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Algebra I, Fall 2003: Section 7. Universal Objects:

Free Groups, Generators, and Relations.

7.1 Universal Objects.
We begin with a somewhat cryptic definition, whose meaning will soon become clear.

A free object is the mother of all objects of that type, in the sense that every object
of that type is a quotient of the free object.

As a simple example, consider the set Vn of all vector spaces over R that have dimension
dim

R
V ≤ n, which is the same as saying V has “n generators”:

(1) There exist v1, . . . ,vn ∈ V such that V =

{

n
∑

i=1

civi : ci ∈ R

}

These “generators” are not required to be independent, so the vi need not be a basis and in
fact some generators could be the zero vector; therefore the coefficients ci need not be unique.

7.1.1 Example. A free object for the class of vector spaces Vn is the familiar Euclidean vector
space of n-tuples R

n = {x = (x1, . . . , xn) : xi ∈ R}. Let X = {e1, . . . , en} be the standard basis
vectors ei = (0, . . . , 0, 1, 0, . . . , 0); then we have a unique decomposition x = x1e1 + . . .+ xnen

for every x = (x1, . . . , xn) in R
n. Given any V ∈ Vn and any set of generators v1, . . . ,vn, there

is a uniquely defined map φ : R
n → V such that φ(ei) = vi, namely

(2) φ(x1, . . . , xn) =
n

∑

i=1

xivi for all x = (x1, . . . , xn) ∈ R
n

This is a well-defined R-linear map (a homomorphism of vector spaces) and it is surjective since
the vi span V . This already shows that every V ∈ Vn is a homomorphic image of the particular
vector space R

n, but we can say more. W = kerφ = {x ∈ Rn : φ(x) = 0} is a vector subspace
in R

n and we may form the quotient vector space R
n/W = (all additive cosets x+W ), in which

(x +W ) + (y +W ) = (x + y) +W for all x,y ∈ R
n

λ · (x +W ) = (λx) +W for all λ ∈ R, x ∈ R
n

The quotient map π : R
n → R

n/W , defined via
π(x) = x + W , is R-linear and surjective. By defini-
tion kerπ = kerφ = W , so we may adapt the proof
of the First Isomorphism Theorem for groups 3.3.13 to
show that φ induces a unique map φ̃ : R

n/W → V that
makes the diagram shown in Figure 7.1 commute: sim-
ply define φ̃(x + W ) = φ(x). It is easy to check that
φ̃ is well-defined, R-linear, and bijective, and hence an
isomorphism of vector spaces over R.

R
n φ

−→ V
π ↓ ր

R
n/W φ̃

Figure 7.1. The induced map

φ̃(x + W ) = φ(x) satisfies φ̃ ◦ π = φ.

Conclusion: Every vector space V ∈ Vn is isomorphic to a quotient R
n/W of the

“universal” vector space on n generators R
n. �

7.1.2 Exercise. Verify that the map φ̃ : R
n/W → V is well-defined, R-linear, and bijective as

claimed. �
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7.1.3 Example (Free abelian group on n generators). The group (Zn,+) is a universal
object for the set An of all abelian groups with n generators. If G = 〈x1, . . . , xn〉 is such a
group then

(a) There is a surjective homomorphism φ : Z
n → G

(b) There is a subgroup W ⊆ Z
n such that Z

n/W ∼= G.

The map φ in (a) can be chosen so it maps the standard unit vectors e1, . . . , en in Z
n to the

generators of G, and then φ is uniquely determined.

Discussion: Every element m ∈ Z
n is uniquely a sum m = m1e1 + . . . +mnen with integer

coefficients. Now define φ : Z
n → G so that

(3) φ(m) = φ(m1e1 + . . .+mnen) = xm1

1 · . . . · xmn
n for all m ∈ Z

n

Since G is abelian we have φ(0) = e and φ(m + m′) = φ(m) · φ(m′). This homomorphism
is surjective since the xi generate G, and its kernel W = {m :

∏n

i=1 x
mi

i = e} is a subgroup
in Z

n. By the First Isomorphism Theorem for groups 3.3.13, the quotient group (Zn/W,+) is
isomorphic to G via the induced bijection φ̃(m +W ) = φ(m). �

We note for future reference that the nature of the additive subgroups W in Z
n is not obvious.

When n = 1 the group Z is infinite cyclic, with 1 as its generator. By 3.1.30 any subgroup W
is also cyclic, so there exists some k ≥ 0 such that W = kZ = {mk : m ∈ Z} = 〈k〉. If k = 0 we
get the trivial subgroup, and for k 6= 0 the subgroup is isomorphic to Z (though not equal to Z).
When n > 1 the situation gets more complicated. Not all subgroups are singly generated, nor
are they isomorphic to Z

n – just consider the subgroup W = {m ∈ Z
3 : m3 = 0, m1,m2 ∈ Z},

which is isomorphic to Z
2 and is generated by the basis vectors e1, e2. The following result,

which we will not prove here, is important in geometry.

7.1.4 Theorem. Let W be any subgroup of (Zn,+). Then there is an integer 0 ≤ r ≤ n,
called the rank of W , and a set of “integral basis vectors” {w1, . . . ,wr} ⊆W , such that every

w ∈ W is uniquely a sum w = m1w1 + . . . + mrwr with integer coefficients. In particular,

every subgroup of Z
n is isomorphic to (Zr ,+) for some 0 ≤ r ≤ n.

7.1.5 Exercise. Verify that the subset W = {m : m1 +m2−2m3 = 0} is an additive subgroup
of Z

3.

(a) For which r ≥ 0 is W ∼= Z
r?

(b) Find a set of vectors w1, . . . ,wr such that every w ∈ W is a unique integer
linear combination w = m1w1 + . . .+mrwr. �

We now show that there are similar universal objects for all groups, commutative or not. We
shall construct the free group on n generators.

