MATH 104 - FINAL EXAM

Wednesday, May 14, 2003, 1:30PM-4:30PM McCosh 50

1. (10 points) Find the following integrals.

(a)
$$\int e^{2x} \sin(e^x) dx$$

(b)
$$\int_0^1 \frac{x^2}{(\sqrt{4-x^2})^3} dx$$

- 2. (12 points)
 - (a) Let R be the region bounded by the curve $y=x^3$, the x-axis and the two vertical lines x=1 and x=2. Find the volume of the region obtained by rotating R about the line x=3.
 - (b) Let C be the portion of the curve $y = x^3$ between the points (1,1) and (2,8). Find the area of the surface generated by rotating C about the x-axis.
- 3. (15 points) Determine whether the given improper integrals converge or diverge. Justify your answers.

(a)
$$\int_2^\infty \frac{\sin^2(x)}{x(\ln x)^2} \, dx$$

(b)
$$\int_0^1 \frac{\sin(x^2)}{x^{5/2}} dx$$

(c)
$$\int_1^\infty \frac{\arctan(x^2)}{x^3 + \sqrt{x}} dx$$
 Note: $\arctan(x^2) = \tan^{-1}(x^2)$

(d)
$$\int_0^1 \frac{x^{3/2}}{\ln(1+x^2)} dx$$

(e)
$$\int_1^\infty \frac{dx}{x^2 - 1}.$$

4. (15 points) Write AC or CC or D to indicate whether the given series is Absolutely Convergent, or Conditionally Convergent or Divergent. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{2^{2n} + (-5)^n}{5^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{\sqrt[3]{n!}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin(1/n)(\sqrt[n]{e}-1)}$$

(d)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt{\ln n}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{1}{\sqrt{n}}\right)^n}{n^{n/2}}$$

- 5. (10 points) Let $0 \le \theta \le 2\pi$ and consider the series $\sum_{n=1}^{\infty} (-1)^{n+1} \tan^{2n}(\theta)$. Determine the values of θ for which the series converges and compute the sum. Simplify your answer.
- 6. (9 points) Find the first three nonzero terms of the Taylor series at 0 for the function $f(x) = \frac{\sin x}{1+x^3}$.
- 7. (10 points) Find $\lim_{x\to 0} \frac{(e^{2x^2}-1-2x^2)(\cos(x)-1)}{[\sin(3x)-\ln(1+3x)]x^4}$
- 8. (9 points) Let $z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ and let w be the complex number whose modulus is 2 and whose argument is $\pi/3$. (Note: The modulus of a complex number is the same as the magnitude.) Write each of the quantities below in the form a + ib where a and b are real numbers.
 - (a) $\frac{1}{z}$
 - (b) z^{80}

(c) $z^2 \cdot w$

9. (10 points) Find all complex numbers z satisfying the equation $(2z-1)^4 = -16$. Express your answers in the form a + ib, where a and b are real.