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Introduction

The topic of this course is geometric inequalities with applications to metric embeddings; and
we are actually going to do things more general than metric embeddings: Metric geometry.
Today I will roughly explain what I want to cover and hopefully start proving a first major
theorem. The strategy for this course is to teach novel work. Sometimes topics will be
covered in textbooks, but a lot of these things will be a few weeks old. There are also some
things which may not have been even written yet. I want to give you a taste for what’s going
on in the field. Notes from the course I taught last spring are also available.

One of my main guidelines in choosing topics will be topics that have many accessible
open questions. I will mention open questions as we go along. I’m going to really choose
topics that have proofs which are entirely self-contained. I’m trying to assume nothing. My
intention is to make it completely clear and there should be no steps you don’t understand.

Now this is a huge area. I will explain some of the background today. I’m going to use
proofs of some major theorems as excuses to see the lemmas that go into the proofs. Some
of the theorems are very famous and major, and you’re going to see some improvements, but
along the way, we will see some lemmas which are immensely powerful. So we will always be
proving a concrete theorem. But actually somewhere along the way, there are lemmas which
have wide applicability to many many areas. These are excuses to discuss methods, though
the theorems are important.

The course can go in many directions: If some of you have some interests, we can always
change the direction of the course, so express your interests as we go along.
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Chapter 1

The Ribe Program

2/1/16

1 The Ribe Program

The main motivation for most of what we will discuss is called the Ribe Program, which is a
research program many hundreds of papers large. We will see some snapshots of it, and it all
comes from a theorem from 1975, Ribe’s rigidity theorem 1.1.9, which we will state now
and prove later in a modern way. This theorem was Martin Ribe’s dissertation, which started
a whole direction of mathematics, but after he wrote his dissertation he left mathematics.
He’s apparently a government official in Sweden. The theorem is in the context of Banach
spaces; a relation between their linear structure and their structure as metric spaces. Now
for some terminology.

Definition 1.1.1 (Banach space): A Banach space is a complete, normed vector space.
Therefore, a Banach space is equipped with a metric which defines vector length and distances
between vectors. It is complete, so every Cauchy sequence of converges to a limit defined
inside the space.

Definition 1.1.2: Let (𝑋, ‖·‖𝑋), (𝑌, ‖·‖𝑌 ) be Banach spaces. We say that 𝑋 is (crudely)
finitely representable in 𝑌 if there exists some constant 𝐾 > 0 such that for every finite-
dimensional linear subspace 𝐹 ⊆ 𝑋, there is a linear operator 𝑆 : 𝐹 → 𝑌 such that for every
𝑥 ∈ 𝐹 ,

‖𝑥‖𝑋 ≤ ‖𝑆𝑥‖𝑌 ≤ 𝐾 ‖𝑥‖𝑋 .

Note 𝐾 is decided once and for all, before the subspace 𝐹 is chosen.
(Some authors use “finitely representable” to mean that this is true for any 𝐾 = 1 + 𝜀.

We will not follow this terminology.)
Finite representability is important because it allows us to conclude that 𝑋 has the

same finite dimensional linear properties (local properties) as 𝑌 . That is, it preserves any
invariant involves finitely many vectors, their lengths, etc.
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Let’s introduce some local properties like type. To motivate the definition, consider the
triangle inequality, which says

‖𝑦1 + · · ·+ 𝑦𝑛‖𝑌 ≤ ‖𝑦1‖𝑌 + · · ·+ ‖𝑦𝑛‖𝑌 .

In what sense can we improve the triangle inequality? In 𝐿1 this is the best you can say. In
many spaces there are ways to improve it if you think about it correctly.

For any choice 𝜀1, . . . , 𝜀𝑛 ∈ {±1},⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦
𝑌

≤
𝑛∑︁
𝑖=1

‖𝑦𝑖‖𝑌 .

Definition 1.1.3: df:type Say that 𝑋 has type 𝑝 if there exists 𝑇 > 0 such that for every
𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ 𝑌 ,

E
𝜀∈{±1}𝑛

⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦
𝑌

≤ 𝑇

[︃
𝑛∑︁
𝑖=1

‖𝑦𝑗‖𝑝𝑌

]︃ 1
𝑝

.

The 𝐿𝑝 norm is always at most the 𝐿1 norm; if the lengths are spread out, this is asymptot-
ically much better. Say 𝑌 has nontrivial type if 𝑝 > 1.

For example, 𝐿𝑝(𝜇) has type min(𝑝, 2).

Later we’ll see a version of “type” for metric spaces. How far is the triangle inequality
from being an equality is a common theme in many questions. In the case of normed spaces,
this controls a lot of the geometry. Proving a result for 𝑝 > 1 is hugely important.

Proposition 1.1.4: pr:finrep-type If 𝑋 is finitely representable and 𝑌 has type 𝑝 then also 𝑋
has type 𝑝.

Proof. Let 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋. Let 𝐹 = span{𝑥1, . . . , 𝑥𝑛}. Finite representability gives me
𝑆 : 𝐹 → 𝑌 . Let 𝑦𝑖 = 𝑆𝑥𝑖. What can we say about

∑︀
𝜀𝑖𝑦𝑖?

E
𝜀

⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦
𝑌

= E
𝜀

⃦⃦⃦⃦⃦
𝑆(

𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖)

⃦⃦⃦⃦⃦
𝑌

≥ E
𝜀

⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑋𝑖

⃦⃦⃦⃦⃦
𝑋

E
𝜀

⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦
𝑌

≤ 𝑇

(︃
𝑛∑︁
𝑖=1

‖𝑆𝑥𝑖‖𝑝
)︃ 1

𝑝

≤ 𝑇𝐾

(︃
𝑛∑︁
𝑖=1

‖𝑥𝑖‖𝑝
)︃ 1

𝑝

.

Putting these two inequalities together gives the result.

8



MAT529 Metric embeddings and geometric inequalities

Theorem 1.1.5 (Kahane’s inequality). For any normed space 𝑌 and 𝑞 ≥ 1, for all 𝑛,
𝑦1, . . . , 𝑦𝑛 ∈ 𝑌 ,

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦
&𝑞

(︃
E
[︃⃦⃦⃦⃦⃦

𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦𝑞
𝑌

]︃)︃ 1
𝑞

.

Here &𝑞 means “up to a constant”; subscripts say what the constant depends on. The constant
here does not depend on the norm 𝑌 .

Kahane’s Theorem tells us that the LHS of Definition 1.1.3 can be replaced by any norm,
if we change ≤ to .. We get that having type 𝑝 is equivalent to

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦𝑝
𝑌

. 𝑇 𝑝
𝑛∑︁
𝑖=1

‖𝑦𝑖‖𝑝𝑌 .

Recall the parallelogram identity in a Hilbert space 𝐻:

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦2
=

𝑛∑︁
𝑖=1

‖𝑦𝑖‖2𝐻 .

A different way to understand the inequality in the definition of “type” is: how far is a given
norm from being an Euclidean norm? The Jordan-von Neumann Theorem says that if
parallelogram identity holds then it’s a Euclidean space. What happes if we turn it in an
inequality?

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦2
𝐻

≥
≤ 𝑇

𝑛∑︁
𝑖=1

‖𝑦𝑖‖2𝐻 .

Either inequality still characterizes a Euclidean space.
What happens if we add constants or change the power? We recover the definition for

type and cotype (which has the inequality going the other way):

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦𝑞
𝐻

&
.

𝑛∑︁
𝑖=1

‖𝑦𝑖‖𝑞𝐻 .

Definition 1.1.6: Say it has cotype 𝑞 if

𝑛∑︁
𝑖=1

‖𝑦𝑖‖𝑞𝑌 . 𝐶𝑞E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑦𝑖

⃦⃦⃦⃦⃦𝑞
𝑌

R. C. James invented the local theory of Banach spaces, the study of geometry that
involves properties involving finitely many vectors (∀𝑥1, . . . , 𝑥𝑛, 𝑃 (𝑥1, . . . , 𝑥𝑛) holds). As a
counterexample, reflexivity cannot be characterized using finitely many vectors (this is a
theorem).

Ribe discovered link between metric and linear spaces.
First, terminology.
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Definition 1.1.7: Two Banach spaces are uniformly homeomorphic if there exists 𝑓 :
𝑋 → 𝑌 that is 1-1 and onto and 𝑓, 𝑓−1 are uniformly continuous.

Without the word “uniformly”, if you think of the spaces as topological spaces, all of
them are equivalent. Things become interesting when you quantify! “Uniformly” means
you’re controlling the quantity.

Theorem 1.1.8 (Kadec). Any two infinite-dimensional separable Banach spaces are home-
omorphic.

This is a amazing fact: these spaces are all topologically equivalent to Hilbert spaces!
Over time people people found more examples of Banach spaces that are homeomorphic

but not uniformly homeomorphic. Ribe’s rigidity theorem clarified a big chunk of what was
happening.

Theorem 1.1.9 (Rigidity Theorem, Martin Ribe (1975)). thm:ribe Suppose that 𝑋, 𝑌 are uni-
formly homeomorphic Banach spaces. Then 𝑋 is finitely representable in 𝑌 and 𝑌 is finitely
representable in 𝑋.

For example, for 𝐿𝑝 and 𝐿𝑞, for 𝑝 ̸= 𝑞 it’s always that case that one is not finitely repre-
sentable in the other, and hence by Ribe’s Theorem, 𝐿𝑝, 𝐿𝑞 are not uniformly homeomorphic.
(When I write 𝐿𝑝, I mean 𝐿𝑝(R).)

Theorem 1.1.10. For every 𝑝 ≥ 1, 𝑝 ̸= 2, 𝐿𝑝 and ℓ𝑝 are finitely representable in each other,
yet not uniformly homeomorphic.

(Here ℓ𝑝 is the sequence space.)

Exercise 1.1.11: Prove the first part of this theorem: 𝐿𝑝 is finitely representable in ℓ𝑝.

Hint: approximate using step functions. You’ll need to remember some measure theory.
When 𝑝 = 2, 𝐿𝑝, ℓ𝑝 are separable and isometric.
The theorem in various cases was proved by:

1. 𝑝 = 1: Enflo

2. 1 < 𝑝 < 2: Bourgain

3. 𝑝 > 2: Gorelik, applying the Brouwer fixed point theorem (topology)

Every linear property of a Banach signs which is local (type, cotype, etc.; involving
summing, powers, etc.) is preserved under a general nonlinear deformation.

After Ribe’s rigidity theorem, people wondered: can we reformulate the local theory
of Banach spaces without mentioning anything about the linear structure? Ribe’s rigidity
theorem is more of an existence statement, we can’t see anything about an explicit dictionary
which maps statements about linear sums into statements about metric spaces. So people
started to wonder whether we could reformulate the local theory of Banach spaces, but only

10
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looks at distances between pairs instead of summing things up. Local theory is one of the
hugest subjects in analysis. If you could actually find a dictionary which takes one linear
theorem at a time, and restate it with only distances, there is a huge potential here! Because
the definition of type only involves distances between points, we can talk about a metric
space’s type or cotype. So maybe we can use the intution given by linear arguments, and
then state things for metric spaces which often for very different reasons remain true from the
linear domain. And then now maybe you can apply these arguments to graphs, or groups!
We could be able to prove things about the much more general metric spaces. Thus, we end
up applying theorems on linear spaces in situations with a priori nothing to do with linear
spaces. This is massively powerful.

There are very crucial entries that are missing in the dictionary. We don’t even now how
to define many of the properties! This program has many interesting proofs. Some of the
most interesting conjectures are how to define things!

Corollary 1.1.12. cor:uh-type If 𝑋, 𝑌 are uniformly homeomorphic and if one of them is of
type 𝑝, then the other does.

This follows from Ribe’s Theorem 1.1.9 and Proposition 1.1.4. Can we prove something
like this theorem without using Ribe’s Theorem 1.1.9? We want to reformulate the definition
of type using only the distance, so this becomes self-evident.

Enflo had an amazing idea. Suppose 𝑋 is a Banach space, 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋. The type 𝑝
inequality says

eq:type-pE
[︃⃦⃦⃦⃦⃦

𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖

⃦⃦⃦⃦⃦𝑝]︃
.𝑋

𝑛∑︁
𝑖=1

‖𝑥𝑖‖𝑝 . (1.1)

Let’s rewrite this in a silly way. Define 𝑓 : {±1}𝑛 → 𝑋 by

𝑓(𝜀1, . . . , 𝜀𝑛) =
𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖.

Write 𝜀 = (𝜀1, . . . , 𝜀𝑛). Multiplying by 2𝑛, we can write the inequality (1.1) as

eq:type-genE [‖𝑓(𝜀)− 𝑓(−𝜀)‖𝑝] .𝑋

𝑛∑︁
𝑖=1

E [‖𝑓(𝜀)− 𝑓(𝜀1, . . . , 𝜀𝑖−1,−𝜀𝑖, 𝜀𝑖+1, . . . , 𝜀𝑛)‖𝑝] . (1.2)

This inequality just involves distances between points 𝑓(𝜀), so it is the reformulation we
seek.

Definition 1.1.13: df:enflo A metric space (𝑋, 𝑑𝑋) has Enflo type 𝑝 if there exists 𝑇 > 0
such that for every 𝑛 and every 𝑓 : {±1}𝑛 → 𝑋,

E[𝑑𝑋(𝑓(𝜀), 𝑓(−𝜀))𝑝] ≤ 𝑇 𝑝
𝑛∑︁
𝑖=1

E[𝑑𝑋(𝑓(𝜀), 𝑓(𝜀1, . . . , 𝜀𝑖−1,−𝜀𝑖, 𝜀𝑖+1, . . . , 𝜀𝑛))
𝑝].
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This is bold. It wasn’t true before for a general function! The discrete cube (Boolean
hypercube) {±1}𝑛 is all the 𝜖 vectors, of which there are 2𝑛. Our function just assigns 2𝑛

points arbitrarily. No structure whatsoever. As they are indexed this way, you see nothing.
But you’re free to label them by vertices of the cube however you want. But there are many
labelings! In (1.2), the points had to be vertices of a cube, but in Definition 1.1.13, they
are arbitrary. The moment you choose the labelings, you impose a cube structure between
the points. Some of them are diagonals of the cube, some of them are edges. 𝜖 and −𝜖 are
antipodal points. But it’s not really a diagonal. They are points on a manifold, and are
a function of how you decided to label them. What this sum says is that the sum over all
diagonals, the length of the diagonals to the power 𝑝 is less than the sum over edges to the
𝑝𝑡ℎ powers (these are the points where one 𝜖𝑖 is different). Thus we can see∑︁

diag𝑝 .𝑋

∑︁
edge𝑝.

The total 𝑝th power of lengths of diagonals is up to a constant, at most the same thing over
all edges.

This is a vast generalization of type; we don’t even know a Banach space satisfies this.
The following is one of my favorite conjectures.

Conjecture 1.1.14 (Enflo). If a Banach space has type 𝑝 then it also has Enflo type 𝑝.

This has been open for 40 years. We will prove the following.

Theorem 1.1.15 (Bourgain-Milman-Wolfson, Pisier). If 𝑋 is a Banach space of type 𝑝 > 1
then 𝑋 also has type 𝑝− 𝜀 for every 𝜀 > 0.

If you know the type inequality for parallelograms, you get it for arbitrary sets of points,
up to 𝜀. Basically, you’re getting arbitrarily close to 𝑝 instead of getting the exact result.
We also know that the conjecture stated before is true for a lot of specific Banach spaces,
though we do not yet have the general result. For instance, this is true for the 𝐿4 norm.
Index functions by vertices; some pairs are edges, some are diagonals; then the 𝐿4 norm of
the diagonals is at most that of the edges.

12
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How do you go from knowing this for a linear function to deducing this for an arbitrary
function?

Once you do this, you have a new entry in the hidden Ribe dictionary. If 𝑋 and 𝑌
are uniformly homeomorphic Banach spaces and 𝑌 has Enflo type 𝑝, then so is 𝑋. The
minute you throw away the linear structure, Corollary 1.1.12 becomes easy. It requires a
tiny argument. Now you can take a completely arbitrary function 𝑓 : {±1}𝑛 → 𝑋. There
exists a homeomorphism 𝜓 : 𝑋 → 𝑌 such that 𝜓, 𝜓−1 are uniformly continuous. Now we
want to deduce that the same inequality in 𝑌 gives the same inequality in 𝑋.

Proposition 1.1.16: pr:uh-enflo If 𝑋, 𝑌 are uniformly homeomorphic Banach spaces and 𝑌
has Enflo type 𝑝, then so does 𝑋.

This is an example of making the abstract Ribe theorem explicit.

Lemma 1.1.17 (Corson-Klee). lem:corson-klee If 𝑋, 𝑌 are Banach spaces and 𝜓 : 𝑋 → 𝑌 are
uniformly continuous, then for every 𝑎 > 0 there exists 𝐿(𝑎) such that

‖𝑥1 − 𝑥2‖𝑋 ≥ 𝑎 =⇒ ‖𝜓(𝑥1)− 𝜓(𝑥2)‖ ≤ 𝐿 ‖𝑥1 − 𝑥2‖ .
Proof sketch of 1.1.16 given Lemma 1.1.17. By definition of uniformly homeomorphic, there
exists a homeomorphism 𝜓 : 𝑋 → 𝑌 such that 𝜓, 𝜓−1 are uniformly continuous. Lemma 1.1.17
tells us that 𝜓 perserves distance up to a constant. Dividing so that the smallest nonzero
distance you see is at least 1, we get the same inequality in the image and the preimage.

Proof details. Let 𝜀𝑖 denote 𝜀 with the 𝑖th coordinate flipped. We need to prove

E(𝑑𝑋(𝑓(𝜀), 𝑓(−𝜀))𝑝) ≤ 𝑇 𝑝𝑓

𝑛∑︁
𝑖=1

E(𝑑𝑋(𝑓(𝜀), 𝑓(𝜀𝑖))𝑝)

Without loss of generality, by scaling 𝑓 we may assume that all the points 𝑓(𝜀) are distance
at least 1 apart. (𝑋 is a Banach space, so distance scales linearly; this doesn’t affect whether
the inequality holds.)

Let 𝜓 : 𝑋 → 𝑌 be such that 𝜓, 𝜓−1 are uniform homeomorphisms. Because 𝜓−1 is
uniformly homeomorphic, there is 𝐶 such that 𝑑𝑌 (𝑦1, 𝑦2) ≤ 1 implies 𝑑𝑋(𝜓

−1(𝑦1), 𝜓
−1(𝑦2)) <

𝐶. WLOG, by scaling 𝑓 we may assume that all the points 𝑓(𝜀) are max(1, 𝐶) apart, so
that the points 𝜓 ∘ 𝑓(𝜀) are at least 1 apart.

We know that for any 𝑔 : {±1}𝑛 → 𝑌 that

E(𝑑𝑋(𝑔(𝜀), 𝑔(−𝜀))𝑝) ≤ 𝑇 𝑝𝑔

𝑛∑︁
𝑖=1

E(𝑑𝑋(𝑔(𝜀), 𝑔(𝜀𝑖))𝑝).

We apply this to 𝑔 = 𝜓 ∘ 𝑓 ,
𝑋

𝜓

��

{±1}𝑛

𝑓
;;

𝑔=𝜓∘𝑓
##

𝑌

13
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to get

E(𝑑𝑋(𝑓(𝜀), 𝑓(−𝜀))𝑝) = E(𝑑𝑋(𝜓−1 ∘ 𝑔(𝜀), 𝜓−1 ∘ 𝑔(−𝜀))𝑝)
≤ 𝐿𝜓−1(1)E(𝑑𝑌 (𝑔(𝜀), 𝑔(−𝜀))𝑝)

≤ 𝐿𝜓−1(1)𝑇 𝑝𝑔

𝑛∑︁
𝑖=1

E(𝑑𝑌 (𝑔(𝜀), 𝑔(𝜀𝑖)))

≤ 𝐿𝜓−1(1)𝐿𝜓(1)𝑇
𝑝
𝑔

𝑛∑︁
𝑖=1

E(𝑑𝑋(𝑔(𝜀), 𝑔(𝜀𝑖))𝑝)

as needed.

The parallelogram inequality for exponent 1 instead of 2 follows from using the triangle
inequality on all possible paths for all paths of diagonals. Type 𝑝 > 1 is a strengthening of
the triangle inequality. For which metric spaces does it hold?

What’s an example of a metric space where the inequality doesn’t hold with 𝑝 > 1? The
cube itself (with 𝐿1 distance).

𝑛𝑝 � 𝑛.

I will prove to you that this is the only obstruction: given a metric space that doesn’t contain
bi-Lipschitz embeddings of arbitrary large cubes, the inequality holds.

We know an alternative inequality involving distance equivalent to type; I can prove it.
It is, however, not a satisfactory solution to the Ribe program. There are other situations
where we have complete success.

We will prove some things, then switch gears, slow down and discuss Grothendieck’s
inequality and applications. They will come up in the nonlinear theory later.

2 Bourgain’s Theorem implies Ribe’s Theorem

2-3-16
We will use the Corson-Klee Lemma 1.1.17.

Proof of Lemma 1.1.17. Suppose 𝑥, 𝑦 ∈ 𝑋, ‖𝑥− 𝑦‖ ≥ 𝑎. Break up the line segment from
𝑥, 𝑦 into intervals of length 𝑎; let 𝑥 = 𝑥0, 𝑥1, . . . , 𝑥𝑘 = 𝑦 be the endpoints of those intervals,
with

‖𝑥𝑖+1 − 𝑥𝑖‖ ≤ 𝑎.

The modulus of continuity is defined as

𝑊𝑓 (𝑡) = sup {‖𝑓(𝑢)− 𝑓(𝑣)‖ : 𝑢, 𝑣 ∈ 𝑋, ‖𝑢− 𝑣‖ ≤ 𝑡} .

Uniform continuity says lim𝑡→0𝑊𝑓 (𝑡) = 0. The number of intervals is

𝑘 ≤ ‖𝑥− 𝑦‖
𝑎

+ 1 ≤ 2 ‖𝑥− 𝑦‖
𝑎

.

14
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Then

‖𝑓(𝑥)− 𝑓(𝑦)‖ ≤
𝑘∑︁
𝑖=1

‖𝑓(𝑥𝑖)− 𝑓(𝑥𝑖−1)‖

≤ 𝐾𝑊𝑓 (𝑎) ≤
2𝑊𝑓 (𝑎)

𝑎
‖𝑥− 𝑦‖ ,

so we can let 𝐿(𝑎) =
2𝑊𝑓 (𝑎)

𝑎
.

2.1 Bourgain’s discretization theorem

There are 3 known proofs of Ribe’s Theorem.

1. Ribe’s original proof, 1987.

2. HK, 1990, a genuinely different proof.

3. Bourgain’s proof, a Fourier analytic proof which gives a quantitative version. This is
the version we’ll prove.

Bourgain uses the Discretization Theorem 1.2.4. There is an amazing open problem in this
context.

Saying 𝛿 is big says there is a not-too-fine net, which is enough. Therefore we are
interested in lower bounds on 𝛿.

Definition 1.2.1 (Discretization modulus): Let 𝑋 be a finite-dimensional normed space
dim(𝑋) = 𝑛 < ∞. Let the target space 𝑌 be an arbitrary Banach space. Consider the
unit ball 𝐵𝑋 in 𝑋. Take a maximal 𝛿-net 𝒩𝛿 in 𝐵𝑋 . Suppose we can embed 𝒩𝛿 into 𝑌 via
𝑓 : 𝒩𝛿 → 𝑌 . Suppose we know in 𝑌 that

‖𝑥− 𝑦‖ ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖ ≤ 𝐷 ‖𝑥− 𝑦‖ .

for all 𝑥, 𝑦 ∈ 𝑁𝛿. (We say that 𝒩𝛿 embeds with distortion 𝐷 into 𝑌 .)

You can prove using a nice compactness argument that if this holds for 𝛿 is small enough,
then the entire space 𝑋 embeds into 𝑌 with rough the same distortion. Bourgain’s dis-
cretization theorem 1.2.4 says that you can choose 𝛿 = 𝛿𝑛 to be independent of the geometry
of 𝑋 and 𝑌 such that if you give a 𝛿-approximation of the unit-ball in the 𝑛-dimensional
norm, you succeed in embedding the whole space.

I often use this theorem in this way: I use continuous methods to show embedding 𝑋
into 𝑌 requires big distortion; immediately I get an example with a finite object. Let us now
make the notion of distortion more precise.

Definition 1.2.2 (Distortion): Suppose (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌 ) are metric spaces 𝐷 ≥ 1. We say
that 𝑋 embeds into 𝑌 with distortion 𝐷 if there exists 𝑓 : 𝑋 → 𝑌 and 𝑠 > 0 such that for
all 𝑥, 𝑦 ∈ 𝑋,

𝑆𝑑𝑋(𝑥, 𝑦) ≤ 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐷𝑆𝑑𝑋(𝑥, 𝑦).

15
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The infimum over those 𝐷 ≥ 1 such that 𝑋 embeds into 𝑌 with distortion is denoted
𝐶𝑌 (𝑋). This is a measure of how far 𝑋 is being from a subgeometry of 𝑌 .

Definition 1.2.3 (Discretization modulus): Let be a 𝑛-dimensional normed space and
𝑌 be any Banach space, 𝜀 ∈ (0, 1). Let 𝛿𝑋 →˓𝑌 (𝜀) be the supremum over all those 𝛿 > 0 such
that for every 𝛿-net 𝒩𝛿 in 𝐵𝑋 ,

𝐶𝑌 (𝒩𝛿) ≥ (1− 𝜀)𝐶𝑌 (𝑋).

Here 𝐵𝑋 := {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 1}.

In other words, the distortion of the 𝛿-net is not much larger than the distortion of the
whole space. That is, the discrete 𝛿-ball encodes almost all information about the space
when it comes to embedding into 𝑌 : If you got 𝐶𝑌 (𝒩𝛿) to be small, then the distortion of
the entire object is not much larger.

Theorem 1.2.4 (Bourgain’s discretization theorem). For every 𝑛, 𝜀 ∈ (0, 1), for every 𝑋, 𝑌 ,
dim𝑋 = 𝑛,

𝛿𝑋 →˓𝑌 (𝜀) ≥ 𝑒−(
𝑛
𝜀 )

𝐶𝑛

.

Moreover for 𝛿 = 𝑒−(2𝑛)𝐶𝑛
, we have 𝐶𝑌 (𝑋) ≤ 2𝐶𝑌 (𝒩𝛿).

Thus there is a 𝛿 dependending on the dimension such that in any 𝑛-dimensional norm
space, the unit ball it encodes all the information of embedding 𝑋 into anything else. It’s
only a function of the dimension, not of any of the relevant geometry.

The theorem says that if you look at a 𝛿-net in the unit ball, it encodes all the information
about𝑋 when it comes to embedding into everything else. The amount you have to discretize
is just a function of the dimension, and not of any of the other relevant geometry.

Remark 1.2.5: The proof is via a linear operator. All the inequality says is that you can
find a function with the given distortion. The proof will actually give a linear operator.

The best known upper bound is

𝛿𝑋 →˓𝑌

(︂
1

2

)︂
.

1

𝑛
.

The latest progress was 1987, there isn’t a better bound yet. You have a month to think
about it before you get corrupted by Bourgain’s proof.

There is a better bound when the target space is a 𝐿𝑝 space.

Theorem 1.2.6 (Gladi, Naor, Shechtman). For every 𝑝 ≥ 1, if dim𝑋 = 𝑛,

𝛿𝑋 →˓𝐿𝑝(𝜀) &
𝜀2

𝑛
5
2

(We still don’t know what the right power is.) The case 𝑝 = 1 is important for appli-
cations. There are larger classes for spaces where we can write down axioms for where this
holds. There are crazy Banach spaces which don’t belong to this class, so we’re not done.
We need more tools to show this: Lipschitz extension theorems, etc.
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2.2 Bourgain’s Theorem implies Ribe’s Theorem

With the “moreover,” Bourgain’s theorem implies Ribe’s Theorem 1.1.9.

Proof of Ribe’s Theorem 1.1.9 from Bourgain’s Theorem 1.2.4. Let 𝑋, 𝑌 be Banach spaces
that are uniformly homeomorphic. By Corson-Klee 1.1.17, there exists 𝑓 : 𝑋 → 𝑌 such that

‖𝑥− 𝑦‖ ≥ 1 =⇒ ‖𝑥− 𝑦‖ ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖ ≤ 𝐾 ‖𝑥− 𝑦‖ .

(Apply the Corson-Klee lemma for both 𝑓 and the inverse.)
In particular, if 𝑅 > 1 and 𝒩 is a 1-net in

𝑅𝐵𝑋 = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑅} ,

then 𝐶𝑌 (𝒩 ) ≤ 𝐾. Equivalently, for every 𝛿 > 0 every 𝛿-net in 𝐵𝑋 satisfies 𝐶𝑌 (𝒩 ) ≤ 𝐾. If
𝐹 ⊆ 𝑋 is a finite dimension subspace and 𝛿 = 𝑒−(2 dim𝐹 )𝐶 dim𝐹

, then by the “moreover” part
of Bourgain’s Theorem 1.2.4, there exists a linear operator 𝑇 : 𝐹 → 𝑌 such that

‖𝑥− 𝑦‖ ≤ ‖𝑇𝑥− 𝑇𝑦‖ ≤ 2𝐾 ‖𝑥− 𝑦‖

for all 𝑥, 𝑦 ∈ 𝐹 . This means that 𝑋 is finitely representable.

The motivation for this program comes in passing from continuous to discrete. The
theory has many applications, e.g. to computer science whcih cares about finite things. I
would like an improvement in Bourgain’s Theorem 1.2.4.

First we’ll prove a theorem that has nothing to do with Ribe’s Theorem. There are
lemmas we will be using later. It’s an easier theorem. It looks unrelated to metric theory,
but the lemmas are relevant.
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Chapter 2

Restricted invertibility principle

1 Restricted invertibility principle

1.1 The first restricted invertibility principles

We take basic facts in linear algebra and make things quantitative. This is the lesson of the
course: when you make things quantitative, new mathematics appears.

Proposition 2.1.1: If 𝐴 : R𝑚 → R𝑛 is a linear operator, then there exists a linear subspace
𝑉 ⊆ R𝑛 with dim(𝑉 ) = rank(𝐴) such that 𝐴 : 𝑉 → 𝐴(𝑉 ) is invertible.

What’s the quantitative question we want to ask about this? Invertibility just says that
an inverse exists. Can we find a large subspace where not only is 𝐴 invertible, but the inverse
has small norm?

We insist that the subspace is a coordinate subspace. Let 𝑒1, . . . , 𝑒𝑚 be the standard
basis of R𝑚, 𝑒𝑗 = (0, . . . , 1⏟ ⏞ 

𝑗

, 0, . . .). The goal is to find a “large” subset 𝜎 ⊆ {1, . . . ,𝑚} such

that 𝐴 is invertible on R𝜎 where

R𝜎 := {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑚 : 𝑥𝑖 = 0 if 𝑖 ̸∈ 𝜎}

and the norm of 𝐴−1 : 𝐴(R𝜎) → R𝜎 is small.
A priori this seems a crazy thing to do; take a small multiple of the identity. But we can

find conditions that allow us to achieve this goal.

Theorem 2.1.2 (Bourgain-Tzafriri restricted invertibility principle, 1987). thm:btrip Let 𝐴 :
R𝑚 → R𝑚 be a linear operator such that

‖𝐴𝑒𝑗‖2 = 1

for every 𝑗 ∈ {1, . . . ,𝑚}. Then there exist 𝜎 ⊆ {1, . . . ,𝑚} such that

1. |𝜎| ≥ 𝑐𝑚
‖𝐴‖2 , where ‖𝐴‖ is the operator norm of 𝐴.
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2. 𝐴 is invertible on R𝜎 and the norm of 𝐴−1 : 𝐴(R𝜎) → R𝜎 is at most 𝐶 ′ (i.e.,
‖𝐴𝐽𝜎‖𝑆∞ ≤ 𝐶 ′, to use the notation introduced below).

Here 𝑐, 𝐶 ′ are universal constants.

Suppose the biggest eigenvalue is at most 100. Then you can always find a coordinate
subset of proportional size such that on this subset, 𝐴 is invertible and the inverse has norm
bounded by a universal constant.

All of the proofs use something very amazing.
This proof is from 3 weeks ago. This has been reproved many times. I’ll state a theorem

that gives better bound than the entire history.
This was extended to rectangular matrices. (The extension is nontrivial.)
Given 𝑉 ⊆ R𝑚 a linear subspace with dim𝑉 = 𝑘 and 𝐴 : 𝑉 → R𝑚 a linear operator, the

singular values of 𝐴
𝑠1(𝐴) ≥ 𝑠2(𝐴) ≥ · · · ≥ 𝑠𝑘(𝐴)

are the eigenvalues of (𝐴*𝐴)
1
2 . We can decompose

𝐴 = 𝑈𝐷𝑉

where 𝐷 is a matrix with 𝑠𝑖(𝐴)’s on the diagonal, and 𝑈, 𝑉 are unitary.

Definition 2.1.3: For 𝑝 ≥ 1 the Schatten-von Neumann 𝑝-norm of 𝐴 is

‖𝐴‖𝑆𝑝
:=

(︃
𝑘∑︁
𝑖=1

𝑠𝑖(𝐴)
𝑝

)︃ 1
𝑝

= (Tr((𝐴*𝐴)
𝑝
2 ))

1
𝑝

= (Tr((𝐴𝐴*)
𝑝
2 ))

1
𝑝

The cases 𝑝 = ∞, 2 give the operator and Frobenius norm,

‖𝐴‖𝑆∞
= operator norm

‖𝐴‖𝑆2
=
È
Tr(𝐴*𝐴) =

(︀∑︁
𝑎2𝑖𝑗
� 1

2 .

Exercise 2.1.4: ‖·‖𝑆𝑝
is a norm on ℳ𝑛×𝑚(R). You have to prove that given 𝐴,𝐵,

(Tr([(𝐴+𝐵)*(𝐴+𝐵)]
𝑝
2 ))

1
𝑝 ≤ (Tr((𝐴*𝐴)

𝑝
2 ))

1
𝑝 + (Tr((𝐵*𝐵)

𝑝
2 ))

1
𝑝 .

This requires an idea. Note if 𝐴,𝐵 commute this is trivial. Apparently von Neumann
wrote a paper called “Metric Spaces” in the 1930s in which he just proves this inequality
and doesn’t know what to do with it, so it got forgotten for a while until the 1950s, when
Schatten wrote books on applications. When I was a student in grad school, I was taking
a class on random matrices. There was two weeks break, I was certain that it was trivial
because the professor had not said it was not, and it completely ruined my break though I
came up with a different proof of it. It’s short, but not trivial: It’s not typical linear algebra!.
This is like another triangle inequality, which we may need later on.

Spielman and Srivastava have a beautiful theorem.
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Definition 2.1.5: Stable rank.
Let 𝐴 : R𝑚 → R𝑛. The stable rank is defined as

srank(𝐴) =

(︃
‖𝐴‖𝑆2

‖𝐴‖𝑆∞

)︃2

.

The numerator is the sum of squares of the singular values, and the denominator is the
maximal value. Large stable rank means that many singular values are nonzero, and in
fact large on average. Many people wanted to get the size of the subset in the Restricted
Invertibility Principle to be close to the stable rank.

Theorem 2.1.6 (Spielman-Srivastava). thm:ss For every linear operator 𝐴 : R𝑚 → R𝑛, 𝜀 ∈
(0, 1), there exists 𝜎 ⊆ {1, . . . ,𝑚} with |𝜎| ≥ (1− 𝜀)srank(𝐴) such that⃦⃦⃦

(𝐴𝐽𝜎)
−1
⃦⃦⃦
𝑆∞

.

√
𝑚

𝜀 ‖𝐴‖𝑆2

.

Here, 𝐽𝜎 is the identity function restricted to R𝜎, 𝐽 : R𝜎 →˓ R𝑚.

This is stronger than Bourgain-Tzafriri. In Bourgain-Tzafriri the columns were unit
vectors.

Proof of Theorem 2.1.2 from Theorem 2.1.6. Let 𝐴 be as in Theorem 2.1.2. Then ‖𝐴‖𝑆2
=È

Tr(𝐴*𝐴) =
√
𝑚 and srank(𝐴) = 𝑚

‖𝐴‖2𝑆∞
. We obtain the existence of

|𝜎| ≥ (1− 𝜀)
𝑚

‖𝐴‖2𝑆∞

with ‖(𝐴𝐽𝜎)−1‖𝑆∞
.

√
𝑚
=

1
𝜀
.

This is a sharp dependence on 𝜀.
The proof introduces algebraic rather than analytic methods; it was eye-opening. Marcus

even got sets bigger than the stable rank and looked at 𝑝𝑓‖𝐴‖𝑆2
‖𝐴‖𝑆4

2, which is much
stronger.

1.2 A general restricted invertibility principle

I’ll show a theorem that implies all these intermediate theorems. We use (classical) analysis
and geometry instead of algebra. What matters is not the ratio of the norms, but the tail
of the distribution of 𝑠1(𝐴)

2, . . . , 𝑠𝑚(𝐴)
2.

Theorem 2.1.7. thm:gen-srank Let 𝐴 : R𝑚 → R𝑛 be a linear operator. If 𝑘 < rank(𝐴) then there
exist 𝜎 ⊆ {1, . . . ,𝑚} with |𝜎| = 𝑘 such that⃦⃦⃦

(𝐴𝐽𝜎)
−1
⃦⃦⃦
𝑆∞

. min
𝑘<𝑟≤rank(𝐴)

Ê
𝑚𝑟

(𝑟 − 𝑘)
∑︀𝑚
𝑖=𝑟 𝑠𝑖(𝐴)

2
.
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You have to optimize over 𝑟. You can get the ratio of 𝐿𝑝 norms from the tail bounds. This
implies all the known theorems in restricted invertibility. The subset can be as big as you
want up to the rank, and we have sharp control in the entire range. This theorem general-
izes Spielman-Srivasta (Theorem 2.1.6), which had generalized Bourgain-Tzafriri (Theorem
2.1.2). 2-8-16

Now we will go backwards a bit, and talk about a less general result. After Theorem 2.1.6,
a subsequent theorem gave the same theorem but instead of the stable rank, used something
better.

Theorem 2.1.8 (Marcus, Spielman, Srivastava). thm:mss4 If

𝑘 <
1

4

(︃
‖𝐴‖𝑆2

‖𝐴‖𝑆4

)︃4

,

there exists 𝜎 ⊆ {1, . . . ,𝑚}, |𝜎| = 𝑘 such that⃦⃦⃦
(𝐴𝐽𝜎)

−1
⃦⃦⃦
𝑆∞

.

√
𝑚

‖𝐴‖𝑆2

.

A lot of these quotients of norms started popping up in people’s results. The correct
generalization is the following notion.

Definition 2.1.9: For 𝑝 > 2, define the stable 𝑝th rank by

srank𝑝(𝐴) =

�
‖𝐴‖𝑆2

‖𝐴‖𝑆𝑝

� 2𝑝
𝑝−2

.

Exercise 2.1.10: Show that if 𝑝 ≥ 𝑞 > 2, then

srank𝑝(𝐴) ≤ srank𝑞(𝐴).

(Hint: Use Hölder’s inequality.)

Now we would like to prove how Theorem 2.1.7 generalizes the previously listed results:

Proof of Generalizability of Theorem 2.1.7. Using Hölder’s inequality with 𝑝
2
,

‖𝐴‖2𝑆2
=

𝑚∑︁
𝑗=1

𝑠𝑗(𝐴)
2

=
𝑟−1∑︁
𝑗=1

𝑠𝑗(𝐴)
2 +

𝑚∑︁
𝑗=𝑟

𝑠𝑗(𝐴)
2

≤ (𝑟 − 1)1−
2
𝑝

�
𝑟−1∑︁
𝑗=1

𝑠𝑗(𝐴)
𝑝

� 2
𝑝

+
𝑚∑︁
𝑗=𝑟

𝑠𝑗(𝐴)
2
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≤ (𝑟 − 1)1−
2
𝑝 ‖𝐴‖2𝑆𝑝

+
𝑚∑︁
𝑗=𝑟

𝑠𝑗(𝐴)
2

𝑚∑︁
𝑗=𝑟

𝑠𝑗(𝐴)
2 ≥ ‖𝐴‖2𝑆2

�
1− (𝑟 − 1)−

2
𝑝

‖𝐴‖2𝑆𝑝

‖𝐴‖2𝑆2

�
= ‖𝐴‖2𝑆2

�
1−

�
𝑟 − 1

srank𝑝(𝐴)

�1− 2
𝑝

�
Now we can plug the previous calculation into Theorem 2.1.7 to demonstrate the way the
new theorem generalizes the previous results:⃦⃦⃦

(𝐴𝐽𝜎)
−1
⃦⃦⃦
. min

𝑘+1≤𝑟≤rank(𝐴)

Í
𝑚𝑟

(𝑟 − 𝑘) ‖𝐴‖2𝑆2

(︂
1−

(︁
𝑟−1

srank𝑝(𝐴)

)︁1− 2
𝑝

)︂
=

√
𝑚

‖𝐴‖∞
min

𝑘+1≤𝑟≤rank(𝐴)

Í
𝑟

(𝑟 − 𝑘)
(︂
1−

(︁
𝑟−1

srank𝑝(𝐴)

)︁1− 2
𝑝

)︂
This equation implies all the earlier theorems.

To optimize, fix the stable rank, differentiate in 𝑟, and set to 0. All theorems in the
literature follow from this theorem; in particular, we get all the bounds we got before. There
was nothing special about the number 4 in Theorem 2.1.8; this is about the distribution of
the eigenvalues.

2 Ky Fan maximum principle

sec:kf We’ll be doing linear algebra. It’s mostly mechanical, except we’ll need this lemma.

Lemma 2.2.1 (Ky Fan maximum principle). lem:kf Suppose that 𝑃 : R𝑚 → R𝑚 is a rank 𝑘
orthogonal projection. Then

Tr(𝐴*𝐴𝑃 ) ≤
𝑘∑︁
𝑖=1

𝑠𝑖(𝐴)
2

where 𝑠𝑖(𝐴) are the singular values, i.e., 𝑠𝑖(𝐴)
2 are the eigenvalues of 𝐵 := 𝐴*𝐴.

This material was given in class on 2-15. This lemma follows from the following general
theorem.

Theorem 2.2.2 (Convex function of dot products acheives maximum at eigenvectors).
thm:eignmax Let 𝐵 : R𝑛 → R𝑛 be symmetric, and let 𝑓 : R𝑛 → R be a convex function. Then for
every orthonormal basis 𝑢1, . . . , 𝑢𝑛 ∈ R𝑛, there exists a permutation 𝜋 such that

eq:kf0𝑓(⟨𝐵𝑢1, 𝑢1⟩, . . . , ⟨𝐵𝑢𝑛, 𝑢𝑛⟩) ≤ 𝑓(𝜆𝜋(1), . . . , 𝜆𝜋(𝑛)) (2.1)
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Essentially, we’re saying using the eigenbasis maximizes the convex function.

Remark 2.2.3: We can weaken the condition on 𝑓 to the following: for every 𝑖 < 𝑗,
𝑡 ↦→ 𝑓(𝑥1, . . . , 𝑥𝑖 + 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑗−1, 𝑥𝑗 − 𝑡, 𝑥𝑗+1, . . . , 𝑥𝑛) is convex as a function of 𝑡. If 𝑓 is
smooth, this is equivalent to the second derivative in 𝑡 being ≥ 0:

eq:kf1

𝜕2𝑓

𝜕𝑥2𝑖
+
𝜕2𝑓

𝜕𝑥2𝑗
− 2

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
≥ 0 (2.2)

In other words, you just need that the Hessian is positive semidefinite. (Above, we wrote
the determinant of the Hessian on the 𝑥𝑖 − 𝑥𝑗 plane. This being true for all pairs 𝑖, 𝑗 is the
same as the Hessian being positive definite.)

Proof. We may assume without loss of generality that

1. 𝑓 is smooth. If not, convolute with a good kernel.

2. Strict inequality holds:
𝜕2𝑓

𝜕𝑥2𝑖
+
𝜕2𝑓

𝜕𝑥2𝑗
− 2

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
> 0.

To see this, note we can take any 𝜀 > 0 and perturb 𝑓(𝑥) into 𝑓(𝑥) + 𝜀‖𝑥‖22. The
inequality to prove (2.1) is also perturbed by this slight change, and taking 𝜀 → 0
gives the desired inequality.

