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TOWARDS A CALCULUS FOR NON-LINEAR SPECTRAL GAPS
[EXTENDED ABSTRACT]

MANOR MENDEL AND ASSAF NAOR

Abstract. Given a finite regular graph G = (V,E) and a metric space (X, dX), let
γ+(G,X) denote the smallest constant γ+ > 0 such that for all f, g : V → X we have:

1

|V |2
∑

x,y∈V

dX(f(x), g(y))2 6
γ+
|E|

∑
xy∈E

dX(f(x), g(y))2.

In the special case X = R this quantity coincides with the reciprocal of the absolute spectral
gap of G, but for other geometries the parameter γ+(G,X), which we still think of as
measuring the non-linear spectral gap of G with respect to X (even though there is no
actual spectrum present here), can behave very differently.

Non-linear spectral gaps arise often in the theory of metric embeddings, and in the present
paper we systematically study the theory of non-linear spectral gaps, partially in order to
obtain a combinatorial construction of a super-expander — a sequence of bounded-degree
graphs {Gi = (Vi, Ei)}∞i=1 which does not admit a coarse embedding into any uniformly
convex normed space. In addition, the bi-Lipschitz distortion of Gi in any uniformly convex
normed space is Ω(log |Vi|), which is the worst possible behavior due to Bourgain’s embed-
ding theorem [4]. Such remarkable graph families were previously known to exist due to
a tour de force algebraic construction of Lafforgue [17]. Our construction is different and
combinatorial, relying on the zigzag product of Reingold-Vadhan-Wigderson [38].

We show that non-linear spectral gaps behave sub-multiplicatively under zigzag products
— a fact that amounts to a simple iteration of the inequality above. This yields as a special
case a very simple (linear algebra free) proof of the Reingold-Vadhan-Wigderson theorem
which states that zigzag products preserve the property of having an absolute spectral gap
(with quantitative control on the size of the gap). The zigzag iteration of Reingold-Vadhan-
Wigderson also involves taking graph powers, which is trivial to analyze in the classical
“linear” setting. In our work, the behavior of non-linear spectral gaps under graph powers
becomes a major geometric obstacle, and we show that for uniformly convex normed spaces
there exists a satisfactory substitute for spectral calculus which makes sense in the non-linear
setting. These facts, in conjunction with a variant of Ball’s notion of Markov cotype and
a Fourier analytic proof of the existence of appropriate “base graphs”, are shown to imply
that Reingold-Vadhan-Wigderson type constructions can be carried out in the non-linear
setting.
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1. Introduction

Let A = (aij) be an n× n symmetric stochastic matrix and let

1 = λ1(A) > λ2(A) > · · · > λn(A) > −1

be its eigenvalues. The reciprocal of the spectral gap of A, i.e., the quantity 1
1−λ2(A) , is the

smallest constant γ > 0 such that for every x1, . . . , xn ∈ R we have

1

n2

n∑
i=1

n∑
j=1

(xi − xj)2 6
γ

n

n∑
i=1

n∑
j=1

aij(xi − xj)2. (1)

By summing over the coordinates with respect to some orthonormal basis, (1) can be restated
as follows: the value 1

1−λ2(A) is the smallest constant γ > 0 such that for all x1, . . . , xn ∈ L2

we have

1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖22 6
γ

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖22. (2)

Once one realizes the validity of inequality (2) it is natural to generalize it in several
ways. For example, we can replace the exponent 2 by some other exponent p > 0 and, more
crucially, we can replace the Euclidean geometry by some other metric space (X, d). Such
generalizations are standard practice in metric geometry, as we shall discuss below. For the
sake of presentation, we can take this generalization to even greater extremes: let X be an
arbitrary set and let K : X × X → [0,∞) be a symmetric function. Such functions are
often called kernels in the literature, and we shall adopt this terminology here. Define the
reciprocal spectral gap of A with respect to K, denoted γ(A,K), as the infimum over all
γ > 0 such that for all x1, . . . , xn ∈ X we have

1

n2

n∑
i=1

n∑
j=1

K(xi, xj) 6
γ

n

n∑
i=1

n∑
j=1

aijK(xi, xj). (3)

In what follows we will also call γ(A,K) the Poincaré constant of A with respect to K.
Readers are encouraged to focus on the case when K is a power of some metric on X, though
as will become clear presently, a surprising amount of ground can be covered without any
assumption on the kernel K. For concreteness we restate the above discussion: the standard
gap in the linear spectrum of A corresponds to considering Poincaré constants with respect
to Euclidean spaces (i.e., kernels which are squares of Euclidean metrics), but there is scope
for a theory of non-linear spectral gaps when one considers inequalities such as (3) with
respect to other geometries. The purpose of this paper is to make some steps towards
such a theory, with emphasis on possible extensions of spectral calculus to non-linear (non-
Euclidean) settings. We apply our new calculus for non-linear spectral gaps to construct
new strong types of expanders, and to resolve a question of Lafforgue [17]. We obtain a new
combinatorial construction of a remarkable type of bounded degree graphs whose shortest
path metric is incompatible with the geometry of any uniformly convex normed space in
a very strong sense (i.e., coarse non-embeddability). The existence of such graph families
was first discovered by Lafforgue [17] via an algebraic construction. Our work indicates that
there is hope for a useful theory of non-linear spectral gaps, beyond the sporadic examples
that have been previously studied in the literature.

2



1.1. Coarse non-embeddability. A sequence of metric spaces {(Xn, dn)}∞n=1 is said to
embed coarsely (with uniform moduli) into a metric space (Y, dY ) if there exist two non-
decreasing functions α, β : [0,∞) → [0,∞) such that limt→∞ α(t) = ∞, and mappings
fn : Xn → Y , such that for all n ∈ N and x, y ∈ Xn we have:

α (dXn(x, y)) 6 dY (fn(x), fn(y)) 6 β (dXn(x, y)) . (4)

Equation (4) should be viewed as a weak form of “metric faithfulness” of the mappings fn:
this seemingly humble requirement can be restated informally as “large distances should map
uniformly to large distances”. Nevertheless, this weak notion of embedding (which is much
weaker than, say, bi-Lipschitz embeddability), has a wide range of applications in geometry
and group theory: see for example the book [39] and the references therein for (a small part
of) such applications.

Since coarse embeddability is a weak requirement, it is quite difficult to prove coarse non-
embeddability: very few methods to establish such a result are known, among which is the
use of non-linear spectral gaps, as pioneered by Gromov [10] (other such methods are coarse
notions of metric dimension [9], or the use of metric cotype [23]. These methods do not
seem to be applicable to the question that we study here). Gromov’s argument is simple:
assume that Xn = (Vn, En) are regular graphs of bounded degree and that dn(·, ·) is the
shortest-path metric on Xn. Assume also that for some p, γ ∈ (0,∞) we have for all n ∈ N
and f : Vn → Y :

1

|Vn|2
∑
u,v∈Vn

dY (f(u), f(v))p 6
γ

|En|
∑

x,y∈En

dY (f(x), f(y))p. (5)

A combination of (4) and (5) yields the bound 1
|Vn|2

∑
u,v∈Vn α (dn(u, v))p 6 γβ(1)p. But,

since Xn is a bounded degree graph, at least half of the pairs of vertices u, v ∈ Vn satisfy
dn(u, v) > c log |Vn|, where c is a constant which depends on the implied degree bound (but
not on n). Thus α(c log |Vn|)p 6 2γβ(1)p, and in particular if limn→∞ |Vn| =∞ then we get
a contradiction to the assumption limt→∞ α(t) =∞. Observe in passing that this argument
also shows that Xn has bi-Lipschitz distortion Ω(log |Vn|) in Y — such an argument was
first used by Linial, London and Rabinovich [19] (see also [20]) to show that Bourgain’s
embedding theorem [4] is asymptotically sharp.

Assumption (5) can be restated as saying that γ(An, d
p
Y ) 6 γ, where An is the normalized

adjacency matrix of Xn. This condition can be viewed to mean that the graphs {Xn}∞n=1

are “expanders” with respect to (Y, dY ). Note that if Y contains at least two points then (5)
implies that {Xn}∞n=1 are necessarily also expanders in the classical sense.

The key point in the coarse non-embeddability question is therefore to construct such
{Xn}∞n=1 for which we can prove the inequality (5) for non-Hilbertian targets Y . This ques-
tion has been previously investigated by several authors. Matoušek [20] devised an extrap-
olation method for Poincaré inequalities (see also the description of Matoušek’s argument
in [3]) which establishes the validity of (5) for every expander when Y = Lp. The work of
Ozawa [30] and Pisier [32, 35] proves (5) for every expander when Y is Banach space which
satisfies certain geometric conditions (e.g., Y can be taken to be a Banach lattice with finite
cotype). In [28, 27] additional results of this type are obtained.

A normed space is called super-reflexive if it admits an equivalent norm which is uniformly
convex. Recall that a normed space (X, ‖·‖X) is called uniformly convex if for every ε ∈ (0, 1)
there exists δ = δX(ε) > 0 such that for any two vectors x, y ∈ X with ‖x‖X = ‖y‖X = 1
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and ‖x− y‖X > ε we have
∥∥x+y

2

∥∥
X
6 1− δ (thus uniform convexity is a uniform version of

strict convexity). The question whether there exists a sequence of arbitrarily large graphs
of bounded degree which do not admit a coarse embedding into any super-reflexive normed
space was posed by Kasparov and Yu in [15], and was solved in the remarkable work of
Lafforgue [17] on the strengthened version of property (T ) for SL3(F) when F is a non-
Archimedian local field (thus, for concreteness, Lafforgue’s graphs can be obtained as Cayley
graphs of finite quotients of co-compact lattices in SL3(Qp), where p is a prime and Qp is
the p-adic rationals).

In this paper we obtain an alternative solution of the Kasparov-Yu problem using a com-
binatorial construction based on the “zigzag expanders” of Reingold, Vadhan, and Wigder-
son [38]. More specifically, we construct a family of 9-regular graphs which satisfies (5) for
every super-reflexive Banach space X (where γ depends only on X) — such graphs are called
super-expanders.

We state at the outset that it is a major open question whether every expander satisfies (5)
for every uniformly convex normed space X. It is also unknown whether there exist graph
families of bounded degree and logarithmic girth which do not admit a coarse embedding
into any super-reflexive normed space—this question is of particular interest in the context of
the potential application to the Novikov conjecture that was suggested by Kasparov and Yu
in [15]. Note that some geometric restriction on the target space X must be imposed, since
the relation between non-linear spectral gaps and coarse non-embeddability, in conjunction
with the fact that every finite metric space embeds isometrically into `∞, shows that (for
example) X = `∞ can never satisfy (5) for bounded degree family of graphs.

Our combinatorial approach can be used to show that there exist bounded degree graph
sequences which do not admit a coarse embedding into any K-convex normed space. A
normed space X is K-convex1 if there exists ε0 > 0 and n0 ∈ N such that any embedding of
`n0
1 into X incurs distortion at least 1+ε0, see [33]. This question was asked by Lafforgue [17].

Recently, independently of our work, Lafforgue [18] managed to modify his argument to
obtain coarse non-embeddability into K-convex spaces for his graph sequences as well.

Acknowledgments. Michael Langberg was involved in early discussions on the analysis
of the zigzag product. Keith Ball helped in simplifying this analysis. M. M. was partially
supported by ISF grant no. 221/07, BSF grant no. 2006009, and a gift from Cisco research
center. A. N. was supported in part by NSF grants CCF-0635078 and CCF-0832795, BSF
grant 2006009, and the Packard Foundation.