The Free Group F(n). Let S be any set of n distinct objects. This will become our alphabet
for constructing “words” based on S, but first we double the number of elements in our alphabet
by attaching exponents ±1 to each letter. We obtain the enlarged alphabet S∪S−1 = {a+1, a−1 :
a ∈ S}. A word is then any symbol string of finite length

(4) w = a1a2 . . . ar with r <∞ and ai ∈ S ∪ S−1

We allow the “empty word” e (the list with no entries) as the lone word of length zero.

7.1.6 Definition. The free semigroup on n letters is the set W (S) of all words of finite

length based on an alphabet S with n letters. In W (S) we define a multiplication operation by

adjoining one word to another

(5) w1 · w2 = a1 . . . arb1 . . . bs if w1 = a1 . . . ar and w2 = b1 . . . bs
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For products involving the empty word we define we = w = ew. Note that w1w2 6= w2w1.

It is easily verified that this product operation is associative, so w1(w2w3) = (w1w2)w3, and
that the empty word is an identity element, with ew = w = we for all w. What W (S) lacks
to become a group is the existence of inverses. Note that words such as aa−1 or a−1a are not

equal to the empty word e in the system W (S). The best we can do is define the “reflection
map” J : W (S) → W (S), which will become the inversion map when we define the free group
based on S. Let

(6) J(e) = e for the empty word J(a1 . . . ar) = a−1
r . . . a−1

1

where we interpret (s−1)−1 = s for any letter s−1 ∈ S−1.
There are natural elementary operations on words w = a1 . . . ar

(i) Insertions: Insert the symbols ss−1 or s−1s (with s ∈ S) into a word w. The
insertion can be made at the ends or in the middle of w.

(ii) Cancellations: If the original symbol string w contains adjacent symbols ss−1

or s−1s we may strike these out. The length of the word is reduced by 2, and
we may end up with the empty word.

It is fairly obvious that if we wish to make a group out of W (S) we should identify words that
can be transformed into each other by a finite sequence of elementary operations.

7.1.7 Definition. Two words in the free semigroup W (S) are equivalent, written w ∼
R
w′,

if we can transform w into w′ by a finite sequence of elementary operations. It is easily verified

that this is an equivalence relation (rst relation), so we can form the space W (S)/R of equiva-

lence classes and the projection map π : W (S) →W (S)/R such that π(x) = [x]. Equipped with

a suitably defined product operation, the quotient space F (S) = W (S)/R will become the free
group on n generators.

7.1.8 Definition. A word w ∈W (S) is a reduced word if no cancellations are possible – i.e.

w contains no symbol strings of the form ss−1 or s−1s. The empty word is regarded as reduced.

The set of reduced words is denoted W0(S).

W0(S) is not closed under multiplication. We now show that reduced words provide a complete
set of representatives for the equivalence classes in W (S)/R.

7.1.9 Proposition. Each equivalence class in W (S) contains a unique reduced word. If

w ∈ W (S) all sequences of cancellations only (no insertions) that begin with w and termi-

nate in a reduced word yield the same outcome w0, which is the unique reduced representative

in [w].

Proof: Repeated cancellations applied to a word w must terminate in a reduced word. Gener-
ally, the sequence of cancellation operations is not unique – consider the possible transformations
s−1ssss−1s → . . . → ss ∈ W0(S). Our first step is to show that the outcome is always the
same.

7.1.10 Lemma. Let C1, . . . , Cr be any sequence of cancellations that transforms a word w to

a reduced word w0. All such sequences yield the same result.

Proof: We use induction on the length of w = a1 . . . ar. If w is reduced, there is nothing to
prove. If not, there is some pair of letters aiai+1 = ss−1 or s−1s that can be cancelled. We now
show that every reduced form w0 can be obtained by cancelling this pair first. Then we may
apply induction to the shorter word that remains, to show that all sequences of cancellations
yield w0.

We know that the reduced form w0 is obtained by some sequence of cancellations. Case 1:

at some stage the pair aiai+1 is cancelled (and neither ai nor ai+1 is involved in any previous
cancellations). Then we might as well rearrange the cancellation operations and cancel aiai+1

first. That settles this case.
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Case 2: The first cancellation involving these elements cancels just one, say ai, and not the

other. Then we must have ai−1 = a−1
i and the cancelled pair is ai−1ai. Since ai+1 = a−1

i by
definition, the word remaining after this cancellation,

. . . ai−2(ai−1ai)ai+1ai+2 . . . = . . . ai−2(ai−1ai)a
−1
i ai+2 → . . . ai−2a

−1
i ai+2 . . . = . . . ai−2ai−1ai+2 . . .

is the same as the word obtained by cancelling the original pair aiai+1

. . . ai−2ai−1aiai+1ai+2 . . . = . . . ai−2ai−1(aia
−1
i )ai+2 . . .→ . . . ai−2ai−1ai+2 . . .

This puts us back in Case 1, which has already been resolved. The lemma is proved. �

Resuming the main proof, we consider an elementary operation w
T

−→ w′ between two equivalent
words. Let C1, . . . , Cr and C′

1, . . . , C
′
q be sequences of cancellations that transform w,w′ to

reduced words w0, w
′
0. If T is a cancellation, then the sequence of cancellations T,C′

1, . . . , C
′
q

applied to w must yield w0 by Lemma 7.1.8 and hence w′
0 = w0. If T is an insertion we may

write w = w1w2 and we have w′ = w1ss
−1w2 (or same with s−1s). Applying the obvious

cancellation C to w′ we get C(w′) = w. By Lemma 7.1.8 the sequence C,C1, . . . , Cr transforms
w′ to w0, but by the same lemma it must also transform w′ to w′

0, so that w0 = w′
0.