Now let 𝑢1, . . . , 𝑢𝑛 be an orthonormal basis at which 𝑓(⟨𝐵𝑢1, 𝑢1⟩, . . . , ⟨𝐵𝑢𝑛, 𝑢𝑛⟩) attains
its maximum. Then for 𝑢𝑖, 𝑢𝑗, we want to rotate in the 𝑖 − 𝑗 plane by angle 𝜃. Since 𝑢𝑖, 𝑢𝑗
span a two dimensional subspace, recall the 2-dimensional rotation matrix. Let

𝑅𝜃 =

�
cos(𝜃) sin(𝜃)
sin(𝜃) − cos(𝜃)

�
;𝑢𝑖;𝑗 =

�
𝑢𝑖
𝑢𝑗

�
Multiplying, we get

𝑅𝜃𝑢𝑖;𝑗 =

�
cos(𝜃) sin(𝜃)
sin(𝜃) − cos(𝜃)

� �
𝑢𝑖
𝑢𝑗

�
=

�
cos(𝜃)𝑢𝑖 + sin(𝜃)𝑢𝑗
sin(𝜃)𝑢𝑖 − cos(𝜃)𝑢𝑗

�
=

�
(𝑅𝜃𝑢𝑖;𝑗)1
(𝑅𝜃𝑢𝑖;𝑗)2

�
Then, we replace 𝑓 with 𝑔(𝜃) =

𝑓
(︀
⟨𝐵𝑢1, 𝑢1⟩, . . . , ⟨𝐵 (𝑅𝜃𝑢𝑖;𝑗)1 , (𝑅𝜃𝑢𝑖;𝑗)1⟩, ⟨𝐵 (𝑅𝜃𝑢𝑖;𝑗)2 , (𝑅𝜃𝑢𝑖;𝑗)2⟩, . . . , ⟨𝐵𝑢𝑛, 𝑢𝑛⟩

�
where we keep all other dot products the same. By assumption, 𝑔 attains its maximum at
𝜃 = 0, so 𝑔′(0) = 0, 𝑔′′(0) ≤ 0. Expanding out the rotated dot products explicitly in 𝑔(𝜃), we
get that the 𝑖th argument is

cos2(𝜃)⟨𝐵𝑢𝑖, 𝑢𝑖⟩+ sin2(𝜃)⟨𝐵𝑢𝑗, 𝑢𝑗⟩+ sin(2𝜃)⟨𝐵𝑢𝑖, 𝑢𝑗⟩
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and the 𝑗th argument is

sin2(𝜃)⟨𝐵𝑢𝑖, 𝑢𝑖⟩+ cos2(𝜃)⟨𝐵𝑢𝑗, 𝑢𝑗⟩ − sin(2𝜃)⟨𝐵𝑢𝑖, 𝑢𝑗⟩

Then we can mechanically take the derivatives at 𝜃 = 0 to get

0 = 𝑔′(0) = 2⟨𝐵𝑢𝑖, 𝑢𝑗⟩(𝑓𝑥𝑖 − 𝑓𝑥𝑗)

0 ≥ 𝑔′′(0) = 2 (⟨𝐵𝑢𝑗, 𝑢𝑗⟩ − ⟨𝐵𝑢𝑖, 𝑢𝑖⟩) (𝑓𝑥𝑖 − 𝑓𝑥𝑗)⏟  ⏞  
=0 if ⟨𝐵𝑢𝑖,𝑢𝑗⟩≠0

+4⟨𝐵𝑢𝑖, 𝑢𝑗⟩2
(︀
𝑓𝑥𝑖𝑥𝑖 + 𝑓𝑥𝑗𝑥𝑗 − 2𝑓𝑥𝑖𝑥𝑗

�⏟  ⏞  
≥0

.

This implies that for all 𝑖 ̸= 𝑗 ⟨𝐵𝑢𝑖, 𝑢𝑗⟩ = 0, which implies that for all 𝑖, 𝐵𝑢𝑖 = 𝜇𝑖𝑢𝑖 for some
𝜇𝑖. Thus any function applied to a vector of dot products is maximized at eigenvalues.

Exercise 2.2.4: exr:kf If 𝑓 : R𝑛 → R satisfies the conditions in Theorem 2.2.2 and (𝑢1, . . . , 𝑢𝑛),
(𝑣1, . . . , 𝑣𝑛) are two orthonormal bases of R𝑛, then for every 𝐴 : R𝑛 → R𝑛, there exists 𝜋 ∈ 𝑆𝑛,
(𝜀1, . . . , 𝜀𝑛) ∈ {±1}𝑛 such that

𝑓(⟨𝐴𝑢1, 𝑣1⟩, ⟨𝐴𝑢2, 𝑣2⟩, . . . , ⟨𝐴𝑢𝑛, 𝑣𝑛⟩) ≤ 𝑓(𝜀1𝑠𝜋(1)(𝐴), . . . , 𝜀𝑛𝑠𝜋(𝑛)(𝐴))

Show that choosing 𝑢, 𝑣 as the singular vectors maximizes 𝑓 (over all pairs of orthonormal
bases).

To solve this problem, you can rotate both vectors in the same direction and take deriva-
tives, and also rotate them in opposite directions and take derivatives to get enough infor-
mation to prove that the singular values are the maximum.

Essentially, a lot of the inequalities you find in books follow from this. For instance, if
you want to prove that the Schatten 𝑝-norm is a norm, it follows directly from this fact.

Corollary 2.2.5. Let ‖ · ‖ be a norm on R𝑛 that is invariant under premutations and sign:

‖(𝑥1, . . . , 𝑥𝑛)‖ = ‖(𝜀1𝑥𝜋(1), . . . , 𝜀𝑛𝑥𝜋(𝑛))‖

for all 𝜀 ∈ {±1}𝑛 and 𝜋 ∈ 𝑆𝑛 (In the literature, we call this a symmetric norm). This
induces a norm on matrices 𝑀𝑚×𝑛(R) with

‖𝐴‖ = ‖(𝑠𝜋(1)(𝐴), . . . , 𝑠𝜋(𝑛)(𝐴)‖)

Then the triangle inequality holds for matrices 𝐴,𝐵:

‖𝐴+𝐵‖ ≤ ‖𝐴‖+ ‖𝐵‖.

Proof. We have by Exercise 2.2.4

‖𝐴+𝐵‖ = max
(𝑢𝑖)⊥,(𝑣𝑖)⊥

‖(⟨(𝐴+𝐵)𝑢𝑖, 𝑣𝑖⟩)𝑛𝑖=1‖

≤ max
(𝑢𝑖)⊥,(𝑣𝑖)⊥

‖(⟨(𝐴𝑢𝑖, 𝑣𝑖⟩)𝑛𝑖=1‖+ max
(𝑢𝑖)⊥,(𝑣𝑖)⊥

‖(⟨𝐵𝑢𝑖, 𝑣𝑖⟩)𝑛𝑖=1‖

≤ ‖𝐴‖+ ‖𝐵‖ .
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Remember Theorem 2.2.2! For many results, you simply need to apply the right convex
function to get the result.

Our lemma follows from setting 𝑓(𝑥) =
∑︀𝑘
𝑖=1 𝑥𝑖.

Proof of Ky Fan Maximum Principle (Lemma 2.2.1). Take an orthonormal basis 𝑢1, . . . , 𝑢𝑛
of 𝑃 such that 𝑢1, . . . , 𝑢𝑘 is a basis of the range of 𝑃 . Then

Tr(𝐵𝑃 ) =
𝑘∑︁
𝑗=1

⟨𝐵𝑒𝑗, 𝑒𝑗⟩ ≤
𝑘∑︁
𝑖=1

𝑠𝑖(𝐵) =
𝑘∑︁
𝑖=1

𝑠𝑖(𝐴)
2

3 Finding big subsets

We’ll present 4 lemmas for finding big subsets with certain properties. We’ll put them
together at the end.

3.1 Little Grothendieck inequality

Theorem 2.3.1 (Little Grothendieck inequality). thm:lgi Fix 𝑘,𝑚, 𝑛 ∈ N. Suppose that 𝑇 :
R𝑚 → R𝑛 is a linear operator. Then for every 𝑥1, . . . , 𝑥𝑘 ∈ R𝑚,

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 ≤
𝜋

2
‖𝑇‖2ℓ𝑚∞→ℓ𝑛2

𝑘∑︁
𝑟=1

𝑥2𝑟𝑖

for some 𝑖 ∈ {1, . . . ,𝑚} where 𝑥𝑟 = (𝑥𝑟1, . . . , 𝑥𝑟𝑚).

Later we will show 𝜋
2
is sharp.

If we had only 1 vector, what does this say?

‖𝑇𝑥1‖2 ≤
√︂
𝜋

2
‖𝑇‖ℓ𝑚∞→ℓ𝑛2

‖𝑥1‖∞

We know the inequality is true for 𝑘 = 1 with constant 1, by definition of the operator norm.
The theorem is true for arbitrary many vectors, losing an universal constant (𝜋

2
). After we

see the proof, the example where 𝜋
2
is attained will be natural.

We give Grothendieck’s original proof.
The key claim is the following.

Claim 2.3.2. clm:lgi

eq:lgi1

𝑚∑︁
𝑗=1

(︃
𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

)︃ 1
2

≤
√︂
𝜋

2
‖𝑇‖ℓ𝑚∞→ℓ𝑛2

(︃
𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖2
)︃ 1

2

. (2.3)
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Proof of Theorem 2.3.1. Assuming Claim 2.3.2, we prove the theorem.

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 =
𝑘∑︁
𝑟=1

⟨𝑇𝑥𝑟, 𝑇𝑥𝑟⟩

=
𝑘∑︁
𝑟=1

⟨𝑥𝑟, 𝑇 *𝑇𝑥𝑟⟩

=
𝑘∑︁
𝑟=1

𝑚∑︁
𝑗=1

𝑥𝑟𝑗(𝑇
*𝑇𝑥𝑟)𝑗

≤
𝑚∑︁
𝑗=1

(︃
𝑘∑︁
𝑟=1

𝑥2𝑟𝑗

)︃ 1
2
(︃

𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

)︃ 1
2

by Cauchy-Schwarz

≤

�
max
1≤𝑗≤𝑚

(︃
𝑘∑︁
𝑟=1

𝑥2𝑟𝑗

)︃ 1
2

��
𝑚∑︁
𝑗=1

𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

� 1
2

≤ max
1≤𝑗≤𝑚

(︃
𝑘∑︁
𝑖=1

𝑥2𝑖𝑗

)︃ 1
2 √︂𝜋

2
‖𝑇‖ℓ𝑚∞→ℓ𝑛2

(︃
𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22

)︃ 1
2

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 ≤
𝜋

2
‖𝑇‖2ℓ𝑚∞→ℓ𝑛2

max
𝑗

𝑘∑︁
𝑟=1

𝑥2𝑖𝑗.

We bounded by a square root of the multiple of the same term, a bootstrapping argument.
In the last step, divide and square.

Proof of Claim 2.3.2. Let 𝑔1, . . . , 𝑔𝑘 be iid standard Gaussian random variables. For every
fixed 𝑗 ∈ {1, . . . ,𝑚},

𝑘∑︁
𝑟=1

𝑔𝑟(𝑇
*𝑇𝑥𝑟)𝑗.

This is a Gaussian random variable with mean 0 and variance
∑︀𝑘
𝑟=1(𝑇

*𝑇𝑥𝑟)
2
𝑗 . Taking the

expectation,1

E
⃒⃒⃒⃒⃒
𝑘∑︁
𝑟=1

𝑔𝑟(𝑇
*𝑇𝑥𝑟)𝑗

⃒⃒⃒⃒⃒
=

(︃
𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

)︃ 1
2
Ê
2

𝜋
.

Sum these over 𝑗:

E

⎡⎣ 𝑚∑︁
𝑗=1

⃒⃒⃒⃒⃒
𝑇 *(

𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟)𝑗

⃒⃒⃒⃒⃒⎤⎦ =

Ê
2

𝜋

𝑚∑︁
𝑗=1

(︃
𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

)︃ 1
2

𝑚∑︁
𝑗=1

(︃
𝑘∑︁
𝑟=1

(𝑇 *𝑇𝑥𝑟)
2
𝑗

)︃ 1
2

=

√︂
𝜋

2
E

⎡⎣ 𝑚∑︁
𝑗=1

⃒⃒⃒⃒⃒
𝑇 *

𝑘∑︁
𝑟=1

𝑔𝑟(𝑇𝑥𝑟)𝑗

⃒⃒⃒⃒⃒⎤⎦ .eq:lgi2 (2.4)

1
È

1
2𝜋

∫︀∞
−∞ |𝑥|𝑒− 𝑥2

2 = −2
È

1
2𝜋 [𝑒

− 𝑥2

2 ]∞0 =
È

2
𝜋
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Define a random sign vector 𝑧 ∈ {±1}𝑚 by

𝑧𝑗 = sign

�(︃
𝑇 *

𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

)︃
𝑗

�
Then

𝑚∑︁
𝑗=1

⃒⃒⃒⃒⃒
(𝑇 *

𝑘∑︁
𝑟=1

𝑔𝑇𝑥𝑟)𝑗

⃒⃒⃒⃒⃒
=

⟨
𝑧, 𝑇 *

𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

⟩
=

⟨
𝑇𝑧,

𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

⟩
≤ ‖𝑇𝑧‖2

⃦⃦⃦⃦⃦
𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

⃦⃦⃦⃦⃦
2

≤ ‖𝑇‖ℓ𝑚∞→ℓ𝑛2

⃦⃦⃦⃦⃦
𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

⃦⃦⃦⃦⃦
2

This is a pointwise inequality. Taking expectations and using Cauchy-Schwarz,

eq:lgi3E

⎡⎣ 𝑚∑︁
𝑗=1

⃒⃒⃒⃒⃒
⃒
(︃
𝑇 *

𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

)︃
𝑗

⃒⃒⃒⃒⃒
⃒
⎤⎦ ≤ ‖𝑇‖ℓ𝑚∞→ℓ𝑛2

�
E
⃦⃦⃦⃦⃦
𝑘∑︁
𝑟=1

𝑔𝑟𝑇𝑥𝑟

⃦⃦⃦⃦⃦2
2

� 1
2

. (2.5)

What is the second moment? Expand:

eq:lgi4E
⃦⃦⃦⃦⃦
𝑘∑︁
𝑟=1

𝑔𝑖𝑇𝑥𝑟

⃦⃦⃦⃦⃦2
2

= E

⎡⎣∑︁
𝑖𝑗

𝑔𝑖𝑔𝑗 ⟨𝑇𝑥𝑖, 𝑇𝑥𝑗⟩

⎤⎦ =
𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 . (2.6)

Chaining together (2.4), (2.5), (2.6) gives the result.

Why use the Gaussians? The identity characterizes the Gaussians using rotation invari-
ance. Using other random variables gives other constants that are not sharp.

There will be lots of geometric lemmas:

∙ A fact about restricting matrices.

∙ Another geometric argument to give a different method for selecting subsets.

∙ A combinatorial lemma for selecting subsets.

Finally we’ll put them together in a crazy induction.
2-10-16: We were in the process of proving three or four subset selection principles, which

we will somehow use to prove the RIP.
The little Grothendieck inequality (Theorem 2.3.1) is part of an amazing area of mathe-

matics with many applications. It’s little, but very useful. The proof is really Grothendieck’s
original proof, re-organized. For completeness, we’ll show the fact that the inequality is sharp
(cannot be improved).
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3.1.1 Tightness of Grothendieck’s inequality

Corollary 2.3.3.
È
𝜋/2 is the best constant in Theorem 2.3.1.

From the proof, we reverse engineer vectors that make the inequality sharp. They are
given in the following example.

Example 2.3.4: Let 𝑔1, 𝑔2, . . . , 𝑔𝑘 be iid Gaussians on the probability space (Ω, 𝑃 ). Let
𝑇 : 𝐿∞(Ω, 𝑃 ) → ℓ𝑘2 be

𝑇𝑓 = (E[𝑓𝑔1], . . . ,E[𝑓𝑔𝑘]).

Let 𝑥𝑟 ∈ 𝐿∞(Ω, 𝑃 ),

𝑥𝑟 =
𝑔𝑟(︀∑︀𝑘

𝑖=1 𝑔
2
𝑖

� 1
2

.

Proof. Le 𝑔1, . . . , 𝑔𝑘;𝑇 ;𝑥1, . . . 𝑥𝑘 be as in the example. Note the 𝑥𝑟 are nothing more than
vectors on the 𝑘-dimensional unit sphere, so they are bounded functions on the measure
space Ω. We can also write

eq:sum-xr

𝑘∑︁
𝑟=1

𝑥𝑟(𝜔)
2 =

𝑘∑︁
𝑟=1

𝑔𝑟(𝜔)
2∑︀𝑟

𝑖=1 𝑔𝑖(𝜔)
2
= 1 (2.7)

We use the Central Limit Theorem in order to replace the Ω by a discrete space. Let 𝜀𝑟,𝑖 be
±1 random variables. Then letting

𝑔𝑟 =
𝜀𝑟,1 + . . .+ 𝜀𝑟,𝑁√

𝑁

instead, we have that 𝑔𝑟 approaches a standard Gaussian in distribution, so the statements
we make will be asymptotically true. With this discretization, the random variables {𝑔𝑟}
live in Ω = {±1}𝑁𝐾 . So 𝐿∞(Ω) = 𝑙2

𝑁𝐾

∞ , which is in a large but finite dimension. So 𝜔 will
really be a coordinate in Ω.

Now we show two things; they are nothing more than computations.

1. ‖𝑇‖𝐿∞(Ω,P)→𝑙𝑘2
=
È
2/𝜋,

2. We also show
∑︀𝑘
𝑟=1 ‖𝑇𝑥𝑟‖22

𝑘→∞−−−→ 1.

From (2.7) and the 2 items, the little Grothendieck inequality is sharp in the limit.
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For (1), we have

‖𝑇‖ℓ∞→ℓ2 = sup‖𝑓‖∞≤1

(︃
𝑘∑︁
𝑟=1

E [𝑓𝑔𝑟]
2

)︃1/2

= sup‖𝑓‖∞≤1sup∑︀𝑘

𝑟=1
𝛼2
𝑟=1

∑︁
𝑟=1

𝛼𝑟E [𝑓𝑔𝑟]

= sup∑︀𝑘

𝑟=1
𝛼2
𝑟=1

sup‖𝑓‖∞≤1E
[︃
𝑓

𝑘∑︁
𝑖=1

𝛼𝑟𝑔𝑟

]︃
= sup∑︀𝑘

𝑟=1

E
⃒⃒⃒⃒⃒
𝑘∑︁
𝑟=1

𝛼𝑟𝑔𝑟

⃒⃒⃒⃒⃒
= E|𝑔1| =

Ê
2

𝜋

(2.8)

as we claimed, since ‖𝛼‖2 = 1 implies
∑︀𝑘
𝑟=1 𝛼𝑟𝑔𝑟 is also a gaussian.

Now for (2),

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 =
𝑘∑︁
𝑟=1

�
E

⎡⎣ 𝑔2𝑟(︀∑︀𝑘
𝑖=1 𝑔

2
𝑖

�1/2
⎤⎦�2

= 𝐾

�
E

⎡⎣ 𝑔21(︀∑︀𝑘
𝑖=1 𝑔

2
𝑖

�1/2
⎤⎦�2

= 𝐾

�
1

𝐾
E

⎡⎣ 𝑘∑︁
𝑟=1

𝑔2𝑟(︀∑︀𝑘
𝑖=1 𝑔

2
𝑖

�1/2
⎤⎦�2

=
1

𝐾

�
E

⎡⎣(︃ 𝑘∑︁
𝑖=1

𝑔2𝑖

)︃1/2
⎤⎦�2

(2.9)

and you can use Stirling to finish. This is just a 𝜒2-distribution.
In this case E 𝑔1𝑔2

(
∑︀

𝑖
𝑔2𝑖 )

1/2 = E 𝑔1(−𝑔2)

(
∑︀

𝑖
𝑔2𝑖 )

1/2 . Also note that if (𝑔1, . . . , 𝑔𝑘) ∈ R𝑘 is a standard

Gaussian, then (𝑔1,...,𝑔𝑘)(︀∑︀𝑘

𝑖=1
𝑔2𝑖

�1/2 and
(︀∑︀𝑘

𝑖=1 𝑔
2
𝑖 )

1/2
�
are independent. In other words, the length

and angle are independent: This is just polar coordinates, you can check this.

Now, how does this relate to the Restricted Invertibility Problem?

3.2 Pietsch Domination Theorem

Theorem 2.3.5 (Pietsch Domination Theorem). thm:pdt Fix 𝑚,𝑛 ∈ N and 𝑀 > 0. Suppose
that 𝑇 : R𝑚 → R𝑛 is a linear operator such that for every 𝑥1, . . . , 𝑥𝑘 ∈ R𝑚 have

eq:pdt1

(︃
𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22

)︃1/2

≤𝑀 max
1≤𝑗≤𝑚

(︃
𝑘∑︁
𝑟=1

𝑥2𝑟𝑗

)︃1/2

(2.10)
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Then there exist 𝜇 = (𝜇1, . . . , 𝜇𝑚) ∈ R𝑚 with 𝜇1 ≥ 0 and
∑︀𝑚
𝑖=1 𝜇𝑖 = 1 such that for every

𝑥 ∈ R𝑚

eq:pdt2‖𝑇𝑥‖2 ≤𝑀

(︃
𝑀∑︁
𝑖=1

𝜇𝑖 ‖𝑥𝑖‖2
)︃1/2

(2.11)

The theorem says that you can come up with a probability measure such that the norm
of T as an operator as a standard norm from 𝑙∞ to 𝑙2 (?), is bounded by 𝑀 .

Remark 2.3.6: The theorem really an iff: (2.11) is a stronger statement than (2.10), and
in fact they are equivalent.

Proof. Define 𝐾 ⊆ R𝑚 with

𝐾 =

{︃
𝑦 ∈ R𝑚 : 𝑦𝑖 =

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 −𝑀2
𝑚∑︁
𝑟=1

𝑥2𝑟𝑖 for some 𝑘, 𝑥1, . . . , 𝑥𝑘 ∈ R𝑚
}︃

Basically we cleverly select a convex set. Every 𝑛-tuple of vectors in R𝑚 gives you a new
vector in R𝑚. Let’s check that 𝐾 is convex. We have to check if two vectors 𝑦, 𝑧 ∈ 𝐾,
then all points on the line between them are in 𝐾. 𝑦, 𝑧 ∈ 𝐾 means that there exist (𝑥𝑖)

𝑘
𝑖=1,

(𝑤𝑖)
𝑙
𝑖=1,

𝑦𝑖 =
𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22 −𝑀2
𝑚∑︁
𝑟=1

𝑥2𝑟𝑖

𝑧𝑖 =
𝑙∑︁

𝑟=1

‖𝑇𝑤𝑟‖22 −𝑀2
𝑙∑︁

𝑟=1

𝑤2
𝑟𝑖

for all 𝑖. Then 𝛼𝑦𝑖 + (1 − 𝛼)𝑧𝑖 comes from (
√
𝛼𝑥1, . . . ,

√
𝛼𝑥𝑘,

√
1− 𝛼𝑤1, . . .

√
1− 𝛼𝑤𝑘). So

by design, 𝐾 is a convex set.
Now, the assumption of the theorem says that(︃

𝑘∑︁
𝑟=1

‖𝑇𝑥𝑟‖22

)︃1/2

≤𝑀max1≤𝑗≤𝑚

(︃
𝑘∑︁
𝑟=1

𝑥2𝑟𝑗

)︃1/2

which implies

‖𝑇𝑥𝑟‖22 −𝑀2max1≤𝑗≤𝑚
𝑚∑︁
𝑟=1

𝑥2𝑟𝑗 ≤ 0

which implies 𝐾 ∩ (0,∞)𝑚 = ∅. By the hyperplane separation theorem (for two disjoint
convex sets in R𝑚 with at least one compact, there is a hyperplane between them), there
exists 0 ̸= 𝜇 = (𝜇1, . . . , 𝜇𝑚) ∈ R𝑚 with

⟨𝜇, 𝑦⟩ ≤ ⟨𝜇, 𝑧⟩

for all 𝑦 ∈ 𝐾 and 𝑧 ∈ (0,∞)𝑚. By renormalizing, we may assume
∑︀𝑚
𝑖=1 𝜇𝑖 = 1. Moreover 𝜇

cannot have any strictly negative coordinate: Otherwise you could take 𝑧 to have arbitrarily
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large value at a strictly negative coordinate with zeros everywhere else, implying ⟨𝑢, 𝑧⟩ is no
longer bounded from below, a contradiction. Therefore, 𝜇 is a probability vector and ⟨𝜇, 𝑧⟩
can be arbitrarily small. So for every 𝑦 ∈ 𝐾,

∑︀𝑚
𝑖=1 𝜇𝑖𝑦𝑖 ≤ 0. Write

𝑦𝑖 = ‖𝑇𝑥‖22 −𝑀2 ‖𝑥𝑖‖2 ∈ 𝐾.

Expanding this out,

‖𝑇𝑥‖22 −𝑀2
𝑛∑︁
𝑖=1

𝜇𝑖 ‖𝑥𝑖‖2 ≤ 0,

which is exactly what we wanted.

3.3 A projection bound

Lemma 2.3.7. lem:projbound 𝑚,𝑛 ∈ N, 𝜀 ∈ (0, 1), 𝑇 : R𝑛 → R𝑚 a linear operator. Then
∃𝜎 ⊂ {1, . . . ,𝑚} with |𝜎| ≥ (1− 𝜀)𝑚 such that

‖ProjR𝜎𝑇‖𝑆∞ ≤
√︂

𝜋

2𝜀𝑚
‖𝑇‖𝑙𝑛2→𝑙𝑚1

We will find ways to restrict a matrix to a big submatrix. We won’t be able to control
its operator norm, but we will be able to control the norm from 𝑙𝑛2 to 𝑙𝑚1 . Then we pass to
a further subset, which this becomes an operator norm on, which is an improvement which
Grothendieck gave us. This is the first very useful tool to start finding big submatrices.

Proof. We have 𝑇 : 𝑙𝑛2 → 𝑙𝑚1 , 𝑇
* : 𝑙𝑚∞ → 𝑙𝑛2 . Now some abstract nonsense gives us that for Ba-

nach spaces, the norm of an operator and its adjoint are equal, i.e. ‖𝑇‖𝑙𝑛2→𝑙𝑚1
= ‖𝑇 *‖𝑙𝑚∞→𝑙𝑛2

.
This statement follows from the Hahn-Banach theorem (come see me if you haven’t seen
this before, I’ll tell you what book to read). From the Little Grothendieck inequality
(Theorem 2.3.1), 𝑇 * satisfies the assumption of the Pietsch domination theorem 2.3.5 with
𝑀 =

È
𝜋
2
‖𝑇‖𝑙𝑛2→𝑙𝑚1

(we’re applying it to 𝑇 *). By the theorem, there exists a probability
vector (𝜇1, . . . , 𝜇𝑚) such that for every 𝑦 ∈ R𝑚,

‖𝑇 *𝑦‖2 =𝑀

(︃
𝑚∑︁
𝑖=1

𝜇𝑖𝑦
2
𝑖

)︃1/2

with 𝑀 =
È

𝜋
2
‖𝑇‖𝑙𝑛2→𝑙𝑚1

. Define 𝜎 =
⌋︀
𝑖 ∈ {1, . . . ,𝑚} : 𝜇𝑖 ≤ 1

𝑚𝜀

{︀
; then |𝜎| ≥ (1 − 𝜀)𝑚 by

Markov’s inequality. We can also see this by writing

1 =
𝑚∑︁
𝑖=1

𝜇𝑖 =
∑︁
𝑖∈𝜎

𝜇𝑖 +
∑︁
𝑖 ̸∈𝜎

𝜇𝑖 >
∑︁
𝑖∈𝜎

𝜇𝑖 +
𝑚− |𝜎|
𝑚𝜀

which follows since for 𝑗 ̸∈ 𝜎, 𝜇𝑗 >
1
𝑚𝜀

. Continuing,

𝑚𝜀−𝑚+ |𝜎|
𝑚𝜀

≥
∑︁
𝑖∈𝜎

𝜇𝑖

|𝜎| ≥ (𝑚𝜀)
∑︁
𝑖∈𝜎

𝜇𝑖 +𝑚(1− 𝜀)
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Then, because 𝜇 is a probability distribution, (𝑚𝜀)
∑︀
𝑖∈𝜎 𝜇𝑖 ≥ 0 and we have

|𝜎| ≥ 𝑚(1− 𝜀)

Now take 𝑥 ∈ R𝑛 and choose 𝑦 ∈ R𝑚 with ‖𝑦‖2 = 1. Then

⟨𝑦,ProjR𝜎𝑇𝑥⟩2 = ⟨𝑇 *ProjR𝜎𝑦, 𝑥⟩2 ≤ ‖𝑇 *ProjR𝜎𝑦‖22 · ‖𝑥‖22

≤ 𝜋

2
‖𝑇‖𝑙𝑛2→𝑙𝑚1

(︃∑︁
𝑖∈𝜎

𝜇𝑖𝑦
2
𝑖

)︃
‖𝑥‖22 ≤

𝜋

2
‖𝑇‖2𝑙𝑛2→𝑙𝑚1

1

𝑚𝜀
‖𝑥‖22

by Cauchy-Schwarz. Taking square roots gives the desired result.

In the previous proof, we used a lot of duality to get an interesting subset.

Remark 2.3.8: In Lemma 2.3.7, I think that either the constant 𝜋/2 is sharp (no subset
are bigger; it could come from the Gaussians), or there is a different constant here. If the
constant is 1, I think you can optimize the previous argument and get the constant to be
arbitrarily close to 1, which would have some nice applications: In other words, getting

È
𝜋

2𝜀𝑚

as close to 1 as possible would be good. I didn’t check before class, but you might want
to check if you can carry out this argument using the Gaussian argument we made for the
sharpness of 𝜋

2
in Grothendieck’s inequality (Theorem 2.3.1). It’s also possible that there is

a different universal constant.

3.4 Sauer-Shelah Lemma

Now we will give another lemma which is very easy and which we will use a lot.

Lemma 2.3.9 (Sauer-Shelah). lem:saushel Take integers 𝑚,𝑛 ∈ N and suppose that we have a
large set Ω ⊆ {±1}𝑛 with

|Ω| >
𝑚−1∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
Then ∃𝜎 ⊆ {1, . . . , 𝑛} such that with |𝜎| = 𝑚, if you project onto R𝜎 the set of vectors, you get
the entire cube: ProjR𝜎(Ω) = {±1}𝜎.2 For every 𝜀 ∈ {±1}𝜎, there exists 𝛿 = (𝛿1, . . . , 𝛿𝑛) ∈ Ω
such that 𝛿𝑗 = 𝜀𝑗 for 𝑗 ∈ 𝜎.

Note that Lemma 2.3.9 is used in the proof of the Fundamental Theorem of Statistical
Learning Theory.

Proof. We want to prove by induction on 𝑛. First denote the shattering set

sh(Ω) = {𝜎 ⊆ {1, . . . , 𝑛} : ProjR𝜎Ω = {±1}𝜎}
2I.e., the VC dimension of Ω is ≥ 𝑚.
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The claim is that the number of sets shattered by a given set is |sh(Ω)| ≥ |Ω|. The empty
set case is trivial. What happens when 𝑛 = 1? Ω ⊂ {−1, 1}, and thus the set is shattered.
Assume that our claim holds for 𝑛, and now set Ω ⊆ {±1}𝑛+1 = {±1}𝑛 × {±1}. Define

Ω+ = {𝜔 ∈ {±1}𝑛 : (𝜔, 1) ∈ Ω}

Ω− = {𝜔 ∈ {±1}𝑛 : (𝜔,−1) ∈ Ω}

Then, letting Ω̃+ = {(𝜔, 1) ∈ {±1}𝑛+1 : 𝜔 ∈ Ω+} and Ω̃− similarly, we have |Ω| = |Ω̃+| +
|Ω̃−| = |Ω+|+ |Ω−|. By our inductive step, we have sh(Ω+) ≥ |Ω+| and sh(Ω−) ≥ |Ω−|. Note
that any subset that shatters Ω+ also shatters Ω, and likewise for Ω−. Note that if a set Ω′

shatters both of them, we are allowed to add on an extra coordinate to get Ω′×{±1} which
shatters Ω. Therefore,

sh(Ω+) ∪ sh(Ω−) ∪ {𝜎 ∪ {𝑛+ 1} : 𝜎 ∈ sh(Ω+) ∩ sh(Ω−)} ⊆ sh(Ω)

where the last union is disjoint since the dimensions are different. Therefore, we can now
use this set inclusion to complete the induction using the principle of inclusion-exclusion:

|sh(Ω)| ≥ |sh(Ω+) ∪ sh(Ω−)|+ |sh(Ω+) ∩ sh(Ω−)| (disjoint sets)

= |sh(Ω+)|+ |sh(Ω−)| − |sh(Ω+) ∩ sh(Ω−)|+ |sh(Ω+) ∩ sh(Ω−)|
= |sh(Ω+)|+ |sh(Ω−)|
≥ |Ω+|+ |Ω−| = |Ω|

which completes the induction as desired.

We will primarily use the theorem as the following corollary, which says that if you have
half of the points in terms of cardinality, you get half of the dimension.

Corollary 2.3.10. If |Ω| ≥ 2𝑛−1 then there exists 𝜎 ⊆ {1, . . . , 𝑛} with |𝜎| ≥ ⌈𝑛+1
2
⌉ ≥ 𝑛

2
such

that ProjR𝜎Ω = {±1}𝜎.

2-15-16: Last time we left off with the proof of the Sauer-Shelah lemma. To remind you,
we were finding ways to find interesting subsets where matrices behave well. Now recall we
had a linear algebraic fact which I owe you; I will prove it in an analytic way. The proof has
been moved to Section 2.

4 Proof of RIP

4.1 Step 1

Now we need another geometric lemma for the proof of Theorem 2.1.7, the restricted invert-
ibility principle.
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Lemma 2.4.1 (Step 1). lem:step1 Fix 𝑚,𝑛, 𝑟 ∈ N. Let 𝐴 : R𝑚 → R𝑛 be a linear operator with
rank(𝐴) ≥ 𝑟. For every 𝜏 ⊆ {1, . . . ,𝑚}, denote

𝐸𝜏 = (span((𝐴𝑒𝑗)𝑗∈𝜏 ))
⊥ .

Then there exists 𝜏 ⊆ {1, . . . ,𝑚} with |𝜏 | = 𝑟 such that for all 𝑗 ∈ 𝜏 ,

‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑗‖2 ≥

1√
𝑚

(︃
𝑚∑︁
𝑖=1

𝑠𝑖(𝐴)
2

)︃1/2

.

Basically we’re taking the projection of the 𝑗𝑡ℎ column onto the orthogonal completement
of the span of the subspace of all columns in the set except for the 𝑗𝑡ℎ one, and bounding the
norm of that by a dimension term and the square root of the sum of the eigenvalues. (This is
sharp asymptotically, and may in fact even be sharp as written too—I need to check. Check
this?)

Proof. For every 𝜏 ⊆ {1, . . . ,𝑚}, denote

𝐾𝜏 = conv ({±𝐴𝑒𝑗}𝑗∈𝜏 )

The idea is to make the convex hull have big volume. Once we do that, wewill get all these
inequalities for free. Let 𝜏 ⊆ {1, . . . ,𝑚} be the subset of size 𝑟 that maximizes vol𝑟(𝐾𝜏 ).
We know that vol𝑟(𝐾𝜏 ) > 0. Observe that for any 𝛽 ⊆ {1, . . . ,𝑚} of size 𝑟 − 1 and 𝑖 ̸∈ 𝛽,
we have

𝐾𝛽∪{𝑖} = conv (𝐾𝛽 ∪ {±𝐴𝑒𝑖}) ,

which is a double cone.

What is the height of this cone? It is ‖Proj𝐸𝛽
𝐴𝑒𝑖‖2, as 𝐸𝛽 is the orthogonal complement

of the space spanned by 𝛽. Therefore, the 𝑟-dimensional volume is given by

vol𝑟(𝐾𝛽∪{𝑖}) = 2 ·
vol𝑟−1(𝐾𝛽) · ‖Proj𝐸𝛽

𝐴𝑒𝑖‖2
𝑟
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Because |𝜏 | = 𝑟 is the maximizing subset of 𝐹Ω, for any 𝑗 ∈ 𝜏 and 𝑖 ∈ {1, . . . ,𝑚}, choosing
𝛽 = 𝜏 ∖ {𝑗}, we get

vol𝑟(𝐾𝛽∪{𝑗}) ≥ vol𝑟(𝐾𝛽∪{𝑖})

=⇒ ‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑗‖2 ≥ ‖Proj𝐸𝜏∖{𝑗}

𝐴𝑒𝑖‖2.

for every 𝑗 ∈ 𝜏 and 𝑖 ∈ {1, . . . ,𝑚}. Summing,

𝑚‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑗‖22 ≥

𝑚∑︁
𝑖=1

‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑖‖22 = ‖Proj𝐸𝜏∖{𝑗}

𝐴‖2𝑆2
.

Then, for all 𝑗 ∈ 𝜏 ,

eq:rip-s1-1‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑗‖2 ≥

1√
𝑚
‖Proj𝐸𝜏∖{𝑗}

𝐴‖𝑆2 (2.12)

Let’s denote 𝑃 = Proj𝐸𝜏∖{𝑗}
. Note 𝑃 is an orthogonal projection of rank 𝑟 − 1. Then,

eq:rip-s1-2

‖𝑃𝐴‖2𝑆2
= Tr((𝑃𝐴)*(𝑃𝐴)) = Tr(𝐴*𝑃 *𝑃𝐴) = Tr(𝐴*𝑃𝐴) = Tr(𝐴𝐴*𝑃 )

= Tr(𝐴𝐴*)− Tr(𝐴𝐴*(𝐼 − 𝑃 )) ≥
𝑚∑︁
𝑖=1

𝑠𝑖(𝐴)
2 −

𝑟−1∑︁
𝑖=1

𝑠𝑖(𝐴)
2 =

𝑚∑︁
𝑖=𝑟

𝑠𝑖(𝐴)
2

(2.13)

using the Ky Fan maximal principle 2.2.1, since 𝐼 − 𝑃 is a projection of rank 𝑚− 𝑟 + 1.
Putting (2.12) and (2.13) together gives the result.

4.2 Step 2

In our proof of the restricted invertibility principle, this is the first step. Before proving it,
let me just tell you what the second step looks like.

Lemma 2.4.2 (Step 2). lem:step2 Let 𝑘,𝑚, 𝑛 ∈ N, 𝐴 : R𝑚 → R𝑛, rank(𝐴) > 𝑘. Let 𝜔 ⊆
{1, . . . ,𝑚} with |𝜔| = rank(𝐴) such that {𝐴𝑒𝑗}𝑗∈𝜔 are linearly independent. Denote for
every 𝑗 ∈ Ω

𝐹𝑗 = 𝐸𝜔∖{𝑗} =
(︀
span(𝐴𝑒𝑖)𝑖∈𝜔∖{𝑗}

�
.

Then there exists 𝜎 ⊆ 𝜔 with |𝜎| = 𝑘 such that

‖ (𝐴𝐽𝜎)−1 ‖𝑆∞ .

È
rank(𝐴)È

rank(𝐴)− 𝑘
·max
𝑗∈𝜔

1

‖Proj𝐹𝑗
𝐴𝑒𝑗‖

Most of the work is in the second step. First we pass to a subset where we have some
information about the shortest possible orthogonal project. But Step 1 saves us by bounding
what this can be. Here we use the Grothendieck inequality, Sauer-Shelah, etc. Everything:
It’s simple, but it kills the restricted invertibility principle.
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Proof of Theorem 2.1.7 given Step 1 and 2. Take 𝐴 : R𝑚 → R𝑛. By Step 1 (Lemma 2.4.1),
we can find subset 𝜏 ⊆ {1, . . . ,𝑚} with |𝜏 | = 𝑟 such that for all 𝑗 ∈ 𝜏 ,

eq:step1‖Proj𝐸𝜏∖{𝑗}
𝐴𝑒𝑗‖2 ≥

1√
𝑚

(︃
𝑚∑︁
𝑖=𝑟

𝑠𝑖(𝐴)
2

)︃1/2

. (2.14)

Now we apply Step 2 (Lemma 2.4.2) to 𝐴𝐽𝜏 , using 𝜔 = 𝜏 , and find a further subset 𝜎 ⊆ 𝜏
such that

‖ (𝐴𝐽𝜎)−1 ‖𝑆∞ ≤ min
𝑘<𝑟<rank(𝐴)

Ì
rank(𝐴)

rank(𝐴)− 𝑟
max
𝑗∈𝜔

1⃦⃦⃦
Proj𝐹𝑗

𝐴𝑒𝑗
⃦⃦⃦

≤ min
𝑘<𝑟<rank(𝐴)

Ê
𝑚𝑟

(𝑟 − 𝑘)
∑︀𝑚
𝑖=𝑟 𝑠𝑖(𝐴)

2

which we get by plugging directly in 𝑟 for the rank and using Step 1 (2.14) to get the
denominator.

2-17
Now we prove Step 2 (Lemma 2.4.2). Note we can assume 𝜔 = {1, . . . ,𝑚} and that the

rank is 𝑚.
First we need some lemmas.

Lemma 2.4.3. lem:rip-step2-1 Let 𝐴 : R𝑚 → R𝑛 be such that {𝐴𝑒𝑗}𝑚𝑗=1 are linearly independent,
and 𝜎 ⊆ {1, . . . ,𝑚}, 𝑡 ∈ N. Then there exists 𝜏 ⊆ 𝜎 with

|𝜏 | ≥
(︂
1− 1

2𝑡

)︂
|𝜎|,

such that denoting 𝜃 = 𝜏∪({1, . . . ,𝑚}∖𝜎), 𝐹𝑗 = (span({𝐴𝑒𝑗}𝑖 ̸=𝑗))⊥, and𝑀 = max𝑗∈𝜔
1

‖Proj𝐹𝑗
𝐴𝑒𝑗‖ ,

we have that for all 𝜎 ∈ R𝜃, ∑︁
𝑖∈𝜏

|𝑎𝑖| ≤ 2
𝑡
2𝑀

È
|𝜎|
⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

.
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This is proved by a nice inductive argument.

Proof. TODO next time

Lemma 2.4.4. lem:rip-step2-2 Let 𝑚,𝑛, 𝑡 ∈ N and 𝛽 ⊆ {1, . . . ,𝑚}. Let 𝐴 : R𝑚 → R𝑛 be a
linear operator such that {𝐴𝑒𝑗}𝑚𝑗=1 are linearly independent. Then there exist two subsets

𝜎 ⊆ 𝜏 ⊆ 𝛽 such that |𝜏 | ≥
(︀
1− 1

2𝑡

�
|𝛽|, |𝜏∖𝜎| ≤ |𝛽|

4
, and if we denote 𝜃 = 𝜏 ∪ ({1, . . . ,𝑚}∖𝛽),

𝑀 = max𝑗∈𝜔
1

‖Proj𝐹𝑗
𝐴𝑒𝑗‖ , then ⃦⃦⃦

ProjR𝜎(𝐴𝐽𝜃)
−1
⃦⃦⃦
𝑆∞

. 2
𝑡
2𝑀.

Proof of Lemma 2.4.4 from Lemma 2.4.3. Apply Lemma 2.4.3 with 𝜎 = 𝛽. Basically, we’re
going to inductively construct a subset 𝜎 = 𝛽 of {1, · · · ,𝑚} onto which to project, so that
we can control the 𝑙1 norm of the subset 𝜏 by the 𝑙2 norm on a slightly greater set 𝜃 via
Lemma 2.4.3.

We find 𝜏 ⊆ 𝛽 with |𝜏 | ≥
(︀
1− 1

2𝑡

�
|𝛽| such that∑︁

𝑖∈𝜏
|𝑎𝑖| ≤ 2

𝑡
2𝑀

È
|𝛽|

⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

.

Rewriting gives that

∀𝑎 ∈ R𝜎, ‖ProjR𝜏 𝑎‖ ≤ 2
𝑡
2𝑀

È
|𝛽| ‖𝐴𝐽𝜃𝑎‖2

=⇒
⃦⃦⃦
ProjR𝜏 (𝐴𝐽𝜃)

−1
⃦⃦⃦
ℓ𝜃2→ℓ𝜏1

. 2
𝑡
2𝑀

È
|𝛽|.

Denote 𝜀 = |𝛽|
4|𝜏 | . By Lemma 2.3.7, there exists 𝜎 ⊆ 𝜏 , |𝜎| ≥ (1− 𝜀)|𝜏 | such that⃦⃦⃦
ProjR𝜎(𝐴𝐽𝜃)

−1
⃦⃦⃦
𝑆∞

=
⃦⃦⃦
ProjR𝜎 ProjR𝜏 (𝐴𝐽𝜃)

−1
⃦⃦⃦
𝑆∞

.
Ê

𝜋

2𝜀|𝜏 |
2

𝑡
2𝑀

È
|𝛽|

. 2
𝑡
2𝑀.
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Now, we have basically finished making use of Lemma 2.4.3 in the proof of Lemma 2.4.4.
It remains to use Lemma 2.4.4 to prove the full second step in our proof of the Restricted
Invertibility Principle.

Proof of Lemma 2.4.2 (Step 2). Fix an integer 𝑟 such that 1
22𝑟+1 ≤ 1 − 𝑘

𝑚
≤ 1

22𝑟
. Proceed

inductively as follows. First set

𝜏0 = {1, . . . ,𝑚}
𝜎0 = 𝜑.

Suppose 𝑢 ∈ {0, . . . , 𝑟 + 1} and we constructed 𝜎𝑘, 𝜏𝑘 ⊆ {1, . . . ,𝑚} such that if we denote
𝛽𝑢 = 𝜏𝑢∖𝜎𝑢, 𝜃𝑢 = 𝜏𝑢 ∪ ({1, . . . ,𝑚}∖𝛽𝑢−1), then

1. 𝜎𝑢 ⊆ 𝜏𝑢 ⊆ 𝛽𝑢−1

2. |𝜏𝑢| ≥
(︀
1− 1

22𝑟−𝑢+4

�
|𝛽𝑢−1|

3. |𝛽𝑢| ≤ 1
4
|𝛽𝑢−1|

4. ‖ProjR𝜎𝑢 (𝐴𝐽𝜃𝑢)
−1‖𝑆∞

. 2𝑟−
𝑢
2𝑀 .

Let 𝐻 = 2𝑟 − 𝑢+ 4. For instance, |𝜏1| ≥
(︀
1− 1

22𝑟+3

�
|𝛽0|. What is the new 𝛽?