2. A combinatorial approach to the existence of Super-Expanders

2.1. The compatibility of non-linear spectral gaps with combinatorial construc-
tions. The parameter γ(A,K) will reappear presently, but for the purpose of this section we
need to study a variant of it which corresponds to the absolute spectral gap of a matrix (sim-
ilar to the role of absolute spectral gaps in the work of Reingold-Vadhan-Wigderson [38]).
Define λ(A) = max26i6n |λi(A)| and call the quantity 1− λ(A) the absolute spectral gap of
A. Similarly to (2), the reciprocal of the absolute spectral gap of A is the smallest constant

1K-convexity is also equivalent to X having type strictly bigger than 1, see [25, 21]. The K-convexity
property is strictly weaker than super-reflexivity, see [12, 14, 13, 36].
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γ+ > 0 such that for all x1, . . . , xn, y1, . . . , yn ∈ L2 we have

1

n2

n∑
i=1

n∑
j=1

‖xi − yj‖22 6
γ+
n

n∑
i=1

n∑
j=1

aij‖xi − yj‖22. (6)

Analogously to (3), given a kernel K : X ×X → [0,∞) we can then define γ+(A,K) to be
the the infimum over all γ+ > 0 such that for all x1, . . . , xn, y1, . . . , yn ∈ X we have

1

n2

n∑
i=1

n∑
j=1

K(xi, yj) 6
γ+
n

n∑
i=1

n∑
j=1

aijK(xi, yj). (7)

Note that clearly γ+(A,K) > γ(A,K).
In what follows we will often deal with regular graphs, which will always be allowed to have

self loops and multiple edges. We will use the convention that each self loop contribute 1 to
the degree of a vertex. The normalized adjacency matrix of a d-regular graph G = (V,E),
denoted AG, is defined as usual by letting its u, v entry be the number of edges joining
u, v ∈ V divided by d. When discussing Poincaré constants we will interchangeably identify
G with AG. Thus, for example, we write γ+(G,K) = γ+(AG, K).

The starting point of our work is an investigation of the behavior of the quantity γ+(G,K)
under certain graph operations, the most important of which (for our purposes) is the zigzag
product of Reingold-Vadhan-Wigderson [38]. As we shall see below, combinatorial construc-
tions seem to be well-adapted to controlling non-linear quantities such as γ+(G,K). This
crucial fact allows us to use them in a perhaps unexpected geometric context.

Assume now that G1 = (V1, E1) is an n1-vertex graph which is d1-regular and that G2 =
(V2, E2) is a d1-vertex graph which is d2-regular. Since the number of vertices in G2 is the
same as the degree in G1, we can identify V2 with the edges emanating from a given vertex
u ∈ V1. Formally, we fix for every u ∈ V1 a bijection πu : {e ∈ E1 : u ∈ e} → V2. Moreover,
we fix for every a ∈ V2 a bijection between [d2] = {1, . . . , d2} and the multiset of the vertices
adjacent to a in G2, κa : [d2]→ {b ∈ V2 : {a, b} ∈ E2}.

The zigzag product G1©z G2 is the graph whose vertices are V1 × V2 and (u, a), (v, b) ∈
V1 × V2 are joined by an edge if and only if there exist i, j ∈ [d2] such that:

{u, v} ∈ E1 and a = κπu({u,v})(i) and b = κπv({u,v})(j).

The schematic description of this construction is as follows: think of the vertex set of G1©z G2

as a disjoint union of “clouds” which are copies of V2 = {1, . . . , d1} indexed by V1. Thus
(u, a) is the point indexed by a in the cloud labeled by u. Every edge {(u, a), (v, b)} of
G1©z G2 is the result of a three step walk: a “zig” step in G2 from a to πu({u, v}) in u’s
cloud, a “zag” step in G1 from u’s cloud to v’s cloud along the edge {u, v} and a final “zig”
step in G2 from πv({u, v}) to b in v’s cloud. The zigzag product is illustrated in Figure 1.
The number of vertices of G1©z G2 is n1d1 and its degree is d22.

The zigzag product depends on the labels {πu}u∈V1 ,and in fact different labels of the
same graphs can produce non-isomorphic products2. However, all of our results below will
be independent of the actual choice of the labeling, so while our notation should formally
depend on the labeling, we will drop its explicit mention for the sake of simplicity.

2The labels {κa}a∈V2 do not affect the structure of the zigzag product but they are useful in the subsequent
analysis.
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G1
u v

G2

u v

G1⃝z G2
�u({u, v}) �v({u, v})

Figure 1. Illustration of the zigzag product. The upper part of the figure
depicts part of a 4-regular graph G1, and a 4-vertex cycle G2. The bottom part
of the figure depicts the edges of the zigzag product between u’s cloud and v’s
cloud. The original edges of G1 and G2 are drawn as dotted and dashed lines
(respectively).

Let us now examine how γ+(G1©z G2, K) is related to γ+(G1, K), and γ+(G2, K), where
K : X ×X → [0,∞) is an arbitrary kernel. To this end take f, g : V1 × V2 → X and note
that the definition of γ+(G1, K) implies that for all a, b ∈ V2 we have:

1

n2
1

∑
u,v∈V1

K (f(u, a), g(v, b)) 6
γ+(G1, K)

n1d1

∑
{u,v}∈E1

K (f(u, a), g (v, b)) . (8)

Thus:

1

|V1 × V2|2
∑

(u,a),(v,b)∈V1×V2

K(f(u, a), g(v, b)) =
1

d21

∑
a,b∈V2

1

n2
1

∑
u,v∈V2

K(f(u, a), g(v, b))

(8)

6
γ+(G1, K)

n1d31

∑
a,b∈V2

∑
{u,v}∈E1

K (f(u, a), g (v, b)) . (9)

Next, the definition of γ+(G2, K) implies that for all u ∈ V1 and b ∈ V2 we have

1

d21

∑
a∈V2

∑
v∈V1:
{u,v}∈E1

K (f(u, a), g (v, b))

6
γ+(G2, K)

d1d2

∑
v∈V1:
{u,v}∈E1

∑
i∈[d2]

K
(
f
(
u, κπu({u,v})(i)

)
, g (v, b)

)
. (10)

Summing (10) over u ∈ V1 and b ∈ V2 and plugging it into (9), yields the bound:

1

|V1 × V2|2
∑

(u,a),(v,b)∈V1×V2

K(f(u, a), g(v, b))

6
γ+(G1, K)γ+(G2, K)

n1d21d2

∑
v∈V1

∑
i∈[d2]

∑
u∈V1:
{u,v}∈E1

∑
b∈V2

K
(
f
(
u, κπu({u,v})(i)

)
, g (v, b)

)
. (11)
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Another application of the definition of γ+(G2, K) implies that for all v ∈ V1 and i ∈ [d2] we
have:

1

d21

∑
u∈V1:
{u,v}∈E1

∑
b∈V2

K
(
f
(
u, κπu({u,v})(i)

)
, g (v, b)

)

6
γ+(G2, K)

d1d2

∑
u∈V1:
{u,v}∈E1

∑
j∈[d2]

K
(
f
(
u, κπu({u,v})(i)

)
, g
(
v, κπv({u,v})(j)

))
. (12)

Summing (12) over v ∈ V1 and i ∈ [d2] and combining the resulting inequality with (11)
yields the bound:

1

|V1 × V2|2
∑

(u,a),(v,b)∈V1×V2

K(f(u, a), g(v, b))

6
γ+(G1, K)γ+(G2, K)2

n1d1d22

∑
{u,v}∈E1

∑
i,j∈[d2]

K
(
f
(
u, κπu({u,v})(i)

)
, g
(
v, κπv({u,v})(j)

))
=

γ+(G1, K)γ+(G2, K)2

n1d1d22

∑
{(u,a),(v,b)}∈E(G1©z G2)

K (f (u, a) , g (v, b)) .

Hence we deduce the following theorem:

Theorem 1 (Sub-multiplicativity). Let G1 = (V1, E1) be an n1-vertex graph which is d1-
regular and let G2 = (V2, E2) be a d1-vertex graph which is d2-regular. Then for every every
kernel K : X ×X → [0,∞),

γ+ (G1©z G2, K) 6 γ+(G1, K) · γ+(G2, K)2.

In the special case X = R and K(x, y) = (x− y)2, Theorem 1 becomes:

1

1− λ(G1©z G2)
6

1

1− λ(G1)
· 1

(1− λ(G2))2
. (13)

Thus λ(G1©z G2) 6 f(λ(G1), λ(G2)) where f(λ1, λ2) < 1 when λ1, λ2 ∈ (0, 1). This is
the main result of Reingold-Vadhan-Wigderson [38], and it coincides with the later bound
of Reingold-Trevisan-Vadhan [37]. We note that in [38] an improved bound for λ(G1©z
G2) is obtained which is better than the bound of [37] (and hence also (13)), though this
improvement has not been used (so far) in the literature. Theorem 1 shows that the fact
that zigzag products preserve spectral gaps has nothing to do with the underlying Euclidean
geometry (or linear algebra) that was used in [38, 37]: this is a truly non-linear phenomenon
which holds in much greater generality, and simply amounts to an iteration of the Poincaré
inequality (7). In the full version of this paper we present versions of the sub-multiplicativity
result in Theorem 1 for other types of graph products such as tensor products, replacement
products [8, 38], balanced replacement products [38], and derandomized square [40].

2.2. An iterative construction of super-expanders. Let us briefly recall how the Eu-
clidean case of Theorem 1 was used by Reingold-Vadhan-Wigderson [38] to construct ex-
panders (see also the nice exposition in Section 9.2 of the survey [11]).
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For a graph G = (V,E) and for t ∈ N, let Gt be the graph in which an edge between
u, v ∈ V is drawn for every walk in G of length t whose endpoints are u, v. Thus AGt = (AG)t

and if G is d-regular then Gt is dt-regular.
Let H be an arbitrary regular graph with n0 vertices and degree d0. Such a graph H

will be called the base graph in what follows. Fix t0 ∈ N. Define G1 = H2 and inductively
Gi+1 = Gt0

i
©z H (in [38] it sufficed to take t0 = 2, but we will quickly realize that in the non-

linear setting we need to work with higher powers, which is the reason why we are stating
the construction for general t0). For this construction to be feasible we need to ensure that
n0 = d2t00 , since in that case for all i ∈ N the graph Gi is well defined and has ni0 = d2it00

vertices and degree d20. Using the fact that λ(Gt0) = λ(G)t0 , we see that λ(G1) = λ(H)2 and
it follows from (13) that for i ∈ N we have λ(Gi+1) 6 1− (1− λ(Gi)

t0) (1−λ(H))2. We thus
see inductively that if λ(H) 6 1− (2− 21−t0)−1/2 then λ(Gi) 6 1

2
for all i ∈ N.

Given Theorem 1, the above scheme suggests that we can repeat the Reingold-Vadhan-
Wigderson iteration for every kernel K for which a sufficiently good base graph H exists.
There is, however, an obstacle to this approach: we used above the identity λ(At) = λ(A)t

(t ∈ N) in order to increase the spectral gap of Gi in each step of the iteration. While
this identity is a trivial corollary of spectral calculus, and was thus the “trivial part” of the
construction in [38], there is no reason to expect that γ+(At, K) decreases similarly with
t for other kernels K : X × X → [0,∞). To better grasp what is happening here let us
examine the asymptotic behavior of γ+(At, | · |2) as a function of t (here and in what follows
| · | denotes the absolute value on R):

γ+
(
At, | · |2

)
=

1

1− λ(At)
=

1

1− λ(A)t

=
1

1−
(

1− 1
γ+(A,|·|2)

)t � max

{
1,
γ+ (A, | · |2)

t

}
, (14)

where above, and in what follows, � denotes equivalence up to universal constants (we
will also use the notation .,& to express the corresponding inequalities up to universal
constants). Restating (14) in words, raising a matrix to a large power t ∈ N corresponds to
decreasing its (real) Poincaré constant by a factor of t as long as it is possible to do so (note
that the Poincaré constant is necessarily at least 1).

