,

where K 1s any function from E XE XE +to an additive group. If Q@

is a 2-form, (3) may be written
(8) 3d(X,Y,2) = G {X‘a(Y,Z) - a([X’Y])Z)} .

If we let @ = 2dw , where ® 1is a l-form, we obtain

(=]
|

= 6d2w(X,Y,Z)

G (x-Y-w(z) - X°2-0(Y) « X-0([¥,2])
-[x,Y]-0(2) + 2-0([X,Y]) + w([[X,¥],21)}

G w([Ix,¥1,2]) .

Since this is true for all l-forms ® , the Jacobl identity holds. QED.
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More generally, the proof shows that if E 1is an srbitrary F
*
module, if d is an exterior derivative on A , and we define X-f
for X in E1=E" and £ in F by (5) (i.e., (3) for r=0) end

[X,Y] for X and Y in E, by (6) (i.e., (3) for r=1), and if (3)

1

holds, then E, is a Lie module. Thus Iie products and exterilor

1
derivatives are dual notions, and the Jacobi ldentity corresponds to the fac

that an exterior derivative has square O .

3. The exterior derivative and interior multiplication

Theorem 4. Iet E be a Lie module, X in E . Then the anti-

commutator of the exterior derivative and interior multiplication by X

1s the Lie derivative BX on exterior forms. Thet is,

o

(9) 60 =ax la)+X Jaa, aea¥.

If a 1is & closed exterior form, OXOt is exact.

Proof. We give the proof first under the assumption that E
I1s totally reflexive, since this is the cese of interest in differential
geometry and the proof is less computational. Since d is an anti-
derivation of A* which is homogeneous of degree 1 and interior multi-
plicaetion by X is an antiderivation of A* which is homogeneous of
degree -1 (§1.10), thelr enticommutator is a derivation of A* which
is homogeneous of degree O (Theorem 1, §3.1). If E is totally

0 and Al,so

*
reflexive, A is genersated as an ¥ algebra Ty A
we need only verify (9) for @ & scaler or l-form. If a=f is a
scalar, (9) says that X+f = af(X) , which is true. If Q@=w is a

1-form, (9) says that for all vector fields Y,

< 8w, Y> = <da(w(x)),¥y> + 2daw(X,Y) ,
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which is the same as (6). Thus (9) is true if E is totally reflexive.
The proof for the general case is similar: one verifies (9) for o en
r-form by the formula (3) for d , the definition (formula (8), §1.10)
of interior multiplication, and the formuls {§3.3) for Lie derivatives.
The computation is omitted.

The lest assertion in the theorem is an immediate consequence

of (9). QED.

4, The cohomology ring

*
Iet d be an exterior derivative on the Grassmann algebra A
of an F module E . An exterior form & 1is called closed if da=0,

exact if o = dB for some exterior form B .

Theorem 5. Iet E be an F module, d an exterior derivative

*
on the Grassmann algebra A . The set of closed exterior forms is a

graded i algebra in which the set of exact exterior forms is a homo-

geneous ideal, so that the quotient is a graded 7 algebra.

Proof. The proof is trivial. QED.
*
The quotient algebra is denoted H , with homogeneous subspaces

H . Tt is called the cohomology ring. The dimension of B as an F

vector space is denoted 'S and called the r-th Betti number. De Rham's
theorem asserts that the cohomology ring formed from the ¢” exterior
forms on & C. manifold is a topological invariant, the cohomology ring

of the manifold with real coefficients.






§5. Covariant differentistion T

1. Affine connections in the sense of Koszul

On a differentiable manifold there is no intrinsic wey of dif-
ferentiating tensor fields to obtain tensor fields, coveriant of one
rank higher, and to obtain such a "covarisnt derivative" we must impose
additional structure. In Riemannian geometry there is a natural notion
of covariant differentiation (§7) discovered by Christoffel. Many yesrs
later Levi-Civita discovered the geometrical meaning of covarisnt dife
ferentiation by integrating to obtain parallel translation along curves.
A number of people, especially Elie Cartan, studied non-Riemennisn
"affine connections," and the notion was axiomatized in a convenient

way by Koszul, &s follows.

Definition. Iet E be a Lie module. An affine comnection V

on E is a function X —»V, from E to the set of mappings of E

X
into itself satisfying

[vo] vx(y+z) = vxy + V2 s
[vil Vexegy = ™x * €%
2] VX(:EY) = fY + (x-£)Y

for all vector fields X,Y,Z and scalars f and g -

Thus an affine connection is an F-linear mapping X AVX of

E into derivations on (F,E) such that for all scalers f , Ve = X-f

*
(see §3.2). The derivation of the mixed tensor algebra E, induced by

VX (§3.2) is also denoted VX , and is called the covariant derivative

in the direction of X (with respect to the given affine connection).

In particular we have

(1) X' <w,¥> = <Vu,Y> + <w,VY> , weE', YeE.
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2. The covariant derivative

Coverient derivatives have an important property which is not

enjoyed by Lie derivatives:

Definition. Iet V be an affine connection on the Lie module

E, end let u be in Ei . We define the coverient derivative Va by

).

1 r 1 r
(2) Y [ N 1""’Xs+l) = (vxlu)(w L I SYRERYS S

Theorem 1. Iet V be an affine connection on the Lie module
1

E,andlet u bein ES . Then Yu is in E;+

Proof. Since VX u 1s a tensor the only point at issue is the
1
F-linearity of (2) in X, , and this is an immediate consequence of [V1]
(vhich remeins true for the induced derivation of the mixed tensor

algebra). QED.

3. Components of affine connections

Theorem 2. Tet E be a free ILie module of finite type, with

basis X

IJ.{ by

i, —

(3) v, X, = >:r"i‘jxk )

1""’Xn , and let V be an affine connection on E . Define

If u is in E; the components of Vu are

i...4 i .04
) (Vu):Jj' Toexpent
1 s Jycedg

r i....1i .ai Lo i 1 s s A 1)

+ mg b BelwRl TR o8 1

. u, s R
-1 Jl...js ia b= i'jl-l Jl"'Ju-laJu+l""js
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1
If the Pﬁ}j, are defined in the same way with respect to an-

31
other basis X 1ree0sX , and Jg and J?, are defined as in §1.11

1
then
' .8 b e k! . C k!
(5) Tivge = W55 TGIe + (X350
Proof. This follows easily from §3.5. QED.

3 scalars

Notice that 1f the F?j are an srbitrary set of n
there is & unique affine connection on E satisfying (3) for the given
basis. The P?j are caelled the components of the affine connection
(with respect to the given basis). The components may be O with re-
spect to one basis but not with respect to another.

If E dis a coordinate Lie module (§2.3) with coordinates

xl,...,xn then (5) takes the more familiar form

(6) I % P o + 3 FxC '
R N N LT o9 3xC

For some applications in differentisl geometry, & coordinate system
does not give the most convenient local basis for the vector fields.
For example, on & ILdie group it is usually convenient to choose a basis
of left-inverient vector fields. These do not in general come from a
coordinate system since they do not in general commute.

It is customary to denote the left hand side of (4) by

(1) v.u .
i jl...Js
The notations
11...1r 11...1r
u. . . and u. . (i)
Jl..-Js,l Jp-eedg

are also in use to mean the same thing. However, it is convenient in
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connection with the exterior derivative (see paragraph 7) to have the

new covarisnt index be the first covarisnt index.

L. (Classicel tensor notation for the covariant derivative.

Iet V be an affine connection on the Lie module E sand recall
the global meaning of the classical tensor notetion (§1.12). Following

convention, we write

i ...1 i....1
1 r 1 r
v.u = (Vh),,
i jl...js 131...35
Notice therefore that
i ...i i ...i
iv_u,l T (VVu)iJ,', rj )
J Jl"'Jr JJl... s

On the other hend, if X and Y are vector fields and u is in Ei y
VXVYu is again in Ei and is in general quite different from the
tensor in Ei obtained by substituting X eaend Y in the first two

contravariant srguments of YWu . See paragraph 11.

5. Affine connections and tensors

Iet E be a totally reflexive Lie module. We have seen (§1.6)
that tensors B in Ei may be regarded as F-bilinear meppingsof E XE
into E , and we write B(X,Y) or BY for the image vector field.

Let ﬁ:eL be the set of all F-bilinear (not necessarily F-bilinear) mep-
. . ﬁE . o] E2

pings of EXE into E . Thus 1 is an F  vector space, and 1
is an F° vector subspace of ﬁ?_ . Other examples of elements of ﬁi

are affine connections and the ILie product. The Lie module E 1is

. 2
called a Lie algebra over F 1in case the Lie product is in El ; that

is, in case [X,Y] is F-bilinear in X and Y . When we say that an

element of }’Z:\?~ is a tensor we mean that it lies in the vector subspace

P .

1
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Theorem 3. Iet E be a totally reflexive ILile mod .le which is

not a Lie algebrs over F . Then no affine connection is a tensor. The

difference of any two affine connections is & tensor, and if V is an

sffine connection end B is a tensor in Ei then V4B 1s an affine

connection.

Iet V(e‘) be a finlte set of affine connections and let CP(B‘)

be scalars. Then

MO¥E

is an affine connection if Z.q)(a) =1.
a

Proof. By [V2] an affine connection V is a tensor if and
only if (X‘£)Y = O for &ll vector fields X and Y end scelars f ;
i.e., if and only if E 1s a ILie algebra over F .

Iet V(l) and V(e) be affine conmnections. and let
B = v(l) - V(Q) . By [W1], BY is F-linear in X and by [¥] it is

F-linear in Y , so 1t is a tensor. If V ig an affine connection and

2
1

affine connection. The second paragraph of the theorem is obvious. QED.

B 1s in E- then B satisfies [V0], [V1], and [¥2], and so is an

By the theorem, the set of all affine connections on a totally
reflexive Lie module E is either empty or is an affine subspace par-
allel to but disjoint from Ei . Thus the choice of any affine connec-
tion on E establishes a one-to-one correspondence between all affine
connections and all tensor fields contravarisnt of rank 1 and covariant
of rank 2.

Affine comnections always exist on (paracompact) ¢~ manifolds.

The proof of the theorem shows that if E is totally reflexive

and is a Lie algebra over F then the set of &ll affine connection on

E is Ei
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6. Torsion

Definition. ILet V be an affine connection on the Lie module
E . The torsion of V 1is the mapping T of EXE into E defined

by

(8) T(X,Y) = VY - VX ~ [X,¥] .

The torsion tensor of ¥V is the mapping T of E!'XEXE into F

defined by

(9) (w,X,Y) = <w,{X,Y)> .

Theorem k. The torsion tensor of an affine connection is a

tensor.

Proof. Since (9) is clearly F-linear in ® , we need only show

that T(X,Y) dis F-bilinear in X and Y , &nd since
(10) (Y,X) = -T(X,¥)

by (8), we need only show that T(X,Y) is F-linear in X . But

1

T(£X,Y) = V¥ - Vi (£X) - [£X,Y]

(X, Y) - (r-£)X + (Y¥-£)X = (X, Y) . QED.

If E 1s totally reflexive we identify the torsion tensor and
the torsion, as in the preceding paragraph (since T € Ei) . The tor=

so its dual T' maps EY into E° (if
1 1

sion T maps E2 into El

E is totally reflexive), but E = A~ and by (10) it is clear that T!
maps A:L into A2 .

An affine connection is called torsion-free if its torsion is
0. (Tt is sometimes called symmetric, but this term is generslly

reserved for & torsion-free affine comnection V such that in sddition
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VR = 0 where R is the curvature tensor.) The most important class

of affine connections, the Riemannian connections (§7) , &are torsion-free.

