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Abstract

We propose a new algorithm to solve optimization problems of the form min f(X) for
a smooth function f under the constraints that X is positive semidefinite and the diagonal
blocks ofX are small identity matrices. Such problems often arise as the result of relaxing a
rank constraint (lifting). In particular, many estimation tasks involving phases, rotations,
orthonormal bases or permutations fit in this framework, and so do certain relaxations
of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts
that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions
are smooth optimization problems on a Riemannian manifold. Combining insights from
both the Riemannian and the convex geometries of the problem, we characterize when
second-order critical points of the smooth problem reveal KKT points of the semidefinite
problem. We compare against state of the art, mature software and find that, on certain
interesting problem instances, what we call the staircase method is orders of magnitude
faster, is more accurate and scales better. Code is available.
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1 Introduction

This paper considers the generic problem of estimating matrices Y1, . . . , Ym ∈ Rd×p, p ≥ d,
with orthonormal rows, that is, such that YiY

>
i = Id (identity of size d) for all i. We further

focus on problems where only relative information is available, that is, information about YiY
>
j

for some of the pairs (i, j) is available, but there is no information about individual Yi’s. As will
be detailed below, particular cases of this come up in a number of applications. For example,
when p = d = 1, the variables Yi reduce to {±1} and the products YiY

>
j indicate whether Yi

and Yj have the same sign or not, allowing to model certain combinatorial problems. When
d = 1, p > 1, the variables reduce to unit-norm vectors, and the products correspond to
inner products between them. Finally, when d = p > 1, the matrices are orthogonal, and
the products YiY

>
j = YiY

−1
j represent relative orthogonal transformations, such as rotations,

reflections and permutations.
For ease of notation, we stack the orthonormal matrices on top of each other to form

Y ∈ Rn×p, n = md ≥ p. Then, X = Y Y > is a block matrix whose block Xij ∈ Rd×d
corresponds to the relative product YiY

>
j . Define the (transposed) Stiefel manifold as

St(d, p) = {Z ∈ Rd×p : ZZ>= Id},

and the set of Y ’s obtained by stacking as

St(d, p)m =
{
Y ∈ Rmd×p : Y >=

(
Y >1 Y >2 · · · Y >m

)
and Y1, . . . , Ym ∈ St(d, p)

}
=
{
Y ∈ Rn×p : (Y Y >)ii = Id for i = 1 . . .m

}
. (1)

This paper is concerned with solving optimization problems of the form

min
Y ∈Rn×p

g(Y ) = f(Y Y >), subject to Y ∈ St(d, p)m, (RPp)

with twice continuously differentiable cost f : Sn×n → R defined over the symmetric matrices.
Here, g encodes for example the negative likelihood of Y with respect to available data.
The restriction that g(Y ) be only a function of Y Y > encodes the property that only relative
information is available, through (Y Y >)ij = YiY

>
j . This induces invariance of the cost under

right-action of the orthogonal group. Indeed, g(Y Q) = g(Y ) for any orthogonal matrix Q of
size p. This also implies that solutions of (RPp) are only defined up to this group action.

Problem (RPp) is computationally hard. In particular, for d = p = 1 and linear f , it covers
the NP-hard Max-Cut problem [37]. Following that and other previous work [13, 67, 9], we
consider a relaxation through the following observation. For all Y ∈ St(d, p)m, the matrix
X = Y Y > is positive semidefinite, its diagonal blocks Xii are identity matrices Id, and it has
rank at most p. Conversely, any matrix X with those properties can be factored as Y Y >with
Y ∈ St(d, p)m. In other words, problem (RPp) is equivalent to optimizing f over the convex
set

C =
{
X ∈ Sn×n : X � 0 and Xii = Id for i = 1 . . .m

}
, (2)

with the additional constraint rank(X) ≤ p. As often, the rank constraint is the culprit.
Indeed, continuing with the Max-Cut example (linear f), optimization over C without the rank
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constraint is a semidefinite program, which can be solved to arbitrary precision in polynomial
time [77].

This is motivation to study the relaxation obtained by ignoring the rank constraint (for
linear f , it is also the dual of the dual of (RPp)):

min
X∈Rn×n

f(X), subject to X ∈ C. (P)

The optimal cost of (P) is a lowerbound on that of (RPp). Furthermore, if (P) admits a
solution X = Y Y >with Y ∈ Rn×p, that is, a solution of rank at most p, then Y is a solution
of (RPp). When that is not the case, a higher-rank solution X may still be projected to a
(hopefully good) initial guess for the nonconvex problem (RPp). See [52, 9] for a discussion of
approximation results related to these projections. The price to pay is that C is much higher
dimensional than St(d, p)m: this is called a lift [13].

For linear f , solutions of (P) can of course be computed using standard SDP solvers, such
as interior point methods (IPM). Unfortunately, as demonstrated in Section 5, IPM’s do not
scale well. The main reason for it is that, as the name suggests, IPM’s iterate inside the
interior of the search space C. The latter is formed by full-rank, dense matrices of size n: this
quickly becomes unmanageable.

The full-rank operations seem even more wasteful considering that, still for linear f ,
problem (P) always admits a solution of rank at most

p∗ =

√
1 + 4md(d+ 1)− 1

2
< (d+ 1)

√
m� n. (3)

Indeed, this follows a general result of Barvinok [12] and Pataki [56] regarding extreme
points of spectrahedra1, that is, intersections of the positive semidefinite cone with an affine
subspace—the geometry of C is discussed in Section 2.2. This prompted Burer and Monteiro
[19, 20] to propose SDPLR, a generic SDP solver which exploits the low-rank phenomenon.
Applying SDPLR to our problem amounts to computing a local minimizer Y of (RPp) for
some small p, using classical nonlinear optimization algorithms and penalizing for the con-
straints in a Lagrangian way. Then, p is increased as needed until Y Y > can be certified as a
solution to the SDP.

SDPLR is powerful and generic, and the theory accompanying the algorithm brings great
insight into the problem. But it also has some downsides we want to improve on in the context
of (P). First, it is not an easy matter to guarantee convergence to (even local) optimizers
in the nonlinear subproblems. Furthermore, since constraints are enforced by penalization,
they are not accurately satisfied by the returned solution. Finally, we would like to allow for
nonlinear f . Nevertheless, Section 5 shows SDPLR improves significantly upon IPM’s.

Journée et al. [42] build upon SDPLR, observing that certain SDP’s harbor an elegant
Riemannian geometry that can be put to good algorithmic use. In particular, they cover
what here corresponds to the case d = 1 and observe that, as remains true for d > 1, (RPp)
is an optimization problem on a smooth space: St(d, p)m is a Riemannian manifold—this
geometry is detailed in Section 2.1. Allowing for smooth nonlinear f , they apply essentially the
SDPLR machinery, replacing the nonlinear programming algorithms for (RPp) by Riemannian

1The name spectrahedron for the search space of a semidefinite program echoes the name polyhedron for
the search space of a linear program.
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optimization algorithms [4]. These algorithms exploit the smooth structure of the nonconvex
search space, resulting in constraint satisfaction up to numerical accuracy, as well as notable
speedups.

As a further refinement, Journée et al. [42] address the invariance of f under orthogonal
group action. Instead of optimizing f(Y Y >) over St(d, p)m, they optimize over the quotient
space St(d, p)m∗ /∼, where ∼ is an equivalence relation defined over St(d, p)m∗ (the full-rank
elements of St(d, p)m) by Y ∼ Ỹ ⇔ Y Y >= Ỹ Ỹ >. The advantage is that this quotient space,
which is still a smooth Riemannian manifold, is now one-to-one with the rank-p matrices
in C. Unfortunately, the geometry breaks down at rank-deficient Y ’s (to see this, notice
that equivalence classes of different rank have different dimension; see also Figure 1). The
breakdown is problematic since, as will become clear, it is desirable to converge to rank-
deficient Y ’s. Furthermore, that paper too asks for computation of local optimizers of the
subproblems, which, on Riemannian manifolds too, is a difficult task.

In both [20] and [42], one of the keys to practical efficiency is (well-justified) optimism:
(RPp) is first solved for small values of p, and p is increased only as needed. In both papers,
it is observed that, in practice, it often suffices to reach p just above the rank of the target
solution of (P), which may be quite small; but there is no theory to confirm this. We do not
prove such a strong result either, but we give some nontrivial bounds on “how high one must
lift”, refining some results of [20].

1.1 Contribution

In this paper, we describe the Riemannian geometry of St(d, p)m in order to frame (RPp) as a
Riemannian optimization problem. We use existing algorithms [4] and the Manopt toolbox [17]
to compute critical points of (RPp), that is, points where the (Riemannian) gradient of the
cost function vanishes. In practice, those algorithms tend to converge to second-order critical
points, that is, points where the (Riemannian) Hessian is also positive semidefinite, because
all other critical points are unstable fixed points of the iteration.

For p > d, St(d, p)m is a connected2, compact and smooth space. Since we further assume
sufficient smoothness in f too, this makes for a nice problem with no delicate limit cases to
handle. Furthermore, Riemannian optimization algorithms iterate on the manifold directly:
all iterates satisfy constraints up to numerical accuracy.

We then turn our attention to computing Karush-Kuhn-Tucker (KKT) points for (P).
These are points that satisfy first-order necessary optimality conditions. If f is convex, the
conditions are also sufficient. Our goal is to compute KKT points via the computation of
second-order critical points of (RPp), which is lower-dimensional. A key property that makes
this possible is the availability of an explicit dual matrix S(X) (21) which intervenes in both
sets of conditions.

Using this dual matrix, we show that rank-deficient second-order critical points Y reveal
KKT points X = Y Y >. Furthermore, when a computed second-order critical point is full
rank, it is shown how to use it as a warm-start for the computation of a second-order critical
point of (RPp) with a larger value of p. It is guaranteed that if p is allowed to grow up to
n, then all second-order critical points reveal KKT points, so that the procedure terminates.

2For p = d, St(d, p)m has 2m disconnected components, because the orthogonal group has two components:
matrices with determinant +1 and −1. This is a strong incentive to relax at least to p = d+ 1.
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This is formalized in Algorithm 1, which we call the Riemannian Staircase, as it lifts (RPp)
to (P) step by step, instead of all at once.

The above points rest extensively on work discussed earlier in this introduction [19, 20, 42],
and improve upon those along the lines announced in the same. In particular, we do not require
the computation of local optimizers of (RPp), and we avoid the geometry breakdown tied to
the quotient approach in [42]. We also stress that the latter reference only covers d = 1, and
SDPLR only covers linear f .

We further take particular interest in understanding how large p may grow in the staircase
algorithm. We view this part as our principal theoretical contribution. This investigation calls
for inspection of the convex geometry of C, with particular attention to its faces and their
dimension. To this effect, we use results by Pataki [56] to describe the face of C which contains
a given X in its relative interior, and we quote the lower-bound on the dimension of that face
as a function of rank(X). We further argue that this bound is almost always tight, and we give
an essentially tight upper bound on the dimension of a face, generalizing a result of Laurent
and Poljak [44] to d > 1.

Using this facial description of C, we establish that for strongly concave f , for p > p∗ (3),
all second-order critical points of (RPp) reveal KKT points. Also, for concave f , we show
the same for p > d+1

d+3n, and argue that p > p∗ is sufficient under an additional condition we
believe to be mild. Hence, for linear f , above a certain threshold for p, all second-order critical
points of (RPp) are global optimizers. The condition is stronger than the one proposed in [20],
and the statement is about second-order critical points, rather than about local optimizers
of (RPp). There are no similar results for convex f , as then solutions can have any rank.