This idea can be applied repeatedly to any sequence of elementary operations

w
T1−→ w1

T2−→ w2
T3−→ . . .

Tm−→ w′

to show that they have the common reduced form described in 7.1.8. In particular, if these
operations transform w into a reduced word w′ we must have w′ = w0. �

To construct the free group on n generators we observe that the product in W (S) passes
down to the quotient space W (S)/R, and the induced operation is automatically associative.
In fact, suppose w1 ∼ w′

1 and w2 ∼ w′
2. We can perform elementary transformations on w1w2,

first transforming w1 to w′
1 and then w2 to w′

2, to obtain w′
1w

′
2. Hence w1w2 ∼ w′

1w
′
2, and the

following operation on equivalence classes is well defined

(7) [w1] · [w2] = [w1w2] for all w1, w2 ∈W (S)

It is easy to check that this operation is associative, and that the class e of the empty word is an
identity element for W (S)/R. But now every element [w] has a multiplicative inverse. In fact,
the reflection operation J(a1 . . . ar) = a−1

r . . . a−1
1 in W (S) passes down to W (S)/R to become

the desired inversion operation: since w ∼ w′ ⇒ Jw ∼ Jw′ the class [J(w)] is well defined and

[J(w)][w] = [a−1
r . . . a−1

1 a1 . . . ar] = e = [w][J(w)] for all w ∈W (S)

Thus F (S) = W (S)/R is a group, generated by the set of n element [s] with s ∈ S.
By Proposition 7.1.7 there is a natural bijection F (S) = W (S)/R ↔ W0(S), which means

we can transfer the group operation (7) over to a group operation (∗) defined on the set of
representatives W0(S). In this model the product operation in the free group is given by

w0
1 , w

0
2 ∈ W0(S) −→ product w0

1w
0
2 ∈ W (S)

reduce
−→ unique element w0

1 ∗ w0
2 in W0(S)

because [w0
1 ][w

0
2 ] = [w0

1w
0
2 ] = [w0

1 ∗ w0
2 ].

7.1.11 Exercise. Verify that the free group on n generators is abelian ⇔ n = 1. �

7.1.12 Exercise. Verify that the free group on one generator is isomorphic to (Z,+). �

We now show that F (S) = W (S)/R has the desired universal mapping properties. To begin,
we define the map j : S → F (S) that identifies letters s ∈ S with group elements j(s) = [s].
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Obviously F (S) = 〈j(S)〉, so in this sense F (S) is “generated by the elements of S.”

7.1.13 Theorem. Let S = {s1, . . . , sn} be a set of n distinct objects and let F (S) = W (S)/R
be the free group on n generators defined above. Let Gn be the class of groups with n generators

and let G = 〈x1, . . . , xn〉 be such a group. Then

(a) If φ : S → G is any mapping, then there exists a unique homomorphism φ̃ :
F (S) → G such that the diagram shown in Figure 2 commutes – i.e. φ̃ ◦ j = φ.

The map φ specifies where we wish to send the generators

of F (S). In (a) the map φ̃ need not be surjective; its range

is the subgroup H = 〈φ(S)〉.

(b) There is a unique surjective homomorphism φ̃ :
F (S) → G such that φ̃(si) = xi for 1 ≤ i ≤ n.

(c) There is a normal subgroup N ⊆ F (S) such

that F (S)/N ∼= G.

F (S) = W (S)/R

j↑
φ̃

ց

S
φ

−→ G

Figure 7.2. Universal mapping

property of F (S). Here j(s) = [s].

Proof: Obviously (b) follows from (a) by taking φ(si) = xi; surjectivity holds because the xi

generate G. Then (b) ⇒ (c) by the applying the First Isomorphism Theorem 3.1.13 to the map
φ̃ in (b); writing N = ker φ̃ we get F (S)/N ∼= G. So, everything follows from the “universal
mapping property” (a).

To prove (a) we construct an intermediate map φ0 : W (S) → G, setting

φ0( empty word ) = e

φ0(s
±1
i1
. . . s±1

ir
) = x±1

i1
· . . . · x±1

ir
where 1 ≤ i1, . . . , ir ≤ n

It is clear that φ0(w1w2) = φ0(w1) · φ0(w2) in G, so that φ0 is a homomorphism of semigroups;
furthermore, φ0(si) = xi. Next we show that

(8) φ0 respects equivalences: w ∼ w′ =⇒ φ0(w) = φ0(w
′)

Once (8) is proved we get a well-defined map φ̃ : W (S)/R → G by setting φ̃([w]) = φ0(w). This
map is obviously surjective, and it is a homomorphism of groups because

φ̃([w1][w2]) = φ̃([w1w2]) = φ0(w1w2) = φ0(w1)φ0(w2) = φ̃([w1]) · φ̃([w2])

To prove (8), suppose w′ = C(w) where C is a cancellation, say w = w1ss
−1w2 and

w′ = w1w2. Then φ0(w) = φ0(w1)φ0(s)φ0(s)
−1φ0(w2) = φ0(w

′). On the other hand, if T
is an insertion, say w = w1w2 and w′ = w1ss

−1w2, then we again have φ0(w
′) = φ0(w). The

same invariance-of-image remains true for any sequence of elementary operations. That proves
(8), and finishes the proof of the theorem. �

Uniqueness of the Universal Object F(S). It is natural to wonder whether there might
be other objects quite different from F (S) that have the universal mapping property 7.1.13(a).
That property actually forces uniqueness of the universal object.

7.1.14 Proposition. Let S be a set of n distinct objects and let (S, j, F ), (S, j′, F ′) be two

systems that have the universal mapping property 7.1.13(a). Then there is an isomorphism of

groups ψ : F → F ′ such that ψ ◦ j = j′ (the diagram in Figure 7.3(a) commutes).