Theorem 5. Iet E De a coordinate Lie module with coordinates
xl, . ..,xn , and let V be an affine connection with components F}:Ej .
Then the components of its torsion tensor T are
(11) LT L )
ij ij Ji
Proof
& k 3 d > k /3 D
=T ) y TTT = < 2T —»
1 ( S P
Sca, vy 2w S5 ok Lk QED.
o . o S ij i
- ]
ox ox

If E 1s merely a free Lie module of finite type with basis

Xl""’xn we define the structure scelars C};,j in F by

ok
(12) [xi,xj] = T
Then (11) must be modified to read

‘I'k I'k.-I‘k-ck.

i3 T T4 i3 i3

Theorem 6. Iet V be an affine connection on the Ilie module

E . Then so is8 V' defined by

v}'(y = VYX + [x,Y],

end V' =V . The affine connection

VvV +V?
(13) V=3

is torsion-free. If T is the torsion of V then -T is the torsion

of V', and V! =V.T.
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Every affine comnection V on a Idie module E can be written

uniquely in the form

(1k) v=¥+ir

Ny
where V 1s a torsion-free affine comnection and T is a skew-symmetric

F-bilinear mapping of EXE into E . In this decomposition T is the

N
torsion V and V 1is given by (13).

Proof. ILet V ©be an affine comnection with torsion T . By
the definitions of T and V', V' =V.T , and since T is F-bilinear

V' 1is an affine connection. The torsion of V' is given by

V5Y - VIX - {x,v] = VXY—T(X,Y) - v!x+T(Y,x) - [x,¥] = 7(1,X) = -7(X,Y).

n

By the second parsgraph of Theorem 3, V defined by (13) is an affine
connection, and its torsion is clearly % the torsion of V plus -2]—' the
torsion of V' , which is O . Thus every affine comnection V can be
written in the form (1k4)vhere v is the torsion-free affine connection
(13) and T 4is the torsion of V . It remains to prove the uniqueness
of the decomposition (14), so suppose V is represented in the form

(14) with ¥ & torsion-free affine comnection end T a skew-symmetric
F-bilinear mepping of EXE into E . Then the torsion of V 1is the
torsion of ¥ (which is O) plus %’I(X,Y) - %’I(Y,X) = ™X,Y) , so T

is indeed the torsion of ¥V . QED.

T. Torslon-free affine connections and the exterior derivative

Theorem 7. Iet V be a torsion-free affine connection on the

Iie module E @and let d be the exterior derivative. Then d=Alt V

*
on A,
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Proof. Defime & on A" by 4 =AltV . Suppose first that
E 1is totally reflexive, so that A* is generated as an algebra
by A® and Al . It 1s trivial to verify that 4 is an entiderivation
of A* s 80 we need only verify that a equals d on scalars and
l-forms. On scalars, V i1s Just the differentlial. Iet w be & l-form.

Then

(W) (X,Y) = (%) (¥) = X <0,¥>- <0, 7¥>

go that, since V 1s torsion-free,

2(A1t W)(X,Y)

=X <w,Y> - <W,BY> - ¥ <@,X> + <w, 7>

=X <w,Y> - ¥ <uX> - <u,[X,Y]> = 2aw(X,Y) .

If E 1s not totelly reflexive, recall that the exterior dew~
rivative 4 is defined by formula (3) of §4.2. One verifies that 3=d
by direct computetion. QED.

This 1s a useful theorem. The exterior derivative was defined
to be Alt O , but O 1is not a mapping of tensor fields into temsor

fields whereas V 1is .

8. Curvature

Definition. let ¥V be an affine connection on the Lie module
E . The cur:rature of V 1is the function R from EXE into the set

of mappings of E into itself given by

(15) REY) = Ve¥y - Vg - Vix, v
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A

The curveture tensor of V is the mapping of E' XE XE XE into F

given by

(16) R(w,Z,X,Y) = <w,R(X,Y)Z>

Theorem 8, The curvature tensor of an affine connection is a

tensor.

Proof. Since R(X,Y)Z is in E , (16) is clearly F-linear in
W . If we replace Z by fZ the coefficient is differentiated via
X-Y-f-Y-X.£f-[X,¥]:f =0, so (16) is F-linear in Z . Similarly, if
we replace X by fX the coefficient is differentiated via

O-Y:f+Y.f = 0, so (16) is F-linear in X . Since
(a7 R(Y,X) = -R(X,Y)

. QED.

it is P-linear in Y as well, and so is a tensor in Ei

Notice the order of the contravarisnt vector fields in the defi-
nition (16) of the curvature tensor. If E is totally reflexive the
above identification of the curvature R with the curvature tensor is
not the seme as the identification 1(2,0,1,T) of Ei with the set of

F-linear meppings of E2 into Ei (where Ei in turn is identified
with the set of F-linear mappings of E into itself) but is the compo-
sition of 1(2,0,1,1) with & permutation. The definition (16) is the

universally adopted convention.

Theorem 9. Iet E be a coordinate Lie module with coordinates

xl,...,xn and let V be an affine connection with components P?j .

The components of the curvature tensor R are given by

i 9 i d i a i a i
(18) Rips = -é? sz - Q_ I‘kj + Z(Fljrka - ijrta)
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Proof.

i

1 %
R = <% Yy =Yy Yy ) >

P A
and the computation showing that this is the same as £18) is not only
trivial but easy. QED.
If B 1is merely a free Lie module of finite type with basis
Xys--+,X, We mist modify (18) by replecing d/3x" by X,- and 3/dx
by Xz~ » and by adding the term

a i

-zck,tra,j

where the c:,e are the structure scalars defined by (12).

\

9. Affine connections on Lie algebras

let E be a Lie algebra over F = F°

As we have seen (in
paragraph 5), an affine connection V on E is the same as an FO-bi-
linear map B of EXE into itself.

If G is a Lie group its Lie algebra 9 (over R) may be
identified with the set of left-invariant vector fields on G . Affine
connections B on ?, such B(X,X) = 0 for all X in ? (which is
the same as B(Y,X) = -B(X,Y) for all X,Y in % ) are of particuler
interest, for this means that each left inveriant vector field X is
sutoperallel and the geodesics (with respect to the affine comnmection)

issuing from the identity of G sare precisely the one-parameter sub-

groups. The cases

B(X,Y) = 0 (the (~) connection),
B(X,Y) = %IX,Y] (the (0) comnection),
B(X,Y) = [X,Y] (the (+) commection),
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have been studied by E. Cartan and Schouten. They make sense ag affine
connections whenever E 1is a Lie algebra over F .

From the definition (8) of torsion, the torsions of the above
three affine connections are respectively -~[X,¥], O, and [X,Y] . The
curvature (15) of the (-) connection is O sinee the connection itself
is 0 and the curveture of the (+) comnection is O by the Jacobi

identity. For the (0) connection the curvature is given by
R(X,Y)z = - %;[[X,Y],Z] s

agaln by the Jacobl identity. Thils is O for Abelian Lie algebras and
certain nilpotent Lie elgebras. Iet us, as an exercise, compute VR .
Since R(w,X,Y,Z) is a scalar eand the differevtial of any scaler is O
(in the Iie elgebrs case) we have, for any W in E ,
0= (VWR)(w,Z,X,Y) + R(wa,Z,X,Y) + R(w,V. X,Y,%) + R(w,X,VWY,Z)

+ R(w,X,Y,VWZ) = (va)(w,z,x,Y)

+ g, (I, [X,¥1,21)-L1%,%], W, 2]1- L[ [W,%1, ¥1,2] - [[x, [V, ¥1],21} >

= CV*R)(M,Z,X,Y)

since, by the Jacobl identity, BW is a derivation (ef.§2.1). Thus the
(0) connection is symmetric; that is, the torsion is O and VR =0 .

We shall not return to this subject. See Helgason [2,§l].

10. The Bianchi identities

Following Nomizu [5] we prove some identities relating curvature

and torsion. As in §4.2, (9 denotes cyclic sums.
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Theorem 10. Iet V be an affine connection on a Lie module E

with torsion T and curvature R . Then, for all vector fields X,Y,Z,

the following identities hold:

(19) (X, Y) = -1(%,X) ,

(20) R(X,Y) = -R(Y%,X) ,

(21) G R(X,Y)Z = G NIX,1),2) + & (V1Ny,2) ,
(22) G (VR)(X,Y) + GR(T(X,Y),2) = 0 .

In particular, if V is torsion-free

(23) & R(X,Y)z = 0,
(24) © (VR)(x,Y) =0 .

Proof. We have alreedy noted the trivial identities (19) and

(20). To prove (21) and (22) we need

(25) (V,2)(X,Y) = V,(1(X,Y)) - (VX,¥) - T(X,9,Y) ,

(26) (VR)(X,Y) = [%,,R(X,7)] - R(%X,Y) - R(X,9,Y) .

The relation (25) is an immediate consequence of the fact that VZ is
a derivation of the mixed tensor salgebre. For (26) we need Theorem 3,
§3.2 as well (notice that [VZ,R(X,Y)] is not a Iie product of vector
field but a commtator of operators on vector fields).

To prove (21), we use the definition (8) of torsion amd (19) to

find

(27) T(T(X,Y),2) = T(%Y,2) + N2Z,YX) - 2(IX,¥],2) .

We use (25) to re-express the first two terms on the right of (27) and

meke the discovery that



70. §5. COVARIANT DIFFERENTTIATION

G(T(X,1),2) = - © (V,I)(X,Y) + B, (1(%,Y)) - &nX,Y],2)

U

G (-(VpD) (X, Y) + V7Y =V VX -V, [X, Y] -V 1249, [X,Y] - [[X,Y],2])

x,v

U}

G (-(V,1)(X,¥) + R(X,Y)Z}

by the Jacobi identity and the definition (15) of curvature. Thus {21)
holds.
To prove (22), use the definition (8) of torsion and (20) %o

find

1

R(T(X,Y),2) = R(%Y -V,X - [X,Y],2)

R(V,Y,Z) + R(z,va) - R(Ix,Y1,2) .
Sum cyelically end use (26) to obtain

© R(MX,1),2) = G (-(VR)(X,Y) £ V,,REX,Y)] - R([X,Y),2)] .
By the definition (15) of curvature and the Jacobi identity,

©(19,,R(%,1)] - R([X,Y],2)}

G (Vg Vo Vyl - Vix v1) = iy v17%1 + Vix, 1,223

it

@ {[VZ’ [VX’VY]] + V[ [X,Y],Z]} =0 . QED.

The reletion (24) (and sometimes (23)) for a torsion-free affine

connection is called Bianchi's identity. If V 1is a torsion-free

affine connection with curveture tensor R then

i i i _
(28) Rjkz + szj + Rij =0,
i i i
(29) vajM + VkRjzm' + VZRJ.mk =0,

i i
(30) R,jk.@ = _RjZk H
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since these are merely (23), (2L4), and (20) in a different notation.

1l. Riceci's identity

The identities we prove next will be used fredquently. Recall
the definition of CPA given in §3.4, where A is an F-linear mapping
of an F module E into itself. If V 1is an affine cornection on a
Iie module E and u is in Ei we will use the notations (Vu) (X)
and (YWAa)(X,Y) , it being understood that X and X,Y are the first
contraveriant srguments in Vu send YMu respectively. Thus (Vu)(X)

and (YWu)(X,Y) ere again tensors in Ef_ .

Theorem 11. Iet V be an affine connection on the Lie module

E with torsion T eand curvature R . Then for all vector fields X,Y

and all mixed tensors u ,

(31) vaYu - vaXu - V[X’Y]u = @R(X,Y)u s

(%) (W) (%,Y) -~ (W) (¥,X) = @y v) = Vo(x, y)®

In particular, if V is torsion-free then

(33) (Wa)(X,Y) - (W) (LX) = gpry yy2
is F-linear in u .
Proof. For given X,Y in E , let
= [Vp,Vyl - VIz, ]
By §3.2 this is the derivation on the mixed tensor algebra induced by
the derivetion [VX,VY] - V[X, y] on E , so to prove (31) we need verify

it only on scalers (where both sides are O) and vector fields (where

it is the definition of curvature).
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o
To prove (R), let u be in E:_, z in Ez . Then

(Wu) (X: Y, z) - (Vvu) (Y:X: z)

1

(vau) (Y, z) - (vau) (%, Z)

1]

X+ ((Fa)(%,2)) - (Fa)(T%,2) = (V)(¥,%,2)

=Y (M) (X,2)) + (Tu)(VX, z) + (V) (X,Vyz)

(V) (z) - (VVXYu)(Z) - (Vyu)(z) + (% yu)(z)
so that, by the definition (8) of torsion,

(W) (X,Y) - (W) (Y,X)
= (gVy - %y - Vix, 1] Ja - Yoz, v)*
By (31), this proves (32). QED.