We close the paper with numerical experiments showing the efficiency of the staircase algo-
rithm to solve (P) on certain synchronization problems involving rotations and permutations,
as compared to IPM’s and SDPLR.

We note that, up to a linear change of variable, problem (P) also encompasses constraints
of the form Xii = Bi where each Bi is positive definite. We assume all diagonal blocks have
identical size d as this simplifies exposition, but the proposed method can easily accommodate
inhomogeneous sizes, and many of the developments go through for complex matrices as well.

1.2 Applications

Problem (RPp) and its relaxation (P) appear in numerous applications. Many of those belong
to the class of synchronization problems, which consist in estimating group elements from
measurements of pairwise ratios. Further applications are also described, e.g., in [66, 52, 9].

Combinatorial problems can be modeled in (RPp) with d = p = 1. A seminal example is
Max-Cut: the problem of clustering a graph in two classes, so as to maximize the weight of
the edges joining the two classes. The cost f is linear, proportional to the graph Laplacian.
Its relaxation to (P) is the subject of a deep analysis by Goemans and Williamson [37], which
paved the way to the type of lifts considered here. See [31, eq. (3)] for a recent application
of Max-Cut to genomics. The same setup, but with different linear costs, appears in the
stochastic block model [1], in community detection [27], in maximum a posteriori
(MAP) inference in Markov random fields with binary variables and pairwise interac-
tions [36] and in robust PCA [49, Alg. 1]. All of these study the effects of the relaxation
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on the final outcome, mostly under random data models. Their linear cost matrices are often
structured (sparse or low-rank), which is easily exploited here.

Spherical embeddings is the general problem of estimating points on a sphere in Rp, and
appears notably in machine learning for classification [82] and in the fundamental problem
of packing spheres on a sphere [26]. It is modeled by (RPp) with d = 1, p > 1. The
same setup also models correlation matrix completion and approximation [38]. In the
latter, an algorithm to solve (P) is proposed, which inspired [42], which inspired this work.

Synchronization of rotations is the problem of estimating m rotation matrices (orthog-
onal matrices with determinant 1, to exclude reflections), based on pairwise relative rota-
tion measurements. It is modeled in (RPp) with d = p > 1 (often, 2 or 3) and comes up
in structure from motion [7], pose graph estimation [21], global registration [24],
the generalized Procrustes problem [73] and simultaneous localization and map-
ping (SLAM) [22]. It serves in global camera path estimation [18], scan alignment [15, 79],
and sensor network localization and the molecule problem [29, 30]. In many of these prob-
lems, translations must be estimated as well, and it has often been shown that rotations and
translations are best estimated separately [22, Fig. 1]. Here, (RPp) can easily accommodate
the determinant constraint: it comes down to picking one of the connected components of
St(d, p)m, as in [16]. The relaxation (P) ignores this, though; see [63] for relaxations which
explicitly model this difference (at additional computational cost). The problem of estimating
orthogonal matrices appears notably in the noncommutative little Grothendieck prob-
lem [52, 9]. In the latter, the relaxation (P) with linear f is called Orthogonal-Cut, and
its effect on (RPp) is analyzed. The same relaxation with a nonsmooth cost, for robust esti-
mation, is proposed and analyzed in [79]. See also [8] for another robust formulation of the
same problem, based on low-rank + sparse modeling.

The common lines problem in Cryo-EM is an important biomedical imaging instance
of (RPp), where orthonormal matrices are to be estimated with d = 2, p = 3 [80].

Phase synchronization and recovery can be modeled with p = d = 2 (as phases are
rotations in R2). It is sometimes attractive to model phases as unit-modulus complex numbers
instead, as is done in [66] for phase synchronization, with the same SDP relaxation. This can
be used for clock synchronization. See [10] for a study of the tightness of this SDP, and [28]
for an application to ranking. The Phase-Cut algorithm for phase recovery uses the same
SDP [78], with a different linear cost. While not explicitly treated, many of the results in this
paper extend to the complex case.

1.3 Related work

Problem (RPp) is an instance of optimization on manifolds [4]. Optimization over orthonormal
matrices is also studied in, e.g., [34, 81]. Being equivalent to (P) with a rank constraint, (RPp)
also falls within the scope of optimization over matrices with bounded rank [64, 50], where
the latter is also an extension of [42], in the same way that this work is. The particular case
of optimization over bounded-rank positive semidefinite matrices with linear constraints was
already addressed in [72]. The same without positive semidefiniteness constraint is studied
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recently in [46], also with a discussion of global optimality of second-order critical points. With
a linear cost f , problem (RPp) (which then has a quadratic cost g) is a subclass of quadratically
constrained quadratic programming (QCQP). QCQP’s and their SDP relaxations have been
extensively studied, notably in [53, 68], with particular attention to approximation ratios.
For (P), these approximation ratios can be found in [9].

In part owing to the success of (P) with linear f in adequately solving a myriad of hard
problems, there has been strong interest in developing fast, large-scale SDP solvers. The
present paper is one example of such a solver, restricted to the class of problems (P). SDPLR
is a more generic such solver [19, 20]. See also [76] for a review, and [32] for a recent low-
complexity example with precise convergence results, but which does not handle constraints.

Much of this paper is concerned with characterizing the rank of solutions of (P), especially
with respect to how large p must be allowed to grow in (RPp) to solve (P). There is also
considerable value in determining under what conditions (P) admits solutions of the desired
rank for a specific application, that is: when is the relaxation tight? This question is partially
answered in [10] for the closely related phase synchronization problem, under a stochastic
model for the data. See [1] for a proof in the stochastic block model, and [6] for a study
of phase transitions in random convex programs. There also exist deterministic tightness
results, typically relying on special structure in a graph underlying the problem data. See for
example [69, 63, 61]. See also Appendix A for a deterministic proof of tightness in the case of
single-cycle synchronization of rotations. The proof rests on the availability of a closed-form
expression for the dual matrix S (21), and for the solution to be certified. With the same
ingredients, it is easy to show, for example, that (P) is tight for Max-Cut when the graph is
bipartite.

Semidefinite relaxations in the form of (P) with additional constraints have also appeared
in the literature. In particular, this occurs in estimation of rotations, with explicit care for
the determinant constraints: Saunderson et al. [63] explicitly constrain off-diagonal blocks to
belong to the convex hull of the rotation group; this is not necessary for the orthogonal group—
see Proposition 2.1. Similarly, for synchronization of permutations in joint shape matching,
off-diagonal blocks are restricted to be doubly stochastic [25, 40]. Finally, in recent work,
Bandeira et al. [11] study a more powerful class of synchronization problems with additional
linear constraints of various forms. An example with an additional nonlinear constraint
appears in [79], which imposes an upperbound on the spectral norm of X. All of these are
motivation to generalize the framework studied here, in future work.

We mention in passing that the MaxBet and MaxDiff problems [74] do not fall within the
scope of this paper. Indeed, although they also involve estimating orthonormal matrices as
in (RPp), their cost function has a different type of invariance, which would also lead to a
different type of relaxation.

1.4 Notation

The size parameters obey 1 ≤ d ≤ p ≤ n = md. Throughout this paper, matrices A ∈ Rn×n
are thought of as block matrices with blocks of size d × d. Subscript indexing such as Aij
refers to the block on the ith row and jth column of blocks, 1 ≤ i, j ≤ m. For Z ∈ Rn×p, Zi
refers to the ith slice of size d × p, 1 ≤ i ≤ m. The Kronecker product is written ⊗ and vec
vectorizes a matrix by stacking its columns on top of each other. A real number a is rounded
down as bac. The operator norm ‖A‖op = σmax(A) is the largest singular value of a matrix,
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and its Frobenius norm ‖A‖F is the `2-norm of vec(A). Sn×n is the set of symmetric matrices
of size n, and A � 0 means A ∈ Sn×n is positive semidefinite. sym(A) = (A+A>)/2 extracts
the symmetric part of a matrix. O(d) is the group of orthogonal matrices of size d. kerL
denotes the null-space, or kernel, of a linear operator.

2 Geometry

Both search spaces of (RPp) and (P) enjoy rich geometry, which leads to efficient analytical
and numerical tools for the study of these optimization problems. The former is a smooth
Riemannian manifold, while the latter is a compact convex set. Figure 1 depicts the two.

2.1 Smooth geometry of the rank-restricted search space

Endow Rn×p with the classical Euclidean metric 〈U1, U2〉 = trace(U>1U2), corresponding to
the Frobenius norm: ‖U‖2F = 〈U,U〉. We view the search space of (RPp) as a submanifold
of Rn×p and endow it with the Riemannian submanifold geometry [4]. First, define a linear
operator symblockdiag : Rn×n → Sn×n which symmetrizes diagonal blocks and zeroes out all
other blocks:

symblockdiag(M)ij =

{
Mii+M

>
ii

2 if i = j,

0 otherwise.
(4)

This allows for a simple definition of the manifold via an equality constraint as

St(d, p)m =
{
Y ∈ Rn×p : symblockdiag(Y Y >) = In

}
. (5)

The set is non-empty if p ≥ d. It is connected if p > d. Counting dimensions yields
dim St(d, p)m = np − md(d + 1)/2. The tangent space to St(d, p)m at Y is a subspace of
Rn×p obtained by differentiating the equality constraint:

TY St(d, p)m =
{
Ẏ ∈ Rn×p : symblockdiag

(
Ẏ Y >+ Y Ẏ >

)
= 0
}
. (6)

Among the tangent vectors are all vectors of the form Y Ω, for Ω ∈ Rp×p skew-symmetric:
these correspond to “vertical directions”, in the sense that following them does not affect the
product Y Y > (at first order). Each tangent space is equipped with a restriction of the metric
〈·, ·〉, thus making St(d, p)m a Riemannian submanifold of Rn×p. The orthogonal projector
from the embedding space Rn×p to the tangent space at Y is

ProjY (Z) = Z − symblockdiag(ZY >)Y. (7)

The total computational cost of a projection is thus O(m · d2p) = O(ndp) flops.
The optimization problem (RPp) involves a function g(Y ) = f(Y Y >) defined over Rn×p.