For our scheme to work for other kernels K : X×X → [0,∞) we would like K to satisfy a
“spectral calculus” inequality of this type, i.e., an inequality which ensures that, if γ+(A,K)
is large, then γ+(At, K) is much smaller than γ+(A,K) for sufficiently large t ∈ N. This is,
in fact, not the case in general: in the Section 3.3 we construct a metric space (X, dX) such
that for each n ∈ N there is a symmetric stochastic matrix An such that γ+(An, d

2
X) > n yet

for every t ∈ N there is n0 ∈ N such that for all n > n0 we have γ+(Atn, d
2
X) > 1

2
γ+(An, d

2
X).

The question which metric spaces satisfy the required spectral calculus inequalities thus
becomes a subtle issue which we believe is of fundamental importance, beyond the particular
application that we present here. A large part of the present paper is devoted to addressing
this question. We obtain rather satisfactory results which allow us to carry out a zigzag
type construction of super-expanders — expanders with respect to super-reflexive spaces —
though we are still quite far from a complete understanding of the behavior of non-linear
spectral gaps under graph powers for non-Euclidean geometries.
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We will introduce in Section 2.3 a criterion on a metric space (X, dX), which is a bi-
Lipschitz invariant, and we prove that it implies that for every n,m ∈ N and every n × n
symmetric stochastic matrix A the Cesàro averages 1

m

∑m−1
t=0 At satisfy the following spectral

calculus inequality:

γ+

(
1

m

m−1∑
t=0

At, d2X

)
6 C(X) max

{
1,
γ+ (A, d2X)

mε(X)

}
, (15)

where C(X), ε(X) ∈ (0,∞) depend only on the geometry of X but not on n,m,A. The fact
that we can only prove such an inequality for Cesàro averages rather than powers does not
create any difficulty in the ensuing argument, as we shall see presently. We postpone the
discussion of the metric criterion which implies (15) to Section 2.3. It suffices to say here
that we show that certain classes of metric spaces, including super-reflexive normed spaces,
satisfy this criterion, and hence also (15).

Note that Cesàro averages have the following combinatorial interpretation in the case of
graphs: given an n-vertex d-regular graph G = (V,E) let Am(G) be the graph whose vertex
set is V and for every t ∈ {0, . . . ,m − 1} and u, v ∈ V we draw dm−1−t edges joining u, v
for every walk in G of length t which starts at u and terminates at v. With this definition
AAm(G) = 1

m

∑m−1
t=0 AtG, and Am(G) is mdm−1-regular. We will slightly abuse this notation

by also using the shorthand Am(A) = 1
m

∑m−1
t=0 At, when A is a matrix.

Another issue which we must overcome is the existence of a sufficiently good base graph
H for our zigzag iteration. This is also a subtle point which is discussed in Section 2.4 below.
In order to present our construction here, we first state the following lemma, and postpone
the discussion about it to Section 2.4:

Lemma 2.1 (Existence of base graphs). There exists an unbounded increasing sequence of
integers {ni}∞i=1 satisfying ni+1 6 100ni with the following property: for every δ ∈ (0, 1)
there is a sequence of regular graphs {Hi(δ)}∞i=1 such that Hi(δ) has ni vertices and degree

di(δ) 6 e(logni)
1−δ

. Moreover, for every super-reflexive (even just K-convex) normed space
(X, ‖ · ‖X) there exist δ0(X), γ(X) ∈ (0, 1) such that for all 0 < δ 6 δ0(X) and all i ∈ N, we
have γ+ (Hi(δ), ‖ · ‖2X) 6 γ(X).

We briefly discuss a simple operation, called edge completion, which allows us to change
the degree of a graph while not changing its Poincaré constant by too much. This operation
will generate a lot of freedom in applying zigzag products, since we will be able to apply it
in order to adjust the degrees of graphs so that their zigzag product becomes well-defined.
Given a d-regular graph G = (V,E) and an integer d′ > d define the d′-edge completion of G,
denoted Cd′(G) = (V,E ′), as follows. Writing d′ = `d+r where ` ∈ N, and r ∈ {0, . . . , d−1},
duplicate each edge in G ` times, and add r self-loops to each vertex of G. This makes
Cd′(G) a d′-regular graph. It is evident from the definition of γ+(·, ·) that for every kernel
K : X ×X → [0,∞) we have γ+ (Cd′(G), K) 6 2γ+(G,K).

With these facts at hand, we can now construct an expander with respect to a given
super-reflexive Banach space X.

Lemma 2.2. For every super-reflexive Banach space X there exist C ′(X) > 1, d = d(X) ∈ N
and sequence of d-regular graphs {Fj(X)}∞j=1 whose number of vertices tend to∞ with j, such

that γ+(Fj(X), ‖ · ‖2X) 6 C ′(X) for every j ∈ N.
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Proof. Fix k ∈ N which will be determined presently. Write t0 = (2k)3k, and let i0 be the

smallest i ∈ N such that ni > e(4t0)
k
. Note that this implies that ni0 6 100e(4t0)

k
. We

shall now define inductively a sequence of graphs {Fj(k)}∞j=0 as follows: F0(k) = Hi0(1/k)

(from Lemma 2.1). The degree of F0(k) is di0 6 e(logni0 )
1−1/k

and it has ni0 vertices. Define
F1(k) = Cd2i0

(F0(k)), so that the degree of F1(k) is d2i0 . Assume inductively that we defined

Fj(k) to be a graph with nji0 vertices and degree d2i0 . Then At0(Fj(k)) has nji0 vertices and

degree t0d
2(t0−1)
i0

6 ni0 (where we used our choice of i0). It follows the we can form the edge
completion Cni0

(At0(Fj(k))), which has degree ni0 , and therefore it is possible to form the
zigzag product

Fj+1(k) = (Cn0(At0(Fj(k))))©z F0(k),

which has degree d2i0 and nj+1
i0

vertices.
Let (X, ‖ · ‖X) be a super-reflexive normed space and let δ0(X), γ(X) and ε(X), C(X) be

as in Lemma 2.1 and (15), respectively. Assume that k > 1/δ0(X). Then by Lemma 2.1 we
have γ+(F0(k), ‖ · ‖2X) 6 γ(X), and therefore also by the basic property of edge completion,
γ+(F1(k), ‖ · ‖2X) 6 2γ(X). We can now apply Theorem 1 to get the following recursive
estimate:

γ+
(
Fj+1(k), ‖ · ‖2X

)
6 γ+

(
Cn0(At0(Fj(k))), ‖ · ‖2X

)
γ+
(
F0(k), ‖ · ‖2X

)2
6 2γ+

(
At0(Fj(k)), ‖ · ‖2X

)
γ(X)2

(15)

6 2C(X)γ(X)2 max

{
1,
γ+ (Fj(k), ‖ · ‖2X)

t
ε(X)
0

}

= 2C(X)γ(X)2 max

{
1,
γ+ (Fj(k), ‖ · ‖2X)

(2k)3kε(X)

}
.

It follows by induction that if k > max {C(X), γ(X), 1/ε(X), 1/δ0(X)} then for all j ∈ N
we have γ+ (Fj(k), ‖ · ‖2X) 6 2C(X)γ(X)2. �

Lemma 2.2 is not the final word. Our goal is to construct a super-expander, i.e., one
sequence {Hi}∞i=1 of bounded degree graphs which is expander family with respect to all
super-reflexive Banach spaces. In order to do so, we begin by examining more closely the
proof of Theorem 2.2 and the parameters in Lemma 2.1 and in (15).

The proof of Theorem 2.2 gives (i) for each k ∈ N a sequence of graphs {Fj(k)}∞j=0, such

that Fj(k) has degree dk and nj(k) vertices, where {nj(k)}∞j=0 is a strictly increasing sequence
of integers; (ii) a nondecreasing sequence {C ′k}∞k=1 such that for every super-reflexive Banach
space X, there exists k1(X) ∈ N such that for every integer k > k1(X) and j ∈ N,

γ+
(
Fj(k), ‖ · ‖2X

)
6 C ′k1(X). (16)

¿From the proof of (15) in Section 2.3 we infer that there exist a nondecreasing sequence
{C ′′k}∞k=1 ⊆ (0,∞) and a nonincreasing sequence {εk}∞k=1 ⊆ (0, 1), such that for any super-
reflexive Banach space X there exists k2(X) ∈ N such that for any regular graph G and
t ∈ N,

γ+
(
A t(G), ‖ · ‖2X

)
6 C ′′k2(X) ·max

{
1,
γ+ (G, ‖ · ‖2X)

tεk2(X)

}
. (17)
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The analogues of properties (16) and (17) for a general family of kernels suffice to prove the
following lemma:

Lemma 2.3. Let {Fj(k)}j,k∈N be graphs as described before (16), i.e., Fj(k) has degree dk
and nj(k) vertices, where {nj(k)}∞j=0 is strictly increasing. Assume that K is a family of
kernels such that γ+(Fj(k), K) < ∞ for all K ∈ K and j, k ∈ N. Assume also that K
satisfies (16) and (17), i.e.,

• There is a nondecreasing sequence {C ′k}∞k=1 such that for every K ∈ K there exists
k1(K) ∈ N such that for every integer k > k1(K) and j ∈ N,

γ+ (Fj(k), K) 6 C ′k1(K). (18)

• There exist a nondecreasing sequence {C ′′k}∞k=1 ⊆ (0,∞) and a nonincreasing sequence
{εk}∞k=1 ⊆ (0, 1), such that for any K ∈ K there exists k2(K) ∈ N such that for any
regular graph G and t ∈ N,

γ+ (A t(G), K) 6 C ′′k2(K) ·max

{
1,
γ+ (G,K)

tεk2(K)

}
. (19)

Then there exists d ∈ N and a sequence of d-regular graphs {Hi}∞i=1 whose number of vertices
tends to ∞ with i, such that for every K ∈ K there exists C(K) ∈ (0,∞) satisfying
γ+(Hi, K) 6 C(K) for all i ∈ N.

Proof. Set Ck = max {C ′k, C ′′k} and mk =
⌈
(2C3

k)1/εk
⌉
. Let j(k) be the smallest j ∈ N

such that nj(k) > max
{
k,mk+1d

2mk+1

k+1

}
. We define Lk = Fj(k)(k). While the sequence

{γ+(Lk, K)}∞k=1 is bounded for any K ∈ K , this is not yet the desired graph sequence since
its degrees are unbounded.

We next define for every k ∈ N a sequence of graphs Lk,0, Lk,1, . . . , Lk,`(k) as follows. Along

with {Lk,j}`(k)j=0 we shall also define an auxiliary sequence {hj(k)}`(k)−1j=0 ⊆ N. Set Lk,0 = Lk
and h0(k) = k. Define h1(k) to be the smallest h ∈ N such that nj(h)(h) > dh0(k). From the
definition of j(·), we have that h1(k) < h0(k). Define

Lk,1 = Amh1(k)

(
Cnj(h1(k))(h1(k))(Lk,0)©z Lh1(k)

)
.

Note that the degree of Lk,1 is mh1(k)d
2mh1(k)
h1(k)

.