If V 1is torsion-free we may write (33) as

( h) il...ir il...i
3 VAV -V V,u
20 1 MRS R X o IR
) ;Ra uil...ir
uml jukz S PRERE IRLS FRTRES B
_ Iz‘:ull"'iu-laiu+l"'irRiu .
u=1 jl... s ekt

This is Ricci's ldentity. We emphasize again that we follow the custom

of writing

i
r

e dg

il...ir ( )il...
v,V u for VWAL
28 A IR £J, -
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12. Twisting snd turning

Suppose we have an affine connection on the manifold M . Iet

C be a parameterized curve t —» C, in M with tengent vector X,

t
and let Y be & vector field on M . Imn local coordinates X has come
ponents dxk(t)/dt at C,_ , where xk(t) is the k~th coordinate of C, .

Iet Y have components yk(t) at C Then V,Y at C, has com-

t X t
ponents
k i
ay’ dx
(35) T &Y

That is, we don't need to know Y off C to compute VXY since X

points in the direction of C .
If we prescribe yk(O,‘ as the components of a tangent vector

YP at the initi&l point p = C. of C and set (35) equal to 0, we

0
have a well-posed initiel velue problem. When we integrate we obtain
e family of vectors Y =along C setisfying VXY =0 and Y = Yp et
. Let g = Cl be the final point of the curve segment C (O_<_t§‘l.) .

Then we obtain & mepping

TiM —aM
¢ P q

by setting < cYp = Yq » This mapping is linesr and invertible, and we
obtain a groupoid in this wey. The mapping Te is called parallel
trensletion along C .

A perticitlar case of (35) is ViX along C , which has compo-

nents
2 x 1.3
ax Z:l"k ax” dx
(35) 22 rdyTwmw o

This 1s called the acceleration vector. Notice that although the velocity

vector of a particle moving on & differentiable manifold makes sense,
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there is no meaning to the notion of acceleration vector unless we have
additional structure such as an affine connection. Notice thet (36) is
the same for sFffine comnections having the same torsion-free part (see
Theorem 6), since (dxi/dt)(dxj/dt) is symmetric in i and j . If
we start a particle at p at time O with prescribed initial veloeity
Xp and required the acceleration (36) to be 0 , we have a well-posed
initial velue problem for a second-order differential equation. This
second-order differential equation hes the special property that if we
mltiply XP by a constant k the particle travels in the same tra-
Jjectory with velocity k +times the previous velocity, and is called a
spray. In fact, this is the geodesic spray of the affine connection
and the trajectories are called the geodesics of the affine connection.
Affine connections with the same torsion-free part give rise to the
same geodesic spray and the same geodesics. Any spray is the geodesic
spray of a unique torsion-free affine connection. On a manifold with
an affine connection (or with a spray) Newton's dynamical law F = ma
is meaningful. (The proper setting for Hemiltonian dynamics is a sym-
plectic menifold (§8).)

Suppose we have a torsion-free affine connection ¥V on M.
Iet p be a point in M and let Xp,Yb be two tangent vectors at p .
Chooge curves at p with tangent vectors XP’Yf and let qQ and
be the points on these curves corresponding to the perameter velue ¢
(see Figure 4). Parsllel translate Yp to g to obtain Y, and
parallel translate XP to” r to obtain Yi , end choose curves at T
and q with these tangent vectors. Since V is torsion-free and VkY
and VX are 0 &t D, [X,¥] ie O et p . Therefore (§2.4) the

end points (corresponding to the parameter value t ) of the curves
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Figure 4. A parallelogram

representing Xr and Yq are equal to second order in t . This is
false if the affine connection has torsion.

Given a sprey or affine connection on M , let Yb be a tangent
vector at p and let a particle start et p with velocity YP and
travel for unit time with zero acceleration. Its position at unit time
is denoted exp Yp , so that exp (the exponential mapping) is a mepping
of the tangent-space Mp into the menifold M . Tt is always well-
defined locally (and locally is a diffeomorphism) and is sometimes well-
defined globally (in which case the spray or affine connection is called
complete).

Iet C be a curve segment in M starting at p with tangent
vectors X , and given an affine commection V on M let Yp(t) be
the parallel translate of Yp in Mp elong C to Ct . For YP
sufficiently small, the curves exp Yp(t) sweep out a tubular neighbor-

hood of C . If V 1is torsion-free then the tangent vectors to these
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curves sre, to first order, obtained by parellel trenslation of X as
in Figure 4. Now consider the affine comnection with the seme torsion-

free part but with torsion T . Then in (35) we add the term

EN

i
1 ok dx™
2oy Y
& 1k dxt
Since 11 = o, 5 mij I s e linear transformation acting trans-

versally to the direction of the curves exp Yb(t) , and it twists them
sround C . This is torsion.

Now let us consider curvature. A frame at a point p in the
menifold M 1s simply & basis of the tengent space Mp . The set of
all frames at p is the principal homogeneous space of the general
linear group GL(n,R). If any frame is singled out, there is & unigue
element of GL(n,I{) teking it into any glven frame. The set of all
frames at all points is a principal fiber bundle over M with structural
group GI{n,R) . The projection maps each frame to the point p in M
at which it lives.

Let V be an affine connection on M, C a curve segment on
M . Then parallel translation along C takes frames st the initial
point p into fremes at the final point q . The frame travels along
C to 4q, picks up & tensor and brings it beck to p for differentiation
or other purposes. It is similar to the repailr truck which leaves the
Mobil station to tow back a car and in fact the notion 1s celled the
repére moblle. If C is & closed loop at p parallel transletion
sround C glves an automorphism of MP , and the set of such automor-
phisms forms & group called the holonomy group.

Recall from §2.4 the geometrical meaning of the Lie product of

two vector fields X and Y , which may be expressed by saying that
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Figure 5. A loop

Figure 5 is a closed loop to second order in t . If we parallel trans-
late a frame around this loop we will find in general that it has turned.
In fact, parallel translation of a tangent vector Z around the loop

gives to second order in t

2 , _ 2
Z+t (vxsz -V Iyl v[x,Y]z) = 2+ t"R(X,Y)Z .

This is curvature.

Reference
[5] K. Nomizu, Idie Groups and Differential Geometry, Publication of

the Mathematical Society of Japan 2, (1956).
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§6. Holonomy

1. Principal fiber bundles

The freme bundle discussed in §5.12 is an example of & principal
fiber bundle. In a principsl fiber bundle we have a C- mapping
T: P—> B of the bundle P onto the base B , where P and B are
¢® menifolds. Fach fiber 'n"l(p) » P € B, is & principa] homogeneous
space of a Lie group G , the structure group of the bundle. That is,
each fiber is the same as G except that it has forgotten which ele-
ment is the identity (cf. frames vs. the general linear group_). The
structure group G acts by translations on each fiber and therefore on
the whole bundle P , and this action is C .

One can define the notion of comnection in this setting and
discuss curvature and holonomy and the relation of connections to reduc-
tions of the structure group (see Nomizu [5,85]). The discussion is
simpler if we confine ourselves entirely to G-invaeriant objects on the
bundle P . The inveriant scalers on P are isomorphic to the algebra
of all scalars on B , and the invariant vector fields on P form & Lie
module over them.

Each inveriant vector field on P projects onto a vector field
on B, end some of them {those which lie along the fibers) project
ontoc O . We shall discuss this situation algebraicelly. Because of
our restriction to G-invariant objects, the terminology is a bit differ-
ent from the stenderd terminology [5,85]. The ususl treatment ig come
plicated by the notion of the comnection form, & notion which we avoid.

At each point in a principal fiber bundle we have & distinguished
linear subspece of the tangent space, called the vertical space, con-

sisting of those tangent vectors tangent to the fiber. A comnection is
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Figure 6. A horizontal curve

a G-inveriant choice of & complementery linesr subspace at each point,
called the horizontel space. The field of horizontal subspaces is not
in general integreble, and this is where the notion of holonomy enters
(see §2.4). A ocurve in P 1is called horizontel if its tangent vector
always lies in the horizontal space. A horizontal curve may cut a given
fiber in many points (see Fig.5), snd the curvature of the conmection
describes the vertical directions of motion which can be approximated

by horizontal curves.

2. Lie bundles

The collection of all Lie modules over & fixed F forms a
category if we define & morphism of two Lie modules Q and P %o be
an F-module homomorphism p: Q —> P (i.e., an F~linear mapping of Q into P

such that
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(ex)-£

ol[X,Y]

X-f, XeQ, feF,

[oX,pY] , X, YeQ.

1§

A morphism in this category will be called a Lie homomorphism.

An ideal V 1in & Lie module P is a submodule such that
[x,z] eV, XeP, ZeV,

and such that

Z-f =0, ZeV, feF.

If P is & Lie module then {X € P: X-f = 0 for all f ¢ F} 1is
clearly an idesl, and every ideal is contained in it.

If V 1is an ideal in the Lie module P then the quotient module
P/V 1is in the obvious way a Lie module, and the projection m: P — P/V
is a Lie homomorphism. If p: P —= Q is any Lie homomorphism then the
kernel V of p is en ideal, the image p(P) is a Lie module, and the
induced mapping of P/V onto p(P) is en isomorphism.

A submodule K of a Lie module P is called a Lie submodule
in case [X,Y] ¢ K whenever X and Y are in X . Then K is a Iie
module and the inclusion (: K— P is a Lie homomorphism.

Iet P be a Lie module and H & submodule (not necessarily &
Lie submodule) , and let p be the projection of P onto the module

P/H. For X and Y in H define
R(X:Y) = D[X:Y] .
We call R the curvature of the submodule.

Theorem 1. Iet H be a submodule of the Lie module P . Then

the curveture R is F-bilinear and antisymmetric, end is O if and

only if H is a Lie submodule.
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Proof. The curvature is F-linear in X since
R(£X,Y) = plfX,¥] = £oIX,Y] ~ (Y-£)oX = £p[X,¥] = fR(X,Y) .

Since R is clearly antisymmetric it is also Felinear in Y . The last

stetement in the theorem is obvious. QED.

Definition. A ILie bundle 7: P~ B is an epimorphism of ILie

modules. The kernel V of T is called the vertical module and ele-

ments of it are called vertical. A reduction of & Lie bundle 7: P -> B

is a commutetive diagram

Q —t—s P

B

where t: Q —» P 1s & monomorphism of Lie modules and o¢: Q —= B 1is
& Lie bundle. A Lie bundle #%: P-—= B 1is trivial if there is & reduc~
tion with Q = B and o the identity. A comnection in a Lie bundle

T: P—> B 1is a submodule H of P such that P is the module direct
sum of H and the vertical module V . The module H in a connection

is also called the horizontal module and elements of it are called hori-

zontal. The projections of P onto V and H ere denoted v and h
respectively. The curvature of & connection is the mapping R of HXH

into V given by
R(X,Y) = v[x,Y] , XYeH.

A connection is flat in case its curvature is O . The holonomy module

L of & comnection is the smallest submodule of P such that
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(1) R(X,Y) ¢ L, X,YedH,
and
(2) [X,2] e L , XeH ZelL.

Notice theat we may identify the module P/H with V , so that
the definition of curvature agrees with the previous one. We may if we

wish extend R +to a mepping of PXP into V Dby settiﬁg
R(X,Y) = v[hx,ny] , %Y eP.