Denote its classical, Euclidean gradient at Y as ∇g(Y ). The Riemannian gradient of g at
Y , grad g(Y ), is defined as the unique tangent vector at Y such that, for all tangent Ẏ ,
〈grad g(Y ), Ẏ 〉 = 〈∇g(Y ), Ẏ 〉. Naturally, this is given by the projection of the classical gradient
to the tangent space [4, eq. (3.37)]:

grad g(Y ) = ProjY (∇g(Y )) = 2 ProjY

(
∇f(Y Y >)Y

)
, (8)

8



Figure 1: (Left) For m = 3, d = 1, the set C (2) contains all positive semidefinite matrices of
the form X = [1, a, b; a, 1, c; b, c, 1]. It is here represented in coordinates (a, b, c). The interior
of the shell contains the rank-3 matrices; the four extreme points (black dots) are the rank-1
matrices; and the remainder of the boundary is the (smooth) set of rank-2 matrices. That
smooth geometry breaks down at the rank-1 matrices. Note that for d > 1, extreme points of
rank d are no longer isolated. (Right) For m = 3, d = 1, p = 2, the set St(d, p)m (1) parame-
terizes the matrices of rank at most 2 in C (redundantly). In this case, St(d, p)m corresponds
to a product of three circles in 2D: Y = [cosα1, sinα1; cosα2, sinα2; cosα3, sinα3] ∈ St(d, p)m.
One of these degrees of freedom is redundant, because the factorization of X ∈ C as Y Y > is
not unique. The figure represents the remaining degrees of freedom after fixing α1 = 0. Notice
how accepting the redundancy in the parameterization allows for a smooth representation of
the nonsmooth set of bounded rank matrices in C. Color codes for ‖X‖F = ‖Y Y >‖F.
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where ∇f(X) is the classical gradient of f , a symmetric3 matrix of size n, and we used (10).
Furthermore, denote by ∇2g(Y ) the classical Hessian of g at Y . This is a symmetric operator
on Rn×p. The Riemannian Hessian of g at Y is a symmetric operator on the tangent space
at Y obtained as the projection of the derivative of the gradient vector field [4, eq. (5.15)]:

Hess g(Y )[Ẏ ] = ProjY

(
D
(
Y 7→ ProjY (∇g(Y ))

)
(Y )[Ẏ ]

)
= ProjY

(
∇2g(Y )[Ẏ ]− symblockdiag

(
∇g(Y )Y >

)
Ẏ
)
, (9)

where D denotes a classical directional derivative and we used ProjY ◦ ProjY = ProjY . For
future reference, we note these expressions of the derivatives of g in terms of those of f :

∇g(Y ) = 2∇f(X)Y, and (10)

∇2g(Y )[Ẏ ] = 2
(
∇2f(X)[Ẋ]Y +∇f(X)Ẏ

)
, with Ẋ = Ẏ Y >+ Y Ẏ >. (11)

Optimization algorithms on Riemannian manifolds typically are iterative. As such, they
require a means of moving away from a point Y along a prescribed tangent direction Ẏ , to
reach a new point on the manifold: the next iterate. Since Y + Ẏ does not, in general, belong
to the manifold, extra operations are required. Retractions achieve exactly this [4, § 4.1]. One
possible retraction for (1) is as follows. For each d× p “slice” i in {1, . . . ,m},(

RetractionY (Ẏ )
)
i

= UiV
>
i , with Yi + Ẏi = UiΣiV

>
i , (12)

where UiΣiV
>
i is a thin singular value decomposition of the ith slice Yi + Ẏi. This retraction

projects each slice of Y + Ẏ to the closest orthonormal matrix. Consequently, this is even a
second-order retraction [2]. The total cost of computing a retraction is O(m · (p2d + d3)) =
O(np2) flops.

2.2 Convex geometry of the full search space

The optimization problem (P) is defined over the compact convex set

C = {X ∈ Sn×n : X � 0 and Xii = Id for i = 1 . . .m}.

For d = 1, this is the elliptope, or set of correlation matrices [44]. Often, we hope to recover
matrices X in C such that X has rank d, or such that off-diagonal blocks Xij are orthogonal.
The following proposition shows that these two considerations are equivalent, and that the
convex relaxation leading to C is tight in that sense (the tightest relaxation would consider
the convex hull of rank-d matrices in C, but this is difficult to handle4).

Proposition 2.1. For all X ∈ C, all blocks Xij are in the convex hull of O(d), that is,
σmax(Xij) ≤ 1. Furthermore, rank(X) = d if and only if Xij ∈ O(d) for all i, j.

3∇f(X) is symmetric because f is formally defined over the symmetric matrices. If the gradient of f over
the square matrices is not symmetric, ∇f(X) is obtained by extracting its symmetric part.

4Let C̃ be the convex hull of rank-d matrices in C. The extreme points of C̃ are these matrices [59, Cor. 18.3.1].
Thus, optimizing a linear cost function over C̃ solves (RPd), which is NP-hard. Hence, there probably does
exist an efficient representation of C̃.
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Proof. Since X is positive semidefinite, for all i 6= j, the submatrix formed by the blocks
Xii, Xij , Xji and Xjj is positive semidefinite. By Schur, this holds if and only if X>ijXij � Id,
which in turn happens if and only if all singular values of Xij are at most 1. The set of such
matrices is the convex hull of all orthogonal matrices of size d [62].

Consider Y ∈ St(d, p)m such that rank(X) = p and X = Y Y >. Clearly, if p = d,
Xij = YiY

>
j is orthogonal, since all Yi’s are orthogonal. Conversely, if Xij is orthogonal, then

the rows of Yi and Yj span the same subspace. Indeed, YiY
>
j YjY

>
i = Id. Multiply by Yi on

the right. Now notice that Y >k Yk is an orthogonal projector onto the subspace spanned by the
rows of Yk. Since Yi remains unaffected by such a projection first on the subspace of Yj then
again on the subspace of Yi, they must span the same subspace. Hence, fixing j = 1, for each
i, there exists Qi ∈ O(d) such that Yi = QiY1. Finally, Y = diag(Id, Q2, . . . , Qm)(1m×1 ⊗ Y1)
(where ⊗ is the Kronecker product), which confirms that Y and X have rank d. Notice that
this proof further shows that X has rank d if and only if there is a spanning tree of edges
(i, j) on an m-nodes graph such that the Xij ’s are orthogonal (in which case they are all
orthogonal).

The set C may be decomposed into faces of various dimensions.

Definition 2.1 (faces, §18 in [59]). A face of C is a convex subset F of C such that every
(closed) line segment in C with a relative interior point in F has both endpoints in F . The
empty set and C itself are faces of C.

By [59, Thm. 18.2], the collection of relative interiors5 of the non-empty faces forms a
partition of C. That is, each X ∈ C is in the relative interior of exactly one face of C, called
FX . Furthermore, all faces of C are exposed [58, Cor. 1], that is, for every face F , there exists
a linear function f such that F is the set of solutions of (P). Of particular interest are the
zero-dimensional faces of C (singletons), called its extreme points.

Definition 2.2 (Extreme and exposed points). X ∈ C is an extreme point of C if there does
not exist X ′, X ′′ ∈ C\{X} and 0 < λ < 1 such that X = λX ′ + (1− λ)X ′′. X is an exposed
point of C if there exists C such that X is the unique maximizer of 〈C,X〉 in C.

In other words, X is extreme if it does not lie on an open line segment included in C. Since
C is compact, it is the convex hull of its extreme points [59, Cor. 18.5.1]. Extreme points are of
interest notably because they often arise as the solution of optimization problems. Specifically,
if f is a concave function (in particular, if f is linear), then f attains its minimum on C at
one of its extreme points [59, Cor. 32.3.2].

Following the construction in the proof of [56, Thm. 2.1], given Y ∈ Rn×p of full rank such
that X = Y Y > (rank(X) = p), we find that

FX =
{
X̃ = Y (Ip +A)Y > : A ∈ kerLX and Ip +A � 0

}
, with (13)

LX : Sp×p → (Sd×d)m : A 7→ LX(A) =
(
Y1AY

>
1 , · · · , YmAY >m

)
. (14)

The dimension of FX is the dimension of the kernel of LX . The rank-nullity theorem gives a
lowerbound (see also Theorem 3.16 for an upperbound):

dimFX =
p(p+ 1)

2
− rankLX ≥

p(p+ 1)

2
−md(d+ 1)

2
, ∆. (15)

5The relative interior of a singleton is the singleton.
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It follows that extreme points X (i.e., points such that dimFX = 0) have small rank:

d ≤ rank(X) ≤ p∗ :=
(√

1 + 4md(d+ 1)− 1
)
/2. (16)

Note that ∆ ≥ 0 when p ≥ p∗.

Remark 2.2. For linear f , (P) admits an extreme point as global optimizer, so that (RPp)
and (P) have the same optimal value as soon as p ≥ p∗ (16). In other words: for linear
f , (RPp) is not NP-hard if p ≥ p∗.

Not all feasible X’s with rank as in (16) are extreme. For example, setting d = 1 and
m ≥ 3 as in Figure 1, select two distinct, admissible matrices of rank 1, X0 and X1. For all
0 < λ < 1, the matrix Xλ = λX1 +(1−λ)X0, lying on the open line segment between X0 and
X1, is admissible and has rank 2. Thus, Xλ satisfies (16), but it is not an extreme point, by
construction. Notwithstanding, the expectation that LX is generically of full rank suggests
that almost all feasible X’s satisfying (16) should be extreme; an intuition that is supported
by Figure 1. More generally, in Theorem B.1, we prove for d = 1 that dimFX = ∆ for almost
all X of rank p.

Many applications look for solutions of rank d. All X’s of rank d are exposed (hence
extreme), meaning they can all be recovered as unique solutions of (P).

Proposition 2.3. For all X ∈ C, ‖X‖2F ≤ m2d. Furthermore, ‖X‖2F = m2d if and only if
rank(X) = d. In particular, each X ∈ C of rank d is an exposed extreme point of C.

Proof. Let σ1(Xij) ≥ · · · ≥ σd(Xij) denote the singular values of Xij . By Proposition 2.1,
σk(Xij) ≤ 1 for all i, j, k. Hence,

‖X‖2F =

m∑
i,j=1

‖Xij‖2F =

m∑
i,j=1

d∑
k=1

σ2k(Xij) ≤ m2d. (17)

The upperbound is attained if and only if σk(Xij) = 1 for all i, j, k, thus, if and only all Xij ’s
are orthogonal. By Proposition 2.1, this is the case if and only if rank(X) = d. Now consider
X has rank d. We show it is exposed (and hence extreme):

max
X̂∈C

〈X, X̂〉 ≤ max
‖X̂‖2F≤m2d

〈X, X̂〉 ≤ ‖X‖F · max
‖X̂‖2F≤m2d

‖X̂‖F = m2d. (18)

The second inequality follows by Cauchy-Schwarz, and equality is attained if and only if
X̂ = X, which is in C. Thus, both max problems admit X as unique solution, confirming
that X is an exposed extreme point.

Remark 2.4. Proposition 2.3 is an extension of Theorem 1 in [48] to the case d > 1. We note
that the proof used in the latter reference does not generalize to d > 1. Indeed, let λ(X) ∈ Rmd
denote the vector of (nonnegative) eigenvalues of X. It holds that d ≤ ‖λ(X)‖0 = rank(X) ≤
md, ‖λ(X)‖1 = trace(X) = md and ‖λ(X)‖2 = ‖X‖F ≤ m

√
d. It is well known that the

1-norm and the 2-norm of a vector coincide if and only if it has at most one nonzero entry.
For d = 1, Malick [48] uses this to show that ‖X‖F is maximal if and only if X has rank
1. For d > 1 though, there exist vectors x ∈ Rmd with the prescribed 1-norm and maximal
2-norm, but with sparsity larger than d. For example, m = d = 2 and x = [8, 2, 2, 0]/3.
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3 From second-order critical points Y to KKT points X

In this section, we show that rank-deficient second-order critical points Y of (RPp) yield KKT
points X = Y Y > of (P). Furthermore, when Y is second-order critical but X is not KKT,
it is shown how to escape the saddle point by increasing p. If p increases all the way to n,
then all second-order critical points reveal KKT points. The proofs parallel those in [42]. The
main novelty is explicit bounds on p such that all second-order critical points of (RPp) reveal
KKT points. The proofs bring us to consider the facial structure of C.

A key ingredient for all proofs in this section is the availability of an explicit matrix
S(X) (21) which is positive semidefinite if and only if X is KKT (Theorem 3.3). The for-
mula for S is simply read off from the first-order optimality conditions of (RPp), owing to
smoothness of the latter.

Lemma 3.1 (Necessary optimality conditions for (P)). X ∈ C is called a KKT point for (P)
if there exist a symmetric matrix Ŝ ∈ Sn×n and a symmetric, block-diagonal matrix Λ̂ ∈ Sn×n
(dual variables) such that

ŜX = 0, Ŝ = ∇f(X) + Λ̂, and Ŝ � 0.

If X is a local optimizer for (P), then X is a KKT point. If f is convex, all KKT points are
global optimizers.

Proof. Apply Theorems 3.25 and 3.34, and Example 3.36 in [60]. KKT conditions are neces-
sary since Slater’s condition holds: In is feasible for (P) and it is strictly positive definite.