Inductively, assume we have already defined Lk,i−1, and hi−1(k), and that the degree of

Lk,i−1 is mhi−1(k)d
2mhi−1(k)

hi−1(k)
. Define hi(k) to be the smallest h ∈ N such that nj(h)(h) >

m2
hi−1(k)

d
2mhi−1(k)

hi−1(k)
. From the definition of j(·), we have that hi(k) < hi−1(k). Define

Lk,i = Amhi(k)

(
Cnj(hi(k))(hi(k))

(Lk,i−1)©z Lhi(k)

)
.

Note that the degree of Lk,i is mhi(k)d
2mhi(k)
hi(k)

.

Continue this way, until hi(k) = 1. At that point, set `(k) = i+ 1, and define

Lk,`(k) = Am1(Cnj(1)(1)(Lk,`(k)−1)©z L1).

Hence Lk,`(k) has degree m1d
2m1
1 which is a universal constant. Define Hk = Lk,`(k). We shall

now show that {Hk}∞k=1 is the desired graph sequence.
11



Fix K ∈ K and set k0(K) = max{k1(K), k2(K)}. Now fix k > k0(K). We shall first
estimate γ+ (Lk,i, K), when hi(k) > k0(K). By induction on i we shall show that as long as
hi(k) > k0(K), we have γ+ (Lk,i, K) 6 Ck0(K). If h0(k) = k > k0(K) > k1(K), then by our
assumption (18), γ+(Lk,0, K) = γ+(Fj(k)(k), K) 6 Ck0(K). Assume next that hi(k) > k0(K),
and inductively that γ+(Lk,i−1, K) 6 Ck0(K). Then using Theorem 1 and (19),

γ+(Lk,i, K) 6 Ck0(K) ·max

{
1,

2γ+(Lk,i−1, K) · γ+(Lhi(k), K)2

m
εhi(k)
hi(k)

}
(18)

6 Ck0(K) max

{
1,

2C3
k0(K)

m
εhi(k)
hi(k)

}
6 Ck0(K).

If we let i0(k) be the largest i such that hi(k) > k0(K), then we have just proved that
γ+(Lk,i0(k), K) 6 Ck0(K). For i > i0(k), we use shall only rough bounds:

γ+(Lk,i, K) 6 Ck0(K) ·max

{
1,

2γ+(Lk,i−1, K) · γ+(Lhi(k), K)2

m
εhi(k)
hi(k)

}
6 2Ck0(K)γ+(Lhi(k), K)2γ+(Lk,i−1, K). (20)

By iterating (20) we obtain the crude bound:

γ+(Hk, K) = γ+(Lk,`(k), K) 6 (2Ck0(K))k0(K)

k0(K)∏
i=1

γ+(Li, K)2. (21)

The right hand side of (21) depends on K, but not on k. Hence {γ+(Hk, K)}∞k=1 is bounded
for every K ∈ K . It remains to argue that the number of vertices of Hk tends to∞ with k.
Indeed, the number of vertices in Hk is at least as the number of vertices of Lk = Fj(k)(k)
which is nj(k)(k), and from the definition of j(k), we have nj(k)(k) > k. �

Theorem 2 (Existence of super-expanders). There exists a sequence of 9-regular graphs
{Gi}∞i=1, whose number of vertices tends to∞ with i, such that for any super-reflexive Banach
space (X, ‖ · ‖X) there is C(X) ∈ (0,∞), such that γ+(Gi, ‖ · ‖2X) 6 C(X) for every i ∈ N.

Proof. ¿From the discussion before Lemma 2.3, and by Lemma 2.3 itself, we conclude that
there exists a universal constant d ∈ N, and d-regular super-expander family {Hk}∞k=1, with
γ+(Hk, ‖ · ‖2X) 6 C(X).

Let C◦m be the m-vertex cycle with self-loops. It is an easy consequence of the triangle
inequality that for every metric space (Y, dY ) we have γ+(C◦m, d

2
Y ) 6 4m2. Thus, using

Theorem 1 once more we see that for all k ∈ N we have

γ+
(
Hk©z C◦d , ‖ · ‖2X

)
6 16d4C(X),

which is a constant depending only on X but not on k. Hence {Hk©z C◦d}∞k=1 is the required
sequence of 9-regular super-expanders. �

Remark 2.1. Similarly, the sequence {(Hk©z Co
d)©r C9}∞k=1 is a 3-regular super-expander,

where, C9 is the cycle on 9 vertices (without self-loops), and “©r ” is the replacement (graph)
product (cf. [38]). In the full version of this extended abstract we analyze the replacement
product similarly to the zigzag product analysis presented here.
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Remark 2.2. Lafforgue [17] asked whether there exists a sequence of bounded degree graphs
{Gk}∞k=1 which does not admit a coarse embedding (with uniform moduli) into any K-convex
Banach space. An examination of Lafforgue’s argument shows the his method produces
graphs {Hj(k)}j,k∈N such that for each k ∈ N the graphs {Hj(k)}j∈N have degree dk, their
cardinalities are unbounded, and for every K-convex Banach space (X, ‖ · ‖2X) there is some
k ∈ N for which supj∈N γ+(Hj(k), ‖ · ‖2X) < ∞. The problem is that the degrees {dk}k∈N
are unbounded, but this can be overcome as above by applying the zigzag product with a
cycle with self-loops. Indeed, define Gj(k) = Hj(k)©z C◦dk . Then Gj(k) is 9-regular, and as

argued in the proof of Theorem 2, we still have supj∈N γ+(Gj(k), ‖ ·‖2X) <∞. To get a single
sequence of graphs which does not admit a coarse embedding into any K-convex Banach
space, fix a bijection ψ = (a, b) : N→ N×N, and define Gm = Ga(m)(b(m)). The graphs Gm

all have degree 9. If X is K-convex then choose k ∈ N as above. If we let mj ∈ N be such
that ψ(mj) = (j, k) then we have shown that the graphs {Gmj}∞j=1 are arbitrarily large, have

bounded degree, and satisfy supj∈N γ+(Gmj , ‖ · ‖2X) <∞. The argument that was presented
in Section 1.1 implies that {Gm}∞m=1 do not embed coarsely into X.

2.3. Cesàro averages of matrices: coping with new issues that arise from non-
linearity. The goal in this section is to prove (15), i.e., the spectral calculus inequality for
Cesáro averages in super-reflexive spaces.

Recall that we use the following notation Am(A) = 1
m

∑m−1
t=0 At. Fix ε > 0 and C ∈ (0,∞).

Assume that a metric space (X, dX) satisfies the following property, which we call metric
Markov cotype 2

ε
with constant C and exponent 2: for every m,n ∈ N, every symmetric

stochastic n×n matrix A = (aij), and every x1, . . . , xn ∈ X there exist y1, . . . , yn ∈ X which
satisfy the following inequality:

n∑
i=1

dX(xi, yi)
2 +mε

n∑
i=1

n∑
j=1

aijdX(yi, yj)
2 6 C2

n∑
i=1

n∑
j=1

Am(A)ij dX(xi, xj)
2. (22)

The origin of this (admittedly cumbersome) name comes from a key linear property of normed
spaces that was introduced by Ball [1] under the name of Markov cotype in his profound
work on the Lipschitz extension problem. We will see below that any super-reflexive normed
space has metric Markov cotype 2

ε
with constant C and exponent 2 for some ε ∈ (0, 1] and

C ∈ (0,∞) (our proof uses Ball’s insights in [1]).
Informally, (22) means that the average square distance of the edges in an embedding of

the graph 1
m

∑m−1
0 At into X is larger than the average square distance of the edges in the

graph A by a factor of mε, in a different embedding of the graph A into X, which is near the
original embedding. This is formalized in the following claim whose proof is in Section 3.1.

Claim 2.4. Assuming that (X, dX) has metric Markov cotype 2
ε

with constant C and exponent
2, we have:

γ
(
Am(A), d2X

)
6 12C2 max

{
1,
γ (A, d2X)

mε

}
. (23)

In order to deduce (15), which is the variant of (23) for absolute spectral gaps, we need the
following two easy consequences of the triangle inequality. The proofs appear in Section 3.1.

Claim 2.5. For every doubly stochastic n× n matrix A, and any metric space X,

2

5
γ
(
( 0 A
A 0 ) , d2X

)
6 γ+

(
A, d2X

)
6 2γ

(
( 0 A
A 0 ) , d2X

)
. (24)
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Claim 2.6. For every doubly stochastic n× n matrix A, and any metric space X,

γ
((

0 Am(A)
Am(A) 0

)
, d2X

)
6 9γ

(
Am ( 0 A

A 0 ) , d2X
)
. (25)

By combining (23) with (24) and (25) we deduce (15) with C(X) 6 540C2 whenever
(X, dX) satisfies (22).

It remains to explain why any super-reflexive normed space (X, ‖ · ‖X) has metric Markov
cotype 2

ε
with constant C and exponent 2 for some ε, C ∈ (0,∞). An important theorem

of Pisier [31] says that X has an equivalent norm whose modulus of uniform convexity has
power type p for some p ∈ [2,∞). From this fact, together with results from [6, 2], we deduce
the following variant of Pisier’s martingale inequality [31], which is proved in Section 3.2:

m∑
k=1

E
[
‖Mk −Mk−1‖2X

]
. m1− 2

p E
[
‖Mm −M0‖2X

]
, (26)

for every square integrable martingale {Mk}mk=0 ⊆ X, where the implied constant in (26)
depends on X.

In order to deduce (22) from (26) fix x1, . . . , xn ∈ X and define f : {1, . . . , n} → X by

f(i) = xi. For every ` ∈ {1, . . . , n} let
{
Z

(`)
t

}m
t=0

be the Markov chain on {1, . . . , n} which

starts at ` and has transition matrix A. In other words Z
(`)
0 = ` with probability 1 and for

t ∈ {1, . . . ,m}, i, j ∈ {1, . . . , n} we have Pr
[
Z

(`)
t = j

∣∣Z(`)
t−1 = i

]
= aij. For t ∈ {0, . . . ,m}

define ft : {1, . . . , n} → X by ft(i) =
∑n

j=1(A
m−t)ijf(j). A simple computation shows

that if we set M
(`)
t = ft

(
Z

(`)
t

)
then

{
M

(`)
t

}m
t=0

is a martingale with respect to the filtration

induced by
{
Z

(`)
t

}m
t=0

. We can therefore apply (26) to this martingale, and then average over
` ∈ {1, . . . , n}, to get the inequality:

m∑
t=1

n∑
i=1

n∑
j=1

aij ‖ft(i)− ft−1(j)‖2X . m1− 2
p

n∑
i=1

n∑
j=1

(Am)ij

∥∥∥∥∥xi −
n∑
r=1

(Am)jrxr

∥∥∥∥∥
2

X

. (27)

If we choose yi = 1
m

∑m−1
s=0 (As)ijxj for i ∈ {1 . . . , n}, then we can use convexity to deduce

the bound:

m∑
t=1

n∑
i=1

n∑
j=1

aij ‖ft(i)− ft−1(j)‖2X > m

n∑
i=1

n∑
j=1

aij

∥∥∥∥∥ 1

m

m∑
t=1

(ft(i)− ft−1(j))
∥∥∥∥∥
2

X

= m

n∑
i=1

n∑
j=1

aij

∥∥∥∥∥yi − yj − 1

m

n∑
r=1

(Am)jr(xj − xr)
∥∥∥∥∥
2

X

>
m

2

n∑
i=1

n∑
j=1

aij ‖yi − yj‖2X −
1

m

n∑
j=1

n∑
r=1

(Am)jr ‖xj − xr‖2X . (28)
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At the same time we can bound the right-hand side of (27) as follows:

n∑
i=1

n∑
j=1

(Am)ij

∥∥∥∥∥xi −
n∑
r=1

(Am)jrxr

∥∥∥∥∥
2

X

6
n∑
i=1

n∑
j=1

n∑
r=1

(Am)ij(A
m)jr ‖xi − xr‖2X

6 2
n∑
i=1

n∑
j=1

n∑
r=1

(Am)ij(A
m)jr

(
‖xi − xj‖2X + ‖xj − xr‖2X

)
= 4

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖2X . (29)

