Mathematics 104

Practice Quiz 3C

1. Let $I = \int \frac{1}{1+e^x} dx$. Substitute for the troublesome part of the integrand: let $y = e^x$.

Then $x = \ln y$ and dx = dy/y, so $I = \int \frac{1}{1+y} \frac{dy}{y}$. Set

$$\frac{1}{(1+y)y} = \frac{A}{1+y} + \frac{B}{y}, \quad 1 = Ay + B(1+y).$$

For y = -1 we find A = -1 and for y = 0 we find B = 1. Hence

$$I = -\ln|1 + y| + \ln|y| + C = -\ln(1 + e^x) + \ln e^x + C = -\ln(1 + e^x) + x + C.$$

Notice that since $y = e^x$, y and 1 + y are automatically positive, and we can drop the absolute value signs.

2.

Let
$$I = \int x \ln x \, dx$$
, $u = \ln x$, $dv = x \, dx$, $du = \frac{dx}{x}$, $v = \frac{1}{2}x^2$.

Then

$$I = \frac{1}{2}x^{2} \ln x - \frac{1}{2} \int \frac{x^{2}}{x} dx = \frac{1}{2}x^{2} \ln x - x^{2} + C.$$

(Thanks to Dale Shepherd for catching the numerical mistake in the previous answer.)

3. Let $I = \int_{1/\sqrt{2}}^{1} \sqrt{1-x^2} dx$ and $x = \sin \theta$. Then $\sqrt{1-x^2} = \cos \theta$ and $dx = \cos \theta d\theta$. When x = 1, $\theta = \pi/2$ and when $x = 1/\sqrt{2}$, $\theta = \pi/4$. Therefore

$$I = \int_{\pi/4}^{\pi/2} \cos^2 \theta \, d\theta = \int_{\pi/4}^{\pi/2} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta \right) \, d\theta$$
$$= \left(\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right) \Big|_{\pi/4}^{\pi/2} = \frac{\pi}{4} - \left(\frac{\pi}{8} + \frac{1}{4} \right) = \frac{\pi}{8} - \frac{1}{4}.$$

Note: expressions like $\sin^{-1} 1$ and $\sin^{-1} \frac{1}{\sqrt{2}}$ should be simplified.