Lemma 3.2 (Necessary optimality conditions for (RPp)). Let Y ∈ St(d, p)m and X = Y Y >.
A critical point of (RPp) satisfies grad g(Y ) = 0, that is,(

∇f(X)− symblockdiag(∇f(X)X)
)
Y = 0. (19)

A second-order critical point is a critical point which satisfies Hess g(Y ) � 0, that is,

for all Ẏ ∈ TY St(d, p)m,
〈
Ẏ ,∇2g(Y )[Ẏ ]− symblockdiag

(
∇g(Y )Y >

)
Ẏ
〉
≥ 0. (20)

If Y is a local optimizer for (RPp), then it is a second-order critical point.

Proof. This is a direct generalization of the classical necessary optimality conditions for un-
constrained optimization [14, Prop. 1.1.1] to the Riemannian setting, as per the formalism
in [4, 83]. Use equations (7), (8) and (9) and the fact that ProjY is self-adjoint to obtain
equations (19) and (20).

Lemmas 3.1 and 3.2 suggest the definition of an (as yet merely tentative) formula for the
dual certificate Ŝ, based on (19):

S = S(X) = ∇f(X)− symblockdiag(∇f(X)X) . (21)

Indeed, for any critical point Y of (RPp), it holds (with X = Y Y >) that SY = 0, so that
SX = 0. In that case, for p = d, S can be advantageously interpreted as a graph Laplacian
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(up to a change of variable6), as is often the case for dual certificates of estimation problems
on graphs [10, 33]. We now show that S(X) is indeed the unique possible dual certificate for
any feasible X. (This is similar to, but different from, Theorem 4 in [42]; a complex version
appears in [10] for d = 1.)

Theorem 3.3 (S is the right certificate). X ∈ C is a KKT point for (P) if and only if S (21)
is positive semidefinite. If so, Ŝ = S is the unique dual certificate for Lemma 3.1.

Proof. We show the if and only if parts of the first statement separately.

⇐: By construction, trace(SX) = 0. Since both S and X are positive semidefinite, this
implies SX = 0. Apply Lemma 3.1 with Ŝ = S and Λ̂ = − symblockdiag(∇f(X)X).

⇒: Since X is a KKT point for (P), there exist Ŝ � 0 and Λ̂ symmetric, block-diagonal
satisfying the conditions in Lemma 3.1. In particular, ŜX = 0 and ∇f(X) = Ŝ − Λ̂.

Thus, ∇f(X)X = −Λ̂X and symblockdiag(∇f(X)X) = − symblockdiag
(

Λ̂X
)

= −Λ̂.

Here, we used both the fact that Λ̂ is symmetric, block-diagonal and the fact that
Xii = Id. Consequently, S = ∇f(X)− symblockdiag(∇f(X)X) = Ŝ − Λ̂ + Λ̂ = Ŝ � 0.

The last point also shows there exists only one pair (Ŝ, Λ̂) certifying X is a KKT point.

Notice how the Riemannian structure underlying problem (P) made it possible to simply
read off an analytical expression for a dual certificate from the necessary optimality conditions
of (RPp). This smooth geometry also leads to uniqueness of the dual certificate (this is
connected to nondegeneracy [5, Thm. 7]). Theorem 3.3 makes for an unusually comfortable
situation and will be helpful throughout the paper.

All important points of (P) give rise to important points in (RPp) for sufficiently large p,
meaning we do not run the risk of missing features of the former by studying the latter.

Proposition 3.4 (No information loss). Let X ∈ C and p ≥ rank(X). Consider any Y ∈
St(d, p)m such that X = Y Y >. If X is a local minimizer of (P), then Y is a local minimizer
of (RPp). If X is a KKT point, then Y is a critical point.

Proof. First claim: X is optimal in a neighborhood U ⊆ C, X ∈ intU . Let U be the set of
Ỹ ∈ St(d, p)m such that Ỹ Ỹ >∈ U ; U is a neighborhood of Y in St(d, p)m and Y is optimal in
it. Second claim: X is KKT⇒ SX = 0⇔ SY = 0⇔ Y is critical.

For convex f , we can make the following statement regarding uniqueness of the solution.

Theorem 3.5. Assume f is convex. If X ∈ C is an extreme point for (P) (which is true in
particular if rank(X) = d), and S � 0, and rank(X) + rank(S) = n (strict complementarity),
then X is the unique global optimizer of (P).

6For Y a critical point of (RPp) with p = d, we have Y = ( Y >
1 ··· Y >

m )> with orthogonal Yi’s, and SY = 0.
Write ∇f(Y Y >) := −C for short. SY = 0 implies, after some algebra, that the (CY Y >)ii’s are symmetric.
This can be used to see that S̃ = diag(Y1, . . . , Ym)>S(Y Y >) diag(Y1, . . . , Ym) is a matrix with off-diagonal
blocks equal to −Y >i CijYj and diagonal blocks equal to

∑
j 6=i Y

>
i CijYj . Thus, S̃ is exactly the Laplacian of

the graph with m nodes and edge “weights” given by the matrices Y >i CijYj .

14



Proof. From Theorem 3.3, it is clear that X is a global optimizer. We prove by contradiction
that it is unique. Let X ′ 6= X be another global optimizer. Since (P) is a convex problem in
this setting, f is constant over the whole (optimal) segment t 7→ X + t(X ′ −X) for t ∈ [0, 1].
Hence, the directional derivative of f at X along Ẋ = X ′ −X is zero:

0 = 〈∇f(X), Ẋ〉
= 〈S + symblockdiag(∇f(X)X), Ẋ〉 (definition of S (21))

= 〈S, Ẋ〉 (diagonal blocks of Ẋ are zero)

= 〈S,X ′〉 (SX = 0).

Since both S and X ′ are positive semidefinite, it ensues that SX ′ = 0. (Note that for linear
f , this shows S is the dual certificate for all global optimizers of (P), not only for X.) Hence,
SẊ = 0.

Let p = rank(X) and Y ∈ Rn×p be a full-rank matrix such that X = Y Y >. Strict comple-
mentarity and SX = 0 imply the columns of Y form a basis for the kernel of S. Hence, SẊ = 0
ensures that Ẋ = Y AY > for some A ∈ Sp×p, A 6= 0, such that symblockdiag(Y AY >) = 0. In
other words, X ′ = X + Ẋ = Y (Ip + A)Y > is in the face FX . This is a contradiction, since
FX = {X}.

Remark 3.6. In general, the condition that X be an extreme point in the previous theorem
cannot be removed. Indeed, if f(X) ≡ 0, then all admissible X’s are globally optimal and
S(X) ≡ 0 � 0. In particular, X = In satisfies strict complementarity, but if m > 1, it is not
extreme, and it is not a unique global optimizer. Likewise, any rank-d admissible X is extreme
and globally optimal, but does not satisfy strict complementarity. Similar examples can be built
with nonzero linear costs f(X) = 〈C,X〉, where the sparsity pattern of C corresponds to a
disconnected graph.

Conversely, it is not true in general that uniqueness of the global optimizer implies ex-
tremeness or strict complementarity. Simply consider f(X) = ‖X −X0‖2F with X0 ∈ C: the
global optimizer X = X0 is unique, and ∇f(X0) = 0, so that S(X0) = 0. For m large enough,
X0 can be chosen to be both not extreme and rank deficient. For an illustration of this in
semidefinite programs, see the nice example after Theorem 10 in [5].

Continuing with convex cost functions, KKT points of (P) coincide with global optimizers.
This and the fact that (RPp) is a relaxation of (P) lead to the following summary regarding
global optimality conditions. For (RPp), these sufficient conditions are conclusive whenever
the relaxation is tight.

Corollary 3.7 (Global optimality conditions). Assume f is convex and let Y ∈ St(d, p)m;
X = Y Y > is globally optimal for (P) if and only if S � 0. If so, then Y is a global optimizer for
the nonconvex problem (RPp). Furthermore, if X is extreme (in particular, if rank(X) = d)
and if rank(X) + rank(S) = n, then X is the unique global optimizer of (P) and Y is the
unique global optimizer of (RPp), up to orthogonal action Y Q, Q ∈ O(p).

Returning to the general case of f not necessarily convex, we establish links between
(second-order) critical points of (RPp) and KKT points of (P). In doing so, it is useful to
reformulate the second-order optimality condition (20) on (RPp) in terms of S (21) and f . Let
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Y ∈ St(d, p)m and X = Y Y >. Then, Y is a second-order critical point for (RPp) if and only
if it is critical and, for all Ẏ ∈ TY St(d, p)m, with Ẋ = Ẏ Y >+Y Ẏ >, it holds that (using (11)):〈

Ẏ ,Hess g(Y )[Ẏ ]
〉

=
〈
Ẏ ,∇2g(Y )[Ẏ ]− symblockdiag

(
∇g(Y )Y >

)
Ẏ
〉

= 2
〈
Ẏ ,∇2f(X)[Ẋ]Y +∇f(X)Ẏ − symblockdiag(∇f(X)X) Ẏ

〉
= 2
〈
Ẏ ,∇2f(X)[Ẋ]Y + SẎ

〉
=
〈
Ẋ,∇2f(X)[Ẋ]

〉
+ 2
〈
Ẏ , SẎ

〉
≥ 0. (22)

Since (RPp) is essentially equivalent to (P) with the additional constraint rank(X) ≤ p,
assuming Y is optimal for (RPp), we expect X to be a KKT point at least if either of the
following holds: (1) if Y is rank deficient, since then the extra constraint is not active, meaning
it is “as if” we were solving (P); or (2) if p = n, since then the extra constraint is vacuous.
The two following theorems show this still holds for second-order critical points Y .

Theorem 3.8. If Y is a rank-deficient, second-order critical point for (RPp), then X = Y Y >

is a KKT point for (P).

Proof. By Theorem 3.3, we must show that S (21) is positive semidefinite. Since Y is rank
deficient, there exists z ∈ Rp such that z 6= 0 and Y z = 0. Furthermore, for all x ∈ Rn, the
matrix Ẏ = xz> is such that Y Ẏ >= 0. In particular, Ẏ is a tangent vector at Y (6). Since
Y is second-order critical, inequality (22) holds, and here simplifies to:〈

Ẏ , SẎ
〉

=
〈
xz>, Sxz>

〉
= ‖z‖2 · x>Sx ≥ 0.

This holds for all x ∈ Rn. Thus, S is positive semidefinite.

Theorem 3.9. If Y is square (p = n) and it is a second-order critical point for (RPn), then
X = Y Y > is a KKT point for (P). If Y is full-rank, it needs only be first-order critical for
X to be a KKT point.

Proof. If Y is rank deficient, then the result follows from Theorem 3.8. If Y is full rank, then
it is invertible. Since Y is also a critical point, first-order optimality conditions (19) imply
SY = 0, hence S = 0. This completes the proof, as per Theorem 3.3.

In particular, if f is convex and (P) has a unique solution of rank r, then all second-order
critical points of (RPp) have rank either r or p. Thus, if p is larger than the rank of a solution
of (P), we may hope that minimizing (RPp) until we reach a second-order critical point will
result in a rank-deficient Y , revealing a KKT point. Unfortunately, in general, we cannot
guarantee rank deficiency beforehand. For those cases, the following theorem and corollary
provide a means of escaping unsatisfactory critical points.