This has the effect of setting R(X,Y) = 0 if X or Y is vertical.
The horizontel module H in & connection of the Lie bundle

T: P—> B 1is igomorphic as & module to B , since it is complementery

to the kernel V of 7 . However, if the connection is not flat then

H is not a Iie module whereas B is. If X is in B the element X

of H such that 71X =X is called the lift of X . We also define the

curvature as & mepping of BXB into V by setting R(X,Y) = R('}‘{',’f) .

Theorem 2. ILet mT: P —> B De a Lie bundle with vertical

module V . Suppose there is a connection with horizontal module H ,

and let L be the holonomy module.

Then L is contained in V , the modules L and H+L are Lie

modules, L is an ideal in H+L , and

H+L et P
¥ia

a
B

where L is the inclusion map and ¢ is the restriction of 7, is a

reduction of the Lie bundle 7: P — B . Also, H 1is a connection in
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o: H+L —= B and its holonomy module is I . A Lie bundle is trivial

if and only if it hes a flat connection.

Proof. By definition of the curvature, V satisfies (1) and
since V 1s an ldeal (being the kernel of T ) it satisfies (2). But L
is the smallest module setisfying (1) and (2), so LLC V.

The holonomy module L is spanned as & module by the set of

ell vector fieldgs of the form

(3) Z =6 ... 6 R(,,X) , X, €H, O<i<n,

n X

since each

6 (£z) = ro Z+ -£)2
Xn+1 Xn+l Xn+l

is an F-linear combination of elements of the form (3).

let Z be given by (3) asnd let

(&) W=6y ... eyea(yl,yo) s Y, €H, O<i<m
m

be of the same form. By the Jacobi identity,

(5) w,2] = 6, [6, ... 6, R(Y},Y.),2]

Ym Ym-l Y2‘

-[e ... 8 R(Yl,Yo),QYmZ] .

Ym-l Y2

Assume &8s an induction hypothesis on m that for all W of the form
(%) and 811 Z of the form (3) for eny value of n , the Lie product
[w,2] is in L . The relation (5) shows that if m>2 the induction
hypothesis is true for m 1if it is true for m-l . Consequently, to

show that [W,Z] is always in L we need only show that

[r(¥y,¥),2] , Y,fyel, Zel,
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is in L . By the definition of R,

But h[Yl,Yo] is horizontal, so that [h[Yl,YOJ,Z] is in I . There-

fore we need only show that

[[¥,,v,),2] , Y,Y, €l Zel,
is in L . But by the Jacobi idemtity
(y,,¥ 1,21 = {v),[v,2]11 - [¥,,[1,21],

and the right hand side is in 1L . Therefore L 1is 8 Lie module.
Since L 1s contained in V , the module H+L 'is a direct sum

of modules. ILet }(1,}(2 e H and Zl’Z2 € L . Then

0y 20, % 251 = [y, %] + [, %] + [2),%] + [2),7,] -

Since I is a Lie module, [zl,z2] isin L, end [X ,22] + [Zl’le
is in L by the definition of I . The formula (6) applied to [xl,x2]
shows that 1t is in H+L . Therefore H+L 1is a Lie module, and the
argument shows that I is an ideal in H+L (if we notice in addition
that Z-f =0 forall Z in L and scelars f since L 1is contained
in the ideal V). Oonsequently, if we let o be the restriction of T
to H+L then ¢: H+L —> B 1is a Lie bundle and, together with the in-
clusion : H+L ~> P , glves & reduction of 7: P —» B . It is clear
that H is a connection in ¢: H+L — B and that its holonomy module
is egain L .

In partieuvler, if the connection is flat then L = 0 since 0
satisfies (1) end (2). Then H is a Lie module, o: H~—> B is an

isomorphism of Lle modules, end to o'l: B —3 P 1is & monomorphism of
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Iie modules, 80 that m: P —> B is trivial. Conversely, if m: P == B
is trivial we mey teke as our comnection H +the image of B in P in

the trivialization, and H is a flat connection. QED.

3. The relation between the two notions of connection

On a menifold we have the notion of an affine connection in the
sense of Koszul (§5.1) and the notion of a comnection in the frame
bundle, and the notions have a close affinity. There is a one~to-one
correspondence between GL(n,]R)-inva.ria.nt vector fields on the frame
bundle end derivetions (§3.2) of the module of vector fields, snd this

motivates the following construction.

Theorem 3. Let B be the Lie module of all derivations of F

and let P be the module of all derivations of (F,B) . For ¢ in P

define TP E B to be the restriction of ¢ to F . With resgect

to _the operations o-f = (79)-f and [cpl,cp2] = 99, - 9,9, , the module

P is a Lie module and 7: P —> B is a Lie bundle. The vertical module

V is the set of &ll derivations of (F,B) which are O on F and

F-linear on B .

Iet H be a connection in m: P — B . Then the mapping of

B into H which takes X dinto itg 1ift k is an affine connection

(in the sense of Koszul). Conversely, if V is an affine connection

the set H of sll VX

and VX is the 1ift of X . The curvature R &as a mapping BXB into

V is identical with the curvature of the affine comnection V .

for X in B 1is & connection in 7: P —> B,

Proof. By Theorem 1, §2.2, B is indeed a Lie module. By §3.2

the set P of all derivations of (F,B) is an F° ILie algebra and it
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is readily seen to be a Lie module, and T: P —= B 1s ¢learly a ILie
bundle, with vertical module as described.

Iet H be a connection, and define VX to be the 1lift ¥ of

X . Then X —>V, is F-linear and each V, is a derivation of (F,B)

so V is en affine connection. Conversely, if V ig an affine con-

nection the set H of all VX

is F-linear. We need to show that any derivation ¢ of (F,B) is

is a submodule of P , since X -—->VX

the sum of some VX and an element of V , but if we let X = 19
then cp-VX is clesrly in V . Equelly clearly, VNH=0, so H
is a connection. By definition VX is horizontal and since ﬂVX =X,

VX is the lift of X . Thus we may identify the two notions of con-

nection.
The curvature as a mapping of BXB into V is by definition
"N N o N N AT Y]
R(X,Y) = R(X,Y) = vIX,¥] = [X,¥] - nlX,¥] .

" Ny Ny Ny oy
Since wX,Y] = [1X,7Y] = [X,¥] , the horizontel part of [X,Y] is the

1ift of [X,Y] . That is,

R(X,Y) = [VX’VY] - V[X,Y] . QED.
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§7. Riemsnnian metrics

1l. DPseudo-Riemsnnien metrics

Iet E be an F module and let u be a covariant tensor of
renk 2. If X is any wvector field we let u(X) be the l-form defined
by

<u(X),¥> = u(X,Y) .

The tensor u 1s called non-degenerate in cese the mapping wu: E — E?
is bijective. If u 1is non-degenerate wu: E — E' 1s an isomorphism
of F modules, so that E is reflexive. Therefore the dual ' is
also a mepping of E to B', and u is symmetric if and only if wu=1u'.

The inverse mapping of u: E — E' for u non-~degenerate is denoted

1

" , 80 that u : B' —% E . The inverse mepping uwl  determines the

1

contravarient tensor u X of rank 2 given by u-(w,n) = <u™lw,n> .

Definition. A pseudo-Riemannien metric on en F module E is

& symmetric non-degenerate covariant tensor of rank 2.

On & manifold M , & Riememnisn metric g is a pseudo-Riemennien
metric such that g(X,X) > O for all vector fields X (and consequently
g{X,x)(p) > 0 et all points p such that xp # 0) . Riemannian metrics
enjoy important geometrical and enalytic properties not shared by pseudo-
Riemsnnian metrics, but the formel slgebraic properties, which we will
consider now, ere the same. ‘

If the F module E 1is free of finite type with basis
Xl,... ,Xn and g 1is & pseudo-Riemannisn metrie we denote its compo-
nents by g 3 and those of g"l by gi'j , 80 that

Jk _ .k i _ o1
Zgijg _‘Bi) Zg gjk—Bk’
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ij

and the g are given explicitly in terms of the =) by the familisr

but extrasordinexrily complicated formule. for the inverse of a matrix.

2. The Riemennisn connection

Theorem 1. Iet g be a pseudo-Riemannian metrie on a Lie

module E . Then there is a unigque torsion-free affine connection V

such that Vg =0 .
Proof. First we prove uniqueness. Iet X,Y , and Z be vector

fields. Since Vg = 0 we have V,

,6 =0, 80 that

z-8(X,Y) = &(V,X,¥) + &(X,%,¥) .

Since V is torgion«free,

(1) z-g(X,Y) = g(%2,Y) + e([2,X],Y) + &(X,9,%) ,
(2) X-g(¥,2) = S(VYX,Z) + g([x,¥1,2) + g(Y,VXZ) ’
(3) Y-g(2,X) = &(V,1,X) + g(ly,2],X) + &(z,9X%) ,

where (2) and (3) are obtained from (1) by cyclic permutation. Now sub-

tract (2) from (1) plus (3). We obtain

(%) 2g(X,V,Y) = Z-g(X,Y) + Y-g(2,X) - X-g(¥,2)

-g([2,x1,Y) - g([y,2],X) + o([X%,Y],2) .

The right hend side of (4) does not involve V , go we have a formule
for g(VZY) on X . Since g 1is non-degenerate and X is arbitrary,
VZY is uniquely determined, so V is unique.

To prove existence, consider the right hemd side of (4). This

ig F-linear in X , for if we replace X by fX then I is differen-

tiated via
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(z-£)g(x,Y) + (¥-£)e(2,X) - (2-£)e(X,¥) - (¥-£)g(x,2) =0 .
Therefore if we £ix Y and Z +the right hand side of (4) is a l-form

W and ve may define VY to be %g'l(w) . Then V,¥ is F-linear in

Z , for if we replace Z by fZ then f 1is differentiated vis

(x-£)e(2,X) ~ (x-£)e(Y,2) + (X-£)e(2,Y) - (¥-£)eg(z,X) =0 .
Finally, if we replace Y by fY then f is differentiated via

(2-£)g(X,Y) - (X-£)e(Y,2) + (Z-£)g(¥,X) + (X-£)e(¥,2) = 2(2-£)g(X,Y)

so that

V,(£fY) = £V,¥ + (z-£)Y .

Thus V 1is an affine connection.
Iet e(X,Y,Z) be the left hand side of (1) minus the right hand

side of (1). We have seen that (4) is equivalent to
(5) _ e(X,Y,2) - e(Y,2,X) + e(Z,X,Y) =0 .
Therefore (5) is true, and by cyclic permutation

(6) e(Y,2,X) - e(2,X,Y) + e(X,Y,2) =0 .

By (5) end (6), e(X,Y,2) =0 . That is, (1) holds.

Iet T be the torsion of ¥V . By (1),

(7 Z-g(X,¥) = g(VX,Y) + &(T(X,2),Y) + &(X,9,¥) .
We also have

(8) 2+g(X,Y) = (V,8)(X,Y) + &(VX,¥) + e(X,7,Y) .
By (7) and (8)

(9) (V) (%,Y) = e(T(X,2),Y) -
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We need to show thet both sides of (9) are 0 . Iet u(X,Y,Z) denote
the common velue. The wu is symmetric in the first two varisbles (by
the left hand side of (9)) and antisymmetric in the first and third

variables (by the right hand side of (9)). Therefore

u(X,Y,2) = -u(Z,Y,X) = -u(Y,2,X) = u(X,Z,Y)

]

w(Z2,%,Y) = «u(Y,X,2) = -u(X,Y,Z)

end u=0. Thus Vg =0 and since g ig non-degenerate, T=0 . QFD.

The comnection ¥V of Theorem 1 is called the Riemannisn connec-

tion or the levi-Civita connection. It is due to Christoffel.