Proof: The universal mapping property tells us that corresponding to the map j′ : S → F ′

there is a homomorphism j̃′ from F to F ′ that makes the top part of the diagram in Figure
7.3(b) commute; j̃′ is surjective because j̃′(j(S)) = j′(S) is a set of generators for F ′. Now
reverse roles of j and j′ to get the map j̃ in the lower part of the diagram. We have j̃ ◦ j̃′ = id
on j(S) because j̃j̃′(js) = j̃(j′s) = j(s) for all s ∈ S. Thus j̃ ◦ j̃′ = idF since j(S) generates F .
The map ψ = j̃′ is the desired isomorphism and its inverse is ψ−1 = j̃. �
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S
j′

−→ F ′

j↓ ր

F
ψ

Figure 7.3(a)

F

j↑
j̃′

ց

S
−→

j′ F ′

j′↑ j̃

ց

S −→ F
j

Figure 7.3(b)

7.2 Generators and Relations.
The dihedral group Dn is generated by two elements ρ, σ that satisfy the relations

(9) ρn = e σ2 = e σρσ = ρ−1

Actually, we know somewhat more about the generators, namely that

o(ρ) = n – i.e. the powers e, ρ, . . . ρn−1 are distinct and ρn = e

o(σ) = 2 – i.e. σ 6= e and σ2 = e

You might be tempted to believe that the relations (9), together with the fact that ρ and σ
generate Dn, suffice to identify the dihedral group. This is not so. For example the relations
(9) are also satisfied by the following groups

• The trivial group G = (e), which can be expressed as G = 〈ρ, σ〉 if we take
ρ = σ = e.

• The G = Z2, which can be expressed as G = 〈ρ, σ〉 if we take ρ = e and σ the
other element in Z2.

What distinguishes Dn from these examples is that the others are all quotients Dn/N of the
dihedral group – taking N = Dn in the first case and N = 〈ρ〉 in the second. The dihedral
group itself is not a quotient of any larger group G = 〈x1, x2〉 whose generators satisfy the
relations xn

1 = x2
2 = x1x2x1x2 = e, and in this sense Dn is the largest group of this type.

Here’s another example. Suppose we wish to construct a group G = 〈x, y, z〉 with three
generators that satisfy the relations

(10) x2 = e y2 = e xyz = e

Is there such a group? How many (up to isomorphism)? Are there any nontrivial groups of
this type? Is there a maximal group that is the mother of all such groups by taking quotients?
Is this group some more familiar group in disguise? These questions are not easy to answer. In
particular it is seldom obvious whether a group satisfying a set of relations is nontrivial!

The purpose of this section is to clarify the connection between a finitely generated group
G = 〈x1, . . . , xn〉 and the relations satisfied by its generators. In particular we will show that if
a finite set of relations are imposed on the generators, there is an essentially unique “maximal”
group with the same number of generators satisfying those relations, from which every group
of this type is obtained by taking suitable quotients.

Let G = 〈x1, . . . , xn〉 be any finitely generated group. Given any nonempty word w =
w(s1, . . . , sn) built upon the generators of the free group F (S) with n generators, we can form
a corresponding word w(x1, . . . , xn) in G by substituting si 7→ xi.

6



7.2.1 Definition. A relation between the generators of G is any equality of the form

(11) w(x1, . . . , xn) = e where w is a nonempty word in F (S)

Obviously a word w ∈ F (S) and the corresponding reduced word w0 determine the same

element in G, so we need only consider reduced words in discussing relations. There is also no
need to consider relations of the form w1 = w2 since these can be rewritten as w1w

−1
2 = e; for

instance the relation σρσ = ρ−1 in (9) can be recast as ρσρσ = e.
Notice that a statement such as o(ρ) = n cannot be expressed by setting a finite number

of words wk(ρ, σ) = e; the statement o(ρ) = n incorporates a number of inequality statements
such as

ρiρ−j 6= e for 0 ≤ j < i ≤ n− 1, or equivalently ρk 6= e for 0 < k < n ,

in addition to the equality ρn = e which is a true relation among the generators of Dn. Notice
too, that our original definition of the dihedral group was based on the properties o(ρ) = n and
o(σ) = 2 rather than the relations ρn = σ2 = e. The latter are satisfied by various quotients of
Dn, while the former are not.

Suppose nonempty (reduced) words w1, . . . , wr have been specified in the free group on
generators S = {s1, . . . , sn}. We want to create a group G = 〈x1, . . . , xn〉 whose generators xi

satisfy the relations
wi(x1, . . . , xr) = e for 1 ≤ i ≤ r

and we would like G to be as large as possible. We will obtain G by taking a suitable quotient
F (S)/N , keeping in mind that the smaller the normal subgroup we factor out, the larger the
quotient. The idea is to define N so the quotient map π : F (S) → F (S)/N kills the words
wi. That means N should contain the wi, and products thereof, and in fact it must contain
the entire subgroup H = 〈w1, . . . , wr〉 in F (S) generated by the wi. But N is also normal, so
N must contain all conjugates gxg−1 where g ∈ F (S), x ∈ H . Therefore the smallest normal

subgroup we can factor out to kill the words w1, . . . , wr is

(12) N =
⋂

{M : M is a normal subgroup in F (S) and contains w1, . . . , wr }

We denote this group by N = 〈〈w1, . . . , wr〉〉.

7.2.2 Exercise. If {w1, . . . , wr} is a set of words in the free group F (S) prove that

(a) The intersection of all normal subgroups containing these words is a normal
subgroup in F (S).

This subgroup N = 〈〈w1, . . . , wr〉〉, is obviously the smallest normal subgroup containing this
set of words.