We note that:
n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖2X =
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

AtAm−t

)
ij

‖xi − xj‖2X

6
2

m

n∑
i=1

n∑
j=1

n∑
r=1

m−1∑
t=0

(At)ir(A
m−t)rj

(
‖xi − xr‖2X + ‖xr − xj‖2X

)
= 2

n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

At

)
ij

‖xi − xj‖2X + 2
n∑
i=1

n∑
j=1

(
1

m

m∑
t=1

At

)
ij

‖xi − xj‖2X

6 4
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

At

)
ij

‖xi − xj‖2X +
2

m

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖2X ,

which implies (by separating the cases m > 4 and m < 4) the bound:

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖2X .
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

At

)
ij

‖xi − xj‖2X . (30)

Substituting (28) and (29) into (27) yields the bound:

m2/p

n∑
i=1

n∑
j=1

aij ‖yi − yj‖2X .
n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖2X

(30)

.
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

At

)
ij

‖xi − xj‖2X . (31)

At the same time,

n∑
i=1

‖xi − yi‖qX =
n∑
i=1

n∑
j=1

∥∥∥∥∥ 1

m

m−1∑
t=0

(At)ij(xi − xj)
∥∥∥∥∥
q

X

6
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

At

)
ij

‖xi − xj‖qX . (32)

Inequalities (31) and (32) imply (22) with ε = 2
p
, as required.
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2.4. Constructing the base graph: the heat semigroup on the tail space. In this
section we outline the proof of Lemma 2.1 — the existence of “sufficiently good” base graphs
for the class of K-convex spaces (which contain the class of super-reflexive spaces as a
subclass). Some of the details are deferred to Section 3.4.

We begin with few definitions. Let F2 = {0, 1} be the field of two elements, and (X, ‖ ·‖X)
a given normed space. Lp(X) denotes the normed space of functions f : V → X, where V is
an (implicit) finite set (in this paper, V is the vertex set of some graph, and in this section

it is V = Fn2 ) and the norm is ‖f‖Lp(X) =
(

1
|V |
∑

x∈V ‖f(x)‖pX
)1/p

. Given a V × V symmetric

stochastic matrix A, we view A as a linear operator over Lp(X): For f ∈ Lp(X) we define
Af as (Af)(i) =

∑
j Aijf(j) — essentially we identify A with A ⊗ IX . For f ∈ L2(X),

let f̂(A) = E [f(x)WA(x)] be the Fourier coefficient corresponding to the Walsh function
WA(x) = (−1)

∑
i∈A xi , where the expectation is with respect to the uniform probability

measure on Fn2 . Let ∂if(x) = f(x+ei)−f(x)
2

(where {ei}ni=1 is the standard basis) and ∆f =∑n
i=1 ∂if .
The starting point of our construction is the example of Khot and Naor [16] of quotients of

the hypercube by good codes, as examples of metric spaces for which Bourgain’s embedding
theorem [4] is asymptotically sharp. It would be instructive to first recall the argument
from [16]. Thinking of the cube Fn2 as an n-dimensional vector space over F2, let C ⊆ Fn2
be a linear subspace of dimension at least n

10
such that the minimum number of 1’s in any

non-zero element of C is m > n
10

(a good code). Given a function f : Fn2/C⊥ → X we will

think of f as a function defined on all of Fn2 which is constant on cosets of C⊥. The following
claim is a simple observation of [16]:

Claim 2.7. Let C ⊆ Fn2 be a linear code with minimum distance of m, and fix f : Fn2 → X

which is constant on cosets of C⊥. Then f̂(A) = 0 for all nonempty A ⊆ {1, . . . , n} of
cardinality less than m.

Since ∆WA = |A|WA and the (nonempty) Fourier spectrum of f is supported on sets
of size at least m, it follows from Parseval’s identity that if X is a Hilbert space then
‖∆f‖L2(X) > m‖f − E f‖L2(X). But ‖∆f‖L2(X) = ‖∑n

i=1 ∂if‖L2(X) 6
∑n

i=1 ‖∂if‖L2(X) and

‖f−E f‖2L2(X) = 1
2
Ex,y [‖f(x)− f(y)‖22]. An application of Cauchy-Schwarz and the fact that

m � n now implies that Ex,y [‖f(x)− f(y)‖22] . 1
n

∑n
i=1 ‖∂if‖2L2(X). A moment of thought

reveals that this is the desired Poincaré inequality (in the case of Hilbert space), where the
graph in question is on the vertex set Fn2/C⊥, and each coset x + C⊥ is joined by an edge
to the cosets {x + ei + C⊥}ni=1. In fact, this graph has degree logarithmic in the number of
vertices, which is much better than the assertion in Lemma 2.1.

In order to make this idea work for a non-Hilbertian normed space X it would be desirable
to prove that if f : Fn2 → X is in the m-tail space, i.e., the subspace of L2(X), denoted

L>m2 (X), consisting of functions f : Fn2 → X with f̂(A) = 0 whenever |A| < m, then
‖∆f‖L2(X) & m‖f‖L2(X). This fact is false without some additional assumption on the
geometry of X — in the full version of this extended abstract we observe that it fails when
X = L1. Recall from Section 1.1 that a Banach space X is called K-convex if there exists
ε0 > 0 and n0 ∈ N such that any embedding of `n0

1 into X incurs distortion at least 1 + ε0.
Here we will show that if X is K-convex then there exists δ = δ(X) > 0 such that if
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f ∈ L>m2 (X) then
‖∆f‖L2(X) & mδ‖f‖L2(X). (33)

While this bound is insufficient for our purpose, from the the proof of (33) we can extract
a graph which is more complicated than Fn2/C⊥ (but is of independent interest), and whose
degree bound to what is claimed in Lemma 2.1, which will serve as the base graph(s) for
K-convex spaces.

The key idea is to consider the heat semigroup {Tt}t>0 of operators given by

(Ttf)(x) =
∑
A⊆[n]

e−t|A|f̂(A)WA(x).

and make use of the following lemma, which is the heart of our argument.

Lemma 2.8. If X is a K-convex Banach Space, and p > 1, then there exist α > 1, a > 0,
such that for every n,m ∈ N, m 6 n, every t > 0, and every f : Fn2 → X, f ∈ L>mp (X),

‖Ttf‖Lp(X) . e−ammin{t,tα}‖f‖Lp(X), (34)

The proof of Lemma 2.8 is based on deep results of Pisier on holomorphic extensions of
the heat semigroup on K-convex spaces [33], and a quantitative version of the proof of a
recent factorization theorem of Pisier [34]. The proof is contained in Section 3.4.1.

Note that when m > 1, ∆ is invertible on L>mp (X), and moreover we have the identity

∆−1 =
∫∞
0
Ttdt, since ∆−1WA = |A|−1WA, and(∫ ∞

0

Ttdt

)
WA =

∫ ∞
0

TtWAdt =

∫ ∞
0

e−t|A|WAdt = |A|−1WA.

Hence by integrating (34) over t, it immediately implies (33).
Inequality (34) will serve as the basis for our base graph. This is made transparent by

the observation that the heat semigroup can be viewed as a noise operator with noise rate
1−e−t

2
. The following standard claim (whose proof is recalled in Section 3.4) formalizes this

statement.

Claim 2.9. For every f : Fn2 → X, x ∈ Fn2 , and t ∈ (0,∞),

(Ttf)(x) =
∑
y∈Fn2

(
1− e−t

2

)‖x−y‖1
·
(

1 + e−t

2

)n−‖x−y‖1
f(y). (35)

Hence Tt induces a natural weighted graph structure on Fn2 : the weight of the edge joining

x, y ∈ Fn2 is
(

1−e−t
2

)‖x−y‖1 (
1+e−t

2

)n−‖x−y‖1
. Our base graph is “morally” the quotient of this

weighted cube by C⊥. When t ≈ n−1/α, the factor in the right hand side of (34) becomes
a constant, and this implies a Poincaré inequality because of the following general estimate
(proved in Section 3.4).

Proposition 2.10. Fix a Banach space X, a symmetric stochastic N × N matrix A, and
p > 1. Assume that there exists 1 > λ > 0 such that for every f : [N ]→ X with

∑N
i=1 f(i) =

0 we have,
‖Af‖Lp(X) 6 λ‖f‖Lp(X). (36)

Then,
γ+(A, ‖ · ‖pX) 6 8p(1− λ)−p.
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Still, “Tt/C
⊥” is not a low degree unweighted graph. To make it an unweighted graph

we first truncate the weights of Tt below an appropriate threshold, and approximate the
remaining (large enough) weights using multiple parallel edges. This process is summarized
in the following lemma (whose proof is deferred to the full version due to lack of space).

Lemma 2.11. Let τ = (1− e−t)/2. There exists a Cayley graph on Fn2 , G = (Fn2 , E), having
degree at most τ−4τn(1 − τ)−(1−4τ)n such that for every metric space (X, dX), p > 1 and
f, g : Fn2 → X,

1

3|E|
∑

(x,y)∈E

dX(f(x), g(y))p

6
1

2n

∑
x,y∈Fn2

(Tt)xydX(f(x), g(y))p 6
3

|E|
∑

(x,y)∈E

dX(f(x), g(y))p, (37)

as long as 18τ 2n > 2p log n+ log 4.

Only then we pass to the quotient Fn2/C⊥ by identifying vertices within each coset and
dividing the number of the resulting “quotient edges” between each coset by |C⊥|. This is
formally summarized as the proof of Lemma 2.1.

Proof of Lemma 2.1. The argument works for any power p ∈ (1,∞) and not just p = 2. Fix
a K-convex Banach space X, and let α > 1 and a > 0 as in Lemma 2.8.

Fix n ∈ N. Set t = min{n−1/α/a, 0.1}, τ = (1−e−t)/2 and apply the discretization process
— Lemma 2.11 — on Tt, from which we obtain a Cayley graph G = Gn = (Fn2 , E) whose
degree is at most

τ−4τn(1− τ)(1−4τ)n 6 τ−8τn 6 max
{

40320·1010α , n2n1−1/aα/α/a
}
. en

1−δ
,

for some δ = δ(X) ∈ (0, 1), depending only on α and a (and hence on X), but not on n.
Let C ⊆ Fn2 be a “good” linear code of dimension at least n/10 and minimum weight

m > n/10. We define H = Hn = (Fn2/C⊥, E/C⊥): the quotient of G by C⊥, whose vertex-
set is the set of cosets of C⊥ and in the edge (multi)set E/C⊥ the number of edges between
two cosets x + C⊥ and y + C⊥, is the number of edges in G with one endpoint in x + C⊥

and the other in y + C⊥ divided by |C⊥|. Since C⊥ is a linear subspace in a vector space,
the degree of H is the same as the degree of G.