Theorem 2. Iet g be & pseudo-Riemannian metric on & coordinste

Lie module E with coordinates xl, ...,xn . Then the components of the

Riemannian connection V are given by

1 . kafd ) )
o) CREEA VA8 ENEL D

Proof. Apply (4) to X = /%, 2 =03/xY, Y =03/’ . Then

b o) o) e}
226ba.rlij = g &g * gx-ﬁ' Bat ~ -b—xE Bij

If we miltiply by & snd sum over & we obtain (10).  QED.

If E dis merely free of finite type we obtain three additionsl
terms involving the structure scalesrs due to the fact that the vector
fields of the basis may not commute.

The discovery of the Christoffel symbols (10) and of covariant
differentiation was a marvellous discovery. Despite the fact that tensor
ghalysis has been studied so intensively that it has become easy it re-

mains an emezing subject.
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3. Ralsing end lowering indices

Iet g be & pseudo-Riemannian metric on the F module E sand
let u be a covariant tensor of renk r. Iet 1<u<r . Then we define

8 tensor v , contravariant of rank 1 and coverisnt of rank r-l by

A -1
V(“’:xl’ .. -:X“) .. "Xr) = u(xl’ .. "Xu-l’g (w),x . ‘:Xr) .

(TR

In the classical tensor notation (§1.12) this is indicated by

i
B

11. . 'iu-l iu+1' . .ir

u

(where 1,=0 and 1,=X, for Vv # 1). This is a notation of unsur-
passable clarity. Notice that it is important to leave a space below
the raised indéx to indicate precisely which tensor in Ei-l corre-
sponding to the given ténsor in Er is meant. Notice that we may
extend the notation to allow several raised indices. It is customsry
when working with & fixed pseudo-Riemamnian metric g to write all
tensors with the upper and lower indices ordered relative to each other
to indicate the relation asmong the various tensors formed by raising
end lowering indices. If E is totally reflexive, so that contractions

of tensors make sense, we continue to indicate contractions by the use

of dummy indices as before.

4. The Riemann-Christoffel tensor

Iet g be a pseudo-Riemsnnian metric on the Lie module E ,
V the Riemannian connection amd R its curveture. We define a tensor

¥ , covarient of rank 4 called the Riememn-Christoffel tensor by

R(W,2,X,Y) = g(W,R(X,Y)Z) .
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Thus R(W,Z,X,Y) = R(g(W),2,X;Y) where R is the curvature tensor.
In the classlcel tensor notation we denote the values of the curvature

tensor by

i
Rjk!'

Thus the Riemann-Christoffel tensor is obtained by lowering the contra-

verient index 1 , and its values are denoted

Rijld .
(Notice that no tilde is necessary.) For the geometric meaning of the

Riemann-Christoffel tensor see pp. 64-TO of Helgason [2,§2].

Theorem 3. Let g Dbe & pseudo-Riemennisn metric on the Lie

module E . Then the Riemann-Christoffel tensor satisfies

(11) Risox = Rigwe
(12) Rysue * Bags * Bagge = 0 7
(13) Byiee = Rijue 2
(1) Rigiy = Rigus *

Proof. We have already seen (§5.10) that if R is the curve-
‘ture tensor of any affine comnection then

i i

Bype = R

B2
i

i i
,jlk+R£kj+Rkjl

R =0 .
Therefore (11) end (12) hold. The equation (13) may be re-written as

(15) g(W,R(X,Y)Z) = -g(R(X,Y)V,Z) .
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(The equation (15) ssys that each R(X,Y) is & skew-symmetrie operator
with respect to g , which means, formelly, that it is the derivative
at t=0 of a one-perameter group of g-isometries.) To prove (15), we

- v . .
apply [VX,VY] [x,y] g(W,2) , obtaining

0 = ((%y = %% - Vix,v1)8) (W,2) + s(RX,1W,2) + &(W,R(X,Y)2)

by §5.11. (The left hand side is O since g(W,2) is a scalar.) The
first term on the right hand side is O since Vg = 0 . Therefore (13)
holds.

The equation (14) is a comsequence of (11), (12), and (13), as

follows. By (12),

Bigke ¥ Piwey * Pigx
+ Rjik,z + Rjk,di + leik
* Regie T Rriey t Pregr
* Rpskr * Poxay T Roagx = ©
since each line is O . By (13) the top row cancels with the main

diagonal of the remaining nine terms. By (11) end (13) the remsining

six terms are symmetric about the main diagonal, so that

(16) Roees ¥ Bypgx ¥ Bregs =0

By (12) the first two terms of (16) add up to -Rjikz so thet
“Rigue * Ryey: =0 -

Thus {(14) holds. QED.

Iet us suppose that E 1is totally reflexive, so that tensors

may be contracted. By (13) 3 Rliklr = 0 . This property is not shared



96. §7. RIEMANNIAN METRICS

by all affine comnections: it says that the trace of each R(X,Y) is O.
Consider however
i

B = B gpe *

This is a symmetric (by (11), (13), end (14)) covariant tensor of rank 2,

called the Rieel curvature. The corresponding tensor

(17) R.” =R

in Ei is ealled the Ricei tensor. Since the Ricei curvature is sym-

metric, the Ricci tensor mey be written as ng withcut danger of con-

fusion. Its trace Rg is called the scalar curvature. For those who

wish to avoid indices the Ricei tensor (17) may be written as
1, -1
Cy(e @ CR)

a notation of almost magical inefficiency.

5. The codifferential

Iet V be the Riemannian connection with respect to a pseudo-
Riemannien metric g on a totally reflexive ILie module E . If @ is

an r-form we define

al .1

(18) (), 5 = v ,
177 Trel 17" " Tr-1

and ®x =0 if @ is & O-form. Recall the convention (12) of §1.12,
that for a in AT ,

A =r!a(il,...,ir) .
1 r

The (r-1)-form &0 is called the codifferential of & , and ¢ is

called co-cloged if ®x = 0 , co-exact if for some P we have Op =0C.
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The operator & is called the codifferentiel. It was introduced in

1923 by Weitzenbbek [6], to whom the following theorem and proof are due.

Theorem k4. Iet ® be the codifferentisl, with respect to a

pseudo-Riemannian metric g on a totally reflexive Lie module E . Then

52 -0 .

Proof. Iet & e A¥ . Then

(880), ., = -Va(t‘na)ail. el p

11...11'-2

By Ricei's identity (§5.11)

= VP
2 abail

el
r

=V Vv .
(19) vjvkabail...ir_z k jabail...lr_e

c c
+ R N 2NN + R . .
bkj cai ... ir-2 a.k,]qoc:_l. .. ir-2
r-2 c
+ ZR R . . . . .
V=l ikaaball. .o 1v-l°1v+1' X P

Now raise the indices j and k and contréct with & and b respec-

tively. The left hand side of (19) gives 52 , the next term gives

-62(1 due to the antisymmetry of & in b and & . Since Rcbba. and
Rcaba are symmetric tensors, the next two terms give O for the same

reason. Therefore

(20) 2(s%) = r;:ch baab
L_L"'ir-.? v=1 1v a.il..

.lv_lClv+1. . .11‘-2

Cyclic permutetions of e¢,b, and a leave @ unchanged, but

by (13) and (12), so that (20) is 0O . QED.
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Modern treatments (see deRham [7]) give & much shorter proof of
this theorem by use of the operator # . However, the introduction of *
leads to needless complications related to orientebility. Furthermore,
the above definition of & and proof that 52 =0 generalize to infinite
dimensgional pseudo-Riemannian menifolds (a.nd c¢could conceivably be of
interest) , provided one pays attention to convergence problems when

taking contractions. There is no % on an infinite dimensional manifold.

6. Divergences

Iet g be a pseudo-Riemannian metriec on & totally reflexive

F module E . We define g(u,v) for u eand v in Ei by

Jpeeedg 1qe-eiy
glw,v) = u;~ 4 Joeeed
1 r “1 8

(where we have not indicated relative order of contravariant and co-
variant :Lndices). As with an r-form O itself, we make the convention

that  with raised indices is r! +times what it would be if regarded

simply as & tensor, and we meke the convention that for @ and B in

AT,

il. . 'ir
B:L
1

g(0,8) = 17 @ L
r

If ue Ei and v e Ef.: where (r',s') # (r,s) ‘we define g(u,v)=0,
and we extend g(u,v) by additivity in each variable to all of the
mixed tensor slgebra. Similarly we define g{®,B) for arbitrary ex-
terior forms O a.nd B .

If V is the Riemannian connection with respect to a pseudo-

Riemannian metric on a totally reflexive Lie module and w is a l-form,
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we call Vlwi = -dwW the divergence of W , and any scalar of this form

is a divergence.

Theorem 5. Iet © %be the codifferentisl, with respect to a

pseudo-Riemannian metric g on a totally reflexive Lie module E. Then

for all exterior forms <& and B

glaa,B) - g(a,5p)

is a divergence.

Proof. It suffices to prove this for @ in A and B in

+
AT 1 o ILet us write f =g in case f-g is & divergence. Recall that

since the Riemsnnien comnection is torsion-free, we have (§5.7)

r+l
(21) (a@), ., = z(-l)“ﬂvi T
1" T4l p=l (70 A T = §
Therefore
~
r+1 ioi...i...d
1 5 (-1)“+1(V Moy 1 13 Nl)ﬁi

&(d%,B) = =5

p=1 17 Tl
r+1 TR N R |
= Bi_l).! s ()Mot R TG g i
p=l RS |
1, il...?.u...ir+l
+V By o1 )}
1 r+1

+1 i1 i i
5 (_1)“+1{-a 1 u r+1V p.ﬁ

1
= . }
(r+1)} =1 j‘_l."'lr+l

p IS §

Fal T(ep); = &(%,58) . QED.
. .

.1
r

This theorem sgys that ©& 1is the adjoint operator to 4 .
Notice that qulte apert from eny question of notational conventions, it
is necessary to define the g-inner product on forms by weighting forms

of various degrees differently in order for this to be the case.
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T. The laplace operator

If £ 1s & scalar so is ViVif . The operator V]Vi on

scalars is called the Leplace-Beltrami operator, and the same terminology

mey be used for the operator ViVi on arbitrary tensors. Notice that
for f & scalar,

VV.f = -5af = -(8a+d5)F .

It is naturel to study the operator -(8d+d5) on exterior
forms, and this wes first done by WeitzenbBek. Unfortunately, the wrong
sign convention has been adopted in all recent accounts of harmonic in-
tegrals and one refers to &d+dd as the Leplacean!

The Ieplace operator in its various manifestations is the most
besutiful and central object in all of methematics. Probability theory,
mathematical physies, Fourier analysis, partial differential equations,
the theory of Lie groups, and differentisl geometry all revolve around
this sun, end its light even penetrates such obscure regions es number
theory and elgebraic geometry. Only with pain do T adopt the sign con-

vention which is stenderd in the theory of harmonic forms.

Definition. Iet g be a pseudo-Riemsnnian metric on a totally

*
reflexive Lie module. The Laplace-deRham operator A on A is de-

fined by

A =3d+4dd .

An exterior form & is harmonic in case MXX=0 .

Notice that A maps each A" into itself and that a is
harmonic if end only if each of its homogeneous components is. The
set W of harmonic forms is a graded °  vector space, and its homo-

geneous subspaces sre denoted M T
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8. The Weitzenbbek formula

101.

Theorem 6. Iet A be the laplace-deRham operator, with respect

to a pseudo-Riemgsnnian metric on a totally reflexive Lie module.

For all

r-forms o,

(22) (M)il' N _v”vaail_ 1

.z (-1)gP Bla. e
a v 11-.¢lv...lr

v=1
. +v. b &

RSN O L - L P S S
Wy i, lﬂ Ebll..-lv...lu...lr

Proof. By the formulas (18) snd (21) for 4 eand 5 ,

r
v,
(ascr). . = = (1), Y 2 .
11...1r v=1 1v ail"'lv"'lr
and
(daa); 4 = ’Va(da)ai e..i
1 r 1 T
r
= .Vevaoti i - ZVBVi a&' ~ i 2
l... v V=l v ll..-lv... r
so that
r v N
(20, ;= _vavaai i+ (1Y, va-vavi - S |
1 17 v=l ty v

- .