For the inductive step, apply Lemma 2.4.4 on 𝛽𝑢−1 with 𝑡 = 2𝑟− 𝑢+ 4 to get 𝜎𝑢 ⊆ 𝜏𝑢 ⊆
𝛽𝑢−1 such that |𝜏𝑢| ≥

(︀
1− 1

22𝑟−𝑢+4

�
|𝛽𝑢−1|, |𝜏𝑢∖𝜎𝑢| ≤ |𝛽𝑢−1|

4
As we induct, we are essentially

building up more 𝜎𝑢 to eventually produce the invertible subset over which we will project.
Note that the size of the 𝜃 set is decreasing as we proceed inductively.

eq:rip-s2-1

⃦⃦⃦
ProjR𝜎𝑢 (𝐴𝐽𝜃𝑢)

−1
⃦⃦⃦
. 2𝑟−𝑢/2𝑀. (2.15)
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We know |𝛽𝑢−1| ≤ 𝑚
4𝑢−1 ,

𝛽𝑢−1 = 𝛽𝑢 ⊔ 𝜎𝑢 ⊔ (𝛽𝑢−1∖𝜏𝑢)
|𝛽𝑢−1| = |𝛽𝑢|+ |𝜎𝑢|+ (|𝛽𝑢−1| − |𝜏𝑢|)
|𝜎𝑢| = |𝛽𝑢−1| − |𝛽𝑢| − (|𝛽𝑢−1| − |𝜏𝑢|)

≥ |𝛽𝑢−1| − |𝛽𝑢| −
|𝛽𝑢−1|
22𝑟−𝑢+4

≥ |𝛽𝑢−1| − |𝛽𝑢| −
𝑚

22𝑟+𝑢+2
.

Our choice for the invertible subset is

𝜎 =
𝑟+1⨆︁
𝑢=1

𝜎𝑢.

Telescoping gives

|𝜎| =
𝑟+1∑︁
𝑢=1

|𝜎𝑢| ≥ |𝛽0| − |𝛽𝑟+1| −
𝑚

22𝑟+2

∞∑︁
𝑢=1

1

2𝑢

≥ 𝑚− 𝑚

4𝑟+1
− 𝑚

22𝑟+2

= 𝑚
(︂
1− 1

22𝑟+1

)︂
≥ 𝑚

𝑘

𝑚
= 𝑘.

Observe that 𝜎 ⊆ ⋂︀𝑟+1
𝑢=1 𝜃𝑢 and for every 𝑢,

𝜎𝑢, . . . , 𝜎𝑟+1 ⊆ 𝜏𝑢

𝜎1, . . . , 𝜎𝑢−1 ⊆ {1, . . . ,𝑚}∖𝛽𝑢−1

This allows us to use the conclusion for all the 𝜎𝑢’s at once.
For 𝑎 ∈ R𝜎, 𝐽𝜎𝑎 ⊆ 𝐽𝜃𝑢R𝜃𝑢 ,

ProjR𝜎𝑢 (𝐴𝐽𝜃𝑢)
−1(𝐴𝐽𝜎)𝑎 = ProjR𝜎𝑢 𝐽𝜎𝑎.

since 𝐴−1𝐴 = 𝐼 and projecting a subset onto its containing set is just the subset itself. Then,
breaking 𝐽𝜎𝑎 into orthogonal components,

‖𝐽𝜎𝑎‖22 =
𝑟+1∑︁
𝑢=1

‖ProjR𝜎𝑢 𝐽𝜎𝑎‖22

=
𝑟+1∑︁
𝑢=1

⃦⃦⃦
ProjR𝜎𝑢 (𝐴𝐽𝜎𝑢)

−1(𝐴𝐽𝜎)𝑎
⃦⃦⃦2
2

.
𝑟+1∑︁
𝑢=1

22𝑟−𝑢𝑀2 ‖𝐴𝐽𝜎𝑎‖22 by (2.15)

. 22𝑟𝑀2 ‖𝐴𝐽𝜎𝑎‖22
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≤ 𝑀2

1− 𝑘
𝑚

‖𝐴𝐽𝜎𝑎‖22

‖𝐽𝜎𝑎‖2 ≤
Ê

𝑚

𝑚− 𝑘
𝑀 ‖𝐴𝐽𝜎𝑎‖2

Since this is true for all 𝑎 ∈ R𝜎,

=⇒
⃦⃦⃦
(𝐴𝐽𝜎)

−1
⃦⃦⃦
𝑆∞

.
Ê

𝑚

𝑚− 𝑘
𝑀.

An important aspect of this whole proof to realize is the way we took a first subset to
give one bound, and then took another subset in order to apply the Little Grothendieck
inequality. In other words, we first took a subset where we could control 𝑙1 to 𝑙2, and then
took a further subset to get the operator norm bounds.

Also, notice that in this approach, we construct our “optimal subset” of the space in-
ductively: However, doing this in general is inefficient. It would be nice to construct the set
greedily instead for algorithmic reasons, if we wanted to come up with a constructive proof.
I have a feeling that if we were to avoid this kind of induction, it would involve not using
Sauer-Shelah at all.

How can we make this theorem algorithmic?
The way the Pietsch Domination Theorem 2.3.5 worked was by duality. We look at a

certain explicitly defined convex set. We found a separating hyperplane which must be a
probability measure. Then we had a probabilistic construction. This part is fine.

The bottleneck for making this an algorithm (I do believe this will become an algorithm)
consists of 2 parts:

1. Sauer-Shelah lemma 2.3.9: We have some cloud of points in the boolean cube, and
we know there is some large subset of coordinates (half of them) such that when you
project to it you see the full cube. I’m quite certain that it’s NP-hard in general. (Work
is necessary to formulate the correct algorithmic Sauer-Shelah lemma. How is the set
given to you?). In fact, formulating the right question for an algorithmi Sauer-Shelah
is the biggest difficulty.

We only need to answer the algorithmic question tailored to our sets, which have
a simple description: the intersection of an ellipsoid with a cube. There is a good
chance that there is a polynomial time algorithm in this case. This question has other
applications as well (perhaps one could generalize to the intersection of the cube with
other convex bodies). 3

2. The second bottleneck is finding a subset with maximal volume.

It’s another place where we chose a subset, the subset that maximizes the volume out
of all subsets of a given size (Lemma 2.4.1). Specifically, we want the set of columns

3There could be an algorithm out there, but I couldn’t find one in the literature.
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of a matrix that maximizes the volume of the convex hull. Computing the volume of
the convex hull requires some thought. Also, there are

(︀
𝑛
𝑟

�
subsets of size 𝑟; if 𝑟 = 𝑛/2

there are exponentially many. We need a way to find subsets with maximum volume
fast. There might be a replacement algorithm which approximately maximizes this
volume.

2-22: We are at the final lemma, Lemma 2.4.3 in the Restricted Invertiblity Theorem.

The proof of this is an inductive application of the Sauer-Shelah lemma. A very important
idea comes from Giannopoulos. If you naively try to use Sauer-Shelah, it won’t work out.
We will give a stronger statement of the previous lemma which we can prove by induction.

Lemma 2.4.5 (Stronger version of Lemma 2.4.3). lem:SS-induct-stronger Take 𝑚,𝑛 ∈ N, 𝐴 : R𝑚 →
R𝑛 a linear operator such that {𝐴𝑒𝑗}𝑚𝑗=1 are linearly independent. Suppose that 𝑘 ≥ 0 is an
integer and 𝜎 ⊆ {1, . . . ,𝑚}. Then there exists 𝜏 ⊆ 𝜎 with |𝜏 | ≥ (1 − 1

2𝑘
)|𝜎| such that for

every 𝜃 ⊇ 𝜏 for all 𝑎 ∈ R𝑚 we have

eq:rip21-1

∑︁
𝑖∈𝜏

|𝑎𝑖| ≤𝑀
È
|𝜎|
(︃

𝑘∑︁
𝑟=1

2𝑟/2
)︃ ⃦⃦⃦⃦⃦∑︁

𝑖∈𝜃
𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

+ (2𝑘 − 1)
∑︁

𝑖∈𝜃∩(𝜎∖𝜏)
|𝑎𝑖| (2.16)
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Lemma 2.4.3 (all we need to complete the proof of the Restricted Invertibility Principle)
is the case where 𝜃 = 𝜏 ∪ {1, · · · ,𝑚} ∖ 𝜎, 𝑡 = 𝑘.

We prove the stronger version via induction on 𝑘.

Proof. As 𝑘 becomes bigger, we’re allowed to take more of the set 𝜎. The idea is to use
Sauer-Shelah, taking half of 𝜎, and then half of what remains at each step.

For 𝑘 = 0, the statement is vacuous, because we can take 𝜏 to be the empty set. By
induction, assume that the statement holds for 𝑘: we have found 𝜏 ⊆ 𝜎 such that |𝜏 | ≥
(1− 1

2𝑘
)|𝜎| and (2.16) holds for every 𝜏 ⊆ 𝜃. If 𝜎 = 𝜏 already, then 𝜏 satisfies (2.16) for 𝑘+1

as well, so WLOG |𝜎 ∖ 𝜏 | > 0. Now define 𝑣𝑗 is the projection

𝑣𝑗 =
Proj𝐹𝑗

𝐴𝑒𝑗⃦⃦⃦
Proj𝐹𝑗

𝐴𝑒𝑗
⃦⃦⃦2
2

Then ⟨𝑣𝑖, 𝐴𝑒𝑗⟩ = 𝛿𝑖𝑗 by definition since (𝑣𝑖) is a dual basis for the 𝐴𝑒𝑗’s.
Now we want to user Sauer-Shelah so we’re going to define a certain subset of the cube.

Define

Ω =

⎧⎨⎩𝜖 ∈ {±1}𝜎∖𝜏 :

⃦⃦⃦⃦⃦
⃦ ∑︁𝑖∈𝜎∖𝜏 𝜖𝑖𝑣𝑖

⃦⃦⃦⃦⃦
⃦
2

≤𝑀
È
2|𝜎 ∖ 𝜏 |

⎫⎬⎭
which is an ellipsoid intersected with the cube (it is not a sphere since the 𝑣𝑖s are not
orthogonal). Then we have

𝑀2|𝜎 ∖ 𝜏 | ≥
∑︁
𝑖∈𝜎∖𝜏

1

‖Proj𝐹𝑗
𝐴𝑒𝑗‖2

=
∑︁
𝑗∈𝜎∖𝜏

‖𝑣𝑗‖22

=
1

2|𝜎∖𝜏 |
∑︁

𝜖∈{±1}𝜎∖𝜏

⃦⃦⃦⃦⃦
⃦ ∑︁𝑗∈𝜎∖𝜏 𝜖𝑗𝑣𝑗

⃦⃦⃦⃦⃦
⃦
2

2

.

where the last step is true for any vectors (sum the squares and the pairwise correlations
disappear).

Using Markov’s inequality this is

≥ 1

2|𝜎∖𝜏 |
(︀
2|𝜎∖𝜏 | − |Ω|

�
𝑀22|𝜎 ∖ 𝜏 |

which gives
|Ω| > 2|𝜎∖𝜏 |−1

Then by Sauer-Shelah (Lemma 2.3.9, there exists 𝛽 ⊆ 𝜎 ∖ 𝜏 such that

ProjR𝛽 Ω = {±1}𝛽

and

|𝛽| ≥ 1

2
|𝜎 ∖ 𝜏 |
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Define 𝜏 * = 𝜏 ∪ 𝛽. We will show that 𝜏 * satisfies the inductive hypothesis with 𝑘 + 1.
Each time we find a certain set of coordinates to add to what we have before. |𝜏 *| is the
correct size because

|𝜏 *| = |𝜏 |+ |𝛽| ≥ |𝜏 |+ |𝜎| − |𝜏 |
2

=
|𝜏 |+ |𝜎|

2
≥
(︂
1− 1

2𝑘+1

)︂
|𝜎|

where we used that |𝜏 | ≥
(︀
1− 1

2𝑘

�
|𝜎|. So at least 𝜏 * is the right size.

Now, suppose 𝜃 ⊇ 𝜏 *. For every 𝑎 ∈ R𝑚, we claim there exists some 𝜖 ∈ Ω such that
∀𝑗 ∈ 𝛽 such that 𝜖𝑗 = sign(𝑎𝑗). For any 𝛽, we can find some vector in the cube that has the
sign pattern of our given vector 𝑎. What does being in Ω mean? It means that at least the
dual basis is small there. 𝜖 ∈ Ω says that

eq:step21-2‖
∑︁
𝑖∈𝜎∖𝜏

𝜖𝑖𝑣𝑖‖2 ≤𝑀
È
2|𝜎 ∖ 𝜏 | ≤

𝑀
È
2|𝜎|

2𝑘/2
(2.17)

That was how we chose our ellipsoid.

∑︁
𝑖∈𝛽

|𝑎𝑖| =

⃦∑︁
𝑖∈𝛽

𝑎𝑖𝐴𝑒𝑖,
∑︁
𝑖∈𝜎∖𝜏

𝜖𝑣𝑖

⌋︂
because the 𝑣𝑖’s are a dual basis so ⟨𝐴𝑒𝑖, 𝑣𝑗⟩ = 𝛿𝑖𝑗, and 𝛽 ⊆ 𝜎∖𝜏 . We only know the 𝜖𝑖 are
the signs when you’re inside 𝛽. This equals

=

⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖,
∑︁
𝑖∈𝜎∖𝜏

𝜖𝑣𝑖

⌋︂
−

∑︁
𝑖∈(𝜃∖𝛽)∩(𝜎∖𝜏)

𝜖𝑖𝑎𝑖

Note that (𝜃 ∖ 𝛽) ∩ (𝜎 ∖ 𝜏) = 𝜃 ∩ (𝜎 ∖ 𝜏 *). In this set we can’t control the signs 𝜖𝑖. By
Cauchy-Schwarz and (2.17), this is

≤
⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

·

⃦⃦⃦⃦⃦
⃦ ∑︁𝑖∈𝜎∖𝜏 𝜖𝑣𝑖

⃦⃦⃦⃦⃦
⃦
2

+
∑︁

𝑖∈𝜃∩(𝜎∖𝜏*)
|𝑎𝑖|

≤
⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

·
𝑀
È
2|𝜎|

2𝑘/2
+

∑︁
𝑖∈𝜃∩(𝜎∖𝜏*)

|𝑎𝑖|.

Because the conclusion of Sauer-Shelah told us nothing about the signs of 𝜖𝑖 outside 𝛽, so
we just take the worst possible thing.

Summarizing, ∑︁
𝑖∈𝛽

|𝑎𝑖| ≤
𝑀
È
2|𝜎|

2𝑘/2

⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

+
∑︁

𝑖∈𝜃∖(𝜎∖𝜏*)
|𝑎𝑖|
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Using the inductive step,∑︁
𝑖∈𝜏*

|𝑎𝑖| =
∑︁
𝑖∈𝜏

|𝑎𝑖|+
∑︁
𝑖∈𝛽

|𝑎𝑖|

≤𝑀
È
|𝜎|𝛼𝑘

⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

+
(︀
2𝑘 − 1

� ∑︁
𝑖∈𝜃∩(𝜎∖𝜏)

|𝑎𝑖|+
∑︁
𝑖∈𝛽

|𝑎𝑖|

= 𝛼𝑘
È
|𝜎|
⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

+
(︀
2𝑘 − 1

� ∑︁
𝑖∈𝜃∩(𝜎∖𝜏*)

|𝑎𝑖|+ 2𝑘
∑︁
𝑖∈𝛽

|𝑎𝑖|

In the last step, we moved 𝛽 from the second to the third term. Now use what we got before
for the bound on

∑︀
𝑖∈𝛽 |𝑎𝑖| and plug it in to get

≤
(︀
𝛼𝑘 + 2(𝑘+1)/2

�È
|𝜎|
⃦⃦⃦⃦⃦∑︁
𝑖∈𝜃

𝑎𝑖𝐴𝑒𝑖

⃦⃦⃦⃦⃦
2

+
(︀
2𝑘+1 − 1

� ∑︁
𝑖∈𝜃∩(𝜎∖𝜏*)

|𝑎𝑖|

which is exactly the inductive hypothesis.4

Remark 2.4.6 (Algorithmic Sauer-Shelah): We only used Sauer-Shelah 2.3.9 for intersect-
ing cubes with an ellipsoid, so to make RIP algorithmic, we need an algorithm for finding
these particular intersections. Moreover, the ellipsoids are big is because we ask that the
2-norm is at most

√
2 times the expectation. An efficient algorithm probably exists.

Afterwards, wecould ask for higher dimensional shapes. I’ve seen some references that
worked for Sauer-Shelah when sets were of a special form, namely of size 𝑜(𝑛). This is some-
thing more geometric. I don’t think there’s literature about Sauer-Shelah for intersection
of surfaces with small degree. This is a tiny motivation to do it, but it’s still interesting
independently.

4I looked through the original Gianpopoulous paper, and it was clear he tried out many many things
to find which inductive hypothesis makes everything go through cleanly. You want to bound an 𝑙1 sum
from above, so you want to use duality, and then use Sauer-Shelah to get signs such that the norm of the
dual-basis is small.
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Chapter 3

Bourgain’s Discretization Theorem

1 Outline

We will prove Bourgain’s Discretization Theorem. This will take maybe two weeks, and has
many interesting ingredients along the way. By doing this, we will also prove Ribe’s theorem,
which is what we stated at the beginning.

Let’s remind ourselves of the definition.

Definition (Definition 1.2.3, discretization modulus): (𝑋, ‖ · ‖𝑋), (𝑌, ‖ · ‖𝑌 ) are Banach
spaces. Let 𝜖 ∈ (0, 1). Then 𝛿𝑋 →˓𝑌 (𝜖) is the supremum over 𝛿 > 0 such that for every 𝛿-net
𝒩𝛿 of the unit ball of 𝑋, the distortion

𝐶𝑌 (𝑋) ≤ 𝐶𝑌 (𝒩𝛿)

1− 𝜖

𝐶𝑌 is smallest bi-Lipschitz distortion by which you can embed 𝑋 into 𝑌 . There are ideas
required to get 1 − 𝜖. For example, for 𝜖 = 1

2
, the equation says is that if we succeed in

embedding a 𝛿-net into 𝑌 , then we succeeded in the full space with a distortion twice as
much. A priori it’s not even clear that there exists such a 𝛿. There’s a nontrivial compactness
argument needed to prove its existence. We will just prove bounds on it assuming it exists.

Now, Bourgain’s discretization theorem says

Theorem (Bourgain’s discretization theorem 1.2.4). If dim(𝑋) = 𝑛, dim(𝑌 ) = ∞, then

𝛿𝑋 →˓𝑌 (𝜖) ≥ 𝑒−(
𝑛
𝜖 )

𝐶𝑛

for 𝐶 a universal constant.

Remark 3.1.1: It doesn’t matter what the maps are for the 𝒩𝛿, the proof will give a linear
mapping and we won’t end up needing them. Assuming linearity in the definition is not
necessary.

Rademacher’s theorem says that any mapping R𝑛 → R𝑛 is differentiable almost every-
where with bi-Lipschitz derivative. Yu can extend this to 𝑛 = ∞, but you need some
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additional properties: 𝑌 must be the dual space, and the limit needs to be in the weak-*
topology. In this topology there exists a sequence of norm-1 vectors that tend to 0. Almost
everywhere, this doesn’t happen. The Principle of Local Reflexivity says 𝑌 ** and 𝑌 are
not the same for infinite dimensional 𝑌 . The double dual of all sequences which tend to 0
is 𝐿∞, a bigger space, but the difference between these never appears in finite dimensional
phenomena.

1.1 Reduction to smooth norm

From now on, 𝐵𝑋 = {𝑥 ∈ 𝑋 : ‖𝑋‖𝑋 ≤ 1} denotes the ball, and 𝑆𝑋 = 𝜕𝐵 = {𝑥 ∈ 𝑋 : ‖𝑋‖𝑋 = 1}
denotes the boundary.

Later on we will be differentiating things without thinking about it, so we first prove that
we can assume ‖·‖𝑋 is smooth on 𝑋 ∖ {0}.

Lemma 3.1.2. For all 𝛿 ∈ (0, 1) there exists some 𝛿-net of 𝑆𝑋 with |𝒩𝛿| ≤
(︀
1 + 2

𝛿

�𝑛
.

Proof. Let 𝒩𝛿 ⊆ 𝑆𝑋 be maximal with respect to inclusion such that ‖𝑥− 𝑦‖𝑋 > 𝛿 for every
distinct 𝑥, 𝑦 ∈ 𝒩𝛿. Maximality means that if 𝑧 ∈ 𝑆𝑋 , there exists 𝑥 ∈ 𝒩𝛿, ‖𝑥 − 𝑦‖𝑋 ≤ 𝛿
(otherwise 𝑁𝛿 ∪ {𝑧} is a bigger 𝛿-net). The balls {𝑥 + 𝛿

2
𝐵𝑋}𝑥∈𝒩𝛿

are pairwise disjoint and
contained in 1 + 𝛿

2
𝐵𝑋 . Thus

vol

��
1 +

𝛿

2

�
𝐵𝑋

�
≥

∑︁
𝑋∈𝑀𝛿

vol

�
𝑥+

𝛿

2
𝐵𝑋

�
�
1 +

𝛿

2

�𝑛
vol(𝐵𝑋) = |𝒩𝛿|

�
𝛿

2

�𝑛
vol(𝐵𝑋)

1

Reduction to smooth norm. Let 𝒩𝛿 be a 𝛿-net of 𝑆𝑋 with |𝒩𝛿| = 𝑁 ≤ (1 + 2
𝛿
)𝑛. Given

𝑧 ∈ 𝒩𝛿, by Hahn-Banach we can choose 𝑧* such that

1. ⟨𝑧, 𝑧*⟩ = 1

2. ‖𝑧*‖𝑋* = 1.

Let 𝑘 be an integer such that 𝑁1/(2𝑘) ≤ 1 + 𝛿. Then define

‖𝑥‖ :=

�∑︁
𝑧∈𝒩𝛿

⟨𝑧*, 𝑥⟩2𝑘
�1/(2𝑘)

Each term satisfies |⟨𝑧*, 𝑥⟩| ≤ ‖𝑥‖𝑋 , so we know

‖𝑥‖ ≤ 𝑁1/2𝑘‖𝑥‖𝑋 ≤ (1 + 𝛿)‖𝑥‖𝑋 .
1There are non-sharp bounds for the smallest size of a 𝛿-net. There is a lot of literature about the relations

between these things, but we just need an upper bound.
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For the lower bound, if 𝑥 ∈ 𝑆𝑋 , then choose 𝑧 ∈ 𝒩𝛿 such that ‖𝑥 − 𝑧‖𝑋 ≤ 𝛿. Then
1− ⟨𝑧*, 𝑥⟩ = ⟨𝑧*, 𝑧 − 𝑥⟩ ≤ ‖𝑧 − 𝑥‖ ≤ 𝛿, so ⟨𝑧*, 𝑥⟩ ≥ 1− 𝛿, giving

‖𝑥‖ ≥ (1− 𝛿) ‖𝑥‖𝑋 .

Thus any norm is up to 1+𝛿 some equal to a smooth norm. 𝛿 was arbitrary, so without loss of
generality we can assume in the proof of Bourgain embedding that the norm is smooth.

The strategy to prove Bourgain’s discretization theorem is as follows. Given a 𝛿-net 𝒩𝛿 ⊆
𝐵𝑋 with 𝛿 ≤ 𝑒−(𝑛/𝜖)𝐶𝑛

, and we know ∃ 𝑓 : 𝒩𝛿 → 𝑌 such that 1
𝐷
‖𝑥−𝑦‖𝑋 ≤ ‖𝑓(𝑥)−𝑓(𝑦)‖𝑌 ≤

‖𝑥− 𝑦‖𝑋 , i.e., we can embed with distortion 𝐷. Our goal is to show that if 𝛿 ≤ 𝑒−𝐷
𝐶𝑛

then
this implies that there exists 𝑇 : 𝑋 → 𝑌 linear operator invertible ‖𝑇‖ ‖𝑇−1‖ . 𝐷.

The steps are as follows.

1. Find the correct coordinate system (John ellipsoid), which will give us a dot prod-
uct structure and a natural Laplacian. (We will need a little background in convex
geometry. )

2. A priori 𝑓 is defined on the net. Extend 𝑓 to the whole space in a nice way (Bourgain’s
extension theorem) which doesn’t coincide with the function on the net, but is not too
far away from it.

3. Solve the Laplace equation. Start with some initial condition, and then evolve 𝑓
according to the Poisson semigroup. This extended function is smooth the instant it
flows a little bit away from the discrete function.

4. There is a point where the derivative satisfies what we want: The point exists by a
pigeonhole style argument, but we won’t be able to give it explicitly. This comes from
estimates of the Poisson kernel. We will use Fourier analysis.

2-24

2 Bourgain’s almost extension theorem

Theorem 3.2.1 (Bourgain’s almost extension theorem). Let 𝑋 be a 𝑛-dimensional normed
space, 𝑌 a Banach space, 𝒩𝛿 ⊆ 𝑆𝑋 a 𝛿-net of 𝑆𝑋 , 𝜏 ≥ 𝐶𝛿. Suppose 𝑓 : 𝒩𝛿 → 𝑌 is
𝐿-Lipschitz. Then there exists 𝐹 : 𝑋 → 𝑌 such that

1. ‖𝐹‖Lip . (1 + 𝛿𝑛
𝜏
)𝐿.

2. ‖𝐹 (𝑥)− 𝑓(𝑥)‖𝑌 ≤ 𝜏𝐿 for all 𝑥 ∈ 𝒩𝛿.

3. Supp(𝐹 ) ⊆ (2 + 𝜏)𝐵𝑋 .

4. 𝐹 is smooth.

Parts 3 and 4 will come “for free.”
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2.1 Lipschitz extension problem

Theorem 3.2.2 (Johnson-Lindenstrauss-Schechtman, 1986). Let 𝑋 be a 𝑛-dimensional
normed space 𝐴 ⊆ 𝑋, 𝑌 be a Banach space, and 𝑓 : 𝐴 → 𝑌 be 𝐿-Lipschitz. There ex-
ists 𝐹 : 𝑋 → 𝑌 such that 𝐹 |𝐴 = 𝑓 and ‖𝐹‖Lip . 𝑛𝐿.

We know a lower bound of
√
𝑛; losing

√
𝑛 is sometimes needed. (The lower bound for

nets on the whole space is 4
√
𝑛.) A big open problem is what the true bound is.

This was done a year before Bourgain. Why didn’t he use this theorem? This theorem
is not sufficient because the Lipschitz constant grows with 𝑛.

We want to show that ‖𝑇‖ ‖𝑇−1‖ . 𝐷. We can’t bound the norm of 𝑇−1 with anything
less than the distortion 𝐷, so to prove Bourgain embedding we can’t lose anything in the
Lipschitz constant of 𝑇 ; the Lipschitz constant can’t go to ∞ as 𝑛→ ∞.

Bourgain had the idea of relaxing the requirement that the new function be strictly
an extension (i.e., agree with the original function where it is defined). What’s extremely
important is that the new function be Lipschitz with a constant independent of 𝑛.

We need ‖𝐹‖Lip . 𝐿. Let’s normalize so 𝐿 = 1.
When the parameter is 𝜏 = 𝑛𝛿, we want ‖𝑓(𝑥)− 𝐹 (𝑥)‖ . 𝑛𝛿. Note 𝛿 is small (less than

the inverse of any polynomial), so losing 𝑛 is nothing.2

How sharp is Theorem 3.2.1? Given a 1-Lipschitz function on a 𝛿-net, if we want to
almost embed it without losing anything, how close can close can we guarantee it to be from
the original function

Theorem 3.2.3. There exists a 𝑛-dimensional normed space 𝑋, Banach space 𝑌 , 𝛿 > 0,
𝒩𝛿 ⊆ 𝑆𝑋 a 𝛿-net, 1-Lipschitz function 𝑓 : 𝒩𝛿 → 𝑌 such that if 𝑓 : 𝑋 → 𝑌 , ‖𝐹‖Lip . 1 then
there exists 𝑥 ∈ 𝒩𝛿 such that

‖𝐹 (𝑥)− 𝑓(𝑥)‖ &
𝑛

𝑒𝑐
√
ln𝑛

.

Thus, what Bourgain proved is essentially sharp. This is a fun construction with Grothendieck’s
inequality.

Our strategy is as follows. Consider 𝑃𝑡 * 𝐹 , where

𝑃𝑡(𝑥) =
𝐶𝑛𝑡

(𝑡2 + ‖𝑥‖22)
𝑛+1
2

, 𝐶𝑛 =
Γ
(︀
𝑛+1
2

�
𝜋

𝑛+1
2

,

and 𝑃𝑡 is the Poisson kernel. Let (𝑇𝐹 )(𝑥) = (𝑃𝑡 * 𝐹 )′(𝑥); 𝑇 is linear and ‖𝑇‖ . 1. As
𝑡 → 0, this becomes closer to 𝐹 . We hope when 𝑡 → 0 that it is invertible. This is true.
We give a proof by contradiction (we won’t actually find what 𝑡 is) using the pigeonhole
principle.

The Poisson kernel depends on an Euclidean norm in it. In order for the argument to
work, we have to choose the right Euclidean norm.

2If people get 𝛿 to be polynomial, then we’ll have to start caring about 𝑛.
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2.2 John ellipsoid

Theorem 3.2.4 (John’s theorem). Let 𝑋 be a 𝑛-dimensional normed space, identified with
R𝑛. Then there exists a linear operator 𝑇 : R𝑛 → R𝑛 such that 1√

𝑛
‖𝑇𝑥‖2 ≤ ‖𝑥‖𝑋 ≤ ‖𝑇𝑥‖2

for all 𝑥 ∈ 𝑋.

John’s Theorem says we can always find 𝑇 which sandwiches the 𝑋-norm up to a factor
of

√
𝑛. “Everything is a Hilbert space up to a

√
𝑛 factor.”

Proof. Without loss of generality 𝐷 ≤ 𝑛. Let ℰ be an ellipsoid of maximal volume contained
in 𝐵𝑋 .

max
⌋︀
vol(𝑆𝐵ℓ𝑛2

) : 𝑆 ∈𝑀𝑛(R), 𝑆𝐵ℓ𝑛2
⊆ 𝐵𝑋

{︀
.

ℰ exists by compactness. Take 𝑇 = 𝑆−1.
The goal is to show that

√
𝑛ℰ ⊇ 𝐵𝑋 . We can choose the coordinate system such that

ℰ = 𝐵ℓ𝑛2
= 𝐵𝑛

2 .
Suppose by way of contradiction that

√
𝑛𝐵𝑛

2 ̸⊇ 𝐵𝑋 . Then there exists 𝑥 ∈ 𝐵𝑋 such that
‖𝑥‖𝑋 ≤ 1 yet ‖𝑥‖2 >

√
𝑛.

Denote 𝑑 = ‖𝑥‖2 , 𝑦 = 𝑥
𝑑
. Then ‖𝑦‖2 = 1 and 𝑑𝑦 ∈ 𝐵𝑋 .

By applying a rotation, we can assume WLOG 𝑦 = 𝑒1.
Claim: Define for 𝑎 > 1, 𝑏 < 1

ℰ𝑎,𝑏 :=
{︃

𝑛∑︁
𝑖=1

𝑡𝑖𝑒𝑖 :
(︂
𝑡1
𝑎

)︂2

+
𝑛∑︁
𝑖=2

(︂
𝑡𝑖
𝑏

)︂2

≤ 1

}︃
.

Stretching by 𝑎 and squeezing by 𝑏 can make the ellipse grow and stay inside the body,
contradicting that it is the minimizer. More precisely, we show that there exists 𝑎 > 1 and
𝑏 < 1 such that ℰ𝑎,𝑏 ⊆ 𝐵𝑋 and Vol(ℰ𝑎,𝑏) > Vol(𝐵𝑛

2 ). This is equivalent to 𝑎𝑏
𝑛−1 > 1.

We need a lemma with some trigonometry.

Lemma 3.2.5 (2-dimensional lemma). Suppose 𝑎 > 1, 𝑏 ∈ (0, 1), and 𝑎2

𝑑2
+ 𝑏2

(︀
1− 1

𝑑2

�
≤ 1.

Then ℰ𝑎,𝑏 ⊆ 𝐵𝑋 .
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Proof. Let 𝑏 =
√︁

𝑑2−𝑎2
𝑑2−1

. Then 𝜓(𝑎) = 𝑎𝑏𝑛−1 = 𝑎
(︀
𝑑2−𝑎2
𝑑2−1

�𝑛−1
2 , 𝜓(1) = 1. It is enough to show

𝜓′(1) > 0. Now

𝜓′(𝑎) =

�
𝑑2 − 𝑎2

𝑑2 − 1

�𝑛−1
2

−1
𝑑2 − 𝑛𝑎2

𝑑2 − 1
,

which is indeed > 0 for 𝑑 >
√
𝑛. Note this is really a 2-dimensional argument; there is 1

special direction. We shrunk the 𝑦 direction and expanded the 𝑥 direction.
It’s enough to show the new ellipse ℰ𝑎,𝑏 is in the rhombus in the picture. Calculations

are left to the reader.

2.3 Proof

Proof of Theorem 3.2.1. By translating 𝑓 (so that it is 0 at some point), without loss of
generality we can assume that for all 𝑥 ∈ 𝒩𝛿, ‖𝑓(𝑥)‖𝑌 ≤ 2𝐿.
Step 1: (Rough extension 𝐹1 on 𝑆𝑋 .) We show that there exists 𝐹1 : 𝑆𝑋 → 𝑌 such that for
all 𝑥 ∈ 𝒩𝛿 → 𝑌 such that for all 𝑥 ∈ 𝒩𝛿,

1. ‖𝐹1(𝑥)− 𝑓(𝑥)‖𝑌 ≤ 2𝐿𝛿.

2. ∀𝑥, 𝑦 ∈ 𝑆𝑋 , ‖𝐹1(𝑥)− 𝐹1(𝑦)‖ ≤ 𝐿(‖𝑥− 𝑦‖𝑋 + 4𝛿).

This is a partition of unity argument. Write 𝒩𝛿 = {𝑋1, . . . , 𝑋𝑁}. Consider

{(𝑥𝑝 + 2𝛿𝐵𝑋) ∩ 𝑆𝑋}𝑁𝑝=1,

which is an open cover of 𝑆𝑋 .
Let {𝜑𝑝 : 𝑆𝑋 → [0, 1]}𝑁𝑝=1 be a partition of unity subordinted to this open cover. This

means that
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1. Supp𝜑𝑝 ⊆ 𝑥𝑝 + 2𝛿𝐵𝑋 ,

2.
∑︀𝑁
𝑝=1 𝜑𝑝(𝑥) = 1 for all 𝑥 ∈ 𝑆𝑋 .

For all 𝑥 ∈ 𝑆𝑋 , define 𝐹1(𝑥) =
∑︀𝑁
𝑝=1 𝜑𝑝(𝑥)𝑓(𝑥𝑝) ∈ 𝑌 . Then as 𝐹1 is a weighted sum of

𝑓(𝑥𝑝)’s, ‖𝐹1‖∞ ≤ 2𝐿. If 𝑥 ∈ 𝒩𝛿, because 𝜑𝑝(𝑥) is 0 when |𝑥− 𝑥𝑝| > 2𝛿,

‖𝐹1(𝑥)− 𝑓(𝑥)‖𝑌 =

⃦⃦⃦⃦⃦
⃦ ∑︁
𝑝:‖𝑥−𝑥𝑝‖𝑋≤2𝛿

𝜑𝑝(𝑥)(𝑓(𝑥𝑝)− 𝑓(𝑥))

⃦⃦⃦⃦⃦
⃦ ≤ ∑︁

‖𝑥−𝑥𝑝‖≤2𝛿

𝜑𝑝(𝑥)𝐿 ‖𝑥− 𝑥𝑝‖𝑋 ≤ 2𝐿𝛿.

For 𝑥, 𝑦 ∈ 𝑆𝑋 ,

‖𝐹1(𝑥)− 𝐹1(𝑦)‖ =

⃦⃦⃦⃦⃦
⃦⃦⃦⃦⃦ ∑︁

‖𝑥− 𝑥𝑝‖ ≤ 2𝛿
‖𝑦 − 𝑥𝑞‖ ≤ 2𝛿

(𝑓(𝑥𝑝)− 𝑓(𝑥𝑞))𝜑𝑝(𝑥)𝜑𝑞(𝑥)

⃦⃦⃦⃦⃦
⃦⃦⃦⃦⃦

≤
∑︁

‖𝑥− 𝑥𝑝‖ ≤ 2𝛿
‖𝑦 − 𝑥𝑞‖ ≤ 2𝛿

𝐿 ‖𝑥𝑝 − 𝑥𝑞‖𝜑𝑝(𝑥)𝜑𝑝(𝑦)

≤ 𝐿(‖𝑥− 𝑦‖+ 4𝛿).

2-29: We continue proving Bourgain’s almost extension theorem.
Step 2: Extend 𝐹1 to 𝐹2 on the whole space such that

1. ∀𝑥 ∈ 𝒩𝛿, ‖𝐹2(𝑥)− 𝑓(𝑥)‖𝑌 . 𝐿𝛿.

2. ‖𝐹2(𝑥)− 𝐹2(𝑦)‖𝑌 . 𝐿(‖𝑥− 𝑦‖𝑋 + 𝛿).

3. Supp(𝐹2) ⊆ 2𝐵𝑋 .

4. 𝐹2 is smooth.

Denote 𝛼(𝑡) = max{1− |1− 𝑡|, 0}.
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Let

𝐹2(𝑥) = 𝛼(‖𝑥‖𝑋)𝐹1 (𝑥) ‖𝑥‖𝑋 .

𝐹2 still satisfies condition 1. As for condition 2,

‖𝐹2(𝑥)− 𝐹2(𝑦)‖𝑌 =

⃦⃦⃦⃦⃦
𝛼(‖𝑥‖𝑋)𝐹1

�
𝑥

‖𝑥‖𝑋

�
− 𝛼(‖𝑦‖𝑋)𝐹1

�
𝑦

‖𝑦‖𝑋

�⃦⃦⃦⃦⃦
≤ |𝛼(‖𝑥‖)− 𝛼(‖𝑦‖)|

⃦⃦⃦⃦⃦
𝐹1

�
𝑥

‖𝑥‖𝑋

�⃦⃦⃦⃦⃦
⏟  ⏞  

≤2𝐿

+𝛼(‖𝑦‖)
⃦⃦⃦⃦⃦
𝐹1

�
𝑥

‖𝑥‖𝑋

�
− 𝐹1

�
𝑦

‖𝑦‖𝑋

�⃦⃦⃦⃦⃦

≤ (‖𝑥‖ − ‖𝑦‖)2𝐿+ 𝛼(‖𝑦‖)𝐿
(︃⃦⃦⃦⃦⃦

𝑥

‖𝑥‖
− 𝑦

‖𝑦‖

⃦⃦⃦⃦⃦
+ 4𝛿

)︃
≤ 2𝐿 ‖𝑥− 𝑦‖+ 𝐿𝛼(‖𝑦‖)

(︃
‖𝑥‖

⃒⃒⃒⃒⃒
1

‖𝑥‖
− 1

‖𝑦‖

⃒⃒⃒⃒⃒
+

‖𝑥− 𝑦‖
‖𝑦‖

+ 4𝛿

)︃
≤ 2𝐿 ‖𝑥− 𝑦‖+ 𝐿𝛼(‖𝑦‖)

�‖𝑥− 𝑦‖
‖𝑦‖

+
‖𝑥− 𝑦‖
‖𝑦‖

+ 4𝛿

�
. 𝐿(‖𝑥− 𝑦‖+ 𝛿),

where in the last step we used 𝛼(‖𝑦‖) ≤ ‖𝑦‖ and 𝛼(‖𝑦‖) ≤ 1.
Note 𝐹2 is smooth because the sum for 𝐹1 was against a partition of unity and ‖·‖𝑋 is

smooth, although we don’t have uniform bounds on smoothness for 𝐹2.
Step 3: We make 𝐹 smoother by convolving.

Lemma 3.2.6 (Begun, 1999). Let 𝐹2 : 𝑋 → 𝑌 satisfy ‖𝐹2(𝑥)− 𝐹2(𝑦)‖𝑌 ≤ 𝐿(‖𝑥− 𝑦‖𝑋+𝛿).
Let 𝜏 ≥ 𝑐𝛿. Define

𝐹 (𝑥) =
1

Vol(𝜏𝐵𝑋)

∫︁
𝜏𝐵𝑋

𝐹2(𝑥+ 𝑦) 𝑑𝑦.

Then

‖𝐹‖Lip ≤ 𝐿

�
1 +

𝛿𝑛

2𝜏

�
.

The lemma proves the almost extension theorem as follows. We passed from 𝑓 : 𝒩𝛿 → 𝑌
to 𝐹1 to 𝐹2 to 𝐹 . If 𝑥 ∈ 𝒩𝛿,

‖𝐹 (𝑥)− 𝑓(𝑥)‖𝑌 =

⃦⃦⃦⃦⃦
1

Vol(𝜏𝐵𝑋)

∫︁
𝐵𝑋

(𝐹2(𝑥+ 𝑦)− 𝑓(𝑥)) 𝑑𝑦

⃦⃦⃦⃦⃦
≤ 1

Vol(𝜏𝐵𝑋)

∫︁
𝜏𝐵𝑋

‖𝐹2(𝑥+ 𝑦)− 𝐹2(𝑥)‖𝑌 + ‖𝐹2(𝑥)− 𝑓(𝑥)‖𝑌⏟  ⏞  
𝛿𝐿

𝑑𝑦

≤ 1

Vol(𝜏𝐵𝑋)

∫︁
𝜏𝐵𝑋

(𝐿(‖𝑦‖𝑋⏟  ⏞  
≤𝜏

+𝛿𝐿)) 𝑑𝑦 . 𝐿𝜏.

Now we prove the lemma.
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Proof. We need to show

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑌 ≤ 𝐿

�
1 +

𝛿𝑛

2𝜏

�
‖𝑥− 𝑦‖𝑋 .

Without loss of generality 𝑦 = 0, Vol(𝜏𝐵𝑋) = 1. Denote

𝑀 = 𝜏𝐵𝑋∖(𝑥+ 𝜏𝐵𝑋)

𝑀 ′ = (𝑥+ 𝜏𝐵𝑋)∖𝜏𝐵𝑋 .

We have

𝐹 (0)− 𝐹 (𝑥) =
∫︁
𝑀
𝐹𝑧(𝑦) 𝑑𝑦 −

∫︁
𝑀 ′
𝐹𝑧(𝑦) 𝑑𝑦.

Define 𝜔(𝑧) to be the Euclidean length of the interval (𝑧 + R𝑥) ∩ (𝜏𝐵𝑋). By Fubini,∫︁
Proj

𝑋⊥ (𝜏𝐵𝑋)
𝜔(𝑧) 𝑑𝑧 = Vol𝑛(𝜏𝐵𝑋) = 1.

Denote

𝑊 = {𝑧 ∈ 𝜏𝐵𝑋 : (𝑧 + R𝑥) ∩ (𝜏𝐵𝑋) ∩ (𝑥+ 𝜏𝐵𝑋) ̸= 𝜑}
𝑁 = 𝜏𝐵𝑋∖𝑊.

Define 𝐶 : 𝑀 → 𝑀 ′ a shift in direction 𝑋 on every fiber that maps the interval (𝑧 + R𝑥) ∩
𝑀 → (𝑧 + R𝑥) ∩𝑀 ′.
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𝐶 is a measure preserving transformation with

‖𝑧 − 𝐶(𝑧)‖𝑋 =

⎧⎨⎩‖𝑥‖𝑋 , 𝑧 ≤ 𝑁

𝜔(𝑧)
‖𝑥‖𝑋
‖𝑥‖2

, 𝑧 ∈ 𝑊 ∩𝑀.

(In the second case we translate by an extra factor 𝜔(𝑧)
‖𝑥‖2

.) Then

‖𝐹 (0)− 𝐹 (𝑥)‖𝑌 =
⃦⃦⃦⃦∫︁

𝑀
𝐹2(𝑦) 𝑑𝑦 −

∫︁
𝑀 ′
𝐹2(𝑦) 𝑑𝑦

⃦⃦⃦⃦
𝑌

=
⃦⃦⃦⃦∫︁

𝑀
(𝐹2(𝑦)− 𝐹2(𝐶(𝑦))) 𝑑𝑦

⃦⃦⃦⃦
𝑌

≤
∫︁
𝑀
𝐿(‖𝑦 − 𝐶(𝑦)‖𝑋 + 𝛿) 𝑑𝑦

≤
∫︁
𝑀
𝐿(‖𝑦 − 𝐶(𝑦)‖𝑋 + 𝛿) 𝑑𝑦

= 𝐿𝛿Vol(𝑀) + 𝐿
∫︁
𝑀
‖𝑦 − 𝐶(𝑦)‖𝑋 𝑑𝑦∫︁

𝑀
‖𝑦 − 𝐶(𝑦)‖𝑋 𝑑𝑦 =

∫︁
𝑁
‖𝑥‖𝑋 𝑑𝑦 +

∫︁
𝑊∩𝑀

𝜔(𝑦) ‖𝑥‖𝑋
‖𝑥‖2

𝑑𝑦

= ‖𝑥‖𝑋 Vol(𝑁) +
∫︁
Proj(𝑊∩𝑀)

𝜔(𝑧) ‖𝑥‖𝑋
‖𝑥‖2

‖𝑥‖2 𝑑𝑧 orthogonal decomposition

= ‖𝑥‖𝑋 Vol(𝑁) + Vol(𝜏𝐵𝑋∖𝑁)

= ‖𝑥‖𝑋 Vol(𝜏𝐵𝑋) = ‖𝑥‖𝑋 .

We show 𝑀 = 𝜏𝐵𝑋∖(𝑥+ 𝜏𝐵𝑋) ⊆ 𝜏𝐵𝑋∖(1− ‖𝑥‖
𝜏
)𝜏𝐵𝑋 . Indeed, for 𝑦 ∈𝑀 ,

‖𝑦 − 𝑥‖𝑋 ≥ 𝜏

‖𝑦‖ ≥ 𝜏 − ‖𝑥‖ =

�
1− ‖𝑥‖

𝜏

�
𝜏.
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Then

Vol(𝑀) ≤ Vol(𝜏𝐵𝑋)− Vol

��
1− ‖𝑥‖

𝜏

�
𝜏𝐵𝑋

�
= 1−

�
1− ‖𝑥‖

𝜏

�
.
𝑛 ‖𝑥‖
𝜏

Bourgain did it in a more complicated, analytic way avoiding geometry. Begun notices
that careful geometry is sufficient.

