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Sequences are ordered lists of real numbers, such as “a1, a2, a3, . . .”, sometimes written {an}

• Just as with limits of functions on the real line, we can talk about limits of sequences; if the numbers
in the sequence approach some real number L, then the sequence has a limit. Otherwise, it may
approach ∞ or −∞, or it may not approach anything at all in particular.

• Note that if lim
x→∞

f(x) either exists or is infinite, then the limit lim
n→∞

f(n) is the same (the graph of
the sequence lies on the graph of the function, so if the function approaches a limit, the sequence
is stuck to the same limit). This fact can be useful in computing limits of some sequences, since
limits of functions can often be more easily evaluated by l’Hôpital’s rule. For example:

Using l’Hôpital’s rule, lim
x→∞

x2

ex
= lim
x→∞

2x
ex

= lim
x→∞

2
ex

= 0, so lim
n→∞

n2

en
= 0 as well.

• Some useful limits to know:
If |r| < 1, then lim

n→∞
rn = 0

lim
n→∞

n
√
n = 1 (and the same for n

√
n2, n
√
n3, etc.)

lim
n→∞

n
√
n! =∞

Some limits that equal e: lim
n→∞

(
1 +

1
n

)n
, lim

n→∞

(
n+ 1
n

)n
Some limits that equal

1
e

: lim
n→∞

(
1− 1

n

)n
, lim

n→∞

(
n− 1
n

)n
, lim

n→∞

(
n

n+ 1

)n
• Remember the hierarchy of functions (on the “limit comparison test” page);

If f(n)� g(n), then lim
n→∞

f(n)
g(n)

= 0, and lim
n→∞

g(n)
f(n)

=∞.

For example, lim
n→∞

100n

n!
= 0, lim

n→∞

n100

2n
= 0, etc.

• Remember the rules of exponentiation: am+n = am · an, a−n =
1
an

, and amn = (am)n

Series (sums of infinitely many terms)

• Given a sequence a1, a2, a3, . . ., we may want to add up all of the values, i.e. a1 + a2 + a3 + · · ·.

This is called a series, and it is denoted
∞∑
n=1

an. The individual numbers being added together are

called the terms of the series. To add up an infinite number of terms, we first define the partial
sums of the series, Sn = a1 + a2 + · · · + an, i.e. Sn is the sum of the first n terms of the series.

We then define the meaning of the infinite sum by
∞∑
n=1

an = lim
n→∞

Sn. If this limit exists as a real

number, we call the series convergent; if the limit doesn’t exist, we call the series divergent.
• The term positive series refers to a series all of whose terms are positive.
• Properties of series:

– If
∞∑
n=1

an = A, then for any constant c, we have
∞∑
n=1

(c · an) = c ·A

– If
∞∑
n=1

an = A and
∞∑
n=1

bn = B, then we have
∞∑
n=1

(an + bn) = A+B



Geometric Series

• A series of nonzero terms is called a geometric series if the ratio between successive terms in the

series is constant. Thus, given a series
∞∑
n=1

an, compute
an+1

an
; if this number is independent of n,

then the series is a geometric series and this value is its ratio r. The initial term a of the series
is the first term of the series (substitute the bottom value in for n). The initial term a and ratio r
of a geometric series determine its properties.

– if |r| ≥ 1, then the series diverges

– if |r| < 1, then the series converges, and its sum is given by
a

1− r

Determining convergence or divergence of complicated series

nth term test for divergence: If lim
n→∞

an 6= 0, then the series
∞∑
n=1

an diverges

• Note that this is only a test for divergence–if the limit is zero you can’t conclude anything, so you
may never use this test to show that a series converges. It is, nonetheless, still a useful test; if you
see a series and aren’t sure that the individual terms of the series go to zero as n → ∞, then try
this test and you may be able to conclude very quickly that the series diverges.

Integral test: If f(x) is continuous, positive, and decreasing for x ≥ 1,

a. If
∫ ∞

1

f(x) dx converges, then
∞∑
n=1

f(n) converges, as well.

b. If
∫ ∞

1

f(x) dx diverges, then
∞∑
n=1

f(n) diverges, as well.

• Note that the number “1” appearing throughout the test could be any other number and the test
would still apply.

• The two most common uses for the integral test are:

– For p-series:
∞∑
n=1

1
np

: this series converges if p > 1, but it diverges if p ≤ 1 (worth remembering)

– For series that look like functions that are easily integrable; often “lnn” appears.

Comparison tests (only for positive series!)
These tests are used compare a series with complicated terms to one whose terms are simpler;
they’re usually used to deal with complicating factors–often oscillating terms, such as sinn or
cosn2.

• Comp. test for convergence: If 0 ≤ pn ≤ cn and
∑
cn is convergent, then

∑
pn is convergent.

• Comp. test for divergence: If 0 ≤ dn ≤ pn and
∑
dn is divergent, then

∑
pn is divergent.

• Remember that for these tests to apply, you need either a larger series that converges, or else a
smaller series that diverges.

• Examples:
∞∑
n=3

1
n2 lnn

has 0 ≤ 1
n2 lnn

≤ 1
n2

, so since
∞∑
n=3

1
n2

converges, it does too.