If we use Ricei's identity (§5.11) and the fact that & 1is alternating,

we see that this is equal to

Yo L % (-1)"(R°

a ~
a 1vab11...1 1

Bl T ST | v ir
b a b a
+ R o 2~ . +...+R o1 A }
1l 1v ab:L2 . 1v.. i, lr 1v all i lr-lb
r
=V V% * z (-l)vaaai i .enT i
17" v=1 v 17Ty
ptv b a ~ ~
+ 22( 1) R i i aabi .i i .1

QED.
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The classical tensor notation is a convenient and flexible com-
putational device, but it is not immediately clear what the meaning of
the additional terms in the Weitzenbbek formule is. To reformulate the
formula, let R be the tensor in Eg given by raising the second co-
variant index in the curvature tensor R (sc that R has values
Rijkz ; that is, T(w,1,X,Y) = <w,R(g"Tn,Y)X>) and recall the

operator ¢§ of §3.k4.

Theorem 7. Iet A be the Laplace-deRham operator, with respect

to a pseudo-Riemsnnian metric on a totally reflexive Lie module. For

all exterior forms «,

M= PV o+ bt .
a R

Proof. Compere (11) of §3.4 with (22) and recall that

b a ab

by (14). QED.

9. Operators commuting with the Laplacean

From the definition A = @5+ 84 of the Laplace-deRham operator
and the fact that d2 = 62 =0, it is clesr that 4 and B commte
with A . Here we shall investigate F-linear mappings of A* into A*
which commute with A .

Iet E be a totally reflexive F module, L an F-linear mep-
ping of A* into A* . Let L(r,s)a be the component in AT of B8,

where P 1is the component in A® of a . Then L(r is also an

;S)
* *
F-linear mepping of A into A . Now let L = L(r 8) By §1.6,
2

there is a tensor L in Ez such thet
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Jqeesd
(1), =Lil isa. ., o e A% .
101 preedn g dg

Since I € AT for all o in A® , the tensor 1L 1is alternating in
its covariant indices, and there is no loss of generality in assuming
it to be altermating in its contravarient indices. Thus the set of
F-linear mappings of A®° into A" may be identified with

AY =2"®a

s s
where As is the elements of rank s 1in the contravariant Grassmen
algebra A, . ILet A: be the strong direct sum of the A: . (Of course,
if Ar =0 for r sufficiently large, this is the same as the weak
direct sum.) Then we may identify F-linear mappings of A* into itself
with the elements of A: . If E is & Lie module, V an affine con-
nection, and L an F-linear mapping of A* into itself we define VL=0
to mean that for each tensor L(r,s) in A': we have vL(r,s) =0 .

Recall the definition at the end of $1 of the notion of a punc-

tual F module.

Theorem 8. Iet A be the Laplace-deRham operator, with respect

to a pseudo-Riemsnnian metric on a totally reflexive punctual Lie module

%* *
E. ILet L be an F-linear mapping of the exterior forms A into A

with covariant derivative O (with respect to the Riemannian connection).

Then L commubtes with A .

Proof. It suffices to prove this for L = L(r s) ; that is,
1001 s
]
L: A —> A% and 1: A* —> 0 for s! # § . By Theorem U of §3.2,

[VX,L] = 0 for all vector fields X . Therefore
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Jyeeed,
(VoI g = :aLil R
1ot SRRE S LR
Jy---d ( ) .
= L, VYV a, = (IVV. «a . e A,
i.--1, agl...,js a il...lr

¥ aeh® for s # s then vavaa i also in A , SO that
Va\VaI_a and LVBVaa are both O . Consequently, L commutes with the
Laplace-Beltrami operator VaVa . By Theorem T, we need only show that
L commutes with (Dﬁ .

Since the Riemamnian connection V 1is torsion-free, we have by

§5.11 that
Pr(x,v) = ¥ " vx " Vi, vl

so that by Theorem 4 of §3.2 again, I commutes with each Pr(x,Y)
>

Suppose there is an s~-form & such that

P = 1A - ot

is not O . Then there is a 7 in E, (in fact, we may take ¥ in Ar)
such that the scalar <B,7> is not O , since E 1is totally reflex-

ive. Since E is punctual, there is a homomorphism
(o]
p: (F,E,E') — (F,W,W) ,

where W 1is a finite~dimensional vector space over ¥ , such that
p<B,y> ;é 0 . The homomorphism p induces & homomorphism p of the
mixed tensor algebra E: into the mixed tensor algebra W: , &nd
p<B,¥> = <pB,p¥> . Therefore, pB;é 0 . Consequently we need only
prove that

p(L)e(ez) = o(2g)e(L) -
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Iet V be the vector subspace of Wi‘ spamned by all p(R(X,Y)).
Since I commrtes with each Pr(x,Y) ’ o(L) commutes with each
p(cPR(X,Y)) and so p(L) commutes with 9y for each A in V.

For each 7 in E' and Y in E, we have R(-,7,,Y) =
R(e™,Y) , so that p(R(+,n,+,¥) = p(R(g™n,¥)) is in V. By the
symmetry (14), each p(R(w,*,X,+)) is in V. Now p(R) is in wg
and wg - w-} ®wi . Iet e,...,e be a basis of the finite-dimensional
vector Wi such that the first m of them (min) are & basis of V,
and let f£%,...,f° be the dusl basis. Let

=\ _ j_'j
o(R) = Ze ei®eJ s
ij i fj - .
Then we have ¢ ¥ = <£ @fY,p(R)>, and by what we have Just seen this

is 0 if i>m or Jj>m . By the definition of ¢ (§3.4) we have

p(d)—):@ -_— = % CiJCP (p
R o(R) 1,3=1 ey ey

Since ei,ej are in V for i,jim this meens that p(L) commtes
with p(¢§) . QED.

Notice that a mapping I with VL = 0 need not commute with
d or ® . For example, let L be the mapping which sends each exterior
form @ into its component in A¥ . Then VL =0 for any affine con-
nection V but 4L is 4 on A® and Id is O on AT .

If g is & pseudo-Riemennian metric on & totally reflexive
punctual Lie module E , we denote by »Q the set of all F-linear map-
pings L of A* into itself which have covarient derivetive O .
Then Q is clesrly an FO algebra. The algebre .Q possesses & nat-
ural involution * defined as follows. If L e A: then L* in A:

is given by



106. §7. RIEMANNIAN METRICS

Javedd
L~ 5,

(L*)ll. -1 )
dqeeedg R

*
and * 1is extended to A, by sdditivity. Then * maps R into itself,

and
¥* * *
(L+M) =L +M ,
%
L =1L,
* *_*
(M) =M1 .

By Theorem 8 each I in Q maps the harmonie forms into themselves,
so that by restriction we obtain a *-representation of the bi-graded

*
algebra ,Q with involution on the graded vector space N .

10. Hodge theory

If M is a differentiable manifold (pa.ra.compact and finite
dimensional) then we may construct a Riemannian metric g on it. This
is trivial to do locally, and then we construct g globally using a
partition of unity. Since a convex combination of Riemannian metrics
is again a Riemeannisn metric, there is no difficulty.

A manifold M, orientable or not, with a pseudo-Riemsnnian
metric g has a distinguished volume element (a measure, not an n-form)

which we denote 4V . In local coordinates,

av = / |aet g, | axt. ..t .

If M is compact then the integrsl of any scelar which is a divergence
is O .

For the rest of this discussion, let M be & compact Riemannian
manifold. Then the exterior forms A* form a pre-Hilbert space if we

define the (real-velued) inner product of two forms o end B to be
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() = fyg(oyB)av
By Theorem 5,

*
(ao,B) = (,88) , QB eld .
Therefore, if @ is harmonic

0 = (&)

I

(ao,da) + (Ba,da)

Jygla,a0)av + [ g(s0,50)av .

Since the integrands are positive and continucus they sre O . Conse-
quently, on a compact Riemesnnian manifold a harmonic form is closed and
co-closed. (The converse is trivially true on any pseudo-Riemannien
menifold.) This is why the Laplace-deRham operator A was introduced.
(Tt was introduced in Hodge's theory of harmonic integrals by Kodaira
and independently by Bidael and deRham.)

The operator A is a symmetric, positive operator on the pre-
Hilbert space A* . As a partial differential operator it is elliptiec,

for by the WeitzenbBek formula in local coordinates A is -gl‘]ae/axlax‘]

plus lower order terms, and the matrix glJ

is of strictly positive
type. It follows that the closure of the operator A (which we again
denote A) is a self-sdjoint, positive operator on the completion of

*
the pre-Hilbert space A , and A has discrete spectrum:

Iet
1, t=0
n(t) =
0, t#£0,
0, =0
g(t) ={,
3 t#0,

and define H = h(A), G = g(A) by the functionel calculus for self-
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adjoint operators on Hilbert space. They are bounded self-adjoint
operators, and H 1is the orthogonal projection onto the null-space of
A . By the regulexrity theorem for elliptic operators, H and G m#p
A" into itself. In fact, H meps the entire Hilbert space imto A",
s0o that Hx = @ if and only if o is harmonic.

Since d and % commute with 4, and H and G are funetions
of A, d and % commute with H and G . From the definition of G,
AG = ddG+ 834G 1is the orthogonal projection 1~H onto the orthogonsal
complement of the harmonic forms. Therefore we have the decomposition
for any O in A* B

Q = ddCx + BdGx + HO .

If a 1is closed, the second term 8dGX = 8Gdx is O , so that & closed
form is cohomologous to its harmonic paxt Hx . If O is exact, o=dB,
then its harmonic paxrt is O , since HOX = HiB = dHB = O . Therefore we
have the Hodge theorem: On a compact Riemsnnisn manifold every harmonic
form is closed and eo=-closed, and the mapping which sends a harmonie
form into its cohomology class is a vector space isomorphism of 'H-*
onto H* .

The Hodge theorem is of great importance in Riemsnnian ge:gnetry.
Tt can sometimes be used to compute ecchomology groups but its chief im-
portance lies in the possibility it affords of deducing global restxric-
tions on the topology of & manifold in order theat it admit certain types
of differential-geometric structures.

By Theorem 8 the algebra & of F-linear meppings of A  into
itself with coverisnt derivative O acts on M eand therefore, by the

*
Hodge theorem, on H . This places restrictions on the topology of a
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compact n-manifold which admits a Riemsmnian metric with a given sub-
group of OQ(n, R} as holonomy group.

Theorem 8 is due to Weil, and a number of examples are well-known.
Suppose M 1is an orientable compsasct Riemennisn n-manifold. Then there

Ner
and

is an F-linear operetor » mapping AT igsomorphically onto A
commuiting with A . By the Hodge theorem, it induces an isomorphism

of Hr onto Hn-r . This is & weak form of Poincaré duality (weak be-
cause we have cohomology with real coefficients). The prineipal appli-
cation of Hodge theory is to the topology of KBhler msnifolds. TIf Q

is the symplectic 2-form with covariant derivative O then I = QO

and A = L* commte with A and so induce operators on H* . The
existence of these operators places strong restrictions on the cohomology
of a K8hler menifold.

The application of Hodge theory requires the geometrical
structure under study to be related to a Riemennien metric. One of the
main open fields of research in differential geometry is the problem of
finding global restrictions on a manifold in order for it to admit a

more general geometrical structure, such es a foliation or complex struc-

ture, satisfying integrability conditions.
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§8. Symplectic structures

1. Almost symplectic structures

A 2-form & is in particular a covariant tensor of rank 2 and
go determines & mapping @: E —> E' given by <(X),Y> = o(X,Y) ,

end is called non-degenerate if the mapping is bijective (§7.1).