(b) Prove that this subgroup can also be described as the subgroup 〈gsg−1 : s ∈ S〉
generated by all conjugates of elements s ∈ S. �

7.2.3 Theorem. Let w1, . . . , wr be a set of words in the free group F (S) on the generators

S = {s1, . . . , sn}. Define the normal subgroup

N = 〈〈w1, . . . , wr〉〉 =
⋂

{M : M is a normal subgroup in F (S) and contains w1, . . . , wr }

as above. The quotient G = F (S)/N is generated by the elements xi = π(si), 1 ≤ i ≤ n, which

satisfy the relations

(13) wi(x1, . . . , xn) = e for 1 ≤ i ≤ r
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If G = 〈y1, . . . , yn〉 is any other finitely generated group whose generators satisfy these relations,

there is a unique surjective homomorphism φ : F (S)/N → G such that φ(xi) is equal to yi. In

particular, G is isomorphic to a quotient of F (S)/N .

Proof: The last statement follows by the First Isomor-
phism Theorem. The first follows because the quotient
map π : F (S) → G is surjective and a homomorphism.
Now let G = 〈y1, . . . , yn〉. By the universal mapping
property 7.1.13 there is a unique surjective homomor-
phism f : F (S) → G such that f(si) = yi; letK = ker f .
Since f is a homomorphism we get

f(wi(s1, . . . , sn)) = wi(f(s1), . . . , f(sn))

= wi(y1, . . . , yn) = e

F (S)
f

−→ G
π ↓ ր

F (S)/N f̃

Figure 7.4.

Thus wi ∈ K for all i, hence H = 〈w1, . . . , wr〉 is contained in K, and because K is normal we
actually have N = 〈〈w1, . . . , wr〉〉 ⊆ K. In Figure 7.4 there is a natural induced map f̃ that
makes the diagram commute. Just set

f̃(xN) = f(x) for all x ∈ F (S)

This is well defined since N ⊆ K; in fact, if x′N = xN then x′x−1 ∈ N ⊆ K and hence
f(x′) = f(x). Commutativity of the diagram is built into the definition of f̃ . Finally, f̃ is a
homomorphism because

f̃(xN · yN) = f̃(xyN) = f(xy) = f(x)f(y) = f̃(xN)f̃ (yN)

and it is surjective because g ∈ G⇒ g = f(x) for some x ∈ F (S) ⇒ f̃(π(x)) = f(x) = g. �

Returning to our earlier comments about the dihedral group, we now show that Dn is the
maximal group on two generators satisfying the relations (9).

7.2.4 Example. In the free group F (S) on two generators consider the normal subgroup

N = 〈〈 sn
1 , s

2
2, s1s2s1s2 〉〉

determined by the words w1 = sn
1 , w2 = s22, w3 = s1s2s1s2. We claim that there is an iso-

morphism from F (S)/N to the dihedral group Dn that sends x = π(s1), y = π(s2) to ρ, σ
respectively.

Discussion: By 7.1.3 there is a surjective homomorphism f : F (S) → Dn = 〈ρ, σ〉 such that
f(s1) = ρ, f(s2) = σ. The elements x, y generate G = F (S)/N , and they satisfy the same
relations (9) as ρ and σ because

w1 ∈ N ⇒ xn = e w2 ∈ N ⇒ y2 = e w3 ∈ N ⇒ xyxy = e

Then o(x) is a divisor of n, but in fact it is equal to n because

f̃(x) = f̃(π(s1)) = f(s1) = ρ

⇒ the images f̃(xi) = (f̃(x))i = ρi are distinct in Dn for 1 ≤ i ≤ n− 1

⇒ the elements xi are distinct in F (S)/N for 1 ≤ i ≤ n− 1

⇒ o(x) = n

Likewise, f̃(y) = σ and o(y) = 2.
Hence H1 = 〈x〉 and H2 = 〈y〉 are cyclic subgroups of G and H1 ∩ H2 = (e) because

xi = yj ⇒ ρi = σj ⇒ ρi = e and σj = e ⇒ i ≡ 0 (mod n) and j ≡ 0 (mod 2) ⇒ xi = yj = e.
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Furthermore H1 is normal in G because y(xk)y−1 = (x)−k for all k ∈ Zn. Thus H1H2 is a
subgroup, which must equal G since H1H2 contains the generators.

But |H1H2| = 2n and the same is true of the surjective image Dn = f̃(G). Therefore f̃ is
bijective, and is an isomorphism. �

Theorem 7.2.3 also provides an alternative approach to the free abelian group introduced in
Example 7.1.2. If we wish the quotient G = F (S)/N to be abelian we must, at the very least,
factor out the subgroup

(14) N = 〈〈 [si, sj ] = sisjs
−1
i s−1

j : 1 ≤ i 6= j ≤ n 〉〉

determined by commutators of the generators of F (S). You might think it necessary to factor
out arbitrary commutators [w1, w2] = w1w2w

−1
1 w−1

2 of words w1, w2 ∈ F (S) – an infinite set of
relations – but the following observation shows that these commutators are already included in
N .

7.2.5 Exercise. Let G = 〈x1, . . . , xn〉 be a finitely generated group and let

N = 〈〈 [xi, xj ] = xixjx
−1
i x−1

j : 1 ≤ i 6= j ≤ n 〉〉

Prove that N coincides with the commutator subgroup [G,G] = 〈 [x, y] : x, y ∈ G 〉.
Hint: By 6.4.3 we have N ⊇ [G,G] ⇔ G/N is abelian. Start by showing that if all elements in
S = {xi} commute, the same is true of all elements in S ∪ S−1.
Note: The main point here is that the commutator of the generated group G = 〈x1, . . . , xr〉 is

the normal subgroup generated by commutators of the xi. �.

In our present situation 7.2.5 tells us that F (S)/N = F (S)/[F (S), F (S)], and in particular that
F (S)/N is abelian.