Theorem 3.10 (Escape direction (rank-deficient)). Let Y be a rank-deficient critical point
for (RPp) such that X = Y Y > is not a KKT point of (P). Then, for all nonzero vectors
z ∈ Rp and u ∈ Rn such that Y z = 0 and u>Su < 0 (21), Ẏ = uz>∈ TY St(d, p)m is a descent
direction for g from Y .
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Proof. By Theorem 3.3, u exists because X is not a KKT point. Since Y Ẏ >= 0, Ẏ is indeed
tangent at Y (6). From (22), it follows that〈

Ẏ ,Hess g(Y )[Ẏ ]
〉

= 2
〈
Ẏ , SẎ

〉
= 2‖z‖2 · u>Su < 0.

As a result, this truncated Taylor expansion holds (we use the fact that the retraction (12) is
second-order and assume ‖z‖ = 1):7

φ(t) := g(RetractionY (tẎ )) = g(Y ) + (u>Su)t2 +O(t4).

Since u>Su < 0, there exists t0 > 0 such that φ(t) < φ(0) for all t in ]0, t0[.

Corollary 3.11 (Escape direction (full-rank)). Let Y be a full-rank critical point for (RPp)
such that X = Y Y > is not a KKT point of (P). Let Y+ =

(
Y 0n×(p+−p)

)
∈ St(d, p+)m.

Then, (a) g(Y+) = g(Y ); (b) Y+ is a critical point for (RPp+); and (c) for all u ∈ Rn such

that u>Su < 0, Ẏ = ue>p+1 ∈ TY+St(d, p+)m is a descent direction for g from Y+, where
ep+1 ∈ Rp+ is a zero vector except for its (p+ 1)st entry, equal to 1.

Proof. Since Y+Y
>
+ = Y Y >, Y+ is indeed feasible for (RPp+) and g(Y+) = g(Y ). Since Y is

critical, SY = 0, so SY+ = 0: Y+ is a critical point. The rest follows from Theorem 3.10.

Later in this section, we show how to escape full-rank points without increasing the rank,
under additional assumptions—see Proposition 3.18.

An important question remains: for moderate p, how frequently should we expect to
encounter second-order critical points Y that do not correspond to KKT points of (P)? We
provide partial answers for concave f below. In particular, this covers the important case of
linear costs. The stronger results do not include strictly convex functions, as for these (P)
can have solutions of arbitrary rank.

The result below shows that Y can only be a critical point of (RPp) if Y Y > is a critical
point for (P) restricted to the face FX ; and similarly for second-order critical points. This
brings a useful corollary.

Lemma 3.12. Let Y ∈ St(d, p)m and X = Y Y >∈ C. If Y is a critical point (resp., a second-
order critical point) of (RPp), then X is a critical point (resp., a second-order critical point)
of minX̃∈FX

f(X̃), where FX (13) is the face of C which contains X in its relative interior.

7 We remark that the residue is of order 4 rather than 3, since φ is an even function of t. Indeed, let
J = diag(1, . . . , 1,−1) ∈ O(p) and consider the SVD of Y = UΣV >, such that the last column of V is
z/‖z‖. Then, Y − tẎ = (Y V − tẎ V )V >= (Y + tẎ )V JV >, because the last column of Y V is zero, and Ẏ V ’s
only nonzero column is the last one. Hence, RetractionY (−tẎ ) = RetractionY (tẎ )V JV >. These yield the
same matrix X, thus the same value of g. If the residue is bounded by Lt4, then t =

√
−u>Su/2L ensures

φ(t) ≤ φ(0)− (u>Su)2/4L. In particular, for f(X) = 〈C,X〉, the fourth-order term follows and could be used
to estimate L, to be used in a line-search for the escape:

1

4
t4 ·
[
〈C,AXA〉+ u>D

(
3 symblockdiag(CX)− 4C

)
u
]

+O(t6),

with A = symblockdiag(uu>) and D = diag(‖u1‖2, . . . , ‖um‖2)⊗ Id.
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Proof. If Y is first-order critical, then SY = 0 (21). This implies that ∇f(X) is orthogonal
to all directions Ẋ = Y Ẏ >+ Ẏ Y > for Ẏ ∈ TY St(d, p)m. Indeed, symblockdiag(Ẋ) = 0, hence

〈∇f(X), Ẋ〉 = 〈S, Ẋ〉 = 0.

(The subspace spanned by all such Ẋ’s has dimension np−md(d+1)
2 − p(p−1)

2 .) From (13), ob-

serve that Ẋ is parallel to the face FX iff Ẋ = Y AY > forA ∈ Sp×p with symblockdiag
(
Y AY >

)
=

0. Thus, ∇f(X) is, in particular, orthogonal to FX . This shows X is a first-order critical
point for minX̃∈FX

f(X̃), since X is in the relative interior of the face. Further consider (22)

for second-order critical Y and all Ẋ = Y AY >. Since Ẏ = 1
2Y A and SY = 0, it follows that

0 ≤
〈
Ẋ,∇2f(X)[Ẋ]

〉
+ 2
〈
Ẏ , SẎ

〉
=
〈
Ẋ,∇2f(X)[Ẋ]

〉
.

Thus, X is a second-order critical point for the face-restricted optimization problem.

The following corollary can be put in perspective with [20, Thm. 3.4]. The latter states
a similar result for (P) with general linear equality constraints, for linear f . Their result
characterizes local optimizers of (RPp), whereas the following result characterizes first- and
second-order critical points (computationally more manageable objects).

Corollary 3.13. Theorem 3.8 and Lemma 3.12 imply the following, for Y ∈ St(d, p)m and
X = Y Y >∈ C.

• If f is linear and Y is critical, then f is constant over FX . If furthermore Y is second-
order critical and p > bp∗c (16), then either X is globally optimal for (P), or (Y has
full rank and) the face FX has positive dimension (15) and is suboptimal.

• If f is strongly concave and Y is second-order critical, then X is an extreme point
(since Ẋ = Y AY > 6= 0 ⇒ 〈Ẏ ,Hess g(Y )[Ẏ ]〉 = 〈Ẋ,∇2f(X)[Ẋ]〉 < 0, a contradiction).
In particular, all second-order critical points of (RPp) have rank at most bp∗c, and
p > bp∗c ⇒ X is KKT (since Y must be rank-deficient).

• If f is convex (resp., strictly convex) and Y is critical, then X is optimal (resp., the
unique optimizer) of (P) restricted to FX .

For linear f , Corollary 3.13 is not quite sufficient to determine how large p must be to ex-
clude “bad” second-order critical points. Paraphrasing the comment following [20, Thm. 3.4],
the latter showed that, for linear f and p > p∗ (essentially), local optima of (RPp) are global
optima, with the caveat that positive-dimensional faces (over which f must be constant) may
harbor non-global local optima. In the literature, this has sometimes been quoted as saying
that local optima are global optima if f is not constant over any proper face of C [see, e.g.,
49, footnote 3], but there is no indication that this is a mild condition.8

We thus set out to further refine the implications of second-order criticality of Y . We do
so by leveraging the tight relationship (22) between the Hessian of the cost on (RPp) and the
dual certificate S.

8In fact, we found in numerical experiments (not reported) that, for d = 1, ∆ = 1 (almost all faces have
dimension 1, p > p∗) and a random linear cost 〈C,X〉, we could easily find a face FX of dimension 1 over
which the cost is constant but not optimal.
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Theorem 3.14. Assume f is concave. Let Y ∈ St(d, p)m be a second-order critical point
for (RPp). The matrix X = Y Y > belongs to the relative interior of the face FX (13). If Y is
rank-deficient, then S � 0. If Y is full-rank, then S has at most⌊

dimFX −∆

p

⌋
(23)

negative eigenvalues. Hence, if X is not a KKT point for (P), then it has rank p and dimFX ≥
∆ + p.

Proof. Given Theorems 3.3 and 3.8, we need only focus on full-rank Y ’s. Since Y is second-
order critical, inequality (22) holds. Since furthermore f is concave, 〈Ẋ,∇2f(X)[Ẋ]〉 ≤ 0 for
all Ẋ, so that 〈Ẏ , SẎ 〉 ≥ 0 for all Ẏ ∈ TY St(d, p)m. Let k = dim St(d, p)m and U ∈ Rnp×k,
U>U = Ik denote an orthonormal basis of the space spanned by the vectorized tangent
vectors vec(Ẏ ). Then, U>(Ip ⊗ S)U is positive semidefinite (for linear f , it inherits the
spectrum of 1

2Hess g(Y )). On the other hand, since Y is a critical point, SY = 0. Let

V ∈ Rnp×p2 , V >V = Ip2 denote an orthonormal basis of the space spanned by the vectors
vec(Y R) for R ∈ Rp×p. Clearly, (Ip ⊗ S)V = 0. Let k′ denote the dimension of the space
spanned by the columns of both U and V , and let W ∈ Rnp×k′ ,W>W = Ik′ be an orthonormal
basis for this space. It follows that M = W>(Ip ⊗ S)W is positive semidefinite.

Let λ0 ≤ · · · ≤ λn−1 denote the eigenvalues of S. Likewise, λ̃0 ≤ · · · ≤ λ̃np−1 denote the
eigenvalues of Ip ⊗ S. These are simply the eigenvalues of S, each repeated p times, thus:
λ̃i = λbi/pc. Let µ0 ≤ · · · ≤ µk′−1 denote the eigenvalues of M . The Cauchy interlacing
theorem states that, for all i,

λ̃i ≤ µi ≤ λ̃i+np−k′ . (24)

In particular, since M � 0, we have 0 ≤ µ0 ≤ λb(np−k′)/pc. It remains to determine k′.
From Section 2.1, recall that k = np − md(d + 1)/2. We now investigate how many

new dimensions V adds to U . All matrices R ∈ Rp×p admit a unique decomposition as
R = Rskew + RkerL + R(kerL)⊥ , where Rskew is skew-symmetric, RkerL is in the kernel of
LX (14) and R(kerL)⊥ is in the orthogonal complement of the latter in Sp×p. Clearly, Y Rskew

and Y RkerL are tangent vectors, thus vectorized versions of these are already in the span of
U . On the other hand, by definition, Y R(kerL)⊥ is not tangent at Y (if it is nonzero). This
raises k′ (the rank of W ) to:

k′ = k + p2 − p(p− 1)

2
− dimFX = np−md(d+ 1)

2
+
p(p+ 1)

2
− dimFX . (25)

Combine with λb(np−k′)/pc ≥ 0 and the definition of ∆ (15) to conclude.

Theorem 3.14 is particularly meaningful for linear f , considering the intuition that for
p ≥ p∗, generically, dimFX = ∆ ≥ 0 (15) (Theorem B.1 gives a proof for d = 1). Thus,
for such p, a second-order critical point is either globally optimal, or it maps to a face of
abnormally high dimension, over which f must be constant and suboptimal. We could not
produce an example of the latter. We summarize this in a corollary, followed by a question.

Corollary 3.15. Assume f is linear and fix p > p∗, hence ∆ > 0. If Y ∈ St(d, p)m is a
second-order critical point for (RPp) but X = Y Y > is not a global optimizer for (P), then
rank(X) = p, dimFX ≥ ∆ + p and f is constant over FX .
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Proof. Use Corollary 3.13, Theorem 3.14 and Theorem 3.8.

For linear f(X) = 〈C,X〉 and p > p∗, the question is the following: if C is sampled
uniformly at random from the unit-norm symmetric matrices, what is the probability that
f is constant over a face FX of dimension ∆ + p or larger, with rank(X) = p? If it is zero,
then almost surely all second-order critical points of (RPp) are global optimizers. We do not
answer this question here, but refer to Theorem B.1 to argue that there are few such faces.

Theorem 3.14 is motivation to investigate upper-bounds on the dimensions of faces of C.
The following result extends [44, Thm. 3.1(i)] to d ≥ 1.