- Definition. An almost symplectic structure on an F module E

is a non-degenerate 2-form.

Thus the definition is the same as that of a pseudo-Riemannian
metric except for a minus sign. If E is free of finite type with

basis X X and @ is an almost symplectic structure with compo-

10000ty

nents ., then clearly Q.. = =Q,
ij Jl

13 and det Qij # 0 , and conversely.

Also, n must be even since

_ _ _ n
det Qij = det jS = det/(,-.'L) det nij = (-1)" det Qij .

Definition. A symplectic structure on & Lie module E is &

closed almost symplectic structure.

That is, a non-degenerate 2-form £ vwhich satisfies dQ = 0O
is called a symplectic structure. As in §7, we begin by studying effine

connections which preserve the structure.

Theorem 1. Iet @ be an almost symplectic structure on the

Lie moduwle E . If V is an affine connection such that VQ = 0 then

3a0(%,Y,2) = @ o(1(X,Y),2) .

In particular, if there is & torsion-free affine conmection V such

that V@ =0 then 8 is a symplectic structure.

Proof. Since V& = 0 we have
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x-0(Y,%)

Q(VXY,Z) + n(y,vxz)

[

2oVx,2) + A[X,71,2) + A2(X,7),2) + Y,V 2)

by the definition of torsion (§5.6). When we take cyclic sums the first

snd last terms of the right hand side cancel, so that
G x-¥,2) - 9([x,71,2)} = CGUT(X,¥1),2) .

As we remerked before (formula (8), §4.2), the left hand side of this
is 332(X,Y,2) . The last statement in the theorem follows from this

or the remark that dQ = Alt V@ for V torsion-free. QED.

2. Hsmiltonian vector fields and Poisson brackets

Iet © be a symplectic structure on the Lie module E . If h
is a scalar then Q-ldh is a vector field, and & vector field of this
form is called Hemiltonien. Thet is, X is & Hamiltonian wvector field
in case X 1s exact. A vec‘bj field X such that X 1is closed is

called locally Hamiltonien (bedause by Poinceré's lemma & closed form

on & manifold is locally exact). We may tremsport the Lie produet to

the l-forms as follows: if wy and w2 are l~forms their Polsson

bracket is

~aterly  oelL
[wl,w2] = ele™w, ,Q w2] .

l,

If £ and g are scalers we define thelr Poisson bracket to be

[£,g] = -a(2~t ar,0™t ag) .

Theoren 2. Iet @ be a symplectic structure on the Lie module

E . Then:
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(a) A vector field X is locally Hemiltonisn if and only if

(v) If w, 1is _closed then [wl,w2] = eQ"lm w, .
1
(¢) [£,8] = (07! ae)g = ~(a71 ag)-z .

(a) [af,ag] = alf,g] .

Proof. By Theorem % of §4.3, 6,0 = a(X 4Q) + X 1d2 . Since O

X
is closed, 6,0 = %‘&IZX swhich proves (a). If w, is closed then Q'lwl
is locally Hamiltonian, so by (a)
-1
2] =6 QW
-1 % -1 2
Q wl Q wl
- -1, _ -1 - -
= ng'lw o) W, = [T §9) wl,n wz] = [wl,we] s

1
which proves (b). To prove (c), notice thgt

1 1

[f,g] = -(2~L ar, 0™t ag) = -<a0™t ar, 07t ag>

= -<ar, 2t ag> = -(a7% ag)-¢ .

By the definition of [f,g] 1t is antisymmetric, so this is also

(2! af)-g . By Theorem 4 of §4.3 again, 6,dg = a(x 1 ag) = a(ag(x)) =

a(X-g) . Therefore, by (b) and (c),

ag = a((et ag)-g) = a[£,g] - QED.
af

[df,deg]l = 6 1
o

3. Symplectic gtructures in local coordinates

As we saw in paragraph 1, a coordinate Lie module must have an

even number of coordinates to admit a symplectic structure.

Theorem 3. Iet E be a coordinate Lie module with coordinates

1 n
q :Pl:---,q 5Py, . Then
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(1) 2 = 2(ag"adp) +...+ g% dp_)

is a symplectic structure. TIts components are given by the matrix

o -1
1 0
(2) .
0 <1
1 0
If h is & scalar then
- oh 9 oh o
(3) a~tan = x( I
35;@-’ dq* ap_:.
We have
) i ) i
) Q— = adp Q = -dg
aqi ’ ap—l ,
and a
-1, i _ 9 s |
(5) 2 "dq —-wi, Q dPi—S:lT.
_Ii f Et_i_ g s&re scalars,
6) [r,g] = 2L %8 O %8,

%y 3q’ " agt Py

Proof. Everything else is & trivial consequence of (%), which

is a trivial consequence of the definition of the wedge product. QED.

The theorem of Derboux says that on a manifold with a symplectie
structure Q one may always choose local coordinates so that & is
given locally by (1). Thus all symplectic menifolds of a given dimen-
sion are locelly the same. This is in strong contrast to the great

variety of locally non-isometric Riemannisn menifolds.
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By Theorem 2(a), if h is any sceler on a symplectic manifold
then the flow generated by the vector fields Q'ldh preserves the sym-
plectic structure. Again this is in strong contrast to the Riemarmien
case, where there seldom exists a flow of isometries. Riemannian metrics
are much more rigid than symplectic structures. Riemennian metrics ad-
nit a distinguished effine connection, and the group of a}ltomorphisms
preserving an affine comnection is always a Lie group (parameterized by
finitely many verisbles). . Symplectic structures do not admit a distin-
guished affine comnection, and the local automorphisms preserving the

symplectic structure form a pseudogroup (pa:remeterized by a function).

4. Hamiltoniam dynamics

*
Iet M be & manifold, T (M) its cotengent bundle. An element
*
of T (M) is simply a cotangent vector nq at some point g of M,

go that if ql,... ,qn are local coordinates nesr q then

S~— .
n, = = p,(a)(aa)(a) .

q

*
Now the qi and p, are functions on 7°(M) and are in fact & local

coordinate system, so that
i
0 =2 Pidq
*
is a 1-formon T (M) . The l-form 6 is well-defined globally (it
does not depend on the choice of local coordina.tes) gince it has the in-
veriant description
= >
<0(ng),X(ng) > = <ng,mx(n,)
*
where X(n q) is & tangent vector on T (M) at the point Ny and
*
m T (M) —> M is the projection sending eéch g to g (end m, is

the induced mepping of the tengent bundles). Then £ = -2d6 is =
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symplectic structure on T*(M) , and is given by (1) with respect to the
local coordinates ql,pl, ...,qn,pn . Thus the cotangent bundle of an
arbitrary manifold edmits a natural symplectic structure.

In clessical mechanics the configuration space of a mechanical
system is & manifold M end T*(M) is the momentum phase space. If
ql,...,qn are local coordinates on M then Pyse-+,p, &re the conju-
gate momenta. The symplectic structure @ knits together the coordi-
nates and their conjugete momenta. In Hemiltonien mechanics one allows
all transformations which preserve Q even if the distinction between
coordinates and momente is lost.

The energy of a classical dynemical system is a scalaxr H on
the momentum phese space. Hamilton's egquetions say that the time evo-
lution of the dynemical system is giveén by the flow with generator

a"laE . By (3) this mesns thet in local coordinates

aqt  om ; w
aQa_ _ , _— 2R,
at &; at aqi

Balph Abrehem gave & course at Princeton on this subjeet [8]
last year and I will ssy no more. Note:; my Q 1is twice Abraham's w
and Sternberg's £ is winus Abraham's w . Therefore the different
account of Poisson brackets vary slightly bub all are such that one

obtains the same formulas in local coordinates.
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§9. Complex structures

1. Complexification

On an arbitrery differentiable manifold it mekes sense to con-
sider complex-valued scalers and tensors, coveriant derivatives in the
direction of a complex-valued vector field, ete. Algebraically, we do
this as follows.

Iet F°C be the algebra obtained by joining an element i to
F° with 12 = -1 . (Thus F°° is a field if and only if F° contains
no square root of -1.) If V is eny F°  vector space we let Vc be
the F°° module obtained by extending coefficients to F°¢ . Thus
V¢ = WiV and i(X+iY) = -Y+iX . We define complex conjugation on V°
by XFY = X-i¥Y . If uw is an Fo-multilinear mepping of Vi XeoX V
into V it hes a unique F°°-multilineer extension, again denoted wu ,
mapping Vi x...xvfl into Vc .

In particuler, ¢ is again a commutative algebra with unit
over F° ; if E is en F module th§ EC is an F° module; if E

is a Lie module so is E° 3 if V is en affine connection on E its

. . . . c
extension V is sn affine connection on E~ .

2. Almost complex structures

Definition. An almost complex structure on an F module E

is an F-linear tramsformation J of E into itself such that J2 =wl .

If E is free of finite type with basis Xl""’xn and J is

an almost complex structure then the components of J setisfy

z gdsk = Bf
iJ i

and conversely such J i give an almost complex structure. If there is

no scalaxr f in F such that f2 = -1 +then n must be even, since
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(det T = det & = qet(-1) = (<1)7 .

It must be emphasized that an almost complex structure J is
very different from 1. The transformation J maps E into itself
whereas 1 maps E into E® . The tremsformation J has a unique

extension J to EC as in the preceding paragraph, and 1iJ = Ji .

Definition. Let J be an almost complex structure on the F

module E . We define El 0 to be the set of vector fields Z in E®
3

such that JZ = iZ and EO 1 to be the set of Z in E° such that
2

JZ = -iZ . Elements of E; , are said to be of type (1,0) , those in
24 —

Eo’l of type (0,1) .

Theorem 1. Iet J be an almost complex structure on the F

module E . Then Ec is the F° module direct sum of El 0 and EO 1
- -_— el - 3
The projections onto El,o and @‘9{1 are given by
1 . =_1 .
(1) P = 5(1-11), P = 5(1+17)
respectively. Complex conjugation is bijective from E1 0 to Eo 1"
2 k4

Proof. It is clear that PP =1, PP = PP = 0, and that PZ=2
if and only if Z is of type (1,0) end PZ = Z if and only if 2 is
of type (0,1) . The last statement in the theorem is obvious. QED.

Recall (§3.2) the notion of & derivation of (F,E) .

Theorem 2. Iet J be an almost complex structure on the F

module E and let @ be a derivation of (F,EC) . Then P¢P and

PYP  are F®-linear.
Proof. PQPLZ = PofPZ = fPYPZ + P(of)PZ = fPYPZ , and similerly

for PYP . QED.
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3. Torsion of an almost complex structure

Definition. Iet J be an almost complex structure on the Lie

module E . The torsion T of J is defined by

(2) ™(Z,W) = -P[PZ,W] - P[Pz,B]

and the torsion temsor by T(w,Z,W) = <w,T(Z,W)})>. A complex structure

on the Lie module E is an almost complex structure whose torsion is 0.
We mey rewrite (2) as T(Z,W) = P[Pz, W] + P[Pz, TW] - [Z,w] .

Theorem 3. Iet J be an almost complex structure on the ILie

module E with torsion T . Then T is antisymmetric and FC-bilinear.
The module El 0 is a Lie module if and only if J is a complex
— s

structure.

For ell X amd Y in E®,
(3) LW(X,Y) = [J%,5Y] - [X,¥] - Jlox,Y] - J[X,JY] .

Proof. By Theorem 2, -B[PZ,PW] and P[Pz,BW] are F-bilinear,
so that T is too (and consequently the’ torsion tensor is a temsor).
T 1is clearly sntisymmetric. If J is & complex structure then

PIPZ,PW] and P[PZ,PW] are each always O, so E and E
1,0 0,1

Lie modules. If E, , is & Lie module then so iz E, , since [B,W] =
> >

IZ,WI , sothat T is O . The formula (3) is most easily proved by

are

verifying it for X and Y ir and for X and Y in E and

) 0,1
by observing that for X and Y of different types both sides of (3)

give O . QED.