Later we will show this theorem is sharp.

3 Proof of Bourgain’s discretization theorem

At small distances there is no guarantee on the function 𝑓 . Just taking derivatives is danger-
ous. It might be true that we can work with the initial function. But the only way Bourgain
figured out how to prove the theorem was to make a 1-parameter family of functions.

3.1 The Poisson semigroup

Definition 3.3.1: The Poisson kernel is 𝑃𝑡(𝑥) : R𝑛 → R given by

𝑃𝑡(𝑥) =
𝐶𝑛𝑡

(𝑡2 + ‖𝑥‖22)
𝑛+1
2

, 𝐶𝑛 =
Γ
(︀
𝑛+1
2

�
𝜋

𝑛+1
2

.

Proposition 3.3.2 (Properties of Poisson kernel): 1. For all 𝑡 > 0,
∫︀
R𝑛 𝑃𝑡(𝑥) 𝑑𝑥 = 1.

2. (Semigroup property) 𝑃𝑡 * 𝑃𝑠 = 𝑃𝑡+𝑠.

3. ̂︁𝑃𝑡(𝑥) = 𝑒−2𝜋‖𝑥‖2𝑡.

Lemma 3.3.3. Let 𝐹 be the function obtained from Bourgain’s almost extension theo-
rem 3.2.1. For all 𝑡 > 0, ‖𝑃𝑡 * 𝐹‖Lip . 1.

Proof. We have

𝑃𝑡 * 𝐹 (𝑥)− 𝑃𝑡 * 𝐹 (𝑦) =
∫︁
R𝑛
𝑃𝑡(𝑧)(𝐹 (𝑥− 𝑧)− 𝐹 (𝑥− 𝑦)) 𝑑𝑧.

Now use the fact that 𝐹 is Lipschitz.

Our goal is to show there exists 𝑡0 > 0, 𝑥 ∈ 𝐵 such that if we define

eq:bdt-T𝑇 = (𝑃𝑡0 * 𝐹 )′(𝑥) : 𝑋 → 𝑌, (3.1)

(i.e., 𝑇𝑎 = 𝜕𝑎(𝑃𝑡0 *𝐹 )(𝑥)). We showed ‖𝑇‖ . 1. It remains to show ‖𝑇−1‖ . 𝐷. Then 𝑇 has
distortion at most 𝑂(𝐷), and hence 𝑇 gives the desired extension in Bourgain’s discretizaton
theorem 1.2.4.

3-2: Today we continue with Bourgain’s Theorem. Summarizing our progress so far:

57



MAT529 Metric embeddings and geometric inequalities

1. Initially we had a function 𝑓 : 𝒩𝛿 → 𝑌 and a 𝛿-net 𝒩𝛿 of 𝐵𝑋 .

2. From 𝑓 we got a new function 𝐹 : 𝑋 → 𝑌 with supp(𝐹 ) ⊆ 3𝐵𝑋 , satisfying the
following. (None of the constants matter.)

(a) ‖𝐹‖𝐿𝑝 ≤ 𝐶 for some constant.

(b) For all 𝑥 ∈ 𝒩𝛿, ‖𝐹 (𝑥)− 𝑓(𝑥)‖𝑌 ≤ 𝑛𝛿.

Let 𝑃𝑡 : R𝑛 → R be the Poisson kernel. What can be said about the convolution 𝑃𝑡 * 𝐹?
We know that for all 𝑡 and for all 𝑥, ‖(𝑃𝑡 *𝐹 )(𝑥)‖𝑋→𝑌 ≤ 1. The goal is to make this function
invertible. More precisely, the norm of the inverted operator is not too small.

We’ll ensure this one direction at a time by investigating the directional derivatives. For
𝑔 : R𝑛 → 𝑌 , the directional derivative is defined by: for all 𝑎 ∈ 𝑆𝑋 ,

𝜕𝑎𝑔(𝑥) = lim
𝑡→0

𝑔(𝑥+ 𝑡𝑎)− 𝑔(𝑥)

𝑡
.

There isn’t any particular reason why we need to use the Poisson kernel; there are many
other kernels which satisfy this. We definitely need the semigroup property, in addition to
all sorts of decay conditions.

We need a lot of lemmas.

Lemma 3.3.4 (Key lemma 1). lem:bdt-1 There are universal constants 𝐶,𝐶 ′, 𝐶 ′′ such that the
following hold. Suppose 𝑡 ∈ (0, 1

2
], 𝑅 ∈ (0,∞), 𝛿 ∈ (0, 1

100𝑛
) satisfy

𝛿 ≤ 𝐶
𝑡 log(3/𝑡)√

𝑛
≤ 𝐶 ′ 1

𝑛5/2𝐷2
(3.2)

𝐶 ′′𝑛3/2𝐷2 log(3/𝑡) ≤ 𝑅 ≤ 𝐶 ′′

𝑡
√
𝑛
. (3.3)

Then for all 𝑥 ∈ 1
2
𝐵𝑋 , 𝑎 ∈ 𝑆𝑋 , we have

(‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡)(𝑥) ≥
𝐶 ′′′

𝐷

This result says that given a direction 𝑎 and look at how long the vector 𝜕𝑎(𝑃𝑡 *𝐹 ) is, it
is not only large, but large on average. Here the average is over the time period 𝑅𝑡.

Note that I haven’t been very careful with constants; there are some points where the
constant is missing/needs to be adjusted.

The first condition says is that 𝑡 is not too small, but the lower bound is extremely small.

The upper bound is
(︀
1
𝑛

�𝑘
for some 𝑘 whereas the lower bound is something like 𝑒−𝑒

𝑛
, so

there’s a huge gap.
The second condition says that log

(︀
1
𝑡

�
is still exponential.

This lemma will come up later on and it will be clear.
From now on, let us assume this key lemma and I will show you how to finish. We will

go back and prove it later.
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Lemma 3.3.5 (Key lemma 2). lem:bdt-2 There’s a constant 𝐶1 such that the following holds (we
can take 𝐶1 = 8). Let 𝜇 be any Borel probability measure on 𝑆𝑋 . For every 𝑅,𝐴 ∈ (0,∞),
there exists 𝐴

(𝑅+1)𝑚+1 ≤ 𝑡 ≤ 𝐴 such that∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥)‖𝑌 𝑑𝑥𝑑𝜇(𝑎) ≤
∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )‖𝑌 𝑑𝑥⏟  ⏞  
(*)

𝑑𝜇(𝑎) +
𝐶1vol(3𝐵𝑋)

𝑚

Basically, under convolution, we can take the derivative under the integral sign. Thus
(*) is an average of what we wrote on the left. Averaging only makes things smaller for
norms, because norms are convex. Thus the right integral is less than the left integral, from
Jensen’s inequality.

The lemma says that adding that small factor, we get a bound in the opposite direction.
We will argue that there must be a scale at which Jensen’s inequality stabilizes, i.e., ‖𝜕𝑎(𝑃𝑡 *
𝐹 )‖𝑌 * 𝑃𝑅𝑡(𝑥) stabilizes to a constant.

Note this is really the pigeonhole argument, geometrically.

Proof. Bourgain uses this technique a lot in his papers: find some point where the inequality
is equality, and then leverage that.

If the result does not hold, then for every 𝑡 in the range 𝑡
(𝑅+1)𝑚+1 ≤ 𝑡 ≤ 𝐴, the reverse

holds. We’ll use the inequality at eveyr point in a geometric series. For all 𝑘 ∈ {0, . . . ,𝑚+1},∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝐴(𝑅+1)𝑘−𝑚−1*𝐹 )(𝑥)‖𝑌 𝑑𝑥𝑑𝜇(𝑎) >
∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝐴(𝑅+1)𝑘−𝑚*𝐹 )(𝑥)‖𝑌 𝑑𝑥𝑑𝜇(𝑎)+
𝐶1vol(3𝐵𝑋)

𝑚
.

Summing up these inequalities and telescoping∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝐴(𝑅+1)−𝑚−1*𝐹 )(𝑥)‖𝑌 𝑑𝑥𝑑𝜇(𝑎) >
∫︁
𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝐴(𝑅+1)*𝐹 )(𝑥)‖𝑌 𝑑𝑥𝑑𝜇(𝑎)+
8(𝑚+ 1)vol(3𝐵𝑋)

𝑚
(3.4)

(recall that we’ve been using the semigroup properties of the Poisson kernel this whole time).
Now why is this conclusion absurd? Take 𝐶1 to be the bound on the Lipschitz constant of
𝐹 . Because ‖𝜕𝑎𝐹‖𝑌 ≤ 8, we have𝜕𝑎(𝑃𝐴(𝑅+1)−𝑚−1 * 𝐹 )(𝑥) ≤ 𝐶1. Since partial derivatives
commute with the integral sign, we get∫︁

𝑆𝑋

∫︁
R𝑛

‖𝜕𝑎(𝑃𝐴(𝑅+1)−𝑚−1 * 𝐹 )(𝑥)‖𝑌 𝑑𝑥 𝑑𝜇(𝑎) =
∫︁
𝑆𝑋

∫︁
R𝑛

‖(𝑃𝐴(𝑅+1)−𝑚−1 * 𝜕𝑎𝐹 )(𝑥)‖𝑌 𝑑𝑥 𝑑𝜇(𝑎)

(3.5)

≤
∫︁
𝑆𝑋

∫︁
R𝑛
𝐶1 ≤ 𝐶1vol(𝐵𝑋) (3.6)

because 𝐹 is Lipschitz and the Poisson semigroup integrates to unity. Together (3.4)
and (3.6) give a contradiction.

Now assuming Lemma 3.3.4 (Key Lemma 1), let’s complete the proof of Bourgain’s

discretization theorem. Assume from now on 𝛿 <
(︀

1
𝑐𝐷

�(𝐶𝐷)2𝑛

where 𝐶 is a large enough
constant that we will choose (𝐶 = 500 or something).
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Proof of Bourgain’s Discretization Theorem 1.2.4. Let ℱ ⊆ 𝑆𝑋 be a 1
𝐶2𝐷

-net in 𝑆𝑋 . Then
|ℱ| ≤ (𝐶3𝐷)𝑛 for some 𝐶3. We will apply the Lemma 3.3.5 (Key Lemma 2) with 𝜇 the
uniform measure on ℱ ,

𝐴 = (1/𝐶𝐷)5𝑛

𝑅 + 1 = (𝐶𝐷)4𝑛

𝑚 = ⌈(𝐶𝐷)𝑛+1⌉.

Then there exists (1/(𝐶𝐷))(𝐶𝐷)2𝑛 ≤ 𝑡 ≤ (1/(𝐶𝐷))5𝑛 such that

eq:bdt-pf-lem2

∑︁
𝑎∈ℱ

∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥)‖𝑌 𝑑𝑥 ≤
∑︁
𝑎∈ℱ

∫︁
R𝑛

‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )(𝑥)‖𝑌 𝑑𝑥+
8vol(3𝐵𝑋)

𝑚
|ℱ|

(3.7)
We check the conditions of Lemma 3.3.4 (Key Lemma 1).

1. For (3.2), note 𝑡 is exponentially small, so the RHS inequality is satisfied. For the LHS

inequality, note 𝛿 ≤ 𝑡 and
𝐶 ln( 1

𝑡 )√
𝑛

≤ 1. To see the second inequality, note
𝐶 ln( 1

𝑡 )√
𝑛

≥
𝐶5𝑛 ln(𝐶𝐷)√

𝑛
≥ 1 (for 𝑛 large enough).

2. For (3.2), note the LHS is dominated by ln
(︀
1
𝑡

�
≤ (𝐶𝐷)2𝑛 ln(𝐶𝐷) which is much less

than 𝑅 = (𝐶𝐷)4𝑛 − 1, and 1
𝑡
, the dominating term on the RHS, is ≥ (𝐶𝐷)5𝑛.

In my paper (reference?), I wrote what the exact constants are. They’re written in the
paper, and are not that important. We’re choosing our constants big enough so that our
inequalities hold true with room to spare.

Now we can use Key Lemma 1, which says

eq:bdt-pf-lem1 (‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡) (𝑥) ≥
1

𝐷
(3.8)

Using 𝑃(𝑅+1)𝑡 = 𝑃𝑅𝑡 * 𝑃𝑡 (semigroup property) and Jensen’s inequality on the norm, which
is a convex function, we have

eq:bdt-conv‖𝜕𝑎(𝑃(𝑅+1)𝑡 *𝐹 )(𝑥)‖𝑌 = ‖ (𝜕𝑎(𝑃𝑡 * 𝐹 ))*𝑃𝑅𝑡(𝑥)‖𝑌 ≤ (‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡) (𝑥). (3.9)

Since the norm is a convex function, by Jensen’s we get our inequality.
Let

𝜓(𝑥) := (‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡) (𝑥)− ‖𝜕𝑎
(︀
𝑃(𝑅+1)𝑡 * 𝐹

�
(𝑥)‖𝑌

From (3.9), 𝜓(𝑥) ≥ 0 pointwise. Using Markov’s inequality,

vol
{︂
𝑥 ∈ 1

2
𝐵𝑋 : 𝜓(𝑥) >

1

𝐷

}︂
≤ 𝐷

∫︁
R𝑛

(‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡) (𝑥)− ‖𝜕𝑎
(︀
𝑃(𝑅+1)𝑡 * 𝐹

�
(𝑥)‖𝑌 )𝑑𝑥.

because we can upper bound the integral over the ball by an integral over R𝑛. Note we are
using the probabilistic method.
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This inequality was for a fixed 𝑎. We now use the union bound over ℱ , a 𝛿-net of 𝑎’s to
get

vol
{︂
𝑥 ∈ 1

2
𝐵𝑋 : ∃𝑎 ∈ ℱ , 𝜓𝑎(𝑥) > 1/𝐷

}︂
(3.10)

≤
∑︁
𝑎∈ℱ

vol(𝑥 ∈ 1

2
𝐵𝑋 : 𝜓𝑎(𝑥) > 1/𝐷) (3.11)

≤ 𝐷
∑︁
𝑎∈ℱ

∫︁
R𝑛

(︀
‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡)(𝑥)− ‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )(𝑥)‖𝑌

�
𝑑𝑥 (3.12)

= 𝐷
∑︁
𝑎∈ℱ

∫︁
R𝑛

(︀
‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 )(𝑥)− ‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )(𝑥)‖𝑌

�
𝑑𝑥 (3.13)

≤ 𝐶1vol(3𝐵𝑋)

𝑚
(𝐶3𝐷)𝑛 < vol

(︂
1

2
𝐵𝑋

)︂
. (3.14)

where (3.13) follows because when you convolve something with a probability measure, the
integral over R𝑛 does not change, and (3.14) follows from (3.7) and our choice of 𝑚.

We’ve proved that there must exist a point in half the ball such that for every 𝑎 ∈ ℱ ,
our net, we have

1

𝐷
≥ ‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖𝑌 * 𝑃𝑅𝑡(𝑥)− ‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )(𝑥)‖𝑌

I think we want either this to be 1
2𝐷

, or (3.8) to be 1
𝐷/2

, in order to get the following bound

(with 1
2𝐷

or 1
𝐷
). This involves changing some constants in the proof.

From this we can conclude that for this 𝑥,

‖𝑇𝑎‖𝑌 = ‖𝜕𝑎(𝑃(𝑅+1)𝑡 * 𝐹 )(𝑥)‖𝑌 ≥ 1/𝐷

where 𝑎 ∈ 𝑆𝑋 we let 𝑡0 = (𝑅 + 1)𝑡. This shows ‖𝑇−1‖ ≤ 𝐷.

For the exact constants, see the paper (reference).
Note this is very much a probabiblistic existence statement or result. Usually we estimate

by hand the random variable we want to care about. Here we want to prove an existential
bound, so we estimate the probability of the bad case. But we estimate the probability of
the bad case using another proof by contradiction.

It remains to estimate some integrals.
3-7: Finishing Bourgain. There’s a remaining lemma about the Poisson semigroup that

we’re going to do today (Lemma 3.3.4); it’s nice, but it’s not as nice as what came before.
The last remaining lemma to prove is Lemma 3.3.4.
Remember that 1√

𝑛
‖𝑥‖2 ≤ ‖𝑥‖𝑋 ≤ ‖𝑥‖2 for all 𝑥 ∈ 𝑋. We need three facts about the

Poisson kernel.

Proposition 3.3.6 (Fact 1): pr:pois1∫︁
R𝑛∖(𝑟𝐵𝑋)

𝑃𝑡(𝑥)𝑑𝑥 ≤ 𝑡
√
𝑛

𝑟
.
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Proof. First note that the Poisson semigroup has the property that

eq:pois-rescale𝑃𝑡(𝑥) =
1

𝑡𝑛
𝑃1(𝑥/𝑡), (3.15)

i.e., 𝑃𝑡 is just a rescaling of 𝑃1. So it’s enough to prove this for 𝑡 = 1. We have∫︁
‖𝑥‖𝑋≥𝑟

𝑃𝑡(𝑥) 𝑑𝑥 ≤
∫︁
‖𝑥‖2≥𝑟

𝑃𝑡(𝑥) 𝑑𝑥

=
∫︁
‖𝑥‖2≥𝑟/𝑡

𝑃1(𝑥) 𝑑𝑥

by change of variables and (3.15)

= 𝐶𝑛𝑆𝑛−1

∫︁ ∞

𝑟/𝑡

𝑠𝑛−1

(1 + 𝑠2)(𝑛+1)/2
𝑑𝑠

polar coordinates, where 𝑆𝑛−1 = vol(S𝑛−1)

≤ 𝐶𝑛𝑆𝑛−1

∫︁ ∞

𝑟/𝑡

1

𝑠2
𝑑𝑠

=
𝑡

𝑟
𝐶𝑛𝑆𝑛−1

≤ 𝑡
√
𝑛

𝑟
,

where the last inequality follows from expanding in terms of the Gamma function and using
Stirling’s formula.

Above we changed to polar coordinates using∫︁
‖𝑥‖2≤𝑅

𝑓(‖𝑥‖) 𝑑𝑥 =
∫︁ 𝑅

0
𝑆𝑛−1 ‖𝑥‖𝑛−1 𝑓(𝑟) 𝑑𝑟.

Proposition 3.3.7 (Fact 2): For all 𝑦 ∈ R𝑛,∫︁
R𝑛

|𝑃𝑡(𝑥)− 𝑃𝑡(𝑥+ 𝑦)|𝑑𝑥 ≤
√
𝑛‖𝑦‖2
𝑡

.

Proof. It’s again enough to prove this when 𝑡 = 1.∫︁
R𝑛

|𝑃𝑡(𝑥)− 𝑃𝑡(𝑥+ 𝑦)| 𝑑𝑥 =
∫︁
R𝑛

⃒⃒⃒⃒∫︁ 1

0
⟨∇𝑃𝑡(𝑥+ 𝑠𝑦), 𝑦⟩𝑑𝑠

⃒⃒⃒⃒
𝑑𝑥

≤ ‖𝑦‖2
∫︁
R𝑛

‖∇𝑃𝑡(𝑥)‖2𝑑𝑥 Cauchy-Schwarz

≤ ‖𝑦‖2(𝑛+ 1)𝐶𝑛

∫︁
R𝑛

‖𝑥‖2
(1 + ‖𝑥‖22)

𝑛+3
2

𝑑𝑥 computing gradient

= ‖𝑦‖2(𝑛+ 1)𝐶𝑛𝑆𝑛−1

∫︁ ∞

0

𝑟𝑛

(1 + 𝑟2)
𝑛+3
2

𝑑𝑟 polar coordinates

≤
√
𝑛 ‖𝑦‖2 .
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The integral and multiplicative constants perfectly cancels out the 𝑛 + 1 and becomes 1
(calculation omitted).

Proposition 3.3.8 (Fact 3): For all 0 < 𝑡 < 1
2
and 𝑥 ∈ 𝐵𝑋 , we have

‖𝑃𝑡 * 𝐹 (𝑥)− 𝐹 (𝑥)‖𝑌 ≤
√
𝑛𝑡 log(3/𝑡).

Proof. The LHS equals⃦⃦⃦⃦∫︁
R𝑛

(𝐹 (𝑥− 𝑦)− 𝐹 (𝑥))𝑃𝑡(𝑦)𝑑𝑦
⃦⃦⃦⃦
𝑌
≤
∫︁
𝑥+3𝐵𝑋

‖𝐹 (𝑥− 𝑦)− 𝐹 (𝑥)‖𝑌 𝑃𝑡(𝑦)𝑑𝑦⏟  ⏞  
(3.16)

+ 𝑐
∫︁
R𝑛∖(𝑥+3𝐵𝑋)

𝑃𝑡(𝑦)𝑑𝑦⏟  ⏞  
(3.17)

.

Using ‖𝐹 (𝑥− 𝑦)− 𝐹 (𝑥)‖𝑌 ≤ ‖𝐹‖Lip 𝑐𝜌 · ‖𝑦‖𝑋 and that ‖𝐹‖Lip is a constant,

(3.16) =
∫︁
𝑥+3𝐵𝑋

‖𝑦‖𝑋𝑃𝑡(𝑦)𝑑𝑦

≤
∫︁
4
√
𝑛𝐵𝑙𝑛

2

‖𝑦‖2𝑃𝑡(𝑦)𝑑𝑦 using 𝑥 ∈ 𝐵𝑋 =⇒ 𝑥+ 3𝐵𝑋 ⊆ 4
√
𝑛𝐵𝑙2

= 𝑡𝐶𝑛𝑆𝑛−1

∫︁ 4
√
𝑛

𝑡

0

𝑠𝑛

(1 + 𝑠2)(𝑛+1)/2
𝑑𝑠 polar coordinates

≤ 𝑡
√
𝑛

�∫︁ √
𝑛

0

1√
𝑛
𝑑𝑠+

∫︁ 4
√
𝑛/𝑡

√
𝑛

1

𝑠
𝑑𝑠

�
≤ 𝑡

√
𝑛
(︂
1 + ln

(︂
4

𝑡

)︂)︂
,

where we used the fact that 𝑠𝑛

(1+𝑠2)
𝑛+1
2

is maximized when 𝑠 =
√
𝑛, and is always ≤ 1

𝑠
.

For the second term, note that 2𝐵𝑋 ⊆ 𝑥+ 3𝐵𝑋 , so

(3.17) = 𝑐
∫︁
R𝑛∖2𝐵𝑋

𝑃𝑡(𝑦) ≤
𝑐𝑡
√
𝑛

2

where we used the tail bound of Fact 1 (Pr. 3.3.7). Adding these two bounds gives the
result.

Now we have these three facts, we can finish the proof of the lemma.

Proof of Lemma 3.3.4.

Claim 3.3.9 (𝑃𝑡 * 𝐹 separates points). Let 𝜃 = 𝑐𝐷
√
𝑛𝑡 log(3/𝑡). Let 𝑤, 𝑦 ∈ 1

2
𝐵𝑋 with

‖𝑤 − 𝑦‖𝑋 ≥ 𝜃. Then

‖𝑃𝑡 * 𝐹 (𝑤)− 𝑃𝑡 * 𝐹 (𝑦)‖𝑌 ≥ 1/𝐷

We do not claim at all that these numbers are sharp.
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Proof. We can find a point 𝑝 ∈ 𝒩𝛿 which is 𝛿 away from 𝑤, and 𝑞 ∈ 𝒩𝛿 which is 𝛿 away from
𝑦. We also know that 𝐹 is close to 𝑓 , and we can use Fact 3 (Pr. 3.3.8) to bound the error
of convolving.

By the triangle inequality

‖𝑃𝑡 * 𝐹 (𝑤)− 𝑃𝑡 * 𝐹 (𝑦)‖𝑌 ≥ ‖𝑓(𝑝)− 𝑓(𝑞)‖ − ‖𝐹 (𝑝)− 𝑓(𝑝)‖ − ‖𝐹 (𝑞)− 𝑓(𝑞)‖
− ‖𝐹 (𝑤)− 𝐹 (𝑝)‖ − ‖𝐹 (𝑦)− 𝐹 (𝑞)‖
− ‖𝑃𝑡 * 𝐹 (𝑤)− 𝐹 (𝑤)‖ − ‖𝑃𝑡 * 𝐹 (𝑦)− 𝐹 (𝑦)‖

≥ ‖𝑝− 𝑞‖
𝐷

− 2𝑛𝛿 − 𝑐𝛿 −
√
𝑛𝑡 log(3/𝑡)

≥ ‖𝑦 − 𝑤‖ − 2𝛿

𝐷
− 2𝑛𝛿 − 𝑐𝛿 −

√
𝑛𝑡 log(3/𝑡).

Taking

𝜃 = 𝑐𝐷
√
𝑛𝑡 log(3/𝑡),

we find this is at least a constant times ‖𝑦−𝑤‖/𝐷, we need 𝜃 = 𝑐𝐷
√
𝑛𝑡 log(3/𝑡). Note that√

𝑛𝑡 log(3/𝑡) is the largest error term because by the assumptions in the lemma, it is greater
than 2𝑛𝛿.

Now consider

‖𝑃𝑡 * 𝐹 (𝑧 + 𝜃𝑎)− 𝑃𝑡 * 𝐹 (𝑧)‖

By the claim, if 𝑧 ∈ 1
4
𝐵𝑋 , then we know

𝜃/𝐷 ≤ ‖𝑃𝑡 * 𝐹 (𝑧 + 𝜃𝑎)− 𝑃𝑡 * 𝐹 (𝑧)‖ (3.18)

=
∫︁ 𝜃

0
‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑧 + 𝑠𝑎)‖𝑌 (3.19)
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Suppose ‖𝑥− 𝑦‖ ≤ 1
4
(we will apply (3.19) to 𝑥− 𝑦 = 𝑧), 𝑥 ∈ 1

2
𝐵𝑋 , 𝑦 ∈ 1

8
𝐵𝑋 . By throwing

away part of the integral,

1

𝜃

∫︁ 𝜃

0

∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥+ 𝑠𝑎− 𝑦)‖𝑌 𝑃𝑅𝑡(𝑦)𝑑𝑦 (3.20)

≥ 1

𝜃

∫︁ 𝜃

0

∫︁
(1/8)𝐵𝑋

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥− 𝑦 + 𝑠𝑎)‖𝑌 𝑃𝑅𝑡(𝑦) 𝑑𝑠 𝑑𝑦 (3.21)

=
∫︁
(1/8)𝐵𝑋

(︂
1

𝜃

∫︁ 𝜃

0
‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥− 𝑦 + 𝑠𝑎)‖𝑌 𝑑𝑠

)︂
𝑃𝑅𝑡(𝑦) 𝑑𝑦 by Fubini (3.22)

≥ 1

𝐷

∫︁
(1/8)𝐵𝑋

𝑃𝑅𝑡(𝑦)𝑑𝑦 by (3.19) (3.23)

≥ 𝑐

𝐷
(3.24)

for some constant 𝑐. The calculation above says that the average length in every direction
is big, and if you average the average length again, it is still big. How do we get rid of the
additional averaging? We care about

‖𝜕𝑎(𝑃𝑡 * 𝐹 )‖ * 𝑃𝑅𝑡(𝑥) =
∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥− 𝑦)‖𝑌 𝑃𝑅𝑡(𝑦)𝑑𝑦

=
1

𝜃

∫︁ 𝜃

0

�∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥− 𝑦 + 𝑠𝑎)‖𝑌 𝑃𝑅𝑡(𝑦)𝑑𝑦
�

− 1

𝜃

∫︁ 𝜃

0

∫︁
R𝑛

‖𝜕𝑎(𝑃𝑡 * 𝐹 )(𝑥− 𝑦)‖𝑌 (𝑃𝑅𝑡(𝑦 + 𝑠𝑎)− 𝑃𝑅𝑡(𝑦))𝑑𝑦

>
𝑐

𝐷
− 𝑐′

𝜃

∫︁ 𝜃

0

∫︁
R𝑛

|𝑃𝑅𝑡(𝑦 + 𝑠𝑎)− 𝑃𝑅𝑡(𝑦)|𝑑𝑠 𝑑𝑦 by (3.24) and what?

≥ 𝑐

𝐷
− 𝑐′

𝜃

∫︁ 𝜃

0

√
𝑛𝑠‖𝑎‖2
𝑅𝑡

𝑑𝑠 by Fact 2 (Pr. 3.3.7)

This error term is

𝑐′

𝜃

∫︁ 𝜃

0

√
𝑛𝑠‖𝑎‖2
𝑅𝑡

𝑑𝑠 =
𝑐𝐷𝑛 log

(︀
3
𝑡

�
𝑅

= 𝑂
(︂
1

𝐷

)︂
by (3.2), so ‖𝜕𝑎(𝑃𝑡*𝐹 )‖*𝑃𝑅𝑡(𝑥) = Ω

(︀
1
𝐷

�
(if we chose constants correctly), as desired. Factor

of
√
𝑛?

To summarize: You compute the error such that you have distance 𝜃. Then you look
at the average derivative on each line like this. Then, the average derivative is roughly
‖𝜕𝑎(𝑃𝑡 *𝐹 )‖*𝑃𝑅𝑡(𝑥). So averaging the derivative in a bigger ball is the same up to constants
as taking a random starting point and averaging over the ball. What’s written in the lemma
is that the derivative of a given point in this direction, averaged over a little bit bigger ball,
it’s not unreasonable to see that at first take starting point and going in direction 𝜃 and
averaging in the bigger ball is equivalent to randomizing over starting points.

3-21: A better bound in Bourgain Discretization
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4 Upper bound on 𝛿𝑋→𝑌

We give an example where we need a discretization bound 𝛿 going to 0.

Theorem 3.4.1. There exist Banach spaces 𝑋, 𝑌 with dim 𝑋 = 𝑛 such that if 𝛿 < 1 and
𝒩𝛿 is a 𝛿-net in the unit ball and 𝐶𝑌 (𝒩𝛿) & 𝐶𝑌 (𝑋), then 𝛿 . 1

𝑛
.

Together with the lower bound we proved, this gives

1

𝜌𝑛𝐶𝑛
< 𝛿𝑋→𝑌 (1/2) <

1

𝑛

The lower bound would be most interesting to improve.

The example will be 𝑋 = ℓ𝑛1 , 𝑌 = ℓ2.

We need two ingredients.

Firstly, we show that (𝐿1,
È
‖𝑥− 𝑦‖1) is isometric to a subset of 𝐿2. More generally, we

prove the following.

Lemma 3.4.2. Given a measure space (Ω, 𝜇), (𝐿1(𝜇),
È
‖𝑥− 𝑦‖1) is isometric to a subset

of 𝐿2(Ω× R, 𝜇× 𝜆), where 𝜆 is the Lesbegue measure of R.

Note all separable Hilbert spaces are the same, 𝐿2(Ω×R, 𝜇× 𝜆) is the same whenever it
is separable.

Proof. First we define 𝑇 : 𝐿1(𝜇) → 𝐿2(𝜇× 𝜆) as follows. For 𝑓 ∈ 𝐿1(𝜇), let

𝑇𝑓(𝑤, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 0 ≤ 𝑓(𝑤) ≤ 𝑥

−1 𝑥 ≤ 𝑓(𝑥) ≤ 0

0 otherwise

Consider two functions 𝑓1, 𝑓2 ∈ 𝐿1(𝜇). The function |𝑇𝑓1 − 𝑇𝑓2| is the indicator of the
area between the graph of 𝑓1 and the graph of 𝑓2.
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Thus the 𝐿2 norm is, letting 1 be the signed indicator,

‖𝑇𝑓1 − 𝑇𝑓2‖𝐿2(𝜇×𝜆) =

Ê∫︁
Ω

∫︁
R

(︀
1𝑓1(𝑤),𝑓2(𝑤) (𝑥)

2
�
𝑑𝑥 𝑑𝜇

=

Ê∫︁
Ω
|𝑓1(𝑤)− 𝑓2(𝑤)| 𝑑𝜇(𝑤)

More generally, if 𝑞 ≤ 𝑝 < ∞, then (𝐿𝑞, ‖𝑥 − 𝑦‖𝑝/𝑞𝑞 ) is isometric to a subset of 𝐿𝑝. We
may prove this later if we need it.

The second ingredient is due to Enflo .

Theorem 3.4.3 (Enflo, 1969). The best possible embedding of the hypercube into Hilbert
space has distortion

√
𝑛:

𝐶2({0, 1}𝑛, ‖ · ‖1) =
√
𝑛

Note that we don’t just calculate 𝐶2 up to a constants here; we know it exactly. This is
very rare.

Proof. We need to show an upper bound and a lower bound.

1. To show the upper bound, we show the identity mapping {0, 1}𝑛 → ℓ𝑛2 has distortion√
𝑛. We have

‖𝑥− 𝑦‖2 =
(︃

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|2
)︃1/2

=

(︃
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|
)︃1/2

=
È
‖𝑥− 𝑦‖1,

since the values of 𝑥, 𝑦 are only 0, 1. Then

1√
𝑛
‖𝑥− 𝑦‖1 ≤ ‖𝑥− 𝑦‖2 =

È
‖𝑥− 𝑦‖1 ≤ ‖𝑥− 𝑦‖1

Thus 𝐶2({0, 1}𝑛) ≤
√
𝑛.

(So this theorem tells us that if you want to represent the boolean hypercube as a
Euclidean geometry, nothing does better than the identity mapping.)
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2. For the lower bound 𝐶2({0, 1}𝑛, ‖·‖1) ≥
√
𝑛, we use the following.

Lemma 3.4.4 (Enflo’s inequality). We claim that for every 𝑓 : {0, 1}𝑛 → ℓ2,∑︁
𝑥∈F𝑛2

‖𝑓(𝑥)− 𝑓(𝑥+ 𝑒)‖22 ≤
𝑛∑︁
𝑗=1

∑︁
𝑥∈F𝑛2

‖𝑓(𝑥+ 𝑒𝑗)− 𝑓(𝑥)‖22,

where 𝑒 = (1, . . . , 1) and 𝑒𝑖 are standard basis vectors of R𝑛.

Here, addition is over F𝑛2 .

This is specific to ℓ2. See the next subsection for the proof.

In other words, Hilbert space is of Enflo-type 2 (Definition 1.1.13): the sum of the
squares of the lengths of the diagonals is at most the sum of the squares of the lengths
of the edges.

Suppose
1

𝐷
‖𝑥− 𝑦‖1 ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖2 ≤ ‖𝑥− 𝑦‖1.

Our goal is to show that 𝐷 ≥
√
𝑛. Letting 𝑦 = 𝑥+ 𝑒,

‖𝑓(𝑥+ 𝑒)− 𝑓(𝑥)‖2 ≥
1

𝐷
‖(𝑥+ 𝑒)− 𝑥‖1 =

𝑛

𝐷
.

Plugging into Enflo’s inequality 3.4.4, we have, since there are 2𝑛 points in the space,

2𝑛(𝑛/𝐷)2 ≤ 𝑛 · 2𝑛 · 12 =⇒ 𝐷2 ≥ 𝑛

as desired.

Proof of Theorem 3.4.1. Let 𝒩𝛿 be a 𝛿-net in 𝐵ℓ𝑛1
. Let 𝑇 : ℓ𝑛1 → 𝐿2 satisfy ‖𝑇 (𝑥)−𝑇 (𝑦)‖2 =È

‖𝑥− 𝑦‖1. 𝑇 restricted to 𝒩𝛿 has distortion ≤
È

2
𝛿
because for 𝑥, 𝑦 ∈ 𝒩𝛿 with 𝑥 ̸= 𝑦, we

have
1√
2
‖𝑥− 𝑦‖1 ≤

È
‖𝑥− 𝑦‖1 ≤

1√
𝛿
‖𝑥− 𝑦‖1.

However, the distortion of ℓ𝑛1 in ℓ2 is
√
𝑛. The condition 𝐶𝑌 (𝒩𝛿) & 𝐶𝑌 (𝑋) means that for

some constant 𝐾, Ê
2

𝛿
≥ 𝐾

√
𝑛 =⇒ 𝛿 ≤ 2

𝐾2𝑛
.
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4.1 Fourier analysis on the Boolean cube and Enflo’s inequality

We can prove this by induction on 𝑛 (exercise). Instead, I will show a proof that is Fourier
analytic and which generalizes to other situations.

Definition 3.4.5 (Walsh function): Let 𝐴 ⊆ {1, . . . , 𝑛}. Define the Walsh function

𝑊𝐴 : F𝑛2 → {±1}

by
𝑊𝐴(𝑥) = (−1)𝑗∈𝐴.

Proposition 3.4.6 (Orthonormality): For 𝐴,𝐵 ⊆ {1, . . . , 𝑛}.

E
𝑥∈F𝑛2

𝑊𝐴(𝑥)𝑊𝐵(𝑥) = 𝛿𝐴𝐵.

Thus, {𝑊𝐴}𝐴⊆{1,...,𝑛} is an orthonormal basis of 𝐿2(F𝑛2 ).

Proof. Without loss of generality 𝑗 ∈ 𝐴∖𝐵. Then

E (−1)
∑︀

𝑗∈𝐴
𝑥𝑗+
∑︀

𝑗∈𝐵
𝑥𝑗 = 0.

Corollary 3.4.7. Let 𝑓 : F𝑛2 → 𝑋 where 𝑋 is a Banach space. Then

𝑓 =
∑︁

𝐴⊆{1,··· ,𝑛}
𝑓(𝑎)𝑊𝐴

where 𝑓(𝐴) = 1
2𝑛

∑︀
𝑥∈F𝑛2 𝑓(𝑥)(−1)

∑︀
𝑗∈𝐴

𝑥𝑗 .

Proof. How do we prove two vectors are the same in a Banach space? It is enough to show
that any composition with a linear functional gives the same value; thus it suffices to prove
the claim for 𝑋 = R. The case 𝑋 = R holds by orthonormality.

Proof of Lemma 3.4.4. It is sufficient to prove the claim for 𝑋 = R; we get the inequality
for ℓ2 by summing coordinates. (Note this is a luxury specific to ℓ2.)

The summand of the LHS of the inequality is

𝑓(𝑥)− 𝑓(𝑥+ 𝑒) =
∑︁

𝐴⊆{1,...,𝑛}
𝑓(𝐴) (𝑊𝐴(𝑥)−𝑊𝐴(𝑥+ 𝑒))

=
∑︁

𝐴⊆{1,...,𝑛}
𝑓(𝐴)𝑊𝐴(𝑥)

(︀
1− (−1)|𝐴|

�
=

∑︁
𝐴⊆{1,...,𝑛},|𝐴| odd

2𝑓(𝐴)𝑊𝐴(𝑥)
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The summand of the RHS of the inequality is

−𝑓(𝑥+ 𝑒𝑗) + 𝑓(𝑥) =
∑︁

𝐴⊆{1,...,𝑛}
𝑓(𝐴)(𝑊𝐴(𝑥)−𝑊𝐴(𝑥+ 𝑒𝑗))

=
∑︁

𝐴⊆{1,...,𝑛},𝑗∈𝐴
2𝑓(𝐴)𝑊𝐴(𝑥).

Summing gives

∑︁
𝑥∈F𝑛2

(𝑓(𝑥)− 𝑓(𝑥+ 𝑒))2 = 2𝑛

⃦⃦⃦⃦⃦
⃦ ∑︁
|𝐴| odd

2𝑓(𝐴)𝑊𝐴

⃦⃦⃦⃦⃦
⃦
2

𝐿2(F𝑛2 )

= 2𝑛
∑︁

|𝐴| odd
4(𝑓(𝐴))2

𝑛∑︁
𝑗=1

∑︁
𝑥∈F𝑛2

(𝑓(𝑥+ 𝑒𝑗)− 𝑓(𝑥))2 =
𝑛∑︁
𝑗=1

2𝑛
∑︁
𝐴:𝑗∈𝐴

4
(︁
𝑓(𝐴)

)︁2
= 2𝑛

∑︁
𝐴

∑︁
𝑗∈𝐴

4𝑓(𝐴)2

= 2𝑛
∑︁
𝐴

4|𝐴|𝑓(𝐴)2

From this we see that the claim is equivalent to∑︁
𝐴⊆{1,...,𝑛},|𝐴| odd

𝑓(𝐴)2 ≤
∑︁

𝐴⊆{1,...,𝑛}
|𝐴|𝑓(𝐴)2

which is trivially true.

This inequality invites improvements, as this is a large gap. The Fourier analytic proof
made this gap clear.

5 Improvement for 𝐿𝑝

Theorem 3.5.1. thm:bourgain-lp Suppose 𝑝 ≥ 1 and 𝑋 is an 𝑛-dimensional normed space. Then

𝛿𝑋 →˓𝐿𝑝(𝜀) &
𝜖2

𝑛5/2

In the world of embeddings into 𝐿𝑝, we are in the right ballpark for the value of 𝛿—we
know it is a power of 𝑛, if not exactly 1/𝑛. (It is an open question what the right power is.)
This is a special case of a more general theorem, which I won’t state. This proof doesn’t use
many properties of 𝐿𝑝.

Proof. This follows from Theorem 3.5.2 and Theorem 3.5.3.

We will prove the theorem for 𝜀 = 1
2
. The proof needs to be modified for the 𝜀-version.
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Theorem 3.5.2. thm:bourgain-lp2 Let 𝑋, 𝑌 be Banach spaces, with dim𝑋 = 𝑛 < ∞. Suppose
that there exists a universal constant 𝑐 such that 𝛿 ≤ 𝑐𝜀2

𝑛5/2 , and that 𝒩𝛿 is a 𝛿-net of 𝐵𝑋 .
3

Then there exists a separable probability space (Ω, 𝜇)4, a finite dimensional subspace 𝑍 ⊆ 𝑌
and a linear operator 𝑇 : 𝑋 → 𝐿∞(𝜇, 𝑍) such that for every 𝑥 ∈ 𝑋 with ‖𝑥‖𝑋 = 1,

1− 𝜀

𝐷
≤
∫︁
Ω
‖𝑇𝑥(𝜔)‖𝑌 𝑑𝜇(𝜔) ≤ esssup𝜔∈Ω‖(𝑇𝑥)𝜔‖𝑌 ≤ 1 + 𝜖

Note that the inequality can also be written as

1− 𝜀

𝐷
‖𝑇𝑥‖𝐿1(𝜇,𝑍) ≤ ‖𝑇𝑥‖𝐿∞(𝜇,𝑍).

Now what happens when 𝑌 = 𝐿𝑝([0, 1])? We have

𝐿𝑝(𝜇, 𝑍) ⊆ 𝐿𝑝(𝜇, 𝑌 ) = 𝐿𝑝(𝜇, 𝐿𝑝) = 𝐿𝑝(𝜇× 𝜆)

A different way to think of this is that a function 𝑓 : 𝑋 → 𝐿∞(𝜇, 𝐿𝑝([0, 1])) can be thought
of as a function of 𝑥 ∈ 𝑋 and 𝜔 ∈ [0, 1], 𝑓(𝜔, 𝑥) : Ω× [0, 1] → R.

This is a very classical fact in measure theory:

Theorem 3.5.3 (Kolmogorov’s representation theorem). Any separable 𝐿𝑝(𝜇) space is iso-
metric to a subset of 𝐿𝑝.

This is an immediate corollary of the fact that if I give you a separable probability space,
there is a separable transformation of the probability space (Ω, 𝜇) ∼= ([0, 1], 𝜆) where 𝜆 is
Lebesgue measure. So there is a measure preserving isomorphism if the probability measure
is atom-free. In general, the possible cases are

∙ (Ω, 𝜇) ∼= ([0, 1], 𝜆) if it is atom free.

∙ (Ω, 𝜇) ∼= [0, 1]× {1, . . . , 𝑛} if there are finitely many (𝑛) atoms

∙ (Ω, 𝜇) ∼= [0, 1]× N if there are countably many atoms,

∙ (Ω, 𝜇) ∼= {1, . . . , 𝑛} or N if it’s completely atomic.

See Halmos’s book for deails. This is just called Kolmogorov’s representation theorem.
Now for this to be an improvement of Bourgain’s discretization theorem for 𝐿𝑝, we need

that if 𝑍 ⊂ 𝑌 is a finite dimensional subspace and 𝑊 ⊂ 𝐿∞(𝜇, 𝑍) is a finite dimensional
subspace such that on 𝑊 , the 𝐿∞ and 𝐿1 norms are equivalent (a very strong restriction),
then 𝑊 embeds in 𝑌 . That’s the only property of 𝐿𝑝 we’re using.

However, not every 𝑌 has this property.

3Let me briefly say something about vector-valued 𝐿𝑝 spaces. Whenever you write 𝐿𝑝(𝜇,𝑍), this equals

all functions 𝑓 : Ω → 𝑍 such that (
∫︀
‖𝑓(𝜔)‖𝑝𝑍𝑑𝜇(𝜔))

1/𝑝
< ∞ (our norm is bounded).

4it will in the end be a uniform measure on half the ball
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Theorem 3.5.4 (Ostrovskii and Randrianantoanina). Not every 𝑌 has this property.

You can construct spaces of functions taking values in a finite dimensional subspace of
it which cannot be embedded back into 𝑌 . Nevertheless, you have to work to find bad
counterexamples. This is not published yet.

Next class we’ll prove Theorem 3.5.2, which implies our first theorem. What is the
advantage of formulating the theorem in this way? We can use Bourgain’s almost-extention
theorem along the ball. The function is already Lipschitz, so we can already differentitate
it. The measure itself will be the unit ball. We’ll look at the derivative of the extended
function in direction 𝜔 at point 𝑥. That is what our 𝑇 will be. We will look in all possible
directions. Then the lower bound we have here says that the derivative of the function is
only invertible on average, not at every point in the sphere. That tends to be big on average.
We will work for that, but you see the advantage: In this formulation, we’re going to get an
average lower-bound, not an always lower-bound, and in this way we will be able to shave
off two exponents. But this is not for Banach spaces in general. The advantage we have here
is that 𝐿𝑝 of 𝐿𝑝 is 𝐿𝑝.

