Euler’s Formula

Where does Euler’s formula
e^{i\theta} = \cos \theta + i \sin \theta
come from? How do we even define, for example, \(e^{i\theta} \)? We can’t multiple \(e \) by itself the square root of minus one times.

The answer is to use the Taylor series for the exponential function. For any complex number \(z \) we define \(e^z \) by

\[
e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.
\]

Since \(|z^n| = |z|^n \), this series converges absolutely: \(\sum_{n=0}^{\infty} \frac{|z|^n}{n!} \) is a real series that we already know converges.

If we multiply the series for \(e^z \) term-by-term with the series for \(e^w \), collect terms of the same total degree, and use a certain famous theorem of algebra, we find that the law of exponents

\[
e^{z+w} = e^z \cdot e^w
\]
continues to hold for complex numbers.

Now for Euler’s formula:

\[
e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!}
\]

\[
= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \frac{\theta^6}{6!} - i\frac{\theta^7}{7!} + \cdots
\]

\[
= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots\right)
\]

\[
= \cos \theta + i \sin \theta.
\]

The special case \(\theta = 2\pi \) gives

\[
e^{2\pi i} = 1.
\]

This celebrated formula links together three numbers of totally different origins: \(e \) comes from analysis, \(\pi \) from geometry, and \(i \) from algebra.

Here is just one application of Euler’s formula. The addition formulas for \(\cos(\alpha + \beta) \) and \(\sin(\alpha + \beta) \) are somewhat hard to remember, and their geometric proofs usually leave something to be desired. But it is impossible to forget that
\[e^{i(\alpha + \beta)} = e^{i\alpha} \cdot e^{i\beta}. \]

Now use Euler’s formula thrice:

\[
\cos(\alpha + \beta) + i \sin(\alpha + \beta) = [\cos \alpha + i \sin \alpha] \cdot [\cos \beta + i \sin \beta]
= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \sin \beta).
\]

Equate the real and imaginary parts and presto! we have

\[
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.
\]