Theorem 3.16. If X ∈ C has rank p, then the face FX (13) has dimension bounded as:

p(p+ 1)

2
− nd+ 1

2
≤ dimFX ≤

p(p+ 1)

2
− pd+ 1

2
. (26)

If p is an integer multiple of d, the upperbound is attained for some X.

Proof. Inequality (15) covers the lower bound. It remains to show that LX(A) = 0 imposes
at least p(d+ 1)/2 linearly independent constraints on A ∈ Sp×p. Let Y ∈ St(d, p)m be such
that X = Y Y >, and let y1, . . . , yn ∈ Rp denote the rows of Y , transposed. Greedily select p
linearly independent rows of Y , in order, such that row i is picked iff it is linearly independent
from rows y1 to yi−1. This is always possible since Y has full rank. Write t = {t1 < · · · < tp}
to denote the indices of selected rows. Write sk = {((k − 1)d + 1), . . . , kd} to denote the
indices of rows in slice Yk, and let ck = sk ∩ t be the indices of selected rows in that slice.

For x1, . . . , xp ∈ Rp linearly independent, the p(p+ 1)/2 symmetric matrices xix
>
j + xjx

>
i

form a basis of Sp×p—see for example [44, Lem. 2.1]. Defining Eij = yiy
>
j + yjy

>
i = Eji, this

means Et = {Et` ,t`′ : `, `′ = 1 . . . p} forms a basis of Sp×p. Similarly, since each slice Yk has
orthonormal rows, the matrices {Eij : i, j ∈ sk} are linearly independent.

The constraint LX(A) = 0 means 〈A,Eij〉 = 0 for each k and for each i, j ∈ sk. To
establish the theorem, we need to extract a subset T of at least p(d+1)/2 of these md(d+1)/2
constraint matrices, and guarantee their linear independence. To this end, let

T = {Eij : k ∈ {1, . . . ,m} and i ∈ ck, j ∈ sk}. (27)

That is, for each slice k, T includes all constraints of that slice which involve at least one of the
selected rows. For each slice k, there are |ck|d− |ck|(|ck|−1)2 such constraints—note the correction
for double-counting the Eij ’s where both i and j are in ck. Thus, using |c1|+ · · ·+ |cm| = p,
the cardinality of T is:

|T | =
m∑
k=1

|ck|d−
|ck|(|ck| − 1)

2
= p(d+ 1/2)− 1

2

m∑
k=1

|ck|2. (28)

We first show matrices in T are linearly independent. Then, we show |T | is large enough.
Consider one Eij ∈ T : i = t` for some ` (otherwise, permute i and j) and i, j ∈ sk for

some k. By construction of t, we may expand yj in terms of the rows selected in slices 1 to

k, i.e., yj =
∑`k

`′=1 αj,`′yt`′ , where `k = |c1|+ · · ·+ |ck|. As a result, Eij expands in the basis

Et as follows: Eij =
∑`k

`′=1 αj,`′Et`,t`′ . As noted before, Eij ’s contributed by a same slice k
are linearly independent. Furthermore, they expand in only a subset of the basis, namely:
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E(k)t = {Et`,t`′ : `k−1 < ` ≤ `k, `
′ ≤ `k}. For k 6= k′, E(k)t and E(k

′)
t are disjoint. Hence,

elements of T are linearly independent.
It remains to lowerbound (28). To this effect, use |ck| ≤ d to obtain:

m∑
k=1

|ck|2 ≤ max
x∈Rm:‖x‖∞≤d,‖x‖1=p

‖x‖22 =
⌊p
d

⌋
d2 +

(
p−

⌊p
d

⌋
d
)2
≤ pd.

Indeed, the maximum is attained by making as many of the entries of x as large as possible—
this can be verified using KKT conditions. In combination with (28), this confirms at least
p(d+1/2)−pd/2 = p(d+1)/2 linearly independent constraints act on A, thus upperbounding
dimFX .

To conclude, we argue that the proposed upperbound is essentially tight. Indeed, build
Y by repeating m times the d first rows of Ip, then by replacing its p first rows with Ip (to
ensure Y is full-rank). If p/d is an integer, then exactly the p/d first slices each contribute
d(d+ 1)/2 independent constraints, i.e., dimFY Y > = p(p+ 1)/2− p(d+ 1)/2.

Theorems 3.3, 3.14 and 3.16 combined give a sufficient condition on p to ensure all second-
order critical points of (RPp) correspond to KKT points of (P).

Corollary 3.17. Assume f is concave and p > d+1
d+3n. If Y ∈ St(d, p)m is a second-order

critical point for (RPp), then X = Y Y > is a KKT point for (P). If furthermore f is linear,
then all second-order critical points of (RPp) are global optimizers.

Proof. Since rank(X) ≤ p, we have dimFX − ∆ ≤ (n − p)d+1
2 . Theorem 3.14 then gives

S � 0 (21) if (n− p)(d+ 1) < 2p, which is the case. Apply Theorem 3.3 to conclude.

In particular, for the Max-Cut SDP (d = 1, f linear), this shows that computing a second-
order critical point of (RPp) with p = bn/2c + 1 certainly solves (P). This is an interesting
and new result, but of course, in practice, it is desirable (and empirically sufficient) to take
p = bp∗c + 1. In the unlikely event we would encounter a “bad” second-order critical point
with such p, the following theorem provides an escape route (for concave f) which does not
require increasing the rank. It proceeds by moving inside a face.

Proposition 3.18 (in-face rank reduction). Let Y ∈ St(d, p)m have full-rank, X = Y Y >, and
consider the symmetric operator H on Sp×p defined by H(A) = Y >symblockdiag

(
Y AY >

)
Y .

H is positive semidefinite and dim kerH = dimFX . If A ∈ kerH is nonzero, then X ′ =
Y (Ip −A/λmin(A))Y >∈ FX (on the boundary) and rank(X ′) ≤ p− 1.

Proof. Recall the definitions of FX (13) and LX (14). All follows from H = L∗XLX , where
L∗X is the adjoint of LX .

The latter proposition suggests an explicit numerical method to compute A, by computing
a minimal eigenvector ofH. ApplyingH costs O(m(d2p+p2d)) flops. Assuming p = bp∗c+1 =
Θ(d
√
m) and that up to p(p+1)/2 applications are necessary, this brings the cost of computing

A to O(d2n3) flops.
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Algorithm 1 Riemannian Staircase Algorithm

1: Input: Integers d < p1 < p2 < · · · < pk ≤ n; an initial iterate Y0 ∈ St(d, p1)
m.

2: for i = 1 . . . k do
3: Yi ← RiemannianOptimization(St(d, pi)

m, g, Yi−1) . Descent to 2nd order critical
4: if i = k or rank(Yi) < pi then
5: return Yi . Theorems 3.8 and 3.9
6: else
7: Yi ←

(
Yi 0n×(pi+1−pi)

)
. Augment Yi for the next rank

8: Z ← EscapeDirection(St(d, pi+1)
m, g, Yi) . Corollary 3.11 + line-search

9: Yi ← RetractionYi(Z) . Eq. (12)
10: end if
11: end for

4 The Riemannian staircase algorithm

The above results suggest a simple algorithm to compute KKT points of (P): for some small
value of p ≥ d + 1, find a second-order critical point Y of (RPp). If Y is rank deficient,
then Theorem 3.8 guarantees X = Y Y > is KKT for (P). Otherwise, increase p and find a
second-order critical point of (RPp+), possibly warm-starting as suggested by Corollary 3.11.
Iterating this procedure, the worst-case scenario is when p increases all the way to n, in which
case any second-order critical point of (RPn) yields a KKT point of (P), as per Theorem 3.9.
Specific results pertaining to classes of functions f limit how large p could grow. We call this
the Riemannian Staircase, listed as Algorithm 1. Of course, the hope is that the algorithm
returns for some small p, and in practice we find that it is often sufficient to take p just above
the rank of a solution.

Algorithm 1 assumes availability of a procedure RiemannianOptimization(M, g, Y0),
which returns a second-order critical point of g : M → R, with cost at most g(Y0). This
assumption is discussed below.

Inside the else-block, the augmented Yi (with additional columns of zeros) is (usually)
a saddle point. Although the second-order procedure RiemannianOptimization should be
able to escape it, we make this step explicit via the procedure EscapeDirection. The latter
can be implemented using Corollary 3.11, which indicates how computing an eigenvector of
S (21) associated to its smallest eigenvalue, combined with a line-search, allows to escape the
saddle with strict cost decrease (unless that eigenvalue is nonnegative, in which case Z = 0
and Yi is returned with YiY

>
i being KKT).

For all sufficiently smooth f , taking pk = n guarantees Algorithm 1 returns Y such
that Y Y > is a KKT point. For convex f , KKT points may have arbitrary rank, so that
allowing large pk seems necessary in general. For strongly concave f , it is sufficient to take
pk = bp∗c+1 (Corollary 3.13) ; for concave (and linear) f , it is sufficient to take pk = bd+1

d+3nc+1
(Corollary 3.17), and it is expected that pk = bp∗c + 1 should be sufficient (Corollary 3.15
and discussion).

In the latter case, in the unlikely event that Algorithm 1 terminates with Y of size n× pk,
pk ≥ bp∗c + 1, full-rank and second-order critical such that X = Y Y > is not a KKT point
of (P), it is possible to further optimize without increasing the rank. Indeed, since dimFX > 0,
Proposition 3.18 shows how to compute Y ′ such that X ′ = Y ′(Y ′)> is on the boundary of FX .
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Since f is concave, f(X ′) ≤ f(X) (Lemma 3.12). Y ′ is critical and rank-deficient. If Y ′ is
second-order critical, X ′ is KKT. Otherwise, Theorem 3.10 shows how to escape with a strict
cost decrease. Iterating this procedure as needed, the cost decreases strictly (no cycling), and
the rank p never exceeds pk. We expect this procedure to terminate since (P) admits KKT
points of rank at most bp∗c, but we do not prove this.

In practice, for the RiemannianOptimization procedure, we use the Riemannian trust-
region method (RTR) [3], through the Manopt toolbox [17]. RTR is a descent method. It
converges toward critical points regardless of the initial iterate (global convergence).9 Fur-
thermore, the stable fixed points of RTR are local optimizers, thus making convergence to
points which are not second-order critical unlikely (but not impossible). Should this happen,
Theorem 3.10 shows how to escape. Admittedly, it is unclear how many times this might have
to be repeated in the worst case.

Ideally, one would modify the RTR algorithm itself to ensure global convergence to second-
order critical points, hopefully in a polynomial number of steps. To the best of our knowledge,
algorithms with such properties have not yet been described in the Riemannian setting. Nev-
ertheless, we are hopeful that this should be possible, in the light of recent work by Cartis et al.
[23]. These authors indeed describe a modification of the classical trust-region method (for
the unconstrained case) and guarantee polynomial-time convergence to approximate second-
order critical points. Given how closely the classical convergence theory for the trust-region
method has transfered to the Riemannian setting so far, it seems reasonable to expect this
will too. Encouragingly, Sun et al. [71] achieved a strong result in this vein for dictionary
learning with RTR on a sphere. This is an interesting research venue of its own.

RTR terminates once the norm of grad g drops below a certain threshold. Thus, the re-
turned Y is not exactly a critical point, and as a result it is not, in general, exactly rank
deficient even when it should be. Numerically, we declare rank-deficiency when the condition
number of Y >Y exceeds some large threshold (say, 1010). In future work, it would be in-
teresting to relate approximate rank-deficient, second-order critical points Y to approximate
KKT points Y Y >, i.e., to lowerbound the smallest eigenvalue of S(Y Y >) given bounds on the
gradient norm at Y , on the smallest Hessian eigenvalue at Y , and on the condition number
of Y .