3/23: We will prove the improvement of Bourgain’s Discretization Theorem.

Proof of Theorem 3.5.2. There exists 𝑓 : 𝒩𝛿 → 𝑌 such that

1

𝐷
‖𝑥− 𝑦‖𝑌 ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖𝑌 ≤ ‖𝑥− 𝑦‖𝑋

for 𝑥, 𝑦 ∈ 𝒩𝛿. By Bourgain’s almost extension theorem, letting 𝑍 = span(𝑓(𝒩𝛿)), there
exists 𝐹 : 𝑋 → 𝑍 such that

1. ‖𝐹‖𝐿𝑝
. 1.

2. For every 𝑥 ∈ 𝒩𝛿, ‖𝐹 (𝑥)− 𝑓(𝑥)‖ ≤ 𝑛𝛿.

3. 𝐹 is smooth.

Let Ω = 1
2
𝐵𝑋 , with 𝜇 the normalized Lebesgue measure on Ω:

𝜇(𝐴) =
vol(𝐴 ∩

(︀
1
2
𝐵𝑋

�
)

vol(1
2
𝐵𝑋)

.

Define 𝑇 : 𝑋 → 𝐿∞(𝜇, 𝑍) as follows. For all 𝑦 ∈ 𝑋,

(𝑇𝑦)(𝑥) = 𝐹 ′(𝑥)(𝑦) = 𝜕𝑦𝐹 (𝑥).

This function is in 𝐿∞ because

‖(𝑇𝑦)(𝑥)‖ = ‖𝐹 ′(𝑥)(𝑦)‖ ≤ ‖𝐹 ′(𝑥)‖ ‖𝑦‖ . ‖𝑦‖ .

This proves the upper bound.
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We need

1

𝐷
‖𝑦‖ . ‖𝑇𝑦‖𝐿1(𝜇,𝑍)

=
∫︁

1
2
𝐵𝑋

‖𝐹 ′(𝑥)𝑦‖ 𝑑𝜇(𝑥)

=
1

vol(1
2
𝐵𝑋)

∫︁
1
2
𝐵𝑋

‖𝐹 ′(𝑥)𝑦‖ 𝑑𝑥.

We need two simple and general lemmas.

Lemma 3.5.5. There exists an isometric embedding 𝐽 : 𝑋 → ℓ∞.

This is a restatement of the Hahn-Banach theorem.

Proof. 𝑋* is separable, so let {𝑥*𝑘}∞𝑘=1 be a set of linear functionals that is dense in 𝑆𝑋* =
𝜕𝐵𝑋* . Let

𝐽𝑋 = (𝑥*𝑘(𝑥))
∞
𝑘=1 ∈ ℓ∞.

For all 𝑥, |𝑥*𝑘(𝑥)| ≤ ‖𝑥*𝑘‖ ≤ ‖𝑥*𝑘‖ ‖𝑥‖ = ‖𝑥‖. By Hahn Banach, since every 𝑥 admits a
normalizing functional,

‖𝐽𝑥‖ℓ∞ = sup
𝑘

|𝑥*𝑘(𝑥)| = sup
𝑥*∈𝑆𝑋

|𝑥*(𝑥)| = ‖𝑥‖ .

This may see a triviality, but there are 4 situations where this theorem will make its
appearance.

Remark 3.5.6: Every separable metric space (𝑋, 𝑑) admits an isometric embedding into
ℓ∞, given as follows. Take {𝑥𝑘}∞𝑘=1 dense in 𝑋, and let

𝑓(𝑥) = (𝑑(𝑥, 𝑥𝑘)− 𝑑(𝑥, 𝑥0))
∞
𝑘=1.

Proof is left as an exercise.

Lemma 3.5.7 (Nonlinear Hahn-Banach Theorem). Let (𝑋, 𝑑) be any metric space and 𝐴 ⊆
𝑋 any nonempty subset. If 𝑓 : 𝐴 → R is 𝐿-Lipschitz then there exists 𝐹 : 𝑋 → R that
extends 𝑓 and

‖𝐹‖Lip = 𝐿 = ‖𝑓‖Lip .

The lemma says we can always extend the function and not lose anything in the Lips-
chitz constant. Recall the Hahn-Banach Theorem says that we can extend functionals from
subspace and preserve the norm. Extension in vector spaces and extension in R are different.

This lemma seems general, but it is very useful.

We mimic the proof of the Hahn-Banach Theorem.
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Proof. We will prove that one can extend 𝑓 to one additional point while preserving the
Lipschitz constant.

Then use Zorn’s Lemma on the poset of all extensions to supersets ordered by inclusion
(with consistency) to finish.

Let 𝐴 ⊆ 𝑋, 𝑥 ∈ 𝑋∖𝐴. We define 𝑡 = 𝐹 (𝑥) ∈ R. To make 𝐹 is Lipschitz, for all 𝑎 ∈ 𝐴,
we need

|𝑡− 𝑓(𝑎)| ≤ 𝑑𝑋(𝑥, 𝑎).

Then we need
𝑡 ∈

⋂︁
𝑎∈𝐴

[𝑓(𝑎)− 𝑑𝑋(𝑥, 𝑎), 𝑓(𝑎) + 𝑑𝑋(𝑥, 𝑎)].

The existence of 𝑡 is equivalent to⋂︁
𝑎∈𝐴

[𝑓(𝑎)− 𝑑𝑋(𝑥, 𝑎), 𝑓(𝑎) + 𝑑𝑋(𝑥, 𝑎)].

By compactness it is enough to check this is true for finite intersections. Because we are on
the real line (which is a total order), it is in fact enough to check this is true for pairwise
intersections.

[𝑓(𝑎)− 𝑑𝑋(𝑥, 𝑎), 𝑓(𝑎) + 𝑑𝑋(𝑥, 𝑎)] ∩ [𝑓(𝑏)− 𝑑𝑋(𝑥, 𝑏), 𝑓(𝑏) + 𝑑𝑋(𝑥, 𝑏)].

We need to check

𝑓(𝑎) + 𝑑(𝑥, 𝑎) ≥ 𝑓(𝑏)− 𝑑(𝑥, 𝑏)

⇐⇒ |𝑓(𝑏)− 𝑓(𝑎)| ≤ 𝑑(𝑥, 𝑎) + 𝑑(𝑥, 𝑏).

This is true by the triangle inequality:

|𝑓(𝑏)− 𝑓(𝑎)| ≤ 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑥, 𝑎) + 𝑑(𝑥, 𝑏).

This theorem is used all over the place. Most of the time people just give a closed formula:
define 𝐹 on all the points at once by

𝐹 (𝑥) = inf {𝑓(𝑎) + 𝑑(𝑥, 𝑎) : 𝑎 ∈ 𝐴} .

Now just check that this satisfies Lipschitz. From our proof you ses exactly why they define
𝐹 this way: it comes from taking the inf of the upper intervals (we can also take the sup of
the lower intervals). The extension is not unique; there are many formulas for the extension.

There is a whole isometric theory about exact extensions: look at all the possible ex-
tensions, what is the best one? 𝐹 is the pointwise smallest extension; the other one is the
pointwise largest. The theory of absolutely minimizing extensions is related to an interesting
nonlinear PDE called the infinite Laplacian. This is different from what we’re doing because
we lose constants in many places.

74



MAT529 Metric embeddings and geometric inequalities

Corollary 3.5.8. Let (𝑋, 𝑑) be any metric space. Let 𝐴 ⊆ 𝑋 be a nonempty subset 𝑓 : 𝐴→
ℓ∞ Lipschitz. Then there exists 𝐹 : 𝑋 → ℓ∞ that extends 𝑓 and ‖𝐹‖Lip = ‖𝑓‖Lip.

Proof. Note that saying 𝑓 : 𝐴 → ℓ∞, 𝑓(𝑎) = (𝑓1(𝑎), 𝑓2(𝑎), . . .) has ‖𝑓‖Lip = 1 means that 𝑓𝑖
is 1-Lipschitz for every 𝑖.

𝑓 takes 𝒩𝛿 ⊆ 𝐵𝑋 to 𝑓(𝒩𝛿) ⊆ 𝑍. 𝑓−1 takes it back to 𝑋; 𝐽 is the embedding to ℓ∞.

𝐵𝑋 𝑍 𝐺

��

𝒩𝛿

?�

OO

𝑓
// 𝑓(𝒩𝛿)
?�

OO

𝑓−1|𝑓(𝒩𝛿)//

𝐽∘𝑓−1|𝑓(𝒩𝛿)

<<
𝑋

𝐽 // ℓ∞

Note 𝐽 ∘ 𝑓−1|𝑓(𝒩𝛿) is 𝐷-Lipschitz. By nonlinear Hahn-Banach, there exists 𝐺 : 𝑍 → ℓ∞ with
‖𝐺‖Lip ≤ 𝐷 such that

𝐺(𝑓(𝑥)) = 𝐽(𝑥)

for all 𝑥 ∈ 𝒩𝛿.

We want 𝐺 to be differentiable. We do this by convolving with a smooth bump function
with small support to get 𝐻 : 𝑍 → ℓ∞ such that

1. 𝐻 is smooth

2. ‖𝐻‖Lip ≤ 𝐷,

3. for all 𝑥 ∈ 𝐹 (𝐵𝑋), ‖𝐺(𝑥)−𝐻(𝑥)‖ ≤ 𝑛𝐷𝛿.

Define a linear operator

𝑆 : 𝐿1(𝜇, 𝑍) → ℓ∞

by for all ℎ ∈ 𝐿1(𝜇, 𝑍), ℎ : 1
2
𝐵𝑋 → 𝑍,

𝑆ℎ =
∫︁

1
2
𝐵𝑋

𝐻 ′(𝐹 (𝑥))(ℎ(𝑥)) 𝑑𝜇(𝑥).

(Type checking: F is a point in 𝑋, we can differentiate at this point and get linear operator
𝑍 → ℓ∞. ℎ(𝑥) is a point in 𝑍, so we can plug into linear operator and get a point in ℓ∞.
This is a vector-valued integration; do the integration coordinatewise. So 𝑆ℎ is in ℓ∞.)
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Now

‖𝑆ℎ‖ℓ∞ ≤
∫︁

1
2
𝐵𝑋

‖𝐻 ′(𝐹 (𝑥))(ℎ(𝑥))‖ℓ∞ 𝑑𝜇(𝑥)

≤
∫︁

1
2
𝐵𝑋

‖𝐻 ′(𝐹 (𝑥))‖𝑍→ℓ∞⏟  ⏞  
=:𝐷

‖ℎ(𝑥)‖ 𝑑𝜇(𝑥)

≤ 𝐷
∫︁

1
2
𝐵𝑋

‖ℎ(𝑥)‖

≤ 𝐷 ‖ℎ‖𝐿1(𝜇,𝑍)

=⇒ ‖𝑆‖𝐿1(𝜇,𝑍)→ℓ∞
≤ 𝐷

𝑆 𝑇𝑦⏟ ⏞ 
ℎ

=
∫︁

1
2
𝐵𝑋

𝐻 ′(𝐹 (𝑥))((𝑇𝑦)(𝑥)) 𝑑𝜇(𝑥)

=
∫︁

1
2
𝐵𝑋

𝐻 ′(𝐹 (𝑥))(𝐹 ′(𝑥)(𝑦)) 𝑑𝜇(𝑥)

=
∫︁

1
2
𝐵𝑋

(𝐻 ∘ 𝐹 )′(𝑥)(𝑦) 𝑑𝜇(𝑥) chain rule

Now we show 𝐻 ∘ 𝐹 is very close to 𝐽 ; it’s close to being invertible. (Recall 𝐺(𝑓(𝑥)) = 𝐽𝑥.)
This does not a priori mean the derivative is close. We use a geometric argument to say

that if a function is sufficiently close to being an isometry, then the integral of its derivative
on a finite dimensional space is close to being invertible. 𝐻 ∘ 𝐹 was a proxy to 𝐽 .

Check that 𝐻 ∘ 𝐹 is close to 𝐽 . For 𝑦 ∈ 𝒩𝛿, by choice of 𝐻,

‖𝐻(𝐹 (𝑦))− 𝐽𝑦‖ℓ∞ ≤ ‖𝐻(𝐹 (𝑦))−𝐺(𝐹 (𝑦))‖ℓ∞ + ‖𝐺(𝐹 (𝑦))−𝐺(𝑓(𝑦))‖ℓ∞
≤ 𝑛𝐷𝛿 +𝐷 ‖𝐹 (𝑦)− 𝑓(𝑦)‖𝑍
. 𝑛𝐷𝛿.

For general 𝑥 ∈ 1
2
𝐵𝑋 , there exists 𝑦 ∈ 𝒩𝛿 such that ‖𝑥− 𝑦‖𝑋 ≤ 2𝛿. Then

‖𝐻(𝐹 (𝑥))− 𝐽𝑥‖ℓ∞ ≤ 𝑛𝐷𝛿 +𝐷𝛿 + 𝛿

. 𝑛𝐷𝛿.

For all 𝑥 ∈ 1
2
𝐵𝑋 , ‖𝐻 ∘ 𝐹 (𝑥)− 𝐽𝑥‖ ≤ 𝐶𝑛𝐷𝛿. Define 𝑔(𝑥) = 𝐻 ∘ 𝐹 (𝑥) − 𝐽𝑥. Then

‖𝑔‖𝐿∞( 1
2
𝐵𝑋) ≤ 𝐶𝑛𝐷𝛿.

We need a geometric lemma.

Lemma 3.5.9. Suppose (𝑉, ‖·‖𝑉 ) is any Banach space, 𝑈 = (R𝑛, ‖·‖𝑈) is a 𝑛-dimensional
Banach space. Let 𝑔 : 𝐵𝑈 → 𝑉 be continuous on 𝐵𝑈 and differentiable on int(𝐵𝑈). Then⃦⃦⃦⃦⃦

1

vol(𝐵𝑈)

∫︁
𝐵𝑈

𝑔′(𝑢) 𝑑𝑢

⃦⃦⃦⃦⃦
𝑈→𝑉

≤ 𝑛 ‖𝑔‖𝐿∞(𝐵𝑈 ) .
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3/28: Finishing up Bourgain’s Theorem
Previously we had 𝑋, 𝑌 Banach spaces with dim(𝑋) = 𝑛. Let 𝑁𝛿 ⊆ 𝐵𝑋 be a 𝛿-net,

𝛿 ≤ 𝑐/𝑛2𝐷, 𝑓 : 𝑁𝛿 → 𝑌 . We have

1

𝐷
‖𝑥− 𝑦‖ ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖ ≤ ‖𝑥− 𝑦‖

WLOG 𝑌 = span(𝑓(𝑁𝛿)). The almost extension theorem gave us a smooth map from
𝐹 : 𝑋 → 𝑌 , ‖𝐹‖𝐿𝑖𝑝 . 1 and for all 𝑥 ∈ 𝑁𝛿, ‖𝐹 (𝑥) − 𝑓(𝑥)‖ . 𝑛𝛿. Letting 𝜇 be the
normalized Lebesgue measure on 1/2𝐵𝑋 , define 𝑇 : 𝑋 → 𝐿∞(𝜇, 𝑌 ) by

(𝑇𝑦)(𝑥) = 𝐹 ′(𝑥)𝑦

for all 𝑦 ∈ 𝑋.
The goal was to prove

‖𝑇𝑦‖𝐿1(𝜇,𝑌 ) &
1

𝐷
‖𝑦‖

and the approach was to show for 𝑦 ∈ 𝑋 the average 1
vol(1/2𝐵𝑋)

∫︀
1/2𝐵𝑋

‖𝐹 ′(𝑥)𝑦‖𝑑𝑦 is big.
Fix a linear isometric embedding 𝐽 : 𝑋 → 𝑙∞., we proved that there exists 𝐺 : 𝑌 → 𝑙∞

such that ∀𝑥 ∈ 𝑁𝛿, 𝐺(𝑓(𝑥)) = 𝐽(𝑥). We have ‖𝐺‖𝐿𝑖𝑝 ≤ 𝐷. Fix 𝐻 : 𝑌 → 𝑙∞ where 𝐻 is
smooth, ‖𝐻‖𝐿𝑖𝑝 ≤ 𝐷, and ∀𝑥 ∈ 𝐹 (𝐵𝑋), ‖𝐻(𝑥)−𝐺(𝑥)‖ ≤ 𝑛𝐷𝛿.

Define 𝑆 : 𝐿1(𝜇, 𝑌 ) → 𝑙∞ by

𝑆ℎ =
∫︁
1/2𝐵𝑋

𝐻 ′(𝐹 (𝑥))(ℎ(𝑥))𝑑𝜇(𝑥)

for all ℎ ∈ 𝐿1(𝜇, 𝑌 ). Note that ‖𝑆‖𝐿1(𝜇,𝑌 )→𝑙∞ ≤ 𝐷. By the chain rule, 𝑆𝑇𝑦 =
∫︀
1/2𝐵𝑋

(𝐻 ∘
𝐹 )′(𝑥)𝑦𝑑𝜇(𝑥). We checked for every 𝑥 ∈ 𝐵𝑋 , ‖𝐻(𝐹 (𝑥))− 𝐽𝑥‖𝑙∞] . 𝑛𝐷𝛿.

Suppose you are on a point on the net. Then you know 𝐻 is very close to 𝐺. 𝐹 was 𝑛𝛿
close to 𝑓 , and 𝐻 is 𝐷-Lipschitz, which is how we get 𝑛𝛿𝐷 (take a net point, find the closest
point on the net, and use the fact that the functions are 𝐷-Lipschitz).

This is where we stopped. Now how do we finish?
We need a small geometric lemma:

Lemma 3.5.10. Geometric Lemma.
𝑈, 𝑉 are Banach spaces, dim(𝑈) = 𝑛. Let 𝑈 = (R𝑛, ‖ · ‖𝑈). Suppose that 𝑔 : 𝐵𝑈 → 𝑉 is
continuous on 𝐵𝑈 and smooth on the interior. Then⃦⃦⃦⃦⃦

1

vol(𝐵𝑈)

∫︁
𝐵𝑈

𝑔′(𝑢)𝑑𝑢

⃦⃦⃦⃦⃦
𝑈→𝑉

≤ 𝑛‖𝑔‖𝐿∞(𝑆𝑋)

where the inside of the LHS norm should be thought of as an operator. Let 𝑅 be the
normalized integral operator. Then

𝑅𝑥 =
1

vol(𝐵𝑈)

∫︁
𝐵𝑈

𝑔′(𝑢)𝑥𝑑𝑢
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The way to think of using this is if you have an 𝐿∞ bound, you get an 𝐿1 bound.
Assuming this lemma, let’s apply it to 𝑔 = 𝐻 ∘ 𝐹 − 𝐽 . We get⃦⃦⃦⃦∫︁

1/2𝐵𝑋

((𝐻 ∘ 𝐹 )′ − 𝐽) 𝑑𝜇(𝑥)
⃦⃦⃦⃦
𝑋→𝑙∞

. 𝑛2𝐷𝛿⃦⃦⃦⃦∫︁
1/2𝐵𝑋

(𝐻 ∘ 𝐹 )′(𝑥)𝑑𝜇(𝑥)− 𝐽

⃦⃦⃦⃦
𝑋→𝑙∞

= ‖𝑆𝑇 − 𝐽‖𝑋→𝑙∞ . 𝑛2𝐷𝛿

Now we want to bound from below ‖𝑇𝑦‖𝐿1(𝜇,𝑌 ). We have

‖𝑇𝑦‖𝐿1(𝜇,𝑌 ) ≥
‖𝑆𝑇𝑦‖𝑙∞

‖𝑆‖𝐿1(𝜇,𝑌 )→𝑙∞

≥ 1

𝐷
‖𝑆𝑇𝑦‖𝑙∞ ≥ 1

𝐷
(‖𝐽𝑦‖ − ‖𝑆𝑇 − 𝐽‖𝑋→𝑙∞‖𝑦‖)

=
1

𝐷

(︀
‖𝑦‖ − (𝑛2𝐷𝛿‖𝑦‖)

�
There is a bit of magic in the punchline. We want to bound the operator below, and we
understand it as an average of derivatives. We succeeded to show the function itself is small,
and there is our geometric lemma which gives a bound on the derivative if you know a bound
on the function.

Now let’s prove the lemma.

Proof of Lemma 3.5.10. Fix a direction 𝑦 ∈ R𝑛 and normalize so that ‖𝑦‖2 = 1. For every
𝑢 ∈ Proj𝑦⊥(𝐵𝑈), let 𝑎𝑈 ≤ 𝑏𝑈 ∈ R be such that 𝑢 + R𝑦 ∩ 𝐵𝑈 = 𝑢 + [𝑎𝑈 , 𝑏𝑈 ]𝑦 (basically, this
is the intersection of the projection line with the ball).

Using Fubini,⃦⃦⃦⃦⃦
1

vol(𝐵𝑈)

∫︁
𝐵𝑈

𝑔′(𝑢)𝑑𝑢

⃦⃦⃦⃦⃦
𝑉

=

⃦⃦⃦⃦⃦
1

vol(𝐵𝑈)

∫︁
Proj

𝑦⊥ (𝐵𝑈 )

∫︁ 𝑏𝑈

𝑎𝑈

𝑑

𝑑𝑠
𝑔(𝑢+ 𝑠𝑦)𝑑𝑠𝑑𝑢

⃦⃦⃦⃦⃦
𝑉

=

⃦⃦⃦⃦⃦
1

vol(𝐵𝑈)

∫︁
Proj

𝑦⊥ (𝐵𝑈 )
(𝑔(𝑢+ 𝑏𝑈𝑦)− 𝑔(𝑢+ 𝑎𝑈𝑦)) 𝑑𝑢

⃦⃦⃦⃦⃦
𝑉

≤ 1

vol𝑛(𝐵𝑈)
· 2vol𝑛−1(Proj𝑦⊥(𝐵𝑈))‖𝑔‖𝐿∞(𝑆𝑋 ,𝑉 )

We need to show that
2vol𝑛−1

(︀
Proj𝑦⊥(𝐵𝑈)

�
vol𝑛(𝐵𝑈)

≤ 𝑛‖𝑦‖𝑈

The convex hull of 𝑦 over the projection is the cone over the projection.

vol𝑛(conv

�
𝑦

‖𝑦‖𝑈
∪ Proj𝑦⊥(𝐵𝑈)

�
) =

1

𝑛‖𝑦‖𝑈
· vol𝑛−1

(︀
Proj𝑦⊥(𝐵𝑈)

�
Letting 𝐾 = conv

(︁{︁
± 𝑦

‖𝑦‖𝑈

}︁
∩ Proj𝑦⊥(𝐵𝑈)

)︁
, this is the same as saying that vol𝑛(𝐾) ≤

vol𝑛(𝐵𝑈). Note that 𝐾 is the double cone, that is where the factor of 2 got absorbed. This
is an application of Fubini’s theorem.
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Geometrically, the idea is that when we look on the projective lines for whatever part of
the cone is not in our ball set, we will be able to fit the outside inside the set. In formulas,
𝑐𝑈 is the largest multiple of 𝑢 which is inside the boundary of the cone. 𝑐𝑈 ≥ 1.

𝐾 =
⋃︁

𝑢∈Proj
𝑦⊥ (𝐵𝑈 )

�
𝑢+

�
− 𝑐𝑈 − 1

𝑐𝑈‖𝑦‖𝑈
,+

𝑐𝑈 − 1

𝑐𝑈‖𝑦‖𝑈

��
We also have

1

𝑐𝑈
(𝑐𝑈𝑢+ 𝑎𝑐𝑈𝑢𝑦)± (1− 1

𝑐𝑈
)

𝑦

‖𝑦‖𝑈
∈ 𝐵𝑈

and we get that 𝐾 ⊂ 𝐵𝑈 by Fubini.

Thus, we’ve completed the proof of Bourgain’s theorem for the semester. The big re-
maining question is can we do something like this in the general case?

6 Kirszbraun’s Extension Theorem

Last time we proved nonlinear Hahn-Banach theorem. I want to prove one more Lipschitz
Extension theorem, which I can do in ten minutes which we will need later in the semester.

Theorem 3.6.1 (Kirszbraun’s extension theorem (1934)). Let 𝐻1, 𝐻2 be Hilbert spaces and
𝐴 ⊆ 𝐻1. Let 𝑓 : 𝐴→ 𝐻2 Lipschitz. Then, there exists a function 𝐹 : 𝐻1 → 𝐻2 that extends
𝑓 and has the same Lipschitz constant (‖𝐹‖Lip = ‖𝑓‖Lip).

We did this for real valued functions and 𝑙∞ functions. This version is non-trivial, and
relates to many open problems.

Proof. There is an equivalent geometric formulation. Let 𝐻1, 𝐻2 be Hilbert spaces {𝑥𝑖}𝑖∈𝐼 ⊆
𝐻1 and {𝑦𝑖}𝑖∈𝐼 ⊆ 𝐻2, {𝑟𝑖}𝑖∈𝐼 ⊆ (0,∞). Suppose that ∀𝑖, 𝑗 ∈ 𝐼, ‖𝑦𝑖− 𝑦𝑗‖𝐻2 ≤ ‖𝑥𝑖− 𝑦𝑖‖𝐻1 . If⋂︁

𝑖∈𝐼
𝐵𝐻1(𝑥𝑖, 𝑟𝑖) ̸= ∅

then ⋂︁
𝑖∈𝐼
𝐵𝐻1(𝑦𝑖, 𝑟𝑖) ̸= ∅

as well.
Intuitively, this says the configuration of points in 𝐻2 are a squeezed version of the 𝐻1

points. Then, we’re just saying something obvious. If there’s some point that intersects all
balls in 𝐻1, then using the same radii in the squeezed version will also be nonempty. Our
geometric formulation will imply extension. We have 𝑓 : 𝐴 → 𝐻2, WLOG ‖𝑓‖𝐿𝑖𝑝 = 1. For
all 𝑎, 𝑏 ∈ 𝐴, ‖𝑓(𝑎)− 𝑓(𝑏)‖𝐻2 ≤ ‖𝑎− 𝑏‖𝐻1 . Fix any 𝑥 ∈ 𝐻1 ∖ 𝐴. What can we say about the
intersection of the following balls?:

⋂︀
𝑎∈𝐴𝐵𝐻1(𝑎, ‖𝑎− 𝑥‖𝐻1). Well by design it is not empty

since 𝑥 is in this set. So the conclusion from the geometric formulation says⋂︁
𝑎∈𝐴

𝐵𝐻2 (𝑓(𝑎), ‖𝑎− 𝑥‖𝐻1) ̸= ∅
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So take some 𝑦 in this set. Then ‖𝑦− 𝑓(𝑎)‖𝐻2 ≤ ‖𝑥− 𝑎‖𝐻2 ∀𝑎 ∈ 𝐴. Define 𝐹 (𝑥) = 𝑦. Then
we can just do the one-more-point argument with Zorn’s lemma to finish.

Let us now prove the geometric formulation. It is enough to prove the geometric formu-
lation when |𝐼| < ∞ and 𝐻1, 𝐻2 are finite dimensional. To show all the balls intersect, it
is enough to show that finitely many of them intersect (this is the finite intersection prop-
erty: balls are weakly compact). Now the minute 𝐼 is finite, we can write 𝐼 = {1, · · · , 𝑛},
𝐻 ′

1 = span{𝑥1, · · · , 𝑥𝑛}, 𝐻 ′
2 = span{𝑦1, · · · , 𝑦𝑛}. This reduces everything to finite dimen-

sions. We have a nice argument using Hahn-Banach. FINISH THIS

Remark 3.6.2: In other norms, the geometric formulation in the previous proof is just not
true. This effectively characterizes Hilbert spaces. Related is the Kneser-Poulsen conjecture,
which effectively says the same thing in terms of volumes:

Conjecture 3.6.3 (Kneser-Poulsen). Let 𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑘 ∈ R𝑛 and ‖𝑦𝑖−𝑦𝑗‖ ≤ ‖𝑥𝑖−𝑥𝑗‖
for all 𝑖, 𝑗. Then ∀𝑟𝑖 ≥ 0

vol

(︃
𝑘⋂︁
𝑖=1

𝐵(𝑦𝑖, 𝑟𝑖)

)︃
≥ vol

(︃
𝑘⋂︁
𝑖=1

𝐵(𝑥𝑖, 𝑟𝑖)

)︃
This is known for 𝑛 = 2, where volume is area using trigonometry and all kinds of ad-hoc

arguments. It’s also known for 𝑘 = 𝑛+ 2.

3/30/16
Here is an equivalent formulation of the Kirszbraun extension theorem.

Theorem 3.6.4. Let 𝐻1, 𝐻2 be Hilbert spaces, {𝑥𝑖}𝑖∈𝐼 ⊆ 𝐻1, {𝑦𝑖}𝑖∈𝐼 ⊆ 𝐻2, {𝑟𝑖}∞𝑖=1 ⊆ (0,∞).
Suppose that ‖𝑦𝑖 − 𝑦𝑗‖𝐻2

≤ ‖𝑥𝑖 − 𝑥𝑗‖𝐻2
for all 𝑖, 𝑗 ∈ 𝐼. Then

⋂︀
𝑖∈𝐼 𝐵𝐻1(𝑥𝑖, 𝑟𝑖) ̸= 𝜑 implies⋂︀

𝑖∈𝐼 𝐵𝐻2(𝑦𝑖, 𝑟𝑖) ̸= 𝜑.

Proof. By weak compactness and orthogonal projection, it is enough to prove this when
𝐼 = {1, . . . , 𝑛} and 𝐻1, 𝐻2 are both finite dimensional. Fix any 𝑥 ∈ ⋂︀𝑛

𝑖=1𝐵𝐻1(𝑥𝑖, 𝑟𝑖). If
𝑥 = 𝑥𝑖0 for some 𝑖0 ∈ {1, . . . , 𝑛}, ‖𝑦𝑖0 − 𝑦𝑖‖𝐻2

≤ ‖𝑥𝑖0 − 𝑥𝑖‖𝐻1
≤ 𝑟𝑖, and 𝑦𝑖0 ∈

⋂︀𝑛
𝑖=1𝐵𝐻2(𝑦𝑖, 𝑟𝑖).

Assume 𝑥 ̸∈ {𝑥1, . . . , 𝑥𝑛}.
Define 𝑓 : 𝐻 → R by

𝑓(𝑦) = max

{︃
‖𝑦 − 𝑦1‖𝐻2

‖𝑥− 𝑥1‖𝐻1

, . . . ,
‖𝑦 − 𝑦𝑛‖𝐻2

‖𝑥− 𝑥𝑛‖𝐻2

}︃
.

Note that 𝑓 is continuous and lim‖𝑦‖𝐻2
→∞ 𝑓(𝑦) = ∞.

So, the minimum of 𝑓(𝑦) over R𝑛 is attained. Let

𝑚 = min
𝑦∈R𝑛

𝑓(𝑦).

Fix 𝑦 ∈ R𝑛, 𝑓(𝑦) = 𝑚.
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Observe that we are done if 𝑚 ≤ 1. Suppose by way of contradiction 𝑚 > 1. Let 𝐽 be
the indices where the ratio is the minimum.

𝐽 =

{︃
𝑖 ∈ {1, . . . , 𝑛} :

‖𝑦 − 𝑦𝑖‖𝐻2

‖𝑥− 𝑥𝑖‖𝐻1

= 𝑚

}︃
.

By definition, if 𝑗 ∈ 𝐽 , then ‖𝑦 − 𝑦𝑗‖𝐻2
= 𝑚 ‖𝑥− 𝑥𝑗‖𝐻1

, and for 𝑗 ̸∈ 𝐽 , ‖𝑦 − 𝑦𝑗‖𝐻2
<

𝑚 ‖𝑥− 𝑥𝑗‖𝐻1
.

Claim 3.6.5. 𝑦 ∈ conv({𝑦𝑗}𝑗∈𝐽).

Proof. If not, find a separating hyperplane. If we move 𝑦 a small enough distance towards
conv({𝑦𝑗}𝑗∈𝐽) perpendicular to the separating hyperplane to 𝑦′, then for 𝑗 ∈ 𝐽 ,

‖𝑦′ − 𝑦𝑗‖𝐻2
< ‖𝑦 − 𝑦𝑗‖𝐻2

= 𝑚 ‖𝑥− 𝑥𝑗‖𝐻1
.

For 𝑗 ∈ 𝐽 , it is still true that ‖𝑦′ − 𝑦𝑗‖𝐻2
< 𝑚 ‖𝑥− 𝑥𝑗‖𝐻1

. Then 𝑓(𝑦′) < 𝑚, contradicting
that 𝑦 is a minimizer.

By the claim, there exists {𝜆𝑗}𝑗∈𝐽 , 𝜆𝑗 ≥ 0,
∑︀
𝑗∈𝐽 𝜆𝑗 = 1, 𝑦 =

∑︀
𝑗∈𝐽 𝜆𝑗𝑦𝑗.

We use this the coefficients of this convex combination to define a probability distribution.
Define a random vector in 𝐻1 by 𝑋, with

P(𝑋 = 𝑥𝑗) = 𝜆𝑗, 𝑗 ∈ 𝐽.

For all 𝑗 ∈ {1, . . . , 𝑛}, let 𝑦𝑗 = ℎ(𝑥𝑗). Let E[ℎ(𝑋)] =
∑︀
𝑗∈𝐽 𝜆𝑗𝑦𝑗 = 𝑦. Let 𝑋 ′ be an

independent copy of 𝑋.
Using ‖ℎ(𝑋)− 𝑦‖𝐻2

= 𝑚 ‖𝑋 − 𝑥‖𝐻1
, we have

E ‖ℎ(𝑋)− Eℎ(𝑋)‖2𝐻2
= E ‖ℎ(𝑋)− 𝑦‖2𝐻2

(3.25)

= 𝑚2E ‖𝑋 − 𝑥‖2𝐻1
(3.26)

> E ‖𝑋 − 𝑥‖2𝐻1
(3.27)

≥ E ‖𝑋 − 𝐸𝑋‖2𝐻1
(3.28)

In Hilbert space, it is always true that

E ‖𝑋 − 𝐸𝑋‖2𝐻1
=

1

2
E ‖𝑋 −𝑋 ′‖2𝐻2

.

Using this on both sides of the above,

1

2
E ‖ℎ(𝑋)− ℎ(𝑋 ′)‖2𝐻2

>
1

2
‖𝑋 −𝑋 ′‖2𝐻1

.

So far we haven’t used the only assumption on the points. By the assumption ‖𝑋 −𝑋 ′‖𝐻1
≥

‖ℎ(𝑋)− ℎ(𝑋 ′)‖𝐻2
. This is a contradiction.
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This is not true in 𝐿𝑝 spaces when 𝑝 ̸= 2, but there are other theorems one can formulate
(ex. with different radii). We have to ask what happens to each of the inequalities in the
proof. As stated the theorem is a very “Hilbertian” phenomenon.

Definition 3.6.6: Let (𝑋, ‖·‖𝑋) be a Banach space and 𝑝 ≥ 1. We say that 𝑋 has
Rademacher type 𝑝 if for every 𝑛, for every 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋,(︃

E
𝜀=(𝜀1,...,𝜀𝑛)∈{±1}𝑛

[︃⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑋𝑖

⃦⃦⃦⃦⃦𝑝
𝑋

]︃)︃ 1
𝑝

≤ 𝑇

(︃
𝑛∑︁
𝑖=1

‖𝑋𝑖‖𝑝𝑋

)︃ 1
𝑝

.

The smallest 𝑇 is denoted 𝑇𝑝(𝑋).

Definition (Definition 1.1.13): A metric space (𝑋, 𝑑𝑋) is said to have Enflo type 𝑝 if for
all 𝑓 : {±1}𝑛 → 𝑋,

�
E
𝜀
[𝑑𝑋(𝑓(𝜀), 𝑓(−𝜀))𝑝]

� 1
𝑝

.𝑋

�
𝑛∑︁
𝑗=1

E
𝜀
[𝑑(𝑓(𝜀), 𝑓(𝜀1, . . . , 𝜀𝑗−1,−𝜀𝑗, 𝜀𝑗+1, · · · ))𝑝]

� 1
𝑝

.

If 𝑋 is also a Banach space of Enflo type 𝑝, then it is also of Rademacher type 𝑝.

Question 3.6.7: Let 𝑋 be a Banach space of Rademacher type 𝑝. Does 𝑋 also have Enflo
type 𝑝?

We know special Banach spaces for which this is true, like 𝐿𝑝 spaces, but we don’t know
the anser in full generality.

Theorem 3.6.8 (Pisier). thm:pisier Let 𝑋 be a Banach space of Rademacher type 𝑝. Then 𝑋
has Enflo type 𝑞 for every 1 < 𝑞 < 𝑝.

We first need the following.

Theorem 3.6.9 (Kahane’s Inequality). For every ∞ > 𝑝, 𝑞 ≥ 1, there exists 𝐾𝑝,𝑞 such that
for every Banach space, (𝑋, ‖·‖𝑋) for every 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋,(︃

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖

⃦⃦⃦⃦⃦𝑝
𝑋

)︃ 1
𝑝

≤ 𝐾𝑝,𝑞

(︃
E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖

⃦⃦⃦⃦⃦𝑞
𝑋

)︃ 1
𝑞

.

In the real case this is Khintchine’s inequality.
By Kahane’s inequality, 𝑋 has type 𝑝 iff(︃

E
⃦⃦⃦⃦⃦
𝑛∑︁
𝑖=1

𝜀𝑖𝑥𝑖

⃦⃦⃦⃦⃦𝑞
𝑋

)︃ 1
𝑞

.𝑋,𝑝,𝑞

(︃
𝑛∑︁
𝑖=1

‖𝑥𝑖‖𝑝𝑋

)︃ 1
𝑝

.

Define 𝑇 : ℓ𝑛𝑝 (𝑋) → 𝐿𝑝({±1}𝑛, 𝑋) by 𝑇 (𝑥1, . . . , 𝑥𝑛)(𝜀) =
∑︀𝑛
𝑖=1 𝜀𝑖𝑋𝑖.
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(Here ‖𝑓‖𝐿𝑝({±1}𝑛,𝑋) =
(︀

1
2𝑛

∑︀
𝜀∈{±1}𝑛 ‖𝑓(𝜀)‖

𝑝
𝑋

� 1
𝑝 .)

Rademacher type 𝑝 mens

‖𝑇‖ℓ𝑛𝑝 (𝑋)→𝐿𝑞({±1}𝑛,𝑋) .𝑋,𝑝,𝑞 1.

For an operator 𝑇 : 𝑌 → 𝑍, the adjoint 𝑇 * : 𝑍* → 𝑌 * satisfies

‖𝑇‖𝑌→𝑍 = ‖𝑇 *‖𝑍*→𝑌 * .

Let 𝑝* = 𝑝
𝑝−1

be the dual of 𝑝 (1
𝑝
+ 1

𝑝*
= 1). Now

𝐿𝑞({±1}𝑛, 𝑋)* = 𝐿𝑞*({±1}𝑛, 𝑋*).

Here, 𝑔* : {±1}𝑛 → 𝑋*, 𝑓 : {±1}𝑛 → 𝑋, 𝑔*(𝑓) = E𝑔*(𝜀)(𝑓(𝜀)), ℓ𝑛𝑝 (𝑋) = ℓ𝑛𝑝*(𝑋
*).

Note
‖𝑇 *‖𝐿𝑞* ({±1}𝑛,𝑋*)→ℓ𝑛

𝑝* (𝑋
*) . 1,

For 𝑇 : 𝑌 → 𝑍, 𝑇 * : 𝑍* → 𝑌 * is defined by 𝑇 *(𝑧*)(𝑦) = 𝑧*(𝑇𝑦).
For 𝑔* : {±1}𝑛 → 𝑋*, 𝑔*

∑︀
𝐴⊆{1,...,𝑛} ̂︀𝑔*(𝐴)𝑊𝐴. We claim

𝑇 *𝑔* = (̂︀𝑔*({1}), . . . , ̂︀𝑔({𝑛})).
We check

𝑇 *𝑔*(𝑥1, . . . , 𝑥𝑛) = 𝑔*(𝑇 (𝑥1, . . . , 𝑥𝑛))

≤ E𝑔*(𝜀)
(︃

𝑛∑︁
𝑖=1

𝜀𝑖𝑋𝑖

)︃
=

𝑛∑︁
𝑖=1

(E𝑔*(𝜀)𝜀𝑖)(𝑋𝑖)

=
𝑛∑︁
𝑖=1

� ∑︁
𝐴⊆{1,...,𝑛}

̂︀𝑔*(𝐴)(E𝑊𝐴(𝜀)𝜀𝑖)

�
(𝑥𝑖)

=
𝑛∑︁
𝑖=1

̂︀𝑔*({𝑖})(𝑥)
= (̂︀𝑔*({1}), . . . , ̂︀𝑔*({𝑛}))(𝑥1, . . . , 𝑥𝑛).

Rademacher type 𝑝 means for all 𝑔*𝑖 : {±1}𝑛 → 𝑋*, for all 𝑞 ∈ [1,∞),(︃
𝑛∑︁
𝑖=1

‖̂︀𝑔*({𝑖})‖𝑝*𝑋)︃ . ‖𝑔*‖𝐿𝑞({±1}𝑛,𝑋*)

Theorem 3.6.10 (Pisier). If 𝑋 has Rademacher type 𝑝 and 1 ≤ 𝑎 < 𝑝, then for every 𝑏 > 1,
for all 𝑓 : {±1}𝑛 → 𝑋 with E𝑓 = 0,

‖𝑓‖𝑏 -

⃦⃦⃦⃦⃦
⃦⃦
�

𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓‖𝑎𝑋

� 1
𝑎

⃦⃦⃦⃦⃦
⃦⃦
𝑏

.
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Here, for 𝑓 : {±1}𝑛 → 𝑋, 𝜕𝑗𝑓 : {±1}𝑛 → 𝑋 is defined by

𝜕𝑗𝑓(𝜀) =
𝑓(𝜀)− 𝑓(𝜀1, . . . , 𝜀𝑗−1,−𝜀𝑗, 𝜀𝑗+1, . . . 𝜀𝑛)

2
=

∑︁
𝐴 ⊆ {1, . . . , 𝑛}

𝑗 ∈ 𝐴

̂︀𝑓(𝐴)𝑊𝐴.

Note 𝜕2𝑗 = 𝜕𝑗.
The Laplacian is Δ =

∑︀𝑛
𝑗=1 𝜕𝑗 =

∑︀𝑛
𝑗=1 𝜕

2
𝑗 . We’ve proved that

Δ𝑓 =
∑︁

𝐴⊆{1,...,𝑛}
|𝐴| ̂︀𝑓(𝐴)𝑊𝐴.

The heat semigroup on the cube5 is for 𝑡 > 0,

𝑒−𝑡Δ𝑓 =
∑︁

𝐴⊆{1,...,𝑛}
𝑒−𝑡|𝐴| ̂︀𝑓(𝐴)𝑊𝐴.

This is a function on the cube

𝜀 ↦→

�
𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓(𝜀)‖𝑎𝑋

� 1
𝑎

∈ [0,∞).

For 𝑏 = 𝑎,

‖𝑓‖𝑎 .

�
𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓‖𝑞𝐿𝑎({±1}𝑛,𝑋)

� 1
𝑎

.

Let 𝑓 : {±1}𝑛 → 𝑋 be

‖𝑓(𝜀)− 𝑓(−𝜀)‖𝑎 ≤ ‖𝑓(𝜀)− E𝑓‖𝑎 + E ‖E𝑓 − E𝑓(−𝜀)‖𝑎

.

�
𝑛∑︁
𝑗=1

‖𝑓(𝜀)− 𝑓(𝜀1, . . . ,−𝜀𝑗, . . . , 𝜀𝑛)‖𝑎𝑋

� 1
𝑎

.

We need some facts about the heat semigroup.

Fact 3.6.11 (Fact 1): Heat flow is a contraction:⃦⃦⃦
𝑒−𝑡Δ𝑓

⃦⃦⃦
𝐿𝑞({±1}𝑛,𝑋)

≤ ‖𝑓‖𝐿𝑞({±1}𝑛,𝑋) .

Proof. We have

𝑒−𝑡Δ𝑓 =
∑︁

𝐴⊆{1,...,𝑛}
𝑒−𝑡|𝐴| ̂︀𝑓(𝐴)𝑊𝐴 =

∑︁
𝑅𝑡 * 𝑓

5also known as the noise operator

84



MAT529 Metric embeddings and geometric inequalities

Here the convolution is defined as 1
2𝑛

∑︀
𝛿∈{±1}𝑛 𝑅𝑡(𝜀𝛿)𝑓(𝛿). This is a vector valued function.

In the real case it’s Parseval, multiplying the Fourier coefficients. It’s enough to prove for
the real line. Identities on the level of vectors. Here

𝑅𝑡(𝜀) =
∑︁

𝐴⊆{1,...,𝑛}
𝑒−𝑡|𝐴|𝑊𝐴(𝜀);

this is the Riesz product.

The function is

=
𝑛∏︁
𝑖=1

(1 + 𝑒−𝑡𝜀𝑖) = 0, 𝑡 > 0.

E𝑅𝑡 = 1 so 𝑅𝑡 is a probability measure and heat flow is an averaging operator.

4/11: Continue Theorem 3.6.8. The dual to having Rademacher type 𝑝: for all 𝑔* :

{±1}𝑛 → 𝑋*,
(︁∑︀𝑛

𝑖=1 ‖̂︀𝑔({𝑖})‖𝑝*𝑋*

)︁ 1
𝑝* . ‖𝑔*‖𝐿𝑟* ({±1}𝑛,𝑋*) for every 1 < 𝑟 <∞.

Note that for the purpose of proving Theorem 3.6.8 we only need 𝑟 = 𝑝 in Kahane’s
inequality. However, I recommend that you read up on the full inequality.