Next, fix f : Fn2/C⊥ → X with
∑

x∈Fn2 /C⊥
f(x) = 0. Thinking on f as a function on

Fn2 which is constant on cosets of C⊥, we have by Claim 2.7 that f̂(A) = 0 for every
∅ 6= A ⊆ {1, . . . , n}, |A| < m. Hence by Lemma 2.8,

‖Ttf‖Lp(X) . e−amt
α‖f‖Lp(X) 6 λ‖f‖Lp(X),

where 0 < λ < 1 is a universal constant. Since this is true for any f : Fn2/C⊥ → X with∑
x∈Fn2 /C⊥

f(x) = 0, applying Proposition 2.10 we have that for every f, g : Fn2/C⊥ → X,

|C⊥|2
22n

∑
x,y∈Fn2 /C⊥

‖f(x)− g(y)‖2X

.
|C⊥|
2n

∑
x,y∈Fn2 /C⊥

1

|C⊥|
∑

a,b∈C⊥
(Tt)x+a,y+b‖f(x+ a)− g(y + b)‖2X (38)
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=
1

2n

∑
x,y∈Fn2

(Tt)x,y‖f(x)− g(y)‖2X

6
3

|E|
∑

(x,y)∈E

‖f(x)− g(y)‖2X (39)

=
3

|E/C⊥|
∑

(x,y)∈E/C⊥
‖f(x)− g(y)‖2X .

The estimate (38) follows from Proposition 2.10, and (39) follows from (37), and is valid
since 18τ 2n > 4 log n+ log 4. �

2.5. Discussion. In the full version of this extended abstract we will also establish the
metric Markov cotype property (22) for other classes of metric spaces, including CAT (0)
metric spaces, and in particular simply connected manifolds with non-positive sectional
curvature (in which case we can take C = O(1) and ε = 1). We will discuss this notion in
detail and show that it implies a slight variant of Ball’s Markov cotype. This fact is new for
CAT (0) metric spaces, and hence, in conjunction with Ball’s extension theorem [1], our work
implies a new Lipschitz extension theorem for CAT (0) targets: any Lipschitz function from
a subset U of a metric space (X, dX) which has Markov type 2 and takes values in a CAT (0)
metric space (Y, dY ) can be extended to a Lipschitz function defined on all of X whose
Lipschitz constant is larger by at most a constant factor (depending on X). The definition
of the notion of Markov type is beyond the scope of this extended abstract: it suffices to say
that we can take X to be Hilbert space [1], or Lp for p ∈ [2,∞) and even more generally a
normed spaces whose modulus of smoothness has power type 2 [26], a tree, the word metric
on a hyperbolic group or a simply connected manifold with pinched sectional curvature [26],
series parallel graphs [5], or Alexandrov spaces (in particular manifolds) of non-negative
curvature [29]. While we believe that this extension theorem is a key consequence of our
work, for lack of space we defer the discussion about it to the full version of this paper.

Another major addition to the full version of this extended abstract will be a different
proof of the decay of the Poincaré constant of powers of symmetric stochastic matrices in
super-reflexive spaces and in CAT (0) spaces. This proof is based on using norm bounds.
The norm bound λ(A,X, p) for a doubly stochastic n× n matrix A in a normed space X is
the smallest λ > 0 satisfying (36). The quantity λ(A,R, 2) is the second absolute eigenvalue
of A, and Proposition 2.10 shows that it always controls γ+(A, ‖ · ‖pX) from above. We show
in the full version that when X is p-convex, λ(A,X, p) also controls γ+(A, ‖·‖pX) from below,
and this allows us to obtain a short proof of the decay of γ+(At, ‖ · ‖pX) as a function of t
when X is a p-convex space. This alternative approach has the advantage that it proves the
decay of the Poincaré constant of the power of the matrix instead of its Cesáro average, and
it is also shorter than the Markov cotype approach. However, in many respects it is less
“robust” than the Markov cotype approach taken here, it yields worse bounds, and most
importantly, it yields a Poincaré inequality which is insufficient for our construction of zigzag
super-expanders. All of these issues will be discussed in the full version.

A major question left open is what are the geometric conditions which allows for “suffi-
cient” decay (for the purposes of our zigzag iteration) of the Poincaré constant. We give an
example in Section 3.3 for a metric space in which the decay is insufficient. However, there
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are natural spaces like L∞ and L1 for which we do not know the answer. Indeed, it may be
the case that any normed space has a sufficient decay.

Another question is what are the geometric conditions on metric spaces for the existence
of expanders with respect to those spaces. It is tempting to conjecture that for normed
spaces, having such an expander is equivalent to having finite cotype (i.e., ∃ε0 > 0, n0 ∈ N
such that `n0

∞ does not embed with distortion less than 1 + ε0).
As was mentioned in Section 1.1, it is an open question whether every “classical” expander

is also super-expander. In the full version we rule out the most obvious approach to prove
such a result: coarsely embedding any expander family in any other expander family. We
give an example of two expander families F1 and F2 such that F1 does not coarsely embed
in F2.

It seems to be a challenging problem whether in (33) we can take δ = 1. Even in the case
X = Lp, p 6= 2, this seems to be unknown. A classical result of Meyer [24] implies that for
p > 2 we can take δ = 1

2
, but even this improved bound is insufficient for our purpose of

constructing a “sufficiently good” base graph.

3. Some Details

3.1. Markov cotype and the decay of γ.

Proof of Claim 2.4. Write B = (bij) = 1
m

∑m−1
t=0 At. We may assume that γ (B, d2X) > 12C2,

since otherwise we are done. This assumption implies that there exist x1, . . . , xn ∈ X such
that:

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2 >

12C2

n

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2. (40)

Let y1, . . . , yn ∈ X be as in (22). Note that for all i, j ∈ {1, . . . , n} we have:

dX(xi, xj)
2 6 [dX(xi, yi) + dX(yi, yj) + dX(yj, xj)]

2

6 3dX(xi, yi)
2 + 3dX(yi, yj)

2 + 3dX(yj, xj)
2. (41)

By averaging (41) we get the bound:

1

n2

n∑
i=1

n∑
j=1

dX(yi, yj)
2 >

1

3n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2 − 2

n

n∑
i=1

dX(xi, yi)
2

=
1

6n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2 +

1

6n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2 − 2

n

n∑
i=1

dX(xi, yi)
2

(40)
>

1

6n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2 +

2C2

n

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2 − 2

n

n∑
i=1

dX(xi, yi)
2

(22)

>
1

6n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2. (42)
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Using (22) once more, in conjunction with the definition of γ (A, d2X), we see that:

C2

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2 >

mε

γ(A, d2X)
· 1

n2

n∑
i=1

n∑
j=1

dX(yi, yj)
2

(42)
>

mε

6γ(A, d2X)
· 1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
2.

This concludes the proof of (23). �

Proof of Claim 2.5. Fix f, g : [n]→ X, and define h : [2n]→ X,

h(x) =

{
f(x) x 6 n

g(x− n) x > n.

Then

1

n2

∑
x,y∈[n]

dX(f(x), g(y))2 =
1

n2

∑
x,y∈[n]

dX(h(x), h(y + n))2

6
2

(2n)2

∑
x,y∈[2n]

dX(h(x), h(y))2

6 γ
(
( 0 A
A 0 ) , d2X

) 2

2n

∑
x,y∈[n]

2AxydX(h(x), h(y + n))2

=
2γ (( 0 A

A 0 ) , d2X)

n

∑
x,y∈[n]

AxydX(f(x), g(y))2.

We next prove the lower bound. Fix h : [2n]→ X, and define f, g : [n]→ X, f(x) = h(x),
and g(x) = h(x+ n). Then,

1

n2

∑
x,y∈[n]

dX(h(x), h(y))2 6
1

n2

∑
x,y∈[n]

2
∑
z∈[n]

(
dX(h(x), h(z + n))2 + dX(h(y), h(z + n))2

)
=

4

n2

∑
x,y∈[n]

dX(f(x), g(y))2.

Similarly,

1

n2

∑
x,y∈[n]

dX(h(x+ n), h(y + n))2

6
1

n2

∑
x,y∈[n]

2
∑
z∈[n]

(
dX(h(x+ n), h(z))2 + dX(h(y + n), h(z))2

)
=

4

n2

∑
x,y∈[n]

dX(f(x), g(y))2.
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Hence, by summing the above two inequalities,

1

(2n)2

∑
x,y∈[2n]

dX(h(x), h(y))2

=
1

(2n)2

∑
x,y∈[n]

dX(h(x), h(y))2 +
1

(2n)2

∑
x,y∈[n]

dX(h(x+ n), h(y + n))2

+
1

(2n)2

∑
x,y∈[n]

dX(h(x), h(y + n))2 +
1

(2n)2

∑
x,y∈[n]

dX(h(x+ n), h(y))2

6
1 + 1 + 0.25 + 0.25

n2

∑
x,y∈[n]

dX(f(x), g(y))2

6
2.5γ+(G, d2X)

n

∑
x,y∈[n]

AxydX(f(x), g(y))2

=
2.5γ+(G, d2X)

n

∑
x,y∈[n]

AxydX(h(x), h(y + n))2. �

Proof of Claim 2.6. We observe that for odd t,
(

0 A
A 0

)t
=
(

0 At

At 0

)
. What complicates matters

is that for even t,
(

0 A
A 0

)t
=
(
At 0
0 At

)
. However, we can write every even t > 0 as a sum of

two almost unique odd numbers by defining for even t, o1(t) 6 o2(t) the unique pair of odd
numbers such that o2(t)− o1(t) 6 2, and o1(t) + o2(t) = t. Note that the multiset

{o1(t), o2(t) : t is even, and t 6 m}
contains all the odd numbers in the range {1, . . . bm/2c+1}, and at most four items for each
value. Let B =

(
0 A
A 0

)
. We therefore can bound for every h : [2n]→ X,

1

2n

∑
x,y∈[2n]

(Am(B))xydX(h(x), h(y))2 =
1

2nm

m−1∑
t=0

∑
x,y∈[2n]

(Bt)xydX(h(x), h(y))2

6
1

2nm

∑
t∈[m]
t is odd

∑
x,y∈[2n]

(Bt)xydX(h(x), h(y))2 +
1

2nm

∑
x∈[2n]

dX(h(x), h(x))2

+
1

2nm

∑
t∈{2,...,m−1}
t is even

2

( ∑
x,y∈[2n]

(Bo1(t))xydX(h(x), h(y))2 +
∑

x,y∈[2n]

(Bo2(t))xydX(h(x), h(y))2
)

6
9

2nm

∑
t∈[m]
t is odd

∑
x,y∈[2n]

(Bt)xydX(h(x), h(y))2

=
9

2nm

∑
t∈[m]
t is odd

∑
x,y∈[2n]

(
0 At

At 0

)
xy
dX(h(x), h(y))2

6
9

2n

∑
x,y∈[2n]

( 0 Am(A)
Am(A) 0

)
dX(h(x), h(y))2.
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Hence

1

(2n)2

∑
x,y∈[2n]

dX(h(x), h(y))2 6
γ
(
A m

(
0 A
A 0

)
, d2X

)
2n

·
∑

x,y∈[2n]

(
Am

(
0 A
A 0

))
xy
dX(h(x), h(y))2

6
9γ
(
A m

(
0 A
A 0

)
, d2X

)
2n

·
∑

x,y∈[2n]

( 0 Am(A)
Am(A) 0

)
dX(h(x), h(y))2,

which means that
γ
(( 0 Am(A)

Am(A) 0

)
, d2X

)
6 9γ

(
A m

(
0 A
A 0

)
, d2X

)
. �

3.2. Proof of (26). Our methods here are inspired by Ball’s proof [1] of the Markov cotype
property. Let (X, ‖ · ‖X) be a normed space. The modulus of uniform convexity of X is
defined for ε ∈ [0, 2] as

δX(ε) = inf

{
1− ‖x+ y‖X

2
: x, y ∈ X, ‖x‖X = ‖y‖X = 1, ‖x− y‖X = ε

}
. (43)

A normed space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Further-
more, X is said to have modulus of convexity of power type p if there exists a constant c such
that δ(ε) > c εp for all ε ∈ [0, 2]. It is straightforward to check that in this case necessarily
p > 2. By Proposition 7 in [2] (see also [6]), X has modulus of convexity of power type p if
and only if there exists a constant K > 0 such that for every x, y ∈ X

2 ‖x‖pX +
2

Kp
‖y‖pX 6 ‖x+ y‖pX + ‖x− y‖pX . (44)

The least K for which (44) holds is called the p-convexity constant of X, and is denoted
Kp(X).