On the other hand, the generators of any abelian group G = 〈x1, . . . , xn〉 must satisfy the
relations xixjx

−1
i x−1

j = e, so by 7.2.3 we see that G is a quotient of F (S)/N . Thus F (S)/N ,
with N defined as in (14), serves as a universal object for all finitely generated abelian groups.
The following result reconciles this observation with our previous work in 7.1.2.

7.2.6 Lemma. If S = {s1, . . . , sn} and N = 〈〈 [si, sj ] : i 6= j 〉〉, then the quotient F (S)/N is

isomorphic to (Zn,+).

Proof: As we have seen, F (S)/N is a finitely generated abelian group with generators xi =
π(si). If {e1, . . . , en} is the standard basis vectors in Z

n, then by 7.1.2 there is a unique
surjective homomorphism φ : Z

n → F (S)/N such that φ(ei) = xi. On the other hand, since
Z

n = 〈e1, . . . , en〉, we know by 7.2.3 that there is a unique surjective homomorphism f :
F (S)/N → Z

n such that f(xi) = ei. Then f ◦ φ = φ ◦ f = id since this is true on sets of
generators. Thus f is an isomorphism and F (S)/N ∼= Z

n. �

In the abelian group F (S)/N = F (S)/[F (S), F (S)], the congruence

sisj ≡ sjsi (mod the commutator subgroup)

means that every wordw = a1 . . . ar in F (S) can be rewritten (without changing the [F (S), F (S)]-
coset in which it lies) as

w = sm1

1 . . . smn

n where mi ∈ Z and |m1| + . . .+ |mn| ≤ r

Cosets in F (S)/N correspond one-to-one with these “abelianized” words in F (S). The rear-
rangement process might result in some cancellations, so there is no assurance that we will end
up with |m1| + . . .+ |mn| = r when we abelianize a reduced word of length r.
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Presentations of Finitely Generated Groups. Let G = 〈x1, . . . , xn〉 be a finitely generated
group G and F (S) the free group on S = {s1, . . . , sn}. By 7.1.13 there is a unique surjective
homomorphism f : F (S) → G such that f(si) = xi.

7.2.7 Definition. A presentation of a group G consists of a pair (S;R) where S = {s1, . . . , sn}
are generators of a free group F (S), and R = {w1, . . . , wr} is a finite set of nonempty words such

that G ∼= F (S)/N , where N = 〈〈w1, . . . , wr〉〉. We indicate this by writing G ≈ (s1, . . . , sn;w1, . . . , wr).

The subgroup N is referred to as the relation subgroup associated with the presentation.
Obviously N is the complete set of words that are killed when we pass from F (S) to G.

The images xi = π(si) generate G and satisfy the relations wi(x1, . . . , xn) = e correspond-
ing to the words wi. However in the other direction, if we write down a set of valid relations
wi(x1, . . . , xn) = e among the generators of a group G, there is no guarantee that we have
produced a presentation – i.e. that G ∼= F (S)/〈〈w1, . . . , wr〉〉.

7.2.8 Example. Take G = Z2 and write G = 〈ρ′, σ′〉 where ρ′ = [0] and σ′ = [1] in Z2. Let
w1 = sn

1 , w2 = s22, w3 = s1s2s1s2 in the free group over S = {s1, s2}. We showed in Example
7.2.4 that F (S)/N ∼= Dn, so (ρ′, σ′;w1, w2, w3) is not a presentation of G = Z2, although it is

a presentation of Dn. �

The number of generators of a group is not uniquely determined – some might be redundant,
as in the last example. It is often not easy to tell whether the mininal number of generators
has been achieved. Obviously there is a unique minimum number of generators for any finitely
generated group, but that might be achieved by taking quite different sets of generators, with
quite different relations among them.

7.2.9 Example. Consider the group with the presentation G ≈ (x1, x2, x3;x
3
1, x

2
2, x

2
3, x1x2x3).

Prove that G is isomorphic to D3, which has the alternative presentation (ρ, σ; ρ3, σ2, ρσρσ)
involving just two generators.

Discussion: In Figure 7.5, π2 and π3 are the quotient
maps with respect to the normal subgroups

N2 = 〈〈s31, s
2
2, s1s2s1s2〉〉 N3 = 〈〈x3

1, x
2
2, x

2
3, x1x2x3〉〉

We have G = F3/N3 by definition.
Since x1x2x3 = e, we get x3 = x−1

3 = x1x2 so
the third generator is redundant. Eliminating x3 in all
relations, we get the familiar defining relations for the
dihedral group D3: x

3
1 = x2

2 = e, (x1x2)
2 = x1x2x1x2 =

e. Thus G = F3/N3 is equal to 〈ρ′, σ′〉 where ρ′ =
π3(x1) and σ′ = π3(x2), and these generators satisfy the
dihedral relations (9). Since D3 is the maximal group
on two generators satisfying these relations (Theorem
7.2.3), F2/N2 is isomorphic to D3 in Figure 7.5, and
there is a surjective homomorphism φ from F2/N2 to
G = F3/N3.

F2 = F (s1, s2)
j

−→ F3 = F (x1, x2, x3)

π2↓ ↓π3

D3
∼= F2/N2

φ
−→ F3/N3 = G

Figure 7.5. Here j(si) = xi for

i = 1, 2; F2/N2 = 〈ρ, σ〉 where ρ =

π2(s1), σ = π2(s2); G = F3/N3 =

〈ρ′, σ′〉 where ρ′ = π3(x1), σ′ =

π3(x2). The diagram is commuta-

tive.