For 𝑓 : {±1}𝑛 → 𝑋, define 𝜕𝑗𝑓 : {±1}𝑛 → 𝑋 by 𝜕𝑗𝑓 = 𝑓(𝜀)−𝑓(𝜀1,...,−𝜀𝑗 ,...,𝜀𝑛)
2

. Then

𝜕2𝑗 = 𝜕𝑗 = 𝜕*𝑗 and 𝜕𝑗𝑊𝐴 =

⎧⎨⎩𝑊𝐴, 𝑗 ∈ 𝐴

0, 𝑗 ̸∈ 𝐴.

The Laplacian is Δ =
∑︀𝑛
𝑗=1 𝜕𝑗 =

∑︀𝑛
𝑗=1 𝜕

2
𝑗 ,

Δ𝑓 =
∑︁
𝐴⊆[𝑛]

|𝐴| ̂︀𝑓(𝐴)𝑊𝐴.

If 𝑡 > 0 then

𝑒−𝑡Δ =
∑︁
𝐴⊆[𝑛]

𝑒−𝑡|𝐴|𝑊𝐴

is the heat semigroup. It is a contraction. 𝑒−𝑡Δ = (
∏︀𝑛
𝑖=1(1 + 𝑒−𝑡𝜀𝑖)) * 𝑓 .

We have ⃦⃦⃦
𝑒−𝑡Δ𝑓

⃦⃦⃦
𝐿𝑝({±1}𝑛,𝑋)

≥ 𝑒−𝑛𝑡 ‖𝑓‖𝐿𝑝({±1}𝑛,𝑋) (3.29)

𝑒−𝑡Δ(𝑉[𝑛]𝑒
−𝑡Δ𝑓) = 𝑒−𝑡𝑛𝑊[𝑛]𝑓 (3.30)
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where 𝑊[𝑛](𝜀) =
∏︀𝑛
𝑖=1 𝜀𝑖. For 𝑓 =

∑︀
𝐴⊆[𝑛]

̂︀𝑓(𝐴)𝑊𝐴, we have

𝑊[𝑛]𝑒
−𝑡Δ𝑓 =

∑︁
𝐴⊆[𝑛]

𝑒−𝑡|𝐴| ̂︀𝑓(𝐴)𝑊[𝑛]∖𝐴 (3.31)

𝑒−𝑡Δ(𝑊[𝑛]𝑒
−𝑡Δ𝑓) =

∑︁
𝐴⊆[𝑛]

𝑒−𝑡|𝐴| ̂︀𝑓(𝐴)𝑒−𝑡(𝑛−|𝐴|) (3.32)

= 𝑒−𝑡𝑛
∑︁
𝐴⊆[𝑛]

̂︀𝑓(𝐴)𝑊[𝑛]∖𝐴 (3.33)

= 𝑒−𝑡𝑛𝑊[𝑛]𝑓 (3.34)

𝑒−𝑡𝑛
⃦⃦⃦
𝑊[𝑛]𝑓

⃦⃦⃦
𝐿𝑝({±1}𝑛,𝑋)

=
⃦⃦⃦
𝑒−𝑡Δ(𝑊[𝑛](𝑒

−𝑡Δ𝑓))
⃦⃦⃦
𝑝

(3.35)

≤
⃦⃦⃦
���𝑊[𝑛]𝑒

−𝑡Δ𝑓
⃦⃦⃦
𝑝
. (3.36)

The key claim is the following.

Claim 3.6.12. clm:pis1 Suppose 𝑋 has Rademacher type 𝑝. For all 1 < 𝑟 < ∞, for all 𝑡 > 0,
for all 𝑔* : {±1}𝑛 → 𝑋*,⃦⃦⃦⃦⃦�⃦⃦⃦

𝑒−𝑡Δ𝜕𝑗𝑔
*(𝜀)

⃦⃦⃦𝑞*
𝑋*

� 1
𝑞*
⃦⃦⃦⃦⃦
𝐿𝑟* ({±1}𝑛)

.𝑋,𝑟,𝑝

‖𝑔*‖𝐿𝑟* ({±1}𝑛,𝑋*)

(𝑒𝑡 − 1)
𝑝*
𝑞*

.

Assume the claim. We prove the following.

Claim 3.6.13. clm:pis2 If 𝑋 has Rademacher type 𝑝, 1 < 𝑞 < 𝑝, and 1 < 𝑟 < ∞, then for
every function 𝑓 : {±1}𝑛 → 𝑋 with E𝑓 = 0 = ̂︀𝑓(𝜑) we have

‖𝑓‖𝐿𝑟({±1}𝑛,𝑋) .
1

𝑝− 𝑞

⃦⃦⃦⃦⃦
⃦⃦
�

𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓(𝜀)‖𝑞𝑋

� 1
𝑞

⃦⃦⃦⃦⃦
⃦⃦
𝐿𝑟({±1}𝑛,𝑋)

.

When 𝑟 = 𝑞,

‖𝑓 − E𝑓‖𝑞 .
�

1

𝑝− 𝑞

�𝑞
E
𝜀

𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓(𝜀)‖𝑞𝑋 (3.37)

=

�
1

𝑝− 𝑞

�𝑞 1

2𝑞

𝑛∑︁
𝑗=1

‖𝑓(𝜀)− 𝑓(𝜀1, . . . ,−𝜀𝑗, 𝜀𝑛)‖𝑞𝑋 (3.38)

‖𝑓(𝜀)− 𝑓(−𝜀)‖𝑞 ≤ (3.39)

= 2 ‖𝑓(𝜀)− E𝑓‖𝑞 (3.40)

.
1

𝑝− 𝑞

�
𝑛∑︁
𝑗=1

E ‖𝑓(𝜀)− 𝑓(𝜀1, . . . ,−𝜀𝑗, 𝜀𝑛)‖2
�

(3.41)

by definition of Enflo type.
We show that the Key Claim 3.6.12 implies Claim 3.6.13.
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Proof. Normalize so that ⃦⃦⃦⃦⃦
⃦⃦
�

𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓(𝜀)‖𝑞𝑋

� 1
𝑞

⃦⃦⃦⃦⃦
⃦⃦
𝐿𝑟({±1}𝑛,𝑋)

= 1.

For every 𝑠 > 0, by Hahn-Banach, take 𝑔*𝑠 : {±1}𝑛 → 𝑋* such that ‖𝑔*𝑠‖𝐿𝑟* ({±1}𝑛,𝑋*) = 1
and

E
�
𝑔*𝑠(𝜀)(Δ𝑒

−𝑠Δ𝑓(𝜀))
�
=
⃦⃦⃦
Δ𝑒−𝑠Δ𝑓

⃦⃦⃦
𝐿𝑟({±1}𝑛,𝑋)

.

Write this as
¬
𝑔*𝑠 ,Δ𝑒

−𝑠Δ𝑓
)︂
.

Recall that 𝐿𝑟({±1}𝑛, 𝑋)* = 𝐿𝑟*({±1}𝑛, 𝑋*). Taking ℎ ∈ 𝐿𝑟({±1}𝑛, 𝑋)* and 𝑔* ∈
𝐿𝑟*({±1}𝑛, 𝑋*), we have

𝑔*(ℎ) = ⟨𝑔*, ℎ⟩ = E[𝑔*(𝜀)ℎ(𝜀)] = E[⟨𝑔*, ℎ⟩ (𝜀)].

We have

Δ𝑒−𝑠Δ𝑓 =
∑︁
𝐴⊆[𝑛]

|𝐴|𝑒−𝑠|𝐴| ̂︀𝑓(𝐴)𝑊𝐴 (3.42)⃦⃦⃦
Δ𝑒−𝑠Δ𝑓

⃦⃦⃦
𝐿𝑟(𝑋)

=
¬
𝑔*𝑠 ,

∑︁
𝜕2𝑗 𝑒

−𝑠Δ𝑓
)︂

(3.43)

=
𝑛∑︁
𝑗=1

¬
𝑔*𝑠 , 𝜕𝑗𝑒

−𝑠Δ𝜕𝑗𝑓
)︂

(3.44)

=
𝑛∑︁
𝑗=1

¬
𝑒−𝑠Δ𝜕𝑗𝑔

*
𝑠 , 𝜕𝑗𝑓

)︂
(3.45)

=
(︀
𝑒−𝑠Δ𝜕𝑗𝑔

*
𝑠

�𝑛
𝑗=1⏟  ⏞  

∈𝐿𝑟* (ℓ
𝑛
𝑞* (𝑋

*))

(𝜕𝑗𝑓)
𝑛
𝑗=1⏟  ⏞  

∈𝐿𝑟(ℓ𝑛𝑞 (𝑋))

. (3.46)

Note that (𝐿𝑟(ℓ
𝑛
𝑞 (𝑋)))* = 𝐿𝑟*(ℓ

𝑛
𝑞*(𝑋

*)), so we have a pairing here.

≤

⃦⃦⃦⃦⃦
⃦⃦
�

𝑛∑︁
𝑗=1

⃦⃦⃦
𝑒−𝑠Δ𝜕𝑗𝑔

*
𝑠(𝜀)

⃦⃦⃦𝑞*
𝑋*

� 1
𝑞

⃦⃦⃦⃦⃦
⃦⃦
𝐿𝑟* (𝑋𝑛)

⃦⃦⃦⃦⃦
⃦⃦
�

𝑛∑︁
𝑗=1

‖𝜕𝑗𝑓(𝜀)‖𝑞𝑋

� 1
𝑞

⃦⃦⃦⃦⃦
⃦⃦
𝐿𝑟(𝑋)

(3.47)

≤
‖𝑔*𝑠‖𝐿𝑟* (𝑋*)

(𝑒𝑡 − 1)
𝑝*
𝑞*

by Key Claim 3.6.12

(3.48)

.
1

(𝑒𝑡 − 1)
𝑝*
𝑞*
.
⃦⃦⃦
Δ𝑒−𝑠Δ𝑓

⃦⃦⃦
𝐿𝑟(𝑋)

.𝑋,𝑝,𝑟
1

(𝑒𝑡 − 1)
𝑝*
𝑞*
. (3.49)

Integrating, ∫︁ ∞

0
Δ𝑒−𝑠Δ𝑓 =

∑︁
𝐴⊆[𝑛]

∫︁ ∞

0
|𝐴|𝑒−𝑠|𝐴| ̂︀𝑓(𝐴)𝑊𝐴. (3.50)
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Then

‖𝑓‖𝐿𝑟(𝑋) =
⃦⃦⃦⃦∫︁ ∞

0
Δ𝑒−𝑠Δ𝑓 𝑑𝑠

⃦⃦⃦⃦
𝐿𝑟(𝑋)

(3.51)

≤
∫︁ ∞

0

⃦⃦⃦
Δ𝑒−𝑠Δ𝑓

⃦⃦⃦
𝐿𝑟(𝑋)

𝑑𝑠 (3.52)

≤
∫︁ ∞

0

𝑑𝑠

(𝑒𝑡 − 1)
𝑝*
𝑞*
<∞. (3.53)

We now prove the key claim 3.6.12.

Proof of Key Claim 3.6.12. This is an interpolation argument. We first introduce a natural
operation.

Given 𝑔* : {±1}𝑛 → 𝑋*, for every 𝑡 > 0 define a mapping 𝑔*𝑡 : {±1}𝑛 × {±1}𝑛 → 𝑋* as
follows. For 𝛿 ∈ {±1}𝑛,

𝑔*(𝜀, 𝛿) =
∑︁
𝐴⊆[𝑛]

̂︀𝑔*(𝐴)∏︁
𝑖∈𝐴

(𝑒−𝑡𝜀𝑖 + (1− 𝑒−𝑡)𝛿𝑖) (3.54)

= 𝑔*(𝑒−𝑡𝜀+ (1− 𝑒−𝑡)𝛿) (3.55)

Think of 𝑔*(𝜀) =
∑︀
𝐴⊆[𝑛] ̂︀𝑔*(𝐴)∏︀𝑖∈𝐴 𝜀𝑖 (extended outside {±1}𝑛 by interpolation).

Observe

𝑔*(𝜀, 𝛿) =
∑︁
𝐵⊆[𝑛]

𝑒−𝑡|𝐵|(1− 𝑒−𝑡)𝑛−|𝐵|𝑔*

�∑︁
𝑖∈𝐵

𝜀𝑖𝑒𝑖 +
∑︁
𝑖 ̸∈𝐵

𝛿𝑖𝑒𝑖

�
(3.56)

𝑔*

�∑︁
𝑖∈𝐵

𝜀𝑖𝑒𝑖 +
∑︁
𝑖 ̸∈𝐵

𝛿𝑖𝑒𝑖

�
=

∑︁
𝐴⊆[𝑛]

̂︁𝑔*(𝐴)𝑊 (𝐴 ∩𝐵)(𝜀)𝑊𝐴∖𝐵(𝛿) (3.57)∑︁
𝐵⊆[𝑛]

𝑒−𝑡|𝐵|(1− 𝑒−𝑡)𝑛−|𝐵|𝑔*(
∑︁
𝑖∈𝐵

𝜀𝑖𝑒𝑖 +
∑︁
𝑖 ̸∈𝐵

𝛿𝑖𝑒𝑖) (3.58)

=
∑︁
𝐵⊆[𝑛]

𝑒−𝑡|𝐵|(1− 𝑒−𝑡)𝑛−|𝐵| ∑︁
𝐴⊆[𝑛]

̂︁𝑔*(𝐴)𝑊𝐴∩𝐵(𝜀)𝑊𝐴∖𝐵(𝛿) (3.59)

=
∑︁
𝐴⊆[𝑛]

̂︁𝑔*(𝐴) ∑︁
𝐵⊆[𝑛]

𝑒−𝑡|𝐵|(1− 𝑒−𝑡)𝑛−|𝐵|𝑊𝐴∩𝐵(𝜀)𝑊𝐴∖𝐵(𝛿). (3.60)

Let 𝛾 =

⎧⎨⎩𝜀𝑖, w.p. 𝑒−𝑡

𝛿𝑖, w.p. 1− 𝑒−𝑡.
. Then

𝑡

(︃∏︁
𝑖∈𝐴

𝛾𝑖

)︃
=
∏︁
𝑖∈𝐴

(𝑒−𝑡 + (1− 𝑒−𝑡)𝛿𝑖 (3.61)

∑︁
𝐴

̂︁𝑔*(𝐴)E𝑤𝐴(𝛾) = E(︃∑︁
𝐴

̂︁𝑔*(𝐴)𝑊𝐴(𝛾)

)︃
(3.62)

=
∑︁
𝐵⊆[𝑛]

𝑒−𝑡|𝐵|(1− 𝑒−𝑡)𝑛−|𝐵|𝑔*(𝛾) (3.63)
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Instead of a linear interpolation, we did a random interpolation.
What is ‖𝑔*𝑡 ‖𝐿𝑟* ({±1}𝑛×{±1}𝑛,𝑋*) ≤

∑︀
𝐵⊆[𝑛] 𝑒

−𝑡|𝐵|(1−𝑒−𝑡)𝑛−|𝐵|
?

4/13: Continue Theorem 3.6.8.
We’re proving a famous and nontrivial theorem, so there are more computations (this is

the only proof that’s known).
We previously reduced everything to the following “Key Claim” 3.6.12.
Fix 𝑡 > 0. Define 𝑔*𝑡 : {±1}𝑛 × {±1}𝑛 → 𝑋*. Then

𝑔*𝑡 (𝜀, 𝛿) = 𝑔*(𝑒−𝑡𝜀+ (1− 𝑒−𝑡)𝛿)

=
∑︁

𝐴⊆{1,··· ,𝑛}
𝑔*(𝐴)

∏︁
𝑖∈𝐴

(︀
𝑒−𝑡𝜀𝑖 + (1− 𝑒−𝑡)𝛿𝑖

�
Then it’s a fact that ‖𝑔*𝑡 ‖𝐿𝑟* ({±1}𝑛×{±1}𝑛,𝑋*)≤‖𝑔*‖𝐿𝑟({±1}𝑛,𝑋*) which is true for any Banach

space from a Bernoulli interpretation.
Let us examine the Fourier expansion of the original definition of 𝑔* in the variable 𝛿𝑖.

What is the linear part in 𝛿? We have

𝑔*𝑡 (𝜀, 𝛿) =
𝑛∑︁
𝑖=1

𝛿𝑖

� ∑︁
𝐴⊆{1,··· ,𝑛},𝑖∈𝐴

(1− 𝑒−𝑡(|𝐴|−1)𝜀𝑗)

�
+ Φ(𝜀, 𝛿)

where Φ is the remaining part. The way to write this is to write EΦ(𝜀, 𝛿)𝛿𝑖 = 0, for all
𝑖 = 1, · · · , 𝑛 since we know the extra part is orthogonal to all the linear parts, since the
Walsh function determines an orthogonal basis.

So ∑︁
𝐴⊆{1,··· ,𝑛},𝑖∈𝐴

(1− 𝑒−𝑡)𝑒−𝑡|𝐴|𝑒𝑡
∏︁

𝑗∈𝐴∖{𝑖}
𝑔*(𝐴) = (𝑒𝑡 − 1)𝜀𝑖𝑒

−𝑡Δ𝜕𝑖𝑔
*

What does 𝜕𝑖 do to 𝑔*? It only keeps the 𝑖s which belong to it, and it keeps it with the
same coefficient. Then you hit it with 𝑒−𝑡Δ, which corresponds to 𝑒−𝑡|𝐴|. Then the last part
is just the Walsh function.

All in all, you get that 𝑔*𝑡 (𝜀, 𝛿) = (𝑒𝑡 − 1)
∑︀𝑛
𝑖=1 𝛿𝑖𝜀𝑖𝑒

−𝑡Δ𝜕𝑖𝑔
*(𝜀) + Φ(𝜀, 𝛿).

Now fix 𝜀 ∈ {±1}𝑛. Recall the dual formulation of Rademacher type 𝑝: For every function
ℎ* : {±1}𝑛 → 𝑋*, compute ‖(∑︀𝑛

𝑖=1 ‖ℎ̂*(𝑖)‖
𝑝*

𝑋 )1/𝑝
*‖𝐿𝑟* ({±1}𝑛,𝑋*) ≤ ‖ℎ*‖𝐿𝑟* ({±1}𝑛,𝑋*).

Then, applying this inequality to our situation with 𝑔*𝑡 (𝜀, 𝛿) where we have fixed 𝜀, we
get ⃦⃦⃦⃦⃦

⃦
(︃

𝑛∑︁
𝑖=1

‖𝑒−𝑡Δ𝜕𝑖𝑔*(𝜀)‖𝑝
*

𝑋*

)︃1/𝑝*
⃦⃦⃦⃦⃦
⃦
𝐿𝑟* ({±1}𝑛,𝑋*)

. (𝑒𝑡 − 1)−1
(︀
E𝛿‖𝑔*𝑡 (𝜀, 𝛿)‖𝑟

*

𝑋*

�
Then, we get⃦⃦⃦⃦⃦

⃦
(︃

𝑛∑︁
𝑖=1

‖𝑒−𝑡Δ𝜕𝑖𝑔*‖𝑝
*

𝑋*

)︃1/𝑝*
⃦⃦⃦⃦⃦
⃦
𝐿𝑟* ({±1}𝑛,𝑋*)

. (𝑒𝑡 − 1)−1‖𝑔*𝑡 ‖𝐿𝑟* ({±1}𝑛×{±1}𝑛,𝑋*)

. (𝑒𝑡 − 1)−1‖𝑔‖𝐿𝑟* ({±1}𝑛,𝑋*)
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Now we want to take 𝑡→ ∞. Let us look at ‖𝑒−𝑡Δ𝜕𝑖𝑔*‖𝐿∞({±1}𝑛,𝑋*). 𝑒
−𝑡Δ is a contraction,

and so does 𝜕𝑖. We proved the first term is an averaging operator, which does not decrease
norms. We also have that 𝜕𝑖 is averaging a difference of two values, so it also does not
decrease norm. Therefore, we can put a max on it and still get our inequality:

max
1≤𝑖≤𝑛

‖𝑒−𝑡Δ𝜕𝑖𝑔*‖𝐿∞({±1}𝑛,𝑋*) ≤ ‖𝑔*‖𝐿∞({±1}𝑛,𝑋*)

Then, ⃦⃦⃦⃦⃦
⃦
(︃

𝑛∑︁
𝑖=1

‖𝑒−𝑡Δ𝜕𝑖𝑔*‖𝑎𝑋*

)︃1/𝑎
⃦⃦⃦⃦⃦
⃦
𝐿𝑏({±1}𝑛,𝑋*)

= ‖(‖𝑒−𝑡Δ𝜕𝑖𝑔*‖𝑋*)𝑛𝑖=1‖𝐿𝑏(𝑙𝑛𝑎 (𝑋
*))

Define 𝑆 : 𝐿𝑟*(𝑋
*) → 𝐿𝑟*(𝑙

𝑛
𝑝*(𝑋

*)), and it maps

𝑆(𝑔*) = (𝑒−𝑡Δ𝜕𝑖𝑔
*(𝜀))𝑛𝑖=1

The first inequality is the same thing as saying the operator norm of 𝑆

‖𝑆‖𝐿𝑟* (𝑋*)→𝐿𝑟* (𝑙
𝑛
𝑝* (𝑋

*)) .
1

𝑒𝑡 − 1

We also know that

‖𝑆‖𝐿∞(𝑋*)→𝐿∞(𝑙𝑛∞(𝑋*)) ≤ 1

We now want to interpolate these two statements (𝑟* and ∞) to arrive at 𝑞*, as in the
last remaining portion of the proof which is left.

Define 𝜃 ∈ [0, 1] by 1
𝑞*

= 𝜃
𝑝*

+ 1−𝜃
∞ = 𝜃

𝑝*
, so 𝜃 = 𝑝*

𝑞*
.

By the vector-valued Riesz Interpolation Theorem (proof is identical to real-valued func-
tions) (this is in textbooks),

‖𝑆‖𝐿𝑎* (𝑋*)→𝐿𝑎* (𝑙
𝑛
𝑞* (𝑋

*)) .
1

(𝑒𝑡 − 1)𝜃

provided 1
𝑎*

= 𝜃
𝑟*

+ 1−𝜃
∞ , or 𝑎* = 𝑟*

𝜃
= 𝑟*𝑞*

𝑝*
. 𝑞*

𝑝*
> 1, as 𝑟 ranges from 1 → ∞, so does 𝑟*.

In Pisier’s paper, he says we can get any 𝑎* that we want. However, this seems to be false.
But this does not affect us: If we choose 𝑟 = 𝑝, then we get 𝑎 = 𝑞, which is all we needed to
finish the proof.

So in 3.6.12, we take 𝑟* > 𝑞*

𝑝*
, and this completes the claim.

Later I will either prove or give a reference for the interpolation portion of the argument.
Remember what we proved here and the definition of Enflo type 𝑝. You assign 2𝑛 points

in Banach space, to every vertex of the hyper cube. We deduce the volume of parallelpiped
for any number of points. The open question is do we need to pass to this smaller value,
and we needed it to get the integral to converge.
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Chapter 4

Grothendieck’s Inequality

1 Grothendieck’s Inequality

Next week is student presentations, let’s give some facts about Grothendieck’s inequality.
Let’s prove the big Grothendieck theorem (this has books and books of consequences). Ap-
plications of Grothendieck’s inequality is a great topic for a separate course.

The big Grothendieck Inequality is the following:

Theorem 4.1.1. Big Grothendeick.
There exists a universal constant 𝐾𝐺 (the Grothendieck constant) such that the following
holds. Let 𝐴 = (𝑎𝑖𝑗) ∈𝑀𝑚×𝑛(R), and 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛 be unit vectors in a Hilbert space
𝐻. Then there exist signs 𝜀1, . . . , 𝜀𝑛, 𝛿1, . . . , 𝛿𝑛 ∈ {±1}𝑛 such that if you look at the bilinear
form ∑︁

𝑖,𝑗

𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩ ≤ 𝐾𝐺

∑︁
𝑖,𝑗

𝑎𝑖𝑗𝜀𝑖𝛿𝑗

So whenever you have a matrix, and two sets of high-dimensional vectors in a Hilbert
space, there is at most a universal constant (less than 2 or 3) times the same thing but with
signs.

Let’s give a geometric interpretation. Consider the following convex bodies in (R𝑛)2. So 𝐴
is the convex hull of all matrices of the form 𝑐𝑜𝑛𝑣({(𝜀𝑖𝛿𝑗) : 𝜀1, · · · , 𝜀𝑚, 𝛿1, · · · , 𝛿𝑛 ∈ {±1}}) ⊆
𝑀𝑚×𝑛(R) ∼= R𝑚𝑛. These matrices all have entries ±1. This is a polytope.

𝐵 = 𝑐𝑜𝑛𝑣({⟨𝑥𝑖, 𝑦𝑗⟩ : 𝑥𝑖, 𝑦𝑗 unit vectors in a Hilbert space }) ⊆ 𝑀𝑚×𝑛(R). It’s obvious
that 𝐵 contains 𝐴 since 𝐴 is a restriction to ±1 entries.

Grothendieck says the latter half of the containment 𝐴 ⊆ 𝐵 ⊆ 𝐾𝐺𝐴. If there is a point
outside 𝐾𝐺𝐴, you can find a separating hyperplane, which is a matrix. If 𝐵 is not in 𝐾𝐺𝐴,
then there exists ⟨𝑥𝑖, 𝑦𝑗⟩ ̸∈ 𝐾𝐺𝐴 which means by separation there exists a matrix 𝑎𝑖𝑗 such
that

∑︀
𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗 > 𝐾𝐺

∑︀
𝑎𝑖𝑗𝑐𝑖𝑗 for all 𝑐𝑖𝑗 ∈ 𝐴, which is a contradiction by Grothendieck’s

theorem taking 𝑐𝑖𝑗 = 𝜀𝑖𝛿𝑗.

We previously proved 𝑙∞ → 𝑙2, the following is a harder theorem:
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Lemma 4.1.2. Every linear operator 𝑇 : 𝑙𝑛∞ → 𝑙𝑛1 satisfies for all 𝑥1, · · · , 𝑥𝑚 ∈ ℓ𝑛∞.(︃
𝑛∑︁
𝑖=1

‖𝑇𝑥𝑖‖2𝑙𝑛1

)︃1/2

≤ 𝐾𝐺 · ‖𝑇‖𝑙𝑛∞→𝑙𝑛1
max

‖𝑥‖1≤1,𝑥𝑖∈𝑙𝑛1

(︃
𝑛∑︁
𝑖=1

⟨𝑥, 𝑥𝑖⟩2
)︃1/2

As an exercise, see how the lemma follows from Grothendieck, and how the little Grothendieck
inequality follows from the big one in the case where 𝑎𝑖𝑗 is positive definite (so it’s just a

special case; there the best constant is
È
𝜋/2).

Note that max‖𝑥‖1≤1⟨𝑥, 𝑥𝑖⟩ just gives ‖𝑥𝑖‖∞. But Grothendieck says for any number of
𝑥1, · · ·𝑥𝑚, we can for free improve our norm bound by a constant universal factor.

In the little Grothendieck inequality, what we did was prove the above fact for an operator
for 𝑙1 → 𝑙2, and we deduced Pietch domination from that conclusion: There is a probability
measure on the unit ball of ℓ𝑛1 such that ‖𝑇𝑥‖21 ≤ 𝐾2

𝐺‖𝑇‖ℓ𝑛∞→ℓ𝑛1

∫︀
𝐵ℓ𝑛

1

⟨𝑦*, 𝑥⟩2𝑑𝜇(𝑦*). If you

know there exists such a probability measure, you know the above lemma, since you just do
this for each 𝑥𝑖, and this is at most the maximum so you can just multiply.

This is an amazing fact though: Look at 𝑇 : ℓ𝑛∞ → ℓ𝑛1 , and look at 𝐿2(𝜇, ). This is
saying that if you think of an element in ℓ∞ as a bounded function on the 𝐿2 unit ball of its
dual. You can think like this for any Banach space. Then, we have a diagram mapping from
ℓ𝑛2 → 𝐿2(𝜇) by identity into a Hilbert space subspace 𝐻 of 𝐿2(𝜇), and 𝑆 : 𝐻 → ℓ𝑛1 . You
got these operators to factor through a Hilbert space 𝐻, so we form a commutative diagram
and the norm of 𝑆 is at most ‖𝑆‖ ≤ 𝐾𝐺‖𝑇‖.

This is how this is used. These theorems give you for free a Hilbert space out of nothing,
and we use this a lot. After the presentations, from just this duality consequence, I’ll prove
one or two results in harmonic analysis and another result in geometry, and it really looks
like magic. You can end up getting things like Parseval for free. We already saw the power
of this in Restricted Invertibility.

Let’s begin a proof of Grothendieck’s inequality.

Proof. We will give a proof getting 𝐾𝐺 ≤ 𝜋
2 log(1+

√
2)

= 1.7 · · · (this is not from the original

theorem). We don’t actually know what 𝐾𝐺 is. People don’t really care what 𝐾𝐺 is beyond
the first digit. Grothendieck was interested in the worst configuration of points on the sphere,
but it would not tell us what the configuration of points is. We want to know the actual
number, or some description of the points. We know this is not the best bound since it
doesn’t give the worst configuration of points.

You do the following: The input was points 𝑥1, · · · , 𝑥𝑚, 𝑦1, · · · , 𝑦𝑛 ∈ unit sphere in Hilbert
space 𝐻. We will construct a new Hilbert space 𝐻 ′ and new unit vectors 𝑥′𝑖, 𝑦

′
𝑗 such that if

𝑧 is uniform over the sphere of 𝐻 ′ according to surface area measure, then the expectation

of Esign(⟨𝑧, 𝑥′𝑖⟩) * sign(⟨𝑧, 𝑦′𝑗⟩) =
2 log(1+

√
2)

𝜋
⟨𝑥𝑖, 𝑦𝑗⟩ for all 𝑖, 𝑗.

So we have a sphere with points 𝑥𝑖, 𝑦𝑗, and there is a way to nonlinearly transform into a
sphere in the same dimension with 𝑥′𝑖, 𝑦

′
𝑗. On the new sphere, if you take a uniformly random

direction on the sphere, and look at a hyperplane defined by 𝑧, then the sign just indicates
whether 𝑥′𝑖, 𝑦

′
𝑗 are on the same or opposite sides. Let’s call 𝜀𝑖 the first “random sign”, and

𝛿𝑗 the second “random sign”. Then, E
∑︀
𝑎𝑖𝑗𝜀𝑖𝛿𝑗 = 2 log(1+

√
2)

𝜋

∑︀
𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩. So there exists
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an instance (random construction) of 𝜀𝑖, 𝛿𝑗 such that
∑︀
𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩ ≤ 𝜋

2 log(1+
√
2)

∑︀
𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩.

If you succeed in making a bigger constant bound when bounding the expectation of the
multiplication of the signs, you get a better Grothendieck constant. For the argument we
will give, we will see that the exact number we get will be the best constant.

Undergrad Presentations.

2 Grothendieck’s Inequality for Graphs (by Arka and

Yuval)

We’re going to talk about upper bounds for the Grothendieck constant for quadratic forms
on graphs.

Theorem 4.2.1. Grothendieck’s Inequality.

𝑛∑︁
𝑖=1

𝑚∑︁
𝑖=1

𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑖⟩ ≤ 𝐾𝐺

𝑛∑︁
𝑖=1

𝑚∑︁
𝑖=1

𝑎𝑖𝑗𝜀𝑖𝛿𝑗

where 𝑥𝑖, 𝑦𝑗 are on the sphere. This is a bipartite graph where 𝑥𝑖s form one side and 𝑦𝑗s
form the other side. Then you assign arbitrary weights 𝑎𝑖𝑗. So you can consider arbitrary
graphs on 𝑛 matrices.

For every 𝑥𝑖, 𝑦𝑗, there exist signs 𝜀𝑖, 𝛿𝑗 such that∑︁
𝑖,𝑗∈{1,··· ,𝑛}

𝑎𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩ ≤ 𝐶 log 𝑛
∑︁

𝑎𝑖𝑗𝜀𝑖𝛿𝑗

We will prove an exact bound on the complete graph, where the Grothendieck constant
is 𝐶 log 𝑛.

For a general graph, we will prove that 𝐾(𝐺) = c𝑂(logΘ(𝐺)), where we will define the
Θ function of a graph later.

Definition 4.2.2: 𝐾(𝐺) is the least constant 𝐾 s.t. for all matrices 𝐴 : 𝑉 × 𝑉 → R,

sup𝑓 :𝑉→𝑆𝑛−1

∑︁
(𝑢,𝑣)∈𝐸

𝐴(𝑢, 𝑣)⟨𝑓(𝑢), 𝑓(𝑣)⟩ ≤ 𝐾sup𝜙:𝑉→𝐸

∑︁
(𝑢,𝑣)∈𝐸

𝐴(𝑢, 𝑣)𝜙(𝑢)𝜙(𝑣)

Definition 4.2.3: The Gram representation constant of 𝐺.
Denote by 𝑅(𝐺) the infimum over constants 𝑅 s.t. for every 𝑓 : 𝑉 → 𝑆𝑛−1. There exists
𝐹 : 𝑉 → 𝐿[0,1]

∞ such that for every 𝑣 ∈ 𝑉 we have ‖𝐹 (𝑣)‖∞ ≤ 𝑅 and ⟨𝑓(𝑢), 𝑓(𝑣)⟩ =
⟨𝐹 (𝑢), 𝐹 (𝑣)⟩ =

∫︀ 1
0 𝐹 (𝑢)(𝑡)𝐹 (𝑣)(𝑡)𝑑𝑡. For (𝑢, 𝑣) which is an edge, you find the constant 𝑅

so that you can embed functions 𝑓 into 𝐹 such that the ℓ∞ norm is less than an explicit
constant.
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Lemma 4.2.4. Let 𝐺 be a loopless graph. Then 𝐾(𝐺) = 𝑅(𝐺)2.

Proof. Fix 𝑅 > 𝑅(𝐺) and 𝑓 : 𝑉 → 𝑆𝑛−1. Then there exists 𝐹 : 𝑉 → 𝐿∞[0, 1] such that for
every 𝑣 ∈ 𝑉 , we have ‖𝐹 (𝑣)‖∞ ≤ 𝑅 and for (𝑢, 𝑣) ∈ 𝐸 ⟨𝑓(𝑢), 𝑓(𝑣)⟩ ≤ ⟨𝐹 (𝑢), 𝐹 (𝑣)⟩. Then,∑︁
(𝑢,𝑣)∈𝐸

𝐴(𝑢, 𝑣)⟨𝑓(𝑢), 𝑓(𝑣)⟩ =
∑︁

(𝑢,𝑣)∈𝐸
𝐴(𝑢, 𝑣)⟨𝐹 (𝑢), 𝐹 (𝑣)⟩ =

∫︁ ∑︁
(𝑢,𝑣)∈𝐸

𝐴(𝑢, 𝑣)𝐹 (𝑢)(𝑡)𝐹 (𝑣)(𝑡)𝑑𝑡

≤
∫︁
sup𝑔:𝑉→[−𝑅,𝑅]

∑︁
𝐴(𝑢, 𝑣)𝑔(𝑢)𝑔(𝑣)𝑑𝑡

We use definition and linearity to reverse the sum and integral. Now we use the loopless
assumption to get to the definition of the right side of the Grothendieck inequality. We
just need to fix the [−𝑅,𝑅] to [−1, 1]. We then get the last term above is equivalent to
𝑅2sup𝜙:𝑉→[−1,1]

∑︀
(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)𝜙(𝑢)𝜙(𝑣), which completes the proof.

Now, for each 𝑓 : 𝑉 → 𝑆𝑛−1, consider 𝑀(𝑓) ⊆ R|𝐸| = (⟨𝑓(𝑢), 𝑓(𝑣))(𝑢,𝑣)∈𝐸. For each
𝜙 : 𝑉 → {−1, 1}, define 𝑀(𝜙) = (𝜙(𝑢), 𝜙(𝑣))(𝑢,𝑣) ∈ R𝜙. Now we use the convex geometry
interpretation of Grothendieck from the last class. Mimicking it, we write

conv {𝑀(𝜙) : 𝜙 : 𝑉 → {−1, 1}} ⊆ conv
⌋︀
𝑀(𝑓) : 𝑓 : 𝑉 → 𝑆𝑛−1

{︀
The implication of Grothendieck’s inequality gives us

conv
⌋︀
𝑀(𝑓) : 𝑓 : 𝑉 → 𝑆𝑛−1

{︀
⊆ 𝐾(𝐺) · conv {𝑀(𝜙) : 𝜙 : 𝑉 → {−1, 1}}

So there exist weights {𝜆𝑔 : 𝑔 : 𝑉 → {−1, 1}} which satisfy
∑︀
𝑞:𝑉→{−1,1} 𝜆𝑔 = 1, 𝜆𝑔 ≥ 0

and for all (𝑢, 𝑣) ∈ 𝐸 ⟨𝑓(𝑢), 𝑓(𝑣)⟩ = ∑︀
𝑞:𝑣→{−1,1} 𝜆𝑔𝑔(𝑢)𝑔(𝑣)𝐾(𝐺).

Now consider

𝐹 (𝑢) =
È
𝐾(𝑔) · 𝑔(𝑢)[𝜆1 + · · ·+ 𝜆𝑔−1, 𝜆1 + · · ·+ 𝜆𝑔]

Then,

⟨𝐹 (𝑢), 𝐹 (𝑣)⟩ =
∑︁

𝑔:{𝑉→{−1,1}}
𝐾(𝐺)𝑔(𝑢)𝑔(𝑣)𝜆𝑔

Then we consider our interval becomes [−
È
𝐾(𝐺),

È
𝐾(𝐺)], and thus 𝑅(𝐺) ≤

È
𝐾(𝐺) and

𝑅(𝐺)2 ≤ 𝐾(𝐺). This proof can be modified for graphs with loops, but this is not quite
true.

An obvious corollary is that if 𝐻 is a subgraph of 𝐺, then 𝑅(𝐻) ≤ 𝑅(𝐺), and 𝐾(𝐻) ≤
𝐾(𝐺). This inequality is not obvious from the Grothendieck inequality directly, but is
obvious going with our point of view.

Lemma 4.2.5. Let 𝐾∘
𝑛 denote the complete graph on 𝑛-vertices with loops. Then 𝑅(𝐾∘

𝑛) =
c𝑂(

√
log 𝑛).
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Proof. Let 𝜎 be the normalized surface measure on 𝑆𝑛−1. By computation, there exists 𝑐 s.t.

𝜎
�⌈︀
𝑥 ∈ 𝑆𝑛−1 : ‖𝑥‖∞ ≤ 𝑐

√︁
log𝑛
𝑛

}︀�
≥ 1− 1

2𝑛
, which can be calculated through integration.

When you get a function 𝑓 on the sphere to the 𝑛 − 1 dimensional sphere, you want to
find a rotation so that all these vectors have low coordinate vector value. We basically use
the union bound. For each of the 𝑛 vectors, the probability you get a vector with low valued
last coordinate is 1− 1/(2𝑛), do this for all the vectors and you get probability greater than
1/2. Then you can magnify this to get almost surely.

For every 𝑥 ∈ 𝑆𝑛−1, the random variable on the orthogonal group 𝑂(𝑛) given by 𝑈 → 𝑈𝑥
is uniformly distributed on 𝑆𝑛−1. Thus for every 𝑓 : 𝑉 → 𝑆𝑛−1, there is a rotation 𝑈 ∈ 𝑂(𝑛)

such that ∀𝑣 ∈ 𝑉 ‖𝑈(𝑓(𝑣))‖∞ ≤ 𝑐
√︁

log𝑛
𝑛

.

We want 𝐹 (𝑣) to be equal to the 𝑗𝑡ℎ coordinate of 𝑈𝑓(𝑣) on interval of length 1/𝑛. I.e.,
Let 𝐹 (𝑢)(𝑡) = (𝑈(𝑓(𝑣)))

√
𝑛 on 𝑗−1

𝑛
≤ 𝑡 𝑗

𝑛
.

Thus 𝑅 ≤ 𝑐
√
log 𝑛.

Now I will prove the thing mentioned at the beginning:

Theorem 4.2.6. 𝐾(𝐺) ≤ log𝜒(𝐺), where 𝜒(𝐺) is the chromatic number.

This theorem generalizes since on bipartite graphs 𝜒(𝐺) is a constant.
One thing we want to observe about the Grothendieck inequality is that it only cares

about the Hilbert space structure. So we will just prove this in one specific (nice) Hilbert
space and then we’ll be done. Fix a probability space (Ω, 𝑃 ) such that 𝑔1, · · · , 𝑔𝑛 be i.i.d.
standard Gaussians on Ω (for instance, Ω is the infinite product of R).

Now define the Gaussian Hilbert space 𝐻 = {∑︀∞
𝑖=1 𝑎𝑖𝑔𝑖 :

∑︀
𝑎2𝑖 <∞} ⊆ 𝐿2(Ω). Every

function in here will have mean zero since these are linear combinations of Gaussians. Note
that the unit ball 𝐵(𝐻) consists of all Gaussian distributions with mean zero and variance
at most 1 (since the variance is norm squared).

Let Γ be the left hand side of the Grothendieck inequality: sup𝑓 :𝑉→{−1,1}
∑︀

(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)⟨𝑓(𝑢), 𝑓(𝑣)⟩,
and let Δ = sup𝑓 :𝑉→{−1,1}

∑︀
(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)𝜙(𝑢)𝜙(𝑣).

Definition 4.2.7: Truncation.
For all 𝑀 > 0, 𝜓 ∈ 𝐿2(Ω), define the truncation of 𝜓 at 𝑀 to be

𝜓𝑀(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝜓(𝑥) |𝜓(𝑥)| ≤𝑀

𝑀 𝜓(𝑥) ≥𝑀

−𝑀 𝜓(𝑥) ≤ −𝑀

We’re just cutting things off at the interval [−𝑀,𝑀 ]. So fix 𝑓 maximizing Γ.

Lemma 4.2.8. There exists Hilbert space 𝐻, ℎ : 𝑉 → 𝐻, 𝑀 > 0 with ‖ℎ(𝑣)‖2𝐻 ≤ 1/2
for all vertices 𝑣 ∈ 𝑉 , 𝑀 .

È
log𝜒(𝐺), and we can now write Γ as a sum over all edges

Γ =
∑︀

(𝑢,𝑣)𝐴(𝑢, 𝑣)⟨𝑓(𝑢)𝑀 , 𝑓(𝑣)𝑀⟩+∑︀(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)⟨ℎ(𝑢), ℎ(𝑣)⟩, where the second term is an
error term.
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Proof. Let 𝑘 = 𝜒(𝐺). A fact for all 𝑠 : 𝑉 → 𝑙2 s.t. ⟨𝑠(𝑢), 𝑠(𝑣)⟩ = −1
𝑘−1

for all (𝑢, 𝑣) ∈ 𝐸, and
‖𝑠(𝑢)‖ = 1.

Define another Hilbert space 𝑈 = 𝑙2 ⊕ R. Define 𝑡, 𝑡, two functions from 𝑉 → 𝑈 . They
are defined as follows:

𝑡(𝑢) = (

Ê
𝑘 − 1

𝑘
𝑠(𝑢))⊕ (

1√
𝑘
𝑒1)

𝑡(𝑢) = (−
Ê
𝑘 − 1

𝑘
𝑠(𝑢))⊕ (

1√
𝑘
𝑒1)

Now, 𝑡(𝑢), 𝑡(𝑢) are unit vectors for all (𝑢, 𝑣) ∈ 𝐸. Then ⟨𝑡(𝑢), 𝑡(𝑣)⟩ = ⟨(̂𝑡)(𝑢), 𝑡(𝑣)⟩ = 0. We
also have ⟨𝑡(𝑢), 𝑡(𝑣)⟩ = 2

𝑘
.

Our goal is to prove that such a function exists. Set 𝐻 ′ = 𝑈 ⊗ 𝐿2(Ω). We now write
down a function

ℎ(𝑢) =
1

4
𝑡(𝑢)⊗ (𝑓(𝑢) + 𝑓(𝑢)𝑀) + 𝑘𝑡(𝑢)⊗ (𝑓(𝑢)− 𝑓(𝑢)𝑀)

It turns out that this function does everything we want. A couple of key facts: It’s easy to
check that the definition of Γ holds, defined in terms of ℎ(𝑢) (for the error term). Checking
‖ℎ(𝑣)‖2𝐻 ≤ 1/2 holds is also possible. You can bound ‖ℎ(𝑢)‖2 ≤ (1/2 + 𝑘‖𝑓(𝑢)− 𝑓(𝑢)𝑀‖)2
after evaluating inner products. Now we use th eproperty of the Hilbert space. 𝑓(𝑢) is in the
ball of 𝐻, with mean zero and variance at most 1. Then, ‖𝑓(𝑣)− 𝑓(𝑣)𝑀‖2 is the probability
that the Gaussian falls outside the interval [−𝑀,𝑀 ]. Therefore, from basic probability
theory,

‖𝑓(𝑣)− 𝑓(𝑣)𝑀‖2 ≤
√
2𝜋∫︀ ∞

𝑀

𝑥2𝑒−𝑥
2/2𝑑𝑥 ≤ 2𝑀𝑒−𝑀

2/2

where the last part follows by calculus. This is great since if we pick 𝑀 ∼
√
log 𝑘. So this

will decay super quickly. Picking 𝑀 = 8
√
log 𝑘 gives that the entire thing will be ≤ 1/2.

That proves the lemma, so we’re done.

This lemma is actually all we need. Suppose we have proved this. Now we can say the fol-
lowing. We can bound the first term by taking expectations:

∑︀
(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)⟨𝑓(𝑢)𝑀 , 𝑓(𝑣)𝑀⟩ =

E
∑︀

(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)𝑓(𝑢)
𝑀𝑓(𝑣)𝑀 ≤𝑀2Δ by the definition of Δ.