The following lemma is stated and proved in [1] when p = 2.

Lemma 3.1. Let X be a normed space and U a random vector in X with E ‖U‖pX < ∞.
Then

‖EU‖pX +
E ‖U − EU‖pX

(2p−1 − 1)Kp(X)p
6 E ‖U‖pX . (45)

Proof. We repeat here the p > 2 variant of the argument from [1] for the sake of completeness.
Define

θ = inf

{
E ‖V ‖pX − ‖EV ‖pX
E ‖V − EV ‖pX

: V ∈ Lp(X) ∧ E ‖V − EV ‖pX > 0

}
. (46)

Then θ > 0. Our goal is to show that

θ >
1

(2p−1 − 1)Kp(X)p
. (47)

Fix φ > θ. Then there exists a random vector V0 ∈ Lp(X) for which

φE ‖V0 − EV0‖pX > E ‖V0‖pX − ‖EV0‖pX . (48)

Fix K > Kp(X). Apply the inequality (44) point-wise to the vectors x = 1
2
V0 + 1

2
EV0 and

y = 1
2
V0 − 1

2
EV0, to get that

2

∥∥∥∥1

2
V0 +

1

2
EV0

∥∥∥∥p
X

+
2

Kp

∥∥∥∥1

2
V0 −

1

2
EV0

∥∥∥∥p
X

6 ‖V0‖pX + ‖EV0‖pX . (49)
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Hence

φE‖V0 − EV0‖pX
(48)
> E ‖V0‖pX − ‖EV0‖pX

(49)

> 2

(
E
∥∥∥∥1

2
V0 +

1

2
EV0

∥∥∥∥p
X

−
∥∥∥∥E(1

2
V0 +

1

2
EV0

)∥∥∥∥p
X

)
+

2

Kp
E
∥∥∥∥1

2
V0 −

1

2
EV0

∥∥∥∥p
X

(46)

> 2E
∥∥∥∥(1

2
V0 +

1

2
EV0

)
− E

(
1

2
V0 +

1

2
EV0

)∥∥∥∥p
X

+
2

Kp
E
∥∥∥∥1

2
V0 −

1

2
EV0

∥∥∥∥p
X

=

(
θ

2p−1
+

1

2p−1Kp

)
E ‖V0 − EV0‖pX .

Thus

φ >
θ

2p−1
+

1

2p−1Kp
. (50)

Since (50) holds for all φ > θ and K > Kp(X), the desired lower bound (47) follows. �

Let X be a Banach space with Kp(X) < ∞. Assume that {Mk}nk=0 ⊆ X is a martingale
with respect to the filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn−1; that is, E (Mi+1|Fi) = Mi for every
i ∈ {0, 1, . . . , n− 1}. Lemma 3.1 implies that

E
[
‖Mn −M0‖pX | Fn−1

]
> ‖E [Mn −M0| Fn−1]‖pX +

E [‖Mn −M0 − E [Mn −M0| Fn−1]‖pX | Fn−1]
(2p−1 − 1)Kp(X)p

= ‖Mn−1 −M0‖pX +
E [‖Mn −Mn−1‖pX | Fn−1]

(2p−1 − 1)Kp(X)p
. (51)

Taking expectation in (51) implies that

E [‖Mn −M0‖pX ] > E [‖Mn−1 −M0‖pX ] +
E [‖Mn −Mn−1‖pX ]

(2p−1 − 1)Kp(X)p
.

Iterating this argument we obtain the following famous inequality of Pisier [31].

Theorem 3 (Pisier [31]). Let X be a Banach space with Kp(X) < ∞. Assume that
{Mk}nk=0 ⊆ X is a martingale (with respect some filtration). Then

E [‖Mn −M0‖pX ] >

∑n
k=1 E [‖Mk −Mk−1‖pX ]

(2p−1 − 1)Kp(X)p
.

We shall also need the following variant of Pisier’s inequality:

Corollary 3.2. For every p, q ∈ (1,∞) there is a constant c(p, q) ∈ (0,∞) with the fol-
lowing properties. Let X be a normed space with Kp(X) < ∞. Then for every martingale
{Mk}nk=0 ⊆ X, if p 6 q, then

E [‖Mn −M0‖qX ] >
c(p, q)

Kp(X)p

n∑
k=1

E [‖Mk −Mk−1‖qX ] . (52)

and if p > q, then

E [‖Mn −M0‖qX ] >
c(p, q)

n1− q
pKp(X)q

n∑
k=1

E [‖Mk −Mk−1‖qX ] . (53)
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Proof. Here we only prove the case q 6 p, since it is the only one needed in the sequel. By
a theorem of Figiel [6] (combined with [2, Proposition 7]) we have Kp(Lq(X)) 6 CKp(X),
where C depends only on p, q. We may therefore apply (44) to the vectors

x = Mn−1 −M0 +
Mn −Mn−1

2
∈ Lq(X),

y =
Mn −Mn−1

2
∈ Lq(X)

to get

2

(
E
[∥∥∥∥Mn−1 −M0 +

Mn −Mn−1

2

∥∥∥∥q
X

])p/q
+

2

2pCKp(X)p
(E [‖Mn −Mn−1‖qX ])

p/q

6 (E [‖Mn −M0‖qX ])
p/q

+ (E [‖Mn−1 −M0‖qX ])
p/q
. (54)

Assume that {Mk}nk=0 ⊆ X is a martingale with respect to the filtration F0 ⊆ F1 ⊆ · · · ⊆
Fn−1. Then

E [‖Mn−1 −M0‖qX ] = E [‖Mn−1 −M0 + E [Mn −Mn−1| Fn−1]‖qX ] 6 E [‖Mn −M0‖qX ] ,

and

E [‖Mn−1 −M0‖qX ] = E
[∥∥∥∥Mn−1 −M0 + E

[
Mn −Mn−1

2

∣∣∣∣Fn−1]∥∥∥∥q
X

]
6 E

[∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥q
X

]
.

Thus (54) implies that

(E [‖Mn−1 −M0‖qX ])
p/q

+
(E [‖Mn −Mn−1‖qX ])

p/q

2pCKp(X)p
6 (E [‖Mn −M0‖qX ])

p/q
. (55)

Applying (55) inductively we get the lower bound

2pCKp(X)p (E [‖Mn −M0‖qX ])
p/q >

n∑
k=1

(E [‖Mk −Mk−1‖qX ])
p/q

>
1

n
p
q
−1

(
n∑
k=1

E [‖Mk −Mk−1‖qX ]

)p/q

,

which is precisely (53). �

Note that Corollary 3.2 specialized to q = 2 is precisely (26).

3.3. A metric space without uniform decay of the Poincaré constant. Observe that
as long as a metric space (X, dX) contains at least two points, the fact that γ+(A, dpX) <∞
implies that A is ergodic, and therefore limt→∞ γ+(At, dpX) = limt→∞ γ+(At(A), dpX) = 1.
However this weak decay is insufficient for our purposes. For the iterative construction in
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this paper we need at the very least the following type of uniform decay of the Poincaré
constant:

∀M > 1 ∃t ∈ N∃s0 ∈ [1,∞)∀n ∈ N ∀A ∈Mn(R) symmetric & stochastic,

γ+(A, dpX) > s0 =⇒ γ+(At(A), dpX) 6
γ+(A, dpX)

M
.

Here we show that there exists a metric space with no such uniform decay.

Proposition 3.3. There exists a metric space (X, ρ), and graphs {Gn = (Vn, En)}∞n=1, where
|Vn| = n, such that limn→∞ γ+(Gn, ρ

2) = ∞, and for every t ∈ N, there exists N0 such that
for every n > N0, γ+(At(Gn), ρ2) > 1

2
γ+(Gn, ρ).

Proof. Let Gn = (Vn, En) be an arbitrary family of constant degree expanders, i.e., Gn is a
degree d (say d = 4), n-vertex graph satisfying γ+(Gn, ‖ · ‖22) 6 C, for some C > 0. Let
(X, ρ) be the metric space defined as follows: as a set, X = `∞∩Zℵ0 , i.e., the set of all finite
integer-valued sequences. The metric ρ on X is given by ρ(x, y) = log(1 + ‖x− y‖∞). Note
that ρ is indeed a metric since T (s) = log(1 + s) is concave, increasing and T (0) = 0 (i.e.,
ρ = T ◦ ‖ · ‖∞ is a metric transform of the `∞ norm).

First we prove that γ+(Gn, ρ
2) . (log(1 + log n))2. Let f, g : Gn → X be arbitrary

mappings. Our goal is to prove that

1

n2

∑
u,v∈V

ρ(f(u), g(v))2 .
(log(1 + log n))2

nd

∑
{u,v}∈E

ρ(f(u), f(v))2.

Write S = f(V ) ∪ g(V ) ⊆ Z∞. Let B : (S, ‖ · ‖∞)→ `2 be the Bourgain embedding [4] of S
equipped the `∞ norm into `2, i.e., for every u, v ∈ V ,

‖f(u)− g(v)‖∞ 6 ‖B(f(u))−B(g(v))‖2 6 c(1 + log n)‖f(u)− g(v)‖∞. (56)

for some constant c > 1.
We next apply the metric transform T (x) = log(1+x) to (56), and obtain for f(u) 6= g(v),

ρ(f(u), g(v)) = T (‖f(u)− g(v)‖∞)

6 T (‖B(f(u))−B(g(v))‖2)
6 log (1 + c(1 + log n)‖f(u)− g(v)‖∞)

6 log(c(1 + log n)) + log(2‖f(u)− g(v)‖∞)

. log(1 + log n) · ρ(f(u), g(v)). (57)

The second and last inequalities above follow from the fact that ‖f(u)− g(v)‖∞ > 1.
As was shown in [22, Remark 5.4], there exists a universal constant c′ > 1 and a mapping

φ : `2 → `2 such that for all x, y ∈ `2 we have T (‖x− y‖2) 6 ‖φ(x)−φ(y)‖2 6 c′T (‖x− y‖2).
This fact, together with (57), implies that the mapping ψ = φ ◦B : S → `2 satisfies:

ρ(f(u), g(v)) 6 ‖ψ(f(u))− ψ(g(v))‖2 . log(1 + log n) · ρ(f(u), g(v)),

for every u, v ∈ V . Applying the Poincaré inequality of G in `2 we conclude that

1

n2

∑
u,v∈V

ρ(f(u), g(v))2 6
1

n2

∑
u,v∈V

‖ψ(f(u))− ψ(g(v))‖22
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.
1

nd

∑
(u,v)∈E

|ψ(f(u))− ψ(g(v))‖22 .
(log(1 + log n))2

nd

∑
(u,v)∈E

ρ(f(u), g(v))2.

This proves that γ+(Gn, ρ
2) . (log(1 + log n))2.