Theorem k4. Iet E be & coordinate Lie module with coordinates

xl, ...,xn and let J be an almost complex structure on E with com-

ponents J‘]]_ . Then the components of the torsion tensor T &re given by
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k1 a,0 k a,0 d a\ k d k
Tij =5 Z[Ji('gx—a' JJ) - JJ(SX—E Jl:-f) + (Q Ji)Ja - (Q J?)Ja} .

Proof. The proof is trivial. QED.

L. Complex structures in local coordinates

Theorem 5. Iet E be a coordinate Lie module with coordinates

1.1
X,y ,...,xn,yn and let J 1in Ei have components given by the matrix

0 =1
1 0
()
=1
1 0

Then J 1s a complex structure. Iet zl = xl+iyl, . ..,zn = xn+:L;y-n .

Then El 0 is & coordinate Lie module with coordinates zl, c.eyZ , 8nd
= , ==

the basis dual to dz',...,dz® is given by

) 1(3

d d
(5) = 5= -1 ), ..,
azi g Sk ayl

3
32 -

= }_(a_ i ——
2 axn ayn
Proof. It is clear that J 1is an almost complex structure.
The elements (5) are simply P applied to B/Bxl,...,B/axn , end it is

clear that they are a basis of E Since they commute, El 0 is a
2

1,0 °
Iie module and J is a complex structure by Theorem 3. (This also

follows from Theorem L4, since the components of J are constents.) QED.

The Newlander-Nirenberg theorem asserts that on a differentiable
menifold with an almost complex structure J whose torsion is 0 (i.e.,
a complex structure es we have defined it) one emn choose local coordi-

nates in the neighborhood of any point so that J has the sbove form.
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This theorem is the justification for calling an almost complex struc-
ture with torsion O a complex structure. Im c;)ntrast to the Darboux
theorem (§8.3), the Newlander-Nirenberg theorem is quite difficult and
the result was unknown for & long time. ConseqQuently terms such as
pseudocomplex structure and integrable almost complex structure are
used in many places for sn almost complex structure with torsion O .
Once a manifold has & complex structure the theory of functions of
several complex variables may be applied.

When using classical tensor notation when an almost complex
structure is given, the convention is made that Greek covariant indices
represent vector fields of type (1,0) , s/of—tha.t Greek covariant indices
with & bar over them represent vector fields of type (0,1) . Instead
of a bar, a dot or a star is sometimes used. Thus if T 1is the torsion

tensor of the almost complex structure, Tng =0.

5. Almost complex connections

If J is en almost complex structure we let J be the tensor
in E?L- given by J(w,X) = <w,JX>. An affine comnection V such that

VJ = 0 is called an almost complex connection. This is the same as

requiring that [VX,J] =0 or [VX,P] = 0 for all vector fields X .

Theorem 6. Iet E be a Lie module such that there exists an

affine connection on E , and let J be an almost complex structure on

E. If V is sn affine connection on E let

v‘;=P7XP+?VXP.

Then V° is an almost complex connection and V = ¥ if and only if

V ig an almost complex comnection. Iet ™ be its torsion and let
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* _ fo) -— O\
Vg = P(VX 'TX)P + P(VX- TX)P .

*
Then V  is an almogt complex connection, and if V 1is torsion-fiee

*
then the torsion of ¥V is the torsion T of the almost complex

structure. J is & complex structure if and only if there is a torsion-

free almost complex commection. If ¥V is any almost complex connection

with torsion T' +then the torsion T of the almost complex strueture

is given by

(6) ™(Z,W) = PT'(PZ,PW) + PT*(PZ,PH) .

Proof. Vy-Vp =P%P + W, F and by Theorem 2 this is Fo-lineer,
so that V° is an affine comnection. Therefore V* is also an affine

connection. They are almost complex comnnections since V; end V;
clearly commte with P . If V= ¥ then V is an almost complex

connection too, and conversely if ¥V 1s en almost complex connection
then I_’VXP and Wx'f are O, so that V =V° . Suppose that V is
torsion-free and let T* be the torsion of V* . For Z and W of

type (1,0),

™(2,W) = PV -V,2) - [2,W] = -?[j,w] = 7(Z,W) .

This term is ennihilated by P, so for Z &and W of type (1,0) we
have T*(z,w) = 7(Z,W) . Similarly for Z end W of type (0,1) .
Now suppose that Z and W are of different types, say PZ =Z and
P4 =W . Then

™(2,W) = B - B2 - [2,W]
so that

0 (2,W) = N - BrO(z,W) - B2 + p°(W,z) - [2,W]

™(2,W) - T°(Z,W) = 0 = T(Z,W) .
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Therefore T* =T 4if V 1is torsion-free. Since E has an affine
connection, it hes a torsion-free affine connection V (§5.6) and so
has an almost complex connection V* whose torsion is T . Therefore
if J is a complex structure there is a torsion-free almost complex
cormection. Conversely, if V is a torsion-free almost complex con-
nection then VY, maps El, o into itself (this is clearly true for any
almost complex connection) so that if Z and W are in El,O so is
[z,W] = VZW..VWZ , and by Theorem 3, J is a complex structure. This

also follows from the last statement of the theorem, which we now prove.

For Z and W of type (1,0) , the right hand side of (6) is
'P'(VZW - V2 - Z,W1) = -Plz,W] = T(z,W) ,

and similarly for Z and W of type (0,1) . If Z and W are of

different types then both sides of (6) are O . QED.

6. XBhler structures

We have discussed pseudo-Riemsnnian metrics, almost symplectic
structures, and almost complex structures. We conclude our study of
tensor analysis by discussing briefly the interrelstionships among these
three types of sitructure.

A pseudo-Riemannian metric is a bijective symmetric mapping
g: E — E!' , an almost symplectic structure is a bijective antisym-
metric mapping Q: E —= E' and an almost complex structure is a bi-
jective mapping J: E —>= E such that sto g (a1l meppings being

F-linear). An almost Hermitiesn structure on a Lie module E is a

pseudo-Riemannian metric g and an almost complex structure J such

that 0 = ged is entisymmetric; i.e. such that
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(1) X, Y) = g(IX,Y) = -g(X,T¥) = -2(¥,X) , XLYeE .

Then & is an almost symplectic structure, since & is clearly bi-

jective with ot - J'log'l . Since & = -1 , the relation (7) 1s
equivalent to

(8) g(I%,JY) = g(X,Y) , XY eE

or

(9) g(Pz,W) = g(Z,B) , Z,W e E° .

(For a manifold, the term almost Hermitian structure is usuelly reserved
for the cagse that g is & Riemannian metric. Perhaps we should use the
term almost pseudo-Hermitian structure, but we won't.)} We may also give
an almost Hermitian structure by means of & pseudo-Riemannian metric g

-1,0 is en almost

and an almost symplectic structure @ such that J =g
complex structure, or by an almost symplectic structure £ and an almost
complex structure J such that g = Q.J-l = =(oJ 1is symmetric and con-
seqQuently a pseudo-Riemamnian metric. We shall be democratic end indi-
cate an almost Hermitian structure by\(g,J y Q) where g is pseudo-
Riemannian, J is almost complex, £ 1is almost symplectic, and Q=geJ.

It (g,J,9) is an almost Hermitian structure snd J 1is a complex

structure then (g,J7,92) is called a Hermitisn structure. There is no

name for an almost Hermitian structure in which €. 1s a symplectic
structure. An elmost Hermitien structure (g,J,%) such that J is a
complex structure and  1is a symplectic structure is called a Kéhler

structure.

Theorem 7. Iet (g,7,%) be an elmost Hermitian structure,

V  the Riemsnnien comnection, T the torsionof J . If 2 and W
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in E® are of the same type then

(10) g(z,w) =0,
(11) AZ,W) =0,
(12) (Ve 2)(2,W) = 3a2(z,W,X) - 2(T(Z,W),X) .

_I_{ Z and W sare of opposite types then

(13) (%2)(Z,W) = 0 .
Proof. lLet Z and W be of type (1,0) . By (8),
&(2,W) = g(Jz,0W) = g(iZ,1W) = -g(2,W)

so that (10) holds in this case. Sinece J preserves types, (11) also

holds in this cage. Next observe t‘@t since V is torsion-free,

(V7 W) - (%,3)(2)
vZ(Jw) - IV - VW(JZ) + JVWZ

i[z,w] - Jlz,w] = 1(1+1i7)[Z,W] = 23P[2,W]

]

2JT(Z,W) .

Since Vg =0 end 0 = ged , this implies that

(V,2) (W) - (%,0)(2) = 202(Z,W) .
That is,

(V2 (W,X) = (0)(2,X) = 22(T(2,W),X) .

Since V is torsion-free, 48 = Alt VQ , so that the left hand side
of this is 3d%(Z,W,X) - (VXQ)(Z,W) , 80 that (12) holds for Z and W
of type (1,0) . By taking complex conjugates we see that (10), (11),

and (12) also hold for Z and W of type (0,1) .
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Now let Z and W be of opposite types, say PZ = Z and
Bi =W . Then

i

(1) (VXQ)(Z,W) X-(Z,W) - 9(vxz,w) - n(z,vxw)
X-(Z,W) - Q(V)'Ez,w) - Q(Z,V}.Ew)

(V2 (z,W)

1l

where V° is @s in Theorem 6 and we have used (9). By the definition
of VY’ it is clear that each V;é commutes with J , so that Fr=o0.
Now V; differs from VX by WXP + T’VXP . Since Vg = 0, to show
that Vg = 0 we need only show that WX? and ?VXP (which are

FC-linear) are g~antisymmetric. But, by (9) and (10).

S(WX.?U:V) 8(VXFU)-FV)

x-&(B0,57) - 8(BU,,BV) = -&(U, 7, B7) :

and similarly for T’VXP . Thus Vg =0 and so Y9 = V(gJ) =0 .
By (14), (VXQ)(Z,W) =0 for PZ =2 eand PW =W, and similarly for
PZ=2 end PW=W. QED.

We remsrk that the last part of the proof shows that if (g,J,9)
is an almost Hermitian structure tgn there is an affine connection V°

such that Vg =0, V°J =0, and V2 =0 .

Theorem 8. Iet (g,J ,fﬁ) be an almost Hermitian structure,

V  the Riemannien connection. If VJ =0 or VR =0 then (g,J,0) is

a Kdhler structure. Conversely, if (g,J,?) is a Kdhler structure,

V  the Riemannisn connection, them YJ =0 and VQ =0 .

.
Proof. Since = god and Vg=0, if YWJI =0 or V@ =20

then YJ =0 and VQ = 0 . The Riemannian connection is torsion-free,

so J 1is a complex structure by Theorem 6 and Q is a symplectic
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structure by §8.1. Therefore (g,J,2) is & K8hler structure if VI =0
or V@ =20.

Conversely, let (g,J,2) be a Kliler structure, so that the
‘torsion T of J is O and dQ2 =0 . By Theorem 7, V2 = O and so
VJ = 0 also. QED.

Complex projective space has a Kihler metric. Complex projec-
tive algebraic varieties without singulerities are complex analytic sub-
manifolds of complex projective space and so have an induced K¥hler
metric. Hodge theory was developed primarily for this situation. Since
V& = 0 the operators L aend A given by nxki}ua end A = L* com-
mute with the Lagece-deRham operator. By the theorems of Hodge and
deRham, L and A act on the real cohomology ring, and place strong
restrictions on the real cohomology of & non-singular complex projective
algebraic variety (see [7,87], [11], [12]). Also, if we define C on

r

A by

(ca)(xl, ...,xr) = Ot(JXl, ...,J'Xr)

then & = (-1)F on AT and C commtes with A since VJ =0 . Tt
follows that odd-dimensional Betti numbers of compact KBhler menifolds

are eveh.
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