For the second term, we write
∑︀

(𝑢,𝑣)∈𝐸 𝐴(𝑢, 𝑣)⟨ℎ(𝑢), ℎ(𝑣)⟩ ≤ (max𝑣∈𝑉 ‖ℎ(𝑣)‖2)Γ ≤ 1
2
Γ.

by re-scaling. You need to pull out each of these maxima separately, using linearity each time.
You can also multiply each thing by

√
2 makes it be in 𝐵(𝐻). You just have to multiply by√

2 and divide by
√
2 and they’re not dependent anymore. By the conditions of the lemma,

our ℎ has norm at most 1/2, so the This entire thing is Hilbert space independent, so the
whole thing is < Γ

2
. Thus Γ ≤𝑀2Δ+ 1

2
Γ =⇒ Γ ≤ 2𝑀2Δ.

This implies Γ . log𝜒(𝐺)Δ, which is exactly what we wanted to say, since the left
hand side of the Grothendieck inequality is the first term, and the right hand side of the
Grothendieck inequality is the second term with Grothendieck constant log𝜒(𝐺).
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3 Noncommutative Version of Grothendieck’s Inequal-

ity - Thomas and Fred

First we’ll phrase the classical Grothendieck inequality in terms of an optimization problem.
Given 𝐴 ∈𝑀𝑛(R), we can consider

max
𝜀𝑖,𝛿𝑗∈

𝑛∑︁
𝑖,𝑗=1

𝐴𝑖𝑗𝜀𝑖𝛿𝑗

In general this is hard to solve, so we do a semidefinite relaxation

sup𝑑 dimensionssup𝑥,𝑦∈(𝑆𝑑−1)𝑛

𝑛∑︁
𝑖,𝑗=1

𝐴𝑖𝑗⟨𝑥𝑖, 𝑦𝑗⟩

which implies that it’s polynomially solveable, and Grothendieck inequality ensures you’re
only a constant factor off from the best.

We can give a generalization to tensors. Given 𝑀 ∈𝑀𝑛(𝑀𝑛(R)) consider

sup𝑢,𝑣∈𝑂𝑛

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙𝑈𝑖𝑗𝑉𝑘𝑙

Set 𝑀𝑖𝑖𝑗𝑗 = 𝐴𝑖𝑗, then we obtain

sup
∑︁

𝐴𝑖𝑗𝑈𝑖𝑖𝑉𝑗𝑗 = sup
𝑥,𝑦∈{−1,1}𝑛

𝑛∑︁
𝑖,𝑗=1

𝐴𝑖𝑗𝑥𝑖𝑦𝑗 = max
𝜀,𝛿∈{−1,1}𝑛

∑︁
𝐴𝑖𝑗𝜀𝑖𝛿𝑗

We relax to SDP over R of 𝑀 :

sup𝑑∈N sup
𝑋,𝑌 ∈𝑂𝑛(R𝑑)

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙⟨𝑋𝑖𝑗, 𝑌𝑘𝑙⟩

Recall that 𝑈 ∈ 𝑂𝑛 means that

𝑛∑︁
𝑘=1

𝑈𝑖𝑘𝑈𝑗𝑘 =
𝑛∑︁
𝑘=1

𝑈𝑘𝑖𝑈𝑘𝑗 = 𝛿𝑖𝑗

If 𝑋 ∈𝑀𝑛(R𝑑), let 𝑋𝑋*, 𝑋*𝑋 ∈𝑀𝑛(R) defined by

(𝑋𝑋*)𝑖𝑗 =
𝑛∑︁
𝑘=1

⟨𝑋𝑖𝑘, 𝑌𝑗𝑘⟩

(𝑋*𝑋)𝑖𝑗 =
𝑛∑︁
𝑘=1

⟨𝑋𝑘𝑖, 𝑌𝑘𝑗⟩

Then 𝑂𝑛(R𝑑) =
⌋︀
𝑋 :𝑀𝑛(R𝑑) : 𝑋𝑋* = 𝑋*𝑋 = 𝐼

{︀
.
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We want to say something about when we relax the search space, we get within a constant
factor of the non-relaxed version of the program. We will prove this in the complex case.

We will write

OptC(𝑀) = sup𝑈,𝑉 ∈𝑈𝑛
|

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙𝑈𝑖𝑗𝑉 𝑘𝑙|

The fact that Opt is less than the SDP, Pisier proved thirty years after Grothendieck con-
jectured it. What we will actually prove is that the SDP solution is at most twice the
optimal:

SDPC(𝑀) ≤ 2OptC(𝑀)

Theorem 4.3.1. Fix 𝑛, 𝑑 ∈ N and 𝜀 ∈ (0, 1). Suppose we have 𝑀 ∈ 𝑀𝑛(𝑀𝑛(C)) and
𝑋, 𝑌 ∈ 𝑈𝑛(C𝑑) such that

|
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙⟨𝑋𝑖𝑗, 𝑌𝑘𝑙⟩| ≥ (1− 𝜀)SDPC(𝑀)

So what we’re saying is suppose some SDP algorithm gave a solution satisfying this from
input 𝑋, 𝑌 ∈ 𝑈𝑛(C𝑑). Then we can give a rounding algorithm which will output 𝐴,𝐵 ∈ 𝑈𝑛
such that

E|
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙𝐴𝑖𝑗𝐵𝑘𝑙| ≥ (1/2− 𝜀)SDPC(𝑀)

Now what’s the algorithm? It’s a slightly clever version of projection. We have 𝑋, 𝑌 ∈
𝑈𝑛(C), and we want to get to actual unitary matrices. First sample 𝑧 ∈ {1,−1, 𝑖,−𝑖}𝑑
(complex unit cube). Then 𝑥𝑧 = 1√

2
⟨𝑋, 𝑧⟩ (take inner products columnwise), similarly

𝑌𝑧 = 1√
2
⟨𝑌, 𝑧⟩. Now we take the Polar Decomposition 𝐴 = 𝑈Σ𝑉 * where 𝑈, 𝑉 are unitary.

The polar decomposition is just 𝐴 = (𝑈𝑉 *)(𝑉 Σ𝑉 *), and then the first guy is unitary, and
the second guy is PSD (think of it as 𝑒𝑖𝜃 * 𝑟).

Then we have (𝐴,𝐵) = (𝑈𝑧|𝑋𝑧|𝑖𝑡, 𝑉𝑧|𝑌𝑧|−𝑖𝑡) where 𝑡 is sampled from the hyperbolic secant
distribution. It’s very similar to a normal distribution. The PDF is more precisely

𝜙(𝑡) =
1

2
sech(

𝜋

2
𝑡) =

1

𝑒𝜋𝑡/2 + 𝑒−𝜋𝑡/2

When you have a positive definite matrix, you can raise it to imaginary powers, so we’re
rotating only the positive semidefinite part, and keeping the rotation side (𝑈𝑉 *). Note that
the (𝐴,𝐵) are unitary. (You can also think of this as raising diagonals to 𝑖𝑡, these necessarily
have eigenvalue of magnitude 1).

4-20-16
For 𝑋, 𝑌 ∈ 𝑈𝑛(C𝑑), do the following.

1. Sample 𝑧 ∈ {±1,±𝑖} uniformly. Sample 𝑡 from the hyperbolic secant distribution.

2. Let 𝑋𝑧 =
1√
2
⟨𝑥, 𝑧⟩, 𝑌𝑍 = 1√

2
⟨𝑌, 𝑧⟩.
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3. Let (𝐴,𝐵) := (𝑈𝑍 |𝑋𝑍 |𝑖𝑡, 𝑉𝑍 |𝑌𝑍 |−𝑖𝑡) ∈ 𝑈𝑛 × 𝑈𝑛 where 𝑋𝑍 = 𝑈𝑍 |𝑋𝑍 |, 𝑌𝑍 = 𝑈𝑍 |𝑌𝑍 |
(polar decomposition).

𝑀(𝑋, 𝑌 ) =
∑︀𝑛
𝑖,𝑗,𝑘,𝑙=1𝑀𝑖𝑗𝑘𝑙 ⟨𝑋𝑖𝑗, 𝑌𝑘𝑙⟩. We want to show

E𝑡[𝑀(𝐴,𝐵)] ≥
(︂
1

2
− 𝜀

)︂
𝑀(𝑋, 𝑌 ) ≥ (

1

2
− 𝜀)SDPC(𝑀)

We want to show that the rounded solution still has large norm.
It’s possible that |𝑋𝑍 | has 0 eigenvalues. One solution is to add some Gaussian noise to

the original 𝑋, 𝑌 because the set of non-invertible matrices is an algebraic set of measure 0.
Alternatively, replace the eigenvalues by 𝜀→ 0.

We have

E𝑧[𝑀(𝑋𝑧, 𝑌𝑧)] =
1

2
E𝑧

⎡⎣ 𝑑∑︁
𝑟,𝑠=1

𝑧𝑟𝑧𝑠
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

(𝑋𝑖𝑗)𝑟(𝑌𝑘𝑙)𝑠

⎤⎦ =
1

2
𝑀(𝑋, 𝑌 ).

Now we analyze step 3. The characteristic function of the hyperbolic secant distribution
is, for 𝑎 > 0,

E[𝑎𝑖𝑡] =
∫︁
𝑎𝑖𝑡𝑒(𝑡) 𝑑𝑡 =

2𝑎

𝐻𝑎2

by doing a contour integral. Then

E
𝑡
[𝑎𝑖𝑡] = 2𝑎− E

𝑡
[𝑎2+𝑖𝑡] (4.1)

E
𝑡
[𝐴𝑖𝑡] = 2𝐴− E

𝑡
[𝐴2+𝑖𝑡] (4.2)

E
𝑡
[𝐴⊗𝐵] = E

𝑡
[(𝑈𝑧|𝑋𝑧|𝑖𝑡)⊗ (𝑉𝑧|𝑌𝑧|𝑖𝑡)] (4.3)

= (𝑈𝑧 ⊗ 𝑉𝑧)E
𝑡
[(|𝑋𝑧| ⊗ |𝑌𝑡|)𝑖𝑡] (4.4)

= 2𝑋𝑧 ⊗ 𝑌𝑧 − E
𝑡
[(𝑈𝑧|𝑋𝑧|2+𝑖𝑡)⊗ (𝑉𝑧|𝑌𝑧|

2−𝑖𝑡
)] (4.5)

We apply 𝑀 .

E
𝑧,𝑡
[𝑀(𝐴,𝐵)] =𝑀(𝑋, 𝑌 )− E

𝑧,𝑡
[𝑀(𝑈𝑧|𝑋𝑧|2+𝑖𝑡, 𝑉𝑧|𝑌𝑧|2−𝑖𝑡)]

Because 𝐴,𝐵 ∈𝑀𝑛(C), we can write 𝑀(𝐴,𝐵) in terms of the tensor product,

𝑀(𝐴,𝐵) =
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝐴𝑖𝑗𝐵𝑘𝑙 (4.6)

=
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑀𝑖𝑗𝑘𝑙(𝐴⊗𝐵)(𝑖𝑗),(𝑘𝑙) (4.7)

Claim 4.3.2 (Key claim). For all 𝑡 ∈ R,⃒⃒⃒⃒
E
𝑧

�
𝑀(𝑈𝑧|𝑋𝑧|2+𝑖𝑡, 𝑉𝑧|𝑌𝑧|2−𝑖𝑡)

�⃒⃒⃒⃒
≤ 1

2
SDPC(𝑀).
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Proof. We have 𝐹 (𝑡), 𝐺(𝑡) ∈𝑀𝑛(C{±1,±𝑖}𝑑). where

(𝐹 (𝑡)𝑗𝑘)𝑧 =
1

2𝑑
(𝑈𝑧|𝑋𝑧|2+𝑖𝑡)𝑗𝑘 (4.8)

(𝐺(𝑡)𝑗𝑘)𝑧 =
1

2𝑑
(𝑉𝑧|𝑌𝑧|2−𝑖𝑡)𝑗𝑘.𝑀(𝐹 (𝑡), 𝐺(𝑡)) =

1

4𝑑
∑︁

𝑧∈{±1,±𝑖}𝑑
𝑀(𝑈𝑧|𝑋𝑧|2+𝑖𝑡, 𝑉𝑧|𝑌𝑧|2−𝑖𝑡) (4.9)

= E
𝑧
[𝑀(𝑈𝑧|𝑋𝑧|2+𝑖𝑡, 𝑉𝑧|𝑌𝑧|2−𝑖𝑡)]. (4.10)

Lemma 4.3.3. 𝐹 (𝑡), 𝐺(𝑡) satisfy

max {‖𝐹 (𝑡)𝐹 (𝑡)*‖ , ‖𝐹 (𝑡)*𝐹 (𝑡)‖ , ‖𝐺(𝑡)𝐺(𝑡)*‖ , ‖𝐺(𝑡)*𝐺(𝑡)‖}

Lemma 4.3.4. Suppose 𝑋, 𝑌 ∈ ℳ𝑛(C𝑑) and max{‖𝑋𝑋*‖ , ‖𝑋*𝑋‖ , ‖𝑌 𝑌 *‖ , ‖𝑌 *𝑌 ‖}. Then
there exist 𝑅, 𝑆 ∈ 𝑈𝑛(C𝑑+2𝑛2

) such that𝑀(𝑅, 𝑆) =𝑀(𝑋, 𝑌 ) ≤ 1 for every𝑀 ∈𝑀𝑛(𝑀𝑛(C)).

From the two lemmas, there exist 𝑅(𝑡), 𝑆(𝑡) ∈ 𝑈𝑛(C𝑑+2𝑛2
) such that 𝑀(𝑅(𝑡), 𝑆(𝑡)) =

𝑀(
√
2𝐹 (𝑡),

√
2𝐺(𝑡)). Then

|𝑀(𝐹 (𝑡), 𝐺(𝑡))| = 1

2
|𝑀(𝑅(𝑡), 𝑆(𝑡))| ≤ 1

2
2SDPC(𝑀) (4.11)

𝐹 (𝑡)𝐹 (𝑡)* =
1

4𝑑
∑︁

𝑧∈{±1,±𝑖}𝑑
𝑈𝑧|𝑋𝑧|*𝑈*

𝑧 (4.12)

= E
𝑧
[𝑈𝑧|𝑋𝑧|*𝑈*

2 ] = E
𝑧
[(𝑋𝑧𝑋

*
𝑧 )]. (4.13)

Claim 4.3.5. For 𝑊 ∈ 𝑀𝑛(C𝑑), define for each 𝑣 ∈ [𝑑], (𝑊𝑟)𝑖𝑗 = (𝑊𝑖𝑗)𝑟, 𝑊𝑧 = ⟨𝑊, 𝑧⟩.
Then

E
𝑧
[(𝑊𝑧𝑊

*
𝑧 )

2] = (𝑊𝑊 *)2 +
𝑑∑︁
𝑟=1

𝑊𝑟(𝑊
*𝑊 −𝑊 *

𝑟𝑊𝑟)𝑊
*
𝑟 .

Note 𝑊𝑧 =
∑︀𝑑
𝑟=1Σ𝑟𝑊𝑟 and

𝑊𝑊 * =
𝑑∑︁
𝑟=1

𝑊𝑟𝑊
*
𝑟 𝑊 *𝑊 =

𝑑∑︁
𝑟=1

𝑊 *
𝑟𝑊𝑟. (4.14)

We compute

E
𝑧
[(𝑊𝑧𝑊

*
𝑧 )

2] = E
𝑧

⎡⎣𝑝,𝑞,𝑟,𝑠∑︁
=1

𝑑𝑧𝑝𝑧𝑞𝑧𝑟𝑧𝑠𝑊𝑝𝑊
*
𝑞𝑊𝑟𝑊

*
𝑠

⎤⎦ (4.15)

=
𝑑∑︁
𝑝=1

𝑊𝑝𝑊
*
𝑝𝑊𝑝𝑊

*
𝑝 +

𝑛∑︁
𝑝, 𝑞 = 1
𝑝 ̸= 𝑞

(𝑊𝑝𝑊
*
𝑞𝑊𝑞𝑊

*
𝑞 +𝑊𝑝𝑊

*
𝑞𝑊𝑞𝑊

*
𝑝 ) (4.16)

100



MAT529 Metric embeddings and geometric inequalities

𝑑∑︁
𝑝,𝑞=1

𝑊𝑝𝑊
*
𝑝𝑊𝑞𝑊

*
𝑞 +

𝑑∑︁
𝑝,𝑞=1

𝑊𝑝𝑊
*
𝑞𝑊𝑞𝑊

*
𝑝 −

𝑑∑︁
𝑝=1

𝑊𝑝𝑊
*
𝑝𝑊𝑝𝑊

*
𝑝

=

�
𝑑∑︁
𝑝=1

𝑊𝑝𝑊
*
𝑝

�2

+
𝑑∑︁
𝑝=1

𝑊𝑝

�
𝑑∑︁
𝑞=1

𝑊 *
𝑞𝑊𝑞

�
𝑊 *
𝑝 −

𝑑∑︁
𝑝=1

𝑊𝑝𝑊
*
𝑝𝑊𝑝𝑊

*
𝑝 . (4.17)

Apply the claim with 𝑊 = 1√
2
𝑋. Recall that 𝑋𝑋* = 𝑋*𝑋 = 𝐼. Then

𝐹 (𝑡)𝐹 (𝑡)* +
1

4

𝑑∑︁
𝑟=1

𝑋𝑟𝑋
*
𝑟𝑋𝑟𝑋

*
𝑟 =

1

2
𝐼 = 𝐹 (𝑡)𝐹 (𝑡)* +

1

4

𝑑∑︁
𝑟=1

𝑋*
𝑟𝑋𝑟𝑋

*
𝑟𝑋𝑟

and similarly for 𝐺.

Proof of Lemma 2. Let 𝐴 = 𝐼 −𝑋𝑋*, 𝐵 = 𝐼 −𝑋*𝑋. Note 𝐴,𝐵 ⪰ 0, Tr(𝐴) = Tr(𝐵). We
have

𝐴 =
𝑛∑︁
𝑖=1

𝜆𝑖(𝑣𝑖𝑣
*
𝑖 ) (4.18)

𝐵 =
𝑛∑︁
𝑗=1

𝜇𝑗(𝑣𝑗𝑣
*
𝑗 ) (4.19)

𝜎 =
𝑛∑︁
𝑖=1

𝜆𝑗 =
𝑛∑︁
𝑗=1

𝜇𝑗 (4.20)

𝑅 = 𝑋 ⊕

�
𝑛⨁︁

𝑖,𝑗=1

Ê
𝜆𝑖𝜇𝑗
𝜎

(𝑢𝑖𝑣
*
𝑗 )

�
⊕𝑂𝑀𝑛(C𝑛2 ) ∈𝑀𝑛(C𝑑 ⊕ C𝑛

2 ⊕ C𝑛2

) (4.21)

𝑆 = 𝑌 ⊕𝑂𝑀𝑛(C𝑛2 ) ⊕

�
𝑛⨁︁

𝑖,𝑗=1

Ê
𝜆𝑖𝜇𝑗
𝜎

(𝑢𝑖𝑣
*
𝑗 )

�
(4.22)

Check 𝑅 ∈ 𝑈𝑛(C𝑑+2𝑛2
),

𝑅𝑅* = 𝑋𝑋* + 𝐴 (4.23)

𝑅*𝑅 = 𝑋*𝑋 +𝐵 (4.24)

𝑀(𝑅, 𝑆) =𝑀(𝑋, 𝑌 ). (4.25)

The 𝜎 disappears because
∑︀
𝜇𝑗 = 𝜎.

The factor 2 in the noncommutative inequality is sharp. That the answer is 2 (rather
than some strange constant) means there is something going on algebraically. The hyperbolic
secant is the unique distribution that makes this work.

4-27
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4 Improving the Grothendieck constant

Theorem 4.4.1 (Krivine (1977)).

𝐾𝐺 ≤ 𝜋

2 ln(1 +
√
2)

≤ 1.7...

The strategy is preprocessing.

There exist new vectors 𝑥′1, . . . , 𝑥
′
𝑛, 𝑦

′
1, . . . , 𝑦

′
𝑛 ∈ S2𝑛−1 such that if 𝑧 ∈ S2𝑛−1 is chosen

uniformly at random, then for all 𝑖, 𝑗,

E
𝑧
(sign ⟨𝑧, 𝑥′𝑖⟩)⏟  ⏞  

𝜀𝑖

(sign
¬
𝑧, 𝑦′𝑗

)︂
)⏟  ⏞  

𝛿𝑗

=
2 ln(1 +

√
2)

𝜋⏟  ⏞  
𝑐

⟨𝑥𝑖, 𝑦𝑗⟩ .

Then ∑︁
𝑎𝑖𝑗 ⟨𝑥𝑖, 𝑦𝑗⟩ = E

[︃
𝜋

2 ln(1 +
√
2)

∑︁
𝑎𝑖𝑗𝜀𝑖𝛿𝑗

]︃
.

We will take vectors, transform them in this way, take a random point on the sphere,
take a hyperplane orthogonal, and then see which side the points fall on.

Theorem 4.4.2 (Grothendieck’s identity). For 𝑥, 𝑦 ∈ S𝑘 and 𝑧 uniformly random on S𝑘,

E
𝑧
[sign(⟨𝑥, 𝑧⟩) sign(⟨𝑦, 𝑧⟩)] = 2

𝜋
sin−1(⟨𝑥, 𝑦⟩).

Proof. This is 2-D plane geometry.
The expression is 1 if both 𝑥, 𝑦 are on the same side of the line, and −1 if the line cuts

between the angle.

Once we have the idea to pre-process, the rest of the proof is natural.
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Proof.

E
𝑧

�
sign(⟨𝑧, 𝑥′𝑖⟩) sign(

¬
𝑧, 𝑦′𝑗

)︂
)
�
=

2

𝜋
sin−1(

¬
𝑥′𝑖, 𝑦

′
𝑗

)︂
) = 𝑐 ⟨𝑥𝑖, 𝑦𝑗⟩ (4.26)¬

𝑥′𝑖, 𝑦
′
𝑗

)︂
= sin

� 𝜋𝑐

2⏟ ⏞ 
𝑢

⟨𝑥𝑖, 𝑦𝑗⟩
�
. (4.27)

We write the Taylor series expansion for sin.¬
𝑥′𝑖, 𝑦

′
𝑗

)︂
= sin(𝑢 ⟨𝑥𝑖, 𝑦𝑗⟩) (4.28)

=
∞∑︁
𝑘=0

(𝑢 ⟨𝑥𝑖, 𝑦𝑗⟩)2𝑘+1

(2𝑘 + 1)!
(−1)𝑘 (4.29)

=
∞∑︁
𝑘=0

(−1)𝑘𝑢2𝑘+1

(2𝑘 + 1)!

⟨
𝑥
⊗(2𝑘+1)
𝑖 , 𝑦

⊗(2𝑘+1)
𝑗

⟩
. (4.30)

(For 𝑎, 𝑏 ∈ ℓ2, 𝑎⊗ 𝑏 = (𝑎𝑖𝑏𝑗), 𝑎
⊗2 = (𝑎𝑖𝑎𝑗), 𝑏

⊗2 = (𝑏𝑖𝑏𝑗), ⟨𝑎⊗2, 𝑏⊗2⟩ = ∑︀
𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 = ⟨𝑎, 𝑏⟩2.)

Define an infinite direct sum corresponding to these coordinates.
Define

𝑥′𝑖 =
∞⨁︁
𝑘=0

�
(−1)𝑘𝑢

2𝑘+1
2È

(2𝑘 + 1)!
𝑥⊗2𝑘+1
𝑖

�
(4.31)

𝑦′𝑗 =
∞⨁︁
𝑘=0

�
𝑢

2𝑘+1
2È

(2𝑘 + 1)!
𝑥⊗2𝑘+1
𝑖

�
∈

∞⨁︁
𝑘=1

(R𝑚)⊗2𝑘+1 (4.32)

¬
𝑥′𝑖, 𝑦

′
𝑗

)︂
=

∞∑︁
𝑘=0

(−1)𝑘
𝑢2𝑘+1

(2𝑘 + 1)!

¬
𝑥⊗2𝑘+1
𝑖 , 𝑦⊗2𝑘+1

𝑗

)︂
. (4.33)

The infinite series expansion of sin generated an infinite space for us.
We check

‖𝑥′𝑖‖
2
=

∞∑︁
𝑘=0

𝑢(2𝑘+1)

(2𝑘 + 1)!
= sinh(𝑢) =

𝑒𝑢 − 𝑒−𝑢

2
= 1. (4.34)

We don’t care about the construction, we care about the identity. All I want is to find
𝑥′𝑖, 𝑦

′
𝑗 with given

¬
𝑥′𝑖, 𝑦

′
𝑗

)︂
; this can be done by a SDP. We’re using this infinite argument just

to show existence.
A different way to see this is given by the following picture. Take a uniformly random

line and look at the orthogonal projection of points on the line. Is it positive or negative. A
priori we have vectors in R𝑛 that don’t have an order.

We want to choose orientations. A natural thing to do is to take a random projection
onto R and use the order on R. Krevine conjectured his bound was optimal.
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What is so special about positive or negative? We can partition it into any 2 measurable
sets. Any partition into 2 measurable sets produces a sign. It’s a nontrivial fact that no
partition beats this constant. This is a fact about measure theory.

The moment you choose a partition, it forced the construction of the 𝑥′, 𝑦′. The whole
idea is the partition; then the preprocessing is uniquely determined; it’s how we reverse-
engineered the theorem.

Here’s another thing you can do. What’s so special about a random line? The whole
problem is about finding an orientation.

Consider a floor (plane) chosen randomly, look at shadows. If you partition the plane
into 2 half-planes, you get back the same constant. We can generalize to arbitrary partitions
of the plane. This is equivalent to an isoperimetric problem. In many such problems the best
thing is a half-space. We can look at higher-dimensional projections. It seems unnatural to
do this—except that you gain!

In R2 there is a more clever partition that beats the halfspace! Moreover, as you take
the increase the dimension, eventually you will converge to the Grothendieck constant. The
partitions look like fractal objects!

5 Application to Fourier series

This is a classical theorem about Fourier series. Helgason generalized it to a general abelian
group.

Definition 4.5.1: Let 𝑆 = R/Z. The space of continuous functions is 𝐶(𝑆 ′). Given 𝑚 :
Z→ R (the multiplier), define

Λ𝑚 : 𝐶(S′) → ℓ∞ (4.35)

Λ𝑚(𝑓) = (𝑚(𝑛) ̂︀𝑓(𝑛))𝑛∈Z. (4.36)

For which multipliers 𝑚 is Λ𝑚(𝑓) ∈ ℓ1 for every 𝑓 ∈ 𝐶(S1)?
A more general question is, what are the possible Fourier coefficients of a continuous

functions? For example, if log 𝑛 works, then
∑︀ | ̂︀𝑓(𝑛)||𝑚(𝑛)| <∞. This is a classical topic.

An obvious sufficient condition is that 𝑚 ∈ ℓ2, by Cauchy-Schwarz and Parseval.∑︁
𝑛∈Z

|𝑚(𝑛) ̂︀𝑓(𝑛)| ≤ (︀∑︁
𝑚(𝑛)2

� 1
2
(︀∑︁

| ̂︀𝑓(𝑛)|2� 1
2⏟  ⏞  

‖𝑓‖2≤‖𝑓‖∞

(4.37)

‖Λ𝑚(𝑓)‖ℓ1 ≤ ‖𝑚‖2 ‖𝑓‖∞ . (4.38)

This theorem says the converse.

Theorem 4.5.2 (Orlicz-Paley-Sidon). If Λ𝑚(𝑓) ∈ ℓ1 for all 𝑓 ∈ 𝐶(S1), then 𝑚 ∈ ℓ2.

We know the fine line of when Fourier coefficients of continuous functions converge.

104



MAT529 Metric embeddings and geometric inequalities

We can make this theorem quantitative. Observe that if you know Λ𝑚 : 𝐶(S1) → ℓ1,
then Λ𝑚 has a closed graph (exercise). The closed graph theorem (a linear operator between
Banach spaces with closed graph is bounded) says that ‖Λ𝑚‖ <∞.

Corollary 4.5.3.
∑︀ |𝑚(𝑛) ̂︀𝑓(𝑛)| ≤ 𝐾 ‖𝑓‖∞.

We show ‖Λ𝑚‖ ≤ ‖𝑚‖2 ≤ 𝐾𝐺 ‖Λ𝑚‖.
We will use the following consequence of Grothendieck’s inequality (proof omitted).

Corollary 4.5.4. Let 𝑇 : ℓ𝑛∞ → ℓ𝑚1 . For all 𝑥1, . . . , 𝑥𝑛 ∈ ℓ∞,(︃∑︁
𝑖

‖𝑇𝑥𝑖‖21

)︃ 1
2

≤ 𝐾𝐺 ‖𝑇‖ sup
𝑦∈ℓ1

𝑛∑︁
𝑖=1

⟨𝑦, 𝑥𝑖⟩2.

Equivalently, there exists a probability measure 𝜇 on [𝑛] such that ‖𝑇𝑥‖ ≤ 𝐾𝐺 ‖𝑇‖ ∫︀ 𝐾𝐺 ‖𝑇‖
(︀∫︀
𝑥2𝑗 𝑑𝜇(𝑗)

� 1
2 .

Proof. Use duality. To get the equivalence, use the same proof as in Piesch Domination.

Proof. Given Λ𝑚 : 𝐶(S1) → ℓ1, there exists 𝜇 on S1 such that for every 𝑓 , letting 𝑓𝜃(𝑥) =
𝑓(𝑒𝑖𝜃𝑥), (︀∑︁

|𝑚(𝑛) ̂︀𝑓𝜃(𝑛)|�2 ≤ 𝐾2
𝐺 ‖Λ𝑚‖2

∫︁
𝑆1
(𝑓𝜃(𝑥))

2 𝑑𝜇(𝑥) (4.39)(︀∑︁
|𝑚(𝑛) ̂︀𝑓(𝑛)|�2 ≤ 𝐾2

𝐺 ‖Λ𝑚‖2
∫︁
𝑆1
(𝑓(𝑥))2 𝑑𝜇(𝑥). (4.40)

Apply this to the following trigonometric sum

𝑓(𝑥) =
𝑁∑︁

𝑛=−𝑁
𝑚(𝑛)𝑒−𝑖𝑛𝜃,

to get �
𝑁∑︁

𝑛=−𝑁
𝑚(𝑛)2

�2

≤ 𝐾2
𝐺 ‖Λ‖2𝑚

𝑁∑︁
𝑛=−𝑁

𝑚(𝑛)2.

RIP also had this kind of magic.

6 ? presentation

Theorem 4.6.1. Let (𝑋, 𝑑) be a metric space with 𝑋 = 𝐴 ∪𝐵 such that

∙ 𝐴 embeds into ℓ𝑎2 with distortion 𝐷𝐴, and

∙ 𝐵 embeds into ℓ𝑏2 with distortion 𝐷𝐵.
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Then 𝑋 embeds into ℓ𝑎+𝑏+1
2 with distortion at most 7𝐷𝐴𝐷𝐵 + 5(𝐷𝐴 +𝐷𝐵).

Furthermore, given 𝜓 : 𝐴→ ℓ𝑎2 and 𝜙𝐵 : 𝐵 → ℓ𝑏2 with ‖𝜙𝐴‖Lip ≤ 𝐷𝐴 and ‖𝜙𝐵‖Lip ≤ 𝐷𝐵,

there is an embedding Ψ : 𝑋 →˓ ℓ𝑎+𝑏+1
2 with distortion 7𝐷𝐴𝐷𝐵 + 5(𝐷𝐴 + 𝐷𝐵) such that

‖Ψ(𝑢)−Ψ(𝑣)‖ ≥ ‖𝜙𝐴(𝑢)− 𝜙𝐴(𝑣)‖ for all 𝑢, 𝑣 ∈ 𝐴.

For 𝑎 ∈ 𝐴, let 𝑅𝑎 = 𝑑(𝑎,𝐵) and for 𝑏 ∈ 𝐵, let 𝑅𝑏 = 𝑑(𝐴, 𝑏).

Definition 4.6.2: For 𝛼 > 0, 𝐴′ ⊆ 𝐴 is an 𝛼-cover for 𝐴 with respect to 𝐵 if

1. For every 𝑎 ∈ 𝐴, there exists 𝑎′ ∈ 𝐴′ where 𝑅𝑎′ ≤ 𝑅𝑎 and 𝑑(𝑎, 𝑎′) ≤ 𝛼𝑅𝑎.

2. For distinct 𝑎′1, 𝑎
′
2 ∈ 𝐴′, 𝑑(𝑎′1, 𝑎

′
2) ≥ 𝛼min(𝑅𝑎′1

, 𝑅𝑎′2
).

This is like a net, but the 𝜀 of the net is a function of the distance to the set. The requirement
is weaker for points that are farther away.

Lemma 4.6.3. For all 𝛼 > 0, there is an 𝛼-cover 𝐴′ for 𝐴 with respect to 𝐵.

Proof. Induct. The base case is 𝜑, which is clear.
Assume the lemma holds for |𝐴| < 𝑘; we’ll show it holds for |𝐴| = 𝑘. Let 𝑢 ∈ 𝐴 be the

point closest to 𝐵. Let 𝑍 = 𝐴∖𝐵𝛼𝑅𝑢(𝑢) =: 𝐵; we have |𝑍| < |𝐴|. Let 𝑍 ′ be a cover of 𝑍,
and let 𝐴′ = 𝑍 ′ ∪ {𝑢}.

We show that 𝐴′ is an 𝛼-cover. We need to show the two properties.

1. Divide into cases based on whether 𝑎 ∈ 𝐵 or 𝑎 ̸∈ 𝐵.

2. For 𝑎′1, 𝑎
′
2 ∈ 𝐴′, if both are in 𝑧′, we’re done.

Otherwise, without loss of generality, 𝑎′1 = 𝑢 and 𝑎′2 ∈ 𝑍 ′.

Lemma 4.6.4. Define 𝑓 : 𝐴′ → 𝐵 to send every point in the 𝛼-cover to a closest point in
𝐵, 𝑑(𝑎′, 𝑓(𝑎′)) = 𝑅𝑎′.

Then ‖𝑓‖Lip ≤ 2
(︀
1 + 1

𝛼

�
. By the triangle inequality,

𝑑(𝑓(𝑎′1), 𝑓(𝑎
′
2)) ≤ 𝑑(𝑓(𝑎′1), 𝑎

′
1) + 𝑑(𝑎′1, 𝑎

′
2) + 𝑑(𝑎′2, 𝑓(𝑎

′
2)).

We have

𝑅𝑎′1 +𝑅𝑎′2 + 𝑑(𝑎′1, 𝑎
′
2) = 2min(𝑅𝑎′1

, 𝑅𝑎′2
) + |𝑅𝑎′1

+𝑅𝑎′2
+ 𝑑(𝑎′1, 𝑎

′
2) (4.41)

≤ 1

𝛼
𝑑(𝑎′1, 𝑎

′
2) + 𝑑(𝑎′1, 𝑎

′
2) + 𝑑(𝑎′1, 𝑎

′
2) (4.42)

= 2
(︂
1− 1

𝛼

)︂
𝑑(𝛼′

1, 𝛼
′
2) (4.43)

Let 𝜙𝐵 : 𝐵 →˓ ℓ𝑏2 be an embedding with ‖𝜙‖Lip ≤ 𝐷𝐵; it is noncontracting.
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Lemma 4.6.5. There is 𝜓 : 𝑋 → ℓ𝑏2 such that

1. For all 𝑎1, 𝑎2 ∈ 𝐴,

‖𝜓(𝑎1)− 𝜓(𝑎2)‖ ≤ 2
(︂
1 +

1

𝛼

)︂
𝐷𝐴𝐷𝐵𝑑(𝛼1, 𝛼2)

2. For all 𝑏1, 𝑏2 ∈ 𝐵,

𝑑(𝑏1, 𝑏2) ≤ ‖𝜓(𝑏1)− 𝜓(𝑏2)‖ = ‖𝜙𝐵(𝑏1)− 𝜙𝐵(𝑏2)‖ ≤ 𝐷𝐵𝑑(𝑏1, 𝑏2).

3. For all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑑(𝑎, 𝑏) − (1 + 𝛼)(2𝐷𝐴𝐷𝐵 + 1)𝑅𝑎 ≤ ‖𝜓(𝑎)− 𝜓(𝑏)‖ ≤ 2(1 +
𝛼)(𝐷𝐴𝐷𝐵 + (2 + 𝛼)𝐷𝐵)𝑑(𝑎, 𝑏).

Proof. Let 𝑔 = 𝜙𝐵𝑓𝜙
−1
𝐴 .

We have maps

𝐴 �
� 𝑐 //

𝜙𝐴

��

𝐴′

𝜙𝐴

��

𝑓
// 𝐵

𝜙𝐵

��

𝜙(𝐴) 𝜙(𝐴′)𝑐oo // 𝜙(𝐵) �
�

// ℓ𝑏2.

Now

‖𝑔‖Lip ≤ ‖𝜙𝐵‖Lip ‖𝑓‖Lip
⃦⃦⃦
𝜙−1
𝐴

⃦⃦⃦
Lip

≤ 𝐷𝐵2
(︂
1 +

1

𝛼

)︂
By the Kirszbraun extension theorem 3.6.1, construct ̃︀𝑔 : ℓ𝑎2 → ℓ𝑏2 with

‖̃︀𝑔‖Lip ≤ 𝐷𝐵2
(︂
1 +

1

𝛼

)︂
.

Define 𝜓(𝑥) =

⎧⎨⎩̃︀𝑔(𝜙𝐴(𝑥)), if 𝑥 ∈ 𝐴

𝜙𝐵(𝑥), if 𝑥 ∈ 𝐵.
.

We show the three parts.

1.

‖𝜓(𝑎1)− 𝜓(𝑎2)‖ = ‖̃︀𝑔(𝜙𝐴(𝑎1))− ̃︀𝑔(𝜙𝐴(𝑎2))‖ (4.44)

≤ ‖̃︀𝑔‖Lip ‖𝜙𝐴‖Lip 𝑑(𝑎1, 𝑎2). (4.45)

2. This is clear.

3. Let 𝑏 = 𝑓(𝑎′). Then 𝑑(𝑎′, 𝑏′) ≤ 𝑅𝑎, 𝜓(𝑎
′) = 𝜓(𝑏′). We have

‖𝜓(𝑎)− 𝜓(𝑏)‖ ≤ ‖𝜓(𝑎)− 𝜓(𝑎′)‖ − ‖𝜓(𝑎′)− 𝜓(𝑏′)‖ − ‖𝜓(𝑏)− 𝜓(𝑏′)‖ (4.46)

‖𝜓(𝑎)− 𝜓(𝑏)‖ ≤ 2
(︂
1 +

1

𝛼

)︂
𝐷𝐴𝐷𝐵𝑑(𝑎, 𝑎

′) +𝐷𝐵𝑑(𝑏, 𝑏
′) (4.47)

𝑑(𝑎, 𝑎′) ≤ 𝛼𝑅𝑎 ≤ 𝛼𝑑(𝑎, 𝑏) (4.48)

𝑑(𝑏, 𝑏′) ≤ 𝑑(𝑏, 𝑎) + 𝑑(𝑎, 𝑎′) + 𝑑(𝑎′, 𝑏′) (4.49)

≤ (2 + 𝛼)𝑑(𝑎, 𝑏). (4.50)
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This shows the first half of (3).

For the other inequality, use the triangle inequality against and get

‖𝜓(𝑎)− 𝜓(𝑏)‖ ≥ ‖𝜓(𝑏)− 𝜓(𝑏′)‖ − ‖𝜓(𝑎′)− 𝜓(𝑏′)‖ − ‖𝜓(𝑎′)− 𝜓(𝑎)‖ (4.51)

≥ 𝑑(𝑏, 𝑏′)− 2(1 + 𝛼)𝐷𝐴𝐷𝐵𝑅𝑎. (4.52)

Let

𝜓𝐵 = 𝜓 (4.53)

𝛽 = (1 + 𝛼)(2𝐷𝐴𝐷𝐵 + 1) (4.54)

𝛾 =
(︂
1

2

)︂
𝛽 (4.55)

𝜓Δ : 𝑋 → R (4.56)

𝜓𝐴(𝑎) = 𝛾𝑅𝑎, 𝑎 ∈ 𝐴 (4.57)

𝜓𝐴(𝑏) = −𝛾𝑅𝑏, 𝑏 ∈ 𝐵 (4.58)

Ψ : 𝑋 → ℓ𝑎+𝑏+1 (4.59)

Ψ(𝑥) = 𝜓𝐴 ⊕ 𝜓𝐵 ⊕ 𝜓Δ ∈ ℓ𝑎+𝑏+1
2 . (4.60)

For 𝑎1, 𝑎2 ∈ 𝐴,

‖Ψ(𝑎1)−Ψ(𝑎2)‖ ≥ ‖Ψ𝐴(𝑎1)−Ψ𝐴(𝑎2)‖ ≥ 𝑑(𝑎1, 𝑎2).

For 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,

‖Ψ(𝑎)−Ψ(𝑏)‖2 = ‖𝜓𝐴(𝑎)− 𝜓𝐴(𝑏)‖2 + ‖𝜓𝐵(𝑎)− 𝜓𝐵(𝑏)‖2 + ‖𝜓𝐴(𝑎)− 𝜓𝐴(𝑏)‖2 .

‖𝜓𝐴(𝑎)− 𝜓𝐴(𝑏)‖ ≥ 𝑑(𝑎, 𝑏)− 𝛽𝑅𝑏 (4.61)

‖𝜓𝐵(𝑎)− 𝜓𝐵(𝑏)‖ ≥ 𝑑(𝑎, 𝑏)− 𝛽𝑅𝑎 (4.62)

‖𝜓𝐴(𝑎)− 𝜓𝐴(𝑏)‖ = 𝛾(𝑅𝑎 +𝑅𝑏). (4.63)

Claim 4.6.6. We have ‖𝜓(𝑎)− 𝜓(𝑏)‖ ≥ 𝑑(𝑎, 𝑏).

Proof. Without loss of generality 𝑅𝑎 ⊆ 𝑅𝑏. Consider 3 cases.

1. 𝛽𝑅𝑏 ≤ 𝑑(𝑎, 𝑏).

2. 𝛽𝑅𝑎 ≤ 𝑑(𝑎, 𝑏) ≤ 𝛽𝑅𝑏.

3. 𝑑(𝑎, 𝑏) ≤ 𝛽𝑅𝑎.
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Consider case 2. The other cases are similar.

‖𝜓(𝑎)− 𝜓(𝑏)‖2 ≥ (𝑑(𝑎, 𝑏)− 𝛽𝑅𝑎)
2 + 𝛽2(𝑅𝑎 +𝑅𝑏)

2/2 (4.64)

= 𝑑(𝑎, 𝑏)2 − 2𝛽𝑑(𝑎, 𝑏)𝑅𝑎 +
𝛽2

2
(3𝑅2

𝑎 + 2𝑅𝑎𝑅𝑏 +𝑅2
𝑏) (4.65)

≥ 𝑑(𝑎, 𝑏)2 − 2𝛽𝑅𝑎𝑅𝑏 +
𝛽2

2
(3𝑅2

𝑎 + 2𝑅𝑎𝑅𝑏 +𝑅2
𝑏) (4.66)

= 𝑑(𝑎, 𝑏)2 + 𝛽2((
√
3𝑅𝑎 −𝑅𝑏)

2 + 2(
√
3 +𝑅𝑎𝑅𝑏))/2 (4.67)

> 𝑑(𝑎, 𝑏) (4.68)

For 𝑎1, 𝑎2 ∈ 𝑋,

‖Ψ(𝑎1)−Ψ(𝑎2)‖ = ‖𝜓𝐴(𝑎1) + 𝜓𝐴(𝑎2)‖2 + ‖𝜓𝐵(𝑎1)− 𝜓𝐵(𝑎2)‖2 + ‖𝜓𝐵(𝑎1)− 𝜓𝐴(𝑎2)‖

(4.69)

≤
�
𝐷2
𝐴 + 4

(︂
1 +

1

𝛼

)︂2

𝐷2
𝐴𝐷

2
𝐵

�
𝑑(𝑎1, 𝑎2)

2 + 𝛾2(𝑅𝑎1 −𝑅𝑎2) (4.70)

≤
�
𝐷2
𝐴 + 4

(︂
1 +

1

𝛼

)︂2

𝐷2
𝐴𝐷

2
𝐵 + 𝛾2

�
𝑑(𝑎1, 𝑎2)

2 (4.71)

|𝑅𝑎 −𝑅𝑎2| ≤ 𝑑(𝑎1, 𝑎2) (4.72)

‖Ψ(𝑏1)−Ψ(𝑏2)‖2 ≤
�
𝐷2
𝐵 + 4

(︂
1 +

1

𝛼

)︂2

𝐷2
𝐴𝐷

2
𝐵 + 𝛾2

�
𝑑(𝑎, 𝑏)2 (4.73)

|Ψ(𝑎)−Ψ(𝑏)|2 ≤ ‖𝜓𝐴(𝑎)− 𝜓𝐵(𝑏)‖2 + ‖𝜓𝐵(𝑎)− 𝜓𝐵(𝑏)‖2 + ‖𝜓𝐴(𝑎)− 𝜓(𝑏)‖2 (4.74)

≤ · · · 𝛾2(𝑅𝑎 +𝑅𝑏)
2 ≤ · · · (4.75)

𝑅𝑎, 𝑅𝑏 ≤ 𝑑(𝑎, 𝑏).
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Chapter 5

Lipschitz extension

‘

1 Introduction and Problem Setup

We give a presentation of the paper “On Lipschitz Extension From Finite Subsets”, by Assaf
Naor and Yuval Rabani, (2015). For the convenience of the reader referencing the original
paper, we have kept the numbering of the lemmas the same.