Next, we show a lower bound on γ+(At(G), ρ). For this purpose it is sufficient to examine
a specific embedding of At(G) in X. Let g = f : V → Zℵ0 which is an isometric embedding of
the shortest path metric on At(G) into (Zℵ0 , ‖·‖∞). In this case for every {u, v} ∈ E(At(G)),
ρ(f(u), f(v)) = T (‖f(u)−f(v)‖∞) = T (1) = 1. On the other hand, since the degree of At(G)
is tdt, at least half of the pairs in V × V are at distance & logn

t log d
in the shortest path metric

metric on At(G), and hence their images under f are at ρ-distance > log
(

1 + c′′ logn
t log d

)
,

where c′′ > 0 is a universal constant. Hence, provided t 6 c′′′ log n for some sufficiently small

constant c′′′, we have γ+(At(G), ρ2) &
(
log
(
1 + logn

t

))2
. �

3.4. Construction of the base graph.

Proof of Claim 2.9. The claim easily follows by computing the right hand side in (35) when
f = WA. We write x = xAxAc , and∑

y∈Fn2

(
1− e−t

2

)‖x−y‖1 (1 + e−t

2

)n−‖x−y‖1∏
i∈A

(−1)yi

=
∑
yA∈FA2

(
1− e−t

2

)‖xA−yA‖1 (1 + e−t

2

)|A|−‖xA−yA‖1∏
i∈A

(−1)yi

·
∑

yAc∈F
[n]\A
2

(
1− e−t

2

)‖xAc−yAc‖1 (1 + e−t

2

)n−|A|−‖xAc−yAc‖1

=

|A|∑
`=0

(|A|
`

)(
1− e−t

2

)`(
1 + e−t

2

)|A|−`
(−1)`WA(x)

= e−t|A|WA(x). �

Proof of Proposition 2.10. Let f, g : [N ] → X, denote by f̄ = E f , and ḡ = E g, f̃ = f − f̄ ,

g̃ = g − ḡ. Then
∑N

i=1 f̃(i) =
∑N

i=1 g̃(i) = 0, and so by the definition of λ, ‖Af̃‖Lp(X) 6

λ‖f̃‖Lp(X), and ‖Ag̃‖Lp(X) 6 λ‖g̃‖Lp(X). Hence

‖ ( 0 A
A 0 ) (f̃ ⊕ g̃)‖pLp(X) =

‖Ag̃‖pLp(X) + ‖Af̃‖pLp(X)

2

6 λp
‖f̃‖pLp(X) + ‖g̃‖pLp(X)

2
= λp‖f̃ ⊕ g̃‖pLp(X).

It follows that,

(1− λ)‖f̃ ⊕ g̃‖Lp(X) 6 ‖f̃ ⊕ g̃‖Lp(X) − ‖ ( 0 A
A 0 ) (f̃ ⊕ g̃)‖Lp(X) 6

∥∥∥( I −A
−A I

)
(f̃ ⊕ g̃)

∥∥∥
Lp(X)

.
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So,

1

N2

∑
i,j∈[N ]

‖f(i)− g(j)‖pX 6 2p−1‖f̄ − ḡ‖pX +
2p−1

N2

∑
i,j∈[N ]

‖f̃(i)− g̃(j)‖pX

6 2p−1‖f̄ − ḡ‖pX + 4p−1(‖f̃‖pLp(X) + ‖g̃‖pLp(X))

= 2p−1‖f̄ − ḡ‖pX + 22p−1‖f̃ ⊕ g̃‖pLp(X)

6 2p−1‖f̄ − ḡ‖pX + 22p−1(1− λ)−p
∥∥∥( I −A
−A I

)
(f̃ ⊕ g̃)

∥∥∥p
Lp(X)

.

Expanding the last term,∥∥∥ ( I −A
−A I

)
(f̃ ⊕ g̃)

∥∥∥p
Lp(X)

=
1

2N

∑
i∈[N ]

∥∥∥∥∑
j∈[N ]

Aij

(
f̃(i)− g̃(j)

)∥∥∥∥p
X

+
1

2N

∑
i∈[N ]

∥∥∥∥∑
j∈[N ]

Aij

(
g̃(i)− f̃(j)

)∥∥∥∥p
X

6
1

N

∑
i,j∈[N ]

Aij

∥∥∥f̃(i)− g̃(j)
∥∥∥p
X

6 2p−1‖f̄ − ḡ‖pX +
2p−1

N

∑
i,j∈[N ]

Aij‖f(i)− g(j)‖pX .

We next observe that for any permutation π : [N ] → [N ] (and p > 1), ‖f̄ − ḡ‖pX 6
1
N

∑
i ‖f(i) − g(π(i))‖pX . Since A is symmetric stochastic, it is in the convex hull of the

permutation matrices, so we can write A =
∑

` α
`Π`, where {Π`}` are permutation matrices,

and α` > 0,
∑

` α` = 1. Hence,

‖f̄ − ḡ‖pX 6
∑
`

α`
1

N

∑
i,j

Π`
ij‖f(i)− g(j)‖pX =

1

N

∑
i,j

Aij‖f(i)− g(j)‖pX .

We conclude that,

1

N2

∑
i,j∈[N ]

‖f(i)− g(j)‖pX 6
8p(1− λ)−p

N

∑
i,j∈[N ]

Aij‖f(i)− g(j)‖pX . �

3.4.1. Proof of Lemma 2.8. The Rademacher projection of f is defined by

R1f =
n∑
j=1

f̂(A)W{j}.

The K-convexity constant of X, denoted K(X), is the smallest constant K such that for
every n and every f : Fn2 → X,

‖(R1f)‖2L2(X) 6 K2‖f‖2L2(X).

We also define the kth level Rademacher projection by

Rkf =
∑
A⊆[n]
|A|=k

f̂(A)WA.
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We assume throughout that X is a complex Banach space. The case of Banach spaces
over R follows formally from this case by complexification. Extend the heat semi-group
Tz : Lp(X)→ Lp(X) to z ∈ C, by setting:

Tzf =
∑
A⊆[n]

e−z|A|f̂(A)WA.

Another way to write it is Tz =
∑n

k=0 e
−zkRk. We shall use the following deep theorem of

Pisier[33]:

Theorem 4 ([33]). For K-convex X, and p ∈ (1,∞), there exists φ,M > such that if
| arg z| < φ then ‖Tz‖Lp(X)→Lp(x) 6M .

See [21] for bounds on φ,M in terms of K(X). We will require the following standard
corollary of Theorem 4:

Corollary 3.4. ‖Rk‖Lp(X)→Lp(X) 6Meak.

Proof. Define a = π
tanφ

, so that all the points in the segment {(a, iy) : y ∈ (−π, π)} have

argument at most φ. Calculate,

1

2π

∫ π

−π
eiktTa+itdt =

1

2π

∫ π

−π
eikt

n∑
r=0

e−(a+it)rRrdt

=
1

2π

n∑
r=0

e−raRr

∫ π

−π
ei(k−r)tdt = e−kaRk,

and therefore, by convexity,

‖Rk‖Lp(X)→Lp(X) 6
eka

2π

∫ π

−π
|eikt| · ‖Ta+it‖Lp(X)→Lp(X)dt 6Meka. �

Corollary 3.5. Assume that <z > 2a. Then

‖Tz‖L>m
p (X)→L>m

p (X) =

∥∥∥∥∥∑
k>m

e−zkRk

∥∥∥∥∥
L>m
p (X)→L>m

p (X)

6
∑
k>m

e−2ak ·Meak =
M

1− e−a e
−ma. �

The ensuing argument is a quantitative version of the proof of the main theorem of Pisier
in [34]. Let r = 2

√
a2 + π2, and define V = {z ∈ C : |z| 6 r ∧ | arg z| 6 φ} (the set V ⊆ C

is depicted in Figure 2). Denote V0 = {x± ix tanφ : x ∈ [0, 2a)} and V1 = {reiθ : |θ| 6 φ},
so that we have the disjoint union ∂V = V0 ∪ V1.

Fix t ∈ (0, 2a). We shall use the Harmonic measure corresponding to V , i.e., the Borel
probability measure µ = µt on ∂V such that for every bounded analytic function on V ,

f(t) =

∫
∂V

f(z)dµ(z). (58)

We refer to [7] for more information on this topic and the ensuing discussion. It suffices
to say here that for a Borel set U ⊆ ∂V , µt(U) is the probability that Brownian motion
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Figure 2. The sector V .

starting at t leaves V at U . Equivalently, by conformal invariance, µt is the push-forward of
the normalized Lebesgue measure on the unit circle S1 under the Riemann mapping from
the unit disk to V which takes the origin to t.

Let θ = µ(V1), and denote µ = (1 − θ)µ0 + θµ1, where µi is a probability measure on Vi,
i ∈ {0, 1}. We will require the following standard bound on θ:

Lemma 3.6. We have θ �
(
t
r

) π
2φ .

Proof. The proof is a simple exercise in conformal invariance. Let D denote the unit disk
centered at the origin, and let D+ denote the intersection of D with the right half plane

{z ∈ C : <z > 0}. The mapping z 7→
(
z
r

) π
2φ is a conformal equivalence between V and D+.

The mapping z 7→ −i z+i
z−i is a conformal equivalence between D+ and the positive quadrant

{x+ iy : x, y > 0}, and the mapping z 7→ z2 is a conformal equivalence between the positive
quadrant and the upper half-plane. Finally, the mapping z 7→ z−i

z+i
is a conformal equivalence

between the upper half-plane and D. By composing these mappings, we obtain the following
conformal equivalence between V and D:

F (z) =
−
((

z
r

) π
2φ + i

)2
− i
((

z
r

) π
2φ − i

)2
−
((

z
r

) π
2φ + i

)2
+ i
((

z
r

) π
2φ − i

)2 .
Thus, by composing with the conformal automorphism of D, z 7→ z−F (t)

1−F (t)z
, we obtain the

mapping G(z) = F (z)−F (t)

1−F (t)F (z)
, which is a conformal equivalence between V and D with G(t) = 0.

By conformal invariance, θ is the length of the arc G(V1) ⊆ ∂D = S1, divided by 2π. The
assertion of Lemma 3.6 now follows from a direct computation. �

Lemma 3.7. For every ε ∈ (0, 1) there exists a bounded analytic function Ψ : V → C, such

that Ψ(t) = 1, for every z ∈ V0, |Ψ(z)| 6 ε, and for every z ∈ V1, |Ψ(z)| 6 ε−θ
−1+1.

Proof. The proof is the same as the proof of Claim 2 in [34]. Consider the strip S = {z ∈
C : <(z) ∈ [0, 1]} and for j ∈ {0, 1} let Sj = {z ∈ C : <(z) = j}. The argument in Claim
1 in [34] shows that there exists a a conformal equivalence h : V :→ S such that h(t) = θ,

h(V0) = S0, h(V1) = S1. Now define Ψ(z) = ε1−θ
−1h(z). �
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We next calculate

Tt = Ψ(t)Tt =

∫
∂V

Ψ(z)Tzdµ(z) = (1− θ)
∫
V0

Ψ(z)Tzdµ0(z) + θ

∫
V1

Ψ(z)Tzdµ1(z).

Hence, using Lemma 3.7 with ε = e−amθ, we get the bound:

‖Tt‖L>m
p (X)→L>m

p (X) 6 (1− θ)εM + θε1−θ
−1

Ce−am 6 (M + C)e−amθ. (59)

Since by Lemma 3.6 we have θ �φ t
π
2φ (where the implied constant depends on φ), the

bound (59), which holds for t ∈ (0, 2a), combined with Corollary 3.5, concludes the proof of
Lemma 2.8. �
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