On the other hand, G is the maximal group on three generators that satisfy the relations
specified in its presentation. The dihedral group can be expressed in this form by writing
D3 = 〈y1, y2, y3〉 with generators y1 = ρ, y2 = σ, y3 = ρσ, for which y1y2y3 = ρσρσ = e.
Therefore there exists a surjective homomorphism from G to D3, and in particular the quotient
F3/N3 does not collapse to the trivial group. It follows that |G| = |D3| = 6, the map φ in
Figure 7.5 is bijective, and G ∼= D3. �
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The crucial point in the foregoing proof is to show that G = F3/N3 does not collapse to
be the trivial group. The reader might, with some justification, feel that this was resolved
by smoke and mirrors, but our discussion is really a case study in the power of the universal
mapping property. To understand what has been accomplished, consider what one would have
to do to give a direct proof that G is nontrivial – i.e. that

N3 = 〈〈w1, w2, w3, w4〉〉 with w1 = x3
1, w2 = x2

2, w3 = x2
3, w4 = x1x2x3

is not the entire free group F3 = F (x1, x2, x3). For instance, how do you prove that the generator
x1 is not in N3? According to our comments in Exercise 7.2.2(b), if x1 ≡ e (mod N3) there
would exist a choice of reduced words u1, . . . , uq in W (x1, x2, x3), and indices 1 ≤ i1, . . . , iq ≤ 4,
such that

x−1
1 · u1wi1u

−1
1 u2wi2u

−1
2 . . . uqwiq

u−1
q

collapses to the empty word by a sequence of cancellations. One might procede by induction
on q, examining what it means for such a word to collapse (and using the fact that the ui are
already reduced), to show that a contradiction must emerge. But a proof along those lines
would be pretty arduous. All of this has been circumvented by appeal to the universal mapping
property of 7.2.3.

7.2.10 Exercise. Consider the groups whose presenta-
tions are

G2 ≈ (x, y;x2, y2) (with 2 generators)

G3 ≈ (x, y, z;x2, y2, xyz) (with 3 generators)

Without trying to identify these groups, prove that
they are isomorphic. �

In Figure 7.6 we show a regular tetrahedron with ver-
tices labeled 1,2,3,4. Assume that coordinate axes have
been set up so the origin lies at the center of the tetra-
hedron and the z-axis passes through the vertex labeled
3; the coordinate axes have not been shown, to keep
the diagram from being too cluttered. The set T of
orientation-preserving symmetry operations on this fig-
ure consist of the following 12 linear operators on R

3.

(i) The identity I

(ii) Eight rotations, by 120◦ or by 240◦,
about lines that pass through a vertex
and the midpoint of the opposite face.

(iii) Three 180◦ rotations about lines pass-
ing between midpoints of opposite
edges.

Figure 7.6. A regular tetra-

hedron. We show: rotation A1

by 120◦ about an axis through

vertex 1, and B13 by 180◦

about an axis through mid-

points of opposite edges.

The rotation axes are directed line segments and the sense of rotation is to be determined by
the usual “right hand rule.” Because of the way coordinate axes have been chosen, each of these
symmetries is a linear operator τA corresponding to some orthogonal matrix A ∈ SO(3) that
has determinant +1. Thus the set T of geometric symmetries can be identified with a set of
matrices in the special orthogonal group SO(3). One could study these operators using matrix
theory, but there are more direct geometric ways to understand them.

First note that any operator τA ∈ T must permute the vertices, and hence corresponds to
a unique permutation in S4. For instance the 120◦ rotation about the vertex 1 corresponds to
the 3-cycle (2, 3, 4) in S4. Furthermore, the vectors vi extending from the origin to the vertices
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form a spanning set in R
3. Although it is not yet clear whether every permutation σ ∈ S4

arises from the action of some linear operator that preserves the tetrahedron, it is evident that
distinct operators in T must correspond to different permutations because any operator τA ∈ T
is completely determined once we know how it permutes vertices. Thus we have a natural
one-to-one map ψ : T → S4 that allows us to study T in terms of permutations.

7.2.11 Exercise. Verify that the set of symmetries T is actually a group under composition
of operators and that ψ is a (one-to-one) homomorphism.
Hint: First show that ψ(A ◦B) = ψ(A)ψ(B) in S4. �

7.2.12 Exercise. Show that the symmetry operations T correspond one-to-one with the even

permutations in S4. (Thus T is isomorphic to the alternating group A4.)
Note: It can be shown that the odd permutations also arise from symmetries of the tetrahedron,
but they correspond to the orientation-reversing symmetries: reflections across various planes
through the origin. �

With these remarks on the tetrahedral group T in mind we can find generators and exhibit a
presentation of this group. In Figure 7.6 we labeled a few of the symmetry operations in T . In
general, we define

• Ai to be the 120◦ rotation about the axis extending from the origin through the
ith vertex. Its square A2

i is rotation by 240◦ = −120◦ (rotation in the opposite
sense).

• Bij , i 6= j, to be rotation by 180◦ about the axis extending from the origin
through the center of the edge [vi,vj ]. This line also passes through the center
of the opposite edge.

These account for all operators in T except for the identity, but there is some redundancy in
this notation.

7.2.13 Exercise. Labeling elements of T as above,

(a) Verify that Bij = Bji and that Bij = B−1
kℓ (= Bkℓ) if {i, j} ∩ {k, ℓ} = ∅.

Thus I, A1, A
2
1, . . . , A4, A

2
4, B12, B13, B23 is a complete list of elements in T .

(b) Determine all twelve products A1 ◦B with B ∈ T .

(c) Prove that N = {I, B12, B13, B23} is an abelian subgroup of T and that N ∼=
Z2 × Z2.

Note: Use 7.2.11 to reduce to calculations involving permutations. �

Armed with the computational background developed in 7.2.13 you should be able to handle
the following more abstract problems.

7.2.14 Exercise. Show that T has the following properties.

(a) T is generated by the elements x = A1 and y = A2
3.

(b) These generators have order 3 and satisfy the relations xyxy = e.