If a solution of rank q is sought but the obtained solution Yp ∈ St(d, p)m has rank p > q,
one heuristic is to project Yp to St(d, q)m with any reasonable algorithm (call it Yq)—for
example, compute the thin SVD of Yp = UΣV >, retain only the first q columns of UΣ and
orthonormalize each d×q slice. Then, run RiemannianOptimization(St(d, q)m, g, Yq). This
typically returns a local optimizer of the hard problem. The hope is that the detour via the
higher dimensional relaxation may help avoid many bad local traps.

9If the local optimizers of g were isolated, we could also guarantee local convergence at a quadratic rate,
but g(Y ) = g(Y Q) for all orthogonal Q, so this is never the case. In practice though, we do observe a
characteristically superlinear convergence.
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5 Special case: linear cost function

In the important special case where f is a linear function f(X) = 〈C,X〉 for some data matrix
C ∈ Sn×n, the convex problem (P) is an SDP. As per Remark 2.2, it is equivalent to (RPp)
as soon as p ≥ p∗. Remarkably, for any X ∈ C, we obtain a lower-bound on the optimal value
of the SDP, following an idea from Burer and Monteiro [20, § 6.1].

Proposition 5.1 (bounds on the SDP value). Let f(X) = 〈C,X〉 be linear and let f∗ denote
the optimal value of (P). Then, for all X ∈ C,

f(X) + n · λmin(S(X)) ≤ f∗ ≤ f(X).

Proof. The dual of (P) is the following SDP:

max trace(C − S̃), s.t. C − S̃ is symmetric, block-diagonal, and S̃ � 0.

The matrix S̃ = S−λmin(S) ·In for S = S(X) (21) is admissible. The result follows by strong
duality, owing to Slater’s condition.

Algorithm 1 solves the SDP by optimizing g in (RPp), whose differentials are:

g(Y ) = trace(Y >CY ), ∇g(Y ) = 2CY, ∇2g(Y )[Ẏ ] = 2CẎ .

As an illustrative example, we here apply Algorithm 1 and competing SDP solvers to
random instances of the orthogonal synchronization problem [9]. In this setting, one wishes
to estimate m orthogonal matrices Q1, . . . , Qm, based on noisy measurements of the relative
transformations QiQ

>
j . See the introduction for applications.

In this benchmark, for increasing values of m, target matrices of size d = 3 are generated
uniformly at random. The measurements of relative rotations are Hij = QiQ

>
j +σNij (i < j),

where σ = 0.3 is the noise level and the Nij ’s are independent random noise matrices with
i.i.d. normal entries. We also set Hji = H>ij and Hii = Id. To estimate the Qi’s from the Hij ’s,
we set C = −H/(nm) and solve (P). If the solution has rank d, this is equivalent to solving
the maximum likelihood problem:

min
Q1,...,Qm∈O(d)

∑
i,j

∥∥Hij −QiQ>j
∥∥2
F
.

Remarkably, for all instances generated, (P) admits a rank d solution, thus revealing the
true maximum likelihood estimator: a hard quantity to compute, in general. This serendipi-
tous phenomenon is partly explained in [10].

Figure 2 shows how much time it takes various solvers to find this solution of rank d (they
all do). Algorithm 1 runs RTR once on (RPp) with p = d + 1, with a random initial guess,
and returns with an optimal rank d solution. We compare against interior point methods
SeDuMi [70], SDPT3 [75] and Mosek [51] (the latter two via CVX [41]) as well as against
SDPLR [19] with and without forcing the search rank to d+ 1 (the forced version is labeled
SDPLR*). We also depict how much time it takes to simply compute the top d eigenvectors
of H, which, after projection, reveal an (empirically) equally good estimator for this problem,
but with weaker guarantees [66, 9].
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Figure 2: All methods solve (P) on problems from Section 5. The proposed staircase algorithm
is the only one to return a solution which satisfies the constraints up to machine precision.
It also returns the solution Y which is numerically closest to be of rank d. Its computational
cost seems to grow at the same rate as that of merely computing d dominant eigenvectors of
the data matrix (EIG), thus outperforming interior point methods as well as SDPLR.

6 Special case: Pseudo-Huber loss cost function

In the previous section, orthogonal synchronization is considered with Gaussian noise on the
relative measurements. Maximum likelihood estimation then naturally leads to the minimiza-
tion of a quadratic cost in Y , which simplifies to a linear cost in X.

When the relative measurements Hij include outliers, least-squares are not expected to
perform well. As an alternative, Wang and Singer [79] minimize a sum of unsquared errors,
that is, they estimate the orthogonal matrices Qi as the minimizers of

∑
i,j ‖Hij −QiQ>j ‖F.

A convex relaxation akin to the one from the previous section leads to solving (P) with the
least unsquared deviations cost f(X) =

∑
i,j ‖Hij −Xij‖F (LUD). This is similar in spirit to

the convex relaxation for robust subspace estimation presented in [45]. The authors show
that rounding the solutions of this convex program yields a good estimator, even if up to a
(random) half of the data is random. In that regime, if the non-outliers are noiseless, solving
the convex program achieves perfect recovery with high probability. They solve the problem
with an alternating direction augmented Lagrangian method (ADM).

Tools in this paper do not directly apply to the LUD cost, because it is nonsmooth.10

Unfortunately, in our experiments we also found that smoothing the LUD cost typically
leads to higher rank solutions, at a significant computational premium. We formalize this
observation in the following theorem. The assumptions on H are not restrictive: they require
just the slightest inconsistency in the measurements.

10Recent work on nonsmooth optimization on manifolds [43] may prove useful in this regard.
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Theorem 6.1 (smoothing the LUD cost suppresses rank d solutions). Let ` : R+ → R+

be an increasing function (with `′(x) > 0 if x > 0) such that f : Sn×n → R defined by
f(X) =

∑
i,j `(‖Xij −Hij‖F) is twice continuously differentiable, where each Hij = H>ji ver-

ifies ‖Hij‖op ≤ 1 (which includes orthogonal matrices), and Hii = Id. If H is not a rank-d
matrix in C, then all KKT points of (P) have rank strictly larger than d. (Otherwise, X = H
is the unique KKT point.)

Proof. The gradient of f with respect to Xij is given by ∇f(X)ij = wij(Xij − Hij), with
wij = wji = `′(‖Xij −Hij‖F)/ ‖Xij −Hij‖F > 0 if Xij 6= Hij , and wij = 0 otherwise. This
is well defined by assumption. For contradiction, assume X is a KKT point of (P) and
rank(X) = d. By Theorem 3.3, S (21) is positive semidefinite. In particular, its diagonal
blocks are positive semidefinite:

Sii = ∇f(X)ii − sym
(∑

j
∇f(X)ijXji

)
=
∑

j 6=i
wij sym

(
HijX

>
ij−XijX

>
ij

)
=
∑

j 6=i
wij sym

(
HijX

>
ij− Id

)
� 0.

The last equality follows from the fact that, since rank(X) = d, each Xij is orthogonal
(Proposition 2.1). Since ‖Hij‖op ≤ 1, each term sym(HijX

>
ij − Id) is negative semidefinite.

Thus, the Sii’s are zero (simultaneously positive and negative semidefinite), showing that
S = 0 (by Schur’s complement). Hence, the off-diagonal blocks are zero too: Sij = ∇f(X)ij =
wij(Xij −Hij) = 0, implying X = H: a contradiction.

Remark 6.2. The latter theorem applies in particular for `(x) = x2. Thus, the convex
problem (P) with f(X) = ‖X −H‖2F is not expected to admit rank d solutions in the presence
of even the smallest noise. This is in sharp contrast with the linear case, f(X) = −trace(HX),
even though these two costs differ only by a constant over the rank-d feasible X’s. The key
difference is that the linear cost is also concave. Generally speaking, this suggests that rank-d
solutions can be obtained reliably only if either the cost is nonsmooth, or if it is concave.

In view of these results, we take interest in minimizing the related smoothed cost:

g(Y ) = f(Y Y >) =
∑
i,j

`ε
(
‖HijYj − Yi‖F

)
, `ε(x) =

√
x2 + ε2 − ε→ |x| as ε→ 0. (29)

It is important to note that this function f , although it bears much resemblance with the
convex LUD cost (in fact, they coincide when rank(X) = d and ε = 0), is strongly concave
in X. Indeed, ‖HijYj − Yi‖2F is affine in Xij , so that f is a sum of square roots of affine
functions of X, and the terms under the square roots are larger than ε2 > 0 and smaller than

ε2 +
(
‖Hij‖F +

√
d
)2

. The following marks the dependence in X more explicitly:

f(X) =
∑
i,j

√
‖Hij‖2F + ‖Id‖2F − 2 〈Hij , Xij〉+ ε2 − ε,

∇f(X)ij =
−1√

‖Hij‖2F + ‖Id‖2F − 2 〈Hij , Xij〉+ ε2
Hij .
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The only difference with a smoothed LUD cost is the term ‖Id‖2F which appears instead of
‖Xij‖2F. Considering that the aim is for the Xij ’s to be orthogonal, which maximizes their
norm by Proposition 2.3, refraining from minimizing ‖Xij‖2F appears as a good start.

We may still compute a KKT point for (P), but there is no guarantee that such a point
will be even a local minimizer anymore. On the bright side, Corollary 3.13 states that, by
strong concavity of f , all KKT points of (P) are extreme points (thus they have rank at
most bp∗c (16)) and, for p > p∗, all second-order critical points of (RPp) reveal KKT points
of (P). The numerical experiment below shows that, empirically, even for ε > 0, the proposed
algorithm typically converges to a rank-d KKT point of excellent quality. Furthermore, as ε
is decreased, the quality of the found KKT point increases (with warm-starting).

The general observation that good performance can be achieved in practice using a concave
rather than a convex cost function is also found, for example, in [47]. The price to pay, as
often, is a lack of generic purpose global optimality guarantees.

We now use the proposed robust formulation of orthogonal synchronization to situations
where the sought matrices are in fact permutations11 (without modifying the algorithms).
Synchronization of permutations notably arises in image association problems in computer
vision [40, 55].

Let the Qi’s be permutations to estimate and let the Hij ’s be measurements of the relative
permutations QiQ

>
j . A subset of the measurements of a given size is selected uniformly at

random and replaced by uniformly random permutations (outliers). The other measurements
are correct. If perfect recovery of the Qi’s is achieved, then the permutations are recovered.

Figure 3 exhibits the perfect recovery phenomenon hinted by Wang and Singer [79]. We
say “hinted” as the chosen scenario does not exactly fit the assumptions of these authors. Even
in the face of many outliers, the true permutations are recovered, showing the applicability
of the proposed methods to permutation estimation.

In practice, we minimize f for some starting value ε = 1, then re-solve for decreasing values
down to ε = 10−3, warm-starting each new solve with the previous solution. The staircase
method starts with a search rank p = d+1. For up to 80% outliers, RTR converges to a rank-d,
second-order critical point of g (σd+1(Y ) ≈ 10−10, ‖grad g(Y )‖ ≤ 10−6 and λmin(Hess g(Y )) ≥
−10−10, after scaling) without the need to increase p, thus rapidly identifying a KKT point
of (P) which appears to be a global optimizer. We compare with ADM [79] optimizing the
LUD cost, but not with the IPM’s, as they rapidly run out of memory.

Another idea for robust synchronization would be to use the solver for linear cost f in
an iteratively reweighted least-squares scheme (IRLS), similarly to the successful approach
in [45], aiming to compute the LUD solution. Preliminary experiments seem to indicate this
works well. The resulting algorithm would bear some resemblance with the so-called Weiszfeld
algorithm [39].