Consider the setup where we have a metric space (𝑋, 𝑑𝑋) and a Banach space (𝑍, ‖ · ‖𝑍).
For a subset 𝑆 ⊆ 𝑋, consider a 1-Lipschitz function 𝑓 : 𝑆 → 𝑍. Our goal is to extend 𝑓
to 𝐹 : 𝑋 → 𝑍 without experiencing too much growth in the Lipschitz constant ‖𝐹‖𝐿𝑖𝑝 over
‖𝑓‖𝐿𝑖𝑝.

Definition 5.1.1: 𝑒(𝑋,𝑆, 𝑍) and its variants.
Define 𝑒(𝑋,𝑆, 𝑍) to be the infimum over the sequence of 𝐾 satisfying ‖𝐹‖𝐿𝑖𝑝 ≤ 𝐾‖𝑓‖𝐿𝑖𝑝
(i.e., 𝑒(𝑋,𝑆, 𝑍) is the least upper bound for

‖𝐹‖𝐿𝑖𝑝

‖𝑓‖𝐿𝑖𝑝
for a particular 𝑆, 𝑋, 𝑍).

Then, define 𝑒(𝑋,𝑍) to be the supremum over all subsets 𝑆 for 𝑒(𝑋,𝑆, 𝑍): So of all
subsets, what’s the largest least upper bound for the ratio of Lipschitz constants?

We may also want to consider supremums over 𝑒(𝑋,𝑆, 𝑍) for 𝑆 with a fixed size. We
can formulate this in two ways. 𝑒𝑛(𝑋,𝑍) is the supremum of 𝑒(𝑋,𝑆, 𝑍) over all 𝑆 such that
|𝑆| = 𝑛. We can also describe 𝑒𝜖(𝑋,𝑍) as the supremum of 𝑒(𝑋,𝑆, 𝑍) over all 𝑆 which are
𝜖-discrete in the sense that 𝑑𝑋(𝑥, 𝑦) ≥ 𝜖 · diam(𝑆) for distinct 𝑥, 𝑦 ∈ 𝑆 and some 𝜖 ∈ [0, 1].

Definition 5.1.2: Absolute extendability.
We define ae(𝑛) to be the supremum of 𝑒𝑛(𝑋,𝑍) over all possible metric spaces (𝑋, 𝑑𝑋) and
Banach spaces (𝑍, ‖ · ‖𝑍). Identically, ae(𝜖) is the supremum of 𝑒𝜖(𝑋,𝑍) over all (𝑋, 𝑑𝑋)
and (𝑍, ‖ · ‖𝑍).

From now on, we will primarily discuss subsets 𝑆 ⊆ 𝑋 with size |𝑆| = 𝑛. Bounding the
supremum, the absolute extendability ae(𝑛) < 𝐾 allows us to make general claims about the
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extendability of maps from metric spaces into Banach spaces. Any Banach-space valued 1-
Lipschitz function defined on metric space (𝑀,𝑑𝑀) can therefore be extended to any metric
space𝑀 ′ such that𝑀 ′ contains𝑀 (up to isometry; as long as you can embed𝑀 in𝑀 ′ with
an injective distance preserving map) such that the Lipschitz constant of the extension is at
most 𝐾.

Therefore, for the last thirty years, it has been of interest to understand upper and lower
bounds on ae(𝑛), as we want to understand the asymptotic behavior as 𝑛 → ∞. In the
1980s, the following upper and lower bound were given by Johnson and Lindenstrauss and
Schechtman: √︃

log 𝑛

log log 𝑛
. ae(𝑛) . log 𝑛

In 2005, the upper bound was improved:√︃
log 𝑛

log log 𝑛
. ae(𝑛) .

log 𝑛

log log 𝑛

In this talk, we improve the lower bound for the first time since 1984 toÈ
log 𝑛 . ae(𝑛) .

log 𝑛

log log 𝑛

1.1 Why do we care?

This improvement is of interest primarily not because of the removal of a
√
log log 𝑛 term in

the denominator. It is due to the fact that the approach taken to get the lower bound pro-
vided by Johnson-Lindenstrauss 1984 has an inherent limitation. The approach of Johnson-
Lindenstrauss to get the lower bound is to prove the nonexistance of linear projections of
small norm. By considering a specific case for 𝑓,𝑋, 𝑆, 𝑍, we can get a lower bound on ae(𝑛).
Consider a Banach space (𝑊, ‖·‖𝑊 ) and let 𝑌 ⊆ 𝑊 be a 𝑘-dimensional linear subspace of𝑊
with 𝑁𝜖 an 𝜖-net in the unit sphere of 𝑌 , and then define 𝑆𝜖 = 𝑁𝜖∪{0}. Fix 𝜖 ∈ (0, 1/2). We
take 𝑓 : 𝑆𝜖 → 𝑌 to be the identity mapping, and wish to find an extension to 𝐹 : 𝑊 → 𝑌 .
Then, in our setup, we let 𝑋 = 𝑊 , 𝑆 = 𝑆𝜖, 𝑍 = 𝑌 . We seek to bound the magnitude of the
Lipschitz constant of 𝐹 , call it 𝐿. Johnson-Lindenstrauss prove that for 𝜖 . 1

𝑘2
, there exists

a linear projection 𝑃 : 𝑊 → 𝑌 with ‖𝑃‖ . 𝐿. We can now proceed to lower bound 𝐿 by
lower-bounding ‖𝑃‖ for all 𝑃 . The classical Kadec’-Snobar theorem says that there always
exists a projection with ‖𝑃‖ ≤

√
𝑘. Therefore, the best (largest) possible lower bound we

could get will be 𝐿 &
√
𝑘 by Kadec’-Snobar. But this is bad:

Taking 𝑛 = |𝑆𝜖|, by bounds on 𝜖-nets we get 𝑘 ≍ log𝑛
log(1/𝜖)

which implies

𝐿 &

√︃
log 𝑛

log(1/𝜖)

In order to get the lower bound on ae(𝑛) of
√
log 𝑛, we must take 𝜖 to be a universal constant.

However, from a lemma by Benyamini (in our current setting), 𝐿 . 𝑒𝜖(𝑋,𝑍) . 1/𝜖 = 𝑂(1),
which means that any lower bound we get on 𝐿 will be too small (and won’t even tend to
∞). Therefore, we must make use of nonlinear theory to get the

√
𝑛 lower bound on ae(𝑛).
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1.2 Outline of the Approach

Let us formally state the theorem, and then give the approach to the proof.

Theorem 5.1.3. Theorem 1.
For every 𝑛 ∈ N we have ae(𝑛) &

√
log 𝑛.

We give a metric space 𝑋, a Banach space 𝑍, a subset 𝑆 ⊆ 𝑋, a function 𝑓 : 𝑆 → 𝑍
such that 𝑓 extends to 𝐹 : 𝑋 → 𝑍 where ‖𝐹‖𝐿𝑖𝑝 ≤ 𝐾‖𝑓‖𝐿𝑖𝑝.

Let 𝑉𝐺 be the vertices of a finite graph 𝐺 with distance metric the shortest path metric
𝑑𝐺 where edges all have length 1.

We define our metric space 𝑋 = (𝑉𝐺, 𝑑𝐺𝑟(𝑆)) where 𝐺𝑟(𝑆) is the 𝑟-magnification of the
shortest path metric on 𝑉𝐺. 𝑆 is an 𝑛-vertex subset (𝑆, 𝑑𝐺𝑟(𝑆)). Our Banach space 𝑍 =
(R𝑋0 , ‖·‖𝑊1(𝑋,𝑑𝐺𝑟(𝑆)

) is equipped with the Wasserstein-1 norm induced by the 𝑟-magnification

of the shortest path metric on the graph. Note that R𝑋0 is just weight distributions on the
vertices of 𝑋 which sum to zero in the image. Our 𝑓 : 𝑆 → R𝑆0 ⊆ 𝑍, and we extend to
𝐹 : 𝑋 → 𝑍. We will show how to choose 𝑟 and |𝑆| optimally to get the result.

The rest of my section of the talk will give the requisite definitions and lemmas to
understand the full proof.

2 𝑟-Magnification

Definition 5.2.1: 𝑟-magnification of a metric space.
Given metric space (𝑋, 𝑑𝑋) and 𝑟 > 0, for every subset 𝑆 ⊆ 𝑋 we define 𝑋𝑟(𝑆) as a metric
space on the points of 𝑋 equipped with the following metric:

𝑑𝑋𝑟(𝑆)(𝑥, 𝑦) = 𝑑𝑋(𝑥, 𝑦) + 𝑟|{𝑥, 𝑦} ∩ 𝑆|

and where 𝑑𝑋𝑟(𝑆)(𝑥, 𝑥) = 0. All this is saying is that when we have distinct points 𝑥, 𝑦 ∈ 𝑆,
we have the metric is 2𝑟+𝑑𝑋(𝑥, 𝑦), when one point is in 𝑆 and one point is outside, we have
𝑟 + 𝑑𝑋(𝑥, 𝑦), and when both 𝑥, 𝑦 are outside, the metric is unchanged.

The significance of this definition is as follows: It’s easier for functions on 𝑆 to be Lipschitz
(we enlarge the denominator) without affecting functions on 𝑋 ∖ 𝑆. Thus, there are more
potential 𝑓 we can draw from which satisfy 1-Lipschitzness which can have potentially large
Lipschitz extensions (i.e., large 𝐾) since we don’t make it easier to be Lipschitz on 𝑋 ∖ 𝑆
(which we must deal with in the extension space).

However, we can’t make 𝑟 too large: the minimum distance between 𝑥, 𝑦 in 𝑆 becomes
close to diam(𝑆) under 𝑟-magnification as 𝑟 increases. Let us assume the minimum distance
between 𝑥, 𝑦 is 1 (as it would be in an undirected graph with an edge between 𝑥, 𝑦 under
the shortest path metric). Particularly, for distinct 𝑥, 𝑦 ∈ 𝑆, since diam(𝑆, 𝑑𝑋𝑟(𝑆)) = 2𝑟 +

diam(𝑆, 𝑑𝑋),

𝑑𝑋𝑟(𝑆)(𝑥, 𝑦) ≥ 2𝑟 + 1 =
2𝑟 + 1

2𝑟 + diam(𝑆, 𝑑𝑋)
· diam(𝑆, 𝑑𝑋𝑟(𝑆))
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Then recall that 𝑒𝜖(𝑋,𝑍) is the supremum over 𝑆 such that are 𝜖-discrete, where here,
𝜖 = 2𝑟+1

2𝑟+diam(𝑆,𝑑𝑋)
. Earlier we saw a bound that

𝑒𝜖(𝑋,𝑍) . 1/𝜖 =
2𝑟 + diam(𝑆, 𝑑𝑋)

2𝑟 + 1
≤ 1 + diam(𝑆, 𝑑𝑋)

𝑟

Thus, if we make 𝑟 too large, we again are bounding 𝑒𝜖(𝑋,𝑍) . 1 = 𝑂(1), which means our
choice of 𝑋 and 𝑍 is not good to get a large lower bound (again, we’re not even going to
∞).

Thus we must balance our choice of 𝑟 appropriately.

3 Wasserstein-1 norm

Now we come to the second part of our choice of 𝑍. Note that we will define R𝑋0 to be the
set of functions on the points of 𝑋 such that for each 𝑓 ∈ R𝑋0 ,

∑︀
𝑥∈𝑋 𝑓(𝑥) = 0. We use 𝑒𝑥 to

denote the indicator weight map with 1 at point 𝑥 and 0 everywhere else.

Definition 5.3.1: Wasserstein-1 Norm.
The Wasserstein-1 norm is the norm induced by the following origin-symmetric convex body
in finite metric space (𝑋, 𝑑𝑋):

𝐾(𝑋,𝑑𝑋) = conv

⌉︀
𝑒𝑥 − 𝑒𝑦
𝑑𝑋(𝑥, 𝑦)

: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦

«
This is a unit ball on R𝑋0 . We denote the induced norm by ‖ · ‖𝑊1(𝑋,𝑑𝑋).

We can give an equivalent (proven with the Kantorovich-Rubinstein duality theorem)
definition of the Wasserstein-1 distance:

Definition 5.3.2: Wasserstein-1 distance and norm.
Let Π(𝜇, 𝜈) be all measures on 𝜋 on 𝑋 ×𝑋 such that∑︁

𝑦∈𝑋
𝜋(𝑦, 𝑧) = 𝜈(𝑧)

for all 𝑧 ∈ 𝑋 and ∑︁
𝑧∈𝑋

𝜋(𝑦, 𝑧) = 𝜇(𝑦)

for all 𝑦 ∈ 𝑋. Then, the Wasserstein-1 distance (earthmover) is

𝑊 𝑑𝑋
1 (𝜇, 𝜈) = inf

𝜋∈Π(𝜇,𝜈)

∑︁
𝑥,𝑦∈𝑋

𝑑𝑋(𝑥, 𝑦)𝜋(𝑥, 𝑦)

In the case that 𝜇 = 𝜈, we automatically have (𝜇× 𝜈)/𝜇(𝑋) ∈ Π(𝜇, 𝜈) (normalizing by one
measure trivially gives the other), so Π is nonempty. The norm induced by this metric for
𝑓 ∈ R𝑋0 is

‖𝑓‖𝑊1(𝑋,𝑑𝑋) = 𝑊 𝑑𝑋
1 (𝑓+, 𝑓−)
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where 𝑓+ = max(𝑓, 0) and 𝑓− = max(−𝑓, 0) (since
∑︀
𝑥∈𝑋 𝑓(𝑥) = 0, we need to make sure

that 𝜇, 𝜈 are both nonnegative measure). Futhermore, we have
∑︀
𝑥∈𝑋 𝑓

+(𝑥) =
∑︀
𝑥∈𝑋 𝑓

−(𝑥)
(same total mass), which means that Π(𝑓+, 𝑓−) is nonempty.

Definition 5.3.3: ℓ1(𝑋) norm.
Note that using standard notation, we can also define an ℓ1 norm on 𝑓 by

‖𝑓‖ℓ1(𝑋) =
∑︁
𝑥∈𝑋

|𝑓(𝑥)| =
∑︁
𝑥∈𝑋

𝑓+(𝑥) + 𝑓−(𝑥)

Thus, for our restrictions on 𝑓 ,
∑︀
𝑥∈𝑋 𝑓

+(𝑥) =
∑︀
𝑥∈𝑋 𝑓

−(𝑥) = ‖𝑓‖ℓ1(𝑋)/2.

Now we give a simple lemma which gives bounds for the Wasserstein-1 norm induced by
the 𝑟-magnification of a metric on 𝑋.

Lemma 5.3.4. Lemma 7.
For (𝑋, 𝑑𝑋) a finite metric space, we have

1. ‖𝑒𝑥 − 𝑒𝑦‖𝑊1(𝑋,𝑑𝑋) = 𝑑𝑋(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋.

2. For all 𝑓 ∈ R𝑋0 ,
1

2
min

𝑥,𝑦∈𝑋;𝑥 ̸=𝑦
𝑑𝑋(𝑥, 𝑦)‖𝑓‖ℓ1(𝑋) ≤ ‖𝑓‖𝑊1(𝑋,𝑑𝑋) ≤

1

2diam
(𝑋, 𝑑𝑋)‖𝑓‖ℓ1(𝑋)

3. For every 𝑟 > 0, 𝑆 ⊆ 𝑋, for all 𝑓 ∈ R𝑆0 ,

𝑟‖𝑓‖ℓ1(𝑆) ≤ ‖𝑓‖𝑊1(𝑆,𝑑𝑋𝑟(𝑆)) ≤
�
𝑟 + diam(𝑋, 𝑑𝑋)

2

�
‖𝑓‖ℓ1(𝑆)

Proof. 1. This follows directly from the unit ball interpretation of the Wasserstein-1 norm,
since 𝑒𝑥−𝑒𝑦

𝑑𝑋(𝑥,𝑦)
is by the first definition on the unit ball.

2. Let 𝑚 = min𝑥,𝑦 𝑑𝑋(𝑥, 𝑦) > 0. For distinct 𝑥, 𝑦 ∈ 𝑋, we have

max
𝑥,𝑦∈𝑋;𝑥 ̸=𝑦

⃦⃦⃦⃦⃦
𝑒𝑥 − 𝑒𝑦
𝑑𝑋(𝑥, 𝑦)

⃦⃦⃦⃦⃦
ℓ1(𝑋)

≤ max
𝑥,𝑦∈𝑋;𝑥 ̸=𝑦

‖𝑒𝑥 − 𝑒𝑦‖ℓ1(𝑋)

𝑚
=

2

𝑚

since 0 < 𝑚 ≤ 𝑑𝑋(𝑥, 𝑦) and 1 + 1 = 2. Therefore 𝑒𝑥−𝑒𝑦
𝑑𝑋(𝑥,𝑦)

∈ 2
𝑚
𝐵ℓ1(𝑋). These elements

span 𝐾𝑋,𝑑𝑋 , so we have 𝐾𝑋,𝑑𝑋 ⊆ 2
𝑚
𝐵ℓ1(𝑋) and we get the first inequality. The second

inequality follows from

‖𝑓‖𝑊1(𝑋,𝑑𝑋) = inf
𝜋∈Π(𝑓+,𝑓−)

∑︁
𝑥,𝑦∈𝑋

𝑑𝑋(𝑥, 𝑦)𝜋(𝑥, 𝑦) ≤ diam(𝑋, 𝑑𝑋)
∑︁
𝑥∈𝑋

𝑓+(𝑥) = diam(𝑋, 𝑑𝑋)‖𝑓‖ℓ1(𝑋)/2

3. This inequality is a special case of the previous inequality. We have that for 𝑋𝑟(𝑆),

𝑚 ≥ 2𝑟 (so 2
𝑚

≤ 1
𝑟
) and 1

2diam(𝑋, 𝑑𝑋𝑟(𝑆)) ≤ 1
2

(︀
2𝑟 + diam(𝑋, 𝑑𝑋)

�
=
�
𝑟 + diam(𝑋,𝑑𝑋)

2

�
.

Plugging in these estimates give the inequality.
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4 Graph theoretic lemmas

4.1 Expanders

We will need several properties of edge-expanders in our proof of the main theorem. For this
section, we fix 𝑛, 𝑑 ≥ 3 and let 𝐺 be a connected 𝑛-vertex 𝑑-regular graph. We can imagine
𝑑 = 3 in this section, all that matters is that 𝑑 is fixed.

First we record two basic average bounds on distance in the shortest-path metric, denoted
𝑑𝐺.

Lemma 5.4.1. Average shortest-path metric and 𝑟-magnified average shortest-path bounds.

1. 𝑑𝐺 lower bound: For nonempty 𝑆 ⊆ 𝑉𝐺,

1

|𝑆|2
∑︁
𝑥,𝑦∈𝑆

𝑑𝐺(𝑥, 𝑦) ≥
log |𝑆|
4 log 𝑑

2. 𝑑𝐺𝑟(𝑆) equality: For some 𝑆 ⊆ 𝑉𝐺 and 𝑟 > 0,

1

|𝐸𝐺|
∑︁

(𝑥,𝑦)∈𝐸𝐺

𝑑𝐺𝑟(𝑥,𝑦) = 1 +
2𝑟|𝑆|
𝑛

Proof. 1. The smallest nonzero distance in 𝐺 is at least 1. Thus, the average is bounded
below by 1

|𝑆|2 |𝑆|(|𝑆|−1) = 1− 1
|𝑆| since 𝐺 is connected (shortest case is complete graph

on 𝑛 vertices). Then, 1 − 1/𝑎 ≥ (log 𝑎)/4 log 3 for 𝑎 ∈ [15] (𝑑 = 3 maximizes), so
we proceed assuming |𝑆| ≥ 16. Let’s bound the distance in the average. Since 𝐺 is
𝑑-regular, for every 𝑥 ∈ 𝑉𝐺 the number of vertices 𝑦 such that 𝑑𝐺(𝑥, 𝑦) ≤ 𝑘 − 1 is at
most

∑︀𝑘−1
𝑖=0 𝑑

𝑖. The rest of the vertices are farther away. Since 1 + · · · + 𝑑𝑘−2 < 𝑑𝑘−1

we have #{𝑦 : 𝑑𝐺(𝑥, 𝑦) ≤ 𝑘 − 1} ≤ 2𝑑𝑘−1. Choosing 𝑘 = 1 + ⌊log𝑑(|𝑆|/4)⌋ gives that

2𝑑𝑘−1 ≤ |𝑆|
2
. Therefore

1

|𝑆|2
∑︁
𝑥,𝑦∈𝑆

𝑑𝐺(𝑥, 𝑦) ≥
1

|𝑆|2
* |𝑆| * |𝑆|/2 * (𝑘 − 1) =

𝑘 − 1

2
=

log(|𝑆|/4)
2 log 𝑑

≥ log |𝑆|
4 log 𝑑

since |𝑆| ≥ 16.

2. Let 𝐸1 be edges completely contained in 𝑆 and 𝐸2 be edges partially contained in 𝑆.
Because 𝐺 is 𝑑-regular, 2|𝐸1|+ |𝐸2| = 𝑑|𝑆| (2 vertices in 𝑆 for 𝐸1, only 1 vertex for 𝐸2,
then divide by 𝑑 for overcounting since each vertex in 𝑆 hits 𝑑 other vertices, and we
count exactly the edges which have at least one vertex in 𝑆). Note that |𝐸𝐺| = 𝑑𝑛/2 by
double-counting vertices. Then for each edge in 𝐸1 we add 2𝑟, for each edge in 𝐸2 we
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add 𝑟, and otherwise we add 0 to the base distance of an edge, which is 1. Therefore,

1

|𝐸𝐺|
∑︁

(𝑥,𝑦)∈𝐸𝐺

𝑑𝐺𝑟(𝑥,𝑦) =
((0 + 1)|𝐸𝐺 ∖ (𝐸1 ∪ 𝐸2)|+ (𝑟 + 1)|𝐸2|+ (2𝑟 + 1)|𝐸1|)

|𝐸𝐺|

= 1 +
𝑟(2|𝐸1|+ |𝐸2|)

|𝐸𝐺|
= 1 +

𝑟𝑑|𝑆|
𝑑𝑛/2

= 1 +
2𝑟|𝑆|
𝑛

Now we introduce the definition of edge expansion.

Definition 5.4.2: Edge expansion 𝜑(𝐺).
𝐺 is a connected 𝑛-vertex 𝑑-regular graph. Consider 𝑆, 𝑇 ⊆ 𝑉𝐺 disjoint subsets. Let
𝐸𝐺(𝑆, 𝑇 ) ⊆ 𝐸𝐺 denote the set of edges which bridge 𝑆 and 𝑇 . Then the edge-expansion
𝜑(𝐺) is defined by

𝜑(𝐺) = sup

⌉︀
𝜑 : |𝐸𝐺(𝑆, 𝑉𝐺 ∖ 𝑆)| ≥ 𝜑

|𝑆|(𝑛− |𝑆|)
𝑛2

|𝐸𝐺|,∀𝑆 ⊆ 𝑉𝐺, 𝜑 ∈ [0,∞)

«
We give an equivalent formulation of edge expansion via the cut-cone decomposition:

Lemma 5.4.3. Edge-Expansion: Cut-cone Decomposition of Subsets of ℓ1.
𝜑(𝐺) is the largest 𝜑 such that for all ℎ : 𝑉𝐺 → ℓ1,

𝜑

𝑛2

∑︁
𝑥,𝑦∈𝑉𝐺

‖ℎ(𝑥)− ℎ(𝑦)‖1 ≤
1

|𝐸𝐺|
∑︁

(𝑥,𝑦)∈𝐸𝐺

‖ℎ(𝑥)− ℎ(𝑦)‖1

Proof. We will assume this for this talk.

Now we combine Lemma 7 and the cut-cone decomposition to get Lemma 8:

Lemma 5.4.4. Lemma 8.
Fix 𝑛 ∈ N and 𝜑 ∈ (0, 1]. Suppose 𝐺 is an 𝑛-vertex graph with edge expansion 𝜑(𝐺) ≥ 𝜑.
For all nonempty 𝑆 ⊆ 𝑉𝐺 and 𝑟 > 0, every 𝐹 : 𝑉𝐺 → R𝑆0 satisfies

1

𝑛2

∑︁
𝑥,𝑦∈𝑉𝐺

‖𝐹 (𝑥)−𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤
2𝑟 + diam(𝑆, 𝑑𝐺)

(2𝑟 + 1)𝜑
· 1

|𝐸𝐺|
∑︁

(𝑥,𝑦)∈𝐸𝐺

‖𝐹 (𝑥)−𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

Basically, whereas before we were bounding average norms (normal and 𝑟-magnified)
in the domain space 𝑉𝐺, we are now bounding average norms in the image space using the
Wasserstein-1 norm induced by the 𝑟-magnification of the shortest path metric on the graph.

Proof. First, plug in ℎ = 𝐹 into the cut-cone decomposition, where the norm is now defined
by ℓ1(𝑆). Then, we know that diam(𝑆, 𝑑𝐺𝑟(𝑆)) = 2𝑟+diam(𝑆, 𝑑𝐺) and the smallest positive
distance in (𝑆, 𝑑𝐺𝑟(𝑆)) is 2𝑟 + 1. Applying Lemma 7, every 𝑥, 𝑦 ∈ 𝑉𝐺 satisfy

2𝑟 + 1

2
‖𝐹 (𝑥)−𝐹 (𝑦)‖ℓ1(𝑆) ≤ ‖𝐹 (𝑥)−𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤

2𝑟 + diam(𝑆, 𝑑𝐺)

2
‖𝐹 (𝑥)−𝐹 (𝑦)‖ℓ1(𝑆)
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Plugging these estimates directly into the cut-cone decomposition

1

𝑛2

∑︁
𝑥,𝑦∈𝑉𝐺

‖𝐹 (𝑥)− 𝐹 (𝑦)‖ℓ1(𝑆) ≤
1

𝜑|𝐸𝐺|
∑︁

(𝑥,𝑦)∈𝐸𝐺

‖𝐹 (𝑥)− 𝐹 (𝑦)‖ℓ1(𝑆)

gives the desired result.

4.2 An Application of Menger’s Theorem

Here, we want to bound below the number of edge-disjoint paths.

Lemma 5.4.5. Lemma 9.
Let 𝐺 be an 𝑛-vertex graph and 𝐴,𝐵 ⊆ 𝑉𝐺 be disjoint. Fix 𝜑 ∈ (0,∞) and suppose 𝜑(𝐺) ≥ 𝜑.
Then

#
⌋︀
edge-disjoint paths joining𝐴 and𝐵

{︀
≥ 𝜑|𝐸𝐺|

2𝑛
·min{|𝐴|, |𝐵|}

Proof. Let 𝑚 be the maximal number of edge-disjoint paths joining 𝐴 and 𝐵. By Menger’s
theorem from classical graph theory, there exists a subset of edges 𝐸* ⊆ 𝐸𝐺 with |𝐸*| = 𝑚
such that every path in 𝐺 joining 𝑎 ∈ 𝐴 to 𝑏 ∈ 𝐵 contains an edge from 𝐸*.

Now consider the graph 𝐺* = (𝑉𝐺, 𝐸𝐺 ∖ 𝐸*). In this graph, there are no paths between
𝐴 and 𝐵. Now, if we let 𝐶 ⊆ 𝑉𝐺 be the union of all connected components of 𝐺* containing
an element of 𝐴, then 𝐴 ⊆ 𝐶 and 𝐵 ∩ 𝐶 = ∅. Since we covered the maximal possible
vertices reachable from 𝐴 with 𝐶, all edges between 𝐶 and 𝑉𝐺 ∖ 𝐶 are in 𝐸*. Therefore,
|𝐸𝐺(𝐶, 𝑉𝐺 ∖ 𝐶)| ≤ |𝐸*| = 𝑚. By the definition of expansion,

𝑚 ≥ |𝐸𝐺(𝐶, 𝑉𝐺∖𝐶)| ≥ 𝜑
max{|𝐶|, 𝑛− |𝐶|} ·min{|𝐶|, 𝑛− |𝐶|}

𝑛2
|𝐸𝐺| ≥

𝜑min{|𝐴|, |𝐵|} · |𝐸𝐺|
2𝑛

since max{|𝐶|, 𝑛− |𝐶|} ≥ 𝑛/2 and since 𝐴 ⊆ 𝐶,𝐵 ⊆ 𝑉𝐺 ∖ 𝐶, we have min{|𝐶|, 𝑛− |𝐶|} ≥
min{|𝐴|, |𝐵|}.

5 Main Proof

We fix 𝑑, 𝑛 ∈ N, 𝜑 ∈ (0, 1) and let 𝐺 be a 𝑑-regular graph on 𝑛 vertices with 𝜑(𝐺) ≥ 𝜑. We
also fix a nonempty subset 𝑆 ⊂ 𝑉𝐺 and 𝑟 > 0 and define a mapping

𝑓 : (𝑆, 𝑑𝐺𝑟(𝑆)) ↦→
(︀
R𝑆0 , ‖ · ‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

�
s.t. 𝑓(𝑥) = 𝑒𝑥 −

1

|𝑆|
∑︁
𝑧∈𝑆

𝑒𝑧 ∀ 𝑥 ∈ 𝑆

Then suppose we have that some 𝐹 : 𝑉𝐺 ↦→ R𝑆0 extends 𝑓 and for some 𝐿 ∈ (0,∞) we have

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ 𝐿𝑑𝐺𝑟(𝑆)(𝑥, 𝑦)
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For 𝑥 ∈ 𝑉𝐺, 𝑠 ∈ (0,∞) define

𝐵𝑆(𝑥) = {𝑦 ∈ 𝑉𝐺 : ‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ 𝑠}

i.e.e 𝐵𝑠 is the inverse image of 𝐹 of the ball (in the Wasserstein 1-norm) of radius 𝑠 centered
at 𝐹 (𝑥). By the lemma consequence of Menger’s Theorem, since 𝜑 ≥ 𝜑(𝐺) we have

𝑚 ≥ 𝜑𝑑

4
min{|𝑆∖𝐵𝑠(𝑥)|, |𝐵𝑠(𝑥)|} (1)

for𝑚 edge-disjoint paths between 𝑆∖𝐵𝑠(𝑥) and 𝐵𝑠(𝑥), i.e. we can find indices 𝑘1, . . . , 𝑘𝑚 ∈ N
and vertex sets {𝑧𝑗,1, . . . , 𝑧𝑗,𝑘𝑗}𝑚𝑗=1 ∈ 𝑉𝐺 s.t. {𝑧𝑗,1}𝑚𝑗=1 ⊂ 𝑆∖𝐵𝑠(𝑥), {𝑧𝑗,𝑘𝑗}𝑚𝑗=1 ⊂ 𝐵𝑠(𝑥) (i.e. the
beginnings and ends of paths are in different disjoint subsets) and such that {{𝑧𝑗,1, 𝑧𝑗,𝑖+1 :
𝑗 ∈ {1, . . . ,𝑚}∧ 𝑖 ∈ {1, . . . , 𝑘𝑗−1}} are distinct edges in 𝐸𝐺 (i.e. edge-disjointedness). Now
take an index subset 𝐽 ⊂ {1, . . . ,𝑚} s.t. {𝑧𝑗,1}𝑗∈𝐽 are distinct and {𝑧𝑗,1}𝑗∈𝐽 = {𝑧𝑖,1}𝑚𝑖=1. For
𝑗 ∈ 𝐽 denote by 𝑑𝑗 the number of 𝑖 ∈ {1, . . . ,𝑚} for which 𝑧𝑗,1 = 𝑧𝑖,1. Then since 𝐺 is
𝑑-regular and {{𝑧𝑖,1, 𝑧𝑖,2}}𝑚𝑖=1 are distinct, max

𝑗∈𝐽
𝑑𝑗 ≤ 𝑑. Since

∑︀
𝑗∈𝐽

𝑑𝑗 = 𝑚, from (1) we have

that

|𝐽 | ≥ 𝑚

𝑑
≥ 𝜑

4
min{|𝑆∖𝐵𝑠(𝑥)|, |𝐵𝑠(𝑥)|} (2)

The quantity |𝐽 | can be upperbounded as follows:

Lemma 5.5.1. Lemma 10: |𝐽 | ≤ max
{︁
𝑑16(𝑠−𝑟), 16𝑛𝐿𝑑 log 𝑑

log𝑛

(︁
1 + 2𝑟|𝑆|

𝑛

)︁}︁
Proof. Assume |𝐽 | ≤ 𝑑16(𝑠−𝑟) (otherwise we are done). This is equivalent to

𝑠− 𝑟 <
log |𝐽 |
16 log 𝑑

Now since {𝑧𝑗,1}𝑗∈𝐽 ⊂ 𝑆 and 𝐹 (𝑥) = 𝑓(𝑥) ∀ 𝑥 ∈ 𝑆 and is an isometry on (𝑆, 𝑑𝐺𝑟(𝑆)), by the
definition of the 𝑟-magnified metric

‖𝐹 (𝑧𝑖,1)− 𝐹 (𝑧𝑗,1)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) = 𝑑𝐺𝑟(𝑆)(𝑧𝑖,1, 𝑧𝑗,1) = 2𝑟 + 𝑑𝐺(𝑧𝑖,1, 𝑧𝑗,1)

This gives us∑︁
𝑗∈𝐽

‖𝐹 (𝑧𝑗,1)− 𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) =
1

2|𝐽 |
∑︁
𝑖,𝑗∈𝐽

(︀
‖𝐹 (𝑧𝑖,1)− 𝐹 (𝑧𝑖,𝑘𝑖)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) + ‖𝐹 (𝑧𝑗,1)− 𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

�
≥ 1

2|𝐽 |
∑︁
𝑖,𝑗∈𝐽

(︀
‖𝐹 (𝑧𝑖,1)− 𝐹 (𝑧𝑗,1)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) + ‖𝐹 (𝑧𝑧𝑖,𝑘𝑖)− 𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

�
Since {𝑧𝑗,𝑘𝑗}𝑗∈𝐽 ⊂ 𝐵𝑠(𝑥), by the definition of 𝐵𝑠(𝑥) we have

‖𝐹 (𝑧𝑖,𝑘𝑖)−𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ ‖𝐹 (𝑧𝑖,𝑘𝑖)−𝐹 (𝑥)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))+‖𝐹 (𝑥)−𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ 2𝑠 ∀ 𝑖, 𝑗 ∈ 𝐽
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so the previous inequality can be further continued as∑︁
𝑗∈𝐽

‖𝐹 (𝑧𝑗,1)−𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≥
1

2|𝐽 |
∑︁
𝑖,𝑗∈𝐽

𝑑𝐺(𝑧𝑖,1, 𝑧𝑗,1)−(𝑠−𝑟)|𝐽 | ≥ |𝐽 | log |𝐽 |
8 log 𝑑

−(𝑠−𝑟)|𝐽 | > |𝐽 | log |𝐽 |
16 log 𝑑

where the second inequality above is a property of the expander graph. The same quantity
can be bounded from above using the Lipschitz condition

∑︁
𝑗∈𝐽

‖𝐹 (𝑧𝑗,1)− 𝐹 (𝑧𝑗,𝑘𝑗)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ 𝐿
∑︁
𝑗∈𝐽

𝑑𝐺𝑟(𝑆)(𝑧𝑗,1, 𝑧𝑗,𝑘𝑗) ≤ 𝐿
∑︁
𝑗∈𝐽

𝑘𝑗−1∑︁
𝑖=1

𝑑𝐺𝑟(𝑆)(𝑧𝑗,1, 𝑧𝑗,𝑖+1)

By the edge-disjointedness of the paths (specifically since {{𝑧𝑗,1, 𝑧𝑗,𝑖+1} : 𝑗 ∈ 𝐽 ∧ 𝑖 ∈
{1, . . . , 𝑘𝑗 − 1}}) are distinct edges in 𝐸𝐺, we have that

∑︁
𝑗∈𝐽

𝑘𝑗−1∑︁
𝑖=1

𝑑𝐺𝑟(𝑆)(𝑧𝑗,1, 𝑧𝑗,𝑖+1) ≤
∑︁

{𝑢,𝑣}∈𝐸𝐺

𝑑𝐺𝑟(𝑆)(𝑢, 𝑣) =
𝑛𝑑

2

�
1 +

2𝑟|𝑆|
𝑛

�
Everything together gives

𝐿𝑛𝑑

2

�
1 +

2𝑟|𝑆|
𝑛

�
≥ |𝐽 | log |𝐽 |

16 log 𝑑

By the simple fact that 𝑎 log 𝑎 ≤ 𝑏 =⇒ 𝑎 ≤ 2𝑏
log 𝑏

for 𝑎 ∈ [1,∞), 𝑏 ∈ (1,∞), using 𝑎 = |𝐽 |
and 𝑏 = 8𝐿𝑛𝑑 log 𝑑

(︁
1 + 2𝑟|𝑆|

𝑛

)︁
≥ 𝑛 we have that

|𝐽 | ≤ 16𝑛𝐿𝑑 log 𝑑

log 𝑛

�
1 +

2𝑟|𝑆|
𝑛

�
completing the proof.

The lemma has two corollaries, both depending on the following condition:

𝑑16(𝑠−𝑟) ≤ 𝜑|𝑆|
8

𝐿 ≤ 𝜑|𝑆| log 𝑛
128

(︁
1 + 2𝑟|𝑆|

𝑛

)︁
𝑛𝑑 log 𝑑

(3)

Corollary 5.5.2. Corollary 11: max
𝑥∈𝑉𝐺

|𝐵𝑠(𝑥)| < |𝑆|
2

Proof. Pick an 𝑥 ∈ 𝑉𝐺. If 𝐵𝑠(𝑥)∩𝑆 is nonempty, then again using the standard estimate on
expander graphs we have that ∃ 𝑦, 𝑧 ∈ 𝐵𝑠(𝑥) ∩ 𝑆 s.t.

𝑑𝐺(𝑦, 𝑧) ≥
log |𝐵𝑠(𝑥) ∩ 𝑆|

4 log 𝑑

Since 𝑦, 𝑧 ∈ 𝑆 and 𝐹 (𝑥) = 𝑓(𝑥) ∀ 𝑥 ∈ 𝑆 and furthermore 𝐹 is an isometry on (𝑆, 𝑑𝐺𝑟(𝑆)), we
have similarly to before that

𝑑𝐺(𝑦, 𝑧)+2𝑟 = 𝑑𝐺𝑟(𝑆)(𝑦, 𝑧) = ‖𝐹 (𝑦)−𝐹 (𝑧)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ ‖𝐹 (𝑦)−𝐹 (𝑥)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))+‖𝐹 (𝑥)−𝐹 (𝑧)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤ 2𝑠
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where we have used first the triangle inequality and second the fact that 𝑦, 𝑧 ∈ 𝐵𝑠(𝑥). Then
using the first inequality in the proof we have

|𝐵𝑠(𝑥) ∩ 𝑆| ≤ 𝑑8(𝑠−𝑟) ≤
√︃
𝜑|𝑆|
8

≤ 2|𝑆|
5

where the second inequality comes from the first assumption. Now the above inequality
implies that |𝑆∖𝐵𝑠(𝑥)| ≥ 3|𝑆|

5
, which combined with Lemma 10 yields

min

⌉︀
3|𝑆|
5
, |𝐵𝑠(𝑥)|

«
< max

{︃
4𝑑16(𝑠−𝑟)

𝜑
,
64𝑛𝐿𝑑 log 𝑑

𝜑 log 𝑛

�
1 +

2𝑟|𝑆|
𝑛

�}︃
However, the two original assumptions together imply that 3|𝑆|

5
is in fact greater than either

value in the maximum, so

|𝐵𝑠(𝑥)| ≤ max

{︃
4𝑑16(𝑠−𝑟)

𝜑
,
64𝑛𝐿𝑑 log 𝑑

𝜑 log 𝑛

�
1 +

2𝑟|𝑆|
𝑛

�}︃
≤ |𝑆|

2

Corollary 5.5.3. Corollary 12: 𝐿 ≥ 𝜑𝑠

2
(︀
1+

diam(𝐺,𝑑𝐺)

2𝑟

�
(1+ 2𝑟|𝑆|

𝑛 )

Proof. By the definition of𝐵𝑠(𝑥) for 𝑥 ∈ 𝑉𝐺 and 𝑦 ∈ 𝑉𝐺∖𝐵𝑠(𝑥) we have ‖𝐹 (𝑥)−𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) >
𝑠, so

1

𝑛2

∑︁
𝑥,𝑦∈𝑉𝐺

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≥
1

𝑛2

∑︁
𝑥∈𝑉𝐺

∑︁
𝑦∈𝑉𝐺∖𝐵𝑠(𝑥)

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

≥ 𝑠

𝑛2

∑︁
𝑥∈𝑉𝐺

(𝑛− |𝐵𝑠(𝑥)|) ≥ 𝑠

�
1−

max
𝑥∈𝑉𝐺

|𝐵𝑠(𝑥)|

𝑛

�
≥ 𝑠

2

where the last inequality comes from Corollary 11. Then since Lemma 8 gives

1

𝑛2

∑︁
𝑥,𝑦∈𝑉𝐺

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆)) ≤
2𝑟 + diam(𝑆, 𝑑𝐺)

(2𝑟 + 1)𝜑|𝐸𝐺|
∑︁

𝑥,𝑦∈𝑉𝐺
‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑊1(𝑆,𝑑𝐺𝑟(𝑆))

≤
𝐿
(︁
1 + diam(𝐺,𝑑𝐺)

2𝑟

)︁
𝜑|𝐸𝐺|

∑︁
{𝑥,𝑦}∈𝐸𝐺

𝑑𝐺𝑟(𝑆)(𝑥, 𝑦)

=
𝐿
(︁
1 + diam(𝐺,𝑑𝐺)

2𝑟

)︁ (︁
1 + 2𝑟|𝑆|

𝑛

)︁
𝜑

where the ineqaulity on the second line is true since 𝐹 is an isometry on (𝑆, 𝑑𝐺) and from
the Lipschitz constant of 𝑓 and the equality is average length of the 𝑟-magnification of
the expander graph 𝐺. Combining these inequalities with the previous ones yields the
corollary.
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Theorem 5.5.4. Theorem 13: if 0 < 𝑟 ≤ diam(𝐺, 𝑑𝐺) then

𝐿 ≥𝐶
𝜑

1 + 𝑟|𝑆|
𝑛

min

⎧⎨⎩ |𝑆| log 𝑛
𝑛𝑑 log 𝑑

,
16𝑟2 log 𝑑+ 𝑟 log

(︁
𝜑|𝑆|
8

)︁
diam(𝐺, 𝑑𝐺) log 𝑑

⎫⎬⎭
Proof. Assume 16𝑟 log 𝑑+log

(︁
𝜑|𝑆|
8

)︁
> 0 (otherwise we are done) and choose 𝑠 = 𝑟+

log(𝜑|𝑆|
8 )

16 log 𝑑

s.t. 𝑠 > 0 and 𝑑16(𝑠−𝑟) = 𝜑|𝑆|
8
. Then the first inequality in (3) is satisfied, so either the second

fails and 𝐿 thus has that expression as a lower bound, or both are satisfied and we have the
lower bound in Corollary 12.

Theorem 5.5.5. Theorem 1: for every 𝑛 ∈ N we have ae(𝑛) ≥𝐶

√
log 𝑛.

Proof. Substituting 𝜑 ≍ 1 and diam(𝐺, 𝑑𝐺) ≍ log𝑛
log 𝑑

(the ≍ indicates asymptotically for large

𝑛), and using the assumption 0 < 𝑟 ≤ diam(𝐺, 𝑑𝐺), the lower bound given in Theorem 13
becomes

𝐿 ≥𝐶
1

1 + 𝑟|𝑆|
𝑛

min

⌉︀ |𝑆| log 𝑛
𝑛𝑑 log 𝑑

,
𝑟(𝑟 log 𝑑+ log |𝑆|)

log 𝑛

«
Taking 𝑆 ⊂ 𝑉𝐺 s.t. |𝑆| =

⌊︂
𝑛
√
𝑑 log 𝑑√
log𝑛

⌋︂
(we must have 𝑛

𝑔𝑒𝑑𝑑 to ensure |𝑆| ≤ 𝑛) and 𝑟 ≍ log 𝑑√
𝑑 log 𝑑

, which gives a lower bound of 𝐿 ≥𝐶

√
log𝑛√
𝑑 log 𝑑

.

Therefore

𝑒⌊︁𝑛
√

𝑑 log 𝑑√
log𝑛

⌋︁(𝐺𝑟(𝑆),𝑊1(𝑆, 𝑑𝐺𝑟(𝑆))) ≥𝐶

√
log 𝑛√
𝑑 log 𝑑

which completes the proof for fixed 𝑑.
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𝛿𝑋 →˓𝑌 (𝜀) supremum over all those 𝛿 > 0 such that for every 𝛿-net 𝒩𝛿 in 𝐵𝑋 , 𝐶𝑌 (𝒩𝛿) ≥
(1− 𝜀)𝐶𝑌 (𝑋) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

R𝜎 {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑚 : 𝑥𝑖 = 0 if 𝑖 ̸∈ 𝜎} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

srank(𝐴) stable rank,
�

‖𝐴‖𝑆2

‖𝐴‖𝑆∞

�2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

‖𝐴‖𝑆𝑝
Schatten-von Neumann 𝑝-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

𝐶𝑌 (𝑋) infimum of 𝐷 where 𝑋 imbeds into 𝑌 with distortion 𝐷 . . . . . . . . . . . . . . . . . . . . . . . . 16
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finitely representable, 7

Jordan-von Neumann Theorem, 9

Kadec’s Theorem, 10
Kahane’s inequality, 9
Ky Fan maximum principle, 23

local properties, 7

nonlinear Hahn-Banach Theorem, 73
nontrivial type, 8

parallelogram identity, 9
Pietsch Domination Theorem, 30
Poisson kernel, 50, 57
preprocessing, 102

Rademacher type, 82
restricted invertibility principle, 19
rigidity theorem, 10

Sauer-Shelah, 33
Schatten-von Neumann 𝑝-norm, 20
shattering set, 33
stable 𝑝th rank, 22
stable rank, 21
symmetric norm, 25

type, 8

uniformly homeomorphic, 10
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