It follows that there is a surjective homomorphism from G ≈ (x, y;x3, y3, xyxy) to T . �

∗7.2.15 Exercise. Prove that the maximal group G = 〈x, y〉 whose generators satisfy the
relations

x3 = e y3 = e xyxy = e

is isomorphic to the group T of rotational symmetries of the regular tetrahedron. �

7.2.16 Exercise. Given the result in 7.2.15, show that the group whose presentation is G ≈
(x, y, z;x3, y2, z2, xyz) is also isomorphic to the tetrahedral group T . �
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More can be said about the structure of T by carrying further the analysis in 7.2.13 and 7.2.14.

7.2.17 Exercise. In the tetrahedral group T show that

(a) The elements N = {I, B12, B13, B23} form a normal subgroup in T such that
N ∼= Z2 × Z2.

(b) The subgroupH = 〈A1〉 ∼= Z3 cross-sections the cosets in T/N – i.e. N∩H = (e)
and NH = T .

It follows that T is a semidirect product T = N ×φ H ∼= (Z2 × Z2) ×φ Z3.

(c) Determine the action of H on N and the associated homomorphism Φ : H →
Aut(N).

Then write out the multiplication law obtained when T is modeled on the cartesian product
set N ×H = (Z2 × Z2) × Z3.
Note: As an additive group, N = Z2 × Z2 is a vector space over the field of scalars Z2 and
Aut(N) is the set of Z2-linear operators corresponding to matrices A ∈ GL(2,Z) (2×2 matrices
with entries in Z2 and detA 6= 0). �

The following exercises and examples are concerned with other types of finitely presented
groups. The relations in the first exercise below look a lot like those for the tetrahedral group,
but the outcome is quite different.

7.2.18 Exercise. Prove that the group whose presentation is G ≈ (x, y;x3, y3, yxyxy) is
isomorphic to (Z3,+). �

7.2.19 Exercise. Prove that all groups G = 〈x, y〉 whose generators satisfy the relations
x4 = e, y3 = e, x2 = yxy must be trivial. �

7.2.20 Example. We conclude by examining the group G ≈ (x, y; x2, y2, xyz) mentioned
earlier in equation (10). As noted in Exercise 7.2.10, the generator z is redundant, so the group
we are concerned with has the deceptively simple presentation G ≈ (x, y; x2, y2). What can we
say about it? Is it nontrivial? Is it finite? Is it isomorphic to any familiar group?

Discussion: One way to obtain information about G is to search for concrete groups G = 〈x, y〉
whose generators satisfy x2 = y2 = e. By Theorem 7.2.3 every such G is a quotient (surjective
homomorphic image) of G. There are abelian groups G = 〈x, y〉 whose generators satisfy
x2 = y2 = e, for instance the Klein group Z2 × Z2, and hence there are natural surjective
homomorphisms G→ Z2 × Z2.

7.2.21 Exercise. The group Gabel = F (s1, s2)/N , where N = 〈〈s21, s
2
2, s1s2s

−1
1 s−1

2 〉〉, is the
maximal group that is abelian and has generators x, y such that x2 = y2 = e. Prove that Gabel

is isomorphic to Z2 × Z2. �

That proves G 6= (e), but since we hardly expect G to be commutative we must search farther
afield for concrete models of this group. A larger group with the desired relations is the infinite
dihedral group D∞ = 〈ρ, σ〉 whose generators satisfy

o(σ) = 2 o(ρ) = ∞ (no relations imposed on ρ) σρσρ = e

It is easy to see, as we did with Dn, that the elements {ρiσj : i ∈ Z, j ∈ Z2} form a group,
and that every element in D∞ has a unique decomposition g = ρiσj . To see the connection
between D∞ and G we note that N = 〈ρ〉 ∼= Z is a normal subgroup of index 2 in D∞, and
every element ρiσ in the other coset has order 2 because ρiσρiσ = ρiρ−i = e. Taking x′ = ρσ
and y′ = σ we see that ρ = x′y′, σ = y′, so D∞ has generators x′, y′ satisfying the relations
that define the maximal group G, and hence there is a surjective homomorphism φ : G→ D∞

such that φ(x) = x′, φ(y) = y′.
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On the other hand, the elements ρ′ = xy, σ′ = y in G satisfy the same relation ρ′σ′ρ′σ′ =
xyyxyy = e as the generators ρ, σ in D∞, so if we define the map ψ : D∞ → G

ψ(ρiσj) = (ρ′)i(σ′)j = (xy)iyj

we get a homomorphism because

ψ(ρiσj · ρkσℓ) = ψ(ρi+(−1)jk σj+ℓ)

= (ρ′)i+(−1)jk (σ′)j+ℓ

= (ρ′)i(σ′)j · (ρ′)k(σ′)ℓ = ψ(ρiσj) · ψ(ρkσℓ)

Obviously φ ◦ ψ = ψ ◦ φ = id since this is true on sets of generators, so ψ is a bijection and
G ∼= D∞. �

There is a geometric model of D∞ but it differs from previous models that described the
finite dihedral groups Dn as the rigid-motion symmetries of the regular n-gon. Consider the
group G = 〈r, s〉 of rigid motions generated by

r = (rotation about the origin 0 = (0, 0) by 180◦)

s = (rotation about p = (1, 0) by 180◦)

We denote translation operators by ta : v 7→ v + a, noting that the set of all translations
T = {ta : a ∈ R

2} form a group of rigid motions isomorphic to (R2,+) since ta ◦ tb = ta+b.

7.2.22 Exercise. Defining G as above

(a) Prove that s = tp ◦ r ◦ t−p, and that r ◦ ta ◦ r−1 = tr(a) for all a ∈ R
2.

(b) The subgroup TG = G∩ T of translations in G is equal to {t(2k,0) : k ∈ Z}. It is
normal in G and isomorphic to Z.

(c) Prove that G ∼= D∞. �
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