∞∑
n=3

lnn
n

has 0 ≤ 1
n
≤ lnn

n
, so since

∞∑
n=3

1
n

diverges, it does too.



Limit comparison tests (only for positive series!)
The limit comparison tests are used compare a series with complicated terms to one whose terms
are simpler; they’re usually used to deal with complicating sums appearing in the terms.

• Essentially, when you see a sum within the terms of a series, you want to try replacing it by the
one piece that dominates the sum (a sum will act like its biggiest piece). Thus, an important
skill to develop is that of recognizing which part of a sum will dominate–the heirarchy of functions
listed below should help to guide you in this. We’ll use the notation “∼” to denote the idea of
“acting like”; you may want to think of things in this way, but be sure to carefully apply the
limit-comparison test once you’ve chosen the series you’d like to limit-compare with.

• Limit comparison test for convergence: If
∑
pn is a positive series, and if

∑
cn is a convergent

positive series such that lim
n→∞

pn
cn

exists, then
∑
pn is convergent, as well.

• Limit comparison test for divergence: If
∑
pn is a positive series, and if

∑
dn is a divergent

positive series such that lim
n→∞

pn
dn

either (a) exists and is not zero or (b) is infinite, then
∑
pn is

divergent, as well.
• Note: If you find a limit-comparison series where the above limit is nonzero and finite, then the

test works both ways, and you basically can’t lose–this is the ideal case that you’re shooting for.
But do be aware that “0” is still ok for convergence and “∞” is still ok for divergence, should they
occur.

• Note also that using this “dominant term” idea and the limit comparison test, you can compare
any series whose terms only involve fixed powers of n to a p-series, and convergence or divergence
is then simple to determine.

• Example 1: Since
n2 + 2n

n4 + 3n
∼ 2n

3n
and

∞∑
n=1

2n

3n
is a convergent geometric series, we can use the limit

comparison test for convergence to show that the series
∞∑
n=1

n2 + 2n

n4 + 3n
is a convergent series (check

the hypotheses!!!).

• Example 2: Since
3
n + 5 +

√
n

n+ 2−n
∼
√
n

n
=

1√
n

and
∞∑
n=1

1√
n

is a divergent p-series, we can use the

limit comparison test for divergence to show that the series
∞∑
n=1

3
n + 5 +

√
n

n+ 2−n
is a divergent series

(again, check the hypotheses!!!).

A hierarchy of functions (in terms of “size” at infinity) is shown below, and should guide you in how
to indentify the dominant parts of a series’ terms:

[0]�
[

1
nn

]
�
[

1
n!

]
�
[

small exponentials
. . . 10−n . . . e−n . . .

]
�

[
small fixed powers
. . . 1

n2 . . .
1√
n
. . .

]
�
[

1
lnn

]
� (go to 0)

[
positive, bounded

. . . 0.1 . . . 1 . . . tan−1 n . . . 2 . . .

]
(go to a positive real number)

� [lnn]�
[

big fixed powers
. . .
√
n . . . n2 . . .

]
�
[

big exponentials
. . . en . . . 10n . . .

]
� [n!]� [nn]� [∞] (go to ∞)

This hierarchy has a useful property:

If f(n)� g(n), then lim
n→∞

f(n)
g(n)

= 0, and lim
n→∞

g(n)
f(n)

=∞.

For example, lim
n→∞

n!
nn

= 0, lim
n→∞

n100

2n
= 0, etc.



Absolute Ratio Test (for a series
∑
an)

• If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, the series converges absolutely.

• If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 (or is ∞), the series diverges.

• Important note: If the limit is equal to 1 or does not exist, then no conclusion can be drawn! In
this case, try another test.

• Example 1:
∞∑
n=1

10n

n!
: applying the ratio test, we find

lim
n→∞

(
10n+1

(n+ 1)!

) / (
10n

n!

)
= lim
n→∞

10
n+ 1

= 0

so since 0 < 1, the series converges.

• Example 2:
∞∑
n=1

n22−n: applying the ratio test, we find

lim
n→∞

(n+ 1)22−(n+1)

n22−n
= · · · = lim

n→∞

(
1 +

1
n

)2

2−1 = (1 + 0)22−1 =
1
2

so since
1
2
< 1, the series converges.

Absolute Root Test (for a series
∑
an)–very similar to the absolute ratio test

• If lim
n→∞

n
√
|an| < 1, the series converges absolutely.

• If lim
n→∞

n
√
|an| > 1 (or is ∞), the series diverges.

• Important note: If the limit is equal to 1 or does not exist, then no conclusion can be drawn! In
this case, try another test.

• Usually, the ratio test is easier to apply than the root test; the notable exception is when the terms
of the series are such that it’s reasonably easy to take their n-th roots, as in the example below.

• Example:
∞∑
n=1

(
4n+ 2

3n+
√
n

)n
: applying the root test, we find

lim
n→∞

n

√(
4n+ 2

3n+
√
n

)n
= lim
n→∞

4n+ 2
3n+

√
n

= lim
n→∞

4 + 2
n

3 + 1√
n

=
4 + 0
3 + 0

=
4
3

so since
4
3
> 1, the series diverges.