11Permutation matrices are binary matrices with exactly one 1 on each row and column. They are orthogonal.
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Figure 3: Synchronization of m = 100 permutations of size d = 6. As explained in Section 6,
for each pair of permutations we are given a relative permutation measurement. Some fraction
of those are exact: this varies on the horizontal axis. The other measurements (selected
uniformly at random) are uniformly random. When the mean squared error (vertical axis)
is close to zero (say, below 10−6), the estimation is essentially perfect and we get back the
true permutations. Remarkably, the staircase method with the pseudo-Huber loss cost (29)
can accommodate up to 80% of outliers and still (empirically) achieve perfect recovery. It is
faster and appears more resilient than ADM [79], but unfortunately, without access to the
ground truth, we cannot claim we found a global optimum because (29) is concave. ADM, on
the other hand, comes with guarantees as it solves a convex problem.
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7 Conclusions and perspectives

We proposed a novel algorithm to compute KKT points for optimization problems over a
class of spectrahedra that come up in relaxations of various problems involving orthonormal
matrices. Our approach consists in exploiting the smooth geometry of bounded-rank subsets
of those spectrahedra, to reduce the problem to Riemannian optimization. This effectively
allows one to control how much lifting (dimension increase) is involved in the relaxation.
An investigation of both the convex and the Riemannian geometries of the total and the
bounded-rank problem showed that, under certain conditions, it is only necessary to inspect
a low-dimensional portion of the boundary of the spectrahedron. Numerical experiments
confirm the usefulness of this observation.

The present work triggers a number of questions for future investigation.

• Which spectrahedra are such that their elements of bounded rank form a smooth mani-
fold? (Journée et al. [42] cover a number of such sets.) When the search space is of such
form with additional constraints, can those be accommodated efficiently? This would
be useful to address the SDP’s in, e.g., [40, 63, 25, 11].

• What is the computational complexity of obtaining a second-order critical point of a
sufficiently smooth function on a Riemannian manifold, up to a given accuracy? This
might be answered by following work in [23, 71]. When Y is only approximately second-
order critical and rank deficient, is Y Y > approximately KKT, in a certain sense? For
linear f , Proposition 5.1 offers a positive answer.

• RTR naturally allows for preconditioning. Could this be useful for specific applications?

• For nonconvex f , the set of KKT points includes the local optimizers of (P), as well
as a number of uninteresting points. All KKT points give rise to critical points, but
not necessarily second-order critical points. Can this be used to improve guarantees?
Could we compute second-order KKT points instead, thus possibly excluding even more
spurious points? A starting point might be [60, Thm. 3.45] and [65].

• Assuming linear f , if (P) admits a unique solution of rank r (see, e.g., [10]), is it
sufficient to explore (RPp) with p = r + 1? Under the noise model of Section 5, this
appears to be true with high probability. Perhaps, this could be investigated via the
expected size of the attraction basin of the global optimizers, similarly to [71] in the
context of dictionary learning.

• Finally, regarding Corollary 3.15 and its attached question: for a random linear cost
function and p > p∗, what is the probability that (RPp) admits second-order critical
points which are not global optimizers?
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A Tightness for synchronization on a cycle

Consider synchronization on a cycle: the goal is to estimate orthogonal matrices R1, . . . , Rm ∈
O(d) based on one cycle of measurements: H1,2 ≈ R1R

>
2 , H2,3 ≈ R2R

>
3 , . . . ,Hm,1 ≈ RmR

>
1 .

This is achieved by solving (RPp) with p = d and

g(Y ) =
m∑
i=1

‖YiY >i+1−Hi,i+1‖2F =
m∑
i=1

〈YiY >i+1,−Hi,i+1〉+ constant,

with the indexing convention that Ym+1 ≡ Y1 and Hm,m+1 ≡ Hm,1. Under a permissive
condition on the measurements, Peters et al. [57] exhibit an explicit formula for the solution
(they restrict their attention to rotation matrices, that is, orthogonal matrices of determinant
+1). We show that under that same condition, the corresponding SDP relaxation (P) with

f(X) = 〈C,X〉 , C = −



0 H1,2 H>m,1
H>1,2 0 H2,3

H>2,3
. . .

. . .
. . .

. . . Hm−1,m
Hm,1 H>m−1,m 0

 (30)

is tight: there exists a unique solution of rank d which reveals the global optimum.
The proof rests on two key ingredients: (a) we have an explicit formula for the solution X

to certify, and (b) we have an explicit formula for the dual certificate S(X) to check. It seems
reasonable to expect that the result should carry over to connected graphs whose cycles have
disjoint edges.

Theorem A.1. Let H1,2, H2,3, . . . ,Hm,1 ∈ O(d) represent orthogonal measurements on a
cycle (m ≥ 3) and define their product P = H1,2 · H2,3 · · ·Hm,1 ∈ O(d). If −1 is not an
eigenvalue of P , then the semidefinite program (P) with cost (30) admits a unique solution of
rank d.

Proof. Part 1: guessing X. When the measurements are perfectly consistent, P = Id, and it
is easy to construct X: set Ym = Id and Yi = Hi,i+1Yi+1 for i = 1 . . .m− 1; then Xij = YiY

>
j .

This construction does not use Hm,1 but still achieves g(Y ) = 0 owing to P = Id, hence X
is optimal. When the cycle is inconsistent, it is reasonable to guess that the least-squares
criterion will attempt to spread the inconsistency evenly over each edge [57]. One mth of
the error is represented by an offset P 1/m—taking this principal matrix root requires P not
to have negative eigenvalues. We build Y by incorporating part of the error at each step,
appropriately aligned. First define this recurrence: Qm = Hm,1 and Qi = Hi,i+1Qi+1 for
i = (m − 1) . . . 1 (note that Q1 = P ). Then, Ym = Id and Yi = QiP

−1/mQ>iHi,i+1Yi+1 for
i = (m−1) . . . 1. As previously, Xij = YiY

>
j . It is not hard to check that Xij = QiP

(i−j)/mQ>j .
Of course, X is admissible for (P) with rank d.

Part 2: certifying X. By Theorem 3.5, it is sufficient to verify that S(X) (21) is positive
semidefinite with rank (m − 1)d. Let U be a d × d unitary matrix such that D = U∗PU is
diagonal—U always exists since P is normal—and let V = diag(Q1U, . . . , QmU) be a block-
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diagonal unitary matrix. We use V to operate a change of variables on C and X:

V ∗CV = −


0 Id D−1

Id 0 Id

Id
. . .

. . .
. . .

. . . Id
D Id 0

 , (V ∗XV )ij = D(i−j)/m. (31)

We used that D is unitary. Indeed, since P is orthogonal without 1 as an eigenvalue, its
eigenvalues are such that D = diag(eiθ1 , . . . , eiθd) for θ1, . . . , θd ∈] − π, π[. The spectrum of
S(X) is identical to that of V ∗S(X)V , thus we study:

V ∗S(X)V =


D1/m +D−1/m −Id −D−1

−Id D1/m +D−1/m −Id
−Id

. . .
. . .

. . .
. . . −Id

−D −Id D1/m +D−1/m

 . (32)

All blocks of (32) are diagonal, so that its rows and columns may be permuted (without
affecting its spectrum) to make it block diagonal, with kth block of size m given by

A =


2 cos(θk/m) −1 −e−iθk
−1 2 cos(θk/m) −1

−1
. . .

. . .
. . .

. . . −1
−eiθk −1 2 cos(θk/m)

 =

(
T u
u∗ c

)
, (33)

with T ∈ R(m−1)×(m−1), u ∈ Cm−1 and c = 2 cos(θk/m). It remains to show that A is positive
semidefinite with rank m− 1 for any θk ∈ ]−π, π[. Fortunately, T is tridiagonal and Toeplitz,
so that its whole spectrum is known explicitly [54]: λj(T ) = 2

(
cos(θk/m) − cos(jπ/m)

)
, for

j = 1 . . .m− 1. These eigenvalues are all positive. By the Cauchy interlacing theorem,

λ1(A) ≤ λ1(T ) ≤ λ2(A) ≤ λ2(T ) ≤ · · · ≤ λm−1(T ) ≤ λm(A). (34)

In particular, λ2(A), . . . , λm(A) > 0. Since the vector [ei(1/m)θk , ei(2/m)θk , . . . , ei(m/m)θk ]∗ is in
the kernel of A, it must be that λ1(A) = 0. This concludes the proof.

In general, the condition on the eigenvalues of P is necessary. Indeed, for d = 1 and
m = 3, choose the measurements such that P = −1 (for example, +1, +1 and −1) and verify
that none of the 4 admissible rank-1 matrices are optimal. For the frequent case where the
measurements are rotation matrices (that is, orthogonal with determinant +1), the condition
is not too restrictive: even if they were distributed uniformly at random, P would satisfy the
condition almost surely.
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B Generic face dimension

For d = 1, the following theorem shows almost all faces of C have minimal dimension, as
per the bound (15) [56, 12]. Key parts of the proof are due to Xiuyuan Cheng and Balázs
Gerencsér.

Theorem B.1 (Generically, faces have minimal dimension). For d = 1, if Y ∈ St(d, p)m

is selected uniformly at random, then, almost surely, dimFY Y > = max (0,∆), with ∆ =
p(p+1)

2 −md(d+1)
2 (13).

We first provide a useful lemma.

Lemma B.2. Let v1, . . . , vn be statistically independent random vectors in a vector space V
of dimension k. If for all i and for all subspaces U ⊂ V with dimU < k, Pr[vi ∈ U ] = 0,
then, almost surely, dim span{v1, . . . , vn} = min(n, k) (which is maximal).

Proof. The proof is by recurrence. Define Ut = span{v1, . . . , vt} for t ∈ {0, . . . , n}. Clearly,
dimU0 = 0. Assume dimUt = min(t, k) almost surely (a.s.). If t ≥ k, then dimUt+1 =
dimUt = k (a.s.). Otherwise, since Ut is statistically independent from vt+1, by assumption,
dimUt+1 = t+ 1 (a.s.). Thus, for all t, dimUt = min(t, k) (a.s.).

Proof. Proof of Theorem B.1. Let y1, . . . , yn ∈ Rp denote the columns of Y >. A matrix
Ẋ = Y AY > with A ∈ Sp×p is parallel to the face FX if 〈Y AY >, eie>i 〉 = 〈A, yiy>i 〉 = 0 for
all i. We study the dimension s of the space spanned by the constraint matrices Ai = yiy

>
i ,

since dimFX = p(p+1)
2 − s. We do so with Y taken uniformly at random. Thus, the yi’s are

sampled independently from N (0, Ip), then scaled to unit norm. The dimension s does not
depend on the scaling of the vectors yi, so we may safely ignore it. We note in passing that
the proof holds for more general distributions too.

We aim to apply Lemma B.2 with V = Sp×p, k = p(p+1)
2 and vi = Ai. The vi’s are

i.i.d., hence we omit the subscripts. To verify the lemma’s condition, let U be any proper
subspace of Sp×p: there exists a symmetric matrix X 6= 0 in the orthogonal complement of
U . It suffices to check that 〈X, yy>〉 = y>Xy 6= 0 (a.s.), with y ∼ N (0, Ip). Diagonalize
X = QDQ> with Q ∈ O(p). Notice that Q>y is distributed identically to y. Thus, defining
D = diag(λ1, . . . , λp) and y = (y1, . . . , yp)>, it suffices to check that

∑p
j=1 λj(y

j)2 6= 0 (a.s.).

This is indeed true, since the (yj)2 are independent: their (nontrivial) linear combination has
a density which is a convolution of (scaled) χ2

1 densities: this has no point mass at zero.

It seems reasonable to expect that this result remains valid for d ≥ 1, but we are missing
a proof.
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